
Analysis and Improvement
of a Remote System
- Case study: Agricultural Machinery -

MASTER THESIS

SSE4, Spring 2008.

Maŕıa Isabel Dı́ez del Val
Faith Oziofu Ogini Nielsen
Elisa Oteo Ovejero

Aalborg University
Department of Computer Science

Aalborg University
Department of Computer Science

TITLE:
Analysis and Improvement
of a Remote System

THEME:
Distributed Systems
and Semantics

PROJECT PERIOD:
01/02/2008 - 29/05/2008

PROJECT GROUP:
d606a

GROUP MEMBERS:
Maŕıa Isabel Dı́ez del Val
Faith Oziofu Ogini Nielsen
Elisa Oteo Ovejero

SUPERVISORS:
Alexandre David
Morten Kühnrich

NUMBER OF COPIES: 6

NUMBER OF PAGES: 94

CONCLUDED: 29/05/2008

SYNOPSIS:

The purpose of this master thesis is
to design and implement a solution
that provides access to data in a re-
mote mobile device. The remote de-
vice in this case is part of an agri-
cultural machinery and, it is able to
switch between two independent net-
works; depending on factors like avail-
ability, bandwidth or cost. We further
analyze the performance of the sys-
tem by evaluating the transferred data
from the device to another node, this
will provide us with detail knowledge
about the cost of making the transfers
over wireless mediums. Also, we eval-
uate the time spent for switching be-
tween the independent networks, and
this is further used for improving the
switching speed.

Acknowledgments

Studying abroad is always hard: a different University, a different lan-
guage, in general a different environment; that is the reason why I will be
always grateful to all those that have been supporting me from Spain, no
matter the distance and, of course, to the new people I have met in Denmark
that have shown interest in the development of this Master Thesis. To all
them, tak.

Maŕıa Isabel Dı́ez del Val

I would like to express gratitude to my entire family for their continuous love
and support throughout my study. I am also thankful to Aalborg University
for giving me the opportunity to acquire more knowledge by working with
various research projects. Finally, I would like to say a big thank you to
everyone that has supported me one way or another, I did benefit from all
the discussions, guidance and wonderful supports.

Faith Oziofu Ogini Nielsen

I would like take a moment and remember my friends in Spain who have
always been there for me, despite the distance. And also all of the wonderful
new friends I have made here in Denmark. I will never forget you. And of
course, most importantly, I want to thank my family for making it possible
for me to be here, having one of the best experiences of my life. Thank you
so much for all the love and support you have given me.

Elisa Oteo Ovejero

Finally, we all would like to thank our supervisors Alexandre David and
Morten Kühnrich for the many helpful comments made throughout this
project.

Aalborg, 29th May 2008

Summary

During this work, wireless access has been provided to a remote mobile
device. This solution allows access to both real time data and logged data
in a device that is part of an agricultural machinery.

To reach this objective, a server and database architecture was developed
for providing and controlling access to the system. Moreover, a wired and
GPRS connection was used for our implementation in order to provide In-
ternet access for the device. GPRS was chosen as the wireless base for our
implementation because it is both a wireless link and it has also provided a
means for investigating mobility with the mobile device.

Furthermore, it was chosen to develop a model that will allow connection
switch between the two links in use by the device. In this phase, different
switching combinations have been made possible.

A number of tests have been conducted for the wired and wireless links used
by the device, and results concerning data rate, bandwidth, uplink rate and
downlink rate are presented.

Based on the above developments, the results show that remote access
to data in the device is achievable, logging, compression and transfer of the
logged data from the device is also possible, as well as switching between two
contemporary networks. Moreover, considerable level of security is provided
in the system.

Contents

1 Introduction 1

1.1 The LandIT Project . 2

1.2 LYKKETRONIC . 2

1.3 Overview of last semester project 3

1.4 Goals . 3

1.5 The Embedded Computer . 4

1.6 Outline . 4

2 Software Requirements Specification 5

2.1 Scope . 5

2.2 Definitions, acronyms and abbreviations 6

2.3 Overall Description . 7

2.3.1 Product perspective 7

2.3.2 Product functions . 7

2.3.3 User characteristics . 8

2.4 Constraints . 9

2.5 Specific Requirements . 9

2.5.1 External Interfaces . 9

2.5.2 Logical database requirements 9

2.5.3 Security . 9

ix

x CONTENTS

3 Wireless Technologies 11

4 Analysis 15

4.1 The system’s from an end user’s perspective 15

4.1.1 Use - Case Diagram 15

4.1.2 Use - Case Specification for realtime access 17

4.2 Intercommunication within the system 18

4.2.1 Network analysis . 19

4.2.2 Data transmission pattern 19

4.3 Data collection/representation 20

4.3.1 Data representation using an Entity - Relationship di-
agram . 20

4.3.2 Parameters to be logged 23

4.4 Security . 23

5 Design 25

5.1 Part I: Initial Design Ideas . 25

5.1.1 A system to extract data from a CANBus network . . 25

5.1.2 A system that allows the EC to use static IP address . 26

5.1.3 Design for logging data in the EC 26

5.2 Part II: Final Chosen Design 28

5.2.1 Wireless technologies chosen 29

5.2.2 Why System Access Via an ACS 29

5.2.3 Details of the inner components of the architecture . . 31

5.2.4 Final Design for Logging data in the EC 32

5.2.5 Design to switch between WIFI and GPRS in the EC 34

5.2.6 Relational data model design at the ACS 36

5.2.7 Security Design . 38

CONTENTS xi

6 Implementation 41

6.1 Database Implementation . 42

6.2 Intercommunication . 44

6.2.1 Log, compression and transfer from the EC 45

6.2.2 Connection switch in the EC 48

6.2.3 Web Applications . 50

6.2.4 System Security . 53

6.3 Implementation problems and suggested solutions 54

6.3.1 WIFI dongle installation: 54

6.3.2 Shared memory access from Apache Web Server . . . 55

6.4 System Configuration . 56

6.4.1 ACS configuration . 56

6.4.2 EC configuration . 57

7 Tests and performance results 59

7.1 Test approach . 60

7.2 The Test Setup . 61

7.3 Test cases . 62

7.3.1 Test Case I: System Startup 62

7.3.2 Test Case II: Connection Switch 66

7.3.3 Test Case III: Logs . 68

7.3.4 Test Case IV: Viewing a job in the EC 69

7.4 Performance Study . 72

7.5 Data transfer costs . 73

8 User Guide 77

8.1 System setup . 77

8.2 How to operate the system 78

xii CONTENTS

8.2.1 Superuser . 82

8.2.2 Technician . 86

8.2.3 Farmer . 87

8.2.4 Worker . 87

9 Conclusion and Future Work 89

9.1 Main improvements in the present project 90

9.2 Future work . 91

A Details about the Embedded Computer 95

A.1 Hardware - Level Description 95

A.2 Software - Level Description 96

A.3 Human Machine Interface (HMI) 96

A.4 Examples of data to be logged in the EC 98

B Scripts’ source listings 99

B.1 Programs and configuration files on the EC 99

B.1.1 wvdial.conf . 99

B.1.2 SshTools.py . 100

B.1.3 info.conf . 101

B.1.4 connectionswitch.py 102

B.1.5 ConnectionTools.py 106

B.1.6 launchall.py . 109

B.1.7 wirewatchdog.py . 110

B.1.8 configuration.h . 112

B.1.9 main.c 7→ Executable: getValues 113

B.1.10 sftpdialogue.sh . 114

B.1.11 logging.c . 115

CONTENTS xiii

B.1.12 sudoers . 123

B.2 Programs and configuration files located on the ACS 124

B.2.1 porttesting.py . 124

B.2.2 storingMySQL.c . 126

B.2.3 xml2mysql.php . 129

B.2.4 login.php (obfuscated version) 131

xiv CONTENTS

Chapter 1

Introduction

Today’s agricultural practices require improved productivity and efficiency.
A farmer’s ability to save time and cut costs is essential in order to be able
to compete in both the local and global market. Existing wired communica-
tion technology cannot yet meet all the needs of getting communication and
information at anytime and anywhere. However, the integration of the Inter-
net and wireless communication techniques make many applications change
from ideal to reality, such as remote monitoring and maintenance services.
We have seized this opportunity to implement a system that allows remote
access to data in an embedded computer that is part of a farm tractor.

Although embedded systems were usually considered dedicated devices,
they have capabilities which make them able to perform different tasks;
furthermore, they have communication abilities that can guarantee the pos-
sibility of remote control, supervision and management. Nowadays, the
trend in this sort of applications is to use a distributed architecture, since
the advancement and spread of Internet technologies allow that electronic
devices and systems can be connected together. This eases access to them
by using web browsers, and it also makes it possible to exploit other tasks,
such as automated control/monitoring, reporting and setting up of a device
remotely by simply pressing a button.

This project is centered around all these ideas and also in switching
between the communication channels in use by the embedded computer,
and ensuring security in the entire system.

1

2 CHAPTER 1. INTRODUCTION

1.1 The LandIT Project

Our work is within the frame of the LandIT project, that is an industrial
collaboration with AAU (Aalborg University). It is aimed to build technolo-
gies for communication and data integration between farming devices and
other farming-related IT systems, both for operational and business intelli-
gence purposes. Tekkva Consult is the project coordinator and the partners
are [2]:

• Center for Embedded Software Systems (CISS)

• Skov Inc. (Climate Control for Stables)

• LYKKETRONIC Inc. (Devices for control and monitoring of field
machines)

• The Federation of Contractors

• The Danish Agricultural Advisory Service

Our project is going to be specially designed for LYKKETRONIC.

1.2 LYKKETRONIC

The company LYKKETRONIC, which was founded in 1978, develop manu-
facture and implement electronic measuring, monitoring and control systems
for tractors and machineries used for agriculture and forestry. The main goal
of LYKKETRONIC is to provide customers within the sector of agriculture
and forestry with machineries and technologies to help increase efficiency in
their field work [16].

This company has provided us with an Embedded Computer(EC) which
is part of a tractor system. The tractor consists of several sensory units;
data from the different units concerning the activities of the tractor are sent
through the system’s BUS to the EC. The model of the EC is MICROSPACE-
PCX48 made by the Swiss company DIGITAL-LOGIC. It is a protected in-
dustrial PC for in-vehicle computing and it is compatible with any standard
PC and runs with common operating systems, such as Windows and Linux
[1]

Currently, accessing and updating of data in the EC is via a touch screen
directly connected to it. LYKKETRONIC wishes to add a functionality to
the embedded computer, which is the ability to remotely access data stored
in the EC from any location.

1.3. OVERVIEW OF LAST SEMESTER PROJECT 3

1.3 Overview of last semester project

Our past work [3] proposed a solution in which users are able to remotely
access data of a farm tractor via an Access Control Server (ACS)1. A user
located anywhere in the world can access data about the activities of a
tractor via the ACS using the Internet. This solution also makes remote
control of the device possible. In addition, it presented an automatic switch
between different types of network used by the embedded computer with
limited functionalities.

The ACS provides an interface that requires the users to authenticate
themselves in order to gain access to data of a tractor. Nevertheless, it
did not distinguish different kinds of users, so every authenticated user had
access to the same set of information.

The solution from the past work only provides access to realtime data
in the embedded computer. But, there is also need to log data about the
activities of the tractor over time, and this is intended to be used for long-
term system evaluation.

1.4 Goals

The aim of the current project is to use the Internet as a medium for
providing access to realtime data in a remote embedded computer. Also,
LYKKETRONIC wishes to add another functionality that will provide ac-
cess to logged data from different tractors, and this will be stored in a cen-
tralized location. Hence, we shall log data in the embedded computer and
transfer the logged data to another node using the available communication
channels. Because the coverage of wireless technologies can sometimes be
limited, the embedded computer is expected to switch between two inde-
pendent networks based on certain factors like availability, bandwidth, or
cost. Efforts will be made to improve the time spent for switching between
the different networks in use by the embedded computer in order to make
it faster. Measurements and comparisons of the size and time to transfer
data, and the cost of transferring the data from the embedded computer to
a different node will also be taken and documented.

1In the previous work, the ACS was known as “Proxy”. This name has been replaced
by “Access Control Server”. The old name was changed, because this node does not
entirely perform all the tasks of a Proxy, such as accumulating and saving files that are
most often requested by the users in a special database, called “cache”, in order to increase
the speed of users’ connection to the system.

4 CHAPTER 1. INTRODUCTION

1.5 The Embedded Computer

As mentioned in section 1.2, LYKKETRONIC has provided us with an
embedded computer, which from now on we will refer to as (EC)2. The EC is
a MICROSPACE PCX48 that is designed to operate in harsh environments.
Below is a picture of the EC. Its concrete hardware, software and parameter
details can be found in Appendix A.

(a) Front view of the Embedded Computer (b) Back view of the Embedded Computer

Figure 1.1: The Embedded Computer

1.6 Outline

This section contains an outline of the overall structure of the report.

• Chapter 2 begins with a description of the system’s requirement spec-
ification.

• Chapter 3 presents a short review of wireless technologies.

• Chapter 4 presents an analysis of the system.

• Chapter 5 presents the design in two parts, Part I contains some of
our initial design ideas and Part II describes the chosen design.

• Chapter 6 presents an implementation of the chosen design, the system
configuration and some of the problems we encountered with suggested
solutions.

• Chapter 7 presents an analysis of the system performance with tests.

• Chapter 8 presents a user guide for the system.

• Chapter 9 concludes.

• Appendix contains source code.

2In the previous work, this device was referred to as Blackbox(BB). This name has
been changed in this present paper to EC. This is because the name BB can be confused
for a device whose internal workings are not understood by the users.

Chapter 2

Software Requirements
Specification

We have chosen a subset of the items specified in the IEEE Recommended
Practice for Software Requirements Specifications (Std 830-1993 [12]) that
is relevant for stating the requirements of the system. The intention of
the software requirements specification is to comprehensively and concisely
define functional and non-functional requirements that the present project
should be compliant to.

2.1 Scope

The main aspect of this project is providing access to information relating to
a variable number of tractors located anywhere in the world. Any user with
the right privilege is allowed to remotely access data of a device, so long as
the device is connected to the Internet. It is also possible to remotely modify
some parameters in the tractor using a web interface, this is necessary for the
purpose of remote maintenance. Each device is connected to the Internet via
a wireless medium, in this environment, the device should be able to choose
the network to use based on factors like availability, cost etc. of connecting
to a network at any given moment.

5

6 CHAPTER 2. SOFTWARE REQUIREMENTS SPECIFICATION

2.2 Definitions, acronyms and abbreviations

Access Control Server (ACS). A server is a computer system or an ap-
plication program which provides services for connected clients. In our
case, a client connects to the Access Control Server(ACS) to request
for some services, for example, information about a tractor via a web
page. The ACS provides the resource to the client. Clients are also
able to access log files stored in the ACS.

CAN Bus. Controller Area Network, it is a high - speed serial data com-
munications bus for real time control applications.

Contractor. A company that owns fleet of tractors, that can be hired out
to different farms in different regions or locations.

Data. Data in each tractor or farm belongs to different farm owners and it
may have private contents. For this reason, it is necessary to impose
security to protect these data.

Farm. The group that use the tractors for working in their fields, they can
choose to either own the tractors or hire the tractors they need from
the contractors.

Firewall. Dedicated appliance, or software running on another computer,
which inspects network traffic passing through it, and denies or permits
packet passage based on a set of rules.

N.A.T. Network Address Translation (NAT, also known as Network Mas-
querading, Native Address Translation or IP Masquerading) is a tech-
nique of transceiving network traffic through a router that involves
re-writing the source and/or destination IP addresses and usually also
the TCP/UDP port numbers of IP packets as they pass through. Most
systems using NAT do so in order to enable multiple hosts on a private
network to access the Internet using a single public IP address.

Resources. Resources here are heterogenous and geographically spread and
hence require solutions that considers these varieties and differences.

SSH. A Network protocol that allows data to be exchanged over an en-
crypted channel between two computers. Encryption provides confi-
dentiality and integrity of data. SSH uses public-key cryptography to
authenticate the remote computer and allows the remote computer to
authenticate the user, if necessary. SSH is typically used to log into
a remote machine and execute commands. It also supports tunneling,
which is forwarding arbitrary TCP ports, it can also transfer files us-
ing the associated SFTP protocol. A SSH server, by default, listens
on the standard TCP port 22.

2.3. OVERALL DESCRIPTION 7

Tractor. A farm vehicle used for working in the farm fields, it can be used
for planting, spraying, etc. In our project, an EC is attached to each
tractor.

Users. Persons authorized to interact with the system. They are geograph-
ically spread, they require ease of use, authorization and authentica-
tion. They need to access several tractors and they also require assured
quality of service.

2.3 Overall Description

2.3.1 Product perspective

One of the main objectives of this project is the implementation of a system
that provides access to remote data in an EC from anywhere. It is required
that the data can be accessed in real time and also be logged for later use.
Both realtime data and logged data has to be transferred over a wireless
channel and this is made possible by using the “available” and “better”
connection at any given moment; we say that a connection is available if
it is always ready for use at any given point in time, and we say that a
connection is better than another if its average cost is lower in terms of
money and its transmission speed is higher.

2.3.2 Product functions

• Related with the embedded computer:

– The system must allow remote access to it.

– The system must provide automatic switching between different
networks since a tractor can be in different locations at different
times and the coverage of wireless technologies can be limited or
expensive.

– The system must regularly log data in a standard format that
can easily be used by other applications.

– The system must be able to send logged data to another node

– The system must transfer the files in a compressed format from
one node to another.

8 CHAPTER 2. SOFTWARE REQUIREMENTS SPECIFICATION

• Related with the ACS:

– The system must store the logged data in the ACS.

– The system must take care of administrative issues, these include:

∗ Registration, deletion and modification of the different users
and their information.
∗ Registration, deletion and modification of different farms and

their information.
∗ Addition of tractor to a farm, removal of tractor from a farm.

2.3.3 User characteristics

For accessing data in the system, four groups of users must be distinguished:
farm owners, technicians, tractor drivers (workers) and a superuser. The
users can do some actions on the system depending on the privileges defined
for the group they belong to. These group of users are described below as
the primary actors of the system:

Farmer. This is a farm owner, he can access information about the farm
which he owns, the tractors working in the farm, and the drivers of
his tractors(workers). He has access to information in an EC on the
tractor belonging or working in his farm. He must be able to add,
modify and delete all these elements.

Worker. This is the driver of a tractor to which the embedded computer
is attached. He can access the information of the EC in the tractor he
is driving.

Technician. This is the user that only has access to technical information
about the EC. He has READ - WRITE access and his modification
can change the behavior of this device.

Superuser. This is the system administrator. He has access READ -
WRITE access to information of all the other users and also the filesys-
tem.

2.4. CONSTRAINTS 9

2.4 Constraints

• The EC system must run in Linux CentOS.

• The EC will use a dynamic IP address; using a static IP address is not
an option because the system is required to be used in different places
and at different times.

• A network like HSPA would have been a good option. However,
LYKKETRONIC has considered this technology not useful at the
moment for the purpose of this project because farmers using their
equipment are often located in rural districts far from urban neighbor-
hood where HSPA coverage is available at the moment.

2.5 Specific Requirements

2.5.1 External Interfaces

In order to access real time data in a working tractor, Internet connection
must be available in the tractor. The end-user must have a browser to
display the web application with which to access data in the EC. By using
a browser, an end user is not only capable of having remote access to the
system, but can also remotely change specific parameters in the system.

2.5.2 Logical database requirements

• A user can have more than one address, electronic mail or telephone
numbers.

2.5.3 Security

• The system must authenticate the users before allowing access to it.

• Sensitive data like passwords must be stored using some form of en-
cryption.

• Data communication between the remote end and the EC must be
encrypted.

• Secure versions of network protocols must be used.

10 CHAPTER 2. SOFTWARE REQUIREMENTS SPECIFICATION

Chapter 3

Wireless Technologies

Information gathering, processing and distribution is an important area of
concern in Computer Science. Mobility has altered the mode of computing
for most computer users. The Internet depends on protocols that were
designed and optimized to perform well in wired networks. As an example,
the Internet Protocol (IP) was not designed to be used in wireless networks
in which mobile devices can change their point of connection to the Internet
as they move. As a result of this, Mobile IP has been proposed to create
an efficient and scalable mechanism for mobile devices to roam within the
Internet. Another area where wireless networks can pose a problem is at
the physical layer; here the probability of loss, delay, low bandwidth, etc.
is high in comparison to wired networks, which can result in transmission
errors.

Lots of services that require the use of the Internet need to always be
connected at all times, and as a result of this a lot of portable devices like
laptops, PDAs, hand-held computers, etc. require regular Internet connec-
tivity. The connection of such devices to the Internet are commonly via
wireless means in order to take full advantage of their portability.

There exist a lot of wireless standards today that can be used in different
areas of wireless connectivity. Each of these standards offer different wireless
technologies and each of these technologies offer advantages in either band-
width or range. However, other parameters such as availability, reliability,
quality of service (QoS), cost, etc. are also relevant when comparing the
different technologies.

11

12 CHAPTER 3. WIRELESS TECHNOLOGIES

Some examples of existing technologies include WLAN, GSM/GPRS,
HSPA, EDGE, WiMax, etc. One thing that is however common with these
wireless technologies is that they all extend support for Internet protocols,
and as mentioned earlier on, the Internet protocols can pose some problems
while using them in wireless networks. These problems can either be as a
result of a wireless channel experiencing packet loss or as a result of mobility
associated with the nodes.

A WLAN is a wireless local area network that links two or more comput-
ers without using wires. It provides a transfer speed of up to 54Mbs with a
range of up to 150 meters. Users of WLAN however have a constraint of un-
guaranteed access to WIFI (see Std. 802.11 [13]) hot spots at all times they
need Internet access. In such a situation, an alternative could be the use
of a cell phone’s modem combined with its sim card to access the Internet.
This is done by using a data cable that will connect the mobile phone and a
laptop or a hand held computer. Another choice could be the use of a GSM
modem; which is particularly built for this purpose, with an inserted GSM
sim card. Here, the GSM modem will be connected directly to a USB port
on the computer. There is not much difference between both approaches in
terms of support for data service because the efficiency of data transmission
is determined by the transmission rate of the wireless network in use. GSM
is a popular standard for mobile phones around the world[10]. Its ubiquity
makes international roaming very common between mobile phone operators,
thus enabling subscribers to use their phones in many parts of the world.
This standard allows network operators to offer roaming services that allow
subscribers to use their phones on GSM networks all over the world. A
wireless data service that is available with almost every GSM network is
GPRS.

GPRS refers to a high-speed packet data technology that guarantees
constant connection. It can allow data transmission speed of up to 40 kbit/s
and in most cases have worldwide coverage. It supports the widely used
Internet Protocol (IP). Hence, a mobile phone modem combined with a
GPRS sim card can provide constant access to the Internet. Part of the
services provided by GPRS include Internet browsing where data transfer is
typically charged per megabyte of transferred data. GPRS was developed
so that GSM operators can meet up with the growing need for wireless data
services that has grown as a result of the growth of the Internet.

Internet applications are characterized by demands like bursty traffic
patterns, high throughput needs, etc. These demands are not well suited
for circuit switched networks like GSM.

In order to take care of these demands, GPRS service was developed;
this service is characterized by its packet switching nature which is able to
handle bursty traffic patterns. This service also provides asymmetric uplink
and downlink bandwidth.

13

Below is a list of some key differences in a comparison between GPRS
and WIFI in terms of bandwidth, coverage, roaming, cost, and security.

• Bandwidth: By comparison, WIFI technology provides more band-
width than GPRS, hence WIFI provides more data rate transfer re-
sulting in higher throughput in WIFI than in GPRS.

• Coverage: This is an important requirement for data transfer cus-
tomers that wish to access the Internet from multiple locations. By
comparison, a GSM signal can provide a widespread coverage of sev-
eral miles which can allow true mobility. WIFI on the other hand can
only provide coverage of up to 150 meters from an access point. Thus,
WIFI cannot compete in the area of coverage with GPRS.

• Roaming: Minimum coverage cause the need for roaming. WIFI cover-
age in cities or in a country is not near that of the cellular technology.
On the other hand, GSM supports extensive regional and international
roaming for voice and data. Although some WIFI operators now sup-
port roaming but the roaming coverage is nowhere near that of the
GSM network.

• Cost: The only cost incurred in WIFI connection is the subscription
fee, the connection is free in most cases. In addition, WIFI can be
used for ad-hoc point-to-point connection. On the other hand, data
communication over GPRS is billed per megabytes of transferred data
and this can become expensive for use when sending large amount of
data.

• Security: WIFI devices use security standards such as Wireless Equiv-
alent Privacy (WEP) [14] to overcome the technology’s vulnerabilities.
These standards can however only protect data if they are used, and
many WIFI users do not turn these security features on because they
are difficult to configure. By comparison, the GPRS network is more
secure than WIFI network because of the security features built into
it. Its automatic end-to-end security features, makes users not to have
to configure them manually.

14 CHAPTER 3. WIRELESS TECHNOLOGIES

A newer wireless technology called (High Speed Data Access) HSPA (a
3G technology)1, makes it possible to receive large files and increase the
speed of communication from mobile devices. The biggest advantage of this
technology is that it is possible to send and receive data at rates up to four
times higher than those in current GSM/GPRS networks (up to 384 Kb/s).
The HSPA technology is quite similar to WiMax (see Std. IEEE 802.16
[15]) which is another wireless technology that is aimed at providing wireless
data over long distances. WiMax is intended for wireless metropolitan area
networks, and it is aimed at allowing higher data rates over longer distances
as it combines the benefits of broadband and wireless together. Unlike the
HSPA technology that is already available for use, WiMax technology is
expected to be available in the near future.

This project requires a network like HSPA or WiMax, and choosing to
use either of the two technologies would have been the best option. But, we
are however constrained from using either of the two technologies because
to use services provided by HSPA technology, it is necessary to be in an
area covered by 3G signal. Also, devices with WiMax implementation are
not yet on the market at the moment, hence there is no efficient network
coverage for this technology yet.

1It refers to a third generation of development in wireless technology that is designed
to work over wireless air interfaces such as GSM, EDGE, TDMA and CDMA. It is aimed
to keep people connected at all times and in all places.

Chapter 4

Analysis

Our project starts with a phase of problem analysis that will be helpful in
correctly analyzing the system choices, by clearly defining the functions
we must consider and find out in detail, in order to meet the specified
requirements.

4.1 The system’s from an end user’s perspective

4.1.1 Use - Case Diagram

In this section we use the Use Case model to show the interaction between
a user and the proposed system. This model is based on the Software Re-
quirements Specification. The Use Cases are a representation of the future
system that will allow us model the user requirements. Next diagram is the
Use Case model of our system which shows the actors and actions that are
carried out in the system.

15

16 CHAPTER 4. ANALYSIS

Figure 4.1: Use Case Diagram

We use include dependencies whenever one use case needs the behavior
of another. An extended dependency is a generalization relationship where
an extended use case continues the behavior of a base use case.

4.1. THE SYSTEM’S FROM AN END USER’S PERSPECTIVE 17

4.1.2 Use - Case Specification for realtime access

Below is one of the important use-case specification shown in figure 4.1. We
have used only one, which is “Access tractor” for making this description.
The nomenclature used are as follow: Description - describes the particular
use-case. Precondition - states the prerequisite that must be satisfied for
this use-case to be fulfilled. Normal sequence - describes the different
steps in the particular use-case, and Exception - is to describe how to
handle any failure that can occur in Normal Sequence in this case, for steps
4 and 5.

UC - 1 Access tractor
Description The system must behave as described in the present

use case when a user wants to access real time data in
a tractor.

Precondition The user must be previously authenticated in the sys-
tem.

Normal Sequence

Step Action
1 The system shows the list of all the farms the

user has access to.
2 The user chooses one of the farms on the list.
3 The system displays the tractors related with

the farm that was selected.
4 The user chooses one of the tractors that has

been listed before.
5 The system will show a new web application

to access tractor data.

Exceptions

Step Action
4 If there is no tractor online, this use case fin-

ishes.
5 If there is a loss of connection, this use case

finishes.

18 CHAPTER 4. ANALYSIS

4.2 Intercommunication within the system

Since a tractor is a mobile entity, its ability to connect to the Internet will
be made possible via a wireless medium. For a user to access data in a
tractor, the user is also required to be connected to the Internet. Because
the coverage of wireless technologies can sometimes be limited, the choice
of at least two wireless mediums will be necessary. The choice of switching
between the two wireless mediums as stated in the requirement will depend
on whether a cheaper or faster connection is available.

The initial idea is presented in the picture below.

Figure 4.2: Abstract intercommunication system

Furthermore, access to data in an EC will be provided in two different
forms namely: real time data access and logged data access.

4.2. INTERCOMMUNICATION WITHIN THE SYSTEM 19

4.2.1 Network analysis

Table 4.1 shows an initial network measurement made at the beginning to
know the status of the GPRS network. It is to know how much data we are
able to transfer in average using this network.

1. Mobile phone
Model: Nokia N71 GPRS class 10
SIM CBB Mobile
GPRS download speed 200Kbps, 25Kb/sec transfer rate
GPRS upload speed 70Kbps, 8.8Kb/sec transfer rate
2. Data cable
Interface: DKU-2 USB data cable
Speed 460800 baud

3. Mobile computer(EC)
Model: Celeron 800mhz with 256MB RAM
Operating system: CentOS 4.4, Kernel 2.6
Software packages: pppd, wvdial

Table 4.1: Current network and device status

4.2.2 Data transmission pattern

Before going into further technical details, we will first present the behavior
of the old system in terms of data transfer in the system. To do this, we
analyzed the Apache Web Server, access.log (where all the data transferred
over a period of time can be seen) for a representative work load. The results
can be seen in the next diagram.

We can see a repetitive sequence with high peaks whenever a new page
is transferred. This is because of the repeated transfer of some common
parts for all the pages of the web application. The repetitive sequence is
probably as a result of the transfer of a common part for each transfer from
the system.

The measurement of the network information was taken at different inter-
vals and the results varied for the different measurements. This variability
of the throughput rates is as a result of radio conditions, and bandwidth
fluctuations over time in GPRS networks.

20 CHAPTER 4. ANALYSIS

Figure 4.3: Pattern of data transfer

4.3 Data collection/representation

4.3.1 Data representation using an Entity - Relationship di-
agram

After finding out what the entities involved in the system are and thinking
about how they are related, we can state:

Contact information. This entity represents data belonging to a user, i.e,
his email, phone and address.

Farm. This another entity represents each of the farms that will use a trac-
tor with the device. We will store the address, the contact information
and the name of each of them.

Log. This is a registration of the different actions that have taken place in
the system, which involves storing the date and the time in which any
of the actions occurs.

Role. This represents each of the privileges a user can have in our system.

Tractor. This entity represents the machine to which each of the embedded
computers is part of. We will have the tractor’s name, serial id, MAC

4.3. DATA COLLECTION/REPRESENTATION 21

address, the port through which it will make its connection, and the
IP address of the node it should connect to in order to register itself.

User. This entity represents each of the persons that are authorized to use
the system. We will store their username, password, firstname and
lastname.

Variable. This represents each of the parameters that can be logged in the
embedded computer. It is characterized by its name, value, units of
measurement, and the time in which the value was taken.

Their relationships are:

belongs to. A farm can have many tractors, but a tractor can only belong
to one farm.

has. A user can have multiple contact information, but a contact informa-
tion belongs to one and only one user.

logs. A “tractor” registers the value of different parameters about the work-
ing of the tractor. A given value belongs to one and only one tractor,
but a tractor can log multiple values for multiple variables.

plays. A user plays one and only one role in the system, but the same role
can be played by many users.

related with. A user can be related with many tractors and viceversa.

stores. A user can register information about the action he has made in
the system.

On next page, we present the entity - relationship diagram of our appli-
cation. Its most peculiar characteristic is that a user is directly related with
a tractor, and not with a farm, this is why we have to know, for example,
in the case of workers, the tractors they are in charge of.

22 CHAPTER 4. ANALYSIS

Figure 4.4: Entity - Relationship diagram

4.4. SECURITY 23

4.3.2 Parameters to be logged

For this project, we have selected a subset of parameters that will be used
for logging; these parameters will also be used in the experiments. They are
a subset of all the variables that can be read from a shared memory using
an API. We will assume that these are the set of data whose values need to
be logged in the EC, because of its potential interest for the system’s users.
The variables are;

Speed, Total trip, Battery voltage, Engine hours, Fuel level, Time
to service, Tank content, Application rate, Current output, Spray
pump, Spray line pressure, Total area, Amount of fertilizer, and
Distance.

4.4 Security

Since data access in the embedded computer will be made via an Internet
connection, we must take into account, first of all, what elements/contents
of the system need protection, against what and, at this stage of the project,
the general ideas is to avoid, or minimize, this sort of problems.

For a hacker, the most interesting information in our system are those
related with confidential information about the users such as user’s login,
password, or information related with the working of a given tractor. This
sort of information should be stored or transmitted in such a way that a
non-authorized user can not understand it, i.e, in some form of encryption.

Furthermore, it must not be possible in any way to make a ping or
connect via SSH or SFTP to an embedded computer directly from outside.
The objective is that nobody can see the state of a tractor (connected/not
connected to Internet) if he is not authorized to, and of course, avoid the
access to its internal information.

We must state at this point that the firewall of our system was already
implemented in the previous semester and there are no evidence that it must
be modified in the present work.

24 CHAPTER 4. ANALYSIS

Chapter 5

Design

This chapter states how to achieve the requirements analyzed previously.
The design is in two parts; part I describes some of our initial design ideas
and part II describes the final chosen design.

5.1 Part I: Initial Design Ideas

We have looked at possible design solutions for the system. The main ob-
jective of the system to be developed in this project is to provide access to
both realtime data and logged data in any working tractor.

We will now take a brief look at some of the previous design ideas we
have considered and why they were not chosen. The first is a system that
can extract data from a CANBus network, and the second is a system that
can allow access to an EC by directly connecting to its public IP address.
Next, is a design solution for logging data in the EC.

5.1.1 A system to extract data from a CANBus network

The idea of this design was to directly extract raw sensor data (using CAN-
Bus protocol) from a CANBus that is connected to the EC. In this approach,
the extracted data will be organized and stored inside the EC. Functionali-
ties will then be made to allow users access the stored data in the EC. This
design was however not achievable because at the beginning of the project
there was no means of reading data directly from the system’s CANBus.
Also, data in most part of the system were encrypted.

25

26 CHAPTER 5. DESIGN

5.1.2 A system that allows the EC to use static IP address

Another design idea was a system that allows direct connection to the EC
via a public IP address. In this case, each EC will have a static IP address
with which users can connect to it. This idea was not chosen because the
tractors are not expected to remain in a particular farm, a tractor can be
moved to anywhere and at anytime because different farms will hire them.
When a machine with a static IP address is moved to a different subnet, it
will not work until it is reconfigured. Also, this approach will require the
EC to use two fixed IP addresses; one for each of the wireless mediums in
use.

5.1.3 Design for logging data in the EC

One of the main tasks in this work is to log data in a working tractor. In
order to achieve this requirement, a possible design solution was the use of
an API provided by LYKKETRONIC to read data from shared memory in
the EC. With this API, the value of read data can be gathered from time
to time, depending on the algorithm defined for doing this.

At this point, we first need to answer two questions, “what exactly will the
logged parameters be used for? ” and “how often are these parameters
expected to change?” This is because the value of some of the parameters
change very often and this can affect the frequency with which we log such
data, and this in turn depends on what the logs will be used for. Some other
parameters are not likely to change very often, hence such parameters do not
require regular log because logging them very often will result in repeated
values for those parameters, which can be regarded as redundancy.

5.1. PART I: INITIAL DESIGN IDEAS 27

Logging data by using a compare function

The idea here is to use the parameters to read values from a shared memory
and obtain their values.

A copy of the last read values are kept. Next time the parameters are
read, a “compare function” is used to compare values of the new read with
those of the last read. Only the values of the parameters that have changed
since the last read will be written to the file.

The purpose of making a comparison is to ensure that only the changed
values are written to the file. It is also to reduce the size of data written in
each file. But, a careful study of the frequency with which each of the values
are changing, combined with what the logged values will be used for, can re-
veal how often these values will change and when to store them. Hence, with
enough information about what the logged data will be used for and how
often the values are changing, it will not be necessary to make comparisons
before storing each time we read the values. Also, with a good compression
algorithm, the written files can be well compressed before sending.

Logging data in binary format

The idea here is to read the values of a given set of parameters from shared
memory. The values will be written in binary format instead of using ASCII.
This method will allow larger data set to be logged in each file because of
its binary format. But, in order to use this method, it will be required to
also have a corresponding program at the receiving side, to take care of
converting the received binary files into either ASCII format or a standard
format like XML for further use. Also, the EC requires enough space to
store all the files before transfer.

Having described some of the design alternatives we thought about earlier
on and their strong and weak sides, we will now look at the chosen design
solution we intend to implement.

28 CHAPTER 5. DESIGN

5.2 Part II: Final Chosen Design

The figure 5.1 shows a general system architecture of the proposed solution
that will be used for accessing realtime data and logging data in an EC.

This consists of six sub-parts namely:

1. The GSM/GPRS Network

2. The Ethernet/WIFI Network

3. The Internet

4. An Access Control Server - ACS

5. The Embedded Computer - EC

6. Users

Figure 5.1: System Architecture

5.2. PART II: FINAL CHOSEN DESIGN 29

The previous diagram shows the components of the system and the re-
lationships among them. Inner workings of each component of the system
will be explained in the next subsection of this chapter.

5.2.1 Wireless technologies chosen

Even though HSPA technology can provide increased downlink and fast
uplink for data transfer, LYKKETRONIC has considered this technology
inappropriate at the moment for the purpose of this project because, as we
already said, farmers using their equipment are often located in rural dis-
tricts far from urban neighborhood where HSPA coverage is available at the
moment. What we need is a network that can provide high bandwidth and
long range like WiMax, and this technology should have been the best but
it also has its constraints which are: devices with WiMax implementation
are not yet on the market for the public, the implementation of this tech-
nology may vary from country to country and there are no efficient network
coverage yet. So, for the present work, two technologies WIFI and GPRS
will be considered. Detailed comparison between these two technologies can
be found in page 13. So, the EC is expected to connect to the Internet using
a WIFI or GPRS network.

5.2.2 Why System Access Via an ACS

We will now state the reasons for choosing the ACS architecture as a so-
lution. We have chosen to use an architecture that will provide access to
a mobile resource like the EC via an Access Control Server ACS. This ar-
chitecture is intended to provide access to both realtime data and logged
data of an EC so long as the EC is connected to the Internet. Currently the
EC will connect to the Internet using a WIFI or GPRS network. For every
connection it makes to the Internet, it will use either of the two interfaces
to acquire a dynamic IP address. In our system, any router’s NAT the EC
is connected to will make it impossible to see the EC from the outside.

The ACS is thus meant to act as a master to all the connected ECs.
Every EC that gets connection to the Internet has to report to its master(the
ACS). Whenever an EC gets a connection to the Internet, it makes this
report by creating an SSH tunnel from itself to the ACS and, as long as the
EC is online, every data will be sent to and from it inside this tunnel. This
means that it is the EC that will initiate an SSH connection to the ACS,
and this helps to solve the problem of not knowing how to reach an EC that
is online or connected to the Internet. With this solution, when an EC is
online, realtime requests can be sent to and received from it, even while it
is inside a LAN.

30 CHAPTER 5. DESIGN

The ACS is also meant to act as a gatekeeper for whoever wishes to
get data from the EC. In order to access any data in the system, a user
must be authenticated at the ACS first. Also, the ACS controls access to
the different tractors, it uses the access rights defined for the different user
groups for granting access to the tractors.

Furthermore, it is designed to monitor the state of each EC continuously
in order to update their appearance to the end users as online or offline.

The next diagram presents an scenario where we can see how the access
to an EC should be made. It is an overview of the interaction between a
user and the system.

Figure 5.2: Sequence diagram of the Use Case “Access tractor”

From the diagram, the first step is for the EC on the tractor to make
itself available by initiating a connection to the ACS. The user has to log in
before asking for data from the EC. If the user is allowed to interact with
the system, then the user’s demand for data is relayed by the ACS to the
EC if the EC is available. After that, the EC responds to the ACS and data
is then transmitted to the user. With the aid of this scenario, we are able
to understand the connection between a user, the ACS and the EC.

5.2. PART II: FINAL CHOSEN DESIGN 31

5.2.3 Details of the inner components of the architecture

Having identified the main components of the proposed system, we shall
now see the construction and explanation of the inner working of each of
the components.

The GSM/GPRS Network. This component consists of a mobile phone
with in-built modem, a GPRS sim card, and a cable to connect the EC to
a phone, in order to provide Internet connection via a GSM network.

The WIFI Network. For now, an Ethernet cable is being used instead
of WIFI; the USB WIFI dongle available for this project is a NETGEAR
wg111T.

The Internet. For our setup, this will be the medium through which all
data communication will be made.

The Access Control Server. This is categorized into two parts namely:
hardware and software with the following configuration.

• The hardware: A Linux-based desktop computer.

– Processor Intel Pentium 4 2.80 GHZ

– Cache size: 512 KB

– Hard Disk capacity: 17 GB

• The software:

– Linux Ubuntu version: 7

– Apache Web server version: 2.0.52

– MySQL database version: 5

– PHP version: 5

– Web pages for login and data administration

– Security certificate

The Embedded computer. Hardware and software details about the
EC can be found in Appendix A.

32 CHAPTER 5. DESIGN

5.2.4 Final Design for Logging data in the EC

In this design idea, the parameters to be logged are grouped into two cat-
egories. The first category are those set of parameters that are required to
be logged more often because they change with high frequency. The second
category consists of those parameters that do not require regular logging.
This is because these set of parameters will not change very often, and regu-
larly logging them will result in redundant data. So, the data variables to be
logged are grouped the into two categories - “Often” and “NotVeryOften”.
Each group of data is read and logged according to the unit of time defined
by the logging function in the EC. The time units determine how often to
read and write the data for the two groups. It also defines when to stop
writing and close a file. Once the time defined by the function is reached,
the file for the data being logged is closed and then compressed in the EC.
Here is a list of the parameters used for logging the variables. As mentioned
earlier, this is just a subset of the entire variable set in the system.

Often Not very often
Speed Battery Voltage

Total trip Engine hours
Fuel level Driving time

Tank content
Application rate
Current output

Spray dump
Spray line pressure

Total area
Amount of fertilizer

Distance

Table 5.1: Categorization of parameters to be logged

5.2. PART II: FINAL CHOSEN DESIGN 33

Formats for logging and compressing data in the EC

We thought about two possible ways of recording the data in our logs: plain
text or XML. We chose to use XML because of its portability. The XML
files will be compressed into bzip2 before sending to the ACS.

The two methods of file compression are lossy and lossless. Lossy com-
pression applies lossy data compression to data. When this is used, the data
can never be recovered exactly as it was before it was compressed. Lossless
compression works by finding repeated patterns in the data and encoding
the pattern in an efficient manner. Since lossy compression cannot yield
the exact original data after decompression, it is not an ideal method of
compression for critical data such as textual data. For this reason, we have
chosen to use a lossless data compressor, bzip2.

bzip2 is a freely available, patent free and it is a high quality data compressor[4].
It typically compresses files to within 10% to 15% of the best available tech-
niques (the PPM family of statistical compressors1) whilst being around
twice as fast at compression and six times faster at decompression. Among
its main advantages, we can state that:

• The good quality of its compression reduces long distance network
traffic.

• It supports recovery from media errors.

• It is portable. It runs on any 32 or 64 - bit machine with an ANSI
C compiler. The distribution should compile unmodified on Unix and
Win32 systems.

It is worth highlighting that when using compression algorithms, the
difference between standard and maximum compression levels is small, es-
pecially when you consider the extra CPU time necessary to process the
extra compression passes.

1PPM is a specialized form of compression based on Markov Modeling. In general,
PPM predicts the probability of a given character based on a given number of characters
than immediately precede it. PPM is conceptually simple, but often computationally
expensive[8].

34 CHAPTER 5. DESIGN

Figure 5.3 shows the logging process in our system.

Figure 5.3: Logging process

5.2.5 Design to switch between WIFI and GPRS in the EC

Another requirement of the system is to be able to switch between the two
networks in use. The design idea chosen is aimed at monitoring the available
or cheapest connection in terms of cost and bandwidth, and either stop or
start a second connection depending on its availability and cost.

In order to make the switching between the two networks, we would need at
least one script running in the background. This script will be in charge of
constantly monitoring the availability of the wired and GPRS connection.
Depending on this result, corresponding tunnels will be created or closed.
It also involves an update of a database in the ACS as appropriate for each
type of connection in use.

It works by checking whether there is a change in the state of the connected
GPRS modem and the wired cable. If the wired connection is available, it
starts up a wired connection. If it is not, it checks for GPRS modem, if
this is available, it starts up the GPRS connection. If it cannot find the
GPRS interface at this point, it means no connection is possible, then it will
remove all the existing connection information by closing any existing ssh
tunnels, programs used for bringing up the interfaces and/or updating the
database in the ACS. As can be seen in this description, the wired connection
always has priority when it is available because of its lower price and higher
bandwidth.

5.2. PART II: FINAL CHOSEN DESIGN 35

The switching process works as shown in the following UML activity
diagram.

Figure 5.4: Switching Activity Diagram

36 CHAPTER 5. DESIGN

5.2.6 Relational data model design at the ACS

Below is a list of the tables that is implemented in the next phase of our
project. The attributes that are underlined represent the primary key of
each of the entities/relationships.

• TRACTOR(id, name, serialid, ipproxy, port, mac, id-farm)

– id : identifier of the tractor.

– name: name of the tractor.

– serialid : serial identifier of the tractor.

– ipproxy : IP address of the ACS the tractor is associated to.

– port : number of the port with which the tractor connects to the
ACS.

– mac: the mac address of the EC

– id-farm: identifier of the farm the tractor belongs to.

• FARM(id, name, address, phone)

– id : identifier of the farm.

– name: name of the farm.

– address: address of the farm.

– phone: telephone number of the farm.

• RELATED-WITH(id-tractor, id-user)

– id-tractor : identifier of the tractor.

– id-user : identifier of the user the tractor is related to.

• USER(id, username, password, firstname, lastname, role)

– id : identifier of the user.

– username: the name the user has to enter to access the system.

– password : key for gaining admittance into the system.

– firstname: real name of the user.

– lastname: surname of the user.

– role: identifier of the user’s role in the system.

5.2. PART II: FINAL CHOSEN DESIGN 37

• CONTACT-INFORMATION(id, id-user, phone, address, email)

– id : identifier of the contact-information register.

– id-user : identifier of the user this contact information belongs to.

– phone: telephone number.

– address: home address.

– email : electronic mail address.

• LOG(id,userid,date,time,log)

– id : identifier of the log register.

– userid : identifier of the user that made the action that is being
logged.

– date: date in which the action took place.

– time: time in which the action took place.

– log : action that was carried out.

• VARIABLE(timestamp,name,idtractor,value,units)

– timestamp: date and time in which the variable had a given value.

– name: name of the variable that is being logged.

– idtractor : identifier of the tractor the value of the variable belongs
to.

– value: value of the variable that is being logged.

– units: units of measurement for the logged variable.

38 CHAPTER 5. DESIGN

5.2.7 Security Design

The security architecture chosen for the system is presented in the figure
below.

Figure 5.5: Security architecture

The idea is to have a firewall that acts as a filter. It is meant to accept
the allowed packets and drop the unallowed packets, according to the rules
defined for handling this. Moreover, for security - sensitive communication
between a user and the ACS, HTTPS protocol is used. This is practically
the same as HTTP but it adds an additional encryption/authentication layer
between HTTP and TCP. As we already stated when presenting the why of
the chosen architecture, the communication between the EC and the ACS is
made by means of an SSH tunnel and the file transfer is by means of SFTP.
This also adds encryption in the communications between the EC and the
ACS.

On the other hand, for a user to get access to an EC it is required to log
in using the right user name and password. In order to avoid unauthorized
access to passwords stored in the database in the ACS, a solution is the use
of a one-way encryption algorithm: MD5. The great advantage of using an
irreversible encrypting algorithm such as MD5 for the storage of passwords
is that even the superusers will not able to know the passwords of the users
by viewing the contents of the database.

5.2. PART II: FINAL CHOSEN DESIGN 39

In Cryptography, MD5 (Message - Digest Algorithm 5) is a widely used
cryptographic hash function with a 128-bit hash value. As an Internet stan-
dard, MD5 has been employed in a wide variety of security applications.
A MD5 hash is typically expressed as a sequence of 32 hexadecimal digits.
This is a constraint when the type of data for the password attribute has to
be chosen for the “user” table.

Recently, a number of projects have created MD5 “rainbow tables” which
are easily accessible online and can be used to reverse many MD5 hashes
into strings that collide with the original input, usually for the purposes of
password hacking. However, if passwords are combined with a salt (prefix,
suffix or both), rainbow tables become much less useful.

In order to choose how to generate the salt, we considered two possible
attacks, namely, an attack on the source code of our application or on our
database. If a random salt is generated, we should store it in the database
together with the password which was encrypted with; however if somebody
is able to access the database, we are in the same case as if we have not used
salt. This is the reason why we chose to have the salt in the source code
which will be running on the ACS, and then encrypt or obfuscate this code
so that it cannot be viewed by anyone.

Since the encrypted code may require decryption, doing this will require
entering a password, but we have not chosen this option because the problem
of where and how to store the password will appears again. Hence we have
chosen to simply obfuscate the code which will help us to hide the passwords’
salt and also to make any sort of reverse engineering more difficult.

40 CHAPTER 5. DESIGN

Chapter 6

Implementation

This chapter covers implementation details of the design described in the
previous chapter. We explain the configuration that will be made for the
system to work, the structure of the programs that have been written, and
we state some problems we encountered and propose solutions for solving
them.

In general, our implementation is based on the configuration shown in
figure 6.1, which is detailed throughout this chapter.

Figure 6.1: Implementation main structure

41

42 CHAPTER 6. IMPLEMENTATION

6.1 Database Implementation

The DBMS(DataBase Management System) chosen in this project is MySQL.
This is because it is Open Source and has two important features: scalability
and portability.

Below is the structure of the database tables in the ACS for controlling
user’s access to the system, it is also used for updating the port numbers
from the EC:

contact-information

Field Type Null Key Default Extra
id int(11) NO PRI NULL auto increment

id-user int(11) NO MUL
phone varchar(15) YES NULL

address varchar(50) YES NULL
email varchar(50) YES NULL

farm

Field Type Null Key Default Extra
id int(11) NO PRI NULL auto increment

address varchar(50) NO
phone varchar(15) NO
name varchar(30) NO

Log

Field Type Null Key Default Extra
id int(10) unsigned NO PRI NULL auto increment

userid varchar(20) YES NULL
date date NO 0000-00-00
time time YES NULL
log varchar(512) YES NULL

related-with

Field Type Null Key Default Extra
id-tractor int(11) NO PRI

id-user int(11) NO PRI

6.1. DATABASE IMPLEMENTATION 43

tractor

Field Type Null Key Default Extra
id int(10) unsigned NO PRI NULL auto increment

userid varchar(20) YES NULL
date date NO 0000-00-00
time time YES NULL
log varchar(512) YES NULL

user

Field Type Null Key Default Extra
id int(10) unsigned NO PRI NULL auto increment

userid varchar(20) YES NULL
date date NO 0000-00-00
time time YES NULL
log varchar(512) YES NULL

variable

Field Type Null Key Default Extra
timestamp varchar(15) NO PRI

name varchar(15) NO PRI
value int(11) YES NULL
units varchar(8) YES NULL

idtractor varchar(11) YES NULL

44 CHAPTER 6. IMPLEMENTATION

6.2 Intercommunication

The entire transmission of data between an EC and ACS is done via SSH
Tunnel. All TCP traffic are sent or received via the tunnel. This option
does not only help to traverse the NATs router but it also provides a more
secure alternative when compared to rlogin, telnet or rsh.

SSH counts on several methods to verify the identity of a remote user.
One of them is the use of passwords, another is based on RSA authentica-
tion, i.e. RSA authentication generates a pair of keys - private/public that
guarantees the identity of the user that is trying to connect to the remote
machine. The pair of keys has the property that what is encrypted with one
of them can be decrypted using the other one. However, it is not feasible to
derive the private key from the public one.

On power up of the EC, the script “launchall.py” that is part of the
start up sequence, checks for the availability of wired connection; if a wired
connection is available, an SSH tunnel to the ACS is created. If the wired
connection is not available in the EC on start up, it checks for the availability
of GPRS connection, and if this is available, a GPRS SSH tunnel to the ACS
is created.

When an EC succeeds in creating a tunnel, it makes a “port update”
in the database in the ACS. In our case, it should use 8080 or 8081. This
number depends on the type of connection that is currently in use in the
EC, i.e, either wired or GPRS, and it is defined in the configuration file.

To be efficient, the ACS must regularly monitor and confirm the avail-
ability of the tractors connected to it. This is because after the EC updates
the port database to indicate that it is online, it may loose connection to
the Internet for some reasons. If this is the case, there is no way for the
ACS to know about this, so as to update the availability of the tractor.

In order to prevent the ACS from showing that an EC is “online” when it
has lost connection to the Internet, a subsequent Python script “porttest-
ing.py” located in the ACS is designed to take care of updating the port
attribute. The script works by regularly checking through the “tractor” ta-
ble in the database in the ACS, if the port column is different from ’0’ it
means that a connection with the tractor is possible. It then makes a ping
to the EC, if there is a response from the EC, it indicates that the EC is
still online, but if there is no response from the EC, it indicates that the EC
is offline and then the script will reset the port value to ’0’.

6.2. INTERCOMMUNICATION 45

On the ACS, it is possible to see the tractors that are online. The names
of the tractors that are online are shown in green and those that are offline
are shown in red.

In the previous system, the entire scenario of accessing the ACS was
simulated with the ACS inside AAU’s Network. Presently, the ACS has
obtained a public address; as this will be the case in the real world. With
the public IP address, it is now possible to connect to the ACS from outside
AAU network. The IP address has been changed to “130.225.192.134” and
the necessary configurations have been made.

Once the system is on, a user can connect to the ACS using a web
browser and the IP address. With a web browser like Firefox or Microsoft
Internet Explorer, it is possible for a user after log in, to select the EC of
interest. Clicking the name of an EC will display information from the EC
on the user’s web browser.

6.2.1 Log, compression and transfer from the EC

Figure 6.2 shows the UML component diagram for logging, compression and
transfer of files from the EC.

Figure 6.2: Logging application: components diagram

46 CHAPTER 6. IMPLEMENTATION

In order to log data in the EC, a sub-set of variables have been selected
and is used for our experiments. The programming language chosen to
develop the application is C, which presents integration advantages, since
we will use the API1 from LYKKETRONIC written in C.

The program “logging.c”2 writes a log with the values of the variables
that are passed as argument. As explained before, the parameters have been
divided into two groups. Each group of parameters is logged according to
the frequency defined for them. For our experiment, we have set the first
group of parameters for reading every 5 seconds, while the second group of
parameters are to be read every 30 minutes, and at every 15 minutes, the
file is closed, compressed and sent to the ACS.

The purpose of transferring the files from the EC to the ACS is to save
the amount of space that will be required for storing the files in the EC,
since the space in the EC is limited. It is also to provide access to data from
the different machines at a central location. This centralized solution eases
maintainability tasks.

In order to be able to periodically log data, we made use of a POSIX
signal, SIGALRM, to send and receive signals. This signal has an associ-
ated handler that is in charge of writing data into the log file and then,
compressing it. The XML files are compressed with a .bz2 extension before
sending to the ACS. The XML schema has been validated according the
W3C syntax [26].

To save the cost of transferring the files, we will only transfer them
when the EC is using the wired connection. This is because using GPRS
connection to transfer the files can become too expensive, besides the files
are not time critical data or urgently needed.

1This API extracts the values of the different parameters of a tractor from shared
memory of the embedded computer.

2As mentioned earlier on, the parameters used for logging are only a subset of the
entire parameters in the system. It is possible to log more parameters with “logging.c”
function because the function is not parameter dependent, it can easily be modified to use
any number of parameters. Also, the frequency of reading and writing the value of each
group of parameters can easily be modified according to the desired time frequency. For
the file transfer, the function responsible for doing this can also easily be altered to use
GPRS to make the transfer if the wired connection is unavailable.

6.2. INTERCOMMUNICATION 47

For transferring the files from the EC, we have used secure FTP protocol,
i.e, SFTP. One of the main advantages of this protocol is that the transferred
files are encrypted. Because SFTP establishes dialogue or interaction with
a user, we wrote a bash script to take care of the interaction using the
following utilities:

spawn. It allows the execution of programs by command line.

expect. It waits for the string appearing on standard output.

send. It sends commands to the Access Control Server via standard input.

The transferred files are decompressed and stored in a database on arrival
at the ACS. The UML diagram below shows the structure of the programs
used to carry out this process:

Figure 6.3: Decompression application: components diagram

48 CHAPTER 6. IMPLEMENTATION

6.2.2 Connection switch in the EC

Only one connection will be in use in the EC at any point in time. The
default connection in the EC is the wired connection because it is cheaper
and faster to use it when it is available. When the wired connection becomes
unavailable, and a GPRS connection is available, then the EC will switch to
the GPRS connection and vice-versa.

The main script responsible for this is “wirewatchdog.py”. It con-
stantly runs in the background in the EC to check for a wired or GPRS
interface.

The programming language used for the connection issues in our system
is Python because it is fast since most of its modules are written in C and
C++.

We briefly present the scripts that are used in order to make the switch
in the EC possible. They are listed in alphabetical order:

connnectionswitch.py It contains the functions in charge of starting the
different connections.

ConnectionTools.py This file contains the functions that are in charge of
checking if there is a GPRS modem plugged, a cable, and, in this case,
if the Internet connection is available.

info.conf It provides us with configuration information, such as port num-
ber, name of the tractors, login and password for accessing the AAU
Network or the ACS Data Base.

SshTools.py It includes the functions for creating or closing an SSH tunnel.

6.2. INTERCOMMUNICATION 49

Figure 6.4 shows a diagrammatic view of the scripts running in the EC
and their relationships. The scripts in green color are launched at the start
up of the system.

Figure 6.4: Relationships between the scripts running in the EC

The <<import>> UML dependency adds the content of the destination
to the origin, while the <<access>> does not add it, only uses it.

50 CHAPTER 6. IMPLEMENTATION

6.2.3 Web Applications

Our project uses two different web applications in the EC. The first applica-
tion is the original one, developed by LYKKETRONIC for their system (see
Appendix A). When the EC is connected to the Internet using the wired
connection, this web application is used. When the EC is connected to the
Internet via a GPRS network, a second application is used. This second
application is a lighter version that a user can use for requesting and view-
ing “snapshot” data. The purpose of making a lighter version of the web
application is to cut down the size and cost of transferred bytes while using
a GPRS connection.

We must state that the web applications have been programmed in PHP
because it is Open Source, fast and portable to most platforms.

The appropriate page to be displayed for the corresponding connec-
tion is made possible by setting the virtual host paths in the Apache Web
Server. The appropriate paths can be set in the following configuration file:
/etc/httpd/conf/httpd.conf

Figure 6.5: Configuration of the Virtual Hosts in the Embedded Computer

6.2. INTERCOMMUNICATION 51

Figure 6.6 shows where we chose to host each of the web applications.

Figure 6.6: Location of the web application files.

The applications that access the shared memory of the EC, are also
located here. This is because it makes the access easier. Moreover, a cen-
tralized interface directly from the ACS is not the best option, because not
all the agriculture machinery have the same variables to be monitored.

Below is the structure of the web application located in the EC:

Figure 6.7: Web Application for GPRS connection

Here we can see how the web page that submits the web form where
a user can select the variables he is interested in, makes a call to the API
from LYKKETRONIC, which had to be previously modified by us in order
to accept parameters.

52 CHAPTER 6. IMPLEMENTATION

The hierarchical structure of the Web Application used on the ACS for
user authentication and contents administration is presented in the follow-
ing diagram, it has been made according to UML WAE (Web Application
Extension), defined by Jim Conallen[5].

Figure 6.8: Administration Web Application

HTTP Error Codes. In our web applications, we have taken care of the
most usual HTTP error codes, which inform us about some errors that may
occur during the connection to a web sites. We can divide them into two
different groups:

• Client errors

404. File not found

408. Request timeout

• Server Errors

500. Internal Server Error

501. Not implemented

503. Service unavailable

509. Bandwidth limit exceeded

We have configured the file .htaccess in each of the web application
folders, this is to enable the appropriate error message to be shown according
to the code received.

6.2. INTERCOMMUNICATION 53

6.2.4 System Security

Iptables

Iptables tool was used for defining firewall rules in both the EC and the
ACS. The rules are defined using shell scripts, designed to control packets
coming and going out of the system.

By default, the firewall in the ACS will deny every connection to the
SSH tunnel. Once a user is logged in to the login page of the ACS, a script
is launched to add a rule to the firewall rules. The rule is to allow the IP
address of the user to access the part of the SSH tunnel. When the user logs
out or after a long time without any activity from the user, another script
is launched to remove the rule that allowed the user’s IP. address.

SSH and HTTPS

The use of SSH between the EC and the ACS combined with the use of
HTTPS between a client (browser) and the ACS provides security in the
transmitted data in the system. The network traffic generated between
a client (browser) and Apache web server is through port 80, and it is not
encrypted. In this way it is possible, to use an appropriate tool to observe the
traffic and obtain, for example, passwords. A solution to this problem was to
obtain a security certificate and redirect the traffic to the port 443 (HTTPS)
instead of port 80 (HTTP). Traffic to port 443 are encrypted because of
the use of SSL protocols(Secure Sockets Layer) and TLS (Transport Layer
Security). This guarantees security and even if it is possible to intercept the
traffics, a hacker will only be able to see chains of characters that have no
meaning. This helps to secure the channel between a client and the ACS.

Obfuscation

SourceGuardian is the tool that LYKKETRONIC used for hidden the code
of its web application. SourceGuardian is a PHP encoder; it protects PHP
scripts by compiling the source code into a binary bytecode format, this
is then supplemented by encryption. Obfuscation is also used within the
process at various points [24].

The aim of obfuscation is to protect the PHP scripts so that no changes
can be made to it. As part of the security level, an any change made to an
encoded file will render it unusable. On page 131, an example where we use
obfuscation to hide our source code from hackers can be found.

54 CHAPTER 6. IMPLEMENTATION

6.3 Implementation problems and suggested solu-
tions

6.3.1 WIFI dongle installation:

Many WIFI vendors do not release specification of the hardware or provide
a Linux driver for their wireless network cards. The NDISWrapper project
implements Windows Kernel API and NDIS(Network Driver Interface Spec-
ification) API within Linux kernel. A Windows driver for wireless network
card is linked to this implementation so that the driver runs natively as
though it is in Windows, without binary emulation [18].

As we already said in the page 31, the WIFI dongle available for this
project is a NETGEAR wg111T, with Atheros chipset. There exists a dif-
ferent initiative for this sort of chipset called MadWIFI [17]. We could not
use this because it is not compatible with USB devices.

In order to be able to install the WIFI dongle in our system, we removed
unnecessary data and software from the flash memory card in the EC, in
order to create more space. The centOS version was updated and its kernel
was recompiled. After this, we could still not install the WIFI dongle. This
is because there is no compatible NDISWrapper for this sort of kernel at the
moment. Faced with this problem, we propose three possible solutions:

1. Change the operating system in the Embedded Computer to another
one e.g., Ubuntu 7.10.

2. Acquire a new dongle with Linux drivers compatible with centOS.

3. Write a driver for the current dongle.

The first option may not be convenient for LYKKETRONIC because of
possible incompatibilities of their software with a different operating system.
Secondly, there is no known dongle to install at the moment. The third
problem, involves a difficult task that is outside the scope of this project.

6.3. IMPLEMENTATION PROBLEMS AND SUGGESTED SOLUTIONS55

6.3.2 Shared memory access from Apache Web Server

A problem we had during the implementation of the the light weight web
application hosted in the Apache Server in the EC, is that the values of the
data read from the shared memory in the EC appeared wrongly, but when
the same the values were read by executing the C-program in command line
they returned correctly.

At the beginning, we thought it was a problem of data representation
within Apache, but finally, by checking /etc/httpd/logs/error-log we found
out that the problem had to do with privilege issues.

The only apparent solution seemed to be executing Apache as a root
user. Nevertheless, this solution was not acceptable because of security
issues and furthermore, we needed to recompile the kernel with the flag
EXTRA CFLAGS=-DBIG SECURITY HOLE, in such a way that later on,
we could change into the httpd configuration file the user “apache” (default
user and group) by root.

Eventually, we were able to find a better solution. This consists of placing
before the call to the modified-API from LYKKETRONIC, the typical com-
mand “sudo”, which also implies modifying the file /etc/sudoers. This file
can also be found in Appendix B.

56 CHAPTER 6. IMPLEMENTATION

6.4 System Configuration

In this section, we present the reader information about all the files and
directories that had to be created or modified for our implementation to
success.

6.4.1 ACS configuration

$HOME/porttesting.py It is in charge of scanning the ports that are
being used at any given time.

/var/www/login Web applications for the login of users to the system.

/var/www/uptract For administrative tasks, it insert values into the
database located in the ACS.

/etc/apache2

key.pem Private key.
certificateProxy.pem Autosigned certificate.
ports.conf If we are using ports different from port 80, apart from

declaring it by means of the directive NameVirtualHost and Vir-
tualHost it is also necessary to indicate it in this file by adding
the list of port we are interested in using.

sites-enabled/ProxySSE4 The file that declares and configures the
VirtualHosts 3.

$HOME/decompression

storingMySQL.c The program that will be running in background,
it extracts the data that has been sent by the EC in XML format
and store it in the MySQL database.

compileStoringMySQL.sh Script used for compiling and storing
MySQL.c

.ssh

authorized-users File with the public keys of the machines we can
access.

id-rsa Private key of the ACS.
3The term VirtualHosts refers to the practice of maintaining more than one server on

one machine, as differentiated by their apparent hostname

6.4. SYSTEM CONFIGURATION 57

6.4.2 EC configuration

$HOME/scripts Python files in charge of the different sorts of Internet
connection (GPRS, wired) between the EC and the ACS, the system’s
configuration file and the firewall scripts.

sse4 Files in charge of the data gathering from the shared memory. Files
in charge of the periodically logging and transferring files to the ACS
are also included.

/var/www/lykketronic

GPRS Simple web page. READ - ONLY mode.

web Web page for the connection ethernet/WIFI. It is developed by
Househam Sprayers Limited. Its source code is encrypted in such
a way that it cannot be modified by us.

/etc/httpd/conf/httpd.conf Configuration of the Virtual Hosts.

.ssh

authorized-users Files with the public key of the machines we can
access.

id-rsa Private key of the embedded computer.

/etc/rc3.d By adding references in this folder, we are also adding services
that are going to be executed automatically when the EC is started at
the network services level. Specifically we have two:

S99launchall.py Symbolically linked to $HOME/scripts/launchall.py

S99wirewatchdog.py Symbolically linked to $HOME/scripts/wire-
watchdog.py

/etc/wvdial.conf When wvdial starts, it first loads its configuration in-
formation from the configuration file defined in /etc/wvdial.conf. The
file contains basic information like modem type, speed, etc. along with
information about the Internet Service Provider (ISP).

/etc/sudoers This file contains rules that users have to follow using sudo
command.

Complete source codes of all the files can be found in the attached CD.

58 CHAPTER 6. IMPLEMENTATION

Chapter 7

Tests and performance
results

In this chapter we present the test cases and the results we obtained when
executing our system. The main objective is to show that the requirements
are satisfied. Furthermore, we will take measurements that are of immediate
importance and value to LYKKETRONIC. All details about the hardware
and software are included in Table 7.1. Results from the tests are included
in this chapter and references are made to the relevant tables and graphs.

59

60 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

7.1 Test approach

The main measurements to be made at the system have to do with the
realtime and logged data that are sent from the EC. We will present all these
aspects by following the GQM (Goals - Questions - Metrics)[7] approach.

Goals:

G1. To offer an estimation of the price that one access to the EC via a web
interface in realtime costs by using any of the available technologies
from a farm owner point of view.

G2. To know the advantage in economical terms for a normal user to down-
load a page and not the other from a farm owner point of view.

G3. To find an estimation of the price it would cost for sending logs over a
period of time (8 hours) with a GPRS connection.

G4. To know the economical advantage of compressing a log file before
sending it to the ACS

Questions:

Q1. How much does connecting in realtime to a tractor by using an Ethernet
connection costs?

Q2. How much does sending a log to the ACS costs?

Metrics:

M1. Kilobytes transferred using the simple web page.

M2. Kilobytes transferred using the LYKKETRONIC web page.

M4. Transmission cost by using GPRS with the simple page.

M5. Transmission cost by using GPRS with LYKKETRONIC’s page.

M6. Kilobytes transferred in the transmission of a log file.

M7. Transmission cost by using GPRS for log.

In the following sections we will try to get these goals and answer these
questions by using these metrics.

7.2. THE TEST SETUP 61

7.2 The Test Setup

Below is a description of the equipments that are used for carrying out the
simulations and tests:

1. Mobile phone
Model: Nokia N71 GPRS class 10
SIM CBB Mobile
GPRS download speed 200Kbps, 25Kb/sec transfer rate
GPRS upload speed 70Kbps, 8.8Kb/sec transfer rate
2. Data cable
Interface: DKU-2 USB data cable
Speed 460800 baud

3. Mobile computer(EC)
Model: Celeron 800mhz with 256MB RAM
Operating system: CentOS 4.4, Kernel 2.6
Software packages: pppd, wvdial
4. Access Control Server
Model: Fujitsu Siemens SCENIC P300
Operating system: Ubuntu 7.10
Software packages: Open ssh, dhclient
IP address: 130.225.192.134
5. Internet Connection
Service provider: DENet - Danish Network for Research and Ed-

ucation
Download speed: 3501kbps, 437.6Kb/sec transfer rate
Upload speed: 2258kbps, 282.3Kb/sec transfer rate

Table 7.1: Description of the equipments used during the test

62 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

7.3 Test cases

Each of the test cases below, were tested at least 5 times, in order to check
that the system works and to obtain more accuracy in the results from the
tests.

7.3.1 Test Case I: System Startup

In this scope, we define four different cases:

1. Ethernet cable and GPRS modem are plugged on system’s power up.

• Expected result: Ethernet connection is started.

• Obtained result: OK.

2. No ethernet cable or GPRS modem is plugged on system’s power up.

• Expected result: Error message, “No connection could be started”.

• Obtained result: OK.

3. Only the Ethernet cable is plugged on system’s power up.

• Expected result: Ethernet connection is started.

• Obtained result: OK.

4. Only the GPRS modem is plugged on system’s power up.

• Expected result: GPRS connection is started.

• Obtained result: OK.

We also measured the time it takes to start up a wired and GPRS con-
nection in the EC. The results are presented in table 7.2. The average times
are highlighted in yellow.

Startup with wired (s) Startup with GPRS(s)
12 124
12 115
12 115
12 124
12 119
12 119.4

Table 7.2: Time needed to startup wired and GPRS Internet connections

7.3. TEST CASES 63

Results from Table 7.2 show that starting up the system with a GPRS
connection is about 10 times slower when compared with the wired connec-
tion start up. The slow start up of the GPRS connection can be as a result
of different factors such as: the time spent by wvdial for dialing the ISP
or as a result of the high RTT experienced by GPRS connection. Another
possible factor for the slow start up, may be because of the class of GPRS
terminal in use. Currently, we are using GPRS class 10, and the higher a
GPRS class, the faster the data rates. From the measurements carried out,
we have a maximum data transfer speed of 70 kbps upload and 200 kbps
download. But, this speed is also dependent on the type of hardware in use.

Which the following figures, we want to demonstrate the correct startup
of the system.

Cases 1 and 3: The wired connection is started

Figure 7.1: Interfaces when starting up the system with cable (and maybe
also GPRS modem) connected

64 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

Figure 7.2: Tractor table in the database when connected via cable

Figure 7.3: Tunnels created when connecting via cable

7.3. TEST CASES 65

Case 4: The GPRS connection is started

Figure 7.4: Interfaces when starting up the system with only GPRS modem

Figure 7.5: Tractor table in the database when connected via GPRS

Figure 7.6: Tunnels created when connecting via GPRS

66 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

7.3.2 Test Case II: Connection Switch

For switching between the wired and the GPRS connection, the following
combinations have been tested and are possible:

1. Switching from GPRS to wired.

• Expected result: the wired connection is started.

• Obtained result: OK.

2. Switching from wired to GPRS.

• Expected result: GPRS connection is started.

• Obtained result: OK.

3. Switching “from nothing” to GPRS.

• Expected result: GPRS connection is started.

• Obtained result: OK.

4. Switching “from nothing” to wired.

• Expected result: wired connection is started.

• Obtained result: OK.

5. Switching from wired to “no connection”:

• Expected result: The SSH tunnels are closed, and the port used
for connecting the tractor to the ACS, is reset to 0.

• Obtained result: OK.

6. Switching from GPRS to “no connection”:

• Expected result: The SSH tunnels are closed, and the port used
for connecting the tractor to the ACS, is reset to 0.

• Obtained result: OK.

7.3. TEST CASES 67

After testing the connection switch solution, some encouraging results
were produced in the time taken to switch between the two connections.
The results are presented below.

Wired to GPRS (s) GPRS to Wired (s)
27 18
38 15
30 12
27 14
30 13

34.4 14.4

Table 7.3: Time needed to do the switching in different directions

The values showed in yellow are the average time to do each of the
switching; as expected, the switching from the wired connection to GPRS
connection took longer since it is necessary to execute the wvdial command
to bring up the ppp0 interface and also possibly because of some of the
reasons mentioned earlier.

The results from this test are satisfactory, since in the previous semester, it
was only possible to switch from the wired connection to GPRS connection,
and in most cases, it usually ends without success. In the cases where the
previous scripts worked, the empirical experiments that were made shows a
switching time of about 90 seconds. This shows that the new implementation
has decreased this time to about one third.

From these results it is evident that the connection switching solution is
able to switch between the different connection while it roams between the
networks, and the switch is considerably fast compared to the previous so-
lution.

The switching solution is not protocol dependent, hence it is not restricted
to only GPRS and wired connections. The solution can be used with any
type of IP based network interface - wired or wireless connections.

68 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

7.3.3 Test Case III: Logs

For logging the parameters we have taken the following scenarios into ac-
count:

1. Log with an increasing number of variables:

• Expected result: All the variables passed as parameter have been
logged and the results are correct.

• Obtained result: OK

2. Transfer of the logs to the ACS via SFTP is possible.

• Expected result: The logs have been transferred.

• Obtained result: OK

3. Insertion of the log contents into the database

• Expected result: The contents have been correctly stored in the
database.

• Obtained result: OK

Here we present some screen shots that were taken during the tests.

Figure 7.7: Example of an XML file with two variables logged

7.3. TEST CASES 69

Figure 7.8: Extracted “variables” table in the database in the ACS

7.3.4 Test Case IV: Viewing a job in the EC

At the completion of a job by a tractor, it is possible to remotely access the
job parameters such as distance, amount, diving time, etc.

The idea of this test is to use both the light weight page we developed and
LYKKETRONIC’s web page for viewing the current job information using
GPRS connection.

1. Check that the page works with the given number of variables passed
as argument.

• Expected result: It displays the result of the the given number of
variables.

• Obtained result: OK

2. Check that the displayed results are the same as the values displayed
using LYKKETRONIC’s page.

• Expected result: The displayed result are the same as the one
displayed on LYKKETRONIC’s page.

• Obtained result: OK

70 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

Figure 7.9: Web page comparison

Figure 7.9 shows the result of a job using LYKKETRONIC’s page and
the result of the same job using the light weight page. As can be seen, the
values are the same.

From these results, in order to view the current job using LYKKETRONIC’s
page, it used a total of 2,669MB and it costed 21,18 DKK. For viewing the
same job with the light weight page, it used a total of 462kB and it costed
3,60 DKK.

From these experiments, it is obvious that both pages have displayed the
same values for the parameters hence, we can conclude that the information
displayed by the light weight page is correct. Also, lesser kilobytes was used
for uploading the same data set with the light weight page.

Since GPRS charge is per megabyte of transferred data, from this exper-
iment, it is obvious that it costed 17,58 DKK more to access the same
information by using the heavy weight web page.

From this experiment, it shows that if LYKKETRONIC makes a corre-
sponding lighter web interface for accessing the entire system, it will be
cheaper. The current light page we developed can only be used for accessing
a subset of the entire system also, it is primarily developed for our exper-
iments. Changing this feature can also help to reduce the overhead added
by the current heavy weight web in terms of data transferred and cost.

7.3. TEST CASES 71

Administration Web page in the ACS

1. Log in with different sort of users.

• Expected result: The application presents the right menu for each
of the different roles.

• Obtained result: OK

2. Check the different options of adding, deletion and modification of
users, farms and tractors.

• Expected result: the users, farms and tractors are successfully
added, deleted or modified respectively.

• Obtained result: The users, farms and tractors are modified suc-
cessfully.

3. Check the user access via URL.

• Expected result: Faced with the try of accessing to a forbidden
web page via URL, an error message is shown.

• Obtained result: OK

4. Check what happens when we try to access a web page that does not
exist.

• Expected result: a customized error page.

• Obtained result: OK

72 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

7.4 Performance Study

Wireless networks have a significant latency due to error mechanisms intro-
duced at the link layer, as well as transmission delays in the radio access net-
works. For example, in GPRS, the RTT (Round Trip Time) varies between
1 and 1.5 seconds. Moreover, data rate is another limiting characteristic on
these networks.

Some important parameters that have great effect on performance over wire-
less networks are the Maximum Segment Size (MSS), the maximum trans-
mission window, the initial window size, the use of selective acknowledge-
ments option and the time stamps option for more accurate RTT measure-
ments.

We centered around the MTU1; when considering the Bit Error Rate (BER)
of a link, a small MTU increases the chance of successful transmission, since
the possibility of frame damage is reduced. Moreover, large MTU will allow
a quick growth in the TCP congestion window (in bytes), which can result
in delay or retransmission.

For our GPRS connection, we have set the MTU to 472 bytes. We made
this by using the next command when starting the GPRS connection:

ip link set ppp0 mtu 472

We chose this size of MTU because during the tests we observed that
when the MTU of the Point-to-Point protocol2(ppp0) interface is about 500
bytes the response times are lower. If the transmission overheads become
more significant as the packet size reduces [9], the only possible reason is
that many transmission errors occurred and they must be retransmitted
again; which entails an increase in the response times. In the next page, we
present the different values of MTU we obtained, using the ping command,
together with the rank of response time for each of them.

1MTU refers to the largest packet that can be transmitted over a network, it is measured
in bytes.

2Protocol that is used to establish the Internet connection via an habitual telephone
or GPRS modem

7.5. DATA TRANSFER COSTS 73

MTU (bytes) Rank of Response time (ms)
472 [209, 446]
500 [228, 442]
1000 [232, 778]
1500 [214, 774]

Table 7.4: Response time for different values of MTU

The maximum MTU for Point-to-Point protocol is 576 bytes. As can be
observed, with large values for the MTU, the GPRS connection still works
but the response time shoots up.

7.5 Data transfer costs

As we have already stated, we have defined two different applications to
access data in the embedded computer in real time. In this section, we will
present the advantage that this fact supposes.

The cost of one kilobyte of data transfer using information from CBB
is about 0.0078DKK. LYKKETRONIC web application is quite heavy, with
data size of 562KB. This implies that the price for uploading this page to
the browser of an end user when the tractor is connected to Internet via
a GPRS modem, is about 4.39DKK. If the users access real time data too
many times, the costs for the farm will sharply increase.

Transferring this size of page can also be quite expensive, not only for the
farm, but also for an end user using an expensive connection or a small
device such as a PDA. Instead, if a lighter web page is used, the EC will
end up transferring lesser kilobytes of data.

Although, in GPRS the time of the connection does not affect the price
to pay, we must note that downloading the first web page using a GPRS
connection needs about 22 seconds; on the contrary, displaying the lighter
web page is much faster, it takes only about a second.

74 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

The next table is for log data transmission, as we can see, the size of
the logs depends on the number of variables that have been logged. The
meaning of each of the columns is explained below:

Variables Uncompress log (KB) Compress log (KB) Price log (DKK) Price 8 hours
1 19.64 0.70 0.01 0.23
2 37.89 0.95 0.01 0.30
3 38.01 0.92 0.01 0.30
4 38.12 0.93 0.01 0.30
5 57.76 1.11 0.01 0.35
6 57.87 1.28 0.01 0.41
7 77.00 1.27 0.01 0.41
8 97.36 1.44 0.01 0.46
9 117.50 1.82 0.02 0.58
10 136.62 1.74 0.02 0.56
11 157.30 1.91 0.02 0.61
12 176.25 2.44 0.02 0.78
13 194.33 2.77 0.02 0.89
14 212.93 3.41 0.03 1.09
15 213.04 3.31 0.03 1.06
16 233.21 3.62 0.04 1.16

Table 7.5: Size of the variables in compressed and uncompressed format,
and price of transmission.

7.5. DATA TRANSFER COSTS 75

Figure 7.10 is a corresponding graph that shows how the size of the log
increases as the number of variables increase. This also shows the advantage
of making a compression after logging the files.

Figure 7.10: Size of the logs depending on the number of variables

The first column represent the number of variables logged, the second col-
umn represent the size of the uncompressed logs in (KB), the third column
represent the size of the compressed logs in (KB), the fourth column repre-
sent the average price of transmitting a compressed log in (DKK), and the
fifth column represent the average cost of transmitting compressed logs over
a period of 8 hours.

The above results show that as the number of the uncompressed variables
increase, the size also increases, as there is almost a linear increase in the
file size as the number of variables increase. It also shows that even though
we increase the number of variables to be logged, with a good compression
algorithm, the file can easily be compressed to a reasonable size. This is
because, compression algorithms perform better as the size of the file grows.

76 CHAPTER 7. TESTS AND PERFORMANCE RESULTS

Chapter 8

User Guide

This section shows the system setup and how the users can interact with the
system depending on the category of user stated in the analysis section. We
have four different kinds of users and each one is able to do different tasks.

8.1 System setup

1. Start the database, located in the ACS, using the following command:

sudo /etc/init.d/mysql start

2. On the EC side, the scripts in charge of the wired/GPRS connection
are automatically launched on start up of the system.

In order to start a GPRS connection, the modem must be connected to
the EC and the PC suite mode must be chosen; otherwise, the EC will not
recognize the device. After doing this, at the top left corner of the screen
an icon will appear, this indicates that there is GPRS data connection.
When the GPRS connection is started, two arrows, each in one direction will
appear with discontinuous line. When the connection is fully established,
this arrows will become fixed, as can be seen in the following screenshot.

77

78 CHAPTER 8. USER GUIDE

Figure 8.1: Mobile phone screen when working as a GPRS modem modem

8.2 How to operate the system

When any user connects to the ACS, he sees the next screen:

Figure 8.2: Login form

Afterwards, the user enters his name and password. With this information,
the system knows if the user is allowed to interact with it or not. This point
also, decides the interaction the different users can have with the system
considering the different category they belong to.

8.2. HOW TO OPERATE THE SYSTEM 79

After that, the user is allowed to continue. Then, the user can choose the
farm that the tractor he wants to see belongs to. After selecting a farm, he
then selects the tractor and click on the “Send” button.

Figure 8.3: How to select a tractor

Afterwards the system shows the user a screen with the information belong-
ing to the tractor selected. At that moment, the screen that the user sees is
different; depending on whether the EC is connected via wired or GPRS.

If wired connection is available, the user will see the screen presented in
picture A.1. Details can be found in the manual[11].

If GPRS connection is available, the user will see the screen presented on
next page.

80 CHAPTER 8. USER GUIDE

Figure 8.4: Light screen for GPRS connection

The different items can be expanded into menus; it is possible for a user
to select the parameters he is interested in from the list and press the “OK”
button.

Figure 8.5: Expanded menus examples

8.2. HOW TO OPERATE THE SYSTEM 81

Next, a snapshot of the values of the chosen parameters will be displayed.
As an example, in figure 8.6 we can see the values of the parameters that
were checked in figure 8.5.

Figure 8.6: Snapshot of the instantaneous value os the selected variables

At this point we must divide this manual according to the different kinds
of users we have.

82 CHAPTER 8. USER GUIDE

8.2.1 Superuser

If the Superuser wants to access the administration tasks, he must select the
link called “Admin side” that appear on the left of the screen.

Figure 8.7: Admin side

When the Superuser clicks on that link, a new page appears. From this
screen the superuser is able to manage:

8.2. HOW TO OPERATE THE SYSTEM 83

Users. If the Superuser select that link, he is able to see the information
that belongs to all the different users that belongs to the system. When
the Superuser selects one user he sees the next screen with all the
information about that user.

Figure 8.8: User detail

Afterwards the Superuser is able to see the user’s information, modify
or delete the user.

• If the superuser selects the link “Modify”, he sees the next screen.
Then he is able to modify whichever user’s information he wants
and press the button to accept the modification.

• If the “delete” link is selected, then the next screen appears and
asks if he is sure about the action he is going to do (confirmation
of destructive action). Then the user selects “Accept” and the
system deletes the user which was chosen.

• The superuser is also able to add new users, to do that, the
superuser must select “add new users”. When he does this, he
sees a form that he must fill in with the information about the
new user.

84 CHAPTER 8. USER GUIDE

Farms. If the superuser selects that link he is able to see the information
that belongs to all the different farms which belong to the system.
When the superuser selects one farm he sees the next screen with all
the information about the farm. Afterwards, the superuser is able to
see the farm’s information, modify farm’s, modify farm’s information
or delete the farm.

Figure 8.9: Farm details

• If the Superuser selects the link “Modify”, he sees the next screen.
Then the superuser modify whichever farm’s information he wants
and select the button to accept the modification.

• If the Superuser selects the link “Delete” then he sees the next
screen that ask him if he is sure about the action he is going to
do. Then he selects “Accept” and the system deletes the farm
which was chosen.

• The Superuser is also able to add new farms, to do that, the
Superuser must select “add new farms”. When he does this, he
sees a form that must be filled with the information of the new
farm.

8.2. HOW TO OPERATE THE SYSTEM 85

Logs. If the user select the “log” option, it is possible to see all the actions
that have been made on the web site, as the next screen show us.

Figure 8.10: History

86 CHAPTER 8. USER GUIDE

8.2.2 Technician

If the technician wants to access his own section he must select the link
called “Technician side”.

Figure 8.11: Technician side link

The technician is able to access the information belonging to the different
farms and its tractors.

8.2. HOW TO OPERATE THE SYSTEM 87

8.2.3 Farmer

If the farmer wants to see his own section, he must select the link called
“Farmer side”. When the farmer clicks on that link, he sees the next screen.

Figure 8.12: Farmer side link

In this screen the farmer is able to see his own farms and the users who
works with those farmers. He can also add new tractors to his farm.

8.2.4 Worker

This user does not own a side; he is only able to see the farm which he works
in and the tractors he is related to.

88 CHAPTER 8. USER GUIDE

Chapter 9

Conclusion and Future Work

After concluding this project we can confirm the possibility of connecting an
embedded computer to the Internet via different technologies, specifically,
wired and GPRS. It is also possible to make a switch between the technolo-
gies in order to choose, at any given moment, the connection with the best
price/performance ratio, amongst those that are available. The network
switch design is a software based solution that could be easily portable to
any other type of mobile node. Moreover, the results show that it is pos-
sible to access this embedded device from anywhere in the world, using a
standard browser.

Also, a logging system has also been implemented, which demonstrates
that the transfer of data files in batches from a embedded computer to a
centralized node is possible, and that this transmission is faster and cheaper
if the files are compressed before sending.

Finally, we have to state that we had a problem that we were unable to
solve, the issue of WIFI configuration in the device. It was not possible to
install the available WIFI dongle in the current operating system - CentOS,
in the embedded computer. So we suggest a possible change of the operating
system, preferably to Ubuntu. Once, the change has been made, with the
right configuration, the present design can easily be adapted to use WIFI
instead of the wired connection.

In next section, we will have a look to the improvements that our project
has achieved with regards to the previous work, and also, some other possible
ideas that could be interesting to implement in future.

89

90 CHAPTER 9. CONCLUSION AND FUTURE WORK

9.1 Main improvements in the present project

• In the previous work, the file launchall.py was set to run on start up
in run level 3, but it did not update the port attribute in the ACS
database after start up. Now, this problem has been fixed and the
port database is correctly updated.

• Only a unidirectional switch from wired to GPRS was possible before
and when a mobile phone was plugged and the wired cable plugged off,
there was loss of connection of the system to the Internet. Bidirectional
switch is now possible, and with many combinations.

• The problem with the instability of the GPRS connection has been
fixed.

• Drastic drop in the number of lines of code (LOC), on the side of
maintainability and later reutilization.

• Before the kick off of this second project, we took measurements of the
time taken to switch a connection, in order to be able to calculate the
improvement achieved at the end. The time used for making a switch
from the wired connection to GPRS connection, was in average about
90 secs, and now it is 30 secs., which is a supposed improvement of
about 300%.

• The wirewatchdog.py script created a lot of children that were not
killed later, so it caused wastage of CPU, resulting in slow switching
time.

• The design of the database has changed to allow different sorts of roles
within the system. Each user has different privilege, as stated in the
Software Requirements Specification, for accessing, modifying, adding
or deleting some of the contents stored on persistent storage.

• Now, it is also possible to store several telephone numbers, electronic
mails, etc, for the same user.

• Sensitive data, such as user passwords, has been hashed to make it
more difficult to see them either using brute force search or other
procedures.

• In the previous system, the entire system simulation was done inside
AAU network, hence the ACS was behind AAU’router. Now the ACS
has a public IP address and a user is able to connect to it from any-
where. This is also how the ACS will be used in the real scenario.

9.2. FUTURE WORK 91

9.2 Future work

Although we have developed a system that can provide remote access to
data in a mobile device, extensions can be added through further work as
discussed below.

• Possible implementation of a webcam with the right linux drivers can
be made in the EC. With this, it is possible to remotely access video
data and to also remotely control the camera using the right function-
alities.

• Possible use of a GPS system to remotely control the tractor. One
possible way to achieve this is by using a recording GPS system to
record the tractor’s route while working. The tractor can then be
programmed to follow the same route. It can use this for example, to
control spraying of the fertilizers. Programming the tractor routes can
help to save a lot of money.

92 CHAPTER 9. CONCLUSION AND FUTURE WORK

Bibliography

[1] Advanced Digital-Logic Inc: http://www.adlogic-
pc104.com/products/systems/datasheets/MICROSPACE-PCX48.pdf.
Last visit: 22nd February 2008.

[2] Aalborg University - Research: http://vbn.aau.dk/research/landit(5544401).
Last visit: 12nd March 2008.

[3] Buron, Anthony; Cothereau, Nicolas; Delaite, Guillaume; Eskilden,
Jacob; Gourdin, Edouard; Monsonego, Olivier; Ogini Nielsen, Faith
Oziofu and Oteo Ovejero, Elisa; Remote Access for a Wireless System.
Aalborg University, 2007.

[4] BZIP.org: http://www.bzip.org/. Last visit: 26th April 2008.

[5] Conallen, Jim; Building Web Applications with UML Second Edition.
Boston, 2002.

[6] EherAper: http://etherape.sourceforge .net/. Last visit: 18th April
2008.

[7] Basili, Victor; Caldiera, Gianluigi and Rombach, Dieter; The Goal
Question Metric Approach. University of Maryland.

[8] DataCompression.info: http://datacompression.info/PPM.shtml. Last
visit: 25th May 2008.

[9] Ehlers, Niels; Stuckmann, Peter; Wouter, Bianca; GPRSTraffic Perfor-
mance Measurements. Aachen University of Technology (Germany).

[10] GSM World: http://www.gsmworld.com/technology/gprs/index.shtml.
Last visit: 11th March 2008.

[11] Househam Sprayers Limited; TMC Computer. Operators Manual -
Phase 1.

[12] IEEE; Std. 830-1993. Recommended Practice for Software Requirements
Specification.

93

94 BIBLIOGRAPHY

[13] IEEE; Std. 802.11-2007. IEEE Standard for Information technology -
Telecommunications and information exchange between systems - Local
and metropolitan area networks.

[14] IEEE; Std. 801.11i-2004. IEEE Standard for Information technology -
Telecommunications and information exchange between systems - Local
and metropolitan area networks - Specific Requirements Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY)
specifications Amendment 6: Medium Access Control (MAC) Security
Enhancements.

[15] IEEE; Std. 802.16-2001. IEEE Standard for Local and Metropolitan area
networks.

[16] LYKKETRONIC: http://www.lykketronic.dk. Last visit: 23rd Febru-
ary 2008.

[17] Madwifi.org: http://madwifi.org. Last visit: 18th April 2008.

[18] NDSIWrapper: http://ndiswrapper.sourceforge.net/joomla. Last visit:
18th April 2008.

[19] MRTG: http://www.mrtg.com/. Last visit: 18th April 2008.

[20] Ntop.org: http://www.ntop.org/. Last visit: 18th April 2008.

[21] Mexperts: http://www.presseagentur.com/digitallogic. Last visit: 22nd

February 2008.

[22] TcpDump.org: http://www.tcpdump.org. Last visit: 18th April 2008.

[23] Webexperto.com: http://www.webexperto.com/articulos/art/179/codificar-
contrasenas-con-md5/. Last visit: 8th March 2008.

[24] SourceGuardian.com: http://www.sourceguardian.com. Last visit:
15th May 2008.

[25] Wireshark.com: http://www.wireshark.com/. Last visit: 18th April
2008.

[26] XMLvalidation.com: http://www.xmlvalidation.com/. Last visit: 19th

April 2008.

Appendix A

Details about the Embedded
Computer

A.1 Hardware - Level Description

• Celeron M-800MHz

• 256MB DDR-RAM

• 6x USB V2.0 (2 front, 4 rear)

• LAN Ethernet 10/100 Base-T

• LPT, COM1 and COM2

• Video Channel-1 analog CRT

• Video Channel-2 digital DVI-D and LVDS

• Audio-In/Out Stereo, Mic In

• 1GB Compact Flash card Silicon Systems

• Dimensions: 160 x 190 x 66 mm

95

96 APPENDIX A. DETAILS ABOUT THE EMBEDDED COMPUTER

A.2 Software - Level Description

• The operating system running in the EC is Linux CentOS 4.4, a Linux
distribution that is based on Red Hat Enterprise Linux (RHEL).

• Some of the installed packages and tools are - OpenSSH, IPtables,
dhclient, pppd, Apache Web Server Version 2.0.52 and PHP 5 amongst
others.

A.3 Human Machine Interface (HMI)

For the hardware system, a touch screen is the User Interface to the EC.
A USB keyboard can also be attached instead of using the pop-up keypad
that came along with the touch screen.

Below is screen shot of the Touch Screen, a click of an icon gives access to
information of a subset of the activities in the tractor.

Figure A.1: A screen shot of the touch screen

A.3. HUMAN MACHINE INTERFACE (HMI) 97

Description of the different icons on the Touch Screen:

Power Down Button - When this unit is pressed, a pop-up
window appears that can allow us to shut down the system.
Note: Warning messages are indicated in a red box at the
same top left hand corner of the screen.

Boom Lock Symbol 90o - For monitoring the angle between
a sprayer mast and the booms to ensure that the booms are
kept as close as possible to 90o at all times.

Headland Assistant - is used to aid the operator in different
conditions for example, when on an uneven terrain or
exceptionally tall crops. It works by lifting and lowering the
booms to a predetermined height.

Hydraulic - This is used for displaying the operational status
of the hydraulic. If operating condition is normal, OK is
displayed beneath this icon and if a fault occurs, a red
warning triangle is displayed beneath this icon.

Engine - This is used for displaying the operational status of
the Engine such as the battery voltage, engine oil temper-
ature, engine hours, etc. If operating condition is normal,
OK is displayed beneath this icon and if a fault occurs, a
red warning triangle is displayed beneath this icon.

Transmission Status - When this icon is pressed transmission
status such as oil level, current pressure will be shown. If
operating condition is normal, OK is displayed beneath this
icon and if a fault occurs, a red warning triangle is displayed
beneath this icon.

Help Menu - Pressing this icon allows the operators manual
to be viewed as a PDF document.

98 APPENDIX A. DETAILS ABOUT THE EMBEDDED COMPUTER

Road Screen - Pressing this icon will automatically cause
the ’Road-Mode’ screen to appear on the screen. On
the ’Road-Mode’ screen , information like total distance
traveled, engine speed, fuel level, etc can be seen.

Sprayer Control Screen - Pressing this icon will display the
’Spray Controller Screen’. This is used for controlling the
spray, it can be used to put the spray in either auto or
manual mode, set the desired application rate, etc.

Operator Setup Menu - When this icon is pressed, it enters
the operator setup. It is designed to contain most frequently
adjusted settings eg for the sprayer set up, it is used for
setting up the wheel, density of spraying, nozzle setup, etc.

Technical Setup - This is for the technical machine setup.
These settings should rarely need adjustment once setup
correctly. Used for sprayer setup, it is used for setting up
things like the flow meter, nozzle distance, wheel steering
setup, show incoming packets from the CANBus, etc.

A.4 Examples of data to be logged in the EC

Some examples of data that can be interesting to log in the system are:
Speed- the current speed at which the tractor is driving, Total trip- the
total time in hours which the tractor has spent while carring out a job,
Battery voltage, Engine hours- the number of hours for which the engine
has been running, Fuel level, Tank content- this gives reading of the current
fuel content in the tank, Application rate- this is for indicating the rate at
which a tractor is applying fertilizers, seedling, water, etc., Spray pump,
Spray line pressure, Total area- the total area covered at the end of each
job, Amount of fertilizer, and Distance.

For further information and examples, please consult the Operator’s Manual[11].

Appendix B

Scripts’ source listings

In this appendix, a copy of the main scripts and configuration files is in-
cluded. Source code of the web applications is not presented because of its
large size. We encourage the reader to consult the CD - ROM attached to
this report to have access to all the code developed throughout the project.

B.1 Programs and configuration files on the EC

B.1.1 wvdial.conf

[D i a l e r De fau l t s]
Modem = /dev/ttyACM0
Baud = 460800
I n i t 1 = ATZ
I n i t 2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
I n i t 3 = AT+CGDCONT=1,”IP” , ” i n t e r n e t ”
ISDN = 0
Modem Type = USB Modem
Phone = ∗99∗∗∗1#
Username = sonofon
Password = sonofon

99

100 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.1.2 SshTools.py

import os
import commands

def Create Ssh Tunnel (forwardType , l o ca lPor t , remoteHostIP , remotePort ,
s shServerPort , sshUser , s shServer IP) :
cmd = ” ssh −fNC −” + forwardType + ” ” +l o c a l P o r t +” : ” + remoteHostIP +

” : ” + remotePort + ” ” + ”−p ” + sshServerPort + ” ” +sshUser +
”@” + sshServer IP

s t a t u s = os . popen (cmd)
print ” Status : ” , s t a t u s

def Stop Ssh Tunnel () :
cmd = ” k i l l a l l s sh ”
s t a t u s = os . popen (cmd)
print ” Status : ” , s t a t u s

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 101

B.1.3 info.conf

#Name of BlackBox
[BlackBox]
TractorName=lab−t r a c t o r

#Proxy Sec t ion
[Proxy]
IP =130.225 .192 .134
User=ec
Port=2222
PortUpTract=56789

#Tunnel Ports Sec t ion : L i s t o f the por t the embedded computer
#shou ld use f o r c r e a t i n g tunne l s
[Tunnel Ports]
P1=8080
P2=8081
P3=8082

#Proxy Gateway Sec t ion : S p e c i f i c f o r AAU Network
[Proxy Gateway]
IP=homer . cs . aau . dk
User=i s a b e l
Port=22

#Informat ion concerning the Access Contro l Server DB
[DB Info]
DBhost =130.225 .192 .134
DBuser=j u s t i n b r i d o u x
DBpasswd=s auc i s s on
DBname=d606a

102 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.1.4 connectionswitch.py

#!/ usr / b in /env python
#−∗− coding : u t f 8 −∗−

#Import l i b r a r y
import os , logg ing , commands , h t t p l i b
from c o n f i g o b j import ConfigObj
import ConnectionTools
import SshTools
from time import s l e e p

#Name of s c r i p t
rootDir = ”/ root / s c r i p t s ”
progname=” connect ionswi tch ”

#Var iab l e s
opentunnel = 0
c o n f F i l e = rootDir + ”/ i n f o . conf ”

#Read conf f i l e to g e t DB in f o
c o n f i g = ConfigObj (c o n f F i l e)
sectionName = c o n f i g [’ BlackBox ’]
tracname = sectionName [’ TractorName ’]

sect ionProxy = c o n f i g [’ Proxy ’]
ipproxy = sect ionProxy [’ IP ’]
proxyuser = sect ionProxy [’ User ’]
proxyport = sect ionProxy [’ Port ’]
portuptractproxy = sect ionProxy [’ PortUpTract ’]

s e c t i onPor t = c o n f i g [’ Tunnel Ports ’]
porta = sec t i onPor t [’P1 ’]
portb = sec t i onPor t [’P2 ’]
portc = sec t i onPor t [’P3 ’]

sectionGW = c o n f i g [’ Proxy Gateway ’]
iphomer = sectionGW [’ IP ’]
gwuser = sectionGW [’ User ’]
gwport = sectionGW [’ Port ’]

sectionDB = c o n f i g [’ DB Info ’]
dbhost = sectionDB [’ DBhost ’]
dbuser = sectionDB [’ DBuser ’]
dbpasswd = sectionDB [’DBpasswd ’]
dbname = sectionDB [’DBname ’]

def wiredtunne l () :
#Try to open the tunne l f o r the wired connect ion
SshTools . Create Ssh Tunnel
(”L” , proxyport , ipproxy , gwport , gwport , gwuser , iphomer)
SshTools . Create Ssh Tunnel
(”R” , porta , ” 1 2 7 . 0 . 0 . 1 ” , ”80” , proxyport , proxyuser , ” 1 2 7 . 0 . 0 . 1 ”)
SshTools . Create Ssh Tunnel

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 103

(”L” , portuptractproxy , ” 1 2 7 . 0 . 0 . 1 ” , portuptractproxy , proxyport ,
proxyuser , ” 1 2 7 . 0 . 0 . 1 ”)

def gprs tunne l () :
#Try to open the tunne l f o r the GPRS connect ion
SshTools . Create Ssh Tunnel
(”L” , proxyport , ipproxy , gwport , gwport , gwuseriphomer)
SshTools . Create Ssh Tunnel
(”R” , portb , ” 1 2 7 . 0 . 0 . 1 ” , ”81” , proxyport , proxyuser , ” 1 2 7 . 0 . 0 . 1 ”)
SshTools . Create Ssh Tunnel
(”L” , portuptractproxy , ” 1 2 7 . 0 . 0 . 1 ” , portuptractproxy , proxyport ,
proxyuser , ” 1 2 7 . 0 . 0 . 1 ”)

def Proxy DB Update HTTP (ipProxy , portUpTractProxy , tractorName , port) :
#Try to update on the database the por t by wich a t r a c t o r i s
#connected to the proxy through
os . popen
(’ e l i n k s \ ’ http :// ’ + ipProxy + ’ : ’ + portUpTractProxy +
’ / updateTractor . php?name=’ + tractorName + ’&port=’ + s t r (port) + ’ \ ’ ’)
s l e e p (0 . 2)
os . popen (’ k i l l a l l e l i n k s ’)

def s t a r t w i r e d () :
#Try to s t a r t the Ethernet connect ion
#Try to s top the tunne l
SshTools . Stop Ssh Tunnel ()
#Ki l l GPRS
os . popen (” k i l l a l l wvdial ”)
os . popen (” route de l ∗”)

#Make sure t ha t e th0 i s w e l l connected on the web
os . popen (” k i l l a l l d h c l i e n t ”)
#os . popen (” d h c l i e n t ”)
cmd = ” d h c l i e n t ”
status , output = commands . ge t s ta tusoutput (cmd)
print s tatus , output
s l e e p (3)
i f ConnectionTools . c o n n e c t i o n a v a i l a b l e (”www. l y k k e t r o n i c . dk”) == True :

tunne lEx i s t ence=ConnectionTools . t e s t s s h t u n n e l ()
i f tunne lEx i s t ence == False :

wiredtunne l ()
Proxy DB Update HTTP (ipproxy , portuptractproxy ,
tracname , porta)
print ”The e the rne t connect ion has been s t a r t e d ”

else :
print ”The e the rne t connect ion could not be s t a r t e d ”

def s t a r t g p r s () :
#Try to s t a r t the GPRS connect ion
#Try to s top the tunne l
SshTools . Stop Ssh Tunnel ()
#Ki l l wired connect ion
os . popen (” k i l l a l l d h c l i e n t ”)

104 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

#ppp0 has a route by d e f a u l t ; i f we l e t i t as i t was
#a l l the t r a f f i c w i l l t r y to go to eth0
os . popen (” route de l d e f a u l t ”)
s l e e p (0 . 4)
#Try to c r ea t e GPRS SSH−tunne l
pidParent=os . ge tp id ()
a=os . f o rk ()
i f a==0:

os . popen (” wvdial &∗”)
else :

s l e e p (15)
cmd=” k i l l ”+s t r (pidParent)
print cmd
gprsConnec t i onAva i l a ib l e=ConnectionTools . test modem gprs ()
i f gpr sConnec t i onAva i l a ib l e==True :

tunne lEx i s t ence=ConnectionTools . t e s t s s h t u n n e l ()
i f tunne lEx i s t ence==False :

gpr s tunne l ()
Proxy DB Update HTTP (ipproxy , portuptractproxy ,
tracname , portb)
os . popen (” ip l i n k s e t ppp0 mtu 472”)

else :
print ”No connect ion could be s t a r t e d ”

def noconnect ion () :
#Ki l l a l l t he v e s t i g e s o f I n t e rn e t connec t ions
#Try to s top the tunne l
SshTools . Stop Ssh Tunnel ()
#Ki l l p o s s i b l e connec t ions
os . popen (” k i l l a l l d h c l i e n t ”)
os . popen (” k i l l a l l wvdial ”)
Proxy DB Update HTTP (ipproxy , portuptractproxy , tracname , 0)

i f tunne lEx i s t ence == False :
wiredtunne l ()
Proxy DB Update HTTP (ipproxy , portuptractproxy ,
tracname , porta)
print ”The e the rne t connect ion has been s t a r t e d ”

else :
print ”The e the rne t connect ion could not be s t a r t e d ”

def s t a r t g p r s () :
#Try to s t a r t the GPRS connect ion
#Try to s top the tunne l
SshTools . Stop Ssh Tunnel ()
#Ki l l wired connect ion
os . popen (” k i l l a l l d h c l i e n t ”)
os . popen (” route de l d e f a u l t ”)
s l e e p (0 . 4)
#Try to c r ea t e GPRS SSH−tunne l
pidParent=os . ge tp id ()
a=os . f o rk ()
i f a==0:

os . popen (” wvdial &∗”)

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 105

else :
s l e e p (15)
cmd=” k i l l ”+s t r (pidParent)
print cmd
gprsConnec t i onAva i l a ib l e=ConnectionTools . test modem gprs ()
i f gpr sConnec t i onAva i l a ib l e==True :

tunne lEx i s t ence=ConnectionTools . t e s t s s h t u n n e l ()
i f tunne lEx i s t ence==False :

gpr s tunne l ()
Proxy DB Update HTTP (ipproxy , portuptractproxy ,
tracname , portb)
os . popen (” ip l i n k s e t ppp0 mtu 472”)

else :
print ”No connect ion could be s t a r t e d ”

def noconnect ion () :
#Ki l l a l l t he v e s t i g e s o f I n t e rn e t connec t ions
#Try to s top the tunne l
SshTools . Stop Ssh Tunnel ()
#Ki l l p o s s i b l e connec t ions
os . popen (” k i l l a l l d h c l i e n t ”)
os . popen (” k i l l a l l wvdial ”)
Proxy DB Update HTTP (ipproxy , portuptractproxy , tracname , 0)

106 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.1.5 ConnectionTools.py

#!/ usr /env python
#coding : u t f8−∗−
import ht tp l i b , os , commands

def t e s t c o n n e c t i o n e t h e r n e t () :
#Checks i f the Ethernet c a b l e i s p lugged on
cmd=” e t h t o o l eth0 | grep \” Link detec ted : yes \””
status , output = commands . ge t s ta tusoutput (cmd)
i f s t a t u s == 0 :

i f output != ’ ’ :
c onnec t i on e the rne t = True

else :
c onnec t i on e the rne t = False

else :
c onnec t i on e the rne t = False

return connec t i on e the rne t

def test modem gprs () :
#Checks i f the i n t e r f a c e pp0 i s brought up
cmd=” i f c o n f i g | grep ppp0”
status , output = commands . ge t s ta tusoutput (cmd)
print output
i f s t a t u s == 0 :

i f output != ’ ’ :
modem gprs = True

else :
modem gprs = False

else :
modem gprs = False

return modem gprs

def t e s t s s h t u n n e l () :
#Checks i f an SSH tunne l i s a l r eady opened
cmd=”ps aux | grep i s a b e l | wc − l ”
s tatus , output = commands . ge t s ta tusoutput (cmd)
i f s t a t u s == 0 :

d i f f e r e n c e=i n t (output)−2
i f d i f f e r e n c e > 0 :

s sh tunne l = True
else :

s s h tunne l = Fal se
else :

s s h tunne l = False
return s sh tunne l

def t e s t connec t i on phone () :
#Checks i f the mobi le phone i s p lugged to the embedded computer
cmd = ” l su sb | grep Nokia”
status , output = commands . ge t s ta tusoutput (cmd)
i f s t a t u s == 0 :

i f output != ’ ’ :
connect ion phone = True

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 107

print ” Mobile phone plugged on PC Su i t e Mode”
else :

connect ion phone = False
else :

connect ion phone = False
return connect ion phone

def t e s t i p a d d r e s s () :
#Checks the IP address o f the eth0 i n t e r f a c e
cmd=” i f c o n f i g eth0 | grep i n e t ”
s tatus , output = commands . ge t s ta tusoutput (cmd)
i f s t a t u s == 0 :

i f output != ’ ’ :
i p a d d r e s s = True

else :
i p a d d r e s s = False

else :
i p a d d r e s s = False

return i p a d d r e s s

def t e s t d h c l i e n t () :
#Checks i f the d h c l i e n t i s a l r eady running in the embedded computer
cmd=”ps aux | grep d h c l i e n t ”
status , output = commands . ge t s ta tusoutput (cmd)
#pr in t ”Output : ” , output
i f s t a t u s == 0 :

i f output != ’ ’ :
s t a t u s d h c l i e n t = True

else :
s t a t u s d h c l i e n t = Fal se

else :
s t a t u s d h c l i e n t = False

return s t a t u s d h c l i e n t

def t e s t c o n n e c t i o n (websiteURL) :
#Check i f i t i s p o s s i b l e to connect to a g iven web address
conn = h t t p l i b . HTTPConnection (websiteURL)
conn . r eque s t (’GET’ , ’ http :// ’ + websiteURL + ’ / ’)
re sp = conn . ge t r e sponse ()
conn . c l o s e ()
i f re sp . reason == ’OK’ or re sp . reason . count (”Moved”) != 0 :

c o n n e c t i o n s t a t u s = True
else :

c o n n e c t i o n s t a t u s = False
return c o n n e c t i o n s t a t u s

def c o n n e c t i o n a v a i l a b l e (websiteURL) :
#Check i f e x i s t s an Ethernet connect ion a v a i l a i b l e
i f t e s t c o n n e c t i o n e t h e r n e t () == True :

i f t e s t d h c l i e n t () == True :
i f t e s t i p a d d r e s s () == True :

i f t e s t c o n n e c t i o n (websiteURL) == True :

108 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

return True
else :

print ”Not ab le to reach the URL s p e c i f i e d ”
return False

else :
#lo g g i n g . i n f o (”No IP Address ”)
print ”No IP Address ”
return False

else :
#lo g g i n g . i n f o (”DHCP c l i e n t i s s u e ”)
print ”DHCP c l i e n t i s s u e ”
return False

else :
#lo g g i n g . i n f o (” Ethernet Cable Not Plugged ”)
print ” Ethernet Cable Not Plugged”
return False

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 109

B.1.6 launchall.py

#!/ usr / b in /env python
−∗− coding : u t f 8 −∗−

#Import l i b r a r y
import os , MySQLdb, logg ing , commands , h t t p l i b
from c o n f i g o b j import ConfigObj
import ConnectionTools
import connect ionswi tch
import SshTools
from time import s l e e p
#Name of s c r i p t
progname = ” l a u n c h a l l ”
rootDir = ”/ root / s c r i p t s ”

#Ethernet connect ion f i r s t
cmd = ” d h c l i e n t ”
status , output = commands . ge t s ta tusoutput (cmd)
print s tatus , output
s l e e p (2)
i f ConnectionTools . c o n n e c t i o n a v a i l a b l e (”www. l y k k e t r o n i c . dk”) == True :

#i f a connect ion i s e s t a b l i s h e d , s t a r t the e t h e rne t connect ion procedure
connect ionswi tch . s t a r t w i r e d ()

else :
#Try to launch the GPRS connect ion
connect ionswi tch . s t a r t g p r s ()

110 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.1.7 wirewatchdog.py

#!/ usr / b in /env python
−∗− coding : u t f−8 −∗−

###
LOGFILE = ’ / var / log / wirewatchdog . l og ’
###

import sys , os , l o c a l e , datet ime
import ConnectionTools
import connect ionswi tch
from time import s l e e p

#var
wirePrev iousStatus = False

class Log :
””” f i l e l i k e f o r wr i t e s wi th auto f l u s h a f t e r each wr i t e
to ensure t ha t e v e r y t h in g i s logged , even during an
unexpected e x i t . ”””
def i n i t (s e l f , f) :

s e l f . f = f
def wr i t e (s e l f , s) :

s e l f . f . wr i t e (s)
s e l f . f . f l u s h ()

def main () :
#change to data d i r e c t o r y i f needed
os . chd i r (”/ root / s c r i p t s ”)
#re d i r e c t ou tpu t s to a l o g f i l e
sys . s tdout = sys . s t d e r r = Log (open (LOGFILE, ’ a+’))

w i rePrev iousStatus = ConnectionTools . t e s t c o n n e c t i o n e t h e r n e t ()
t e l ephonePrev iousStatus = ConnectionTools . t e s t connec t i on phone ()

#main loop
while True :

s l e e p (0 . 4)
wireCurrentStatus = ConnectionTools . t e s t c o n n e c t i o n e t h e r n e t ()
te lephonePlugged = ConnectionTools . t e s t connec t i on phone ()

i f (wireCurrentStatus != wirePrev iousStatus)
or (te lephonePlugged != te l ephonePrev iousStatus) :

w i rePrev iousStatus = wireCurrentStatus
te l ephonePrev iousStatus=te lephonePlugged
i f wireCurrentStatus == True :

connect ionswi tch . s t a r t w i r e d ()
else :

i f te lephonePlugged == True :
connect ionswi tch . s t a r t g p r s ()

else :
connect ionswi tch . noconnect ion ()

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 111

i f name == ” main ” :
try :

pid=os . ge tp id ()
c = os . f o rk ()
i f c > 0 :

e x i t f i r s t parent
sys . e x i t (0)
cmd=” k i l l ”+s t r (pid)

except OSError , e :
print >>sys . s tde r r , ” f o rk #1 f a i l e d : %d (%s) ” % (e . errno , e . s t r e r r o r)
sys . e x i t (1)

s t a r t the daemon main loop
main ()

112 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.1.8 configuration.h

/∗ ∗∗∗
∗ T i t l e : c on f i g u r a t i on . h
∗ Descr ip t i on : header t ha t i n c l u d e s the l i b r a r i e s t h a t are necessary to do
∗ the l o g g i n g proces s and a l s o another c on f i g u r a t i on in format ion
∗ Date : 2nd May 2008
∗ Author : group d606a − Sof tware Systems Engineer ing 4
∗ (Aalborg Un i v e r s i t y)
∗∗ ∗/

#include<s t d i o . h>
#include<s t d l i b . h>
#include<time . h>
#include<s i g n a l . h>
#include<sys / time . h>
#include<s t r i n g . h>
#include <uni s td . h>
#include ” v a r i d . h”

#define TRUE 1
#define FALSE 0
#define NUM VARIABLES 16
#define VARIABLES O 12 //Number o f v a r i a b l e s wi th a h igh f requency o f change

typedef struct{

char ∗name ;
unsigned int id ;
char ∗ un i t s ;

} v a r i a b l e ;

v a r i a b l e myMatrix [NUM VARIABLES] [2] ;
FILE ∗ f i l e w ;
char f i l ename [5 0] ;
char datew [9] ;
t ime t t ;
struct tm∗ today ;
unsigned int t imesno =0;
char c a l l g e t V a l u e s [3 0] ;
int valueReturned ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−

char tractorname [15]= ” lab−t r a c t o r ” ;
unsigned int t r a c t o r i d =1;

//−−−−−−−−−−−−−−−−−−−−−−−−−−

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 113

B.1.9 main.c 7→ Executable: getValues

/∗ ∗∗
∗ DESCRIPTION: Program in C language t ha t r e tu rns the va lue o f a s p e c i f i e d
∗ v a r i a b l e t h a t has been passed as parameter .
∗ PROJECT: Ana lys i s and improvement o f a remote system
∗ GROUP: Group d606a − SSE4(Aalborg Un i v e r s i t y)
∗ DATE: 31 s t March 2008
∗∗∗ ∗/

/∗ ∗∗∗∗∗∗∗∗ Inc l ude s ∗∗∗∗∗∗∗∗∗∗∗ ∗/
#include ”PROJECT. h”
#include ” compi le r . h”
#include ”PROJECT. h”
#include <s t d i o . h> /∗ p r i n t f ∗/
#include <s t r i n g . h> /∗ s t r e r r o r ∗/
#include <errno . h> /∗ errno ∗/
#include <uni s td . h> /∗ ge top t , s l e e p ∗/
#include <s t d l i b . h> /∗ ato i , a t e x i t , EXIT xxx ∗/
#include <s i g n a l . h> /∗ s i g n a l ∗/
#include <e r r . h> /∗ err ∗/
#include <sched . h> /∗ s c h e d y i e l d ∗/
#include <time . h> M̂
#include <s tdde f . h> /∗ d e f i n i t i o n o f NULL ∗/
#include <sys / time . h> /∗ d e f i n i t i o n o f t imeva l s t r u c t and pro typ ing o f ge t t imeo fday ∗/
#include ” v a r i d . h” /∗ L i s t o f LYKKETRONIC v a r i a b l e s ∗/
#include ”main . h”

/∗ ∗∗∗∗∗∗∗∗ Prototype ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
int shm rw (int var id , BOOL write m , SINT32 ∗ value) ;

/∗ ∗∗∗∗∗∗∗∗ Vars ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
struct t imeva l tp ;
MILLI SEC t1 =0;
int rtn ;

/∗ ∗∗∗∗∗∗∗ Pr iva te func ∗∗∗∗∗∗∗∗ ∗/

/∗−−−∗/

extern MILLI SEC TimeNow(void)
{

rtn=gett imeofday(&tp , NULL) ;
t1=(MILLI SEC)((1000∗ (MILLI SEC) tp . t v s e c)+(tp . tv u s e c) /10 00) ;
return (t1) ;

}
/∗−−∗/

/∗ ∗∗∗
∗ Name: main (main func t i on)
∗ Goal : show v ia s tandard output the va lue o f a determined v a r i a b l e
∗ Input : one parameter −−> the v a r i a b l e whose va lue i s wished to ob ta in

114 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

∗ Output : Value o f the v a r i a b l e passed as argument i s d i s p l a y ed on standard
∗ output
∗∗∗ ∗/

int main (int argc , char ∗argv [])
{

SINT32 v a l u e r e t u r n ; ˆM

//Read from the shared memory
shm rw (a t o i (argv [1]) , SHM READ, &v a l ue r e t u r n) ;

p r i n t f (”%ld ” , v a l u e r e t u r n) ;
u s l e ep (10000) ;

return (1) ;

}

B.1.10 sftpdialogue.sh

#!/ usr / b in / expec t

spawn s f t p just inbr idoux@130 . 2 2 5 . 1 9 2 . 1 3 4
expect ” s f tp >”
send ” l cd l ogg ing \ r ”
expect ” s f tp >”
send ”cd lykke t ron i c−l o g s \ r ”
expect ” s f tp >”
send ”put ∗\ r ”
expect ” s f tp >”
send ”bye\ r ”
expect eo f

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 115

B.1.11 logging.c

/∗ ∗∗∗
∗ T i t l e : l o g g i n g . c
∗ Descr ip t i on : program tha t w i l l be running in background in the embedded
∗ computer o f each o f the t r a c t o r s , p i c k i n g up every f i v e seconds
∗ and sav ing in a f i l e the ins tan taneous va l u e s o f the v a r i a b l e s
∗ t h a t a user has s e l e c t e d v ia a web i n t e r f a c e . Every f i f t e e n
∗ minutes the f i l e (in XML format) w i l l be c l o s e d and sen t to the
∗ Access Contro l Server , where i t w i l l be processed .
∗ Date : 28 th Apr i l 2008
∗ Author : group d606a − Sof tware Systems Engineer ing 4 (Aalborg Un i v e r s i t y)
∗∗∗ ∗/

#include ” c o n f i g u r a t i o n . h”

/∗ ∗∗∗
∗ Name: i n i t i a l i z a t i o n
∗ Goal : i n i c i a l i z e the matrix o f v a r i a b l e s t h a t the user wants to l o g
∗ Input : vo id
∗ Output : vo id
∗∗ ∗/

void i n i t i a l i z a t i o n (void){

myMatrix [0] [0] . name=”Speed” ;
myMatrix [0] [0] . id=VAR ID SPEED ;
myMatrix [0] [0] . un i t s=”Km/h” ;

myMatrix [1] [0] . name=” Total t r i p ” ;
myMatrix [1] [0] . id=VAR ID TRIP COUNTER KM;
myMatrix [1] [0] . un i t s=”Km” ;

myMatrix [2] [0] . name=”Amount” ;
myMatrix [2] [0] . id=VAR ID AMOUNT;
myMatrix [2] [0] . un i t s=” l ” ;

myMatrix [3] [0] . name=” Distance ” ;
myMatrix [3] [0] . id=VAR ID DISTANCE;
myMatrix [3] [0] . un i t s=”km” ;

myMatrix [4] [0] . name=” Fuel l e v e l ” ;
myMatrix [4] [0] . id=VAR ID FUEL LEVEL ;
myMatrix [4] [0] . un i t s=NULL;

myMatrix [5] [0] . name=” Spraying time ” ;
myMatrix [5] [0] . id=VAR ID SPRAYING TIME;
myMatrix [5] [0] . un i t s=NULL;

myMatrix [6] [0] . name=”Tank content ” ;
myMatrix [6] [0] . id=VAR ID TANK L ;
myMatrix [6] [0] . un i t s=” l ” ;

myMatrix [7] [0] . name=” Appl i ca t ion ra t e ” ;

116 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

myMatrix [7] [0] . id=VAR ID DOS L HA ;
myMatrix [7] [0] . un i t s=” l /Ha” ;

myMatrix [8] [0] . name=” Current output ” ;
myMatrix [8] [0] . id=VAR ID L MIN ;
myMatrix [8] [0] . un i t s=” l /min” ;

myMatrix [9] [0] . name=”Spray pump” ;
myMatrix [9] [0] . id=VAR ID PUMP RPM;
myMatrix [9] [0] . un i t s=”RPM” ;

myMatrix [1 0] [0] . name=”Spray l i n e p r e s su r e ” ;
myMatrix [1 0] [0] . id=VAR ID PRESSURE;
myMatrix [1 0] [0] . un i t s=”BAR” ;

myMatrix [1 1] [0] . name=” Total area ” ;
myMatrix [1 1] [0] . id=VAR ID HA ;
myMatrix [1 1] [0] . un i t s=”Ha” ;

/∗ Var iab l e s whose f requency o f change i s low ∗/
myMatrix [1 2] [0] . name=” Battery vo l tage ” ;
myMatrix [1 2] [0] . id=VAR ID BATT VOLT SYSTEM;
myMatrix [1 2] [0] . un i t s=” v o l t s ” ;

myMatrix [1 3] [0] . name=”Engine hours ” ;
myMatrix [1 3] [0] . id=VAR ID ENGINE RUNNING HOURS;
myMatrix [1 3] [0] . un i t s=” hours ” ;

myMatrix [1 4] [0] . name=” Driv ing time ” ;
myMatrix [1 4] [0] . id=VAR ID DRIVING TIME ;
myMatrix [1 4] [0] . un i t s=NULL;

myMatrix [1 5] [0] . name=”Time to s e r v i c e ” ;
myMatrix [1 5] [0] . id=VAR ID ENGINE SERVICE INTERVAL HOURS;
myMatrix [1 5] [0] . un i t s=” hours ” ;

}

/∗ ∗∗
∗ Name: connec t i on e t h e rne t
∗ Goal : d e t e c t i f t h e r e i s e t h e rne t connect ion a v a i l a b l e a t a g iven moment .
∗ Input : vo id
∗ Output : 0 i f t h e r e i s no e t h e rne t connect ion a v a i l a b l e .
∗∗ ∗/

int connec t i on e the rne t (void){

FILE ∗pcom=NULL;
char comand [1 0 0] ;
char aux [1 0 0] ;

s p r i n t f (comand , ”/ sb in / i f c o n f i g | grep Ethernet ”) ;

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 117

pcom=popen (comand , ” r ”) ;

i f (pcom==NULL){

p r i n t f (” Error when d e t e c t i n g Ethernet connect ion \n”) ;
}
else {

f g e t s (aux , 100 , pcom) ;
p c l o s e (pcom) ;
return (s t r l e n (aux)−1);

}

}

/∗ ∗∗
∗ Name: f i n i s h
∗ Goal : c l o s e the current f i l e a f t e r 15 minutes and compress i t .
∗ Input : vo id
∗ Output : vo id
∗∗∗ ∗/

void f i n i s h (void){

unsigned int m;
int pid ;
char remove command [3 5] ;

pid=fo rk () ;

i f (pid==0){

f p r i n t f (f i l ew , ”</log>”) ;
f c l o s e (f i l e w) ;
i f (e x e c l (”/ usr / bin / bzip2 ” , ” bzip2 ” , f i l ename ,NULL)==−1){

p r i n t f (” Error compress ing data .\n\n”) ;
e x i t (−1);

}
e x i t (1) ;

}

i f (pid <0){

p r i n t f (” Error whi l e t ry ing to compress data .\n\n”) ;
e x i t (−1);

}

for (m=0;m<1;m++){
i f (pid >0){

wait (0) ;
}

}

118 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

f f l u s h (stdout) ;

i f (c onnec t i on e the rne t () !=0){
system (” expect s f t p d i a l o g u e . sh”) ;
s p r i n t f (remove command , ”rm %s . bz2” , f i l ename) ;
system (remove command) ;

}

t imesno =0;

}

/∗ ∗∗∗
∗ Name: writeXML
∗ Goal : wr i t e a ’ ’ v a r i a b l e ’ ’ in the XML lo g
∗ Input : index o f the v a r i a b l e in the i n i t i a l i t a t i o n matrix
∗ Output : vo id
∗∗∗ ∗/

void writeXML(int z){

f p r i n t f (f i l ew , ”<var i ab l e >\n”) ;
f p r i n t f (f i l ew , ”\ t<date>%s</date>\n” , datew) ;
f p r i n t f (f i l ew , ”\ t<name>%s</name>\n” , myMatrix [z] [0] . name) ;
s p r i n t f (ca l l g e tVa lue s , ” . / getValues %d” , myMatrix [z] [0] . id) ;
f p r i n t f (f i l ew , ”\ t<value>”) ;
valueReturned=system (c a l l g e t V a l u e s) ;
f p r i n t f (f i l ew , ”%d” , valueReturned) ;
f p r i n t f (f i l ew , ”</value >\n”) ;
f p r i n t f (f i l ew , ”\ t<units>%s</units >\n” , myMatrix [z] [0] . un i t s) ;
f p r i n t f (f i l ew , ”\ t<id>%d</id >\n” , t r a c t o r i d) ;
f p r i n t f (f i l ew , ”</var i ab l e >\n”) ;
f f l u s h (f i l e w) ;

}

/∗ ∗∗
∗ Name: wri teLog
∗ Goal : wr i t e in format ion about the v a r i a b l e s each time t ha t the SIGALRM i s
∗ r e c e i v ed
∗ Input : vo id
∗ Output : vo id
∗∗ ∗/

void writeLog (int something){

unsigned int k ;
unsigned int m;
unsigned int day ;
unsigned int month ;
unsigned int year ;
unsigned int hour ;
unsigned int minutes ;

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 119

unsigned int seconds ;

t imesno++;

i f (t imesno==1){

t=time (NULL) ;
today=l o c a l t i m e (&t) ;
day=today−>tm mday ;
month=today−>tm mon+1;
year=today−>tm year +1900;
hour=today−>tm hour ;
minutes=today−>tm min ;
s p r i n t f
(f i l ename , ” l ogg ing/%s−%02d %02d %02d %02d %02d” , tractorname , day , month , year , hour , minutes) ;

s t r c a t (f i l ename , ” . xml”) ;

f i l e w=fopen (f i l ename , ”a+”) ;

f p r i n t f
(f i l e w , ”<!−− Logging f i l e generated automat i ca l l y by group d606a (Aalborg Un ive r s i ty) −−>\n”) ;
f p r i n t f
(f i l e w , ”<?xml ve r s i on = ’1.0 ’ encoding =’UTF−8’ ?>\n”) ;
f p r i n t f
(f i l e w , ”<xsd : schema xmlns : xsd = ’ http ://www. w3 . org /2001/XMLSchema’>\n”) ;
f p r i n t f
(f i l e w , ”\ t<xsd : element name=’ v a r i a b l e ’>\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t<xsd : complexType>\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t \ t<xsd : sequence >\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t \ t \ t<xsd : element name=’date ’ type=’xsd : s t r i n g ’/>\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t \ t \ t<xsd : element name=’name ’ type=’xsd : s t r i n g ’/>\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t \ t \ t<xsd : element name=’ value ’ type=’xsd : double ’/>\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t \ t \ t<xsd : element name=’ un i t s ’ type=’xsd : s t r i n g ’/>\n”) ;
f p r i n t f
(f i l e w , ”\ t \ t \ t \ t<xsd : element name=’ id ’ type=’xsd : s t r i n g ’/>\n”) ;
f p r i n t f (f i l ew , ”\ t \ t \ t</xsd : sequence >\n”) ;
f p r i n t f (f i l ew , ”\ t \ t</xsd : complexType>\n”) ;
f p r i n t f (f i l ew , ”\ t</xsd : element >\n”) ;
f p r i n t f (f i l ew , ”</xsd : schema>\n”) ;

f p r i n t f (f i l ew , ”<log >\n”) ;
} else {

i f (t imesno==180){
//15 minutes
for (m=VARIABLES O;m<NUM VARIABLES;m++){

120 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

i f (myMatrix [m] [1] . id==TRUE){

t=time (NULL) ;
today=l o c a l t i m e (&t) ;

hour=today−>tm hour ;
minutes=today−>tm min ;
seconds=today−>tm sec ;

s p r i n t f (datew , ”%02d:%02d:%02d” , hour , minutes , seconds) ;
writeXML(m) ;
}
}

f i n i s h () ;
}
else {
for (k=0;k<VARIABLES O; k++){

i f (myMatrix [k] [1] . id==TRUE){

t=time (NULL) ;
today=l o c a l t i m e (&t) ;

hour=today−>tm hour ;
minutes=today−>tm min ;
seconds=today−>tm sec ;

s p r i n t f (datew , ”%02d:%02d:%02d” , hour , minutes , seconds) ;
writeXML(k) ;

}
}

}
}

}

/∗ ∗∗
∗ Name: ru t i n e
∗ Goal : e s t a b l i s h the time between two s i g n a l SIGALRM
∗ Input : vo id
∗ Output : vo id
∗∗ ∗/

void r u t i n e (){

struct i t i m e r v a l va l ;
long seconds =5, microseconds =0;

va l . i t i n t e r v a l . t v s e c=seconds ;
va l . i t i n t e r v a l . t v u s e c=microseconds ;

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 121

va l . i t v a l u e . t v s e c=seconds ;
va l . i t v a l u e . t v u s e c=microseconds ;
s e t i t i m e r (ITIMER REAL, &val , NULL) ;

s i g n a l (SIGALRM, writeLog) ;

while (1)
{

pause () ;
// p r i n t f (” S i gna l r e c e i v ed \n ”) ;

}

}

/∗ ∗∗
∗ Name: programEnd
∗ Goal : c l o s e a l l the f i l e s t h a t cou ld be open at the end o f the execu t i on o f the
∗ program , even i f t h i s e x i t i s unexpected
∗ Input : vo id
∗ Output : vo id
∗∗∗ ∗/

void programEnd (void){

f c l o s e a l l () ;

}

/∗ ∗∗
∗ Name: main (main func t i on)
∗ Goal : w r i t i n g a l o g about the working o f a t r a c t o r
∗ Input : one parameter −−> the v a r i a b l e whose va lue i s wished to ob ta in
∗ Output : va lue o f the v a r i a b l e passed as argument i s d i s p l a y ed on standard output
∗∗ ∗/

int main (int argc , char ∗argv []) {

i n i t i a l i z a t i o n () ;

unsigned int i =1;
unsigned int j =0;

while (i<argc){

for (j =0; j<NUM VARIABLES; j++){
i f (a t o i (argv [i])==myMatrix [j] [0] . id){

myMatrix [j] [1] . id=TRUE;
}

}

i ++;

122 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

}

r u t i n e () ;

a t e x i t (programEnd) ;

return (0) ;

}

B.1. PROGRAMS AND CONFIGURATION FILES ON THE EC 123

B.1.12 sudoers

sudoers f i l e .
#
This f i l e MUST be ed i t ed with the ’ v isudo ’ command as root .
#
See the sudoers man page for the d e t a i l s on how to wr i t e a sudoers f i l e .
#

Host a l i a s s p e c i f i c a t i o n
apache ALL = (root) NOPASSWD: / var /www/ l y k k e t r o n i c /GPRS/ getValues

User a l i a s s p e c i f i c a t i o n

Cmnd a l i a s s p e c i f i c a t i o n

Defau l t s s p e c i f i c a t i o n

User p r i v i l e g e s p e c i f i c a t i o n
root ALL=(ALL) ALL

Uncomment to a l low people in group wheel to run a l l commands
%wheel ALL=(ALL) ALL

Same th ing without a password
%wheel ALL=(ALL) NOPASSWD: ALL

Samples
%use r s ALL=/sb in /mount /cdrom , / sb in /umount /cdrom
%use r s l o c a l h o s t=/sb in /shutdown −h now

124 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.2 Programs and configuration files located on
the ACS

B.2.1 porttesting.py

#! /usr / b in /env python
−∗− coding : u t f 8 −∗−
#l i b r a i r i e s MySQLdb to use mysql da tabases wi th python , h t t p l i b
#fo r us ing GET re qu e s t s to t e s t webpagesˆM
#the goa l i s to t e s t the connect ion o f the connected b l a c k boxes
import MySQLdb, h t tp l i b , commands

proxyIP = ’wwwproxy ’
proxyPort = ’ 3128 ’
useProxy = ’ Fa l se ’
websiteURL = ’ 130 . 225 . 192 . 134 ’

DBhost=’ 130 . 225 . 192 . 134 ’
DBuser=’ j u s t i n b r i d o u x ’
DBpasswd=’ sauc i s s on ’
DBname=’ d606a ’

f i c h i e r=” in f ob . l og ”

def t e s t c o n n e c t i o n (proxyIP , proxyPort , useProxy , websiteURL , webs i tePort) :
#de f t e s t c onne c t i on (ipproxy , port , useProxy , websiteURL , por t)

conn = h t t p l i b . HTTPConnection (”%s :%s ”%(websiteURL , webs i tePort))
try :

conn . r eque s t (’GET’ , ’ / ’)
re sp = conn . ge t r e sponse ()
i f re sp . reason == ’OK’ :

c o n n e c t i o n s t a t u s = True
else :

c o n n e c t i o n s t a t u s = False
except :

c o n n e c t i o n s t a t u s = False
conn . c l o s e ()
return c o n n e c t i o n s t a t u s

connect ion and s e l e c t i o n o f the t r a c t o r s having a por t number d i f f e r e n t from 0
meaning t ha t they are connected
def db update (DBhost , DBuser , DBpasswd , DBname) :

global f i c
connect ionObject = MySQLdb. connect

(host=DBhost , user=DBuser , passwd=DBpasswd , db=DBname)
c = connect ionObject . cu r so r ()
f i c . wr i t e (’NNN host=%s , user=%s , passwd=%s , db=%s NNN\n ’%(DBhost , DBuser ,
DBpasswd , DBname))
c . execute (”””SELECT ∗ FROM ‘ d606a ‘ . t r a c t o r WHERE por t !=0 ”””)
#for each t r a c t o r s e l e c t e d we are t e s t i n g by us ing the tunne l ed por t
#of the proxy
for row in c . f e t c h a l l () :

B.2. PROGRAMS AND CONFIGURATION FILES LOCATED ON THE ACS125

r ep ly = t e s t c o n n e c t i o n (proxyIP , proxyPort , useProxy , websiteURL ,
’%s ’%row [4])

print ” t r a c t o r : ”
print row [1]
print ” port =”
print row [4]
i f r ep ly == True :

print ” Connection a v a i l a b l e ”
else :

print ” Connection unava i l ab l e : Problem”
f i c . wr i t e (’ Connection unava i l ab l e : Problem on %s : port :
%s $$\n ’%(row [1] , row [4]))

connect ionObject . commit ()
connect ionObject . c l o s e ()

cmd=” l s . | grep ’ i n f ob . l og ’ ”
s tatus , output = commands . ge t s ta tusoutput (cmd)
f i c = open (f i c h i e r , ’w ’)
f i c . wr i t e (’ Test ’)
db update (DBhost , DBuser , DBpasswd , DBname)
f i c . c l o s e ()

126 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

B.2.2 storingMySQL.c

/∗ ∗∗
∗ T i t l e : storingMySQL . c
∗ Descr ip t i on : program tha t w i l l be running in background in the proxy .
∗ I t w i l l e x t r a c t the data t ha t has been sen t by each o f the
∗ t r a c t o r s in XML format and s t o r e i t in the MySQL database .
∗ Date : 28 th Apr i l 2008
∗ Author : group d606a − Sof tware Systems Engineer ing 4
∗ (Aalborg Un i v e r s i t y)
∗∗∗ ∗/

#include <s t d i o . h>
#include <d i r e n t . h>
#include<s t d l i b . h>
#include<s i g n a l . h>
#include<s t r i n g . h>
#include <uni s td . h>
#include<sys / time . h>

/∗ ∗∗
∗ Name: storeMySQL
∗ Goal : s t o r e the informacion l ogged by the t r a c t o r s in t o the database
∗ in the ACS
∗ Input : vo id
∗ Output : vo id
∗∗ ∗/

void storeMySQL (int a lgo){

int n , i ;
struct d i r e n t ∗∗ namel i s t ;
char comand [1 5 0] ;
char u r l [2 0 0] ;

// L i s t o f f i l e s (n i s the number o f f i l e s in the d i r e c t o r y)
n=scand i r (” . . / l ykke t ron i c−l o g s ” ,& namel i st ,NULL,NULL) ;

i =0;
while (i<n)

void storeMySQL (int a lgo){

int n , i ;
struct d i r e n t ∗∗ namel i s t ;
char comand [1 5 0] ;
char u r l [2 0 0] ;

// L i s t o f f i l e s (n i s the number o f f i l e s in the d i r e c t o r y)
n=scand i r (” . . / l ykke t ron i c−l o g s ” ,& namel i st ,NULL,NULL) ;

i =0;
while (i<n)
{

B.2. PROGRAMS AND CONFIGURATION FILES LOCATED ON THE ACS127

// I f i t i s not the curren t d i r e c t o r y or the supe r i o r
i f ((strcmp (name l i s t [i]−>d name , ” . . ”)!=0)&&(strcmp (name l i s t [i]−>d name , ” . ”) !=0)){
//Copy the l o g s from the i n f o l d e r to another one
s p r i n t f
(comand , ”cp $HOME/ lykke t ron i c−l o g s/%s $HOME/LOGS” , name l i s t [i]−>d name) ;
system (comand) ;
//Decompress the l o g s t ha t remain in the i n f o l d e r
s p r i n t f
(comand , ”/ bin / bunzip2 $HOME/ lykke t ron i c−l o g s/%s ” , name l i s t [i]−>d name) ;
system (comand) ;
//Save t h e i r con ten t s on the database
s p r i n t f (ur l ,
” e l i n k s http : // 1 3 0 . 2 2 5 . 1 9 2 . 1 3 4 : 5 6 78 9 / xml2mysql . php? xmlf i lename=
/home/ j u s t i n b r i d o u x / lykke t ron i c−l o g s/%s ”
, name l i s t [i]−>d name) ;
system (u r l) ;
}
i ++;

}

//Release memory
i =0;
while (i<n)
{

f r e e (name l i s t [i]) ;
i ++;

}

// A l l decompressed f i l e s are t o g e t h e r in the same d i r e c t o r y .
//Their content has been s t o r ed on the database .
//The compressed f i l e s are s t o r ed in another d i r e c t o r y .
//Conclusion : we can remove the f i l e s in t h i s f o l d e r
s p r i n t f (comand , ”rm $HOME/ lykke t ron i c−l o g s /∗”) ;
system (comand) ;

}

/∗ ∗∗
∗ Name: programEnd
∗ Goal : c l o s e a l l the f i l e s t h a t cou ld be open at the end o f the execu t i on o f the
∗ program , even i f t h i s e x i t i s unexpected
∗ Input : vo id
∗ Output : vo id
∗∗∗ ∗/

void programEnd (void){

f c l o s e a l l () ;

}

/∗ ∗∗

128 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

∗ Name: ru t i n e
∗ Goal : e s t a b l i s h the time between two s i g n a l SIGALRM
∗ Input : vo id
∗ Output : vo id
∗∗∗ ∗/

void r u t i n e (){

struct i t i m e r v a l va l ;
//Time between to consecu t i v e SIGALRM = 15 minutes
long segundos =30, microsegundos =0;

va l . i t i n t e r v a l . t v s e c=segundos ;
va l . i t i n t e r v a l . t v u s e c=microsegundos ;
va l . i t v a l u e . t v s e c=segundos ;
va l . i t v a l u e . t v u s e c=microsegundos ;
s e t i t i m e r (ITIMER REAL, &val , NULL) ;

s i g n a l (SIGALRM, storeMySQL) ;

while (1)
{

pause () ;
// p r i n t f (” S i gna l r e c e i v ed \n ”) ;

}

}

/∗ ∗∗∗
∗ Name: main (main func t i on)
∗ Goal : i n s e r t i n t o a database the in format ion s t o r ed in the l o g s t ha t the
∗ t r a c t o r s p e r i o d i c a l l y send to the proxy
∗ Input : vo id
∗ Output : the in format ion in the l o g s has been s t o r ed in t o the database in the
∗ Access Contro l Server
∗∗ ∗/

int main (int argc , char∗∗ argv)
{

r u t i n e () ;

a t e x i t (programEnd) ;

return 0 ;

}

B.2. PROGRAMS AND CONFIGURATION FILES LOCATED ON THE ACS129

B.2.3 xml2mysql.php

<?php
// Group d606a − Sof tware Systems Engineer ing (Aalborg Un i v e r s i t y)
//
// xml2mysql
// +−−−− recordSe t // Ins tance o f recordSe t
// +−−−− xml // Ins tance o f XMLFile
// +−−−− xml2mysql () // I n i t i a l i z e the in s t ance s o f r e co rd s e t and XMLFile
// +−−−− insertIntoMySQL (Name f i l e , Name t a b l e) {
//
//

require (” c l a s s . r e c o r d s e t . phtml”) ;
require (” c l a s s . xml . phtml”) ;

c l a s s xml2mysql {

var $recordSet ;
var $xml ;

#I n i t i a l i z e by c r ea t i n g the members
f unc t i on xml2mysql () {

$th i s−>r ecordSet = new recordSet () ;
$ th i s−>xml = new XMLFile () ;

}

Ins e r t i n t o the database ’ s t a b l e
f unc t i on insertIntoMySQL ($f i l ename , $tablename) {

$ x m l f i l e = fopen ($ f i l ename , ” r ”) ;
$ th i s−>xml−>r e a d f i l e h a n d l e ($ x m l f i l e) ;

$numRows = $th i s−>xml−>roottag−>num subtags () ;

for ($ i = 0 ; $ i < $numRows ; $ i++) {
$ a r r F i e l d s = n u l l ;
$arrValues = n u l l ;

$row = $th i s−>xml−>roottag−>tags [$ i] ;
$numFields = $row−>num subtags () ;

for ($ i i = 0 ; $ i i < $numFields ; $ i i ++) {
$ f i e l d = $row−>tags [$ i i] ;
$ a r r F i e l d s [] = $ f i e l d−>name ;
$arrValues [] = ”\”” . $ f i e l d−>cdata . ”\”” ;

}

$ f i e l d s = join (” , ” , $ a r r F i e l d s) ;
$va lues = join (” , ” , $arrValues) ;

$ th i s−>recordSet−>exec (” I n s e r t Into $tablename ($ f i e l d s) Values ($va lues) ”) ;

130 APPENDIX B. SCRIPTS’ SOURCE LISTINGS

}
}

}

$ f i l e name=$ GET [’ xmlf i lename ’] ;
$ importat ion=new xml2mysql () ;
$ importat ion−>insertIntoMySQL ($ f i l e name , ” v a r i a b l e ”) ;

?>

B.2. PROGRAMS AND CONFIGURATION FILES LOCATED ON THE ACS131

B.2.4 login.php (obfuscated version)

This is an example of obfuscation of our code that we used with the aim of hidden the
salt that is used together with the password hashing. The original code of this file, and of
the rest that have been also obfuscated can be found in the CD - ROM attached to this
report.

<? eval (gzinf late (base64 decode (’
3Vl9b9s2Gv/b+hSsLpjsQ2Kl6a64xZKCrLW3Aeky
OO4NQxYYskRHWiXRpag6WZvvfg8fUrQU26l964Dt
DCSWyOf9hfyRPgu8s0WysEpalikrpqUIuej2BlZa
RFkVU+JELM9Z0QciZ2BZ6bx7MP1uOLl2BA8jwXiU
sDSizs0z37Z71kerc /C+ovye+MS+Gl4MX01Iulhw
dnd/SBaMCzIaX74hmpf8/P1wPCRpDNSOTfpks2iY
sB17AKI5LatMAHV+X77PpqipqxQeHsSzacSKgt6B
Hz1NbUjnVETJlLNlVwtBijCOOZDIoetj1HOKZsj3
5zcE/O247vA3GlURCCUQjqogEJCwiBm8ZaRMS0Hz
sCPp3oo0S3/HKV6JsCThrGQZPmUhoUYKWJXDGA8X
aRxaHXpHo65DwVlShkBRlkDziZQVyHETllP3t6oU
aTHjacyqO3eecroMs8ydL4/giy37ZUIcDN7VcPyf
4fh6PHxzORlOz1+/HqNPpOGTdDuhYUx5175gUSjA
olOSCLE4dV2kkzEBqgerLoGu3XcViywCW9bGnHSf
gaFUdKXSq6sfLn+8djJ2mxbOTU9VwXyK7/7B9KfL
K8ipfnduBji5CMty0ZiU7805385PxPHxv+1+Hv+r
WzP0+jZo /Rpr4XGZ/ZPMOctJVVJOlgnlFB+LMKe
. . .
/rfVOX4LWvv06SnY1Nt0z6N26/o4JdGMra4RnsA5
bTUGWa6p0Gv3qK+UjPpNNWSkF2kcBkBYH+0m8D5F
CqStb50mmnzyiHwsyWsi5OA0CwWNp8tUJGSs2ZAM
j5BP7QU9PDE+7IlAtu3tCJxkAvWeLqFcSepdXeay
sUU8cemFvfUE0pPBkjjvDJQ7jZswmNIHjPqqzNEQ
EhCFg36etc7qs4xFJ3imJ/Ljyf2UhHi69+2+i5FC
QElyKhIGHN8NJ+oOYPMVwSuIAuBddNfTCVNIWNqs
rgptclm8SsLiFkbLapan8iZTC2UL3M0/hFkFs3bw
KmGspBhI0u9DayqCQEPTP9IaRH/+7A6x/i9aRAZg
vyZpw9t2K0A5/k/N0C6Px6Xv4NZT33yvCk4mor5Y
NbsAUdkeviZ4OnPdR5k1rBvEDWqD1ppNl6dTX7LJ
A5dKimoJ+adOYN4Z2WwrXtF/JGe7dFmrw1r38aqf
TEMZZx93Vl0lX7i51iu+7ir9A0Orjg14l3HwGz8x
NONC+vZg1Yhbum1fzZPDza3xWVuggOQl9aqFtncQ
EmKL+q3OtAdkgzfNVcV482eE8W/SzHLo5EZer5hr
+lLcZxLB2zPohVvOqiI+i l j G+Ok/RqOXL1+8GCC3
RH278Lx8ORp9843m2b+t6wvwjgoFPkXYoIGXFotK
EHG/MFudTaIMfzipX7X7V7SIoaE1I17UyM24hQXl
mvHQ/L1nzpgwv/fIFePxxzv7Lw==
’))) ; ?>

	Introduction
	The LandIT Project
	LYKKETRONIC
	Overview of last semester project
	Goals
	The Embedded Computer
	Outline

	Software Requirements Specification
	Scope
	Definitions, acronyms and abbreviations
	Overall Description
	Product perspective
	Product functions
	User characteristics

	Constraints
	Specific Requirements
	External Interfaces
	Logical database requirements
	Security

	Wireless Technologies
	Analysis
	The system's from an end user's perspective
	Use - Case Diagram
	Use - Case Specification for realtime access

	Intercommunication within the system
	Network analysis
	Data transmission pattern

	Data collection/representation
	Data representation using an Entity - Relationship diagram
	Parameters to be logged

	Security

	Design
	Part I: Initial Design Ideas
	A system to extract data from a CANBus network
	A system that allows the EC to use static IP address
	Design for logging data in the EC

	Part II: Final Chosen Design
	Wireless technologies chosen
	Why System Access Via an ACS
	Details of the inner components of the architecture
	Final Design for Logging data in the EC
	Design to switch between WIFI and GPRS in the EC
	Relational data model design at the ACS
	Security Design

	Implementation
	Database Implementation
	Intercommunication
	Log, compression and transfer from the EC
	Connection switch in the EC
	Web Applications
	System Security

	Implementation problems and suggested solutions
	WIFI dongle installation:
	Shared memory access from Apache Web Server

	System Configuration
	ACS configuration
	EC configuration

	Tests and performance results
	Test approach
	The Test Setup
	Test cases
	Test Case I: System Startup
	Test Case II: Connection Switch
	Test Case III: Logs
	Test Case IV: Viewing a job in the EC

	Performance Study
	Data transfer costs

	User Guide
	System setup
	How to operate the system
	Superuser
	Technician
	Farmer
	Worker

	Conclusion and Future Work
	Main improvements in the present project
	Future work

	Details about the Embedded Computer
	Hardware - Level Description
	Software - Level Description
	Human Machine Interface (HMI)
	Examples of data to be logged in the EC

	Scripts' source listings
	Programs and configuration files on the EC
	wvdial.conf
	SshTools.py
	info.conf
	connectionswitch.py
	ConnectionTools.py
	launchall.py
	wirewatchdog.py
	configuration.h
	main.c Executable: getValues
	sftpdialogue.sh
	logging.c
	sudoers

	Programs and configuration files located on the ACS
	porttesting.py
	storingMySQL.c
	xml2mysql.php
	login.php (obfuscated version)

