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Abstract

Billboard clouds, originally presented by Décoret et al. [7], is a well-established
image-based technique used for extreme model simplification. It simplifies
polygonal models of arbitrary complexity to a greatly reduced set of textured
polygons that replace the original geometry. However, a recognized weakness
of existing billboard cloud algorithms is their lacking ability to simplify
animated models.

In this thesis we focus on the simplification of animated polygonal tree
models. Our goal is to improve the billboard cloud technique with our own
solutions for simplification of the animation of polygonal tree models; an ex-
tension we refer to as animated billboard clouds. Specifically, we combine
the billboard cloud simplification technique with our own developed animation
simplification techniques in order to create discrete animated billboard cloud
LOD models of polygonal tree models rigged with animation skeletons.

We present two solutions for simplification of animated tree models. The
solutions use our own implementation of a billboard cloud algorithm developed
by Lacewell et al. [17], specifically aimed at the simplification of the foliage of
static polygonal models. In order to evaluate the visual fidelity of an animated
billboard cloud model we define a set of error metrics that enable us to objec-
tively measure the quality of the simplification.

A prototype implementation of one of the solutions has been created as
part of our project. This implementation, along with our implementation of
the chosen billboard cloud algorithm, will be tested and evaluated.

For a more detailed summary we refer to Appendix D.
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Introduction

For centuries, trees have been the study of artists and scientists alike. The
remarkably simple underlying structure of trees coupled with the overwhelming
complexity of their visual appearance captures the imagination of great thinkers
such as Leonardo da Vinci.

Any forest is inhabited by a number of different tree species, each having
their own unique structure. A single tree may consist of thousands upon thou-
sands of branches and leaves. The seemingly complex structure of a fully grown
tree has emerged from simple internal processes, common to all members of
the same species. Thus, two trees of the same species will have the underlying
system in common, yet the trees will not have the placement of a single branch
or leaf in common. And although a single tree exhibits self-similarity, every
single leaf or twig is unique. Furthermore, each tree has been influenced by its
surroundings during its lifespan and has adapted its shape to the environment.

Computer science may be the latest scientific branch to concern itself with
tree modelling. The object of realistic real-time computer graphics applications
with outdoor scenes, most of them computer games, is to create a convincing
illusion of nature for the viewer without compromising rendering performance.
Trees are necessary for most of such scenes, and the addition of trees to a simple
landscape without much detail may prove invaluable for the illusion. However,
almost every single aspect of rendering trees has problems for a practical real-
time application.

First of all, the tree models need to be created. If the models should be
realistically modelled, they will consist of an incomparably large number of
polygons. Besides manually performing the modelling, algorithms that emulate
the internal processes of the growth of real trees can be employed. Examples of
such algorithms are L-systems, which are formal grammars used for recursively
generating self-similar tree models [23], and the Weber and Penn model [31]
based on geometrical observations.

To accurately capture the light phenomena in a forest, advanced illumi-
nation models may be employed. However, such techniques are currently in-
tractable for real-time graphics applications, so a local illumination model such
as Phong [2] is usually opted for. Local illumination models yield no shadows
by themselves, so a separate step involving a shadow rendering technique must
be used to render shadows. A commonly used shadow technique for outdoor
scenes is shadow maps [2].

The modelling and shading aspects aside, a defining visual property of a
tree is its movement in reaction to wind. The movement may be described by
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relatively simple physical models, yet the resulting movement of a tree seems
complex and chaotic.

Needless to say, a method for simplifying a tree model for rendering whilst
retaining visual fidelity to the original tree model is very valuable. Such
techniques already exist, yet they often ignore the animation of the tree model,
resulting in unrealistic static models in the final scene.

The focus of this thesis is simplification of animated tree models. We want to
improve an already existing method for simplification of static models with our
own solutions for the simplification of animated models. The method, which is
called billboard clouds, simplifies textured polygonal models of arbitrary com-
plexity to a greatly reduced set of textured polygons, that replace the original
geometry. It yields impressive simplification results of the foliage part of static
tree models, and our goal is to develop billboard cloud simplification solutions
specifically for animated foliage.
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Chapter 1

Tree Models in Real-Time
Computer Graphics

This chapter will provide the setting for our work and place it into the context
of real-time computer graphics. We will introduce an array of techniques used
for polygonal model simplification and animation as a pre-analysis necessary
for specifying our project goals in proper terms in the next chapter.

In Section 1.1 we define the type of models we will be using throughout the
report. Different model simplification techniques are discussed in Section 1.2,
both geometry- and image-based techniques, including billboard clouds, and
the notion of an LOD scheme is explained. In Section 1.3 we discuss how the
billboard cloud technique can be used to simplify the foliage part of polygonal
tree models, and briefly review related work. In this section we also discuss
the performance issues involved in using the billboard cloud technique. Model
animation is introduced in Section 1.4, with focus on skeletal animation. In this
regard a definition of a skeletal model is introduced. We conclude the chapter
by listing a number of observations of the movement of real-life trees. This
happens in Section 1.5.

1.1 Polygonal Tree Models

In this section we define the type of tree models we will be using throughout
the report.

We define a polygonal model as one consisting of a set of triangles with fixed
positions and orientations. In this report we limit our discussion of tree models
to polygonal models, which we refer to as polygonal tree models.

Figure 1.1 and Figures 1.2(a) on the facing page and 1.2(b) on the next
page are screenshots of trees in two state-of-the-art computer games, namely
Call of Duty 3 [1] and Gears of War [20]. The trees in these two example games
are polygonal tree models according to our definition. We can observe that a
tree model consists of a single closed mesh for the trunk and large branches,
while the foliage is built from few but large textured polygons, such that each
polygon represents several leaves.

10
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Figure 1.1: Screenshots of trees in Call of Duty 3 that conform to our definition of a
polygonal tree model.

(a) Screenshot from Gears of War. (b) Another screenshot from Gears of War.

Figure 1.2: Two screenshots of trees in Gears of War that confom to our definition of a
polygonal tree model.
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Several state-of-the-art games use SpeedTree [13] for modelling and ren-
dering tree models, e.g. aforementioned Call of Duty 3 and The Elder Scrolls
IV: Oblivion [26]. Figure 1.3 is a screenshot of trees in the latter. The trees in
this example are not polygonal tree models, as the textured polygons used for
chunks of leaves are rotated to face the observer at all times.

Figure 1.3: Screenshot of trees in Oblivion. These trees do not conform to our definition
of a polygonal tree model.

A number of closely positioned leaves and small branches can be modelled
by a single textured polygon, which is normally applied to reduce rendering
complexity. This can be observed in all the above screenshots.

The fact that our definition of polygonal tree models excludes the mod-
elling techniques used to create the trees in some popular games is a limitation.
However, the definition is reasonable, first of all because polygonal tree models
are in fact used in different applications (as exemplified). Second, since we
focus on the simplification of animated tree models, we need to know about
the actual positions of the polygons in the model in order to be able to perform
simplification. If view-aligned billboards (or the like) are used, this knowledge
cannot be aquired.

In the remaining chapters of this report we will assume that the trunk and
large branches of a tree are modelled as a single closed mesh, while the individ-
ual smaller branches and leaves are modelled as isolated polygons. The mesh
representing the trunk and large branches will be referred to as the trunk of
the tree model, and the smaller branches and leaves will be referred to as the
foliage.

12
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1.2 Model Simplification

Starting from a high-polygonal model, several methods exist for retrieving suit-
able simplified models. In pursuit of our project goals, that we have hinted
at in the report introduction, we will investigate techniques used for model
simplification in this section. In the following we discuss geometry and image-
based simplification techniques, as well as the notion of an LOD scheme.

1.2.1 Levels of Detail

Using levels of detail (LODs) for displaying an object is introduced in order
to obtain faster rendering without compromising visual quality. We define an
LOD scheme to be a technique that reduces the rendering complexity of an
object at run-time from certain simplification criteria. The observation is that,
in perspective projections, when a model is positioned far from the observer,
its smaller details are no longer visible at a specific screen resolution. Conse-
quently, a carefully simplified model can replace the original one, and equal or
similar visual quality is obtained with less rendering complexity. Other metrics
than the distance to the observer can be used to determine when a simplified
model should be used, e.g. whether the transformed model resides in the center
region of the screen, or some estimate of available rendering resources.

The rendering of a detailed polygonal model positioned far from the ob-
server can lead to aliasing artifacts, as small polygons transformed to screen
space might cover less than a single pixel [7]. LODs can assist in reducing this
problem.

Discrete LODs

We define a discrete LOD scheme as a series of models for displaying an object,
each less detailed than the previous, and rules defining when to render which
model. The models in such a scheme are all constructed before the actual ren-
dering is started. In practice, even though a change from one LOD to another
should not lower visual quality, a slight noticeable change is almost impossible
to avoid. To conceal this, a blending operation between models of different
LODs is often applied.

Blending from one LOD to another can be performed by drawing the new
LOD model on top of the old model using alpha transparency, and gradually
make the new model more visible, while making the old model less visible, as
the observer approaches the object, and vice versa if the observer retreats from
the object. Using such a blending scheme adds to the rendering complexity,
since two objects are effectively rendered instead of one when blending. Fur-
thermore, the use of semi-transparency requires sorted rendering of the semi-
transparent objects, which is expensive if the number of such objects is large
[32].

To avoid using semi-transparency, a dissolve effect can be used [32], which
is used for blending between different LODs in SpeedTree. The idea is to modu-
late the alpha channel of an image with a noise texture, and only render pixels
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with alpha values larger than an alpha test value. By sliding the alpha test value
from 0 to 1, the object will appear to be dissolving.

Neither of the blending methods are perfect and should be used with care,
as blending tends to result in graphical artifacts.

Continuous LODs

Discrete LODs have several drawbacks, e.g. the additional memory consumed
by storing the simplified versions of a model, and the need for blending between
different LODs. A continuous LOD scheme can be opted for instead. We define
a continuous LOD scheme for an object to be a data-structure from which a
model representing the object at a desired LOD can be constructed.

An example of a continuous LOD scheme is the N-patches scheme, details on
which can be found in [2]. Given a polygonal model constructed as a mesh
of triangles with normals specified for each vertex, the N-patches scheme tes-
sellates the surface that each triangle approximates to an arbitrary number of
triangles. In effect, this improves the visual quality of the model, as the silhou-
ette becomes smoother and, if vertex colour values are interpolated across each
triangle surface, shading will be more precise. The N-patches scheme has been
implemented in hardware, and can be used in real-time applications.

1.2.2 Geometry-based Simplification

Geometry-based simplification, also referred to as mesh simplification, is the pro-
cess of reducing the number of polygons in a polygonal model (a mesh) while
still retaining the overall shape and structure of the model. Many different
automated techniques to perform geometry-based simplification exist, and a
few of these are briefly mentioned here. The descriptions are based on [28].

Face Merging : Search the polygonal model for coplanar or almost coplanar
adjacent faces. Replace such with a larger single face and thereby reduce
the polygonal complexity of the model.

Vertex Clustering : Group the vertices of the model into clusters. For each
cluster, find a single vertex that is representative for the whole group.

Edge Collapsing : Remove an edge by collapsing its vertices into one. In
effect, this removes the two polygons containing the edge, thus reducing
polygonal complexity.

When removing polygons from a textured model, problems arise with the
texturing. The vertices of a textured model are mapped to texture coordinates,
and when such vertices are removed, the texturing of the model might be dis-
torted.

Different geometry-based methods exist for simplifying animated
closed meshes. Decoro and Rusinkiewicz present a method for automatic
simplification of articulated meshes in [8].
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1.2.3 Image-based Simplification

The term image-based simplification refers to techniques that simplify a polygo-
nal model by replacing geometry with images obtained by rendering the geom-
etry. An image in this context is usually a 2D texture. This will normally result
in rendering speed becoming proportional to the amount of pixels rendered,
and not the number of polygons transformed. Image-based techniques do not
suffer from texture distortion.

Billboards

A polygonal model can be simplified by a billboard, which is an image-based
simplification. A billboard is simply a rectangle with a texture and a trans-
parency map. We distinguish between static and view-aligned billboards. A
static billboard has a fixed orientation in world space, whereas a view-aligned
billboard is always oriented towards the view point. View-aligning the billboard
helps hiding its two-dimensional nature, if the camera is allowed to rotate
around the object it simplifies, but will make most otherwise static objects
appear as if they are rotating.

A billboard representation of a polygonal model is simply retrieved by ren-
dering the model and storing the result in a texture. As such, billboard simplifi-
cation can be considered a pre-rendering of the model, i.e. we do the rendering
in advance and store the result in a texture to be used at runtime. Naturally
the billboard is only visually faithful to the original polygonal model, when the
viewing direction is similar to the direction used when rendering the object
onto the billboard.

Using a single billboard to simplify a model is a very simple approach, and
the two dimensional nature of the billboard yields no parallax effect within the
object. Nonetheless, the method is still used in state-of-the-art LOD schemes
(e.g. in SpeedTree), typically as the lowest level of detail to be displayed when
the object is very far from the observer.

Other image-based simplification techniques exist, e.g. impostors, which are
very similar to billboards, but attempt to remedy the problem that a billboard
only provides a faithful representation of the object from a certain viewing
direction. An impostor is a view-aligned billboard whose texture is dynamically
updated during run-time depending on view direction.

Billboard Clouds

A billboard cloud is a set of static billboards used to simplify a polygonal model,
as opposed to using just a single static billboard. The concept and an algorithm
for automated model simplification is presented in 2002 by Décoret et al. in
[7].

The observation is that if two polygons lie in the same plane, they can be
replaced by a larger polygon (a billboard), onto which they are both rendered.
This should not be confused with face merging, as the polygons do not even
have to be adjacent. If a model contains lots of coplanar polygons, the result
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will be a visually identical model consisting of fewer polygons. Unfortunately,
polygonal most models, including polygonal tree models, do not contain a sig-
nificant amount of coplanar polygons, if any.

The concept behind billboard clouds is to move sets of almost coplanar
polygons such that they become coplanar and can be simplified by a billboard.
In general, the shorter distance the polygons are moved to perform the simpli-
fication, the better the billboard cloud resembles the original geometry. Moving
polygons from their original positions introduces visual artifacts such as cracks
between adjacent surfaces. As opposed to using a single billboard to simplify a
model, a billboard cloud can provide a faithful representation of the model from
all angles and preserve parallax. More billboards generally yield higher fidelity
to the polygonal model. Figure 1.4 illustrates a car model consisting of 12,000
polygons and the billboard cloud simplification consisting of 46 billboards. Ar-
tifacts can be spotted, especially around the tires, but the simplication is a good
approximation of the original model, considering the reduction in polygonal
complexity.

Figure 1.4: Billboard cloud simplification of a car model. Left: the original model
consisting of 12,000 polygons. Right: A billboard cloud simplification of the car consisting
of 46 billboards. Bottom: The contours of the billboards simplifying the original model.
The illustration is from [28].

The billboard cloud algorithm by Décoret attempts to find and choose as few

16



Chapter 1. Tree Models in Real-Time Computer Graphics

billboards as possible, such that all polygons can be simplified without moving
them far away from their original positions. As one could expect, finding such
a set of billboards is a non-trivial task. In Section 3.2 we will discuss a selection
of billboard cloud algorithms, including the original algorithm by Décoret et al.

1.2.4 Simplification of Polygonal Tree Models

Assume a polygonal tree model with a closed mesh representing the trunk and a
set of unconnected triangles representing the foliage. When considering simpli-
fication of such a model, it can be beneficial to consider the trunk as one entity
and the foliage as another. The mesh representing the trunk is very suitable
for geometry-based simplification, whereas the foliage is not. This is argued by
Remolar et al. in [24], where a new geometry-based simplification technique
specific for foliage is introduced. The problem with traditional geometry-based
simplification techniques is that they tend to simplify foliage by removing leaves
from the tree, resulting in a tree model with sparser foliage. The basic idea of
the technique proposed for foliage is to replace two closely positioned leaves
with a single larger polygon representing both, such that the total leaf area
is maintained. It is questionable how this technique handles the case where
several leaves are modelled by a single textured polygon.

Image-based simplification handles foliage well and has been used manually
by artists to reduce the number of polygons when modelling foliage. This can
be observed in the example games in Section 1.1 on page 10. Our research in
billboard cloud simplification has convinced us that automated simplification
using billboard clouds is a very suitable approach for creating the LOD versions
of the foliage of a polygonal tree model, as described in [28] and [10]. This is
further discussed in Section 1.3.

As proposed by Umlauf in [28], combining a geometry-based simplification
for the trunk and an image-based simplification for the foliage seems to be a
good solution.

1.3 Billboard Cloud Simplification of Tree Models

Using billboard cloud simplification, complex foliage can be simplified to a very
small number of billboards, while still retaining parallax. The typical problem
of billboard clouds introducing lack of visual connectivity is not an issue for
foliage, as foliage appears unconnected in the first place.

In the sections to follow we will discuss how the billboard cloud technique
previously has been applied to simplify foliage of trees as well as the perfor-
mance gain involved in using this technique. First we discuss LOD schemes for
polygonal tree models using billboard clouds.

1.3.1 Level of Detail Scheme Using Billboard Clouds

Recall that we differentiate between discrete and continuous LOD schemes. We
suspect the billboard cloud concept unsuitable for continuous LOD schemes as
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construction of billboard clouds is a complex process suitable only for prepro-
cessing.

A discrete LOD scheme has been applied for tree models in SpeedTree,
which uses the dissolve effect for blending between different LOD versions.
Lacewell et al. propose an alternative blending scheme specifically for billboard
clouds in [17], along with an algorithm for recursively producing billboard
clouds of different levels of detail. The idea is to simplify the original model to
a billboard cloud to produce one level of detail, simplify this billboard cloud to
produce the next level of detail, and so forth. When the LODs of a model have
been constructed using this algorithm, a linear interpolation of vertex positions
can be applied to blend from one LOD to another, such that the vertices of
a triangle smoothly move into their positions on the billboard simplifying the
triangle. This avoids the visual artifacts related to usual blending techniques,
but could potentially introduce new visual artifacts. The blending technique
can only be applied when the billboard clouds in the LOD scheme have been
constructed recursively. An immediate drawback of recursively producing a
billboard LOD from another billboard LOD is that errors accumulate through
the LODs, as a triangle might get farther away from its original position in each
LOD.

In a discrete LOD scheme simplified models are stored in addition to the
original model, so the additional memory consumption can be a problem. In-
stead of storing separate LOD versions of a tree Weber and Penn [31] propose
to store one geometric description of each tree and then re-interpret the tree
geometry when increasing range to it. In this manner stem meshes could be
interpreted and rendered as lines and leaves as points. Memory consumption
is reduced, because only a single representation of the tree model is stored.
We will discuss the memory performance involved in using the billboard cloud
technique in a discrete LOD scheme in Section 1.3.3.

1.3.2 Related Work

Application of billboard cloud simplification to foliage is demonstrated by
Lacewell et al. [17], Fuhrmann et al. [10], and the related master’s thesis
by Umlauf [28]. Figure 1.5 on the next page illustrates two examples of
polygonal tree models simplified to a small number of large billboards. Note
that both trunk and foliage are simplified in these examples.

How well a billboard cloud can simplify a foliage model depends on the
amount of nearly coplanar leaves in the foliage, which in turn depends on
the tree species. Consequently, some tree species might not be very suitable
for billboard cloud simplification. Despite of this, tree models of the Aspen,
Chestnut, Oak, Palm, and Spruce species have all been simplified with success
in [28].

The real-time results in [28] and [10] using billboard cloud simplification
of tree models are very promising. Scenes with more than 100,000 trees are
rendered with impressive visual quality. A polygonal tree model and a billboard
cloud algorithm is used to automatically generate the different LOD versions of
the tree, the complexity of which ranges from 6 to 22 billboards. These are used
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Figure 1.5: (Left) An Aspen tree model simplified to 12 billboards. (Right) A Chestnut
tree model simplified to 16 billboards. The original polygonal models both consist of more
than 100,000 polygons. The illustration is from [28].

in a discrete LOD scheme, and alpha blending is performed when changing LOD
model [28].

Figure 1.6 and Figure 1.7 on the next page are screenshots from Umlauf’s
implementation. They illustrate the capability of rendering large scale forests.
The frame-rate is approximately 10 fps and the scene contains three different
tree models.

Figure 1.6: A screenshot of a real-time rendered forest from [28].

The trees in Umlauf’s implementation do resemble real trees to some de-
gree, and a large amount of trees is being rendered to represent a dense forest
realistically. Furthermore, the trees retain visual fidelity when the camera ro-
tates around them. However, the scene is limited since only three different tree
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Figure 1.7: Another screenshot of a real-time rendered forest from [28].

models are used to render the entire forest, one model for each tree species.
This reduces the amount of memory required for billboard textures and in-
creases fps performance, since texture switching is reduced. Texture switches
are expensive, even if all the textures of the scene reside in memory, because
performance of texture caching is reduced.

As can be observed in the screenshots, the trees lose visual quality when
observed closely, as the unrealistic amount of coplanar geometry becomes ap-
parent, and likewise does the limited texture resolution. The reason is that the
most detailed version of a tree is a billboard cloud containing only 22 billboards,
not the original polygonal model which the billboards simplify. Among other
limitations (e.g. dynamic shadows cast from trees, and of realistic lighting of
trees), is the lack of animation.

Umlauf’s focus in [28] is to ”render huge forests at interactive rates”, hence
the aforementioned limitations. As stated in our report introduction, we, how-
ever, focus on the simplification of animated polygonal tree models. As men-
tioned, our research in the billboard cloud technique has shown us that there
is a clear potential in this technique for simplifying polygonal tree models,
especially the foliage part.

The fact that Umlauf’s implementation of the billboard cloud technique
does not cope with animation exists for a reason. As it is, existing billboard
cloud algorithms cannot simplify animated models. It is thus very interesting
to explore the possibilities in strengthening the billboard cloud technique to
include animated polygonal models, particularly animated polygonal tree mod-
els. Model animation is the topic of Section 1.4.

We have conducted a series of experiments in order to analyze the per-
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formance of billboard cloud simplification. In Section 1.3.3 we summarize
these results, which we have categorized in fps performance and memory perfor-
mance.

1.3.3 Performance Analysis of Billboard Cloud Simplification

Performance of a rendering scheme has two basic aspects, frames per second
(fps) performance, i.e. rendering speed, and memory performance. In this sec-
tion the motivation regarding performance for using billboard clouds is dis-
cussed, and rendering speed as well as memory usage is analyzed. Finally, we
evaluate the use of billboard clouds to render a large amount of different tree
models. First, an overview of the rendering pipeline is provided.

Rendering Pipeline Bottleneck

State-of-the-art real-time rendering is based on a pipelined architecture that is
divided into three conceptual stages: application, geometry, and rasterizer [2].

Rendering billboard clouds basically only involves rendering textured
polygons, which can be performed exclusively by the geometry and rasterizer
stages. The application stage is therefore ignored in the following discussion.

The geometry stage handles transforming vertices and normals of a polygo-
nal model from its local model vector space to screen coordinates using various
intermediate transformations. Any models that are outside the visible view
volume are culled, i.e. not considered further during the rendering. Models
whose appearances are to be affected by light sources are shaded. A shading
technique often used in real-time computer graphics is Gouraud shading, in
which a colour is calculated using some local illumination model for each ver-
tex of a polygon and subsequently, during the rasterization stage, interpolated
across the polygon surface. The time spent in the geometry stage for a given
model is roughly linearly dependent on the number of polygons in the model.

The rasterization stage line-wise interpolates vertex screen coordinates to
approximate polygons by a set of pixels. For each pixel, a colour is calculated
by interpolating vertex colours. Each vertex may have an associated texture
coordinate pair, which makes it possible for the rasterizer to look up a pixel in a
texture. A depth buffer can be employed to perform hidden surface removal, in
which case the depth (z) value of a pixel is calculated by interpolating the depth
values of the vertices of the polygon being rasterized. The calculated colour and
depth values are only stored in the colour and depth buffers, if the depth value
is less than the depth value already present in the associated entry in the depth
buffer. The time spent on the rasterization stage for a given polygon is roughly
linearly dependent on the number of pixels rendered on the screen to draw the
polygon.

The rendering architecture is a pipeline, and thus each polygon must un-
dergo the three stages in turn. At a given instant in a rendering application,
one of these stages is the slowest, which in the simplest case means that the
other stages must wait for it to complete. The slowest stage at a given time is
called the bottleneck of the pipeline.
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Figure 1.8: On the left, a polygonal Spruce tree model with 20,547 foliage triangles and
approximately 2000 trunk and branch triangles. On the right, a billboard cloud model of
the tree with 13 billboards [10].

Example Data

To evaluate the memory requirements of the billboard cloud technique we have
evaluated a specific example. We have used a polygonal Spruce tree model and
a billboard cloud simplification, as shown in Figure 1.8.

The models are arranged in a distance-based discrete LOD scheme with
three levels:

1. Polygonal tree model consisting of 20,547 foliage triangles and approxi-
mately 2000 trunk and branch triangles.

2. Billboard cloud representation of the tree with 13 billboards. The bill-
board cloud representation of the tree model is used by the LOD scheme,
when the tree takes up 1

32 of the screen. Each billboard has an associated
texture with a resolution reasonable on this distance.

3. Single billboard representation of the tree. The single billboard represen-
tation is used by the LOD scheme at the distance where the tree covers 64
× 64 px on the screen.

Fps Performance

Using billboard clouds to simplify complex polygonal models is motivated by
the desire to gain performance by replacing many polygons with fewer larger
polygons. To understand why performance can be gained by doing so we inves-
tigate fps performance of billboard clouds and the impact on the performance
when using textures on the billboards.

Consider the Spruce polygonal tree model consisting of more than 20,000
polygons shown in Figure 1.8. At some depth, d, not far from the observer, the
fps performance of rendering this model will be bounded by the number of poly-
gons transformed and not the number of pixels rendered, i.e. the bottleneck is
located in the geometry stage. For all depths larger than d the fps performance
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of rendering the model will remain constant, as a constant number of polygons
has to be transformed. Consequently, the model is not faster to render, when it
covers a smaller area on the screen.

Consider now the billboard cloud simplifying the Spruce tree consisting of
13 billboards (hence 26 polygons). The number of polygons in the billboard
cloud is very small, so it is reasonable to assume that the fps performance of
rendering the billboard cloud at depth d is bounded by the number of pixels
rendered, i.e. the bottleneck is now located in the rasterizer stage.

At the depth d, the fps performance of the billboard cloud might be better
or worse than the fps performance of rendering the original model, as the bill-
board cloud is not guaranteed to provide faster rendering close to the observer.
But the billboard cloud does have a nice performance property that the original
model is missing, namely the fact that performance is gained, if the model is
moved farther away from the observer. The reason is that the fps performance
of the billboard cloud is bounded by the amount of pixels rendered, and the
fact that a model farther away covers less pixels on the screen. If the billboard
cloud covers very few pixels on the screen, the performance of rendering it will
be bounded by the number of polygons it contains, as close to no pixels are
rendered.

The rendering of the billboard cloud is thus trivial (the performance of
transforming a very little amount of polygons), if the billboard cloud is moved
far away from the observer. Consequently, there must be some depth at which
the billboard cloud has better performance than the original model, and the
improvement will be more significant for all depths larger than this one.

The conclusion is that replacing a polygonal model with a billboard cloud
simplification does gain fps performance for all depths larger than the depth
implying an equal amount of rendering time for the two. For models with a
large amount of polygons (10,000+), we guesstimate the distance at which a
billboard cloud with less than 50 billboards has better performance to be very
close to the observer. Using a billboard cloud simplification in a distance-based
discrete LOD scheme for this reason makes lots of sense, and we furthermore
deem that very few billboard clouds are needed in the LOD scheme, as a bill-
board cloud automatically becomes faster to render as distance to the observer
increases.

An important performance note related to the rendering of billboard clouds,
is the rendering state switches introduced due to each billboard having a unique
texture associated. As such, each billboard imply a state switch in the rendering
pipeline, and consequently a poor fps performance. For this reason the textures
are packed into a single large texture, which is kept in memory during the
rendering of all billboards of a billboard cloud [28].

Memory Performance

When the rendering pipeline is implemented in hardware, all vertex and texture
data must reside in the memory on the graphics card. As the memory on the
graphics card is expensive and therefore limited, memory performance of a
simplification scheme becomes a concern.
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We have investigated the memory performance of the input model and LOD
scheme discussed in Section 1.3.3 on page 22. To summarize the results, the
polygonal tree model uses approximately 1.5 MB, and the billboard cloud uses
approximately 2.0 MB. It is not surprising that an image-based representation
of a polygonal model may take up more memory than the original model, as
a single polygon easily can represent a large number of pixels. The single
billboard LOD uses only approximately 16 kB, which is insignificant compared
to the other two LODs.

Assuming that our example tree and LOD scheme is used in a forest scene,
and that instances of the example tree are scattered in the scene, then all three
LOD versions of the tree may be used simultaneously during the rendering.
In this case the total memory requirement of rendering these identical trees is
approximately 3.5 MB.

Normal maps may be used for dynamic relighting of billboards. If normal
maps are used, additional memory is required. Our analysis has shown that
adding normal maps to the tree model of the example nearly doubles the mem-
ory requirements. If lack of memory is a more serious concern than visual
fidelity, the usage of normal maps should be omitted.

Forest Variation and Memory Performance

If a large number of different tree models are used to create a convincing illu-
sion of a forest, the billboard cloud simplification scheme creates a different set
of billboards for each tree model.

Billboard clouds simplifying different tree models normally do not share
textures, and as memory is limited, there is a trade-off between the amount of
trees that constitute the forest and the variation in the billboard cloud models.
Alternatively, simpler tree models and billboard clouds with fewer billboards
could reduce memory usage, and hence improve variation, at the cost of com-
promising the polygonal complexity.

1.4 Model Animation

As stated in Section 1.3 existing billboard cloud algorithms cannot simplify
animated models. Since the billboard cloud technique seems very promising to
simplify the foliage part of polygonal tree models, we will investigate into the
possibilities of improving the technique to include simplification of animated
models.

In the following sections we discuss techniques that are used for animating
models, including polygonal tree models. We will comment on different types
of animation and explain how a model can be animated with a skeleton.

1.4.1 Animation Types

Different types of animation exist, all of which can be divided into two cat-
egories, namely key frame animation and procedural animation. A key frame
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animation is pre-defined, while a procedural animation is automatically gener-
ated in real-time.

Key Frame Animation

In key frame animation an animation is stored as a number of key frame poses
of a mesh. Interpolating between these poses can yield vertex positions of the
mesh at any given time. Since linear interpolation can result in non-continuous
motion, splines can be used instead.

A key frame animation may be looped in order to create an animation cycle.
However, to make the animation appear naturally continuous when looping,
the first and the last key frame poses should be very much alike, such that the
last key frame can be succeeded by the first key frame without introducing an
obvious transition.

Procedural Animation

Using procedural animation an animation is generated in real-time from an
algorithm and a set of rules dictating the motion, e.g. the laws of physics.

An example of a way to apply procedural animation to polygonal tree mod-
els is to specify wind as vector fields that are updated with time. The wind
force applied to the leaves is propagated from the leaves toward the root. De-
pending on the wind force, the area of the leaves, and the rigidity of branches,
the polygonal tree model will stand oscillating with different frequencies and
amplitudes.

Such calculations can be expensive. Therefore, a skeleton can be
constructed for the animation of the tree model (this is further discussed in
Section 1.4.2), and simplification of this skeleton can thus reduce the cost
in performance of performing these simulation calculations. This has been
done by Beaudoin and Keyser in [5]. In this article the focus is simplification
of simulation levels of detail, or SLODs, which are articulated structures
(skeletons) that dictates how plants and trees are set into motion, when
wind is applied in real-time. The higher detailed SLOD, the more precise the
simulation of motion (i.e. the animation).

1.4.2 Skeletal Animation

There are basically two different techniques of animation: vertex animation
and skeletal animation. In vertex animation, if pre-defined animation such as
key frame animation is used, the vertex positions of the object are stored in
each frame, and interpolating between them yields the animation. In skeletal
animation a bone tree structure, referred to as a skeletal model, is stored for a
mesh. If key frame animation is used, an animation of the mesh is then stored
as a number of key frame skeleton poses. If procedural animation is used, an
animation could be a simulation as described in Section 1.4.1. Regardless of
animation type, the mesh is thus animated as dictated by its skeleton.
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Each vertex of the mesh is associated with one or several bones in the skele-
tal model, with a weight that represents how much influence a bone has on a
vertex.

Skeletal animation is an efficient animation technique. Instead of storing a
mesh in different poses, only a number of skeleton poses are stored, as men-
tioned. Furthermore, it separates the information about animation from the
mesh [3].

Polygonal tree models are well suited to be animated using skeletal anima-
tion, because these models are articulated meshes, structurally fit for this kind
of animation. In the following we define the notion of what a skeletal model is
in our report. It should be noted that our definition of a skeletal model is not
aimed at an efficient implementation of skeletal animation. Its purpose is to
provide a well-defined model that we can refer to in our report. Our model is
partly based on [2] and [11].

Skeletal Model

Intuitively, a skeletal model is a set of vertices attached to an animation skele-
ton. The process of associating vertices to the animation skeleton is called
rigging.

Formally, a skeletal model is a rooted tree, i.e. a connected acyclic graph
with a distinct root node. Each edge has geometric information associated
with it, defining its length as well as orientation during the animation. Nodes
represent rotation points. Furthermore, a set of vertices that define the visual
shape of the model is associated with each edge. The nodes of a skeletal model
are called joints, and edges are called bones. A bone has thus two joints. The
joint closest to the root is called the start joint and the joint farthest from the
root is called the end joint.

When the skeleton is associated with the geometry, the bones in the skeleton
are in a certain pose, which is called the bind pose. The rotation Rbind of each
bone in this pose is stored, which we refer to as the bind pose rotation. An
illustration of a skeleton in its bind pose is shown in Figure 1.9(a) on the facing
page (in two dimensions for easier comprehension). The reason for storing
these rotations is that they are used when transforming vertices from world
space to bone space.

During an animation, bones are rotated in space and the vertices associ-
ated with a bone are rotated with the bone, hence yielding a new pose of
the skeleton. The rotation animation of the bone is specified as a function,
R(t), that yields a rotation around its start joint to time t relatively to the
bind pose rotation. Hence, R′(t) that denotes the total rotation is given by:
R′(t) = R(t)Rbind. Figure 1.9(b) on the next page illustrates a skeleton being
rotated from its bind pose. If key frame animation is used, spherical linear
interpolation can be used to interpolate between rotations.

At any given time during the animation, a local coordinate system is defined
at each joint in the skeleton, and bones contained in the joint specify rotation
as rotation of this coordinate system. The bones contained in the root joint
always specify rotation as rotation of the world coordinate system. A bone
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(a) An illustration of a skeleton in its bind pose. Bone b1

is rotated with Rbind1 around joint j0 and b2 with Rbind2

around j1 to yield the skeleton pose.

(b) A skeleton being rotated from its bind pose. R′(t)
for bone b1, denoted R′

1(t), is given by: R′
1(t) =

R1(t)Rbind1. Similarly, R′
2(t) is given by: R′

2(t) =
R2(t)Rbind2.

Figure 1.9: Illustrations of a skeleton in its bind pose and of its rotation animation.
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contained in any other joint specifies rotation at a given time as rotation of
a local coordinate system given by rotating the world coordinate system with
the rotations of its parent bones at that time. A bone specifies thus a rotation
relatively to its parent bone. How this works is illustrated in Figure 1.10.

Furthermore, at any given time during the animation the position of the
end joint of a bone is determined by the length of the bone multiplied with the
normalized x-axis of the local coordinate system of the start joint of the bone,
followed by the rotation animation of the bone yielded by R′(t). A translation
vector T0 is given, which specifies where the root joint is positioned. For a bone
bi with i − 1 ancestors, where i > 0, the translation vector Ti yielding the end
joint of bi is given by

Ti = R′
i(t)R′

i−1(t) · · ·R′
1(t)x̂ · lengthi, (1.1)

where x̂ denotes the normalized x-axis of the world coordinate system,
lengthi denotes the length of bi, and R′

i(t) yields the rotation of bi at time
t.
This is illustrated in Figure 1.11.

Figure 1.10: An example of how the local coordinate systems are rotated at the root joint
j0 and another joint, j1. Since the start joint of b1 is the root joint, j0, its rotation R′

1(t) is
specified as rotation of the world coordinate system. This yields the local coordinate system
with axes x0 and y0 in the start joint of b2, j1. b2’s rotation, R′

2(t), is a rotation of this
local coordinate system (or, in other words, R′

2(t) is a rotation of the world coordinate
system rotated by R′

1(t)).

A skeletal model is a set of joints and a set of bones, such that the joints and
bones represent a rooted tree. The skeletal model contains a reference to the
root joint.

Joint : A joint is simply a container for a number of bones. These bones are
referred as the children of the joint, and are said to be siblings in the
skeleton.

• children: A non-empty set of bones.
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Figure 1.11: How to determine the position of the end joint of a bone in a skeleton. The
end joint of b1, j1, is determined by scaling the x-axis of the world coordinate system with
length1 and rotating this vector with R′

1(t), yielding T1. For the end joint of b2, j2, the
normalized x-axis of the world coordinate system is scaled with the length2, and this vector
is rotated by R′

2(t) ·R′
1(t), hence yielding T2.

Bone : A bone is represented by the following elements:

• end joint: A bone can specify a joint positioned at the end of it. This
bone is said to be the parent of any bones contained in the children
set of this end joint. A bone specifying an end joint is called a non-
terminal bone, while a bone that does not specify an end joint is
called a terminal bone.

• length: The length of this bone measured in world space units. A
length is not defined for terminal bones.

• Rbind : The bind pose rotation of this bone.

• R(t): The rotation animation dictated by this bone, specified rela-
tively to Rbind .

• vertices: The set of vertices attached to this bone.

In Appendix B), we show how this skeletal model can be used to animate a
mesh; more precisely, how to determine the position of each vertex during an
animation.

1.5 Observations of Tree Movement

Having discussed model animation and, in particular, skeletal animation, we
conclude this chapter by listing a number of observations concerning movement
of real-life trees, which we will refer to throughout the remaining chapters. The
observations should be fairly general for most tree sorts, but some may only
apply to a subset of tree sorts.

29



Chapter 1. Tree Models in Real-Time Computer Graphics

• The branch structure of a tree can be adequately described by a connected
acyclic graph, each edge of which corresponds to a branch or a part of
the trunk, and each node of which corresponds to either a joint between
branches, or a leaf. It seems reasonable that such a graph is called ’a tree’
in the field of graph theory.

• Wind generates the movement in trees. The wind hits the foliage, and
the force enacted upon the foliage is transmitted down through the
branch structure of the tree from the leaves towards the trunk, affecting
all branches on the way.

• Branches are flexible, and the girth and length of a branch largely de-
termine its rigidity, and thus the amount of force that must be applied
make it move a certain distance from its rest point. When a constant
wind force is applied to the foliage and thus to a branch that the foliage is
connected to, the branch will start to move in a cyclic motion in periods
of time. Furthermore, the speed and distance of the movement is largely
determined by the rigidity of the branch as well as by the strength of the
wind.

• When force is enacted upon a branch, it bends smoothly in the entire
length of the branch. However, a reasonable simplified model of a branch
may view the branch as a rigid body that may rotate around the point on
the trunk or another branch to which the branch is attached.

• The internal structure of a branch makes it resistant against twisting ro-
tations around the axis of the branch itself. The movement of a branch is
largely restricted to upwards, downwards and sideways bending around
the point to which the branch is attached.

• As gusts of wind in a forest may have varying directions, branches are
often affected by wind both from the sides and from the top and bottom.
A cyclic movement of a branch will often be elliptical.

• The movement of a single branch is a product of a sequence of bending
movements of the parent branches in the branch structure of the tree. A
reasonable model of such a movement is a series of rotations of rigid body
representations of branches around branch joints.

Furthermore, we list a few observations concerning the appearance of trees:

• When viewed from the ground the foliage of a tree hides the underlying
branch structure, and leaves may appear to be placed randomly around
the trunk of the tree.

• As the purpose of leaves is to receive energy in the form of light emitted
from the Sun, leaves that are in shade of other leaves are defoliated by
the tree. In general, this process will result in the foliage being located
primarily in the outermost region of the tree, i.e. on the branches furthest
from the trunk.
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Summary

In this chapter we have introduced and discussed an array of techniques used
for simplifying polygonal models and animating them. Along the way we have
introduced definitions that we will be using in our work. The purpose of doing
this has been to place our work in the context of real-time computer graphics,
to identify, discuss, and use some of the well-established approaches to some
of the problems we will be addressing in our project, and to introduce the
terminology necessary for us to specify our problem definition in precise terms
in the next chapter.

Our definition of polygonal tree models has established the type of models
we will be working on in our project. As mentioned, the definition delimits
from some types of tree models used in different applications, e.g. in some
computer games, but, as argued, the limitation is reasonable in regards to our
work of simplifying animated tree models.

Different model simplification techniques have been discussed, under the
categories of geometry- and image-based simplification techniques, and the no-
tion of an LOD scheme has been presented. The billboard cloud technique was
identified as particularly interesting for simplifying the foliage part of polygonal
tree models, which was further investigated and justified in the related work
by Umlauf (among others) and in our performance analysis of billboard cloud
simplification.

The fact that existing billboard cloud algorithms cannot simplify animated
polygonal models has encouraged us to explore the possibilities in strength-
ening the billboard cloud technique to also take animation into account. An
introduction to model animation has thus been given. We have presented the
key frame and procedural animation types, as well as skeletal animation as an
animation technique, and a definition of what a skeletal model is in this project,
which will be used throughout the report.

In the final section we listed a number of observations concerning move-
ment of real-life trees. These observations will also be referred to throughout
the report.
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Chapter 2

Problem Specification

In the last chapter we identified the billboard cloud technique as being partic-
ularly applicable to the simplification of the foliage of polygonal tree models.
However, we also concluded that the technique cannot be used to simplify ani-
mated polygonal models. This is a major limitation, since polygonal tree models
in realistic outdoor scenes are animated. If the advantages of this image-based
simplification technique could be retained while incorporating the possibility of
simplifying animated foliage, the technique would become even more useful.

In this chapter we state our problem goals, based on the research from the
last chapter. We begin by defining the input models we will be using and the
output models we will be creating.

2.1 Animated Polygonal Tree Models

Having discussed the notions of key frame animation and skeletal animation,
as well as defined a skeletal model, we will now expand the definition of a
polygonal tree model from Section 1.1 on page 10 to include animation.

Cyclically Animated Polygonal Tree Model: A cyclically animated polygonal
tree model is a polygonal tree model that is animated by key frame
animation, using some animation technique (e.g. vertex animation or
skeletal animation). Furthermore, the animation is suitable for being
looped.

As with polygonal tree models we distinguish between the foliage part and
the trunk part of a cyclically animated polygonal tree model. Throughout the
remaining chapters, when we refer to the foliage part of an cyclically animated
polygonal tree model, we specifically state it.

Cyclically Animated Skeletal Tree Model (CASTM): A CASTM is a cyclically
animated polygonal tree model rigged with and animated by a skeleton
as defined in Section 1.4.2 on page 26.

The vertices of a triangle in the foliage part of a CASTM are not allowed
to be associated with more than a single bone (i.e. each vertex of the
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triangle is associated with one and the same bone), while the vertices of
a triangle in the trunk part are allowed to be associated with more than
one bone, due to the reasons stated in Section B on page 158.

Joints are positioned inside the trunk mesh only, not in the foliage, and
each joint in the skeleton corresponds to an articulation in the trunk mesh.
Likewise, bones are placed along the branches only. In other words, we
will assume that the trunk mesh of a polygonal tree model makes out
the ”skin” on top of the skeleton, not the foliage. The foliage triangles
will be animated by following their associated bones in the trunk mesh.
Consequently, we do not allow a bone per leaf.

We will require that the input models to be simplified are CASTMs.
The fact that we require our input polygonal tree model to be rigged with an

animation skeleton is a reasonable requirement, because polygonal tree mod-
els are suitable for this kind of animation, as mentioned in Section 1.4.2 on
page 25. Skeletal animation is in fact commonly used for articulated artic-
ulated meshes [3]. Furthermore, it is an effecient way of storing animation
information.

The intuition behind our restrictions of joints in the animation skeleton
being positioned in the mesh and bones being placed along the branches is that
the skeleton reflects the structure of its CASTM. Hence, a bone in the skeleton
placed far away from the root in the hierarchy will represent a branch in the
polygonal tree model far away from the trunk in the hierarchy. We judge this
assumption reasonable in the sammer manner as we judge it reasonable that
the skeleton of a character model is placed inside the mesh, and that it follows
the structure of the model.

We will not discuss how a polygonal tree model can be animated using pro-
cedural animation, the reason being that when using procedural animation, no
a priori knowledge about coplanarity of vertices in the model can be assumed,
and hence no billboard cloud simplification can be performed. Instead we will
focus on key frame animation in the remainder of our report.

When we refer to the foliage part of a CASTM, we specifically state it.

2.2 Animated Billboard Cloud

Having specified that our input models are CASTMs, we now turn to specifying
the output models we will be creating. In the following we define animated
billboards and animated billboard clouds.

Animated Billboard: An animated billboard is a rectangle with a texture, a
transparency map, and an associated animation cycle dictating the po-
sition of each rectangle vertex as a function of time. The rectangle de-
fined by the four vertices is not allowed to be altered by the animation.
More precisely, the billboard is only allowed to be transformed by rigid
transformations (i.e. transformation consisting only of translations and
rotations).
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An animated billboard is not to be confused with a view-aligned billboard.
Contrary to a view-aligned billboard an animated billboard does not change
orientation as dictated by the movement of the observer, but solely as dictated
by its animation function.

Note that our definition only includes animation of the actual billboard rect-
angle, and not of the texture associated with a billboard. Although animated
textures definitely could be used to simplify animated geometry, we do not
consider such an approach.

Animated Billboard Cloud: An animated billboard cloud is a set of animated
billboards.

Given a CASTM, we will create simplified LOD versions of it consisting of
an animated billboard cloud for the foliage part of the simplified CASTM and
an animated trunk with a simplified cyclic animation.

The definitions of our input and output models enable us to state our project
goals.

2.3 Project Goals

A recognized weakness of existing billboard cloud algorithms is their lacking
ability to simplify animated models. In this project we state the following
project goals:

• We want to develop simplification solutions specifically for animated
polygonal tree models that combine the billboard cloud simplification
technique with animation simplification techniques in order to create
discrete LOD versions of a CASTM.

• These LODs should consist of an animated billboard cloud for the foliage
and a simplified cyclic animation of the trunk. Hence, we want to perform
image-based simplification on the foliage part.

• The solutions should be capable of outputting LODs of high visual fidelity
to the input CASTM for close range and extreme simplification LODs for
far-away distances. We require that the rendering complexity drops with
the degree of simplification, such that the fps performance increases the
more simplified the LODs are.

• In order to evaluate the visual fidelity of an animated billboard cloud
model we want to define a set of error metrics that enable us to objec-
tively measure the quality of the simplification. Since we want to use the
animated billboard cloud model in an LOD scheme for the CASTM, quality
is measured in terms of visual resemblance to the input CASTM. Further-
more, quality is also measured in terms of the performance requirements
involved in using the generated LODs.
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• Aside from using the error metrics to measure the quality of the LODs
against the input CASTM, we want to use them to compare the quality of
the LODs generated by different solutions.

2.4 Project Delimitations

Having stated our project goals we turn to state what is outside the scope of
this project.

• Our focus is the simplification of the foliage part of animated polygonal
tree models. We therefore limit ourselves from considering geometric
simplification of the trunk part of a CASTM. We refer to the methods
mentioned in Section 1.2.2 on page 14 for simplifying animated closed
meshes.

• We want to create simplified LOD models of CASTMs. However, we do
not provide techniques for smooth transitions between the LODs at run-
time, even though such techniques should be applied in order to obtain
satisfactory results.

• Unlike Umlauf [28], our focus is not to render huge forests at interac-
tive rates. Our sole focus is simplification of a single cyclically animated
polygonal tree model and the performance issues of rendering a single
cyclically animated polygonal tree model. Specific performance issues
involved in rendering our animated billboard cloud LOD models in a large
scale forest are not considered, even though these issues must be ad-
dressed, e.g. by considering batching of the LODs, in order to obtain fast
rendering of large scale forests.

• We do not consider simplification of procedurally animated polygonal tree
models.

• The issues involved in rendering our animated billboard cloud LODs with
realistic light and shadows are not considered.

2.5 Report Structure Outline

In Chapter 3 we initially discuss data clustering approaches, and the notion of
error- and budget-based clustering. These terms reappear in a discussion of
strategies for billboard cloud construction. Finally, an overview of three of the
known billboard cloud algorithms is provided, including the original algorithm
by Décoret et al. The chapter is concluded by discussing pros and cons of the
three algorithms and we end up choosing an algorithm for the implementation
of our solutions.

In Chapter 4 we discuss how animation can be analysed. Different ani-
mation properties of cyclically animated polygonal tree models are identified,
which should be taken into consideration when simplifying the animation of the
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polygonal tree models, comprising CASTMs. Spectral analysis of animation will
be the focus, which is why Fourier transform is introduced, including Discrete
Fourier transform. In the remainder of the chapter we discuss suitable ways of
analyzing animation using Discrete Fourier transform.

In Chapter 5 a set of error metrics is provided. These error metrics will be
used to measure the quality of our LOD simplifications of CASTMs. Equally
important, we will discuss different strategies that can be applied to perform
the simplification of CASTMs.

In Chapter 7 and Chapter 6 our solutions are presented, each one following
a different strategy from Chapter 5.

The results of implementing one of the solutions will be presented in Chap-
ter 8, as well as an evaluation of the results.

We conclude our report in Chapter 9.
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Chapter 3

Billboard Cloud Construction

In this chapter we present algorithms for automated model simplification using
billboard clouds. Given a polygonal model a billboard cloud algorithm con-
structs a billboard cloud that simplifies the original model.

Before presenting the algorithms, we briefly introduce the topic of data
clustering in Section 3.1. This is succeeded by a discussion of strategies on
how to apply data clustering in order to construct billboard clouds in Section
3.2, including how to evaluate a simplification.

In Section 3.3 we present the original billboard cloud construction
approach. A billboard cloud algorithm based on k-means clustering is
presented in Section 3.4, and finally one based on a stochastic search is
presented in Section 3.5.

Some general improvements to the construction of billboard clouds are pre-
sented in Section 3.6, which can be used to obtain higher visual fidelity sim-
plification of foliage. The chapter is concluded with us choosing an algorithm
for foliage simplification, and a short discussion of an implementation of this
algorithm.

3.1 Data Clustering

A billboard cloud algorithm is basically a clustering of coplanar triangles.
Therefore, we give a short introduction to data clustering theory in general
prior to discussing different billboard cloud construction approaches. This
section is based on a review of data clustering by A.K. Jain et al. [14].

Data clustering is the organization of a set of data elements called patterns
into subsets. The subsets are referred to as clusters, and the intuition is that
the patterns in one cluster are more similar to each other than they are to the
patterns in other clusters. Figure 3.1 illustrates the clustering concept.

Such data clustering has many useful applications, a few examples of which
are data mining, image segmentation, and, in our case, billboard cloud con-
struction.
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Figure 3.1: An example of data clustering where a set of 2D points are clustered by
Euclidean distance. The three clusters are denoted A, B, and C.

3.1.1 Components of the Clustering Task

The task of clustering a set of patterns consists of some basic components, which
we will briefly go through.

Pattern representation: One must define a reasonable representation of the
data elements to be clustered. A pattern is usually an n-dimensional
vector of scalar components, each of which is referred to as a feature.
A pattern is therefore also referred to as a feature vector.

Distance measure: Definition of a reasonable pattern proximity measure for
a given problem domain is of key importance. This is usually defined as
a function yielding the similarity of two patterns as a scalar value. The
most commonly used measure is the Euclidean distance between the two
feature vectors, although a drawback of this is that a large-scale feature
can dominate the others. The solution is to apply normalization on the
features.

Clustering: This refers to the strategy of how to group the patterns based on
the distance measure. A clustering can either be fuzzy or hard. In a
fuzzy clustering, each pattern can have a variable membership in several
clusters, and in hard clustering each pattern is member of one and only
one cluster. A grouping of the dataset in clusters is also referred to as a
partitioning.

Data abstraction (optional): Sometimes a simple compact representation of
a set of patterns is useful. An example is representing the content of a
cluster using a single centroid pattern.

Output Assessment (optional): A validation of the clusters yielded by a clus-
tering algorithm. The goal is to ensure that the clusters could not have
been chosen by chance or by an artifact of the clustering algorithm.
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A simple output assessment is to run the clustering algorithm several
times on the data, and verify that the clustering does not vary much.

In the following, we focus on the different strategies for doing the actual
clustering. Many different approaches to clustering exist, but a distinction can
be made between hierarchical and partitional approaches. A hierarchical clus-
tering produces a nested series of partitions, while a partitional clustering only
produces one. We briefly discuss each type and present some example algo-
rithms.

3.1.2 Hierarchical Clustering Algorithms

A hierarchical clustering algorithm produces a series of partitions as follows:

1. Begin with the partition in which each pattern defines its own cluster.

2. Compute the distance between each cluster pair using some distance mea-
sure.

3. Merge the cluster pair that are closest (most similar).

4. Unless only a single cluster remains, goto step 2.

The output of the algorithm is a tree structure containing all the different
partitions during the process, called a dendrogram. An example of a such is
illustrated in Figure 3.2(b).

(a) A simple dataset consisting of five
patterns.

(b) Clustering the dataset by Euclidean dis-
tance yields this dendrogram. The distance
axis denotes when which clusters are paired.

Figure 3.2: Example of a hierarchical clustering, and the constructed dendrogram.

The two most popular hierarchical clustering algorithms are the single-link
and complete-link algorithms. They both follow the above steps, but differenti-
ate in how the similarity between a cluster pair is computed in Step 3. In the
single-link approach, the distance between two clusters equals the minimum
distance between a pair of patterns from the two clusters, such that the first
element of the pair is a pattern from the first cluster, and the second element
a pattern from the second cluster. Complete-link defines cluster distance as the
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exact opposite, namely as the maximum distance between the pairs of patterns
that can be constructed from the two clusters.

The single-link clustering algorithm implies a “chaining” effect, because
clusters can be constructed that contain patterns being far distanced from each
other, by keep expanding a cluster with patterns that have a low minimum
distance, but potentially a large maximum distance. This is illustrated in the
example in Figure 3.3(a). The complete-link clustering algorithm produces
more compact clusters, which is demonstrated by the example in Figure 3.3(b).

(a) A dataset clustered using the single-
link algorithm. Notice the chaining effect.

(b) The same dataset clustered by the
complete-link algorithm. The clusters are
more compact than when using single-link.

Figure 3.3: The partitioning obtained using two different hierarchical clustering
algorithms, and Euclidean distance as distance measure.

Depending on the application and the dataset, the chaining effect can be
useful, as it can be used to find shapes in the dataset, such as patterns arranged
in a circle in feature space.

The main drawback of hierarchical clustering algorithms is their complexity.
The running time is O(n2), where n is the size of the dataset, and they hence
do not scale well for large datasets.

3.1.3 Partitional Clustering Algorithms

Partitional clustering algorithms produce only a single partitioning of the
dataset. Most such algorithms are faster than the hierarchical algorithms,
as they do not compute a dendrogram. They usually attempt to minimize
some criterion function, although finding the exact minimum is in general
computational too expensive for practical purposes.

We differentiate between error-based and budget-based algorithms, a sepa-
ration used by Décoret et al. when discussing billboard cloud construction [7].
We, however, apply the terms to data clustering in general. The intuition is to
consider the number of clusters as a cost, and the distance between the patterns
as an error.

In an error-based algorithm, a maximum allowed distance between any two
patterns in the same cluster is specified. The task of the clustering algorithm is
then to find a partitioning using the minimum number of clusters that respects
this maximum distance. In a budget-based algorithm, a maximum allowed
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number of clusters is specified, and the task of the algorithm is then to minimize
the criterion function using no more than that amount of clusters.

K-means Clustering Algorithm

The k-means clustering algorithm is a partitional budget-based clustering algo-
rithm employing the frequently used squared error metric. This metric works
well with isolated and compact clusters. Given a dataset (set of patterns), D,
partitioned into k clusters, P1, P2, ..., Pk, the squared error is:

e2(P, k) =
|k|∑

j=1

|Pj |∑
i=1

distance(xj
i , cj)2 (3.1)

where xj
i is the i’th pattern in cluster Pj , cj is the centroid pattern of the

cluster Pj , and distance is the pattern distance measure.
The k-means clustering algorithm is the most popular squared error cluster-

ing algorithm. In simple steps, the algorithm is as follows:

1. Randomly assign the patterns in the dataset to k clusters.

2. Compute the centroid of each cluster.

3. Assign each pattern to the cluster, where the distance to the centroid is
least.

4. If a termination criterion is not met, go to step 2.

In each iteration of the pattern reassignment loop, the squared error is
guaranteed to either decrease or remain the same. The algorithm is, however,
not guaranteed to minimize the squared error, as it can converge to a local
minimum. The termination criterion is typically that when no patterns are
reassigned, or when the squared error remains constant. The time complexity
of the algorithm is O(n), where n is the number of patterns in the dataset. It
hence scale well with large amounts of data.

How the clusters are initialized in step 1 is crucial for which local minimum
is met, and hence the quality of the clustering. An example of this is illustrated
in Figure 3.1.3 on the following page.

There is no perfect solution to the problem of determining a good initializa-
tion, so the common workaround is to run the algorithm several times on the
same data with random initializations. If the partitions do not vary much in the
yielded results, then the algorithm has probably not yielded this partitioning by
chance. In general, however, there are no guarantees.

Another problem is how to select the number of clusters, k. If the number
of natural groupings in the dataset is unknown in advance, and the algorithm
is run with a too large k value, then over-fitting may occur. If the task in some
clustering application is to find the minimum set of clusters representing the
actual groupings in the input data, then choosing a reasonable k value in ad-
vance is not possible. This is in fact a problem with all budget-based clustering
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(a) The three clusters obtained using
initial clusters {p1}, {p2}, and {p3, p4, p5}.

(b) The clusters obtained using the initial
clusters {p1, p2}, {p3, p4}, and {p5}. This
result minimizes the squared error.

Figure 3.4: A dataset clustered using the k-means clustering algorithm with k = 3 and
Euclidean distance as distance measure. The two figures demonstrate the difference in
result with different cluster initializations.

algorithms, and unfortunately there do not exist any theoretical solutions to it
[19].

Many other partitional clustering algorithms exist. For further details we
refer to the data clustering review in [14].

3.2 Billboard Cloud Construction Strategies

In this section we discuss how clustering can be used to perform billboard cloud
simplification of a polygonal model, including the difference between error- and
budget- based billboard cloud construction. How to measure the quality of a
billboard cloud simplification is also discussed.

3.2.1 Clustering Coplanar Triangles

In Section 1.2.3 on page 15 we argued that a set of coplanar triangles can be
replaced by a single billboard, onto which the triangles are rendered. Almost
coplanar triangles can also be replaced by a billboard, but will introduce error
due to the distances the triangle vertices are translated in order to become
coplanar. We refer to this as the vertex displacement error.

Constructing a billboard cloud is at its core a data clustering task, where
triangles are clustered by coplanarity. The clustering is hard, as a single tri-
angle should only be represented on a single billboard. When this clustering
is performed, only mere technical issues remain. These include finding a least
bounding rectangle of the triangles in a cluster projected onto a best fitting
plane, and then render the triangles into a texture.

In clustering terminology, the patterns to be clustered are triangles, and the
distance measure between two triangles is the sum of their vertex displacement
error when projecting the triangles onto their best fitting plane. The squared
error metric can be applied by considering the sum of squared displacement er-
ror the triangles in a cluster have, when projecting each to the best fitting plane
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of the triangles in the cluster. Intuitively, minimizing this squared error can be
used to yield a billboard cloud simplification with high visual resemblance to
the polygonal model being simplified, as the geometry is displaced the least
possible. In the next section we discuss the quality of a given billboard cloud
simplification.

3.2.2 Quality of Simplification

We examine the quality of a billboard cloud simplification with regards to using
it in a discrete LOD scheme. In this context the most important quality criterion
is that the produced billboard clouds visually resemble the original model as
precisely as possible from all angles, using as many (and as large) billboards
deemed acceptable at a particular LOD.

We introduce the terms cost and error of a billboard cloud simplification.
The cost of a billboard cloud is its rendering cost. As discussed in Section 1.3.3
on page 21, the rendering complexity of a billboard cloud is determined by
the number of billboards, and the size of these billboards. In every billboard
cloud construction approach we have studied, the cost has been reduced to the
number of billboards for simplicity. This is acceptable, assuming that increasing
the number of billboards also increases the total area. However, in practise this
assumption does not always hold.

The error of a billboard cloud simplification refers the visual error intro-
duced by replacing the original model by the billboard cloud. The vertex dis-
placement error can be used as a reasonable measure of this visual fidelity. The
billboard cloud LOD is to be used at a certain distance from the camera, and
this distance can be transformed to pixel error on the screen.

Alternatively, the visual resemblance can be measured using pure image-
based means, such as the colour and error metrics proposed by Huang et al. in
[12]:

Colour error : For each pixel, the difference between the rendered colour
value of the original model and the rendered colour value of the billboard
cloud model is calculated. The colour error is the sum of these difference
values.

Depth error : Similarly, a depth difference can be calculated for each pixel,
and the depth error is the sum of these difference values (obviously, the
transparent areas on the billboard must not count as pixel errors).

When using either of these metrics, the models should be rendered from
different angles and the error computed for each angle. The total error can be
defined as the average error obtained from the different angles, where precision
of the total error depends on the number of angles used.

3.2.3 Error- and Budget- Based Simplification

We differentiate between error- and budget- based data clustering, and having
defined error and cost with regards to billboard cloud construction, a similar
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Figure 3.5: Vertex validity spheres and valid planes simplifying the vertices. The figure is
from [28].

distinction can be made between different billboard cloud simplification ap-
proaches.

In the error-based simplification approach proposed by Décoret et al., a
maximum allowed vertex permutation distance, ε, is specified. ε can geomet-
rically be interpreted as a spherical region around each vertex with radius ε,
which is referred to as its validity domain, or its validity sphere. A plane can only
simplify a vertex if it intersects the validity sphere of the vertex. Consequently,
a plane can only simplify a triangle if it intersects the validity domains of all
vertices of the triangle. In this case the plane is valid for the triangle and vice
versa. This is illustrated in Figure 3.5.

The task is to find the minimum number of billboards that are valid for
all triangles in a model to be simplified. This problem is unfortunately NP-
complete, as noted by Décoret et al. [7]. Because of this, practical error-based
algorithms merely approximate this minimum.

In an error-based simplification approach, a worst-case vertex displacement
is specified using ε, which in turn is a measure of the visual error introduced
by the simplification. The number of billboards in the simplification, and hence
a measure of its rendering complexity, is only indirectly specified by ε, as the
higher value of ε, the further the triangles can be displaced, generally resulting
in fewer billboards. In order to obtain a suitable rendering cost for a specific
LOD model, some trial-and-error with different ε values might be done.

Budget-based simplification is on the contrary based on specifying a max-
imum allowed rendering cost, typically the number of billboards, and then
finding a billboard cloud respecting this cost, while minimizing a visual error
measure such as the squared displacement error. We believe this problem to
be NP-complete, and a budget-based clustering algorithm, such as the k-means
clustering algorithm, only guarantees to convergence toward a local minimum
of the squared error. The drawback of this approach is that no guarantees for
the visual error is given. Therefore, in order to obtain a simplification visually
satisfactory for a specific LOD model, some trial-and-error might be done with
different budgets.

To sum up, the two billboard cloud simplification approaches are:

Budget-based : Given a maximal budget (total cost), the goal is to build a
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billboard cloud respecting this cost while minimizing the error.

Error-based : Given a maximum tolerable error, the goal is to build a billboard
cloud respecting this error while minimizing the cost.

Both approaches have pros and cons. A billboard cloud simplification for
a specific LOD model should both satisfy some visual error and rendering cost
criteria. The approaches differentiate in which of these two criteria sets to
hold constant and which one to minimize, and we judge it dependent on the
application which approach is the better.

3.3 The Original Billboard Cloud Algorithm

The Original Billboard Cloud Algorithm presented by Décoret et al. in [7] is an
error-based billboard cloud construction approach. Given a maximum allowed
displacement distance, ε, the algorithm attemps to find the minimum set of
billboards that are valid for the entire model to be simplified.

The basic idea is to transform the triangles of the input model to a vector
space called dual space, where nearly coplanar planes are numerically close.
This space is then searched for planes that are valid for a large number of
triangles, and finally choose a number of such planes that together can simplify
all the triangles of the input model. For each of those planes, the triangles
simplified by the plane are rendered to a billboard texture placed in the plane.

In the following we explain how the Original Billboard Cloud Algorithm
finds planes in dual space, that can simplify the input model. The following is
based on [7] and the illustrations are from [28].

3.3.1 Dual Space

A plane is defined by ax + by + cz − ρ = 0, where n = (a, b, c) is its normal
vector and ρ is the distance from the origin to the plane, if n is normalized.
Alternatively, a plane can be defined in spherical coordinates as:

x cos θ cos φ + y sin θ cos φ + z sinφ− ρ = 0 (3.2)

where (θ, φ) are the angles that describe the orientation of the normalized plane
normal n and ρ is the distance from the origin to the plane. The values of θ, φ,
and ρ unambigously define a plane.

Dual space is a three-dimensional vector space with dimensions θ, φ, and ρ,
and a point in this space represents a plane in Euclidean space. The point in
dual space representing a plane in Euclidean space is referred to as the dual of
that plane. The transformation of a plane to a point in dual space is called a
Hough Transform.

A point p = (x, y, z) in Euclidean space can be defined uniquely by an
infinite set of planes containing p. Consequently, a point can be described in
dual space as a surface. For each pair (θ, φ) there exists exactly one plane with
normal n = (θ, φ) containing p, namely the plane with ρ-value:
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Figure 3.6: The dual of a point and the dual of a triangle.

ρ(θ, φ) = xcosθcosφ + ysinθcosφ + zsinφ (3.3)

This function yields the surface in dual space, which is the dual of p. An
example of such a surface is shown in Figure 3.6 (left).

A triangle in Euclidean space is defined by three points. The dual of a
triangle is the duals of its three points, hence three surfaces. These surfaces
intersect each other in one point, namely the dual of the plane containing the
triangle. This is illustrated in Figure 3.6 (right).

3.3.2 Vertex and Triangle Validity in Dual Space

Recall that vertex validity domain in Euclidean space is a spherical region
around a vertex with radius ε. The dual of the vertex describes planes (θ, φ, ρ)
intersecting this validity domain, but only those planes intersecting the center
of the validity sphere. Therefore, the dual of the vertex is a subset of the
validity domain of the vertex in dual space.

Adding some value to ρ corresponds to translating a plane in its normal
direction with this value. Therefore, if ε is added to ρ of some plane on the
surface that is the dual of a vertex, a plane tangent to the validity sphere of this
vertex is obtained. ρmin and ρmax for a given (θ, φ) pair are defined as:

ρmin(θ, φ) = ρ(θ, φ)− ε , ρmax(θ, φ) = ρ(θ, φ) + ε (3.4)

The ρ-values in the interval [ρmin(θ, φ); ρmax(θ, φ)] represent all planes with ori-
entation (θ, φ) that intersect the validity sphere of the vertex with dual ρ(θ, φ).
Computing this interval for all orientations corresponds to translating the dual
of a vertex +ε and −ε in the ρ direction. Thus, the validity domain of a vertex
in dual space is a validity region defined as:

ρmin(θ, φ) ≤ ρ ≤ ρmax(θ, φ) (3.5)

An example of a vertex validity domain is illustrated in Figure 4.3. Correspond-
ingly, the validity domain of a triangle is the intersection of the validity regions
of its three vertices, hence a subspace in dual space.
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Figure 3.7: The validity domain of a vertex in dual space.

3.3.3 Contribution and Density

An entire set of planes are valid for a triangle (namely the set of planes con-
tained in the subspace defined by the validity domain of the triangle), but the
different valid planes cannot represent a given triangle equally well. When
rendering billboard textures, an orthogonal projection of triangles onto the
billboard plane is performed. If a triangle is orthogonal projected onto a plane
with a normal almost perpendicular to the triangle normal, then the triangle
will not be faithfully represented on the plane. Contribution of a triangle to a
plane is defined as the area of the triangle, when it is orthogonal projected onto
the plane. A triangle yields thus highest contribution to planes with a normal
similar to the triangle normal, which are considered to be the planes that can
represent the triangle best.

An even more important reason for introducing the contribution term is to
be able to favor large triangles over small triangles when searching for the best
billboard planes. The density of a plane is the sum of the contributions of all
the triangles that the plane is valid for, to the plane. Density is hence a measure
of how large an area of geometry a plane can faithfully simplify.

3.3.4 Algorithm

As stated in Section 3.2.3 on page 43 the problem of finding the minumum
number of billboards simplifying all triangles in the input model is NP-complete,
and so for performance reasons an approximative greedy algorithm is opted for.

To allow searching through dual space, it is discretized into a grid; the
ranges of θ and φ are divided into a discrete number of steps with equal angle
increments. Likewise, the ρ axis is divided into a number of steps with equal
distance increments. A triangle validity domain maps to a set of cells in the
dual space grid, which are the cells containing planes this triangle is valid for.
The triangle is said to be valid for these cells, and vice versa.

The basic idea is simply to let each triangle add contribution to all the cells it
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is valid for, and then consider the cell with highest density in the grid. Formally,
the density of a cell is defined as the sum of the contributions of all triangles,
that are valid for the cell, to the center plane of the cell.

Informally speaking, planes inside the highest density cell must be able to
faithfully represent a large area of geometry, and are thus suitable for bill-
board creation. The highest density plane within the cell is searched for, and a
billboard is created by considering an orthogonal projection of valid triangles
onto the plane found. A least bounding rectangle is found for the projected
triangle vertices, and the corners of this rectangle define the billboard quad.
The triangles are rendered into a texture, which is associated with the billboard.
The contribution of the simplified triangle is removed from the dual space grid,
and a new highest density cell is considered, etc.

The algorithm is a simple greedy selection of the highest density planes in
the grid, and the steps are as follows:

1. For each triangle, do:

(a) Compute the set of cells that are valid for the triangle using ε.

(b) Add the contribution of the triangle to each of these valid cells. The
contribution to a cell is computed as the contribution to the center
plane of the cell.

2. Within the highest density cell, search for the highest density plane and
choose the plane found to create a billboard from. Remove the contri-
bution of all the triangles simplified by the billboard from the dual space
grid.

3. Unless all triangles have been simplified (i.e. the grid contains no more
density), go to step 1.

4. Output the created billboards.

Relating this algorithm to the data clustering theory in Section 3.1 on
page 37, it is an error-based hard clustering of coplanar triangles. In order to
obtain these hard clusters, however, a fuzzy clustering is iteratively performed.
Each cell in the grid is in fact a cluster of (nearly) coplanar triangles, and
each triangle (pattern) is contained in several cells (fuzzy clusters). A triangle
has a highest degree of membership in the cell to which it contributes with
the largest value. The highest density cell is chosen for billboard creation,
followed by a new fuzzy clustering of the remaining triangles.

3.3.5 Analysis of the Algorithm

We have left out many details in the algorithm, such as how to compute which
cells are valid for a triangle, and how to search for a good plane within the
highest density cell. The algorithm in its entirety is actually quite complex and
non-trivial to implement, as noted by Umlauf [28].
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The algorithm finds only approximately the minimum number of billboards
to simplify the model, given an ε value, since it greedily picks the cell with high-
est density in each iteration. The problem is that simplifying the triangles in the
highest density cell might have unfortunate consequences for the simplification
of the leftover geometry in the following iterations. More precisely, the leftover
geometry might not be easily simplified by few billboards. A simplification
of the triangles in another cell with less density might result in more easily
simplified leftover geometry, and could consequently lead to a simplification
using fewer billboards in total. Some improvements are proposed by Décoret et
al., in order to generally obtain fewer billboards, but these will not be discussed
here.

Experiments with an implementation of the algorithm by Umlauf in [28]
has shown that a specific tree model consisting of 200,000 triangles requires
between 300MB and 1GB of memory and takes about 20 minutes to simplify, so
the algorithm is obviously resource demanding. This is impractical, as obtaining
satisfactory results often requires tweaking of ε and grid resolution. Further-
more, several LOD versions of the original model is often wanted, which makes
the simplification process even more tedious.

3.4 K-means Clustering Billboard Cloud Algorithm

In [12], I.-T. Huang et al. propose a different billboard cloud algorithm based
on the K-means Clustering algorithm. The following is a summary of this K-
means Clustering Billboard Cloud Algorithm.

As opposed to the Original Billboard Cloud Algorithm, the K-means Clus-
tering Billboard Cloud Algorithm follows a budget-based approach to billboard
cloud simplification. The basic idea of the algorithm is to partition triangles
into a set of k cluster of triangles each representing a billboard. The centroid
of a cluster is the best plane fitting the contained triangles, which can be found
using Singular Value Decomposition of the vertices of the triangles in the cluster
(details on Singular Value Decomposition can be found in [16]). The distance
metric considered is the distance between the vertices of each triangle and the
centroid plane of a cluster.

Similar to the general k-means clustering algorithm, triangles could initially
be assigned randomly to clusters. This approach, however, yields poor results
with the billboard cloud algorithm, and the simplification results tend to vary
greatly. Instead, a more intricate initialization procedure is performed.

3.4.1 Initialization

The initialization procedure of the algorithm initially assigns triangles to k clus-
ters based on proximity to k planes evenly distributed on a bounding sphere of
the input model. For a closed mesh model this sphere is a rough approximation
of the silhouette of the model, and distributing planes evenly on this sphere is
usually a reasonable starting point. The initialization procedure is carried out
as follows:
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1. Compute a bounding sphere of the model. Distribute k points evenly over
the surface of the sphere, for example as described in [18].

2. For each of the k points, create a new cluster and associate it with the
plane tangent to the sphere at the point.

After this initial assignment, two further steps are taken to reduce the vari-
ance in the number of triangles in the different clusters. These steps will not be
described further.

3.4.2 Algorithm

When the initialization stage is performed, the algorithm performs the actual
k-means clustering:

Repeat until the squared error metric reaches a local minimum:

4. For each triangle: Associate the triangle with the cluster, for which the
distance between the triangle and the centroid plane of the cluster is
smallest.

5. For each cluster A:

(a) If A is empty, for each other cluster B:

i. Find the triangle T of B that has the largest angle between its
normal and the normal of the plane associated with B.

ii. Assign T to A.

(b) Recompute associated plane using Singular Value Decomposition of
the vertices of the triangles in A.

When the clustering is completed, a billboard is created for each cluster as
usual. A least bounding rectangle is found for the triangles orthogonal pro-
jected onto the centroid plane, and a billboard texture is rendering.

3.4.3 Analysis

The quality of the simplifications produced by the algorithm can be objectively
evaluated in comparison with the Original Billboard Cloud Algorithm for a
specific input model using, for example, the colour or depth error metrics repre-
sented in Section 3.2.2 on page 43. I.-T. Huang et al. present such a comparison
in [12], and the K-means Clustering Billboard Cloud Algorithm consistently
outperforms the Original Billboard Cloud Algorithm in both the colour and
depth error metrics for an example input model simplified to an equal number
of billboards. Even though this result indicates that the K-means Clustering
Billboard Cloud Algorithm has better simplification quality than the Original
Billboard Cloud Algorithm, the result cannot be generalized to other models.
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I.-T. Huang demonstrates that an implementation of the K-means Cluster-
ing Billboard Cloud Algorithm executes faster than an implementation of the
Original Billboard Cloud Algorithm for specific configurations. The analysis is
not described adequately enough to draw any general conclusions. However,
k-means clustering is known to be fast even for large data sets, as mentioned in
Section 3.1.3 on page 41.

The normals of the triangles are not a part of the distance measure of the
K-means Clustering Billboard Cloud Algorithm. This is potentially a problem,
as a set of parallel triangles may be simplified to an orthogonal plane, which
would result in a projected triangle area of zero. To solve this problem, we
propose a k-means dual space clustering approach.

3.4.4 K-means Dual Space Proposal

The idea is to utilize the coplanarity proximity features of dual space, and utilize
the potential advantages of the k-means clustering, such as simplicity, low time
complexity, and the ability to specify a billboard cloud budget. The approach is
very simple: Each triangle is mapped to a point in dual space, and these points
are clustered by Euclidean distance using the K-means clustering algorithm. In
order to favor large triangles over small ones, the triangles can be weighted by
area, when computing the centroid of a cluster.

This demonstrates how dual space can be utilized in other ways than origi-
nally proposed by Décoret et al, but we will not discuss it further.

3.5 Stochastic Billboard Cloud Algorithm

Lacewell et al. propose a billboard cloud algorithm specifically designed for
foliage simplification [17]. The algorithm is an error-based hard clustering of
coplanar triangles, and it performs a stochastic search for billboards that are
valid for a large amount of geometry. It is simple and fast in comparison to
the Original Billboard Cloud Algorithm and the K-means Clustering Billboard
Cloud Algorithm.

3.5.1 Algorithm

The Stochastic Billboard Cloud Algorithm operates on a set of triangles, and
given a maximum allowed permutation distance, ε, it simplifies the input tri-
angles to a number of billboards. We use the notions of validity, density, and
contribution from the Original Billboard Cloud Algorithm in the following de-
scription of the algorithm.

The basic idea is to randomly search for a high density plane and continue to
do so until all triangles have been simplified. In order to guarantee that a plane
is always valid for some triangle, a random plane is chosen by considering a
random seed triangle among the set of input triangles and translate its vertices
randomly in the normal direction with a maximum distance of ε. The plane
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defined by the translated triangle vertices is guaranteed to be valid for at least
one triangle, namely the seed triangle.

In addition to the input triangles and ε, a parameter, S, is used to specify
how many random planes are considered in each iteration before choosing the
one with maximum density for simplification. The algorithm in overall steps is
as follows:

Repeat until all triangles have been marked simplified:

1. Repeat S times

(a) Set the highest density found to zero: Dmax = 0.

(b) Select a random seed triangle ts among the set of unsimplified input
triangles.

(c) Translate each of the vertices of ts in the triangle normal direction
with a random distance in the interval [−ε; ε]. Define the plane, B,
containing the three translated triangle vertices.

(d) Find the set of unsimplified triangles, T , which are valid for B. Cal-
culate the density of plane B, which equals the sum of contribution
of all triangles in T to the plane. If B has higher density than Dmax ,
then store B as Bmax and T as Tmax.

2. Mark all triangles in Tmax as simplified, and add the pair (Bmax, Tmax) to
a set result.

The result of running the above algorithm is the set result containing a
number of planes, each associated with a set of triangles. To obtain a billboard
for each plane, the triangles are orthogonally projected onto the plane, a least
bounding rectangle is found to define the billboard quad, and the triangles are
rendered into a texture.

3.5.2 Analysis

The biggest advantage of the Stochastic Billboard Cloud Algorithm is its sim-
plicity, and its ability to produce simplifications relatively fast. Given an ε value,
it might generally produce billboard clouds containing more billboards than the
Original Billboard Cloud Algorithm does. That is, unless very high values of S
are used, in which case the algorithm, however, is unlikely to outperform the
original algorithm in terms of running time.

Lacewell et al. propose the Stochastic Billboard Cloud Algorithm specifically
for foliage. They do not, however, argue why the algorithm should be especially
efficient for foliage simplification. We judge a stochastic search for high density
planes suitable for foliage models, due to the somewhat chaotic positioning and
orientation of foliage triangles in many such models.
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3.6 Improvements

In this section we present some general improvements that can be applied to
billboard cloud algorithms. These improvements apply well to the simplifica-
tion of polygonal tree models.

3.6.1 View Penalty

In many real-time applications the observer is restricted to certain view an-
gles, in which case a view penalty scheme can improve the visual fidelity of
the billboard cloud algorithms. An example of such an application is a flight
simulation, in which models on the ground, such as tree models, are almost
solely viewed from above. We present a very simple view penalty scheme in the
following, which applies to error-based construction using the notion of plane
density.

A parameter, φv, in the range [0;π/2] specifies an angle between the view
vector and the xz-plane (i.e. the ground), and billboards with normals that have
similar angles to the xz-plane as the view vector are to be favored. Vertical or
horizontal billboards can hence be favored by having φv = 0 and φv = π/2
respectively, for example.

This scheme can be applied in the Original Billboard Cloud Algorithm, or the
Stochastic Billboard Cloud Algorithm, by scaling the density value computed for
a plane depending on its normal. Let φn be the angle between the plane normal
and the xz-plane. The density of a plane is scaled by: (| φv − φn |)/(π/2).

A potential disadvantage of applying view penalty is that simplifications
produced might in general contain more billboards. The reason for this is that
it becomes harder to find billboards valid for large amounts of triangles, when
certain billboard orientations become penalized.

Figure 3.8(b) and Figure 3.8(c) illustrate the effect of applying a view
penalty scheme in an implementation of the Stochastic Billboard Cloud
Algorithm (the implementation is actually ours, in Section 3.7 we discuss our
choice of algorithm).

3.6.2 Increased Foliage Density

Billboard cloud simplification displaces almost coplanar geometry in order to
represent this geometry by a single billboard. Consequently, if a closed mesh
model is simplified by a billboard cloud, then a visual artifact in the simplifica-
tion is often a lack of connectivity, or visual “cracks” as they are often referred
to.

Décoret et al. propose a simple technique for crack reduction in [7], which
applies to all error-based solutions using the triangle validity term. A triangle
might be valid for several of the billboard planes outputted by the Original
Billboard Cloud Algorithm. When rendering billboard textures, a triangle can
be rendered onto all the billboards for which it is valid, instead of only the
billboard chosen for its simplification. This tends to reduce the visual cracks,
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(a) The original tree model. (b) A billboard cloud simplification
created without view penalty. The
billboard cloud contains 13 billboards.

(c) A billboard cloud simplification
favouring vertical planes. The billboard
cloud contains 15 billboards.

(d) A billboard cloud simplification
created with view penalty as well as
the increased foliage density improve-
ment. The billboard cloud contains 14
billboards.

Figure 3.8: A polygonal tree model and two billboard cloud simplifications created
with our own implementation of the Stochastic Billboard Cloud Algorithm. The two
simplifications are created with parameters ε = 6 and N = 100. The different
simplifications demonstrate the effect of applying a view penalty scheme and the increased
foliage density improvement. Each billboard cloud is illustrated with its associated validity
sphere of radius ε.
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but can unfortunately introduce new visual artifacts, e.g. a model detail, such
as an eye in a character model, being represented on several billboards.

Since foliage is modeled using unconnected triangles, crack reduction at
first does not seem to be of much relevance when simplifying the foliage part
of a polygonal tree model with billboards. However, as noted by Umlauf [28],
rendering all valid triangles to each billboard when simplifying foliage tends to
improve the visual quality of the simplification.

When performing billboard cloud simplification, the surface area in the sim-
plified model will often appear as if it has been reduced. The reason being that
when projecting a triangle onto a plane with normal direction different from
the triangle normal direction, the triangle will be represented with a reduced
area on the billboard. A further reason for the reduction in surface area is that
one triangle might cover another triangle when projecting both triangles onto
the same billboard.

This reduction in area tends to make the simplified foliage appear too sparse
compared to the original. Rendering all valid triangles to each billboard results
in some leaves being represented on several billboards, which in turn makes
the foliage appear more dense. We refer to this as the increased foliage density
improvement. Umlauf et al. present examples in which the visual quality of
the simplifications is greatly improved. The results with our own implemen-
tation of the increased foliage improvement can be seen in Figure 3.8(d) on
the facing page. Notice the increase in foliage density compared to the other
simplifications.

It should be noted that the increased foliage density improvement only ap-
plies to error-based billboard cloud simplification approaches, because it in-
volves validity. A similar improvement has been made to the budget-based K-
means Clustering Billboard Cloud Algorithm. I.-T. Huang et al. present a crack
reduction scheme, that has the purpose of removing gaps between adjacent
billboards, which, in our judgment, may remedy the sparse foliage problem
[12]. The crack reduction scheme calculates the convex hull of all the triangles
that are simplified by a billboard. If any triangle has a vertex inside the inter-
section of two such convex hulls, the part of the triangle inside the intersection
is rendered to both of the billboard textures.

3.7 Choice of Billboard Cloud Algorithm

To be able to develop and evaluate our solutions for billboard cloud simpli-
fication of CASTMs, a billboard cloud algorithm implementation is needed.
We have implemented the Stochastic Billboard Cloud Algorithm, as already
mentioned when demonstrating the improvements in Section 3.6 on page 53.

We have chosen to implement the Stochastic Billboard Cloud Algorithm
instead of one of the other algorithms for several reasons. The algorithm is far
more simple to implement than the Original Billboard Cloud Algorithm, and
the view penalty and increased foliage improvements are easy to incorporate.
Furthermore, the authors claim good results specifically for foliage models,
and we do find a stochastic approach suitable for the often seemingly chaotic
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distribution of leaves in a foliage.
In Section 8.1.1 we will describe our implementation of the Stochastic Bill-

board Cloud Algorithm in details.

Summary

The focus in this chapter has been on how to construct billboard clouds. After
a survey of data clustering approaches, in which we established the tasks in-
volved in clustering data (e.g. data representation and distance measurement)
and discussed hierarchical and partitional clustering algorithms, we discussed
billboard cloud construction strategies. Basically, the task of constructing a bill-
board cloud is a data clustering task, since triangles are clustered by coplanarity.

The terms cost- and error-based data clustering were introduced to billboard
cloud simplification, resulting in two different approaches. Following the error-
based simplification approach, the problem is to minimize the set of billboards
used to simplify the set of triangles from the input model, while respecting a
given error threshold, ε. Following the budget-based simplification approach,
the problem is to minimize the error introduced when simplifying the triangles
to billboards, given a budget of k.

Regardless of taking an error- or cost-based billboard cloud simplification
approach, it is necessary to measure the quality of the simplification. Two
metrics, namely colour error and depth error, were introduced. However, other
metrics can be used. We return to simplification metrics in Chapter 5.

Three billboard cloud algorithms have been presented: The Original Bill-
board Cloud Algorithm, which follows an error-based approach, the K-means
Clustering Billboard Cloud Algorithm, which follows a budget-based approach,
and the Stochastic Billboard Cloud Algorithm, which also follows an error-
based approach. Based on analyses of all three algorithms we have chosen
to implement the Stochastic Billboard Cloud Algorithm, among other reasons
because it is relatively simple and relatively fast. And because it has been
developed specifically for tree foliage simplification.

Some general improvements to billboard cloud algorithms were introduced
and discussed. These included a view penalty scheme and increased foliage
density. These improvements have been implemented in our implementation
of the Stochastic Billboard Cloud Algorithm. Finally, we discussed some of the
implementation issues involved in implementing a billboard cloud algorithm.
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Spectral Analysis of Animation

When addressing the problem of simplifying the foliage part of a CASTM with
an animated billboard cloud, analysis of foliage triangle animation becomes
very important.

Different foliage triangles move independently, and if a set of such trian-
gles are to be simplified by a single billboard, how should this billboard be
animated? We propose to analyze the animations of the triangles in order to
address this problem. The goal is to define an animation for the billboard that
overall represents the average animation of the triangles simplified by it.

Triangles with radically different animations are not suitable for simplifica-
tion on a single billboard, even if they are somewhat coplanar, as no suitable
average animation for such triangles exists. Animation analysis provides infor-
mation that enables taking animation properly into account, when determining
which triangles are suitable for simplification on the same billboard.

The structure of this chapter is as follows. In Section 4.1 we state a num-
ber of requirements to an animation analysis technique. This is followed by
a discussion of different animation properties of animated foliage in Section
4.2. In Section 4.3 we introduce the notion of a trajectory and define a set
of relations between trajectories. Different overall approaches to animation
analysis is given in Section 4.4. Spectral analysis and the Fourier Transform is
formally introduced in Section 4.5, and the chapter is concluded by a detailed
description of how spectral analysis can be used to analyze animation. This
happens in Section 4.6.

4.1 Animation Descriptions

We define our animation analysis requirements in terms of animation descrip-
tions. An animation description of a triangle can be used to compare its anima-
tion with the animation of another triangle, and animation descriptions for a
set of triangles can be used to construct an average animation.

Animation Description Type: An animation description type is a set of functions
which can be used to create and compare descriptions of animation:
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• Given an animated triangle, tr , the function description(tr) yields a
animation description, d, of t.

• Given two animation descriptions, d1 and d2, the function
deviation(d1, d2) yields a scalar value stating how different the two
animations are considered to be.

• Given a set of descriptions, D, the function average(D) yields a new
description da, which is considered a description of the average ani-
mation in D.

• Given a triangle, tr and an animation description, d, the function
apply(tr , d) animates tr using d.

The description function can be used to construct animation descriptions for all
foliage triangles in the CASTM to be simplified. In order to determine which
triangles have similar animations, and can thus agree on a common animation,
the deviation function can be used. When a set of triangles are to be simplified
by a billboard, a suitable animation for the billboard can be defined by average,
and applied to it using apply .

During this chapter, different animation analysis approaches are considered
and evaluated, in the context of using a such to define an animation description
type.

4.2 Identification of Properties in Animated Foliage

The animation of a foliage triangle can be considered to have different anima-
tion properties, and when simplifying the foliage in a CASTM by an animated
billboard cloud, some properties might be preserved while others might not.
In this section we identify four essential animation properties of the foliage
in a CASTM, and discuss which of these we judge important to preserve in a
simplification.

Note that when a triangle becomes simplified on a billboard, we compare
the animation of the original triangle to the animation of the position on the
billboard onto which its center is simplified. This point and its animation will
be referred to as the “new” position and animation of the triangle, even though
the triangle no longer exists in the simplification.

Animation Time-offset

Triangles simplified on a billboard may become offset in time compared to their
original animations. When this is the case, the new positions of the triangles
of the foliage may be very different from the original positions of the triangles
in individual frames throughout the animation. However, we judge the overall
appearance of a time-offset simplified foliage to be visually very similar to the
original animated foliage. In other words, we do not judge time-offset an
animation property being important to preserve in the simplification.

58



Chapter 4. Spectral Analysis of Animation

Generally, for animated models where the movement of parts of the model
has an obvious causality with other parts of the model, offsetting subsets of an-
imated triangles in time may be very unfortunate, as this causality can become
lost. As an example, if the animation of the upper leg is time-offset compared
to the animation of the lower leg of a model of a running human, the skeletal
constraints of a human are ignored, and the result will look very unnatural.
Furthermore, an animated connected mesh might lose its connectivity if the
animation of triangles are time-offset.

We hypothesize that the causality of the movement of foliage in a tree is not
obvious to an observer, as the foliage will often hide the underlying branches
that cause the movement of the foliage. This observation was already stated in
Section 1.5 on page 29. If this observation holds, Time-offsetting a subset of
the triangles of a tree model will normally not be detectable by an observer.

Animation Speed and Distance

A triangle moves with a certain speed, and that speed may change when the
triangle is simplified with other triangles on a billboard. However, changing the
speed of a triangle a small amount may not be detrimental to the appearance
of the animated model. The animation speed of the triangles of a tree model
suggests the strength of the wind and the rigidity of the branches, as observed
in Section 1.5 on page 29. If a lot of triangles increase or decrease their speed, it
may look as if the wind strength has changed. Generally, it would be advisable
to try to keep the average movement speed in the foliage intact, while changing
the speed of individual triangles may not be a problem.

The animation of a foliage triangle in a CASTM is the result of a combination
of the movement of several branches with different rigidity and thus different
inherent movement frequencies. To be able to handle the movement speed of a
foliage triangle correctly it is paramount to be able to identify the dominant fre-
quencies in the movement of a triangle, and ensure that a simplifying billboard
moves with similar dominant frequencies.

Similarly to the speed of movement of a triangle, the distance it moves may
be changed when the triangle is assigned to a billboard. Also similarly to the
speed of movement of a triangle, the distance of movement of a triangle in a
tree model suggests wind strength and branch rigidity. The average distance
moved by triangles of the foliage model should be somewhat retained when
creating billboard clouds, but slight modifications to the distance moved by
individual triangles may not be easy to detect by an observer.

Animation speed and distance have been identified as properties of the an-
imation of foliage, and we judge preservation of these properties important to
preserve to some degree. Consequently, the simplification should attempt to
minimize the alteration in foliage movement speed and distance.

Animation Shape

If the movement of a foliage triangle is largely confined to a plane or a line, or
if it moves similarly to a recognizable geometric shape, e.g. an ellipse, main-

59



Chapter 4. Spectral Analysis of Animation

taining this shape property when the triangle is simplified may be important.
The animation of a foliage triangle in a CASTM is the result of a sequence of
rotations around joints in the skeleton. Preserving the underlying structure
of the skeleton and thus the causality of the movement of the model when
simplifying a set of foliage triangles may be important for the appearance of
the simplified model. However, a slight rotation or scaling of the geometric
shape in which the triangle moves may be acceptable.

The animation shape property is judged important for the visual fidelity of
the foliage simplification, and the general movement shapes of the triangles
should be retained if possible.

Animation Orientation

Many animation shapes, such as lines or ellipses, have an obvious orientation
in space. For example, a line could be vertical or horizontal. Foliage triangles
will often move in elliptical shapes, according to the observations in Section 1.5
on page 29, and ellipses also have recognizable orientation. If the orientation
of such an elliptical animation is changed, the animation of the foliage triangle
may appear unnatural.

For those animation shapes with an obvious orientation, it is judged impor-
tant for the visual fidelity of the foliage simplification, that this orientation is
maintained. However, slight changes in orientation should not be detectable by
an observer.

4.3 Trajectories and Their Relations

To be able to discuss animations unambiguously, we define the notion of a
trajectory, which describes animation as a position function of time. Further-
more, we will define a set of relations between trajectories. A trajectory can
be described by a function p(t) : R → R3 that for every time t yields a point
in space (px, py, pz). All trajectories in the following are assumed to be cyclic,
which means that for any given cyclic trajectory p(t) there exists a point in time,
tc, such that p(t mod tc) = p(t).

A reasonable simplification when analyzing the animation of triangles is to
only consider the movement of the triangle center point. Then, the animation
of a triangle is represented by a single trajectory, which will be referred to as
the triangle trajectory.

We define a number of relations between trajectories:

• Two trajectories p and q are equal, if and only if (iff) p(t) = q(t) for all t.

• Two trajectories p and q are parallel, iff there exists a vector v such that
p(t) = q(t) + v for all t.

• Two trajectories p and q are rotated, iff there exists a rotation matrix R,
such that p(t) = Rq(t) for all t.
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• Two trajectories p and q are reflected, iff there exists a reflection matrix E,
such that p(t) = Eq(t) for all t.

• Two trajectories p and q are congruent, iff there exists a vector v, a rota-
tion matrix R, and a reflection matrix E such that p(t) = ERq(t) + v for
all t.

Any of the above relations can be relaxed to be time-offset, which intuitively
means that the trajectories would be part of one of the above listed relations if
one of the animations were displaced in time. For example, we say that p and q
are time-offset parallel iff there exists a vector v and a real number ∆t such that
p(t) = q(t + ∆t) + v for all t. Of course, the ’time-offset r’ relation is always a
superset of the r relation, as the r relation is a special case of the ’time-offset r’
relation where ∆t = 0.

4.4 Animation Analysis Approaches

Several approaches for analyzing animation exist, but any approach employed
to analyze the animation of the foliage part of a CASTM should meet certain
requirements.

The properties of animations stated above, time-offset, speed, distance, and
shape, describe important aspects of an animation and define to a high degree
how the animation appears to an observer. It is hard to predict which properties
are the most important for the visual fidelity of the simplified foliage. In gen-
eral, since we judge the time-offset of triangle animations to be of little visual
importance, we want an animation analysis approach to enable us to conclude
time-offset equal trajectories to be similar, while minimizing the alteration of
the other more visually important animation properties.

We prefer an animation analysis approach that is able to isolate the anima-
tion properties, such that changing the animation of a triangle to fit the anima-
tion of a billboard is accomplished by changing only a subset of the properties
of its animation. If such an approach is found, a simplification procedure can
be restricted from violating the properties that are judged essential for visual
fidelity.

We discuss two different approaches in the following.

4.4.1 Euclidean Animation Analysis

One approach to performing animation analysis of foliage triangles simplified
by the same billboard is based on numerical analysis of trajectory coordinates.
Given a sequence of position samples of each triangle taken uniformly over the
entire animation cycle, the time values t corresponding to the position samples
are denoted frames in the following.

First, the trajectories are mapped to a common origin by subtracting the vec-
tor from the origin to the trajectory position at t = 0 from all sample positions
for each trajectory. Deviation between two trajectories can then be defined
as the absolute difference between position coordinates for each sample. To
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average a set of trajectories, a näıve approach could be numerically averaging
the position coordinates of all trajectories for each frame, hence yielding an
average trajectory for the billboard in question.

The deviation measure of this approach is very strict. Trajectories that are
not equal or parallel score high deviation values. Even two trajectories that
are time-offset equal or time-offset parallel get a high deviation value. An
example of the latter is illustrated in Figure 4.1. This is undesirable, as we
would like to simplify triangles with, for example, rotated trajectories by the
same billboard. Also, when using the näıve approach to compute an average
trajectory, trajectories may cancel each other out, e.g. when averaging two
reflected trajectories, generally resulting in less movement speed and distance.
This is also illustrated by the example trajectories in Figure 4.1.

Figure 4.1: An example of two trajectories that are time-offset parallel which yield a
high deviation value. To the left the trajectories are mapped to a common origin (the
filled dots denote trajectory positions at t = 0). To the right it can be seen that the two
trajectory positions denoted with non-filled dots yield a high deviation value in that frame.
Furthermore, when averaging the trajectories they cancel each other out, hence resulting
in a trajectory that yields the same position for every time value. This compromises the
distance property.

A suggestion for solving this problem is to handle movement speed and
direction separately. Deviation is instead based on two terms, namely difference
in direction and difference in speed, and an average trajectory is obtained by
averaging each term separately. This strategy also has some problems. For
example, it does not guarantee that the average animation is cyclic, i.e. it
always starts and ends in the same point.

Other Euclidean animation analysis approaches could be taken. To exem-
plify, we could represent the movement of an animated foliage triangle by sam-
pling its movement uniformly over its animation cycle, and then approximate
the sample points with splines, e.g. cubic Bézier curves [30]. However, we
choose to focus on spectral analysis of animation, which is the topic in the
following sections.

4.4.2 Spectral Animation Analysis

Another approach to animation analysis is to employ spectral analysis of the
animation of foliage triangles. Spectral analysis performs a transformation on
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an input signal, i.e. a function of time, resulting in a frequency spectrum that
specifies the frequency content of the signal. Spectral analysis can be used for
analyzing the animation of triangles, for example by applying it to the three
one-dimensional px, py, and pz functions of a trajectory. The details on how to
apply spectral analysis on animated triangles will be the topic of later sections
in this chapter.

When used for animation analysis, spectral analysis effectively isolates the
properties of movement speed and movement distance as frequency and ampli-
tude. Furthermore, a spectrum contains phase information that implicitly yields
time-offset properties. When two trajectories are time-offset parallel or time-
offset reflected, their spectra will be equal, except for the phase information.
This separation of properties enables discarding phase information, and hence
correctly conclude two time-offset animations to be visually similar and have
low deviation. However, problems arise, when discarding phase, as will be
discussed in Section 4.6.

Determining the deviation of two animated triangles involves comparing
their frequency spectra. The average animation of a set of animated triangles is
similarly obtained by averaging their spectral content. Deviation and average
definitions based on spectral analysis will be discussed in Section 4.6.2.

Spectral analysis has another nice property when used for analyzing the
animation of foliage triangles in a CASTM. As noted in the observations of
real trees in Section 1.5 on page 29, the large branches close to the trunk
move slowly due to their rigidity, while the small branches far from the trunk
are more flexible and hence move faster. It is further noted that leaves in
several common tree species tend to be positioned in the outer levels, and their
animation must be the result of a sum of several branch motions of different
frequencies. Assuming that these features are also present in the given CASTM
to be simplified, then the frequencies of the different branches will be explicitly
represented in the spectra obtained by analysis of animated foliage triangles.

To be able to explain in details how we apply spectral analysis to animation,
the general concept of spectral analysis is summarized in the following section.

4.5 Spectral Analysis

In the following, the Fourier Transform of a continuous function is introduced.
However, a discontinuous input function is more practical for our purposes, and
to be able to analyze a discontinuous function, the Discrete Fourier Transform
is introduced. The following is based on Smith’s book [25].

4.5.1 The Fourier Transform

The Fourier theorem states that any periodic function x(t), may be expressed as
the sum of a series of sinusoids of different frequencies. A sinusoid is a function
of the form:

s(t) = A sin(ωt + ϕ),
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where A is amplitude, ϕ is phase, and ω is frequency. A series of sinusoids may
be expressed as a function that for a given frequency ω yields an amplitude A
and an initial phase value ϕ:

X(ω) = 〈A,ϕ〉

Such a function is called a frequency spectrum. In the following, we will
simply use the term spectrum meaning frequency spectrum.

Complex sinusoids are like real-valued sinusoids, with an imaginary part in
phase-quadrature with the real part, meaning that the phase of the real and
imaginary parts always differ by π

2 . A complex sinusoid with amplitude A,
frequency ω, and initial phase ϕ is given by:

s(t) = A cos(ωt + ϕ) + Ai sin(ωt + ϕ),

where i =
√
−1. According to Eulers Identity eiθ = cos θ + i sin θ, this term can

be simplified to:

s(t) = Aei(ωt+ϕ)

Generally speaking, the Fourier transform maps an arbitrary function to a
function which is composed of a sum of sinusoids. If the input function is x(t),
we can for any frequency ω find the amplitude and initial phase of the sinusoid
with frequency ω present in x(t). The Fourier transform is given by:

X(ω) =
∫ ∞

−∞
x(t)e−iωt, X : R ⇀ C,

where e−iωt represents a complex sinusoid with frequency ω. From X(ω) =
x + iy we can calculate the amplitude A and phase ϕ of the sinusoid with
frequency ω present in x(t):

A(ω) = | X(ω) | =
√

x2 + y2

ϕ(ω) = tan−1 y

x

The Fourier transform is invertible and thus the original signal can be recon-
structed from the sum of sinusoids. This operation is called the Inverse Fourier
transform.

4.5.2 The Discrete Fourier Transform

As the Fourier transform is impossible to evaluate in the general case, practical
spectral analysis employs the Discrete Fourier Transform (DFT).

The input to the DFT is a uniformly sampled signal with N samples, rep-
resented by a complex vector x ∈ CN (the imaginary part is zero). When
the DFT is computed, N different complex sinusoids of different frequencies
are considered. These sinusoids, called the DFT sinusoids sk, are sampled
uniformly N times, yielding the function:
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sk(n) , k, n = 0, 1, ..., N − 1,

where k is the index of the frequency, and n is the sample index.
The output of the DFT is a function representing a discrete frequency spec-

trum X(ω) : R ⇀ C, from which we can calculate the amplitude and phase
of each of the N complex sinusoids sk(n). The complex sinusoids with the
determined amplitudes | X(ω) | can be summed to generate the original signal
x. Thus, the result X determines the frequency content of the original sampled
signal.

The sinusoid sk(n) has the frequency:

ωk =
k

N
2πfs =

k

N

2π

T
,

where fs is the sampling frequency of the input signal x, i.e. the reciprocal
of the time T between each sample of the signal, meaning that fs = 1

T . Each
sample x(n) is sampled at the time tn = nT . Thus, the frequencies of the
sinusoids are evenly distributed from 0 to N−1

N
2π
T ≈ 2π

T .
The amplitude of each complex sinusoid is assumed to be 1 and the initial

phase assumed to be 0, which yields

sk(t) = ei(ωkt)

and for the time tn it is

sk(tn) = ei(ωknT )

= ei2π k
N

fsnT

= ei2π k
NT

nT

= ei 2πkn
N

The Discrete Fourier Transform is a mapping of the signal into the frequency
domain, which is an N-dimensional Hilbert space (a vector space that is closed
under addition and scalar multiplication and has a well-defined inner product
operator) with the sampled sinusoid vectors as basis set. This mapping is per-
formed as the scalar product of the sampled signal x vector and the conjugate
of the sampled complex sinusoids sk (the conjugate inverts the imaginary part)
for each frequency ωk:

X(ωk) = 〈x, s〉 =
N−1∑
n=0

x(tn)sk(tn) =
N−1∑
n=0

x(tn)e−i 2πkn
N , k = 0, 1, 2, . . . , N − 1

The amplitude and phase of the complex sinusoids present in the signal may
be computed as the magnitude of the DFT for the given frequency, as shown in
Section 4.5.1 on page 63.

If we disregard phase, the intuition behind the DFT may be explained as
follows: If a sampled signal represents a sinusoid of a given frequency, the

65



Chapter 4. Spectral Analysis of Animation

scalar product with a signal of the same frequency yields a positive value rep-
resenting the amplitude, in contrast to the scalar product with a signal of a
different frequency, which given enough cycles of the two sinusoids will cancel
each other out and yield 0.

The DFT is easily implemented, but the unmodified DFT algorithm performs
in O(N2) time. A more efficient variant of the algorithm, the Fast Fourier Trans-
form (FFT), uses a divide-and-conquer approach and performs in O(N log N)
time. Efficient implementations of the FFT exist as open-source libraries that
may be employed in an application.

4.6 Spectral Animation Analysis in Detail

The spectral animation analysis approach depends upon the ability to map tri-
angle trajectories to the frequency domain. Let p(t) = (px(t), py(t), pz(t)) de-
note a triangle trajectory. A such can be mapped into the frequency domain by
computing the DFT on each of the coordinate functions, px(t), py(t), and pz(t).
As the animation of a foliage triangle in a CASTM is cyclic, these coordinate
functions will be periodic. Thus, applying the DFT computes the frequency
content and phase information of the movement along each axis. The three
spectra computed can be transformed back to the original animation by com-
puting the inverse DFT of each spectrum and applying the resulting motion
along the axis corresponding to the spectrum.

4.6.1 Trajectories and Spectra

Figure 4.2 illustrates an example two dimensional trajectory, p(t), given by:[
px(t) = 10 · sin(t + π/2)
py(t) = 10 · sin(t) + sin(30t)

]
If the DFT is applied on each of the trajectory coordinate functions, it yields

the two axis spectra, Xx(ω) and Xy(ω) shown in Figure 4.3 on the next page.
In the spectrum for the x-axis movement it can be seen that the animation

contains a single frequency in this axis, while the spectrum for the y-axis con-
tains two frequencies. The low frequency present in both spectra defines the
overall circular shape of the trajectory, whereas the high frequency with low
amplitude present in the y-axis spectrum prevents the trajectory from being a
perfect circle. Furthermore, each frequency in the spectra has an initial phase
value, which is not illustrated, but the frequency in the x-axis spectrum has an
initial phase value of π/2, while both frequencies in the y-axis spectrum has an
initial phase value of zero.

Visually, the trajectory appears to be moving slowly in a circle, while also
performing a smaller fast movement along the y-axis. Hence, the animation
contains both slow and fast movement, which, as expected can be identified as
low and high frequencies in the spectra. Likewise, the relatively small distance
property of the fast movement can be identified in the spectrum for the y-axis as
a small amplitude. In Section 4.4.2 on page 62 we stated that spectral analysis
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Figure 4.2: Example trajectory.

(a) Xx(ω). (b) Xy(ω).

Figure 4.3: Spectra for the x- and y-axes of the trajectory shown in Figure 4.2. The
frequency ω is measured in periods per signal length.
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of animation effectively isolates the animation properties speed and distance as
frequency and amplitude, which is illustrated by this example.

The trajectory of a foliage triangle in a CASTM is typically defined by rota-
tion of large branches close to the tree trunk, and rotation of smaller branches
further from the trunk. Assuming that the large branches rotate slowly due to
their rigidity, and that the smaller flexible branches rotate faster, the different
branches will be represented in the axis spectra at different frequencies.

The initial phase content of the axis spectra influence the time-offset of
trajectories, and two time-offset equal trajectories will have equal spectra when
disregarding phase values. However, initial phase also influences the shape
property of an animation. Figure 4.4 illustrates this in two dimensions. The
three trajectories illustrated all contain the same amplitude in the x- and y-axes
for some frequency. However, the initial y-phase, ϕy, is different in the three
trajectories, which results in the different shapes illustrated.

(a) ϕx = ϕy = 0. (b) ϕx = 0; ϕy = π. (c) ϕx = 0; ϕy = π
2

.

Figure 4.4: Three trajectories with the same amplitude in the x- and y-axes for a single
frequency, but different initial y-phase values.

It is not trivial to interpret the visual effect of initial phase content in the
axis spectra, as it defines both time-offset and shape; properties that should
somehow be separated.

4.6.2 Spectral Descriptions

An animation description type can be created based on spectral analysis of ani-
mation. An animation description of a triangle created using such an approach
is referred to as a spectral description. A straightforward spectral description is
obtained by applying the DFT on the trajectory coordinate functions for a tri-
angle to yield three axis spectra. These spectra constitute a spectral description
of the animation of a triangle.

The deviation function of a description type is used to conclude which tri-
angles have similar animations, and hence is suitable for sharing a common
animation. Two spectral descriptions can be compared by comparing the spec-
tra for each coordinate axis. A näıve approach could be computing the sum
of the difference between amplitudes for all frequencies and the sum of the
difference between initial phase values for all frequencies, and multiplying the
two sums.
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average defines an average animation of a set of spectral descriptions, and
is used to define a suitable animation for an animated billboard simplifying a
set of triangles. A näıve approach to averaging spectral descriptions is simply to
average the amplitude and phase content at each frequency in the axis spectra.

Finally, a spectral description can be used to define an animation of a trian-
gle by using the inverse DFT on each axis spectrum to obtain a triangle trajec-
tory, which is used by apply to animate a billboard with the average animation
of its simplified triangles.

Summary

The concept of animation description types were defined in this chapter, as a
formalization of what we need from an animation description approach. Dif-
ferent properties of animation have been identified, and it has been discussed
which of these properties are judged important to preserve in a simplification.
The Fourier Transform has briefly been introduced, and is the basis of spectral
analysis of animation. How the Fourier Transform can be applied to the tra-
jectory of a triangle to yield an animation has been discussed, and it is argued
why spectral analysis separates the animation speed and distance properties
from the other animation properties.

Our goal is to design solutions to the problem of simplifying the foliage part
of a CASTM using an animated billboard cloud. One of our solutions, Spectral
Clustering, is based on spectral analysis of animation, and makes direct use of
spectral animation description types. The approaches for computing deviation
and average presented in this chapter are not necessarily suitable for deter-
mining which triangles should share billboards, or determining how to animate
billboards. In Chapter 6 the Spectral Clustering solution is designed, and in the
process, several more advanced approaches to defining spectral descriptions
are discussed. The different spectral animation description types proposed are
related to the animation properties in order to evaluate their suitability for our
purposes.
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Animated Billboard Cloud
Construction

In Chapter 3 we presented billboard cloud construction strategies. We discussed
error- and budget-based billboard cloud algorithms, and how the quality of the
simplification could be measured in terms of cost and error. Cost was defined as
the complexity in rendering the billboard cloud model, and error was defined
from different metrics stating where the triangles are positioned; ε does it in
Euclidean space, while the colour and depth error metrics do it in image space.

In this chapter we present animated billboard cloud construction strategies.
Given a CASTM our goal is to output an animated billboard cloud LOD version
of its foliage, that retains visual fidelity to the foliage in the input model. But
what does ”visual fidelity” mean in this context? We define and discuss a set
of objective measures for visual fidelity of an animated billboard cloud sim-
plification in Section 5.1. Cost and error terms for animated billboard cloud
construction are then discussed, followed by a presentation of three different
strategies for performing animated billboard cloud simplification of the foliage
part of CASTMs with high visual fidelity. This happens in Section 5.2. These
strategies will serve as the basis for our solutions, which are presented in the
chapters to follow.

5.1 Error Metrics for Animated Billboard Clouds

To be able to design algorithms for automated billboard cloud simplification of
CASTMs, we need to be able to formally state the goals of such algorithms. We
do so in terms of error metrics, which can be used to measure the quality of the
animated billboard cloud simplification of a CASTM, and a set of such will be
presented in this section.

5.1.1 Euclidean Distance Metrics

When an animated foliage triangle is simplified with an animated billboard,
the distance between the actual position of the triangle in the input CASTM
and its position on the billboard clearly has impact on the visual fidelity of the
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simplification. Note that this distance is variable during the animation cycle and
should therefore be analyzed over the key frames, e.g. by finding the average
or maximum distance.

When simplifying a static triangle with a static billboard, the distance from
the actual triangle position to its simplified position is equal to the distance from
the triangle to the billboard. For animated triangles and billboards this is not
the case, as the triangle is simplified to a single position on the billboard, even
though its projected position on the billboard might vary during the animation.
Some animation simplification schemes may handle one aspect of simplified
displacement better than others, and to be able to separate the distance to
the billboard from the variation in position in the billboard plane, distance is
measured in two different values:

Plane distance : The shortest distance from a foliage triangle to its simplifying
billboard, Dplane.

Projected distance : The distance between the simplified position of a foliage
triangle and the projected position of the foliage triangle, Dprojected.

Figure 5.1 illustrates plane distance and projected distance.

Figure 5.1: Plane distance Dplane and projected distance Dprojected.

The Euclidean vertex displacement, the actual distance between the original
position and the simplified position, can be computed by

Deuclidean =
√

D2
plane + D2

projected.

The distance can be any value larger than 0. The metric is normalized to
a value between 0 and 1 using the normalized error function as described in
Appendix A.1, where 0 signifies no distance and 1 signifies infinite distance.
Thus, we define:

Plane distance metric:
NE (Dplane)

Similarly, the projected distance metric is defined as:

Projected distance metric:

NE (Dprojected)
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5.1.2 Orientation Metric

Difference in orientation has an impact on the visual fidelity when considering
billboard simplification of both static and animated polygonal models. If the
normal of a static foliage triangle is different from the normal of the static
billboard onto which it is simplified, then the foliage triangle is not correctly
represented on the static billboard.

Even though the normal of a simplified triangle is aligned with the normal
of the original triangle, the orientation may still be incorrect, as the simplified
triangle may be rotated around the axis of the normal. To capture this differ-
ence in direction, we assume that vertices in the foliage triangles are indexed
and define the direction of a foliage triangle to be the vector from the centroid
of the triangle to the vertex with index 0. The simplified direction can then be
compared to the original direction.

Assuming that the normal of the original triangle n and the simplified
triangle ns are normalized, and that the original triangle direction d and the
simplified triangle direction ds are normalized, the difference in orientation
can be expressed as a number between 0 and 1, where 0 denotes no difference
in orientation and 1 denotes maximum difference in orientation (maximum
difference in orientation is obtained when n · ns = −1 and d · ds = −1). In
the following definition, recall that the dot product of two normalized vectors
yields a number between -1 and 1. We define the orientation metric as:

Orientation metric:

1− (n · ns + 1)(d · ds + 1)
4

If the texture of the foliage triangle is symmetric around the axis coincident
with d, the normal may be inverted without losing visual fidelity.

Similar to the distance error metrics the difference in orientation varies
during the animation cycle, and should therefore be averaged over a number
of key frames, for example.

5.1.3 Colour Metric

The colour metric approximates the visual fidelity of the entire simplification of
a CASTM, focusing only on rendered pixels.

When rendering each billboard, the billboard is the exact image of the sim-
plified foliage geometry as seen from a particular view direction in a particular
frame, perspective and aliasing issues aside. However, when the simplified
model is rendered from an arbitrary direction in a frame, the billboards will
not be view-aligned in general, and the resulting rendering of the foliage may
look “sparser” than the original foliage of the input CASTM. Furthermore, the
rendered geometry has been displaced to be rendered on the billboards, and
thus the resulting animated billboard cloud foliage may have a different apper-
ance than the original foliage. Although the world space displacement of each
triangle already is captured by the Euclidean distance metric, another approach
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for evaluating the result is to view the difference in the rendered pixels of the
original and simplified models.

An issue that needs attention is that the original and simplified models may
be observed from any direction in a frame. To address this issue when com-
puting the colour metric, the original and simplified models must be compared
from a finite set of view directions. Certain view directions are often preferred
in certain applications, e.g. in a first-person application, the simplified model
will normally be viewed from the side and not from the top (or bottom). In such
an application, the viewing directions will be limited to those starting from a
circle around the tree model and pointing towards the model.

Recall that the animated billboard cloud model will be used in a LOD
scheme at a specific distance interval. Given a screen resolution, it is assumed
that an average resolution w × h of the rendered image can be computed,
yielding P = w · h pixels.

To avoid aliasing issues influencing the colour metric too much, the colour
metric only evaluates to which pixels in the rendered image foliage triangles
have been rendered and to which pixels no foliage triangle has been rendered.
In the case of the simplified model, the pixels that have been rendered to in-
clude all the pixels where not all the rendered billboards have been transparent
at that particular pixel. Thus, an image rendered from a given view direction d
can be expressed as a vector i, where ip ∈ 0, 1 for p ∈ 0..P . ip = 1 signifies that
something has been rendered at pixel p, and ip = 0 signifies that nothing has
been rendered at pixel p. Thus, given a set of D view directions and a set F of
uniformly sampled frames, an image vector id can be computed for each view
direction, d, and sample frame, f .

To evaluate the colour metric, an image vector for the original model, od,
and the simplified model, sd, is computed for each view direction d and sample
frame f . A view direction colour error is computed for each view direction as
the number of pixel differences divided by the number of pixels with rendered
foliage, Pf , in the rendering of the input CASTM. Thus, the colour metric relates
the number of pixel differences with the number of pixels actually rendered,
thus obtaining the fraction of the pixels rendered, that are different. The colour
metric can then be computed as the average colour error for all sample frames,
for all view directions. If the metric is 0, it signifies no difference in pixels
rendered from any angle. Principally, the metric can yield values larger than 1
(e.g. all other pixels are rendered to when rendering the animated billboard
cloud, than those rendered to when rendering the CASTM). If this happens, the
animated billboard cloud model is judged to have no low visual fidelity to the
CASTM. Hence, all values larger than 1 are discarded.

Colour Metric : ∑D
d

∑F
f

∑P
p | od ,f ,p − sd ,f ,p |

Pf · F ·D
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5.1.4 Animation Metrics

In this section we define some animation specific metrics, which can be used
to compare different animation properties of the foliage part of a CASTM and
its simplifying animated billboard cloud (recall the animation properties from
Section 4.2 on page 58).

If the plane distance metric and projected distance metric, as well as the ori-
entation metric, yield values close to zero during the entire animation, it would
imply that the CASTM is simplified by an animated billboard cloud of high
visual fidelity, which preserves all animation properties. These metrics are thus
already related to the animation properties, so why introduce further animation
specific metrics? For the foliage part of a given CASTM it might be impossible
to simplify it to a specific number of billboards, unless relatively large values
for plane- and projected distance error and orientation error are introduced.
In this case, however, the simplification could still attempt to preserve some
animation properties of the CASTM, e.g. the overall animation distance and
speed. Hence, we introduce some metrics specific for animation.

The metrics we introduce are based on spectral analysis and attempts to
capture the animation orientation property, as well as the properties distance
and speed. In order to express these properties for a triangle trajectory, a
local axis of its movement is computed. It is important to emphasize that
these metrics represent one way of evaluating the visual fidelity in regards
to animation from a spectral-based approach. Other, possibly better, spectral-
based animation metrics might exist.

Given a trajectory and some axis, the trajectory can be approximated as a
one-dimensional animation on this axis, by mapping the trajectory onto it. If
the trajectory is sampled, then each sample is mapped onto the closest point
on the axis. A centroid for the trajectory is found on the axis, which will be
its origin. Also, a direction along the axis is picked as the positive movement
direction; which of the two directions is picked does not matter. We can define
a scalar function x(t) that describes the movement of the triangle along the axis
to time t, and hence the new one-dimensional triangle trajectory.

We define the dominating movement axis as:

Dominating movement axis : The dominating movement axis of a triangle
trajectory is the axis that has the largest distance between two samples of
the trajectory, when the trajectory is projected onto this axis.

The dominating movement axis of a trajectory, as well as the new trajectory
obtained by mapping the original onto the dominating movement axis, are
illustrated in Figure 5.2.

If a trajectory is sampled using relatively few samples, its dominating move-
ment axis may be found by performing a brute-force search of all pairs of sam-
ples in the trajectory for the pair of samples with the largest distance between
them. The axis through both samples is the dominating movement axis.

The animation metric simplifies animation analysis to only consider a sin-
gle axis. This is an obvious approximation of the actual animation, and by
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(a) The dots represent the position samples
of the trajectory represented by the dashed
curve. The dominating movement axis is
represented by a solid line.

(b) The solid dots represent position samples
of the new trajectory obtained by mapping
the original trajectory onto the dominating
movement axis.

Figure 5.2: The dominating movement axis of a trajectory, and how the trajectory is
mapped onto the axis to yield a new trajectory.

choosing the dominating movement axis we seek to minimize the error in this
approximation.

By applying DFT on the simplified animation x(t), obtained by mapping a
triangle trajectory onto the dominating movement axis, a frequency spectrum
is obtained. The intuition behind the animation metric is, to compare the con-
tent of this spectrum created for a triangle trajectory in the original animated
foliage, and the trajectory of this triangle in the simplification (which, in fact,
is a trajectory of the point on a billboard onto which the triangle center is
simplified).

The metric based on dominating movement axis animation is as follows. Let
at and ab be two normalized vectors pointing in the direction of the dominating
movement axis of the foliage trajectory and of the trajectory of its simplified
position, respectively. If the angle between at and ab is greater than 90 degrees,
i.e. at · ab < 0, we invert one of them to obtain the difference in orientation
between the axes represented by the vectors. Let Xt(ω) and Xb(ω) be the
spectra obtained by applying DFT on the dominating movement axis animation
of the original triangle, and on the dominating movement axis animation of its
simplified position on a billboard, respectively. The dominating axis metric is
then:

Dominating Axis Metric :

(1− at · ab)NE (amplitudeDistance(Xt(ω), Xb(ω))),

where amplitudeDistance is a function that yields the sum of amplitude differ-
ence for each frequency in two spectra, and NE is a normalization function,
normalizing this sum to the range [0; 1] (see Normalized Error in Appendix A
on page 155).

If the metric yields a value of 0, then the dominating movement axes have
the same orientation, and the amplitude content in the two dominating axes
spectra is likewise equal. The closer the value yielded by the metric is to 1, the
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more different the two animations are estimated to be. The metric indicates
whether the triangle and its simplified position on a billboard moves in a similar
direction, with a similar speed (i.e. frequency), and with similar movement
distances (i.e. amplitude) in that direction. In regards to the trajectory relations
from Section 4.3 on page 60 the dominating movement axis metric will yield
a score value of 0 for the trajectories of the triangle and its simplified position
on the billboard in the equal, parallel, and reflected relations (and in the time-
offset versions of these relations). On the other hand it will yield high scores
in the rotation relation. and in deviation in the amplitude content in the two
dominating movement axes spectra.

It might be hard to achieve a low cost billboard cloud that scores a low error
value in the dominating axis metric, since only foliage triangles with animation
in similar directions can share a billboard. Therefore, we introduce a weaker
animation metric, comparing the dominating movement axis spectra only:

Dominating Axis Spectral Metric :

NE (amplitudeDistance(Xt(ω), Xb(ω)))

This metric will yield a score value of zero in the same trajectory relations
as the dominating movement axis metric, with the addition of the rotation
relation, implying that this metric yields a score value of zero for congruent
relations.

5.1.5 Discussion of The Metrics

If the Euclidean distance and orientation metrics are close to 0 in every frame,
the simplification should exhibit high visual fidelity throughout the animation.
However, achieving this for a low number of billboards may be intractable.
Demanding that every foliage triangle is simplified close to its original position
may not be paramount, as the triangles are very similar in appearance, and they
could exchange positions without any apparent difference in visual fidelity.

The orientation metric may also be less important for visual fidelity, as in-
dividual leaves normally will be small and a difference in orientation will be
indistinguishable in any but the closest positioned renderings.

Unlike the Euclidean distance metrics, the colour metric ignores triangles
that have exchanged positions in the simplified model, based on the intuition
that different foliage triangles in foliage cannot be distinguished by the ob-
server. Intuitively, if the colour metric is close to 0 in a given frame of the
animation, the simplification should exhibit high visual fidelity in that frame.
Evaluating the colour metric alone, however, ignores the relationship between
consecutive frames in the animation. Clusters of triangles or billboards that
move with a common animation are recognized by an observer and suggest a
coherent structure (i.e. a common branch in a tree model).

The animation metrics capture the property of common animations, even
though they only consider animation on the dominating movement axis. The
distance and colour metrics state where the foliage triangles are positioned (in
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Euclidean space and image space, respectively), while the animation metrics
state how the triangles are animated. The animation metrics do not take the
exact position into account. As an example, the dominating movement axis
metric error of a triangle with a trajectory that is parallel to the trajectory of
its simplified position is 0. The animation metric that ignores the dominating
movement axis direction may be used, if it is deemed important that the tree
exhibits the same amount and speed of movement, but not necessarily in the
same axes. If a simplified model is viewed from afar, it may only be important
to have the same amount and speed of movement, as the movement direction
may be indistinguishable.

The colour metric states where foliage triangles are positioned in image
space. Similarly, it could be interesting to devise an image-based animation
metric. This will not be discussed further, though.

If a simplification yields low values with the colour metric as well as an ani-
mation metric, it suggests visual fidelity in every frame and coherent animation
structures. Together, this should yield an overall high visual fidelity.

5.2 Animated Billboard Cloud Construction Strategies

We have devised three different strategies for doing animated billboard cloud
simplification of CASTMs. We refer to them as strategies, as several different
solutions following one of our strategies can be designed. A strategy makes
it possible to simplify a model to a variable number of billboards, such that
animated billboard clouds suitable for different LODs can be produced.

In this section we will present our strategies and explain the steps involved
in each of them. First, however, we discuss cost and error terms in relation to
animated billboard clouds, as well as budget- and error-based approaches to
the construction of such.

It is important to note that our three strategies do not represent the defini-
tive approaches. Other (possibly better) strategies could exist.

5.2.1 Quality of Simplification

Recall the cost and error terms introduced in Section 3.2.2 on page 43 for
static billboard clouds. We define the cost of an animated billboard cloud to
be in correspondence with its rendering complexity, which is similar to the
rendering complexity of a static billboard cloud, with the addition of the cost of
performing the animation of each billboard. Cost can be objectively expressed
in terms of number of billboards, size of billboards and textures, as well as
the cost associated with animation, such as the number of bones. Error is still
defined in terms of the visual error introduced by replacing the foliage part of
a CASTM with an animated billboard cloud LOD model. Different metrics have
been defined for objectively measuring error in Section 5.1 on page 70.

The budget- and error-based approaches introduced in Section 3.2.3 on
page 43 to construct a billboard cloud for a static polygonal model make sim-
ilar sense when considering simplification of the foliage of a CASTM using an
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animated billboard cloud. An example of an error-based approach is to cluster
foliage triangles based on a maximum allowed plane and projected distance
metric errors, and then seeking to minimize the cost in terms of number of
animated billboards, while respecting these error thresholds. An example of a
budget-based approach is to specify maximum allowed cost (budget) in terms
of number of animated billboards, and then cluster triangles while seeking to
minimize the plane and projected distance metric errors, as well as the domi-
nating axis metric error, and still respect the budget.

In the following the devised strategies for simplifying the foliage part of a
CASTM using an animated billboard cloud will be presented.

5.2.2 Static Co-planar Clustering

What if we just consider how the foliage geometry of the input CASTM is po-
sitioned in one pose? We could then apply a billboard cloud algorithm on
this static foliage and subsequently animate each billboard in a fashion that
satisfies the animations of the foliage triangles simplified by it. This could seem
an intuitive approach to create the animated billboard cloud for the foliage,
and it is the idea behind this solution strategy. To put it in steps, we:

1. Create a static pose of the animated foliage in the input CASTM.

2. Create a static billboard cloud for the static foliage geometry using a
traditional billboard cloud algorithm.

3. Define the animation of each billboard.

Creating a static pose of the animated foliage can be done in different ways.
To exemplify, we can either choose the pose from a keyframe, e.g. the first or
the last keyframe, or we can calculate an average position of each triangle over
the animation cycle.

Once we have created a static pose of the animated foliage, we create a
static billboard cloud of the foliage using a traditional billboard cloud algo-
rithm, e.g. the Original Billboard Cloud Algorithm or the Stochastic Billboard
Cloud Algorithm. The number of billboards produced can be adjusted indirectly
if resorting to an error-based billboard cloud algorithm is used, or directly if
using a budget-based billboard cloud algorithm.

Finally, the animation of each billboard must be defined. From some anal-
ysis of how the triangles move, the billboard should be animated in a way that
attempts to imitate the animation of as many of the triangles it simplifies as
possible. However, it may not be possible to find a common animation with
high visual fidelity for a set of triangles simplified by the same billboard. Since
triangles have been clustered (i.e. simplified onto billboards) based on co-
planarity in one pose alone, it is not guaranteed that triangles in a given cluster
have similar animation behaviour. As an example, they could be in counter
phase, or move in entirely different shapes. It is thus not trivial to determine a
suitable animation of the billboards.
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The success of this strategy depends upon the animation definition step, i.e.
analyzing the animation of triangles and defining a common animation for all
triangles. As hinted, this might prove to be a fundamental problem with this
strategy.

Basically, the fact that we disregard the animation of the foliage when clus-
tering the leaf triangles seems to be a bad approach, at least if the animations of
the billboards should be faithful to the original animation of the foliage when
observed at close range. On the other hand, following this strategy we might be
able to produce convincing animation simplification of the foliage in a model
placed on a far-away distance from the observer.

If we want to perform animation simplification of high visual fidelity of the
foliage part of CASTMs, a much more reasonable approach might be to take the
animation of the foliage into consideration when determining which triangles
should be simplified by a billboard. This constitutes the basis for the other two
strategies.

5.2.3 Bone Clustering

The idea behind the Bone Clustering strategy is based on the observation that
all geometry attached to a single bone share the same bone rotation animation.
Hence, the position of each triangle relatively to the other triangles attached to
this bone is static. Therefore, a non-animated billboard cloud can be created
for this static geometry, and the billboard cloud is then animated simply by
attaching it to the bone. This is illustrated in Figure 5.3(a) and Figure 5.3(b).
It should be noted that the more a triangle is displaced from its original position
to its simplified position on a billboard, the more will its animation change.

In addition to being co-planar to some degree, triangles should thus be
attached to the same animation bone, if they are to share a billboard. If the
tree is animated using a non-trivial amount of bones, an individual billboard
cloud is created for each bone, which generally results in more billboards, com-
pared to the number of billboards obtained if a single billboard cloud is created
for the entire foliage part of a CASTM. Assuming that a maximum allowed
permutation distance is used to create the billboard clouds we might have to
increase the permutation distance to an unintentionally large value in order
to obtain a small number of billboards. This could yield bad visual fidelity.
Furthermore, the number of billboard clouds cannot be reduced any further
than the number of bones, which is an obvious limitation. For these reasons
we introduce common joint rotation simplification, which makes it possible to
reduce the number of individually created billboard clouds even further.

Common Joint Rotation Simplification

Consider two sibling bones in the skeleton. Both bones specify a rotation an-
imation around the same joint. If the rotation animations of two siblings are
replaced with a single average animation, then the triangles attached to these
bones can share billboards, as they perform the same rotation animation around
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(a) The non-filled dots repre-
sent two foliage triangle cen-
troids and the line represents
the billboard simplifying the
triangles. d1, d2, l1, and l2
denote the distances between
the billboard vertices and the
triangles, and between the tri-
angles and b, respectively. The
billboard vertices (the filled
dots) are attached to bone b,
thus b animates the billboard.

(b) b rotates, thus rotating the bill-
board and the two foliage triangle
centroids. The distances d1, d2, l1,
and l2 remain constant, implying that
the triangles remain fixed to their
simplified positions on the billboard
during the animation, and hence is
rotated correctly by the billboard.

Figure 5.3: Inter-distance of triangles attached to the same bone remains constant during
animation. Hence, a non-animated billboard can be created for this static geometry and
attached to the bone.

the same joint. We refer to this type of simplification as a common joint rota-
tion simplification, as the skeleton animation is simplified by defining common
rotations for the bones (siblings) contained in a joint. Common joint rotation
simplification is exemplified in Figure 5.4(a) on the next page and Figure 5.4(b)
on the facing page.

However, common joint rotation simplification cannot reduce the number
of individual billboard clouds further than the number of joints in the skeleton.
To remedy this shortcoming, we introduce bone reduction.

Bone Reduction

We define bone reduction as follows.

Bone Reduction: Bone reduction is an animation simplification procedure,
that, given a CASTM, produces a new skeleton with fewer bones and
with an animation similar to the original animation. The model geometry
is then attached to this new and more simple skeleton.

From this definition no restrictions are put on the skeleton simplification proce-
dure. Hence, using bone reduction we can produce an arbitrary new skeleton;
even one that has no structural relations in common with the input skeleton.
This is unsuitable, as we could then simply discard the input skeleton. Since we
want to use the animation skeleton of the CASTM, we introduce bone collapsing
as follows.
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(a) Before applying common joint ro-
tation simplification. Foliage triangles
attached to b1 and b2 cannot be simplified
onto the same billboards, because b1

and b2 have different rotation animations
represented by θ1 and θ2. The two
individual billboard clouds created are
illustrated by the two dashed volumes.

(b) After applying common joint rota-
tion simplification. The foliage trian-
gles attached to b1 and b2 can now be
simplified onto the same billboards, as
both bones now share a single average
animation, θa. Consequently, a single
billboard cloud can be created for the
two bones, illustrated by the single
dashed volume.

Figure 5.4: The effect of applying common joint rotation simplification illustrated.

Bone Collapsing: Bone collapsing is a bone reduction technique that uses the
following two operations:

• Sibling collapse: Two bones attached to the same joint in the skele-
ton (siblings), are replaced with a single bone attached to this joint,
which inherits the children of both replaced bones.

• Parent/child collapse: A parent bone and its only child bone
are collapsed into a new bone, which inherits the children of the
replaced child bone and becomes the child of the replaced parent
bone’s parent.

An example of using the sibling collapse simplification operation can be seen
in Figure 5.5 and an example of using the parent/child collapse simplification
operator can be seen in Figure 5.6 on the next page. Notice that both bone
collapse operations can be used to reduce the number of joints in the skeleton.

Strategy

Common joint rotation simplification and bone collapsing can be used to reduce
the number of individual billboard clouds needed for simplification, which in
general implies fewer billboards. In order to obtain a simplified model con-
taining a certain amount of billboards to be used for some LOD, we are able
to favor either precise animation (more bones and more unique bone rotation
animations per joint) or precise co-planarity (less permutation distance), when
creating the animated billboard cloud.
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(a) The children c1 and c2 of
bone p are to be collapsed into
a new bone.

(b) c1 and
c2 are now
collapsed into
the new bone c,
which inherits
the children of
c1 and c2 and
becomes the
child of p.

Figure 5.5: An example of a sibling collapse.

(a) The child bone c
and its parent bone
p are to be collapsed
into a new bone.

(b) c and p are now collapsed into
the new bone c′, which inherits the
children of c and becomes the child
of p’s parent, pp.

Figure 5.6: An example of a parent/child collapse.
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To sum up, the Bone Clustering strategy include these steps:

1. Perform bone collapses and common joint rotation simplifications in order
to reduce the number of individual billboard clouds needed for simplifi-
cation.

2. For each joint in the simplified skeleton, create a static billboard cloud
for each set of siblings that have been given identical rotation animation.
The billboard cloud can be created using a traditional static billboard
cloud algorithm.

3. Attach each billboard cloud to its associated bone, or, in case it was cre-
ated for a set of siblings with identical animation, attach it to any bone in
this sibling set.

The interesting part to design in a solution following this strategy is the
common joint rotation simplification and the bone collapsing procedures. If a
tree model contains a large amount of bones, a challenge is to select which
bones to collapse, and which siblings to give common rotation animations,
while still maintaining the overall animation appearance.

As mentioned, triangles should be attached to the same bone, if they are to
be simplified by the same billboard. Assume two or more foliage triangles with
similar trajectories, each attached to different bones that are placed very far
from each other in the animation skeleton. Consequently, only after a number
of bone collapses can these triangles be simplified onto the same billboard. This
is an important shortcoming of this strategy.

Assuming that billboard clouds are created using an error-based billboard
algorithm, where the triangle permutation distance is the error, this strategy
generally implies more billboards than a solution following the Static Co-planar
Clustering strategy. The intuition is that in order to share a billboard, the
geometry has to respect the maximum permutation distance in both strategies,
but it should furthermore be attached to the same bone in the Bone Clustering
strategy. The more criteria that has to be respected in order to share a billboard,
the more billboards will in general have to be used to simplify the model.

5.2.4 Animation Description Clustering

The idea behind this solution strategy is to cluster the animated foliage triangles
based on some analyzis of their animations. More precisely, the approach is to
cluster triangles based on an animation description type (defined in Section 4.1
on page 57).

An animation description type can be used to cluster animated triangles
with similar animations, as it formalizes animation similarity with a deviation
function. An animation description is created for each triangle, and the descrip-
tions are clustered based on the deviation function. When a set of descriptions
have been assigned to a cluster, a billboard cloud is created for the cluster. The
animation of each billboard is given by the average of animation descriptions
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of all triangles simpified on the billboard, which is supplied by the average
function of the animation description type.

In steps, the Animation Description Clustering strategy is as follows:

1. Cluster the foliage triangles according to some animation description
type.

2. Create a pose of the animated foliage.

3. Create a static billboard cloud for each animation description cluster us-
ing a traditional billboard cloud algorithm.

4. Define the animation of each billboard by applying the average animation
description of the triangles simplified by the billboard.

In order to obtain a reasonable amount of billboards for some LOD we can
choose to favor animation precision or a small co-planarity error. Which to
favor in order to get a desired number of billboards and the best visual fidelity
is obviously subject to experimentation. The essential part in this strategy is
defining a reasonable animation description type, which is critical for the visual
result.

Compared to the Bone Clustering strategy, a clustering by animation de-
scriptions can more effectively find and cluster triangles with similar animation
positioned very far from each other in the animation skeleton. Assume that two
triangles, t1 and t2, both attached to the outermost level of the skeleton have
similar triangle trajectories, but do not share many ancestors in the skeleton.
A such scenario is illustrated in Figure 5.7, where the ancestors of the bones
the two triangles are attached to are assumed to only rotate very small angles.
Given a reasonable animation description type, t1 and t2 yield a low devia-
tion, and will hence end up in the same animation cluster using the Animation
Description Clustering strategy.

A solution following the Bone Clustering strategy would have to perform
several bone collapses in order for these triangles to be able to share a billboard.
An example is sibling collapsing the two bones, b1 and b2, followed by sibling
collapsing the bones b3 and b4, which become siblings as a result of the first
collapse. The bones which t1 and t2 are attached to have now become siblings
and can share a billboard, if given a common joint rotation animation. As a
consequence of the collapses, all foliage triangles in the tree model will get
their animation simplified.

This example illustrates how the Animation Description Clustering strategy
is able to benefit from not being restricted to consider the skeleton structure. In
general we do not judge the example scenario likely in most tree models, but
still we consider the way the Animation Description Clustering strategy handles
this scenario a potential advantage.

Summary

In this chapter we have defined a set of error metrics used to objectively mea-
sure the quality of simplifying the foliage part of CASTMs. We came to the
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Figure 5.7: Foliage triangles t1 and t2 attached to different bones that perform identical
rotation animations. Using animation descriptions these triangles can be clustered
together. If, instead, following the Bone Clustering strategy, t1 and t2 can be simplified
onto the same billboard only after a number of bone collapses.

conclusion that if the Euclidean distance and orientation metrics are close to 0
in every frame, the simplification should exhibit high visual fidelity throughout
the animation. But, achieving this for a low number of billboards may be
intractable. A more suitable combination of error metrics is the colour and
animation metrics: If a simplification yields low values with the colour metric
as well as an animation metric, it suggests visual fidelity in every frame and
coherent animation structures.

Three different solution strategies were then presented. Following the Static
Co-planar Clustering strategy a static billboard cloud is created for the foliage
from one pose, e.g. the pose from the first frame, and an animation is found for
each billboard that imitates the animation of as many of the triangles simplified
by the billboard in question as possible. However, finding a common animation
for the triangles is not trivial. The essence in the Bone Clustering strategy is
the observation that all geometry attached to the same bone share the same
animation. Using the bone collapsing operations and common joint rotation
simplification, foliage triangles attached to different bones can eventually be
simplified onto the same billboard. In the final strategy, the Animation Descrip-
tion Clustering strategy, an animation description type is used to cluster foliage
triangles. Having clustered foliage triangles using the deviation function of a
chosen animation description type, and applied a billboard cloud algorithm on
the foliage in a pose, each billboard is animated using the average function of
the animated description type, in order to determine an average animation of
the foliage triangles simplified by the billboard in question. Following the An-
imation Description Clustering strategy, it is not required that the input model
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is a CASTM, because the polygonal tree model does not have to be rigged with
an animation skeleton.

In the following chapters we present solutions following the Bone Clustering
and Animation Description Clustering strategies.
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Spectral Clustering

Spectral Clustering is a solution following the Animation Description Clustering
strategy. The foliage to be simplified is not required to be animated using
skeleton animation. Assuming skeleton animation, however, makes several im-
provements possible, as will be discussed in addition to the Spectral Clustering
algorithm.

The algorithm creates a spectral description of each foliage triangle in the
CASTM to be simplified and clusters these descriptions using k-clustering. Bill-
board clouds are created using the Stochastic Billboard Cloud Algorithm.

The Spectral Clustering solution is not specifically designed for a certain
animation description type, and may in principle use any given type. However,
the quality of the simplification is greatly dependent on the soundness of the
animation description type applied.

This chapter starts with a thorough discussion of different spectral-based
animation description types in Section 6.1, including the shortcomings of each.
After this, the Spectral Clustering solution algorithm is presented in Section
6.2. A general spectral animation analysis related improvement is presented
in Section 6.3, followed by another improvement in Section 6.4 that utilizes
the skeleton of the CASTM. The chapter is concluded with an evaluation of the
simplification performed by the solution in Section 7.6.

6.1 Spectral Animation Description Type

Recall that the first step in the Animation Description Clustering strategy is to
cluster all triangles based on some animation description type. An animation
description type must define a deviation function, which can be used to de-
termine which triangle are suitable for sharing a common animation. When
a set of triangles are simplified to a single animated billboard, a reasonable
animation of it is yielded by the average function of an animation description
type.
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6.1.1 Description Type Preferences

Using spectral analysis to define a reasonable animation description type is not
trivial. Spectral analysis of triangle trajectories was introduced in Section 4.6
on page 66, but to briefly recap, the idea is to apply the DFT on each of the
periodic trajectory coordinate functions px(t), py(t), and pz(t). This yields three
coordinate axis spectra describing the triangle animation in terms of frequency,
amplitude, and phase. Frequency was identified as describing the animation
property speed, amplitude as describing distance, while phase describes both
relative time-offset and shape.

When simplifying the foliage part of a CASTM, it is judged important to
attempt to preserve the speed, distance, and shape animation properties as
much as possible as mentioned in Section 4.2 on page 58. On the other hand,
time-offset relative to other triangle trajectories was judged insignificant for the
visual appearance of a triangle in a foliage model, and we hence encourage sim-
plification of triangles with time-offset equal trajectories on a single animated
billboard.

Here, we list three preferences for a spectral animation description type:

• The descriptions of two triangles with time-offset equal trajectories
should get no deviation.

• The descriptions of two triangles should yield deviation relative to the
amount of difference in both speed, distance, orientation, and shape, i.e.
if there is only a minor difference in these properties, a low deviation is
expected, while a large difference should imply a high deviation.

• If a set of triangles move with similar speed, distance, shape and ori-
entation, then the average of their descriptions should yield an average
description, that when applied to a triangle yields an animation also with
a similar speed, distance, and orientation.

In the following, three different analysis approaches will be discussed. The
Näıve Spectral Description Type is straightforward, but does not yield low de-
viation values for time-offset equal triangle trajectories. Two approaches fol-
low, namely the Dominating Axis Description Type, that constricts analysis of
trajectories to a single axis, and the Axis-phase Description Type. Both these
approaches attempt to remedy the shortcomings of the näıve approach.

6.1.2 Näıve Spectral Description Type

In this section we present a straightforward definition of an animation descrip-
tion type based on spectral analysis of animation.

In the following, the amplitude-weighted phase average, ϕa
ω, of the phase

values in N spectra for a certain frequency, ω, equals the average of the N
phase values weighted with the respective amplitude values for ω:

ϕa
ω =

1∑N
i=1 Ai

ω

N∑
j=1

Aj
ωϕj

ω
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Intuitively, the phase value with the highest amplitude for some frequency
will influence the average phase value for that frequency more than the other
spectra.

Along the same lines, the amplitude-weighted phase difference between two
spectra equals the sum of amplitude-weighted phase difference between each
spectrum and the amplitude-weighted phase averages of the two spectra:∑

ω

difference(ϕ1
ω, ϕa

ω) + difference(ϕ2
ω, ϕa

ω)

Phase values are specified in the cyclic range [0; 2π], and the difference
between, or the average of such, values is found as described in Appendix A.4
on page 156.

The description type is an elaboration of the spectral description type briefly
introduced in Section 4.6.2 on page 68. The functions constituting the Näıve
Animation Description Type are:

description(tr): An animation description, d, of a triangle, tr , is obtained by
applying the DFT on each of the triangle trajectory coordinate functions,
px(t), py(t), and pz(t). This yields three spectra, Xx(ω), Xy(ω), and
Xz(ω), which constitute the description. We refer to these spectra as the
three coordinate axis spectra computed from a triangle trajectory.

deviation(d1, d2): The deviation between two animation descriptions, d1 and
d2, is defined as follows: let A denote the sum of difference in amplitude
for each frequency in the coordinate axis spectra in the two descriptions,
and let P denote the sum of amplitude-weighted phase difference for
each frequency in the coordinate axis spectra. Deviation is defined as
the Normalized Error Product of A and P , NEP(A,P ) (see Appendix A).
Hence, if either A or P is large, the entire deviation becomes large.

average(D): An average animation description is obtained from a set of an-
imation descriptions, D, as follows. Each element in D contains three
coordinate axis spectra, and for each coordinate axis (x, y, and z), a new
average spectrum is created by averaging the amplitude and computing
the amplitude-weighted phase average values for each frequency in the
associated axis spectra in D.

apply(tr , d): An animation description, d, is applied to a triangle, tr , by ap-
plying the inverse DFT on each of the coordinate axis spectra in d, and
animating tr with the resulting coordinate functions.

A näıve animation description of a triangle is lossless, in that it does not dis-
card information, assuming that the triangle trajectory is sampled with enough
samples when applying the DFT. In other words, if an animation description is
created for a triangle, then an identical animation is obtained if the description
is applied to a triangle.
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Evaluation

Recall that the average function is to be used to define an animation of bill-
board that simplifies a set of somewhat co-planar triangles. Using the Näıve
Animation Description Type, each triangle is described by three coordinate axis
spectra, the content of which is simply averaged to yield an average description.

Frequency and amplitude information represents the animation properties
speed and distance, respectively. The amplitude values in each coordinate axis
spectrum are averaged for the different triangles, and hence if all triangles
have a large amplitude at a certain frequency, ω′, in a certain coordinate axis
spectrum, Xi(ω′), then the average will also have a large amplitude at Xi(ω′).
However, if the triangles have large amplitudes at few but different frequencies,
the average will get small amplitudes at many frequencies instead. This may be
a problem which is discussed in Section 6.3, in which an improved approach to
averaging spectrum amplitudes is also introduced.

Averaging the phase values at each frequency in the coordinate axis spectra,
might result in an average animation with a shape that is entirely different
from either of the original triangle shapes, and it hence might not represent a
meaningful average of the original shapes.

Consider the trajectories in Figure 6.1, which have also been illustrated
earlier. The y-axis phase for the two lined shaped trajectories in Figure 6.1(a)
and Figure 6.1(b) is ϕy = 0 and ϕy = π, respectively. If the two trajectories are
averaged as dictated by this animation description type, the result would have
ϕy = π/2 and equal the trajectory in Figure 6.1(c). As can be seen, the resulting
shape is circular, even though both the original trajectories are shaped as a
line. This contradicts our animation description preference, that the average of
animations with similar shapes should yield an average animation also with a
similar shape.

(a) ϕx = ϕy = 0 (b) ϕx = 0; ϕy = π (c) ϕx = 0; ϕy = π
2

Figure 6.1: The circular trajectory in Figure 6.1(c) is the obtained by averaging the phase
values of the two line shaped trajectories in Figure 6.1(a) and Figure 6.1(b).

Two time-offset equal triangle trajectories will not necessarily obtain a low
deviation value using this simple animation analysis approach, as the axis spec-
tra computed for such trajectories may have very different phase content. This
contradicts our animation description preferences, and is hence considered a
severe shortcoming.
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Ignoring Phase

A simple attempt to remedy this shortcoming, is to simply ignore the phase
content in the axis spectra when computing deviation. Two time-offset triangle
trajectories yield equal spectra apart from phase content. If phase is ignored,
the animation descriptions of two such triangles will therefore get a low devi-
ation, and the two triangles concluded suitable for sharing a single billboard
animation. However, phase does not only define time-offset, but also the shape
and orientation properties of animation. If phase is ignored, two trajectories
with very different shapes, or two trajectories that move in entirely different
orientations, might also get low or no deviation. This is not to be desired, and
contradicts our animation description preferences.

As the Näıve Spectral Description Type does not satisfy the animation de-
scription preferences, motivation exists for searching for a better analysis ap-
proach.

6.1.3 Dominating Axis Description Type

We want time-offset equal trajectories to get a low deviation, and still be able
to differentiate between different shapes. The Dominating Axis Description
Type assumes that foliage triangle trajectories can be approximated well by a
movement on a single axis.

This animation description type, is based on the Dominating Axis Metric
defined in Section 5.1.4 on page 74. Intuitively, the dominating movement axis
is a suitable axis for defining a one-dimensional animation approximating the
original triangle trajectory well.

The idea behind this animation description type is as follows. If most tri-
angle trajectories in the input foliage are somewhat line-shaped, then by com-
paring them based on their one-dimensional dominating axis animation, phase
and shape no longer presents a problem. Phase can simply be ignored to make
two time-offset equal trajectories get equal descriptions, and ignoring phase
does not alter the shape or orientation of the dominating axis animation, as it
is always line-shaped.

Animation Description Type

The animation of each triangle is described by its dominating movement axis
and a spectrum of the one-dimensional animation defined by mapping its trajec-
tory onto this axis. Deviation between two trajectories is yielded by considering
the angle between their dominating axes, as well as the difference between
their spectra. The average of a set of trajectories is given by averaging their
dominating axes, as well as the spectra.

Formally, the description type is as follows:

description(tr): The animation description for a triangle, tr , is a tuple
〈a, X(ω)〉, where a is a normalized vector describing the dominating
movement axis of the trajectory for tr , and X(ω) is the spectrum
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obtained by applying the DFT on the animation yielded by mapping the
triangle trajectory onto a.

deviation(d1, d2): The deviation between to animation descriptions,
d1 = 〈a1, X1(ω)〉 and d2 = 〈a2, X2(ω)〉, is defined as:

(1− | a1 · a2 |)NE (amplitudeDistance(X1(ω), X2(ω))),

where amplitudeDistance is a function that yields the sum of amplitude
difference for each frequency in two spectra, and NE is the Normalized
Error function normalizing the distance to the range [0; 1].

In simple terms, deviation equals one minus the cosine to the angle be-
tween the dominating movement axes multiplied with the normalized
difference of amplitude in the two spectra.

average(D): Given a set of animation descriptions, D, an average description is
obtained by averaging the axes in D, and likewise averaging the spectra
in D. The axes are averaged by considering them as lines containing the
origin, and then finding a best average line for this set of lines. The set of
spectra is averaged by averaging the amplitude and phase values for each
frequency. Note that phase values are averaged taking the cyclic range
into account (see Appendix A.4 on page 156).

apply(tr , d): An animation description, d, is applied to a triangle, tr , by ap-
plying the inverse DFT on the spectrum in d to yield a one-dimensional
animation which is applied to the triangle.

In the next section, this single axis approach to animation analysis is evalu-
ated.

Evaluation

Time-offset equal trajectories yield identical dominating movement axes, and
applying the DFT on the animations obtained by mapping the trajectories onto
the dominating movement axes yields equal spectra aside from phase values.
Since phase is not included as part of the deviation function, two time-offset
equal triangle trajectories will have no deviation using this description type,
which is one of the animation description type preferences.

As discussed in Section 6.1.2 on the preceding page, ignoring phase in the
näıve approach would imply no deviation for time-offset equal trajectories, but
also potentially imply no or low deviation for trajectories with very different
shapes or movement orientations, which contradicts our description type pref-
erences. Ignoring phase is not a problem in this approach, as phase does not
influence the shape of a one-dimensional animation. However, this approach
has other shortcomings, which will be discussed in the following.

The obvious shortcoming of the approach is that it only analyzes the anima-
tion along the dominating movement axis. Hence, the animation descriptions
are not lossless, and the original animation of a triangle cannot be computed
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from its animation description. When determining the average animation of
a set of triangles, this average will also be a one-dimensional axis animation.
Consequently, if each billboard in a billboard cloud is animated by the average
animation of the triangles it simplifies, all animation in the billboard cloud will
be one-dimensional. Although the different billboards will animate on poten-
tially differently oriented axes, this simplification is still likely to be noticeable
to an observer.

The success of the analysis approach depends on the nature of the anima-
tions in the animated foliage to be simplified. If each foliage triangle moves
closely along a single axis in the input CASTM, then the single axis analysis ap-
proach does not discard much information. We find it likely that branches move
in ellipse like shapes, which is mentioned as a tree observation in Section 1.5 on
page 29. How well an ellipse is suitable for a single axis approximation depends
on the ratio between its height and width (i.e. the distance between the two
ellipse foci points), and a larger ratio implies less approximation introduced
by the dominating axis animation. The worst-case shape is a circle, as the
dominating movement axis of a circle is ill-defined.

To summarize, the Dominating Axis Description Type is suitable for analyz-
ing triangles moving somewhat along a single axis. However, it is less suitable
for circular trajectories or other more complex trajectories. Similar triangle
trajectories with circular shapes might in worst case be judged different, as their
dominating movement axis is ill-defined, and triangles with different shapes
might be concluded similar, if they have similar dominating axis animations.
These observations contradict our animation description type preferences.

The Axis-phase Description Type introduced next is similar to the näıve
approach, but introduce a new comparison of the phase content in the three
axis spectra. This new phase comparison is based upon further observations on
how axis phase impact on animation shape and orientation.

6.1.4 Axis-phase Description Type

This approach does not limit the animation analysis to movement on a single
axis, but instead apply DFT on each of the three trajectory coordinate func-
tions. This is similar to the Näıve Animation Description Type, the primary
shortcoming of which is that two time-offset equal trajectories might get a large
deviation.

In order to remedy this problem, the possibility of ignoring phase was dis-
cussed in Section 6.1.2. Two time-offset equal trajectories have equal coordi-
nate axis spectra aside from the phase content, hence if phase is ignored in
the deviation function, such triangles will get no deviation. However, ignor-
ing phase had the unfortunate side-effect that trajectories with very different
shapes or orientations might also get low or no deviation. In the approach
described in the following, the phase content of the spectra is not ignored, but
will be compared using what we refer to as the axis-phase relationship.

93



Chapter 6. Spectral Clustering

Axis-phase Relationship

In Section 4.6.1 on page 66, it was illustrated how the phase content in the
axis spectra obtained by applying the DFT on a trajectory represents both the
relative time-offset and shape of the trajectory. We identify the axis-phase re-
lationship as a relationship that is equal for two time-offset equal trajectories.
For simplicity, the following examples are two-dimensional.

Any trajectory of the form:

p(t) =
[
Asin(ϕx + ωt)
Asin(ϕy + ωt)

]
, ϕx = ϕy

moves in a straight line, whereas any trajectory of the same form, but with the
phase difference given by:

ϕx = ϕy +
π

2

moves in a circle.
In general, all trajectories only containing a single frequency in both the x

and y- axis, which have same offset between x-phase and the y-phase, are trajec-
tories with identical shape and orientation. Furthermore, any trajectory with
another phase offset is one with another shape or orientation. As examples,
consider the three trajectory shapes in Figure 6.2, which are all trajectories

of the same form p(t) =
[
Asin(ϕx + ωt)
Asin(ϕy + ωt)

]
but with the three different phase

offsets indicated in the figure.

(a) No offset: ϕx = ϕy (b) π offset: ϕx = ϕy + π (c) π
2

offset: ϕx = ϕy + π
2

Figure 6.2: Different shapes generated by different phase offsets.

In three-dimensions, the offset between the x-phase and the y-phase for a
given frequency, together with the offset between the x-phase and the z-phase
is denoted the axis-phase relationship. The relationship has the form:

〈ϕω
xy, ϕ

ω
xz〉, where ϕω

xy = ϕω
x − ϕω

y and ϕω
xz = ϕω

x − ϕω
z

To describe all axis-phase relationships in the coordinate axis spectra for a tra-
jectory, we will have an axis-phase relationship for each frequency ω. This tuple
of axis-phase relationships is denoted the axis-phase map of a trajectory.
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We observe that even though the coordinate axis spectra obtained for two
time-offset equal trajectories have different phase content, the axis-phase maps
will be equal. If a trajectory is time-offset with some time value, then for each
frequency, ω, in its axis spectra, the three phase values (ϕω

x , ϕω
y , ϕω

z ) will have
increased with the same value, c. The axis-phase relationship 〈ϕω

xy, ϕ
ω
xz〉 will

remain the same after the time-offset, as we obviously have that:

ϕω
x − ϕω

y = (ϕω
x + c)− (ϕω

y + c) and ϕω
x − ϕω

z = (ϕω
x + c)− (ϕω

z + c)

The idea behind the axis-phase description type is to alter the deviation mea-
sure of the Näıve Spectral Description Type, such that it examines the difference
in axis-phase maps, instead of the difference in the actual phase values. Since
time-offset equal trajectories have equal axis-phase maps, they will get no de-
viation. We postulate that trajectories with different shapes and/or orientation
are likely to have different axis-phase maps, and will hence have deviation and
be concluded to be visually different. This claim is discussed in Section 6.1.4.

The animation description type using axis-phase maps is presented next.

Animation Description Type

The Axis-phase Description Type is identical to the Näıve Spectral Description
type, apart from the comparison of phase by the deviation function, and how
phase is averaged by the average function.

The functions constituting the type are:

description(tr): An animation description, d, of a triangle, tr , is obtained by
applying the DFT on each of the triangle trajectory coordinate functions,
px(t), py(t), and pz(t). This yields three spectra, Xx(ω), Xy(ω), and
Xz(ω), in which phase values are omitted. The axis-phase relationship,
〈ϕω

xy, ϕ
ω
xz〉, is computed for each frequency ω, yo yield an axis-phase

map, which together with the three spectra constitute a description.

deviation(d1, d2): The deviation between two animation descriptions, d1 and
d2, is computed as follows. Let A equal the sum of difference in am-
plitude for each frequency in each of the coordinate axis spectra in the
descriptions. Let furthermore P denote the sum of amplitude weighted
difference between the axis-phase relationships for each frequency. De-
viation equals NEP(A,P ), and hence if either A or P is large, then the
entire deviation is large.

average(D): An average animation description is obtained from a set of anima-
tion descriptions, D, as follows. Each element in D contains three coordi-
nate axis spectra, and for each coordinate axis (x, y, and z), a new average
spectrum is created by averaging the amplitudes at each frequency in
the spectra of the corresponding coordinate axis in D. Furthermore, an
amplitude-weighted average axis-phase map is computed.
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apply(tr , d): An animation description, d, is applied to a triangle, tr , as follows.
Since the animation description spectra does not include phase values,
random phase values maintaining the axis-phase relationships in d are
generated. The inverse DFT is now applied on each of the coordinate axis
spectra to yield an animation.

The amplitude-weighted average axis-phase map is computed by computing
average axis-phase relationships for each frequency. Each axis-phase relation-
ship component is computed as an average weighted by the sum of the ampli-
tudes of the coordinate axes that the axis-phase relationship is concerned with,
e.g. for some frequency in the spectrum we can compute the average of ϕ1

xy

weighted with (A1
x + A1

y) and ϕ2
xy weighted with (A2

x + A2
y) and similarly for

the x-z axis-phase relationship component.
Shortcomings of the analysis approach are discussed next.

Evaluation

As opposed to the Näıve Spectral Description Type, this animation description
type is not lossless, regardless of the sample rate used when applying the DFT
on a triangle trajectory. The information discarded are the exact phase val-
ues in the coordinate axis spectra. If an axis-phase description is created for
some triangle, and this description applied to a triangle, some phase values are
needed in order to apply the inverse DFT. As stated in the definition of apply ,
random phase values maintaining the axis-phase relationships are generated.
Consequently, the triangle will not get an animation identical to the original
one, as these random phase values can time-offset the animation, and even
alter its animation shape or movement orientation to some degree, which will
be discussed further.

Time-offset equal trajectories get no deviation as desired, but this comes
at the cost of discarding phase information, which potentially have side-effects
aside from time-offset. We postulated that two triangle trajectories with very
different shapes or orientations, will get spectra with different axis-phase rela-
tionships. The quality of the Axis-phase Description Type depends on whether
this is true. Unfortunately, trajectories with different shapes or orientations and
equal axis-phase relationships do exist, a consequence of which is that triangles
with different shapes or orientations might be concluded suitable for sharing
a common animation. This is undesirable, and does not satisfy our animation
description type preferences. This shortcoming is further discussed in the next
Section.

Axis-phase Description Type Shortcoming

If trajectories contain only a single frequency, the axis-phase relationship for
this frequency uniquely defines the shape, as was the case in the examples in
Section 6.1.4 on page 94. However, when a trajectory contains several frequen-
cies, a problem arise, since the Axis-phase Description Type does not include
the inter-frequency phase offsets. We demonstrate this using an example.
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Recall that a sinusoid is a function of the form Asin(ϕ + ωt), where A
is amplitude, ϕ is phase, and ω is frequency. Consider the two-dimensional
trajectory p(t) defined as follows

p(t) =
[
sin(ϕ1

x + t) + sin(ϕ2
x + 2t)

sin(ϕ1
y + t) + sin(ϕ2

y + 2t)

]
The trajectory contains two frequencies in both the x and y- axis movement,

namely ω1
x = ω1

y = 1 and ω2
x = ω2

y = 2. The amplitudes for both frequencies in
both axes are the same, and equal to 1. The phase values are given by the four
variables ϕ1

x, ϕ1
y, ϕ2

x, ϕ2
y.

We consider the following axis-phase relationships between the x and y-
axis movement:

ϕ1
xy = ϕ1

x − ϕ1
y = π/2 and ϕ2

xy = ϕ2
x − ϕ2

y = π/3

A trajectory obtained with a set of phase values maintaining this axis-phase
relationship is shown in Figure 6.3(a). Another trajectory obtained by adding
π/2 to both of the ϕ2

x and ϕ2
y values of the first example is illustrated in Figure

6.3(b). This second trajectory also maintains the specified axis-phase relation-
ship, but it has a noticeable different shape.
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Figure 6.3: Effect of changing the inter-frequency phase offset, without changing the axis-
phase relationships.

These examples demonstrate, that two trajectories with different shapes
and orientation might have equal axis-phase maps, and would hence have no
deviation using the Axis-phase Description Type. This violates the animation
description type preferences.

However, the change in shape illustrated is an attempt to create a worst-
case example using a inter-frequency phase offset difference of π

2 on a simple
trajectory containing only two frequencies. We judge the change in shape far
less drastic than the change in shape and orientation resulting from changing
axis-phase maps (see Figure 6.2 on page 94). In other words, we cannot alter
the shape of the trajectories in Figure 6.3 to a line, or some other entirely
different shape, using inter-frequency phase offsets alone.

In conclusion, we observe a tendency for trajectories with similar axis-phase
maps to have similar shapes and orientations, but these observations have not
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been generalised to any formal statement. An improvement of the animation
description type may be derived by including inter-frequency phase offset in-
formation, but such an approach will not be discussed further.

6.1.5 Summary of the Description Types

Three different animation description types based on spectral analysis of anima-
tion has been presented. The Spectral Clustering Algorithm can utilize any of
these types to cluster the foliage triangles with similar animations in a CASTM.
Which spectral description type yields the best results is hard to predict, as each
approach has its shortcomings, and for this reason we propose to experiment
with all three.

The primary shortcoming of the Näıve Spectral Description Type in relation
to the identified animation description type preferences in Section 6.1.1 on
page 88 is, that it potentially yields high deviation between time-offset equal
triangle trajectories. The Dominating Axis Description Types attempts to rem-
edy this problem, but does so in a way that discards all non-linear shape infor-
mation. If this description type is used for animating billboard in a animated
billboard cloud, each billboard will only be animated along a single axis, which
depending on the nature of animation in the input, may be an inadequate sim-
plification. The final approach represented by the Axis-phase Description Type
utilizes axis-phase maps in an attempt to interpret phase information in terms
of the time-offset, shape and orientation animation properties. Unfortunately,
counter examples has been given, for which it fails to separate time-offset from
shape and orientation, and hence conclude triangles with different trajectory
shapes or orientations suitable for sharing a billboard.

In Section 5.1.4 on page 74, two animation error metrics were introduced,
namely the Dominating Axis Metric and the Dominating Axis Spectral Metric,
the purpose of which is to measure visual fidelity of a billboard cloud simplifica-
tion in terms of animation. The deviation measure of the Axis-phase Description
Type, for example, could be used to define an alternative animation metric.

In the following section, the Spectral Clustering algorithm is specified.

6.2 Spectral Clustering Algorithm

The input to the Spectral Clustering Algorithm (SCA) is a tree model, treeModel ,
satisfying the definition of a CASTM, and containing a set, T , of animated
foliage triangles. The algorithm outputs an animated billboard cloud that sim-
plifies the foliage of the input model.

The foliage triangles are clustered with regards to some animation descrip-
tion type using the budget-based K-means Clustering Algorithm which takes
a number of animation clusters, k, as input. The Stochastic Billboard Cloud
Algorithm is used for billboard construction, and takes a maximum allowed
permutation distance, ε, a number of sample planes, S, and any parameters
required by the improvements discussed in Section 3.6 on page 53. These
billboard cloud construction improvement parameters are omitted in the de-
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scription of this algorithm. Finally, the SCA algorithm takes the number of
position samples, N , to be used when analyzing the animation of each triangle.

Triangles are first clustered using k as budget in the budget-based animation
description clustering. After this initial clustering, a billboard cloud is created
for each spectral description cluster using the Stochastic Billboard Cloud Al-
gorithm, which is an error-based clustering, with ε as error. Each billboard is
finally animated by applying the average animation of the triangles simplified
on the billboard. Note that if k = 1, then no animation clustering is performed,
which corresponds to following the simple Static Co-planar Clustering strategy.

As the algorithm is independent of which one of the presented animation
description types is applied, the term spectral description is used to denote an
description created using any spectral based animation description type.

In steps, the algorithm is as follows:

SCA(treeModel , k, ε, S,N)

1. Create a spectral description for all foliage triangles using the description
function associated with the employed spectral description type. The
descriptions are clustered in k clusters by the K-means Clustering Algo-
rithm using the deviation function as distance measure, and the average
function to calculate the centroid of each cluster. The K-means Clustering
Algorithm relies on a reasonable initial distribution of descriptions in K
clusters. More information about this initialization step can be found
in C.1 on page 163.

2. Create an average pose of the foliage part of a CASTM by calculating the
average position of each triangle from a set of position samples taken
uniformly over the animation cycle. This pose of the geometry is used
when creating billboards.

3. For each spectral description cluster of triangles, apply the Stochastic Bill-
board Cloud Algorithm using ε as error value and S as the number of
sample planes to evaluate per randomly chosen seed triangle.

4. Each billboard simplifies a set of triangles, and the set of spectral de-
scriptions associated with these triangles, D, can be used to calculate an
average spectral description using average(D). The average description
obtained, da, can be stored, and applied to the billboard at run-time by
using apply(tr1, da) and apply(tr2, da), where tr1 and tr2 denotes the two
triangles defining the billboard quad.

In relation to error and budget-based solution approaches (section 5.2.1 on
page 77), the Spectral Clustering solution performs a budget-based clustering
of triangles with the number of billboard clouds as budget, that attempts to
minimize an animation error represented by deviation. This is followed by
an error-based clustering of the triangles in each animation cluster, that use
displacement distance ε as error, and attempts to minimize cost in terms of
number of billboards.
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In step 2, a static pose of the animated foliage model is created by placing
each triangle at its average position during the animation cycle. This is done in
order to be able to apply a traditional static billboard cloud algorithm on the
foliage. A billboard represents triangles by a static texture, and the foliage is
posed using average positions, as these are judged static positions that are the
most representative for the entire animation cycle.

The algorithm only simplifies the foliage triangles in the input CASTM (re-
call our project delimitations in Section 2.4 on page 35). We propose to simplify
the trunk mesh in the CASTM using some mesh simplification technique, that
takes animation into account. A consequence of this separation of simplifica-
tion is, that the foliage billboards will not follow the branches throughout the
animation in the produced output. This is may be visually unimpressive, which
is a serious limitation of this simplification technique.

The steps in the Spectral Clustering Algorithm involve constructing a spec-
tral description for each triangle in the Cyclic-Skeletal-Animated Polygonal Fo-
liage Model, and using these spectral descriptions to find the average descrip-
tions as well as computing deviations to these average descriptions during the k-
clustering. A highly detailed polygonal tree model consists of a large amount of
foliage triangles, which implies construction of a large amount of descriptions.
A single description is created for each triangle prior to the k-clustering, and the
number of average descriptions constructed as well as the number of deviation
computations performed depends on the number of k-clustering iterations.

When having a large number of foliage triangles the construction of spectral
descriptions, as well as computing average descriptions and deviation mea-
sures, might become a performance issue. For this reason we propose a perfor-
mance optimization in Appendix C.2 on page 164, using which several triangles
can share a single spectral description.

6.2.1 Billboard Cloud Performance Details

A performance related issue is that the textures of the billboard cloud should
be packed into a single texture, as mentioned in Section 1.3.3 on page 22. This
is done in order to reduce the number of render state switches, which generally
improves fps performance a great deal.

The billboards in the animated billboard cloud are each associated with a
spectral description that describes the average animation of the triangles sim-
plified by the billboard. We suggest to apply this animation at runtime by using
a simple vertex program. To reduce the number of render state switches, a
single animation vertex program should be shared by all the billboards. The
animation descriptions of the billboards are stored in a texture, in which the
vertex program can look up the appropriate parameters for the animation of
each specific billboard. For example, if the Dominating Axis Description Type
is used, this texture could contain the dominating movement axis vector and
frequency spectrum for each billboard. In this case, the vertex program an-
imates a billboard by applying the inverse DFT on the spectrum to yield a
one-dimensional animation, and then translate the billboard vertices in the
dominating axis direction according to this animation.
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6.3 Frequency Clustering Improvement

All the presented spectral animation description types in Section 6.1 are based
on comparing and averaging the amplitude content of two spectra. In this sec-
tion we elaborate on this, and identify an improved approach using frequency
clustering.

The spectral description types all define deviation of the amplitude content
of two spectra as the sum of amplitude difference for each frequency. Similarly
is the average of a set of spectra obtained by averaging the amplitudes for each
frequency. However, comparing spectra in this fashion may not be favourable
as will now be demonstrated.

6.3.1 Deviation and Average Shortcomings

Consider two signals:

x(t) = sin(4t) and y(t) = sin(5t), t = [0; 2π].

These signals are illustrated in Figure 6.4, as well as the spectra obtained
by applying the DFT on these signals.

If deviation is obtained simply by considering the amplitude distance be-
tween the spectra, as defined by the spectral animation descriptions, then these
two signals are concluded to be different, as they do not have any amplitude
in the same frequencies. In fact, the deviation between these two signals is
just as large as the deviation between any of these signals and the signal z(t),
illustrated in Figure 6.5. This contrasts to the intuition that z(t) seems to be
very different from the two signals.

If an average spectrum for the signals x(t) and y(t) is obtained by simply
averaging the amplitude for each frequency, as is dictated by the spectral de-
scription types, then the result would be the spectrum shown in Figure 6.6(a).
When this average spectrum is transformed to the time domain by the inverse
DFT, we get the signal avg(t) = sin(4t)+sin(5t)

2 , which is shown in Figure 6.6(b)
on page 103. However, this average signal is intuitively not similar to either
x(t) or y(t).

If the animation in a given axis of a foliage triangle is changed from x(t) or
y(t) to the presented average avg(t), we believe its animation to appear visually
very different.

6.3.2 Amplitude-Weighted Average Frequency

The key observation regarding the signals x(t) and y(t) is that they both consist
of a single frequency, while the average signal avg(t) contains two frequencies.
A more intuitively correct average signal is obtained by averaging of the fre-
quencies present x(t) and y(t), i.e. ω = 4 and ω = 5, as well as averaging
the amplitude present in the spectra for x(t) and y(t). This notion of average
yields the spectrum shown in Figure 6.7(a), which transformed to the time
domain corresponds to the signal avg2(t) = sin(4.5t), shown in Figure 6.7(b)
on page 103.
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(a) x(t) = sin(4t)

(b) Spectrum for x(t).
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(c) y(t) = sin(5t)

(d) Spectrum for y(t).

Figure 6.4: Two signals and their associated frequency spectra.

(a) Spectrum for z(t).
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(b) z(t) = sin(12t)

Figure 6.5: A signal with high frequency compared to x(t) and y(t), and its associated
frequency spectrum.
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(a) Spectrum for avg(t).
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Figure 6.6: The average spectrum and signal obtained by averaging x(t) and y(t) using
the simple average defined in the spectral animation descriptions.

(a) Spectrum for avg2(t).
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Figure 6.7: The average spectrum and signal obtained by the intuitively correct average of
x(t) and y(t).
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In the following, we define the amplitude-weighted average frequency and a
corresponding average amplitude.

Let X1(ω), X2(ω), ..., XM (ω) denote the M spectra to be averaged (omitting
phase), and ω1, ω2, ..., ωN denote the N frequencies contained in these spectra.

The amplitude-weighted average frequency in a set of spectra is formally
given by: ∑M

i=1

∑N
j=1 X(ωi)ωi∑M

i=1

∑N
j=1 X(ωi)

while the average amount of total amplitude in a set of spectra is given by:

1
M

M∑
i=1

N∑
j=1

X(ωi)

The amplitude-weighted average frequency of the previously illustrated spectra
for the example signals x(t) and y(t) is 4.5 and the average amount of total
amplitude is 1. These values correspond with our preferred average of x(t) and
y(t) as shown in Figure 6.7(a) on the previous page.

6.3.3 Frequency Bins

Creating an average spectrum using the amplitude-weighted average frequency
yields an average spectrum with amplitude in only a single frequency. If the sig-
nals to be averaged only contains a single frequency, this is judged a reasonable
average. However, if the signals each contain several frequencies, then the
average should also contain several frequencies. The solution is to introduce
frequency bins. A frequency bin is a range of frequencies. When averaging spec-
tra using frequency bins, the idea is to average all amplitudes corresponding to
the frequencies within the same frequency bin, as if the bin only contained a
single frequency.

When the axis spectra (in either dominating axes or coordinate axes) for a
set of triangles are to be averaged, the preferred number of frequencies to be
contained in the average spectrum must be determined somehow. According
to the tree observations in Section 1.5, Foliage have a tendency of being con-
nected to the highest levels of branches. If the CASTM has a uniform branch
depth, then each foliage triangle will typically be animated by an equal amount
of bones. These bones represent a combination of large rigid branches, and
smaller flexible branches, which are assumed to rotate with different inherent
frequencies. Given these assumptions, if a set of triangle axis spectra are to be
averaged, the depth of the animation skeleton will represent a suitable number
of frequencies in the average spectrum.

Let k denote the number of frequencies judged suitable for the average of
M axis spectra, X1(ω), X2(ω), ..., XM (ω), which omit phase values. Let N be
the number of frequencies in each spectrum. To compute which frequencies to
group together in a frequency bin, a clustering approach is employed.
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Initially, the k frequency bins are distributed uniformly, such that the bin,
B1, contains the first Ndiv k frequencies, B2 the next Ndiv k frequencies, and
so forth. The final bin Bk contains the remaining Ndiv k+Nmod k frequencies.
Each bin is considered a cluster, and the K-means Clustering algorithm is used
to find a potentially better distribution of frequencies to bins. The patterns
to cluster are frequencies, the centroid of a cluster is its amplitude-weighted
average frequency, and the distance of a pattern and a centroid is simply the
difference between the two frequencies.

When the frequency bins have been computed, they can be used to yield a
suitable average of a set of axis spectra. To compute an average spectrum using
the frequency bins, we first compute the amplitude-weighted average frequency
for each bin, and round it to the nearest of the N original DFT frequencies.
At each of these bin centroid frequencies, the amplitude equals the average
amount of total amplitude at the frequencies in the bin for the M spectra.

As an example, consider the two axis spectra in Figure 6.8(a) and 6.8(b).
Each contains three frequencies, and hence k = 3. Figure 6.8(c) illustrates the
total amplitude content of the two spectra, as well as the initial frequency bins.
The k-means clustering reassigns frequency number 5 (the lowest frequency of
bin 3) from B3 to B2, as it is closer to the centroid of B3. The new (and final)
clustering is illustrated in Figure 6.8(d). The average spectrum is shown in
Figure 6.8(e), in which the centroids are rounded to the nearest DFT frequency,
and given the average total amplitude within the associated bin in the original
spectra.

The average contains only three frequencies, one for each bin. As both orig-
inal spectra had high amplitudes at the low frequencies, so does the average.
The first spectrum has three large amplitudes at the mid-frequencies, while
the second spectrum has amplitude at the high-frequencies. Consequently, the
amplitudes in these frequency areas has been scaled down in comparison to the
low frequency area.

Note that frequency bins could also be employed as a more suitable devia-
tion measure between two spectra. Frequency bins are created by considering
the amount of frequencies with amplitude > 0 in the two spectra, and the
deviation between the two spectra would equal the difference in amplitude
within each bin.

6.3.4 Application of the Improvement

The frequency clustering improvement can be applied to each of the presented
animation description types. It should be used in both the deviation and average
functions, when the spectra for some axis are compared.

The improvement should furthermore be applied to the animation error
metrics presented in Section 5.1.4 on page 74, in order for these metrics to give
better comparison of the original and simplified animation.

Phase has been ignored in the frequency clustering improvement descrip-
tion, but the description types relying on phase values should define a suit-
able phase value for each bin. A suitable phase value for a bin could be the
amplitude-weighted average phase within the bin.
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(a) Spectrum A. (b) Spectrum B.

(c) Total amplitude for A and B, and
initial frequency bin distribution.

(d) Bin distribution after frequency
clustering.

(e) Average spectrum of A and B
obtained using frequency clustering.

Figure 6.8: Computing an average spectrum using frequency clustering.
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6.4 Shared Bone Improvement

The shared bone improvement can provide more precise animation of the bill-
boards in the simplification obtained by the Spectral Clustering solution using
the assumed animation skeleton. The improvement can be included as an op-
tional parameter in an implementation.

The animation of a triangle is defined by a sequence of connected bones
in the animation skeleton, the bone to which the triangle is assigned, and all
ancestors of that bone all the way to the root of the skeleton. The observation
is that if all the triangles simplified by a billboard have a set of shared bone
ancestors lower in the skeleton, then a more precise animation of the billboard
can be achieved by animating the billboard directly using these shared bones.
The likelihood of all triangles simplified by a billboard sharing bone ancestors
is fairly high, as such triangles are likely to have similar spectral descriptions,
due to them being rotated by some common bones.

An animated billboard cloud obtained using the shared bones improvement
is animated using both vertex animation and skeletal animation. Vertex anima-
tion is used when applying the average animation of the triangle animations
defined by bones that are not shared by all triangles, and skeleton animation is
used when applying the animation defined by shared bones.

Formally, the improvement is applied by changing the final step in the spec-
tral clustering solution algorithm to the following:

1. For each triangle simplified by a billboard, define a set containing the
bone to which the triangle is assigned as well as all the ancestor bones all
the way to the root bone.

2. Take the intersection of the defined sets of bones.

3. If the intersection is empty, then the triangles simplified by the billboard
have no shared bones and no further actions are taken.

4. If the intersection is not empty, a new spectral description is computed
for each triangle. In this new spectral description, the animation of each
triangle is generated by all ancestor bones that are not in the set of shared
bones. The animations of the shared bones are ignored.

5. An average of these descriptions is calculated as usual, and the billboard
is vertex-animated by applying the average of the spectral descriptions to
the billboard. The bones shared by the triangles define a path of bones
starting at the root. The billboard is attached to the shared bone furthest
from the root.

In general, this improvement yields an animated billboard cloud that more
precisely approximates the original CASTM since parts of the original animation
are kept unsimplified. In the worst case, no billboard simplifies triangles that
share bones, which consequently means that the improvement has no effect.
The cost of the improvement is that the animation skeleton has to be included in
the simplification in addition to the cost associated with performing the skeletal
animation at run-time.
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6.5 Analysis of the Simplification

The spectral description type is crucial for the Spectral Clustering solution, and
we expect the visual fidelity to vary a great deal with the different presented
spectral description types. Each of the presented types has shortcomings, and
the quality of a solution using a given type is not easy predictable.

6.5.1 Spectral Description Types and Error Metrics

We do not expect the Näıve Animation Description Type to yield good results.
Visually similar animations, such as two time-offset animations, might have just
as much deviation as two animations with entirely different shapes or orienta-
tions. Consequently, we expect triangles with significantly different trajectories
to end up on the same billboard, and thus yield an unimpressive simplification.
Furthermore, we do not expect the animation obtained by simply averaging
the amplitude and phase values of each frequency to be representative for the
animations being averaged. In terms of error metrics, we expect these short-
comings to result in all-round high error values.

Triangles with visually similar animations are more likely to get low de-
viation using the The Dominating Axis Description Type. However, this de-
scription type is only suitable under the assumption that foliage triangles have
line-shaped trajectories. When using this type, triangles are clustered based on
the dominating axis animation error metric, and using this type is naturally ex-
pected to yield low error according to that metric. If the triangles have non-line-
shaped trajectories, we expect an increase in the position and colour metrics.
The metrics will not, however, be able to detect artificial-looking animation due
to each billboard only moving along a single axis.

The final type, the Axis-phase Description Type, is expected to yield the most
impressive simplification, if it is able to approximately separate animations with
different shapes and orientations, whilst retaining this shape and orientation
when averaging the animations, as claimed above. How this type scores in the
error metrics as opposed to the Dominating Axis Description Type is hard to
predict, and depends on the nature of the given input.

6.5.2 Inherent Frequencies

As noted in Section 1.5 on page 29, different branches on trees rotate with
certain inherent frequencies due to their rigidity. The small branches at the
outer levels of the tree are more flexible and perform rotations with higher
frequencies than the large branches close to the trunk.

We believe that an advantage of using spectral analysis of animation is that
different inherent frequencies are directly present in an axis spectrum (be it
the dominating axis or a coordinate axis). The deviation and average measures
in the spectral description types compare and average the different frequency
ranges independently, and does not discard any inherent frequencies. As a re-
sult, the animated billboards simplifying foliage will also contain these inherent
frequencies, and appear as if affected by branches of different rigidity.
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6.5.3 General Shortcomings

All animation of foliage triangles in the input CASTM is defined by sequences
of rotations. None of the defined description types analyze animation in terms
of rotation, and does not attempt to preserve the rotational nature of the input
animation. As a consequence of this, we expect the simplification to look some-
what artificial. In order to remedy this problem, a rotation-based animation
description type should be designed.

As mentioned, Spectral Clustering solely considers the foliage part of the
input CASTM. As a consequence, the simplified foliage will be animated sep-
arately from the branches in the mesh, which might yield a noticeable visual
artifact. This is a severe limitation of this simplification approach. However, as
mentioned in the tree observations in Section 1.5 on page 29, foliage may hide
the underlying branch structure in certain tree species, which might render this
problem slightly less severe. Still, the presented problems may limit the use-
fulness of the Spectral Clustering algorithm for producing LODs that are to be
observed at short range. However, they may not be important for visual fidelity
at larger distances, in which case we judge the overall speed and distance of
the foliage animation more important. For large distance LODs, the Spectral
Clustering algorithm is considered appropriate.
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Skeleton Billboard Cloud
Simplification

The Skeleton Billboard Cloud Simplification solution is a solution following the
Bone Clustering strategy presented in Section 5.2.3 on page 79, and thus as-
sumes that the tree model to be simplified is animated using skeletal animation.
The bones in the skeleton defines the animation of all triangles in the foliage,
and this solution only examines the animation of bones.

Bone clustering encompasses performing a simplification of the animation
skeleton that reduces its number of bones. A static billboard cloud is then
created for each bone and the resulting billboards are faithfully animated by
attaching them to their bones. As mentioned, we have implemented the error-
based Stochastic Billboard Cloud algorithm for the construction of billboard
clouds of the foliage geometry of the input CASTM, due to our argumentation
of its effectiveness for foliage simplification from Section 3.7 on page 55.

Simplification of the skeleton is the interesting part of a solution following
the Bone Clustering strategy, as the static billboard clouds are created using a
traditional billboard cloud algorithm, and animating the billboards is trivial;
they are simply attached to the bones. Common joint rotation simplification is
discussed in Section 7.1 as our primary simplification strategy. Common joint
rotation simplification relies on the definition of a bone animation description
type, which is given in Section 7.2. In Section 7.3, a sibling bone collapse
strategy is introduced to reduce the number of joints in the skeleton, and thus
the number of billboard clouds even further. When performing sibling collapses,
the assumed correspondence between the skeleton bones and the trunk mesh
is lost. This observation will be discussed in Section 7.4. The algorithm of the
Skeleton Billboard Cloud Simplification solution will be presented in Section
7.5. The chapter is concluded with an evaluation of the simplification per-
formed by the solution in Section 7.6 and a relation to the Spectral Clustering
solution in Section 7.7.
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7.1 Common Joint Rotation

In Section 5.2.3 on page 79 it was argued why a static billboard cloud can be
created for each bone in the animation skeleton, and correctly animated by
attaching the billboards to their associated bone. The obvious limitation of this
approach is that the number of billboard clouds cannot be reduced further than
the number of bones. Remember that given some maximum allowed permuta-
tion distance, ε, it will imply more billboards, if the model is divided into sep-
arate parts, and a billboard cloud created for each (discussed in Section 5.2.3
on page 79). Common joint rotation simplification makes it possible to reduce
the number of separately constructed billboard clouds, without performing any
bone collapses.

Assume that a suitable bone animation description exists. A such includes
deviation(b1, b2) to compute the deviation in rotation animations between to
sibling bones, b1 and b2, and average(B) to compute the average rotation
animation for a set of sibling bones, B. The procedure of common joint
rotation simplification, CJR, is as follows. Let M be the number of bones
in the skeletal tree model, TreeModel , and let BC be the desired number of
billboard clouds:

CJR(TreeModel ,BC )

1. S defines a set of common rotation sibling bone sets, for each of which a
billboard cloud is to be created.

Each bone bi initially defines its own common rotation set Cbi
= {bi}, and

we hence initially have S = {Cb1 , Cb2 , ..., CbM
}.

2. If | S |≤ BC , then the desired number of billboard clouds can be obtained,
and the algorithm terminates.

3. For each pair (C1, C2) in S, where all bones in the set C1∪C2 are siblings,
compute:

deviation(average(C1), average(C2))

If all bones in C1 ∪ C2 are not siblings, then we define deviation to ∞.

4. Let (C1min , C2min ) denote the pair with smallest deviation, devmin .

If devmin = ∞, then a single common rotation is already defined for all
siblings in the skeleton, and the algorithm terminates, since no further
simplification is possible.

5. C1min and C2min are replaced in S with their union C1min ∪ C2min , which
in effect reduces | S | with one.

6. Go to step 2.
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The intuition behind the algorithm is to iteratively find sibling bones with
most similar rotation animation, and replace their animation with a single sim-
plified one. The algorithm attempts to reduce the number of billboard clouds
needed for simplification from the number of bones to the specified number
BC . However, as already mentioned, using common joint rotation simplifica-
tion, the number of billboard clouds cannot be reduced further than the number
of joints in the skeleton. The success of common joint rotation simplification
depends on whether a suitable bone animation description can be defined,
which is discussed in Section 7.2.

The result of the algorithm is S = C1, C2, ..., CBC . Each element, Ci, is
a set of bones, for which a single average rotation animation is defined by
average(Ci). A single static billboard cloud is then created for all the triangles
attached to the bones in the set, and each billboard animated using the average
animation. Figure 7.1 illustrates the common rotation sets, Ci, before and after
running the algorithm on a simple skeleton.

(a) A simple skeleton with nine bones. Each
bone bi initially defines its own common
rotation set, Ci.

(b) The common joint rotation sets after
running the CJR algorithm with BC = 5.

Figure 7.1: Common joint rotation sets.

It is interesting to consider how many triangles get their animation simpli-
fied, when simplifying the animations of several bones in a set Ci to a single an-
imation. When a terminal bone replaces its rotation animation with an average
sibling animation, this simplifies the animation of all triangles directly attached
to it. When a non-terminal bone replaces its animation with an average sibling
animation, this simplification influences not only the triangles directly attached
to it, but also all triangles attached to its descendants.

An important property of this simplification is that it does not alter the skele-
ton structure, only its rotation animations. The closed mesh representing the
trunk and branches in the tree model can therefore also be animated using the
simplified skeleton. This guarantees that the foliage will stay visually connected
to the trunk and branches in the simplification using billboard clouds.

We judge it possible to create common rotation sets interactively, and ob-
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serve the visual impact of each animation simplification step before creating
the billboard clouds. The only processing required is attaching all triangles that
are attached to one bone, to another. A manual simplification approach is then
to let the user select which common rotation sets to unite, based on his visual
judgement, instead of automatically uniting the least deviation sets. Although
we do find a such approach interesting, we focus on automated simplification
using a deviation measure.

7.1.1 Application of a Common Rotation

The sibling bones in a set Ci all need to apply the common animation,
average(Ci), in order for their triangles to share billboards. The straight
forward way to do this is simply to change the animation function of each
bone to the result yielded by average(Ci). There are, however, other ways to
do this, and improvements to be made.

When sibling bones are given identical animation, some bones might be-
come redundant, and can be removed from the skeleton. Different scenarios
occur:

• Ci contains terminal bones only: If all bones in Ci are given the
average(Ci) animation, then they become identical apart from having
different sets of triangles associated. Remember that a terminal bone
has no length, nor initial orientation, as it does not need to specify the
position of an end joint.

Having several identical bones is a waste and they can be replaced by a
single new bone performing the average(Ci) animation, with the union of
their triangle sets associated.

• Ci contains a single non-terminal bone and any number of terminal
bones: When the bones are given identical animation, having several
identical terminal bones becomes a waste of resources. They can
be deleted from the skeleton and their triangles assigned to the
non-terminal bone, without any visual impact.

• Ci contains several non-terminal bones: Non-terminal bones cannot be
deleted from the skeleton, even though they are given identical rotation
animations, as they still specify different end joint positions (i.e. start
joints for their respective children).

Any terminal bones in Ci can be deleted by assigning their triangles to
any of the non-terminal bones, but all non-terminal bones must be kept.

7.1.2 Average Animation Bones Improvement

Recall, when the animation of a non-terminal bone is simplified, this simpli-
fication influences not only the triangles directly attached to it, but also all
triangles attached to its descendants. We propose a method which can be used
to reduce the amount of triangles influenced when simplifying the animation of
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non-terminal bones. When Ci contains several non-terminal bones, then a new
average animation bone, ba, is added to the skeleton, the role of which is to apply
the average animation to all the foliage triangles directly attached to bones in
Ci. The triangles directly attached to bones in Ci are attached to ba instead.
Any terminal bones in Ci are deleted from the skeleton, while non-terminal
bones are kept in the skeleton with their original animation. By keeping the
original non-terminal bones, the simplification only influences the foliage tri-
angles directly attached to them, and not those attached to descendants. The
average animation bone improvement is illustrated in Figure 7.2.

(a) Two non-terminal bones b1 and
b2 ended up in the same common
rotation set C, as a result of the CJR
algorithm.

(b) Instead of replacing their anima-
tion with average({b1, b2}), a new
terminal bone ba is added and given
this animation instead. The foliage
triangles of b1 and b2 are then
attached to ba.

Figure 7.2: An example illustrating the average animation bone improvement.

As animation simplification of descendant foliage triangles is avoided, it is
to be expected that this improvement will imply better visual metric scores. If
the only simplification done in the example in Figure 7.2 is the one involving b1

and b2, then the animation of their descendants will be unchanged, thus receiv-
ing perfect metric scores. The immediate judgement is hence that introducing
average animation bones will result in a simplification of higher visual fidelity.
There are problems, however.

The improvement will result in a visual artifact, as the triangles previously
attached to b1 and b2 will rotate independently of their descendant triangles.
The visual result is that the descendant triangles appear unconnected to their
parents. For the unconnected foliage triangles, this might be acceptable in some
simplifications, but the trunk mesh will become broken and unconnected. For
this reason, we only propose to apply the average bone improvement to the
foliage triangles, i.e. the foliage triangles are detached from their respective
bones and attached to the new average animation bone, while the trunk mesh
triangles are attached to the original bones. The result of this is, however, that
the trunk mesh and foliage at this joint is animated independently, which will
make the foliage appear unconnected to the branches of the tree model.

To summarize, the effect of using the average bone improvement is:

• When replacing the animation of a non-terminal bone with an average
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animation, error does not propagate to their descendants when using the
average animation bone improvement. In general, a higher visual metric
score is expected.

• The foliage triangles become disconnected from the branches of the tree,
which in some cases will be a highly noticeable artifact.

We suspect that the visual result of applying the improvement depends on
many factors, such as the given tree model, how much simplification is done,
and at how far a distance the simplified tree model is to be observed. When,
and if, the improvement actually can improve on the visual result is subject to
experimentation.

7.2 Axis-Angle Description Type

The CJR algorithm depends on the ability to evaluate the deviation between
the rotation animations of two sibling bones, and likewise to construct an aver-
age rotation animation from a set of sibling bones. In other words, we need to
define a bone animation description type.

The rotation animation of a bone is specified by a set of key frame rotations
during the animation cycle, indicating the rotation of the bone at these key
frame time samples. Any of these rotations specify an arbitrary rotation around
the joint the bone is contained in, and thus a rotation of a local coordinate
system specified at this joint. The key frame rotations are interpolated using
a spherical linear interpolation scheme to yield the rotation at any given time
[30].

7.2.1 Choosing a Rotation Representation

One approach to comparing rotation animations is to consider the rotations
in a fixed angle representation. This refers to describing any rotation as the
product of rotating around three fixed axis, e.g. the x, y, and z axes of the
world coordinate system. DFT could be applied on each of these rotations
separately, and spectrum deviation and average could be used as discussed in
Section 6.1 on page 87. A problem arise, however, since more than one set
of world axis rotations result in identical rotations [30]. In other words, a
fixed angle representation of rotation is not unique, and two identical rotations
can be described by two potentially very different fixed angle representations.
For example, applying the fixed angles (π/2, π/2, π/2) is equal to applying the
fixed angles (0, π/2, 0). This makes the representation unsuitable for comparing
rotations.

Any rotation in three dimensions can be thought of as a rotation around an
axis, as there is a set of points which does not change positions. These points
are collinear and the line is called the axis of rotation. We propose an animation
description type which is based on axis-angle representation of the rotations of
bones, since it represents a rotation uniquely.
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7.2.2 Axis-angle Rotation Animation

A rotation animation R(t) equals a pair 〈axis(t), φ(t)〉, where axis(t) denotes
the axis of rotation at time t, and φ(t) denotes the angle of rotation at time t
around this axis. The rotation axis contains the origin, because it is a rotation of
a local coordinate system defined at the joint the bone is contained in, and an
axis can hence be represented by a vector. The position of a vertex expressed
in the local joint coordinate system is at time t found by rotating it from its
initial position in the bind pose (see Section B on page 158), with the angle,
and around the axis, specified by the rotation animation R(t) of the bone it is
attached to.

Sibling bones specify rotations of the same local coordinate system, as they
are contained in the same joint, and the axes of rotations specified by the
animations hence always contain the origin. We want to analyze and compare
the rotation animations specified by two sibling bones in the skeleton. This
problem is directly related to the animation analysis of trajectories discussed in
Chapter 4 on page 57, and it is interesting to consider the terms time-offset,
speed, distance, and shape in the context of rotation animations.

Time offset makes a similar sense as it did with trajectories, i.e. two rotation
animations are time-offset equal if there exists some time offset, o, such that:

axis1(t) = axis2(t + o) and φ1(t) = φ2(t + o)

We assume that time-offsetting a rotation animation will have little visual
impact. Consider how a rotation animation rotates the axes of the local coor-
dinate system at its joint. Speed and distance refer to how fast, and how large
angles, the axes of the local coordinate system are rotated. Consider the unit
vectors aligned with each of the axes in the local coordinate system. During
the rotation animation, each unit vector end point moves on a unit sphere
centered around the origin, and the shape of the rotation can be considered
the patterns of the paths travelled by the three unit axes end points. In one
rotation animation, the unit axis could move in a circular pattern, for example.

7.2.3 Deviation and Average

Intuitively, we want to define a deviation measure for the rotation animations
of sibling bones, from which we can conclude time-offset equal rotation anima-
tions to be equal. Furthermore, similar rotation animations, albeit having minor
speed, distance, and/or shape dissimilarities, should be concluded similar. In
this section we present definitions of simple deviation and average methods that
do not take into account time-offset equality, etc. Proposals for how to improve
the simple methods using some of the ideas presented in the animation analysis
section will be discussed in Section 7.2.6.

A deviation measure between two rotation animations, R1(t) and R2(t),
can be obtained by considering the angle between the axes of rotations and the
difference in angle of rotations.
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Deviation

Let the animation cycle length be given by ct and number of samples by N . The
deviation of axes is then given by:

daxis(R1(t), R2(t)) =
∑N

i=1 | axis1((1/i)ct) · axis2((1/i)ct) |
N

Put simply, the deviation in axes equals the average deviation in angle be-
tween the two axes during the animation cycle. The functions, axis(t), yield
normalized direction vectors of axes, hence the cosine to the angle between the
axes is simply obtained by a dot product. Since we do not want to differentiate
between an axis and the reverted axis, the absolute value of the dot product is
considered. daxis is a number in the range [0; 1], where 0 means identical axes.

The deviation of the angle of rotation functions, φ1(t) and φ2(t), is found in
a similar fashion, by finding the average difference in angle during the anima-
tion cycle:

dphi(R1(t), R2(t)) =
∑N

i=1 angleDifference(φ1((1/i)ct), φ2((1/i)ct))/π

N

The angleDifference function yields the difference between two angles, tak-
ing the cyclic range [0; 2π] into account (cf. Appendix A.4).

The total deviation between two animations is a combination of the axis
and the angle deviation:

deviation(R1(t), R2(t)) = daxis(R1(t), R2(t))dφ(R1(t), R2(t)) (7.1)

Average

The average rotation animation, Ra(t) of a set of rotation animations, A, is
obtained in a similar fashion as deviation, namely by considering N samples
uniformly distributed over the animation cycle, and then consider the axis of
rotation and the rotation angle separately.

The axis of rotation function of the average rotation animation axisa(t) is
found by averaging the axis of rotations given by the rotations in A at each of
the N time samples. Axes of rotation are considered as lines containing the
origin, and averaged by finding a best average line for this set of lines. To
obtain the axis for any given time, the axis for each time sample is interpolated
using a spherical linear interpolation scheme.

The average angle of rotation function, φa(t), of the rotation animations
in A, is likewise obtained by averaging the angle of rotation at each of the N
time samples. Linear interpolation is applied to obtain the rotation angle for
any time. Note that since angles are in the cyclic range [0; 2π] they should be
averaged as described in Appendix A.4.

The bones to be averaged are likely to animate different amounts of trian-
gles. Remember that a bone animates the triangles attached to itself or any of
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its descendants. When determining the average rotation animation, bones that
animate few triangles should not have as much influence as bones animating
many triangles. For this reason, we weight the axes and the angles with the
amount of triangles the respective bones animate. The weighting of the angles,
for example, is done by scaling the length of the vectors summed in order to
find their average.

Having defined deviation and average, a description type can be defined.
The simple means for finding deviation and average presented in this section
has several problems, as will be discussed in Section 7.2.5.

7.2.4 Axis-angle Description Type

The four functions constituting the axis-angle description type are:

description(b) : An axis-angle description, d, of an animated bone, b, equals
the rotation animation R(t) performing its animation.

deviation(d1, d2) : Deviation between two axis-angle descriptions, d1 = R1(t)
and d2 = R2(t), is given by Equation 7.1 on the previous page. Simply
put, the animation cycle is sampled into N uniformly distributed samples,
and the deviation is derived from the average angle between the axes
of rotation, and the average difference in rotation angles, at these N
samples.

Note that this deviation only applies for sibling bones. The deviation
between the animation descriptions for two non-sibling bones is defined
to be ∞.

average(D) : Given axis-angle descriptions for a set of sibling bones, D, the
average description is obtained by considering N samples uniformly dis-
tributed during the animation cycle. At each sample, the axes of rota-
tion in D are averaged, and likewise are the rotation angles in D, each
weighted with how many triangles the respective bones animate. The
average axes and angles at each of the N frames are linearly interpolated
to yield the actual average description, Ra(t).

Average is not defined for non-siblings.

apply(b, d) : An axis-angle description of the rotation animation of a bone does
not discard any information, and a description, d, can directly be applied
to any bone, b.

7.2.5 Description Type Shortcomings

As stated, it is expected that time-offsetting a rotation animation in the skeleton
will not impact much on the overall visual appearance of the animated tree
model. For this reason, the deviation between two sibling bones performing
time-offset equal animations should be small, as a visually satisfying average is
obtained by applying their time offset to one of the bones, in effect giving them
identical animation.
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The simple axis-angle description type presented does not take this into
account. By considering the angle between the rotation axes at different time
samples, and the difference in angle at these time samples, two time-offset
equal animations are potentially concluded to be very different, as they do not
have similar axis and angles at the considered time samples. In relation to
the animation analysis discussion earlier, the simple approach to comparing
rotation animations represented by the axis-angle description type corresponds
to the simple Euclidean animation analysis of trajectories presented in Sec-
tion 4.4.1 on page 61.

In addition to not handling time-offset equality in a reasonable manner,
and to make things even worse, the description type does not prevent bones
from “out-phasing” each other. The average of two rotation animations might
hence become an animation rotation that does not perform any rotation at
all. In other words, using the simple presented average will have a tendency
to remove animation, which we do not judge satisfying in terms of the visual
fidelity of the simplification.

More shortcomings could be discussed, but the above already justifies the
discussion of alternative approaches to follow.

7.2.6 Discussion of Advanced Approach

In this section we present ideas for how more suitable means for deviation and
averages can be defined. In Section 4.4.2 on page 62 it was argued that spectral
analysis of trajectories can be used to conclude time-offset equal trajectories
similar, as well as trajectories with small speed and/or distance dissimilarities,
by considering their frequency spectra. It is interesting to consider whether
a similar spectral approach can be taken when analyzing rotation animations
instead of trajectories.

One näıve approach is to consider a rotation animation as a set of three
rotations around the world coordinate axes, and then apply DFT to yield a
spectrum for each rotation. As mentioned earlier, however, a single rotation
can be represented by entirely different world axes rotations, making two rota-
tions hard to compare. For this reason we propose to somehow apply spectral
analysis to the axis-angle representation of rotation animation.

The axis of rotation during a rotation animation, axis(t), can be thought of
as an animated vector. The length of the vector is of no importance, but its
orientation can be expressed in spherical coordinates. We propose to apply
DFT on these two angle functions, to yield a frequency spectrum for each.
Deviation and average of two axis functions are then given by the distance
between, and the average of, their spectra, which is done similarly as presented
in Section 6.1 on page 87. Ignoring phase makes two time-offset equal axis
rotations obtain zero deviation, although this implies the same problems as
it did when analyzing trajectories, namely that the animation might change
shape. In the context of rotation, this refers to the shape of the path traveled by
the animated vector representing the rotation axis. Changing the shape of the
animation of the rotation axis might in worst case yield a rotation animation
with little visual resemblance to the original. To remedy this shortcoming of
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simply ignoring phase, axis-phase relationships could be employed 6.1.4
In addition to applying DFT on spherical coordinates of the axis, DFT is

applied to the angle of rotation function φ(t). The deviation and average of
two rotation animations are thus obtained by considering the deviation and
the average of three spectra, two for the axes and one for the angle. All three
functions onto which we apply the DFT yield values in a cyclic range. In or-
der for the DFT to provide meaningful spectra, this cyclic behaviour must be
somehow taken into account. One attempt is to convert the function values
to be continuous and non-cyclic, the details of which will not be discussed
further, though. Another issue is present when a rotation axis vector is oriented
near a pole in the spherical coordinate representation during the animation. A
such rotating around the pole will get unintentionally large spherical coordinate
changes over time, and thus large amplitudes in its spectra, when compared to
the spectra obtained by analyzing the animation of an axis vector not oriented
near a pole during the animation. A simple attempt to minimize this problem,
when two rotation animations are compared, is to find the average rotation
axes of both animations. The spherical coordinate system is then defined such
that average rotation axes are as far from the poles as possible.

We judge a spectral approach for analyzing rotation animations suitable, but
the visual artifacts of ignoring phase or using axis-phase relationships are hard
to predict. The fact is that ignoring phase will in worst case result in animations
clearly rotating around the wrong axes, just as ignoring phase in three world
axis spectra for a trajectory can result in animation with completely wrong
orientations.

7.3 Non-terminal Sibling Collapse

The CJR algorithm reduces the number of billboard clouds needed for sim-
plifying a skeletal tree model using the Bone Clustering strategy. The algo-
rithm cannot, however, reduce the number of billboard clouds further than the
number of joints in the skeleton. Recall that an increased number of billboard
clouds generally implies more billboards needed for simplification, which is the
motivation for reducing it.

In our problem definition, we state that our goal is to derive simplification
techniques that can be used to simplify CASTMs to animated billboard cloud
LOD models consisting of a reduced amount of triangles. If a polygonal tree
model is animated with a high degree of realism, then it might contain a large
amount of animation bones and joints, in which case it is not possible to obtain
very few triangles using CJR simplification. For this reason, a skeleton simpli-
fication procedure is introduced with the purpose of removing joints from the
skeleton, and while doing so attempt to alter the animation of the tree the least.

The number of joints in the skeleton is reduced by performing non-terminal
sibling collapses. As defined in the strategy, a sibling collapse replaces two
siblings with a single bone, which inherits the children of both replaced bones.
The single bone is given the average rotation animation of the two non-terminal
sibling bones, and their end joints are collapsed into one. The new end joint
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contains the bones of the original joints, and these bones are updated to per-
form new rotations. Terminal bones are not considered, as they do not specify
end joints, and hence collapsing such will not reduce the number of joints.

An example of a non-terminal sibling collapse is illustrated in Figure 7.3.

(a) The skeleton before collapsing
the two non-terminal siblings b1 and
b2.

(b) The skeleton after
the collapse. b′ is the
new bone replacing b1

and b2.

Figure 7.3: A non-terminal sibling collapse.

Notice that bone b3 is a non-terminal child bone of b1, and hence defines
an end joint around which its own children rotate. The initial orientation and
length of this bone are updated, such that it specifies an end joint at the exact
same position in the tree model as before. This guarantees that the rotations of
geometry around this end joint remains correct, when the bones b1 and b2 are
collapsed.

7.3.1 Common End Joint

Recall that an end joint of a bone specifies the start joint of its children bones
(cf. the skeletal model presented in Section 1.4.2 on page 26). When collapsing
two siblings their end joints will be collapsed into one common joint. This single
joint specifies a new common joint for the children of both bones. The problem
is to determine the best position for this common joint, i.e. determine the joint
around which the triangles attached to the children can rotate with as much
visual resemblance to the rotations as they did around the original joints.

Finding a reasonable common end joint is not a trivial task. One might
expect the midpoint between the two end joints to be a reasonable common
joint for all triangles rotating around these joints, but, as Figure 7.4 on the next
page shows, this is not the case in general.

Figure 7.4 on the following page illustrates a bad common end joint, since
the rotation animations performed by the triangles cannot be expressed well
as rotations around the common end joint. A better common end joint is illus-
trated in Figure 7.5 on the next page.

In the CJR algorithm, only the bones are considered, as all the triangles
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Figure 7.4: The midpoint between the two end joints is not necessarily a reasonable
common end joint.

Figure 7.5: A more reasonable common joint.
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attached to a bone perform the exact same rotation. The above examples illus-
trate that when finding a common end joint for two siblings, the positions of
the triangles animated by the children bones are essential.

7.3.2 Reasonable Common End Joint Definition

In the following, we will make a definition of a reasonable common end joint
for two non-terminal sibling bones being collapsed. All triangles attached to
any descendant of the collapsed bones are considered, as these are the triangles
performing a rotation around the end joints of the collapsed bones. The triangle
orientation is ignored, only the center of a triangle is recorded, and thus a single
animated triangle is represented by a trajectory.

First we consider how to convert the rotation animation of a triangle to one
around a new joint. The rotation animation of a triangle yields a trajectory,
and the centroid (average position) of this trajectory can be computed. From
this centroid and a new rotation joint, a centroid rotation sphere can be defined
with the joint as center, and the distance between the centroid and the joint as
radius. The trajectory is mapped onto this sphere to yield its rotation animation
around the new joint, which is illustrated in Figure 7.6.

Figure 7.6: A trajectory for a triangle rotating φ1 around joint j1 is mapped onto a
centroid rotation sphere to yield a new rotation, φ2, around a new joint, j2. The black
dots on the circles denote the original positions of the animated triangle, and the white
dots denote the positions mapped onto a centroid rotation sphere defined for the triangle
centroid and j2.

We define an error measure for how well a trajectory for an animated trian-
gle, p(t) = (x(t), y(t), z(t)), is represented as a rotation around some rotation
joint, j = (jx, jy, jz). The centroid rotation sphere has center c = j and radius
r =| j − centroid(p(t)) |. The animation cycle is considered at N uniformly
distributed samples. The error at a sample, n, can be expressed as the distance
between the sample position p(n) and to the sample position mapped onto
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the centroid rotation sphere. This error is equal to the difference between the
radius r and the distance | j − p(n) | for each sample n. To avoid the square
root in later computations, the squared distance is used.

εp denotes the error obtained by animating a triangle with trajectory p
around joint j, and equals:

εp =
N−1∑
n=0

| r2 − ((x(n)− jx)2 + (y(n)− jy)2 + (z(n)− jz)2) | (7.2)

To make εp continuous, we square the expression and thus remove the
absolute operator:

εp =
N−1∑
n=0

[ r2 − ((x(n)− jx)2 + (y(n)− jy)2 + (z(n)− jz)2) ]2 (7.3)

For a set of triangles, T , we can also define an error measure:

ET =
∑
tr∈T

εtrajectory(tr) (7.4)

We can now define the reasonable common end joint for two bones b1 and
b2. If T is the set of triangles animated by the children of b1 and b2, then the
reasonable common end joint is the one that minimizes the error measure ET .
This is the joint the triangles in T can rotate around, and each perform the
rotation most similar to their original rotation.

Note that ET is a polynomial. Thus, we can differentiate ET symbolically
and find the roots of the differential. The global minimum is an element in
the set of roots, and using this approach we can find the coordinates of the
reasonable common joint position. The above approach must be implemented
in a software system. The symbolic differentiation can be performed using an
algebra system such as GiNaC [4], and the roots of the differential can be found
using a numeric computation library such as the GNU Scientific Library (GSL)
[15].

7.3.3 Defining the Joint Animation

When sibling collapsing two bones into a single bone, this bone is given their
average rotation animation, and set to specify the reasonable common end joint
which minimizes the error measure ET . The created bone inherits the children
of both bones, which should thus define their animation around the new end
joint.

A näıve approach is to let each children bone keep its original rotation
animation, R(t), and simply apply these rotations around the new joint instead.
This, however, does not yield satisfactory results. The example in Figure 7.7 on
the next page illustrates this.

The example demonstrates that a new animation has to be created for the
children of the collapsed bones. Considering a single triangle animated by a
bone, its trajectory can be mapped onto the centroid rotation sphere defined
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Figure 7.7: A triangle is rotated by an angle φ by its bone around joint j1. If its bone was
to rotate around the joint j2 instead, then its original rotation φ would imply the triangle
moving the distance illustrated by the dashed arc, which is more than twice the distance
originally traveled by it.

for the new joint. This yields a suitable rotation for this triangle around the
new joint.

All the triangles animated by the same bone at one of the original joints
should still be animated by the same bone at the new joint. These triangles
originally performed the same rotation, but they do not necessarily map to
similar rotations around the new joint. This is illustrated by the example in
Figure 7.8 on the following page.

ET is minimized to find a joint for which the sum of rotation error, when
mapping each individual triangle onto a sphere centered at the joint, is smallest.
If each triangle was allowed to define its own rotation around the new joint
(rotate φ1 and φ2 instead of a common rotation, in the example), then this joint
would indeed be a reasonable common joint for the triangles. However, we do
not want to introduce more unique rotations, as such would imply more bill-
board clouds. The solution is to average the rotations obtained by mapping the
trajectories of all triangles animated by one bone onto their centroid rotation
spheres around the new joint. This average is unfortunately not guaranteed to
be a good one.

We believe that a better end joint might be obtained by considering both
the error, ET , introduced by a joint, and how precise an average can be created
for each bone rotating around this joint. A such approach will not be discussed
further.
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Figure 7.8: Triangle t1 and t2 are attached to the same bone, and both perform the
rotation φ1 around joint j1. Around the new joint j2, t1 defines the red centroid rotation
sphere, and t2 defines the blue centroid rotation sphere. The two triangles yield different
rotations by mapping their trajectories to the respective centroid rotation spheres, namely
φ2 and φ3.

7.4 Loss of Bone and Trunk Mesh Correspondence

A very important observation is that when performing a number of joint reduc-
ing skeleton simplifications based on sibling collapses, the assumed correspon-
dence between the skeleton bones and the trunk mesh is lost. When a collapse
replaces two end joints with a new common end joint, a new rotation for each
bone at the original joints is defined as a rotation around the new joint. In
effect, the triangles attached to these bone will perform a new rotation around
a new joint.

This, however, has an unfortunate effect on trunk triangles attached to the
bone, as the connected trunk mesh does not retain its connectivity. This is
illustrated in Figure 7.9 on the next page.

As foliage is modeled by unconnected triangles, rotating such around a
new joint does not introduce any connectivity artifacts. When non-terminals
are collapsed to reduce the number of joints, our solution is to animate the
trunk with the original skeleton to maintain trunk connectivity, and hence only
animate the foliage with the new skeleton. Consequently, the foliage and the
trunk will animate independently, which can obviously be a noticeable visual
artifact. At far away LODs we expect it to be acceptable, though.

7.5 Skeleton Billboard Cloud Simplification Algorithm

The algorithm of the Skeleton Billboard Cloud Simplification solution, SBCS,
is one based on both common joint rotation simplifications and non-terminal
sibling collapses. Due to the discussed connectivity issues, we propose to per-
form as much common joint rotation simplification as possible, and only apply
collapses of non-terminals when few enough billboards cannot be obtained
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(a) A trunk mesh rigged with a simple skeleton.

(b) The two non-terminal bones b1 and b2 are collapsed
into b′, and their children bones are now siblings at the
end joint of this bone.

(c) The children bones b3 and b4 both rotate φ
around the new joint, resulting in their associ-
ated branches becoming disconnected from the
trunk mesh.

Figure 7.9: Losing connectivity.
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using common joint rotation simplification alone. We choose to keep the al-
gorithm simple, and briefly discuss a more advanced approach.

The input is a CASTM, denoted TreeModel , the desired number of billboard
clouds, BC , as well as the parameters taken by the Stochastic Billboard Cloud
Algorithm, which have been omitted in the pseudo-code.

SBCS (TreeModel ,BC )

1. While the number of joints in the skeleton is larger than BC :

(a) Minimize the error measure ET (see Equation 7.4 on page 124)
for each pair of non-terminal siblings, where T refers to all foliage
triangles rotating around either of the sibling end joints. This yields
a reasonable common end joint for the two bones.

(b) Collapse the sibling pair with smallest error ET .

2. Let TreeModel ′ denote the CASTM obtaining after performing a
number of non-terminal sibling collapses in the previous step. Run
CJR(TreeModel ′,BC ) to yield sets of common sibling rotation,
C1, C2, ..., CBC .

3. For each common rotation set, Ci, apply the animation average(Ci) to all
the bones in the set.

4. Run the Stochastic Billboard Cloud Algorithm on the foliage geometry
attached to bones in each rotation set, Ci.

5. If no sibling collapses were done in Step 1, then output the single CJR
simplified skeleton, with both trunk and foliage attached. On the other
hand, if sibling collapses were necessary, output a trunk animated with
the original skeleton, and a foliage animated with the simplified skeleton.

7.6 Analysis of the Simplification

We conclude this chapter with a discussion of the simplification performed by
the Skeleton Billboard Cloud Simplification solution, followed by a comparison
with the Spectral Clustering solution.

7.6.1 Quality of the Simplification

The Skeleton Billboard Cloud Simplification solution simplifies the input foliage
by creating a set of separate animated billboard clouds. Each billboard cloud
is created for a set of triangles attached to the same bone or, in case common
joint rotation simplifications or non-terminal sibling collapses are performed,
triangles that are attached to siblings. In any case, the billboard clouds are
created for triangles attached to bones that are closely related in the skeleton
structure, and the billboards in the different billboard clouds will in general not
intersect, due to them being ”isolated” from one another. We expect that at least
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two or three billboards are necessary per billboard cloud, in order to reduce the
risk of the foliage represented by a billboard cloud being ill-represented from
certain view angles.

The visual fidelity of the simplifications produced by the solution is greatly
dependent on how reasonable a bone animation description type can be de-
fined. The amount of visual error introduced by a common joint simplification
depends on the ability to select the pair of sibling bones with rotation anima-
tions visually the most alike, and define a reasonable common animation for
these bones. We have only defined a very simply bone animation description
and argued why we believe a more advanced approach based on spectral anal-
ysis of rotation would be better. We expect the quality of the bone animation
description type to have a very direct impact on the visual error metrics.

The solution obtains a large reduction of the number of billboard clouds
required for simplification by performing non-terminal sibling collapses. The
main issue when performing these collapses is to find a common end joint for
the two siblings, around which both their children should rotate. We find the
position of this end joint by minimizing the error introduced to each individual
triangle rotation, when this rotation is mapped onto a sphere centered at the
new joint. A shortcoming of this approach is that triangles attached to the same
bone map to different rotation animations around the new end joint, and these
should be averaged in order to define a single rotation animation for the bone.
It is hard to predict the quality of this simplification.

7.6.2 Preservation of Skeleton Levels

An example of an animation skeleton is illustrated in Figure 7.10(a) on the
next page. By performing non-terminal sibling collapses, and common joint ro-
tation simplifications, the Skeleton Billboard Cloud Simplification solution can-
not simplify the skeleton further than the simplified skeleton in Figure 7.10(b)
on the following page. In order to reduce the number of bones further, par-
ent/child collapses should be performed, which are not part of the solution. In
the illustrated example the solution can hence reduce the number of billboard
clouds needed for simplification from fifteen to four, but not further.

Not being able to simplify further is a limitation of the solution. However,
as a consequence of the solution not considering parent/child collapses, the
number of levels in the animation skeleton are preserved. Assuming that each
foliage triangle is attached to the outer level branches, the animation of each
foliage triangle would be defined by n rotations (four, in the example above).
These rotations have different inherent frequencies, due to the difference in
branch rigidity at different branch levels in a tree (see observations 1.5 on
page 29). In a simplification produced by the Skeleton Billboard Cloud Sim-
plification solution, the animation of each foliage triangle is still defined by n
rotation animations around different joints, and the inherent frequencies at the
different levels are retained, assuming a reasonable bone animation description
type.
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(a) An example of an animation skele-
ton before performing simplification.

(b) The simplified animation skeleton after
performing as many sibling collapses and
common joint rotation simplifications as
possible.

Figure 7.10: Preservation of skeleton levels illustrated.

7.7 Comparison with Spectral Clustering

It is interesting to compare the Skeleton Billboard Cloud Simplification solu-
tion with the Spectral Clustering solution. Which one is the better is hard to
generalize, as it depends on the input model, the applied description types, and
whether an animated billboard cloud LOD model is to be observed at close or far
range. However, some essential similarities and differences can be discussed.

7.7.1 Similar Input

The two solutions both perform a budget-based clustering of triangles with the
number of billboard clouds as budget, which attempts to minimize animation
error within each cluster. After this clustering, all triangles in each cluster are
assumed suitable for agreeing a single animation. The error-based Stochastic
Billboard Cloud Algorithm is then applied in both solutions to construct the
actual billboards. Consequently, the two solutions take similar parameters,
which makes it easier to compare their results.

7.7.2 Skeleton Rotations

The Skeleton Billboard Cloud Simplification solution constructs a simplification
where the foliage billboards are animated using bones. This is judged a great
advantage, even when end joints are collapsed, compared to the artificial ap-
pearance expected of the simplifications produced by the Spectral Clustering
solution, due to not analyzing and averaging animation in terms of rotation.

Both solutions are, however, able to retain the different inherent frequen-
cies in the input model; the Skeleton Billboard Cloud Simplification due to its
preservation of skeleton levels, and the Spectral Clustering solution due to its
representation of animation using frequency spectra.
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7.7.3 LOD Distances

In general, we expect the Skeleton Billboard Cloud Simplification solution to be
better at producing precise simplifications to be observed from short range. For
example, if only about a halving of the triangle count is needed, this solution
can settle with a billboard cloud per bone. Consequently, next to no animation
error is introduced, as each billboard is animated precisely as the triangles it
simplifies. Also, as long as no non-terminal sibling collapses are needed, the
foliage and the trunk mesh can use the same animation, hence avoiding the
artifact of foliage not following branches. This artefact is unavoidable using the
Spectral Clustering solution, which in itself makes it less attractive for produc-
ing LODs to be observed up close. On the other hand, the Spectral Clustering is
judged better for producing LODs to be observed from far distances for several
reasons.

Assume an animated billboard cloud LOD model where the foliage should
only be represented by approximately ten billboards. If the skeleton of the
model to be simplified contains more than ten levels, then this alone makes the
Skeleton Billboard Cloud Simplification solution unable to produce this LOD.
Suppose that the number of levels is lower (it usually is). As an example, say
it is five. In this case the solution still has problems. Say that each billboard
cloud should contain at least three billboards, in order to avoid bad observation
angles. Consequently, this yields a minimum of 15 billboards, which again is
more than the desired ten. As a final example, assume only three skeleton
levels. The solution is now able to reduce the number of billboard clouds
required for simplification to three, after which it can produce a billboard cloud
for each bone level containing at least three billboards.

We hypothesise the Spectral Clustering solution to be better than the Skele-
ton Billboard Cloud Simplification solution for producing the LODs containing
very few triangles. The latter produces its animated billboard cloud simplifica-
tion by constructing a set of separate billboard clouds that simplify sets of lo-
calized triangles attached to bones that are close in the skeleton structure. This
implies in general that billboards from different clouds do not intersect. The
Spectral Clustering solution also creates a set of separate billboard clouds, but
an important difference is that the triangles simplified by these are potentially
from very different positions and bones in the tree. This difference entails that
billboards from different clouds will intersect each other, which helps hiding the
two-dimensional nature of the simplification. It also increases the efficiency of
the increased foliage improvement. For this reason, the Spectral Clustering
solution is judged better at producing simplifications using few billboards, and
hence for LODs to be observed from large distances.

Using the Skeleton Billboard Cloud Simplification solution all billboards in
each separately created billboard cloud are animated by the same bone and
perform thus the same animation. On the contrary, all the billboards contained
in a Spectral Clustering simplification have a unique animation, each defined
by computing an average of the animations of the triangles the billboard in
question simplifies. We judge these independent animations an advantage for
LODs containing few billboards to be observed at a far distance, because it gives
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an illusion of structural complexity.
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Chapter 8

Implementation and Results

Having presented and discussed our solutions in Chapter 6 and Chapter 7 the
topic of this chapter is implementation and experiments. We will discuss our
implementation of the Stochastic Billboard Cloud Algorithm, as well as a pro-
totype implementation of the Skeleton Billboard Cloud Simplification solution.

Details on the implementations are given in Section 8.1, and a visual evalua-
tion of the simplifications produced is given in Section 8.2. Several experiments
have been conducted on the two implementations to analyze how different
aspects of the simplification are affected by different parameters. The setup for
these experiments is presented in Section 8.3, and the results are presented and
analyzed in Section 8.4.

8.1 Implementation

We have implemented the Stochastic Billboard Cloud Algorithm and a proto-
type of the Skeleton Billboard Cloud Simplification solution. The implementa-
tions will be described in the following sections.

8.1.1 Stochastic Billboard Cloud Algorithm Implementation

The Stochastic Billboard Cloud Algorithm has been implemented exactly as
prescribed in Section 3.5.1 on page 51. Furthermore, both the view penalty
improvement and the increased foliage density improvement have been im-
plemented (see Section 3.6 on page 53). The program is invoked with the
following parameters:

• ε specifies the maximum allowed permutation distance.

• N specifies how many random planes are considered before choosing the
one with maximum density.

• increasedFoliageDensity is a boolean parameter that specifies whether the
increased foliage density improvement is enabled or disabled.

• viewPenalty is a boolean parameter that specifies whether the view
penalty improvement is enabled or disabled.
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• φv specifies the view penality angle, if the view penality improvement is
enabled.

To be compatible with the prototype implementation of the Skeleton Bill-
board Cloud Simplification solution, the Stochastic Billboard Cloud Algorithm
can be invoked for a subset of all foliage triangles. The triangles of this subset
are the only triangles that are considered for the simplification.

Implementation Issues

Even though the Stochastic Billboard Cloud Algorithm is simple, an implemen-
tation involves several technical details. We have implemented the algorithm
using the open source rendering engine Ogre [27] to handle meshes and the
rendering of billboard textures. Given a mesh input file, our implementation
operates as follows. We first load the mesh vertex and index buffers from
the mesh file (the vertex buffer contains the vertices of the mesh and the in-
dex buffer keeps track of how the vertices are connected to each other). The
Stochastic Billboard Cloud Algorithm then runs on the triangle set defined by
the vertex and index buffers. This outputs a set of triangle clusters, each of
which is associated with a plane that should simplify the triangles in the cluster.

For each cluster, the triangle vertices are orthogonally projected onto the
associated plane and the least bounding rectangle is found. We have imple-
mented a least bounding rectangle algorithm using rotating calipers [22]. The
result is four vertices defining the billboard quad for a given triangle cluster.

The triangles in a cluster are then rendered onto the associated billboard
quad, again using an orthogonal projection, and the result is stored in a texture,
which is associated with the billboard quad. We do not include realistic lighting
in our simplifications (cf. our project limitations in Section 2.4 on page 35), so
we simply render the billboard textures using ambient shading.

Rendering a billboard texture involves uploading a vertex and an index
buffer defining the triangles to be simplified, to the GPU. When the triangles
are rendered, the view transformation matrix is set to align the camera with
the billboard quad edges, and the projection matrix is set to an orthogonal
projection. The view window has a fixed size in world space units, so when
performing an orthogonal projection, most triangles are likely to be projected
outside the view window, and hence be view frustum culled. The solution is to
let the projection matrix scale the x- and y-components with the billboard quad
dimensions, resulting in a view window with the same size and dimensions as
the quad, which consequently stretches the geometry to be rendered. The ge-
ometry is rendered to a texture, and when mapping this texture to the billboard
quad, the geometry represented on the billboard will appear correct (i.e. not
stretched). The resolution and dimensions of the texture are chosen from the
quad dimensions, in order to get a reasonable texture resolution.

A billboard cloud mesh with correct uv-coordinates is constructed and
stored. As mentioned in Section 1.3.3 on page 21, the textures of the different
billboards should be packed into a single texture in order to reduce render
state switches [17], and hence improve fps performance. This has not been
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implemented, and the fps performance of our billboard clouds is therefore not
judged representative.

8.1.2 Prototype Skeleton Billboard Cloud Simplification

A series of experiments are performed using a prototype implementation of
the Skeleton Billboard Cloud Simplification solution. This prototype will be
described in this section.

The Skeleton Billboard Cloud Simplification solution consists of two types
of simplification; common joint rotation simplification (represented by the CJR
algorithm), and non-terminal sibling collapses. The solution performs only non-
terminal sibling collapses, if few enough billboard clouds cannot be obtained
using common joint rotation simplification alone. The prototype implemen-
tation includes common joint rotation simplification only, and hence reduces
the number of billboard clouds needed for simplification by defining common
rotation animations for siblings. It furthermore applies the Stochastic Billboard
Cloud Algorithm implementation for billboard cloud creation per common joint
rotation set.

The parameters taken by the prototype are:

• The number of desired billboard clouds, BC . If the input CASTM contains
J joints, the prototype can only obtain the desired number of billboard
clouds, if J ≤ BC .

• All parameters needed by the Stochastic Billboard Cloud Algorithm im-
plementation.

The prototype can be used to evaluate common joint rotation simplification,
for which a prototype bone animation description type has been implemented.
This prototype bone animation description type is simplified compared to the
one defined in Section 7.2 on page 115, and the one discussed in Section 7.2.6
on page 119. Since the prototype of the Skeleton Billboard Cloud Simplification
algorithm does not include non-terminal sibling collapses, it cannot be used to
evaluate our strategy for defining a common end joint for two sibling bones
(see Section 7.3 on page 120). Also, since non-terminal sibling collapses are
required to reduce the number of billboard clouds to a very low number, the
prototype cannot be used to evaluate how well the Skeleton Billboard Cloud
Simplification solution can produce simplifications containing very few bill-
boards, and hence its ability to produce LODs to be observed from a large
distance.

Prototype Bone Animation Description Type

As mentioned, a prototype bone animation description type has been imple-
mented. This prototype is used by the CJR algorithm in order to construct
common rotation sets. The intuition behind the prototype is to let the bones
with most triangles attached define the animation of the triangles attached to
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their siblings. By doing this, a correct animation is preserved for the largest
number of triangles possible.

The functions constituting the type are defined as follows:

description(b): A description, d = 〈b, T 〉, for a bone, b, contains a reference to
the bone, as well as the number of triangles attached to it.

average(B): An average description 〈ba, Ta〉 for the descriptions of a set of sib-
ling bones, B, is built as follows. The bone reference ba in the average
description equals the bone reference of the descriptions in B, that has
the largest number of triangles attached to it. The amount of triangles Ta

equals the amount of triangles attached to ba.

deviation(d1, d2): The deviation between two descriptions 〈b1, T1〉 and 〈b2, T2〉
equals min(T1, T2). If the bones referred to by d1 and d2 are not siblings,
their deviation equals ∞.

apply(d, b): A description, d, is applied to a bone, b, by reassigning the triangles
of b to the bone referred to by d (unless it is the same bone, in which case
no reassignments are done).

The CJR algorithm initially defines a common rotation set for each bone in
the skeleton. It then iteratively builds up larger common rotation sets, by unit-
ing the rotation sets with least deviation between their average descriptions,
until the amount of rotation sets equal BC .

A single animation is defined for a common rotation set by reassigning the
triangles of the different bones to the bone referred to by the description yielded
by average, i.e. the bone with most triangles attached. In order for CJR to
unite the sibling rotation set pair that implies the least amount of triangles
getting their animation changed, the deviation function is evaluated between
the average descriptions of each pair of rotation sets.

It should be noted that we are well aware that this animation description
type is a simplification compared to the type discussed in Section 7.2 on
page 115. The sole reason for opting for this type is lack of time.

It should further be noted that the no bones get their animation changed by
this simplification procedure. When the triangles attached to two sibling bones
are to share animation in order to be able to share billboards, the triangles of
one of the bones is simply reassigned to the other. The effect of this corresponds
to the average animation bones improvement presented in Section 7.1.2 on
page 113, and the average bone using the prototype bone animation description
type is simply one of the original bones. The advantage of this improvement
is that animation error introduced to the foliage triangles of a bone does not
influence the foliage triangles attached to its children. The disadvantage is
that foliage triangles being reassigned no longer follow the animation of their
branches. Also, the animation of foliage triangles attached to the children of
a bone getting its triangles reassigned will appear less related to the foliage of
their parent. We should be able to observe and reflect on these artefacts with
our prototype implementation.
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8.2 Visual Evaluation

A brief visual evaluation of the simplifications produced by our implementa-
tions are given in this section.

8.2.1 Stochastic Billboard Cloud Algorithm

Examine the example simplifications of our input data tree model in Figure 8.1.
These examples demonstrate how the Stochastic Billboard Cloud Algorithm
effectively reduces the number of triangles, and is successful in simplifying
the example model to a variable degree of rendering complexity. The first
simplification in Figure 8.1(b) is created with a small ε value, and it reduces
the number of triangles from 1384 to 126. The result is visually very close to
the original tree model, and it retains high visual fidelity from all angles. The
simplification in Figure 8.1(c) is created with a relatively large ε. It reduces
the number of triangles from 1384 to 30. The two-dimensional nature of the
foliage has become noticeable, and the visual fidelity no longer seems consis-
tent from different view angles. However, as the simplification only contains
about 2% of the original number of triangles, it could be used effectively for
distant LODs, at which we believe it to resemble the original accurately. A final
example simplification is shown in Figure 8.1(d). This simplification has been
created with a large ε value, with the improved foliage density improvement
enabled, and contains 6 billboards. Generally, we observe that using large ε
values, the foliage tend to appear too sparse (as discussed in Section 3.6.2 on
page 53), but, as seen in the figure, the improved foliage density improvement
successfully remedies this. The result has very low polygonal complexity, and
from unfortunate view angles it loses some of its visual fidelity.

Overall, the results are positive. The algorithm is successful in creating sim-
plifications for different observation distances, i.e. different LODs. The results
furthermore indicates that the Stochastic Billboard Cloud Algorithm is suitable
for simplifying foliage models. It would be interesting to run the algorithm
on other input tree models, especially models with a much larger number of
foliage triangles.

Visual Artefacts

We observe several visual artefacts in our billboard cloud simplifications. First
and foremost, the billboards do become visually noticeable when large ε values
are used, but this is to be expected. However, our implementation suffers from
some technical issues regarding the rendering of billboard textures, also.

In general, the billboard textures have a too dark colour intensity, compared
to the textures of the input model. We do not currently know the exact reason
for this reduction in colour intensity, but we guess it is related to texture alias-
ing. Furthermore, the foliage silhouette seems slightly blurred in the billboard
textures.
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(a) The original tree model. (b) A billboard cloud simplification with
ε = 3. The billboard cloud contains 63
billboards (= 126 triangles).

(c) A billboard cloud simplification
created with ε = 6. The billboard cloud
contains 15 billboards.

(d) A billboard cloud simplification
created with ε = 11. The increased
foliage density improvement is applied
in order to avoid too much reduction
in foliage density, due to the large ε
value. The billboard cloud contains 6
billboards.

Figure 8.1: Our input CASTM and two billboard cloud simplifications created with
our implementation of the Stochastic Billboard Cloud Algorithm. All billboard clouds
utilize view penalty to increase visual fidelity. Each billboard cloud is illustrated with its
associated validity sphere of radius ε.
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8.2.2 Prototype Skeleton Billboard Cloud Simplification

The Skeleton Billboard Cloud Simplification can be used to produce simplifi-
cations of high visual quality, by creating a billboard cloud per bone in the
skeleton. Two example simplifications are illustrated in Figure 8.2.

(a) A simplification produced by creat-
ing a billboard cloud per bone, using ε =
2.5. The number of foliage billboards
has been reduced from 692 to 307, and
the simplification appears with correct
animation.

(b) A simplification produced by cre-
ating a billboard cloud per bone, with
ε = 8. The number of foliage billboards
has been reduced from 692 to 86, and
the simplification appears with correct
animation.

Figure 8.2: Two simplifications produced by the Skeleton Billboard Cloud Simplification
prototype. Each billboard cloud is illustrated with its associated validity sphere of radius
ε.

We expect that at least a few billboards is needed per isolated billboard
cloud, in order to avoid unfortunate viewing angles. Figure 8.2(b) demon-
strates, however, a surprisingly good result, where most bones only have a
single billboard attached. We believe the large number of bones, and only few
foliage triangles per bone, in the input model to explain this result.

Common joint rotation simplification can be applied in order to obtain fewer
billboards in the skeleton, without reducing ε further. As a result, some fo-
liage triangles get their animation altered, which is hard to notice in the result
though.

Visual Artefacts

We observe the expected artefact, that some foliage triangles appear uncon-
nected to their branches, when common joint rotation simplification is applied.
It is hard to notice though, as the branches in our input model do not perform
large rotations, and also due the branches being partially covered by foliage.

As the prototype uses the Stochastic Billboard Cloud Algorithm implemen-
tation for creating billboard clouds, we naturally observe the artefacts related
to billboard textures mentioned for this implementation.

139



Chapter 8. Implementation and Results

8.3 Experiments Setup

To gain a more profound understanding of the Stochastic Billboard Cloud Algo-
rithm and the prototype of the Skeleton Billboard Cloud Simplification solution
and their effectiveness, we investigate how the different parameters in the im-
plementations affect the quality of the simplifications.

8.3.1 Quality Experiments

Recall that we measure quality in terms of error and cost; error expresses the
visual fidelity of the simplified model to the original model, and cost expresses
the rendering performance of the simplified model. We assume that our sim-
plifications are to be used in a first-person perspective application where the
observer is positioned on the same ground level as the trees, and evaluate
them in this context. In our experiments, only foliage is simplified, and when
computing the visual error and cost, only the foliage is considered.

Measuring Visual Fidelity

In Section 5.1.5 on page 76 it was argued that if a simplification yields low
values with the colour metric as well as an animation error metric, it suggests
visual fidelity in every frame and coherent animation structures. To evaluate
the visual fidelity of the simplifications produced by our implementations, we
thus employ the colour metric defined in Section 5.1 on page 70. This metric is
defined with animation in mind, meaning that it compares the colour values in
images obtained by sampling the animation cycle. To measure the colour error
of a static billboard cloud simplification the same metric can be used, with the
number of frames considered set to one. We refer to this specialized version as
the static colour metric. Unfortunately, we have not had the time to implement
any one of the animation metrics, so our experiments hence measure visual
fidelity in terms of colour error only.

The colour metric evaluates the general visual fidelity by analyzing the dif-
ference in rendered foliage pixels in the input CASTM and the billboard cloud,
respectively. Intuitively, the colour metric expresses how much overlap there
is between the silhouettes of the renderings, and thus how similar they appear
to an observer. Since we evaluate our simplifications to be used in an appli-
cation where the trees are observed from a ground level, the colour error only
compares images of the foliage rendered from this perspective, and not from
a top-view, for example. To avoid texture filtering and similar aspects of the
rendering process influencing the result, we simply evaluate whether a given
pixel in the output has the background colour or not. If it doesn’t have the
background colour, foliage must have been rendered in that pixel.

The colour metric can be computed using any number of view angles, ani-
mation frames, and in any resolution. In all of our experiments, we have chosen
a resolution of 800 x 600. Furthermore, we have chosen to always render five
different view angles, and when animated models are compared, five sample
animation frames. Intuitively, the number of view angles and animation frames
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should be as high as possible, but as our implementation of the colour metric is
fairly slow, we keep both low to save computing time. The five view angles are
distributed evenly on a full rotation of the tree model, and the animation frames
are uniformly distributed during the animation cycle. We have deliberately
avoided using a number of view angles that is even, to avoid getting very similar
renderings from opposite directions of the tree model.

Measuring Rendering Performance

To evaluate whether a billboard cloud simplification of a model is effective,
some objective metric of rendering cost should be defined. To be able to evalu-
ate performance without depending on a specific hardware configuration, and
without considering the added complexity of a graphics system like Ogre, we
must identify key properties of a billboard cloud that determine the relative
rendering cost of a it.

The performance of rendering a billboard cloud depends on the number of
triangles to be projected onto the screen, as well as the area of the triangles,
as these determine the complexity of rasterization. We define a hardware-
independent cost metric for a billboard cloud as:

< billboard count , total billboard area >,

where total billboard area is measured in world-space units.
The fps performance bottleneck of rendering a billboard cloud can either be

in the geometry stage or the rasterization stage, as discussed in Section 1.3.3
on page 22. For this reason we include both billboard count and total billboard
area in our performance metric. The bottleneck is often rasterization, as a
billboard cloud replaces many triangles with a single larger billboard. However,
on far-away distances, a billboard cloud may cover only very few pixels, making
the geometry stage the bottleneck of rendering it. Each billboard in a billboard
cloud has a unique texture, hence total billboard area is also a resolution inde-
pendent texture memory measure. Note that our cost measure does not include
the cost associated with animating the billboards.

In some application running on a given hardware platform, the exact fps
performance can be computed for our simplifications by computing the aver-
age frame rate measured in fps. Fps should be measured as a function of the
distance between the billboard cloud and the observer, in order to be able to
identify the expected performance gain when increasing the distance between
the billboard cloud and the observer.

Statistics

The Stochastic Billboard Cloud Algorithm searches for high density planes us-
ing pseudo-randomness. Thus, the algorithm will yield different results for
consecutive runs with the same input and parameters, and likewise will the the
prototype Skeleton Billboard Cloud Simplification solution. When performing
an experiment of either, the implementation can be invoked repeatedly with
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the same parameters, and subsequently apply simple statistic functions to the
obtained metric results.

We compute the average of the resulting metric values. To investigate the
range of values in the results, we also find the boundary values, minimum and
maximum, as well as compute a measure of variance. The variance measure
employed is the average absolute deviation, which, for i = 1..n metric values xi,
is given by:

1
n

n∑
i=1

| xi − x |,

where x is the average value of the n metric values. The average absolute de-
viation simply computes the average difference of the results from the average
result.

8.3.2 Input Data

The input data used in our experiments is a tree model modelled and animated
manually by an artist, named David Longacre. Certain choices by the artist may
influence the results of the experiments. Firstly, each foliage triangle represents
50 leaves connected to twigs. Thus, the foliage of the input model may be
considered a set of small billboards. However, this may often be the case with
manually created tree models, as adding an amount of leaves that corresponds
to a real tree is an unsurmountable task, and the model may be considered
a reasonably typical example of a manually created tree model for real-time
usage.

Here we list a few facts about the input model:

• The foliage part of the input model contains 1384 foliage triangles defin-
ing 692 billboards.

• The skeleton contains 101 bones, and the depth of the skeleton is 16 levels.

• 70 of the bones have foliage triangles attached, and each of these bones
have approximately 10 foliage triangle.

The input model satisfies the requirements to CASTMs as listed in
Section 2.1 on page 32, except for the requirement that vertices of a foliage
triangle may not be associated with more than a single bone. However, this is
remedied by adding a pre-processing step to the algorithms that associates all
vertices of a triangle to the same bone, decided as either the bone to which the
most vertices are assigned, or the bone being at the lowest level in the tree.

8.4 Experiments Results

In this section we present the results of different experiments conducted on the
implementations of the Stochastic Billboard Cloud Algorithm and the prototype
of the Skeleton Billboard Cloud Simplification.
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8.4.1 Stochastic Billboard Cloud Algorithm Experiments

Since the Stochastic Billboard Cloud Algorithm relies on pseudo-randomness in
its search for high density planes, it is interesting to examine the stability of
the results produced by it, in terms of cost and error. Such are presented in the
following. The view penalty and increased foliage density improvements have
been implemented, and it is interesting to test whether these influence cost and
error as expected. Finally, we have conducted experiments in order to deter-
mine how cost and error are affected by the maximum allowed permutation
parameter distance, ε, the result of which is demonstrated.

Stability Experiments

Due to the stochastic search for high density planes performed by the algo-
rithm, the algorithm will yield different results for consecutive runs with the
same input and the same parameters. The following experiments evaluate
the stability of the Stochastic Billboard Cloud Algorithm. Here, stability of an
algorithm is considered the property that the algorithm yields similar results on
the same input and given the same parameters. These experiments analyze the
variance of the output metrics results. Both the stability of the visual results
of the algorithm as well as the stability of the performance metric results are
investigated.

I Experiment: Stability of performance
This experiment tests whether the Stochastic Billboard Cloud Algorithm out-

puts a similar hardware-independent performance metric for a sequence of runs
with the same input and parameters. If the metric varies a great deal between
runs of the algorithm, the algorithm may be considered impractical.

The stability of the algorithm depends on the number of sample planes
evaluated in each iteration, N . The larger N is, the more stable is the algorithm
expected to be, as it is more likely to consistently find a high density plane. We
also expect the algorithm to be most stable with low ε values. A random plane
is created by selecting a random seed triangle, and translate its vertices with a
maximum distance of ε in the normal direction. The lower ε, the less different
billboards can be created, hence making the algorithm more stable.

The Stochastic Billboard Cloud Algorithm is run on the input model with ε =
10 and the number of billboard selection iterations N = 100. The experiment is
repeated with ε = 4. The average hardware-independent performance metric
is computed as well as the average absolute deviation of the results. The view
penalty improvement is enabled, as it will be in most of the experiments. The
increased foliage density improvement is irrelevant for this experiment.
Results of 40 tests with ε = 10:

• average number of billboards: 5.73

• average total billboard area: 10500

• average absolute deviation of the number of billboards: 0.630
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• average absolute deviation of the total billboard area: 1000

Results of 40 tests with ε = 4:

• average number of billboards: 36.2

• average total billboard area: 45600

• average absolute deviation of the number of billboards: 1.04

• average absolute deviation of the total billboard area: 1570

To relate the variance of the two sub-experiments, the variance can be ex-
pressed relatively to the average number of billboards. Similarly, the variance of
the total billboard area can be expressed relatively to the average total billboard
area.

The sub-experiment with ε = 10 results in six billboards on average, and
the average absolute deviation is 0.630. Intuitively, this means we can expect
the number of billboards to be between five and six. The relative variance of
the number of billboards is 0.630

5.730 ≈ 0.110. The relative variance of the total
billboard area is 1000

10500 ≈ 0.0952.
The sub-experiment with ε = 4 results in 36 billboards on average, and the

average absolute deviation is approximately 1.04, which means that we can
expect the number of billboards to be between 35 and 37. The relative variance
of the number of billboards is 1.04

36.2 ≈ 0.0287. The relative variance of the total
billboard area is 1570

45600 ≈ 0.0344.
The variance in the number of billboards of both experiments is very rea-

sonable, a variance of a single billboard should be acceptable for most practical
purposes. The total billboard area has a higher relative variance in the first test,
which is expected, as the relative variance in the number of billboards is higher
in the first test, and adding or subtracting a billboard from the cloud will add
or subtract a considerable amount of unused area to the total.

In general, our results show that the algorithm is stable for the tested in-
put model using only N = 100, and even better stability can be obtained by
increasing it. The relative variance is notably lower using the smallest ε value,
which was expected.

I Experiment: Stability of colour metric
This experiment tests whether the Stochastic Billboard Cloud Algorithm

produces simplifications with similar visual error according to the static colour
metric for a sequence of runs with the same input model and parameters.

The test setup is identical to the setup in the previous experiment, and when
ε is small, the average static colour metric is expected to be most stable.
Results of 20 tests with ε = 10:

• average static colour metric: 0.440

• average absolute deviation of static colour metric: 0.0250
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Results of 20 tests with ε = 4:

• average static colour metric: 0.310

• average absolute deviation of static colour metric: 0.0140

The relative deviation with ε = 10 is 0.0250
0.440 ≈ 0.056, and the relative de-

viation with ε = 4 is 0.0140
0.310 ≈ 0.045. The large ε value hence yields the most

variable colour error results, as expected. In any case, we judge the algorithm
fairly stable, and with ε = 10 and N = 100, the results vary only about 6% from
their average. The variance is even less with ε = 4.

Quality of Improvements Experiments

These tests investigate the effects of the view penalty and increased foliage den-
sity improvements, as they have been implemented in the Stochastic Billboard
Cloud Algorithm.

I Experiment: Static colour metric with and without the increased foliage
density improvement

This experiment tests the efficiency of the increased foliage density improve-
ment to the Stochastic Billboard Cloud Algorithm. An example of the visual
result of this improvement in our implementation was given in Section 3.6.2
on page 53.

The improvement is expected to yield somewhat better results in terms of
colour error, especially when there are few billboards in the billboard cloud, i.e.
when ε is large. When this is the case, the foliage area will have been reduced
the most, if the improvement has not been applied.

The effect of the increased foliage density improvement is tested by render-
ing a series of 10 billboard clouds using the Stochastic Billboard Cloud algo-
rithm with the increased foliage density improvement enabled, and a serires of
10 with the improvement disabled. The experiment is performed with three dif-
ferent ε values, namely 4, 10, and 20. The number of sample planes considered
in each iteration is N = 100, and the view penalty improvement is disabled.
Note that the cost metric is irrelevant for the increased foliage density improve-
ment, as it does not influence the process of choosing planes for billboard cloud
creation.

Results of 10 tests with ε = 4:

• improvement disabled: average static colour metric: 0.306 (absolute de-
viation: 0.00871)

• improvement enabled: average static colour metric: 0.304 (absolute devi-
ation: 0.000827)

Results of 10 tests with ε = 10:

• improvement disabled: average static colour metric: 0.463 (absolute de-
viation: 0.0192)

145



Chapter 8. Implementation and Results

• improvement enabled: average static colour metric: 0.464 (absolute devi-
ation: 0.0127)

Results of 10 tests with ε = 20:

• improvement disabled:
average static colour metric: 0.590 (absolute deviation: 0.0205)

• improvement enabled:
average static colour metric: 0.490 (absolute deviation: 0.0392)

The benefit of the increased foliage density improvement is negligible with
lower ε, and it may actually yield worse performance than without it being
enabled, when ε is close to zero. When ε is 20 or higher, the improvement
becomes very useful. In this case the algorithm only outputs three billboards
on average, and the improvement yields thus best colour improvement when
only using few billboards for simplification.

In our visual evaluation, we judge the improvement effective also for ε =
10. However, the improvement has a tendency to make the foliage appear too
dense, which might be the reason for the poor effect on the static colour metric.

I Experiment: Static colour metric and hardware-independent
performance with and without the view penality improvement

This experiment tests the efficiency of the view penalty improvement to the
Stochastic Billboard Cloud Algorithm.

The view penalty improvement is expected to yield better visual results,
and better colour metric results, when the tree model is observed from the
specified view angle. However, the view penalty improvement is expected to
have an adverse effect on the hardware-independent performance metric, as
high density planes are potentially discarded, due to their normal directions
being disfavored by the view penalty.

The efficiency of the view penalty improvement is tested by rendering a
series of 10 billboard clouds with the Stochastic Billboard Cloud Algorithm with
the view penalty improvement enabled, and a series of 10 with the improve-
ment disabled. When the view penalty is enabled, φv is set to favor vertical
billboards, as the assumed observation of the tree models are from ground
perspective. The experiment is performed with ε = 4 and ε = 10 for N = 100.
The increased foliage density improvement is disabled.

Results of 20 tests with ε = 4:

• improvement disabled:

– average static colour metric: 0.343 (absolute deviation: 0.0321)

– average number of billboards: 36.2 (absolute deviation: 0.710)

– average total billboard area: 45800 (absolute deviation: 1400)

• improvement enabled:
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– average static colour metric: 0.306 (absolute deviation: 0.0116,
boundaries 0, 0)

– average number of billboards: 36.3 (absolute deviation: 0.830)

– average total billboard area: 45100 (absolute deviation: 1200)

Results of 20 tests with ε = 10:

• improvement disabled:

– average static colour metric: 0.536 (absolute deviation: 0.0378)

– average number of billboards: 5.7 (absolute deviation: 0.56)

– average total billboard area: 10100 (absolute deviation: 650)

• improvement enabled:

– average static colour metric: 0.441 (absolute deviation: 0.0238)

– average number of billboards: 5.85 (absolute deviation: 0.425)

– average total billboard area: 10400 (absolute deviation: 683)

The algorithm clearly benefits from the view angle improvement with re-
gards to the static colour metric. The absolute deviation is significantly de-
creased, so the visual results of the algorithm with this improvement enabled
is certainly also more reliable than with it disabled. The improvement seems
to have an increase in rendering cost as expected, but it is a minor increase
compared to the decrease in colour error.

Contrary to expectations the average number of billboards does not increase
when the view penalty improvement is enabled.

Quality of Simplification Experiments

ε is the parameter that defines the maximum allowed vertex displacement in
the Stochastic Billboard Cloud Algorithm, and hence the size of the triangle
validity domains. Obviously, ε affects the static colour metric and the hardware-
independent performance metric. In the following experiments the affect of ε
is investigated in more detail.

I Experiment: Static colour metric as a function of epsilon
This experiment evaluates the effect of ε on visual fidelity, measured in the

static colour metric.
If ε = 0, billboards representing foliage triangles are not allowed to be

displaced from the original positions at all. Thus, the static colour metric should
yield close to zero. To yield a perfect zero, texture aliasing should not have any
effect on the static colour metric, which in general is not true. As described in
Section 8.2.1 on page 137, we observe several artefacts related to the billboard
textures rendered in our implementation, and hence expect far from zero colour
error for ε = 0.
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As ε increases, the static colour metric is expected to increase, because
triangles are allowed displacement further from their original positions.

The experiment computes the static colour metric for a Stochastic Billboard
Cloud Algorithm simplification with ε in the range from zero to 30. Both view
penalty (favoring vertical billboards) and the increased foliage density improve-
ments are enabled, as these were shown to yield better results in the preceding
experiments. The algorithm runs with the parameter N = 100.

Figure 8.3: The static colour metric as a function of ε.

It can be observed that even with ε = 0, the static colour metric is 0.074,
i.e. 7% of all pixels have incorrectly been rendered to. This demonstrates
the colour error introduced by the visual artefacts of our billboard textures,
even when disregarding colour intensity error. The error value is higher than
expected, since the simplification look identical to the original model (aside
from the darkened colour artefact).

As expected, the static colour metric increases steadily as ε increases. It can
be noted that the colour error seizes to increase much when ε > 15.

I Experiment: Performance metric as a function of epsilon
The hardware-independent performance metric may be evaluated for dif-

ferent values of ε, thus determining the benefit of the billboard cloud simplifi-
cation.

When ε = 0, we expect the number of billboards to be equal to the number
of foliage triangles that are non-coplanar in the input model. Each foliage
triangle in our specific input model is part of a textured quad consisting of two
coplanar triangles (ignoring any round-off errors). As the input model contains
1384 foliage triangles, we expect the number of billboards to be 1384

2 = 692. The
billboards rendered for ε = 0 are expected to have the same area as the original
foliage quads, since the billboards are created using a minimum bounding box
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algorithm on the vertices of the quads. As ε increases, we expect the number of
billboards to be reduced.

In Section 3.2.2 on page 43 we mentioned a tendency of billboard cloud
algorithms to consider cost simply as the number of billboards. This seems
acceptable, assuming that increasing the number of billboards also increases
the total area. This experiment can help us see to what degree this is true.

The experiment computes the static colour metric for simplifications created
by the Stochastic Billboard Cloud Algorithm with ε sampled in the range [0; 30].
The implementation is invoked with the parameters N = 100, and with both
the increased foliage density and view penalty (favoring vertical billboards)
improvements enabled. The number of billboards and the total billboard area
are illustrated for each value of ε.

Figure 8.4: The number of billboard clouds as a function of ε.

First and foremost, it can be observed that the number of billboards in the
billboard cloud decreases fast, when ε is increased. For ε > 10, the number of
billboards is very low, and becomes more stable.

When ε is large, the total billboard area is small, in fact much smaller than
the total area in the original foliage model. When ε decreases, the number of
billboards in the simplification increases, and so does the total billboard area.
That is, until approximately ε = 1.5, where the number of billboards is 322,
and the total area begins to decrease when ε is lowered further. In general, the
assumption that the number of billboards also dictates the total billboard area
seems to hold, unless a very small ε is used, and hence the number of billboards
is very large.
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Figure 8.5: The total area of billboard clouds as a function of ε.

Results in Perspective

In overall, the results of the experiments are as expected, but it would be inter-
esting to run the experiments on other input models. Our input only contains
1384 foliage triangles, which are arranged as 692 small billboards, and the in-
put model can hence be said to already be a billboard cloud. We would prefer a
foliage model with large polygonal complexity, as billboard cloud simplification
is more substantial for such models. In fact, our input model is likely to be
rasterization bound in a practical application already, so reducing its number of
triangles has limited implication. Nonetheless, we believe that our experiments
do demonstrate the effectiveness of the simplification technique.

It should be noted that the Stochastic Billboard Cloud Algorithm is rather
fast. With the ε and N values used in the presented experiments, a billboard
cloud is constructed in a matter of seconds. The rendering of textures handled
by Ogre is, on the other hand, relatively slow, and become thus the dominating
time factor in our implementation.

8.4.2 Prototype Skeleton Billboard Cloud Simplification
Experiments

In the following, the experiments conducted on the Skeleton Billboard Cloud
Simplification prototype are presented. The Stochastic Billboard Cloud Algo-
rithm implementation is used, with N = 100 and the both mentioned improve-
ments enabled.

I Experiment: Colour metric as a function of individual billboard clouds
The colour metric is evaluated for ε = 0 and for a range of the number of
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common joint rotation simplifications. The purpose is to evaluate how much
visual error is introduced by altering sibling bone animations alone, without
any triangle displacement.

Recall that the input model contains 70 bones with foliage attached. If
no common joint rotation simplification is done, a billboard cloud is created
for each of these bones. The bones with foliage are arranged in the skeleton
such that 24 joints contain two siblings with foliage, and a single joint contain
three siblings with foliage. Consequently, our prototype solution is able to
reduce the number of individual billboard clouds from 70 to 44, at most. This
corresponds to 26 of the 70 bones reassigning their foliage triangles to a sibling,
and assuming a uniform distribution of the 692 foliage billboard amongst these
70 bones, this corresponds to approximately 37% of the foliage getting their
animation altered.

Assuming that sibling bones in the skeleton define different rotation ani-
mations, we expect the reassignment of 37% of the foliage triangles to have a
noticeable impact on the colour metric error.

The number of individual billboard clouds to be constructed is defined by
BC , which hence defines the amount of common joint rotation simplification
performed, and the parameter values used are in the range [44; 70]. The ex-
periment results are shown in Figure 8.6, and has been created using 3 view
samples.

Figure 8.6: The colour metric as a function of the number of billboard clouds.

When no common joint rotation simplification is performed, a billboard
cloud is created per bone, and as ε is 0, the colour metric is expected to demon-
strate the error introduced by texture artefacts only. The colour error in results
is approximately 0.075, which is almost exactly the same error observed for the
stochastic billboard in Section 8.4.1 with ε = 0. This is to be expected, as ε = 0
implies no triangle displacement.
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As the number of individual billboard clouds is reduced, i.e. BC is lowered,
the colour error increases steadily. When most common joint rotation simpli-
fication is performed (BC = 44), the colour error is largest and equal 0.100.
This error represents the effect of reassigning the triangles of 26 bones to their
siblings, and thus altering the animation. Relatively to the error with BC = 70
this is a relative increase of 0.100−0.070

0.070 ≈ 0.429, i.e. 42.9%.
The effect common joint rotation simplification has on colour the metric

is noticeable, but is minor compared to the effect of changing epsilon in the
Stochastic Billboard Cloud Algorithm documented in Section 8.4.1 on page 145,
with out example input tree model.

I Experiment: Performance metric as a function of sibling collapses
We have conducted experiments to examine the behaviour of the perfor-

mance metric, as a function of the number of individual billboard cloud, BC ,
i.e. the amount of common joint rotation simplification. We have used ε = 4.

The number of billboards is expected to decrease, when BC is decreased,
as the triangles of more sibling bones will be allowed to share billboards. The
result is illustrated in Figure 8.7, and show how the number of billboards are
reduced from 187 to 148, by decreasing BC from 70 to 44. The reduction
when having ε = 4 is not impressive, but do demonstrate the fact that triangles
attached to sibling bones can share billboards, if the two bones are given a
common rotation animation, and if the triangles are co-planar with respect to
ε.

Figure 8.7: The number of billboards as a function of the number of billboard clouds.

Figure 8.8 shows the behaviour of the total billboard area when decreasing
BC . As can be seen, this value fluctuates much. It total area has increased
from approximately 31.000 to 33.000, when BC is decreased from 70 to 44.
An increase was expected, since the new billboards introduced for triangles
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attached to siblings given a common rotation, will in generally expand a larger
area.

Figure 8.8: The total area of the billboards as a function of the number of billboard clouds.

Results in Perspective

For several reasons, the results are not as informative as one could hope for.
Our input tree model does not contain many foliage triangles per bones, and
it is therefore difficult to obtain large performance difference between our sim-
plifications, and the original input tree model.

We demonstrated how the colour metric error increased, when 26 bones got
their triangles reassigned to a sibling triangle. The increase was not substantial
compared to the colour error introduced by changing the ε value in the Bill-
board Cloud Algorithm. The reason is believed to be, that the bones with foliage
attached do not perform large rotations in the animation, and furthermore that
the siblings tend to rotate with similar animations.

The implemented prototype stands as a proof of concept, but does not do
the Skeleton Billboard Cloud Simplification solution justice. It would, however,
be interesting to run some experiments on an input model more suitable for
common joint rotation simplification, i.e. one with more siblings amongst the
foliage triangles.
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Conclusion

We have developed two solutions for simplification of the foliage part
of CASTMs, that combine the billboard cloud technique with our own
solutions for animation simplification. The solutions implement two different
simplification strategies and can be used as a part of a discrete LOD scheme,
either separately or in combination. Each solution may prove best suited
for different rendering distances, and, as such, they may complement each
other when used in a practical application. To be able to measure the quality
of the animated billboard cloud simplifications, we have developed a set of
error metrics, that together describe various aspects of the subjective notion of
visual fidelity.

We have implemented a functional prototype of our Skeleton Billboard
Cloud Simplification solution, and performed experiments on the produced
animated billboard cloud LODs of a CASTM. We have shown a potential
performance gain by reducing the number of triangles, and the visual fidelity
of the solution is reasonable, both when measured using a colour error metric
and when observed.

We hypothesize that the Spectral Clustering solution is mostly suitable for
producing LODs with few triangles to be observed from afar, while the Skeleton
Billboard Cloud Simplification solution is suitable for producing detailed LODs
for short observation distances. In order to be able to validate this hypothesis,
at least a prototype implementation of each solution should be created. The
two prototypes and their corresponding strategies can be objectively compared
using the visual error and performance metrics. It would furthermore be inter-
esting to obtain more example tree model data, for example concrete data from
some actual real-time application.

Future research could involve how to apply our simplifications efficiently
in the context of a practical rendering application. This includes specific per-
formance issues arising when rendering a number of our simplifications cor-
responding to the scale of a forest, such as how to group the data in order
to reduce the number of render calls per frame. Also, solutions for smooth
transitions between our LODs should be considered, and transition solutions
specifically designed for our solutions might be devised.

154



Appendix A

Tools

A.1 Normalized Error Function

The normalized error function NE calculates the normalized error value of a
given error value of some type for an object to the range [0; 1]:

NE : R+ ∪ {0} → [0; 1]

For example, an object could be a foliage triangle of a CASTM simplified by a
billboard, and the error value could be of type distance between the original po-
sition of a foliage triangle in a CASTM and its simplified position on a billboard
over the animation cycle.

Let a denote an error value of some type A for some object. NE is defined
as

NE (a) = 1− 1
1 + a

(A.1)

For a = 0, NE (a) = 0, and for lima→∞NE (a) = 1. Relating it to the triangle
distance example, a = 0 implies that there is no distance between the original
position of the triangle and its simplified position on a billboard, while a →∞
implies that the distance becomes infinitely large. NE can be used to compare
normalized error values for objects, e.g. the normalized distance error values
of two foliage triangles.

A.2 Normalized Error Product Function

The normalized error product function NEP calculates the total normalized error
of two error values of different types for a pair of objects:

NEP : R+ ∪ {0} × R+ ∪ {0} → [0; 1]

Again, the objects could be foliage triangles of a CASTM simplified by the same
billboard. For a triangle, a is an error value of type distance as before, and b
is an error value of type speed between the original triangle and the billboard
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simplifying it. For each triangle object, NEP then calculates the total normal-
ized error of the distance and speed errors. The total normalized errors of the
two triangle objects can then be compared in order to determine how well they
are simplified by the same billboard.

For some object, let a and b denote two error values of types A and B. NEP
is defined as

NEP(a, b) = 1− 1
1 + a

· 1
1 + b

(A.2)

For a = 0 and b = 0, NEP(a, b) = 0. When either a → ∞ or b → ∞, then
NEP(a, b) = 1.

NEP states the value of the total normalized error of two error values.
Consequently, if either a or b is large, NEP will yield a large value.

A problem may arise if either error type in general takes larger values than
the other. In this case it will dominate the entire NEP term, which can be
unfortunate. To address this issue, the weighted normalized error product
function can be applied.

A.3 Weighted Normalized Error Product Function

As with NEP the weighted normalized error product function (WNEP) is used
to calculate the total normalized error of two error values. However, to address
the issue of one a these two values dominating the total error value, and to be
able to specify the importance of an error value in the total expression, a weight
is specified for each of the two values:

WNEP : R+ ∪ {0} × R+ ∪ {0} × R+ ∪ {0} × R+ ∪ {0} → [0; 1]

Let a and b denote two error values of types A and B, and wa and wb two weight
values. WNEP is defined as:

WNEP(a, b, wa, wb) = 1− 1
1 + a · wa

· 1
1 + b · wb

(A.3)

The values of the weights are to be determined from application specific re-
quirements.

A.4 Average in a Cyclic Range

In this section we specify how to find the difference of values specified in a
cyclic range, and the average of such values.

Assume two angles specified in the cyclic range [0; 2π]. One attempt to find
the difference between two such values is simply to consider the subtraction of
the values as numbers. This is, however, not suitable for a cyclic value range,
as the distance between 0.1 and 2π − 0.1 would be concluded 2π − 0.2. Taking
the cyclic behaviour of the range into account, the difference between the two
angles is only 0.2. The solution is to consider the phase value as angles, convert
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these angles to two-dimenstional vectors, and consider the angle between these
vectors.

An average of a set of angle is obtained by converting the angles to vec-
tors, sum the vectors, and finally convert the result back to an angle. This is
illustrated by an example in Figure A.4.

Figure A.1: The two angles φ1 = 110◦ and φ2 = 330◦ are converted to the unit vectors
v1 and v2. These vectors are summed to yield the vector vsum, which is converted back to
an angle. The resulting angle φsum = 40◦ is the correct average of φ1 and φ2, taking the
cyclic behavior of the angle range into account.

If the values to be averaged lie in a general cyclic range [a; b], this range is
simply mapped to the range [0; 2π], after which the values can be considered as
vectors. The result obtained is mapped back the range [a; b].
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Skinning

Skinning is the process of updating vertex positions in a mesh that is rigged
with and animated by a skeleton. In this section we will explain how vertex
positions are updated, when the skeleton changes pose. Our descriptions are
partly based on [11].

As mentioned in Section 1.4.2 on page 25, a vertex of a mesh can be asso-
ciated with more than one bone in the skeleton, which, among other improve-
ments, has the effect of preserving elasticity around joints, as it prevents cracks
around joints and reduces creasings [3]. In effect, a branch in the trunk part
of a polygonal tree model that sways will not appear unconnected to its parent
branch and its animation will be more ”smooth”.

Associating a vertex to more than one bone makes sense for closed meshes,
such as the trunk in a polygnal tree model. However, for a mesh such as the
foliage part of a polygonal tree model, which consists of unconnected triangles,
connectivity does not have to be preserved. Therefore, for a triangle, it is rea-
sonable to associate its vertices with one and the same bone for these meshes.

When updating the position of a vertex, the vertex is transformed from
world space to bone space of the model. When the skeleton has been updated
to a new pose, the vertex is transformed back again, from bone space to world
space, to its new position.

Bone space is the local coordinate system at the start joint of a bone, rotated
by the bind pose rotated followed by the rotation animation of the bone. In
bone space the coordinates of the vertex are invariant, so when the skeleton
changes pose, the coordinates of the vertex remain the same in bone space.
Bone space is illustrated in Figures B.1(a) and B.1(b) on the next page.

Figure B.2(a) on the facing page shows the bind pose of an animation skele-
ton, and vertex v rigged to bone b2 in world space coordinates. Figure B.2(b)
on the next page illustrates v’s new position, v′, that we want to find, when the
skeleton has changed pose.

Let X0 be the translation vector yielding the position of the root joint. For
i > 0, if Xi is the translation vector of bone bi with i − 1 parents and Rbindi

is
the bind pose rotation of bi, the bind pose rotation matrix Bi of bi is given by

Bi = Rbindi
Xi−1Rbindi−1

Xi−2 · · ·Rbind1X0
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(a) The local coordinate system in j1, which is the world
coordinate system rotated by R′

1(t), is rotated by R′
2(t) to

yield the bone space of b2.

(b) Vertex v in bone space of
b2, denoted vb (notice that
the coordinate system is the
local coordinate system in j1
rotated by R′

2(t)).

Figure B.1: Illustration of bone space.

(a) A skeleton in its bind pose. v is
attached to bone b2.

(b) The skeleton has been transformed
from its bind pose to a new pose. We
want to determine the new position of
v, v′.

Figure B.2: The transformation of a skeleton from its bind pose to a new pose. The new
position of v, v′, is to be found.
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Remember that Xi can be found from Equation 1.1 on page 28 using Rbindi

instead of R′
i(t). This is shown in Figure B.3(a).

In Figure B.3(b) the skeleton is updated to a new pose. For i > 0, Ti

now denotes the translation vector of bone bi with i − 1 parents (found by
Equation 1.1 on page 28) and R′

i(t) is the rotation animation of bi. The current
pose rotation matrix Pi of bi is given by

Pi = R′
i(t)Ti−1R′

i−1(t)Ti−2 · · ·R′
1(t)T0

(a) The bind pose rotation illustrated. (b) The current pose rotation illus-
trated.

Figure B.3: Illustrations of the bind pose rotation and the current pose rotation.

When updating v to v′ we multiply v by B−1 to transform the vertex from
world space to model space, and we then multiply that by P to transform the
vertex back into world space. Generally, v′ attached to bone bi is thus given by

v′ = PiB−1
i v.

Figures B.4(a) and B.4(b) on the facing page illustrate the process of updat-
ing the position of a leaf vertex, v, of an animated polygonal tree model, which
is attached to the bone b3. The skeleton rotates around joint j0, j1, and j2 to be
transformed from the bind pose, shown in Figure B.4(a), to the pose shown in
Figure B.4(b).

To update the position of v we first transform it from world space to bone
space of b3. This is done by first applying the inverse rotation R−1

bind3
around

joint j2 followed by the inverse translation −X2, and so forth. In this way, v is
transformed to the bone space of b3, where it is marked v′.

The skeleton is then rotated around j0, j1, and j2 to be in the pose shown
in Figure B.4(b) on the next page at time t. v′ is transformed from bone space
of b3 to its position in world space, v′′, by first applying the translation T0,
which is the translation from the origin of the world coordinate system, then
the rotation R′

1(t) around j0, then the translation T1, and so forth.

160



Appendix B. Skinning

(a) Leaf vertex v attached to bone b3 (in the skeletal model
bind pose) and transformed to the bone space of b3, where it
is denoted v′.

(b) The leaf vertex in the bone space of b3 (denoted v′) and
transformed to its new position, v′′, in world space, when bone
b1 is rotated around joint j0 with R′

1(t), bone b2 is rotated
around joint j1 with R′

2(t), and bone b3 is rotated around joint
j2 with R′

3(t).

Figure B.4: An example of skeletal animation. The position of a leaf vertex, v, which is
attached to the bone b3, is updated. The skeleton rotates around joint j0, j1, and j2 to be
transformed from the pose in Figure B.4(a) to the pose in Figure B.4(b) at time t, hence
resulting in v being transformed to v′′.
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B.1 Software and Hardware Skinning

Skinning can be performed on both the CPU and the GPU, which is referred to
as software skinning and hardware skinning, respectively.

When doing software skinning the CPU updates the bone matrices, multi-
plies them with the vertex position vectors, and uploads the transformed ver-
tices to the GPU. This happens in each frame.

When doing hardware skinning the GPU needs the bone positions per frame
from the CPU [9]. Hence, the CPU updates the transformation matrices and
uploads them to the GPU. One way of handling the vertex transformations,
then, is to use a vertex shader.

There are different reasons for doing skinning on either the CPU or the GPU.
If the application is the bottleneck, doing hardware skinning could reduce the
load on the CPU. On the other hand, if, for example, collision detection is to
be performed on skeletal animated meshes, or if shadows should be cast from
these meshes, it is problematic to perform skinning on the GPU, since the CPU
needs access to the transformed vertices [2]. Waveren [29] and Davies [6]
detail an efficient way of using the CPU to do the skinning. Osborne explains
how hardware skinning works in [21].
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Spectral Clustering
Improvements

C.1 Spectral Cluster Initialization

In this section we discuss how to initialize the k clusters in the clustering of
spectral descriptions.

The K-means Clustering Algorithm is not guaranteed to find the best set of
clusters, i.e. the set with global minimum squared error, where error is anima-
tion deviation in our application. As demonstrated in Section 3.1.3 on page 41,
the clustering result depends largely on how the k clusters are initialized. No
perfect solution exists to this problem, and a common attempt to get around it
is to run the clustering algorithm several times with random initializations, and
select the best clustering obtained.

In addition to random cluster initialization, we choose to also run the algo-
rithm on clusters that already initially contain spectral descriptions with small
deviation. This initialization is realized using the animation skeleton of the
input CASTM. The squared error of the clustering obtained using this initial-
ization is compared to the squared errors obtained using random initialization,
and the best result is chosen.

Two triangles attached to the same bone are likely to have similar spectral
descriptions, as they are subject to the same set of bone rotations. They are,
however, not guaranteed to have identical spectral descriptions, and will in fact
most likely not have, as two triangles positioned differently on the same bone
do not have equal animation. Remember that a bone dictates a rotation around
a joint, i.e. the origin of the bone, and given some rotation, a triangle far from
the joint will move a larger distance than a triangle close to the joint. This
implies a difference in animation properties, and thus yield different spectral
descriptions. However, two triangles attached to the same bone are more likely
to have similar spectral descriptions than two triangles attached to different
bones, as they are subject to the same rotations.

We choose to initialize the k clusters by clustering the spectral descriptions
of triangles according to which bones they are attached to. Let b be the number
of bones in the skeleton:
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• Create a cluster for each bone. If a bone has no foliage triangles associated
(usually the trunk has none, for example), then the cluster for that bone
will be empty. Delete all such empty clusters.

– If k = b: A cluster is created for each bone, and the spectral descrip-
tions of all triangles associated with this bone are assigned to the
cluster.

– k > b: Until there is no longer too few clusters, do the following:
For each cluster, compute the average description of the associated
spectral descriptions, and compute the average deviation the triangle
descriptions has to this average. This average deviation is squared
to yield variance.
Variance indicates the amount of variation in a cluster. The cluster
with the most variance is divided into two clusters. This is done by
calculating the average distance the triangles have to the start joint
of the bone associated with the cluster, and then divide the triangles
into those that have further distance to the origin of the bone than
the average distance, and those that have equal to or shorter distance
to the start joint than the average distance.
The intuition is that triangles with equal distance to the start joint
are rotated an equal amount of distance when the bone rotates, and
hence are more likely to have similar spectral descriptions than tri-
angles with different distances to the start joint of the bone.

– If k < b: Until there is no longer too many clusters, do the following.
For each cluster, compute the average of the associated descriptions.
Then for each pair of clusters, compute the deviation between their
two average descriptions. The cluster pair with the smallest devi-
ation between their average descriptions is joined to form a new
cluster.

This process of merging and splitting clusters resemble the Hierarchical
Clustering algorithms described in Section 3.1.2 on page 39, although no den-
drogram is created.

C.2 Optimization Using Animation Zones

In Section C.1 on the preceding page it was argued that two triangles attached
to the same bone are more likely to have similar spectral descriptions than two
triangles attached to different bones. As explained, however, the two triangles
will most likely not have identical spectral descriptions, as they are differently
positioned relative to the bone and thus differently positioned relative to the
rotation point around which the bone rotates.

This optimization is based on further elaboration on this observation. Two
triangles positioned identically and attached to the same bone have equal an-
imation and will yield identical spectral descriptions. Furthermore, two very
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closely positioned triangles attached to the same bone have spectral descrip-
tions with a small deviation. This leads to the introduction of animation zones.

An animation zone is a volume associated with a bone, within which all
triangles attached to this bone are considered to have equal animation. A single
common spectral description can therefore be created for all the triangles in
an animation zone, which can improve greatly upon the performance of the
Spectral Clustering Algorithm in terms of computation time. Employing anima-
tion zones in the algorithm requires the definition of the actual zones, and a
definition on how to use spectral descriptions common for several triangles.

We propose to include a distance parameter, εz, in the Spectral Cluster-
ing Algorithm, which indicates the maximum Euclidean distance between two
triangles in order for them to share a common spectral description. In other
words, εz is used to perform an error-based clustering on the positions of all
triangles attached to a bone, and each resulting cluster is an animation zone.
We propose to use an error-based clustering algorithm. We propose to do an
error-based clustering instead of a budget-based clustering, as we want to guar-
antee that all triangles in an animation zone are positioned within a given error
bound, and furthermore it is not obvious how many clusters should be created
for a bone if a budget-based approach were to be used.

For each bone, a clustering of the triangles is performed, resulting in a
number of animation zones. A single spectral description is created for each
zone by analyzing the animation of a centroid point for the zone. The centroid
for an animation zone is the average world space position of all the triangles in
the zone. Since the triangles are all attached to the same bone, the distances
between individual triangles remain constant over the animation cycle, so the
centroid can simply be computed from the triangle positions in the first anima-
tion frame. This average point is then attached to the bone, and its animation
during the animation cycle is analyzed to yield the spectral description.

The Spectral Clustering Algorithm is modified to operate on spectral de-
scriptions for animation zones instead of triangles. Basically, the algorithm
just clusters animation zones instead of triangles. The average function of
the spectral description type is modified to take the amount of triangles in a
given animation zone into account when creating an average description for
a cluster of animation zone spectral descriptions. Each spectral description is
simply weighted by the number of triangles that are contained in the associated
animation zone.

The result when using animation zones will differ from a result created
without using animation zones, as triangles with slightly different animations
would be considered to have a single shared animation.

Animation zones are introduced as a performance improvement to the Spec-
tral Clustering algorithm, and determining values for εz that provides satisfac-
tory results is subject to experimentation.

165



Appendix D

Summary

Billboard clouds, originally presented by Décoret et al. [7], is a well-established
image-based rendering technique used for extreme model simplification. It
simplifies polygonal models of arbitrary complexity to a greatly reduced set
of textured polygons that replace the original geometry. However, a recognized
weakness of existing billboard cloud algorithms is their lacking ability to sim-
plify animated models.

In this thesis we focus on the simplification of animated polygonal tree
models. Our goal is to improve the billboard cloud technique with our own
solutions for simplification of the animation of polygonal tree models; an ex-
tension we refer to as animated billboard clouds. Specifically, we combine
the billboard cloud simplification technique with our own developed animation
simplification techniques in order to create discrete animated billboard cloud
LOD models of polygonal tree models rigged with animation skeletons. These
LODs consist of an animated billboard cloud for the foliage part and a simplified
cyclic animation of the closed mesh constituting the trunk and large branches.

One of the benefits of the billboard cloud technique is that it can be used to
create simplified tree models of high visual fidelity to the original model, both
for models that should be viewed at close range and for models that should
be viewed from afar. Similarly, our solutions are able to simplify animated
polygonal tree models whilst remaining visually faithful to the original models,
such that the simplified animated polygonal tree models are suitable for being
displayed close up as well as and from far-away distances.

We present two solutions for simplification of animated polygonal tree mod-
els. Both solutions operate on polygonal tree models rigged with animation
skeletons, although one of the solutions does not require a skeleton to simplify
the animation. The solutions use our own implementation of a billboard cloud
algorithm developed by Lacewell et al. [17], specifically aimed at the simplifi-
cation of the foliage of static polygonal models.

In order to evaluate the visual fidelity of an animated billboard cloud model
we define a set of error metrics that enable us to objectively measure the quality
of the simplification. The metrics can be combined in different ways to measure
the simplification quality expressed from different parameters.

A prototype implementation of one of the solutions has been created as
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part of the project. This implementation, along with our implementation of the
chosen billboard cloud algorithm, will be tested and evaluated.
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