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Abstract:

Folksonomies are new, user driven classification
structures and an important part of Web 2.0.
Folksonomies are the only one approach that
can keep up with todays web expansion rate, by
utilizing users as classificators of web’s content.
Folksonomies, when containing sufficient amount
of data, can be exploited in several ways. This
particular work concentrates on measures of
semantic similarity in folksonomies. The aim
of this work is to evaluate several semantic
similarity measures on a sample of three datasets
- delicious.com, Last.fm and medworm.com.
Evaluation was done using grounding data from
WordNet, Open Directory Project and medical
oriented ontology.

Results presented by this work indicate, that
measures of semantic similarity can be used
to successfully measure the similarities in folk-
sonomies in several domains, among other, in do-
main of music and the one of web pages.
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Chapter 1

Introduction

Folksonomies, sometimes also referred to as social tagging, are relatively new, but extremely
fast evolving approach to data classification. Folksonomies are nowadays at the very centre
of many Web 2.0 projects. Web 2.0 is a term first used by Tim O’Reilly. He describes the
term more closely in [29], and there is also description of how various techniques should
evolve from classical web to Web 2.0. Among other, [29] describes evolution from directo-
ries(taxonomies) to folksonomies as a part of Web 2.0 creation process.

1.1 What folksonomies are

The exact expression folksonomy was first used around 2004 to identify two already existing
sites, delicious and Flickr. It is a composition of words folk and tazonomy. A definition of
taxonomy according to [4] is "a study of the general principles of scientific classification”
or, which makes more sense in our case, "orderly classification of plants and animals ac-
cording to their presumed natural relationships”. Of course, plants and animals have to be
substituted with anything that can be organized using ”presumed natural relationships”.
It is however not very exact to use the word taxonomy in process of building the word
folksonomy, because folksonomies tend to overcome limitations of taxonomies and other
classification approaches. What are those limitations and how are folksonomies dealing
with them will be described in the following articles.

One might try to informally describe a folksonomy as a collection of labels, called tags,
assigned to resources by users, with no restrictions applied to what the label represents,
except for it being a string. This freedom is both major advantage and disadvantage
of folksonomies, when compared to other data classification approaches, like taxonomies.
When classifying a resource, one is no longer limited to a certain set of categories and can
therefore expand the label set with new label easily. On the other hand, due to no limits
to labels, they might not be related to the subject or could just be a noise, or worse,a
spam. Despite their downsides, folksonomies are the only approach that can cope with
web’s expansion rate. By transferring the classifying role from experts to users we lower
the degree of precision, but gain incomparably bigger reach of the classifications.



Formal definition of a folksonomy, as described in [24], is as follows: Folksonomy F' is a
4-tuple, containing a set of users U, a set of resources R, a set of tags and a set of relations
between those - Y. Y is a subset of cartesian product of U, T" and R. What exactly a
resource represents depends on a domain. It might for example be a web page, a music
artist, a movie, a picture or a video.

F=UTRY),YCUXTxR

Nowadays, folksonomies are at the center of numerous web pages. Some are just im-
plementations of folksonomies in different domains, some pages use them to improve their
functionality, for personalization, keyword predictions and many other applications. Prob-
ably the most known folksonomy based services are delicious [6], Last.fm [26], digg [5],
Youtube [1] and least but not last, Flickr [14]. Annotated resources range from web pages
to pictures. Some web pages do not provide tagging, but users seem to find a way how
to tag anyway. This happened in Twitter([34]), where people started tagging their tweets
with so called hash-tags, by putting a hash character in front of the word they want to tag
with(i.e. #politics).

For our experiment we chose delicous, Last.fm a and Medworm [17]. The reason for
this choice were mainly grounding data available for the domains covered by these three
pages. Of course, there were many other sites to choose from, including Bibsonomy [21]
and MovieLens [28] which already had their content available to download. Bibsonomy’s
resources are partly similar to the ones in delicious, and since experiment with Bibsonomy’s
dataset has already been done in [24] we decided to try delicious instead. Movielens, which
gathers information about movies, would be more than suitable for use with similarity
methods but would be very hard to ground. More on a subject of grounding in 4.1.

Folksonomies, when containing sufficient amount of data, can be exploited in several
ways. Computing similarity between components of folksomy’s sets, clusterizing and infer-
ring taxonomies are some of the practical applications. Some of these approaches will be
described in a section 2.

1.2 Semantic similarity and similarity measures

In this part we will elaborate on the terms semantic similarity and semantic relatedness.
[4] defines ”similar” as "having characteristics in common : strictly comparable” and also
”alike in substance or essentials”, whereas "related” is described as ”connected by reason
of an established or discoverable relation”. This definition also comes from [4]. Addition-
ally, we need to describe the term ”semantic” as well. Webster’s definition is as follows:
”semantic: of or relating to meaning in language”. We should state now, that the measures
of semantic similarity desribed in this text do not only capture the language meaning of
connections between entities, but other connections as well. Some sources use semantic
similarity interchangeably with the term semantic relatedness even when it comes to the
measures. There are cases when these two are technically the same thing, however a clear
distinction has to be made. In [31] author states, that when two entities are similar, they
are also related. From computers’ point of view, terms ”doctor” and ”syringe” are not
similar at all, however they are strongly related. On the other hand ”doctor” and ”nurse”
are similar (they share several similar attributes, for example they both work in a hospital,
wear similar uniforms, and last but not least, they both have some kind of medical based
education) and very related as well.



It is hard to answer the question, whether measures of semantic similarity capture
relatedness as well, but since the principle of most of the measures is based on comparing
shared attributes of entities, whose similarity we want to measure, we can probably state
right now, that relatedness, at least in most cases, is not going to be captured.

This work concentrates on semantic similarity measures in folksonomies. These mea-
sures often have their origin in classical measures of semantic similarity, which are commonly
used to measure similarity of documents and have been developed for this task. Some of
the measures can be even used in non changed form.

The aim of this project is to implement various semantic similarity measures and aggre-
gation methods, mostly as described in [24], [15] and [25] and to collect datasets to apply
these measures to. Once the outcome has been computed, correlation with measures of
similarity in human created classifications or grounding for short will be done and we will
try to give interpretation of the results, and suggest convenient measures for particular
domains.

1.3 How aggregation methods affect similarity measures

Various methods of aggregation have been introduced to better adapt the measures for use
with folksonomies. In process of aggregation, information from one of folksonomy’s sets is
inevitably lost. In our case it is information about users, because we want to concentrate
only on similarities between resources and tags. Result of an aggregation is an aggregation
matrix. This is also an input of a similarity measure.

Each measure has its basic formula, usually identical to one that would be used in
a document similarity. This type of formulas is compatible with a so called projection
aggregation (more on that in a section 5.2). Outcome of this method is a matrix containing
only ones and zeros. This aggregation method makes no difference between tagging a
resource one or several times with one tag, therefore it does not matter, if only one user
annotates the resource with a particular tag or thousand users do. Exactly this kind of
behavior is captured by a distributional or fuzzy aggregation method(5.3). This method
counts the number of occurrences of each tag/resource.

Other approach uses a projection aggregation, but works with probabilities rather than
with simple sets. Formulas stay almost the same, but are expanded by log likelihood
parts. What would be intersection in a basic projection case becomes a summation of log
likelihoods of members of intersection. This will be closely explained in a section 5.2. This
is also called distributional aggregation. It will be referred to as distributional aggregation
with probabilities in the following text.

This of course calls for some changes in the formula. As far as we know, there is no rule to
convert measures to work with other aggregations, however some patterns can be seen. We
applied those patterns in cases, where no suitable measure already existed or could not be
found elsewhere, but results given by these measures might not be correct. These measures,
except for the cosine similarity, which is defined on a vector space, were not mentioned in
[24] either. Since projection measures work with a set representation and distributional
with a vector representation, typically an intersection of two sets is ”converted” to the dot
product of two vectors, and a set length becomes a vector norm.

Whereas with previous aggregation methods there is no distinction as to what user made
certain annotations, because every annotation is written to the same matrix, in so called
macro and collaborative aggregations we first compute a similarity for each user and the
concluding similarity is result of a summation. Of course, this is not an aggregation in the



same sense as in a projection and distributional case. It is not important which aggregation
we choose for users, it only needs to be identical for each user. Informally, collaborative
and macro aggregations do not affect formulas of similarity measures, although some formal
adjustments have to be made, specially in case of the collaborative aggregation, which adds
"artificial” annotations (more on that in the chapter 5.1).

1.4 How to measure performance of used methods

We can use several approaches in order to capture, how well the similarity methods perform.
The best way would surely be to create a set of a few very well known tags or resources and
let several people to assign similarities to all the pairs these sets allows. This would however
require a lot of human resource, which we were not in possession of. We then had to reside
to use such measures, that have already been verified by user studies. Since no such study
has been done in the domain of folksonomies, other semantic similarity measures in different
domains than folksonomies had to be used; typically, these domains were taxonomies. In
the following text, this will be called grounding.

Basically, grounding is a process, in which we try to find a intersection as big as possible
with folksonomy’s dataset and the taxonomy which relates the best to the given folksonomy.
Once we have obtained this intersection, we can compute similarities using both semantic
similarity measures in the folksonomy and in the taxonomy, resulting in two similarity
matrices which we can later correlate. Intersections between the folksonomies’ datasets
and grounding data are typically only a fraction of actual size of the original folksonomies,
however still big enough to perform the correlations. Correlation techniques are described
in the chapter 6.

We have evaluated several measures, using 5 aggregations. For the results, please see
the chapter 6.

1.5 Structure of this document

This document is divided into 7 chapters. You are now reading the first introductory
chapter, which is followed by the chapter 2, where reader can find a description of work
which relates to this project. The most vital part of the project, the datasets, are described
in the chapter 3. Detailed information on grounding techniques and grounding data is in
the chapter 4.1. Chapter 5.6 is the biggest chapter, explaining aggregation methods, actual
similarity measures and information about their implementations. Results of correlations
between the measures of semantic similarity and grounding approaches can be found in
chapter 6. Finally, project evaluation and suggestions for future work are at the end of
this document, in the chapter 7 followed by appendix, where reader can find a list of used
literature.



Chapter 2

Related work

From our point of view, the most important work is [24], which is, as far as we know, one of
the only works that have introduced some changes to the usual similarity metrics to better
fit them into the domain of folksonomies. We have adapted most of the similarity measures
and aggregation methods from this work, however most of these measures existed before,
but were not adjusted to fit into the domain of folksonomies. Yet changes done to these
measures are not very wide.

Research activity in this domain is indeed vast. One can say that whenever the social
tagging is mentioned then the work is somehow related to our subject. Nevertheless we will
only describe a small portion of this domain, starting with some interesting applications
of semantic similarity measures to create clusters in a folksonomy, or infer taxonomies.
We will continue with some measures of semantic similarity in taxonomies. Although this
might not seem related to our subject, semantic similarity methods in taxonomies are vital
for assessing methods in folksonomies, mainly because numerous were validated by user
studies.

2.1 Semantic similarity in other structures than folksonomy

First measures of semantic similarity in taxonomies were based on edge counting approach.
If we think about is-a taxonomy as a graph, such measures were functions of the distance
between two nodes. Philip Resnik in [31] proposed measure, that not only exploits structure
of taxonomy but utilizes information contained within each concept. Full definition of this
can be found in [31], but we can informally say that the lower in taxonomies’ structure
one gets, the more information concepts in that dept contain. For example, in Wordnet,
the uppermost concept is usually called an ”entity” and since everything in Wordnet is
an ”entity”, that fact caries no information. Oppositely, the bottommost concepts in a
taxonomy are the most special ones(they have no subordinates) and therefore give the
highest information. All the information theoretic measures use log probabilities, saying
that information carried by term is equal to the negative binary logarithm of a probability
of a term’s occurrence. Also, Resnik’s measure operates with the function common(a,b)
which returns the common concept in taxonomy for terms a, b whose position in a taxonomy
is the lowest. As Lin in [22] explains by Wordnet’s example: common(a,b) of terms "hill”
and ”coast” is the term ”geological formation”. Resnik’s measure is defined as:

SiMyesnik(a, b) = log P(common(a, b))

where I(x) is the function returning information held by concept x.



In this work we will use another, a similar measure, for grounding purposes. It was
introduced by Wu and Palmer in [36]. With respecting all the definitions given in the
previous paragraph, its formula is as follows:

2. Ny
N1+N2—|-2-N3

SUMWyPalmer (CL, b) =

where N7 and Ny are the numbers of edges to common(a,b) and N3 is the distance from
term common(a,b) to the highest term(i.e. root) of the taxonomy.
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Chapter 3

Datasets

In order to be successful with the experiment, we needed quite large amount of data. As
described earlier, we chose delicous, Last.fm and Medworm. Since delicous and Last.fm are
one of the oldest tagging services, and because several researchers needed their datasets as
well, we were able to find already existing datasets, which were free to download, adapt
and use. In fact, there are several datasets obtainable for both of these services, but some
were more suitable than others, some contained too much data, while some did not contain
enough data for our experiment. As for Medworm, since the service itself is quite new and
research in medical based social tagging systems is rather sparse, we had to create a new
dataset by crawling the page.

3.1 Last.fm dataset

Last.fm is a social music site that describes itself as a ”social music revolution”. It developed
from two separate services, one of which concentrated on creating a personalized music
library while the other was a service used for storing information about what music its
users listen to on their computers.

Users tag artists, songs, music events such as concerts or festivals as well as music
albums. On top of that, they can join various groups, make friends and so on. The
taggable content of the site is either manually generated or created by special process of
scrobbling. Scrobbling basically means uploading information about the music the users are
listening to on their computers. This music will appear on user’s profile and can later be
tagged.

Although Last.fm offers quite sophisticated API, which can be used to collect tags
about resources, the maximum number of tags returned is only 50. This number of tags
is not adequate for the task at hand. Moreover information about how each user tagged
particular resources would be too hard, if not impossible, to get. We will, however, find a
way to use this API to extract only artists out of the dataset. Dataset satisfying our needs
is an outcome of 6 month-long crawl of Last.fm service and therefore contains vast amount
of data. This dataset was first used in [32]. We decided to only use the portions of the
dataset concerning annotations about artists, mainly for computational complexity reasons
and also because of lack of appropriate grounding data .

Originally, the amount of data was too big to be handled in a reasonable time, so we
decided to limit it quite radically, while still leaving more than enough information to make
meaningful computations. That left us with more than 280000 tags, used by almost 21000

11



users and applied to approximately 350000 artists. All this sums up to more than two and
a half million triples. We will later see, that such large number of triples does not have
to have great impact on outcome, when compared to substantially lower one. Although
dataset contained users’ friends and groups we did not use this content.

Typically, tags represent music styles, but sometimes express sentiment (tags like: awe-
some, best song), feelings or activities connected to song/artist for example tags ”breakfast
music” or "relaxing music” indicate that user has seen some artist performing live. The
reason for introducing the tagging in Last.fm service was probably a lack of staff to classify
scrobbled music, but as we’ve explained before, it has evolved into more than just plain
classification.

To better describe the dataset, we refer to histograms 3.1, 3.2 and 3.3. Those depict tag,
resource and user occurrences respectively. On the x-axes there are numbers of annotations
when concerning tags, resources or users. In each case we set boundaries for x-axis according
to what we want to capture from the dataset so that it can be discussed here. Let us make
this clear by an example. In 3.2, the majority of resources (in this case more than 1000)
were only annotated 20 times. In this case, we only show resources annotated more than
20 times, although most of the resources were tagged less times. However, these ones are
not very important for us, because by having less than 20 annotations (tags) assigned to
them they lack sufficient data to actually compute substantive results. We can call these
resources ”unique” resources and they are a majority in every dataset we had.

Evidently, a trend can be seen in every figure that shows decreasing amount of occur-
rences as the x-axis progresses. Surprisingly, this applies to Last.fm’s tags aswell. Since
Last.fm’s annotations are primarily meant to describe what style of music artists perform,
it would be quite logical not to have so many ”unique” tags, because an amount of music
styles, however always growing, is still somewhat limited value. Nevertheless, these tags
are present as much as in other datasets. This might be due to the fact that people tend to
tag artists with their names, for example people tag the artist ”John Lennon” by the tag
”John Lennon”, creating these ”"unique” tags in the process. In 3.3 we can see that users
of Last.fm are much more active than users of other datasets.

12



Density of tags in Last.fm dataset(at least 35 annotations)

Amount of tags

80 100
Number of annotations

Figure 3.1: Tag occurrences in Last.fm dataset

Density of resource annotations in Last.fm dataset(at least 20 annotations)

Amount of resources

100 120
Number of annotations

Figure 3.2: Resource occurrences in Last.fm dataset
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User activity in Last.fm dataset(at least 15 annotations)

Amount of users

300

60
Number of annotations

Figure 3.3: User activity in Last.fm dataset

3.2 Delicious dataset

In delicious, users tag exclusively web pages and its main aim is to replace or improve
bookmarking provided in web browsers. Surprisingly, as far as we know, there not very
many snapshots of delicious freely available on the internet at this time. The one used in
this work comes from [27]. It contains 214000 bookmarks, which is more than enough for
the kind of experiment described here.

Dataset is in JSON format, which can be directly imported into Python data structures,
so there was no need to parse. A simple extractor was then written to get the data into
format usable with our code. This format will be described in section 5.8.

Roughly 135000 resources are present, along with unique 70000 tags, applied by ap-
proximately 80000 users. The number of triples (meaning relations between user, resource
and tag) is about 650000. Since the dataset was created by reading new bookmarks feed,
tag frequencies are sometimes rather sparse, but are sufficient in case of really common
resources(pages) as showed in figure 3.5. Example of one bookmark in this dataset can
be found in a figure 3.1. Quotes were deleted and some addresses were shortened to make
the example clearer. It is obvious that we did not need most of the information stored,
however, some of the fields could be used in other research. We only parsed links, authors
and tags.

14



{

updated: Sun, 06 Sep 2009 19:48:28 +0000,

links: [{href: http://www.cnn.com/, type: text/html, rel: alternatel}],
title: CNN.com,

author: Andree,

comments: http://delicious.com/url/006d5652f4c43ab9e69328abbe74f7e4,
guidislink: false,

title_detail: {base: http://feeds.d...s.com/v2/rss/re...=100,

type: text/plain,

language: null, value: CNN.com},

link: http://www.cnn.com/, source: {7},

wfw_commentrss: http://feeds.delicious.com/v2/rss/url/006.. .,

id: http://delicious.com/url/0. . .4#Andree,

tags: [

{term: news, scheme: http://delicious.com/Andree/, label: null},
{term: politics, scheme: http://delicious.com/Andree/, label: null}
]

}

Code sample 3.1: Example of delicous dataset

We can see more about the datasets’ content in figures 3.4, 3.5 and 3.6. Phenomenon
of "unique” tag, unique resource and even unique users can be seen in all of the figures and
this is common for all the datasets. The reason for that in case of resources is probably
that users not bookmark pages as in bookmarking the main page(e.g. ”www.bbc.co.uk”),
but rather part of the web page they find interesting enough to bookmark, for example
"http://news.bbc.co.uk/2/hi/science/nature/default.stm”.

A question comes to mind whether to treat bookmarks sharing the same main page as
if they were about the same topic and therefore we could join tags given to various parts of
page and assign them only to the home page. While there are surely some examples where
this would be valid, we cannot generalize this, therefore it could lead to unwanted results.

It is clear from the figure 3.4, that many tags have only been used from one to five
times in this dataset, which is probably due to the creation of the dataset by reading RSS
feed. It is possible that many tags might actually be quite common in delicious, although
they are not in our dataset. If there were a way how to get data directly from delicious, we
would probably not have this problem.

Same thing can be said about users’ activity in delicious, although a peak can be seen
around 15 annotations given by users with almost 500 users falling into that category.

15



Amount of tags

Amount of resources

Density of tag usage in Delicious dataset(at least 2 annotations)

15 20 25 30
Number of annotations
Figure 3.4: Tag occurrences in delicious dataset
Density of resource annotations in Delicious dataset(at least 2 annotations)
15 20 25

Number of annotations

Figure 3.5: Resource occurrences in delicious dataset
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User activity in Delicious dataset(at least 10 annotations)

Amount of resources

30 35
Number of annotations

Figure 3.6: User activity in delicious dataset

3.3 Medworm dataset

Medworm collects data from more than 6000 medical oriented blogs, journals and news
services. However, tagging data is mainly present in a blog section. Since we had to parse
Medworm to create the dataset, we used a list of almost 14000 tags present on one of
Medworm’s pages and then performed a search for each tag, collecting data about articles,
blogs articles came from and categories they belong to in scope of Medworm.

A simple parser in Python was used and data initially stored in JSON format. We
collected almost 200000 articles from about 1000 blogs. Again, with more than one million
triples, we had more than enough data to commence the computations. We should now
note, that the term ”user” in scope of this dataset actually means blog. There is not
always a way to get info about the actual user by whom the article was written or, more
importantly, tagged. But for the sake of compatible terminology we will continue on using
the ”word” user in connection with Medworm dataset as well. It also makes sense when we
look at a blog as a set of users creating its content. One of these users then writes a blog
article, tags it and the article, along with tags, gets imported into Medworm. So we can
say that blog is a collection of users and these users are both authors of articles(which is
not really relevant for this project) and tags. This will only affect macro and collaborative
measures in a way that each users’ annotations will not typically be as sparse as they would
be in normal case.

In 3.3 you can see a part of one element parsed from Medworm’s website. Again,
web addresses were shortened. Initially all elements had been tag oriented and were later
converted into our triple model. As reader can see, dataset contains articles’ url, its name,
name of the blog it came from and category it belongs to in Medworm. Some of the articles
also have information about author within the blog, by whom the article was written,
however this is not present every time.
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{’’cancer’’: [

[’’http://www.medworm. com/index.php?. . .gerd-not-about-acid.html’’,

’?’A new approach for treating reflux?’’,

’’The ND Blog: Notes from the Nutritionista by Monica Reinagel, L.D.N., C.N.S.’’,
>’Nutritionists and Food Scientists’’],
[’’http://www.medworm.com/index.php?...AHeartyLife’2F)7E3%2FI5SRXWimUSw/2F’’,
’’Insomnia Common with Chemotherapy’’,

’?’A Hearty Life’’,

>’Nurses’’] ... 1%}

Figure 3.7: Example of Medworm dataset

It is clear from the figures 3.8, 3.9 and 3.10 that patterns visible in the other datasets
apply here as well, with exceptions of blog activity. Blog activity has its peak with one
article only, which is quite surprising, because of the fact that blog that only has one article
does not seem useful. This might have been caused by Medworm’s import mechanisms,
which, to our knowledge, are not publicly available, so we can not be entirely sure. However,
there is a significant portion of blogs with 100 to 150 articles, as it can be seen in the figure
3.10.

Density of tag usage in MedWorm dataset

2500

N
=3
S
S

I

Amount of tags

60 80 100
Number of annotations

Figure 3.8: Tag occurrences in Medworm dataset
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Amount of resources
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Density of resource annotations in MedWorm dataset

20 30 40
Number of annotations

Figure 3.9: Resource occurrences in Medworm dataset

50

Blog activity in MedWorm dataset

100 150
Number of annotations

Figure 3.10: Blog activity in Medworm dataset
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3.4 Comparison of the datasets

We have already given some information about the datasets, summarized by the table 3.1.
We added information about usefulness of tags contained in the datasets. We made a short
list of words that we thought were not important for describing resources. This included
mainly sentimentally oriented tags as ”like”, ”love”, "great” and so on. Of course, we could
not filter all the non desired tags and therefore percentages in 3.1 are probably lower in
reality. Full scale analysis of this phenomenon is however beyond the scope of this project.
It is logical that Last.fm includes highest portion of such tags, since its resources are pieces
of music, it comes as no surprise that people associate it with feelings more often than in
the other domains.

From the pictures shown before we can tell right now that dataset most suitable for our
needs is Last.fm’s dataset, above all because of its long creation time and also method of
parsing, which made it the most complete sample we had. Medworm looked promising as
well, but did not provide sufficient data for our grounding case. More about that subject in
the section 4.1. Similarly, delicious proved not to be as good as Last.fm. This is probably
due the concept of its creation, as described before.

users resources | tags | annotations | % of useful tags
delicious 80000 135000 70000 650000 97%
Medworm | 1000(blogs) | 200000 14000 1000000 99%
Last.fm 21000 350000 | 280000 2500000 95%

Table 3.1: Table summarizing the datasets
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Chapter 4

Resource grounding techniques,
data and implementation

4.1 Grounding data and techniques

Although the goal of this project is to test the similarity measures, the part of task which
concerns grounding of obtained results is almost as big as the part which has already
been described. In all the cases we needed to obtain human created hierarchy, which
contained intersection with given dataset that was big enough to make a valid comparison.
Hierarchies, in this case, are usually part of ontologies. These ontologies, apart from other
information, contain set of entities and their ’is-a’ relationships with other entities. Having
this data, we can infer hierarchies, store them as a graph and then use graph based similarity
measures to compare with folksonomy based similarity measures.

We wanted to have a special grounding case for each dataset. If we had used one
grounding mechanism for all the datasets, there would not have been so much diversity
between the results and all the results would possibly have been very similar to each other.

We chose Lin’s information theoretic measure [22] in all the cases except Wordnet. There
are several implementations of Wordnet’s similarity measures freely available, for example
[30] and [13]. We decided to use Lin’s measure because of its simplicity and relatively good
performance, which was proved by several user studies, as described in [22] and [35].

For reasons justified before, we used Lin’s measure. However, the main challenge here
was not to implement the measure, which is quite trivial, but to extract hierarchies from
available data. This will be described in the chapter 4.1. For the graph representation,
when implementing Lin’s measure, we chose Python graph library called iGraph [3].

Once we have build the tree from the hierarchy we computed all the paths from tree’s
root, the root being usually the ”Top” category of given hierarchy. In some cases we
added the root node ourself to make the connections between various branches of the
graph possible. Since Lin’s measure uses information theoretic definition of probability,
sometimes called log probability, as mentioned for example in ([10]), we have to compute
these probabilities somehow. In [36] the probability of one entity is simply defined as the
number of occurrences of given entity divided by the number of all entities. In some cases
we had sufficient data to compute the probability, in some cases we had not, so we resided
to computing the probabilities only from hierarchical structure. We did that by cycling
through all paths from tree’s root and counting occurrences of each visited node.
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Lin’s measure is defined as follows (described(among others) in [19]):

Lin. o — log p(common(a, b))
0™ log(p(a) +log p(b)

where function common(a, b) returns the least common subsumer of a and b in a graph, p
is the function returning probability of the given node in the graph. This definition can be
applied to all following cases. Figure 4.1 shows a small part of music genre hierarchy. In
4.1 the least common subsumer of nodes ”Indie” and ” Alternative” is ”Rock” and similarly
least common subsumer of "Rock” and ”"Pop” is " Top”.

Figure 4.1: Example of music oriented taxonomy

Essentially, in all the following sections of this chapter, the result was a similarity matrix
that was later used for grounding.

4.2 Delicious grounding

4.2.1 Tag grounding

Delicious’ bookmarks have no limits, so if we want to compare significant amount of the data
included in the dataset, we have to use very common database such as WordNet. We used
implementations of similarity in Wordnet included in NLTK - Natural Language ToolKit
[12], set of natural language processing oriented modules for Python. NLTK implements 6
similarity measures in Wordnet.

Another option would be to use Wordnet::Similarity module([30]), written in Perl. This
module contains 10 similarity measures and is accessible online, which makes it convenient
tool for quick random calculations. Nevertheless, we chose NLTK over Wordnet::Similarity
mainly because rest of our code was already in Python, so there was no need to convert
anything.
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Similarity measures in Wordnet work with so called synsets - sets of synonyms. Querying
Wordnet returns typically a set of synsets, as showed in the figure 4.1. Main problem when
computing similarities in Wordnet is therefore choosing the right synsets, which are hard
to determine if we do not know actual meaning of the tag. There is no way to obtain this
knowledge without going back to the resource the tag is assigned to and trying to guess,
what the page is about and according to that choosing appropriate synset. This kind of
analysis is beyond aim of this project. Moreover similarity methods in Wordnet only work
with one type of speech, meaning it is impossible to measure similarity between noun and
verb, for instance.

For reasons justified above, we did not perform any attempts to guess the right synsets.
We simply choose the first pair of synsets with matching word classes. There was also
a possibility to compute similarities between all the matching synsets, but that would
consume much more time and benefits of this approach were not provable.

Intersection of Wordnet and delicious dataset includes more than 14000 tags, we only
considered those occurring 5 and more times when computing similarities. This left us with
5000 tags. We used Wu-Palmer similarity measure, whose formula we already described in
the section 2.1. We decided to use this measure because it performed very good in [22] and
also to easily compare our results with the ones given in [24].

4.2.2 Resource grounding

For the same reason as in the case of tags we needed to have a hierarchy as broad as possible.
ODP - Open Directory Project([2]) is indeed big enough to meet our expectations. It is
open, growing, multilingual and is being used by Google and other big companies.

ODP’s structure is more complicated than a classic is-a taxonomy. Apart from hierar-
chy links, it also contains symbolic links and related links. Symbolic link expresses that
two categories connected with such link are basically the same. Symbolic links connect for
example categories with same content, only in different language. Related links join the
categories that are related and are usually used for ”see also” type of recommendation.
First we wanted to implement measure described in [23] because it has been developed spe-
cially for ODP and therefore fully exploits its architecture. However, this measure is both
implementation-wise and computation-wise too expensive (mainly because of its utiliza-
tion of symbolic and relative links and inferring transitive relations in ODP’s graph using
those links),therefore we used only Lin’s measure, which uses just hierarchical information
contained in ODP.

4.3 Last.fm grounding

We only considered Last.fm’s artists’ annotations, although similarities between songs and
events could be calculated too, however there are little to none grounding data for latter
two cases. We used the hierarchy inferred from Musicmoz, project similar to ODP(][8]), as
grounding basis for both tags and artists.

Another option would be to use Wordnet in tags case. While many of the styles/tags
are indeed present in Wordnet it is better to use more specific hierarchy. Since semantic
similarity measures in Wordnet use synsets as input, it would be hard to judge which one
to pick. This may become clearer by example in the figure 4.1, which contains output of
Wordnet queried for a term ”rock”. As the reader can see, there are many synsets returned,
but only one (number 6 in the noun section) that captures desired meaning of the word
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”rock” in this case, therefore it is better to use hierarchy from Musicmoz - it is certain that
b
term ”rock” in Musicmoz’s hierarchy refers to music genre.

$ wn rock -over
Overview of noun rock

The noun rock has 7 senses (first 2 from tagged texts)

1. (14) rock, stone -- (a lump or mass of hard ...)

2. (6) rock, stone -- (material consisting of the aggregate of minerals ...)
3. Rock, John Rock -- (United States gynecologist ...)

4. rock -- ((figurative) someone who is strong and stable and dependable ...)
5. rock candy, rock —-- (hard bright-colored stick candy ...)

6. rock ’n’ roll, rock’n’roll, rock-and-roll, rock and roll, rock, rock music —-

(a genre of popular music originating in the 1950s; a blend of black rhythm-and-blues
with white country-and-western;

>’rock is a generic term for the range of styles that evolved out of rock’n’roll.’’)
7. rock, careen, sway, tilt -- (pitching dangerously to one side)

Overview of verb rock
The verb rock has 2 senses (first 1 from tagged texts)

1. (6) rock, sway, shake -- (move back and forth or sideways ...)
2. rock, sway -- (cause to move back and forth ...)

Code sample 4.1: Example of Wordnet output

4.3.1 Tag grounding

Information extracted from XMLs available on MusicMoz’s web page included music styles
hierarchy with 550 styles. Aside from that, we needed a frequency for each style, so that
we could compute their probability. This was done together with counting frequencies
as described in section 4.3.2. We mapped style names directly to Last.fm tags acquiring
intersection containing 480 tags/styles. It is interesting that 70 styles from MusicMoz
hierarchy were not used as tags in our dataset.

4.3.2 Artists grounding

Every entry about music artist in MusicMoz includes one to three music genres assigned
to artists. Genres are not the same as categories in the hierarchy. Luckily, Musicmoz
provides mapping to hierarchy categories. When computing similarity of the artist with
more than one genre assigned we simply use mean of similarities computed for each category.
Intersection between the dataset and artists stored in MusicMoz includes about 36000
interpreters.

For example, music group ”The Beatles” has following styles assigned : [’British In-
vasion”, "Rock”, ”Skiffle”] and "Lenny Kravitz” has only ["Rock”]. Overall similarity
therefore is as follows (TB stands for The Beatles, LK for Lenny Kravitz and so on):
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sim(BI, R) + sim(R, R) + sim(S, R)
3

where sim() is any similarity measure giving result in interval < 0,1 >. Resulting Lin’s
measure similarity matrix is more than 100 MB large. We should probably note here, that
although previous definitions of artists similarity make sense, it will not perform as good
as it should, mainly because just 3 styles are not enough to throughly describe an artist.
We can therefore expect that this grounding technique will not produce the best of results
and results given in the chapter 6 should be viewed with this knowledge.

sim(TB, LK) =

4.4 Medworm grounding

Since Medworm is a medical oriented service, we needed to find some appropriate grounding
data. We could have used Wordnet, but for reasons same as in Last.fm’s case we decided to
find some specialized ontology. Only medical ontology with sufficient hierarchy structure
was Human disease ontology from [18]. A small part of this ontology as displayed by
Protégé([33]) can be seen in figure 4.2. As reader can see, its structure only consists of
is-a relationships and therefore Lin’ measure can be applied. The term with DOID_4 is the
term labeled ”disease” and has only one superordinate. We considered this term as a root
of taxonomy’s tree in our implementation. Not the whole structure is visible in the picture.
Maximum depth of the hierarchy in this particular ontology is 12.

This ontology, although only with 50 intersecting tags was still the best we could find.
Ontology was stored in OBO format, whose description can be found in [11]. Yet for our
purpose we did not need to know much about the format, because we only wanted to extract
hierarchical information from ontology. This is stored in form of is-a relationships as showed
in 4.2, where we can see that ”Chapare hemorrhagic fever” is both a ”viral hemorrhagic
fever” and a ”arenaviridae infectious disease”.

Thlng:

is-a

—  —p(poba)y

is-a .
‘poiD_7 -
- _____-.;-I'E‘:I--_.-_______ -..
~ - — _,-"'/ i ‘\\
Y . — gma is-3~" is-a Jis-a \je-a H\\E
.I — - S/ -
@D _II‘ 765 “boiD.s g . '- — - - e - '/ — rlj —— ___,__‘\, —
( DOID_4020 ) ( DOID_2769 DOID_8 ) ( DOID_14566 ) ( DOID_14568 ) ( DOID_1456% | ( DOID_14567 ) Y LA
% = —— — —_— —_— — —
|'._I'. )_,
is-a /// is-a
-
P
(. DOID_11113 )

Figure 4.2: Portion of human disease ontology
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[Term]

id: DOID:0050198

name: Chapare hemorrhagic fever

def: ’’A viral hemorrhagic fever that involves ...’
is_a: DOID:1330 ! viral hemorrhagic fever

is_a: DOID:3944 ! arenaviridae infectious disease

Code sample 4.2: Example of a term in Human disease ontology

Because resources in the Medworm dataset are blog articles, it is impossible to find
grounding data for those. Hence we only did tag grounding in case of Medworm.

4.5 Comparison of used grounding approaches and ground-
ing data

We used similar grounding approaches, however there was a big difference between sizes and
structures of our grounding data. This is summarized in the table 4.1. If we consider the
structure of grounding data, the ”richest” hierarchy is no doubt that one of ODP, followed
by Wordnet, Human disease ontology and finally by Musicmoz. The richer structure does
not automatically mean more precise similarities. ODP is also the only grounding dataset,
that contains more complex structure than just a hierarchy.

number of terms intersecting terms
Wordnet 150000 14000
Human Dis. Ont. 2500 40
MusicMoz 550 500
OoDP more than 5 million 7000

Table 4.1: Table summarizing the intersections with the datasets
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Chapter 5

Semantic similarity measures,
aggregation methods and
implementations

In this chapter we will use example folksonomy created by two users, Bob and Alice. It con-
tains three resources: ”seznam.cz”, ”spectrum.ieee.org” and ”guardian.co.uk”. Users used
following tags to annotate resources: ”czech”, ”politics”, "news”, ”science”, ”magazine”
and ”british”. Its graphical representation can be viewed in figure 5.1.

Formally, this folksonomy contains following sets (see definition in 1): U={Bob, Alice},
R={seznam.cz, spectrum.ieee.org, guardian.co.uk}, T={czech, politics, news, science, mag-
azine, british}, Y={{Bob, guardian.co.uk, politics}, {Bob, guardian.co.uk, british},{Bob,
guardian.co.uk, news}, {Bob, spectrum.ieee.org, magazine}, {Bob, spectrum.iee.org, sci-
ence} {Alice, seznam.cz, news}, {Alice, seznam.cz, czech},{Alice, guardian.co.uk, british},{ Alice,

guardian.co.uk, news}}

science

politics agazine

british

news

czech

Figure 5.1: Graphical representation of a small folksonomy
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5.1 Aggregations and probabilities

Since semantic similarity measures commonly consider only two terms as an input, and we
have a triple representation, we need to narrow triples by one. We performed resource-
resource and tag-tag similarity, therefore we aggregated over users. Although user-user
similarities could have been computed, we did not preform such task. Application of all
aggregation methods results in a two dimensional matrix. This section follows definitions
and explanations given in [24].

5.2 Projection aggregation

This aggregation method is rather straightforward. As said before, this method does not
capture how many annotations were given to certain object creating binary matrix. Exam-
ple of projection aggregation matrix of the folksonomy 5.1 is in figure 5.1. To show how
transposed matrix looks like, we refer to figure 5.2. As stated earlier, first case (5.1) can
be used to compute resource-resource similarity while 5.2 is used for computing tag-tag
similarities. Notice in case of guardian.co.uk that in spite of being tagged twice by "news”
and ”british” it only has one annotation marked in the matrix.

british | news | czech | science | magazine | politics
guardian.co.uk 1 1 0 0 0 1
seznam.cz 0 1 1 0 0 0
spectrum.ieee.org 0 0 0 1 1 0

Table 5.1: Projection aggregation applied to the folksonomy 5.1, case 1

guardian.co.uk | seznam.cz | spectrum.ieee.org
british 1 0 0
news 1 1 0
czech 0 1 0
science 0 0 1
magazine 0 0 1
politics 1 0 0

Table 5.2: Projection aggregation applied to the folksonomy 5.1, case 2

5.3 Distributional or fuzzy aggregation

Distributional, or sometimes referred to as fuzzy, aggregation is similar to the projection
case with the distinction that it counts occurrences of annotations. Example is in table 5.3.
Although it might seem that this method will capture state of a folksonomy better, it has
some downsides in comparison to the projection. Most importantly, computing similarity
measures with distributional aggregation requires more computational time because main
operations involved in such measures are more complex than in projection’s case.
Implementations have showed that computing similarity with distributional measures
can be up to 4 times slower than doing the same task using projection aggregation. This will
become clearer after reading a section 5.6. Both methods share one major disadvantage:
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as folksonomy gets bigger, rebuilding aggregation matrices requires more and more time,
eventually making use of these measures in ”alive” folksonomies problematic.

british | news | czech | science | magazine | politics
guardian.co.uk 2 2 0 0 0 1
seznam.cz 0 1 1 0 0 0
spectrum.ieee.org 0 0 0 1 1 0

Table 5.3: Distributional aggregation applied to the folksonomy 5.1

Other case of aggregation is also called distributional, but uses a projected matrix
with probabilities of each element in the matrix. For example, probability of a tag in a
folksonomy is the number of resources annotated with the tag divided by the number of all
resources in the folksonomy. This definition is identical for resources. So, the probability
p of the resource seznam.cz is: p(seznam.cz) = 2/6, because it has been annotated with 2
out of six tags present in the folksonomy.

5.4 Macro aggregation

Macro aggregation is more user oriented than preceding methods. Macro aggregation is
not technically an aggregation method in the same sense as projection and distributional
methods are. Basically, in the case of macro aggregation, we first aggregate every user’s
annotations separately and compute similarities using every matrix. Resulting similarity
matrix is obtained by summing all the similarity matrices. It is unimportant, if we use
projection or distributional method we use to obtain users’ matrices. In [24] authors only
use distributional measure with probabilities and we decided to do the same.

Macro aggregation shares some issues with the collaborative aggregation method. This
will be described in the section 5.5.1.

Alice british | news | czech | science | magazine | politics
guardian.co.uk 1 1 0 0 0 0
seznam.cz 0 1 1 0 0 0
spectrum.ieee.org 0 0 0 0 0 0

Table 5.4: Macro aggregation applied to the folksonomy 5.1, case 1

Bob british | news | czech | science | magazine | politics
guardian.co.uk 1 1 0 0 0 1
seznam.cz 0 0 0 0 0 0
spectrum.ieee.org 0 0 0 1 1 0

Table 5.5: Macro aggregation applied to the folksonomy 5.1, case 2

If we want to combine macro aggregation and distributional aggregation we need to
redefine probabilities. It comes as no surprise that each user will have his own set of
probabilities. The formula stays the same, we just apply it each users respective folksonomy.
Therefore probability of tag british in case of user Alice is : p(british|Alice) = 1/3.
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5.5 Collaborative aggregation

Collaborative aggregation works on a principle not too different from one used in the macro
aggregation. There is one exception, which was introduced to strengthen a bond between
a user and all the resources/tags he annotates. If we add implicit resource/tag as seen in
tables 5.6, 5.7 and 5.8, similarity measures will then yield non zero similarity for all the
resources/tags user has used, even if they did not originally share any common properties
(tags, resources) and would have not been similar at all, had we not used implicit annotation.

Alice british | news | czech | science | magazine | politics | Alice
guardian.co.uk 1 1 0 0 0 0 1
seznam.cz 0 1 1 0 0 0 1
spectrum.ieee.org 0 0 0 0 0 0 0

Table 5.6: Collaborative aggregation applied to the folksonomy 5.1, case 1

Bob british | news | czech | science | magazine | politics | Bob
guardian.co.uk 1 1 0 0 0 1 1
seznam.cz 0 0 0 0 0 0 0
spectrum.ieee.org 0 0 0 1 1 0 1

Table 5.7: Collaborative aggregation applied to the folksonomy5.1, case 2

Alice guardian.co.uk | seznam.cz | spectrum.ieee.org | Alice
british 1 0 0 1
news 1 1 0 1
czech 0 1 0 1
science 0 0 0 0
magazine 0 0 0 0
politics 0 0 0 0

Table 5.8: Projection aggregation applied to to the folksonomy 5.1, case 3

Again, we have to redefine the probabilities like we did in macro aggregations’ case. We
must not forget that we added implicit annotation to all the resources/tags therefore the
fact that resource/tag is annotated with this implicit tag/resource carries no information.
We can eliminate impact implicit annotation has on probabilities by slightly modifying
the probability formula. This can be done be incrementing the divisor in the formula
by one. Using this modification, probability of the tag news in Alice’s folksonomy is:
p(news|alice) = 3/(4 + 1)

5.5.1 Issues of collaborative and macro aggregations

Both collaborative and macro aggregations have a minor glitch. If we keep passive users’
annotations in the folksonomy, collaborative and macro aggregations will yield very high
similarities (often even 1.0) for those tags/resources annotated only by these passive users
and no one else. Let us say, that user only tags one resource with 5 tags and these tags
are unique in folksonomy. This will result to each of these tags being completely similar to
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each other even if this would hardly be truth in a reality. For example, normed matching
similarity coefficient for any pair from these 5 tags would yield 1.0, because they all share
one resource and this resource is the only one in small users’ folksonomy. Whereas with
the projection aggregation, it would be 1/[the number of all resources in folksonomy], and
this would of course output a very small similarity. In our experiments, we generally
only considered those users with more than 20 annotations and therefore limiting unique
tags/resources to an acceptable level.

We should however state, that this problem is not so strong in the collaborative aggre-
gation. All the similarities are lowered a little by the implicit annotations. Reader will see
in the chapter 6, that this has a vast impact on the performance of the measures.

Another issue is the fact, that results of macro or collaborative aggregated similarity
methods do not give results in range 0 to 1. Results of these measures have to be normalized.
We can either divide each value by number of users in the whole folksonomy, or only consider
those users, who added some similarity to the resulting matrix. We decided to use the latter
case, because it better reflects the state a folksonomy is in, especially in those folksonomies,
where users annotations are sparse and/or unique.

5.6 Similarity measures

Let us describe some notations that will be used in following sections. Respecting notations
given in [24], measures are symmetric when used for computing resource similarities or tag
similarities. We will use following annotations: x; and zo are objects whose similarity
we want to compute. X; and Xy are sets(in case of projection aggregation) or vectors(in
other cases) of attributes(or features) of these objects. If we use the example given in
5.1, a set of attributes of a resource ”seznam.cz” is the set containing tags ”czech” and
"news”. Similarly the set of attributes of the tag "news” contains resources ”seznam.cz”
and ”guardian.co.uk”. Whenever a function p(y) is mentioned, it is the function returning
probability of certain attribute y. If y|u is present it means the probability of attribute
occurring in case of the user u.

Formulas ending with S are most basic projection cases, those ending with P use the
projection aggregation with probabilities while formulas with D at the end work with
weighted representations. Finally U means that formula describes macro or collaborative
measure for one user.

5.6.1 Matching coefficient

Matching coefficient is the simplest thinkable measure; it is only based on counting how
many common features objects share. For basic projection case its formula is as follows:

matchingS(z1, z2) = | X1 N Xo|

when using probabilities:

matchingP (21, 22) = — Z log p(y)
yeX1NXa

for distributional case:
matchingD(z1, z2) = X7 - Xo
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and finally for macro and collaborative instances:

matchingU(x1, x9) = — Z log p(y|u)
yEXUNXY

This measure will not produce similarities between 0 and 1. If we want to obtain
such number, output needs to be normalized by simply dividing the result of measure by
number of tags in resource similarity case and vice versa. This is problematic because lots
of resources/tags are only present only few times (as showed in section 3) and therefore
similarities given by the matching coeflicient are generally very low.

5.6.2 Overlap coefficient

Overlap coefficient, as its name suggests, is based on measuring the overlap between the
intersection of representation sets and one of the cardinalities of those sets. Notice how in
the projection case it is the lower one, while in the distributional case with probabilities
it is the higher one, because in latter case we use log probabilities and clearly the higher
number in this case is the one representing lower probability.

Overlap coeflicient, projection aggregation:

’Xl N XQ’
min (| X1[, | X2])

Distributed overlap coefficient using probabilities:

overlapS(x1,x2) =

ZyexlmXQ logp(y)
max(d_, v, logp(y), >, cx, logp(y))

For use with macro and collaborative aggregations we define following formula:

overlapP(z1,z9) =

2 yexrnxy 108p(y)
maX(ZyeXg log p(y|u), Zyexg log p(y|u))

overlapU(z1, x2) =

5.6.3 Jaccard coefficient

Jaccard coefficient, named after its developer, botanist Paul Jaccard, who defined it in [20],
is similar to Dice similarity, but usually gives slightly higher similarities. Jaccard coefficient
for projection case is as follows:

X | X1 N X
dS(zy, z0) = o1 22

jaccardS(z1, z2) X, 0%

followed by distributional case with probabilities:

2yexinx, 1ogp(y)
ZyexluXQ log p(y)

and finally macro and collaborative aggregated formula:

jaccardP(x1,x9) =

> yexunxy 10gp(y)
ZyeXfuxg log p(.y)

jaccardU(zq, x2) =
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5.6.4 Dice coeflicient

Dice coefficient is similar to Jaccard coefficient and was described in [16]. It is defined as
follows for projection aggregation:

2- ‘Xl ﬂX2|

diceS(z1,z2) = TAEE

if we want to use Dice coefficient with probabilities, we use following formula:

2- ZyeXlﬂXz log p(y)
> yex, 10gp(y) + 2, cx, log p(y)

and finally for user-concious aggregations:

diceP(z1, z2) =

2- ZyEXi"ﬁX%‘ logp(y|U)

diceU(z1,z2) =
> yexulogp(ylu) + 22 e xu log p(y|u)

5.6.5 Cosine similarity measure

Cosine similarity is normally defined on vector space. However definitions can be found
for special cases. Cosine similarity is widely used in many domains, however we will later
show, that it might not be the be choice in folksonomies.

Projected cosine similarity:

‘Xl ﬂXQ‘
| X1| + | X2l

distributional frequency weighted representation:

cosineS =

X1 Xo >y WaiyWasy

101 lIXell \/zngly\/zngZy

cosineD =

user-oriented aggregations:
Xi Xy [XPn Xy

VIXT VIXS (X1 1

cosineU =

5.6.6 Mutual Information

Mutual information measure is one of the more complex similarity measures, mainly because
it introduces the term of joint probability. Joint probability function (py;,ys) returns
probability of attributes y; and y2 coinciding and it has a different formula for the projection
case and for the distributional case.

Mutual Information with projection or distributional aggregation:

miSD = Z Z p(y1,y2) log Py b2)

y1€X1 y2€ X2 P(yl)P(yz)

where joint probabilities are yielded by:

Za: wl’yl wxyg
P(yh yz) = 5
> el

33



For macro and collaborative case:

L y2lu
miU= >, > ply el g(p(yl safu)

PEXY yoE XY y1|u)p(ye|u)

where joint probabilities are defined as:
min(wyy, , w
p(yl y2) Z ( TY1 IZJQ)
Zr,t Wrt
and classical probability having the following formula:
w
p(y) = Lty
Zz,t Wrt

Although we have implemented this measure, computation of the joint probabilities was
so computationally expensive that this measure could not be used with datasets as big as
we used.

5.6.7 Maximum Information Path

In [25] Maximum Information Path measure is only described for distributional case with
probabilities. We did not try to convert this measure because of its complexity. This is
the first and only measure described here which was developed specifically for use with
folksonomies, namely with collaborative aggregation.

Maximum Information Path for distributional case:

2 log(minyEXlﬂXE [p(y)])
log(minye x, [p(y)]) + log(minyex, [p(y)])
and the same measure using user oriented aggregations:

mipP =

2log(minye xunxy [p(y|u)])
log(minye xy [p(y[u)]) + log(minye xg [p(y|uw)])

Although this measure performs exceptionally well according to [25], it did not outper-
form other measures in our experiment.

mipU =

5.7 Programming languages and tools used

We decided to implement measures and aggregation methods in Python mainly because
of SciPy, Python module for scientific computations, which is written partially in C and
Fortran and is therefore rather fast. Specifically we applied SciPy’s module for computation
with sparse matrices. There is another sparse matrix module for Python called Pysparse
([9]). It specializes in sparse matrix data types and efficient sparse matrix operations.
However, most of its functions are undocumented and its memory efficiency compared
to SciPy is extremely bad. Because most of the vital function from SciPy we used were
available in Pysparse as well, we tried to switch SciPy for Pysparse, but that implementation
was both slow and memory inefficient (we only could calculate similarities between few
hundred elements). There are some sparse matrix modules for Java as well, but none of
them was in the usable state when we were implementing. Still, Python was the preferred
language and SciPy the best choice available.
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Sparse matrix is convenient data structure for storing both aggregated matrices and
similarity matrices. We will try to describe types of matrices we used in our project. Usage
of sparse matrices was not necessary, but it made manipulation with datasets easier. Other
option would be to use memory mapped file for matrix storage, although this is typically
slower than sparse matrices, because whole sparse matrix can be stored in memory (in
our case). If we were to apply similarity measures on whole datasets, there would be no
difference between using sparse matrix or normal matrix. Moreover, these matrices would
probably exceed memory size. But since we only used portions of datasets, we could use
sparse matrices with no problems, saving memory, space and time.

5.7.1 SciPy’s sparse matrix structures

SciPy implements several sparse matrix types, each of which fits differently to operations
possible with matrix. Some matrices take longer time to build but once created, operations
with such matrices are more efficient than in plain Python. Each sparse matrix type has
different use. Some take long time to build, but once created operations done with such
matrix are quick, while some are built fast, but then often have limited set of operations
available and are not so fast. In our implementation we used three types of matrices: list
of lists format, dictionary of keys format and compressed sparse row format.

5.7.2 Usages, advantages and disadvantages of used matrix data struc-
tures

From now on, we will refer to List Of Lists matrix as LIL matrix, Dictionary Of Keys
as DOK matrix and Compressed Sparse Row format as CSR matrix. LIL matrices take
relatively long time to build but support efficient changes to sparsity structure(meaning
adding values into matrix) as well as effective row slicing(we didn’t use column slicing in
our project). These two operations(adding values and row slicing) are the only two we
need and LIL matrix supports both and is quickest in them too compared to other types.
However, its long creation time prohibits its use in macro and collaborative aggregations,
because we need to create matrix for each user and that takes too much time with LIL
matrix. Our solution was to use DOK matrix when creating user’s matrices and then
convert them to CSR matrices. DOK matrices are created quickly and support adding
values while CSR matrices implement fast row slicing.

5.8 Data model

We wanted input format to be as minimalistic as possible, because input data are typically
very large. In the most basic case, the input into our application consist of four files. Three
files represent tags, users and resources with IDs and fourth file contains triples connect-
ing the IDs from other three files. Tags, users and resources files are stored in following
format: [user/resource/tag id|[tabulator delimiter|[user/resource/tag id label][newline] and
triples are stored similarly, but only use IDs: [user id][delimiter|[resource id][delimiter]|[tag
id|[newline]. In case of macro and collaborative aggregations, one more input file with user
ids has to provided.
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5.9 Implementation of aggregation methods

Before we start computing actual similarities, aggregations need to be applied to inputs. In
our implementation, we build all aggregations during one passage through input file for time
conserving purposes. Implementation of projection, distributional and macro aggregations
was quite straightforward, strictly following definitions given in 5.1. We created matrices
ready to use for computing resource-resource similarities. Prior to computing tag-tag sim-
ilarities, matrices had to be transposed. This was conveniently done with SciPy’s method.
In macro aggregations’ case we iterated over all users’ matrices and replaced them with
theirs respective transposals.

This approach does not apply to collaborative aggregation. When implementing collab-
orative aggregation we needed to resolve how to store implicit tag/resource. We decided to
enlarge resulting aggregation matrix by one column and use that as a column for implicit
annotation. Because of this we could not use simple transposal. We wrote custom trans-
pose function which omitted implicit annotations when creating transposed matrix and
added them where they should be instead. We refer to section 5.2 to show that transposing
matrices with implicit transpose method would lead to wrong results.

5.10 Calculation of probabilities

Once we possess aggregated matrices, we need to calculate appropriate probabilities for
those methods that use them. It is more convenient for the implementation to calculate
these probabilities prior to computing similarity, because it saves processor time later and
makes implementation of actual methods clearer.

The calculation itself is fairly straightforward, following definitions given in 5.1 and it
is being done right after the computation of aggregation matrices. We only used projection
aggregation matrix to compute probabilities - tag probabilities were obtainable instantly,
for resource probabilities we had to transpose the matrices.

Situation was similar in macro and collaborative aggregations, we just had to compute
the probabilities for each user separately.

The main challenge here was to implement joint probabilities used in the mutual infor-
mation measure. There are two cases of joint probabilities, each one for different aggregation
case. We followed the formulas given in [24] to be sure that our implementation will produce
correct results, but in doing so, we had to iterate over all the elements in the projection
matrix several times, resulting in very slow solution. It has been stated before in this text,
that slow calculation of the joint probabilities was the reason we did not include mutual
information measure in our experiment. This surely is a topic for future work.

5.11 Implementation of similarity measures

During the implementation of the measures we followed definitions given in the section 5.6.
Although the formulas themselves were mostly quite simple we had to implement the main
mathematical operations present in those formulas. These operations included set union,
set intersection, vector norm and vector dot product. Luckily, these set operations were
already implemented in SciPy so we only had to implement the vector operations.

Since the main goal in our implementation was to produce a similarity matrix and this
task is extremely computationally demanding, because we have to compute similarities
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between all the elements in the aggregation matrix, we spent quite a lot of time trying to
minimize the amount of needed operations. One fact we can utilize is that similarity of two
terms in matrix, sim(a,b), is the same for sim(b,a). This means that we do not have to
cycle through all the elements in the matrix, but only through half. This would be easy to
do if we iterated over all the elements in the matrix, but since we only have to go through
the non-zero elements in the matrix we had to have a mapping between actual elements in
the sparse matrix, so that we could implement effective passage through matrix easily.

Each time we computed similarity between two elements, we needed to obtain two rows
from the aggregation matrix. These two rows along with some other information are inputs
of the similarity measure function. Getting a row from a sparse matrix is typically a very
expensive operation and needs to be minimized. Since we essentially use two nested for-
cycles to iterate over the elements of the matrix, we can minimize access to the matrix by
only getting the rows from it once in the first for-cycle.

Another option would improve performance as well, but would require changes in the
functions computing the similarities. As said before, the input of similarity measures are
two rows from the aggregation matrix. We compute similarities all the combinations in the
matrix, therefore the first row changes with much lower frequency than the second row.
Function implementing the measures typically uses the elements in the rows to compute
some kind of a constant. The part of the constant influenced by the first row does not
change as long as the row does not change. If we precalculate that constant and passed it
to the modified function, we can reduce the time needed to calculate similarity of one pair
to the half of the original time in some cases.

5.12 Performance issues

The worst performance issue was not caused by naive implementation, but rather by lim-
itations of SciPy’s data structures. This concerned computing measures in macro and
collaborative aggregations. As described in the section 5.7.2 we had to use DOK matrices
for storage of user-oriented aggregations. This was the only solution available. However,
the performance of DOK matrix is much worse than the one of LIL, matrix. This resulted
in very long computation times. While in some cases it took projected and distributed
measures few minutes to calculate the whole similarity matrix, macro and collaborative
aggregated measures ran for more than 24 hours.

This could be partly solved by reducing the number of users in a folksonomy. As
discussed in the section 5.5.1, this might even improve the performance, but it depends
strongly on the particular domain of a folksonomy. As showed in figures in the chapter 3
majority of users is not very active and if we do not consider these users in the computations,
it will not have a great impact on resulting similarities.

Apart from these problems, naturally, the time needed to calculate a similarity matrix
rises with the number of objects in the folksonomy, but is also influenced by the number
properties each objects has assigned to it (i.e. tags in resources case and vice versa).

Normal computer was enough to fulfill the needs of our experiment, but as the number of
objects in folksonomy grows, the complexity of computation rises quadratically. Therefore
for use in the real world we would have to have much more powerful computation force
than just a normal computer which is not only limited by frequency of its CPU but has
insufficient memory for really big folksonomies.
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Chapter 6

Results of the experiment

6.1 Correlation techniques

The best method to evaluate the performance of semantic similarity methods we imple-
mented would be by means of user study. Naturally, we did not have resources to perform
such a study, so we had to settle for algorithmic evaluation.

Originally, we wanted to use direct correlations, measuring the differences between the
pairs directly. However, this did not work as expected, mainly because distributions of
similarities given by measures using folksonomies differed from those given by measures
using grounding data. For instance, similarities computed by the Jaccard coeflicient have
their mean around 0.1, whereas Lin’s similarity measure used in most of the grounding
cases has mean of its similarities near 0.4. Although it would be possible in some cases to
calculate the difference between the means and shift the values to make direct correlations
possible, it is better to use a correlation methods that does not rely on direct comparisons
between pairs.

Such approach is used in Kendall rank correlation coefficient, also referred to as Kendall’s
7 coefficient. It is a statistic used to measure the association between two measured datasets
and it does not correlate the two datasets directly, but rather by counting . We choose it
mainly to compare our results to the ones given in [24] . We used Python implementation
from [7]. Its formula is as follows (according to [7]):

number of concordant pairs — number of discordant pairs
in(n—1)

T =

Given two pairs (x;,y;) and (z},y;), the concordant pair is such pair that the following can
be applied: if x; > x; and y; > y; or if x; < z; and y; < y;. Every other pair is discordant
and n is the total number of pairs. Results of Kendall rank correlation coefficient are
between -1 and 1 where -1 means that all the pairs are discordant a 1 means that all are
concordant.

This correlation approach also enables us to use non-normalized results given by match-
ing coefficient and all the measures in macro and collaborative aggregations directly. We
used normalized results in the actual correlation, but there would be no difference between
using these results and the non-normalized results. We also chose this approach so that we
can easily compare our results to the one in [24], since authors used the same correlation
coefficient.
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6.2 Last.fm dataset results

Results given by the measures applied to Last.fm dataset were correlated against Lin’s
measure, which was calculated from Musimoz directory (desribed in 4.3.1). We did not
discussed how long it actually takes to compute the similarity matrix yet.

6.2.1 Correlations of tag-tag similarities

Results of the Kendall rank correlation coefficient between tag similarities from Last.fm and
those in Musicmoz are in the figure 6.1. The figure shows how various measures perform
when using certain aggregations. Note that the cosine in one of the distributional cases
as well as the Maximum Information Path in projection case are not present, because
these measures are not defined in those cases. We used projected cosine in macro and
collaborative aggregations.

From correlations in the figure 6.1 we can see that Maximum Information Path measure
performs the best along with the overlap measure and, surprisingly, the simplest, matching
coefficient. The Jaccard coeflicient, the Dice coefficient and the cosine similarity measure
did not perform as well, but still managed to capture substantial amount of pairs. Notice
how the Dice coefficient and the Jaccards’ coefficient yielded the same results. Although
their formulas are quite similar, this is still surprising fact and it can be seen in all the
following results.

As anticipated, macro aggregation drastically decreases the ability of measures to obtain
high correlation scores. Still, these measures still manage to yield positive aggregation
scores, which cannot be said about the same measures in the other datasets.

Maximum Information Path measure performs the best in the collaborative case, prob-
ably because it is its natural aggregation (it was defined on it). All the other measures are
now closer with their correlation scores to the best aggregations, sometimes even performing
better.

It is interesting to confront projection and distributional(the one using probabilities)
aggregations. While implementation of the distributed measures is no doubt more diffi-
cult and their performance in sense of computation time worser than in case of projected
measures, their scores are in favor of projection aggregation.

Since calculating distributionally aggregated measures with frequency weighted repre-
sentations requires more resources than in case of the other distributional aggregation and
performance of these measures is clearly the worst when compared to other non-user ori-
ented aggregations, we decided not to calculate results of these measures any longer in the
most of the other cases. Random calculations in the other datasets proved, that frequency
weighted representation does not perform good enough - results were very similar to those
in the figure 6.1.
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Figure 6.1: Kendall’s 7 correlation scores in Last.fm dataset, tag similarities

Before going any further, we should state that correlations we have just described were
by far the best in the whole experiment. There are several reasons why this is so. The
following has already been discussed elsewhere in this text, but let us repeat it. Intersection
between Last.fm’s tags and Musicmoz directory was quite small, including roughly around
500 terms. Out of these 500 terms the majority was composed by those tags that are very
frequent in Last.fm - music styles. There are many other purposes of tagging in the Last.fm’
dataset than just to assign music styles to artists, but this particular purpose is with no
doubt one of the most important purposes.

Basically, we only had 500 objects all of which were extremely rich in annotations. If we
take the tag 'rock’ for instance, it had a lot of artists attached to it and this was the case
for virtually any tag. This is not so in the whole Last.fm dataset, as reader could see in the
section 3. There are many unique tags, like in all the datasets. To sum up the results of
correlations in case of Last.fm’s tags, the good results obtained are probably caused by the
nature of the folksonomy, which is almost ideal for use with semantic similarity measures.
The good results are probably partly caused be appropriate grounding data.

6.2.2 Correlations of artist-artist similarities

Results of correlating artist similarities in the Last.fm dataset can be seen in the figure 6.2.
Obtained correlations are slightly worse than in the preceding case, but still rather high
considered the grounding approach we used, which, according to us, is far from ideal and
tt is surprising that only three music styles(sometimes even two or one style) are enough
to distinguish between the artists(again, see the section 4.3.2 for details).

Notice that we did not compute the similarities using distributional aggregation with
frequency weighted representation. This was justified in the last subsection. Also note that
Maximum Information Path measure is not present in the projection case and the cosine
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measure is not among the results of distributional aggregation. This, too, was explained in
the preceding subsection.

It is interesting that all the measures performed similarly in this case with the overlap
measure having slightly higher correlation scores than the other measures. Again, notice
how the Jaccard coefficient and the Dice coefficient share almost the same results.

Since the grounding technique and data used in this case were technically the same in
the last case, all of the comments given in the last subsection apply here as well.

Correlation scores, Last.fm's artists
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Figure 6.2: Kendall’s 7 correlation scores in Last.fm dataset, artist similarities

6.3 Delicious dataset results

6.3.1 Correlations of tag-tag similarities

These results are the only ones that share a grounding technique with [24]. Although
the dataset is different(authors used Bibsonomy datasets in [24]), the domain is the same.
Results are similar, but not quite the same. Namely, they differ in macro aggregation,
which performed worse in our case, even yielding negative correlations in some of the cases.
Also collaborative aggregation does not perform as good as in [24]. We will try to discuss
why this is so later.

In the figure 6.3 reader can see that the scores obtained here are the worst so far. There
are several possible reason why. For one, the distribution of tag frequencies is far from
ideal, with the majority of tags only used a few times.

Macro aggregated measures perform exceptionally bad in this case - they even produce
negative correlations. The reason for this has already been partially discussed in the section
5.5.1. The fact that the dataset contained so many unique resources, resulted in big portion
of tag pairs having similarity 1. This of course is not good for correlations. Notice that in
the last section, Last.fm dataset did not have this problem (although the macro aggregation
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was the worse aggregation method in that case as well). This is probably due to convenient
distribution of Last.fm’s resources.

In [24], collaborative aggregated measures outperform the other aggregation methods,
but as reader can see, this did not happen in our experiment. This, again, is due to the
structure of the dataset. By experimenting with results we have discover that collaborative
aggregated measures need sufficient information about each object, or at least the majority
of objects, otherwise their performance will be very poor. Since there are many unique, or
not very frequent resources in our delicious dataset, this is probably the reason for so low
correlation scores.

When a folksonomy has a similar structure like the one just described, it is better to
compute the similarities using projected methods, which does not seem to be affected with
this.
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Figure 6.3: Kendall’s 7 correlation scores in delicious dataset, tag similarities

6.3.2 Correlations of resource-resource similarities

Following results are also comparable to the ones from [24]. They use the same grounding
data, but the grounding measure is different. It is simpler in our case, to be exact. But
surprisingly, we have obtained higher correlation scores.

In order to minimize the impact of unique and not very frequent tags, we only considered
ones assigned to more than 35 resources. This drastically improved the performances of
user-oriented aggregations when compared to the subsection 6.3.1.

In the figure 6.4 can reader see Maximum Information Path measure performing the
best. This is the only case, when this happened and it would suggest, that this measure
will perform better as the number of objects in a folksonomy grows, because this number
was the highest of all the cases we calculated.

All the other rules already described in the other cases apply here as well.
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Figure 6.4: Kendall’s 7 correlation scores in delicious dataset, resource similarities

6.4 Medworm dataset results

As said before, using our grounding case, we did not obtain enough data to calculate the
similarities properly, therefore it made no sense to perform the Kendall’s 7. Suggestions
how to utilize the Medworm dataset will be presented in the following chapter.
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Chapter 7

Project evaluation and future work

We can say that the experiment was successful. We saw that measures of semantic similarity
in folksonomies are applicable in several domains. From results in the preceding chapter,
we can say that aggregations have very high impact on performances of semantic similarity
measures. We have discovered, that the simplest projection aggregation performs the best
in all the cases. However, it is problematic to maintain representations of big folksonomies
using this aggregation method. When folksonomy is too big for projection aggregation, we
can recommend using the collaborative aggregation method.

Future work contains bigger experiments with other datasets and more measures as well
as experimenting with all the possible combinations of aggregations. We would also like
to facilitate the Medworm dataset. One of the possible ways, how to do this, would be
to search Medworm specifically for the diseases included in the Human Disease Ontology,
collect tags assigned to articles about the diseases and then redo the experiment in the
same fashion described in this text.
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