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Preface

Abstract

This thesis presents a model for the interpretation of tesafl STR typing of DNA
mixtures based on a multivariate normal distribution of peseas. From previous
analyses of controlled experiments with mixed DNA samples,exploit the linear
relationship between peak heights and peak areas, anaéae lielations of the means
and variances of the measurements. Furthermore the catdribfrom one individual
allele to the mean area of this allele, is assumed propattimnthe average of height
measurements on alleles where the individual is the onlyritrtor.

For shared alleles in mixed DNA samples, it is only possibleliserve the cumulative
peak heights and areas. Complying with this latent strectue use the EM-algorithm
to impute the missing variables based on a compound symmeidel. This allows
intra- and intersystem correlations on the measurementglaas not depend on the
alleles of the DNA profiles. Due to factorization of the likedod and properties of
the normal distribution, an ordinary implementation of taB&l-algorithm solves the
missing data problem.

We estimate the parameters in the model based on a traintageéf In order to asses
the weight of evidence provided by the model, we use the maihlthe estimated
parameters on STR data from real crime cases with DNA misture

The model work under certain limitations. In the estimatgirase we exclude cases
with drop-outs. These limitations are important and mussdleed before the model
can be used for real crime case work and the limitations ametbre subject to further
investigation.



Outline

Outline

Chapter 1 contains an introduction and description of the problem NACSTR mix-
tures. We discuss the problem related to DNA mixtures witb@$ on the matters
addressed in this thesis, but also a detailed overview dfiaddl aspects is presented.

Chapter 2 gives a summary of the data analysis performed on the pnegeagimester.
The relevant conclusions for the modelling phase are iredualith plots as supportive
argumentation.

Chapter 3 presents the model of this thesis and introduces the natasied in the rest
of the report. The assumptions of compound symmetry andisssons of the missing
data nature of DNA mixtures are given. In the last section weve the estimators
used in the EM-algorithm.

Chapter 4 is about the EM-algorithm and its use in this present projddte useful
properties of the EM-algorithm applied to our problem andlaesnatic pseudo code
for its implementation is provided. Also a description ofAnto execute th&-scripts
for estimation is included.

Chapter 5 presents the parameter estimates from the EM-algorithm geveral initial
value sets. Simplifications of the model are also discusseelation to the estimated
values. The expected Fisher information is also derivedisnded for computing the
asymptotic covariance matrix of the parameters.

Chapter 6 analyzes data from some real crime casedfegnt test based on Maha-
lanobis distances is used for assessing the goodness oftie afodel.

Chapter 7 rounds df the thesis with a discussion and conclusion. Furthermamgeso
considerations are made on possible future work with a linthe additional aspects
mentioned under Chapter 1 which is not included in this mtoje

Appendix A contains some more work from the preceding semester. A suynafa
the biology of DNA and populations genetics is included faiclf references to the
technical terms used in the body text.
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CHAPTER 1

Introduction

The issue of DNA STR mixtures are of great importance sinceADNxtures arise
from various contexts and are complex to interpret. In croases there are several
examples from which DNA mixtures can occur:

e Rapes with one or more rapists. In these cases the profileafictim is always
available this is useful in determining possible suspetiisgang rapes where
there is more than one rapist it is more complex to separatenikRed profiles.

e Burglaries where the burglars leave a stain behind with niloa® one burglar
contributing. This could be a blood stain where they cut thelres on the same
object.

e A cigarette butt where more than one person has placed sdive sa

It is only possible to observe the mixed DNA profile and not thkevant single pro-

files. Using STR DNA there is for each locus a finite number tdlas and therefore

it is (almost) unavoidable to have some shared alleles inxuna. Using the quanti-

tative information from peak heights and peak areas it isibbs for trained forensic

geneticists to come up with possible combinations. For dimaed cases with more
than two contributors it are however oftenffiiult to resolve the donor profiles and
therefore some more objective methods needs to be develapéte next section we

list some of the related problems to DNA mixtures and DNA evick in general.

1.1 DNA mixtures

In real crime cases we seldom have access to information anthe mixed stain
was provided. Therefore several important informatioresattached with uncertainty
which increases the complexity. Below we discuss each afibst common problems.

Unknown number of contributors Information on how many individuals have con-
tributed to the sample is important in order to determinerthmber of possible peaks
for each loci. The fewer contributors the less complicateideparation of DNA mix-
tures gets and thus is the evidence more conclusive.

Degraded DNAWhen DNA is exposed to heat, direct sunlight, moisture anaitiu

environment, acids and other inhibitors the sequencesmfyaidonucleic acid (DNA)

are likely to break into smaller fractions. This can causefikaks of alleles to am-
plify less than if the DNA material were kept under optimahddions. A common

assumption is that longer DNA sequences have a higher pitipaif breakage than

shorter sequences. Also degraded DNA can cause entiravsy$tedrop-out under
amplification.
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Drop-outs As mentioned above drop-outs can be caused by degradatibie @NA
but also from malfunctioning machinery. Under the con&dlexperiments analyzed
on the preceding semester the most likely reason for dragwere observed to be low
DNA concentration. This implies that in mixtures with a magmd minor contributor
with respect to DNA concentration it is likely that allelestbe minor contributor are
subject to drop-outs. When analyzing DNA samples laboiedmften set a lower limit
on the peak heights. This threshold is however a treffleeitween drop-outs and drop-
ins as a lower threshold reduces the number of drop-outs ighttralso introduce more
drop-ins and stutters.

Stutters, drop-ins and pull-ups Artificial alleles are often observed in DNA samples
even though none of the contributor profiles contain thelsdéesl This kind of contam-
ination of a DNA profile is known as stutters, drop-ins and-ops each having their
own meaning. Stutters are a product of the PCR procedureeafardamplification of

a DNA sample to increase the amount of DNA. A stutter for alfeis a peak observed
at the position of allele — 1 but with reduced size. In non-mixture samples the ratio
of stutters and the real peaks are 5%-15%. The stufifectemay also be observed for
allelesn — k for k > 1 but with even lower magnitude. Drop-ins are artificial kte
observed outside the stutter range. DNA material from astd other material are
likely reasons for drop-ins. An other explanation for somepdin peaks may be pull-
ups which is caused by the spectral overlap of the allelidéadcross dye bands. This
is caused by the overlap of the colours used in the fluoreseantion.

Amplification variation For the model to be useful across laboratories and machines i
is important to know the variation induced to these factdige controlled experiments
showed that personatfects should be seen as an important source of variation. This
applies also to the dierent loci and alleles where the amplification behaviouregar
with both system and allele within systems.

Null alleles The model introduced in Chapter 3 does not allow the so-dailal-
alleles. Null-alleles are unobservable alleles and is apmiimg event with homozy-
gosity. Null-alleles is by definition fé-ladder alleles that are undetectable by any kit
used in DNA profiling. If for a system a profile only amplify at@ allele, this person
can either by homozygote or have a null-allele for this syste

Due to both the importance of crime detection of the abovetimead examples and the
challenges outlined above, DNA mixtures have receivednsite focus from forensic
geneticists and statisticians. In the bibliography thera list of references to some of
the most important of the published literature on the subjébe approach discussed
in this present thesis where we allow intersystem covagastowever not seen else-
where.









CHAPTER 2

Summary of MATS5 project

This chapter is a summary of the authors own work (Tvedeb20K6) from the pre-
ceding semester (MAT5) at Aalborg University. This semestas dedicated to obtain
an understanding of relevant issues related to mixturesT&f BNA and an analyzes
of a data set from controlled experiments conducted at tleid®eof Forensic Genet-
ics, University of Copenhagen. For a summary on the biologlpNA we refer to
Appendix A on page 57.

The aim of the data analysis was to get insight on the amgiificdehaviour of mixed
DNA samples. The DNA mixtures of this data set where sampieal ¢ontrolled en-
vironment where the laboratory pursued to keep temperatummidity, exposure to
sunlight and UV-light constant. There were however sométian in the data which
could not be explained by known covariates which indicaked this was not possible.

2.1 Data exploration

Included in the analysis were the occurrence of stutterstagidrelative size to the real
peak and the occurrence of drop-ins and drop-outs fiderdint DNA ratios and sys-
tems. These two types of contamination play a central roteahworld cases as their
presence changes the evidence based on a DNA stain relatedritbe scene. This

implies that the determination of the number of contribsitior a stain gets more com-
plicated and also that probabilities involved in the induasand exclusion of possible
suspects alters. Since the profiles of the contributorseédNA mixtures in our data

set were known these quantities could be estimated. Thdgwrafie given in Table 2.1.

Table 2.1: DNA profiles of the four individuals in the experiment. Akehumbers in
italic are reported as null alleles.

D3 VWA Di6 D2 D8 D21 D19 THO FGA
A (14;18) (17;19 12;14; 520;243 10;13; (30.2;32.2) al% 512 13; E g 520;22;
B (15:16) (14:16) (10:12) (17:25) (13:16 (:mu) (13:13) (14:15) (6:9) (19:23
C (15:16) (15:17) (1111) (19;25) (8; (29;31) (15;17) (1B3) (5;8) (23;24)
D (16:19) (15:17) (10;12) (23;25) (1B (28; 30) (12 16) (13;15) (6:7) " (20;23)

The findings confirmed the common assumption of increasep-dub frequency as
the DNA concentration decreases. We have summarized thpeadrofrequencies in
Figure 2.1. We see that there is no drop-out when the amoubdN&fis above 150 pg
and except for two observations this threshold can be ladvier@5 pg.

The main focus of the investigation was to reveal patterrthéndata which could be
used in the later modeling phase. For each observed peakweérifarmation on the
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Figure 2.1: Box plot of amount of DNA contributed by the donor when a dmy-is
observed. There is stratification on systems and alleles.

STR system, dye band, fragment length in base pairs, alialicber, peak height and
peak area as well as the possible donor(s). The latter reféine possibility of shared
alleles between the two donors, and that hidden drop-outsoveur if a stutter of
another peak were observed instead of the true peak.

The main conclusions based on the data analysis were that,

there is a strict linear relation between peak heights aaét pecas,

e the amplification properties across dye bands vary,

e the variance of the measurements is proportional to the roé#me measure-
ments,

e there is an approximately linear increase in amplificatisragunction of the
amount of DNA,

e the ratio of the mean peak areas of the two donors are propaitio the ratio of
the amount of DNA from the donors.

Below we will justify these conclusions by graphical platslicating these properties.

The linearity between peak height and area depends on thensgs shown in Figure
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Figure 2.2: Linear relationship between peak area and peak height.

2.2. This indicate that our mean of the peak areas must bengttiaed by at least
ten parameters, but also that théelient alleles within the same STR system behave
similarly in terms of this relation.

In Figure 2.3 the box plots show the aggregated sum over eacis lin the dierent
cases. The letters below the locus names indicate which aiyé the system belongs
to. Note the pattern of the yellow band being the less amglifi@nd and also green
tends to amplify more than blue.

In Figure 2.4 the numbers reflect the contributors to the ntesepeak area. “One het-
erozygote” means that the observed allele can only origifram one person which is
heterozygote and for “Two heterozygote” we have both pessor heterozygote and
share the observed allele. Similar for the homozygotes redethe fifth category is
one homozygote together with a heterozygote who share lide af the homozygote
donor. We see that the deviation of the measurements iregedith the mean which
again increases with the amount of DNA. The approximatealitye mentioned above
referrers to the bendfbobserved on the curve (second order polynomial fit) superim-
posed.

The final item refers to the ratio

HO/H@
" DNA;/DNA,
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Figure 2.3: Box plot of aggregated peak areas within each locus. Plottddg scale
to reduce the variability. The lettei$ G andB indicate the dye of the STR system.

whereH® is the mean of all heights where only perdohave contributed anBNA,
is the amount of DNA contributed by persén A mathematical definition oH® is
given in (3.1). In Figure 2.5 we have plotted I6gt)/H®) against logDNA,/DNA;)
to reduce the variance. We see that except for two obsengtith the points lie on
the identity line. The outliers can be explained by a typingreas commented by the
laboratory as person-water mixture (left) and wrongly ségfied DNA concentrations

(right).
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CHAPTER 3

Missing data model

In the following we assume that a DNA typing kit testing 8rsystems is used. We
denote the set of systems sys, ilsys = S. This gives reason for the matrix and
vector dimensions stated below. In this chapter we exphatrelationships observed
in the data analysis to form a model based on a multivariatealdistribution of the
unobservable peak areas.

3.1 Model for the unobservable peak areas

Let the two profiles from person 1 and person 2 be denoteByeand P>. Let B =
B1 x --- x Bs be the set of possible alleles. The term “possible” is imetgr as
detectable and excludes therefore the so-called nulkalleThe observed alleles are
given asBY e B which refers to théth allele of systens for personk. Hence we
have thatP; and P, can be written as

_(rD R RO RQ) (1) @) _(r@® p@ p@ R@ (2 R
P, = (Bl,l’ BZ,l’ Bl,2’ Bz,z’ s Bl,S’ Bz,s) P, = (Bl,l’ BZ,l’ Bl,2’ Bz,z’ s Bl,S’ Bz,s)’
and then the mixed sample is givenBs(Py, . . ., Ps) wherePs= (B(lli B(Zli B(f; B(zzg)

fors=1,...,S.

Defining the area function as: 8s — R., then we denote the ara{Bi("‘S)) of BY as
A.(Q and similarly for the peak height functidn Further we define

_ _ (A A(D) A A 1) A() A A2
A_a(P)_(Al,l’ L ALA AL ,S’Al,S’AZ,S)

which is called the area vector. We assume tHat= (Aj,..., As) has a (&)-
dimensional normal distributio®d ~ Nuas)(ut, D) whereD is a diagonal matrix A is
however not observable in DNA STR mixtures since when thérimriors to a sample
share one or several alleles only the cumulative peak aa@ashgights) are observable.
Information on which alleles that are shared is not avadldt@nceA is unobservable
by nature. The peak areas.#hdo however contain relevant information in relation to
separate the mixed profiles. This is based on an assumptisimdar amplification
behaviour across systems for each contributor. That is ifxdume consists of DNA
from two individuals we assume tha{) + ASY)/(A?) + AD)) is rather constant across
systems.

Let HY be the mean of all peak heights where only pefisbave contributed,

2
H® = 702 Z Z h(BY)1,0(BY) (3.1)

sesys i=1
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where 78 = {BY : BY # BIY), foralli’ andk # k'}, 70 = (Jgqs 7% andT is the
indicator function. In order to link elements in the areateecl with the correct mean
peak height observations, we defie=(Hj, . .., Hs) with He=(H®, HD H@) H®@),

The mearu is a linear function of the mean peak heigils We have from Figure 2.2

that the parametersfiier among systems hence
w=(u,...,us)’, whereus= (p(sl) u(sl),p(sz),u(z)) for all se sys

That is for each = H®ag with o5 being a common parameter for systenFigure
2.5 indicates thaH® is proportional to the DNA concentration of perskn This
implies that the meam is modelled proportional to the amount of DNA which is
supported by Figure 2.4. Furthermore the mean within a systethe same for the
two alleles of persoik. Previous studies suggest that the ratio of the two peaks oft
is above 90% (Applied Biosystems, 2006, p.9-29) for nontares. Since we assume
that A behave as a non-mixture sample this applies to observatioasand hence
also to its mean.

Also the variance is proportional to the DNA concentratiol éherefore proportional
to H (see Flg(ure 2.4). Incorporating this into the structure[brmply that DY =

o3H®. Let AT ) beAI(k in casec and similarly forH®, ¢ = 1,...,C with C being the
number of cases. Since the elementsicére independent the|r marginal distributions
follow a univariate normal distribution,

K K K
AR~ N (aHP, oZHY).

emphasizing the proportionality #1® in both mean and variance and that the distri-
bution does not depend ani.e. we have the same distribution of all alleles of system
s for personk. Furthermore the parametess = (as,...,as) ande? = (07,...,03)

are common for all cases.

The observed peak area values are dendtednd are determined by a transformation
T and an error terre,
M=TA+e. 3.2

We partitionM as (M3, . .., Ms) where eachVI; is the observations for systesand
have dimensioms with n = ) sns. The transformatiofT is given as amx (4S)-matrix

with elements 0 and 1 based #hand adds together peak areas from the same alleles
within each systeniT is a diagonal block matrix with diagonal elemeffts

T, O ... O

0O T, ... O
T: . . . A

O O ... Ts

whereTg are of dimensiomg x 4. Given that for systens person 1 and person 2
have profiles(B(l) BSY) and(B(Z) BY)) respectively where onlg(") = BY otherwise

1s 1s
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1 0 1 0O
010 ,
0 0 0 1

yielding TsAs = (Al + A?, ASL AD). 1e. for systemsin this example we would

1,8’ ,S)"
observe three alleles where the first is a sum of two confriguieak areas. Below we
give an example of the quantities defined above.

different, thenrs will be

TS:

In Table 3.1 the available data from a case is given. The dat&@m the same data
set that was used for the analysis in Chapter 2. The colummasnaﬁj refers to thath
allele for persork for systemswheresis determined by the system column.

Table 3.1: Data from a controlled experiment. Here a 8:1 mixture of pei3 andB.

B(lli B(Zli B(lzi B(zzi System Allele Height Area

10 12 10 12 D16 10 1261 12381
10 12 10 12 D16 12 1249 12475
13 13 12 16 D18 13 3141 32097
13 13 12 16 D18 12 274 2833
13 13 12 16 D18 16 146 1545
14 15 13 15 D19 14 1097 8799
14 15 13 15 D19 15 1045 8334
14 15 13 15 D19 13 222 1795
17 25 23 25 D2 17 929 10089
17 25 23 25 D2 25 889 10031
17 25 23 25 D2 23 125 1354
30 30 28 30 D21 30 2654 23601
30 30 28 30 D21 28 224 2038
15 16 16 19 D3 15 959 8614
15 16 16 19 D3 16 1284 11296
15 16 16 19 D3 19 154 1289
13 16 13 13 D8 13 1722 15242
13 16 13 13 D8 16 1226 10943
19 23 20 23 FGA 19 862 8184
19 23 20 23 FGA 23 656 6280
19 23 20 23 FGA 20 111 1046

6 9 6 7 THO 6 919 7570

6 9 6 7 THO 9 865 7300

6 9 6 7 THO 7 97 780
14 16 15 17 VWA 14 1019 9298
14 16 15 17 VvWA 16 1019 9315
14 16 15 17 VvWA 15 174 1770

14 16 15 17 VWA 17 103 73
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From these information we can compute = (H®, H®) using the definition from
(3.1). Here

3141+ 1097+ 929+ 959+ 1226+ 862+ 865+ 1019+ 1019 11117

2+1+1+1+1+1+1+1+1
274+ 146+ 222+ 125+ 224+ 154+ 111+ 97+ 174+ 103 _ 163

1+1+1+1+1+1+1+1+1+1

HO —

H® =

The theoretical mixture ratio of the sample was 8:1 but stheediferent test persons
vary in DNA concentrations the actual ratio wag®&based on the DNA concentration
measurements. However several studies (e.g. Nielsen, &08l7) suggests that the
methods for determining the amount of DNA are inaccuratesargject to large vari-
ability. The ratioH®/H® yields 682 which is close to the ratio based on the DNA

concentrations.

The M vector is simply the cell values from the Area column in Tahteand similarly

for h being the observations in the Height column. The shadingaraée the systems
and the number of rows within each block we denoie l.e. here we havar =
(2,3,3,3,2,3,2,3,3,4) withn = > ¢ ns = 28. Below we have formed the T matrix of
this case which is of dimension 2810 since we have 28 observations and ten systems.
Owing to lack of space we have only shown the firstisiXshaded) across the diagonal.

(101000000000OO0O0OO0OOOOOOOOO
010100000000O00O0O0OO0OOOOCOOOOO
0000C110000000O0O00OO0O0O0OO0OO0OOO0DO
0000C0O0O01000O0OO0OO0OO0OOOO0OOOOOO0DO
0000COO0OO0O1000OO0OO0O0OO0OOOOOOOOO0DO
000O0OO0O0OO0OC10000OO0OO0OO0OOOOOOOOO
000O0OO0O0OO0OCO1010000O0OO0OO0OO0OO0OO0OCOO
000O0OO0O0OO0OCOO1000OO0OO0OOOOOOOOO
7T-100000000000 12000000000O0O
0000O0O0OO0O0OOOOO O101000O00O0OO0C0O0
0O000O0O00O0O0OOOOOO OO100OO0O0OOOOOO
000O000O0OO0OO0O0OODOOOOO 21121010000
0O000O0O0O0O0O0OO0OOOODOOOOO 0OO10O0OO0OO0CDO
0000O0O0OO0O0OOOODOOOOOOOOO 110O0O
0000OO0OO0OOOOODOOOOOOOOOO1IT1IO
0000O0O0OO0O0OOOODOOODOOOOOO OOO01

The first block matriXT; refers to system D16 and since the two individuals have the
same genotype (102) we addAl') + A andAS) + AY). The next block refers to D18,
the third D19 and so on using the same ordering of the systsrnmsTable 3.1.
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3.2 Compound symmetry of the error term

The observed valued! also follow a normal distribution with dimensionwith mean
Tu and covariance matriXDT" + X, whereX is the covariance matrix of. The
covariance matrix of A, M) is given as

D DTT

HAM) =115 TpTT 4%

s

since we have that
cov(M,A) =cov(TA+e, A)=Tcov(A4) =TD.
The mutual distribution ofA and M is again normal with
A Iz
()= ~((73) |

and the conditional distribution cd|M is therefore (Lauritzen, 1996, Proposition C.5)

D DTT
TD TDTT+X

AIM ~ N(u +DTT{TDT +5) (M - Tp).D-DT" {TDTT+Z‘}_1TD). (3.3)

From previous analyses we might expect thifedent alleles of a locus to have dif-
ferent amplification behaviour. However due to the natur®NA mixtures we will
most likely have dierent alleles present from case to case which makeffiituli to
incorporate a covariance structure covering all such coatinns. A possible way to
go about this is to have a compound symmetry structure oneiduals with equal
within and between covariance. This does not satisfy trei@aNariability, but is op-
erational feasible. If we let = M — T A be the residuals then we assume it to have
zero mean and covarian&e A way to let the structure af be dfected by the present
alleles is to scale the residuals by the associated hetghtisich are observable. This
case specific scaling allows thefdirent alleles within systems to be scaled according
to their amplification behaviour. That is if for a system dbomrlleles amplify more
easily than longer this is taken into account by this scalihgt € = diag(h) /e,
where diag() forms a diagonal matrix with the elements«f Then we assume to
have a compound symmetry structure specified by,

vﬁlnslgﬂ S 7& t
Tslng + vsslp 1), S=t.

COV(Es, &) = 5g = { , (3.4)

where we havéVls = TsAs + €5 with &s = diag(hs)~Y/?es. This implies that
T = cov(é) = cov(diagh)V%¢) = diagh) V*=diagh) >,
hences = diag(h)2Sdiag(h)Y/2. Specifying the structure as above we have that

o [ vediag) 21,17 diag(e)2, s#t
COV(ES, Et) =2g = { diangs)l/z(Tslns + Vsslnslgs)diag(hs)l/z, s=t °



16

Missing data model

i.e. the covariance structure on the residuals takes thereint amplification behaviour
over the alleles into account.

Below £ is given in matrix notation. The blocks on the diagonal areliofiensions
Ns X Ng determining the dimensions of thé&-aliagonal blocks.

o, . . . .
Y1 Vi1 ... Vi1, Yi2 Vi2 ... V12, ... | V1S Vis ... Vis
2
vie Y1 .- Vil : V12 Vi2 ... V12 : : vis Vis ... Vis
. Lo . | | :
! 2 I ! I I :
Jyu v .- Va1 viz Vi --. V121 ... 1 V1S VIS ... V1S
Vo1 V21 Va1 V5 V22 Va2 | | v2s Vas V2s
2
V21 V21 V211 V22 Y5 V22 | | V2S5 V2s v2s
. . | I .
Y= I I I :
| | |
_Yea Yea ... Vo1, V22 ... V22 Y | ---Y2S Y25 ... V2S
| : | | : :
____________ e
vs1 Vsi V51: vs2 Vs2 Vsz: : Ys Vss vss
2
vs1 Vsi vs1, Vs2 Vs2 vs2, | VSS Y5 vss
| . | | . .
| | | :
2
| vs1 vs1 ... vs1i!vsz Vvsz ... Vvs2!...'vss vss ... ¥g

wherey? = 7, + vi; is the variance parameter for system
Vi i TVii

3.3 Derivation of EM estimators

In this section we derive estimators for the parametersemtiodel outlined above to
be used in the EM-algorithm. Since we assume normality obbservations, missing
as observable, we can use standard results about the nastmdudion. From Section
4.2.1 on the EM-algorithm for exponential families, we newdy to determine the
suficient statistics in the E-step.

First we show a general result which we are going to use nieltimes in the fol-
lowing. Let X be ap-dimensional stochastic vector with meanXg(and covariance
V = cov(X). Then for an arbitraryp x p-matrix A we have

E(XTAX) = E(tr[ X "AX]) = tfA(EXEX " + V)] = EXTAEX +tr[AV], (3.5)
where we used that expectation is linear andB) = tr(BA) if both products exists.
Next we introduce two frequently used matric@®andQ. which we define as

1, 0 ... O 1,, 0 ... 0
0 1, ... O 0 1, ... O
Q=|. . . .| and Q= . )

0 ... 0 1, 0 ... 0 1y
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wherel, is an-dimensional vector of ones arfdare zero vectors of suitable dimen-
sions. The dimensions @ andQ. are (8)xS and fi;) xS, respectively. The subscript
cindicates thatf), is case dependent where@ss fixed across cases. Lef = Y N
be the number of observations in caseéhen we see tha®! Q. = diag(ac, - . ., Nsc)
and thereford,, — Qc(Q{ Qc) QI andQ.(Q! Qc) Q! are idempotent which will be
useful later.

Now from (3.3) we have that the conditional expectatiomdofiiven M can be found
from

E(AdMo) = e + DeTJ (TeD{ + diag(hc)2Ediaglic) V2) (M — Tepac).

In the expression of the mean dfi M we haveu which is just a linear function off
anda = (ay,...,as). UsingQ we find that

M= dlag(Qa)H = diag@/l, ey Ay, XSy, a's)H.
——— ———
4 4

Since we have the same relationship on the varianceafite (o3, .., o'3) replaced
for o we need to divided by H'/? in order to satisfy the assumptions of homoskedas-
ticity of linear models. That is

diagH) Y2 A ~ N(diagQa) HY2, diagQa?)).

Since the diterentA'? s are independent maximization with respectigan be done

within each case and system. That is we need to minimize

2

(k)
Z AI,S,C _ ' Hék)a/s
ike| (/H®

with respect tars. The MLE is found to bers = 3} ¢ Ai("zc/ ke Hék). Multiplying a
vector withQT from the left adds together elements of the same systengftirerthis
isalsoax = Y. Q" Ac/ Y. QT H. where the division is done component-wise.

As usualr? is estimated by evaluating ¢ 1)}(y — §)?. Instead of diagDa) H*/? we
write diag(H )2 sincep = diagQa) H. Then using (3.5) we have

5’2 =@4c-1+ Z E([diag(Hsc)il/z(Asc - po)] "[diag(H)?(As - Hsc)”Mc)
= (4C- 1)1y (E{diagH«) 2(As ~ pe)|Me) E{D(H) YX(Ag - ps)| M)

+tr{D(H) “cov(A5|My))

=(4C-1)" ) (E(As - pal M) diagHs) E(Ax - prsl M)

+tr {D(HC)‘lcov(ASC|MC)} )
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We divide by £-1 since for each case we have two persons and two observatoms
each and only one parameter for the mean. Define the vectaatope? = diag@z").
This implies that E¢?) = E(diagex ™)) = diag|{E(x)E(x)" + cov(x)} since the diag()
operator is linear. Now we can computg for all systems by usin@,

6°=(4c-1)" {Z Q" ([E(AIMc) - ul®/ He + diag[covmnd)]/Hc)} :

where the divisions are component-wise and diggg the vector formed by the diago-
nal elements of the matriX. From (3.3) we have cov{¢|Mc) = D¢~ DcTJ [TcDcT] +
diag(hc)”*zdiag(ac)/] ' TcDe.

In order to derive estimators for the parametersimithout solving the likelihood
equations, we define for each systemrotation given by an orthogonal matdk. The

first row of Os is given byen (1)7Os = ns"/?1], whereex(i) is thei'th canonical unit

vector inR". Define&;s as the rotated residudls = Os€s which has a zero-mean normal
distribution with covariance matri@s(rsln, +vssln, 15 )O0s = Tsln, +vsshsen,(1)en, (1)".
Letes = ngt 3", & With €5 = (Es,. . . ., &s,,). Sincees = OF &5 we find that
||<“3s _Eglnsn2 = (és _Eglns)—r(és _Eglns)
= El&s—&ns
= £J001&s - ng(Ng'1] 01€9)T (ng'1,,0L &)
= g;rgs - E;rens(l)ens(l)-rgs

= zfé -& = 252-
i=1 i=2

But from the choice 06 we have thats, = Ngs implying thatés ng™/? = &. Com-
pining these two expressions yield tBatl ||€s —&s1, ||°>. The compound symmetry on
Y also imply thai; 1L €s — &1, which is shown below,
COV(ENS _z';]_ns,gt-) = [InS - n;llnslgs]COV(é's, é‘t)r‘lt_llnt
= [InS - n;llnslgs] {63‘{5'“5 + Vg].ns]_nt} r‘l»;:lhlnt
=0, forall sandt, (3.6)
wheredq is Kronecker’s delta.

From the length of< - g51,s We also have that
Ns
EllEs — ].nsgg|2 = Z Efg = (ns - 1)Ts
i=2

An unbiased estimator fors is therefore s—1)"|€s — 1,24 in accordance with
standard results for linear models. L8860 = ||« — 1n.£xl* which is distributed
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asSSDy, ~ tsxg, ;) Since we have independence across cases the s8R is
again chi-squared SSQc ~ 7sx{, ¢, wherens, — C = Yc(ng: — 1).

When determining the covariancesgfands, we use that

COVEs,&) = NgH1; COV(Es, EYN; M1y,
= "] {Sqreln, + valn g} nitly

= 0gTs/Ns + Vg
Now we lete = (&5)sesys When we summarize our findings in

COVE)= diag(E

S

) +A, whereA = {vg}stesys (3.7)
sesys

From the above expressions a straight forward approachtsorotine estimates would
be to take average over the cases in our data. However thaasiiomeof M and thus
ns for each case vary according to the mixed profiles. Due to ¢ivartance structure
specified in (3.7) we need to include auxiliary variablesiides to handle this. These
variables are unobservable and thus we need to impute thear BM-algorithm.

Now we writee; as a linear combination of two independent variatdes; u¢ + ve.

Bothuc andwv. follow a zero mean normal distribution with variances dia@s:)sesys
andA, respectively and they are assumed independe&8Sal;. Now letx. be either
of uc andw, then since covc, &) = cov(zc) ande. = diag(hc)'/?éc, we have that

COV(iL‘c, Mc) = COV(SEC, Ec— Qc%:"' Qc‘g;)diag(hC)l/z
= cov(x., QEc)diag(hc)Y/?
= cov(zc)Ql diagthc) /2,

where the second equality holds due to the independencensino8.6). We denote
diag(h) = d(h) and state the covariance matrices@f,(M.) and ¢, M.),

[ dm) d(re) QL d(hc)?
Z(uc, M) = [d(hc)l/Zch(‘rc) TeDeTe + Zc
[ A AQUd(he?
Z('Uc, MC) - d(hc)l/chA TCDCTC + EC ’

where d) = diag(rs/Ns)sesys and=c = d(he)Y2Sd(he) V2.

By assumptionig; is independent dfé s —&x1n, || Which imply uZ, 1L [|Eg — &g 1n %,
furthermore we have thag, ~ 7s/ngy1 implying thaty . ngU2, ~ 7syc. Since the two
contributors in estimatingg are independent they can be computed separately in the
M-step of the EM-algorithm. First we note thatlzfu! | M.) = E(uc|Mc)E(uc Mc)™ +
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cov(uc|M.) where we use (3.3) to determine the right hand side,

E(Uc“\/'c) = d(Tc)di(hc)l/z(TchTg + Zc)_l(]\4 - Tch)
cov(uc|Mc) = cov(ue) — cov(ue, Mc)var(Me) tcov(Me, uc)
=d(7c) - d(’%)Qgdiag(hc)l/z(-rcDcTcT + z:c)_ldiag(hc)l/zch('7'c)~

Since we only need B,/ M) the components for each systemrois just the diagonal
diag(Efucul | M) which we multiply byn, to have a central estimate. Also tBSD,
can be computed simultaneously for all systems as,

QIE{(Ec - QM) = QIE(. - Qe My)? + QT diag{cov(e. - Qe M)
Sinceet — Qe = (In, — Qc[QI Q] 1Q!)é: and the covariance o&( M) is

ZC ZC

e, Me) = [zc ToDeTT + 3|’

we have that B — Qg M,) is just

E(éc - chcTMc) = (lnc - Qc[Qch]_ng)E(§c|Mc)
= (I, — Qe[QT Qe Q) d(he) ¥25(TeDeTT + Te) H(M; — Topsc)
= (In, — Q[ QI QeI ™ QD)Ecd(he)A(TeD TS + Te) (M — Topo).

It is easy to verify that. = diag@Q.r) + Q:AQ{ gives the correct dimensions b
and the sub-matrices hereof. Now,

(I = Q(QT Qo) 1 QI)Ee = (In, — Qe(Q! Qo) Q) (diagQeT) + QeAQL)
= (lnC - Qc(Qch)_ng)diag(QcT)'

Therefore EéZ — Qe M,) is expressed as
E(éc - chaMc) = (lnc - QC(QZQc)_lQZ)diag(QcT)d(h)l/zvar(Mc)_l(Mc - TCHC),

with var(Mc) = TcDeTJ + Zc. LetKg = I, — Qe(QI Qc)1Q{, then the covariance is
found by similar arguments,

COVEL~QEIMe)=Ked(foc) ™ {2 - Sovar(Mo) *Lef d(ho) 2K
=K.diagQer)-KediagQer)d () *var(M) d(he)*/ K diagQer).

where we useKEcKe = KodiagQer). Since uing ~ 7sx2 and Y. SSDy, ~
Tsv4 _c are independent their sum is distributedrag;_, i.e.

ts=ng! ) {E(WEIMo)ng + SSD|

C



3.3 Derivation of EM estimators 21

Lettingn, = (N1, ..., Nsy), we find that
# = diag.) ™ > {(QTQOEMEM) + QI E([KeEcIMy)),
c

where both terms in the sum expands as the expectation shplariethe diagonal of
the covariance matrix.

By construction ofv. we have E¢.v!) = E(vc)E(ve)™ + cov(ve) = A. Now as for
u we need to calculate B{v/|M:). The same considerations apply hence we have
E(vcv! |Mc) = E(ue| Mc)E(ve| M) + cov(v| M) where

E(vc| M) = Adi(hc)l/zvar(Mc)_l(Mc - Tepee)
cov(ud Me) = A — AQldiag(hc)/*(TcDcT{ + Zc) diag(c)/*QeA.

HenceA is just estimated as the mean over all cases
A=C) Bl Mo)E@elM:)" + covluc M).
Cc
Note that by decomposirzg as two independent Gaussian variahlggndwv, we force

the covariance’ss to be positive since\ is an ordinary positive definite covariance
matrix for v, i.e. the diagonal elements are positive. This implies thafes) = Xss,

Ts+ Vss Vss e Vss
- Vss Ts+Vss ... Vss
Yss = . . . . )
Vss Ts+Vss ... Tgt+ Vss

are all non-negative entrances.






CHAPTER 4

EM algorithm

In this chapter we formulate the EM algorithm in broad termd demonstrate how we
use it in our missing data approach to the DNA mixture probl&ine EM algorithm
consist of two general steps, the E-step where the missiegreéitions are replaced
by the expected values under the current estimates of tleneders), say, which are
found by maximization in the M-step assuming full obseimasi.

4.1 Missing data mechanisms

Following the terminology of Little and Rubin (2002) preseth by Lauritzen (2006)
the missing data can be generated by various mechanismgr tocrete example the
area observationd are missing completely at random (MCAR). That is the missing
observations are independent from the observed values tieeparameters.

LetY = (Yobs, Yris) and introduce the missing data matlkwhich is 1 ifY is missing
and 0 otherwise. Then we have that

f(MIY, 0) = (M), ie. M1Y@ (MCAR)
f(M|Y, 0) = f(M|Yobs’ 0) i.e. M J-|-Ymis,|(Yob57 9) (MAR)

yielding that MCAR imply MAR.
Below we factorize the likelihood

L(OIM, yops) o« f Luis(6)  (Yoos, Yri<l6)dyinis,

whereLps(0) « f(Mlyos, Ynis, @) is based on an explicit model for the missing data
mechanism. The likelihood function ignoring the missingchmnism is

L(Blyose) o T (Yood8) = f F (Yobs Vi<l dyiis.

Assuming that? = (¢, 1) with 1 governing the missingness are separate from the
parameter of interesp (i.e. the parameters vary in a product region) and the da&ta ar
MAR we have that.is(0) = Lnis(¥) o« f(MlYyops, Ymis, %) = f(Mlyabs, 99). Using this

we get our final result

L(BIM, Yobs) o f Lmis(8) f (Yobs, Ymisl®)AYmis = Lmis(¢)) f f(Yobs, Yrisl®)dYmis
o Lmis(¥)L(®1Yobs)-
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This shows that the missingness mechanism can be ignoredaeineerned with like-
lihood inference aboup.

From the present data we only have access to the peak areaathses M for each
mixture. In the controlled experiments discussed and aedlyn Chapter 2, we also
have the single DNA profiles given. Hence we can constructrtppingT since we
know which alleles the two donors share. The task is to recthee A vector since
this contain information of the DNA profiles. In the termingly of Little and Rubin
(2002) this implies the missing data mechanisndaf missing completely at random
(MCAR). This implies we can ignore the missing data mechariisthe steps of the
EM algorithm.

4.2 Theory of the EM-algorithm

In this section we show that after a complete cycle of the BHydahm the incomplete
data log likelihood has never decreased. The proof is basédgoritzen (2006). The
EM-algorithm converges to either a saddlepoint, local @bgl maxima. For practi-
cal purposes it is often possible to avoid convergence taldlspoint by performing
several independent runs with small perturbations of tit@lparameter values.

In the E-step of the EM-algorithm we take the expectatiorheflbg-likelihood ratio
with respect to¥p,is givenygss and currendy estimates 08,

f(YmISa Yobs: 9)
010 = Ellog —————=
A(610w) = ( 9 F Vais: Yobs: 6())

f o9 f(Ymis» Yobs: )
f (er‘l s> Yobs, B(n))

Sincef(Zx; ¢) = f(z x; ¢)/ f(x; $) we have that

_ fl f (Yobs: ) T (YrmislYobs: 0)
f(Yobs: O(rn)) T (YrmislYobs: On))
f(YmislYobs; €)

= log f (Yobs; &) — 109 (Yobs: On)) + flog T miolyons; O
mislYoDbsS: n

= gyobs(e) - gyobs(e(n)) - K L (fg;’nb)s’ fgobs) , (4.1)

Yobs» 9(n))

f (Ymi SlyObS’ O(n))dym s

f(YmislYobs» O(n)) AYmis

f(YmislYobs, O(n)) Wris

wherety,, (0) = Iogf f(Ymis» Yobs; @)dynmis is the incomplete data log-likelihood aird-
is the Kullback-Leibler divergence defined by

T 4
()

Let f andg be densities then we have that

KL(f,g)=—ff(x)Iog ?E ;dx |ogff(x)?ix;

KL(f, g)_ff(x)log
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due to Jensen’s inequality for the concave functidng(x). We see thaKL(f,g) =
forf=g henceKL(fy"bS fy"hs) is minimized for® = 6. Using (4.1) this furthermore
imply that

70 q(616)

2@ (4.2)
=6(n) 60 - 0=6n)

In the M-step we sefl(.1) = arg rr;axq(ew(n)), which yields thaty(6|6) > 0 since

arg ngam(ele(n)) = arg max (log f(y; 6) —log f(y; Or))) T (YmislYobs: On))WYmis,

wherey = (Vris, Yobs) @nd the latter integral is constant@rand hence

f log T (y; O(n+1)) T (YmislYobs, On))AYmis > f log T (y; Om)) T (YmislYobs, O(r)) WYris.
From (4.1) we get

Ly (0TD) = (0160(ry) + Ly (Omy) + KL (fg:’b;’ fé’ohs)

> Ly (O))- (4.3)

Hence after a complete step in the EM-algorithm the incotepiiata log-likelihood
has never decreased.

4.2.1 EM-algorithm for exponential families

As in many other areas of statistics distributions from aitegexponential family have
useful properties in the settings of the EM-algorithm. Thenmon functional form of
the exponential family is

f(Y;6) = b(Y) expS(Y)6/a(9)), (4.4)

where the expressions indicate that the only data terms tioeleel incorporated in the
log likelihood iss(Y') which is ad-dimensional vector of dticient statistics. When
the complete dat¥ follow a distribution of the regular exponential family tke and
M-step of the EM-algorithm reduces tgp.1) = E(S(Y)lyos, &) and due to (4.2) the
solution to the likelihood equations &Y)|0) = Sn.1), respectively.

4.3 Application of the EM-algorithm

A useful property of the EM-algorithm used in models with gidehal constraints on
the parameters, is that the E-step in flieeted by these constraints. This however
adds no further complications to situations with missintadance the calculations in
the M-step is as if we had access to the complete data. Byiaaittonstraints we
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refer to restrictions induced by some model assumptionsnahtdy the mathematical
assumptions such as semi-definite covariance matrices.

The model described in Section 3.1 and Section 3.2 indicateva-step structure
where the first part involvegt and M together with the parameters from their dis-
tributionsD and . The other part models the error structureeowith its covariance
structureX(r, A). This is also obvious from the factorization of the likeddd shown
below,

f(D, u, 2(1,A); A, M, H,&,u,v) = f(D,u; A, M, H)f(X(7, A); €, u, v).

Hence when maximizing the likelihood with respecti f:) andZ(r, A), respectively,
we get

nI;IaXf(D, w,2(T,A)|A, M, H, & u,v) = er]aXf(D, ulA, M, H)
e L

zr{laﬁ f(D, u, 2(m,A)|A, M, H,E,u,v) = zrg-a/é f(E(7, A)IE, u,v)

This ensures that we can perform calculations for both partsaur model within the
same EM-algorithm (Little and Rubin, 2002, Section 7.1).th&fut this factorization
the EM-procedure may have been split into more than one Eddeature.

We can summarize our findings from Section 3.3 in Figure 4d ianterms of the
estimators of the two steps in the EM-algorithm below.

Observed (K
values @ @
E-step
H \\
C \\
M-ste
he \\ p
Te [
\\
Me Bl ] E-step
o~
c= N\§

Figure 4.1: Graphical representation of the steps in our implemenmntadiothe EM-
algorithm for fixedk. We have dropped the subscripts on the parameters and ichpute
values to keep the picture simple.

E-step In the E-step we need to compute&d{M) and covd| M) for the outer pro-
cedure, and B{ M), cov(u|M), E(w|M), covw|M), E. — QedM.) and cové —



4.3 Application of the EM-algorithm 27

Q& M) for the inner procedure. For both co#(M), cov(u|M) and cové; —
Q& M) we need only the diagonal elements, i.e. when implemeritirpmputer
software we only have to store the diagonal elements. Belevistthe estimators of
the moments with appropriate indexing,

E({A(n+1)}c|Mc) = {H(n) b + {D(n) }cTcT{V(n) }El(Mc - Tc{H(n)}c),
COV({A(n+1)}c|Mc) = {D(n)}c - {D(n)}cTcT{V(n)}Ech{D(n) Je
E(fugmsnldMe) = d(imm)}/16) Q¢ d(he) Y (Vim s (M — Telpa)e)
cov({umylclMc) = d({T(n)}/mc)
— d({()/me) Q¢ diagre) 4 Vin) s *diag frc) 2 Qed (i)} /)
E({'U(n+1)}c|Mc) = {A(n)}di(hc)l/z{vzn)}gl(Mc - TC{I"’(T‘I)}C)
cov((vrylIMe) = {Am) — {Am) QL diaglic)/*(Vin I diaglic) > Qcl A )
E(Kc{é(n)}nd) = Kc{i(n)}cd(hc)l/z(-rc{D(n)}cTcT + {Z(n) }c)_l(Mc - Tc{ﬂ(n)}c)
CoV(Kc{Emtel M) = KediagQel(n)})
~ KediagQclrm)d(he) /*{ Vi I d (o) *KcdiagQel 7y ).

Where{Wn)}c = Tef D(n)}cT(-;r + {Z(T'I)}Cu Ke = Inc - Qc[Qch]ile and the SUbSCI’ith
indicates the current estimates of the parameters.

M-step We use the expressions where we estimate the parametetsdpstems at
atime.

ey = ) QE( Al Me)/ Y Q" He

{N(n+1)}c = diag(Qa(m-l))Hc
ol = (@C -1 QTIE(( AR M) - (1) He

+(4c - 1) > QTdiaglcov( Al Mc)]/ He
T(n+1)=diag(n+)_12(QZ Qc)diaqE({u(ml)}dMC)E({U(n+1)}c| MC)T"'COV({U(n)}nd)]
+diag(n+ylz:QgE({E(n)}C—Qc{g(_n)}c|Mc)2+diiag{C0V({§(n)}C—Qc{g(_n)}c|Mc)}

A = C™ ) EQumad ME (v ol Me) " + CoV(v(n: ol Mo)
Cc

where all vector divisions are done component-wise.
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4.4 Implementation of EM-algorithm

The expression from Section 4.3 will be used to estimate #nameters in the model
from cases withfull information. That is cases where no drop-outs have beemadite
Each case in the data were amplified using six and 12 secojedsiam time, respec-
tively, during the PCR reaction. This doubling of the injenttime resulted in higher
peaks and larger peak areas, hence the two subsets reprdifienént populations of
samples. We therefore restrict the data only to containumgs with an injection time
of six seconds.

In our data we have also access to cases where only one pasaofiributed to the
sample. These cases will however not be used in the paraesiaration phase as
they are subject to an even higher degree of uncertainty acedgo real mixtures.

From the expressions specified under the E-step and M-stidyg iprevious section it
is possible to compute case-wise contributions to the peterso, o2, 7 andA. The
pseudo code in Figure 4.2 emphasizes this.

EM-algorithm (init = list{c, o2, T, diag(A)},data)

forne{1,...,N}
forcef{l,...,C}
Update moments:
Ac <« E(AmlIMc)
cAc « diag(cov(A)}clMc))
U < E({u(n)}c|Mc)
cuc « diag(cov{untelMc))
Ve < E({U(n)}c|Mc)
CVe COV({'U(n) }C|MC2_
ep. « E({énlc — QclemylclMc)

Cepc diag(cov(é(n)}c - QC{E(_H)}C|MC))
Compute parameter contributions:
0‘((:1) — QA
a((:Z) — Q'H;
o2 « Q({chc+ (A — {pelo)?} /H:)
c c c H(n)sc c
T« Q(cep+ ep?)+ diaghc)(cuc + ul)
A« VeVl +cve
Compute parameters:
a < Yeal/N.af
o? « (4C_1)_12c0'§
T nll 2 Te
A C™ ¥ Ac
Return(list{c, o2, T, A},data)

«—
«—

Figure 4.2: Pseudo code for the EM-algorithm in this application.
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To perform and compute the iterations of the EM-algorithmwileuse the open source
S-languager as we will make extensive use of matrix algebra and manijulatith
matrices. The pseudo code of Figure 4.2 also works as irtdimoments for ther-
source code available at httprww.math.aau.dk-tvede. To be able to use tiescript
the data must be given in a data frame with the same struciunelable 3.1. Below we
have stated the data frame column names and lines neededdiocessful execution
of the script.

> names (DATA)

"case" "plcl" "plc2" "p2cl"™ "p2c2" "sys" "allele" "height" "area"
source(file="datahandle.R")

source(file="engine.R")

source(file="em.R")

em.output <- EM(n=N,x=DATA,inu=NU, itau=TAU, iD=D)

vV V. V V

The three files loaded before the run of #iiefunction computed,, T., andn. for
each case; contains the core functions of the EM-algoritased) on the estimators in
Chapter 3; and the managing functions as described by Fig@reespectively. The
EM-function takes apart from the arguments specified, whidimésnumber of itera-
tions ), data framex) and initial values {nu, itau andiD), also a Booleaprint
argument. If true (default) the current parameter estimare printed to the screen
after each iteration. The traces of parameters and devianecstored by the script and
returned at termination. The output of tB#-function (here nameédm. output) will
contain the data and estimates of i.4. and u., together with traces and the final
parameter estimates.






CHAPTER B

Results

In this chapter we present the parameter estimates compsird the EM-algorithm
of the previous chapter. We also investigate insignificaarue asympotic variance of
the parameters in the model.

5.1 Parameter estimates

Since our likelihood may be multimodal the EM-algorithméssitive to initial values.
In order to verify the convergence of the algorithm we haveduseveral dierent sets
of initial values fora, 7, A anda?. In Table 5.1 we have listed the nine sets of initial
values which will be used to analyze the convergence priggzart this chapter.

Table 5.1: Initial values used for the EM-algorithm in the left tableorfRall sets we
made 30,000 iterations. The two columns in the right tablgaio the deviance after
1100 and 30000 iterations, respectively.

T o? diag(A) D1100 D30000

Run1 300 1000 1000  33015.03 33013.97
Run 2 0 1000 1000 33014.97 33014.77

Run3 500 200 10 33016.66 33014.00
Run 4 0 1000 0 33342.88 33342.88
Run5 100 100 100  33015.12 33013.97
Run 6 0 100 100 33014.97 33014.77
Run 7 40 1000 0 33302.96 33301.69

Run8 1000 1000 1000 33015.07 33013.97
Run9 1000 100 300 33015.43 33013.98

From Table 5.1 we see that f&un 2, 4and6 we have initializedr = 0 and forRun 4
and 7 the A matrix were initialized as a zero matrix. The estimatesAandr found

in Section 3.3 are both evaluated using the previous paerestimate forA andr,
respectively. It is therefore not possible for these twaapaeters to attain other values
when they at some point are zero. This is in particular truemtey are initialized to
zero.

A measure of the convergence is the deviance define@ &yL(6(n)), whereL(6y) is
the likelihood evaluated with the current parameter ediis®.,. Since the likelihood
of M is given as

L(M; %, p) = (i)™ exp|~3(M — T ) "var(1) (M - Tp)).
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the devianc® is just log(var(M)|)+ (M —T p) "var(M)~*(M —T p) where var() =
TDTT + X. The total deviance is just the sum of case-wise devianoes sie assume
independence between cases. Since the deviance is just@anerfunction of the
likelihood the deviance is a measure of the goodness of filyimg that for diferent
models the one with the lowest deviance has the largestided. In Figure 5.1 we

have plotted the trace of the deviance for thiadent initial values.
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Figure 5.1: Traces of the deviance from iterations wittifdrent initial values.

The cut point of 1100 iterations was chosen since after thistmone of the deviances
improved more than 0.01 per iteration. In the right table abl€ 5.1 we have listed
the deviance for the runs after 1100 and 30000 iterations.s&¢ethat there is only
marginal improvement of the fit with an additional 28900 atéwns. However it is
worth notice that the deviances Bun 2and Run § wherer = 0, are smaller than
runs with+ # 0 after 1100 iterations, but that after 30000 iterations itegersed.
This implies that the model witlr # 0 fits marginally better, but as we see below this
improvement is statistical insignificant. Sineeis of dimensionS = 10 the test of

7 = 0 is approximately asymptotic chi-square distributed wéh tlegrees of freedom

(Cox and Hinkley, 1974, Section 9.3),

2
Druns— Drunes ~ X100

whereRun 5andRun 6are chosen since theyftér only in initial values orr. Using
the deviance after 30000 iterations yields a test statgdti@. 7979 and g-value of
0.9999 implying that we reject the hypothesisrof 0.

From the analysis of the deviance it is clear that cases wdiatdA) is initialized as
or close to0 has the worst fit. This implies that the covariance within &etiveen
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systems are important to incorporate in the model. For @rthvestigations of the
parameters we chogeun 2since it hasr initialized as0 and small deviance.

The estimated parameters after 30000 iterationRuh 2are given in Table 5.2. For
A the intrasystem covariances are displayed on the diagtmalupper triangle the
intersystem covariances and intersystem correlatiortsaihower triangle of the matrix
(shaded). Forr, 0 anda the estimates are listed below. By construction only the
diagonal ofA were forced to be positive but all system correlations argtive with
values larger than 0.36 for all but one. This indicates thatlzing DNA profiles
with the assumption of independence between systems istanséxe simplification.
Furthermore we see that the correlations between systerttseasame dye band are
not necessarily larger than the others (Blue: D3, VWA, D16 B2; Green: D8, D21
and D18; Yellow: D19, THO and FGA).

Since these estimates are based on pairwise mixtures ofamyndividuals and one
machine the parameters are likely to be very data set spedtifite for example the
large variation on system D18 where the variance pair)pig = (2197,3209). From
Table 2.1 we see that there are two homozygous with sharele & this system and
in Figure 2.4 we recognize the large spread for this systemmv@rsely the systems
where only a few alleles are shared between the individuedsotrerall variance is
comparatively small, e.g. FGA and VWA.

An interesting observation about the intrasystem covagans, S € sys is that their
magnitude tends to follow the unbalances pictured in Figufewith respect to the al-
leles included in our data set. That is system D8 with the &iivdrasystem covariance
also tends to have the most homogeneous amplification bmlraagross alleles by vi-
sual inspection of the allelic ladder. The pattern can olyekamined with respect to
the included alleles in the four profiles, however for thesgr alleles the intrasystem
covariances seem to reflect the variance in allele ampiificat

In Table 5.3 we have listed the parameters from the six rutis diag(\) not initial-
ized to zero. The concordance of the parameters indicat¢stte EM-algorithm has
converges to a maxima and not a saddlepoint. However thacegsiarantee for this to
be a global maximum.

An indication of the goodness of fit can also be assessed kingjrthe parameter
estimates oix with the box plots in Figure 2.3. Sortings in the same order as in
the box plots gives an increasing sequence except for D8 &8d Dhis reflects that
system on the green dye band has more narrow peaks than systahe yellow band.
We find, except for D2 and VWA, a similar pattern for the vadacomponent? with
the same ordering. This supports the assumption of prapatity of the mean and
variance of the peak areas. Except for system D18 thereiearlrelation betweedns
ando2. A least square fit yields a cfigient of approximately 190 implying that we
may writec2 = 19Qus for s € sys\{D18}, such that EA) = o H and var@d) = KaH
with K = 190. In Figure 5.2 we have plotted the estimates from the ming of Table
5.1 against each other. We see the obvious linear relaijpish also that anfine
mapping (dashed line) might be more appropriate than jusakng (solid line).
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D16 D18 D19 D2 D21 D3 D8 FGA THO VWA Run

o 9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 1
9.10 10.17 6.15 7.01 8.92 8.25 10.19 5.53 5.99 7.64 2

9.11 10.23 6.16 7.03 8.95 8.27 10.19 5.53 6.00 7.64 3

9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 5

9.10 10.17 6.15 7.01 8.92 8.25 10.19 5.53 5.99 7.64 6

9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 8

9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 9

T 158.53  443.76 1.04 1.88 4.46 1.27 1.48 92.32 3.04 1561
0 0 0 0 0 0 0 0 0 0 2

151.93  478.79 1.05 1.88 4.93 1.29 1.48 90.13 2.96 1513

158.47 443.81 1.04 1.88 4.54 1.27 1.49 91.82 3.05 1.57 5

0 0 0 0 0 0 0 0 0 0 6

158.32 444.76 1.04 1.88 451 1.27 1.48 92.10 3.04 1.56 8

158.62  441.59 1.05 1.88 4.69 1.28 1.49 90.62 3.09 1.589

diag(A) 1840.03 1929.18 2026.49 2447.12 922.66 849.22 813.05 .7415913.04 1060.55 1
1915.78 2196.65 2052.83 2481.70 952.27 864.07 821.00 1151.54 925.69 1082.10 2

1852.61 1837.99 2021.97 2448.81 898.54 835.87 820.18 171325920.02 1086.10 3

1840.08 1929.15 2025.25 2447.58 919.51 848.30 813.34 1117.49 912,91 1060.84 5

1915.79 2197.09 205250 2481.80 951.52 863.88 821.04 9451925.63 1082.03 6

1840.43 1926.56 2025.96 2447.33 920.96 848.55 813.35 1116.59 913.20 1061.38 8

1839.59 1935.37 2022.13 2448.67 912.61 846.64 813.65 93321912.12 1059.87 9

o? 1656.76 2746.88 1002.00 1234.82 1795.95 1331.81 1853.553.5B3 728.08 1148.60 1
1821.04 3208.73 1002.93 1236.31 1797.39 1331.79 1854.94 596.53 730.29 1146.78 2

1663.31 2717.22 1001.70 1234.87 1795.38 1332.11 1853.924.983 728.24 114895 3

1656.84 2746.84 1001.98 1234.83 1795.87 1331.84 1853.56 533.88 728.07 1148.60 5

1821.04 3208.69 1002.93 1236.31 1797.39 1331.80 1854.956.539 730.28 1146.79 6

1656.98 2746.03 1001.98 1234.82 1795.90 1331.83 1853.56 533.71 728.08 1148.60 8

1656.73 2748.75 1001.98 1234.84 1795.73 1331.90 1853.574.653 728.04 1148.58 9
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Figure 5.2: Scatter plot of the estimates of ando? from the nine runs of Table 5.1
with least squares linear fits superimposed.

The Mahalanobis distanceé\{ — Tu) varM)1(M — Tu) with p and varM) =
TDTT + X known, is chi-square distributed with= Y ns degrees of freedom. Hence
using the estimate af?, 7 andA of Table 5.2, together witlx for the meary:, we
can calculate g-value for each case to assess if the case is indeed a mirtteems
of our model. Ap-value less than 0.05 indicate that the model does not destire
observed data for that case significantly well. In Chaptere@ntroduce two dierent
Mahalonobis distances to assess the fit of two proposedgsddila mixed sample. The
aim of this test is however to assess information on the fihefrhodel to data from a
DNA STR mixture and not whether the proposed profiles mataenked mixture.

In Figure 5.3 we have plotted a histogram for fhealues assuming g2-distribution

of (M =T ) var(M)~(M —T ). For the model to be supported by data frealues
must be uniform distributed which seems satisfied from in8pe of Figure 5.3 and the
p-value using Fisher's omnibus test2 3.7, log(pi) ~ x3,, yields 06257 supporting
uniformity of the p-values. Also the three cases witlpavalue less than 0.05 matches
the expected 3.55 which is 5% of 71 cases.

5.2 Variance of parameter estimates

The precision by which the parameters are estimated is aataheasure to include
in the evaluation of the model fit. The asymptotic distribatiof & — 0 is a zero-
mean normal distribution with the inverse of the expecteshéi InformationZ (0) as
covariance matrix. Leh = 71 and letA, = dA/d6y with a similar definition forp.
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p-values for (M-Tp) var(M)~'(M-Ty) ~ 52

Frequency

0.0 02 0.4 0.6 0.8 1.0

p-value

Figure 5.3: Histogram of thep-values computed from¥ —T p) Tvar(M)1(M —T p).
The distribution looks reasonable uniform supporting trelsi.

SinceAX = | we have that\E = —A%, and thusAy = —=~'%, 1. Furthermore we
have—A‘lAk =Y > 1 hutalso
-—— Iog Al = — Iog Il = tr(E'%) hence — Iog Al = tr(A™A).

For a normal distributedX ~ Ny(1(6), 2(0)) the Fisher informationy (6);; can be
found by the following arguments. Using the precisiothe log-likelihood is

—2((0) = log(21) - log|A| + tr(A(X — p)(X - p)").
Then diferentiation with respect t6; yields

—20(0); = —tr(AT1A) + (A (X — p)(X = )] = ALu(X — )7 + (X - p)isT)
—20(6)ij = tr(ATAJATIA) — tr(ATA) + (A [(X - p)(X - p)7]) -
(AL (X = )™ + (X = p)fe] 1) = tr(Aj [ (X — )" + (X = )i ]) -
tr(AL (X = )" = ] = iy + (X = p)fyi)).

Taking expectation on both sides yields,

27(0); = (A AJATA) — tr(AA) + tr(ATHAG) + tr(ALjfe] + faghe’])
1(0)i; = %tr(A‘lAJA‘lAi) + /J,lAp,]T

Substitutingz~* for A using the relations from above gives the final expression

ou(6) ax(0) ., . _,0%(8)
2 5(0)t 56 5t (2(0) ! 76, >(6)t 70 ) (5.1)

@)’
96,

1(0)ij =

where

M_(am(e))p and az(@)_(azi,;w))p
00\ 96k ), 06\ 06k iy
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In our setting we havé = (a, o2, 7, A) where M, ~ N (u(6), %(8)), with

u(8) = Tediag(Hc) Qo

%(0) = Tcdiag|diag(Hc)Qo?} TJ + diagQe) + QeAQT = var(Me).
This implies that all dferentiations ofu(8) with respect to 4?2, 7, A) is zero and also
0%(0)/0a = 0. Since our data contains 10 systems, we haye+l00,- + 10, + 55, =
85 parameters and therefore the Fisher Information isa 85 matrix.
We have that

ou(0) 0

= —Tcdiag(H)Qa = T.diag(H)Qes(i),
oq; oa;

and as mentioned for all other diferentiations. Next we see that,

0x(0 0 . . . . .
200 - O Tidiag|diagUH)Qo?| T¢ = Tediag|diag(H)Qes()) T4
i i

0x(0 0 .. . .
20) _ 7 tiagQer) = diagQees(i)

Tj (9Ti
0Z(0) 0 . . . .
G = o A = Qe [{es@es(i)™ + es(i)es )} /(1 + )| QL.

wherei, j = 1,...,S andé;j is Kronecker’s delta. Since the Fisher information with

respect tax is independent of2, 7, A and vice versa we can invert these blocks sepa-
rately for determine the asymptotic variance of the paranset

I(c) (@) I(x)™?t

0
10="0" r@2r.n) o I(UZ»T’A)*]'

and 7(0)7!= [

Since we assume independence across cases the total Rfsh@ation is just the sum
over the Fisher information for each cag€@) = >.. 7.(0). For a fixed case thé&.(«)
can now be found as,

Te()ij = es(i)" Q" diag(Hc) T, var(Mc) ' Tcdiag(Hc)Qes ().
Note the simple form offl—ju(e)
Todiag(H)Qes(j) = TediagE)[O, ..., 0,17,0,....0]"
S o’ ——
4(j-1) 4(S-1)

=[0.....0,(T;H;)",0,....0]",
~— —(—

Ni+--+Nj_1 n; Nji1+-+Ng

whereT; H; adds together thélék)s contributing to the same alleles. Henfgo);;
simplifies to

I(a)ij = (TiHi)Tvar(M)i_leJHj
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We can partitionZ ((o?, T, A) as
IC(UZ) [C(UZ’ T) -Z-C(o-27 A)

I(o? 1)  Ic(r)  I(T.A)
T(o%A) Io(r.A)  Ic(A)

Ic(a'z, T,A) =

where the symmetry is secured since the trace operator imgyric and the first term
of (5.1) is zero. Using the above expressions we have,

To(o?)j=tr (var(Mc)‘l62(2)var(Mc)‘laE(Z)] where,
o o
950 o . .
20) — Tediaglciag(H)Qes()) T¢ = Tediag{0ag 1) Hie: 0 51| T¢.
i

The latter expression is just a matrix product of two blocigtinal matrices and a
diagonal. From hereon we drop the case subscriptkeep the expressions simpler
except forQ. to distinguish it fromQ. Now letZ' = 9%(0)/dc?, then we have,

Z' = diag©,...,0.,Z,0,...,0) with Z = Tidiag(H)T." in thei'th block.

Since var(\f)~! also have a block structure, VMQﬁl, the trace therefore becomes a
sum expressed as,

I(o?);j = tr (var(M)*Z'var(M)*2') = Z tr (var(M) s Zyvar(M); 'z}, ).

In “nk
k,l,mn

SinceZ'iﬂl = 0 unlessm = | = i with Zi‘i = Z; all terms in the sum is zero but for
m=1=iandk =n = j. Thus we have

1o = v o) 7).

When determining the next diagonal elemenf#¢#2, T, A) we can use the same rea-
soning as above. Hend&r);; yield,

I(r); = tr (var(M) diagQees())var(M)“diagQees())) -

Here diagQces(])) is simply a zero matrix witH,, on thei’th block of the diagonal.
Hence using the trace expansion again we have,

I(t)j=tr (var(M)ﬁlln‘ var(M)ﬁllnj) =tr (var(M)ﬂlvar(M)i’jl) )

SinceA is symmetric we need onlyg with 1 < s<t < Sof A. Thatis
Yi1 V12 ... Vis
Y21 V22 ... V2s T
= [Vl‘l, <o V1S,V22,...,V2S,...,VS-15-1,VS-1S, VS.S] =V,

Vs1 Vs2 ... Vs
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hencel(a, 0%, 7,A) = I(a, 0% 7,v). Inrowk of A we useS - (k — 1) elements.
Hence the index number of s in v, i(k, S), is determined ag(k,S) = 3, S—(i-1)
with k < S. Hencei(k + 1,k + 1) = i(k,S) + 1 from which we have(k + 1,1) =
i(k+ 1L k+1)+ (I - (k+ 1)) wherek < | < S. Hence we have the general expression,

ik, 1) = S(k—1) - k(k— 1)/2+ 1.
This implies that;y = v. The final diagonal ternf .(A) is found by

0
I (A)inyimn) = tr{var(M )_l%QcAQg var(M) ™ 5

Now evaluating the right hand side using the expressiordi{®)/dvy we have for
k1,

0 QAQ] )

0
T T T T
2 QAQ! =(0,...,0,17,0,...,0)7(0,...,0,1],0,...,0) +
avkl —— —— —— ——
Ny+--+Nk-1 Ngy1+--+Ng Ny+--+N-1 Njy1+---+Ng
T T
©,...,0,17,0,...,0)7(0,...,0,17,0,....,0)
—— —— ~—— ——
Ny+-+N-1 Njy1+--+Ns Ny+-+Nk-1 Ng+1+:+Ns

1n1;, g=kandr =|
=CY=cCy ={ 1,1}, gq=landr =Kk
o, otherwise.

Inserting this inZC(A)i(kJ),-(mn) yields,
_ 2WnkWim + 2Wn Wim

T(AN)swnyimn) = tr (var(M);:Clvar(M) - 2cm) = ,
c\VJi(kl)i(mn) p;s ( pq~qr rs sp) (L + 6k)(L + 6m)

wherew;s = 1, var(M);&1,, with Wrs = Wy

For the df-diagonal terms if¢(o?, T, A) we can use the expressions derived above to
get the following entrances,

To(a? )i =tr (var(M)ﬂlzivar(M)i‘jl)
Te(0?, Nisgy = (1 varM); Zvar(M ) 1n, +1] var(M),i* Zvar(M); *1,) /(1 + 6k)

3

To(7, )iy = (L var(M)j var(M)y 1, +1;, var(M ), 'var(M); M 1,) /(1 + 6)

Kk

which completes the Fisher information matrix.

The asymptotic variances and correlations estimated byFikleer information are
given in Table 5.4 and Table 5.5 for the full and restricted=£ 0) models, respec-
tively.

For the full model (withr not set to zero) the correlations seems constant across sys-
tems. Hence we may summarize this correlation structureniatix form,

o[ 1 -07 015
T |(-07 1 -05
As|015 -05 1
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Table 5.4: Standard deviation and correlation of parameters fittedterfull model.

We denote diag() asvss due to lack of space.

Standard deviations Correlation

o o2 T Vss 0'2, T 0'2, Vss T,Vss
D16 0147 223608 1087753 838433 -0711 Q159 -0.498
D18 0168 387382 1551988 9232620 -0.721 Q080 -0.425
D19 0119 126066 610340 5500897 -0.725 Q216 -0.545
D2 0135 146348 582646 4654708 -0.769 Q180 -0.447
D21 0125 201491 7609418 4213696 -0.736 Q076 -0.404
D3 0118 152801 6090714 3945375 -0.745 Q130 -0.433
D8 0144 236997 10185®3 7511252 -0.747 Q161 -0475
FGA 0087 68134 288048 2189266 -0.734 Q158 -0.474
THO 0101 91615 406860 3480548 -0.758 0232 -0.540
VWA 0.113 128337 5231019 3532837 -0.734 Q125 -0422

Table 5.5; Standard deviation and correlation of parameters fittedHerrestricted

model withT = 0.

Standard deviations Correlation

« o? Vss 0'2, Vss
D16 0148 157194 7345316 -0.316
D18 0171 267388 8651620 -0.345
D19 0119 86779 4587155 -0.312
D2 0135 93454 414230 -0.288
D21 0125 136206 3858417 -0.356
D3 0118 101766 355181 -0.321
D8 0144 157494 6606768 -0.330
FGA 0087 46237 193342 -0.315
THO 0101 59743 2925241 -0.323
VWA 0.112 86949 3195780 -0.299

Note that the strongest correlations are betweemd the two other variance parame-
ters,o? andA.

Apart from the insignificanp-value from the approximatg?-test these large corre-
lations and the smaller standard deviations on the paramgtehe reduced model
support eliminatingr. Since the parameters are based on a limited trainingrset,
might be estimated significantftBrent from0 using a more representative data set.






CHAPTER O

Evidence

Section of Forensic Genetics, University of Copenhagen,fdravided data from 74
real crime cases. Under real circumstances the contridpyiafiles are not known in
advance and therefore there are some additional uncerttiaiched to these cases. In
eight of these cases we have observed one or several dremadithey are therefore
excluded from this analysis. The 66 remaining cases willizyaed in the following.

6.1 Real crime cases

When drawing conclusions based on thwwalue derived from the Mahalanobis dis-
tance withu and var(\I) assumed known, we have to bare in mind that the estimated
values of these two quantities is based on pairwise mixtfresly four DNA profiles.

This causes bias towards the represented alleles in thenptgaestimates. Also the
analyzed mixtures from the controlled experiments arequaréd on the same machin-
ery and thus the amplification results reflect this machispé&cific behaviour.

Let M be the system-wise sum over alleles such fh&t= M My, ..., 3 Ms).
Using the matrix notation from before this can be expressedfa = Q[ M., hence
the distribution of M. is

M ~ N (Q" pe. Q"DQ + diagcr) + diagnc) Adiagc)) .

where we use®@{ T, = Q', Q{diagQ.7)Qc = Qf Qcdiag(r) andQ{ Q. = diag(n.).
Since the Mahalanobis distance considered in the previoayster takes both the mix-
ture and system balances into account it is likely to yield fwvalues for real crime
cases. System unbalances caused by degraded DNA and athegssof contamina-
tion are likely to d@fect the amplification of the fierent systems and therefore reject
the hypothesis of a mixture of the two proposed profiles. Hawveonditioning on the
system sumsVI. we can evaluate the match of the two profiles within each syste

In order to find the distribution aM| M we need to specify the covariance 8l M),

_ [ TDT"+X  (TDT" +3)Q
(M, M) = [Q(;(TDTT +3) QI(TDTT + E)QJ’

since covM,A?) = cov(M, Q/ M) = var(M)Q.. Now the conditional distribution
of M given M is degenerated since conditioning imply that the covagamnatrix is
not of full rank,

E(MIM) = Tu+ (TDT™ + D)Q[QUTDTT +5)Q| (M- Q')
cov(M|M) = TDT™ + 3 — (TDT" +£)Q [Q{(TDT" + z)QC]‘l QI(TDTT +3).
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However using the generalized inverse cef{(M)- we can determine the Maha-
lanobis distances,

(6.1)
(6.2)

(M - EQM1M))" covM| M) (M - E(MIM)) ~ ¥7,
(M-Q )" [QI(TDT™ +)Qc| (M- Q" p) ~x3.

The p-values determined from these Mahalanobis distances cantérpreted as a
two-step evaluation of the DNA mixture. The interpretatmnp-values from (6.1) is
whether the two profiles are the likely contributors to thetmie. Since we condition
on the possible unbalances between systemspaalues is an indication of a low
agreement of the observed relation, and the one explaingtieoyair of proposed
profiles. However if thisp-value is above some fixed value, e.gdDsay, we have no
evidence for excluding the mixture as a possible explanatio

Assuming that thep-value from (6.1) is significantly dierent from zero, we assume
the proposed profiles are a possible explanation of the ebdenixture. Therefore we
assume thatVf is the system sums over a mixture of the two proposed profilels a
the assumptions that imply the validity of (6.2) are met. einthis assumption the
interpretation of the-value from (6.2) is the quality of the available sample. W Ip-
value indicates unbalances between systems and condusionld therefore be made
with extra caution. Since our model does not incorporatethssibility of DNA to be
degraded and other unbalances between systems the evidigmeelow p-value is of
limited use.

As expected did all cases from the controlled experimenis haghp-values based on
both (6.1) and (6.2). This indicates that for all cases theeco profiles were mixed
and also that there were no abnormal system unbalances.

In the real crime cases only three cases indicated a poortiilea the observed and
proposed mixture. In Figure 6.1 we have plotted the obsepesdk areas for the three
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Figure 6.1: The three cases withrvalues less than 0.01. The point characters indicates
the donors,e and A, with + being a shared allele and the filled versions being non-
shared homozygote alleles. The ordering along the firstisxandom.
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cases respectively. The panels indicate large within peradability for the peak areas
not supporting the proposed profiles as donors to the mixture

In Figure 6.2 we have plotted histograms for fhgalues from (6.1) and (6.2) evaluated
for the real crime cases. We have only included the (f-2alues from cases where
the (6.1)p-values were greater than 0.01.

Mixture p-values Quality p-values
(Only cases with mixture p-values above 0.01 are included)

20
40

Frequency
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Figure 6.2: Histograms of the-values from (6.1) and (6.2) for the real crime cases.
In the right panel only cases with mixtupevalues above 0.01 are included.

The non-uniformity of theg-values in the two histograms indicates that the model does
not fit perfectly to the data. For the right panel of Figure & histogram shows that a
majority of cases have low-value with 35 cases havingmvalue less than 0.01. This
may indicate that several of the cases have a low copy nuntbdegraded DNA or
simply that the model is too simple to cope with real worldadat

The person-water mixtures included in the controlled eixpents can be used as ad-
ditional data for verification of the model. These cases vex@uded before param-

eter estimation due to the variability observed for pera@ter mixtures during the

data analysis summarized in Chapter 2. Computing both tHealMaobis distances of
Chapter 5 and those of (6.2) and (6.1) indicates that the hasie has a reasonable
fit to single contributor cases. The histogramgefalues from the three Mahalanobis
distances in Figure 6.3 show uniformity supporting the geess$ of fit.

p-values for (M-Ty) var(M)™ (M-Ty) ~ 2 Within p-values Between p-values

8 10 12
8 10 12
8 10 12

Frequency
q
q

° ° °

Figure 6.3: p-values from Mahalanobis distances for single contribatses. The
uniformity indicates the model fits well for one-person sé&sp
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Epilogue

In this chapter we summarize, discuss and conclude on th& pmsented in the
present thesis. Furthermore we set out some possible pneldte future work within
this framework for mixed DNA samples.

7.1 Discussion

As mentioned several times throughout the present thesisntierpretations made
about model structure and parameter estimates are biasedd® the four profiles
included in our data set. For the model to béisiently supported by data a vaster data
set with several profiles must be used for estimation of patara. This is both due to
the allelic variability but also the general variable nataf DNA STR amplifications

as seen from the present data set. Another source of variatibrepresented by the
available data is machindtect as all samples are analyzed using the same machin-
ery. This is an important factor to include in order havingfidence in the estimates

of the parameters. It would be interesting to perform a matdysis comparing esti-
mates based on data frontldirent machines in order to evaluate the robustness of the
estimates.

The data used for the parameter estimates were processée ligrénsic laboratory
using no stutter filter but still a fixed threshold for the pdadights. This threshold
excludes all peaks with lower peak heights than 50 RFU amddaotes a kind of cen-
soring depending on the (un-)observed peak height. Thdgrolith such a threshold
is instead of having a peak area observation of e.g. 500 wamstgad register a drop-
out. In Gilder et al. (2007) they discuss the use of run spettifeshold determined by
a model based on the white noise of the machinery. This sékena more reasonable
approach since cases with low contributions from a donor resylt in many drop-outs
using a fixed threshold.

On the preceding semester we examined the empirical ioteelation structure for the

systems. By stratifying on the trial number (each mixtureaxseparately analyzed two
times) we found that some correlations were significantfiedént in both magnitude

and sign. This may explain some of the uncertainty of theresgts of the covariance
structureA.

In addition to the runs with initial values specified in Tablé& we also performed runs
with o) = 0. However since the estimator of,, is not dependent of the previous
values it may eventually converge towards #hestimates found from the other initial
values. In Figure 7.1 we have plotted the tracesof®andr with o2 initialized to0.

After approximately 17000 iterations the parameters ckarand together with them



48

Epilogue

the deviance drops (not included in the plot). The plot sujgpbe insignificance of
as it converges to relative small values compared to bdtand diagf\).
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Figure 7.1: Traces fora(zn) andr, with o2 initialized as0 with a line for each system.

As mentioned in Section 4.4 we only used data with a PCR iigjed¢ime of six sec-
onds. On the preceding semester we used a simple lineaissignemodel to pre-
dict the peak areas by the amount of DNA. By stratisfying osteys and dropping
insignificant terms, such as laboratoriaffieet, the final model reduced to Arga

(as + I12(t)Bs)DNA, wherely, is the indicator function for the injection time being
12 seconds. In addition we found an approximate linearicgladf 35 and a5 as

Bs = 0.146 for all systems. Hence the ratio of samples withietient injection time is
1.146 or equivalent Areg = 1.146Areg not depending on the system. However since
our model includesH in both mean and variance we expect the estimates of doth
and the variance component$ andA to be identical for the dierent injection times.

In Figure 7.2 we have plotted the estimates based on six arsd@nds data. The
panels indicate that is independent of the injection time in contrast to the vas@a

components. We find that the variance components for 12 gecme approximately
1.5 times larger than for the six seconds data. This indéctitat the variance is not
linear in injection time. This non-linearity may be due pbks saturation of the ma-
chinery occurring more frequently for longer injection 8srelative to shorter injection
times. This shows that the parameters used in assessingtbbtwf evidence depend
on the injection time.
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Figure 7.2: Parameters determined for data with six and 12 secondgimjetane. We
see the variance components have increased by a half whessams constant.

7.2 Future work

In this section we discuss issues and problems subjectucefuiork since the current
model is not applicable in all real mixture cases. First weleate the current model
and the parameters reported in Chapter 5.

7.2.1 Model reductions

In Chapter 5 we showed thatwas insignificant with respect to the present data. By
doing so we placed more of the variance omtiigcomponents anat? but also reduced
the variance on these parameter estimates. However théastadeviations reported
in Table 5.5 indicates that data does not support having ar@mce for each inter- and
intrasystem combination and calls for further model reitunst.

Since the components ef seems be ordered by dye band colour this may also apply
to A, hence a possible covariance structure could be,

YYY  YYB  VYG
YYB VBB VBG|- (7.1)
WG VBG VGG

This allows systems on the same dye band to share covariar@eeters. The param-
eters fitted for the model withh specified as in (3.7) does not indicate that covariance
between systems on the same dye band should be similar. ldowgk the uncertainty
attached to the parameters we can not reject this covargnezture. The reduction to
(7.1) imply that instead of estimatirg(S + 1)/2 parameters for the covariance matrix
we need only to estimate 6 parameters. Hence with 10 systernscar data set we
drop 49 parameters.

An even simpler covariance structure assumes equal witldrbatween covariance for
all systems,

V.Y

[7 v} '
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This two parameter covariance structure may causebe significantly dierent from
0 in order to have a reasonable fit. However compared to the matle A = v and
7 = 0 we still reduce the number of parameters by 43.

7.2.2 Model limitations

The model described in Chapter 3 works under several lirnitatwhich makes it lim-
ited for immediate use in real world crime cases.

Degraded DNA

Since we assume the mean (and varianceldb be proportional to the DNA con-
centration mimicked byH the only system-wise fferences possible of the mean is
captured ina. For non-degraded DNA, as in the controlled experiments fouad
that this structure is dficient for describing the dlierent amplification properties of
systems. Exposing DNA to fierent kinds of inhibitors increases the probability of
the DNA sequences to break into shorter structures. Thisadarimposed to the DNA
may cause alleles to drop-out or in milder degree imply loamplification than ex-
pected. Experts in forensic DNA expect longer sequenceavs b higher probability
of breakage than shorter sequences and by the nature of SPRH2kefore systems to
have diferent risks due to the allelic ladder in Figure A.1. For irsitun of DNA degra-
dation in the model we need to have a separate model of thadtiwn behaviour for
the diferent systems and alleles. In Figure 2.3 we have indicatibrise expected
levels of amplification for each system. Dividimyl by o imply that the expectation
of all systems to be the same constant®(+ H®). Now an analysis of variance can
be used as an approximation to test fdfaliences across systems and thereby indicate
if the DNA has degraded. The dependence between and witsterag causes the
method to be approximate. Note that the within system vanas of less importance
in this analysis since we expect a significarfetience between individual peaks for
mixtures withH®/H®@ different from one.

Applying this approach to the data from the controlled ekpents imply a few cases to
havep-values less than 0.05. Further investigation show thaha#ie cases is mixtures
of personA andB, both homozygote on system D18 sharing allele 13. Removit) D
from all cases and reanalyzing by the same means none of thebed experiments
had p-values less than 0.10. This indicates that the amplifindiehaviour of systems
where two homozygous share an allele is not capturéttsntly by the model.

Degradation of DNA may be modeled using the methodology ofigal data analysis
as lower amplification than expected is due to failure in diicption of some the
DNA material. One can interpret the observed peak areasgstiportion of material
survivingthe degradation. In Figure 7.3 we have plotted the fragnergth for some
real crime cases against the aggregated sums of peak ariggut lyethe reciprocadx
estimates.

In Figure 7.3 we see the reasonable good fit to a linear cunvthélog-transformed
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Figure 7.3: Aggregated peak areas for each system weighted by the atsibcécip-
rocal a5 for some real crime cases. In the top panels we have supesedpm loess
curve, and in the bottom panels a linear fit to the log-tramséul data.

data. The points in the top panels can be interpreted asastnof the survival function
S(l) wherel is the fragment length. The bottom panel indicates that theutative

hazard is linear in the fragment lengths such that an exg@iesurvival model is

suficient in order to describe the decay in amplification. Howdugher experiments
and analyses of the behaviour of degraded DNA needs to berpedl for a proper
inclusion of the problem in the model.

Drop-ins, stutters, drop-outs and pull-up effects

The contamination of the observations from stutters, dngp-drop-outs and pull-up
effects increases the complexity of the analysis of DNA sangiesn particular mixed
DNA samples. As for degraded DNA separate models for theseessneeds to be
constructed for proper understanding of their behavidure consider the four issues
as separate problems we may assume they can be modelle@muigeply given the
quality of the DNA sample. However as these four events mayioat the same

time, it can be dficult to assess which are present. For example may the peesenc

of stutters, drop-ins aridr pull-up efect hide a drop-out. This may in particular be
true for mixtures with a minor and major contributor where ttatio of their DNA
concentrations is close to the stutter percentages of 5%-(Applied Biosystems,
2006, p. 9-22).
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Furthermore the threaddingevents are dficult to distinguish from one another. This
is due to their overlapping definitions where stutter and-pplefects are the most
restrictive and drop-ins are the artificial peaks not clzssie by the two. If neglecting
back-stutters then stutters are only a possible explamétibe position of the artificial
peak is before the true peaks. Pull-ufeets can also be restricted to certain intervals
on the allelic ladder. For a pull-up to occur there has to b@wrlap on the allelic
ladder between the dye bands. In Figure A.1 we see that fonebeaD8 on the green
band is in the span of both D3 and vWA on the blue band.

7.2.3 Finding possible matches

In Chapter 6 we were only able to assess whether a mixturetiétiproposed profiles
fits our model assumptions for DNA STR mixtures. It gives hegreno indications
in direction of which other two profiles that might be moreelik under the observed
alleles and peak areas. In the search over possible painofiep we need only to
search over one system at a time under assumption of Hardybfg equilibrium
implying independence over systems with respect to theepsof alleles. However
the results of this present thesis clearly indicates thamndvaluating the evidence of
each pair of profiles we need to include all systems. If we ragsthat no drop-outs
have occurred, an algorithm for finding the best fitting pald be as follows:

(1) Find all possible sets of pairs that match the obsenletkalfor each system(see
Table 7.1).

(2) Construct the associatdd matrices.
(3) Construct alll matrices from these sub-matrices and deterriine
(4) Chose the configuration with the largest likelihood.

The likelihood comparisons mentioned in (4) needs to beuatatl with respect to
some confidence limits.

In the worst case there will for each system be three obgensimplying there is 12
possible combinations (see Table 7.1). This induce tha¢déch system we construct
12 sub-matrice3s. The total number of possible matrices is therefore in the worst
case 18 which even for moderat8 is an intractable number of combinations.

The deviance involve determining the Mahalanobis distamtbecomputing the deter-
minant of varM) = T.D.T+diag@Qc7) + QcAQc. Now in this expression only.D.T.
is afected by the current configuration of profiles, the lattemi&do only depend on
the profiles thougm. = (ny, . .., ns.) which is constant given the observatiahs.

In order to make the search for possible profiles manageableaed to consider some
more sophisticated optimization techniques. For our cetecsetup with ten systems a
worst case scenario is 12= 61917364224 possible configurations. If assuming more
than two persons contribute to a mixture the number of ptessitimbinations increases
dramatically hence for future use this problem needs choefusideration.
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Table 7.1: Possible combinations of profiles for systesm

Obs. alleles Possible combinations

B:1 (B1, B1)x(By, By) 1

B1,B2 (B1, B1)x(B1,B2) (B1,Bi)x(B2, By)  (By, B2)x(B1, By)

(B1, B2)x(B1, B2)  (B1, B2)x(B2, B2) (B2, B2)X(By, By)
(B2, B2)x(B1, Bp) 7

B1,B2,Bs  (B1, B2)x(Bs3,B3s) (B1,B2)x(B2, Bs)  (Bi, B2)Xx(Bu1, Bs)

(B1, B3)x(Bz2, B2)  (B1, Bg)x(B1, B2)  (Bi, B3)Xx(Bz, Bs)

(B2, B3)x(B1, B1) (B2, B3)x(B1,Bz) (B, B3)x(By, Ba)
(B1, B1)x(B2,B3) (B2, B2)x(B1,Bs) (B3, B3)x(B1,Bz) 12

B1, B2, B3, Bs  (B1, B2)X(B3, Ba)  (B1, B3)X(Bz, By)  (B1, Ba)X(B2, B3)
(B2, B3)x(B1,Bs) (B2, B4)x(B1,B3) (Bs,Bs)x(B1,Bs) 6

The approach mentioned above makes no use of the quamtitafibrmation available
from the peak areas. Doing so may exclude some of possiblbioations in Table 7.1
and hence reduce the number of total possible profiles. Ifrilxéure ratio is not close
to one then for systems with four observations most probaiblg one configuration of
the alleles will be likely under the model assumptions. Hetids fixes the profiles for
these systems and reduces the total number of possibleggrbiila factor six.

Next a partial estimate dfl can be made based on systems with four observations
and then used when considering the remaining systems. Tétisoth tends to have a
recursive structure and reduces the number of possiblelgsofihis approach needs
further investigation but seems intuitively feasible frbwth a theoretical and practical
point of view.

7.3 Conclusion

The experiences from the data analysis summarized in Ghaptere used though out
this present thesis. The relations found in the data frorarestte exploration are to-
gether with expert knowledge important tools for settingaupodel that fits a complex
structure as DNA mixtures. The main results from the datdyarsadiscussed here are
most likely independent of the number of contributors to ahixture. Hence the ba-

sic assumptions of the model are still valid with more thaa tentributors. However

the limitation of the model discussed in Section 7.2.2 maly beseasier to incorporate

before extending the model to multiple contributors.

Using the normal distribution for the model simplifies theimation phase as many
standard results were drawn upon and also closed form gpkif the estimators
were guaranteed. The non-zero probability of having neggteak areas is of less
importance and future work is therefore on the issues meation Section 7.2 and not
on implementing positive distributions such as the gammstidution. By introducing
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a compound symmetry structure on the covariance of the éeron we solved the
problem of having varying number of observations for eackecarhe multiplication
of diag(h)~/? were incorporated to increase the fit of the model as we obdesame
alleles amplified dterently across systems which were not captured by the afigin
model.

Another advantage of the normal distribution is that theditional distributions of
the variables in the model are easily determined using stanfbrmulae. This was
extensively used when deriving the estimators for the E§padhm and also in the
direct implementation of the EM-algorithm. When estimgtihe conditional means in
the inner EM-procedure we first made use of the properties of the nodisaiibution
also used in the Kalman filter, B(X) = E(Z|Y =E(Y'|X)). However it was not
directly clear that a similar result was valid for the coratial mean ofZZ™.

The choice ofR as the language for the implementation of the EM-algorithas w
based on previous experiences and in comparison to@.gatrix multiplication is
well implemented irR. The implementation is easily altered in order to cope with t
covariance structures discussed in Section 7.2.1.

Assuming independence of thefférent systems in a DNA sample is a simplification
which can not be supported by any work done in this presesigshdlodelling each
system separately introduces considerable bias to thé s#sce the approach makes
use of the same information about the mixture for each systelence intersystem
correlations need to be considered when assessing the tvedighidence in forensic
DNA STR settings.

We found thatA is significantly diferent fromvls but also that the estimates of
are subject to large variability. This indicates possiigii of model reductions and
maybe incorporating a covariance structure based on dydstemd fragments lengths.
This could for instance be done by including thé&elience in fragment length into the
covariance function, cofB'9, B} ) = 6% ., wheret is the diference in fragment length
of the two alleles.

The insignificance of in the model indicates that cas4j; € ) is constant for all, j =
1,...,ns This imply that the correlation matrix ef will have 1n51§s-blocks down the
diagonal. We may interpret this as the weighted errors widdch systems is a linear
function of each other.

The estimates oft ando? supports the assumption of proportionality of the mean
and varianceD of the unobservable peak areds Hence this part of the model can
be retained even if the covariance structuresaé thanged to incorporate ftgrent
symmetries.

The model's goodness of fit to the training data was assessdiyating the Maha-
lanobis distance for each case given the estimated values®f andA. The unifor-
mity of the p-values from the ?-test showed a reasonable fit of the controlled experi-
ments. A similar approach was applied to the real crime cagesslitting the evidence
into two parts; mixture match within each system and theityuaf the mixture. Only



7.3 Conclusion 55

three cases had a poor fit of the mixture, whereas severalimsshowed unbalances
across systems. The latter may be due to degraded DNA orrogration of the DNA.
As a final assessment of the model we analyzed the singlerperater “mixtures”.
The p-values from the three tests mentioned above indicated sonedle fit to the
model. When only one person contributes the interpretatwn(6.1) and (6.2) are
merely balances within and between systems.






APPENDIX A

Biology of DNA

This chapter is taken from the authors own work written ongdtexeding semester.

In this chapter we will present the basic terms of the humai\Bistem and related
biological topics with relevance for understanding of themll subject of DNA typing.
The chapter is meant as an introduction for statisticiarts@her interested with no
further biological knowledge of chromosomes, alleles, DifMging or forensic science
as such. Therefore the depth and accuracy might not be oathe scientific standard
compared to textbooks dedicated to these topics, but menabyerview and definition
of the words used though out this present report. The chapbarsed on Butler (2005)
and Evett and Weir (1998).

A.1 Deoxyribonucleic acid

Deoxyribonucleic acid also known as DNA is the building lieof all life on Earth.
DNA is a double helix structure found in every nuclear celliting organism. DNA

is inherited from parent to féspring during reproduction. During reproduction the
maternal chromosome pairs are separated into single clsomes. A similar process
applies to the paternal chromosomes and these single ckmomas then recombines by
random with each other for the respective chromosomes -rone éach parent. That
is if the maternal chromosome pair iBM and the paternal ipP, the combinations
mp, mP, Mp andMP all happens with equal probability. For humans each nudetr
contains 23 chromosome pairs which constitute the humaorgenThus every human
carry multiple copies of our DNA sequence. The characiertbuble helix form of
the DNA consists of two single stranded DNA sequences of fases adeninéA(),
thymine (T), cytosine C) and guanine @). These bases form the structure of DNA
by their repeat patterns and unique combinations. Due tatligue combinations of
the four bases iAT/TA and CG/GC the double helix is kept together. An example
of a DNA sequence i$CTA which is a tetra nucleotide repeat pattern due to the four
bases in the pattern. Throughout the rest of the presenttréygodata used is of tetra
nucleotide form.

In this paragraph we define some often used phrases in DNAhaisdalso in forensic
DNA science. The genome is the entire DNA of the human bodyadoed in the nu-
clear of the cells. That is the DNA in the mitochondria gendasneonsidered separate.
The chromosomes are the level just below the genome. TherhDNA is made up of
the 22 chromosome pairs and the sex chromosome pair. A géme isrt on the chro-
mosomes where the DNA codes for some biological properiiee.remaining part of
the chromosome is called junk DNA. Loci which is plural foclgs, is the term used for
the position on the gene. That is in order to locate a postiothe genome we must
include information on chromosome numbers and loci, e.g6¥5B9 is position 539
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on chromosome 16. An allele corresponds to the length ofetra hucleotide repeats
on the particular loci. The length of the DNA fragments areasw@ed on continuous
scale but are discretised into a so called allele laddertHeelength of DNA fragments
are binned into intervals coding for the alleles. For a penrs@h the same allele on a
locus for both chromosomes in a chromosome pair we say tleeh@mnozygote oth-
erwise heterozygote. There are a variable number of alfelethe diferent loci on
the human genome. This variability is crucial for discriwmtiimg individuals. The kit
used for the DNA typing in the data this project ispfiep Biosystems AmpLIFILER STR
SGM Rus®. The electropherogram (EPG) in Figure A.1 show the alledibdeer for
this kit.
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Figure A.1: Electropherogram (EPG) showing the allelic ladder for therrAp
Brosystems AmpLIFILER STR SGM Rus®kit. The dyes used from top to bottom are
blue, green and yellow. (Applied Biosystems, 2006, p. 9-7).

When DNA material is used in crime cases it is often foundraftane time in non-
optimal environment. It may have been exposed to direct wgjint, lwater, bacteria,
heat, etc. The chemical reactions which degrade the DNA magkithe DNA string
into shorter pieces causing some methods of DNA typing 1o Tdie most commonly
used methods for forensic DNA typing is called Short tandepeat (STR) and is a
methods which is fairly applicable for typing degraded DN&ior to the STR typing
the DNA is amplified using Polymerase chain reaction (PCRE method involves
breaking the double stranded helix into single strands byude of heat and enzymes
after which specialized primers binds to single strandsintakew double helices.
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By repeating this process millions of DNA copies can be mada spell. A side-
effect from PCR amplifying is the so called stutters. That islspeaks in the EPG
located a few base pairs (bp) before the actual allele pegitoposed explanation for
the mechanism causing stutters is when the primers experi@mmis-pairing during
the amplification and hence producing allele markings fer dimplified loci to be a
few repeats shorter. In single contributor DNA samples bften possible to detect
stutters by eye. This is due to the significarffelience in peak area of stutters relative
to the real allele peak. Experimental data suggests thgpeh& areas of stutters in
most cases are less than 15% of the area of the true allelegoeak. Other issues
which blur the picture when analyzing DNA samples are dmmpand drop-outs. As
the phrases indicate it is when foreign allele peaks arerebdeor when some peaks
are missing. Together with stutters and the fact that tHesetissues may arise on the
same time gives reason for some concern. That is estimadtengrbfiles of unknown
contributors, exclusion of suspects and determining thaber of contributors to a
mixture gets complicated by these possible sources of.error

A.2 Population genetics

The uniqueness of the genotype for each individual is cruciarder to use DNA

typing as discrimination tool for identification use. In eorooms where the forensic
expert evaluate the strength of the evidence it is impottabt able to determine how
likely the present DNA profile could have originated from adam selected person in
the reference population rather than the suspect. To asssmtes of the occurrence
of genotypes in the reference population, e.g. individweith the same ethnicity,

nationality or cultural background as the suspect, we neadake some assumptions.

The simplest models in population genetics theory definetimeept of an ideal pop-
ulation. The validity of the model is based on some assumgtighere the two most
fundamental are an infinite reference population from whwd present population
have descended, and the assumption of random mating. Tigeis an individual in
the reference population then any other individual in tHerence population is eligible
for mating independent of sex, age, etc.

From the reference population we imagine a series of popuakabf sizeN are de-
scending as shown in Figure A.2. Every one such populatiamigsn for a chain of
populations all of same size, which does not coexist witthedher. The populations
(both across chains and generationg)edifrom each other in allelic diversity due to
random mating. This random mating hence implies the vditpli present alleles in
every population.

Assume now there exists for a gedetwo allelesA; andA,, then the allele proportion
of A in the population is calleg. From Section A.1 we can deduce that we are only
able to observe pairs of alleles, e.g. obserAady, for A in this case. Now leP;; be
the proportion ofA;A; and similarP;; for homozygoteA;A. Then we can calculatg,
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Figure A.2: Diagram of the infinite reference population and descendiains of sub
populations of sizé\.

as
Pi = Pi + %Z Pij, (A-l)
J#l
where we by convention only considgy; for whichi < j and similar forA/A;. This
relation between the genotype proportions and allele ptapts does not rely on any
of the assumptions mentioned above.

From the assumptions of random mating and infinite referpopalation we have that
the genotype of one individual does not provide any inforamabf the genotypes of
others, hence a independence property among the genotyipelividuals. Returning
to A with the two allelesA; and A,, we now look at the proportion d?i’j, which is
the proportion ofAjA; in generatiort + 1, whereP;; relates to generation From the
independence between genotypes we have that we can mtitépprobabilities of the
genotypes;; together to have the probabilities of thspring genotypes. Due to the
low number of possible alleles of we can summaries this in Table A.1.

From the information in Table A.1 it is rather simple to fincith
’ 2
P}y = P + 5 (P1aPa + P1oPyy) + P, = (Pll + %PlZ) = pi,

and similar forP}, = 2p1p; andP,, = p% where we used (A.1).

We can generalize these equations for a gene with an agbitkanber of alleles to
yield Pj; = pi2 and Pl =2pip;. In population genetics these equations is referred to as
the Hardy-Weinberg law.
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Table A.1: Probabilities of genotypes amongspring.

Offspring
Mother Father Probability AAT AlA AA
AlAL AlAL P11P11 1 0 0
AiA P11P12 1/2 1/2 0
Aol P11P2 0 1 0

A A A A P12P11 12 12 0
Ay P12P12 14 172 14
A, P1oP22 0 12 12

A A Al AL PooPq11 0 1 0
AlAp P22P12 0 12 12

In the discussion above we assumed infinite population sider@ndom mating, but
also that selection, mutation and migration were not presdhese three concepts
covers the issue where some combinations of alleles arerpt#é compared to other
combinations, where alleles is present in generatierl but not in generatiob and
were the populations from fiierent chains in Figure A.2 interact, respectively. To
model these issues one must include some further notativiioibdiscussion of these
issues we refer to Evett and Weir (1998). A final term involueg@opulation genetics
is an equilibrium situation which was demonstrated abovemselection, mutation
and migration were not allowed. Equilibrium can also occhew the three disturbing
forces are included in the model.

When one consider real world data it is necessary to evaitite data satisfy Hardy-
Weinberg equilibrium in order to verify that the probabé# of the genotypes can be
estimated by multiplying the allelic proportions.
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