
Master Thesis

CIPQ
Creating a Common Interface for Privacy

Preserving Queries in Pervasive Computing

Fall 2007
SW10, project group SW543A

Department of Computer Science
Aalborg University

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

SEMESTER TOPIC:
Database Technologies

TITLE:
CIPQ - Creating aCommonInterface
for Privacy PreservingQueries in
Pervasive Computing

PROJECT PERIOD:
SW10,
Fall, 2007

PROJECT DEADLINE:
November 29th, 2007

PROJECT GROUP:
SW543A

GROUP MEMBERS:
Mads Schaarup Andersen,
masa@cs.aau.dk

SUPERVISOR:
Simonas Saltenis
simas@cs.aau.dk

NUMBER OF COPIES: 5

NUMBER OF PAGES: 71

ABSTRACT:

This report documents the develop-
ment of a common interface for privacy
preserving queries in pervasive com-
puting. The interface is based on an
analysis of existing solutions, and uses
a simple client-server architecture, and
is created with flexibility, security, ac-
curacy, and complexity, in mind. With
the interface a client has the possibil-
ity to specify a minimum cloaked area,
and maximum communication allowed
on a query to query basis.
Two solutions are developed under
the common interface. One method
based on a data-independent datas-
tructure, calledthe Grid Method, and
one based on a data-dependent datas-
tructure, calledthe Quadtree Method.
This is done to explore pros and
cons of data-dependency on the server.
Furthermore, it is discussed how k-
anonymity can be added to the solu-
tions.
To experiment with the two developed
solutions, a test is implemented. Tests
are carried out on a real world data set,
a uniform distribution, and several Zipf
distributions. It is found that theGrid
Methodperforms best under most cir-
cumstances, but in the end it is indi-
cated that this might be due to a sim-
plifying design decision.

Preface

This report is written by Mads Schaarup Andersen (project group SW543A) and
documents the efforts done on the SW10 semester fall 2007 at the Department of
Computer Science, Aalborg University. It also constitutesas the Master Thesis of
the Master in Software Engineering. The project was carriedout in theDatabase
Technologiesresearch group at the university.

This report documents the development of a common interfacefor preserving
privacy in Location Based Services (LBSs). The aim of this isto provide a flexible
way of configuring privacy needs on a query to query basis.

Report Structure

The report is structured in the following way. Chapter 1 is anintroduction to the
topic of the thesis. Chapter 2 is an analysis of the literature on the topic, ending up
in a problem statement. In chapter 3 a common interface is defined, and using this
two methods are designed. In chapter 4 tests are carried out and reflected upon,
and chapter 5 is the conclusion.

Mads Schaarup Andersen

III

IV

Contents

1 Introduction 1

2 LBS Privacy Approaches 3
2.1 Terminology . 3
2.2 Quality Attributes . 4
2.3 Architecture . 5
2.4 Hiding the Client Position . 7

2.4.1 Perturbation . 7
2.4.2 Cloaked Area . 8

2.5 Datastructures . 9
2.6 Main Inspirations . 10

2.6.1 SMC Protocol Based Approach 10
2.6.2 The Casper Framework 13

2.7 Problem Statement . 17

3 Solution 19
3.1 Common Interface . 19

3.1.1 Simplification . 20
3.1.2 Foundation of Methods Developed 21

3.2 Grid Method . 21
3.3 Quadtree Method . 25
3.4 K-Anonymity . 32

3.4.1 Levels of K-Anonymity 33
3.4.2 Common Interface and K-Anonymity 34
3.4.3 Modifications to Grid Method 37
3.4.4 Modifications to Quadtree Method 39

4 Test 41
4.1 Implementation Details . 41

4.1.1 Environment . 41

V

4.1.2 Changes from Design . 42
4.1.3 Limitations . 45

4.2 Test Configuration . 46
4.2.1 Data Sets . 46
4.2.2 Client Position . 47
4.2.3 Test Configurations . 47

4.3 Test Expectations . 51
4.4 Test Results . 51

4.4.1 Test 1 . 51
4.4.2 Test 2 . 55
4.4.3 Test 3 . 58
4.4.4 Reflection on Results . 59

5 Conclusion 65

Bibliography 68

Acronyms 69

A Test Distributions 71

VI

CHAPTER 1

Introduction

In the recent years, the market for mobile software has exploded. The is mainly
due to the fact that a lot of people today own advanced mobile phones and Personal
Digital Assistantss (PDAs) which serves as a platform for the software. This
development has entailed a whole new marked segment in software.

One of the major advantages in mobile software is the abilityto use the user’s
position to provide a service specific to the area. This type of software is called a
LBS. An example is the application of Global Positioning System (GPS) in road
network navigation. Here, the user has a device which contains software which
uses the position of the GPS satellites to calculate the distance to a desired target.

GPS for road networks is however a rather simple form of LBS asall data resides
on the client. More interesting is the aspect of having a simple client – also called
a thin client – interacting with a server for the same information.This is interest-
ing as it will allow for more dynamic services, as the client does not have to be
updated whenever there is a change in the environment. This does however yield
the requirement that the client has to inform the server of its location. This ap-
proach does however have a downside. If the server is continuously aware of the
client’s position, a malicious server would be able to extract this information and
e.g. use it for extortion. This is from now on referred to asThe Privacy Problem.

To avoid thisBig Brotherscenario a lot of work has been done in this area. This
report will try to examine the known solutions today, and be doing this identifying
the advantages and flaws of the different solutions to make upa new solution
which will then be tested.

If one imagines a system similar to GPS for road networks, butdeveloped with a
thin client, all the information resides on the server. Information about the location

1

of a city is public domain, and if the client does nothing to hide his location, the
client’s queries are to be considered public as well [12]. Ifthe client wants to hide
his position his query suddenly becomes private. One can also imagine a situation
where the data is other clients with hidden positions. Then the data also becomes
private. In this project the focus will be on private queriesover public data, and to
simplify this, static data will also be assumed.

The focus of the solution of this report is to develop a solution for finding the
nearest neighbor among a list of points of interest.

2

CHAPTER 2

LBS Privacy Approaches

The purpose of this chapter is to examine the different solutions to the privacy
problem. This is done by explaining the terminology, identifying important soft-
ware quality attributes, and explaining key aspects to solving the problem. This
includes a discussion of architecture, how the client position can be hidden, im-
portant datastructures, and main inspirations. This will all serve as a foundation
for theProblem Statement.

2.1 Terminology

In the previous chapter the purpose was defined as to develop amethod which
finds the Nearest Neighbours (NN). These neighbors are from now on referred
to assites, and so the purpose is to find the nearest site. This is done by aclient
querying aserver. For this a protocol might need to be utilized. There is further-
more a distinction betweendata-independentanddata-dependentmethods. This
refers to whether or not the distribution of sites in the datasets is taken into ac-
count. A distinction is also made between theonlineandofflinephase. The offline
phase takes place before the actual querying, and can hence be carried out before
interaction between client and server. Online refers to thephase where the two
parties interact.

It is not possible for a client not to give awaysomeinformation on his where-
abouts. The termcloaked areacovers all the possible locations of the client.
When the server returns a list of possible NNs, this list is called thecandidate list.

We also define the concept ofspatial privacy. The meaning of this is that when-
ever we have a cloaked area in two dimensions, the shape of this region might

3

Chapter 2. LBS Privacy Approaches

reveal a lot about the position of the client in regard to one of the dimensions. The
less we reveal about a position in one dimension compared to the other, the bet-
ter the spatial privacy. Figure 2.1 illustrates shapes witha high degree of spatial
privacy and Figure 2.2 illustrates shapes with a low degree of spatial privacy.

Figure 2.1: Cloaked areas with a high degree of spatial privacy.

Figure 2.2: Cloaked areas with a low degree of spatial privacy.

2.2 Quality Attributes

To help pinpoint the overall purpose of the solution developed in this project, we
present a list and explanation of the software quality attributes which will form
the basis of the discussion of the different aspects of the privacy problem. The
following quality attributes should have high priority:

Flexibility How well the method is able to change the privacy settings of the
client on a query to query basis. The flexibility should be high.

4

2.3 Architecture

Accuracy Whether the query answer yields the exact answer. The accuracy
should be high.

Complexity How much computation is left to the client and how much commu-
nication is needed between client and server. Complexity should be low.

Security The privacy of the client. How much information does the client need
to give away about his position. Security should be high.

The rest of the chapter will discuss different aspects of privacy in LBSs. This will
be in terms of architecture, how to hide the client position,datastructures, and the
two main sources of inspiration.

2.3 Architecture

The simplest architecture utilized in LBSs is the standardclient-serverarchitec-
ture. This consists of a client and a server. In this context the architecture is a pull
based approach where the client issues a request to the server, which then issues a
reply. This architecture can be seen in Figure 2.3. Formallythis architecture has
the following steps:

1. Client does preprocessing, and cloaks it’s position.

2. Client issues a request (in this context also called a query) to the server.

3. Server processes the query and produces a result in form ofa candidate list.

4. Server sends the result to the client.

5. Client processes the answer by doing a NN search.

Figure 2.3: Simple client server architecture.

5

Chapter 2. LBS Privacy Approaches

An issue with this architecture is that step 1, in the above steps, requires quite a
lot from the client, as the client does not want to send the exact position directly
to the server as this would entail no privacy at all.

To cope with this issue a different architecture is proposed. This architecture
introduces a third party between client and server. This third party is called an
anonymizer, and is a trusted party, i.e., a client trusts that the anonymizer will not
use the information of the client position for any maliciousactivity. This modified
architecture is depicted in Figure 2.4 and is used in [12, 8].The steps of a query
in this architecture are as follows:

1. Client sends position to trusted anonymizer.

2. Anonymizer does preprocessing to cloak the client position.

3. Anonymizer queries the server.

4. Server processes the query and produces a result in form ofa candidate list.

5. Server sends result to anonymizer.

6. Anonymizer does a NN search on result.

7. Anonymizer sends NN to the client.

Figure 2.4: The anonymizer architecture.

The advantages of this approach, compared to the simple client-server, is that
the communication which is considered costly (the communication the client is
involved in) is reduced, as only single sites are transmitted to the client in the
anonymizer architecture. Furthermore, most calculationsare moved from the
client to the anonymizer. The disadvantage is however that athird party is in-
troduced. Even though this is said to be a trusted party, the client position is now
made available to a party besides the client itself. This effects the quality attributes
of security.

6

2.4 Hiding the Client Position

Besides the choice of having an anonymizer or not, the known solutions are based
on either having the client send a cloaked area to the server,or having the server
make requests on the clients whereabouts. We call thisclient basedandserver
basedbehavior. Most solutions are of the client based kind. Only one known
solution is server based, and that is [6]. This will be further explained in Sec-
tion 2.6.1 on page 10.

2.4 Hiding the Client Position

As mentioned earlier, the client needs to cloak it’s position. This can be using
one of the following three methods:perturbation of the position, using a cloaked
area, andusing k-anonymity.

2.4.1 Perturbation

A rather simple solution is the perturbation method. A very simple variant of
this method is described in [6]. As the name suggests, this isbased on supplying
the server with a perturbed, and thereby fake, position defined by a perturbation
vector. This gives the advantage that the client can decide how much privacy is
needed from request to request. The problem with this solution is that it does not
necessarily give the exact answer. This is because the server treats the given po-
sition as the exact location of the client, and thereby returns the site closest to the
perturbed position. This effects the quality attributes ofaccuracy. Furthermore,
the approach is data-independent, so the client has no way offiguring out what
degree of privacy is suitable for a certain position. The inaccuracy problem is
illustrated in Figure 2.5 on the next page.

However, more advanced versions of this apparently inaccurate method exists.
One of these isSpaceTwist. Without going into too much detail, the idea is to
overcome the inaccuracy aspect by doing K-Nearest Neighbours (KNN) rather
than NN queries. SpaceTwist is constructed so that k is set sothat it guarantees
that the actual NN of the client position will be included in the result. For further
details of this method, see [16].

Despite of the apparent flaw of yielding an inaccurate answer, there are several
positive things about perturbation. Each request to the server is treated as a normal
request, and thereby does not entail any extra communication overhead. Further-

7

Chapter 2. LBS Privacy Approaches

s5

s2

s3

s1

v

p
s4

p’

Figure 2.5: An example of the inaccuracy of the perturbation method. Thesquares s1-s5 represent
sites. The filled dot p is the actual client position, p’ is theperturbed position, and v
is the perturbation vector. The darkest filled circle shows the nearest site to p’ and the
lighter filled circle reveals the actual nearest site.

more it does not require any form of extra computation on the server. Overall, this
solution is good in terms complexity, flexibility, and security, but fails in accuracy.
In the more refined methods such as SpaceTwist, the aspect of accuracy is coped
with, but this does however also make the solution more complex, and flexibility
in SpaceTwist is lower as the attributes cannot be changed from query to query.

2.4.2 Cloaked Area

The final way of cloaking the client position, is to hide the user in a cloaked area.
The cloaked area should have the attributes that it should beimpossible for an
adversary to deduct the actual position from the cloaked area. This means that
adding a distance to the point to make out a circle where the actual position is the
center of the circle, is not a good choice for the cloaked area.

In the literature different ways of choosing cloaked area, is seen. In [6] the cloaked
area is represented as a triangle, in [12] as a rectangle, andin [8] as a polygon.

Outside the scope of this project, in [15] a solution which ensures nothing can
be deducted from the cloaked region in a scenario with continuous queries, is
presented.

8

2.5 Datastructures

2.5 Datastructures

The last key aspect of the privacy problem, is how the data is structured on the
server. The simplest solution would be to have a list of all sites within the space.
However, this is not a very efficient solution when the serverhas to process a large
number of queries. Because of this different datastructures are utilized to hold and
maintain the data.

As mentioned in the section on terminology (Section 2.1 on page 3), overall
there are two different approaches to doing this. A data-dependent and a data-
independent, where the first takes site data distribution into account and the sec-
ond does not.

Data-Independent

The most common data-independent datastructure is a grid. In the simplest form
this divides the space into a number ofλ×λ squares called grid cells. In [6] this
simple solution is presented. This solution is based on thatthe client provides the
server with a grid cell rather than an exact position. The server then calculates a
result based on the grid cell.

The disadvantage of having a data-independent datastructure is that it requires
quite a lot of space, since the same amount of information is stored for empty
areas as for areas with high site density.

Data-Dependent

The advantage of the data-dependent datastructures are that they do not store a lot
of information about areas with low site density. In common for these are that
compared to the simple grid, they do not divide the queryspace into squares of the
same size. Instead the space is divided into a number of shapes of different size,
the size depending on the site density of the particular area.

In [12] a solution originating in the simple grid is presented. Here a hierarchy
of grids are stored in different levels. The solution is based on an anonymizer
architecture, and the grid hierarchy is stored at the anonymizer. How the grid
hierarchy is structured is explained in detail in Section 2.6.2 on page 13.

9

Chapter 2. LBS Privacy Approaches

Another structure is a Voronoi diagram. This is utilized in [6, 11, 10]. This has
the properties that a polygon is created around each site. This polygon has the
property that all points inside it are guaranteed to have thesite as NN. These
polygons are calledVoronoi cells. This makes for efficient query processing as a
query of either a point or an area, will return the sites located in the Voronoi cells
which intersect (or contain) the area or point. An example ofa Voronoi diagram
can be seen in Figure 2.6.

Figure 2.6: Example Voronoi diagram. The small squares are the sites of the queryspace, and the
lines make out the polygons surrounding them. The datastructure has the property
that all positions inside a polygon have the site in the same polygon as the NN.

2.6 Main Inspirations

In this section the two main sources of inspiration, used forthe solution described
in the next chapter, will be examined.

2.6.1 SMC Protocol Based Approach

In [6] a solution based on Secure Multi-Party ComputationalGeometry (SMC)
and a Voronoi datastructure is presented. What makes this particular method in-
teresting is the fact that it is a server based solution. The means that the server

10

2.6 Main Inspirations

11

(a) Level 1.

23

22

21

(b) Level 2.

31

32

34
3533

(c) Level 3.

41

42
43

44

45
46

4748

(d) Level 4.

51

52

53

54

55
56

57
58

59 510

(e) Level 5.

Figure 2.7: Different levels in the DAG structure.

asks a series of questions to determine the clients position. As the solution is
based on the Voronoi datastructure, this could be done by asking the client if he is
in every polygon, one at a time. This would however require the server to askn
questions, wheren is the number of sites in the queryspace, questions. To improve
this they added a datastructure on top on the Voronoi diagram. This structure is
called Directed Acyclic Graph (DAG) and is explained in [9].

To build the DAG on top of the Voronoi diagram, the Voronoi diagram has to
be triangulated, and a bounding triangle has to be created. When this is done,
the DAG can be built. An example of how a DAG is build, can be seen in Fig-
ure 2.7 and 2.8 on the following page. The DAG is constructed bottom up, starting
with the finest granularity of triangles (Figure 2.7(e)). Next, vertices with a high
number of edges are removed along with the outgoing edges. This is done while
making sure that both vertices of an edge are not removed at the same time. Next,
the polygons which are not triangles and triangulated again, and then we have a
new level (Figure 2.7(d)). This is done until only the bounding triangle remains
(Figure 2.7(a)). Then the edges of the DAG are added. This is done by adding an
edge from leveli to leveli +1 whenever the triangle of leveli intersects a triangle
of level i +1. The DAG will end up looking like a tree (Figure 2.8 on the following
page).

The method of [6] is based on starting from the top level and working the way
down the tree. This is done by determining whether the clientis in a certain trian-

11

Chapter 2. LBS Privacy Approaches

51 52 53 54 55 56 57 58 59 510

41 42 43 44 45 46 47 48

31 32 33 34 35

21 22 23

11

Figure 2.8: The DAG structure.

gle. To answer the question of whether the client is located in a certain triangle, a
SMC protocol is utilized. This protocol is described in details in [5]. Doing this
has the property that the client will not be able to deduct anything about the tri-
angle, and the server will not be able to deduct anything about the position of the
client. This process goes on until a triangle which is totally enclosed in a Voronoi
cell is found. The server then returns the site of this Voronoi cell to the client, and
the client is then guaranteed that this site is NN.

Discussion

The main problem with the SMC based approach is that there is alot of commu-
nication between client and server. This is due to several reasons. First reason
is that the DAG structure has the problem that a triangle in level i can be linked
with more than one site on leveli−1. This means that a client might answertrue
to being in more than one site on a level in the hierarchy. Furthermore, the SMC
protocol needs more than onerequest-replypair to figure out if the client is in a
certain triangle. This is even though there is not really anyharm in letting the
client know which triangle the server is testing, i.e., thisis considered a pointless
communication overhead.

In terms of quality attributes this solution provides both high and low security.

12

2.6 Main Inspirations

High, as provided by the SMC protocol. Low, as the method onlycomes to a halt
when a triangle at the lowest level of the hierarchy is reached. This might be a
very small area, hence the degree of spatial privacy can become very low.

As there is no way of providing a minimum area cloaked area forthe client, or
any other parameters, flexibility is considered low. Complexity of the solution is
high with respects to the SMC protocol, but low in terms of thecalculation done
at the client. The client basically just needs to initiate a query, and answer a series
of boolean questions. With regards to the last quality attribute of accuracy, the
solution only returns one site, which is guaranteed to be NN.

2.6.2 The Casper Framework

The Casper framework [12] presents a solution to the privacyproblem which is
based on k-anonymity, a data-dependent datastructure, andthe anonymizer ar-
chitecture. In this framework the anonymizer keeps track ofall the users of the
system. The datastructure which is utilized is a hierarchy of grids. The top level
contains the entire space. The second level is divided into four squares, and on
the next level each of these are divided into four squares, and so on. Leveli al-
ways has four times the amount of square in leveli−1. Actually squares are only
created is it is needed, so if a square only contains one points it is not necessary
to divide the square at the next level. This also has the effect that squares can be
empty. An example of a grid hierarchy with four level is shownin Figure 2.9 on
the next page. The squares of all the levels are indexed in thesame hash-table,
which is located on the anonymizer.

Another interesting aspect of the framework is the way one can calculate the area
surrounding the square in which the client is located, whichare candidates to be
NNs to all points within the square. The area is called theextended area.

Calculating Extended Area

As the solution is based on a grid, a way of finding the smallestarea in which NN
might be located is presented. This is divided into four steps and these are shown
in Figure 2.10 on page 16.

Step 1 The first step is to find the sites nearest to each of the four corners of the
client square. These sites are called filter sites, and are named f1, f2, f3,

13

Chapter 2. LBS Privacy Approaches

(a) Level 0. (b) Level 1.

(c) Level 2. (d) Level 3.

Figure 2.9: An example of a four level grid hierarchy in the Casper framework. The grayed out
areas contain only one point, and do therefore not need to be further divided in the
next level. The dashed out areas, are areas which do not existfor in the following
level.

and f4. These correspond to the cornersc1, c2, c3, andc4. This is shown in
Figure 2.10(a) on page 16.

Step 2 In this step we want to find the pointmi j on each lineei j (the line between
ci andc j), which divides the line into two segmentscimi j andmi j c j . The
idea is to do it so that each point in the first segment hasf j as it’s nearest
filter site, and the second segment hasf j as it’s nearest filter site. If the two
cornersci andc j has the same filter site (i.e.,fi = f j), the pointmi j does not
exist as all points on lineei j have fi as the nearest filter site. If the two filter
sites are not identical, we findmi j by having a lineLi j between the two filter
sites fi and f j . The linePi j is then plotted. This has the properties that it’s
intersection dividesLi f into two equally long line segments, and that it is
orthogonal toLi j . Pi j ’s intersection withei j is the pointmi j . This is shown
in Figure 2.10(b) on page 16.

Step 3 In this step we calculate the extended area. We want to find thelargest
distance of any point onei j to it’s nearest filter site. Only three points need

14

2.6 Main Inspirations

to be examine. These areci , c j , andmi j . We want to find the largest of
these distances, being the length of the segmentsciti, c j f j , andmi j fi . In the
case wherefi = f j the length ofmi j fi equals 0. The area is then extended
with the maximum of these three distances in directionei j . This is shown
in Figure 2.10(c) on the next page.

Step 4 In this final step, all the sites within the extended area are added to the
candidate list, and then these are sent to the client. The client can then
perform NN search.

The calculation of the extended area is formalized in Algorithm 2.1.

Algorithm 2.1 FindExtendedArea(A)

Require: A : The square in which the client is located.
1: Aext is the extended area and is initially set toA
2: for all ci in A do
3: fi ← the nearest site toci

4: end for
5: for all edge ei j = cic j of A do
6: if fi == f j then
7: mi j ← 0
8: else
9: Li j is a line connectingfi and f j

10: Pi j is a line that splitsLi j into two segments of equal length and is or-
thogonal toLi j

11: mi j is the intersection betweenPi j andei j

12: end if
13: dm← Length(mi j fi) = Length(mi j f j)
14: di ← Length(ci fi)
15: d j ← Length(c j f j)
16: dmax←MAX(dm,di,d j)
17: ExpandAext by distancedmax in cic j direction
18: end for
19: return Aext

The last interesting thing about the Casper framework, is that they introduce a
flexible way in which the client can change the privacy settings.

15

Chapter 2. LBS Privacy Approaches

f1

f4

f2
c1

f3
c3

c2

c4

(a) Step 1: Find filters.

f1

f3

f2
m12

f4
m13

m34

m24

(b) Step 2: Find middle
points.

f1 f2

f4

f3

(c) Step 3: Calculate ex-
tended area.

c NN

(d) Step 4: Client calculates
NN.

Figure 2.10:The four steps in calculated the extended area which can contain candidate sites.

Privacy Model

In the framework, the concept of a privacy model is introduced.The settings of this
model are stored at the anonymizer. They can however be changed by the client
at any time (except in the middle of an ongoing query), and themodel therefore
enhances the quality attribute of flexibility. In this solution the privacy model lets
the client specify a minimum cloaked area. This area is represented as a rectangle.
The privacy model is also where k-anonymity is introduced. The user is able to
set among how many (k-1) other users he wants to be indistinguishable.

Discussion

The Casper framework has a lot of interesting aspects. In particular in terms
of flexibility as the client is able to change the privacy settings at any time. In
terms of security the solution is based on an anonymizer, which in the scope of
this project is considered an unnecessary risk, thereby yielding lower security.

16

2.7 Problem Statement

With the proposed method of calculating the extended area, in which NNs can be
located, the accuracy is high. In terms of complexity the solution has a very thin
client, but this is mainly due to the fact that the anonymizerarchitecture is used.

2.7 Problem Statement

In relation to the different aspects of the privacy problem,we will now explain how
the four quality attributes should be supported in out solution. They are specified
in prioritized order.

Security Privacy of the client. The solution has to provide the serverwith as little
information as possible. Also no parties besides the clientand server should
be involved, i.e. an anonymizer architecture is out of the question.

Flexibility Defined as being able to adjust privacy settings from query toquery.
More specific the client needs to be able to control how much communica-
tion is allowed between itself and the server. Furthermore the client has to
be able to specify a minimum cloaked area.

Complexity The complexity of the solution. Here the client should be kept as
thin (i.e. simple) as possible, leaving most of the calculation to the server.
The server should furthermore be able to do as much calculation offline as
possible.

Accuracy Defined as the accuracy of the query answer. This should be high in
the sense that the client is able to obtain the exact answer.

The above can also summed up in the following demands:

• Third parties have to be eliminated.

• The client has to be able to control how much communication isallowed
between client and server.

• The client has to be able to specify a minimum cloaked area.

• The client request should give an exact answer.

• The client should always get an answer. This has higher priority than ensur-
ing that communication is kept to a minimum.

17

Chapter 2. LBS Privacy Approaches

• The client should be a thin client, and leave most calculations to the server.

• The server should be able to do as much calculation as possible, offline.

• The solution should explore the differences between data-dependent and
data-independent datastructures.

18

CHAPTER 3

Solution

The following chapter describes the solution developed in this project. The solu-
tion is based on the analysis - more specific, the problem statement - of the previ-
ous chapter. Two solutions will be developed. One based on a data-independent
datastructure and one on a data-dependent datastructure. They both have to adhere
to the following common interface.

3.1 Common Interface

As stated in the problem statement in Section 2.7 on page 17, the client has to be
able to control the amount of communication units used and the minimum cloaked
area. Furthermore, this has to be doneon the fly, i.e., the client has to have the
possibility to change these settings from one query to the next. This is made
possible using the following interface of which both methods have to adhere:

Input: m: Maximum communication
a: Minimum cloaked area

Output: Nearest site

Interface Query(m,a)

In this interfaceMaximum communicationis defined as how many communication
units are allowed to take place. The parameter is an positiveinteger. In this context
communication covers both the size of the data set being transmitted as well as
the amount of request-reply pairs. The two are defined as follows:

19

Chapter 3. Solution

Request-reply pair Defined as one request from the server or client, plus the
resulting reply. Uses 2 communication units.

Candidate list The number of elements being transmitted in the candidate list.
Each element uses 1 communication unit.

Minimum cloaked areais defined as the acreage of the cloaked area. The unit of
measurement has to be the same as the unit of measurement of the queryspace.
This is also a positive integer.

With the two above parameters specified, the overall goal of this interface is to get
a candidate list without using more than the specified maximum communication,
and without revealing more about the client position than the specified minimum
cloaked area. We therefore want a candidate list sent to the client as soon and the
above can be satisfied. We call such a state asatisfactory state.

The interface itself should be implemented in the client. This is because we do not
want the server to know neither the remaining communicationunits, or the min-
imum cloaked area. The client therefore has to keep track of the two parameters
and never make the server aware of the these.

Sometimes a satisfactory state is never reached. An exampleis, when the value of
maximum communication units is smaller than the smallest candidate list which
can possibly be returned. As stated in the problem statementof the previous chap-
ter, the need of an answer is regarded higher than the need to satisfy the maximum
communication parameter. We call a state were we are forced to exceed maximum
communication astate of overflow. Once such a state is reached, the server should
immediately return the candidate list.

3.1.1 Simplification

To simplify the project it is chosen to limit the query space to a square, so that
width and height are identical. Furthermore it is chosen that the queryspace itself
has to be a square.

In addition, the proposed solutions will only be concerned about single queries,
and the consequence of continuous queries are out of the scope of this project.

20

3.2 Grid Method

3.1.2 Foundation of Methods Developed

As mentioned, two solutions will be developed. These will bebased on a number
of request-reply pairs. These will be used to the send the bounds of a square and
the number of sites present within the bounds. The clients will then, based on
the two parameters of the interface, decide when they are in asatisfied state, and
when this state is reached the candidate list will be send to the client.

3.2 Grid Method

The first method developed is based on a data-independent datastructure at the
server. Here we choose a very basic grid. In Section 2.5 on page 9 this was
explained. We have identified the problem of such a solution as being that instead
of giving away a point, one now had to give away a grid cell, which was predefined
at the server. We also saw a solution trying to cope with this problem by having
different size grids stored at the server. We are however notsatisfied with leaving
the decision of our minimum cloaked area to be left to the server. Instead we
propose a new solution based on the simplest one level grid - being the one with
only one size grid cells on the server. This new solution entails some changes both
on the server and the client.

As explained, there is not much difference between the server in this solution com-
pared to the one in a basic grid approach. This means that the basic datastructure
is not changed at all. On initialization all sites and distributed into the correspond-
ing grid cells based on their position. The size of a grid cellis defined asλ×λ,
meaning that the entire grid will consist ofqueryspace.width

λ × queryspace.width
λ cells.

These different concepts are visualized in Figure 3.1. The parameterλ is set on
initialization of the server, and is made available to the client. The difference from
this method to the basic grid method, lies in the way the client is able to query the
server.

Instead of querying a single cell, it should be possible to query a range of cells.
When querying a grid cell (or a range of grid cells) it is however not enough to
only include the sites contained in the cells themselves. How to extend the area
so that all candidate sites to all points inside the gridsquare is explained in detail
in Section 2.6.2 on page 13. We here propose a simplification of this. We choose
this even though it compromises the quality attributes of accuracy defined in the
previous chapter. We do this as the maximum inaccuracy is relatively rare. The

21

Chapter 3. Solution

Figure 3.1: A sample grid. The black dots represent sites. The gray square in the top left corner
is a grid cell with widthλ. The queryspace is the entire grid.

(a) The grayed out area repre-
sents the simplified extended
area.

width

x2

x1

c

(b) Situation showing the
worst case scenario of the
simplified extended area, in
which the highest inaccuracy
will occur.

Figure 3.2: This figure illustrates the simplification of the extended area, and the inaccuracy which
this can yield.

simplification is shown in Figure 3.2.

The simplification includes all points which arewidth away from the cloaked
area.width is the width of the square which consitutes the cloaked area.This can
be seen in Figure 3.2(a). In Figure 3.2(b) the worst case scenario is illustrated.
The client is in the bottom corner of the area provided to the server, andx1 is
just within width of the extended area.x2, which is the actual closest site, is
located one unit further away thanwidth. This has the result thatx1 is exactly the
diagonal of the cloaked area further away thanx2. This entails the an inaccuracy
of
√

width2+width2 =
√

2×width. The cloaked area with width equal towidth

22

3.2 Grid Method

does not have to be a single grid cell, but can be composed of many grid cells.
In fact it does not even have to snap to the grid in the first place. In that case the
server will calculate in which squares the bounds are located and do a query on
those, and afterward sort out the sites which are inside the bounds.

A major disadvantage of a grid based approach is that the datastructure is data-
independent. This means that the amount of information stored does not differ
much from an empty area to an area with a high density of sites.In relation to the
common interface, this is by intuition not good as client might give away a small
cloaked area, even in the cases where a much larger area wouldyield the same
number of candidate sites. This effect can be seen in Figure 3.3. We therefore
propose a solution where the client queries areas of decreasing size until a satis-
factory state is reached. Essentially, this means that we add an extra layer to the
grid method, enabling the queries, rather than the datastructure to be independent.

Figure 3.3: Querying the darkest grayed out area will give the same result as querying the brighter
grayed out area.

As earlier explained, it is decided that the areas to be queried should all be squares
(from now on referred to as querysquares). This is because ityields the highest
degree of spatial privacy. The list of querysquares should always contain and
start with the entire queryspace. This is the case as the entire queryspace might
satisfy the parameters provided to the common interface. Italso has to be included
because as we require that an answer is always provided, and if we somehow
create the squares so that they do not cover all sites of the queryspace, we are
not sure to get an answer. Furthermore, we want the smallest,and thereby last,
possible querysquare to be determined by the parameterMinimum cloaked area.
The other querysquares are of size 2kλ×2kλ wherek is a non-negative increasing
integer (which satisfies Minimum cloaked area≤ 2kλ×2kλ ≤ queryspace). The
querysquares furthermore has to satisfy the property that querysquare[i] should
always totally encapsulate queryspace[i+1]. If this was not the case a malicious

23

Chapter 3. Solution

server could obtain more precise information on the location of the client than
intended. Formally the server could deduct that the client has to be located in
querysquare[i]∩querysquare[i−1]. This effect is shown in Figure 3.4. Further
than this restriction, the querysquares should be created randomly. The pseudo
code for creating the squares can be found in Algorithm 3.1.

Figure 3.4: The bright grayed out areas represent two different querysquares. The client can then
only the located in the intersection between the two represented by the dark gray area.

Algorithm 3.1 CreateSquares()
Require: Areamin: Minimum cloaked area.

1: querysquares← initialize array of squares
2: cell← grid cell containing clients position
3: minimumArea← create a square ofAreamin size and enlarge it so that it snaps

to the grid. The square should totally encapsulatecell
4: querysquares[0]←minimumArea
5: j ← set j to the minimum integer which satisfies 2jλ > minimumArea.size
6: for i = j until 2iλ×2iλ≥ queryspace.sizedo
7: querysquares[i − j + 1] ← create 2iλ × 2iλ square encapsulating

querysquares[i− j]randomly. The square should also snap to the grid
8: end for
9: querysquares[querysquares.size]← queryspace.bounds

10: querysquares.reverse
11: return querysquares

We now have an array of querysquares where querysquare[0] represents the entire
queryspace and queryspace[size-1], the minimum cloaked area. These are then
sent to the server in increasing order. Each time the server returns the size of the
candidate list of that given querysquare. It is then up to theclient to test whether
or not that size satisfies the parametersmaximum communicationandminimum

24

3.3 Quadtree Method

area. When a satisfactory state is reached, no more querysquaresare sent to the
server, and instead the client will issue a request for the candidate list of that given
querysquare. The satisfactory state is reached whenever the size of the candidate
list is less than or equal to what is left of the communicationbudget - 2. The latter
is due to the fact that a request-reply pair is used for the request for the candidate
list. The pseudo code for this can be seen in the form of theGetSitesalgorithm in
Algorithm 3.2.

Algorithm 3.2 GetSites(querysquares)
Require: Commax: maximum amount of communication allowed.

querysquares: array of squares.
Server.numberO f Sites(querysquare): a function that makes a call to the
Server and returns the number of sites inquerysquare.
Server.SitesIn(querysquare): a function that makes a call to the Server and
return the candidate list of sites inquerysquare.

1: for all querysquarein querysquaresdo
2: lastSquare← querysquare
3: Commax←Commax−2
4: if Server.#sites(querysquare) < Commax−2 then
5: return Server.GetSites(querysquare)
6: end if
7: end for
8: return Server.GetSites(querysquares.lastElement)

In the end, the client does NN search on the candidate list to retrieve the answer
to the query. The entire grid method is shown in Algorithm 3.3and a simplified
flow of messages can be seen in the sequence diagram of Figure 3.5.

Algorithm 3.3 Grid method
1: querysquares← Client callsCreateSquares()
2: Clist ← Client callsGetSites(querysquares)
3: Client does nearest neighbor search onClist

3.3 Quadtree Method

Even though we add an extra layer to the grid based approach, making the queries
data-dependent, the method is in essence a data-independent solution that relies

25

Chapter 3. Solution

Figure 3.5: Sequence diagram of the grid method.

26

3.3 Quadtree Method

on a grid datastructure. Because of this we want to develop a method which relies
on a server based data-dependent datastructure. In the analysis we found that
the datastructure that gives the highest degree of data dependency is a Voronoi
based graph structure. However the drawbacks of this datastructure, in terms of
extra communication and a low degree of spatial privacy, means that we dismiss
this structure. To obtain a high spatial privacy we want a structure which lets
us provide the cloaked area as a square as we do in the grid based approach.
Furthermore we want a datastructure which has a number of levels, and is indexed
in a tree providing the possibility to determine the cloakedarea in which the client
is located by a higher and higher accuracy by traversing the tree.

What we want is therefore a structure which divides the queryspace into squares,
but does so in relation to the density of the sites in different areas. In Section 2.6.1
on page 10 we saw such a structure. This was however not arranged in a tree
structure. One datastructure which has the same attributesand is arranged in a
tree is the quadtree, which has a lot of similarities with thestructure used in [12].
For a detailed look into quadtrees see [7]. To give an idea of how a quadtree works
see Figure 3.6 with a grid view of a quadtree and Figure 3.7 on the next page which
shows the tree representation of a quarter of the grid view. More specifically the
bottom-right quarter. A quadtree is a recursive datastructure where a quadtree can
have none or exactly four subtrees (some of which may be empty). The chosen
version of the quadtree, a quadtree either has no children and contain maximum
one site, or a quadtree has four children and no sites.

s6
s7

s5

s1 s2

s4

s8

s3

Figure 3.6: An example quadtree of eight sites number from s1 to s8. Shaded areas do not contain
any sites, and therefore no information need to be stored about the subtree.

A quadtree has some similarities with a grid, as it divides the queryspace into a
number of squares. The difference lies in the fact that the squares are only as
small as it is required in the specific region. The quadtree isused to store the sites
at the server, and as long as the set of sites remains the same this only has to be

27

Chapter 3. Solution

null n42 n43 null

null n432 n433 null

n4

root

s8

s6s7

....................

Figure 3.7: Subtree of the forth node of the root of the quadtree in Figure3.6 on the preceding
page.

calculated once. Efficient methods of adding and removing sites do exist [7], but
for this project we assume static site data. Searching a quadtree is done by issuing
a range query. Pseudo code for a range query can be seen in Algorithm 3.4 on the
next page.

Even though we dismissed the idea of using the Voronoi based graph structure,
and dismissed using a SMC protocol the idea of this method is still based on the
overall idea of [6]. This is in the sense that the server sendsa series of boolean
requests to the client. This is done by starting at the top level of the datastructure
and traversing the tree until a satisfactory state is reached.

The server side of this method starts by creating a quadtree of the site data. How
this is done can be seen in Algorithm 3.5 on the facing page. Asin the grid
method, it is however not enough to be able to return the sitesof the square in
which the client is located. We also have to include surrounding areas which can
contain NNs for the bounds of the square. We do this is the sameway as in the

28

3.3 Quadtree Method

Algorithm 3.4 RangeQuery(range)
Require: quadtree.bounds.intersects(range): a function that takes a range as

input and outputs a boolean representing whether of not the bounds of the
quadtree intersects with range.
quadtree.numberO f Sites: number of sites in the quadtree.
quadtree.subtrees: subtrees of the quadtree.

1: result← initialize result set of points in the range
2: if quadtree.bounds.intersects(range) then
3: if quadtree.numberO f Sites== 1 then
4: result.add(quadtree.site)
5: else ifquadtree.numberO f Sites> 1 then
6: for all subtreein quadtree.substreesdo
7: result.add(subtree.rangeQuery(range))
8: end for
9: end if

10: end if
11: return result

grid method (for details see Section 3.2 on page 21).

Algorithm 3.5 BuildQuadtree(Pointslist,bounds, parent)
1: subtrees← null
2: this.Pointslist← Pointslist

3: this.bounds← bounds
4: this.parent← parent
5: if Pointslist is non-Emptythen
6: Divide bounds into four equally big squares and name themb1,b2,b3,b4
7: Divide Pointslist into four new list calledl1, l2, l3, l4 according to in which

of b1−b4 they are located
8: BuildQuadtree(l1,b1, this)
9: BuildQuadtree(l2,b2, this)

10: BuildQuadtree(l3,b3, this)
11: BuildQuadtree(l4,b4, this)
12: end if

For each square sent to the client, all possible NN have to be included. This is
done with arangeQueryon the extended area.

Opposed to the grid method the client does not need to do any preprocessing. The
client simply initiates a query by sending a query request tothe server. The server

29

Chapter 3. Solution

then starts traversing the quadtree from the top. It does this by asking the client
whether he is in the bounds of the quadtree.

Earlier in this section we mentioned that the server issues boolean requests. This
is not exactly true as this would not enable the client to efficiently control the
two parameters of the common interface. When queried the client can be in the
following situations:

1. Client position is not in the quadtree.

2. Client position is in the quadtree, quadtree contains sites, but a satisfactory
state is not reached.

3. Client position is in the quadtree, quadtree contains sites, and a satisfactory
state is reached.

4. Minimum cloaked area is larger than quadtree.

To be able to communicate this back to the server an enum is created which can
have the following values (the parenthesized number indicates which of the above
situations this refers to) and should yield the specified action on the server:

NO (1) Proceed by querying siblings.

YES (2) Proceed by querying children.

RESULT (3,4) Proceed by requesting the candidate list of the quadtree from the
server.

The pseudo code for the server’s querying can be seen in Algorithm 3.6 on page 32.
The pseudo code for whenever the server queries the client can be seen in Algo-
rithm 3.7 on page 33.

The entire method is written in pseudo code in Algorithm 3.8 on page 33, and
the simplified flow of request-replies can be seen in the sequence diagram of Fig-
ure 3.8 on the next page.

30

3.3 Quadtree Method

Figure 3.8: Sequence diagram of the quadtree method.

31

Chapter 3. Solution

Algorithm 3.6 FindRegion(quadtree)
Require: quadtree.subtree: Returns the subtrees ofquadtree.

quadtree.#sites: Returns the number of sites in the subtree.
quadtree.parent: Returns the quadtree which is the parent ofquadtree.
quadtree.sites: Return the sites inquadtree.
ReplyEnum=YES,NO,RESULT: An enum which represent client answers.
quadtree.bounds: returns the bounds of the quadtree.
Client.IsIn(): A call to the client which return aReplyEnum.

1: if quadtree.subtrees== null then
2: if quadtree.#sites> 0 then
3: return quadtree.sites
4: else
5: return quadtree.parent.sites
6: end if
7: end if
8: for all subtreein quadtreedo
9: ClientReply←Client.IsIn(subtree.bounds,subtree.#sites)

10: if ClientReply== YESthen
11: FindRegion(subtree)
12: break{Client can only be in one subtree}
13: else ifClientReply== RESULTthen
14: return subtree.sites
15: end if
16: end for

3.4 K-Anonymity

The two solutions presented offer some user defined degree ofprivacy. The two
methods have that in common that the cloaked area they provide is a square. This
is not necessary a bad thing as it gives a high degree of spatial privacy, but having
more than one of these square areas as the cloaked area will provide additional
privacy. We want to do this by introducing k-anonymity in themethods. Earlier
this was defined as having k points with the client position being one of them, and
making this position indistinguishable among the k points from the server’s point
of view. Usually when talking about k-anonymity, the k-1 other positions are other
users (e.g. in the Casper framework [12]), which are then made indistinguishable
by an anonymizer. In this project we do not use an anonymizer,so these k-1
points have to be created by the client itself. We do this by creating k-1 random
points. This does however present a new problem, which will be discussed in the

32

3.4 K-Anonymity

Algorithm 3.7 IsIn(bounds,#sites)
Require: Areamin: Minimum cloaked area.

Commax: Maximum communication.
ReplyEnum= YES,NO,RESULT: An enum which represent client answers.
ClientLocation: Location of the client.
bounds.contains(location): A function that takes alocationa return if it is
within bounds.

1: Commax←Commax−2
2: if bounds.contains(ClientLocation) then
3: if #sites≤Commax−2 then
4: return RESULT
5: else
6: return YES
7: end if
8: else
9: return NO

10: end if

Algorithm 3.8 Quadtree method
1: quadtree← Server callsBuildQuadtree(Pointslist,bounds,null)
2: Client initializes the query by sending a request to the server
3: Clist ← Server callsFindRegion(quadtree)
4: Server sendsClist to client
5: Client does nearest neighbor search onClist

following section.

3.4.1 Levels of K-Anonymity

Imagine that a client is stationary and makes a large number of queries over a
short amount of time. If the k-1 positions are created randomly for each request it
might become apparent for an adversary that one of the positions stay the same.
The lower k is, the more this will show. Due to this we propose the following
levels of k-anonymity:

Level 1 The k-1 positions are created at random within the query space on each
query.

33

Chapter 3. Solution

Level 2 The k-1 are created at the initialization of the client, and the client posi-
tions actual movement is mimiced in each of the fake positions.

Level 3 The k-1 are created at the initialization of the client. The fake positions
move according to a random pattern of movement. This patternmight be a
person or a cars movement in terms of velocity and acceleration (depending
on the domain of application). To make this possible the client also has to
keep track of the time between each issued query.

Level 4 As in level 3, but with the addition of map topology. This might be a
2D map including information on how hard (if not impossible)an area is
to cross. In addition this map could also include 3D information such as
height.

Adding a k-anonymity layer on top of the developed methods would obviously not
just be having a cloaked region plus k-1 points, and the adversary would know that
the client is not in any of the points. The client will have to keep the information of
all k points and treat them each as the real location in each contact with the server.
This entails a requirement for some modifications to the two solutions presented
earlier in this chapter.

As stated earlier, in this report we are only concerned with single queries and a
Level 1 k-anonymity is therefore sufficient, and this will therefore be examined
further. If we were to introduce Level 2 and 3 k-anonymity, this would only
entail changes at the client as it at most needs to know human movement patterns.
Having Level 4 k-anonymity would require some additional communication with
the server as map topology has to be communicated from the server to the client.

Before we take a look at how we can add k-anonymity to the solutions, we have
to figure our how we interpret the common interface in this context.

3.4.2 Common Interface and K-Anonymity

In the common interface we defined the two variablesMaximum communication
andMinimum cloaked area. In order to make sense of adding k-anonymity we
have to figure out exactly how these are interpreted in this context. There are
basically two ways of doing this, either dividing or multiplying by k. These two
interpretations will now be discussed.

34

3.4 K-Anonymity

Dividing by K

The first possibility is to divide the parameters by k, so thateach of the k-positions
gets an equal share in both communication and minimum area. This means that
minimum cloaked has to be smaller than or equal to the sum of all k cloaked areas,
Areamin≤ ∑k Areak and that maximum communication allowed is the communi-
cation used by all k positions,Commax≤ ∑k Comk. Strictly speaking dividing by
k is the solution that adheres to the common interface the most, as results from this
method would be directly comparable to the two methods without k-anonymity.
However having a large k might entail a scheme that is more equal to informing
the server of k points, than that of k areas. This is illustrated in the Figure 3.10
where k is high. This is in contrast to what would happen with alow k, illustrated
in Figure 3.9.

Figure 3.9: Cloaked areas in the divide by k scheme, with a low k.

Figure 3.10: Cloaked areas in the divide by k scheme, with a high k.

When doing so one might end up in a situation where all the cloaked areas line up
in some way. An example of this can be seen in Figure 3.11 on thefollowing page

35

Chapter 3. Solution

where all the cloaked areas are one a line. This will yield a low degree of spatial
privacy. However, if k is high enough and the pseudo random generator is good
enough this should rarely be a problem.

Figure 3.11:Situation where the k cloaked areas are on a line. k = 5.

Multiplying by K

The second possibility is to interpret the parameters as what is allowed to be used
by each of the k positions. This will eliminate the problem wehave in thedivide by
k scenario with having very small areas. However this approach will also make it
hard to compare the k-anonymity implementations of the common interface with
other implementations.

As explained there are drawbacks of both multiplying and dividing by k when
interpreting the parameters of the common interface to k-anonymity. However
it does make the most sense to use the divide by k approach as this makes the
implementation more comparable to other implementations.This especially goes
for the maximum communication parameter, as it is our main that k-anonymity
solutions are not allowed more communication than other methods. Regarding
the minimum cloaked area, this can more freely be interpreted by the different
clients, so that the possibility of having a lot of very smallareas for large ks can
be avoided. One should however also keep in mind that having alarge cloaked
area (connected or not) yield a higher possibility to reach astate of overflow. In the
further examination we presume that maximum communicationis always divided
by k.

Another thing worth examining is how the k queries should be carried out. Should
they be separate with a query for each of the k positions or should they be bundled.

36

3.4 K-Anonymity

Separate Queries

This is simplest of the two ways of querying. Here no modification to the methods
have to be provided. The client simply issues a separate query for each of the k
points. This will be more costly in terms of communication, as this requires that
k is strictly divided into k pieces all of sizekCommax = 1

kCommax. For a large
value of k this might result is each of the k queries reaching astate of overflow,
all returning all sites within the queryspace. The lower thevalue of k, the lower
the possibility of reaching this state becomes. Still, there can be a lot of wasted
communication in querying the same cloaked areas. This is the case in the two
methods described earlier in this chapter. They both start out requesting the num-
ber of sites in the entire queryspace. In k separate queries this request would
therefore be issued k times. However, there is also an advantage of having sepa-
rate queries. The server has no idea that it is indeed the sameclient that issues all
the requests. This is opposed to bundled queries.

Bundled Queries

In bundled queries we bundle the information of all k positions in one query to the
server. At the very least this avoids spending k communication on initialization
and the final delivery of the candidate list. This does also have the disadvantage
that the server knows that a certain client is in one of the k positions. In relation to
the two methods described earlier in this chapter, one wouldalso be able to avoid
querying the same cloaked area more than once.

Once again there are pros and cons of each method. If one uses separate queries
only small changes has to be made, and they all have to be made on the client.
Here the client would have to issue the k queries and then search for the NN
among the k result sets. Due to this, what is further examinedin this chapter is
how to modify the two proposed solutions to include k-anonymity with bundled
queries.

3.4.3 Modifications to Grid Method

As explained, we want to add k-anonymity to the grid method using bundling. As
the areas queried in the grid method are chosen by the client itself, rather than
the server, this is where we want to do the modification. Instead of having an

37

Chapter 3. Solution

single square we want a list of k squares. Further more it is decided to divide the
minimum cloaked area, so that the sum of all the squares whichconstitute cloaked
areas in a query is greater than or equal to the minimum cloaked area.

In the grid method without k-anonymity, we create an array ofquerysquares,
where the first and biggest one is the bounds of the queryspaceand the small-
est one is the minimum area (actually the minimum area snapped to the grid).
These are then sent to the server one by one in decreasing order. We here propose
to convert this in a rather naive way by creating a list of k querysquares for each
place in the original querysquares array. Each querysquarein the list of k squares
should be created exactly as they are in the grid method without k-anonymity,
with one exception.

The first thing to do is to create the list which should be last one in the array. In
this step we do not want to send identical or overlapping querysquares. To ensure
this, for each position in the array, we create a square of thefirst of the k positions.
We then loop through the remaining points to see if any of these are contained in
the same square. For all the positions where that is the case,we do not create an
additional square. We however still have to make sure that the sum of the squares
is never smaller than minimum cloaked area. If this is the case in a list the squares
are expanded in some arbitrary way while still holding the shape of a square. Still,
this has to be done without making overlapping squares.

The next thing to do is to create the other list of squares in the array. This is done
identical to the method without k-anonymity. We here do allow squares to overlap,
and we therefore will end up all lists being the same size, thelast one actually
having a list of identical squares. In this solution we leaveit up to the server to
figure out which squares are identical. We do realize that this could be optimized,
but as the main scope is not k-anonymity, we will only make a comment on how
this could probably be done. Just as in the first list we created one can imagine
that the same could be done to see if a small square is contained in a larger square.
To further optimize this, one could imagine that it is possible to find an algorithm
that would createn big squares encapsulatingm smaller squares, wheren≤m.

Other than the creating of the square we need to modify the server so that it takes
an array of querysquare lists rather than an array of querysquares. As this can
be done by doing the same as the server does in the former described method by
looping through the querysquares in each request, this is considered trivial, and
will not be examined further.

38

3.4 K-Anonymity

3.4.4 Modifications to Quadtree Method

Opposed to the grid method the quadtree method is based on that the server has
control over which areas are queried at a certain time. This means that we cannot
modify the squares which are queried, as the server only knows the replies it gets
from theIsIn queries. As k-anonymity is not the main scope of this projectand in
realization that it would require a lot of work to get the quadtree method efficiently
with bundled queries, we propose that adding k-anonymity tothe quadtree should
be done using single queries for each of the k-positions. This should be done with
the parameters minimum cloaked area and maximum communication both set to
1
k of the original value. The client should then discard all theanswers but the
one concerning the true client position, and should do NN on the candidate list
retrieved from that query.

39

Chapter 3. Solution

40

CHAPTER 4

Test

This chapter describes the testing of the proposed solution. We want to test how
the two solutions perform in terms of how much communicationis used with dif-
ferent settings of the parameters of the common interface. The main purpose is
to see how data-dependency effects the test output. The chapter will furthermore
include implementation details of the solution, a test setup, a discussion of expec-
tations to the tests, test results, and in the end a discussion of the results.

In terms of what the results of these experiments can be compared to, the answer
is none. What we have proposed in this report is a solution which is based on a
common interface, which is not seen before with the requirements stated in the
problem statement in Section 2.7 on page 17. The most similarthing was seen in
[12], but as it was based on a different architecture, the tests are not comparable.
We therefore only compare the test results internally.

4.1 Implementation Details

This section will discuss the implementation details of thetest. This will include a
description of the environment, the limitations of this specific implementation, and
how the implementation differs from the design proposed in the solution chapter.

4.1.1 Environment

This will explain the details of the hardware and software environment in which
the tests were performed.

41

Chapter 4. Test

Hardware

The tests were carried out on an IBM R50 ThinkPad, type 1829-7RG:

• Pentium M 1.5 GHz

• 512 MB RAM

• Windows XP Professional

For a full specification see [4].

Software

The implementation was done using theEclipseIntegrated Development Environment
(IDE) version 3.3 (for details see [3]). The test implementation was compiled and
run usingJava SE 6(see [1]). Furthermore a 3rd party package was used to cre-
ate the Zipf distribution (explained in Section 4.2.1 on page 46). This package is
calledColt (see [2]), and contains a lot of functionality for scientificand technical
computing in Java.

4.1.2 Changes from Design

To implement the solutions presented, some changes and decisions had to be
made. This was done to make the implementation more practical and realistic.

Quadtree

The main problem with the quadtree solution proposed, was that it includes a lot of
recursion. The datastructure is in itself recursive, and the algorithms used are re-
cursive as well. In an implementation this presents a problem as a lot of recursive
calls might lead to a stack overflow. In the quadtree we call the BuildQuadtree
(Algorithm 3.5 on page 29) recursively until each site is putin it’s own node. If the
distance between the points is close to zero, the number of recursive calls on the
stack is close to infinity (if the points are identical, i.e.,the distance between them

42

4.1 Implementation Details

is zero, we have another problem which we will deal with later). In an implemen-
tation we do however have a discrete space, and therefore a minimum possible
distance between two points. This can however still lead to astack overflow.

Instead of pushing the recursive calls on the stack, we propose a solution where
a queue is utilized in place of the stack. This is however onlynecessary when
we need to examine more than one subtree of the quadtree. In algorithms such as
FindRegion(Algorithm 3.6 on page 32), only one subtree needs to be be exam-
ined. The same approach can however still be used to avoid recursion.

In Listing 4.1, the test implementation source code ofRangeQuery(Algorithm 3.4
on page 29) is shown. This is implemented iterative, i.e., without recursion, op-
posite to the pseudo code version.

� �
1 public Vector <MultiplePoint > rangeQuery (Rectangle range) {
2 LinkedList <Quadtree> queue = new LinkedList <Quadtree >();
3 Vector <MultiplePoint > containedPoints = new Vector <MultiplePoint >();
4
5 queue.add(this);
6 while(!queue.isEmpty()) {
7 Quadtree tree = queue.poll();
8 if(tree.getSubtrees () != null) {
9 for(Quadtree subtree: tree.getSubtrees ()) {

10 if(range.intersects (subtree.getBounds ()) {
11 queue.add(subtree);
12 }
13 }
14 }
15 else {
16 if(tree.getPoints ().size() > 0) {
17 for(MultiplePoint mp: tree.getPoints ()) {
18 if(range.contains(mp.getPoint ()) {
19 containedPoints.add(mp);
20 }
21 }
22 }
23 }
24 }
25 return containedPoints;
26 }

� �

Listing 4.1: RangeQuery implemented in Java without recursion.

In line 2 the queue is initialized as aLinkedList of Quadtrees. This collection
is used as it has methods for both queue and stack operations.Queue operations
areadd(object) andpoll(object), which adds an object (of classQuadtree)
to the end of the list and removes and returns the first object,respectively. Stack
operations arepush(value) andpop(value), which puts a value in beginning
of the list and removes and returns the first object, respectively. This means that
the behavior of the list can easily be changed from a queue to astack. In other
word, utilizing a queue yields a breath-first approach, and utilizing a stack yields

43

Chapter 4. Test

a depth-first approach. As recursion uses the program stack,utilizing the stack
behavior would do the exact same thing as a recursive call does. Instead we use
the queue behavior. In line 5 the top level of the quadtree is added. In line 6 a
while loop starts running until the queue is empty. We then, in line 7, poll an
element from the queue, and if the quadtree of the current loop has subtrees, we
add the subtrees which intersect the parameterrange to the queue (lines 8-14).
If the quadtree does not have any subtrees, we return the points of the quadtree
which are contained inrange (lines 15-23). Finally in line 25, we return the result.

As explained in the above the solution, we are also presentedwith a problem in
case two or more points are identical. In real life this mightbe the case if sites
represent stores. Depending on the measurement unit of the data set, two stores
might be located on the same coordinate. This could e.g. be a mall. We therefore
have to take make sure that the quadtree can be constructed even with two identical
sites. If we use the pseudo code version from Algorithm 3.5 onpage 29, we will
end up in an infinite loop, where the quadtree is looking for a quadtree in which
the two points are located in two different subtrees. To avoid this we add some
additional information to a point. Besides having a point ina two dimensional
space (represented by two coordinates), we add the number ofoccurrences to
the point. When constructing the tree, the algorithm will regard this as a single
point. However, we need to remember to count the all occurrences of the point,
when returning a candidate list to the client. If this is not done we will end up
in with a case where the total number of sites in the data set will be less than the
original data set. In essence, this means that a single quadtree now can hold an
infinite number of points, but now this is not a problem. One might encounter a
problem when adding meta-data to the sites, e.g.store name, opening hours, etc.
However, this is outside the scope of this project, so we willdisregard this. In the
test implementation, the point with number of occurrences is represented as the
MultiplePoint class used in Listing 4.1 on the preceding page.

Simplification

We want to make the implementation rather simple, so we will get fewer points of
error. To do this, we choose to make the experiments with the simplified extended
area (explained in Section 3.2 on page 21).

44

4.1 Implementation Details

Data Sets and Queryspace

Later, in Section 4.2.1 on the following page, we will describe the different data
sets and how they will be used . We based our choice of number ofsites and the
size of the queryspace, on the real life data set which is approximately 120,000
points, within a space of 1,000,000×1,000,000 possible locations.

4.1.3 Limitations

As the main aim of these tests were to examine the communication used, and not
performance in terms of seconds, no time is spent on optimizing the internals of
the different methods. Furthermore, nothing is done to makethe datastructures in
each of the solutions persistent. I.e. they should only be kept in memory. In addi-
tion we do not want to use time on optimizing things such as space consumption
and operations on lists, etc.

In regards to the use of Java, we want to run the Java Virtual Machine with stan-
dard parameters. After implementing the tests, the choicesmentioned above led
to a number of limitations.

Quadtree

Earlier in this chapter we mentioned that the we might get a very high number of
recursive calls on the stack. We also presented a solution tohow this can be fixed.
Even with our limitation of the queryspace and the data sets,this will still lead to a
situation where at least 120,000 nodes of the quadtree have to be created, as only
one point can be stored in each. Furthermore, 120,000 only represents the leaf
levels of the entire tree, so actually we store more than 120,000 quadtree. This
will often lead to a heap overflow. To avoid this we allow up to 100 points in each
leaf-node. In addition we want to treat identical points as one.

Grid

As we have a space of 1,000,000× 1,000,000 possible points, the maximum
number of grid cells would be 1012. As each cell holds a list of points, and some

45

Chapter 4. Test

additional information, having 1012 grid cells also quickly leads to a heap over-
flow. Using experiments, an appropriate size of the grid cells was found to be
1,000×1,000 points, leaving us with 1,000×1,000 grid cells.

K-Anonymity

As mentioned in the solution chapter, k-anonymity is not themain goal of this
project, so we chose not to experiment with this.

4.2 Test Configuration

This section describes the details of the data sets used in the tests. Furthermore,
the specific tests are specified.

4.2.1 Data Sets

We want to test the solutions with three different kinds of data sets of approxi-
mately the same number of sites:

Real World Data set A data set of postal addresses in the three metropolitan ar-
eas of New York, Philadelphia and Boston in the North East of the U.S.
[13]. Contains 123,593 sites. Depicted in Figure 4.1 on the next page.

Uniform Distribution Randomly created uniform distribution with 120,000 sites.
Depicted in Figure 4.2 on page 48.

Zipf Distribution(ρ) Randomly created Zipf distribution [14], with the skew pa-
rameterρ. Also with 120,000 points. The distribution will be createdwith

ρ = 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0

The distribution is often used in the testing spatial data set algorithms. This
is due to the fact that it is a distribution with a variable degree of skew.
Zipf distributions with skew factor 1.1 and 1.7 can be seen inFigure 4.3
on page 48 and 4.4 on page 49, respectively. The reason that there does
not seem to be a lot of points in Figure 4.4, is because most of them are

46

4.2 Test Configuration

concentrated around(0,0). The remaining Zipf distributions can be seen in
Appendix A on page 71.

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Real world data

Figure 4.1: Real world data set containing 123,593 postal addresses represented as points.

4.2.2 Client Position

In order to make useful results we want to have more than one client point position.
For each test we use the same 100 evenly distributed client query points. The
result is then the average of the test results from querying the 100 points. The
client positions can be seen in Figure 4.5 on page 49.

4.2.3 Test Configurations

The overall goal is to test how different things affect the communication used.
This should be done testing the different variables. In the end this should result in
a graph for each test.

47

Chapter 4. Test

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Uniform distribution

Figure 4.2: Uniform distribution containing 120,000 points.

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.1

Figure 4.3: Zipf distribution with skew factor 1.1, containing 120,000points.

48

4.2 Test Configuration

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.7

Figure 4.4: Zipf distribution with skew factor 1.7, containing 120,000points.

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Client positions

Figure 4.5: The 100 client positions of which the average resulted will be used.

49

Chapter 4. Test

Test 1

This test will determine the relation between the maximum communication and
the communication used. It will do this with minimum cloakedarea set to two
different values, being: 1 and 100,0002.

The test is carried out on all data sets, each resulting in a graph. We will do two
skew factors of the Zipf distribution, these are 1.1 and 1.7.

x: Maximum communication

y: Communication units used

Test 2

This test will determine the relation between the parameterminimum cloaked
area, and the amount of communication used. The maximum communication is
set to two different values, being: 30,000 and 5,000.

The test is carried out in the same way as Test 1. The parameters are defined as:

x: Minimum cloaked area

y: Communication units used

Test 3

The purpose of this test is to examine how different values ofthe skew factorρ
in the Zipf distribution affects the communication used. The values of maximum
communication and minimum cloaked area are set to two different values for each
of the solutions. These two sets are as follows:

(maximum communication, minimum area) = (40,000, 1)

(maximum communication, minimum area) = (5,000, 200,0002)

These four result sets has to be depicted in the same graph. The parameters are:

50

4.3 Test Expectations

x: ρ in Zip f(ρ)

y: Communication units used

4.3 Test Expectations

Our expectations of the tests are based on an idea that using adata-dependent
structure should perform better in distributions with a high skew. I.e., perform
better when the distribution of points is very uneven throughout the queryspace.
It is apparent from the description of the two methods that the quadtree requires
more communication to get to the square (bounds of a quadtree) in which the
client is located, compared to the grid method which always yields a square in
which this property is satisfied. We do however expect this difference to be more
than evened out with the benefit of constructing the datastructure based on the
density of points in a certain area. In relation to the different data sets, we would
expect the algorithms to perform as follows:

Uniform distribution We expect the algorithms to perform very similar, with a
minor advantage to the grid method over the quadtree method based on the
lower communication between client and server.

Zipf Distributions The higher the skew of the distribution, the better we would
expect the quadtree method to perform compared to the grid method.

Real World Data Set As the density of sites vary in different areas of the querys-
pace, we will once again expect the quadtree method to outperform the grid
method.

4.4 Test Results

The following section contains the test results.

4.4.1 Test 1

The following contains the test results from test 1.q denotes the quadtree method,
andg the grid method. The sub scripted numbers represent the two different values

51

Chapter 4. Test

the minimum cloaked area parameter have been set to. In this case it is defined as
follows:

1. Minimum cloaked area = 1

2. Minimum cloaked area = 100,0002

An additional line has been added. This is the straight line.This represents the
maximum communication allowed. This mean that when ever a line is over this
line, the method has overflown.

Real World Data

The graph for the real world data set can be seen in Figure 4.6.The graph shows

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
oo

m
un

ic
at

io
n

un
its

 u
se

d

Maximum communication units

Data Set: Real world data

g1
g2
q1
q2

Figure 4.6: Test 1 results with real world data set.

that the grid method performs better than the quadtree method with both values for
minimum cloaked area.g2 even performs better thanq1. g1 is the only method that
always reaches a satisfactory state, i.e., a state without overflow (from our lowest
test value of 2,000).g2 reaches satisfactory states with values over approximately
12,000, and bothq1 andq2 return satisfactory states with values over 20,000.

52

4.4 Test Results

Uniform Distribution

The graph for the uniform distribution data set can be seen inFigure 4.7. As

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
oo

m
un

ic
at

io
n

un
its

 u
se

d

Maximum communication units

Data Set: Uniform distribution

g1
g2
q1
q2

Figure 4.7: Test 1 results with uniform distribution data set.

the graph shows the grid method and quadtree method perform nearly identical.
Opposed to the real world data set, the quadtree actually hasa small advantage.
Neitherg1 or q1 overflows with the tested values.g2 stops overflowing around
9,000, andq2 around 4,000.

Zipf Distribution - 1.1

Figure 4.8 on the next page shows the Zipf distribution with skew factor 1.1. As
shown on the graph, the grid method performs remarkably better than the quadtree
method.g1 never overflows andg2 stops around 7,000, whereasq1 stops around
the maximum test value, andq2 even later.

Zipf Distribution - 1.7

Figure 4.9 on the following page shows the Zipf distributionwith skew factor 1.7.
In this figure we see that the amount of communication used is approximately the

53

Chapter 4. Test

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
oo

m
un

ic
at

io
n

un
its

 u
se

d

Maximum communication units

Data Set: Zipf distribution, skew factor = 1.1

g1
g2
q1
q2

Figure 4.8: Test 1 results with Zipf distribution with skew factor 1.1 data set.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
oo

m
un

ic
at

io
n

un
its

 u
se

d

Maximum communication units

Data Set: Zipf distribution, skew factor = 1.7

g1
g2
q1
q2

Figure 4.9: Test 1 results with Zipf distribution with skew factor 1.7 data set.

54

4.4 Test Results

same no matter that we specify as maximum communication. This is due to the
fact that all the sites are concentrated around(0,0). As in the Zipf distribution
with skew factor 1.1, the grid method clearly outperforms the quadtree method.
g1 stops overflowing at 21,000, andg2 at 31,000. Bothq1 andq2 return something
close to the entire result set no matter the value of maximum communication.

4.4.2 Test 2

The following contains the test results from test 2. As in test 1, q denotes the
quadtree method, andg the grid method. The sub scripted numbers represent the
two different values the maximum communication parameter have been set to. In
this case it is defined as follows:

1. Maximum communication = 30000

2. Maximum communication = 5000

Two additional lines have been added. These are the horizontal lines. These
represent the two values of max communication. In some of thegraphs the highest
of these lines (y = 30000) is actually the top of the diagram. Wheng1 andq1 are
over the highest of these lines they overflow, andg2 andq2 when they are over the
lowest horizontal line.

Furthermore we choose to depict the graphs with a x-axis of(minimum area)2 as
this will then represent the width of the cloaked area square.

Real World Data

The graph for the real world data set can be seen in Figure 4.10on the next page.
The figure shows once again that the grid method performs better than the quadtree
method. Neitherg1 or q1 overflow with the tested values. They will however
do this eventually as the value of minimum cloaked area gets close to the entire
queryspace. This is due to the fact that eventually you will reach an area where
all the points are included, and as each of these require one communication unit,
it will overflow. g2 starts overflowing when the value reaches 51,0002 andq2 will
never be in a satisfactory state with maximum communicationset to 5,000.

55

Chapter 4. Test

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
om

m
un

ic
at

io
n

un
its

 u
se

d

Minimum cloaked area2

Data Set: Real world data

g1
g2
q1
q2

Figure 4.10:Test 2 results with real world data set.

Uniform Distribution

Figure 4.11 on the facing page shows the uniform distribution data set. As in test
1, the figure shows that when querying a uniform distribution, the quadtree method
has an advantage over the grid method.g1 is a little lower thanq1, but neither of
them overflow within the tested values. They will however do this eventually due
to the reasons mentioned in the former section.q2 always reaches a satisfactory
state with the tested value.g2 starts overflowing when the minimum cloaked area
is greater than 76,0002.

Zipf Distribution - 1.1

Figure 4.12 on the next page shows the Zipf distribution dataset with a skew
factor of 1.1. In this figure, it is clear that the grid method performs much better
than the quadtree method.g1 never overflows with the tested values, andg2 starts
overflowing around 75,0002. The difference in maximum communication does
not affect the quadtree method much, and bothq1 andq2 overflow in all situations.

56

4.4 Test Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
om

m
un

ic
at

io
n

un
its

 u
se

d

Minimum cloaked area2

Data Set: Uniform distribution

g1
g2
q1
q2

Figure 4.11: Test 2 results with uniform distribution data set.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
om

m
un

ic
at

io
n

un
its

 u
se

d

Minimum cloaked area2

Data Set: Zipf distribution, skew factor = 1.1

g1
g2
q1
q2

Figure 4.12: Test 2 results with Zipf distribution with skew factor 1.1 data set.

57

Chapter 4. Test

Zipf Distribution - 1.7

Figure 4.13 shows the Zipf distribution data set with a skew factor of 1.7. In this

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

C
om

m
un

ic
at

io
n

un
its

 u
se

d

Minimum cloaked area2

Data Set: Zipf distribution, skew factor = 1.7

g1
g2
q1
q2

Figure 4.13:Test 2 results with Zipf distribution with skew factor 1.7 data set.

figure, we see that the two different values of maximum communication does not
effect how the two different solutions perform. As in test 1,this data set makes
the quadtree method return all the sites of the queryspace.g1 andg2 both spends
around 30,000 communication units with the tested values ofminimum cloaked
area. This means thatg1 reaches a satisfactory state, andg2 overflows.

4.4.3 Test 3

The following contains the test results from test 3. As in test 1 and 2,q denotes the
quadtree method, andg the grid method. The sub scripted numbers represent the
two different sets of values of the minimum cloaked area parameter and maximum
communication have been set to. In this case it is defined as follows:

1. Maximum communication = 30000 and minimum cloaked area = 1

2. Maximum communication = 5000 and minimum cloaked area = 2000002

58

4.4 Test Results

Two additional lines have been added. These are the horizontal lines. These
represent the two values of max communication. Wheng1 andq1 are over the
highest of these lines they overflow, andg2 andq2 when they are over the lowest
horizontal line.

Figure 4.14 shows the results of test 3. As can be seen in the figure, the values of

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

C
om

m
un

ic
at

io
n

un
its

 u
se

d

Zipf distribution skew factor

Data Set: Zipf distributions

g1
g2
q1
q2

Figure 4.14: Test 3 results.

case 2 will never reach a satisfactory state, neither with the quadtree method or the
grid method.g1 start overflowing when the value of the skew factor exceeds 1.7.
q1 overflows when the skew factor exceeds 1.4. Once again this means that the
grid method performs better than the quadtree method. This can also be seen on
the different lines in the graph. The communication units used by the grid method
climbs slowly, but as soon as the skew factor reaches 1.5, thequadtree method is
close to returning all the sites of the queryspace.

4.4.4 Reflection on Results

As the result show the quadtree method which we expected to perform better than
the grid method actually performs worse on every data set besides the uniform
distribution.

One could expect that the simplification we made in Section 3.2 on page 21, might

59

Chapter 4. Test

client position

Figure 4.15:The extended area using the simplification.

be responsible.

On Calculating Extended Area

We want to examine how different ways of calculating the extended area has in
relation to the candidate list. We want to examine this is relation to the Zipf
distributions, as these gave the worst performance of the quadtree method. We
want to do this, as we want a method which perform good no matter how sites are
distributed.

The Simplified Method As mentioned above, the current implementation is
done using a simplification. This simplified method has the advantage that it can
be calculated without taking the location of sites into account. This does however
have the disadvantage that we might not always get the exact answer to a query.
In relation to the quadtree method and the Zipf distribution, we might often find
ourselves in a situation where all the sites of the queryspace need to be returned.
Such a situation is illustrated in Figure 4.15. Due to the Zipf distribution all sites
are concentrated around(0,0). Using the simplified method, this will entail that
when the client is located in the top right square, none of thepoints will be in
the extended area, and we therefore need to return the candidates from one level
higher in the quadtree, yielding the entire set of sites within the query space.

60

4.4 Test Results

m13

f234

f1

c3 c4

c2c1

client position

Figure 4.16: The extended area using the method from [12]. We here identify the two filter sites,
and using these calculate how much the area should be expanded in direction ofe34

ande13

The Casper Method In [12] a solution to calculating the extended area is pro-
posed. This is also presented in Section 2.6.1 on page 10. Compared to the sim-
plified method, the Casper method takes the position of sitesinto account. This
should entail an optimized extended area. In Figure 4.16 it is illustrated how the
method performs in Zipf distribution also used to illustrate the simplified method.
As we see, the way the area is extended will also entail that all sites of the querys-
pace will need to be returned.

In this method they claim that the method is inclusive and minimal. While being
inclusive, we found a problem in the way they reason about their solution being
minimal. We therefore propose an extension to the Casper method.

The Extended Casper Method The problem lies in the case where the two
corner on a line have the same filter site, i.e.,f1 = f2 for e12. They claim that
the area should be extended with the maximum distance from the filter site to one
of the two corner, i.e.MAX(Length(f c1),Length(f c2)). This is however not the
case. We only need to expand the area to the filter site. The situation is illustrated
in Figure 4.17 on the following page. In the figure the bold line is the line to
which the Casper method suggests that the area should be extended. It is however
only necessary to extend the area to the dashed line on which the filter site is. By

61

Chapter 4. Test

c1 c2

f12

c3 c4

Figure 4.17:This figure indicates how the method mentioned in [12] has a problem. They pro-
pose that the entire area under the bold tangent should be included as extended area,
whereas only the area beneath the dashed horizontal line needs to be included.

f

c4

c1 c2

c3

Figure 4.18:The case when all corner (c1-c4) have the same filter site, i.e., only one filter site
exists. This isf on the figure. The grayed out area is the square in which the client is
located. The dashed line represents the area the method in [12] considers minimal.

adding circles from the cornersc3 andc4, we see that they never go outside the
dashed line without being enclosed in one of the circle ofc1 or c2. This mean if a
site was to be located in the areas which exceed the dashed line, one of the corners
c1 andc2 would have another filter site.

This extension to the Casper method also leads to situation in which all the corners
have the same filter site. In this situation only the filter site would have to be
returned. This is illustrated in Figure 4.18. All corners have f as their filter site.

62

4.4 Test Results

m13

f234

f1

c3 c4

c2c1

client position

Figure 4.19: The extended area using the extended casper method.

The dashed outer region is the region that the method in [12] would give as a
result. However, all possible locations in the original area will always be closer to
f than any other site. This is true as no circle with centerO, whereO is a point
within the cloaked area, with a radius the length ofO f will go outside the corner
circles depicted in the figure. Because of this only the sitef have to be returned
as the candidate list whenever all corners have the same filter site.

Figure 4.19 shows how the extension affects the extended area in the Zipf distri-
bution from before. Here we see that it is no longer necessaryto return all the
sites of the queryspace.

Which Solution Should be Used?

From the test results, it is clear that the way the solutions are implemented at the
time of testing, the grid method is to prefer. Even though thequadtree method has
a slight advantage in a uniform distribution, but this is probably just a coincidence.
The grid method performs much better in all other situations, so it is always to
prefer.

How the parameters of minimum cloaked area, and maximum communication
should be set is quite difficult to answer, as one effects the other. It is however
clear that increasing the minimum area does not have a very big impact on the
candidate list (remember, minimum area in the graphs are actually the square of
the minimum area). It should however be increased slightly.Setting the maximum
communication to around 20,000 should in most cases be able to provide a non-

63

Chapter 4. Test

overflowing answer. The only time this is a problem is in Zipf distributions with
a high skew factor. This is however mainly due to the fact thata lot of points will
have identical coordinates.

Imagine the border case with a skew factor so high that all 120,000 points are iden-
tical and located at(0,0). No matter what, both solutions would always return all
site data, as they would all be the nearest point. In the Zipf distribution with skew
factor 2.0 used in this implementation, we have(0,0) represented 44,460 times.
Depending on the application domain in which the solutions could be deployed,
the data sets might be constructed so that points could neverbe identical.

64

CHAPTER 5

Conclusion

In this report a common interface for flexible privacy preserving in LBSs has been
documented. This was done under the topic ofPrivacy in Pervasive Computing.

Emphasis was put on examining the different aspects of already known solutions
to the problem. This was done through an examination of related work. Through
this examination it was chosen to focus on a previously unexplored area within
the limits of the topic. This was done by focusing on the quality attributes offlex-
ibility , security, accuracy, andcomplexity, and ended up in a problem statement
in the form of a list of formal requirements to the solution.

Next, a large amount of work was put on developing a common interface which
would enforce the problem statement. Here it was chosen thata client should
be able to specify his privacy settings in form ofmaximum communicationand
minimum cloaked area. In the further development of the solutions it was decided
to give the user privacy in the form of a cloaked area.

Two solutions were developed. This was mainly done to focus on the differ-
ence between having a data-dependent and a data-independent datastructure at
the server. Furthermore the solutions are examples of both client based and server
based approaches. The methods developed was one based on a grid, and one based
on a quadtree. In addition it was explained how adding an extra layer in form of
k-anonymity could be beneficial.

To reflect on how the two solutions developed would perform against each other,
a testing implementation was done. It was chosen only to implement the two
methods without k-anonymity. The tests were done with the purpose of testing
how much communication the different solutions would with different data sets.
The data sets utilized was a real world data sets, a uniformlygenerated data set,

65

Chapter 5. Conclusion

and several skew data sets using a Zipf distribution. This was done in a theoretical
setting with the communication between client and server simulated. The results
of the tests were at first glance surprising, but was later explained with a limiting
design decision on how to create the extended area. This affected the software
quality attribute ofaccuracy. The problem was examined and a solution to how
this could be changed, was presented. In the current implementation, it was found
that the grid method would always be preferable.

Overall it is found that the common interface developed contributes with a secure
and flexible method for privacy preserving queries in pervasive computing. This
was due to the fact that the method has no apperent insecurities, and that the pri-
vacy settings can be changed from query to query. Furthermore, even though the
grid method performed better, it is concluded that implementing the optimization
for calculating the extended area, might change this fact.

66

Bibliography

[1] Java se 6. http://java.sun.com/javase/.

[2] The colt project, November 2007. http://dsd.lbl.gov/ hoschek/colt/.

[3] Eclipse project, November 2007. http://www.eclipse.org/.

[4] Ibm r50 type 1829-7rg, November 2007. http://www-
307.ibm.com/pc/support/site.wss/quickPath.do?quickPathEntry=18297RG.

[5] M. J. Atallah and W. Du. Secure multi-party computational geometry. In
WADS ’01: Proceedings of the 7th International Workshop on Algorithms
and Data Structures, pages 165–179, London, UK, 2001. Springer-Verlag.

[6] M. J. Atallah and K. B. Frikken. Privacy-preserving location-dependent
query processing. InICPS ’04: Proceedings of the The IEEE/ACS Inter-
national Conference on Pervasive Services (ICPS’04), pages 9–17, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[7] R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval on
composite keys.Acta Inf., 4:1–9, 1974.

[8] B. Gedik and L. Liu. Location privacy in mobile systems: Apersonalized
anonymization model.icdcs, 00:620–629, 2005.

[9] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput.,
12(1):28–35, 1983.

[10] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearestneighbor search
for spatial network databases.

67

BIBLIOGRAPHY

[11] M. R. Kolahdouzan and C. Shahabi. Continuous k-nearestneighbor queries
in spatial network databases. InSTDBM, pages 33–40, 2004.

[12] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query pro-
cessing for location services without compromising privacy. In VLDB ’06:
Proceedings of the 32nd international conference on Very large data bases,
pages 763–774. VLDB Endowment, 2006.

[13] RTreeportal.org. North east dataset, November 2007. Web-address:
http://www.rtreeportal.org/datasets/spatial/US/NE.zip.

[14] E. W. Weisstein, November 2007. http://mathworld.wolfram.com/Zipf-
Distribution.html.

[15] J. Xu, J. Du, X. Tang, and H. Hu. Privacy-preserving location-based queries
in mobile environments. Technical report, Hong Kong Baptist University,
2006.

[16] M. L. Yiu, C. S. Jensen, X. Huang, and H. Lu. Spacetwist: Managing the
trade-offs among location privacy, query performance, andquery accuracy
in mobile services. In24th IEEE International Conference on Data Engi-
neering (ICDE), April 2008 (to appear).

68

Acronyms

DAG Directed Acyclic Graph

PDA Personal Digital Assistants

LBS Location Based Service

SMC Secure Multi-Party Computational Geometry

GPS Global Positioning System

KNN K-Nearest Neighbours

NN Nearest Neighbours

IDE Integrated Development Environment

69

APPENDIX A

Test Distributions

The section contains the remaining Zipf distributes used totest the solutions.
These are depicted in Figure A.1, A.2 on the following page, A.3 on the next
page, A.4 on page 73, A.5 on page 73, A.6 on page 74, A.7 on page 74, and A.8
on page 75.

It is chosen to depict the entire queryspace in all figures, asthis enables them to be
compared. This might have the result that some of the distributions seem empty,
but this only means that the points are all close to(0,0).

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.2

Figure A.1: Zipf distribtion with skew factor 1.2

71

Chapter A. Test Distributions

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.3

Figure A.2: Zipf distribtion with skew factor 1.3

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.4

Figure A.3: Zipf distribtion with skew factor 1.4

72

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.5

Figure A.4: Zipf distribtion with skew factor 1.5

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.6

Figure A.5: Zipf distribtion with skew factor 1.6

73

Chapter A. Test Distributions

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.8

Figure A.6: Zipf distribtion with skew factor 1.8

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 1.9

Figure A.7: Zipf distribtion with skew factor 1.9

74

 0

 200000

 400000

 600000

 800000

 1e+006

 0 200000 400000 600000 800000 1e+006

y
co

or
di

na
te

x coordinate

Zipf distribution, skew factor = 2.0

Figure A.8: Zipf distribtion with skew factor 2.0

75

