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Preface

Abstract

This thesis presents a model for the interpretation of results of STR typing of DNA
mixtures based on a multivariate normal distribution of peak areas. From previous
analyses of controlled experiments with mixed DNA samples,we exploit the linear
relationship between peak heights and peak areas, and the linear relations of the means
and variances of the measurements. Furthermore the contribution from one individual
allele to the mean area of this allele, is assumed proportional to the average of height
measurements on alleles where the individual is the only contributor.

For shared alleles in mixed DNA samples, it is only possible to observe the cumulative
peak heights and areas. Complying with this latent structure, we use the EM-algorithm
to impute the missing variables based on a compound symmetrymodel. This allows
intra- and intersystem correlations on the measurements and does not depend on the
alleles of the DNA profiles. Due to factorization of the likelihood and properties of
the normal distribution, an ordinary implementation of theEM-algorithm solves the
missing data problem.

We estimate the parameters in the model based on a training data set. In order to asses
the weight of evidence provided by the model, we use the modelwith the estimated
parameters on STR data from real crime cases with DNA mixtures.

The model work under certain limitations. In the estimationphase we exclude cases
with drop-outs. These limitations are important and must besolved before the model
can be used for real crime case work and the limitations are therefore subject to further
investigation.
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iv Outline

Outline

Chapter 1 contains an introduction and description of the problem of DNA STR mix-
tures. We discuss the problem related to DNA mixtures with a focus on the matters
addressed in this thesis, but also a detailed overview of additional aspects is presented.

Chapter 2 gives a summary of the data analysis performed on the preceding semester.
The relevant conclusions for the modelling phase are included with plots as supportive
argumentation.

Chapter 3 presents the model of this thesis and introduces the notation used in the rest
of the report. The assumptions of compound symmetry and discussions of the missing
data nature of DNA mixtures are given. In the last section we derive the estimators
used in the EM-algorithm.

Chapter 4 is about the EM-algorithm and its use in this present project. The useful
properties of the EM-algorithm applied to our problem and a schematic pseudo code
for its implementation is provided. Also a description of how to execute theR-scripts
for estimation is included.

Chapter 5 presents the parameter estimates from the EM-algorithm from several initial
value sets. Simplifications of the model are also discussed in relation to the estimated
values. The expected Fisher information is also derived andis used for computing the
asymptotic covariance matrix of the parameters.

Chapter 6 analyzes data from some real crime cases. Different test based on Maha-
lanobis distances is used for assessing the goodness of fit ofthe model.

Chapter 7 rounds off the thesis with a discussion and conclusion. Furthermore some
considerations are made on possible future work with a link to the additional aspects
mentioned under Chapter 1 which is not included in this project.

Appendix A contains some more work from the preceding semester. A summary of
the biology of DNA and populations genetics is included for quick references to the
technical terms used in the body text.
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CHAPTER 1

Introduction

The issue of DNA STR mixtures are of great importance since DNA mixtures arise
from various contexts and are complex to interpret. In crimecases there are several
examples from which DNA mixtures can occur:

• Rapes with one or more rapists. In these cases the profile of the victim is always
available this is useful in determining possible suspects.In gang rapes where
there is more than one rapist it is more complex to separate the mixed profiles.

• Burglaries where the burglars leave a stain behind with morethan one burglar
contributing. This could be a blood stain where they cut themselves on the same
object.

• A cigarette butt where more than one person has placed some saliva.

It is only possible to observe the mixed DNA profile and not therelevant single pro-
files. Using STR DNA there is for each locus a finite number of alleles and therefore
it is (almost) unavoidable to have some shared alleles in a mixture. Using the quanti-
tative information from peak heights and peak areas it is possible for trained forensic
geneticists to come up with possible combinations. For complicated cases with more
than two contributors it are however often difficult to resolve the donor profiles and
therefore some more objective methods needs to be developed. In the next section we
list some of the related problems to DNA mixtures and DNA evidence in general.

1.1 DNA mixtures

In real crime cases we seldom have access to information on how the mixed stain
was provided. Therefore several important informations are attached with uncertainty
which increases the complexity. Below we discuss each of themost common problems.

Unknown number of contributors Information on how many individuals have con-
tributed to the sample is important in order to determine thenumber of possible peaks
for each loci. The fewer contributors the less complicated the separation of DNA mix-
tures gets and thus is the evidence more conclusive.

Degraded DNA When DNA is exposed to heat, direct sunlight, moisture and humid
environment, acids and other inhibitors the sequences of deoxyribonucleic acid (DNA)
are likely to break into smaller fractions. This can cause the peaks of alleles to am-
plify less than if the DNA material were kept under optimal conditions. A common
assumption is that longer DNA sequences have a higher probability of breakage than
shorter sequences. Also degraded DNA can cause entire systems to drop-out under
amplification.
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Drop-outs As mentioned above drop-outs can be caused by degradation ofthe DNA
but also from malfunctioning machinery. Under the controlled experiments analyzed
on the preceding semester the most likely reason for drop-outs were observed to be low
DNA concentration. This implies that in mixtures with a major and minor contributor
with respect to DNA concentration it is likely that alleles of the minor contributor are
subject to drop-outs. When analyzing DNA samples laboratories often set a lower limit
on the peak heights. This threshold is however a trade-off between drop-outs and drop-
ins as a lower threshold reduces the number of drop-outs but might also introduce more
drop-ins and stutters.

Stutters, drop-ins and pull-upsArtificial alleles are often observed in DNA samples
even though none of the contributor profiles contain these alleles. This kind of contam-
ination of a DNA profile is known as stutters, drop-ins and pull-ups each having their
own meaning. Stutters are a product of the PCR procedure run before amplification of
a DNA sample to increase the amount of DNA. A stutter for allelen is a peak observed
at the position of allelen − 1 but with reduced size. In non-mixture samples the ratio
of stutters and the real peaks are 5%-15%. The stutter effect may also be observed for
allelesn − k for k > 1 but with even lower magnitude. Drop-ins are artificial alleles
observed outside the stutter range. DNA material from plastic and other material are
likely reasons for drop-ins. An other explanation for some drop-in peaks may be pull-
ups which is caused by the spectral overlap of the allelic ladder across dye bands. This
is caused by the overlap of the colours used in the fluorescentreaction.

Amplification variation For the model to be useful across laboratories and machines it
is important to know the variation induced to these factors.The controlled experiments
showed that personal effects should be seen as an important source of variation. This
applies also to the different loci and alleles where the amplification behaviour varies
with both system and allele within systems.

Null alleles The model introduced in Chapter 3 does not allow the so-called null-
alleles. Null-alleles are unobservable alleles and is a competing event with homozy-
gosity. Null-alleles is by definition off-ladder alleles that are undetectable by any kit
used in DNA profiling. If for a system a profile only amplify at one allele, this person
can either by homozygote or have a null-allele for this system.

Due to both the importance of crime detection of the above mentioned examples and the
challenges outlined above, DNA mixtures have received extensive focus from forensic
geneticists and statisticians. In the bibliography there is a list of references to some of
the most important of the published literature on the subject. The approach discussed
in this present thesis where we allow intersystem covariance is however not seen else-
where.







CHAPTER 2

Summary of MAT5 project

This chapter is a summary of the authors own work (Tvedebrink, 2006) from the pre-
ceding semester (MAT5) at Aalborg University. This semester was dedicated to obtain
an understanding of relevant issues related to mixtures of STR DNA and an analyzes
of a data set from controlled experiments conducted at the Section of Forensic Genet-
ics, University of Copenhagen. For a summary on the biology of DNA we refer to
Appendix A on page 57.

The aim of the data analysis was to get insight on the amplification behaviour of mixed
DNA samples. The DNA mixtures of this data set where sampled in a controlled en-
vironment where the laboratory pursued to keep temperature, humidity, exposure to
sunlight and UV-light constant. There were however some variation in the data which
could not be explained by known covariates which indicated that this was not possible.

2.1 Data exploration

Included in the analysis were the occurrence of stutters andtheir relative size to the real
peak and the occurrence of drop-ins and drop-outs for different DNA ratios and sys-
tems. These two types of contamination play a central role inreal world cases as their
presence changes the evidence based on a DNA stain related toa crime scene. This
implies that the determination of the number of contributors to a stain gets more com-
plicated and also that probabilities involved in the inclusion and exclusion of possible
suspects alters. Since the profiles of the contributors to the DNA mixtures in our data
set were known these quantities could be estimated. The profiles are given in Table 2.1.

Table 2.1: DNA profiles of the four individuals in the experiment. Allele numbers in
italic are reported as null alleles.

D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

A (14;18) (17;19) (12;14) (20;24) (10;13) (30.2;32.2) (13;13) (12;13) (8;9) (20;22)
B (15;16) (14;16) (10;12) (17;25) (13;16) (30;30) (13;13) (14;15) (6;9) (19;23)
C (15;16) (15;17) (11;11) (19;25) (8;12) (29;31) (15;17) (13;13) (6;8) (23;24)
D (16;19) (15;17) (10;12) (23;25) (13;13) (28;30) (12;16) (13;15) (6;7) (20;23)

The findings confirmed the common assumption of increased drop-out frequency as
the DNA concentration decreases. We have summarized the drop-out frequencies in
Figure 2.1. We see that there is no drop-out when the amount ofDNA is above 150 pg
and except for two observations this threshold can be lowered to 75 pg.

The main focus of the investigation was to reveal patterns inthe data which could be
used in the later modeling phase. For each observed peak we have information on the
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Allelic type

D
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Figure 2.1: Box plot of amount of DNA contributed by the donor when a drop-out is
observed. There is stratification on systems and alleles.

STR system, dye band, fragment length in base pairs, allelicnumber, peak height and
peak area as well as the possible donor(s). The latter refersto the possibility of shared
alleles between the two donors, and that hidden drop-outs may occur if a stutter of
another peak were observed instead of the true peak.

The main conclusions based on the data analysis were that,

• there is a strict linear relation between peak heights and peak areas,

• the amplification properties across dye bands vary,

• the variance of the measurements is proportional to the meanof the measure-
ments,

• there is an approximately linear increase in amplification as a function of the
amount of DNA,

• the ratio of the mean peak areas of the two donors are proportional to the ratio of
the amount of DNA from the donors.

Below we will justify these conclusions by graphical plots indicating these properties.

The linearity between peak height and area depends on the system as shown in Figure
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Figure 2.2: Linear relationship between peak area and peak height.

2.2. This indicate that our mean of the peak areas must be parametrized by at least
ten parameters, but also that the different alleles within the same STR system behave
similarly in terms of this relation.

In Figure 2.3 the box plots show the aggregated sum over each locus in the different
cases. The letters below the locus names indicate which dye band the system belongs
to. Note the pattern of the yellow band being the less amplified band and also green
tends to amplify more than blue.

In Figure 2.4 the numbers reflect the contributors to the observed peak area. “One het-
erozygote” means that the observed allele can only originate from one person which is
heterozygote and for “Two heterozygote” we have both persons are heterozygote and
share the observed allele. Similar for the homozygotes, whereas the fifth category is
one homozygote together with a heterozygote who share the allele of the homozygote
donor. We see that the deviation of the measurements increases with the mean which
again increases with the amount of DNA. The approximate linearity mentioned above
referrers to the bend-off observed on the curve (second order polynomial fit) superim-
posed.

The final item refers to the ratio

R =
H(1)/H(2)

DNA1/DNA2
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Figure 2.3: Box plot of aggregated peak areas within each locus. Plottedon log scale
to reduce the variability. The lettersY, G andB indicate the dye of the STR system.

whereH(k) is the mean of all heights where only personk have contributed andDNAk

is the amount of DNA contributed by personk. A mathematical definition ofH(k) is
given in (3.1). In Figure 2.5 we have plotted log(H(1)/H(2)) against log(DNA2/DNA1)
to reduce the variance. We see that except for two observations all the points lie on
the identity line. The outliers can be explained by a typing error as commented by the
laboratory as person-water mixture (left) and wrongly registered DNA concentrations
(right).
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1: One heterozygote

2: Two heterozygote

3: One heterozygote and one homozygote

4: One homozygote

5: Two homozygote

Figure 2.4: Scatter plot of peak area and amount of DNA stratified on STR systems.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

log(DNA ratio)

lo
g(

H
 r

at
io

)

Figure 2.5: Log of DNA ratio against log of mean height ratio.





CHAPTER 3

Missing data model

In the following we assume that a DNA typing kit testing onS systems is used. We
denote the set of systems sys, i.e.|sys| = S . This gives reason for the matrix and
vector dimensions stated below. In this chapter we exploit the relationships observed
in the data analysis to form a model based on a multivariate normal distribution of the
unobservable peak areas.

3.1 Model for the unobservable peak areas

Let the two profiles from person 1 and person 2 be denoted asP1 andP2. Let B =
B1 × · · · × BS be the set of possible alleles. The term “possible” is interpreted as
detectable and excludes therefore the so-called null-alleles. The observed alleles are
given asB(k)

i,s ∈ Bs which refers to theith allele of systems for personk. Hence we
have thatP1 andP2 can be written as

P1 =
(

B(1)
1,1, B

(1)
2,1, B

(1)
1,2, B

(1)
2,2, . . . , B

(1)
1,S , B

(1)
2,S

)

P2 =
(

B(2)
1,1, B

(2)
2,1, B

(2)
1,2, B

(2)
2,2, . . . , B

(2)
1,S , B

(2)
2,S

)

,

and then the mixed sample is given asP=(P1, . . . , PS ) wherePs=
(

B(1)
1,s, B

(1)
2,s, B

(2)
1,s, B

(2)
2,s

)

for s = 1, . . . , S .

Defining the area function asa : Bs → R+, then we denote the areaa
(

B(k)
i,s

)

of B(k)
i,s as

A(k)
i,s and similarly for the peak height functionh. Further we define

A = a(P ) =
(

A(1)
1,1, A

(1)
2,1, A

(2)
1,1, A

(2)
2,1, . . . , A

(1)
1,S , A

(1)
2,S , A

(2)
1,S , A

(2)
2,S

)

which is called the area vector. We assume thatA = (A1, . . . ,AS ) has a (4S )-
dimensional normal distribution,A ∼ N(4S )(µ,D) whereD is a diagonal matrix.A is
however not observable in DNA STR mixtures since when the contributors to a sample
share one or several alleles only the cumulative peak areas (and heights) are observable.
Information on which alleles that are shared is not available henceA is unobservable
by nature. The peak areas inA do however contain relevant information in relation to
separate the mixed profiles. This is based on an assumption ofsimilar amplification
behaviour across systems for each contributor. That is if a mixture consists of DNA
from two individuals we assume that (A(1)

1,s + A(1)
2,s)/(A

(2)
1,s + A(2)

2,s) is rather constant across
systems.

Let H(k) be the mean of all peak heights where only personk have contributed,

H(k) = |I(k)|−1
∑

s∈sys

2∑

i=1

h
(

B(k)
i,s

)

II(k)
s

(

B(k)
i,s

)

(3.1)



12 Missing data model

whereI(k)
s =

{

B(k)
i,s : B(k)

i,s , B(k′)
i′,s , for all i′ andk , k′

}

, I(k) =
⋃

s∈sysI(k)
s and I is the

indicator function. In order to link elements in the area vectorA with the correct mean
peak height observations, we defineH=(H1, . . . ,HS ) withHs=(H(1),H(1),H(2),H(2)).
The meanµ is a linear function of the mean peak heightsH . We have from Figure 2.2
that the parameters differ among systems hence

µ = (µ1, . . . ,µS )⊤, whereµs =
(

µ(1)
s , µ

(1)
s , µ

(2)
s , µ

(2)
s

)⊤
for all s ∈ sys.

That is for eachµ(k)
s = H(k)αs with αs being a common parameter for systems. Figure

2.5 indicates thatH(k) is proportional to the DNA concentration of personk. This
implies that the meanµ is modelled proportional to the amount of DNA which is
supported by Figure 2.4. Furthermore the mean within a system is the same for the
two alleles of personk. Previous studies suggest that the ratio of the two peaks often
is above 90% (Applied Biosystems, 2006, p.9-29) for non-mixtures. Since we assume
thatA behave as a non-mixture sample this applies to observationsin A and hence
also to its mean.

Also the variance is proportional to the DNA concentration and therefore proportional
to H (see Figure 2.4). Incorporating this into the structure onD imply that D(k)

s =

σ2
s H(k). Let A(k)

i,s,c beA(k)
i,s in casec and similarly forH(k)

c , c = 1, . . . ,C with C being the
number of cases. Since the elements ofA are independent their marginal distributions
follow a univariate normal distribution,

A(k)
i,s,c ∼ N

(

αsH
(k)
c , σ

2
s H(k)

c

)

.

emphasizing the proportionality ofH(k) in both mean and variance and that the distri-
bution does not depend oni, i.e. we have the same distribution of all alleles of system
s for personk. Furthermore the parametersα = (α1, . . . , αS ) andσ2 = (σ2

1, . . . , σ
2
S )

are common for all cases.

The observed peak area values are denotedM and are determined by a transformation
T and an error termε,

M = TA + ε. (3.2)

We partitionM as (M1, . . . ,MS ) where eachMs is the observations for systems and
have dimensionns with n =

∑

s ns. The transformationT is given as ann× (4S )-matrix
with elements 0 and 1 based onP and adds together peak areas from the same alleles
within each system.T is a diagonal block matrix with diagonal elementsTs,

T =





T1 O . . . O
0 T2 . . . O
...
...
. . .

...

O O . . . TS





,

whereTs are of dimensionns × 4. Given that for systems person 1 and person 2
have profiles

(

B(1)
1,s, B

(1)
2,s

)

and
(

B(2)
1,s, B

(2)
2,s

)

respectively where onlyB(1)
1,s = B(2)

1,s otherwise
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different, thenTs will be

Ts =





1 0 1 0
0 1 0 0
0 0 0 1




,

yielding TsAs =
(

A(1)
1,s + A(2)

1,s, A
(1)
2,s, A

(2)
2,s

)

. I.e. for systems in this example we would
observe three alleles where the first is a sum of two contributing peak areas. Below we
give an example of the quantities defined above.

In Table 3.1 the available data from a case is given. The data are from the same data
set that was used for the analysis in Chapter 2. The column namesB(k)

i,s refers to theith
allele for personk for systems wheres is determined by the system column.

Table 3.1: Data from a controlled experiment. Here a 8:1 mixture of person D andB.

B(1)
1,s B(1)

2,s B(2)
1,s B(2)

2,s System Allele Height Area

10 12 10 12 D16 10 1261 12381
10 12 10 12 D16 12 1249 12475
13 13 12 16 D18 13 3141 32097
13 13 12 16 D18 12 274 2833
13 13 12 16 D18 16 146 1545
14 15 13 15 D19 14 1097 8799
14 15 13 15 D19 15 1045 8334
14 15 13 15 D19 13 222 1795
17 25 23 25 D2 17 929 10089
17 25 23 25 D2 25 889 10031
17 25 23 25 D2 23 125 1354
30 30 28 30 D21 30 2654 23601
30 30 28 30 D21 28 224 2038
15 16 16 19 D3 15 959 8614
15 16 16 19 D3 16 1284 11296
15 16 16 19 D3 19 154 1289
13 16 13 13 D8 13 1722 15242
13 16 13 13 D8 16 1226 10943
19 23 20 23 FGA 19 862 8184
19 23 20 23 FGA 23 656 6280
19 23 20 23 FGA 20 111 1046
6 9 6 7 TH0 6 919 7570
6 9 6 7 TH0 9 865 7300
6 9 6 7 TH0 7 97 780

14 16 15 17 vWA 14 1019 9298
14 16 15 17 vWA 16 1019 9315
14 16 15 17 vWA 15 174 1770
14 16 15 17 vWA 17 103 973
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From these information we can computeH = (H(1),H(2)) using the definition from
(3.1). Here

H(1) =
3141+ 1097+ 929+ 959+ 1226+ 862+ 865+ 1019+ 1019

2+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1
= 1111.7

H(2) =
274+ 146+ 222+ 125+ 224+ 154+ 111+ 97+ 174+ 103

1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1
= 163

The theoretical mixture ratio of the sample was 8:1 but sincethe different test persons
vary in DNA concentrations the actual ratio was 6.28 based on the DNA concentration
measurements. However several studies (e.g. Nielsen et al., 2007) suggests that the
methods for determining the amount of DNA are inaccurate andsubject to large vari-
ability. The ratioH(1)/H(2) yields 6.82 which is close to the ratio based on the DNA
concentrations.

TheM vector is simply the cell values from the Area column in Table3.1 and similarly
for h being the observations in the Height column. The shadings separate the systems
and the number of rows within each block we denotens. I.e. here we haven =
(2, 3, 3, 3, 2, 3, 2, 3, 3, 4) with n =

∑

s ns = 28. Below we have formed the T matrix of
this case which is of dimension 28×40 since we have 28 observations and ten systems.
Owing to lack of space we have only shown the first sixTs (shaded) across the diagonal.

T =





1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 00 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1

. . .

...
. . .





The first block matrixT1 refers to system D16 and since the two individuals have the
same genotype (10, 12) we addA(1)

1,1+A(2)
1,1 andA(1)

2,1+A(2)
2,1. The next block refers to D18,

the third D19 and so on using the same ordering of the systems as in Table 3.1.
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3.2 Compound symmetry of the error term

The observed valuesM also follow a normal distribution with dimensionn with mean
Tµ and covariance matrixT DT⊤ + Σ, whereΣ is the covariance matrix ofε. The
covariance matrix of (A,M ) is given as

Σ(A,M ) =

[

D DT⊤

T D T DT⊤ + Σ

]

,

since we have that

cov(M ,A) = cov(TA + ε,A) = Tcov(A) = T D.

The mutual distribution ofA andM is again normal with
(

A

M

)

∼ N
((

µ

Tµ

)

,

[

D DT⊤

T D T DT⊤ + Σ

])

and the conditional distribution ofA|M is therefore (Lauritzen, 1996, Proposition C.5)

A|M ∼ N
(

µ + DT⊤
{

T DT⊤+Σ
}−1

(M − Tµ),D − DT⊤
{

T DT⊤+Σ
}−1

T D
)

. (3.3)

From previous analyses we might expect the different alleles of a locus to have dif-
ferent amplification behaviour. However due to the nature ofDNA mixtures we will
most likely have different alleles present from case to case which makes it difficult to
incorporate a covariance structure covering all such combinations. A possible way to
go about this is to have a compound symmetry structure on the residuals with equal
within and between covariance. This does not satisfy the allelic variability, but is op-
erational feasible. If we letε = M − TA be the residuals then we assume it to have
zero mean and covarianceΣ. A way to let the structure ofΣ be affected by the present
alleles is to scale the residuals by the associated heightsh which are observable. This
case specific scaling allows the different alleles within systems to be scaled according
to their amplification behaviour. That is if for a system shorter alleles amplify more
easily than longer this is taken into account by this scaling. Let ε̃ = diag(h)−1/2ε,
where diag(v) forms a diagonal matrix with the elements ofv. Then we assume ˜ε to
have a compound symmetry structure specified by,

cov(ε̃s, ε̃t) = Σ̃st =

{

νst1ns1
⊤
nt
, s , t

τsIns + νss1ns1
⊤
ns
, s = t.

, (3.4)

where we haveMs = TsAs + εs with ε̃s = diag(hs)−1/2εs. This implies that

Σ̃ = cov(ε̃) = cov(diag(h)−1/2ε) = diag(h)−1/2Σdiag(h)−1/2,

henceΣ = diag(h)1/2Σ̃diag(h)1/2. Specifying the structure as above we have that

cov(εs, εt) = Σst =

{

νstdiag(hs)1/2
1ns1

⊤
nt

diag(ht)1/2, s , t
diag(hs)1/2(τsIns + νss1ns1

⊤
ns

)diag(hs)1/2, s = t.
,
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i.e. the covariance structure on the residuals takes the different amplification behaviour
over the alleles into account.

Below Σ̃ is given in matrix notation. The blocks on the diagonal are ofdimensions
ns × ns determining the dimensions of the off-diagonal blocks.

Σ̃ =





γ2
1 ν11 . . . ν11 ν1.2 ν1.2 . . . ν1.2 . . . ν1.S ν1.S . . . ν1.S
ν11 γ2

1 . . . ν11 ν1.2 ν1.2 . . . ν1.2 . . . ν1.S ν1.S . . . ν1.S
...

...
. . .

...
...

...
. . .

... . . .
...

...
. . .

...

ν11 ν11 . . . γ2
1 ν1.2 ν1.2 . . . ν1.2 . . . ν1.S ν1.S . . . ν1.S

ν2.1 ν2.1 . . . ν2.1 γ2
2 ν22 . . . ν22 . . . ν2.S ν2.S . . . ν2.S

ν2.1 ν2.1 . . . ν2.1 ν22 γ2
2 . . . ν22 . . . ν2.S ν2.S . . . ν2.S

...
...
. . .

...
...

...
. . .

... . . .
...

...
. . .

...

ν2.1 ν2.1 . . . ν2.1 ν22 . . . ν22 γ2
2 . . . ν2.S ν2.S . . . ν2.S

...
...

...
...

...
...

...
...
. . .

...
...

...
...

νS .1 νS .1 . . . νS .1 νS .2 νS .2 . . . νS .2 . . . γ2
S νS S . . . νS S

νS .1 νS .1 . . . νS .1 νS .2 νS .2 . . . νS .2 . . . νS S γ2
S . . . νS S

...
...
. . .

...
...

...
. . .

... . . .
...

...
. . .

...

νS .1 νS .1 . . . νS .1 νS .2 νS .2 . . . νS .2 . . . νS S νS S . . . γ2
S





whereγ2
j = τ j + ν j j is the variance parameter for systemj.

3.3 Derivation of EM estimators

In this section we derive estimators for the parameters in the model outlined above to
be used in the EM-algorithm. Since we assume normality of ourobservations, missing
as observable, we can use standard results about the normal distribution. From Section
4.2.1 on the EM-algorithm for exponential families, we needonly to determine the
sufficient statistics in the E-step.

First we show a general result which we are going to use multiple times in the fol-
lowing. LetX be ap-dimensional stochastic vector with mean E(X) and covariance
V = cov(X). Then for an arbitraryp × p-matrix A we have

E(X⊤AX) = E(tr[X⊤AX]) = tr[A(EXEX⊤ + V)] = EX⊤AEX + tr[AV], (3.5)

where we used that expectation is linear and tr(AB) = tr(BA) if both products exists.

Next we introduce two frequently used matricesQ andQc which we define as

Q =





14 0 . . . 0

0 14 . . . 0

...
...
. . .

...

0 . . . 0 14





and Qc =





1n1c 0 . . . 0

0 1n2c . . . 0

...
...
. . .

...

0 . . . 0 1nS c





,
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where1n is an-dimensional vector of ones and0 are zero vectors of suitable dimen-
sions. The dimensions ofQ andQc are (4S )×S and (nc)×S , respectively. The subscript
c indicates thatQc is case dependent where asQ is fixed across cases. Letnc =

∑

s nsc

be the number of observations in casec, then we see thatQ⊤c Qc = diag(n1c, . . . , nS c)
and thereforeInc − Qc(Q⊤c Qc)−1Q⊤c andQc(Q⊤c Qc)−1Q⊤c are idempotent which will be
useful later.

Now from (3.3) we have that the conditional expectation ofA givenM can be found
from

E(Ac|Mc) = µc + DcT⊤c (TcD⊤c + diag(hc)
1/2Σ̃diag(hc)

1/2)−1(Mc − Tcµc).

In the expression of the mean ofA|M we haveµ which is just a linear function ofH
andα = (α1, . . . , αS ). UsingQ we find that

µ = diag(Qα)H = diag(α1, . . . , α1
︸      ︷︷      ︸

4

, . . . , αS , . . . , αS
︸       ︷︷       ︸

4

)H .

Since we have the same relationship on the variance withσ2 = (σ2
1, . . . , σ

2
S ) replaced

for α we need to divideA byH1/2 in order to satisfy the assumptions of homoskedas-
ticity of linear models. That is

diag(H)−1/2A ∼ N(diag(Qα)H1/2, diag(Qσ2)).

Since the differentA(k)
i,s,c’s are independent maximization with respect toα can be done

within each case and system. That is we need to minimize

∑

i,k,c





A(k)
i,s,c

√

H(k)
c

−
√

H(k)
c αs





2

with respect toαs. The MLE is found to be ˆαs =
∑

i,k,c A(k)
i,s,c/

∑

i,k,c H(k)
c . Multiplying a

vector withQ⊤ from the left adds together elements of the same system, therefore this
is alsoα̂ =

∑

c Q⊤Ac/
∑

c Q⊤Hc where the division is done component-wise.

As usualσ̂2
s is estimated by evaluating (n− 1)−1(y − ŷ)2. Instead of diag(Qα)H1/2 we

write diag(H)−1/2µ sinceµ = diag(Qα)H . Then using (3.5) we have

σ̂2
s = (4C − 1)−1

∑

c

E
(

[diag(Hsc)
−1/2(Asc − µsc)]

⊤[diag(Hsc)
−1/2(Asc − µsc)]

∣
∣
∣Mc

)

= (4C − 1)−1
∑

c

(

E
{

diag(Hsc)
−1/2(Asc − µsc)

∣
∣
∣Mc

}⊤
E

{

D(Hc)
−1/2(Asc − µsc)

∣
∣
∣Mc

}

+ tr
{

D(Hc)
−1cov(Asc|Mc)

} )

= (4C − 1)−1
∑

c

(

E(Asc − µsc|Mc)
⊤diag(Hsc)

−1E(Asc − µsc|Mc)

+ tr
{

D(Hc)
−1cov(Asc|Mc)

} )
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We divide by 4C−1 since for each case we have two persons and two observationsfrom
each and only one parameter for the mean. Define the vector operatorx2 = diag(xx⊤).
This implies that E(x2) = E(diag(xx⊤)) = diag

{

E(x)E(x)⊤ + cov(x)
}

since the diag()
operator is linear. Now we can compute ˆσ2

s for all systems by usingQ,

σ̂2 = (4C − 1)−1






∑

c

Q⊤
(

[E(Ac|Mc) − µc]
2/Hc + diag[cov(Ac|Mc)]/Hc

)





,

where the divisions are component-wise and diag(V) is the vector formed by the diago-
nal elements of the matrixV. From (3.3) we have cov(Ac|Mc) = Dc−DcT⊤c [TcDcT⊤c +
diag(hc)1/2Σ̃diag(hc)1/2]−1TcDc.

In order to derive estimators for the parameters inΣ without solving the likelihood
equations, we define for each systems a rotation given by an orthogonal matrixOs. The
first row ofOs is given byens (1)⊤Os = n−1/2

s 1
⊤
ns

, whereen(i) is thei’th canonical unit
vector inRn. Defineξs as the rotated residual,ξs = Osε̃s which has a zero-mean normal
distribution with covariance matrixOs(τsIns+νss1ns1

⊤
ns

)Os = τsIns+νssnsens (1)ens (1)⊤.
Let ˜̄̄ε̄s = n−1

s
∑ns

i=1 ε̃si with ε̃s = (ε̃s1 , . . . , ε̃sns
). Since ˜εs = O⊤s ξs we find that

‖ε̃s − ˜̄̄ε̄s1ns‖2 = (ε̃s − ˜̄̄ε̄s1ns )
⊤(ε̃s − ˜̄̄ε̄s1ns )

= ε̃⊤s ε̃s − ˜̄̄ε̄2sns

= ξ⊤s OsO⊤s ξs − ns(n
−1
s 1

⊤
ns
O⊤s ξs)

⊤(n−1
s 1

⊤
ns
O⊤s ξs)

= ξ⊤s ξs − ξ⊤s ens (1)ens (1)⊤ξs

=

ns∑

i=1

ξ2si
− ξ2s1

=

ns∑

i=2

ξ2si
.

But from the choice ofOs we have thatξs1 =
√

ns˜̄̄ε̄s implying thatξs1n−1/2
s = ˜̄̄ε̄s. Com-

bining these two expressions yield that˜̄̄ε̄s ⊥⊥ ‖ε̃s − ˜̄̄ε̄s1ns‖2. The compound symmetry on
Σ̃ also imply that̃̄ε̄̄t ⊥⊥ ε̃s − ˜̄̄ε̄s1ns which is shown below,

cov(ε̃s − ˜̄̄ε̄s1ns , ˜̄̄ε̄t) = [Ins − n−1
s 1ns1

⊤
ns

]cov(ε̃s, ε̃t)n
−1
t 1nt

= [Ins − n−1
s 1ns1

⊤
ns

]
{

δstτsIns + νst1ns1nt

}

n−1
t 1nt

= 0, for all s andt, (3.6)

whereδst is Kronecker’s delta.

From the length of ˜εs − ˜̄̄ε̄s1ns we also have that

E‖ε̃s − 1ns
˜̄̄ε̄s‖2 =

ns∑

i=2

Eξ2si
= (ns − 1)τs

An unbiased estimator forτs is therefore (ns−1)−1‖ε̃s − 1ns
˜̄̄ε̄s‖2 in accordance with

standard results for linear models. LetSSDsc = ‖ε̃sc − 1nsc
˜̄ε̄̄sc‖2 which is distributed
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asSSDsc ∼ τsχ
2
(nsc−1). Since we have independence across cases the sum ofSSDsc is

again chi-squared,
∑

c SSDsc ∼ τsχ
2
(ns+−C) wherens+ −C =

∑

c(nsc − 1).

When determining the covariance of˜̄̄ε̄s and˜̄̄ε̄t we use that

cov(̃̄ε̄̄s, ˜̄̄ε̄t) = n−1
s 1

⊤
ns

cov(ε̃s, ε̃t)n
−1
t 1nt

= n−1
s 1

⊤
ns

{

δstτsIns + νst1ns1
⊤
nt

}

n−1
t 1nt

= δstτs/ns + νst

Now we let˜̄ε̄̄ = (˜̄̄ε̄s)s∈sys. When we summarize our findings in

cov(̃̄ε̄̄ )= diag

(

τs

ns

)

s∈sys

+ Λ, whereΛ = {νst}s,t∈sys. (3.7)

From the above expressions a straight forward approach to obtain the estimates would
be to take average over the cases in our data. However the dimension ofM and thus
ns for each case vary according to the mixed profiles. Due to the covariance structure
specified in (3.7) we need to include auxiliary variables in order to handle this. These
variables are unobservable and thus we need to impute them inour EM-algorithm.

Now we write˜̄ε̄̄c as a linear combination of two independent variables,˜̄ε̄̄c = uc + vc.
Bothuc andvc follow a zero mean normal distribution with variances diag(τs/nsc)s∈sys

andΛ, respectively and they are assumed independent ofSSDsc. Now letxc be either
of uc andvc, then since cov(xc, ˜̄ε̄̄c) = cov(xc) andεc = diag(hc)1/2ε̃c, we have that

cov(xc,Mc) = cov(xc, ε̃c − Qc˜̄ε̄̄c + Qc˜̄ε̄̄c)diag(hc)
1/2

= cov(xc,Qc˜̄ε̄̄c)diag(hc)
1/2

= cov(xc)Q
⊤
c diag(hc)

1/2,

where the second equality holds due to the independence shown in (3.6). We denote
diag(h) = d(h) and state the covariance matrices of (uc,Mc) and (vc,Mc),

Σ(uc,Mc) =

[

d(τc) d(τc)Q⊤c d(hc)1/2

d(hc)1/2Qcd(τc) TcDcTc + Σc

]

Σ(vc,Mc) =

[

Λ ΛQ⊤c d(hc)1/2

d(hc)1/2QcΛ TcDcTc + Σc

]

,

where d(τc) = diag(τs/nsc)s∈sys andΣc = d(hc)1/2Σ̃d(hc)1/2.

By assumptionusc is independent of‖ε̃sc − ˜̄̄ε̄sc1nsc‖2 which implyu2
sc ⊥⊥ ‖ε̃sc − ˜̄̄ε̄sc1nsc‖2,

furthermore we have thatu2
sc ∼ τs/nscχ1 implying that

∑

c nscu2
sc ∼ τsχC . Since the two

contributors in estimatingτs are independent they can be computed separately in the
M-step of the EM-algorithm. First we note that E(ucu

⊤
c |Mc) = E(uc|Mc)E(uc|Mc)⊤+
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cov(uc|Mc) where we use (3.3) to determine the right hand side,

E(uc|Mc) = d(τc)Q
⊤
c d(hc)

1/2(TcDcT⊤c + Σc)
−1(M − Tcµc)

cov(uc|Mc) = cov(uc) − cov(uc,Mc)var(Mc)
−1cov(Mc,uc)

= d(τc) − d(τc)Q
⊤
c diag(hc)

1/2(TcDcT⊤c + Σc)
−1diag(hc)

1/2Qcd(τc).

Since we only need E(u2
sc|M ) the components for each system ofτ is just the diagonal

diag(E(ucu
⊤
c |Mc)) which we multiply bync to have a central estimate. Also theSSDsc

can be computed simultaneously for all systems as,

Q⊤c E
{

(ε̃c − Qc˜̄ε̄̄c)
2
∣
∣
∣Mc

}

= Q⊤c E(ε̃c − Qc˜̄ε̄̄c|Mc)
2 + Q⊤c diag

{

cov(ε̃c−Qc˜̄ε̄̄c|Mc)
}

Since ˜εc − Qc˜̄ε̄̄c = (Inc − Qc[Q⊤c Qc]−1Q⊤c )ε̃c and the covariance of (ε,M ) is

Σ(εc,Mc) =

[

Σc Σc

Σc TcDcT⊤c + Σc

]

,

we have that E( ˜εc − Qc˜̄ε̄̄c|Mc) is just

E(ε̃c − Qc˜̄ε̄̄c|Mc) = (Inc − Qc[Q
⊤
c Qc]

−1Q⊤c )E(ε̃c|Mc)

= (Inc − Qc[Q
⊤
c Qc]

−1Q⊤c )d(hc)
−1/2Σc(TcDcT⊤c + Σc)

−1(Mc − Tcµc)

= (Inc − Qc[Q
⊤
c Qc]

−1Q⊤c )Σ̃cd(hc)
1/2(TcDcT⊤c + Σc)

−1(Mc − Tcµc).

It is easy to verify that̃Σc = diag(Qcτ ) + QcΛQ⊤c gives the correct dimensions ofΣ̃c

and the sub-matrices hereof. Now,

(Inc − Qc(Q
⊤
c Qc)

−1Q⊤c )Σ̃c = (Inc − Qc(Q
⊤
c Qc)

−1Q⊤c )(diag(Qcτ ) + QcΛQ⊤c )

= (Inc − Qc(Q
⊤
c Qc)

−1Q⊤c )diag(Qcτ ).

Therefore E( ˜εc − Qc˜̄ε̄̄c|Mc) is expressed as

E(ε̃c − Qc˜̄ε̄̄c|Mc) = (Inc − Qc(Q
⊤
c Qc)

−1Q⊤c )diag(Qcτ )d(h)1/2var(Mc)
−1(Mc − Tcµc),

with var(Mc) = TcDcT⊤c + Σc. Let Kc = Inc − Qc(Q⊤c Qc)−1Q⊤c , then the covariance is
found by similar arguments,

cov(ε̃c−Qc˜̄ε̄̄c|Mc)=Kcd(hc)
−1/2

{

Σc − Σcvar(Mc)
−1Σc

}

d(hc)
−1/2Kc

=Kcdiag(Qcτ )−Kcdiag(Qcτ )d(hc)
1/2var(M )−1d(hc)

1/2Kcdiag(Qcτ ),

where we usedKcΣ̃cKc = Kcdiag(Qcτ ). Since
∑

c u2
scnsc ∼ τsχ

2
C and

∑

c SSDsc ∼
τsχ

2
ns+−C are independent their sum is distributed asτsχ

2
ns+

, i.e.

τ̂s = n−1
s+

∑

c

{

E(u2
sc|Mc)nsc + SSDsc

}



3.3 Derivation of EM estimators 21

Lettingn+ = (n1+, . . . , nS+), we find that

τ̂ = diag(n+)
−1

∑

c

{

(Q⊤c Qc)E(u2
c |Mc) + Q⊤c E([Kcε̃c]

2|Mc)
}

,

where both terms in the sum expands as the expectation squared plus the diagonal of
the covariance matrix.

By construction ofvc we have E(vcv
⊤
c ) = E(vc)E(vc)⊤ + cov(vc) = Λ. Now as for

u we need to calculate E(vcv
⊤
c |Mc). The same considerations apply hence we have

E(vcv
⊤
c |Mc) = E(vc|Mc)E(vc|Mc)⊤ + cov(vc|Mc) where

E(vc|Mc) = ΛQ⊤c d(hc)
1/2var(Mc)

−1(Mc − Tcµc)

cov(vc|Mc) = Λ − ΛQ⊤c diag(hc)
1/2(TcDcT⊤c + Σc)

−1diag(hc)
1/2QcΛ.

HenceΛ is just estimated as the mean over all cases

Λ̂ = C−1
∑

c

E(vc|Mc)E(vc|Mc)
⊤ + cov(vc|Mc).

Note that by decomposing˜̄ε̄̄c as two independent Gaussian variablesuc andvc we force
the covarianceνss to be positive sinceΛ is an ordinary positive definite covariance
matrix forvc, i.e. the diagonal elements are positive. This implies thatcov(ε̃s) = Σ̃ss,

Σ̃ss =





τs + νss νss . . . νss

νss τs + νss . . . νss
...

...
. . .

...

νss τs + νss . . . τs + νss





,

are all non-negative entrances.





CHAPTER 4

EM algorithm

In this chapter we formulate the EM algorithm in broad terms and demonstrate how we
use it in our missing data approach to the DNA mixture problem. The EM algorithm
consist of two general steps, the E-step where the missing observations are replaced
by the expected values under the current estimates of the parametersθ, say, which are
found by maximization in the M-step assuming full observations.

4.1 Missing data mechanisms

Following the terminology of Little and Rubin (2002) presented by Lauritzen (2006)
the missing data can be generated by various mechanisms. In our concrete example the
area observationsA are missing completely at random (MCAR). That is the missing
observations are independent from the observed values given the parameters.

Let Y = (Yobs, Ymis) and introduce the missing data matrixM which is 1 if Y is missing
and 0 otherwise. Then we have that

f (M|Y, θ) = f (M|θ), i.e. M⊥⊥ Y |θ (MCAR)

f (M|Y, θ) = f (M|Yobs, θ) i.e. M⊥⊥ Ymis|(Yobs, θ) (MAR)

yielding that MCAR imply MAR.

Below we factorize the likelihood

L(θ|M, yobs) ∝
∫

Lmis(θ) f (yobs, ymis|θ)dymis,

whereLmis(θ) ∝ f (M|yobs, ymis, θ) is based on an explicit model for the missing data
mechanism. The likelihood function ignoring the missing mechanism is

L(θ|yobs) ∝ f (yobs|θ) =
∫

f (yobs, ymis|θ)dymis.

Assuming thatθ = (φ,ψ) with ψ governing the missingness are separate from the
parameter of interestφ (i.e. the parameters vary in a product region) and the data are
MAR we have thatLmis(θ) = Lmis(ψ) ∝ f (M|yobs, ymis,ψ) = f (M|yobs,ψ). Using this
we get our final result

L(θ|M, yobs) ∝
∫

Lmis(θ) f (yobs, ymis|θ)dymis = Lmis(ψ)
∫

f (yobs, ymis|φ)dymis

∝ Lmis(ψ)L(φ|yobs).
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This shows that the missingness mechanism can be ignored when concerned with like-
lihood inference aboutφ.

From the present data we only have access to the peak area observationsM for each
mixture. In the controlled experiments discussed and analyzed in Chapter 2, we also
have the single DNA profiles given. Hence we can construct themappingT since we
know which alleles the two donors share. The task is to recover theA vector since
this contain information of the DNA profiles. In the terminology of Little and Rubin
(2002) this implies the missing data mechanism ofA is missing completely at random
(MCAR). This implies we can ignore the missing data mechanism in the steps of the
EM algorithm.

4.2 Theory of the EM-algorithm

In this section we show that after a complete cycle of the EM-algorithm the incomplete
data log likelihood has never decreased. The proof is based on Lauritzen (2006). The
EM-algorithm converges to either a saddlepoint, local or global maxima. For practi-
cal purposes it is often possible to avoid convergence to a saddlepoint by performing
several independent runs with small perturbations of the initial parameter values.

In the E-step of the EM-algorithm we take the expectation of the log-likelihood ratio
with respect toYmis givenyobs and currentθ(n) estimates ofθ,

q(θ|θ(n)) = E

(

log
f (Ymis, yobs;θ)

f (Ymis, yobs;θ(n))

∣
∣
∣
∣ yobs, θ(n)

)

=

∫

log
f (ymis, yobs;θ)

f (ymis, yobs;θ(n))
f (ymis|yobs, θ(n))dymis

Since f (z|x; φ) = f (z, x; φ)/ f (x; φ) we have that

=

∫

log
f (yobs;θ) f (ymis|yobs;θ)

f (yobs;θ(n)) f (ymis|yobs;θ(n))
f (ymis|yobs, θ(n))dymis

= log f (yobs;θ) − log f (yobs;θ(n)) +
∫

log
f (ymis|yobs;θ)

f (ymis|yobs;θ(n))
f (ymis|yobs, θ(n))dymis

= ℓyobs(θ) − ℓyobs(θ(n)) − KL
(

f yobs

θ(n)
; f yobs

θ

)

, (4.1)

whereℓyobs(θ) = log
∫

f (ymis, yobs;θ)dymis is the incomplete data log-likelihood andKL
is the Kullback-Leibler divergence defined by

KL( f , g) =
∫

f (x) log
f (x)
g(x)

dx.

Let f andg be densities then we have that

KL( f , g) = −
∫

f (x) log
g(x)
f (x)

dx ≥ − log
∫

f (x)
g(x)
f (x)

dx = 0,
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due to Jensen’s inequality for the concave function− log(x). We see thatKL( f , g) = 0

for f = g henceKL
(

f yobs

θ(n)
; f yobs

θ

)

is minimized forθ = θ(n). Using (4.1) this furthermore

imply that
∂

∂θ
q(θ|θ(n))

∣
∣
∣
∣
∣
θ=θ(n)

=
∂

∂θ
ℓyobs(θ)

∣
∣
∣
∣
∣
θ=θ(n)

. (4.2)

In the M-step we setθ(n+1) = arg max
θ

q(θ|θ(n)), which yields thatq(θ|θ(n)) ≥ 0 since

arg max
θ

q(θ|θ(n)) = arg max
θ

∫
(

log f (y;θ) − log f (y;θ(n))
)

f (ymis|yobs, θ(n))dymis,

wherey = (ymis, yobs) and the latter integral is constant inθ and hence
∫

log f (y;θ(n+1)) f (ymis|yobs, θ(n))dymis ≥
∫

log f (y;θ(n)) f (ymis|yobs, θ(n))dymis.

From (4.1) we get

ℓyobs(θ
(n+1)) = q(θ|θ(n)) + ℓyobs(θ(n)) + KL

(

f yobs

θ(n)
; f yobs

θ

)

≥ ℓyobs(θ(n)). (4.3)

Hence after a complete step in the EM-algorithm the incomplete data log-likelihood
has never decreased.

4.2.1 EM-algorithm for exponential families

As in many other areas of statistics distributions from a regular exponential family have
useful properties in the settings of the EM-algorithm. The common functional form of
the exponential family is

f (Y ;θ) = b(Y ) exp(s(Y )θ/a(θ)), (4.4)

where the expressions indicate that the only data terms needto be incorporated in the
log likelihood is s(Y ) which is ad-dimensional vector of sufficient statistics. When
the complete dataY follow a distribution of the regular exponential family theE- and
M-step of the EM-algorithm reduces to,s(n+1) = E(s(Y )|yobs, θ) and due to (4.2) the
solution to the likelihood equations E(s(Y )|θ) = s(n+1), respectively.

4.3 Application of the EM-algorithm

A useful property of the EM-algorithm used in models with additional constraints on
the parameters, is that the E-step in unaffected by these constraints. This however
adds no further complications to situations with missing data since the calculations in
the M-step is as if we had access to the complete data. By additional constraints we
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refer to restrictions induced by some model assumptions andnot by the mathematical
assumptions such as semi-definite covariance matrices.

The model described in Section 3.1 and Section 3.2 indicate an two-step structure
where the first part involvesA andM together with the parameters from their dis-
tributionsD andµ. The other part models the error structure onε with its covariance
structureΣ(τ ,Λ). This is also obvious from the factorization of the likelihood shown
below,

f (D,µ,Σ(τ ,Λ);A,M ,H , ε̃,u, v) = f (D,µ;A,M ,H) f (Σ(τ ,Λ); ε̃,u, v).

Hence when maximizing the likelihood with respect to (D,µ) andΣ(τ ,Λ), respectively,
we get

max
D,µ

f (D,µ,Σ(τ ,Λ)|A,M ,H , ε̃,u, v) = max
D,µ

f (D,µ|A,M ,H)

max
Σ(τ ,Λ)

f (D,µ,Σ(τ ,Λ)|A,M ,H , ε̃,u, v) = max
Σ(τ ,Λ)

f (Σ(τ ,Λ)|ε̃,u, v)

This ensures that we can perform calculations for both partsof our model within the
same EM-algorithm (Little and Rubin, 2002, Section 7.1). Without this factorization
the EM-procedure may have been split into more than one EM-procedure.

We can summarize our findings from Section 3.3 in Figure 4.1 and in terms of the
estimators of the two steps in the EM-algorithm below.

Observed
values

Hc

Mc

Tc

E-stepA v

E-step

M-step

A v

α µ D τ Λ

(k + 1)

(k)

u

uε̃

ε̃

hc

c=1,...,N

Figure 4.1: Graphical representation of the steps in our implementation of the EM-
algorithm for fixedk. We have dropped the subscripts on the parameters and imputed
values to keep the picture simple.

E-step In the E-step we need to compute E(A|M ) and cov(A|M ) for the outer pro-
cedure, and E(u|M ), cov(u|M ), E(v|M ), cov(v|M ), E(ε̃c − Qc˜̄ε̄̄c|Mc) and cov( ˜εc −
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Qc˜̄ε̄̄c|Mc) for the inner procedure. For both cov(A|M ), cov(u|M ) and cov( ˜εc −
Qc˜̄ε̄̄c|Mc) we need only the diagonal elements, i.e. when implementingin computer
software we only have to store the diagonal elements. Below we list the estimators of
the moments with appropriate indexing,

E({A(n+1)}c|Mc) = {µ(n)}c + {D(n)}cT⊤c {V(n)}−1
c (Mc − Tc{µ(n)}c),

cov({A(n+1)}c|Mc) = {D(n)}c − {D(n)}cT⊤c {V(n)}−1
c Tc{D(n)}c

E({u(n+1)}c|Mc) = d({τ(n)}/nc)Q
⊤
c d(hc)

1/2{V(n)}−1
c (Mc − Tc{µ(n)}c)

cov({u(n)}c|Mc) = d({τ(n)}/nc)

− d({τ(n)}/nc)Q
⊤
c diag(hc)

1/2{V(n)}−1
c diag(hc)

1/2Qcd({τ(n)}/nc)

E({v(n+1)}c|Mc) = {Λ(n)}Q⊤c d(hc)
1/2{V(n)}−1

c (Mc − Tc{µ(n)}c)
cov({v(n)}c|Mc) = {Λ(n)} − {Λ(n)}Q⊤c diag(hc)

1/2{V(n)}−1
c diag(hc)

1/2Qc{Λ(n)}
E(Kc{ε̃(n)}c|Mc) = Kc{Σ̃(n)}cd(hc)

1/2(Tc{D(n)}cT⊤c + {Σ(n)}c)−1(Mc − Tc{µ(n)}c)
cov(Kc{ε̃(n)}c|Mc) = Kcdiag(Qc{τ(n)})

− Kcdiag(Qc{τ(n)})d(hc)
1/2{V(n)}−1

c d(hc)
1/2Kcdiag(Qc{τ(n)}),

where{V(n)}c = Tc{D(n)}cT⊤c + {Σ(n)}c, Kc = Inc − Qc[Q⊤c Qc]−1Q⊤c and the subscript (n)
indicates the current estimates of the parameters.

M-step We use the expressions where we estimate the parameters for all systems at
a time.

α(n+1) =
∑

c

Q⊤E({A(n+1)}c|Mc)/
∑

c

Q⊤Hc

{µ(n+1)}c = diag(Qα(n+1))Hc

σ2
(n+1) = (4C − 1)−1

∑

c

Q⊤[E({A(n+1)}c|Mc) − {µ(n+1)}c]2/Hc

+ (4C − 1)−1
∑

c

Q⊤diag[cov({A(n+1)}c|Mc)]/Hc

τ(n+1)=diag(n+)
−1
∑

c

(Q⊤c Qc)diag
[

E({u(n+1)}c|Mc)E({u(n+1)}c|Mc)
⊤+cov({u(n)}c|Mc)

]

+diag(n+)
−1
∑

c

Q⊤c E({ε̃(n)}c−Qc{˜̄ε̄̄(n)}c|Mc)
2+Q⊤c diag

{

cov({ε̃(n)}c−Qc{˜̄ε̄̄(n)}c|Mc)
}

Λ(n+1) = C−1
∑

c

E({v(n+1)}c|Mc)E({v(n+1)}c|Mc)
⊤ + cov({v(n+1)}c|Mc)

where all vector divisions are done component-wise.
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4.4 Implementation of EM-algorithm

The expression from Section 4.3 will be used to estimate the parameters in the model
from cases withfull information. That is cases where no drop-outs have been observed.
Each case in the data were amplified using six and 12 seconds injection time, respec-
tively, during the PCR reaction. This doubling of the injection time resulted in higher
peaks and larger peak areas, hence the two subsets represents different populations of
samples. We therefore restrict the data only to contain mixtures with an injection time
of six seconds.

In our data we have also access to cases where only one person has contributed to the
sample. These cases will however not be used in the parameterestimation phase as
they are subject to an even higher degree of uncertainty compared to real mixtures.

From the expressions specified under the E-step and M-step inthe previous section it
is possible to compute case-wise contributions to the parametersα, σ2, τ andΛ. The
pseudo code in Figure 4.2 emphasizes this.

EM-algorithm (init = list{α, σ2, τ , diag(Λ)},data)
for n ∈ {1, . . . ,N}
y

for c ∈ {1, . . . ,C}
y

Update moments:
Ac ← E({A(n)}c|Mc)
cAc ← diag(cov({A(n)}c|Mc))
uc ← E({u(n)}c|Mc)
cuc ← diag(cov({u(n)}c|Mc))
vc ← E({v(n)}c|Mc)
cvc ← cov({v(n)}c|Mc)
epc ← E({ε̃(n)}c − Qc{˜̄ε̄̄(n)}c|Mc)
cepc← diag(cov({ε̃(n)}c − Qc{˜̄ε̄̄(n)}c|Mc))

Compute parameter contributions:
α

(1)
c ← Q⊤Ac

α
(2)
c ← Q⊤Hc

σ2
c ← Q⊤

({

cAc + (Ac − {µ(n)}c)2
}

/Hc

)

τc ← Q⊤c
(

cepc + ep
2
c

)

+ diag(nc)(cuc + u
2
c)

Λc ← vcv
⊤
c + cvc

Compute parameters:
α ← ∑

cα
(1)
c /

∑

cα
(2)
c

σ2 ← (4C − 1)−1 ∑

c σ
2
c

τ ← n−1
+

∑

c τc

Λ ← C−1 ∑

c Λc

Return(list{α, σ2, τ , Λ},data)

Figure 4.2: Pseudo code for the EM-algorithm in this application.
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To perform and compute the iterations of the EM-algorithm wewill use the open source
S-languageR as we will make extensive use of matrix algebra and manipulation with
matrices. The pseudo code of Figure 4.2 also works as indirect comments for theR-
source code available at http://www.math.aau.dk/∼tvede. To be able to use theR script
the data must be given in a data frame with the same structure as in Table 3.1. Below we
have stated the data frame column names and lines needed for asuccessful execution
of the script.

> names(DATA)

"case" "p1c1" "p1c2" "p2c1" "p2c2" "sys" "allele" "height" "area"

> source(file="datahandle.R")

> source(file="engine.R")

> source(file="em.R")

> em.output <- EM(n=N,x=DATA,inu=NU,itau=TAU,iD=D)

The three files loaded before the run of theEM-function computesHc, Tc, andnc for
each case; contains the core functions of the EM-algorithm based on the estimators in
Chapter 3; and the managing functions as described by Figure4.2, respectively. The
EM-function takes apart from the arguments specified, which isthe number of itera-
tions (n), data frame (x) and initial values (inu, itau andiD), also a Booleanprint
argument. If true (default) the current parameter estimates are printed to the screen
after each iteration. The traces of parameters and devianceare stored by the script and
returned at termination. The output of theEM-function (here namedem.output) will
contain the data and estimates of i.a.Ac andµc, together with traces and the final
parameter estimates.





CHAPTER 5

Results

In this chapter we present the parameter estimates computedusing the EM-algorithm
of the previous chapter. We also investigate insignificanceand asympotic variance of
the parameters in the model.

5.1 Parameter estimates

Since our likelihood may be multimodal the EM-algorithm is sensitive to initial values.
In order to verify the convergence of the algorithm we have used several different sets
of initial values forα, τ , Λ andσ2. In Table 5.1 we have listed the nine sets of initial
values which will be used to analyze the convergence properties in this chapter.

Table 5.1: Initial values used for the EM-algorithm in the left table. For all sets we
made 30,000 iterations. The two columns in the right table contain the deviance after
1100 and 30000 iterations, respectively.

τ σ2 diag(Λ)

Run 1 300 1000 1000
Run 2 0 1000 1000
Run 3 500 200 10
Run 4 0 1000 0
Run 5 100 100 100
Run 6 0 100 100
Run 7 40 1000 0
Run 8 1000 1000 1000
Run 9 1000 100 300

D1100 D30000

33015.03 33013.97
33014.97 33014.77
33016.66 33014.00
33342.88 33342.88
33015.12 33013.97
33014.97 33014.77
33302.96 33301.69
33015.07 33013.97
33015.43 33013.98

From Table 5.1 we see that forRun 2, 4and6 we have initializedτ = 0 and forRun 4
and7 theΛ matrix were initialized as a zero matrix. The estimates forΛ andτ found
in Section 3.3 are both evaluated using the previous parameter estimate forΛ andτ ,
respectively. It is therefore not possible for these two parameters to attain other values
when they at some point are zero. This is in particular true when they are initialized to
zero.

A measure of the convergence is the deviance defined as−2 logL(θ(n)), whereL(θ(n)) is
the likelihood evaluated with the current parameter estimatesθ(n). Since the likelihood
ofM is given as

L(M ;Σ,µ) = (2π|Σ|)−1/2 exp
[

− 1
2(M − Tµ)⊤var(M )−1(M − Tµ)

]

,



32 Results

the devianceD is just log(|var(M )|)+(M−Tµ)⊤var(M )−1(M−Tµ) where var(M ) =
T DT⊤ + Σ. The total deviance is just the sum of case-wise deviances since we assume
independence between cases. Since the deviance is just a monotone function of the
likelihood the deviance is a measure of the goodness of fit implying that for different
models the one with the lowest deviance has the largest likelihood. In Figure 5.1 we
have plotted the trace of the deviance for the different initial values.

Figure 5.1: Traces of the deviance from iterations with different initial values.

The cut point of 1100 iterations was chosen since after this point none of the deviances
improved more than 0.01 per iteration. In the right table of Table 5.1 we have listed
the deviance for the runs after 1100 and 30000 iterations. Wesee that there is only
marginal improvement of the fit with an additional 28900 iterations. However it is
worth notice that the deviances ofRun 2 andRun 6, whereτ = 0, are smaller than
runs withτ , 0 after 1100 iterations, but that after 30000 iterations it isreversed.
This implies that the model withτ , 0 fits marginally better, but as we see below this
improvement is statistical insignificant. Sinceτ is of dimensionS = 10 the test of
τ = 0 is approximately asymptotic chi-square distributed with ten degrees of freedom
(Cox and Hinkley, 1974, Section 9.3),

DRun 5− DRun 6 ∼ χ2
10,

whereRun 5andRun 6are chosen since they differ only in initial values onτ . Using
the deviance after 30000 iterations yields a test statisticof 0.7979 and ap-value of
0.9999 implying that we reject the hypothesis ofτ , 0.

From the analysis of the deviance it is clear that cases wherediag(Λ) is initialized as
or close to0 has the worst fit. This implies that the covariance within andbetween
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systems are important to incorporate in the model. For further investigations of the
parameters we choseRun 2since it hasτ initialized as0 and small deviance.

The estimated parameters after 30000 iterations ofRun 2 are given in Table 5.2. For
Λ the intrasystem covariances are displayed on the diagonal,the upper triangle the
intersystem covariances and intersystem correlations in the lower triangle of the matrix
(shaded). Forτ , σ2 andα the estimates are listed below. By construction only the
diagonal ofΛ were forced to be positive but all system correlations are positive with
values larger than 0.36 for all but one. This indicates that analyzing DNA profiles
with the assumption of independence between systems is an extensive simplification.
Furthermore we see that the correlations between systems onthe same dye band are
not necessarily larger than the others (Blue: D3, vWA, D16 and D2; Green: D8, D21
and D18; Yellow: D19, TH0 and FGA).

Since these estimates are based on pairwise mixtures of onlyfour individuals and one
machine the parameters are likely to be very data set specific. Note for example the
large variation on system D18 where the variance pair (ν, σ2)D18 = (2197, 3209). From
Table 2.1 we see that there are two homozygous with shared allele for this system and
in Figure 2.4 we recognize the large spread for this system. Conversely the systems
where only a few alleles are shared between the individuals the overall variance is
comparatively small, e.g. FGA and vWA.

An interesting observation about the intrasystem covariancesνss, s ∈ sys is that their
magnitude tends to follow the unbalances pictured in FigureA.1 with respect to the al-
leles included in our data set. That is system D8 with the lowest intrasystem covariance
also tends to have the most homogeneous amplification behaviour across alleles by vi-
sual inspection of the allelic ladder. The pattern can only be examined with respect to
the included alleles in the four profiles, however for the present alleles the intrasystem
covariances seem to reflect the variance in allele amplification.

In Table 5.3 we have listed the parameters from the six runs with diag(Λ) not initial-
ized to zero. The concordance of the parameters indicates that the EM-algorithm has
converges to a maxima and not a saddlepoint. However there isno guarantee for this to
be a global maximum.

An indication of the goodness of fit can also be assessed by linking the parameter
estimates ofα with the box plots in Figure 2.3. Sortingαs in the same order as in
the box plots gives an increasing sequence except for D8 and D18. This reflects that
system on the green dye band has more narrow peaks than systems on the yellow band.
We find, except for D2 and vWA, a similar pattern for the variance componentσ2 with
the same ordering. This supports the assumption of proportionality of the mean and
variance of the peak areas. Except for system D18 there is a linear relation betweenαs

andσ2
s . A least square fit yields a coefficient of approximately 190 implying that we

may writeσ2
s = 190αs for s ∈ sys\{D18}, such that E(A) = αH and var(A) = KαH

with K = 190. In Figure 5.2 we have plotted the estimates from the nineruns of Table
5.1 against each other. We see the obvious linear relationship but also that an affine
mapping (dashed line) might be more appropriate than just a scaling (solid line).
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Table
5.2:T
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param
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after

30000
iterations

of
R

un
2,i.e.τ

=
0

.

D16 D18 D19 D2 D21 D3 D8 FGA TH0 vWA
D16 1915.776 1653.911 1716.853 1848.140 1201.832 954.082 246.497 1305.358 527.211 1339.643
D18 0.806 2196.651 1964.678 2077.812 1353.252 1142.766 750.020 1461.591 1085.372 1449.906
D19 0.866 0.925 2052.831 2151.759 1279.925 1050.949 619.224 1441.000 1042.031 1319.491
D2 0.848 0.890 0.953 2481.701 1354.935 1237.071 765.346 1492.006 1090.164 1438.362

Λ = D21 0.890 0.936 0.915 0.881 952.266 776.642 380.722 1033.495 654.255 975.914
D3 0.742 0.829 0.789 0.845 0.856 864.066 536.557 857.456 664.553 821.782
D8 0.197 0.558 0.477 0.536 0.431 0.637 820.995 397.344 582.881 340.353

FGA 0.879 0.919 0.937 0.883 0.987 0.860 0.409 1151.536 773.909 1044.479
TH0 0.396 0.761 0.756 0.719 0.697 0.743 0.669 0.750 925.693 587.580
vWA 0.930 0.940 0.885 0.878 0.961 0.850 0.361 0.936 0.587 1082.097

σ2= 1821.04 3208.726 1002.926 1236.31 1797.387 1331.789 1854.943 596.532 730.285 1146.784

α= 9.102 10.175 6.149 7.014 8.918 8.248 10.189 5.529 5.992 7.642
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Table
5.3:P

aram
eter

values
after

30000
iterations

for
R

un
1,2,3,5,6,8and

9.
D16 D18 D19 D2 D21 D3 D8 FGA TH0 vWA Run

α 9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 1
9.10 10.17 6.15 7.01 8.92 8.25 10.19 5.53 5.99 7.64 2
9.11 10.23 6.16 7.03 8.95 8.27 10.19 5.53 6.00 7.64 3
9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 5
9.10 10.17 6.15 7.01 8.92 8.25 10.19 5.53 5.99 7.64 6
9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 8
9.12 10.21 6.16 7.03 8.94 8.26 10.20 5.53 6.00 7.66 9

τ 158.53 443.76 1.04 1.88 4.46 1.27 1.48 92.32 3.04 1.561
0 0 0 0 0 0 0 0 0 0 2

151.93 478.79 1.05 1.88 4.93 1.29 1.48 90.13 2.96 1.513
158.47 443.81 1.04 1.88 4.54 1.27 1.49 91.82 3.05 1.57 5

0 0 0 0 0 0 0 0 0 0 6
158.32 444.76 1.04 1.88 4.51 1.27 1.48 92.10 3.04 1.56 8
158.62 441.59 1.05 1.88 4.69 1.28 1.49 90.62 3.09 1.589

diag(Λ) 1840.03 1929.18 2026.49 2447.12 922.66 849.22 813.05 1115.74 913.04 1060.55 1
1915.78 2196.65 2052.83 2481.70 952.27 864.07 821.00 1151.54 925.69 1082.10 2
1852.61 1837.99 2021.97 2448.81 898.54 835.87 820.18 1125.75 920.02 1086.10 3
1840.08 1929.15 2025.25 2447.58 919.51 848.30 813.34 1117.49 912.91 1060.84 5
1915.79 2197.09 2052.50 2481.80 951.52 863.88 821.04 1151.92 925.63 1082.03 6
1840.43 1926.56 2025.96 2447.33 920.96 848.55 813.35 1116.59 913.20 1061.38 8
1839.59 1935.37 2022.13 2448.67 912.61 846.64 813.65 1121.53 912.12 1059.87 9

σ2 1656.76 2746.88 1002.00 1234.82 1795.95 1331.81 1853.55 533.57 728.08 1148.60 1
1821.04 3208.73 1002.93 1236.31 1797.39 1331.79 1854.94 596.53 730.29 1146.78 2
1663.31 2717.22 1001.70 1234.87 1795.38 1332.11 1853.92 534.98 728.24 1148.95 3
1656.84 2746.84 1001.98 1234.83 1795.87 1331.84 1853.56 533.88 728.07 1148.60 5
1821.04 3208.69 1002.93 1236.31 1797.39 1331.80 1854.95 596.52 730.28 1146.79 6
1656.98 2746.03 1001.98 1234.82 1795.90 1331.83 1853.56 533.71 728.08 1148.60 8
1656.73 2748.75 1001.98 1234.84 1795.73 1331.90 1853.57 534.63 728.04 1148.58 9
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Figure 5.2: Scatter plot of the estimates ofα andσ2 from the nine runs of Table 5.1
with least squares linear fits superimposed.

The Mahalanobis distance (M − Tµ)⊤var(M)−1(M − Tµ) with µ and var(M) =
T DT⊤ + Σ known, is chi-square distributed withn =

∑

s ns degrees of freedom. Hence
using the estimate ofσ2, τ andΛ of Table 5.2, together withα for the meanµ, we
can calculate ap-value for each case to assess if the case is indeed a mixture in terms
of our model. Ap-value less than 0.05 indicate that the model does not describe the
observed data for that case significantly well. In Chapter 6 we introduce two different
Mahalonobis distances to assess the fit of two proposed profiles to a mixed sample. The
aim of this test is however to assess information on the fit of the model to data from a
DNA STR mixture and not whether the proposed profiles match observed mixture.

In Figure 5.3 we have plotted a histogram for thep-values assuming aχ2
n-distribution

of (M −Tµ)⊤var(M )−1(M −Tµ). For the model to be supported by data thep-values
must be uniform distributed which seems satisfied from inspection of Figure 5.3 and the
p-value using Fisher’s omnibus test,−2

∑n
i=1 log(pi) ∼ χ2

2n, yields 0.6257 supporting
uniformity of thep-values. Also the three cases with ap-value less than 0.05 matches
the expected 3.55 which is 5% of 71 cases.

5.2 Variance of parameter estimates

The precision by which the parameters are estimated is a natural measure to include
in the evaluation of the model fit. The asymptotic distribution of θ − θ̂ is a zero-
mean normal distribution with the inverse of the expected Fisher InformationI(θ) as
covariance matrix. Let∆ = Σ−1 and let∆̇k = ∂∆/∂θk with a similar definition forµ̇k.
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Figure 5.3: Histogram of thep-values computed from (M−Tµ)⊤var(M )−1(M−Tµ).
The distribution looks reasonable uniform supporting the model.

Since∆Σ = I we have thaṫ∆kΣ = −∆Σ̇k and thus∆̇k = −Σ−1Σ̇kΣ
−1. Furthermore we

have−∆−1∆̇k = Σ̇kΣ
−1 but also

− ∂
∂θk

log |∆| = ∂
∂θk

log |Σ| = tr(Σ−1Σ̇k) hence
∂

∂θk
log |∆| = tr(∆−1∆̇k).

For a normal distributedX ∼ Np(µ(θ),Σ(θ)) the Fisher informationI(θ)i j can be
found by the following arguments. Using the precision∆ the log-likelihood is

−2ℓ(θ) = log(2π) − log |∆| + tr(∆(X − µ)(X − µ)⊤).

Then differentiation with respect toθi yields

−2ℓ̇(θ)i = −tr(∆−1∆̇i) + tr(∆̇i[(X − µ)(X − µ)⊤] − ∆[µ̇i(X − µ)⊤ + (X − µ)µ̇⊤i ])

−2ℓ̈(θ)i j = tr(∆−1∆̇ j∆
−1∆̇i) − tr(∆−1∆̈i j) + tr(∆̈i j[(X − µ)(X − µ)⊤]) −

tr(∆̇i[µ̇ j(X − µ)⊤ + (X − µ)µ̇⊤j ]) − tr(∆̇ j[µ̇i(X − µ)⊤ + (X − µ)µ̇⊤i ]) −
tr(∆[µ̈i j(X − µ)⊤ − µ̇iµ̇

⊤
j − µ̇ jµ̇

⊤
i + (X − µ)µ̈⊤i j]).

Taking expectation on both sides yields,

2I(θ)i j = tr(∆−1∆̇ j∆
−1∆̇i) − tr(∆−1∆̈i j) + tr(∆−1∆̈i j) + tr(∆[µ̇iµ̇

⊤
j + µ̇ jµ̇

⊤
i ])

I(θ)i j =
1
2tr(∆−1∆̇ j∆

−1∆̇i) + µ̇i∆µ̇
⊤
j

SubstitutingΣ−1 for ∆ using the relations from above gives the final expression

I(θ)i j =
∂µ(θ)⊤

∂θi
Σ(θ)−1∂µ(θ)

∂θ j
+

1
2

tr

(

Σ(θ)−1∂Σ(θ)
∂θi
Σ(θ)−1∂Σ(θ)

∂θ j

)

, (5.1)

where
∂µ(θ)
∂θk

=

(

∂µi(θ)
∂θk

)p

i=1

and
∂Σ(θ)
∂θk

=

(
∂Σi, j(θ)

∂θk

)p

i, j=1

.
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In our setting we haveθ = (α,σ2, τ ,Λ) whereMc ∼ N (µ(θ),Σ(θ)), with

µ(θ) = Tcdiag(Hc)Qα

Σ(θ) = Tcdiag
{

diag(Hc)Qσ
2
}

T⊤c + diag(Qcτ ) + QcΛQ⊤c = var(Mc).

This implies that all differentiations ofµ(θ) with respect to (σ2, τ ,Λ) is zero and also
∂Σ(θ)/∂α = 0. Since our data contains 10 systems, we have 10α +10σ2 +10τ +55Λ =
85 parameters and therefore the Fisher Information is a 85× 85 matrix.

We have that

∂µ(θ)
∂αi

=
∂

∂αi
Tcdiag(H)Qα = Tcdiag(H)QeS (i),

and as mentioned0 for all other differentiations. Next we see that,

∂Σ(θ)

∂σ2
i

=
∂

∂σ2
i

Tcdiag
{

diag(H)Qσ2
}

T⊤c = Tcdiag
{
diag(H)QeS (i)

}
T⊤c

∂Σ(θ)
∂τi

=
∂

∂τi
diag(Qcτ ) = diag(QceS (i))

∂Σ(θ)
∂νi j

=
∂

∂νi j
QcΛQ⊤c = Qc

[{

eS (i)eS ( j)⊤ + eS ( j)eS (i)⊤
}

/(1+ δi j)
]

Q⊤c ,

wherei, j = 1, . . . , S andδi j is Kronecker’s delta. Since the Fisher information with
respect toα is independent ofσ2, τ ,Λ and vice versa we can invert these blocks sepa-
rately for determine the asymptotic variance of the parameters,

I(θ) =

[

I(α) O
O I(σ2, τ ,Λ)

]

and I(θ)−1 =

[

I(α)−1 O
O I(σ2, τ ,Λ)−1

]

.

Since we assume independence across cases the total Fisher information is just the sum
over the Fisher information for each case,I(θ) =

∑

c Ic(θ). For a fixed case theIc(α)
can now be found as,

Ic(α)i j = eS (i)⊤Q⊤diag(Hc)T
⊤
c var(Mc)

−1Tcdiag(Hc)QeS ( j).

Note the simple form of ∂
∂α j
µ(θ)

Tcdiag(Hc)QeS ( j) = Tcdiag(H)[0, . . . , 0
︸  ︷︷  ︸

4( j−1)

,1⊤4 , 0, . . . , 0︸  ︷︷  ︸

4(S− j)

]⊤

= [0, . . . , 0
︸  ︷︷  ︸

n1+···+n j−1

, (T jH j)
⊤

︸    ︷︷    ︸

n j

, 0, . . . , 0
︸  ︷︷  ︸

n j+1+···+nS

]⊤,

whereT jH j adds together theH(k)
c s contributing to the same alleles. HenceIc(α)i j

simplifies to

Ic(α)i j = (TiHi)
⊤var(M)−1

i j T jH j
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We can partitionIc(σ2, τ ,Λ) as

Ic(σ
2, τ ,Λ) =





Ic(σ2) Ic(σ2, τ ) Ic(σ2,Λ)
Ic(σ2, τ ) Ic(τ ) Ic(τ ,Λ)
Ic(σ2,Λ) Ic(τ ,Λ) Ic(Λ)





where the symmetry is secured since the trace operator is symmetric and the first term
of (5.1) is zero. Using the above expressions we have,

Ic(σ
2)i j = tr



var(Mc)
−1∂Σ(θ)

∂σ2
i

var(Mc)
−1∂Σ(θ)

∂σ2
j



 where,

∂Σ(θ)

∂σ2
i

= Tcdiag
{
diag(Hc)QeS (i)

}
T⊤c = Tcdiag

{

[04(i−1),Hic,04(s−i)]
⊤
}

T⊤c .

The latter expression is just a matrix product of two block diagonal matrices and a
diagonal. From hereon we drop the case subscriptc to keep the expressions simpler
except forQc to distinguish it fromQ. Now letZi = ∂Σ(θ)/∂σ2

i , then we have,

Zi = diag(O, . . . ,O, Zi,O, . . . ,O) with Zi = Tidiag(Hi)T
⊤
i in the i’th block.

Since var(M )−1 also have a block structure, var(M)−1
i j , the trace therefore becomes a

sum expressed as,

I(σ2)i j = tr
(

var(M )−1Zivar(M)−1Z j
)

=
∑

k,l,m,n

tr
(

var(M )−1
kmZi

mlvar(M )−1
ln Z j

nk

)

.

SinceZi
ml = 0 unlessm = l = i with Zi

ii = Zi all terms in the sum is zero but for
m = l = i andk = n = j. Thus we have

I(σ2)i j = tr
(

var(M )−1
ji Zivar(M )−1

i j Z j

)

.

When determining the next diagonal element ofI(σ2, τ ,Λ) we can use the same rea-
soning as above. HenceI(τ )i j yield,

I(τ )i j = tr
(

var(M)−1diag(QceS (i))var(M)−1diag(QceS ( j))
)

.

Here diag(QceS ( j)) is simply a zero matrix withIni on thei’th block of the diagonal.
Hence using the trace expansion again we have,

I(τ )i j = tr
(

var(M )−1
ji Ini var(M )−1

i j In j

)

= tr
(

var(M )−1
ji var(M )−1

i j

)

.

SinceΛ is symmetric we need onlyνst with 1 ≤ s ≤ t ≤ S of Λ. That is




ν1.1 ν1.2 . . . ν1.S
ν2.1 ν2.2 . . . ν2.S
...

...
. . .

...

νS .1 νS .2 . . . νS .S





7→ [ν1.1, . . . , ν1.S , ν2.2, . . . , ν2.S , . . . , νS−1.S−1, νS−1.S , νS .S ]⊤= ν,
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henceI(α,σ2, τ ,Λ) = I(α,σ2, τ ,ν). In row k of Λ we useS − (k − 1) elements.
Hence the index number ofνk,S in ν, i(k, S ), is determined as,i(k, S ) =

∑k
i=1 S − (i−1)

with k ≤ S . Hencei(k + 1, k + 1) = i(k, S ) + 1 from which we havei(k + 1, l) =
i(k + 1, k + 1)+ (l − (k + 1)) wherek ≤ l ≤ S . Hence we have the general expression,

i(k, l) = S (k − 1)− k(k − 1)/2+ l.

This implies thatνi(k,l) = νk,l. The final diagonal termIc(Λ) is found by

I(Λ)i(k,l)i(m,n) = tr

(

var(M )−1 ∂

∂νkl
QcΛQ⊤c var(M )−1 ∂

∂νmn
QcΛQ⊤c

)

.

Now evaluating the right hand side using the expression for∂Σ(θ)/∂νkl we have for
k , l,

∂

∂νkl
QcΛQ⊤c = (0, . . . , 0

︸  ︷︷  ︸

n1+···+nk−1

,1⊤nk
, 0, . . . , 0
︸  ︷︷  ︸

nk+1+···+nS

)⊤(0, . . . , 0
︸  ︷︷  ︸

n1+···+nl−1

,1⊤nl
, 0, . . . , 0
︸  ︷︷  ︸

nl+1+···+nS

) +

(0, . . . , 0
︸  ︷︷  ︸

n1+···+nl−1

,1⊤nl
, 0, . . . , 0
︸  ︷︷  ︸

nl+1+···+nS

)⊤(0, . . . , 0
︸  ︷︷  ︸

n1+···+nk−1

,1⊤nk
, 0, . . . , 0
︸  ︷︷  ︸

nk+1+···+nS

)

= Ckl = Ckl
qr =






1nk1
⊤
nl
, q = k andr = l

1nl1
⊤
nk
, q = l andr = k

O, otherwise.

Inserting this inIc(Λ)i(k,l)i(m,n) yields,

Ic(Λ)i(k,l)i(m,n) =
∑

p,q,r,s

tr
(

var(M )−1
pqCkl

qrvar(M )−1
rs Cmn

sp

)

=
2wnkwlm + 2wnlwkm

(1+ δkl)(1+ δmn)
,

wherewrs = 1
⊤
nr

var(M )−1
rs 1ns with wrs = wsr.

For the off-diagonal terms inIc(σ2, τ ,Λ) we can use the expressions derived above to
get the following entrances,

Ic(σ
2, τ )i j = tr

(

var(M )−1
ji Zivar(M )−1

i j

)

Ic(σ
2,Λ)ii(k,l) = (1⊤nl

var(M )−1
li Zivar(M )−1

ik 1nk+1
⊤
nk

var(M )−1
ki Zivar(M )−1

il 1nl )/(1+ δkl)

Ic(τ ,Λ)ii(k,l) = (1⊤nl
var(M )−1

li var(M )−1
ik 1nk+1

⊤
nk

var(M )−1
ki var(M )−1

il 1nl )/(1+ δkl)

which completes the Fisher information matrix.

The asymptotic variances and correlations estimated by theFisher information are
given in Table 5.4 and Table 5.5 for the full and restricted (τ = 0) models, respec-
tively.

For the full model (withτ not set to zero) the correlations seems constant across sys-
tems. Hence we may summarize this correlation structure in amatrix form,

σ2

τ

Λss





1 −0.7 0.15
−0.7 1 −0.5
0.15 −0.5 1




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Table 5.4: Standard deviation and correlation of parameters fitted forthe full model.
We denote diag(Λ) asνss due to lack of space.

Standard deviations Correlation

α σ2 τ νss σ2, τ σ2,νss τ ,νss

D16 0.147 223.608 108771.53 83843.23 −0.711 0.159 −0.498
D18 0.168 387.382 155198.38 92326.20 −0.721 0.080 −0.425
D19 0.119 126.066 61039.40 55008.97 −0.725 0.216 −0.545
D2 0.135 146.348 58264.26 46547.08 −0.769 0.180 −0.447
D21 0.125 201.491 76094.18 42136.96 −0.736 0.076 −0.404
D3 0.118 152.801 60907.14 39453.75 −0.745 0.130 −0.433
D8 0.144 236.997 101856.93 75112.52 −0.747 0.161 −0.475
FGA 0.087 68.134 28800.48 21892.66 −0.734 0.158 −0.474
TH0 0.101 91.615 40686.60 34805.48 −0.758 0.232 −0.540
vWA 0.113 128.337 52310.19 35328.37 −0.734 0.125 −0.422

Table 5.5: Standard deviation and correlation of parameters fitted forthe restricted
model withτ = 0.

Standard deviations Correlation

α σ2 νss σ2,νss

D16 0.148 157.194 73453.16 −0.316
D18 0.171 267.388 86516.20 −0.345
D19 0.119 86.779 45871.55 −0.312
D2 0.135 93.454 41423.60 −0.288
D21 0.125 136.206 38584.17 −0.356
D3 0.118 101.766 35518.81 −0.321
D8 0.144 157.494 66067.68 −0.330
FGA 0.087 46.237 19334.22 −0.315
TH0 0.101 59.743 29252.41 −0.323
vWA 0.112 86.949 31957.80 −0.299

Note that the strongest correlations are betweenτ and the two other variance parame-
ters,σ2 andΛ.

Apart from the insignificantp-value from the approximateχ2-test these large corre-
lations and the smaller standard deviations on the parameters in the reduced model
support eliminatingτ . Since the parameters are based on a limited training set,τ

might be estimated significant different from0 using a more representative data set.





CHAPTER 6

Evidence

Section of Forensic Genetics, University of Copenhagen, has provided data from 74
real crime cases. Under real circumstances the contributing profiles are not known in
advance and therefore there are some additional uncertainty attached to these cases. In
eight of these cases we have observed one or several drop-outs and they are therefore
excluded from this analysis. The 66 remaining cases will be analyzed in the following.

6.1 Real crime cases

When drawing conclusions based on thep-value derived from the Mahalanobis dis-
tance withµ and var(M ) assumed known, we have to bare in mind that the estimated
values of these two quantities is based on pairwise mixturesof only four DNA profiles.
This causes bias towards the represented alleles in the parameter estimates. Also the
analyzed mixtures from the controlled experiments are performed on the same machin-
ery and thus the amplification results reflect this machine’sspecific behaviour.

Let ¯̄M̄c be the system-wise sum over alleles such that¯̄M̄c = (
∑n1

i=1M1i , . . . ,
∑nS

i=1MS i).
Using the matrix notation from before this can be expressed as ¯̄M̄c = Q⊤c Mc, hence
the distribution of ¯̄M̄c is

¯̄M̄c ∼ N
(

Q⊤µc,Q
⊤DQ + diag(ncτ ) + diag(nc)Λdiag(nc)

)

,

where we usedQ⊤c Tc = Q⊤, Q⊤c diag(Qcτ )Qc = Q⊤c Qcdiag(τ ) andQ⊤c Qc = diag(nc).
Since the Mahalanobis distance considered in the previous chapter takes both the mix-
ture and system balances into account it is likely to yield low p-values for real crime
cases. System unbalances caused by degraded DNA and other sources of contamina-
tion are likely to affect the amplification of the different systems and therefore reject
the hypothesis of a mixture of the two proposed profiles. However conditioning on the
system sums¯̄M̄c we can evaluate the match of the two profiles within each system.

In order to find the distribution ofM | ¯̄M̄ we need to specify the covariance of (M , ¯̄M̄),

Σ(M , ¯̄M̄) =

[

T DT⊤ + Σ (T DT⊤ + Σ)Qc

Q⊤C(T DT⊤ + Σ) Q⊤c (T DT⊤ + Σ)Qc

]

,

since cov(M , ¯̄M̄) = cov(M ,Q⊤cM ) = var(M )Qc. Now the conditional distribution
of M given ¯̄M̄ is degenerated since conditioning imply that the covariance matrix is
not of full rank,

E(M | ¯̄M̄) = Tµ + (T DT⊤ + Σ)Qc

[

Q⊤c (T DT⊤ + Σ)Qc

]−1
( ¯̄M̄ − Q⊤µ)

cov(M | ¯̄M̄) = T DT⊤ + Σ − (T DT⊤ + Σ)Qc

[

Q⊤c (T DT⊤ + Σ)Qc

]−1
Q⊤c (T DT⊤ + Σ).
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However using the generalized inverse cov(M | ¯̄M̄)− we can determine the Maha-
lanobis distances,

(

M − E(M | ¯̄M̄)
)⊤

cov(M | ¯̄M̄)−
(

M − E(M | ¯̄M̄)
)

∼ χ2
nc−S (6.1)

( ¯̄M̄ − Q⊤µ)⊤
[

Q⊤c (T DT⊤ + Σ)Qc

]−
( ¯̄M̄ − Q⊤µ) ∼ χ2

S . (6.2)

The p-values determined from these Mahalanobis distances can beinterpreted as a
two-step evaluation of the DNA mixture. The interpretationof p-values from (6.1) is
whether the two profiles are the likely contributors to the mixture. Since we condition
on the possible unbalances between systems lowp-values is an indication of a low
agreement of the observed relation, and the one explained bythe pair of proposed
profiles. However if thisp-value is above some fixed value, e.g. 0.01 say, we have no
evidence for excluding the mixture as a possible explanation.

Assuming that thep-value from (6.1) is significantly different from zero, we assume
the proposed profiles are a possible explanation of the observed mixture. Therefore we
assume that¯̄M̄ is the system sums over a mixture of the two proposed profiles and
the assumptions that imply the validity of (6.2) are met. Under this assumption the
interpretation of thep-value from (6.2) is the quality of the available sample. A low p-
value indicates unbalances between systems and conclusions should therefore be made
with extra caution. Since our model does not incorporate thepossibility of DNA to be
degraded and other unbalances between systems the evidencewith a low p-value is of
limited use.

As expected did all cases from the controlled experiments have highp-values based on
both (6.1) and (6.2). This indicates that for all cases the correct profiles were mixed
and also that there were no abnormal system unbalances.

In the real crime cases only three cases indicated a poor fit between the observed and
proposed mixture. In Figure 6.1 we have plotted the observedpeak areas for the three
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Figure 6.1: The three cases withp-values less than 0.01. The point characters indicates
the donors,◦ and△, with + being a shared allele and the filled versions being non-
shared homozygote alleles. The ordering along the first axisis random.
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cases respectively. The panels indicate large within person variability for the peak areas
not supporting the proposed profiles as donors to the mixture.

In Figure 6.2 we have plotted histograms for thep-values from (6.1) and (6.2) evaluated
for the real crime cases. We have only included the (6.2)p-values from cases where
the (6.1)p-values were greater than 0.01.

Figure 6.2: Histograms of thep-values from (6.1) and (6.2) for the real crime cases.
In the right panel only cases with mixturep-values above 0.01 are included.

The non-uniformity of thep-values in the two histograms indicates that the model does
not fit perfectly to the data. For the right panel of Figure 6.2the histogram shows that a
majority of cases have lowp-value with 35 cases having ap-value less than 0.01. This
may indicate that several of the cases have a low copy number or degraded DNA or
simply that the model is too simple to cope with real world data.

The person-water mixtures included in the controlled experiments can be used as ad-
ditional data for verification of the model. These cases wereexcluded before param-
eter estimation due to the variability observed for person-water mixtures during the
data analysis summarized in Chapter 2. Computing both the Mahalanobis distances of
Chapter 5 and those of (6.2) and (6.1) indicates that the model also has a reasonable
fit to single contributor cases. The histograms ofp-values from the three Mahalanobis
distances in Figure 6.3 show uniformity supporting the goodness of fit.

Figure 6.3: p-values from Mahalanobis distances for single contributorcases. The
uniformity indicates the model fits well for one-person samples.





CHAPTER 7

Epilogue

In this chapter we summarize, discuss and conclude on the work presented in the
present thesis. Furthermore we set out some possible problems for future work within
this framework for mixed DNA samples.

7.1 Discussion

As mentioned several times throughout the present thesis the interpretations made
about model structure and parameter estimates are biased towards the four profiles
included in our data set. For the model to be sufficiently supported by data a vaster data
set with several profiles must be used for estimation of parameters. This is both due to
the allelic variability but also the general variable nature of DNA STR amplifications
as seen from the present data set. Another source of variation not represented by the
available data is machine effect as all samples are analyzed using the same machin-
ery. This is an important factor to include in order having confidence in the estimates
of the parameters. It would be interesting to perform a meta analysis comparing esti-
mates based on data from different machines in order to evaluate the robustness of the
estimates.

The data used for the parameter estimates were processed by the forensic laboratory
using no stutter filter but still a fixed threshold for the peakheights. This threshold
excludes all peaks with lower peak heights than 50 RFU and introduces a kind of cen-
soring depending on the (un-)observed peak height. The problem with such a threshold
is instead of having a peak area observation of e.g. 500 we mayinstead register a drop-
out. In Gilder et al. (2007) they discuss the use of run specific threshold determined by
a model based on the white noise of the machinery. This seems like a more reasonable
approach since cases with low contributions from a donor mayresult in many drop-outs
using a fixed threshold.

On the preceding semester we examined the empirical inter-correlation structure for the
systems. By stratifying on the trial number (each mixture were separately analyzed two
times) we found that some correlations were significantly different in both magnitude
and sign. This may explain some of the uncertainty of the estimates of the covariance
structureΛ.

In addition to the runs with initial values specified in Table5.1 we also performed runs
with σ2

(0) = 0. However since the estimator ofσ2
(n+1) is not dependent of the previous

values it may eventually converge towards theσ estimates found from the other initial
values. In Figure 7.1 we have plotted the traces forσ2 andτ with σ2 initialized to0.
After approximately 17000 iterations the parameters changes and together with them
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the deviance drops (not included in the plot). The plot supports the insignificance ofτ
as it converges to relative small values compared to bothσ2 and diag(Λ).
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Figure 7.1: Traces forσ2
(n) andτ(n) with σ2 initialized as0 with a line for each system.

As mentioned in Section 4.4 we only used data with a PCR injection time of six sec-
onds. On the preceding semester we used a simple linear regression model to pre-
dict the peak areas by the amount of DNA. By stratisfying on systems and dropping
insignificant terms, such as laboratorian-effect, the final model reduced to Areas =

(αs + I12(t)βs)DNA, where I12 is the indicator function for the injection time being
12 seconds. In addition we found an approximate linear relation of βs and αs as
βs = 0.146αs for all systems. Hence the ratio of samples with different injection time is
1.146 or equivalent Area12 = 1.146Area6 not depending on the system. However since
our model includesH in both mean and variance we expect the estimates of bothα

and the variance componentsσ2 andΛ to be identical for the different injection times.

In Figure 7.2 we have plotted the estimates based on six and 12seconds data. The
panels indicate thatα is independent of the injection time in contrast to the variance
components. We find that the variance components for 12 seconds are approximately
1.5 times larger than for the six seconds data. This indicates that the variance is not
linear in injection time. This non-linearity may be due possible saturation of the ma-
chinery occurring more frequently for longer injection times relative to shorter injection
times. This shows that the parameters used in assessing the weight of evidence depend
on the injection time.
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Figure 7.2: Parameters determined for data with six and 12 seconds injection time. We
see the variance components have increased by a half whereasα seems constant.

7.2 Future work

In this section we discuss issues and problems subject to future work since the current
model is not applicable in all real mixture cases. First we evaluate the current model
and the parameters reported in Chapter 5.

7.2.1 Model reductions

In Chapter 5 we showed thatτ was insignificant with respect to the present data. By
doing so we placed more of the variance on theνss components andσ2 but also reduced
the variance on these parameter estimates. However the standard deviations reported
in Table 5.5 indicates that data does not support having a covariance for each inter- and
intrasystem combination and calls for further model reductions.

Since the components ofσ2 seems be ordered by dye band colour this may also apply
toΛ, hence a possible covariance structure could be,





νYY νYB νYG

νYB νBB νBG

νYG νBG νGG




. (7.1)

This allows systems on the same dye band to share covariance parameters. The param-
eters fitted for the model withΛ specified as in (3.7) does not indicate that covariance
between systems on the same dye band should be similar. However with the uncertainty
attached to the parameters we can not reject this covariancestructure. The reduction to
(7.1) imply that instead of estimatingS (S + 1)/2 parameters for the covariance matrix
we need only to estimate 6 parameters. Hence with 10 systems as in our data set we
drop 49 parameters.

An even simpler covariance structure assumes equal within and between covariance for
all systems,

[

ν γ

γ ν

]

.
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This two parameter covariance structure may causeτ to be significantly different from
0 in order to have a reasonable fit. However compared to the model with Λ = νst and
τ = 0 we still reduce the number of parameters by 43.

7.2.2 Model limitations

The model described in Chapter 3 works under several limitations which makes it lim-
ited for immediate use in real world crime cases.

Degraded DNA

Since we assume the mean (and variance) ofA to be proportional to the DNA con-
centration mimicked byH the only system-wise differences possible of the mean is
captured inα. For non-degraded DNA, as in the controlled experiments, wefound
that this structure is sufficient for describing the different amplification properties of
systems. Exposing DNA to different kinds of inhibitors increases the probability of
the DNA sequences to break into shorter structures. This damage imposed to the DNA
may cause alleles to drop-out or in milder degree imply loweramplification than ex-
pected. Experts in forensic DNA expect longer sequences to have a higher probability
of breakage than shorter sequences and by the nature of STR DNA therefore systems to
have different risks due to the allelic ladder in Figure A.1. For inclusion of DNA degra-
dation in the model we need to have a separate model of the degradation behaviour for
the different systems and alleles. In Figure 2.3 we have indicationsof the expected
levels of amplification for each system. Dividinḡ̄M̄ by α imply that the expectation
of all systems to be the same constant, 2(H(1) + H(2)). Now an analysis of variance can
be used as an approximation to test for differences across systems and thereby indicate
if the DNA has degraded. The dependence between and within systems causes the
method to be approximate. Note that the within system variation is of less importance
in this analysis since we expect a significant difference between individual peaks for
mixtures withH(1)/H(2) different from one.

Applying this approach to the data from the controlled experiments imply a few cases to
havep-values less than 0.05. Further investigation show that allthese cases is mixtures
of personA andB, both homozygote on system D18 sharing allele 13. Removing D18
from all cases and reanalyzing by the same means none of the controlled experiments
hadp-values less than 0.10. This indicates that the amplification behaviour of systems
where two homozygous share an allele is not captured sufficiently by the model.

Degradation of DNA may be modeled using the methodology of survival data analysis
as lower amplification than expected is due to failure in amplification of some the
DNA material. One can interpret the observed peak areas as the proportion of material
surviving the degradation. In Figure 7.3 we have plotted the fragment length for some
real crime cases against the aggregated sums of peak areas weight by the reciprocalα
estimates.

In Figure 7.3 we see the reasonable good fit to a linear curve for the log-transformed
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Figure 7.3: Aggregated peak areas for each system weighted by the associated recip-
rocal αs for some real crime cases. In the top panels we have superimposed a loess
curve, and in the bottom panels a linear fit to the log-transformed data.

data. The points in the top panels can be interpreted as estimates of the survival function
S (l) wherel is the fragment length. The bottom panel indicates that the cumulative
hazard is linear in the fragment lengths such that an exponential survival model is
sufficient in order to describe the decay in amplification. However further experiments
and analyses of the behaviour of degraded DNA needs to be performed for a proper
inclusion of the problem in the model.

Drop-ins, stutters, drop-outs and pull-up effects

The contamination of the observations from stutters, drop-ins, drop-outs and pull-up
effects increases the complexity of the analysis of DNA samplesand in particular mixed
DNA samples. As for degraded DNA separate models for these issues needs to be
constructed for proper understanding of their behaviour. If we consider the four issues
as separate problems we may assume they can be modelled independently given the
quality of the DNA sample. However as these four events may occur at the same
time, it can be difficult to assess which are present. For example may the presence
of stutters, drop-ins and/or pull-up effect hide a drop-out. This may in particular be
true for mixtures with a minor and major contributor where the ratio of their DNA
concentrations is close to the stutter percentages of 5%-17% (Applied Biosystems,
2006, p. 9-22).
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Furthermore the threeaddingevents are difficult to distinguish from one another. This
is due to their overlapping definitions where stutter and pull-up effects are the most
restrictive and drop-ins are the artificial peaks not classifiable by the two. If neglecting
back-stutters then stutters are only a possible explanation if the position of the artificial
peak is before the true peaks. Pull-up effects can also be restricted to certain intervals
on the allelic ladder. For a pull-up to occur there has to be anoverlap on the allelic
ladder between the dye bands. In Figure A.1 we see that for example D8 on the green
band is in the span of both D3 and vWA on the blue band.

7.2.3 Finding possible matches

In Chapter 6 we were only able to assess whether a mixture withthe proposed profiles
fits our model assumptions for DNA STR mixtures. It gives however no indications
in direction of which other two profiles that might be more likely under the observed
alleles and peak areas. In the search over possible pairs of profiles we need only to
search over one system at a time under assumption of Hardy-Weinberg equilibrium
implying independence over systems with respect to the presence of alleles. However
the results of this present thesis clearly indicates that when evaluating the evidence of
each pair of profiles we need to include all systems. If we assume that no drop-outs
have occurred, an algorithm for finding the best fitting pair could be as follows:

(1) Find all possible sets of pairs that match the observed alleles for each systems (see
Table 7.1).

(2) Construct the associatedTs matrices.

(3) Construct allT matrices from these sub-matrices and determineH.

(4) Chose the configuration with the largest likelihood.

The likelihood comparisons mentioned in (4) needs to be evaluated with respect to
some confidence limits.

In the worst case there will for each system be three observations implying there is 12
possible combinations (see Table 7.1). This induce that foreach system we construct
12 sub-matricesTs. The total number of possibleT matrices is therefore in the worst
case 12S which even for moderateS is an intractable number of combinations.

The deviance involve determining the Mahalanobis distanceand computing the deter-
minant of var(M) = TcDcTc+diag(Qcτ )+QcΛQc. Now in this expression onlyTcDcTc

is affected by the current configuration of profiles, the latter terms do only depend on
the profiles thoughnc = (n1c , . . . , nS c) which is constant given the observationsM .

In order to make the search for possible profiles manageable we need to consider some
more sophisticated optimization techniques. For our concrete setup with ten systems a
worst case scenario is 1210 = 61917364224 possible configurations. If assuming more
than two persons contribute to a mixture the number of possible combinations increases
dramatically hence for future use this problem needs careful consideration.
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Table 7.1: Possible combinations of profiles for systems.

Obs. alleles Possible combinations

B1 (B1, B1)×(B1, B1) 1
B1, B2 (B1, B1)×(B1, B2) (B1, B1)×(B2, B2) (B1, B2)×(B1, B1)

(B1, B2)×(B1, B2) (B1, B2)×(B2, B2) (B2, B2)×(B1, B1)
(B2, B2)×(B1, B2) 7

B1, B2, B3 (B1, B2)×(B3, B3) (B1, B2)×(B2, B3) (B1, B2)×(B1, B3)
(B1, B3)×(B2, B2) (B1, B3)×(B1, B2) (B1, B3)×(B2, B3)
(B2, B3)×(B1, B1) (B2, B3)×(B1, B2) (B2, B3)×(B1, B3)
(B1, B1)×(B2, B3) (B2, B2)×(B1, B3) (B3, B3)×(B1, B2) 12

B1, B2, B3, B4 (B1, B2)×(B3, B4) (B1, B3)×(B2, B4) (B1, B4)×(B2, B3)
(B2, B3)×(B1, B4) (B2, B4)×(B1, B3) (B3, B4)×(B1, B4) 6

The approach mentioned above makes no use of the quantitative information available
from the peak areas. Doing so may exclude some of possible combinations in Table 7.1
and hence reduce the number of total possible profiles. If themixture ratio is not close
to one then for systems with four observations most probableonly one configuration of
the alleles will be likely under the model assumptions. Hence this fixes the profiles for
these systems and reduces the total number of possible profiles by a factor six.

Next a partial estimate ofH can be made based on systems with four observations
and then used when considering the remaining systems. This method tends to have a
recursive structure and reduces the number of possible profiles. This approach needs
further investigation but seems intuitively feasible fromboth a theoretical and practical
point of view.

7.3 Conclusion

The experiences from the data analysis summarized in Chapter 2 were used though out
this present thesis. The relations found in the data from extensive exploration are to-
gether with expert knowledge important tools for setting upa model that fits a complex
structure as DNA mixtures. The main results from the data analysis discussed here are
most likely independent of the number of contributors to a DNA mixture. Hence the ba-
sic assumptions of the model are still valid with more than two contributors. However
the limitation of the model discussed in Section 7.2.2 may well be easier to incorporate
before extending the model to multiple contributors.

Using the normal distribution for the model simplifies the estimation phase as many
standard results were drawn upon and also closed form solutions of the estimators
were guaranteed. The non-zero probability of having negative peak areas is of less
importance and future work is therefore on the issues mentioned in Section 7.2 and not
on implementing positive distributions such as the gamma distribution. By introducing
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a compound symmetry structure on the covariance of the errorterm we solved the
problem of having varying number of observations for each case. The multiplication
of diag(h)−1/2 were incorporated to increase the fit of the model as we observed some
alleles amplified differently across systems which were not captured by the original
model.

Another advantage of the normal distribution is that the conditional distributions of
the variables in the model are easily determined using standard formulae. This was
extensively used when deriving the estimators for the EM-algorithm and also in the
direct implementation of the EM-algorithm. When estimating the conditional means in
the inner EM-procedure we first made use of the properties of the normaldistribution
also used in the Kalman filter, E(Z |X) = E(Z |Y =E(Y |X)). However it was not
directly clear that a similar result was valid for the conditional mean ofZZ⊤.

The choice ofR as the language for the implementation of the EM-algorithm was
based on previous experiences and in comparison to e.g.C matrix multiplication is
well implemented inR. The implementation is easily altered in order to cope with the
covariance structures discussed in Section 7.2.1.

Assuming independence of the different systems in a DNA sample is a simplification
which can not be supported by any work done in this present thesis. Modelling each
system separately introduces considerable bias to the result since the approach makes
use of the same information about the mixture for each system. Hence intersystem
correlations need to be considered when assessing the weight of evidence in forensic
DNA STR settings.

We found thatΛ is significantly different fromνIS but also that the estimates ofνst

are subject to large variability. This indicates possibilities of model reductions and
maybe incorporating a covariance structure based on dye bands and fragments lengths.
This could for instance be done by including the difference in fragment length into the
covariance function, cov

(

B(k)
i,s , B

(k′)
i′,s′

)

= δts,s′ , wheret is the difference in fragment length
of the two alleles.

The insignificance ofτ in the model indicates that cov( ˜εs j, ε̃si) is constant for alli, j =
1, . . . , ns. This imply that the correlation matrix of ˜ε will have1ns1

⊤
ns

-blocks down the
diagonal. We may interpret this as the weighted errors within each systems is a linear
function of each other.

The estimates ofα andσ2 supports the assumption of proportionality of the meanµ

and varianceD of the unobservable peak areasA. Hence this part of the model can
be retained even if the covariance structure of ˜ε is changed to incorporate different
symmetries.

The model’s goodness of fit to the training data was assess by evaluating the Maha-
lanobis distance for each case given the estimated values ofα, σ2 andΛ. The unifor-
mity of the p-values from theχ2-test showed a reasonable fit of the controlled experi-
ments. A similar approach was applied to the real crime casesby splitting the evidence
into two parts; mixture match within each system and the quality of the mixture. Only
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three cases had a poor fit of the mixture, whereas several mixtures showed unbalances
across systems. The latter may be due to degraded DNA or contamination of the DNA.
As a final assessment of the model we analyzed the single person-water “mixtures”.
The p-values from the three tests mentioned above indicated a reasonable fit to the
model. When only one person contributes the interpretations of (6.1) and (6.2) are
merely balances within and between systems.





APPENDIX A

Biology of DNA

This chapter is taken from the authors own work written on thepreceding semester.

In this chapter we will present the basic terms of the human DNA system and related
biological topics with relevance for understanding of the overall subject of DNA typing.
The chapter is meant as an introduction for statisticians and other interested with no
further biological knowledge of chromosomes, alleles, DNAtyping or forensic science
as such. Therefore the depth and accuracy might not be of the same scientific standard
compared to textbooks dedicated to these topics, but merelyan overview and definition
of the words used though out this present report. The chapteris based on Butler (2005)
and Evett and Weir (1998).

A.1 Deoxyribonucleic acid

Deoxyribonucleic acid also known as DNA is the building blocks of all life on Earth.
DNA is a double helix structure found in every nuclear cell inliving organism. DNA
is inherited from parent to offspring during reproduction. During reproduction the
maternal chromosome pairs are separated into single chromosomes. A similar process
applies to the paternal chromosomes and these single chromosomes then recombines by
random with each other for the respective chromosomes - one from each parent. That
is if the maternal chromosome pair ismM and the paternal ispP, the combinations
mp, mP, Mp andMP all happens with equal probability. For humans each nuclearcell
contains 23 chromosome pairs which constitute the human genome. Thus every human
carry multiple copies of our DNA sequence. The characteristic double helix form of
the DNA consists of two single stranded DNA sequences of fourbases adenine (A ),
thymine (T), cytosine (C) and guanine (G). These bases form the structure of DNA
by their repeat patterns and unique combinations. Due to theunique combinations of
the four bases inAT /TA andCG/GC the double helix is kept together. An example
of a DNA sequence isTCTA which is a tetra nucleotide repeat pattern due to the four
bases in the pattern. Throughout the rest of the present report the data used is of tetra
nucleotide form.

In this paragraph we define some often used phrases in DNA and thus also in forensic
DNA science. The genome is the entire DNA of the human body contained in the nu-
clear of the cells. That is the DNA in the mitochondria genomeis considered separate.
The chromosomes are the level just below the genome. The human DNA is made up of
the 22 chromosome pairs and the sex chromosome pair. A gene isthe part on the chro-
mosomes where the DNA codes for some biological properties.The remaining part of
the chromosome is called junk DNA. Loci which is plural for locus, is the term used for
the position on the gene. That is in order to locate a positionon the genome we must
include information on chromosome numbers and loci, e.g. D16S539 is position 539
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on chromosome 16. An allele corresponds to the length of the tetra nucleotide repeats
on the particular loci. The length of the DNA fragments are measured on continuous
scale but are discretised into a so called allele ladder, i.e. the length of DNA fragments
are binned into intervals coding for the alleles. For a person with the same allele on a
locus for both chromosomes in a chromosome pair we say they are homozygote oth-
erwise heterozygote. There are a variable number of allelesfor the different loci on
the human genome. This variability is crucial for discriminating individuals. The kit
used for the DNA typing in the data this project is A B A STR
SGM P®. The electropherogram (EPG) in Figure A.1 show the allelic ladder for
this kit.

Figure A.1: Electropherogram (EPG) showing the allelic ladder for the A
B A STR SGM P®kit. The dyes used from top to bottom are
blue, green and yellow. (Applied Biosystems, 2006, p. 9-7).

When DNA material is used in crime cases it is often found after some time in non-
optimal environment. It may have been exposed to direct sun light, water, bacteria,
heat, etc. The chemical reactions which degrade the DNA may break the DNA string
into shorter pieces causing some methods of DNA typing to fail. The most commonly
used methods for forensic DNA typing is called Short tandem repeat (STR) and is a
methods which is fairly applicable for typing degraded DNA.Prior to the STR typing
the DNA is amplified using Polymerase chain reaction (PCR). The method involves
breaking the double stranded helix into single strands by the use of heat and enzymes
after which specialized primers binds to single strands making new double helices.



A.2 Population genetics 59

By repeating this process millions of DNA copies can be made in a spell. A side-
effect from PCR amplifying is the so called stutters. That is small peaks in the EPG
located a few base pairs (bp) before the actual allele peak. Aproposed explanation for
the mechanism causing stutters is when the primers experience a mis-pairing during
the amplification and hence producing allele markings for the amplified loci to be a
few repeats shorter. In single contributor DNA samples it isoften possible to detect
stutters by eye. This is due to the significant difference in peak area of stutters relative
to the real allele peak. Experimental data suggests that thepeak areas of stutters in
most cases are less than 15% of the area of the true allele peakareas. Other issues
which blur the picture when analyzing DNA samples are drop-ins and drop-outs. As
the phrases indicate it is when foreign allele peaks are observed or when some peaks
are missing. Together with stutters and the fact that these three issues may arise on the
same time gives reason for some concern. That is estimating the profiles of unknown
contributors, exclusion of suspects and determining the number of contributors to a
mixture gets complicated by these possible sources of error.

A.2 Population genetics

The uniqueness of the genotype for each individual is crucial in order to use DNA
typing as discrimination tool for identification use. In court rooms where the forensic
expert evaluate the strength of the evidence it is importantto be able to determine how
likely the present DNA profile could have originated from a random selected person in
the reference population rather than the suspect. To assessestimates of the occurrence
of genotypes in the reference population, e.g. individualswith the same ethnicity,
nationality or cultural background as the suspect, we need to make some assumptions.

The simplest models in population genetics theory define theconcept of an ideal pop-
ulation. The validity of the model is based on some assumptions where the two most
fundamental are an infinite reference population from whichthe present population
have descended, and the assumption of random mating. That isgiven an individual in
the reference population then any other individual in the reference population is eligible
for mating independent of sex, age, etc.

From the reference population we imagine a series of populations of sizeN are de-
scending as shown in Figure A.2. Every one such population isorigin for a chain of
populations all of same size, which does not coexist with each other. The populations
(both across chains and generations) differ from each other in allelic diversity due to
random mating. This random mating hence implies the variability in present alleles in
every population.

Assume now there exists for a geneA two allelesA1 andA2, then the allele proportion
of Ai in the population is calledpi. From Section A.1 we can deduce that we are only
able to observe pairs of alleles, e.g. observingA1A2 for A in this case. Now letPi j be
the proportion ofAiA j and similarPii for homozygoteAiAi. Then we can calculatepi
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· · ·Generation 2

...
...

...

· · ·Generationt

Reference population






Populations
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Figure A.2: Diagram of the infinite reference population and descendingchains of sub
populations of sizeN.

as
pi = Pii +

1
2

∑

j,i

Pi j, (A.1)

where we by convention only considerPi j for which i < j and similar forAiA j. This
relation between the genotype proportions and allele proportions does not rely on any
of the assumptions mentioned above.

From the assumptions of random mating and infinite referencepopulation we have that
the genotype of one individual does not provide any information of the genotypes of
others, hence a independence property among the genotypes of individuals. Returning
to A with the two allelesA1 andA2, we now look at the proportion ofP′i j, which is
the proportion ofAiA j in generationt + 1, wherePi j relates to generationt. From the
independence between genotypes we have that we can multiplythe probabilities of the
genotypesPi j together to have the probabilities of the offspring genotypes. Due to the
low number of possible alleles ofA we can summaries this in Table A.1.

From the information in Table A.1 it is rather simple to find that

P′11 = P2
11 +

1
2 (P11P12 + P12P11) + 1

4P2
12 =

(

P11 +
1
2P12

)2
= p2

1,

and similar forP′12 = 2p1p2 andP′22 = p2
2 where we used (A.1).

We can generalize these equations for a gene with an arbitrary number of alleles to
yield P′ii = p2

i andP′i j = 2pi p j. In population genetics these equations is referred to as
the Hardy-Weinberg law.
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Table A.1: Probabilities of genotypes among offspring.

Offspring
Mother Father Probability A1A1 A1A2 A2A2

A1A1 A1A1 P11P11 1 0 0
A1A2 P11P12 1/2 1/2 0
A2A2 P11P22 0 1 0

A1A2 A1A1 P12P11 1/2 1/2 0
A1A2 P12P12 1/4 1/2 1/4
A2A2 P12P22 0 1/2 1/2

A2A2 A1A1 P22P11 0 1 0
A1A2 P22P12 0 1/2 1/2
A2A2 P22P22 0 0 1

In the discussion above we assumed infinite population size and random mating, but
also that selection, mutation and migration were not present. These three concepts
covers the issue where some combinations of alleles are preferable compared to other
combinations, where alleles is present in generationt + 1 but not in generationt and
were the populations from different chains in Figure A.2 interact, respectively. To
model these issues one must include some further notation, but for discussion of these
issues we refer to Evett and Weir (1998). A final term involvedin population genetics
is an equilibrium situation which was demonstrated above when selection, mutation
and migration were not allowed. Equilibrium can also occur when the three disturbing
forces are included in the model.

When one consider real world data it is necessary to evaluateif the data satisfy Hardy-
Weinberg equilibrium in order to verify that the probabilities of the genotypes can be
estimated by multiplying the allelic proportions.
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