
WordAdjust - A Deobfuscation
Frontend to Content-Aware

Anti-Spam Tools

Lars Tabro Sørensen
larsts@cs.aau.dk

Martin Møller Larsen
martinml@cs.aau.dk

June, 2008

Abstract

In modern world spam has become a great
threat for the entire email system. Advanced
techniques are constantly being developed by
spammers to bypass anti spam tools. This
article aims to describe how to counter three of
these techniques, namely unicode, scrambling
and misspell obfuscation. We introduce Wor-
dAdjust - a frontend deobfuscation �lter for
the state of the art anti spam tool SpamAs-
sassin. This deobfuscation �lter is capable of
deobfuscating 3 types of obfuscation methods;
unicode, scrambling and intentional misspell.
The Misspell deobfuscation is based on N-gram
fuzzy search techniques. SpamAssassin has a
hard time dealing with spam emails that are
obfuscated by these 3 methods. Experiments
shows how WordAdjust increases the average
SpamAssassin score by 56% on intentional ob-
fuscated spam emails. Further experiments
shows how WordAdjust enables SpamAssasin
to catch, in average, 10% of the spam mails
that normally would end in the users inbox.

1 Introduction

Every user of electronic mail(email) has re-
ceived unsolicited email with a commercial
purpose. Such email is known as Unsolicited
Commercial/Bulk Email (UCE/UBE) and is
normally referred to as spam. The word Spam
comes from the meat product Spam, and the
relation to UCE was established when Monty

Python performed a comedy sketch with the
word spam being repeated constantly. Emails
that are not classi�ed as spam are often referred
to as ham. Ever since email emerged, the pop-
ularity of email as an advertising medium has
increased. Compared to many other advertising
medias email has the advantage of being sent
electronically. This removes the costs of man-
ual delivery as, e.g., a postal service requires.
Because the sending of email is free, people
began to see the advantage of using email for
advertising, thus sending emails to as many
consumers as possible. Those individuals who
sent these advertising emails became known as
spammers.
Economically spam has a large impact on the
global market. Studies show that 6% of all men,
and 5% of all women [1] have ordered a product
advertised through spam. Spammers claim that
a rate of 0.001% [2] of positive responses are
needed to make spamming economically viable,
thus making this a highly pro�table buissness.
The downside of spam clearly lies at the recip-
ient of the spam emails. When email addresses
are being �ooded by spam it does not only
cause annoyances to the recipient but it can
render email addresses unusable. Many email
addresses receive so much spam that removing
it takes a huge e�ort as recipient. Especially
companies su�er from this fact, and this is
where the economic downside of spam lies, as
the e�ectiveness of the sta� drop as the number
of spam emails increases.
Interest in �ghting spam automatically has in-

1

2 RELATED WORK

creased as the number of spam emails exploded.
Anti spam tools have become a huge industry
since all emailers have an interest in saving time
by automatically removing spam. The methods
used in these spam �lters have evolved from
rather simple techniques into more complex in
order to improve their e�ciency. But as the
methods of the anti spammers evolve, so do the
methods of the spammers too. The spammers
study the methods of the spam �lters and �nd
ways to bypass them. This obviously forces anti
spammers to study the methods of the spam-
mers to �nd ways to counter the techniques
used by the spammers. This causes a never
ending battle between the anti spammers and
the spammers. A common way of bypassing
spam-�lters is to write words in alternative
ways. Spam-�lters analyze the content of an
email message by looking for certain words that
often appear in spam. In the spam email, these
words are spelled so humans perceive them as
the proper words, but spam-�lters cannot make
any connection between the misspelled words
and the right words.
In a previous project, we developed an
algorithm for �nding the longest substring
of text T that is approximately equal to a
search string P. This functionality was used in
the area of song recognition where a sample
piece of a song (search string P) was matched
against a set of songs (strings T). The song
containing the longest approximate substring
was chosen as the matched song. A similar
problem occurs when words are obfuscated in
order to bypass content based spam �lters. We
have a set of strings (the words in the email)
and a search string (a word with a known
connection to spam). By matching each word
in the email to the spam related word, we get
a match to the most similar word in the email.
Words that are misspelled will be matched to
the original word, the spam related word, and
the spam�lter will stand a higher chance of
detecting emails that are spam.

In this project we develop a spam �lter
to deobfuscate emails that spammers have
obfusacted in order to bypass anti spam
programs. Our �lter deobfuscates three known

ways of obfuscation; unicode, scrambling
and misspell. Unicode obfuscation involves
replacing characters with visually similar
characters, but with a di�erent unicode in order
to bypass content-aware �lters. Scrambling
obfuscation mixes the inner characters of spam
related words. The �rst and last characters will
keep their position, which makes humans able
to perceive the word, however this is not the
case for anti spam tools. Misspell obfuscation
intentionally misspells spam related words in
order to bypass content-aware anti spam �lters.

After the �lter is applied to an email we pass
it to SpamAssassin, an open-source state of
the art anti spam tool. The intention of this
project is not to make a new anti spam tool,
but rather a frontend to support existing
programs with these deobfuscation tools.

The structure of the article is as follow: Section
2 starts by describing the research that have
been done in the area of preventing spam. It fol-
lows by describing what commercial and open-
source tools that are popular for the means of
�ghting spam. It ends with describing the work
that have been done on �ghting obfuscation.
Section 3 describe the 3 ways of obfuscation
we aim to solve. Section 4 describe how we
implement the solutions to the methods named
in Section 3. Then we test the system in Section
5 to see how well it performs is. Section 6
makes conclusions on the project and Section
7 describes possible future work.

2 Related Work

Substantial research on how to �ght and remove
spam has been carried out. There are several
methods to approach this problem; this chapter
will describe the most essential.

2.1 Spam Fighting Methods

Blacklisting is a widely used technique for
preventing spam emails. Several online lists
exist containing DNS addresses of servers that
have been observed sending spam emails to

2

2 RELATED WORK

a substantial extent. Anti-spam tools search
these lists to determine if a newly received
email has been sent through a server that has
been recorded as a spam providing server.
If this is the case, the email is marked as
spam. DNS Blacklisting was introduced in
1997 by Paul Vixie [3] where he started the
organization Mail Abuse Prevention System
which distributed the �rst DNS blacklist.

Whitelisting [4] works much like blacklisting,
by observing which server an email is sent
through. However, instead of matching the
sending server to a list of known spam providing
servers, the sending server is matched to a list
of non-spam providing servers. Whitelisting
seems quite aggressive, since a server must be
added to the whitelist before it is possible to
receive email from it. Some whitelisting �lters
employ a technique that makes it possible to be
added to the �lter automatically, by prompting
the sender with a challenging question. If the
sender can answer this question he will be
added to the whitelist. However, whitelisting
in general causes quite some work in order
to maintain the list, especially for a person
who frequently need to send emails to new
addresses and therefore have to answer such
questions.

Another common technique for �ghting spam
is to parse each email and scan it for content
that could suggest the email is spam. A widely
used approach is to create a set of rules that
describe cases that often are represented in
spam emails [5]. Such a case would for instance
be the appearance of the word "replica" that
is often used in spam emails. Each rule is
associated with a value describing how likely
an email containing this speci�c case is spam.
When more cases are represented in one
email, their values are added together. When
a certain threshold is reached, the email is
classi�ed as spam. A rule can be based on
both speci�c content of the email, i.e., certain
words, or it can be based on metadata such
as information about what character set is
being used. Creating such rules can be very
time consuming since new rules are required

frequently since the methods of spammers
evolve rapidly.

A typical technique used to assign values to
rules is to feed the spam �lter with a set of
spam emails. The �lter then observes the
occurrence of each rule in all the spam emails
and derives a value based on the observation.
New cases are also recognized in the spam
emails, and new rules are thereby created.
This is normally implemented by a bayesian
network.

SPA (Single-Purpose Address) is a method
that aims on preventing spam, instead of
automatically removing it [6]. The idea is to
have one email-address for each purpose. For
example, a user needs an email to con�rm a
login the user just created on a homepage,
or the user needs an invoice for a product
bought online. The user still needs a unique
email-address when he needs to communicate
with others, but overall this would reduce spam
because spammers get their email-addresses
from forums, IRC channels, or web forms that
would only be a SPA. A concrete example of
an implementation of this idea is the project
called remailer. This project provides a tool
that serves as an interface between the sender
and the receiver, which hides the original
email-address of the sender.

Instead of �ghting spam at the end users An-
dreolini et al. [7] use di�erent kinds of honey-
pots (traps) to track the sources of spam. Some
of the techniques are open proxies and open
relays.
Filtering by Duplicate Detection [8] is a method
that takes advantage of the fact that spam
emails are often similar. Whenever a new
email is received it is compared to all previously
received emails that were marked as spam. If
a similarity exists, the new email is removed.
If an email is marked manually as spam by the
user, it is added to the list of spam emails. This
method is also used in a distributed manner,
so whenever a user marks an email as spam,
the email will automatically be deleted by other

3

3 METHODS OF OBFUSCATION

recipients of similar email.

2.2 Spam Fighting Tools

There are many tools that aim to aid in �ghting
spam emails. Most of popular the spam �ghting
tools utilize several of the previously mentioned
methods. SpamAssassin [9] is an open-source
project that employs blacklisting and the rule-
based concept. SpamAssassin keeps it rule-base
updated by de�ning new rules, and it keeps
the associated values updated by learning a
Bayesian Network with a set of known spam
emails. Another spam �lter is the commercial
product SpamFighter [10] that, as SpamAssas-
sin, is rule based. Razor [11] is a open-source
project that employs the idea of distributed
duplicate detection. Whenever a user of Razor
detects a spam email, Razor noti�es all other
Razor users so if they receive a similar email, it
will be deleted automatically.

2.3 Fighting Obfuscated Spam

Emails

As previously mentioned, spammers keep
changing and improving their methods in order
to spread their emails to as many recipients
as possible. Through the last couple of years,
there has been a trend toward obfuscating
the content of spam emails in order to bypass
rule-based �lters. An example could be an
email containing a sentence like "Buy cheap
drugs at www.cheapdrugs.com". It is quite
straight-forward for a rule-based spam �lter
to detect this spam but the problem comes
when content of the spam emails, is modi�ed.
Modi�cations could take form of constructed
spelling mistakes like "cheep" instead of
"cheap" or could involve the substitution of
letters with a corresponding set of symbols.
An example of this is replacing "A" with "/-\
" or "V" with "\/". One of the �rst articles
that mentioned some techniques that might
be used for detecting these constructed errors
in spam emails was Ahmed and Mithun [12].
For example, they remove almost all non-alpha
characters and replace consecutive repeated
characters by a single character. Then they
apply a phonetic algorithm to see whether the

resulting string is acceptable.

The unicode charset is used on a global scale
and contains most of the letters used in di�erent
languages. Unicode is used because of the needs
to have one charset when communicating with
people around the world, so that an "s" in one
charset would not be confused with an "e" in
another charset. Although this is smart, it
makes spam even harder to catch because it
is easier to obfuscate emails with unicode. A
cyrillic v (U+FF56) can be used to replace the
latin v (U+0076), and the cyrillic i (U+0456)
can be used to replace the latin i (U+0069)
in "Viagra" to get a technically di�erent but
identically the same for the eye. Liu and
Stamm [13] consider the �ghting of spam that
is obfuscated using the unicode charset.

3 Methods of Obfuscation

This section explains the ideas behind the three
obfuscation methods unicode, scrambling and
misspelling in details.

3.1 Unicode Obfuscation

As mentioned in 2.3 unicode obfuscation is a
method for spammers to obfuscate emails in
order to bypass spam�lters. The unicode stan-
dard has about 100000 di�erent characters that
all have a di�erent code. Although each char-
acter has a di�erent code to represent it, some
of them look very similar. This means that
spammers can spell known blacklisted words
in other ways to overcome the problem. An
example is how Cockerham shows how Viagra
can be spelled in 600,426,974,379,824,381,952
ways with use of unicode obfuscation [14].

3.2 Obfuscation by Scrambling

Scrambling is a technique used to distort words
in a special way so that they still can be
read. The technique is to keep the position
of the �rst and last character of a word, but
randomly change the position of the characters
in between [15]. This means that the same

4

4 IMPLEMENTATION

characters, and the same amount of characters,
are present in the obfuscated word. A known
example by many is this sentence which uses
scrambling:

"Aoccdrnig to a rscheearch1 at an Elingsh
uinervtisy, it deosn't mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoetnt tihng
is taht frist and lsat ltteer is at the rghit pclae.
The rset can be a toatl mses and you can sitll
raed it wouthit porbelm. Tihs is bcuseae we do
not raed ervey lteter by it slef but the wrod as
a wlohe. ceehiro."

This sentence was passed around as a chainmes-
sage on emails and instant messaging program
like messenger for a long period [16].

3.3 Intentional Misspelling

A popular way to bypass anti spam tools is
to obfuscate through intentional misspelling.
As previously mentioned, rule based anti spam
tools generate rules based on emails marked
as spam. The spam �lter will look through
the spam emails and look for common denom-
inators, creating rules that enable the spam
�lter to recognize the common denominators.
These rules will often describe the presence of
certain words (spam words) due to the fact
that the recipient will typically receive multi-
ple spam emails with the same intention, for
instance advertising some product. Spammers
take advantage of the fact that the spam �lters
depend on the words described in the rules
being spelled correct. If this is not the case
the spam �lters will not recognize them.

By misspelling spam words intentionally, the
spam �lters will not recognize them and there
will be less chance the email will be marked
as spam and thereby end in the inbox of the
recipient. Even though the spam word is
unrecognizable to the spam �lter, the human
mind will still perceive the meaning of it since
it automatically translates it to the correct
word. Thereby the spammer succeeds in his

1Notice however that this word does not keep the

de�nition of scrabling since it adds extra character

goal; bypassing spam �lters and delivers his
message to the recipient.

4 Implementation

In this section we will go through the implemen-
tation of each of our deobfuscation methods.
We will show important areas of the implemen-
tation in simpli�ed C# code in order to keep
a certain level of abstraction. First we will
explain how our unicode deobfuscation is im-
plemented, followed by scramling deobfuscation
and at last our misspell deobfuscation.

4.1 Overview

Figure 1 illustrates the �ow of the email systems
and shows where in the email architecture our
system should be placed. The email is �rst
collected by the Mail Transfer Agent from the
SMTP server. Before the email is passed on
to SpamAssassin, it is being examined by each
of our deobfuscation techniques. SpamAssassin
then declares the email being either spam or
ham. If the email is declared as ham it is parsed
on to the Local Delivery Agent that has the
responsibility to send the email to the correct
inbox. If it is declared as spam it is parsed to
the Junk Mail Processor that takes care of spam
email.

The implemented system is written in the C#
language that is based on the .Net 3.5 Frame-
work. The system is written in object oriented
manner. The total system, along with auto
generated GUI2 code, consists of 2357 lines of
code. The source-code along with precompiled
binaries are attached on the DVD. Screenshot
of the GUI is added in the appendix.

4.2 UnicodeFactory

Our unicodeFactory class got two main pur-
poses; to obfuscate and deobfuscate emails
regarding unicode.

2Graphical User Interface.

5

4 IMPLEMENTATION

Figure 1: Illistration of the system implementation.

Unicode Deobfuscation

In order to implement our unicode deobfusca-
tion we need a list of which characters that are
alike. We use a list called UC-Simlist [17] which
is a list that is generated by a formula that
checks how similar each character is visually.
In Figure 2, a small section of the UC-simlist
is shown. Each line represent a character
and which similar matches there are for that
character. The �rst four numbers in each line
is the given character in hexadecimal, and the
following text is each character that matches.
An example is the character 0043(C), which
got a 1:1 match with the hexadecimal character
0421, which is what 1:0421:C means in the UC-
simlist.

Figure 2: Example of the UC-Simlist

To search an email for these similar characters
we �rst construct an index where the key is
each similar character in the UC-simlist and
the value is the real unicode character. Listing
1 shows how we replace each similar character
and return the email afterwards.

1

2 foreach (char c in blacklistedWord)

3 {

4 char value;

5 if(index.TryGetValue(c, out value)

6 blacklistedWord = blacklistedWord.

replace(c, value);

7 }

8 return blacklistedWord;

Listing 1: Simpli�ed C# code for the Unicode
deobfuscation.

Unicode Obfuscation

To obfuscate emails with unicode, we again use
the UC-Simlist to see what characters that are
alike. For each character in the email we chose a
random visual similar character from the UC-
Simlist and replace it with that. We only do
this for blacklisted words because there is no
reason to obfuscate others.

4.3 ScramblingFactory

The ScramblingFactory class contains methods
to deobfuscate and obfuscate words by scram-
bling.

6

4 IMPLEMENTATION

Scrambling Deobfuscation

To check an email for scrambling we search
through each word in it, so with regular ex-
pressions we parse the email to get a clean
list of words only. In order to know how a
scrambled word should be spelled, we need a
blacklist that contains the most common spam
words. In Listing 2, the �rst foreach loop goes
through each word in the blacklist and the
second foreach loop go through each word in
the email. The �rst check is if the two words
are of same lengths, if they are not there is no
reason to make further checks. Then we check
if each character in the scrambled word in the
email is contained in the blacklisted word. If
all the characters are contained we replace the
word in the email with the blacklisted word.

1

2 foreach (string blackListedWord in
arrayBlackList)

3 {

4 foreach (Match wordInMail in wordsInMail)

5 {

6 if(wordInMail.Length == blackListedWord.

Length)

7 {

8 if(wordInMail.ContainsAllCharsIn(
blackListedWord))

9 theMail = theMail.Replace(wordInMail

.ToString(), blackListedWord);

10 }

11 }

12 }

13 return theMail;

Listing 2: Simpli�ed C# code for the
deobfuscation of Scrambling.

Scrambling Obfuscation

To obfuscate the email using scrambling, we
again use regular expression to get each word
easily parsed. We then make sure the �rst and
last character of each word stays �rst and last.
The characters in between are then mixed up
using a random generator so that it is di�erent
from the original word.

4.4 MisspellFactory

This section describes both the deobfuscation
and obfuscation techniques of the misspell class
MisspellFactory. Note |string | is not the normal
length notation, but instead a notion for a
gram, e.g., |bf | dedicates the gram bf and not
the length of bf. As substitution we use the
notion string .Length to denote the length of the
string, e.g., hello.Length = 5.

Deobfuscation

The implementation of the misspelling
deobfuscation tool is based on an n-gram
technique developed in an earlier project.
Gram division is a technique that divides
a string into a number of substrings of
n characters. For instance the string
"obfuscation" would correspond to the
following set of substrings assuming that n=2

|ob| ; |bf | ; |fu| ; |us| ; |sc| ; |ca| ; |at | ; |ti | ; |io| ; |on|
which means a resulting set of
string.Length − n + 1 grams, where each
subsequent gram shares a common character.
The algorithm that is used to deobfuscate
intentional misspellings builds on an idea of
dividing a misspelled string into a set of grams
of n size, and create groupings of these grams
based on how well they match string that is
given as input - more on this later.

Indexing Algorithm

The process starts by taking the content of the
email as input, represented as a list of strings
where each string is a word from the content of
the email. Each string in the list is then split
into grams of size n by sending them through
the buildIndex() method - see Listing 3

1 Input:

2 N - size of gram

3 M - a list of all words in the email

4

5 Output:

6 index - hashtable representing the index

7

8 Dictionary index;

9 foreach(word S in M){

10 position := 0

7

4 IMPLEMENTATION

11 while(position < S.Length-(N-1)){

12 Add characters from position counter to

position+N as key and wordID and

position as value to the index.

13 position := position + 1

14 }

15 }

16 return index;

Listing 3: Simpli�ed C# code for the indexing
algorithm.

Each word in the email is split into grams and
for each unique gram an entry in a hashtable
is created with the characters representing the
gram itself as key, and its position and wordID
as value.

Figure 3 shows an example of the hashlist cre-

Figure 3: Example of indexed email

ated by buildIndex() where M = (hey,there)
and N = 2. Notice how the gram |he| is present
in both the string "hey" and "there", so it has
multiple values though with di�erent wordID
and position. The Node object, represents a
gram.
Now that the indexing is done it is time to take
a look on the actual search algorithm.

Search Algorithm

Now that the indexing is in order lets have
a look on the actual search algorithm. We
demonstrate the algorithm by showing an ex-
ample of how functions. Figure 4 illustrates
the process. For simplicity, we start by looking
at only one word in the index; we will later
expand to multiple words. Let us denote the in-
dexed word windex and the query word wquery .
Speci�cally, assume that the we have already

indexed the word "reference", with a gram size
of 2. This gives us the following index: re, pos:
0; ef, pos: 1; �, pos: 2; fe, pos: 3; er, pos: 4; re,
pos: 5; en, pos: 6; nc, pos: 7, ce, pos: 8. We
let wquery be the word "reference". The �rst
thing that happens is that we extract the �rst
gram from wquery , in this case |re|, and note its
position in the word being position 0. We look
up in the index to determine whether there are
any identical grams, and we �nd that there are
actually two grams that are equal to |re|. Now
let us look at the �rst |re| gram. We compare
the position di�erence, pdiff between the gram
from wquery and the gram we are looking at
from the index. Both grams have position 0, so
pdiff = indexgram.pos − querygram.pos = 0.

Since this is the �rst occurrence where the po-
sition di�erence pdiff is 0, we create a "position
group" with the name "0". We also assign one
point to this position group. We now look at
the second |re| gram from the index and �nd
that the pdiff is 5. This is the �rst occurrence
of pdiff = 5, so we create a new position group
with the name "5" and assign one point to it.

Moving on to the next gram from wquery , we
�nd the gram |ef | in position 1 in wquery . We
look for equal grams in the index and �nd one
occurrence whose position is also 1; therefore,
pdiff = 0, and yet another point is assigned to
position group "0" that now has two points.
The next gram in wquery is |fe|. One occurrence
of |fe| is present in the index with position 3;
because the position of |fe| in wquery is 2, we
get a pdiff of 1. Now one might think it is time
to create a new position group since this is the
�rst occurrence of pdiff = 1, but we introduce
instead the feature "threshold" that describes
by how many positions a gram is allowed to
di�er between the indexed word and the query
word. Let us say that the threshold in this
example is 1. We saw that the gram |fe| had a
pdiff of 1, so we check whether a position group
exists within a range of 1 from 1 (either 0 or 2),
and we notice that a position group 0 is active.
So instead, we add another point to position
group 0.

This process is continued until the last gram

8

4 IMPLEMENTATION

in wquery has been examined. The created
position groups are then returned, and the
number of points of the leading position group
is used to evaluate whether the query word
should be replaced with the indexed word or
not. In this case, the leading position group is
0 and has 8 points. This means that the index
word has 8 grams that follow the order from the
query word, with a character position di�erence
allowance of 1. The total number of grams of
the indexed word is reference.Length − n + 1 =
10 − 2 + 1 = 9. Because 8 grams are close
to 9 grams, we substitute the query word with
the indexed word. If the number of grams in
the indexed word would have been larger, a
substitution would not have happened, since
this would indicate that only a substring of the
query word matches the index word.
The full example is shown in Figure 4.

Figure 4: Example of the misspell searching
algorithm. Gram-size = 2, t (threshold) =
1, indexed word = "re�erence", query word =
"reference"

As mentioned this example does only cover
the occurrence of one word in the index. Our
system obviously needs to handle multiple
words since an email consists of multiple
words. We handle multiple words in the index

by assigning a wordID, that points to the
speci�c word in the email, to each gram in
the index. When we create position groups we
make sure that they are each associated with a
word from the email.

In the implementation we handle this situation
by maintaining multiple hashtables. We
maintain a hashtable that takes a position
di�erence as key (this is the name of the
position group) and it returns a new hashtable
that takes a wordID as key. The returning
value is the position group of the speci�c
wordID. The search algorithm in simpli�ed
C# code can be seen in listing 4.

The algorithm starts by extracting the �rst
gram in the query word (lines 11-12). It then
extracts entries in the index that matches the
query gram (line 13). For each of the matching
grams, the position di�erence is calculated (line
14). We check whether a position group is
active for the speci�c position di�erence on
the word of the actual gram (lines 15-16). If
this is the case, we add another point to the
position group (line 19). If it is not the case
we jump to line 22, where we create a new
position group and add it to all the position
di�erences that are within threshold range of
the position group(line 23-28). The process
continues until all grams from the query word
have been examined.

1 Input:

2 Q - query word.

3 N - size of gram.

4 INDEX - The song database indexed with N.

5 T - threshold

6 Output:

7 Created Position Groups.

8

9 querypos:= 0

10 songlist := empty

11 while(querypos < querysong.length - N-1){

12 querysubstring := characters from position

querypos to querypos+N

13 foreach(gram g in INDEX that is equal to

querysubstring){

14 positiongroup := g.counter - querypos

15 tmpgrouplist := all groups from

grouplist with positiongroup and

9

5 PERFORMANCE STUDIES

same wordid as g

16 if(tmpgrouplist is not empty){

17 foreach word w in tmpgrouplist

18 if querypos != w.querypos

19 give w.word one more point

20 w.querypos = querypos

21 }

22 else{
23 tcounter := -1 * T

24 groupobject group

25 group.points = 1

26 while(tcounter <= T){

27 add group(wordid,positiongroup+

tcounter and querypos) to

grouplist

28 T := T + 1

29 }

30 }

31 }

32 querypos := querypos + 1

33 }

34 return position groups

Listing 4: Simpli�ed C# code for the searching
algorithm.

Obfuscation

The obfuscation method picks a random po-
sition in the input word that is supposed to
be obfuscated. It inserts the special char-
acter "*" at this position. The rest of the
string is untouched. An example could be the
word "replica" being obfuscated to the word
"re*plica". Note that the method ensures that
the random position cannot be position 0 or
the last position of the word, since this would
leave the original word unchanged, e.g *replica
or replica*.

5 Performance Studies

5.1 Test settings

In order to measure how well the system per-
forms a proper test platform is needed. We take
use of the anti-spam �lter called "SpamAssas-
sin". SpamAssassin determines a score of how
likely a mail is spam. This is done by examining
all content of the mail and matching it to a set
of rules. Each rule in the ruleset adds a certain

value to the score based on how large an impact
the speci�c rule is considered. SpamAssassin
is rather slow though, so to optimize its per-
formance in order to do test on bulks of data
we take use of the tool called SpamD. SpamD
is an optimized interface to SpamAssassin that
makes bulk operations much faster, however the
score of the individual emails will not change.
SpamAssassin is a Bayesian-based spam �lter
that enables it to create new rules by feeding
it with emails known to be classi�ed as spam.
SpamAssassin employs a technique of using
distributed lists of webpages that are known
to have a connection to spam. If any of these
webpages are shown the mail, SpamAssassin
will add a high value to the �nal score. We
disable this feature in order to focus on the
methods our system aims to solve. In order
to determine how the system performs tests
are performed on each module of the system;
the unicode module, the scrambling module
and the misspelling module. The tests are
performed by giving SpamAssassin a bulk of
obfuscated emails. We obfuscate the emails
with each of previously described obfuscation
types, and measures the score from SpamAs-
sassin. Then the deobfuscation techniques are
applied to the bulk of emails and they are
used once again as input to SpamAssassin.
Now the scores of each mail, obfuscated and
deobfuscated, are compared in order to evaluate
how big an in�uence the modules have. In order
to evaluate only on what is relevant to us we
have disabled all online checks e.g. ban-lists
of relay IPs or blacklisted URLs listed in the
email.
In order to make these tests we got 7500 spam
emails, all from the same inbox [18]. We know
that all of these emails are spam because of the
way they have been collected. They have been
gathered by posting the speci�c email address
across forums and other public places on the
Internet so that the spammer's crawlers3 can
get the email address.

3An application that scan homepages, in this case

for email addresses

10

5 PERFORMANCE STUDIES

5.2 Speci�c Example

Before doing tests on hundreds of emails we
want to see what output SpamAssassin gives
us on a speci�c spam email. First we give
SpamAssassin a unicode obfuscated spam
email and see what rules it trigger. Then
we deobfuscate the spam email and see what
rules it then triggers. The obfuscated email
should of course have a lower score than the
deobfuscated email. The actual emails can be
seen appendix A.

Rules triggered by obfuscated email:

� 2.6 INVALID_MSGID Message-Id is not
valid, according to RFC 2822

Rules triggered by deobfuscated email:

� 1.2 FS_REPLICA Subject says "replica"

� 3.8 FS_REPLICAWATCH Subject says
Replica watch

� 3.4 REPLICA_WATCH BODY: Message
talks about a replica watch

� 2.6 INVALID_MSGID Message-Id is not
valid, according to RFC 2822

As shown on the two examples, when we deob-
fuscate an email SpamAssassin gives it a much
higher score. The obfuscated email has a score
of 2.6 whereas the deobfuscated email has a
score of 11. This means that this speci�c email
would go from spam to spam if the standard
threshold of SpamAssassin is used which is 5
point. In this example the spam email is about
replica watches which of course gives a high
score. But when it is obfuscated, SpamAssassin
is not able to �nd these words which results in
this spam becoming ham.
Speci�c examples for each obfuscation/deobfus-
cation method can be found in the Appendix.

5.3 Unicode Test

This test measures how well the unicode imple-
mentation performs. For this test we selected
150 spam emails from the set of 7500 spam
emails which at least contain one word that

we know would trigger a rule in SpamAssassin.
This could be words as viagra, replicate or
penis. We search through each email, replac-
ing words from the blacklist, with obfuscated
representations of them. A unicode obfuscated
email is shown in Figure 11. When we do
this SpamAssassin should very likely calculate
a lower score to the spam mail which means
less chances of being marked as ham. We
pass each obfuscated email to SpamAssassin
and calculate their score. Afterward each email
is deobfuscated with our system. A unicode
deobfuscated email is shown in Figure 12. On
Figure 5 the red area represent scores of the
deobfuscated email and the blue area represent
the score increase the unicode deobfuscation
system a�ect. The x-axis represent each email
and the y-axis represent the score SpamAssas-
sin assign to the email. At average the uni-
code deobfuscation module increase the score
assigned to each spam mail by 2.9, which is an
increase of 56.3% compared to the average score
from the obfuscated emails.

5.4 Scrambling Test

The scrambling test is performed on exactly the
same set of spam emails as the unicode test
was. The di�erence is we use our scrambling
obfuscation technique to scramble the words
appearing both in the blacklist and the email.
Theoretically we should get the same result in
this test as we did in the unicode test since
the same content of the emails is obfuscated.
At average with our scrambling deobfuscation
program we can increase the score assigned to
each spam email with 2.9 points, which is an
increase of 56.3% compared to the average score
from the obfuscated emails. Notice how this
result is the exact same as the unicode �lter.
This indicates that both �lters obfuscates and
deobfuscates the same words equally e�ective.

5.5 Misspell Test

Misspell obfuscation is done by adding an
extra character to each word de�ned in the
blacklist. For instance the word "replica" will
be obfuscated as "repl*ica". Easy to per-
ceive to human beings, however unrecognizable

11

5 PERFORMANCE STUDIES

Figure 5: Illustration of score di�erence between obfuscated and deobfuscated spam emails.

Figure 6: Illiustration of score di�erence between scrambling deobfuscated and obfuscated spam
emails

to SpamAssassin. The same dataset is used
as in previous tests. Increase in score from
obfuscation to deobfuscation proof that the
misspelling algorithm corrects the obfuscated
word into the original intented word. This
enables SpamAssassin to recognize it, and adds
a proper rule from its rule base. In average
the score is increased by 2.7 which corresponds
to an increase of 51.8% percent compared to

the average obfuscated score. The misspelling
module does only obfuscate the words that
is present in the blacklist, which means some
words might trigger a rule in SpamAssassin but
it might not be present in the blacklist.
In the previous project where we proposed the
algorithm described in 4 we aimed to achieve
high performance since this was the major
purpose of the algorithm. We showed that

12

5 PERFORMANCE STUDIES

Figure 7: Illiustration of score di�erence between misspell deobfuscated and obfuscated spam
emails.

changing the parameters in the algorithm had
great in�uence on performance in a manner
of both correctness and processing time. In-
creasing the gram size n causes faster, but also
less accurate, searches. A gram-size of three
was suggested to achieve fast, yet still quite
accurate, results. In this project, we use two as
gram size, since the indexes are generated from
each word consisting in an email. This gives us
indexes with much less entries, so changing the
gram-size to two gives us more accurate results
in a decent time.

5.6 WordAdjust vs Unicode

project

The previous three module tests shows that
all the modules have an impact on the score
evaluated by SpamAssassin. These tests, how-
ever,are individually. The unicode �lter is
as previously mentioned implemented as done
by [13]. It would be natural to measure how big
a di�erence the three modules combined causes
in contrast to the unicode �lter alone. This
re�ects the scenario where a spammer takes use
of both unicode and scrambling obfuscation.
The test is performed by collecting SpamAs-
sassin scores based on a set of emails that have
been both unicode and scrambling obfuscated.

The emails are then unicode deobfuscated and
SpamAssassin scores are collected. This re�ects
how well the project proposed in [13] per-
forms when spammers takes use of scrambling
as additional obfuscation. Then scrambling
deobfuscation is applied in order to evaluate
how well our system performs in contrast.
Unicode deobfuscation should not theoretically
have any e�ect at all on a email that have been
both unicode and scrambling obfuscated. The
�rst bar shows the average SpamAssassin score
given to the emails added both unicode and
scrambling obfuscation. Second bar shows the
average score given after parsing the obfuscated
emails through the unicode deobfuscation mod-
ule. Notice how the average score is exactly
equal to the obfuscated average. This shows
that the unicode deobfuscation separately has
no impact on the result. The third bar shows
how the average score increases greatly when
scrambling deobfuscation is applied along with
unicode deobfuscation.

The results are unsurprisingly almost identical
when we combine the unicode and misspelling
techniques so we omit these graphs.

The reason we do not obfuscate with all three
obfuscation techniques subsequentially, is due

13

5 PERFORMANCE STUDIES

Figure 8: Illustration of the WordAdjust test. The �rst bar shows the average score of the
obfuscated email. The second bar shows the average score of the unicode deobfuscated email.
The third bar shows the average score of the unicode and scrambling deobfuscated email.

to the fact that the obfuscated words gets more
or less unreadable. Our system will not be able
to deobfuscate them either since adding extra
characters by misspelling will disable the func-
tionality of the scrambling deobfuscation. And
if the words are still scrambled the misspelling
deobfuscation will not have high chances of
deobfuscating it, since it somewhat depends on
correct order of the characters in the word.

5.7 Deobfuscation without obfus-

cation

The previous four tests measures the e�ective-
ness of our system by assuring that the emails
it is tested on were obfuscated. To measure
how big an improvement our system causes to
the number of spam emails that passes through
SpamAssassin, even though being spam, we
extract 100 emails that SpamAssassin evaluates
a score lower than �ve. These emails will pass
through SpamAssassin and end in the inbox
of the recipient, since SpamAssassin by default
marks emails as spam with a score higher than
�ve. The score of these emails can be seen in
Figure 9.
By applying unicode, scrambling and misspell
deobfuscation to these emails an increase in

score should be happening to emails that con-
tains obfuscated words. The number of emails
that exceed a score of �ve is the number of
emails that our system prevents from ending at
the receiver. As Figure 10 shows a total number
of ten emails increased its score to above �ve.
This corresponds to a decrease in spam emails
that slips through SpamAssassin by 10%. We
did this test on three independent sets of spam
emails, each test consisting of 100 spam emails.
As just shown, the �rst test decreaced spam
emails by 10%, second test by 8% and third test
by 12%. We choose only to show test results
from our �rst test because the others were very
similar in results.

5.8 Performance Conclusion

After testing all our deobfuscation methods
we conclude that for certain set of emails we
can greatly improve the results of SpamAssas-
sin. Even though SpamAssassin is a bayesian
system which do a lot heuristic tests it still
lacks the ability to handle word obfuscation
as unicode, scrambling or by intentionally mis-
spelling. As our unicode, scrambling and mis-
spelling tests shows we can increase at average
the score on obfuscated spam email by about

14

5 PERFORMANCE STUDIES

Figure 9: Illustration of 100 randomly picked spam emails with a score below 5, which means
SpamAssassin wrongly marks these emails as ham.

Figure 10: Illustration of the 100 randomly picked spam emails after WordAdjust have been
applied. The score of 10% of the emails have risen to above 5 and will therefore be declared as
spam by SpamAssassin.

15

REFERENCES

56%. Unfortunately we additionally have to
conclude that our system is not capable of
deobfuscating words that have been obfuscated
by both scrambling and misspelling. The deob-
fuscation without obfuscation test shows that
we can remove approximately 10% of the spam
emails that slips through SpamAssassin.

6 Conclusion

In this project we aimed to create a system with
a purpose to increase e�ciency on existing anti-
spam tools. The problem consisted in spam-
mers taking the advantage of anti-spam tools
lack of ability to recognize distorted emails. We
aimed to solve these three obfuscation tech-
niques within the area of obfuscation: unicode,
scrambling and misspell obfuscation.
We solved the unicode obfuscation problem
by implementing an idea already proposed
by [13]. We shown by test that unicode
obfuscation is capable of dramatically
decreasing the e�ciency of the anti-spam
tool SpamAssassin. We showed in Section
5.3 that parsing the unicode obfuscated email
through unicode deobfuscation algorithm
on average increased the score given by
SpamAssassin by 56%. However, if the email
is additionally obfuscated by the technique of
either scrambling or misspelling obfuscation,
the unicode deobfuscation obviously has no
e�ect. This claim is supported by performance
test 5.6. We additionally showed that our
system in average is able to catch 10% of the
spam emails that normally parses through
SpamAssassin.

But if we apply our scrambling/misspelling
deobfuscation to an email obfuscated by these
techniques our performance studies show that
close to all obfuscated words get translated
to the correct word, thereby increasing the
resulting score from SpamAssassin. This sup-
port our claim that if a email is obfuscated
by unicode combined with scrambling/misspell
obfuscation, our system corrects the obfuscated
words into the correct spelling. This enables
SpamAssassin to assign a higher, and correct,

score to the email thereby increasing the chance
of correctly marking the email as spam. This
enables us to conclude that using our system
will generally decrease the number of spam
mails that slips through SpamAssassin.

7 Future Work

Our system deobfuscate unicode/scram-
bling/misspell, but a common problem which
we discovered while benchmarking our system
were another way spammers distort emails.
The technique is to omit spaces between
words and capitalize the beginning character
of each word. An example of this could
be:"buyCheapWatchesHere". As the example
shows it is easy for humans to read this text,
but spam �lters as SpamAssassin do not read
this as spam. It would be interesting to �nd a
way to eliminate the problem with scrambled
and misspelled words together aswell.

WordAdjust is a generic frontend so seen from
realization point of view, it is a potential
addition to more spam�lters than just
SpamAssassin. It is easy to implement, since it
is a frontend, and need therefore no interaction
with the the spam�lter.

References

[1] D. Fallows. How women and men use the
internet. Pew Internet and American Life

Project, 2005. http://www.pewinternet.
org/pdfs/PIP_Women_and_Men_online.pdf
Checked: 9'th of June, 2008

[2] B. Laurie and R. Clayton. Proof-of-
work proves not to work. In The

Third Annual Workshop on Economics

and Information Security, May 2004.,
2004. http://www.dtc.umn.edu/weis2004/
clayton.pdf Checked: 9'th of June, 2008

[3] ACMqueue.com. Dns - although it
contains just a few simple rules, dns
has grown into an enormously complex
system. Network and Distributed System

Security Symposium, page 29, 2007.

16

http://www.pewinternet.org/pdfs/PIP_Women_and_Men_online.pdf
http://www.pewinternet.org/pdfs/PIP_Women_and_Men_online.pdf
http://www.dtc.umn.edu/weis2004/clayton.pdf
http://www.dtc.umn.edu/weis2004/clayton.pdf

REFERENCES

http://mags.acm.org/queue/20080102/
?u1=texterity Checked: 9'th of June,
2008

[4] Whitelist - wikipedia http:
//en.wikipedia.org/wiki/Whitelist.
Checked: 9'th of June, 2008

[5] A. Khorsi. An overview of content-
based spam �ltering techniques.
Informatica 31, pages 269�277, May 2007.
http://www.informatica.si/PDF/31-3/12_
Khorsi-AnOverviewofContent-BasedSpam.
..pdf Checked: 9'th of June, 2008

[6] J. Ioannidis. Fighting spam by
encapsulating policy in email addresses.
Network and Distributed System

Security Symposium, pages 17�24, 2003.
"http://www.isoc.org/isoc/conferences/
ndss/03/proceedings/papers/1.pdf"
Checked: 9'th of June, 2008

[7] Mauro Andreolini, Alessandro Bulgarelli,
Michele Colajanni, and Francesca Maz-
zoni. Honeyspam: honeypots �ghting
spam at the source. In SRUTI'05: Pro-

ceedings of the Steps to Reducing Un-

wanted Tra�c on the Internet on Steps

to Reducing Unwanted Tra�c on the In-

ternet Workshop, pages 11�11, Berke-
ley, CA, USA, 2005. USENIX Associ-
ation. "http://www.usenix.org/events/
sruti05/tech/andreolini.html" Checked:
9'th of June, 2008

[8] N. Jindal, B. Liu. Review spam de-
tection. WWW 2007, pages 1189�1190,
May 2007. "http://www2007.org/posters/
poster930.pdf" Checked: 9'th of June,
2008

[9] The apache spamassassin project - the
powerful number 1 open-source spam �l-
ter. The o�cial homepage of Anti-Spam
tool SpamAssassin. http://spamassassin.
apache.org/. Checked: 9'th of June, 2008

[10] Spam �lter for outlook and express, win-
dows mail and servers. The o�cial home-
page of Anti-Spam tool Spam�ghter. http:
//www.spamfighter.com/ Checked: 9'th of
June, 2008

[11] Razor - spam should not be propagated
beyond necessity. The o�cial homepage
of Anti-Spam tool Razor. http://razor.
sourceforge.net/. Checked: 9'th of June,
2008

[12] S. Ahmed, F. Mithun. Word stem-
ming to enhance spam �ltering. In
the Conference on Email and Anti-Spam,
2004. http://www.ceas.cc/papers-2004/
167.pdf Checked: 9'th of June, 2008

[13] Changwei Liu and Sid Stamm. Fighting
unicode-obfuscated spam. In eCrime

'07: Proceedings of the anti-phishing

working groups 2nd annual eCrime

researchers summit, pages 45�59,
New York, NY, USA, 2007. ACM.
http://apwg.org/ecrimeresearch/2007/
proceedings/p45_liu.pdf Checked: 9'th
of June, 2008

[14] R. Cockerham. Di�erent ways to spell
viagra. http://cockeyed.com/lessons/
viagra/viagra.html. Checked: 9'th of
June, 2008

[15] R. Shillcock, P. Monaghan. An anatomical
perspective on sublexical units: The
in�uence of the split fovea. 2003.
"http://www-users.york.ac.uk/~pjm21/
papers/LCP.pdf" Checked: 9'th of June,
2008

[16] Can you raed tihs? http://www.snopes.
com/language/apocryph/cambridge.asp.
Checked: 9'th of June, 2008

[17] A. Y. Fu, X. Deng, W. Liu, G. Lit-
tle. The Methodology and an Applica-
tion to Fight Against Unicode Attacks.
Proceedings of the Second Symposium,
2006. http://cups.cs.cmu.edu/soups/
2006/proceedings/p91_fu.pdf Checked:
9'th of June, 2008

[18] B. Guenter. Spam archive. We use the
spam archive from march 2008. http:
//untroubled.org/spam/ Checked: 9'th of
June, 2008

17

http://mags.acm.org/queue/20080102/?u1=texterity
http://mags.acm.org/queue/20080102/?u1=texterity
http://en.wikipedia.org/wiki/Whitelist
http://en.wikipedia.org/wiki/Whitelist
http://www.informatica.si/PDF/31-3/12_Khorsi - An Overview of Content-Based Spam...pdf
http://www.informatica.si/PDF/31-3/12_Khorsi - An Overview of Content-Based Spam...pdf
http://www.informatica.si/PDF/31-3/12_Khorsi - An Overview of Content-Based Spam...pdf
"http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/1.pdf"
"http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/1.pdf"
"http://www.usenix.org/events/sruti05/tech/andreolini.html"
"http://www.usenix.org/events/sruti05/tech/andreolini.html"
"http://www2007.org/posters/poster930.pdf"
"http://www2007.org/posters/poster930.pdf"
http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://www.spamfighter.com/
http://www.spamfighter.com/
http://razor.sourceforge.net/
http://razor.sourceforge.net/
http://www.ceas.cc/papers-2004/167.pdf
http://www.ceas.cc/papers-2004/167.pdf
http://apwg.org/ecrimeresearch/2007/proceedings/p45_liu.pdf
http://apwg.org/ecrimeresearch/2007/proceedings/p45_liu.pdf
http://cockeyed.com/lessons/viagra/viagra.html
http://cockeyed.com/lessons/viagra/viagra.html
"http://www-users.york.ac.uk/~pjm21/papers/LCP.pdf"
"http://www-users.york.ac.uk/~pjm21/papers/LCP.pdf"
http://www.snopes.com/language/apocryph/cambridge.asp
http://www.snopes.com/language/apocryph/cambridge.asp
http://cups.cs.cmu.edu/soups/2006/proceedings/p91_fu.pdf
http://cups.cs.cmu.edu/soups/2006/proceedings/p91_fu.pdf
http://untroubled.org/spam/
http://untroubled.org/spam/

REFERENCES

Figure 11: Unicode Obfuscated mail

Figure 12: Unicode Deobfuscated mail

18

REFERENCES

Figure 13: Scrambling Obfuscated mail

Figure 14: Scrambling Deobfuscated mail

19

REFERENCES

Figure 15: Misspell Obfuscated mail

Figure 16: Misspell Deobfuscated mail

20

REFERENCES

Figure 17: Screenshot of the GUI of WordAdjust

21

	Introduction
	Related Work
	Spam Fighting Methods
	Spam Fighting Tools
	Fighting Obfuscated Spam Emails

	Methods of Obfuscation
	Unicode Obfuscation
	Obfuscation by Scrambling
	Intentional Misspelling

	Implementation
	Overview
	UnicodeFactory
	ScramblingFactory
	MisspellFactory

	Performance Studies
	Test settings
	Specific Example
	Unicode Test
	Scrambling Test
	Misspell Test
	WordAdjust vs Unicode project
	Deobfuscation without obfuscation
	Performance Conclusion

	Conclusion
	Future Work
	References

