Slicing for UPPAAL

Uffe Sgrensen and Claus Thrane

~ x>=3
leavelid]!

appr[id]!
x=0
x>=7
x=0
Appr Start
x<=20

x<=10
stopl[id]?

(8

AALBORG UNIVERSITY
Department of Computer Science, June 2007

Title:

Slicing for UPPAAL

Project Scope

Master Thesis
Feb 6 - June 15, 2007

Project Group
D603A

Group Members

Uffe Sgrensen
Claus Thrane

Supervisor
Prof. Dr. Kim G. Larsen

Number of copies: 6

Number of pages: 93

Abstract

The focus of this thesis is to introduce slicing for UPPAAL
[9]. Slicing is a technique based on static analysis used
to reduce the syntactic size of models or applications.
In this thesis, we show how slicing may be used to
construct reachability preserving reductions of UPPAAL
models possibly improving the performance of the tool.
Using automated slicing in UPPAAL will eliminate the
need for users to manually optimize models for faster
verification of a certain property. Moreover, it allows less
experienced users of UPPAAL, which unknowingly may
design models, containing unnecessary large amounts
of data, to verify properties which UPPAAL otherwise
would have been unable to check.

The slicing is done by analyzing the control-flow of a
model, in order to extract dependencies between its
components, which is then stored in a data structure
known as a system dependency graph (SDG). Computing
the relevant components (the slicing set) of the model
is then achieved using graph analysis on the SDG.
The sliced model is then constructed using only the
components included in the slicing set.

In order to formally define and prove correctness of
the slicing approach, we define an extended notion of
the timed automata formalism [3] which constitutes
a non-trivial subset of the modeling language used in
UpPPAAL. Moreover, to stress the complexity of verifying
properties for UPPAAL models and further motivate the
use of slicing, the general problem of model-checking is
described and known theory is presented.

Finally, a prototype implementation of slicing for
UppPAAL has been developed to show that the slicing
approach presented can in-fact be extended to the com-
plete language of UPPAAL. The prototype has been used
to conduct a set of experiments, in which we succeeded
in finding a design flaw in a model provided by students
from the department of communication technology
at AAU. Moreover, the experiments indicate that
slicing does indeed provide an effective and beneficial
component for UPPAAL, which leads us to encourage the
further development of the prototype towards inclusion
in the offical distributed version of UPPAAL.

On the attached CD is a digital version of this thesis
along with source code and a pre-compiled binary of our
prototype. The contents of the CD and any updates can
also be found at http://www.cs.aau.dk/ crt/utasa/

Preface

Creating software specifications is an extremely debated subject in the software in-
dustry. Some argue that it is actually impossible to describe the requirements of
a (non-trivial) system prior to the system implementation and in some cases even
after. This raises interesting questions about the correctness of systems. How are
we supposed to test or verify that the final product is what we wanted, when we do
not know what that was in the first place?

Although we might not be able to define all the properties of a system, we are
often able to get a pretty good idea about most of them, and in some cases we are
even capable of developing a formal specification of these. The question which then
arises is how to insure that these properties are fulfilled by the given system. One
approach, and probably the most used, is testing. Massive amount of research have
been dedicated to the subject of testing software systems. Testing is an essential
part of the software development process for all types of systems, but for some
purposes testing does not suffice. Leaving aside superficial functional requirements,
like the visual design and feel, there are basic properties which are always desirable
in all systems. Among these are safety properties, which insure that the system
never deadlocks or livelocks. But there are also other properties which we are able
to define for individual systems, such as time requirements of real-time systems
or time sensitive applications, or more general things, such as: The system must
always react to certain types of commands e.g. shutdown. This is where software
verification is necessary. Whereas testing may show the presence of errors it can not
help us guarantee the correctness of the systems’ behavior. Unlike testing, software
verification is not widely deployed in mainstream industry, this is primarily because
verification is often a very daunting task, and the presence of supporting tools is
minimal.

The idea behind the work presented in this thesis is founded in the fact that
we see an increasing need for such tools. Since work on the tool UPPAAL already
has been very successful at Aalborg University, it was natural to study the area of
model-based verification using UPPAAL and timed automata, to find way to bring
traditional developers closer to the world of verification. Although UPPAAL already
is very efficient, the consequences of state-space explosion are not immediately nat-
ural to developers of software systems. Our goal has therefore been to develop a
technique allowing developers to model their systems (for the purpose of verifica-
tion) closer to the way that software systems are developed. As software developers,
we often decorate our core functionality with contextual data e.g. a protocol im-
plementation would include functionality to monitor package loss and so on. The
consequence may easily be that the states-space grows to a level where verification
may consume too much time to be of practical value during the development pro-
cess. In this thesis we present a technique known as slicing, which may be used
to automatically determine the parts of UPPAAL models which can influence the
outcome of verifying a given property. Using this technique as a preprocessing
tool to reduce the input model before verification, should ensure that the irrelevant
functionality no longer presents a problem, leaving engineers free to model their
systems, without thinking about state-space explosions.

Contents

Introduction

1.1 Software Verification and Model Checking
1.2 UpPAAL — Models with Imperative Code
1.3 Slicing UPPAAL Models
1.4 The Structure of This Thesis
1.5 Related Work
Timed Automata

2.1 Introduction to Timed Automata
2.2 Basic Timed Automata
2.3 The Extended Timed Automata Formalism

Model-Checking TA

3.1 Introduction
3.2 CTL
3.3 Model-Checking
3.4 Complexity
Slicing

4.1 Introduction
4.2 Preliminary Definitions
4.3 Relevant Components
4.4 Slicing Algorithms
4.5 The Slice e
4.6 Correctness
Implementation

5.1 Introduction L
5.2 The UTAP library o e
5.3 The UTASA Library oo
Experimental Results

6.1 Introduction
6.2 Test Metrics
6.3 Real Life Example - Mapper
6.4 The Extended Train-Gate Example

6.5 SUMIMATY o v ot e e e e e

19
20
21
22

33
34
34
35
40

41
42
43
92
54
57
59

69
70
71
73

7 Conclusion and Final Remarks
7.1 Conclusion
7.2 Future Work
7.3 Related Future Work

A Appendix
A.1 The Mapper Model

CHAPTER

1

Introduction

In this Chapter an overview of the thesis is presented, including the contributions
and the focus of the project. We present the motivation for software verification in
general, followed by the specific motivation for the slicing technique introduced in
this thesis. Finally, we present related work.

Contents
1.1 Software Verification and Model Checking 10
1.2 UppPAAL — Models with Imperative Code 12
1.2.1 The Train-Gate Example 13
1.3 Slicing UppPAAL Models 16
1.3.1 Our Contribution - Automated Slicing 16
1.4 The Structure of This Thesis 17

1.5 Related Work

10 Introduction

1.1 Software Verification and Model Checking

Proving the correctness of software in general is an extremely difficult task, and not
surprisingly, it is in its most general form undecidable (Rice 1953'). Although verifi-
cation remains highly complex, research has nontheless produced results which have
enabled us to perform verification, with reasonable performance. This is achieved
by exploiting domain specific knowledge, using over-approximations and abstrac-
tion techniques.

Software verification may be divided into two categories, the first is the deductive
verification method, in which verification is based on properties in a mathematical
theory. These properties are then proven or refuted using theorem provers. The
second category is the model-based verification method, in which a model represen-
tation of the system under consideration is used in a variety of techniques such as
simulation and state exploration.

Calculi and Logics

Calculi and logics are widely used in the area of verification. Classical calculi like
CCS [43], TCCS [30] and CSP [33] have been used to model sequential and con-
current systems for many years. Since verification is very complex, we often use
simplified models of our system, expressed in calculi. Many different calculi have
been developed for the purpose of modeling different domains, examples include
CCS [43], Mobile Ambient Calculus [17], m-Calculus and secure w-Calculus [49],
which are used to model, for example standard reactive systems, mobile systems,
protocols and secure protocols respectively.

Likewise, a considerable amount of logic frameworks have been developed to express
properties of systems. Such logics may contain domain specific modalities such as
in temporal logics Computational Three Logic (CTL) [23] or Linary Temporal Logic
(LTL) [42] which include ¢ and 0O modalities, others include modalities for space
(¥, 1) and so forth.

Software Verification

The term software verification traditionally applies to techniques and tools, used in
the verification of a given system’s implementation. Several tools have been devel-
oped with the intention of verifying correctness of systems implemented in classical
imperative languages such as C and modern object oriented languages such as Java.

The SLAM toolkit[6], developed by Microsoft Research, statically analyzes a C
program to check safety properties. The toolkit has two unique features; it does not
require the programmer to annotate the source program (invariants are inferred); it
minimizes noise (false error messages) through counterexample-driven refinement.
Given a safety property to check on a C program P, the SLAM process [4] iteratively
refines a boolean program abstraction of P using three tools:

IRice’s theorem: Any nontrivial property about the language recognized by a Turing machine
is undecidable.

1.1 Software Verification and Model Checking 11

e C2BP, a predicate abstraction tool that abstracts P into a boolean program
BP(P, E) with respect to a set of predicates E over P.

e BEBOP, a tool for model checking boolean programs.

e NEWTON, a tool that discovers additional predicates to refine the boolean
program, by analyzing the feasibility of paths in the C program.

Like SLAM, BLAST [32] (Berkeley Lazy Abstraction Software Verification Tool)
is a verification system for checking safety properties of C programs. BLAST imple-
ments an abstract-check-refine loop to check for reachability of a specified label in
the program. The abstraction made by BLAST is an on-the-fly predicate abstrac-
tion, known as lazy abstraction [32]. If there is no path to the specified error label,
BLAST reports that the system is safe. If there is a path and the path is feasible,
BLAST outputs the path as an error trace, otherwise, it uses the infeasibility of the
path to refine the abstract model.

The Bandera tool set [27] is an integrated collection of program analysis, transfor-
mation, and visualization components designed to facilitate experimentation with
model-checking Java source code. Bandera takes as input Java source code and a
software requirement formalized in Bandera’s temporal specification language, and
it generates a program model and specification in the input language of one of sev-
eral existing model-checking tools (including SPIN [34], dSPIN [36], SMV [39], and
JPF [29]). Both program slicing (which is introduced below and later in Chapter
4) and user extensible abstract interpretation components are applied to customize
the program model to the property being checked. When a model-checker produces
an error trace, Bandera renders the error trace at the source code level and allows
the user to step through the code along the path of the trace.

Model-Checking

In model-based software verification two approaches for proving correctness are tra-
ditionally considered. Model Checking, which given a model and a requirement
specified in some modal logic, checks the property by exploring the structure of
the model or its state-space based on the semantics of the system. Alternatively,
Specification checking is based on a notion of equality. The model of the system in
question and a simplified version (which is easily verified by hand) is checked with
respect to equality e.g. bisimilarity.

Several model-checking tools are used in the industry today, the most prominent,
to our knowledge, being SPIN [34]. The SPIN model-checker has evolved for more
than fifteen years and is by now a very mature tool. Input models, expressed as au-
tomata, are defined in Promela (Process meta language), which supports modeling
of asynchronous distributed algorithms as non-deterministic automata. Properties
to be verified are expressed as LTL formulae. In addition to model-checking, SPIN
can also operate as a simulator, following one possible execution path through the
system and presenting the resulting execution trace to the user.

In contrast to SPIN, which does not support modeling of time, the model-checking
tool UPPAAL has been developed for the purpose of verifying real-time systems

12 Introduction

modelled as a network of timed automata. UPPAAL is developed by the Depart-
ment of Information Technology at Uppsala University in Sweden in collaboration
with the Department of Computer Science at Aalborg University in Denmark. The
input language for UPPAAL is a combination of a graphical representation of timed
automata and imperative declarations of functions expressed in an extended subset
of C. In order to verify properties of models, UPPAAL requires that such properties
are specified in CTL.

Like UppaAL, KRONOS [20] and its successor IF [25] are model-checkers, though
based on the timed automata formalism using the TCTL [1] logic as property spec-
ification language. It can decide whether some property, expressed by a TCTL
formula, holds for a timed automaton. Starting from a system consisting of several
components, KRONOS computes the automaton corresponding to the synchronized
product. KRONOS is one of the few tools which implements a model-checking al-
gorithm for a timed temporal logic. For this reason, it allows one to verify liveness
properties.

Since model-based verification does not attempt to verify properties of a system’s
actual implementation, it is of paramount importance to stress that verification
using model-based techniques is only as good as the model of the system. The
technique employed to produce the model on which verification is based, be this
manuel or automatic generation, is crucial when using the verification result to
reason about the actual implementation. Furthermore, exhaustive model-checking
suffers from the so-called state explosion, which expresses the problem of exponential
growth in the number of states for a model. Model checking timed automata which
is the formalism used in KRONOS and UpPPAAL is even known to be P-SPACE
complete.

Combining Verification and Model-Checking

Although we have already classified UPPAAL as a model-checking tool, the fact that
later versions of the tool support a non-trivial subset of C, should merit a classifi-
cation as a hybrid. Although UPPAAL is already very efficient, the combination of
imperative code verification and model checking timed automata is a very complex
and time consuming task. The work presented in this thesis is inspired by the fact
that work on UPPAAL primarily has been done at the timed automata level, opti-
mizing and analyzing issues imposed by parallel composition of timed automata. In
the following, we give a further introduction to the language used in UPPAAL, in or-
der to motivate research into static analysis of the imperative language components
and to achieve even better performance of the tool.

1.2 UprprAAL — Models with Imperative Code

As of UPPAAL version 4.0, the modeling language has been extended with the pos-
sibility to add imperative code to models. Although the core language is still based
on models expressed graphically, functions expressed in imperative C-like code may
be called from the edges of the automata. Introduction of the imperative code has
meant that users may easily express reusable complex operations as well as main-
tain the state of data in integer, array and struct types, which they were previously

1.2 UprPAAL — Models with Imperative Code 13

required to “code” using the structure of the automata. Although the modeling
task has become significantly easier for the user, verifying properties of the models
now requires much more of UPPAAL. The imperative code is an integrated part of
the model and hence must be dealt with by the model-checker.

The fact that imperative code is easily added to the models, encourages users to
add peripheral variables to debug or monitor the behavior of the model under
development. Although not critical to the models behavior, these variables will
participate in the state space, putting even more load on the verification engine. In
the following example we introduce a slightly modified version of a classical UPPAAL
demonstration model, where variables have been added to simulate simple statistical
data. We use this example to motivate the work done here and to illustrate how
slicing may be used as a preprocess to remove these auxiliary variables. In Chapter
6, we introduce a real life example model designed by students at Aalborg University.

1.2.1 The Train-Gate Example

The following is a well known example demonstrating the features of UPPAAL called
the Train-Gate FExample. It models a train crossing problem, where a number of
trains requests access to a crossing point in order to continue on their respective
routes. The crossing point is governed by a gate which each train must signal to
gain crossing authorization. Figure 1.1 illustrates the timed automaton modeling
the gate and one of the trains.

nrOfCrosses++

F x>=3
ree leave[1]!
Safe Cross
©/ O X<=5
e:id_t e:id_t appr[i]!
len>0 len==0 e == front() ng g
gof[front()]! apprle]? leave[e]? x>=7
enqueue(e) | dequeue() x=0
Appr Start
Occ x<=20 x<=15
e:id_t
appr{e]? stopltail()]! x<=10 go[1]?
enqueue(e) stop[1]? x=0
Stop
(a) The gate (b) The first of 6 train instances

Figure 1.1: lustrates the timed automata in the Train-Gate Example

The original model shiped with UPPAAL contains 6 trains (instances), all of which
are initially safe and a gate which is free. The trains concurrently signal their ap-
proach (appr!) and the gate will acknowledge the signal (appr?). If the “crossing”
is free, it will let the train enter, otherwise it will immediately signal the train to
stop (stop!). Having stopped a train, the gate will add the train to a queue, which

14 Introduction

it will begin emptying whenever the “crossing” is free. Having achieved access,
and successfully left the “crossing” the train will signal the gate of its departure
(leave!). Whenever such a signal is received by the gate, it will signal the train
in the front of the queue to go (go!). Having received the signal (go?) the train
will enter the “crossing”, signaling its departure when it has safely exited. Finally,
whenever a train has exited, it will attempt to approach the gate again.

Declarations

Although the timed automata in Figure 1.1 contains the behavior just described,
some of which may be obvious for some, the behavior induced by the decorated
edges cannot be clear without introducing the imperative declarations in the model.
Declarations in UPPAAL are either global or local to each timed automata instance,
allowing locally and globally shared variables and functions. The global declaration
in the train-gate model contains the following statements:

const int N = 6; // # trains
typedef int[0,N-1] id_t;
chan appr[N], stop[N], leave[N];

urgent chan go[N];

The statements respectively defines the number of trains (N) and an ID type (id-t)
used it identify the trains. Next, three arrays of channels are defined, allowing
communication between the gate and the trains. Each train communicates their
approach and exit from the “crossing” outputting (written !) on the channel array
appr[] and leave[] respectively, using their ID as index. Dually it will listen
on (written ?) the channel array go[] for its signal to enter the “crossing” and
stop[] to stop. The gate will listen on all 6 channels simultaneously using a non-
deterministically selected index “e”. Using its local functions front () and tail()
(described below) the gate signals the trains to stop or go, where the ¢rain signaled,
depends on the ID returned by the functions.

Train Declarations

In order to “monitor” the number of times a single train successfully crosses the
gate, each train has been decorated with a local integer variable nr0fCrosses which
is incremented each time the train exits the “crossing”.

clock x;
int nr0fCrosses;

Also each train has a local clock variable x which is used to model the time. In
Figure 1.1(a) The predicate x>=7 on the outgoing edge from start dictates a delay
of at least 7 time units since the clock has been reset on the incoming edge. Having
achieved an intuition of the guards we leave the formal definition of clocks and
delays to be introduced in Chapter 2.

Gate Declarations

The declarations belonging to the gate is somewhat more comprehensive. We
will assume that the reader is familiar with standard C-like imperative languages

1.2 UprPAAL — Models with Imperative Code 15

used to express the functions and that no further introduction is required to read
the syntax (in Section 2.3, we formally define a non-trivial subset of the Up-
PAAL imperative language seen here). Notice that the range declared for the in-
teger variable len, restricts the domain of the variable to 7 values (N being 6);
drastically reducing its contributions to the state-space of the model. Deviating
from the original model shipped with UPPAAL, we have added the integer variable
numberOfTrainsWaitingToCross which has no effect on the models behavior, but
could help the user visualize the behavior in UPPAAL’s simulator.

id_t list[N+1];
int [0,N] len;
int numberOfTrainsWaitingToCross;

void enqueue(id_t element) // Put an element at the end of the queue

{
numberOfTrainsWaitingToCross++;
list[len++] = element;

}
void dequeue() // Remove the front element of the queue
{

int i = 0;

if (numberOfTrainsWaitingToCross > 0)

{

len -= 1;

while (i < len)

{

list[i] = list[i + 1]; i++;

}

list[i] = 0O;

number0fTrainsWaitingToCross——;
¥

}

id_t front() // Returns the front element of the queue
{

return list[0];

}

id_t tail() // Returns the last element of the queue
{
return list[len - 1];

}

The intuition of the above code is that the gate will use the function enqueue(..) to
register approaching trains in a queue, modeled by the array variable 1ist, holding
train IDs. The gate will use the dequeue () function to remove trains whenever they

16 Introduction

signal leave!. Finally, the functions front () and tail() are used to get the first
and last train ID in the queue.

1.3 Slicing UrPPAAL Models

Although the Train-Gate example is very simple, it demonstrates very well the ef-
fects of introducing imperative code in UPPAAL. The fact that model-checking is
highly dependent on the size of the state-space, quickly gets very clear to model de-
signers when they begin to decorate the model with excess functionality. Although
some users are aware of the state-space explosion problem, the effects of adding a
single unbounded integer variable may be very surprising. An unbounded integer
variable in UPPAAL is implemented as a 16bit signed integer, yielding alone 65536
states (216). The growth of the state-space for a single unbounded variable is then
|state-space| x 65536, assuming |state-space| is its original size.

The focus of this thesis is to introduce a technique called slicing, which will allow
users of the UPPAAL tool to add auxiliary data to their models, without affecting
the state-space which is model-checked. Looking at the modified train-gate example
above, it should be clear that the existence of the variable nrOfCrosses (which we
have added to the train), is irrelevant. Under no circumstances can it affect any
properties of the system, since the only reference to the variable is an update of itself
(located on the outgoing edge from the cross vertex in Figure 1.1(b)). Although the
variable number0fTrainsWaitingToCross has no real purpose, with respect to the
models behavior, its use in function dequeue () requires its presence, since the value
of the expression numberOfTrainsWaitingToCross > O controls the execution of
critical update code. Were we to remove this (unnecessary) sanity check, we would
once again realize that the variable could be removed.

Although the motivation given here in terms of slicing away auxiliary data, slicing
would also be able to remove irrelevant components, with respect to a given CTL
formula; that is, components which do not affect the specific behaviour which is to
be verified.

1.3.1 Owur Contribution - Automated Slicing

Using the intuitive notion of slicing, designers could manually remove excessive
variables before verification is initiated, but they would then be required to reinsert
them whenever an error is found or if they decide to extend the model.

Automating the slicing process may help model designers focus on the core prop-
erties of their models, without the concern of what an excessive use of e.g. debug
information may do to the state-space. In this thesis we introduce a theoretical
approach to compute slices for a non-trivial subset of the UpPPAAL modeling lan-
guage (referred to as extendend timed automata in Section 2.3) and present a proof
of correctness. Furthermore, we present a prototype implementation, which is used
to conduct experiments on a real life model.

1.4 The Structure of This Thesis 17

1.4 The Structure of This Thesis

Having introduced the intuition behind program slicing and motivated its use for
UPPAAL, we continue in Chapter 2 to give a formal introduction to timed automata
and the extended timed automata, which is the formalism used throughout the for-
mal chapters of this thesis. Furthermore, in Chapter 2 we give the formal semantics
of the extended timed automata. In Chapter 3 we discuss the general problem
of model-checking and introduce the notion of regions, zones and the DBM data
structure. Chapter 4 presents our approach of slicing the extended timed automata
formalism, along with a formal proof of correctness. In Chapter 5 we introduce
an implementation for slicing UPPAAL models, using the discussed theory and in
Chapter 6 we present experimental results. Finally, in Chapter 7 we present the
conclusion and our final remarks. Furthermore, we present future work and the
various interesting aspects and problems concerned with this work.

1.5 Related Work

Much work on slicing has previously been presented in the context of debugging
or testing sequential or concurrent applications. Work on slicing has already been
produced for a number of imperative languages. J. Hatcliff [28] shows how the
traditional slicing concepts described by Wieser [52] and later S. Horwitz, T. Reps
and D. Binkley [35] may be extended to slicing a more complicated model of multi-
threaded Java programs with JVM concurrency primitives. Furthermore, he shows
that a bisimulation-based notion may be used to determine correctness of slices.
More closely related is the work by Janowska and Janowski [37], who show how
slicing may be used for the formalism of timed automata defined by Alur and Dill
[3]. Although both show that slicing is applicable for non-trivial languages, no
one has (to our knowledge) ventured to show that slicing may be performed on a
complex hybrid of imperative code and timed automata, which currently forms the
basis of the modeling language used in UPPAAL [40, 9].

CHAPTER

2

Timed Automata

This Chapter introduces a version of the timed automata formalism introduced in
[3] extended with discrete variables and a small imperative language. The purpose
of the extended definition is to show that slicing may be performed on timed au-
tomata resembling those used in the UPPAAL modeling tool. The extensions made
here, although comprehensive, are only a subset of the extensions introduced in
UPPAAL, which is referred to as an extended subset of C. Nevertheless, the features
included are chosen such that it should be clear that the approach introduced in
Chapter 4 may be extended to the complete language used in UPPAAL.

In order to make the extensions apparent, we first introduce a simple definition
which resembles the formalism originally defined in [3]. We then proceed to intro-
duce the extended version.

Contents
2.1 Introduction to Timed Automata 20
2.1.1 Timed Automata 20
2.1.2 Clocks e 20
2.1.3 Synchronizationo 21
2.2 Basic Timed Automata 21
2.3 The Extended Timed Automata Formalism. 22
2.3.1 Syntax of The Imperative Language 23
2.3.2 Semantics of The Imperative Language 24
2.3.3 Extended Timed Automata 28

2.3.4 Semantics of the Extended Timed Automata 29

20 Timed Automata

2.1 Introduction to Timed Automata

Timed Automata is a formalism for modeling and verifying real-time systems. Based
on the original work of Alur and Dill[3], several model checking tools have been
developed using timed automata as the core of their respective modeling languages,
examples include UPPAAL [9] and KRONOS [14]. Alternative formalisms, such as
Timed Petri Nets, have also been researched with the same purpose in mind. Timed
automata, as originally defined in [3], is based on finite state Biichi automatal
extended with real-valued clocks. A simplified version of timed automata, called
Timed Safety Automata, was introduced in [31] which allows specification of progress
properties using local invariant conditions. This Section introduces timed safety
automata and in the remainder of this thesis we will refer to timed safety automata
simply as timed automata.

2.1.1 Timed Automata

Timed automata are fundamentally finite-state automata extended with a notion
of time by adding real-valued clocks.

In addition, edges and locations may be decorated with predicates over these clocks,
called clock constraints. Clock constraints are used to model forced and restricted
progress in the automaton. Furthermore, the alphabet of timed automata denotes
a set of channels which may be used for synchronization in networks of timed au-
tomata.

X <= 20

b?

Figure 2.1: Example of a timed automaton

Figure 2.1 illustrates a trivial example of a timed automaton with two states and
two edges. The automaton is willing to output on channel a followed by input
on channel b. The edge leaving the initial state (indicated by an inner circle) is
guarded by a predicate x >= 10, such that at least 10 time units must have passed
before the edge is enabled, likewise “taking” the edge results in a reset of the clock
z. Finally, the second location must be vacated within 20 time units dictated by
the predicate z <= 20.

2.1.2 Clocks

Clocks are the central concept of timed automata. Initially, all clocks are zero and
synchronously increased at the same rate. We use C to denote the set of clocks in
an automaton.

LA Biichi automaton is an automaton designed to recognize (or generate) infinite words. The
rule followed by a Biichi automaton is not to “end in an accepting state”, but rather to traverse
accepting states infinitely often in the course of its computation. See [16].

2.2 Basic Timed Automata 21

Clock Valuations

A clock valuation is a total mapping o : C — R>(from the set of clocks to the
non-negative reals. For § € R>, o + ¢ denotes an updated clock valuation ¢’, such
that Yu € C : 0’(u) = o(u) + 0. The clock valuation o denotes the initial valuation
such that Yu € C : og(u) = 0. Furthermore, we use € to denote the set of clock
valuations.

Clock Constraints

Constraints on clocks are used as guards on edges and invariants at locations. A
constraint ¢ in the set of clock constraints B(C), may be on the following form:

Vb1, e = u~vn | u—u' ~n | Ay

for u,u’ € C, ~¢ {<,<,=,>,>} and n € N. Satisfiability of a clock constraint
1 € B(C) by a clock valuation o is defined inductively on the structure of ¢ by

cEu~n iff o(u)~n

o E 1 Ay iff o =1y and o = 1

2.1.3 Synchronization

A notion of channels [43] is used to obtain synchronization between timed automata
in a network (in parallel). Edges of timed automata are decorated with channels
from the alphabet 3 (See definition 1). We say that a timed automaton is willing to
output, if it is able to take an edge which is decorated with a! where « is a channel
in Y. alternatively, we say it is willing to input if its edge is decorated with a?.
Two timed automata, may synchronize whenever one is willing to output to some
channel and the other is willing to input on the same channel from a common set
of channels X.

2.2 Basic Timed Automata

This Section introduces, for reason of comparison, the definition and the syntax and
semantics of timed automata in line with what was introduced in [3], after which
we extend the definition to match a non-trivial subset of the representation used as
the modeling language for UPPAAL.

Definition 1. (Timed Automata)
A timed automaton is a tuple (L,ly,2,C, E, I) where

L is a finite set of locations

lp € L is the initial location

Y is a finite set of channels

C is a finite set of clocks
ECLxU¥(C)x ¥ x2°x L is the set of edges

I:L — ¥(C) assigns each location with a set of invariants

We use | 225 1’ to denote (l,g,a,7m,l') € E, where [and I’ are locations (source

and target respectively), g is the set of clock constraints guarding the edge, a is the
channel, which in some cases may be referred to as the action and r is the set of
clocks which are reset.

22 Timed Automata

Semantics

The semantics of timed automata is defined as a timed labeled transition system
(TLTS) where states (or configurations) consist of a location and a clock valuation.

Transitions are either delay transitions 4, (hence the TLTS) or action transitions
2, meaning that a system may either delay in the current location or follow an
outgoing, enabled edge (i.e. an edge where the current clock valuation satisfies the
guard) in the system decorated by channel a.

Because invariants and guards are defined as sets of predicates over clocks i.e. B(C),
we abuse the notation o € I(l) to mean that o satisfies I(1).

Definition 2. (Semantics of Timed Automata)

The semantics of timed automata is defined in terms of a TLTS where states are
pairs (I, o) of locations and clock valuations and the transitions are defined by the
rules:

o (l,o) L (l,o+d)if o €I(l) and (o +d') € I(l) for all d' € Rsg where d’ < d
o (Lo B, oV if 1 225 1 st. o egho’ =ofr— 0| Ao’ € I(I')

Parallel composition

We use the term network to denote a model of parallel composed timed automata.
A network of timed automata 4 is defined over a common set of clocks and channels
and consists of n timed automata A; = {L;,1?,C, %, E;, I;}, where 1 < i < n. A
location in A is a location vector | = {ly,...,l,} over locations for each A;. Updates
to the location vector are written I[l}/l;] to denote that automata .A; moves from
location [to I’. We proceed to define the semantics of networks of timed automata.
We use the invariant function I(I) to denote the conjunction of terms from I;(l;).

Definition 3. (Timed Automata Networks)

Let A = (L;,12,C, %, E;, I;) be a parallel composition of timed automata (A || ... ||
A,) and let (I, o) be an element in the set of states S = (L1 X ... x L,) x € where
so = (lo, 70) denotes the initial state where [= (19, ...,1%). The semantics is defined
in terms of a timed labeled transition system (S, sg, —) and the transition relation
—C S x S is defined by:

lo) % (l,o+d)ifVd' : o0 +d € I(l) where 0 < d’' < d

—

)
o (o) L (1), 0" if 31; 225 1 st. 0 € g,0" = o[r — 0] and o’ € I(I[l}/1;])
o (Z, o) 5 ([l /ll, 15/15],0") if there exists I; EULELN I and [; 95007 I st
€ (gi Ngj),o' =olriUr; — 0] and o’ € I(I[1}/1;,1/15])

2.3 The Extended Timed Automata Formalism

The notion of timed automata introduced here is (as expected) based on the previous
definition. The “upgrades” are primarily concerned with the addition of discrete
variables and replacing the previously introduced resets by updates expressed in a
small imperative language. Also a notion of urgency has been added. We now say
that locations may be either urgent or committed, in order to explicitly express that

2.3 The Extended Timed Automata Formalism 23

delays are unacceptable. The core motivation behind these extensions, is that the
formalism, obviously, may now be used to model a richer set of systems where not
only time is of importance but also the value of discrete data.

Variable Valuation

In order to extend the definition of times automata with discrete variables, we
introduce a notion of variable valuations. A variable valuation is a total mapping
w : VUretval — 7 from a set of variables V to the set of integers. The variable retval
is a special variable which cannot be used for any other purpose than returning
values from function calls (see Section 2.3.2 on retval). Finally, we use 2 to denote
the set of all variable valuations.

2.3.1 Syntax of The Imperative Language

This Section introduces a non-trivial subset of the imperative language of UPPAAL,
which we use throughout this thesis. The language presented here is chosen such
that the correctness of our slicing algorithm introduced in later chapters can be ar-
gued not only to hold for this subset, but it could be extended to the full imperative
language of UPPAAL.

Functions and Statements In order to manipulate discrete variables, we intro-
duce the possibility of having functions (without recursion) which may be called in
the update of discrete variables. We use f to denote a function and F to denote a
set of functions defined in the following syntax:

funcDecl ::= f(idy, ..., id,){stmt_seq}

stmt_seq € | single_stmt stmt_seq

single_stmt if (p){stmt_seq} | while(p){stmt_seq}
| return expr | single_act

Where id is used to denote names of formal parameters i.e. locally declared discrete
variables. As is traditional for imperative languages, the body of functions or the
branching and looping constructs are composed of a, possibly empty, sequence of
statements given by the production stmt_seq. We use A to range over statements
in the production single_stmt. The syntax for function calls is defined as:

funCall ::= f(expri, ..., expry,)

Discrete Variables. Let V be a finite set of integer variables. The arithmetic
expression over V, using the set of functions F, is defined in the following grammar
as expr, where m € Z,v € V and ® € {—, +,%, /}.

expr ::=m | v | expr ® expr | -expr | (expr) | funCall

By Exzpr(V, F), we denote the set of all possible arithmetic expressions over VV and
F.

The set of boolean expressions over discrete variables is defined in the production
bexp, where expr € Expr(V, F) and ~€ {==,1 = <, >, <=,>=}.

24 Timed Automata

bexp ::= true | expr~expr | 0 & ¢ | ¢lle | =p | (¢)

The set of all boolean expressions over V and F is denoted by ®(V, F') ranged over
by .

Finally, actions over discrete variables } and functions F' are defined by the produc-
tion single_act, where v € V and expr € Expr(V, F'). The set of all actions over
V and F is denoted Act(V, F) and « denotes a sequence expressed in production
act_seq over Act(V, F).

single_act ::= funCall | v = expr | skip
act_seq ::= € | single_act act_seq

Intuitively, o denotes a, possibly empty, sequence of discrete variable assignments
and function calls (see updates in Definition 2.3).

Clocks. Let C be a finite set of real valued variables, called clocks. The set of
clock constraints over C is defined in the production clockconst, where u, u;, us €
C,c € N and ~ is defined as before.

clockconst ::= true | u~c | ugy—us~c | ¥ && ¥

By ¥(C) we denote the set of all clock constraints over C, ranged over by 1. As
with discrete variables, we use a production single_asg to define clock assignments,
where Asg(C), denotes the set of all assignments over C and /3 denotes a sequence
of clock updates expressed in asg_seq over Asg(C).

single_asg ::= u = expr | skip
asg_seq ::= € | single_asg asg_seq

The basis for the distinction between the syntactic productions single_stmt and
single_act may not be obvious at this point, hence a brief discussion is in order.
In Section 2.3.3 we introduce an extended definition of edges and their updates.
For this purpose, we restrict edge updates to a sequence of variable actions («), in
the act_seq syntax, since it enables the model designer to call functions containing
more complex functionality. Moreover, variable actions may be used as statements
within the definition of functions and are therefore also ranged over by .

2.3.2 Semantics of The Imperative Language

In this Section we present the semantics of the imperative language of the extended
timed automata. For each transition in the transition system for timed automata
networks (Definition 5), there may exist multiple transitions in the semantics given
by the following operational semantics. Since the transition system of the timed
automata network describes the level at which the execution of automata transitions
may interleave, a big-step semantics is sufficient to describe the behavior of the
imperative language. The semantics is given by the semantic catagories: Arithmetic
Expressions, Boolean Ezpressions, Statements and Function Calls.

2.3 The Extended Timed Automata Formalism 25

Arithmetic Expressions:

The function [expr] denotes the semantics of an expression expr € Expr(V, F).
[expr] is a mapping € X 2 — Z x 2 x €. That is, it maps a pair of a clock and
variable valuations into a value (integer) and a new clock and variable valuation.
[expr](o,w) = (val,o’,w") iff (expr,o,w) — (val,o’,w’) wrt. the following opera-
tional semantics.

(m,o,w) — (m,o,w)

[constant]
where m is a constant in Z
[variable] w(v) = val
<U7 a, UJ) - <Ual7 g, w)
[clock] w(u) = val

(u, o, w) — (val, o,w)

Since the syntactic production expr allows function calls, the valuation of an ex-
pression may have a side effect, resulting in an updated variable valuation. (See
page 28 on functions)

(expri,o,w) — (vali,o,w") (expra,o,w’) — (valz,o,w')

[binary-arit] (expr1 @ expra, o,w) — (val,o,w’)

where val = [val; ® valz] and ® € {—,+,*,/}

Boolean Expressions:

Expressions ¢ € U(C) and ¢ € ®(V,F) are boolean expressions over the set of
clocks C and the set of variables V respectively. The semantics [¢] of ¢ and [¢]
of ¢ are mappings € x 2 — {t, ff} x € x 9. For b € {tt, [f}, the semantics
of [¢](o,w) = (b,o',0") iff (V,0,w) — (b0, likewise [¢](o,w) = (b,0’,w’) iff
(p,0,w) — (b,o’,w') using the following semantic rules.

[true} true,o,w) — (true, o,w

K b

(expri,o,w) — (vali,o,w"”) (expre,o,w’) — (valz,o,w’)
[) (expri == expra,o,w) — (b,o,w’)
equa
where b — #t if valy = vals
1 ff otherwise

(expri,o,w) — (vali,o,w") (expre,o,w’) — (valz,o,w’)
ot 1 (expri! = expra, o,w) — (b,o,w’)
not-equa

tt if valy = valsy

where b = { ff otherwise

26 Timed Automata

(expri,o,w) — (vali,o,w") (expre,o,w’) — (valz,o,w’)

<€£Ep’r‘1 < expra, o, UJ> - <b7 o, w’)

[smaller]
where b — tt ifvaly < vals
| ff otherwise
(expri,o,w) — (vali,o,w"”) (expre,o,w’) — (valz,o,w’)
0] (expr1 > expra, o,w) — (b,0,w’)
arger
where b — tt if valy > vals
1 ff otherwise
(expri,o,w) — (vali,o,w"”) (expre,o,w) — (vala,o,w’)
llarger-cq] (expr1 >= expra,o,w) — (b,o,w’)
where b — tt ifvaly > vals
1 ff otherwise
(expri,o,w) — (vali,o,w"”) (expre,o,w’) — (valz,o,w’)

[smaller eq} (emprl <= expry, o, w> - <b1 g, w’)

tt ifval; < wvals

where b = { ff otherwise

(p1,0,w) — (b1,0,w") (p2,0,0") = (b2,0,u')

<¢1 && 410270-7("}) - <b7 g, w/>

[and]
_ tt ifby =1t and by =
where b = { ff otherwise

(p1,0,w) = (b1,0,w") (p2,0,w") = (b2, 0,w’)

[or] (‘Pl H ¥2,0, w> - <b7 g, w/>
_ it ifby =ttorby =1t
where b = { ff otherwise

[not} <"pv g, UJ> - <b7 g, wl>

where b = —b’

(u, 0, w) — (valy, o,w)

(u >=c,0, w> - <b7 O',O.)/>
[clock larger-eq]
tt ifval, > cfor c € N

where b = { ff otherwise

As the remaining rules for clock constraints are defined as expected and therefore
are trivial, we leave out their formal definitions.

Note that the syntactic production bexp does not allow discrete boolean expressions
to contain clock variables, nor does it allow the possible side effects (via function
calls) to update the clock valuation. Thus the mapping imposed by [¢] is effectively
2 —A{tt, [f} x 2. Moreover, clock constraints are in-fact syntactically restricted to
be side-effect-free, and can only refer clocks, which implies that the actual mapping

is ¢ — {tt, ff}.

2.3 The Extended Timed Automata Formalism 27

Single Statements, Clock Assignments and Variable Assignments:

Given a statement A from single_stmt, single_act or single_asg, its semantics
[A] is a mapping € x 2 — € x 2. The valuation of [A](o,w) = (¢/,w') iff
(A, o,w) — (o', w") wrt the following operational semantics:

<SO7 a, L/J> - <b7 g, UJN> <Stmt-seq, g, w”> - <O', w/>
[if-true] (if (p){stmt_seq}, o,w) — (o, w’)

where b =t

<Lp7 0-7 w> - <b7 0—7 w/)

lffalse] (8 (@) {stmt_seq}, o,w) — (o)

where b = ff

(p,0,w) — (byo,w"") (stmt_seq,o,w""y — (o,w") (while(p){stmt_seq}, o,w") — (o,w)

[while-true] (while(p){stmt_seq}, o, w) — (o,w’)

where b =t

<Lp7 0—7 w) - <b7 0-7 wl>
[while-false] (while(p){stmt_seq}, 0,w) — (o,w')

where b = ff
ke (ship, 7,) — (0,)
[var-assign] {eapr,0,w) = {val, 0, ')

(v = expr,o,w) — (o, w’[v — val])

!
[clock-assign] (expr, o, w) — (val, o,w’)

u = expr,o,w) — (olu — val],w’)

Sequences:

The semantics of sequences is defined by the following three rules. Given a variable
action sequence « or a clock update sequence 3, its semantics [a] or [3] is a
mapping ¢ x 2 — % x 2. The semantics of « is that [a](o,w) = (¢/,w) iff
(a,0,w) — (0/,w') wrt. the following operational rule:

A ow) = (o) (o 0,0") = (0,0)

[act-sequence] (o, 0,w) = (o, w’)

where a = A o’ and A must be expressed over single_act
The semantics of § is that [F](o,w) = (¢o/,u') iff (B,0,w) — (o’,w') wrt. the
following operational rule:
Kow) = (o,0") (B,0,0") = (o,w)

[act-sequence] (B,0,w) = (o,w")

where 3 = \ 3 and \ must be expressed over single_asg

Finally, the semantics of a statement sequence expressed over stmit_seq is defined as:

28 Timed Automata

(A o,w) = (0,w") (stmt_seq’,0,w") = (0,0)

[stmt-sequence] (stmt_seq, 0, w) — (o,w’)

where stmt_seq = \ stmt_seq’

Function Calls:

In order to describe the semantics of calls to a function in the set of functions
F, we introduce some extra notation. Since we do not use a notion of function
declarations, we use V¢ to denote the set of variables in the formal parameters of
function f and stmty to denote the body of function f, declared over the production
stmt_seq. Since formal parameters of a function are local to that function, each
function must be evaluated in a specific variable valuation w/, which is a mapping
wf:yu V¢ — Z. To model return statements, a special variable retval is used to
hold the value of the expression returned. Since retval is not in V, retval can only
be read and assigned through function calls.

n—1>

(expr1, o,w) — (valy,o,wt) ... (expry, o,w — (valp, o,w™) (stmtf,a',wf) — (O',wf/)

[funCall] (f(expri,...,exprn),o,w) — (val,o,w’)

where

Where (o,w!) = (0,w"[v; — val;]) for all v; € Vy and Yo € V 1w’ = wf’. Finally,

val = w'(retval) which is updated to hold the value of the return statement

l !
[return) (expr, o,w) — (val,o,w’)

(return expr, o,w) — (o, w’[retval — vall)

Notice that we require only a single retval variable since we do not allow recursion.

2.3.3 Extended Timed Automata

Having introduced the imperative syntax (and its semantics) used in this notion of
the extended time automata formalism, we proceed to extend the definition of the
timed automata:

Updates: The notion of resets in the original definition has been replaced by
updates. An update is a composition a3 of variable action sequences and clock
assignment sequences. Where a and 3 are expressed over the syntactic productions
act_seq and asg_seq respectively.

Guards and Invariants: The previously defined notion of guards and invariants
has been extended with the discrete data and the use of the imperative language.
Both guards and invariants are conjunctions over clock constraints and discrete
boolean expressions denoted ¢ and ¢ respectively. In addition, we restrict the valu-
ation of discrete boolean expressions to be side-effect-free. Effectively reducing the
semantics of guards and invariants to ¢ x 2 — {tt, ff}.

Communication: Communication between automata is achieved by using a chan-
nel (like in CCS). Channels may be used to synchronize two or more automata.
Binary Synchronization, as described for basic timed automata in Section 2.2, is
the traditional behavior, in which case two automata synchronize on a channel.

2.3 The Extended Timed Automata Formalism 29

In the extended formalism a notion of Broadcast channels are added, to enable
synchronization between multiple timed automata. Broadcast channels differ from
multi-synchronization, found in alternative literature, by the fact that broadcasts
are non-blocking. Any number of receivers (a?) may choose to synchronize, but the
sender (a!) is never blocked.

Urgency: In order to model the fact that time must not delay, we can choose to
“mark” a channel or a location urgent. Informally, the effect of urgent channels is
that whenever a location is reached, which has an outgoing edge using an urgent
channel, synchronization must occur as soon as the edge is enabled. A location
marked as urgent must not allow delays of any kind. Even more restricted behavior
is achieved by marking a location committed. When entering a committed location,
the next step in the transition system (defined formally below) must involve some
committed location. That is, the behavior of the system is committed to the loca-
tion.

In the following definition we use n(®(V, F), ¥(C)) to denote the set of all conjunc-
tions over ®(V, F') and ¥(C).

Definition 4. (The Eztended Timed Automata)
Let A= (L,1p,V,C, %, F,E,I) be a timed automaton extended with discrete vari-
ables.

L is a finite set of locations, ranged over by [

lg is the initial location

V is a finite set of discrete variables, ranged over by v

C is the set of clocks, ranged over by u

Y. is the set of channels, ranged over by a

I is a set of function declarations expressed in the above syntax.
ECLxn(®V,F),¥(C)) x X x Act(V,F) x Asg(C) x L is the set of edges
I:L—n®V,F),U(C)) assigns each location an invariant

Note: In order to refer to components of an edge e, we write src(e), guard(e),
channel(e), update(e), target(e) for 1, g, a,r,l' respectively. Moreover, we use in(l)
to obtain the set of in-going edges for location | and dually, out(l) obtains all
outgoing edges for location I.

2.3.4 Semantics of the Extended Timed Automata

The semantics of the extended timed automata formalism is defined as a TLTS
in Defintion 5. We use the notation I¢(I) to obtain 1 and I'V(l) to obtain ¢ in
the invariant I(l) for location I. For networks of timed automata we use IV (1) to
denote the conjunction of invariants: V(1) = IV(I;) A ... A TYV(l) dually I¢(]) =
IC(L) AL AT,

Definition 5. (Network of Extended Timed Automata)

Let A; = (L;,19,V;,Ci, 2, F;, B, I;) where 1 < i < n be a set of timed automata.
A network of n timed automata A written (A; || ... || A,) is defined in terms of
a transition system (S, sg, —) where S = (L1,...,L,) X € X Z is the set of states

and so = (lp, 00, wp) is the initial state where [y is the location vector (19,...,19).

30 Timed Automata

The transition relation —C S x S is defined by the following rules:

(delay:) (I,0,w) LN (I,o0 +d,w) if:
e Vd where 0 < d < d: [I°()](c +d',w) = t.

e And V d',l; : d' does not enable an edge e for any [; which is either urgent
or committed. Furthermore, [; does not have an outgoing edge with a channel

which is both urgent and broadcast.
(action:) (I,0,w) % (I[I}/1;],0",w') if:
e there exists an edge I; 2% I} where
e [¢](0,w) =t and [¢](w) = # where) A ¢ = g and
e o = [0](w) and o' = [B](0, ') where aff =1
o [I°QE/LDI(0’ W) = tt and [V (1[I /L])](w") =t
(sync:) (I,0,w) = (I[1;/1;, 1} /1], 0") if:

alrs j.alr
e there exists edges [; 22" I and I; ELLEN I, such that

o [: A t](o,w) = tt and [As](w) = t

o (output) o’ = [a;](w) and o' = [:] (0, ") (followed by)

e (input) ' = [a;](") and o’ = [8;](0", o).

o L€ /1,1 /D0’ W) =t and [V (L /1,15 /L)) (W) = #

(bSyIlC:) <[7 a, w> - <l[l;/li7 l;/l]]a OJ; UJ’> if:

gi,al,r;
l; ——=1

e There exists an output edge and

a?,r;

such that for [;:

. g,a?,r : :
— either [; =— I exists and is enabled or

— [; must take an implicate edge where g = =(g1V...Vgi) where {g1, . ..

{911 &l;} and r = ee and I} = [;.

[A (/\ ©))(0,w) = tt and [p; A (J\ 9))](w) = t
J#i JFi
Let {1,...,n}\{i} = {j1,72,- -+ s Jn—1} in:

— o' =0y, for o), = [,](0k—1,w) where 1 <k <n-—1
and oo = [5;](0,w)

— W =wp_1 for wy = [aj, J(wg—1) where 1 <k <n-—1
and o¢ = [a;](w)

[7€ (Tt /1, 15 /13D (0" w') = th and [1V (UL /1, 15/ 1)) (W) =

for all I; where j # i we assume [; to be input enabled, written /; EEAUER

!/
N

NS

2.3 The Extended Timed Automata Formalism 31

)
The notion of a location [being input enabled on a channel a written [LA,

°
entails the assumption that the location have an implicit edge [I I such that

g = (g1 V...Vgr) where {g1,...,9x} = U guard(e), r = ec and | = ['.

ecout(l)
This eases the definition of broadcasts since we may now say that, whenever an
automaton in the network outputs on a broadcast channel, all others synchronize
using either an existing edge or the implicit edge, which is enabled exactly whenever
all others are not. Using input enabled locations gives exactly the behavior where
output on a broadcast channel is non-blocking and all able automata participate
in the synchronization using their “real” edge whereas others use the implicit edge
yielding no effect.

Model

The following defines a model for a network of extended timed automata, which we
shall use in Chapter 4 to reason about correctness of our slicing approach.

Definition 6. (Model)

Let S = (5, 59, X, —) be the labeled transition system for a network of timed au-
tomata Ay || ... || A,. The set AP, is a set of atomic propositions on the form:
A;.l where | € L; or expr, ~ expr, € Expr(V, F) where ~ is a relational operator.
A model of a network of extended timed automata, is a pair M = (S§,7) where 7
is a mapping function Z : S — 247, For s = (I1,...l,,0,w) € S, I(s) is defined as
follows: expr; ~ expr, € Z(s) iff w |= expr; ~ expr, and A;.l € Z(s) iff I; = 1.

CHAPTER

3

Model-Checking TA

This Chapter introduces the model-checking problem and various issues are high-
lighted. We give an introduction to the theory of region graphs and zones and how
these can be represented using Difference Bound Matrices (DBMs). Finally, we look
at the complexity of the model-checking problem.

Contents
3.1 Introduction 34
3.2 CTL . . o e 34
3.2.1 Reachability Analysis 34
3.3 Model-Checking 35
3.3.1 Difference Bound Matrix 37
3.3.2 Maximum Bound Abstractions 38
3.3.3 Canonical DBMs 39
3.3.4 Operationson DBMs. 39

3.4 Complexity v v v i vt ittt e e e e e e 40

34 Model-Checking TA

3.1 Introduction

In the following Sections, the concepts of model-checking timed systems are intro-
duced and various terms and techniques are described. Firstly, the logical query
language CTL is described and compared to the approach used in UPPAAL. The
UPPAAL engine implements a small subset of the TCTL language (but in practice
suffiently large) because of the fact that efficiency is of paramount importance in
UppPAAL. Furthermore, a general discussion on reachability analysis is presented,
followed by a more thorough introduction to the concept of model-checking. Regions
and zones are discussed intuitively in Section 3.3 and the underlying data-structure
(the DBM) is discussed in Section 3.3.1. Finally, the complexity of model-checking
is briefly introduced.

3.2 CTL

Computational Tree Logic (CTL) was introduced by Emerson and Clarke [23] as a
specification language for finite-state systems. Let AP be a set of atomic propo-
sitions (see Definition 6) and N be the set of constants {0,1,2,...} denoting the
natural numbers. The formulae of CTL and TCTL are inductively defined as fol-
lows:

CTL: @ :=p|false| o1 — @2 [IX 1 | I1 U @2) | V(o1 U ©2)

TCTL: Y= p | false | 1 — by | X1 | 3(Yh1 Une P2) | V(1 U P2)

where p € AP, @1, 92 are CTL formulae, 11,19 are TCTL formulae, ~€ {<, <, =
,>,>}and c € N.

Xy, intuitively means that there is an immediate successor state, reachable by
executing one step, in which ¢; holds. 3(p1U¢p2) means that for some computation
path, there exists an initial prefix of the path such that o holds at the last state
of the prefix and 7 holds at all the intermediate states. V(¢1U¢2) means that for
every computation path the above property holds.

The model-checking engine of UPPAAL is designed to check a subset of TCTL for-
mulae [1]. The abbreviations of UPPAAL from (T)CTL are as follows: E<>¢ for
A(true U), Allp for V(true U ¢), E[1¢p for —A<> —p, A[lp for mE<> -, and
©1 ==> g for A[] (¢1 imply A<> ¢3). Furthermore, the query language of UP-
PAAL does not allow nesting of modalities, so only boolean combinations of atomic
propositions or clock constraints are allowed for the subformulae v and 5.

3.2.1 Reachability Analysis

One of the most useful questions to ask about a timed automaton is the reachability
of a given final state or a set of final states (corresponding to E<¢ properties in
TCTL). The reachability problem is decidable [12]. In the verification of timed sys-
tems, a symbolic approach is adopted. The idea resembles symbolic model-checking
for untimed systems, which uses boolean formulae to represent sets of states and
operations on formulae to represent sets of state transitions. It is proven that the
infinite state-space of timed automata can be finitely partitioned by symbolic states

3.3 Model-Checking 35

using clock constraints known as zones (see Section 3.3). Model-checking concerns
two types of properties, namely liveness and safety. The essential algorithm of
checking liveness properties is loop detection, which is computationally expensive
[11]. The main effort on verification of timed systems has been put on safety prop-
erties that can be checked using reachability analysis by traversing the state-space
of timed automata.

Reachability analysis consists of two basic steps, computing the state-space of an
automaton under consideration, and searching for states that satisfy or contradict
given properties.

3.3 Model-Checking

With timed automata and the logic (T)CTL in hand, we wish to obtain a model
checking algorithm able to automatically decide whether some formula holds for a
timed automaton (or a network of timed automata).

In this context, the obvious difficulty is that timed automata have an infinite number
of configurations, because there exists infinitely many possible clock valuations.
This infiniteness has two sources

1. the clock values are unbounded

2. the set of real numbers is dense, even when restricted to a bounded interval.

Thus, the algorithm originally suggested for CTL [18, 38] does not apply.

The idea to overcome this difficulty can be described intuitively: Starting from two
configurations (I,0) and (I,0’) where o and ¢’ are very close (fx o(u) = 1.234766
and o’(u) = 1.23500), a timed automaton will behave in roughly the same way and
the two resulting configurations will verify the same (T)CTL formulae (assuming a
notion of closeness for configurations is properly defined as a function of the formu-
lae of interest). Also o and ¢’ can be considered “close” when they are both beyond
the constants handled by the timed automaton.

The idea of “closeness” is formally defined by an equivalence relation. Given the
type of clock constraints appearing in the transitions and the largest constant used
in these constraints, this equivalence = (see definition 7) on the clock valuations
is defined with the following property: For any timed automaton using these con-
straints, two configurations (I,0) and (I,0’) with o = ¢’ satisfy the same (T)CTL
formulae. For timed automata! the number of equivalence classes, called regions
(see definition 7), are finite [12].

Definition 7. (Region) Let A be a timed automaton. We say that two clock
valuations o and ¢’ are equivalent, written o = o/, iff

1. for each u € C, we have that either both o(u) and o'(u) are greater than ¢,
or

1Contrary to hybrid systems

36 Model-Checking TA

r2 — r5

2. for each u € C such that o(u) < ¢, we have
frac(o(u)) =0 iff frac(o’(u)) =0 and
for all uy,ug € C such that o(u) < ¢,, and o(uz) < ¢,, we have

frac(o(uy)) < frac(o(usz)) iff frac(o’(u1)) < frac(o’(usz))

where |o(u)]| denotes the integer part of the clock valuation and frac(o(u)) denotes
the fractional part of the clock valuation. Furthermore, ¢, is defined as the largest
constant against which the clock u is ever compared either in the guards or in the
invariants present in A.

The equivalence relation = partitions the clock valuations of A into finitely many
equivalence classes. Moreover, whenever o and ¢’ are in the same equivalence class
(that is, o = o’ holds), then, for any location [in A, the configurations (I, o) and
(I,0") are untimed bisimilar [41]. The equivalence classes induced by = are refered
to as regions.

Ezample. Figure 3.1 represents the set of regions for two clocks where we are only
interested in constraints of the form u ~ k with v € {uy,us} and k =0, 1,2 for uy,
k = 0,1 for us. In this example, there are 28 regions. T'wo configurations belonging
to the same region are “close”.

Some regions amount to a single point, like r0 (initial region), described by u; =
us = 0. Other regions are open surfaces in the plane, like region r3, described by
0 < us < up <1, or region rb5, described by u; > 2 A us > 1. Lastly, the other re-
gions are open half-lines or segments (like r1 which corresponds to 0 < u; = ug < 1).

3.3 Model-Checking 37

u2=0 c
ul == ul==1
q r
ul<=18&& _
a u2<1 ul<=1 a
ul=0 ul=0
u2<1 b

Figure 3.2: A timed automaton A

The system starts in the initial region r0. As time passes, the system moves on to
region ri, then on to the point u; = us = 1 (region r2), etc., and up to region r5.
If, rather than letting time elapse, we perform a discrete transition, the resetting of
certain clocks leads to regions located on the axes. Fx, the reset of us in region r1
leads into r4, then r3, etc.

Rather than analyzing the infinite configuration graph, we analyze the finite graph
of the “symbolic configurations” (I, [o]) where [o] corresponds to the region of the
valuation o. This automaton, called region graph, is an abstract representation of
the behavior of the timed automaton. We can use this type of model to determine
the truth value of the (T)CTL formulae.

However, the problem with regions graphs is the potential explosion in the number
of regions. In fact, it is exponential in the number of clocks as well as the maximal
constants appearing in the guards of an automaton [11]. A more efficient represen-
tation of the state-space for timed automata is based on the notion of zone and
zone-graphs [31, 22]. In a zone-graph, instead of regions, zones are used to denote
symbolic states. This gives a coarser and more compact representation of the state-
space. As an example, a timed automaton A and the corresponding zone-graph
G 4 (or reachability graph) is shown in figure 3.2 and 3.3, respectively. Note that
the zone-graph has only 7 states. The region-graph for the same example would
roughly comprise thirty states.

A zone is a clock constraint. Strictly speaking, a zone is the solution set of a clock
constraint, that is the set of clock assignments satisfying the constraint. It is well-
known that such sets can be efficiently represented an stored in memory as DBMs
(Difference Bound Matrices)[10, 11] (See Section 3.3.1 on DBMs).

3.3.1 Difference Bound Matrix

A zone denoted by a clock constraint D is the set of clock assignments satisfying D.
The most important property of zones is that they can be represented as matrices
i.e. DBMs, which have a canonical representation (see Section 3.3.3).

To have a unified form for clock constraints, a reference clock 0 with the constant
value 0 is introduced. Let Cy = C U {0}. Then any zone D € B(C) (See defini-
tion in Section 2.1.2) can be rewritten as a conjunction of constraints of the form

38 Model-Checking TA

b
q
O<=u2<ul <1
c
‘ \
/ AY
1 \
B - Pt
.- , q
. O<ul<=ul<t b
N

g A

.

.
.
’
.

7z ’

/

/

/7
b

] q r

ul=0<=u2<1

\c

Figure 3.3: G 4: A symbolic representation of A

up — ug < n for uy, us € Cy, <€ {<, <} and n € Z. Naturally, if the rewritten zone
has two constraints on the same pair of variables only the strongest of the two is
significant. Thus, a zone can be represented using at most |Cg|? atomic constraints
of the form u; — us < n, such that each pair of clocks u; — us is mentioned only
once. Zones can then be stored using |Co| X |Co| matrices where each element in the
matrix corresponds to a constraint. Since each element in such a matrix represents
a bound on the difference between two clocks, they are named Difference Bound
Matrices (DBMs). D;; is used in the following to denote element (7, j) in the DBM
representing the zone D.

To construct the DBM representation for a zone D, all clocks in C is numbered
as 0,...,n and the index for 0 is 0. Let each clock be denoted by one row in the
matrix. The row is used for storing lower bounds on the difference between the
clock and all other clocks, and thus the corresponding column is used for upper
bounds. The elements in the matrix are then computed in three steps[11].

1. For each constraint u; —u; < n of D, let D;; = (n, <).

2. For each clock difference u; —u; that is unbounded in D, let D;; = co. Where
oo is a special value denoting that no bound is present.

3. Finally add the implicit constraints that all clocks are positive, i.e. 0 —u; <0,
and that the difference between a clock and itself is always 0, i.e. u; —u; < 0.

3.3.2 Maximum Bound Abstractions

The abstraction used in real-time model-checkers is based on the idea that the
behaviour of an automaton is only sensitive to changes of a clock if its value is
below a certain constant. That is, for each clock there is a maximum constant,
such that once the value of a clock has passed this constant, its exact value is no
longer relevant; only the fact that it is larger than the maximum constant matters.

3.3 Model-Checking 39

Transforming a DBM to reflect this idea is often referred to as extrapolation [13, 8]
or normalisation [21]. In Figure 3.2 the maximum constant for u; and us is 1, since
1 is the maximal constant to which both u; and us are compared.

3.3.3 Canonical DBMs

Usually there is an infinite number of DBMs sharing the same solution set. However,
for each class of DBMs with the same solution set, there is a canonical one in which
no atomic contraint can be strengthened without losing solutions.

To compute the canonical form of a given DBM, the tightest constraint on each
clock difference needs to be derived. This problem can be solved using a weighted
graph representation of the DBMs where the clocks are nodes and the constraints
are edges labeled with bounds. A constraint on the form of u; — us < n will be
converted to an edge from node u; to node wus labeled with (n, <), namely the
distance from u; to us is bounded by n. The tightest constraint for a given pair
of clocks in a DBM is equivalent to finding the shortest path between their nodes
in the graph interpretation of a corresponding DBM [11]. Finding the canonical
form of a difference bound matrix can be automated by using the Floyd-Warshall
algorithm [48], which has cubic complexity. The algorithm guarantees that all the
possible combination of indices are systematically checked to determine if further
tightening is possible.

After the DBM has been converted to canonical form, it can be determined if
the corresponding clock zone is nonempty by examining the entries on the main
diagonal of the matrix. If the clock zone described by the matrix is nonempty,
all of the entries along the main diagonal will have the form (0, <). If the clock
zone is empty or unsatisfiable, there will be at least one negative entry on the main
diagonal.

3.3.4 Operations on DBMs

In order to do symbolic state-space exploration of timed automata, various opera-
tions are needed.
The basic operations on DBMs can be devided into two classes:

e Property-Checking: This class includes operations to check the consistency
of a DBM, the inclusion between zones, and whether a zone satisfies a given
constraint.

e Transformation: This class includes operations to compute the strongest
postcondition and the weakest precondition of a zone according to conjunction
with guards, time delay and clock reset.

After performing any of these operations, the resulting matrix may fail to be in
canonical form. Thus, as a final step, the matrix must be reduced to canonical form
again. The basic operations can be implemented efficiently (Essentially, it has the
same complexity as transforming the DBM into canonical form, i.e. cubic in the
number of clocks). Moreover, the implementation of these operations is relatively
straightforward to program [11].

40 Model-Checking TA

3.4 Complexity

Model-checking suffers from the so-called state explosion problem, which is, that
the need of resources for verification grows exponentially with the model to verify
(worst case). For timed systems, the problem is more serious. It is known that the
model checking problem for timed systems is PSPACE-complete [1].2 The number
of regions grows exponentially with the number of clocks: For n clocks and for
constraints in which every constant k is upperbounded by M, the number of regions
is O(n!M™) [1, 2]. Though there are even more zones, in practise, this has proven a
far more efficient data structure, as the exact collection of zones generated is heavily
guided by the actual timed automata analysed [7].

2Intuitively, a problem is PSPACE-complete if it is one of the hardest among all the problems
solvable using polynomial memory space. In practice, any known algorithm will use up exponen-
tial time in the worst case. (By comparison with the more commonly known NP-completeness
notion, PSPACE-complete problems do not even possess an efficient test that a purported solution
discovered by chance or otherwise is indeed a solution [45].

CHAPTER

4

Slicing

In this Chapter, we introduce slicing for the purpose of syntactic reduction of the
extended time automata formalism given in Chapter 2. The developed slicing theory
will allow us to implement slicing for the UPPAAL tool from which we present
performance results in later chapters.

Contents
4.1 Introduction 42
4.1.1 Slicing Timed Automata 42
4.1.2 Benefits of Slicing Timed Automata 43
4.2 Preliminary Definitions, .. 43
4.2.1 Statements and Variables 43
4.2.2 Control-Flow, 44
4.2.3 Dependencies oL 49
4.3 Relevant Componentso v v v v 52
4.4 Slicing Algorithms 54
4.4.1 Standard Algorithm 54
4.4.2 Improved Algorithm 55
4.5 The Slice 57
4.5.1 Constructing Sliced Imperative Components 57
4.5.2 Constructing the Sliced Timed Automata 58
4.6 Correctness v v v v vttt ittt e e 59
4.6.1 FE<p-Bisimulation and Reachability 59

4.6.2 Proving The Construction of Imperative Components . 62

42 Slicing

4.1 Introduction

The original concept of slicing was introduced by Weiser in [52]. According to
Weiser, a slice corresponds to the mental abstractions that people make when they
are debugging a program. Various notions of program slices have been proposed,
most of which are compared by Tip in [51] along with numerous methods and
supporting theory to compute program slices. Weiser defined a program slice S as a
reduced, executable program obtained from a program P by removing statements,
such that S replicates part of the behavior of P i.e. the program slice S is a fragment
of the original program with regards to some criteria, called the slicing criteria.
Another common definition from [51] is that a slice, is a subset of the statements
and control predicates of the program that directly or indirectly affect the values
computed at a certain point in the program, but that do not necessarily constitute an
executable program. In Weisers original approach, slices are created by computing
consecutive sets of transitively relevant statements, according to data- and control-
flow dependencies.

4.1.1 Slicing Timed Automata

Traditionally, slicing has been suggested for many applications [51] primarily related
to testing or debugging. We here show how to use slicing for syntactic reduction
of models expressed, using the extended definition of Timed Automata given in
Section 2.3.

In addition to the imperative control structures, the main difficulty of models in
the extended Timed Automata language is handling dependencies across function
calls. This problem is known in existing slicing theory [35] as the calling context
problem. Intuitively, the problem describes the fact that a function with multiple
call-sites may contribute to the production of unnecessary large slices when using
conservative algorithms, like the one first presented by Weiser in [52]. The static
analysis employed in such algorithms may conclude that the control-flow (see Section
4.2.2) may enter the procedure from one call-site and return at another - which is
not in accordance with the natural control-flow of programs. To overcome this
problem, the algorithm presented here is based on work from [24, 35, 46, 47] which
employ the use of System Dependency Graphs (SDG) and summary information.
The following Section illustrates this problem by example. In Section 4.2.3, we
present more thoroughly the notion of an SDG and the use of summary edges to
achieve precise slices.

Example of The Calling Context Problem

Figure 4.1 illustrates the results of slicing the application with respect to the state-
ment (x = 1i;). Given the original program on the left, the desired slice with respect
to (x = i;) is given as the middle instance (denoted precise). The instance on the
right is a slice computed using the slicing algorithm presented by Weiser, where
the algorithm has determined the relevance of function add and have mistakenly
followed a path in the control-flow graph (see Section 4.2.2) which have entered
function add at the statement add(i,1) and returned along a control-flow edge
from add to add(sum, i) which has “fooled” the algorithm into adding the decla-

4.2 Preliminary Definitions 43

ration of sum. Such traces may be avoided by keeping track of the enter-exit relation
ship of function calls also know as the calling context problem.

int add(int x, int y) int add(int x, int y)

int add(int x, int y)
) return x + y;) return x + y; roturn x & v
void main () void main () void main ()
int sum = 0; . _ .
int i = 1; int i = 1; :‘:t P *1,0'
while (i < 11) while (i < 11) while (i < 11)
sum = add (sum, i);) o) L
i = add(i, 1); i = add(i, 1); . ;dj?‘f(“‘l“)‘; 1)
} ¥ !
a =i x = i
b = sum; x = i; y T
} }
original precise imprecise

Figure 4.1: Example on slicing sequential code

4.1.2 Benefits of Slicing Timed Automata

The main idea is that slicing timed automata models is interesting primarily for
the purpose of reducing the state-space explored by the model-checker, which con-
sequently increases the performance of the verification process.

The slicing approach presented in this thesis is inspired by closely related work by
Janowska and Janowski [37], who introduce slicing for timed automata with dis-
crete data (simple updates of integer variables). But since the definition of timed
automata presented here includes a complete imperative language used for manipu-
lating discrete variables and clocks, a more sophisticated approach is required. We
show in Section 4.2.3 that techniques used in slicing of traditional sequential code
[46, 47] may be used for this purpose.

4.2 Preliminary Definitions

Before moving on to the central slicing algorithms and definitions, we introduce
required terminology and definitions.

4.2.1 Statements and Variables

In the remainder of this thesis, we use the term statement, represented by A, to
denote an occurrence in a model of a single statement, clock assignment, vari-
able assignment or function call, expressible in the single_act, single_asg or
single_stmt productions on page 23.

Moreover, we use A(«) and A(8) to denote the set of statements occurring in the
sequences « and (3 respectively and A(e) = A(a) U A(B) where a5 = update(e) to
denote the set of statements occurring in the update of e. Similarly, we use A(f)
to denote the set of statements occurring in function f.

44 Slicing

Definition 8. (Statement Sets)
We define the set of statements obtained by A by induction in the syntax such that:

e for A\ in Act(V,F) or Asg(C), A(X) = {\} and
e for return statements, we have that A(return expr) = {return expr}

e for if and while statements, with empty bodies (¢), we have that:

— A(if(p){e}) = {if(p){}} and
— A(while(p){e}) = {while(p){}}

and in the case of non-empty bodies we have that

— AGEE(e){ A2 A0 }) = A A) U AL (@) {e}) and
— A(while(p){MA2... An}) = AA 2. .. A) U A(while(p){e})

e for a sequence of statements A1z ...\, expressed from any production, we
have that A(AAa... Ay) = UA(Ai) where i € {1,...,n}
A

e for a function with an empty body we say that:
— A(foo(p,...,{e}) =0
and with a non-empty body:

- A(fOO (p, [P ,q){AlAQ N /\n}) = A()\l)\g N /\n)

Finally the set of all occurring statements in a timed automata A = (L, 1y, V,C, %, F, E, I)
is defined as:

AA) = [A u [AL,

ecE feF
Variables:

For the purpose of the analysis introduced in this Chapter, it will be sufficient
to refer to variable names without referring to their type. Therefore, we will not
discriminate between variables representing clocks or discrete data. For this purpose
we will use V' to denote the union of discrete variables from V and clock variables
in C. Also, we will use z to range over V.

4.2.2 Control-Flow

The extensions made to timed automata in this thesis (and in the complete Up-
PAAL language) creates an interesting hybrid of timed automata and traditional
imperative code, in which the control flow of a model is influenced by traditional
imperative branching, loop statements and by the structure of the automaton. The
control-flow of the automata is expressed explicitly by edges and locations and thus
requires no further explanation. In the following, we discuss the control-flow of the
imperative language and the induced control-flow graph (CFG).

4.2 Preliminary Definitions 45

In the following figures, vertices (rectangular boxes) represent occurrences of state-
ments and the circled (in) and (out) represents the program points where graph
fragments may be joined to model the control-flow of imperative code. We say that
each edge in the control-flow graph represents a program point p and use the no-
tation, B, A\, 25 to describe the fact that program point p; follows immediately
after statement \; where as p;_; is immediately prior to \;.

The following gives the control-flow graphs known from classic static analysis [50].
Figure 4.2(a) illustrates the basic “building block” of the control-flow, which repre-
sents a single statement A from Act(V, F') or Asg(C). Figure 4.2(b) illustrates the
structure of if statements which may skip a sequence of statements (illustrated by
the “cloud”) based on the valuation of the boolean expression ¢. Likewise 4.2(c)
shows how while statements may repeat a sequence of statements based on the
valuation of the condition .

(a) single (b) if (c) while

Figure 4.2: Control-flow of simple imperative constructs

In order to define the control-flow of function calls, we exploit the fact that any ex-
pression, expressed in the imperative language considered here (see Section 2.3.1),
may be rewritten to use temporary variables which are assigned by the original
function call. This allows us to define the control-flow of functions in a generic
manner (i.e. as a statement), ignoring the fact that function calls may be either
expressions or statements.

% v = f(expry,..., expry) }—*@

Figure 4.3: Function call statement

The control-flow imposed by function calls is defined in terms of in-lined functions.
That is, the program points where the (in) and (out) of the function call statement
is connected to the remaining CFG is replaced by (in) and (out) of the function.

Figure 4.4 shows the control-flow of in-lined functions replacing statements such
as the one shown in Figure 4.3. Figure 4.4 illustrates how the actual parameters

46 Slicing

of the call are assigned to the formal parameters of the function declaration, after
which the body of the function is entered at (out’). Having executed the body, an
arbitrary number of return statements in the body are replaced by assignments to
the variable v after which the control-flow is returned to the original program point
(out).

[callf(eapr,...,expry)]

C—F

Figure 4.4: Control-flow of in-lined function call v = f(expry,...expry,)

Although we continue to make a clear distinction between the structure of the
automata and the control-flow of the imperative constructs, Figure 4.5 illustrates
how the control-flows of the automata and the imperative language may be viewed
combined. Notice, that since the definition of updates af on edges only allow
sequences of statements, which are either assignments or function calls, loops and
branches are only present in the control-flow within the body of a function, called
in the update.

Figure 4.5: The combined control flow of a simple automata. The clouds illustrate
how calls to functions may introduce a more complex control-flow structure.

Control-Flow Edges

An edge in a control-flow graph is written A 9, ' whenever it connects two state-
ments.

Formally, a CFG is a graph where vertices are either statements or locations and

there exists an edge in the CFG iff one of the following hold:

e Whenever) is the first statement in the sequence « for an update af =

update(e) and | = src(e), an edge connects [s,

e Whenever \ is the last statement in the sequence g for an a8 = update(e)

and | = target(e), an edge connects A EEN

e Whenever A follows X in a sequence, an edge connects \ RZEN

4.2 Preliminary Definitions 47

e Whenever A is the first statement evaluated after the condition ¢ of a control

statement)\, an edge connects \’ RZEN

e Whenever a statement N = v = f(expry,...,expry,) follows statement X\ in

cfg
a sequence, an edge connects A —= A1 where \; is an assignment, assigning
the first actual parameter of the call, to the first formal parameter of f.

e Whenever a statement N = v = f(expry,...,expr,) precedes statement A
in a sequence an edge connects Ap LR A for each Aj, representing return

statements, all of which are replaced by assignments v = expr, where expr is
the expression which is returned by the original return statement.

e Whenever a function f has formal parametes id;,id; for i > 0 and j =i+ 1

an edge connects \; s, A; where A; is an assignment to id; and A; is an
assignment to id; with the actual parameters expr; and expr; at the call to

f.

Paths

The term path is used ambiguously throughout the remainder of this Chapter. We
shall refer to paths within the control-flow of a statement as described above; a path
in the automata i.e. locations and edges and as a path in the combined control-flow
as illustrated in Figure 4.5. Finally, we shall also refer to paths in an SDG which is
presented in Section 4.2.3. Although this ambiguity exists, it should be clear from
the context which type of path is referred to.

There exists a path in the CFG from statement occurrence A to statement N
written A cf—g>* N, if there is a sequence of statements connected by CFG edges

A LR Ao 2R o LR m in some control-flow graph where A = A\ and M = \,,.

We shall use 7 to denote a path in the automaton from a location l; € L; to location
lm € L; and path(ly,l,,) to compute the set of paths from I; to l,,,. A path 7 is a
sequence of locations and edges on the form liesls . .. el where m > 2 and for all
l;,e; where j € {2,...,m} it holds that I; € L; and e; € out(l;_1) Nin(l;).

Reaching

Reaching is a standard term in static analysis. It describes the fact that a defin-
tion of (assignment to) a variable z at some statement occurrence A has not been
overridden when the program execution arrives at some other statement N which
references (reads) z. That is, the value assigned to z is preserved over some control
flow, at least until \'. In Definition 9, we use the functions ref(\) and def()) to
denote the sets of variables referenced and defined by statement .

To define def() and ref() (see Table 4.1) we use the function vars(expr) to obtain
the set of variables occurring in expr. vars(expr) is defined inductively as:

vars(m) =0 vars(z) = {z}

vars(expry @ exprs) = vars(expry) Uvars(exprs)

48 Slicing

vars(—expr) = vars(expr)

vars(f(expry, ..., expr,)) = U vars(expr;)

A=if(p){...} ref(\) = vars(p) def(\) =0

A = while(p){...} ref(\) = vars(y) def(\) =0

A = return expr ref(\) = vars(expr) def(\) =10

A=y =expr ref(\) = vars(expr) def(\) ={y}

A = skip ref(A) =0 def(A) =0

A = funcall(expry, ... expry,) ref(N\) = U vars(expr;) def(\) =0
i€l..n

Table 4.1: Functions ref(X) and def(\).

Since the control-flow of the formalism presented here is a hybrid of automata and
sequential code, the standard definition of reaching must be extended slightly. The
first case of the definition describes reaching within the traditional control-flow of
imperative code. The second case describes a combination of the control-flow for
automata and imperative code. The third case describes how statements may in-
fluence other statements across parallel automata. Figure 4.6 illustrates this.

Definition 9. (Reaching)

Let A be a network of extended timed automata A; for 1 <i¢ <mand V = J, V;UC;
be the set of all variables. For z € V and e; € E;,eq € E; where i,5 € {1,...,m}
We say that the definition of z in an occuring statement A € A(ey) is reaching for
N € Alea) iff z € def(N) Nref(N) and one of the following holds:

1. e; = e5 and there exists a path A\; i, Ao cig, LR Am Where A = A1 and
N =Xy and VA : z & def();) where j € {2,...,m — 1}

2. There exists a path 7 € path(l,1') where | = src(eq) and I’ = target(ez) such
that:

a) YA € A(e1) s.t. there exists a path A LZERSV g def(N') and

b) VA" € A(ez) s.t. there exists a path A"/ SZERSU g def(\N").

c¢) Finally, Ve; € 7 such that e; # ey and e; # ea, z & def(N') for any
N e Ale;).

3. i # j (i.e. reaching between parallel automata is very conservative)

In order to reflect the flow of information to the guards of the model, we extend
the notion of reaching to include the fact that a statement A, in the control-flow of
an update, may also reach a guard. We need only to extend the ref() and def()
functions in such a way that ref(¢) = vars(p) and ref(y)) = vars(y) and since
guards are side-effect free we must have that def(¢) = def(¢)) = . We may now

4.2 Preliminary Definitions 49

Figure 4.6: Illustrates the impact of the three levels of reaching.

add to the reaching definition a fourth case.

A statement A € A(e1) may reach guard(e;) if 3z € V s.t. z € def(A) N (ref(p) U
ref (1)) where guard(ez) = ¢ A ¢ and the following hold.

4. 3r € path(l,l') where | = src(e) and I = target(ez) and VX € A(e1) s.t.

there exists a path A RSV Z def(N) and Ve; € m where e; # e1 Ae; # ey

it holds that YA € A(e;) : z € def(\')

4.2.3 Dependencies

The slicing technique presented here is based on the concept of a System Dependency
Graph [35] (SDG), which we use to represent the dependencies in a network of
extended timed automata. Intuitively, slices are constructed from the set of vertices
(statements) reachable in the SDG using some traversal strategy. As an example,
Figure 4.7 shows the SDG for the code in Figure 4.1 (page 43). The following
introduces the concept of a function dependency graph, which is the basic component
of the SDG.

Function Dependency Graph

A function dependency graph, (FDG) is a graph representing the local dependencies
within a function or updates on edges. It is a directed graph connected by two kind
of edges (control- and flow edges) whose vertices represent statement occurrences.
Moreover, an FDG contains a unique shadow® vertex called the entry vertex, which
is added to represent the entrance of a function.

Edges in the FDG represent dependencies among occurring statements within a
function or the updates of an automaton. An edge represents either control or
data-flow. The FDG contains a control edge from vertex A to vertex A’ iff one of
the following holds:

e)\ is the entry vertex and X is not subordinate to any control statement i.e.
while or if statement.

! As in [50] we use the term shadow vertex to denote a vertex representing an artificial statement
which is not part of the original program.

50 Slicing

———— Control Flow-edge

[i —— Data Flow-edge
" v Summery-edge

Linkage-edge

Figure 4.7: The system dependency graph of program main, containing Control-,
Data- and Call-Dependencies - extended with summary edges (see page 52).

e)\ represents a control statement and)\ represents a statement immediately
subordinate to the control structure represented by .

The FDG contains a data-flow edge from A to X iff the definition of some variable
in X reaches)\, as defined by case 1 in Definition 9.

A Note on Control Edges: It may be noted that control edges represent domi-
nance of statements which is easily computed from the control-flow graphs as intro-
duced in Section 4.2.2. Control edges form a tree (or hierarchy) of statements, such
that, whenever a statement controls the execution of others, an edge is added from
the controlling node to the controlled. It should be intuitive (from the control-flow
graphs of Figure 4.2, how to produce such a hierarchy for if and while statements.
The only vertices which are not dominated by others are function entry-points,
which in-turn forms the root of the subordinate tree.

Special FDGs: In-order to adapt the FDG/SDG approach to slicing the extended
timed automata formalism, a special case FDG is created for the automaton. As
the behavior of a model is primarily defined by the structure of the automaton,
it may be thought of as the “main” function (entry-point), which in turn calls
the auxiliary functions at designated points in its execution. To model the de-
pendencies between update statements, guards and invariants, a specialized FDG is
constructed. Although the edges of the FDG remain the same, computing data-flow
edges (reaching), becomes somewhat more complex, than in traditional imperative
code. Although a formal description of this computation is not within the scope
of this thesis, Section 5.3.4 describes, informally, how this may be implemented for
UPPAAL, by computing the fix-point of reaching statements for each program point
of the automaton.

4.2 Preliminary Definitions 51

System Dependency Graph

The definition of the SDG introduced here may be distinguished from other defini-
tions by the fact that the SDG, is based not only on the control-flow of imperative
components, but also the structure of the timed automata. That is, our definition
of the SDG models a language with the following properties:

e A system consists of a network of timed automata with a unique start location
and for each edge associated with a timed automata, a sequence of statements
is executed, possibly calling a set of common auxiliary functions.

e A set of global functions having pass-by-value parameters and return state-
ments.

e A set of global variables which are either real or integer valued.

The SDG is a “super” graph of all the FDGs for a network of timed automata
connected by additional edges to handle function calls. The approach used here,
inspired by [35] is based on a notion of function linkage. In order to link FDGs, we
add four new types of vertices to the FDG, called shadow vertices:

e An initialization vertex: For each formal parameter of a function, a vertex
is added, representing the assignment of the actual parameter to the formal
parameter.

e A finalization vertex: For each return statement, a vertex is added to represent
the valuation of the expression to be returned.

e A pre-processing vertex: For each parameter given in a function call, a vertex
is added to represent the valuation of the actual parameter.

e A post-processing vertex: For each assignment from a function call (i.e. when-
ever a variable is assigned the value returned by a function call), a vertex is
added to represent the assignment at the return value.

Value passing in function calls is represented using the pre-processing and post-
processing vertices. These vertices are connected subordinate to the function call
vertex, which is referred to as the call-site vertex, using control edges. Likewise,
the initialization vertices are connected using control edges subordinate to the entry
vertex of the function. Finally, finalization vertices are connected using a control
edge to the return statement.

Linkage Edges: Additional linkage edges are added such that:

e A directed call-edge starting at the call-site vertex connects the call-site vertex
to the entry vertex.

e A directed actual-in-edge starting at the pre-processing vertex connects the
pre-processing vertex to the corresponding initialization vertex.

e A directed actual-out-edge edge starting at the finalization vertex connects
the finalization vertex to the corresponding post-processing vertex.

Definition 10. (System Dependency Graph)
The SDG is defined in terms of function dependency graphs (FDGs) and linkage
edges. The SDG for a network of n timed automata A, contains:

52 Slicing

e An FDG for each function, f € U F;
i€{l,...,n}

e An FDG for each timed automata A; : 1 <i<n
e (Call-edges from all call-site vertices to the respective entry vertex.

e actual-in-edges from all pre-processing vertices to the matching initialization
vertex at the entry vertex of the called function.

e actual-out-edges from all finalization vertices to the matching post-processing
vertex of the call-site.

Summary-Edges

As will be described in Section 4.4, it is possible to employ a more sophisticated
(compared to the simple transitive closure) slicing algorithm to avoid the calling-
context-problem and thereby obtain a more precise slice [35]. The algorithm which
we shall introduce as Algorithm 2, avoids the calling context problem by ignoring
certain linkage edge at different points in the traversal of the SDG. This approach
would result in a too coarse reduction in the exploration without the use of sum-
mary edges. Although a formal definition is outside the scope of this thesis, the
following presents the main idea.

For each actual parameter of a function call, the subordinate graph of its pre-
processing vertex is analyzed using a notion of same-level realizable paths [47], which
ensures that only realistic call paths are explored. The purpose of this analysis is
to “short-circut” the transitive exploration which is computed by standard worklist
algorithms, such as Algorithm 1, by statically computing how data-flow from the
actual parameter may influence the return value of the call. Whenever the return
value is dependent on the actual parameter, a summary-edge is added from the
pre-processing vertex to the post-processing vertex. Using this (summary) informa-
tion, the algorithm will, starting at the post-processing vertex, be able to explore
the predecessor vertices of the pre-processing vertices without traversing the called
function.

SDG Paths A path in an SDG is a sequence of statements and edges. In order
to avoid confusion in later definitions, we use A SDEG, \ to denote any of the edges
in the SDG and 2% x to denote a path.

4.3 Relevant Components

In order to construct the slice of the timed automata A, we are required to obtain
a set of relevant components i.e. locations, edges, update statements, guards and
invariants from the original model, which is then used to construct the sliced timed
automata A’ (see Section 4.5).

To clarify, relevant components is a term used to describe components which are
relevant with respect to some criteria, which we refer to as the slicing criteria. The
slicing criteria is computed by extracting information concerning locations, clocks

4.3 Relevant Components 53

and discrete variables from the CTL formula ¢ to be verified. From Section 3.2,
it should be clear that CTL formulae may contain locations, clocks and discrete
variables since these constitute the atomic propositions as given in Definition 2.3.4
of the timed automata model. As in the previous Section, we shall use the term
variables to denote both clocks and discrete variables.

Definition 11. (Slicing criteria)

For some CTL formula ¢, let P¥ be the set of atomic propositions of ¢ and let
vars(P?) denote the set of variables which appear in the propositions of P¥. The
slicing criteria for a network of timed automata (A; || ... || A,) with respect to a
set of atomic propositions P¢ is a set of statements A, (.A) such that:

Ay(A) = {X € A(A) | def(N) Nwars(P¥) # 0}

Relevant Automata Components

In [37] Janowska and Janowski propose to determine relevant locations of the au-
tomata, in terms of dependency relations. They use a notion of control-dependency
and time-dependency. Control-dependencies occur whenever a set of locations in the
automata may influence the control-flow such that other locations are bypassed and
never reached. If a relevant location is control-dependent on another, the controlling
location is consequently also relevant. The time-dependency relation contains pairs
of locations for which there exists a path from one to the other, such that the time
at which the latter is reached is influenced by the first. That is, the invariant and
guards of the location introducing the delay does not conspire to force immediate
progress. Any locations introducing such delays for relevant locations are as such
also relevant.

The approach presented here does not attempt to compute any such dependency
relations. Instead, we will focus only on slicing (away) locations which are irrelevant
with respect reachability properties. Thus we propose that a set of irrelevant loca-
tions L;- € L must be supplied by the user or some tool, computed by some other
approach, alternatively all locations are considered relevant, that is L, = L\ L;,.
This requirement is introduced in order to simplify the technique presented here,
which focuses on slicing the imperative elements of the model i.e. variables and
statements.

To handle irrelevant locations, we propose to introduce a single sink location (with
no outgoing edges) to which edges targeting all irrelevant locations are redirected.
If an edge connects two irrelevant locations the edge is simply removed. Figure 4.8
illustrates the sink location as a triangle named [2.

It is obvious that, when considering reachability properties, some models are con-
structed in such a way that a subset of its locations may easily be determined to be
irrelevant when considering a specific reachability property. Assume, for example,
that the property which we would like to verify for the model in Figure 4.8 involves
reaching 4. At no point in time from [5 can Iy ever be reached. Thus, it is obvious
that 5,1l and l7 are irrelevant and E<ly holds for both 4.8(a) and 4.8(b) whereas
AL, holds for neither.

54 Slicing

&

(a) Example Automata (b) Automata with sink

Figure 4.8: Sink location

Relevant Statements

The set of statements which should be included in the sliced automata may be
computed as the transitive traversal of the nodes in the SDG? constructed from the
automata. The traversal should of course originate from the set of statements and
guards in the slicing criteria A, (A).

4.4 Slicing Algorithms

In Section 4.5, we introduce the construction of the slices. This construction is based
on a set of relevant locations and a set of relevant statements A’(A). This Section
presents two algorithms which will compute A’(A). First we will show in Algorithm
1 how one, without considering summary edges, may compute the transitive closure
of the SDG to achieve A’(A).

4.4.1 Standard Algorithm

The approach taken in the following algorithm is based on Weisers original approach
for slicing [52]. Although it presents nicely as an intuition, we shall later extend this
approach in such a way that it avoids the calling context problem (Section 4.1.1).

Algorithm 1 Standard Algorithm for computation of relevant statements
G = Ujer, guard(l) the list of guards g
WL = list of statements initially containing A, (A)
WL=WLU{\eA(A)|TgeG: A2 g}
while WL #(do
take A from WL and insert A into A’(A)

add to WL all X' € A(A) | N 299 A
end while

2 Although it is not within the intended scope of this thesis to present or highlight optimizations,
it is worth pointing out that the task of constructing the SDG need only be undertaken once, only
the simple computation of the set of relevant components must be computed for each verification
task.

4.4 Slicing Algorithms 55

Algorithm 1 is based on a simple worklist approach where the worklist is initialized
with the slicing criteria and all statements which reaches a guard on an outgoing
edge from a relevant location. Based on this set, the transitive closure of the
dependencies in the SDG is computed.

4.4.2 Improved Algorithm

Exploiting the previously introduced summary edges, Algorithm 2 will compute
A'(A) in such a way that edges are not followed into irrelevant call-sites. We use

the notation typeof(ﬂ) to obtain the type of the SDG edge. Intuitively the al-
gorithm computes the same transitive closure as Algorithm 1, but it does so, by
initially ignoring all actual-out-edges in the SDG. Having “collected” all statements
reachable, the procedure is re-run, this time ignoring all actual-in-edges.

Algorithm 2 Precise computation of relevant statements
G = Ujer, guard(l) the list of guards g

prodcedure helper(WL : A set, E : set of SDG edge types, RESULT : X set)
while WL #0 do
take A\ from WL and insert A\ into RESULT

for all edges X 599, \ where \ € A(A) and typeof(ﬂ) ZE do
add X to WL
end for
end while

end prodcedure

TMP =0

INIT = A (A) U{X € A(A)[Tg € G: A 2% g)
call helper(INIT, { actual-out-edges }, TMP)
call helper(TMP, { actual-in-edges }, A'(A))

Algorithm 2 employes the help of a procedure called helper which takes as param-
eters; a set of statements to be used as a worklist (WL), a set of SDG edge types
(E) which should not be traversed and a result set (RESULT), which ultimately is
to contain all of the statements which are found relevant by the helper procedure.
The algorithm calls helper twice to compute A’(A). The first call to the algorithm
uses the set A, (A) and all statements A which reaches a guard g € G as the initial
worklist, which is then added to RESULT, as the transitive traversal (of all but
actual-out-edges) is computed. Since we need to continue the traversal from the set
of statements found relevant in the first call, we use TMP to temporary hold this
set. The contents of the temporary set is then copied to A’(A) as the algorithm
traverse the SDG a second time, using all but the actual-out-edges.

Notice that Algorithm 2 is equivalent to Algorithm 1 if the helper procedure is called
only once with an empty set of SDG edges to reject: call helper(A,(A),{},A'(A))

56 Slicing

The Calling Context Problem in SDG Terms

In the following we illustrate, using simplified FDGs, how the calling context prob-
lem is present using algorithm 1 and how it is avoided using Algorithm 2.

Figure 4.9 shows an SDG composed of five FDGs, where actual-in-edges (dotted)
and actual-out-edges (solid) are connecting the the sub graphs. Call-edges are left
out, as they do not add to the example.

Figure 4.9: Simplified SDG exhibiting the calling context problem.

We illustrate (see Figure 4.10) the calling context problem using the case where
the FDG for f3 contains a relevant assignment v = p; * f5(), for which the SDG
vertex has an incoming data-flow edge from the initialization vertex for parameter
p1 and a actual-in-edge representing a call to f5. Furthermore, Figure 4.10 shows
the incoming actual-in-edges from functions f; and fo assigning p; with an actual
value. The actual-out-edges are left out.

Figure 4.10: Illustrates the FDG for function f3

When the slicing criteria initially contains v = p; * f5() in the FDG for f5 the
transitive closure computed by Algiorithm 1 reaches all FDGs in Figure 4.9. Using
Algorithm 2 the resulting traversal uses only the edges shown in Figure 4.11 and
reaches only the FDGs for fi, fo, fs, f5 patching the traversal using the summary
edges.

4.5 The Slice 57

N Point of interest
\

(7
<

Figure 4.11: Tllustrates the edges traversed in Figure 4.9 using Algorithm 2 given
the point of interest.

oy
S e

4.5 The Slice

This Section presents the construction of the slice. We use the set A’(A) to denote
the set of statements which has been found relevant (in Section 4.4 we present two
algorithms which will compute this set). Construction is introduced in two steps:
First we present our approach for constructing the imperative elements i.e. updates
and functions and second, we show how the sliced automaton is constructed.

4.5.1 Constructing Sliced Imperative Components

In this Section and the remaining chapters of this thesis, we use the notation A to
denote the sliced statement corresponding to A.

Since an update a3 is expressed over the syntactic productions act_seq and asg_seq
these are simply (possibly empty) sequences of assignment and function call state-
ments. Informally we say that a sliced version of an update is a same length se-
quence of statements where all statements not included in A’(A) are substituted by
the skip statement. Moreover, all statements are included in the original order.

Definition 12. (Constructing Sliced Assignments and Actions)

Let Agsq be a single clock assignment in Asg(C) and let A,ex be a single action i.e.
assignment or function call in Act(V, F), then the corresponding sliced statements
are defined such that:

)\asg =)\act =

{ Aasg if Aasg € A'(A)

otherwise skip

{)\act lf)\act € AI(A)

otherwise skip

Note that for a statement \ on the form skip, A = \.

Definition 13. (Statement Sequences)
Let Ageq = A1 A2 ... A\, for n > 1 be a non-empty sequence of statements occurring

in A. Then the corresponding slice is a sequence Aseq = M Ay,

Definition 14. (Update Construction)

Let af be an update for an edge e, then of is the sliced update for the edge e’
in the sliced model (see Definition 17). Since o and § are sequences, both @ and
3 are sequences, constructed such that they satisfy the properties of Definition 13.
Moreover, since all statements in a3 are either variable actions or clock assignments,
the construction of X : A € A(af) is given by Defintion 12.

58 Slicing

The construction of sliced functions are very similar to that of updates. Functions
essentially consists of sequences of statements possibly controlled by an if or while
statement.

Definition 15. (Constructing Sliced while, if and return Statements)
Let Aynite and iy in A(A) be occurrences of while and i f statements in the timed
automata A. The corresponding sliced statements are constructed such that:

e For a statement Aypie on the form while(p){ A1 Ay ... An 1,
while (@) {A1 Ao ... A} if Aypie € A'(A)
Awhile = . .
otherwise skip

e Dually, for a statement \;y on the form if(@){ Ay Ao ... A, }
o ()N Ag . ALY if Aip € A/(A)
7 otherwise skip

e For a statement A,y On the form return expr
return expr if Arepurn € A'(A)
otherwise skip

)\return =

Definition 16. (Function Construction)

Let f be a function belonging to the timed automata A and let f denote the slice of
f constructed from A’(A). Given the syntax of a function, the body of a function
is simply a sequence of statements over stmt_seq, thus we define f as f where the
occurring sequence of statements A\; Ao ...\, is replaced by A\j Xa ... A,.

4.5.2 Constructing the Sliced Timed Automata

In the following definition we use L, to denote the set of relevant locations. More-
over, we use guards(l) to obtain all guards of outgoing edges from location . For-

mally: guards(l) = U guard(e).

ecout(l)

Definition 17. (Automata Slicing)

For a network of n timed automata (A; || ... || A,) where A; = (L;,19,V;,C, %, F, E;, I;)
for 1 < i < n and a variable valuation wg : V — Z where V = U1<i<n V. A
slice, with respect to P? is a network of timed automata (A} | ... || A},) where

A= (L0 VI C Y F' EL T for 1 < i < n with a variable valuation), : V' — Z

where V' = |, <;<,, Vi and w((V') = wo(V') and for each A; such that L; N L, # 0
the following holds:

o L)=L,NL UIA

e [l =1} since [must always be considered relevant.

Vi=V:N U vars(\)

AEA/(A)
e C/=C;N < U vars(\) U U (I(l) Uguards(l)))
AEN/(A) leL,

e E! is the smallest set such that for each e € out(l) | I € L} there exists an
¢’ € E!, where:

4.6 Correctness 59

source(e') = source(e),

guard(e’') = guard(e),

label(e') = label(e),

update(e') = o 8 where a3 = update(e)

target(e) if target(e) € L}, otherwise
N __ 79
target(’) = { 12 where [* is described in Section 4.3

o Xl = U label(e")

ecE]

.F/:U?

feF

e I/ is a function I : L, — ®(V) x ¥(C) where Vi € L} : I/(1) = I(l)

4.6 Correctness

Here we introduce a notion of correctness for our slicing approach and we prove
that the approach presented does in-fact create correct syntactic reductions of the
extended notion of timed automata introduced. In the following definitions and
proofs we show that the slicing approach preserves reachability properties.

We choose first to prove that whenever sliced network of timed automata is con-
structed using the approach in Definition 17, it is related to the original network
of timed automata in such a way that they satisfy exactly the same reachability
properties. We then proceed to prove that the algorithm, which determines which
statements to include and the construction of sliced imperative components (from
Section 4.5.1), does produce a slice satisfying the reachability property exactly when
the original does.

4.6.1 FE<Oe-Bisimulation and Reachability

To prove correctness of the construction in Definiton 17, we introduce the notion
of an EOp-Bisimulation R, and the induced equivalence relation =,. Theorem
19, ensures that an E<Ce-Bisimulation is indeed reachability preserving. Proving
correctness is then reduced to proving Lemma 21 which says that the relation ~~,
which relates a network of timed automata A with its slice A’, is indeed an E<Cp-
Bisimulation.

Definition 18. (E<e-Bisimulation)
A relation R, is a E<Op-Bisimulation if, whenever s; R, s2 then either

1. s1 E EQCp A s E EOQp
or
2. x: s1— §] = 35159 — 5N S| R,
y: So — sH = 3s| 151 — s] A S Rysh
z: s1Eiff s E @

We write s1 =, s2 if 51R,s2 for some EOp-Bisimulation R.,.

60 Slicing

The following result says that whenever two states are related by an E<-Bisimulation
they agree on the reachability of .

Theorem 19. If s R, s’ for some E<{p-Bisimulation then:
sEECy < §' E ECp

Proof of theorem 19. It suffices to prove = as whenever R, is an E<{¢ Bisimulation
then so is its transpose R;l. We prove by induction in n that whenever sR,s’ then
the Induction Hypothesis (IH):

Yn>0:s—"twheret = p=
s ="t witht =@

holds.

Basis: n =0, then s = ¢ and by z in Definition 18 also s’ | ¢

The Inductive Step: Assume s — p —" t with ¢ |= ¢. Since sR,s’, s’ — p’ with
pR,p" by Definition 18. Now using the IH it follows that p’ —" ' for some ' where
t' = ¢, and hence s’ —"+1 ¢/,

1

The ~ Relation

The relation introduced in (the following) Definition 20 relates the transition sys-
tem S for a timed automata network A and the transition system S’ for a timed
automata network A’ whenever A’ is a slice constructed from A as defined in Def-
inition 17. In Definition 20 we write © to denote the set of locations which easily
can be computed never to satisfy a formula ¢. Furthermore, we use [to denote a
sink location in the sliced model.

Definition 20. (The ~ Relation)
Let s = ((I1,...,ln),w,0) € S;s" = ((l},...,l},),w,0") € S" and ~C S x 5. We
say that the state s is related to the state s’ (we write s ~ §') iff:

a) Ji:l,=12Nl; €0, or
b) Vi:l, =l AwV) = (V)ANa(C') =0'(C")
The relation ~ is a ECp-Bisimulation

The proof of Lemma 21 confirms that the slicing presented in this thesis does in-fact
preserve reachability properties, whenever the claim in the supporting Lemma 25
holds.

Lemma 21. The relation ~C S x5’ is a EOp-Bisimulation between two structures
M =(S,7) and M' = (5", 7).

Proof of Lemma 21: For s = ((l1,...,l,),wo) € Sand s’ = ((I},...,1}),w',0’) € 5’

where s ~ s’

e if a) in Definition 20 holds, then 1. in Definition 18 holds trivially

4.6 Correctness 61

e if b) in Definition 20 holds, then we must show that 2. in Definition 18 holds

— 2x: The proof is in two parts; Where s either delays or take a discrete
transition. We show that the transition may match by s’

x 2x1 (delay): s 2, ¢ where t = ((I1,...,1n),w,0"). Because b) holds,
we know that s and s’ have the same location vectores and hereby
also the same invariants to satisfy. Thus, the same delay d is possible

at s’ such that s % ¢/ where t/ = ((l1,..,1ln),w,0"). We now have
to show that ¢ ~ ¢

It is trivial that Vi : [; = I} and in the case of delays; w = w’ must
hold. Finally, if 0 = ¢’ then o(d) = ¢'(d) given the semantics on
page 29, thus ¢t ~ t'.

x 2x2 (discrete): s % t where t = ((p1,...,pn),v,p) Where e =

l; Ypalfe, m; is the edge taken, means that:

- guard(e) is satisfied: w,0 =1 and w = ¢,
- The update is evaluated as: [a](w) = v, [B](v,0) =p
- and for the location vector : p; = m; AVj #1i:1l; = p;.

s" % t' by taking ¢/ where t' = ((p},...,p,),v',p'), and € is the
same as e but with § and « sliced. Because b) holds s’ must satisfy
the guards: w’, 0’ =9 and w’ |= . Since the edge taken is the same
as before but with 3 and « sliced, denoted as 3 and @ respectively.
This means that:

- The update is evaluated as: [@](w’) = v, [B](v,0') = 0/,
- and for the location vector p; = m; AVj #i:1; = p;.

We must show that ¢t ~ ¢’ for two cases:

- m; ¢ © which means b) must hold: It is trivial that Vi : p; = p}
and we know from lemma 25 that (p’,v') =, (p,v) where py,,
is the program point at m;.

- m; € © which means a) and holds trivially.

— 2z: The proof that s = ¢ iff s’ = ¢ holds, follows from the fact that,
whenever b) holds we know that Vi : [; = I, and V' and C’ obviously con-
tain all variables and clocks from ¢ (given Definition 11). Furthermore,
we know from Lemma 24 (see page 64) that [expr](c’,w’) = [expr] (o, w)

O

Whenever the set of irrelevant locations is empty it is trivially true that case a
of Definition 20 is never satisfied. Thus, all states related by ~ must be equal
with respect to the locations and the clock- and variable valuations. Note that

62 Slicing

the relation ~C S x S’ is a bisimulation between two structures M = (S,Z) and
M’ = (S,7") if L = 0.

4.6.2 Proving The Construction of Imperative Components

The remaining task is concerned with proving that Lemma 25 and Lemma 24 holds
when imperative constructs of a network of extended timed automata are sliced as
defined in Section 4.5.1 using Algorihm 1. We proceed to show this in the following
way: We show that there exists a static analysis which, given a starting point
(program point) and a set of initially relevant variables, may be used to annotate
each program point in the control-flow graph of an imperative code fragment with
the a set of relevant variables (see Figure 4.12). We continue to prove that having
obtained this annotation, all assignments which assign a variable not contained
within the annotated set, may be replaced by skip without effecting the the value
of the initially relevant variables. Having proven this, we move on to show that the
approach introduced in this thesis, for slicing imperative components, will produce
the exact same slice. That is, whenever it can be proven using the static analysis
that a statement must be preserved in the slice, algorithm 1 will include it in the
set of relevant statements A’(A).

p (out) Vy
(a) assign- (b) if (c) while
ment

Figure 4.12: Control-flow of imperative constructs annotated with program points
and set of locally relevant variables

Calculating Relevant Variables

The following static analysis form a constraint system on the set of relevant variables
at each program point in the CFG (see Section 4.2.2) for a fragment of imperative
code expressed in the syntax on page 23.

In the following definition, we use the function V,..;(-) to denote the set of vari-
ables (V UC) which are relevant with respect to expressions in expr and boolean
expressions in bexp. The function is defined inductively over expressions such that:

4.6 Correctness 63

[callf(expry, ... expr,)]

@_> n= 6zpr+>

=
N
A =
\\\%\\\&\xx
N
=

\\\\\\\\\

=

S
N
=

Figure 4.13: Annotated in-lined function

Vier(m) = 0 Viet(v) = {v}
Viel(expry @ expra) = Vee(expri) U Vg (expra)
Viel(—expr) = Ve (expr)
Viet(funCall) is given by the equivalent statement

The function V.. () may trivially be extended to include boolean expressions in the
same manner, thus this extension is omitted here.

Definition 22. (Annotation Constraints)

For each construction of the imperative language, we construct a constraint describ-
ing the set of variables V,, which have relevance (i.e. can be reached) before entering
the construct (see Figure 4.12).

For skip statements the constraint is trivial:
Vp 2 V;?’
For assignments (e.g. v = expr) the constraint is :

Vp 2 Vi \ {v} U Vg (expr) if v € Vi
otherwise V), 2 V),

For if and while statements (assuming the condition ¢) the constraint is:
Vp 2 Vi UV UV (9)
For return statements (assuming the expression expr) the constraint is:
Vp 2 Vi U Ve (expr)
For function calls with parameters expry, .. .expr, the constraint is:
V2 (Ve UV)U U Vileapr)
ie{l,...,n}

Note that the constraints express a monotone function Fy-:(P +— 2Y) i (P +— 2V),
thus the set V,, for any program point p may be computed as a least fix-point. Let P
be the set of program points. Consider a mapping (P + 2") i.e. for each program
point a set of variables is assigned. We order mappings (P +— 2") by f C g iff
Vp e P: f(p) C g(p). Then Fy:(P+— 2V) — (P 2V) is monotone.

64 Slicing

Using the previous constraint system to decorate each program point p with a set
V,, the following Lemma (25) ensures that variable and clock valuations, at the
same program point of an imperative code fragment and its slice, are equal with
respect to the set V.

Definition 23. (Variable and Clock Valuation Equivalence)

Let (o,w) and (¢’,w’) be arbitrary pairs of clock and variable valuations and let V),
and C, be the sets of relevant variables and clocks at program point p. We say that
(o,w) = (0/,w’) whenever:

o YueCp: (o,w)(u) = (0,w)(u)
e YveV,: (o,w)(v)=(c,w)(v)

Lemma 24. (Expression Evaluation in (o1,w1) =p (02,w2))
For two valuations (o1, w;) and (0%, w}), we have that [expr](o1,w1) = [expr] (o2, w2)
whenever:

(01,w1) =p (02, w2) and
vars(expr) C V,

Proof of Lemma 24. We prove Lemma 24, by induction in the structure of the ex-
pression syntax (see Section 2.3.1).

IH: Y expr € Expr(V, F) where vars(expr) C V, : [expr](wi,01) = [expr](wa, o2)
whenever (w1,01) =) (w2,02)

Basis:
Given the semantics of [m] it must always be the case that [m] (o, w), = [m] (o, w)s.
Since (w,0)1 =p (w,0)2 we have by definition that:

Yo eV, : [v](o1,wr) = [v](o2, ws).
Yu € Cp : [u](o1,wr) = [u] (o2, ws).

The Inductive Step:

Assume that the IH holds for expressions expr; and exprs, we then have to prove
that JH holds for expr; ® expry where ® € {—, +, %, /}.

Given the definition of the semantics, we have that [expr; ® expra](oi,wi) =
(val,o1,w}) iff {(expri ® expra,o1,w1) — (val,o1,w]) where val = valy ® valy and
valy is given by [expri](o1,w1) just as valy is given by [eaxpra](o1,w]). Now using
the IH it follows that [expri](o1,w1,) = [expri] (o2, w2) = valy and [expra](oy,wy) =
[expra] (o2, wy) = vals, hence [expr; ® expra](o2,ws) = (val, o9, w)) where val =
valy ® vals. O

Lemma 25. Let (0,w), (and (o,w),) be the clock and variable valuation in A
(and A’) after n steps at program point p (and p'), then:

(o,w) =p (o', W)

We continue to prove Lemma 25 in the presence of the CFG annotations computed
using the static analysis. Also the following proof assumes that the structure of the
control-flow graph remains unaltered, such that any program point in the original
control-flow exists in the slice.

4.6 Correctness 65

Proof of Lemma 25 (based on CFG annotations). Assume for any control-flow graph
G and its slice G that (0,w)o =p, (0',w)o at first program point po in both G and
G. We show that Lemma 25 holds by proof of induction in the number of program
steps.

IH: Let (o,w), and (¢’,w’),, be the valuations after n steps of the program execution
and assume that:

1. (o,w), and (¢’,w’),, will occur at exactly the same program point p,

2. and (o,w), =, (¢/,w),

Base: (n = 0) after 0 steps, (o,w), =p, (0/,w’), holds trivially by the initial as-
sumptions that (o, w)o =p, (00, w’)o.

Figure 4.14: Illustrating two statements from G and G at the same program point

The Inductive Step: Assuming that the IH holds after n steps, we use the annota-
tions (presented in Definition 22) to prove that the IH holds at p,,4+1. (Figure 4.14
illustrates the program points and their respective sets of locally relevant variables.)

Let A, be the assignment v = expr, it must then be the case that 3) v eV, orb)
v € V,, and whenever a) holds A, = v = expr and when b) holds \,, = skip.

Case a) Vp, 2 (Vp,y \ {v}) U Vyer(expr) and:

(o,W)nt1 = [v=-expr](c,w),
= (o,w[v — val]), where val = [expr](o,w),
= (o, w[v — wal]),, where val = [expr](c’,w’), (by Lemma 24)

(0",w)ni1 = [v = expr](c’,w)n
We must now show that (o,w)nt1 =p,,, (0/,0)ng1. That is, Vo' € V),
(0,W)nt1(v") = (0/,w")py1(v"). This yields two further cases:

ntl -

— (v#'): thenv' €V, and (0, w),41(v) = (ow), (v') and (0/, W')41 (V') =

(¢/,w")n(v"). By IH we know that (o, w),, =, (0’,w), thus (o, w),41(v") =
(0", @)npa (V).
= (

v =2"): then (0,w)nt1(v) = [eaxpr](c’,w')n = (', w)pt1(v).

Case b) V,,., €V, and:
(0, w)n+1 = [v = expr](o,w),

= (0, w[v — wal]),, where val = [expr](o,w),

(0",)nt1 = [skip](d’, &) = (0", W)n

66 Slicing

We must now show that (o,w)ni1 =p,,, (0',w')py1. That is, Vo' €V, ., :
(0,w)pt1 (V") = (0,)41 (v"). By the IH we have that (o,w), =,, (¢/,w'),
and since v € V,,, and V, ., €V, (given the constraints), it must be the
case that v €V, . . Hence, (0,w)nt1 =p,,, (0',0)nt1-

O

The above proof of Lemma 25 requires that the structure of the control-flow graph
is preserved in order to reason about equivalence of variable valuations at program
points. It is easily proven that after the static analysis has been used to slice
assignments, we may, under the assumption that all conditional predicates are side-
effect free, replace all control statements in the sliced CFG where the body contains
only skip statements with one skip.

Lemma 26. (Control Statement Exclusion)
For any control statement A with the body A1 A1 ... A\, statement A may be replaced
with ship whenever A;c¢; 3 Ai = skip

Proof. The proof is trivial, since [if (¢){skip, ...skip,}](c,w) = [skip](o,w) =
(0,w) whenever ¢ is side-effect-free, for any n > 1. The same applies for while.
1

Combining CFG Annotation and Lemma 26

Removing assignments and control statements as defined in Lemma 26 in succession
until no changes occur to the CFG will produce a slice preserving the valuation of
variables at the initial program point of interest.

Annotation Matches Slicing Approach

Having proven that Lemma 25 holds in the presence of an annotated CFG, we must
now show that the approach introduced in Section 4.5.1 is at-least as strong as CFG
annotation.

Proving that the slicing algorithm produces a slice containing exactly the statements
included by the static analysis (CFG annotation) and control statement exclusion
(Definition 26), is done in two steps. First we show that whenever an assignment,
assigns a variable which is locally relevant, it corresponds to the case where the
assignment reaches a statement which has been determined relevant by algorithm
1 Intuitively reaching implies the existence of a data-flow edge in the SDG and the
fact that an assignment has such an edge must imply its inclusion in the slice. The
second step in the proof is to show that the control-edges are corresponds to the
trivially proven technique in Definition 26.

Lemma 27. (Reaching Contains at least the Annotation Information)

Whenever v € V, where p is the program point immediately after A on the form
v = expr. Then X reaches some statement A" where v € ref(\') and X is relevant.
(Proof of Lemma 27). For a statement A to reach A’ we know from Definition 9 that

two properties must be satisfied. 1) there must exist a control-flow path A LZENIY

4.6 Correctness 67

and 2) the path must not contain a redefinition of the variable assigned in A.

Proving that v € V, = A reaches X', where X is relevant requires two cases:

1) For a variable v to be relevant at program point p; there must exist a relevant
statement)\; immediately before program point p; where p; occurs prior to
p; in the control-flow and v € ref(A;):

Vo V.,
veV; = I LN L wherev €V, |\ Wy,

Assume for the purpose of reaching a contradiction that this is not the case
(i.e. there exists no such A;) then by the annotation constraints v ¢ V,, for
any V;. which proves 1).

veEV,=3IN: A 9,V where N is relevant and v € ref(\)

2) Since v € V, then there exists a control-flow path A 19, A" such that VN

where A % %)\ can be expressed as A I N and N L5 4) the statement

N #£ v = expr’, where v € V¢ (expr’). Again, assume for the purpose of

reaching a contradiction that there is only one control-flow path A LZERIY
and there existed a A", then at the program point p” —1 (immediately before
A") Vypr—1 cannot contain v. Since we know that v € V), then there must exist
a path not containing \”.

Since 1) and 2) holds, we know that whenever the static analysis from Definiton
22 finds a statement A relevant, there exists a data-flow edge in the SDG from A
to a relevant statement X' and by the transitive closure computed in Algorithm 1
statement A is also included in A’(A). O

Although we have now shown that our approach will indeed exclude assignments
whenever the static analysis shows that the assignment may be skipped without
effecting the valuation of relevant variables, it still remains to be proven that our
approach only removes control statements which (as in Definition 26) does not have
an effect on the valuation.

Lemma 28. (Control Edges Correspond to Multiple Annotation Computations)
Given a control statement A, it is included in A’(A) by Algorithm 1 iff repeated
program point annotation and control statement exclusion (Lemma 26) fails to
exclude .

(Proof of Lemma 28). The proof of Lemma 28 is given by contraction:

(=) Whenever a statement A" in the body of a control statement (if or while) is not
replaced by skip, A is relevant (given Lemma 25) and is included in A’(.A)

(given Lemma 27). By definition of SDG and FDGs A 299, N\ by a control
edge and the transitive closure computed by Algorithm 1 will include A.

(<) Whenever all statements A; in the body of A is replaced by skip - none are
relevant, thus the algorithm cannot follow the before mentioned control edge.

O

CHAPTER

5

Implementation

This Chapter describes a prototype implementation for UPPAAL of the slicing tech-
nique presented in Section 4. We introduce the existing parser library UTAP devel-
oped for UPPAAL, which is used to create an abstract-syntaz-tree of the input model.

Slicing is implemented for UPPAAL as a preprocessing library, developed in C++,
along with a stand-alone executable, which takes a model and a CTL query as input
and outputs a sliced model, which can then be opened in UPPAAL for verification.

Contents

5.1 Introduction 70
5.2 The UTAP library v v v v v v v v v 71
5.2.1 Architecture And Usage 72
5.3 The UTASA Library 0. 73
5.3.1 Architecture 73
5.3.2 Modifying The AST 73
5.3.3 SDG Construction 75
5.3.4 Dependency Analysis of An Automaton 76
5.3.5 The SDG Data Structure 76

5.3.6 Issues 7

70 Implementation

5.1 Introduction

So far we have mainly been concerned with the theory of slicing models expressed
in the extended timed automata formalism. In this Chapter we present a proto-
type implementation for UPPAAL, which has been developed based on the slicing
technique given in Chapter 4. It should be noted that the modeling language of
UPPAAL is somewhat larger than the one introduced in Chapter 2, making the im-
plementation itself a testimony of the extendability of the theory.

The prototype, which we will refer to as UTASA (UppAaAL Timed Automata Static
Analyser) library, is developed as a preprocessing library for UPPAAL, meaning that
slicing takes place before any verification task. Furthermore, the intention is also to
provide a library for other developers who wishes to do static analysis on UPPAAL
timed automata.

UTASA includes, besides the ability to slice, the following functionality:

e A data structure and a builder class to create a directed acyclic graph (DAG)
[48] representation of the timed automata.

e (lasses to transform the imperative C-like code of UPPAAL into a subset of
the well known SSA (Static Single Assignment) form [19]. Meaning that only
a proof-of-concept normal form is implemented and not SSA in its full.

e A data structure and builder classes to create an SDG (System Dependency
Graphs - see Section 4.2.3) representation of models.

Finally, the motivation behind a stand-alone library is also to encourage further
development of static analysis and preprocessing tools for UPPAAL.

Application

The implementation of UTASA described in the following Section has led to the
development of a small tool in order to show its usage. Furthermore, the application
was also developed to aid the testing described in Chapter 6.

The tool, called “TASlicer”, takes as input a UPPAAL timed automata XML file and
a CTL expression and outputs to a provided destination the sliced version of the
XML file. The sliced XML file can then be opened in UPPAAL and model checking
can commence. The advantage of the tool is, that by outputting to UPPAAL timed
automata XML, we are able to use the graphical user interface (GUI) provided
with UPPAAL and are therefore able to show the traces graphically. Finally, the
visualization utility is hereby also available and users are able to see what goes on
during execution of the sliced model.

As future work we present the idea of adding UTASA to UPPAAL, such that slicing
occurs transparently to the user and the idea of graphically show the slices compared
to the original model is also presented as future work.

5.2 The UTAP library 71

5.2 The UTAP library

The UTAP library is the UPPAAL Timed Automata Parser. UTAP has the ability
to parse and type check UPPAAL models in any of the three file formats supported
by UppAAL. Table 5.1 gives the core classes and their use.

TimedAutomataSystem | The abstract syntax tree (AST) created by the library.
The class is implemented using the visitor pattern,
allowing it to be visited.

ParserBuilder Represents the interface used by the parser to build the
AST. The primary implementor of the interface is
the SystemBuilder.

SystemBuilder The most specialized class in the builder hierarchy

(see figure 5.2(a)) also implementing the ParserBuilder
interface. The class is used by the parser (implemented
using bison) to build the (AST)

StatementBuilder Used in the builder hierarchy to construct Statements.
StatementBuilder is a sub-class of ExpressionBuilder.

EzxpressionBuilder Used in the builder hierarchy to construct expressions.

System Visitor The most specialized class in the visitor hierarchy.

Used to visit an instance of TimedAutomataSystem.
The class is designed to visit the automata related

components of the AST, inheriting functionality to
visit imperative code from StatementVisitor.

Statement Visitor Used to visit statements in an instance of
TimedAutomataSystem.
FEzxpression Visitor Used to visit expressions in an instance of

TimedAutomataSystem.

Table 5.1: Summary of the main classes of UTAP.

There are multiple ways to use the library. The simplest approach, which is also
the one used in our implementation, parsing is initiated by calling the function:
(defined in “utap/utap.h”)

parseXTA (file, system, false)

In the call to parseXTA, the first argument is the XML file to read (input). The
second is (output) a reference to a TimedAutomataSystem object (initially empty),
which is to be buildt by the parser. The third is a flag indicating whether to use
the new or the old UPPAAL syntax.!

IThe old syntax is the one used in UPPAAL 3.4, the new is the one used in UPPAAL 3.6 and later
versions.

72 Implementation

xml =l libxmi2
\
ta/.xta > bison

. SystemBuilder
TimedAutomataSystem |« .
TimedAutomataSystem (ParserBuilder)

Figure 5.1: Initial information flow through the UTAP library.

5.2.1 Architecture And Usage
Figure 5.1 shows the initial information flow through the UTAP library.

As illustrated in Figure 5.1 the parser, which is implemented using the bison frame-
work, is capable of parsing both old and new UPPAAL syntax. It therefore comes
with functionallity to read .ta and .xta files directly. To handle XML files, the
parser uses the libxml2 library? to do the initial parsing and the result is then “fed”
to the bison parser.

During the parsing of tokens, the parser uses the abstract interface provided by the
ParserBuilder class in order to build the abstract syntax tree, which is an instance of
the TimedAutomataSystem (TAS) class. The methods in the ParserBuilder class
are implemented by the SystemBuilder class, which is a sub-class of FExpression-
Builder, which is then again a sub-class of AbstractBuilder see Figure 5.2(a). The
SystemBuilder writes the model to an instance of the TimedAutomataSystem (TAS)
class.

The design abstracts the difference between the . XML, .xta and .ta input formats
and also hides the differences between the 3.4 and 3.6/4.0 formats from any imple-
mentation of the ParserBuilder interface.?

A TAS object represents the templates, variables, locations, edges and processes of
a model. Symbols are represented by symbol_t objects. Symbols represent unique
identifiers, such as names of variables and functions. Expressions and variables in
the AST are decorated with types, which are represented by a type_t object. Sym-
bols are grouped into frames (represented by frame_t objects). Frames are used to
represent scopes and other collections of symbols such as records or parameters of
templates and functions.

As usual, expressions are represented using a tree structure, explicitly representing

2See http://xmlsoft.org
3For equivalent input, the parser will call the same methods in the ParserBuilder class.

5.3 The UTASA Library 73

AbstractBuilder
/\
ExpressionBilder
/\
StatementBuilder
/\

ExpressionVisitor

i

StatementVisitor

. TAS :
ParserBuilder | TimedAutomataSystem ZF
<<implements>> o SystemBuilder |-~ i <<creates>> SVStemVISItor
(a) The builder hierarchy. (b) The visi-

tor hierarchy.

Figure 5.2: Overview of UTAP.

precedence, where the leaves represent constant values or symbols and the inner
nodes represent operations. Each node is referenced using an ezpression_t object.

Finally, in order to traverse the generated TAS, a visitor interface (visitor pattern
[44]) is provided by UTAP. See Figure 5.2(b) for an overview.

5.3 The UTASA Library

The UTASA library is used to slice a TAS buildt by UTAP. In the following we
show the overall architecture of the library and provide a description of the main
data structure. Furhtermore, we discuss current issues and possible improvements.

5.3.1 Architecture

The core of the UTASA architecture is based on two abstraction levels. An interme-
diate abstraction over the basic edge and state types used in UTAP, which provides
a connected graph over the automata, used to collect and update dependencies rel-
ative to updates, guards and invariants. The later, second, abstraction provides the
SDG which is used by the algorithm to obtain the slicing set. Figure 5.2 presents
an overview of the classes composing the UTASA library.

5.3.2 Modifying The AST

Given the fact that the AST TimedAutomataSystem provided by UTAP is not de-
signed to accept changes, UTASA initially employes the help of two classes designed
to copy the AST, while accepting changes. Figure 5.3 shows both.

Before the SDG can be build (and the slicing algorithm run) UTASA uses the Nor-
malFormCopyer class, a sub-class of SystemCopyer, to copy the input system to a
temporary form, in which the imperative components are represented using a subset

74

Implementation

SdgBuilder Responsible for creating the full SDG structure and hereby
collecting the dependencies collected by all instances of
InstanceSdgBuilder.

InstanceSdgBuilder Responsible for collecting all the dependencies
computed by AutomataSdgBuilder and FdgBuilder.

AutomataSdgBuilder | Maintains data and control dependencies at
automaton-level.

FdgBuilder Maintains intra and inter-functional dependencies within
an automaton.

SystemCopyer Used to simply copy a TAS. Also used to copy a TAS
with respect to a given slicing set

NormalFormCopyer | Used to convert the input system into a subset
of SSA form.

DagBuilder Used to build a DAG representation of the input automaton.

Location An abstraction for the state_t used in UTAP and used in
the DAG.

Edge An abstraction for the edge_t used in UTAP and used in

the DAG.

Table 5.2: Summary of the main classes of UTASA.

UTAP::SystemVisitor

SystemCopyer

UTAP::

SystemC’opyer(TimedAutumataSystem& output) =1

SystemCopyer(TimedAutomataSystem&, SlicingSet&)

NormalFormCopyer

UTAP::SystemBuilder

NormalFormCopyer(TimedAutomataSystem& output)

CreateNormalFormFor(TimedAutomataSystem& input)

Figure 5.3: Classes used to copy TimedAutomataSystems.

of the SSA form. This form is exploited by the later SDG construction, since the
control-flow of the system is now much more predictable.

The SystemCopyer is used for two purposes; simply copying a TAS and copying a
TAS with respect to a slicing criteria. After running the slicing algorithm, which
produces a slicing set for the system on normal form, SystemCopyer is used for
copying the temporary TAS out of normal form, while also slicing the TAS. In or-
der to construct the slice, an extra constructor is needed for SystemCopyer, one
that also takes a slicing set. This is used to check whether or not a construct in the
original model should be included in the output system.

5.3 The UTASA Library 75

UTAP::SystemBuilder

SdgBuilder
List<InstanceSdgBuilder> builders
build(TimedAutomataSystem&)
getCriteria(List<symbol t, ...)
linkFdg(...)

‘dgBuilder
DagBuilder dag
build(instance_t)

1.

InstanceBuilder

lo—
FdgBuilder functionBuilder » -
AutomataFdgBuilder automataBuilder UTAP::StatementVisitor

InstanceBuilder(instance_t)
getCriteria(List<symbol_t>) o

FdgBuilder
void build(function_t)

Figure 5.4: Classes used to build the SDG structure

5.3.3 SDG Construction

Construction of the SDG data structure (see page 76) is done using a hierarchy
of builders, most of which are implemented using the visitor interface provided by
UTAP. The top-level builder used to create the SDG, is the SdgBuilder. The Sdg-
Builder is comprised from one or more InstanceBuilders, depending on the number
of timed automata in the model, each of which consist of one AutomataFdgBuilder
and one FdgBuilder. Figure 5.4 illustrates the classes and the hierarchy.

The primary responsibility of the FdgBuilder is to collect all possible intra-functional
dependecies. That is, control and data dependencies within the body of a function.
Furthermore, it has the extra responsibility of establishing function linkage, hereby
creating inter-functional dependencies.

The AutomataFdgBuilder has the primary responsibility to collect all possible de-
pendencies at the automaton-level. That is, it makes sure that all possible paths
in the automaton (loops included) are explored and propagates dependencies to
updates, guards and invariants. Like the F'dgBuilder, AutomataFdgBuilder also has
the responsibility to establish function linkage.

InstanceSdgBuilder is the class that combines the dependencies from the FdgBuilder
and the AutomataFdgBuilder. It makes sure that each function of the automaton is
passed to the functionBuilder (an instance of FdgBuilder) and that the automaton
is passed to the build function of automataBuilder (an instance of AutomataFdg-
Builder). The function getCriteria(list<symbol_t>) is used to collect the slicing
criteria for that specific automaton instance using the provided list of symbols.

Finally, the SdgBuilder class is responsible for combining the dependencies com-
puted for the entire system. That is, the SdgBuilder is responsible for linking all
the FDG dependencies, hereby constructing the SDG, see 5.3.5 for further details
about the SDG data structure. The getCriteria(list<symbol_t>, ...) function is used
to collect the overall slicing criteria of the system and is therefore the “entry-point”
to the SDG for the slicing algorithm.

76 Implementation

DagBuilder
Location GetlnitialLocation()
void build(instance_t)

~
4 ~

<<create>> ,” ’ AN N <<create>>
/, .
¥ N
Location Edge
UTAP::state_t UTAP::edge_t
List<Edge> getOutgoing() Location getSrc()
Location getTarget()

Figure 5.5: Classes used to build the DAG structure.

5.3.4 Dependency Analysis of An Automaton

Figure 5.5 shows the classes used to build a data structure representing timed au-
tomata as directed acyclic graphs (DAG). The class DagBuilder is the main class
of the structure and is comprised of Location objects and Edge objects. The main
responsibility of DagBuilder is, of course, to build the DAG, but as a secondary
task, it must also provide the initial location, used in the AutomataFdgBuilder,
described above. The classes Location and Edge is used to abstract the constructs
state_t and edge_t from UTAP, in order to ease the computation of the DAG.

Computing Reaching Information

The data-flow information required to construct the SDG is computed using reach-
ing information, as described in Section 4.2.2. Reaching may be determined some-
what trivially for imperative languages, as the control-flow of a C-like language
only have loops and branching (if-statements). In contrast, an automata may have
a much more complex control-flow, where loops may be entered at multiple points.

The computation of reaching information for timed automata is therefore based
on a fix-point strategy. Starting at the initial location, each program point is
decorated with reaching information, which is then propagated along the control-
flow. All the edges in the automaton are visited and all updates are recorded for
all possible control-flows, until no change in the reaching information occur. That
is, the decorations have converged.

5.3.5 The SDG Data Structure

In order to implement the SDG described in Section 4.2.3, a specialized data struc-
ture has been developed. The data structure maintains all possible dependencies in
the TAS and provides a means for the slicing algorithm to explore these, in order
to compute the slicing set.

In order to obtain the SDG structure, we create an SdgNode (object) for every
vertex in the control-flow graph, as described in Section 4.2.3. The graph is as
expected composed of SdgNodes, holding references to other SdgNodes. That is, the
graph is maintained by mutual references between nodes.

5.3 The UTASA Library 77

Since the algorithm is based on backwards traversal of data-flow- and control-flow-
edges, the design of the SDG is based on inverted edges, refered to as data de-
pendency and control dependency edges. Each dependency is implemented as a
reference from an SdgNode to the SdgNode on which it is dependent. Each node
in the graph contains a list of references representing data dependencies to other
nodes. Likewise, it contains a reference to a single node, representing control de-
pendency.

5.3.6 Issues

During implementation, we decided not to do the implementation with respect to
structs and call-by-reference parameters. This was done solely for the reason that
we only wanted to make a proof-of-concept implementation of the theory described
and as these construct do not add much to the complexity, they would only add to
the lines of code produced. Furthermore, as the implementation is developed for
the purpose of producing a prototype for the theory, efficiency has not been our
main concern.

Moreover, we do not support the template feature of UPPAAL because of the fact
that UTAP does not provide the instantiated models. If UTAP were able to provide
this, UTASA would of course support this feature. The reason for the restriction to
instantiated models is that we expect better slicing result, compared to just slicing
the templates. Furhermore, the sink location described in Section 4.3 is also not
implemented. We leave this for future work.

CHAPTER

6

Experimental Results

This Chapter describes the experiments done using our slicing implementation on
two UPPAAL models. The first model, the Train-Gate example, is extended with
extra constructs and the second model, the “real life” example, is sliced unmodified.
We state a common set of metrics and conduct the measurements both before and
after slicing has been done.

The tests performed substantiate the slicing technique presented in Section 4. Fur-
thermore, it demonstrates that the implementation presented in Chapter 5 is able to
slice the presented UPPAAL models and that it is able to improve the performance
drastically.

We finish the Chapter with a summary and discuss the results obtained from the
experiments.

Contents
6.1 Introduction 80
6.2 Test Metrics ¢ v v v v v v v v i et e e e e e e e 80
6.2.1 Test Environment 80
6.3 Real Life Example - Mapper 81
6.3.1 Test Results. 82
6.4 The Extended Train-Gate Example 82
6.4.1 Test Results. 83

6.5 Summary e e e e e e e e e e e e e e 83

80 Experimental Results

6.1 Introduction

The experiments conducted in this Chapter show the strenghts of slicing for Up-
PAAL. The experiments presented are based on two case models:

Train-Gate: As explained in Section 1.2.1, the Train-Gate example, which we
reuse here, has been modified to make the example interesting for the purpose of
slicing. We have added extra statements used only for visual aid for the user.
Meaning, the extra statements do not add to the functionality of the model, but
only act as heuristics to the user, in case of e.g. debugging.

Mapper: In addition to the Train-Gate example, we have included a “real life”
example possessing similar design problems. It shows how a group of students have
used UPPAAL to model a small part of their system and how the model itself has a
couple of heuristic variables.

For a quick overview of the test results for both models, see Tables 6.1 and 6.2.

6.2 Test Metrics

Both models are tested based on the same set of metrics. The metrics used in the
experiments are:

VT = Verification Time.

MU = Memory Usage.

SS = Symbolic States.

NS = Number of Statements.
NV = Number of Variables.

Both the original and sliced version of the models are monitored during verification
(of the same property) and the maximal memory consumption is recorded along
with the number of symbolic states explored. The experiments are conducted using
the command-line tool verifyta, which comes with the standard UpPPAAL distribu-
tion, to perform the verification and monitor the symbolic states explored. In order
to record the memory consumption, we use the tool memtime! which is the default
performance (memory) measuring tool used by the UPPAAL development team. Fi-
nally, we manually count the number of statements and variables in the model, in
order to show the syntactic reduction performed by slicing.

6.2.1 Test Environment

The experiments are conducted on a medium range workstation, in order to obtain a
realistic impression of the optimizations. The test machine is a 2.6Ghz P4 (w.o. HT)
with 512Mb memory and a standard ATA disk system. Since these specifications
might be considered low standard by some, we have re-run some of the verification

ISee http://freshmeat.net/projects/memtime/ for further information about this tool.

6.3 Real Life Example - Mapper 81

tasks, which ran out of memory, on a quad-core operton SUN server with 4GB of
memory (also the maximal amount of memory that UPPAAL can allocate, since it is
32 bit). None of the verification jobs, which was re-run, exhibited any improvement
on the server hardware i.e. 4GB memory was not enough to redeem the situation.

6.3 Real Life Example - Mapper

The real life example we have chosen is provided by students at the department
of communication technology at Aalborg University. The intention of the model,
which is a network of the automata shown in Figures 6.1, 6.2, A.1, A.2 and A.3, is to
verify a part of a test tool used for analysing the traffic on a Controller Area Network
(CAN). Only Figures 6.1 and 6.2 are shown in this Section because these are the
ones involved in the slicing. Moreover, the tool should also be able to generate
traffic by itself. The tool implements a traffic generator, which is able to run on
any network. The part of the implementation responsible for translating from the
tool’s architecture to the test invironment’s network protocol, and vice versa, was
named the mapper. The mapper contains the following global declarations:

chan PlanReceived, CloseDriver, OpenDriver, StartEmu, StopEmu,
EE_MappingPlan, EE_PlanReceived, EE_StartEmu, EE_StopEmu,
EE_StopDC, EE_StopTC, EE_StartTC, EE_StartDC, Frame2CB,
Frame2Msg, Msg2TC, Msg2Frame, DC_SentFrame, DC_RcvedFrame,
SentFrame, RcvedFrame, CB_SndFrame, CB_RcvFrame, EE_StartCB,
EE_StopCB;

clock CBtime, TCtime;

int GeneratedMsgs = O, GeneratedFrames = O, LoggedRcvedFrames = O,
LoggedSentFrames = O;

As seen in the model, there are three stubs and one driver. The three stubs each
consist of a data collector, which is responsible for logging traffic. The traffic con-
troller is responsible for generating traffic and the bus is both able to send and
recieve frames. The driver both activates and de-activates the process. Further-
more, it models a users input to the system. The mapper model is only part of the
full system and it was the only part chosen, by the students, to model in UPPAAL.

CB_RcvFrame!

dle CBlime = 0, GeneratedFrames++ DC_RcvedFrame?

CBtime <5 LoggedRcvedFrames++

VRN I
= Initial .
CBlime <=5 FrameReceivedOnBus -. Logging
EE_StopCB? EE_StopDC? ‘

EE_StartCB?
CBlime =0 myTest = LoggedRcvedFrames
DC_SentFrame?
Initial LoggedSentFrames++

CB_SndFrame?

(a) CBstub (b) DCstub

Figure 6.1: Parts of the Mapper model.

82 Experimental Results

O nitial
EE_MappingPlan!
8 Dcstopped ©) MappingPlanReceived
EE_StopDC! EE_StartDC!
© ocstarted
© vapperemuiationstopped
EE_StartCB!
Idle Msg2Frame!
EE_StopEmu! © cestarted TCtime <5 TCtime = 0, GeneratedMsgs++
EE_StartTC!
LP cBeStopped Msg2TC? G MessageGenerated
Gen ©) rcstarted TCtime <=5
EE_StanEmul [— EE_StopTC?
TCtime = 0
©
- EE_StopTC!
Testopped | gggedSentFrames > 5 Initial
(a) EEdriver (b) TCstub

Figure 6.2: Parts of the Mapper model.

6.3.1 Test Results

In the case of the mapper model, we chose a simple but vital property for test-
ing. The property used, expressed that the system under all circumstances was to
be deadlock free (A[Inot deadlock). Running the verification (before slicing) on
the test machine, immediately consumed all resources and verification continued 2
hours without result.

Running the TASlicer application on the mapper removed the three unbounded
integer variables GeneratedMsgs, GeneratedFrames and LoggedRcvedFrames. The
only purpose of the integers was to model statistics of the protocol. Moreover, the
variables were never referenced for any other purpose than to update their values
(see Figure 6.1(b) and 6.2(b)). The fourth (remaining) variable is preserved since
it is used in a guard of the EEdriver (Figure 6.2(a)).

Re-running the verification job with the sliced model, verifyta exited after 11.12
seconds, reporting an error; indicating a flaw in the model design (a flaw which
otherwise might have gone undetected). After the model had been reviewed by
members of the UPPAAL team, the experiment was redone.

At this point the model had been optimized to such an extent, that slicing could
not provide a noticeable difference in performance gain, but the syntactic reduction
remained, i.e. the reduction in the number of variables and statements. Further-
more, the number of symbolic states were reduced drastically. From 2074 to 199.
The results are summarized in Table 6.1.

6.4 The Extended Train-Gate Example

The Extended Train-Gate Example is modelled as described in Section 1.2.1, but
with only 4 trains and the test metrics are as described in Section 6.2.

6.5 Summary 83

Mapper Example
Deadlock free VT MU SS NS | NV
Before Slicing N/A 4GB+ 85587630+ 12 | 6
After Slicing 11.12sec * | 66572KB | 786391 6 3
After Fix VT MU SS NS | NV
Before Slicing 0.11sec 2862KB 2074 12 | 6
After Slicing 0.10sec 2852KB 199 6 3

Table 6.1: The test results of mapper experiments. *verification failed

6.4.1 Test Results

The experiments conducted using the train-gate model, are based on two properties,
as with the mapper model, we check for the absence of deadlocks (A[Inot deadlock).
Furthermore, we verify for each train, the possibility of crossing (e.g. E<> Trainl.Cross).

Running the verification job on the un-sliced train-gate model, deadlock freeness
reacted similarly to the mapper model; the verification process was allowed to run
for two hours before it was terminated manually. After running the TASlicer appli-
cation on the model, verification was drastically improved, finishing in 0.2 seconds,
confirming the model to be deadlock free. Alternatively, the second property did,
although showing a syntactic reduction, not exhibit any improvement. The results
are summarized in Table 6.2.

Train-Gate Example
Deadlock free VT MU SS NS | NV
Before Slicing N/A 4GB+ 77636326+ 34 | 14
After Slicing 0.2sec 2848KB 413 28 |10
Train may cross VT MU SS NS | NV
Before Slicing 0.11sec 2856KB 14 34 | 14
After Slicing 0.10sec 2848KB 14 28 | 10

Table 6.2: The test results of the Train-Gate experiments.

6.5 Summary

As expected, the syntactic reduction had a noticeable impact on verification. The
fact that the slicer removed four integer variables in the train-gate example, would
theoretically reduce the state-space by 4 x 26 states. That is, the reduced state-
space is %. Although this is a considerable reduction, the growth in the
value of integer variables does not affect the fact that each train may reach a state
where they have been allowed to cross. Similarly, in the mapper case, the results
show that verification of the unmodified model does benefit greatly from slicing,
but a manually optimized model may not require slicing to obtain an acceptable
verification time.

84 Experimental Results

In order to substantiate our claim that software engineers tend to decorate their
models, we leave for future work to perform further experiments on more UPPAAL
timed automata models.

CHAPTER

7

Conclusion and Final Remarks

In this Chapter, we present future work and other related issues. Furthermore, we
conclude on the project and give our final remarks.

Contents
71 Conclusion oo 86
7.2 Future Work 88
7.2.1 Structs and Call-by-references Parameters 88
7.2.2 Implementing Algorithm 2. 88
7.2.3 UTASA as Part of UPPAAL 88
7.2.4 Slicing The Structure of Timed Automata 88
7.2.5 Further Experiments 88
7.2.6 Code-Review and Improvements 88
7.3 Related Future Work 88
7.3.1 Over-approximate and Refine 89
7.3.2 Visualizing Program Slices 89
7.3.3 Dynamic Slicing in UPPAAL 89

7.3.4 Templates of UPPAAL 89

86 Conclusion and Final Remarks

7.1 Conclusion

The goal of this thesis has been to research program slicing based on static anal-
ysis in order to obtain a syntactic reduction of UPPAAL models. It was our initial
expectation that slicing would be a substantial contribution to the UPPAAL tool,
since a syntactic reduction would directly influence the size of the concrete state-
space. Although UPPAAL already employes sophisticated techniques to reduce the
required exploration (see Chapter 3), we have been able to show that slicing does
indeed increase the performance of the tool and in some cases, it may even enable
verification of properties, which would otherwise fail to complete.

Inspired by several articles and related work, we have shown how to create reach-
ability preserving slices of models, expressed using the extended timed automata
formalism (see Section 2.3). Primarily driven by the fact that the extended timed
automata formalism (as well as the UPPAAL language) allows the definition and use
of auxiliary functions, we have initially explored existing work focusing on inter-
procedural analysis. Based on our research, we have chosen to base our approach on
a notion of system dependency graphs (see Section 4.2.3). Although we expect that
the SDG structure was originally conceived for the purpose of representing impera-
tive code, we show that it may also be used to represent the dependencies imposed
by the structure of timed automata. Using the SDG as a common representation of
dependencies creates a uniform abstraction over the hybrid control-flow, generated
by the combination of timed automata and imperative code. Furthermore, the SDG
is highly suitable for analysis using graph theory, which in-turn may help produce
a more precise slice of the model.

In addition to proving the correctness of the approach (Chapter 4) in terms of the
extended timed automata formalism, we have presented a prototype implementation
(UTASA - Chapter 5), extended to the language of UPPAAL. Although the experi-
ments, which we have documented in (Chapter 6), show that slicing will assist the
user in removing irrelevant “satelite” data and in turn reduce the time and resources
required to verify properties of models, the approach which we propose is, atleast
from a theoretical perspective, also able to reduce more substantial parts of models.
Eventhough we have not conducted experiments in this area, the use of sink loca-
tions (Section 4.3) may be used to remove parts of a model, which cannot affect the
outcome of the verification. A reduction in the structure of a model will most likely
entail even greater reductions of the state-space, yielding a shorter verification time.

Theoretical Results

In Chapter 4 we introduce an approach for reachability preserving slicing of mod-
els expressed in the extended timed automata formalism presented in Chapter 2.
Furthermore, Section 4.6 in Chapter 4 contains formal proofs, showing that the E<-
Bisimulation is in-fact reachability preserving (Theorem 19). The result of Theorem
19 is then used to prove correctness of the slicing approach, by proving that the
relation ~, which relates a model and its slice, is indeed a E<$-Bisimulation (Lemma
21).

7.1 Conclusion 87

Implementation

A prototype implementation has been developed in order to show that the slicing
approach, described in Chapter 4, can in-fact be extended to the language of Up-
PAAL. Furthermore, the implementation also shows that static analysis can be very
beneficial to verification tools like UPPAAL.

In Chapter 5 we document the UTAS library and we give a small overview of the
architecture of UTAP (The UpPAAL Timed Automata Parser) used by UTASA.
UTASA is developed as a preprocessing library for UpPAAL. That is, slicing is
available before verification. Furthermore, as UTASA contains several data struc-
tures designed for static analysis, we encourage the further development of UTASA.

Results of The Experiments

As seen in Table 7.1, UTAS is able to slice away irrelevant variables, hereby reduc-
ing the number of symbolic states explored significantly, which is also the reason
for the much lower verification time and memory usage.

The acronyms are as follows:

VT = Verification Time

MU = Memory Usage

SS = Symbolic States

NS = Number of Statements
NV = Number of Variables

Train-Gate Example
Deadlock free VT MU SS NS | NV
Before Slicing N/A 4GB+ 77636326+ 34 | 14
After Slicing 0.2sec 2848KB 413 28 |10
Train may cross VT MU SS NS | NV
Before Slicing 0.11sec 2856KB 14 34 | 14
After Slicing 0.10sec 2848KB 14 28 | 10
Mapper Example

Deadlock free VT MU SS NS | NV
Before Slicing N/A 4GB+ 85587630+ 12 | 6
After Slicing 11.12sec * | 66572KB | 786391 6 3
After Fix VT MU SS NS | NV
Before Slicing 0.11sec 2862KB 2074 12 | 6
After Slicing 0.10sec 2852KB 199 6 3

Table 7.1: Summary of the test results made on the Extended Train-Gate Example
and the Mapper Example.

As Table 7.1 shows, UTASA works for UPPAAL timed automata and is clearly
beneficial.

88 Conclusion and Final Remarks

7.2 Future Work

In the following, we present future work, which we believe would be extremely
beneficial or crucial for the use of slicing with UPPAAL.

7.2.1 Structs and Call-by-references Parameters

In the prototype implementation, we currently do not support structs and call-
by-reference parameters. Therefore, it is necessary to implement functionality to
handle these constructs, in order to support the full language of UPPAAL.

7.2.2 Implementing Algorithm 2

The current implementation is based on Algorithm 1 and therefore suffers the
calling-context-problem described in Section 4.1.1. An implementation of Algo-
rithm 2 would solve this problem, hereby providing a more precise slice of the
system. The models we have tested will not show a difference using Algorithm 2,
but in the general case, it generates a more precise slice of the system.

7.2.3 UTASA as Part of UrraAL

The UTASA prototype library is a preprocessing tool for UPPAAL. It is not yet an
integrated part of UPPAAL and must therefore be used manually by potential users.
It would be beneficial to incorporate it into UPPAAL, such that slicing becomes
transparent to the user (alternatively graphical visualization could be employed).

7.2.4 Slicing The Structure of Timed Automata

In the current work, we present a slicing approach which does not attempt to reduce
the structure of the automata in the model. Using theory presented in [37] it would
be possible to create a CTL preserving reduction of the model, in-turn reducing the
state-space even further. Although we already introduced the possiblity of having
a sink location, we do not discuss how to compute irrelevant locations.

7.2.5 Further Experiments

We claim that software developers tend to decorate their models with auxiliary data
and in order to substantiate this, further experiments could be performed on newly
collected models from industry software developers.

7.2.6 Code-Review and Improvements

As ATASA is a prototype implementation it would be very beneficial to get a skilled
C programmer to review the code. Our main effort has been the functionality of the
code and not efficiency. A code review could most likely improve the performance
of the library and also help remove potential bugs.

7.3 Related Future Work

In this Section we give some ideas to peripherical future work and our final remarks.

7.3 Related Future Work 89

7.3.1 Over-approximate and Refine

In order to further extend UTASA, the approach in [26] could be applied. In
[26], they automatically over-approximate the given model and since it is an over-
approximation, the absence of an abstract counter-example implies the absence of
counter-examples in the full model. They automate all the steps of the abstract-
refinement loop (known also from lazy abstraction used in BLAST [32]), in the
setting of real-time specifications that are given in terms of PLC-Automata. The
abstraction starts with the coarsest possible abstraction and iterates as long as spu-
rious counter-examples are found. If the model-checker finds an abstract counter-
example, then a counter-example analyser is used to check whether it is spurious or
not. They argue that in most cases, an over-approximation is sufficient to establish
whether or not a certain property holds for the given system.

7.3.2 Visualizing Program Slices

Thus far, the emphasis of most slicing research has been on algorithmic aspects.
Little attention has been paid to the question of how slices could best be visual-
ized and interactively displayed or browsed. In [5] they present a technique for
visualizing program slices and also present a tool called SeeSlice to demonstrate
the visualization. Future work could include applying this technique for UPPAAL,
building on top of the previous mentioned slicing techniques.

7.3.3 Dynamic Slicing in UPPAAL

The approach taken in our work is that of static slicing, but we suspect that dynamic
slicing could, as done in [15], add an even greater reduction in the state-space,
as we most likely would be able to slice away whole automata from the system
dynamically. We expect this to be beneficial in the general case and it would
of course be necessary to apply some changes in the UPPAAL engine to support
this dynamic slicing. Furthermore, a comparison of dynamic and static slicing
of UPPAAL models would be interesting in order to evaluate the true benefits of
dynamic slicing.

7.3.4 Templates of UPPAAL

At the moment, UTASA does not support the template feature of UPPAAL due to
the fact that UTAP does not provide the instantiated timed automata models. If
a future version of UTAP is able to provide this, then UTASA would be able to
support the template feature by default.

APPENDIX

A

Appendix

A.1 The Mapper Model

For completeness we provide the remainder of the Mapper model.

SentFrame!

CloseDriver? |\
nitial

FrameSentOnBus
OpenDriver? FrameReceivedFromTC

CB_RevFrame?

FrameReceivedFromeus @) | povedkramer
R d RevedFi Idle F
Frame2Msg! Fr * ? H ? PFrameSem
FrameSentToTC DC_RovedFrame! DC_SentFrame!

Figure A.1: Parts of the Mapper model.

StoppingMappingEmulation

StopEmut EE_StopEmu?

Frame2Msg?
EE_MappingPlan? Idle rameR ’
EE_StariEmu? rameReceive
StartingMappingEmuiation (@ oping © ©
Ci 7@\9 7‘
Startemur PlanReceived! Msg2TC!

Figure A.2: Parts of the Mapper model.

Msg2Frame? PlanReceived?
o
. \mua\@ PlanReceived W Star€mu? o Opendriver _Emulating
ldle 9 ©
e Ready
Frame2CB! CloseDriver! StopEmu?

Figure A.3: Parts of the Mapper model.

References

1]
2]
8]
[4]
[5]
(6]

7]

[9]

(10]
(11]

(12]

(13]

(14]

Alur, Courcoubetis, and Dill. Model-checking for real-time systems. In LICS: IEEE
Symposium on Logic in Computer Science, 1990.

Alur, Courcoubetis, and Dill. Model-checking in dense real-time. INFCTRL: Infor-
mation and Computation (formerly Information and Control), 104, 1993.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183-235, 1994.

Thomas Ball. The SLAM project: Debugging system software via static analysis.
pages 1-3.

Thomas Ball and Stephen G. Eick. Visualizing program slices. In Visual Languages,
pages 288-295, 1994.

Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. Lecture Notes in Computer
Science, 2102:260-77, 2001.

Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim G. Larsen, Paul Pettersson,
and Wang Yi. UPPAAL implementation secrets. Lecture Notes in Computer Science,
2469:3-77, 2002.

Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen. Static
guard analysis in timed automata verification. In Hubert Garavel and John Hatcliff,
editors, Proceedings of the 9th International Conference on Tools and Algorithms for
Construction and Analysis of Systems (TACAS’08), volume 2619 of Lecture Notes in
Computer Science, pages 254277, Warsaw, Poland, April 2003. Springer.

Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on uppaal.
In Marco Bernardo and Flavio Corradini, editors, SFM, volume 3185 of Lecture Notes
in Computer Science, pages 200—236. Springer, 2004.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Jorg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Con-
currency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages
87—124. Springer, 2003.

Béatrice Bérard, Michel Bidoit, Alain Finkel, Frangois Laroussinie, Antoine Petit,
Laure Petrucci, and Philippe Schnoebelen. Systems and Software Verification. Model-
Checking Techniques and Tools. Springer, 2001.

Bouyer. Untameable timed automatal In STACS: Annual Symposium on Theoretical
Aspects of Computer Science, 2003.

M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A
model-checking tool for real-time systems. In A. J. Hu and M. Y. Vardji, editors, Proc.
10th International Conference on Computer Aided Verification, Vancouwver, Canada,
volume 1427, pages 546-550. Springer-Verlag, 1998.

92

REFERENCES

(15]

[16]
(17]

(18]

(19]

20]

(21]

(22]

23]
[24]
[25]
[26]

27]

(28]

29]
(30]
(31]
32]

(33]

Victor A. Braberman, Diego Garbervetsky, and Alfredo Olivero. Improving the ver-
ification of timed systems using influence information. In Joost-Pieter Katoen and
Perdita Stevens, editors, TACAS, volume 2280 of Lecture Notes in Computer Science,
pages 21-36. Springer, 2002.

J. Biichi. Weak second-order logic and finite automata. Z. Math. Logik Grundlagen
Math., 5:66-92, 1960.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Sci-
ence (TCS), 240(1):177-213, 2000.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-265, April 1986.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems, 13(4),
October 1991.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In R. Alur, T. A.
Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066 of Lecture
Notes in Computer Science, pages 208—219. Springer-Verlag, 1996.

Conrado Daws and Stavros Tripakis. Model checking of real-time reachability prop-
erties using abstractions. pages 313-329.

D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
J. Sifakis, editor, Proceedings of the International Workshop on Automatic Verifica-
tion Methods for Finite State Systems, volume 407 of LNCS, pages 197-212, Berlin,
June 1990. Springer.

E.A. Emerson and E.M. Clarke. Using Branching-Time Temporal Logic to Synthesize
Synchronization Skeletons. Science of Computer Programming, 2:241-266, 1982.

Michael D. Ernst. Practical fine-grained static slicing of optimized code. Technical
Report MSR-TR-94-14, Redmond, WA, USA, 26 July 1994.

Marius Bozga et al. Tools and applications ii: The if toolset. volume 3185. Springer,
2004.

No Author Given. Automatic abstraction refinement for timed automata.

Hatcliff and Dwyer. Using the bandera tool set to model-check properties of con-
current java software. In CONCUR: 12th International Conference on Concurrency
Theory. LNCS, Springer-Verlag, 2001.

John Hatcliff, James Corbett, Matthew Dwyer, Stefan Sokolowski, and Hongjun
Zheng. A formal study of slicing for multi-threaded programs with JVM concur-
rency primitives. In Agostino Cortesi and Gilberto Filé, editors, Static Analysis,
volume 1694 of Lecture Notes in Computer Science, pages 1-18. Springer, 1999.

Klaus Havelund and Thomas Pressburger. Model checking java programs using java
pathfinder, September 12 1998.

Matthew Hennessy and Tim Regan. A process algebra for timed systems. Inf. Comput,
117(2):221-239, March 1995.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111:193-244, 1994.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy
abstraction. pages 58-70.

C. A. R. Hoare. Communicating sequential processes. Comm.A.C.M., 21(8):666-677,
August 1978.

REFERENCES 93

(34]
(35]

(36]

37]
(38]
(39]
[40]

(41]
42]

(43]

(44]

(45]
(46]

(47]

(48]
(49]

[50]
[51]
[52]

Gerard J. Holzmann. The SPIN Model Checker. Pearson Education, 2003.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, pages 35-46, New York, NY, USA, 1988. ACM
Press.

Radu Tosif and Riccardo Sisto. dSPIN: A dynamic extension of SPIN. In Proc. of the
6th International SPIN Workshop, volume 1680 of LNCS, pages 261-276. Springer-
Verlag, September 1999.

Agata Janowska and Pawel Janowski. Slicing of timed automata with discrete data.
pages 181-195. Fundamenta Informaticae, 2006.

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the Fifth International Symposium in Programming, 1981.

K.L. McMillan. The SMV system, symbolic model checking - an approach. Technical
Report CMU-CS-92-131, Carnegie Mellon University, 1992.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):134-152, October 1997.

Kim G. Larsen and Jiri Srba. Semantics and Verification. AAU, 2006.

M. Vardi. An automata-theoretic approach to linear temporal logic. In Proceedings
of Banff’94, 1994.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Gamma. Helm. Johnson og Vlissides. Design Patterns, Elements of reusable Object-
Oriented Software. Addison-Wesley profeccional computing series. Addison-Wesley
Publishing Company, 1995.

C. H. Papadimitriou. Computational Complezity. Addison-Wesley, 1994.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Conference Record of POPL ’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 49—
61, San Francisco, California, 1995.

Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up
slicing. In Proceedings of the ACM SIGSOFT 94 Symposium on the Foundations of
Software Engineering, pages 11-20, 1994.

Cormen. Leiserson. Riveset and Stein. Introductions to Algorithms. the MIT press, 2
edition, 2002.

Davide Sangiorgi and David Walker. The Pi-Calculus — A Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

Michael 1. Schwartzbach. Lecture notes on static analysis.
Frank Tip. A survey of program slicing techniques. J. Prog. Lang, 3(3), 1995.

Mark D. Weiser. Program Slices: Formal, Psychological, and Practical Investiga-
tions of an Automatic Program Abstraction Method. PhD thesis, The University of
Michigan, 1979.

