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Abstract

This report documents the design
and implementation of our cross-
language AOP language which can
weave reusable aspects into programs
written in any of several OOP tar-
get languages. Our analysis discusses
AOP language features and our gen-
eralized OOP model, which is the ba-
sis for our language. In order to
achieve cross-language capability we
base our pointcut language on the
logic-meta-programming based JTL
and create a generic advice language.
We demonstrate the language with
two aspect examples on both Java and
C# implementations of simple pro-
grams. We conclude that we have
successfully shown the plausibility of
creating a cross-language AOP lan-
guage, but that several features re-
quire more work and further analy-
sis.
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Synopsis

Denne rapport dokumenterer design
og implementation af vores tvær-
sproglige AOP sprog, der kan weave
genbrugbare aspekter ind i program-
mer skrevet i et af flere OOP sprog.
Vores analyse diskuterer forskellige
AOP sprog-konstruktioner samt
vores generaliserede OOP model,
som er grundlaget for vores sprog.
For at opnå tvær-sproglig understøt-
telse baserer vi vores pointcut sprog
på det logisk-meta-programmerings
baserede JTL, og designer et gener-
isk advice sprog. Vi demonstrerer
vores sprog ved hjælp af to ek-
sempel aspekter for både Java og
C# implementationer af to simple
programmer. Vi konkluderer at vi
har vist at det er muligt at lave et
tvær-sprogligt AOP sprog, men at
flere af vores konstruktioner kræver
videre arbejde og analyse.





Preface

This master thesis is written by group d620a and documents the effort done as
part of a 10th semester Software Engineering project at the Department of Com-
puter Science, Aalborg University. It was written during spring 2007 under
the Programming Technology group and the theme for our project is Aspect-
Oriented Programming.

The thesis documents the development of a cross platform reusable Aspect-
Oriented Language called CLARA. We assume that the reader is familiar with
Aspect-Oriented Programming through reading either our previous report [13]
or other papers on the subject.

As part of our implementation we make use of Java Tools Language (JTL) and
we wish to thank the authors of JTL for their support with its integration into
our project.

References in this report are marked by [x] where x is a number which refer to
an item found in the bibliography.

The accompanying CD contains:

• A copy of the thesis and our previous report in PDF format.

• Source code and binary version of our weaver.

• Source code and binary versions of all example implementations dis-
cussed in Chapter 6.

• A Readme file with further information.
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CHAPTER 1
Introduction

Aspect-Oriented Programming (AOP) was conceived at the Palo Alto Research
Center (PARC) and stemmed from a desire to cleanly capture complex design
structures[22]. With the release of AspectJ 0.1 the goal was restated as the
intent to capture crosscutting concerns, and this has since been described as
being the purpose of AOP. AspectJ has since its release been the dominant
AOP implementation and is often considered synonymous with AOP.

A crosscutting concern is a piece of functionality which has its implementa-
tion spread over different locations in the code. One example of a crosscutting
concern is authentication. Several parts of the code may require that the user
is logged in and has the correct privileges to access those parts. Implementing
authentication in each method requires addition of nearly identical code in all
the methods where authentication is desired. Maintaining the code is problem-
atic, because it requires that all relevant methods are updated when changes
are made, in order to ensure consistent behavior. AOP provides a solution to
this problem by enabling developers to place the concern in its own module,
so maintenance only has to be performed in one place.

AOP introduces new terminology: aspects, join-points, pointcuts, and advices.
Aspects are modules on the same level as classes in Object-Oriented Programming
(OOP), and their purpose is to modularize a crosscutting concern. Aspects ad-
dress crosscutting concerns with advices, a concept similar to methods, which
are executed whenever control reaches one of the locations in the program
where the concern needs to be addressed. The individual locations in the code
where an advice can be executed are called join-points. Pointcuts are used
to specify a certain set of join-points, at which an advice should be executed.
Pointcuts are usually specified as an enumeration of signatures or a signature
pattern of the program elements that should be addressed.

In "Tool Support for AspectDNG - Creating an Advice Wizard for simpler AOP
development" [13] we concluded that pointcuts are the cause of most of the
problems that developers have with AOP. In the report we described a num-
ber of alternative AOP implementations and concluded that they are very sim-
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Chapter 1. Introduction

ilar to AspectJ. Only one of the implementations contained a different way of
specifying pointcuts, namely AspectDNG, which relied on XPath queries over
an XML representation of the target program. Queries in AspectDNG were
however still based on signature patterns. Our solution to the problem of spec-
ifying pointcuts was to provide tool support to create and modify pointcuts, in
order to make pointcuts easier to create and understand.

During our work with the project we found several papers in the literature
that criticized AOP, questioning the proposed benefits of AOP in regards to
the software quality properties. Software quality properties are a set of prop-
erties that every software project should consider when creating their software.
They describe a requirement that is either prevalent during the development
of the software or later on when the project is revised. The bulk of the papers
discusses three of these properties: evolvability, reusability, and understand-
ability.

Evolvability refers to: "the set of activities that are performed to ensure that the
software continues to meet the requirements in a cost effective way[12]. AOP af-
fects evolvability because aspects are dependent on certain assumptions made
in their respective pointcuts. These assumptions are in place because of the
signature based pointcut language that are inherent in almost all of the AOP
implementations. Altman et al. [2], Steimann [27], and Tourwé et al. [28] all
say the same: AOP hinders software evolution, because a change in the base code
might break some of the assumptions made in the pointcuts. The high cou-
pling between aspects and the base code has been dubbed the fragile pointcut
problem by Koppen and Stoerzer [18].

Reusability is a property that in McCall’s Quality Factors is defined as [23]:

The extent to which a program [or parts of a program] can be reused
in other applications - related to the packaging and scope of the
functions that the program performs.

Kniesel and Rho [17] claims that: "Aspects are not reusable". They argue that
due to the signature based pointcut language, aspects addressing a universal
concern (ie. a concern that is prevalent in other projects as well) cannot simply
be moved to another project.

The understandability property dictates that the software should be easy to un-
derstand. AOP affects understandability because it is not possible to see that
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aspects are applied to a program unless you are using an Integrated Develop-
ment Environment (IDE) with support for Aspect-Oriented Software Development
(AOSD). Thus understandability is hard to achieve with respect to giving a
complete system overview. However aspects also improve understandability
because they ensure that the classes only contain what is needed to implement
their concern, and not the concerns that are crosscutting. Alexander and Bie-
mann [1] argue that even though aspects are able to extract and modularize
concerns from the base code, signature based pointcuts nullify this advantage.
The problem is that it is often difficult to specify a proper signature pattern for
all the methods where the concern must be applied. This can be overcome by
appending a suffix to the name of all those methods, which then can be used
in the pointcut. This solution however causes another problem, since meth-
ods now have to follow a specific naming convention the concern is now again
visible in the code.

All of the problems above are related to the pointcut language and several pa-
pers have suggested that a different kind of pointcut mechanism, one which
is based on both program behavior and structure, might solve these problem.
Such a pointcut mechanism would actually be concern based, since it would
focus on the properties of the concern, instead of relying on naming conven-
tions and signatures. We believe that this idea of a concern based pointcut
mechanism is a step towards the original intent of AOP, which was not about
intercepting method calls according to naming conventions, but rather to ad-
dress concerns that happen to crosscut an application.

In previous work[13] we discovered that most AOP implementations were cre-
ated for the Java platform, and that the C# counterparts were very similar to
AspectJ. We believe that this is the case because Java and C# are both OOP lan-
guages and have a similar structure. Due to their similarities a concern based
pointcut language could be constructed to work on the shared set of features
for both languages. If it were possible to make the other parts of an AOP lan-
guage equally generic, it should be possible to create a whole AOP language
that can work on multiple programming language platforms. This idea leads
us to our thesis:

It is possible to create an AOP language which allows creation of
reusable aspects that can be weaved into programs written in mul-
tiple OOP languages, as long as they share a basic set of features
and properties.
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Chapter 1. Introduction

In order to prove this thesis we need to describe the generalized OOP model,
create a pointcut language that can be used to reason about multiple target
languages, and create an advice language that can be translated into multiple
target language.

Overview

The circumstances for our thesis are discussed in Chapter 2 based on related
work. In the chapter we analyze different parts of AOP languages in order to
learn the current state of AOP and what features our language should contain.
We also discuss a generalized OOP model in the analysis chapter and what
implications this model has for our language.

Chapter 3 and Chapter 4 present the design of our language and our weaver.
In the language design chapter we describe how our language features, such
as our pointcut mechanism, are designed. In the weaver design chapter we
describe how the weaver is designed in order to achieve support for multiple
target languages.

Chapter 5 discusses implementation details of our weaver. Chapter 6 con-
tains two examples of aspects and how they are weaved into an application.
The examples are used to demonstrate language features and to show where a
concern based pointcut mechanism makes sense.

Chapter 7 discusses future work, including ideas that were discarded and fur-
ther ideas on how to make good use of our pointcut language. Finally in Chap-
ter 8 we present our conclusion.
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CHAPTER 2
Analysis

In this chapter we intend to determine purpose and use of different AOP
features and constructs by examining related work. This is done in order to
learn how these features should be implemented in an AOP language to cre-
ate a cross-language reusable AOP language. We also discuss our generalized
OOP model for the target-languages we wish to include, in order to determine
whether the model is good enough compared with a language specific model.

2.1 Aspects

In this section we discuss what features aspects can contain, as well as instan-
tiation and inheritance mechanisms.

Aspects can contain more than pointcuts and advices. Many languages allow
for adding fields and methods as well. Fields are often used to store a state or a
configuration of some sort between the execution of an advice. Methods serve
the same purpose as in OOP, to simplify the functionality in other methods (or
in advices).

Aspect Instantiation

It is important how the aspects are instantiated since that will affect how the
aspect members – fields and methods – act when the aspect is applied.

In some AOP languages the aspect is instantiated as a singleton object, where
all fields and methods act as if they were static. Other languages – such as
AspectJ – allow the developer to specify how the aspect should be instantiated.
AspectJ support instantiation per target object, per caller object, per control
flow, and as singleton. A description of the different instantiation methods can
be found in [13].
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Chapter 2. Analysis

Inheritance

AspectJ supports creating abstract aspects where pointcuts must be imple-
mented in a concrete aspect inheriting from the abstract aspect. Abstract point-
cuts can be used to apply an aspect to a concrete system, and specify what
elements of the system that the aspect should crosscut. This feature is useful
to achieve reusability, as the advice effect can be defined universally, and only
the pointcut may need to be changed for different projects. In line with this
reasoning AspectJ only allows pointcuts and methods to be overridden, but
not advices.

2.2 Pointcuts

In this section we examine different forms of pointcut languages in order to de-
termine which best satisfies our requirements of low-coupling between point-
cuts and program structure, and increased understandability.

As discussed in the introduction, pointcuts must not be coupled to program
structure and naming conventions, as this would impede program evolution.
The pointcut language should instead be able to capture sets of join-points that
are related to the concern that is addressed by the aspect. In order to achieve
this, the pointcut language may need to analyze program behavior, such as
execution- or data-flow.

Pointcut Languages

Several papers have suggested alternative pointcut languages, often based on
the declarative programming paradigm. The following sections describe the
different approaches that are currently described in the literature.

Signature Based Pointcuts

The signature based pointcut language used in e.g. AspectJ is a relatively sim-
ple form of pointcut language. Signature based pointcuts capture join-points
based on basic structural properties such as namespace, class, return type, ar-
guments, and names visible in the signature of an element. It is usually possi-
ble to use wildcards to specify patterns of names to capture multiple elements
based on naming conventions. This means that pointcuts are tightly coupled
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with their captured join-points, as simple refactoring may result in overmatch-
ing or accidental misses. This form of pointcut language can only be used to
query program structure, and not interdependencies.

Although AspectJ mainly relies on signature based pointcuts, it has some few
additional pointcut designators that can be used to reason about interdepen-
dencies between program elements. These include dynamic features like cflow
or withincode to capture method calls only from within a certain context. Still,
more complex relationships cannot be expressed in the AspectJ pointcut lan-
guage.

Model Based Pointcuts

In order to avoid tight coupling between pointcuts and program structure, Kel-
lens et al. [14, 15] propose to make pointcuts query a generated model of the
program, instead of the program structure itself. The generated model is a
classification of program elements, i.e. it consists of sets of program elements
that share a common purpose or are otherwise related.

To capture these sets of program elements, their examples use the CARMA
language, which is a logic language supporting Logic Meta Variables (LMVs)
and features predicates that are similar to the pointcut designators found in
AspectJ.

The CARMA language is still tightly coupled with the program structure, and
the authors acknowledge that this shifts the problem from maintaining proper
pointcut definitions towards maintaining a proper program model. In order to
simplify this task they propose a tool support solution, which tries to discover
mismatches as the program evolves. The tool examines the program elements
within one category of the model and determines how many of the constraints
associated with the category are satisfied by each of the contained program
elements. If a program element is classified as belonging to a certain category,
but does not satisfy all of its constraints it is flagged as a potential mismatch,
and vice versa.

The authors also state that pointcuts should be independent of the actual im-
plementation of the generated program model, i.e. the program model could
be generated using a different language than CARMA. This means that us-
ing a different model language, which decreases the coupling between model
categories and the program structure may reduce or remove the necessity for
mismatch checks during program evolution.
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Chapter 2. Analysis

Logic Meta Programming (LMP)

LMP has repeatedly been suggested as an alternative to current typical point-
cut languages in the AOP literature. LMP is a meta-programming model that
uses logic queries to reason about other programs. One common characteristic
of this approach is the use of LMVs. LMVs can be used to specify that e.g. two
references to a class within one query should both refer to the same class, thus
providing more control over queries. For more information on these concepts,
refer to [17].

Several different approaches towards the use of LMP in AOP have been sug-
gested and are discussed in the following paragraphs.

CodeQuest [11] CodeQuest is querying tool for software, that can be used for
AOP. It uses Datalog as its query language and supports the addition of
new predicates to the query evaluator. At the time of writing, no public
version of the tool is available[10].

LogicAJ2 [25] LogicAJ2 is the successor to LogicAJ, a language with the pur-
pose of adding LMP to AspectJ. LogicAJ2 uses a different pointcut model,
based on three simple predicates that are able to capture the entire spec-
trum of structures in Java. The new version also contains LMV. At the
time of writing, only the first LogicAJ version is publicly available[24].

Alpha [21] Alpha is an aspect language that grants access to the execution
trace, the syntax tree, the heap, the static type system and more. The rea-
son for doing this, is that it should enable the addition of more modular
pointcuts, that are able to cope with software evolution. At the time of
writing, no public version is available[20].

JTL [8] Java Tools Language (JTL) is designed to be a universal and high-level
query language for selecting program elements in Java programs. Its
purpose is to serve other source code software tools. It is not specifically
created with the intent of using it with AOP, but the language is similar to
the other logic languages used in pointcuts. The authors have suggested
using JTL for other languages – specifically C# – in [7]. A public version
is available on the official JTL wiki[6].
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2.3 Advices

In this section we present related work on advices. Advices can access var-
ious information from the base program, and several ways of accessing this
information are presented in the first section. The second section presents a
categorization of how advices interface with base-level programs. Finally we
discuss whether advices are reusable.

Context Access

Existing AOP languages provide access to different amounts of context infor-
mation inside an advice. The context information can be used to perform dy-
namic checks at run-time such as pre- and post-conditions, or be used to ma-
nipulate the computation.

If the advice crosscut a method or constructor call, or a field access, the tar-
get object can be accessed in a similar fashion as the executing object can be
accessed through a this variable.

The Josh language[3] give access to the arguments through variables $1, $2,
with one variable for each argument without a need to specify the argument
binding. AspectJ requires the advice and pointcut to specify an explicit binding
of arguments, for them to available inside the advice body. The use of LMV
requires the same mechanism as what is used in AspectJ.

AspectJ and other AOP languages, such as the one presented by Kniesel and
Rho [17], have a mechanism for handling lists of arguments for method and
constructor calls. In the language presented by Kniesel and Rho, the argument
lists can be forwarded to other methods. This allow the advice to work in a
generic way.

The return value of the crosscut method or field access can be used to assert
post-conditions, or to determine if other information should be updated. In
AspectJ the return value is accessed by capturing the return value from the
proceed call, and in Josh the return value is accessed using the $_ variable.

Access to the execution flow or the call stack can be used to programmaticly
determine if an advice should be executed, or to use the information in tracing
or logging aspects.
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Chapter 2. Analysis

Interaction with The Base-program

Dantas and Walker [9] present a harmless advice language, where advices do
not interfere with the base-level program. Initially the authors wanted to cre-
ate an advice that was unable to perform any operation that could possible
harm the further execution of the program. They came to realize later that this
sort of advice would be useless, and decided to allow I/O operations as well as
changes to the termination behaviour of the computation. The authors argue
that the harmless advices allow for local reasoning about the program behav-
ior, and base-level programmers can remain oblivious to the aspects crosscut-
ting the system. However, they also argue that since they deem it necessary to
allow for operations such as I/O, this means that the advice is not completely
harmless anymore.

Rinard et al. [26] presents a classification system for aspects and their advices.
The idea is that an advice can be categorized based on its interactions with the
base code. The authors describe two different categorizes, direct and indirect
interactions. A direct interaction describe an action that can change the current
control flow. An indirect interaction describes how an advice uses the data
used by the target method.

Direct Interactions

The direct actions are the most interesting, because they define to which extend
an advice affects the program flow. The following is a summary of the different
types of direct interactions:

Figure 2.1: Interaction diagram: Augmentation
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Augmentation An advice that always executes the target method is classified
as having an augmentation interaction. The advice logic is executed be-
fore and after execution of the target method, but the target method is
always reached as shown in Figure 2.1.

Narrowing An advice that only executes the target method if some condition
is met is classified as having a narrowing interaction. If the condition is
not met the target method is not executed and the advice exits either with
an exception or by returning control to the caller as shown in Figure 2.2.

Figure 2.2: Interaction diagram: Narrowing

Replacement An advice that completely replaces the behavior of the target
method, and where the target method is never executed, is classified
as having a replacement interaction. Replacement advices use a static
pointcut that checks for a certain condition, compared to the narrowing
interaction where the condition is checked dynamically.

Combination If an advice is neither an augmentation, narrowing, or replace-
ment advice, it is called a combination advice. The exact behavior of this
form of advice cannot be summarily described or predicted.

Indirect Interactions

The indirect interaction between an advice a and a set of methods M is specified
as the scope describing what distinct field accesses are made in a pair of <
a,M >.

Table 2.1 summarizes what access operations are allowed in order for an advice-
method interaction to be classified as one of the indirect interactions.
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Interaction Accesses <advice, method>

Orthogonal <r,> <w,> <,r> <,w>
Independent <r,r>
Observation <r,w>
Actuation <w,r>
Interference <w,w>

Table 2.1: Accesses in indirect interactions. <r,w> indicates that the advice reads a field writ-
ten by a method in that scope.

Using the classifications mentioned above, a harmless advice can be classi-
fied as either an augmentation or narrowing direct interaction, and a orthog-
onal, independent, or observation indirect interaction. Clifton and Leavens
[4], Clifton et al. [5] also divides aspects or rather advice into two categories,
spectators and assistants.

Reusability

If an aspect only contains code that makes use of the underlying framework
and no project specific code it is reusable. The problem is that many aspects
need project specific advice.

Kniesel and Rho [17] argue that the first generation of aspect languages do not
support a high level of reusability, due to a lack of support for aspect gener-
icity. They define genericity as "the ability to concisely express aspect effects that
vary depending on the context of a join point known at weave-time". They propose
integrating LMV into advices to further enhance the reusability of aspects. We
discuss this further in the future works chapter (see Chapter 7).

2.4 Generalized OOP Model

In order to support multiple target OOP languages, a common set of OOP
language features has to be identified. If the feature list allows for sufficient
expressiveness in the AOP language, the list will be used in the design of the
pointcut and advice languages. The identification analysis is preceded by a
discussion of which of these features are commonly used by AOP systems. The
initial analysis is based on a small set of OOP languages; Java, C#, Ruby, and
Python. The four languages are represented on Tim O’Reilly’s Programming
Language Trends[19].
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After we have identified the set of common properties in the four languages,
we discuss how properties outside of the model affect the usefulness of the
model. Finally we present a language that is not covered by the model.

2.4.1 OOP Features in an AOP Context

In this section we describe what properties the generalized OOP model must
contain in order to provide sufficient information to be used in an AOP context.

Structural properties The structural properties can be used to restrict an as-
pect to a specific part of the target program. The structural properties
consists of; The hierarchical structure of namespaces. Names and signa-
tures of the set of classes, methods, constructors, fields, and constants.
Access modifiers to differentiate between elements that are part of the
public interface, or private implementation elements. Differentiating be-
tween public and private interfacces

Behavioral properties The behavioral properties of the program consists of
the set of actions that can be performed inside a method and constructor.
The actions include method calls, field accesses, and raising of excep-
tions.

Control flow properties The control flow properties describe the execution
flow of a program at run-time. These properties can include information
about the call stack and loop iterations, and be used to describe relation-
ships among behavioral properties and control flow properties.

Constraints can be placed on the different properties to restrict what parts of
the target program are affected by an aspect.

2.4.2 OOP Language Features

For each language feature, the similarities from the majority of the analyzed
languages will be described, followed by a description of any irregularities.

Namespaces A namespace is used to group related classes into a single unit.
The namespaces can be referenced by consumer code outside the names-
pace. The namespaces are placed in a name hierarchy, and they are iden-
tified by a unique name.
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The namespace concept is named differently in the languages. In Java
they are called packages, in C# namespaces, and in Ruby and Python
modules.

The related items that can be grouped inside a namespace differ greatly
among the languages; Java and C# namespaces can contain classes, in-
terfaces, enums and respectively annotations or attributes. Ruby names-
paces can contain classes, methods, fields, and constants. Ruby classes
can contain methods, fields, and constants. Python namespaces can con-
tain classes, methods, and statements.

In all of the four languages, elements do not have to be defined in a
namespace, but can be implicitly defined in a default namespace.

Inheritance Inheritance allows derived classes to contain the same function-
ality as the class that they are derived from. This allows for greater
reusability, as different classes with different functionality may at the
same time share the implementation of common functionality. Java, C#,
and Ruby all have single inheritance on classes, which means that classes
in these languages can each only inherit functionality from a single class.
In Java and C# interfaces can be used to simulate multiple inheritance.
Python is the only language that has multiple inheritance, allowing classes
to inherit functionality from several classes. Ruby has mixins that can be
used as multiple inheritance.

Class Members Classes can contain a set of class members. All four languages
can have methods, constructors, fields, and constants. Classes can be
nested by placing a class definition inside another class – named inner
classes.

Access Modifiers Access modifiers are used to define a public interface to
consumer code for a module, and to hide implementation details. All
languages have a mechanism for creating public and private methods.
Python uses name mangling1, where private methods have two under-
scores prepended to the name.

Elements can be specified as protected in Java, C#, and Ruby. Protected
elements can be accessed by classes that extend the class, but not by con-
sumers. In Java and C# access to elements can be restricted to only other
members of the same package using respectively the package or internal
access modifiers.

1Using a naming convention to specify a specific property of an element.
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Typing The analyzed languages either have static or dynamic typing. All
the languages have strong typing. Java and C# both have static typing,
where the type is determined at compile time. Ruby and Python have
dynamic typing, all using duck typing, where method calls are not tar-
geted a specific type, but instead any object that contains a method with
the specific signature.

Higher-Order Functions All the languages have some level of support for
higher-order functions. Java uses anonymous inner classes to simulate
anonymous methods, where the anonymous inner class must implement
a specific interface. C# version 1 and 2 have support for delegates, which
are function pointers based on a method signature. C# version 3 has
lambda expressions.

Built-in Data Types The languages have a wide range of built-in data types,
but they differ greatly from one language to another. All languages have
string and 32-bit integer built-in data types. Java, C#, and Python have a
boolean data type, but Ruby does not have a boolean data type. Instead
Ruby considers anything except false and nil as true.2 In Ruby, all nu-
meric data types such as integers of different size and floating points are
combined into a single numeric data type.

Exceptions All the languages have exceptions and support propagating ex-
ceptions up through the call stack from where it is raised until it is caught
by an exception handler. Custom exceptions can be created by extending
a root exception class.

Java support declared exceptions and run-time exceptions, where de-
clared exceptions can only be thrown by methods that have declared that
they can throw such an exception. Ruby have rescue exception handlers,
that allow the associated code block to be executed again.

Concurrency All the languages have support for concurrency, either native
support or through libraries. The concurrency models can differ greatly,
and thus make it hard to find similarities between them.

Control Structures All languages have support for conditional branching such
as if and switch statements, as well as different types of loops.

2http://en.wikipedia.org/wiki/Boolean_datatype#Ruby
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2.4.3 Common Features in OOP Languages

After having analyzed the different OOP features in the four languages, we
have created a list of the common characteristics. Some of the languages pro-
vide multiple possibilities for a specific feature, but we here only look at the
common denominator.

Related classes are grouped into a hierarchical structure of namespaces and
classes. A class can contain methods, fields, constants, and nested classes, that
can have different public and private access modifiers.

All languages have support for higher-order functions, although the degree
of support varies. All languages support four basic data types as built in
data types. These data types are strings, integers, floating point numbers and
booleans. Although Ruby does not acually have a boolean data type as such,
all values can be interpreted as boolean types, with all values other than false
and nil being true.

All languages have a mechanism to handle exceptions during execution. Cus-
tom exceptions can be declared by the developer, and exceptions can be thrown
and caught. Exceptions can be propagated up through the call stack until they
reache an exception handler or result in a runtime error.

2.4.4 Model Limitations

The four analyzed languages all have features that can not be mapped directly
to the generalized model. If a language specific model of join-points is created
for each of the languages, it could contain additional join-points compared to
the generalized model. If important join-points are missing from the general-
ized model, but present in a language specific model, the generalized model
would be less useful than a language specific model. If the missing join-points
are very important concepts in the given language, this could mean that our
language would be unusable to create aspects for programs written in that
language.

The set of access modifiers supported by the four languages differ, and the
generalized model only contain public and private modifiers, where the latter
represents all modifiers that are not public. We have observed in the literature
and aspect examples that when access modifiers are used, they are used to
identify elements part of the public interface. Aspects intercept for instance
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elements in the public interface and enforce pre and post conditions on the
methods. This does not require the aspect to distinguish between protected or
private elements, but only between public and not public elements.

In Ruby and Python it is also possible to place program elements outside of
the general structure of the model, such as placing a function outside of classes
and statements outside of methods. If a program contains much functionality
of this type, using the current model would result in parts of the program
not being addressable by aspects. Further analysis is needed to map these
elements into a generalized model.

All of the features that are not contained in the generalized model are not sup-
ported by any of the major AOP implementations we have seen so far. Our
model is thus at least as expressive as that of any of the existing implementa-
tions, and should be a good basis for an AOP language.

2.4.5 Languages that do not fit the Model

Not all OOP languages can properly be mapped into the generalized OOP
model. Smalltalk is an example of such an OOP language. Smalltalk does
not have a namespace mechanism, although some Smalltalk implementations
– such as GNU Smalltalk – have their own namespace mechanism. Further-
more, exception handlers in Smalltalk can only be associated with classes, and
are only searched for in the class where the exception is raised. It is thus not
possible to propogate exceptions to callers. Since smalltalk includes too many
deviations from our generalized OOP model, we believe that our language
cannot be used to create aspects for smalltalk.

2.5 Summary

Our intention is to create a new AOP language, and in this chapter we ex-
amined whether the usual constructs in an AOP language could be improved
upon. Most notable is the pointcut language, which we propose should be
changed to use a logic based language. Having a logic language for point-
cuts enables us to talk about concerns instead of signatures. Furthermore we
propose adding different advice types, that differ in how they change the pro-
gram flow. The purpose of adding more advice types is to implicitly improve
reusability through improving readability and understandability.
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One of the demands for our language is that is supposed to work on several
OOP languages instead of being language specific. Therefor we created a gen-
eralized OOP model in order to demonstrate that it possible to find a set of
common features for multiple OOP languages.
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CHAPTER 3
Language Design

This chapter discusses our language design based on the requirements from
our thesis in the introduction. The first two sections give an informal overview
of the overall design-decisions and how our language is used, while the re-
mainder of the chapter provides a more formal and detailed discussion of our
language features.

3.1 Overview

While our language was designed from scratch, it builds on the existing ideas
of AOP languages. As such we reuse the concept of aspects representing cross-
cutting concerns, pointcuts are used to target specific parts of the base pro-
gram, and advices are used to implement the desired behavior.

The difference to existing implementations lies in the details of the pointcut
and advice concepts. In order to decrease the coupling between pointcuts and
program structure, as well as meet the reusability requirement, pointcuts are
based on a LMP query language. This makes it possible to reason about be-
havior and concepts, instead of only structure and signatures as in AspectJ.
Similarly advices themselves are more reusable in our language as they are
not written in the language of the specific base program, but instead are writ-
ten in a new language that matches our generalized OOP model. Advices in
this language should then be easily be translated into the target language, as
long as the target language supports the same features as our generalized OOP
model.

Since our advice language is kept simple it sets a certain limit for the power
of expression in advices. In order to avoid this issue we decided to introduce
a new concept called native interfaces, which make it possible to reference
code written in the target language. An aspect that includes a native interface
declaration can only be woven into the target project, if the developer provides
a class that implements the specified interface. Native interfaces thus give
full access to functionality of the target language, while their interface nature
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still upholds the cross-platform and reusability requirement. Native interfaces
are not suppose to be used by every aspect, they are only suppose to be used
when the desired functionality is not possible to express in the aspect. Native
interfaces are explained in further detail in Section 3.4.

In addition to making the language features more reusable in themselves, we
want to enhance reusability by improving understandability. This means that
we introduce new advice types based on the classification of advices in Sec-
tion 2.3 in order to make it more clear what form of advice is used. Further-
more we introduce the policy feature which should make it easier to enforce
policies.

Other common AOP features, such as introductions and control-flow based
pointcuts, are not included in our language. While we recognize their uses,
we feel that they are not required to support our thesis. Instead we wish our
language design to be minimalistic in nature so that we we can focus on those
features that are important to support our thesis. The minimalistic nature of
our language will also become apparent in the following sections, which dis-
cuss our language features in further detail.

3.2 Using the language

This section describes how the language should be used to make best use of the
reusability property. Since aspects are meant to be reusable, it should be pos-
sible to create aspect libraries that can be included in a development project.
These aspect libraries should contain aspects that implement as much of the
functionality as possible, but still allow for project specific customizations, we
call these aspects abstract aspects.

In order to include a specific aspect into the project it would then be necessary
to extend that aspect with a concrete implementation. The amount of required
customization in a concrete aspect should be minimal and mostly consist of
project specific bindings, such as specific class/method names or similar.

If an aspect contains a native interface definition, the developer must also pro-
vide an implementation of that interface before the aspect can be weaved into
the target project. The weaver for our language should provide a way of gen-
erating an interface file for the specific target language, so that the user can
implement that interface.
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3.3 Aspects

Our language differentiates between abstract aspects and concrete aspects, as
concrete aspects typically are project specific, while abstract aspects should
only implement those parts that are not project specific. The syntax for our
aspect declarations thus looks like this.

〈aspect〉 =
’abstract’ ’aspect’ 〈identifier〉 ’{’ 〈aspect-body〉 ’}’ |
’aspect’ 〈identifier〉 ’extends’ 〈identifier〉 ’{’ 〈aspect-body〉 ’}’ |
’aspect’ 〈identifier〉 ’{’ 〈aspect-body〉 ’}’

The aspect-body contains a list of members, that can be pointcuts, advices,
policies, native interface, fields or methods. Each of these elements is described
in more detail in the following sections.

〈aspect-body〉=
〈aspect-member〉 |
〈aspect-body〉 〈aspect-member〉

〈aspect-member〉=
〈pointcut-declaration〉 |
〈advice-declaration〉 |
〈policy-declaration〉 |
〈native-interface-declaration〉 |
〈field-or-method-declaration〉

Inheritance

Only abstract aspects can be extended, and the extending aspect must be a
concrete aspect. Inheritance between two concrete aspects or two abstract as-
pects is not supported. The inheritance mechanism merges all members of the
concrete and the abstract aspects. Any member in the concrete aspect that is
also present in the abstract aspect always replaces the implementation from
the abstract aspect. It is thus not possible to redirect calls to the abstract aspect.
This approach was chosen because we did not want to add any features that
we were not sure would be useful. If the need for deeper leveled inheritance
hierarchies or a super-aspect concept arises at a later time, these features could
always be added later.
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Aspect Instantiation

Aspects are always instantiated as singletons and it is not possible to specify
other instantiation mechanisms. This approach was also chosen due to our
goal of keeping the language design minimalistic. While other instantiation
mechanisms can be useful, they are not essential to support our thesis and can
be added in future iterations of the language design.

3.4 Native Interfaces

The first aspect member we are going to describe is the native interface. The
purpose of this member is to ensure that the expressive power of aspects is
not limited to features in our advice language, while still ensuring that the
aspect can work on different languages. Since our advice language is generic,
it is not possible to invoke anything that is language specific in aspects. For
instance, in an authentication aspect it would not be possible to display a login
dialog which requires a language specific implementation. However, by using
a native interface we can do precisely that.

The native interface is just like a typical OOP interface containing only method
declarations, with the exception that it is declared in the aspect instead of a
separate file. The interface is placed in the aspect file since the interface is
directly required in that aspect, and this ensures that the interface definition
is always present together with the aspect. The syntax for native interface
declarations is:

〈native-interface-declaration〉 =
’NativeInterface’ ’{’ 〈native-interface-member-list〉 ’}’

〈native-interface-member-list〉 =
〈native-interface-member〉 |
〈native-interface-member-list〉 〈native-interface-member〉

〈native-interface-member〉 |
〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’;’
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Example

As an example, consider an authentication aspect that needs to display a login
dialog if the user tries to access certain parts of the application. This aspect
could contain the following native interface declaration.� �
1 NativeInterface {
2 bool authenticate();
3 }� �
The interface should be read just as any normal interface, meaning that it de-
fines one method called authentication which returns a boolean. Before the
aspect containing the native interface declaration can be woven into the tar-
get project, the interface must be implemented. In order to implement the
interface, the weaver is used to generate a interface declaration in the target
language. The following example shows how this may look with Java as the
target language.� �
1 interface Authentication_NativeInterface {
2 boolean authenticate();
3 }� �
After implementing the interface in the target language, the aspect can be wo-
ven into the target program, and all references to the native interface are trans-
formed into references to the class implementing the interface. In the above
example the authenticate method on the interface could thus be used to bring
up a login dialog, which returns boolean specifying whether the login was
successful or not, as shown here.� �
1 isAuthenticated = NativeInterface.authenticate();� �
3.5 Fields

Fields can be used to store state between advice executions, and can be de-
clared with or without a default value. If a default value is specified, it will be
assigned when the aspect is initialized. The syntax for fields is as follows.

〈field-declaration〉 =
〈identifier〉 〈identifier〉 ’=’ expression ’;’ |
〈identifier〉 〈identifier〉 ’;’

Listing 3.1 show an example of how a field can be declared, and referenced
from an advice.
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� �
1 aspect FieldTest {
2 int count = 0;
3 pointcut targetPointcut[M]: "class ’java.lang.String members[M] M.method";
4
5 advice hits: around targetPointcut {
6 count = count + 1;
7 print("Method hits: " + count);
8 }
9 }� �

Listing 3.1: Declaration and use of an aspect field.

3.6 Methods

Methods can be used as auxiliary methods to simplify the logic of advices,
and function similar to methods in OOP classes with arguments and a return
value. Methods can be invoked as statements in the body of other methods or
in advices, or as part of an expression.

Method declarations have the following syntax

〈method-declaration〉 =
〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’{’ 〈method-body〉 ’}’

〈method-argument-list〉 =
〈method-argument〉 |
〈method-argument-list〉 ’,’ 〈method-argument〉

〈method-argument〉 =
〈identifier〉 〈identifier〉

Abstract aspects can, in addition to concrete method declarations, also contain
abstract methods, where the implementation is postponed to a concrete aspect.
Abstract methods can be referenced from within concrete methods and advices
in the abstract aspect.

〈abstract-method-declaration〉 =
’abstract’ 〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’;’

Listing 3.2 show an example of how an abstract aspect (MethodCache) can de-
clare an abstract method (getKey), which is used in the advice cacheResult.
The concrete aspect (MyMethodCache) contains an implementation of the method.
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� �
1 abstract aspect MethodCache {
2 abstract string getKey();
3
4 advice cacheResult: around targetPointcut {
5 string key = getKey();
6 ...
7 }
8 }
9

10 aspect MyMethodCache extends MethodCache {
11 string getKey() {
12 return "mykey";
13 }
14 }� �

Listing 3.2: Declaration and use of abstract method.

Abstract methods and native interfaces have similar purpose, to delegate the
implementation of functionality while providing a clear interface to that func-
tionality. The difference is that abstract methods are implemented with our
advice language, while native interfaces must be implemented with the target
language. As the expressive power of our advice language grows, the need for
native interfaces should diminish, while there likely always will remain some
need for abstract methods.

3.7 Pointcuts

Our pointcut language is based on an already existing implementation in or-
der to be able to focus on other parts of the language. We chose JTL because it
is an LMP based language, and because it was designed to be a pluggable com-
ponent. Incidentally it was also the only language that was publicly available
of the languages we examined in Section 2.2. JTL also aims to enhance un-
derstandability by using a English-like syntax[8], which also makes it a good
choice since enhancing understandability is one of our goals.

3.7.1 Pointcuts as JTL queries

Since we use JTL to evaluate pointcuts, pointcut expressions are the same as
JTL queries. This section discusses syntax and semantics of JTL queries by
showing how such queries are formed when running JTL as a command-line
application. It should be noted that we do not discuss all of the features to be
found in JTL, but only try to give a brief introduction. For more information
on the usage of JTL we suggest reading JTL - The Java Tools Language [8].
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Since JTL is a first order predicate language, the central concept in JTL queries
are predicates. Predicates are used to reason about properties and can be used
to determine the set of elements that have a certain property. A simple exam-
ple is the class predicate which can be used to specify that the element to be
found, also called the subject, is a class. A query in JTL is nothing more than
the evaluation of a predicate itself using the run keywords as in the following
example:� �
1 run method;� �
This query should return all methods that JTL know about, assuming that the
method predicate has been defined. Predicates can be defined either as native
predicates or as user defined predicates. Native predicates are predicates that
are defined as part of the evaluation engine itself, while user defined predicates
are predicates that the user has defined by combining several native or other
user defined predicates. Native predicates usually define atomic properties
which cannot be deduced by looking at other properties. The class property
is such an atomic property, either an element is a class or it is not, the answer
cannot be found by examining other properties, e.g. access modifiers. This
means that the method predicate must be defined as a native predicate, because
the user cannot define his own method predicate based on other predicates.

User defined predicates often match elements with a specific set of properties
by combining several properties. For instance, in theory the following query
should find all public methods that do not return a value.� �
1 pv_method := public void method;
2 run pv_method;� �
This query will not return anything however, since JTL requires a query predi-
cates to specify a specific set of classes to operate on. This can be done by using
a predicate specifying a class combined with predicate that reasons about the
relationship of two elements, such as in the following example.� �
1 pv_method := public void method;
2 all_pv_method[M] := class members[M] M.pv_method;
3 run all_pv_method;� �
The first line defines the predicate that specifies that the subject is a public
void method. The second line specifies that the subject of the all_pv_method
predicate is a class, that the class contains member M, and that M is a public void
method. Incidentally, M is what is called a LMV, as it is both a logic variable,
and a meta variable (as in meta-programming). By specifying the LMV M in
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the argument list of the all_pv_method predicate, JTL knows that the value
returned by the query should not be the subject of the predicate, which is a
set of classes, but instead those elements that match M. In this case the set of
elements would consist of all public void methods in any of the classes that
JTL knows about. This set can be further restricted by specifying a specific
class or set of classes to work on, as in the following example.� �
1 pv_method := public void method;
2 all_pv_method[M] := class is[/java.lang.String] members[M] M.pv_method;
3 run all_pv_method;� �
The / denotes that the following is a string containing the name of a class.
Regular expressions can also be used, as in the following example:� �
1 pv_method := public void method;
2 all_pv_method[M] := class ’java.lang.St?* members[M] M.pv_method;
3 run all_pv_method;� �
Instead of using the is predicate, the above example makes use of a shorthand
notation using ’. Regular expressions in JTL are similar to other well known
regular expressions, except for using the ? instead of the . symbol to de-
note "any character". The logical or operator can also be used in queries. The
following example finds all elements that are either a field or method in the
java.lang.String class:� �
1 field_or_method := [ method | field ];
2 all_pv_method[M] := class ’java.lang.St?* members[M] M.field_or_method;
3 run all_pv_method;� �
3.7.2 Pointcut Declaration Syntax

We use the JTL predicate syntax for out pointcut expressions, with some minor
changes. Pointcuts must begin with the pointcut keyword and all pointcuts
must have exactly one argument which corresponds to the join-point. The
syntax thus looks like this:

〈pointcut-declaration〉=
’pointcut’ 〈identifier〉 ’[’ 〈argument〉 ’]’ ’:=’ ’"’〈pointcut-expression〉’"’

Pointcuts must explicitly state which LMV represents the join-point or set of
join-points in order to make it more clear what the join-point is. If we allowed
some pointcuts to use the implicit subject as the join-point it might be slightly
more difficult to understand what the join-point is in each pointcut.
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3.7.3 Native Predicates

Section 2.4.1 describes three distinct sets of properties that our generalized
OOP model must contain in order to be useful in an AOP context. In order to
make use of these different properties the pointcut language needs to provide
predicates that can be used to reason about these properties. This means that
we need predicates to reason about structural properties, behavioral proper-
ties as well as control-flow properties. However, since control-flow properties
are relatively complex we decided to ignore these in our first version. The fol-
lowing sections describe those predicates that we have found to be necessary.

Structural Predicates

Structural predicates are used to reason about the structural relationships be-
tween entities. They are still more powerful then signature based pointcuts
such as provided by AspectJ, since together with LMVs they can be used to ex-
press complex structural relationships. The following list of predicates allows
us to reason about all of the parts in our generalized OOP model.

X.int subject X is of type int

X.float subject X is of type float

X.bool subject X is of type bool

X.string subject X is of type string

X.void subject X is of type void

X.class subject X is a class

X.method subject X is a method

X.field subject X is a field

X.constructor subject X is a constructor

X.constant subject X is a constant, i.e. an immutable field

X.member subject X is a class member, only returns false for class elements
that are not nested inside another class.

X.private subject X is visible in the declaring class only
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X.public subject X element is visible in all classes

X.static subject X element is static

C.extends[C’ ] subject class C extends the class C’ given as argument

M.overrides[M’ ] subject Method M overrides the Method M’ given as argu-
ment

C.members[M ] subject class C contains a member which is the argument M

M.member_of[C ] subject M is a member of the class C given as argument

Behavioral Predicates

Behavioral predicates make it possible to reason about more than pure struc-
tural behavior. For instance, they can be used to implement synchronization
mechanisms which update some state when a specific set of fields has been
written to. The following list of predicates allows us to reason about all of the
behavioral properties that our generalized OOP model provides.

M.reads[F ] subject method or constructor M reads field F

M.writes[F ] subject method or constructor M writes to field F

M.invokes[M’ ] subject method or constructor M invokes method M’

M.creates[T ] subject method or constructor M creates an object of type T

Comparison Predicates

Sometimes it may be necessary to determine whether a given element has a
given type or is equal (or different) to another element, comparison predicates
make this possible. We thus include the following comparison predicates.

X.is[T ] The type of X is type T

X.is*[T ] The type of X or any of its super classes is type T

X.eq[X’ ] subject element X is the same element as argument X’
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3.8 Advices

Similar to other AOP languages, our language features no before and after ad-
vice types, as these can easily be emulated using around advices. A devia-
tion from most AOP languages is that our language requires that advices are
named because this makes it possible to refer to a specific advice, instead of
just a signature. A well chosen name may also help with understandability.

In order to improve understandability further we decided to provide several
versions of around advices based on the analysis of direct interactions in Sec-
tion 2.3. We hope that stating explicitly how the advice interacts with the base
program makes it easier to understand what the purpose of the advice is. In
order to make this feature useful the weaver must ensure that each of the re-
spective advice types can only be specified for advices that have the correct
behavior.

We do not intend to include any advice type based on the analysis of indirect
interactions, because they are more complicated to reason about for the de-
veloper. The direct interactions deal with control flow, and thus only result
in two possible outcomes: either the advice method is called, or it is not. The
indirect interactions deals with how advice possibly modify fields or other con-
text around the advice method, and while this may provide useful information
to the programmer it requires much more thought to determine whether the
advice is important to look at or not.

The syntax for advice declarations is shown below.

〈advice-declaration〉=
’advice’ 〈identifier〉 ’:’ 〈advice-type〉 〈pointcut-identifier〉 ’{’ 〈advice-body〉 ’}’

Around advice

Around advices provides the superset of functionality for all the other advice
types. The example below displays a typical around advice.� �
1 advice checkAuthentication: around target {
2 if (testAuthentication()) {
3 proceed();
4 } else {
5 NativeInterface.deny();
6 }
7 }� �
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Harmless advice

The harmless advice is based on the harmless advice described by Dantas and
Walker [9]. In semantic terms, this advice must contain a proceed statement
in which the intercepted method is called and the advice should not be able
to cause an error that would stop the execution of the intercepted method.
This means that there are certain restrictions in a harmless advice, it should for
example not be possible to use native interfaces at all, since we can not predict
the outcome of such an action.� �
1 aspect Tracing {
2 pointcut allMethods[M]: "class members[M] M.method";
3
4 advice traceMethod: harmless allMethods {
5 print("entering method: " + ?M.Name);
6 proceed();
7 print("leaving method: " + ?M.Name);
8 }
9 }� �
The effect of having a harmless advice type, is that it safely can be ignored
by the programmer concerned with the base code. A simple example is seen
above, where the aspect is used for tracing. Note that our language does not
contain a print statement – the example above is made to illustrate how we
envision the harmless advice could be used.

Narrowing advice

The narrowing advice is an advice type, where the target method may or may
not be called. Semantically this means that there is a chance that the advice
may call proceed, depending on some condition. Normally this is easily done
using an if-statement but we want to make it more explicit, and base it on a
boolean condition. Therefor we propose the following structure of a narrowing
advice:

〈narrowing-advice-body〉 =
’condition’ ’{’ 〈boolean-statement〉 ’}’ ’successs’ ’{’ 〈advice-body〉 ’}’ ’failure’ ’{’ 〈advice-

body〉 ’}’

The example used in the around advice described before could thus look like
the following:
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� �
1 advice checkAuthentication: narrow targetPointcut {
2 condition {
3 testAuthentication();
4 }
5 success {
6 proceed();
7 }
8 failure {
9 NativeInterface.deny();

10 }
11 }� �
The narrowing advice is all syntactical sugar, since it is suppose to be trans-
formed into a normal around advice containing an if-then-else statement. Pro-
grammers need to be aware of narrowing advice, and we believe that it is eas-
ier to get an overview of the situation if all you have to evaluate is the boolean
statement.

Based on our previous project on tool support for aspect-oriented programming[13],
we envision that in the future this could be built into an IDE. Instead of just
showing the advice name on mouse over, the actual condition could be showed
to the user.

Replacement advice

The final advice type is called replacement advice, because it completely replaces
the functionality of the base code with what there is in the advice. The idea be-
hind the replacement advice is that the programmers can focus on the advice,
instead of the methods that are being captured by the advice. A replacement
advice never contains a proceed call, but can still be simulated by the around
advice, since the only difference is that the advice should not contain a proceed
call.

� �
1 aspect ReplacementAspect {
2 pointcut legacyMethod[C] : "class is[/java.lang.System] members[M] M.name[’

out.println (_)];
3
4 advice replacementAdvice: replaces legacyMethod {
5 // fancy new print line method;
6 }
7 }� �
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Advice Ordering

Advices order is determined by the order that they are written in aspects, the
first advice being woven as the innermost advice, while aspects are woven in
the same order as they are supplied to the weaver. We feel that this provides an
acceptable level of control and understanding over advice ordering, while still
keeping the language simple. Ideally we would want to include a language
mechanism to explicitly specify ordering between advices, but since this is not
an essential feature we decided not to include it.

Summary

Having more than one advice type grants the programmer a quicker and clearer
understanding of what the advice actually does, which should make it easier
to reuse aspects. All of the types above should be transformed into an around
advice, but the only one that is semantically like an around advice, is the nar-
rowing advice. The harmless and replacement advice are different, because
they impose certain restrictions on top of the around advice, that normally is
not present there.

3.9 Policies

Policies allow developers to specify certain constraints on the code, as such
they share the same purpose as the declare error and declare warning constructs
in AspectJ. The policies construct can only be used to declare errors, since we
feel that a policy that is not enforced is useless. During development it may
be useful to declare warnings instead of errors, but we do not consider this
an essential feature. Each policy has a name to make it possible to refer to
a specific policy and to improve understandability, similar to advices. The
syntax for creating a policy is as follows:

〈policy-declaration〉=
’policy’ 〈identifier〉 ’forbids’ 〈pointcut-identifier〉 ’:’ 〈string〉 ’;’ |
’policy’ 〈identifier〉 〈pointcut-identifier〉 ’requires’ 〈pointcut-identifier〉 ’:’ 〈string〉 ’;’

In contrast to advices policies allow pointcuts to capture more than only meth-
ods, otherwise the functionality of policies would be severely limited. In the
following we describe the two policies and how they differ from an example
where we want to ensure that singleton classes have a private constructor.
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Forbids Policy

The basic policy - the forbids policy - corresponds directly to the AspectJ declare
error construct. This means that if the forbids policy matches anything it will
produce a compiler / weaver error.

� �
1 pointcut privateConstructor[M] := "private ctor";
2 pointcut singleton[C] := "class is[C] { public static method is[C] ’getInstance;

}";
3 pointcut SingletonWithoutPrivateConstructor[C] := singleton { no

privateConstructor};
4
5 policy noSingeltonsWithoutPrivateConstructor forbids

SingletonWithoutPrivateConstructor : "A singelton class needs to have a
private constructor";� �

The first pointcut in the example above defines that the class needs to have
a private constructor. The second pointcut – singelton captures all the classes
that are suppose to be singeltons (defined by having a getInstance method).
Finally the third pointcut combines the two pointcuts in order to capture the
classes that are suppose to be singeltons, but does not have a private construc-
tor.

Requires Policy

The requires policy is syntactical sugar on on top of the forbids policy. It allows
the developer to express that program elements with certain properties must
also have some other properties. It is best explained from an example:

� �
1 pointcut privateConstructor[M] = "private ctor";
2 pointcut singleton[C] = "class is[C] { public static method is[C] ’getInstance; }

";
3
4 policy SingeltonRequiresPrivateConstructor singleton requires privateConstructor

: "A singelton class needs to have a private constructor";� �
The example uses the same two pointcuts as defined in the forbids example,
but doest not require an extra pointcut to combine the two. Although the re-
quires policy is no more expressive than the forbids policy, we believe that it
makes easier to read and understand certain policies.
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3.10 Advice Language

Our advice language covers all the of code that can be written inside methods
and advices. As such it contains the typical elements of an OOP language. This
includes data types, variable declarations and assignment statements and con-
trol structures. Finally our advice language differs in the way that values can
be returned, especially the way return values from proceed calls are handled.

Data Types

In the first version of our language we have decided to support the data types
shown in Table 3.1, based on the analysis in Section 2.4:

bool int float string object HashTable List

Table 3.1: Supported types in our language

These types are available in all of the OO-languages we have examined. The
object data type in our language represents any type and requires no type cast-
ing. Instead it is implicitly cast to the correct type, since we did not want
to include a typecasting mechanism in this version. List and HashTable are not
known by the same name in the different languages, but they provide the same
functionality. List is an data type that holds a collection of entities, much like
an array, though with the possibility to change the size dynamically. List al-
lows for the addition or removal of entities, looping over them in a foreach or
while statement and accessing the members through an indexer. An example
of how to use the list is given below.� �
1 List customers;
2
3 customers.add("john doe");
4 customers.add("jane doe");
5 customers.add("james doe");
6
7 // Removes "james doe" from the list
8 customers.remove(2);
9

10 // Prints "john doe" and "jane doe"
11 foreach(customers as customer) {
12 print(customer);
13 }
14
15 // Access the second element in the list. Prints: "jane doe"
16 print(customers[1]);� �
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The HashTable is a data type that also holds entities that are saved with a
unique key. The key can be used to fetch the entity, or to remove the entity
from the collection. Furthermore it is possible to check whether a collection
contains a certain entity by using its key. The hashtable allows for the addition
of new entities by specifying a key and the entity and removing entities by
using the key only.� �
1 HashTable customers;
2
3 customers.add("john", "john doe");
4 customers.add("jane", "jane doe");
5 customers.add("james", "james doe");
6
7 // Test if customers contains "jane"
8 if (customers.containsKey("jane")) {
9 print("Contains jane");

10 } else {
11 print("Does not contain jane");
12 }
13
14 // Removes "james doe" from the hash table
15 customers.remove("james");
16
17 // Prints: john doe
18 print(customers["john"]);� �
Both the List and the HashTable store content as object types. This is a decision
we made to simplify the language, and may later be revised to include support
for generics. These types do not represent every type that could be useful, but
they are enough to showcase our ideas. Besides the types above, we support
also support the void return type.

A complete list of operations available on the two data types List and HashTable
are shown in Table 3.2 and Table 3.3.

List members
Member Description
void add(object E) Add entry E to list.
void remove(int I) Remove entry at index I.
int length() Get length of list.
object [int I] Get entry at index I.

Table 3.2: All members on the List data type.
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HashTable members
Member Description
void add(object K, object E) Add entry E with key K
void remove(object K) Remove entry with key K
int length() Get entry count of table
bool containsKey(object K) Test if table contains entry with key K
object [object K] Get entry with key K

Table 3.3: All members on the HashTable data type.

Operators

Our language supports a basic set of operators that are shown in Table 3.4.

Operator Description
+ Addition and string concatenation
- Subtraction
/ Divisions
* Multiplication
|| Boolean or
&& Boolean and
= Assignment
== Equals
!= Does not equal
> Greater than
< Less than
>= Greater or equal
<= Less or equal

Table 3.4: List of operators

Variables

Variable declarations and assignments work the same way as in Java and C#.

〈declaration-statement〉 =
〈identifier〉 〈identifier〉 ’;’

〈assignment-statement〉 =
〈identifier〉 ’=’ 〈expression〉 ’;’
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〈declaration-assignment-statement〉 =
〈identifier〉 〈identifier〉 ’=’ 〈expression〉 ’;’

Control Structures

The language support three control structures; if statements, while and foreach
loops.

If Statement

If statements uses an boolean expression to determine if the statement block in-
side the if statement should be executed. If the boolean expression evaluates
to false, the statement block is not executed. An if statement can have a list of
additional if statements – else if statements – that are only be checked if the orig-
inal if statement did not execute its statement block. If neither the if statement or
any of the else if statements are executed, the statement block in an else statement
is executed.

The syntax of an if statement is:
〈if-statement〉 =

’if’ ’(’ 〈expression〉 ’)’ ’{’ 〈method-body〉 ’}’ |
’if’ ’(’ 〈expression〉 ’)’ ’{’ 〈method-body〉 ’}’ 〈else-statement〉

〈else-statement〉 =
’else if’ ’(’ 〈expression〉 ’)’ ’{’ 〈method-body〉 ’}’ 〈else-statement〉 |
’else’ ’{’ 〈method-body〉 ’}’

While Loop

A while loop is a control structure, where a statement block is executed as long
the boolean expression associated with the while loop evaluates to true. The
boolean expression is evaluated before executing the statement block. After
the statement block has been executed, the expression is evaluated again to
determine if another iteration of the loop should be executed.

The syntax of a while loop is:
〈while-statement〉 =

’while’ ’(’ 〈expression〉 ’)’ ’{’ 〈method-body〉 ’}’
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Foreach Loop

A foreach loop is a control structure that iterates over a collection such as an
argument list, List, or HashTable. As the foreach loop iterates over the collection,
each item in the collection is assigned to a variable that can be used in the
statement block inside the foreach loop.

The name of the collection that should be iterated over, and the name of the
variable that each element should be assigned to, is specified in the declaration
of the foreach loop as shown in the syntax:
〈foreach-statement〉 =

’foreach’ ’(’ 〈identifier〉 ’as’ 〈identifier〉 ’)’ ’{’ 〈method-body〉 ’}’

Listing 3.3 show an example of how a foreach loop iterates of the elements of
an list.� �
1 List l;
2 l.add(1);
3 l.add(2);
4 foreach (l as e) {
5 NativeInterface.print("Element: " + e);
6 }� �

Listing 3.3: Iterating over a list collection.

Join-Point Context

All of available context information is accessible through a single context ob-
ject, which has the same name as the LMV bound in the pointcut, in order to
provide a consistent way of accessing join-point context. In order to make it
more explicit when the context is accessed, the context object must be refer-
enced with the ? prefix. For instance, if the pointcut for a given advice binds
the LMV M, it would be accessed as ?M inside the advice body. The context
object contains the following properties:

name The name of the method as a string.

arguments A list of all arguments of the target method. Each argument object
again contains properties for value and type of the argument.

returnType The methods return type as a string.

className The name of the class where the method resides in as a string.
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Name, arguments, return types and class name are also available in most other
AOP languages. Since these properties may be useful in advices, for instance
in the condition block of a narrows advice, we have chosen to include these in
our language. The argument list is a read-only list, but is otherwise identical
to the list data type. An example of how to use join-point context in an advice
is given below.� �
1 foreach(?M.arguments as argument) {
2 string type = argument.type;
3 if (type == "int") {
4 int value = argument.value;
5 }
6 }� �
Returning Values

An advice returns a value with the same type as the one that the intercepted
method has. If the intercepted method is called using the proceed statement,
the return value from the intercepted method is stored in an object named
returnValue on the LMV. If the developer does not wish to change the return
value, then it is returned implicitly at the end of the advice without having
used a return statement.� �
1 pointcut target := "class members[M] { public int ’getBalance }"
2
3 advice tracing: around target {
4 NativeInterface.log("Entering " + ?M.name);
5 proceed();
6 NativeInterface.log("Leaving " + ?M.name);
7 }� �
A value can be returned explicitly from an advice by using an return state-
ment. The return statement can be used to return a new value if the intercepted
method violates a post-condition, or a value can be returned before any proceed
call if it is not necessary to call proceed.� �
1 pointcut target := "class members[M] { public int ’fib (int) }"
2
3 HashTable results;
4
5 advice fibCache: around target {
6 if (results.contains(?M.arguments[1])) {
7 return results[?M.arguments [1]];
8 } else {
9 int result = proceed();

10 results.add(?M.arguments[1], result);
11 }
12 }� �
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If an abnormal state is reached inside an advice e.g. the pre or post conditions
are not met, then it is possible to abort the execution and raise an exception by
calling the abort statement. The abort statement aborts execution by throwing
an runtime exception.� �
1 pointcut target := "class members[M] { public int ’getBalance }"
2
3 advice authentication: narrows target {
4 condition {
5 NativeInterface.authenticated();
6 }
7 success {
8 proceed();
9 }

10 failure {
11 abort();
12 }
13 }� �
An advice is required to return a value – implicitly by having a proceed call or
explicitly – or call the abort statement in all code paths to ensure that the advice
always exits correctly. If an advice does not return a value or exception on all
code paths, the compiler gives an error.

3.11 Summary

The overall design of our language is minimalistic and focuses on the pointcut
and advice concepts. While this means that some common AOP features such
as introductions and control-flow were not included, our language is still a
complete AOP language. The improvements that were made with regards to
pointcuts and advices should enhance reusability and also make users want to
reuse aspects. Future iterations of this language should likely concentrate on
adding more features to the advice language, and thus making the language
even more easy to use.
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CHAPTER 4
Weaver Design

This chapter presents the design of the weaver and its sub-components. The
first section presents an overview of the weaving process and what compo-
nents are involved. The second section presents the design of the different
components. Finally we present the design of the command line interface for
the weaver executable and how it should be used by a developer.

4.1 Weaver Process

The aspect weaver is equivalent to a normal compiler with the exception that
the weaver does not create a new executable program, but the output code is
woven into an existing executable. The result is a modified version of the target
program. In order to do this the weaver works the same way like a complete
compiler, only with the added step of weaving the generated code into a target
program.

Figure 4.1: Tombstone diagram of weaver for the .NET platform with component names at the
top. Grayed elements indicate platform dependent components.

The aspect source files go through different representations during the weav-
ing process. Some of the representations are dependent on the platform that
the aspect is to be weaved on. The diagram in Figure 4.1 is a combination
of a tombstone diagram and a simple flow diagram, and it show the different
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steps of the weaving process and what representations are used in the different
steps. This process is described in more detail in the remainder of this section.

Syntactical and Contextual Analysis The first two steps of the weaving pro-
cess is the syntactical and the contextual analysis, which we do not want
to describe since it works just like in any other compiler. The end result
after these two steps, which is a list of all the aspects, is sent to the next
step.

Aspect Inheritance In the third step, all concrete aspects that extend an ab-
stract aspect have the inherited members merged from the abstract as-
pect. Concrete and abstract aspects are merged instead of linked together
because we assume that there will usually only be one implementation
for each abstract aspect. Merging aspects will thus not waste much mem-
ory and perform better, in addition to being a simple solution. A list of
concrete aspects is sent to the next step.

Policy Enforcement The fourth step is enforcement of policies. Before modi-
fying the target program, all policies are evaluated. If a policy is violated
the weaving process is aborted and reason for the policy violation is dis-
played. If no policies are violated, then the list of all concrete aspects is
sent to the next step.

Aspect Weaving When all aspects have been parsed and checked against the
contextual constraints and policies they are weaved into the target pro-
gram. The actual weaving consists of two steps: weaving of the singleton
aspect class into the target program, and weaving the advices into the
methods they advise.

A singleton class is created for the aspect for the target language of choice,
and then compiled. The singleton aspect class contains all of the methods
and fields of the aspect. If a native interface has been declared, the sin-
gleton object also contains an object with the type of the native interface
class. The fields, methods, and the native interface object can be accessed
from within advices and methods through the getInstance() method on
the singleton class. Once it is compiled it is then woven into the target
program. The name of the generated singleton class is sent to the next
step together with the list of advices and pointcuts in the current aspect.

For each advice in an aspect, the list of all join-points that the pointcut
associated with the advice is found by evaluating the pointcut using JTL.
For each join-point in the result list, an instance of the advice is weaved
into the target method associated with the join-point.
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In order to weave an advice, the target method in the target program is
renamed by adding the old_ prefix. If a method already exists with the
old_ prefix, a unique name is generated that is used instead. The advice
method from the aspect class is then moved into the target program, re-
placing the original method. Any calls to the proceed method are finally
changed to calls to the renamed original method.

4.2 Weaver Components

As described in the previous section, the weaver consists of a lexer, parser,
contextual analyzer, combined code generator and weaver component. The
components are realized as the classes shown in Figure 4.2. Since the weaver
must handle multiple platforms, the weaver architecture is modularized, so
that any step involving platform-dependent operations can use different com-
ponents depending on the the target platform. This means that a new target
platform can be added by only implementing the platform specific compo-
nents and without having to change the platform independent components.

Figure 4.2: Weaver class diagram

The weaving process is controlled in the main method of the Compiler class,
that uses the different components – parser, contextual analyzer, and code gen-
erator – as properties. The Parser class reads individual tokens with the help
of the Lexer class and uses these to create an Abstract Syntax Tree (AST) of the
input aspect.
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The actual AST consists of several classes in the AST namespace – one class for
each of the productions in the grammar. The AST namespace also contains the
Visitor interface that is used to implement the visitor design pattern on top of
the AST. The Visitor interface is implemented by the abstract ASTWalker class.
The implementation in this class provides in and out methods for each node,
and calls the visit method of each node and any sub nodes. The ASTWalker class
in turn is extended by the ContextualAnalyzer and CodeGenerator classes.

Finally the CodeGenerator class is an abstract base class for the code genera-
tors for each of the target platforms. It provides a set of utility methods that
are useful for code generation, e.g. a set of methods to determine the correct
data types for identifiers. The actual code generation is described in the cor-
responding section for each supported platform in Chapter 5. An instance of
the CodeGenerator class can be instantiated using the abstract class factory de-
sign pattern implemented by the CodeGeneratorFactory class and its derived
classes – JavaCodeGeneratorFactory and CSharpCodeGeneratorFactory.

JTL Pointcut Evaluation

The JTL library is used as a library by the Compiler class to evaluate pointcut
expressions in order to find elements violating a policy and methods inter-
cepted by an advice. Since the JTL engine was written for the Java language, it
requires some modifications in order to support multiple languages. We begin
by describing how the original and unmodified version of JTL evaluates point-
cuts, before discussing the required changes in order to make JTL capable of
evaluating predicates for multiple languages.

Overview of the JTL Engine

In order to understand the modifications that need to be made to the JTL en-
gine it is important to understand the overall architecture of the engine, as well
as the workflow for the evaluation of predicates. This section discusses the
evaluation of predicates in an unmodified release of JTL using version 0.1.13..

On startup JTL is supplied with an argument, specifying the input program.
When JTL evaluates a query it first looks up all classes that are present in the
input program and stores their fully qualified name in an array for later use.
The predicate expression is then evaluated by evaluating each of the native
predicates individually.
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In order to evaluate a native predicate that does not operate on class names
alone – such as the is predicate – it is required to determine the set of fields and
methods of a given class, and often the instructions contained in the methods.
This is done by creating a model of the class, containing representations of the
fields and methods in it. In version 0.1.13 of JTL these class models consist
of both Bytecode Engineering Library (BCEL) as well as Java reflection classes,
because the first versions only used reflections and BCEL was only added later.
The Java reflection classes are used to reflect over the general structure of the
class, while the BCEL classes are used to reflect over instructions in methods
and constructors.

The actual evaluation of a native predicate is performed by traversing the class
models for all input classes. Matches are stored in a hash map for the predi-
cate, with class or method signature as key and the value being a list of all the
matches for the given class or method. Any program element that matches
the type of the predicate is considered a match, not only those that match any
supplied arguments. For instance, the reads predicate will store all field read
instructions for a given method in the output list, not only those that match
the supplied argument. Only when each of the native predicates has been
evaluated individually are the exact matches for the query calculated, and the
results returned.

Cross-platform Layer

Since the unmodified JTL engine uses a Java-specific model of classes in form
of reflections and BCEL classes, it is not well suited to handle multiple plat-
forms by default. In order to overcome this problem we need to introduce a
platform independent layer between predicate evaluation and the generation
of class models. The platform independent layer should consist of a pack-
age with abstract classes representing the various program elements, such as
classes, methods, and instructions. The package should also contain an ab-
stract class-factory class which can be used to obtain representations of spe-
cific classes. Each supported target platform then requires an implementation
of these abstract classes, possibly using platform specific bytecode engineering
libraries or by invoking external applications.

The generic platform-independent package should also contain a factory sin-
gleton class, providing access to and instantiating the correct class factory ob-
ject based on the current target platform. The factory class should determine
the correct target platform, based on a command line argument.
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Figure 4.3: JTL class diagram

A simplified version of the class diagram for the cross-platform layer, which
shows none of the instruction related classes, is shown in Figure 4.3. The class
diagram illustrates the general process of providing abstract classes for differ-
ent program elements and implementing them for each target platform. It also
shows the design of the class factory pattern which is used to instantiate class
objects.

4.3 Using the Weaver

The weaver must support two basic tasks: extracting a native interface declara-
tion from an aspect, and weaving aspects into a target program. The following
sections present the command line interface of the weaver executable, and ex-
amples of how the weaver is used to perform specific tasks.
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Command-Line Interface

The command line interface of the weaver contains four switches that allow
the user to specify the input to the weaving process. The general command
line used to invoke the weaver is as follows:

java Compiler -language:<language-identifier> [OPTIONS] ASPECT_FILE

Where optional arguments can be any of the following:

-target:<target-file> Specifies the target program. In order to include several
assemblies or class files, this argument may be specified multiple times.

-nativeclass:<native-class-file> This argument specifies the class name of the
class implementing the native interface. The class must be contained in
one of the files specified with the target argument.

-generatenativeinterface If this argument is specified the weaver will not ac-
tually weave any aspects, but instead extract a native interface declara-
tion into source code format for the selected language.

The -language argument is obligatory, since it is required for both weaving of
aspects as well as generating interface classes. Specifying an aspect file is also
obligatory since the weaver can do nothing without an aspect.

Workflow Example

This section discusses an example of how the weaver can be used in the de-
velopment process. Assuming that the developer is standing in the root of
his Java-based target project, the developer can extract a native interface into
a Java interface from an authentication aspect placed in the file auth.xpa by
executing the following command:� �

java -jar weaver.jar -language:java -target:. -generatenativeinterface auth.xpa� �
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This will extract the required native interface as source code and place it in the
same directory. The developer can now create a new class implementing the
interface. Once the interface has been implemented in the NativeBridge class,
the developer can now use the weaver to weave the aspect in the following
way:� �

java -jar weaver.jar -language:java -target:. -nativeclass:NativeBridge auth.xpa� �
In Chapter 6 we present more examples of how the user can be used.
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CHAPTER 5
Weaver Implementation

This chapter presents the implementation of our weaver. The weaver is built
like a compiler, with the difference that instead of compiling code to a new exe-
cutable, the code is woven into an existing executable. We do not discuss those
parts that are common in compilers, such as parsing and contextual analysis.
Instead we focus on describing how we achieve support for both Java and C#
as target languages.

It should be noted that as part of our weaver implementation we implemented
the cross-language layer in JTL as discussed in Section 3.7. We also imple-
mented all required native predicates that were not already present in the orig-
inal JTL release.

5.1 Java Support

The Java implementation of the cross-platform package wraps the BCEL classes
and redirects method calls to the wrapped BCEL objects. We upgraded to ver-
sion 5.2 of BCEL which provides some additional functionality to traverse class
and method hierarchies, making it somewhat easier to remove the dependency
on the reflection classes.

The class factory loads classes only on demand and stores them in a hash map
after creation, in order to prevent unnecessary class loading operations. When
the class factory is instantiated the path to the system libraries is added to any
classpath arguments the user may have provided, so that JTL is able to find
program elements that are in the system library.

The set of input classes is determined by scanning the classpath for all classes.
The classpath consists of any paths the user has specified when invoking the
weaver, as well as the path to the system libraries.
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Weaving

After the AST for the aspect has been generated, the first step is to generate
source code for the aspect singleton class, containing fields, methods, and the
native interface object, if one has been defined. The source code is compiled
with the default Java compiler and placed in a package called aspect. In addi-
tion to the aspect class file, code for the native interface as well as the argument
class is generated and placed in the aspect package.

After creating the aspect singleton class, the individual advices are woven in
for each target method. Source code for the target method is created and placed
in an empty class definition together with an empty proceed method. This
class is compiled and loaded with BCEL in order to move the advice method
into the target class file, which is also loaded with BCEL. The original method
is renamed by adding old_ as a prefix, and the advice method in inserted in its
place with the name of the target method. Any calls to the proceed method in
are replaced with calls to the renamed target method. If the target method is
not a void method, a store instruction is added to store the result of the call in
a new local variable, which is also loaded just before the return instruction. If
there is no return instruction, or the user explicitly returns another value, the
variable is ignored.

Finally, the modified class object is written to the original class file.

5.2 C# Support

Compared to the Java platform support, the support for the C# language has
to go through an extra step in order to obtain the OOP model from the target
program, and in order to weave the aspects into the target. The support for C#
uses two external tools – written in C# – to reflect and manipulate .NET assem-
blies, instead of accessing the target program directly from the .NET modules
written in Java. The Mono.Cecil1 .NET class library is used in the two C# pro-
grams for both reading the OOP model and for performing the weaving of
aspects into the target program.

1http://www.mono-project.com/Cecil
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JTL Integration

As described in Section 4.2 JTL needs access to a list of all classes present in the
input program as well as all system classes. The class list is read by executing
the external C# program with the input classes as arguments.

The C# program creates an XML-document, and then appends an XML-node
for each assembly. XML-nodes for classes are created based on information
read from the assembly, and the classes methods and fields are added to the
class node. Common Intermediate Language instructions are read from the
method bodies and the opcode and operand are added to the method nodes.

After all classes in the input assemblies have been read, the system classes in
the .NET framework are read as well. To increase performance, instructions
are not read from methods in system classes.

When all classes are added to the XML-document, the text representation of
it is written to standard out, so that the JTL code can read the document and
parse it. Instances of JTL types for classes, methods, fields, and instructions
are created based on the XML-document.

Weaving

Weaving of aspects into the target .NET assemblies begins with generating
C# source code for a singleton class containing the aspect fields and meth-
ods. The C# source code is sent to a .NET program, which compiles the source
code into a .NET assembly. The compiled .NET assembly is opened using the
Mono.Cecil library, and the class is copied into the assembly of the target pro-
gram.

For each method adviced by an advice, a temporary C# class is generated. The
class contains a method containing the advice body with the same signature as
the adviced method, and a method named proceed with the same signature.
proceed statements are inserted as calls to the proceed method in the tempo-
rary class, with the methods arguments sent directly to the proceed method.

The generated C# class is compiled into a temporary assembly, which is opened
using the Mono.Cecil library. The target method is found in the target assem-
bly, and a copy is made of the method and inserted into the assembly named
old_MethodName if the method is named "MethodName".

53



Chapter 5. Weaver Implementation

All instructions in the target method are removed, and the instructions from
the advice method are inserted into the target method. The call instruction
to the proceed method in the temporary class is changed to call the renamed
target method.

When the advice has been woven into the target assembly, the assembly is
saved.

5.3 Missing Features

This section discusses the features from our design which we have not yet
implemented.

Harmless advice The harmless advice is currently not implemented. Since
our current advice language does not offer any form for I/O, the harm-
less advice would still be useless if it were implemented, as it could not
be used for any purpose at all. For instance, tracing is an example for a
harmless advice, but since it is not possible to report the trace in any way,
it would be useless.

Ruby and Python Support The generalized OOP model we discussed in Sec-
tion 2.4 included Java, C#, Ruby, and Python. The implemented weaver
only has support for the Java and C# languages, and thus support for
Ruby and Python still needs to be implemented.

We actually have a partial implementation for Ruby, using JRuby2, but
we did not have time to finish the implementation and decided to not
discuss it any further. We assume that Python support could be imple-
mented using the Jython3 class library, but have not tested it further.

In both the Ruby and Python implementation, the native interface decla-
rations would need to be extracted into a class stub instead of an interface
declaration since the two languages does not support interfaces. The re-
spective implementations of the cross-language layer in JTL should be
implemented to only read elements that can be mapped into our gener-
alized OOP model.

Requires Policy The requires policy is not yet implemented due to time con-
straints.

2http://jruby.codehaus.org
3http://www.jython.org/
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List and Hashtable The List and Hashtable data types could not be imple-
mented due to time constraints

Foreach The foreach control structure was not implemented due to time con-
straints.

Weaving The current weaver implementation always uses the old_ prefix to
renamed advised methods. The implementation should adhere to the
design and prevent naming collisions by using different prefixes, in case
a method with the prefixed name already exists. In addition to this the
weaver does not weave advices into the existing executables or assem-
blies, for instance the java weaver creates new class files instead of weav-
ing into an existing jar file.
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CHAPTER 6
Demonstration of Language and Weaver

This chapter presents two complete examples of how aspects are implemented
in our language and how the weaver is used during the development work-
flow. Language independent parts of the examples are implemented on all the
language platforms supported by the weaver. The description of the first ex-
ample is organized to fit the process described in Chapter 4 - Weaver Design
in order to make the process more clear:

• Development of the aspect

• Extracting the native interface

• Weaving the aspect

The second example is discussed in less detail in order to focus on important
parts, which are the concern based nature of the aspect and its pointcut.

6.1 Example One - Bank Application

The first example is a bank application that is used by bank tellers to perform
money transactions for customers that walk in from the street. The applica-
tion allows the teller to deposit to or withdraw from an account, and transfer
money to another account.

The class diagram in Figure 6.1 shows the classes of the bank application. The
Bank class contains the database of customer accounts and user credentials for
bank employees. The Account class identifies an account by its account num-
ber and stores the current balance. The account can be manipulated using
the Deposit and Withdraw methods. The User class is an abstract class that
identifies a bank employee by a username and password. The Teller and
Supervisor classes are both concrete classes that extend the User class, and
they are used to differentiate between what privileges the user has.
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Figure 6.1: Bank application - Class diagram

An aspect is used to improve the functionality of the bank application. The
Authentication aspect will be described in the following section. The aspect
contains a native interface that is used to communicate with the bank applica-
tion, and the interface is implemented by the NativeBridge class.

6.1.1 Authentication Aspect

To avoid fraud, an upper limit is placed on how much tellers can withdraw
from a bank account. If the teller attempts to make a large withdrawal – above
$1,000 – a supervisor has to the approve the transaction, otherwise the trans-
action is aborted.

This upper limit on withdrawal transactions is implemented using an authen-
tication aspect – shown in Listing 6.1.
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� �
1 aspect Authentication {
2 NativeInterface {
3 bool authenticate();
4 void deny();
5 }
6
7 bool isAuthenticated = false;
8
9 pointcut withdrawMethod[C] := "method ’Withdraw member_of[C]";

10 pointcut targetMethods[M]:= "class ’BankApplication.Account is[C] members[M]
M.withdrawMethod[C]";

11
12 bool askForAuthentication() {
13 if (NativeInterface.authenticate()) {
14 isAuthenticated = true;
15 return true;
16 }
17 return false;
18 }
19
20
21 advice largeWithdrawals: narrows targetMethods {
22 condition {
23 ?M.arguments[0].value < 1000 || isAuthenticated ||

askForAuthentication()
24 }
25
26 success {
27 proceed();
28 }
29
30 failure {
31 NativeInterface.deny();
32 }
33 }
34 }� �

Listing 6.1: Authentication aspect.

The authentication aspect contains a native interface declaration with two meth-
ods. authenticate() prompts for the approval of a supervisor and returns a
boolean value representing if the approval was given. deny() displays an error
message to the teller that since the approval was not given, the transaction can
not be completed.

The aspect field isAuthenticated is used to store if the teller was previously
given an approval. The pointcut targetMethods[M] captures all calls to the
Withdraw() method on the account class.

The narrows advice largeWithdrawals uses the boolean expression in the nar-
rowing condition to check if the withdrawal should be allowed. The with-
drawal is allowed if the requested amount is below $1,000, if the teller has
previously received an approval, or if the supervisor gives his approval.
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If the condition evaluates to true, the success block of the narrowing advice is
executed. The Withdraw() method is called using the proceed() statement.

If the condition evaluates to false, the failure block is executed. Using the na-
tive interface method deny(), the teller is informed that the withdrawal is not
allowed, and the transaction is aborted.

Since the Withdraw() method returns void it is not necessary to return a value
or call the abort() statement in either the success or failure blocks.

6.1.2 Extracting a Native Interface

The authentication aspect contains a native interface, with two methods as
seen in Listing 6.1. The native interface can be extracted from the aspect dec-
laration be executing the weaver with the -generatenativeinterface option.
Listing 6.2 show how the interface is extracted from the aspect into a Java in-
terface.� �

$ java -jar weaver.jar -generatenativeinterface -language:java auth.xpa� �
Listing 6.2: Command line to extract the native interface into a Java interface.

The extracted interface for each of the supported platforms in shown in List-
ing 6.3 and Listing 6.4. The interfaces are implemented in the bank application
in the class NativeBridge (shown in Appendix C), and provided to the weaver
when weaving the aspect into the application.

Java interface

� �
1 interface Authentication_NativeInterface {
2 boolean authenticate();
3 void deny();
4 }� �

Listing 6.3: Native interface extracted into a Java interface.

C# interface

� �
1 interface Authentication_NativeInterface {
2 bool authenticate();
3 void deny();
4 }� �

Listing 6.4: Native interface extracted into a C# interface.

60



6.1.3 Weaving the Aspect

When the aspect has been implemented, and the native interface implemented
in the NativeBridge class for the target platform, the next step is to weave the
aspect into the bank application. Listing 6.5 show the command used to weave
the aspect into the Java bank application.� �

$ java -jar weaver.jar -language:java -target:BankApplication.jar -nativeclass:
BankApplication.NativeBridge auth.xpa� �

Listing 6.5: Command line to weave the Authentication aspect into the bank application.

The weaver first generates the singleton aspect class Authentication shown in
Listing 6.6, and introduces the class into the bank application.� �
1 package aspect;
2
3 import BankApplication.NativeBridge;
4
5 public class Authentication {
6
7 private Authentication() {
8 isAuthenticated = false;
9 nativeInterface = new NativeBridge();

10 }
11
12 public static Authentication getInstance() {
13 if(instance == null)
14 instance = new Authentication();
15 return instance;
16 }
17
18 public Authentication_NativeInterface getNativeInterface() {
19 return nativeInterface;
20 }
21
22 public boolean askForAuthentication() {
23 if(getInstance().getNativeInterface().authenticate()) {
24 isAuthenticated = true;
25 return true;
26 } else {
27 return false;
28 }
29 }
30
31 private static Authentication instance;
32 Authentication_NativeInterface nativeInterface;
33 public boolean isAuthenticated;
34 }� �

Listing 6.6: Generated Java class for the Authentication aspect.

The Withdraw method in the Account class is renamed to old_Withdraw. The
weaver generates a method for the advice largeWithdrawals, and it is into the
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Account class as the Withdraw method with a reference to the original method.
The resulting Account class is shown in Listing 6.7.� �
1 package BankApplication;
2
3 import aspect.*;
4 import java.io.PrintStream;
5
6 class Account {
7
8 public Account(int i, double d) {
9 accountNumber = i;

10 balance = d;
11 }
12
13 public int getAccountNumber() {
14 return accountNumber;
15 }
16
17 public double getBalance() {
18 return balance;
19 }
20
21 public void Deposit(double d) {
22 balance += d;
23 System.out.println((new StringBuilder()).append("Depositing: ").append(d)

.append(". New balance: ").append(getBalance()).toString());
24 }
25
26 public void old_Withdraw(double arg0) {
27 balance -= arg0;
28 System.out.println((new StringBuilder()).append("Withdrawing: ").append(

arg0).append(". New balance: ").append(getBalance()).toString());
29 }
30
31 public void Withdraw(double d) {
32 MethodArgument amethodargument[] = {
33 new MethodArgument("double", Double.valueOf(d))
34 };
35 if(((Double)amethodargument [0]. getArgumentValue()).doubleValue() < 1000D

|| Authentication.getInstance().isAuthenticated || Authentication.
getInstance().askForAuthentication())

36 old_Withdraw(d);
37 else
38 Authentication.getInstance().getNativeInterface().deny();
39 }
40
41 private int accountNumber;
42 private double balance;
43 }� �

Listing 6.7: Resulting Account Java class after weaving of the largeWithdrawals advice.
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6.1.4 Output

The example application is tested with one account holding $5,000, and we
will execute the following test:

• Open Account #1

• Withdraw $2,000 (should cause a login prompt to appear, because it is a
large amount of money, and thus requires supervisor approval)

• Withdraw $1,500 (should use the previous approval and thus complete).

Listing 6.8 show approval process of the Java bank application. The complete
output of the Java application demonstration is shown in Appendix B.� �
1 Enter amount you want to withdraw: 2000
2 =========================================
3 Your action requires supervisor approval.
4 =========================================
5 Username: boss
6 Password: 1234
7 Withdrawing: 2000.0. New balance: 3000.0� �
Listing 6.8: Part of the console output from the Java bank application. The supervisor is
required to approve the large transaction of $2,000.

Listing 6.9 show a withdrawal attempt that fails, because of an incorrect ap-
proval.� �
1 Enter amount you want to withdraw: 2000
2 =========================================
3 Your action requires supervisor approval.
4 =========================================
5 Username: boss
6 Password: 4321
7 This transaction requires supervisor approval , transaction denied� �
Listing 6.9: Part of the console output from the Java bank application. The supervisor approval
was incorrect and the withdrawal fails.
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6.2 Example Two - Figure Editor

The traditional AspectJ figure editor[16] example is our second example. The
example application consists of a display class Display, which should be re-
drawn every time the position of figure elements is updated. The Point and
Line classes extend the abstract FigureElement class and provide methods to
change the position of the element. The different classes are presented in the
class diagram in Figure 6.2.

Figure 6.2: Figure editor - Class diagram

The traditional OOP solution to the issue of updating the display on changes
of the positions would be to call Display.update() in all of the methods that
modify the position fields – X and Y or P1 and P2.

The AspectJ aspect DisplayUpdating shown in Listing 6.10 contains an enumer-
ation of the methods that change the position of a figure. After one the meth-
ods have been called the aspect call the Display.update() method. This aspect
relies on explicit enumeration of methods and would thus break if the applica-
tion was extended with more figure elements.
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� �
1 aspect DisplayUpdating {
2
3 pointcut move():
4 call(void FigureElement.moveBy(int, int)) ||
5 call(void Line.setP1(Point)) ||
6 call(void Line.setP2(Point)) ||
7 call(void Point.setX(int)) ||
8 call(void Point.setY(int));
9

10 after() returning: move() {
11 Display.update();
12 }
13 }� �

Listing 6.10: AspectJ example of the DisplayUpdating aspect.

Our language allows the aspect to intercept methods based on their behavior
instead of based on names. The aspect in Listing 6.11 intercepts methods that
writes to a local field that are in turn read by the Display.update() method.
These methods are matched by the move pointcut. The repaint around advice
calls the Display.update() method through a native interface.� �
1 abstract aspect DisplayUpdating {
2 NativeInterface {
3 void displayUpdate();
4 }
5
6 abstract pointcut updateMethod[F];
7 abstract pointcut projectClass[M];
8 pointcut move[N] := "class members[M] M.updateMethod[F] F.member_of[B] B.

projectClass[N] N.writes[F]";
9

10 advice repaint: around move {
11 proceed();
12 NativeInterface.displayUpdate();
13 }
14 }� �

Listing 6.11: Our example of the DisplayUpdating aspect using behavioral pointcuts.

The aspect contains an abstract pointcut updateMethod that is used to describe
a specific update method in the target program. The abstract pointcut updateMethod
is implemented in Listing 6.12. A policy is added to the concrete aspect to make
it enforce that developers of the base-level program do not address the concern
manually in the base code. The policy manualUpdates enforces that methods
that change the position can not manually call update method.
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� �
1 aspect FigureDisplayUpdating extends DisplayUpdating {
2 pointcut updateMethod[F] := "method ’update member_of[/FigureEditor.Display]

invokes[M] M.reads[F]";
3 pointcut projectClass[M] := "class ’FigureEditor.?* members[M]";
4
5 pointcut manualUpdate[M] := "class move[M] M.invokes[U] U.updateMethod[_]";
6 policy manualUpdates forbids manualUpdate: "Figure elements are not allowed

to manually update the display.";
7 }� �

Listing 6.12: Concrete aspect that specifies the update method.

This aspect is made reusable by the fact that any updates to fields read by the
update method are automatically intercepted. The OOP developer can thus
add more figure element types without having to extend the concern.

The Pointcuts Explained

The pointcuts used in the Figure Editor example are relatively complex and
are thus discussed in the following paragraphs. The most important pointcut
is the move pointcut, as that is the pointcut that is used in the repaint advice. The
move pointcut depends on two other pointcuts, updateMethod and projectClass.� �

pointcut updateMethod[F] := "method ’update member_of[/FigureEditor.Display]
invokes[M] M.reads[F]";� �

The updateMethod pointcut captures the project specific update method and
defines that the method defined as the subject invokes another method which
reads the field that is added as a parameter to the pointcut. This represents the
invoking of a getter method, which returns the field that is read by the update
method.� �

pointcut projectClass[M] := "class ’FigureEditor.?* members[M]";� �
The projectClass pointcut specifies that the class writing to the given field is
located in the FigureEditor namespace. This prevents the pointcut from cap-
turing methods in system classes, which also write to fields that are read by
the update method.� �

pointcut move[N] := "class members[M] M.updateMethod[F] F.member_of[C] C.
projectClass[N] N.writes[F]";� �

The move pointcut finally captures all target methods N , which are defined as
being methods that exists in a project class and write to a field that is read by
the update method.
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6.3 Summary

In this chapter we have demonstrated how the weaver can be used to weave
a single aspect into an application written in multiple languages. We have
demonstrated that a concern based pointcut can be used to make an aspect
reusable and that it solves the fragile pointcut problem. In the example aspects
we have demonstrated the use of several of our language constructs, such as
native interfaces, narrows advices, and policies. The native interface declara-
tion was extracted into a Java and C# interface, implemented and used in the
final aspect weaving.
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CHAPTER 7
Future Work

In this chapter we discuss possible future improvements to our language, and
new ideas which we have not explored already. We present extensions to the
pointcut language, the advice language, and to two of the advice types.

7.1 Pointcut Language

Our current version of JTL and thus our pointcut language is relatively simple.
This section discusses possible improvements in form of a new JTL version, as
well as syntax modifications.

Updated JTL version

The full JTL query language introduced in [8] included many more features
than those implemented in the 0.1.13 version available for use in this project.
An implementation of the full language specification is scheduled to be com-
pleted in the summer 2007. Among the features included in the full language
specification are full support for querying behavioral properties of methods,
that are only implemented in the form of the reads and writes predicates. The
extended support for behavioral properties include the ability to reason about
how input and output in methods are used using data flow analysis.

Although the pointcut language would greatly benefit from this improved
support for querying behavioral properties, some behavioral properties are not
clear until at run-time, and a set of dynamically evaluated predicates could be
added to handle these scenarios. We propose that predicates to check the join-
point context at run-time are added to the pointcut language, and that those
predicates are excluded from the query sent to the JTL evaluation engine an
instead checked dynamically at run-time in all the methods in the result set.

The dynamic predicates could be used to check control flow properties, or
check some state similar to the if pointcut designator in AspectJ.
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Syntax Improvements

Due to limitations in JTL and our pointcut declaration syntax, the pointcuts
in the Figure Editor example (see Section 6.2) need to be more complex than
we had originally hoped. Improvements on these parts could make pointcuts
much more readable and understandable. To recap, the Figure Editor example
required the following move pointcut:� �

pointcut move[N] := "class members[M] M.updateMethod[F] F.member_of[C] C.members[
N] N.writes[F]";� �

Our original vision of this pointcut was the following:� �
pointcut move[M] := "class members[M] M.writes[F] N.updateMethod[F]";� �

This pointcut captures the concept of a set of methods M writing to a set of fields
F, which is read by an update method N. JTL does not accept a query using this
pointcut, as JTL believes that the LMV N is unbounded. In order for JTL to
understand the bounds for a LMV, the LMV must be supplied as an argument
to a predicate somewhere in the query, as in the following example:� �

pointcut move[M] := "class members[M] M.writes[F] F.read_by[N] N.updateMethod";� �
This pointcut expresses the same idea as previously, but makes sure that JTL
knows the bounds of all LMVs. This above examples shows one of the two
possible solutions for the bounds problem. The first solution is to provide all
native predicates in both directions, e.g. M.reads[F] and F.read_by[M]. This
makes it possible to make the bounds of all LMVs clear to JTL, without sacri-
ficing power of expression. The alternative is to improve the bounds checking
in JTL to analyse and understand complex relationships as in our ideal version
of the pointcut. Since we have implemented neither solution, we were forced
to use the pointcut shown in the Figure Editor example.

Our pointcut declaration syntax could be improved by introducing a predicate
concept in addition to the pointcut concept. While pointcuts always must have
exactly one argument, representing the join-point, predicates would allow any
number of arguments but could not be used as actual pointcuts. Instead they
would be used as helper predicates in actual pointcuts, allowing for greater
freedom in expression concerns, which should improved understandability.
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7.2 Advice Language

The current version of our advice language is very simplistic, as we only re-
quired functionality to write simple aspects. This section discusses how we
believe that our advice language can be improved.

Expressive Power

Future iterations of our language should provide an advice language whose
expressive power is close to mature OOP languages, such as Java and C#. For
instance, our advice language currently does not provide the for and switch
control structures. One important feature that needs to implemented is a form
of object model. Our current advice language is limited to working with prim-
itive types and a simple form of list and map type.

The object model should be used to access members on classes that are part of
the join-point context, for instance arguments or return values.

Class Library

Our advice language should also feature an extensive class library with prede-
fined classes in order to simplify development. The class library should con-
tain classes like commonly used data types, utility classes and input/output
classes. It should also be possible for other developers to create their own class
libraries.

The class library could possibly be realized by creating a form of wrapper im-
plementations for each target language, where each implementation wraps a
class with the same functionality from the target language. This requires the
implementation of a class or object model as described above, as well as means
to redirect method calls to a language specific implementation. This approach
could reduce development time for complex classes as long as the redirection
mechanism is easy to use. Another benefit would be a clean integration into
the target project, since it would not be required to create and add new imple-
mentations of classes that already are present in the framework for the target
language.
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Logic Meta-Variables in Advices

Kniesel and Rho [17] suggest that an AOP language should provide access to
all LMVs that are specified in a pointcut, in the advice that makes use of the
given pointcut. The authors provide an example of a pointcut capturing class
posing between a base class and a derived class. In the example the LMVs for
the derived class as well as constructor arguments are used to return instances
of the derived class, whenever the constructor for the base class is called.

In our design phase we experimented with this idea, but were unable to de-
termine how proper and useful values for these LMVs should be determined.
Consider the following pointcut:� �
1 pointcut samplePointcut[M] := class members[M] M.method M.reads[F] X.Method X.

writes[F];� �
This pointcut refers to all methods M that read a certain set of fields F , which
in turn is written to by method X. The questions we raised were the following:
What values should F and X have for each target method M? How should they
be accessed? How can they be used, e.g. can a we invoke method X? Since we
were unable to answer these questions in any satisfying way we decided to
postpone this feature.

It appears that only elements that can be directly referenced from the target
method can be used in an advice. Non-static elements, or elements outside of
the scope of the target method are not always available during the execution
of the advice body. Our conclusion is that this idea needs further analysis but
may become useful in the future.

7.3 Advice Types

Some of our advice types can be further improved by adding additional syn-
tactic sugar or by expanding their functionality. These ideas are described in
the following sections.

Narrows Advice

The narrows advice type can be further improved by allowing developers to
rely on default implementations of the success and failure blocks. If the de-
veloper does not specify a success block, the default implementation is used
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instead, which consists of a simple proceed statement. Likewise the failure
block could have a default implementation simply consisting of the abort
statement.
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Replacement Advice

We believe the replacement advice type can be further improved by allowing
it to work on program elements other than methods. The replacement advice
type could be used to replace fields or entire classes instead of methods,. For
example, consider the following aspect:� �
1 aspect LegacyReplacement {
2 pointcut legacyClass = "class is[/java.lang.String]";
3 pointcut replacementClass = "class is[/aau.sw10.util.String]";
4
5 advice replacementAdvice : replacementClass replaces legacyClass;
6 }� �
This advice replaces the original String implementation with a new imple-
mentation. This sort of advice could be useful when maintaining or updat-
ing legacy applications, since it allows developers to modify the application
without needing to modify the original source.
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CHAPTER 8
Conclusion

Through this report we have documented that it is possible to create an AOP
language that can weave generic and reusable aspects into programs written in
multiple target languages, and also improve reusability for aspects and evolv-
ability for the target program.

Our thesis was based on the idea that a concern based pointcut model should
be able to work on several languages, as long as these languages were struc-
turally similar. For this to work the pointcut mechanisms required a model
that generalized the features of these languages.

In our analysis we have described a basic version of such an OOP model, based
on several different OOP languages. Although the model does not fit all OOP
languages, it fits those that we believe to be most important, namely Java, C#,
Ruby, and Python. The OOP model includes the basic structural elements that
these languages use. Although the model can be improved to better generalize
several language specific features, it does demonstrate the concept.

Another requirement is that concerns must be universal across these languages,
otherwise it is impossible to create a single aspect to address the same concern
in different languages. Our assumption was that concerns could indeed be ex-
pressed in a universal manner, and we have not found any indications of the
contrary throughout this project. However, without further analysis we cannot
draw any final conclusion on this subject.

We based our pointcut language on JTL because it was publicly available, sup-
ported the features we required, and was a stand-alone query language, which
made it easy to integrate. The full implementation of the language specifica-
tion will increase the expressive power of the pointcut language significantly.

Our pointcut language can be used to make AspectJ-style pointcuts with a
very similar syntax, and as such is no more difficult to use than AspectJ. The
main purpose of our pointcut language is to make concern based pointcuts
instead, where signatures play only a little part. Since AspectJ cannot be used
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to express concern based pointcuts, we cannot compare the usability in both
languages, but only state that our pointcut language offers a greater power of
expression.

Using our pointcut language, it is possible to solve the fragile pointcut problem
by capturing concerns instead of signatures. Combined with the proposition
that concerns are universal, this means that the pointcut language should be
able to capture concerns in any OOP language.

Apart from a pointcut language we required an advice language that could
be translated into different target languages. We have shown a design and
an implementation of a basic version of such an advice language. In order
to overcome limited expressive power in advices, we have added the native
interface concept. The native interfaces also serve the purpose of acting as a
language independent interface to the target language. Our conclusion is that
our advice language is simplistic, but achieves the overall goal of being generic
and translatable into several target languages.

The genericity of our language enhances reusability and evolvability of as-
pects, as project or language specific bindings are kept to a minimum. In or-
der to further encourage developers to reuse aspects, we decided to make our
language more understandable by allowing developers to be more explicit of
what is being done. In part this is achieved by introducing different advice
types based on our analysis and creating explicit policy keywords.

To conclude on the thesis presented in our introduction, we have presented a
solution to the fragile pointcut problem by using concern based pointcuts, and
our generic advice language can be used to develop resuable aspects for mul-
tiple OOP languages. Compared to existing implementations, we believe that
our pointcut language yields great power of expression, and that our advice
language facilitates greater reusability due to its applicability on multiple lan-
guages.
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APPENDIX A
Acronyms

CLARA Cross-language Reusable Aspect-language

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

AST Abstract Syntax Tree

IDE Integrated Development Environment

JTL Java Tools Language

OOP Object-Oriented Programming

LMP Logic Meta Programming

LMV Logic Meta Variable

BCEL Bytecode Engineering Library
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APPENDIX B
Demonstration: Bank Application Output

� �
1 BANK APPLICATION 1.0
2 ====================
3 Select your action:
4 1: Create new account
5 2: Open account
6 0: Quit
7
8 Enter your choice: 2
9

10 Enter the account number you wish to open: 1
11 ACCOUNT
12 =======
13 Account number: 1
14 Balance: 5000.0
15
16 What do you want to do?
17 1: Withdraw
18 2: Deposit
19 3: Transfer to another account.
20 0: Go back to main screen
21
22 Choice: 1
23
24 Enter amount you want to withdraw: 2000
25 =========================================
26 Your action requires supervisor approval.
27 =========================================
28 Username: boss
29 Password: 1234
30 Withdrawing: 2000.0. New balance: 3000.0
31 ACCOUNT
32 =======
33 Account number: 1
34 Balance: 3000.0
35
36 What do you want to do?
37 1: Withdraw
38 2: Deposit
39 3: Transfer to another account.
40 0: Go back to main screen
41
42 Choice: 1
43
44 Enter amount you want to withdraw: 1500
45 Withdrawing: 1500.0. New balance: 1500.0� �

Listing B.1: Output from the Java Bank application test.
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APPENDIX C
Demonstration: Bank Native Interface

� �
1 package BankApplication;
2
3 import aspect.Authentication_NativeInterface;
4 import java.util.Scanner;
5
6 public class NativeBridge implements Authentication_NativeInterface {
7
8 public boolean authenticate() {
9 System.out.println("=========================================");

10 System.out.println("Your action requires supervisor approval.");
11 System.out.println("=========================================");
12
13 Scanner in = new Scanner(System.in);
14 System.out.print("Username: ");
15 String username = in.nextLine();
16
17 System.out.print("Password: ");
18 String password = in.nextLine();
19
20 for (User u : Bank.getInstance().getUsers()) {
21 if (u instanceof Supervisor) {
22 if (u.getUsername().equals(username) && u.getPassword().equals(

password)) {
23 return true;
24 }
25 }
26 }
27
28 return false;
29 }
30
31 public void deny() {
32 System.err.println("This transaction requires supervisor approval ,

transaction denied");
33 }
34 }� �

Listing C.1: Java implementation of the native interface Authentication_NativeInterface
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APPENDIX D
Grammar

〈program〉 =
〈aspect-declaration〉

〈aspect-declaration〉 =
’abstract’ ’aspect’ 〈identifier〉 ’{’ 〈abstract-aspect-body〉 ’}’ |
’aspect’ 〈identifier〉 ’{’ 〈aspect-body〉 ’}’ |
’aspect’ 〈identifier〉 ’extends’ 〈identifier〉 ’{’ 〈aspect-body〉 ’}’

〈abstract-aspect-body〉 =
〈native-interface〉 〈abstract-aspect-member-list〉 |
〈abstract-aspect-member-list〉

〈aspect-body〉 =
〈native-interface〉 〈aspect-member-list〉 |
〈aspect-member-list〉

〈native-interface〉 =
’NativeInterface’ ’{’ 〈native-interface-member-list〉 ’}’

〈abstract-aspect-member-list〉 =
〈abstract-aspect-member〉 |
〈abstract-aspect-member-list〉 〈abstract-aspect-member〉

〈aspect-member-list〉 =
〈aspect-member〉 |
〈aspect-member-list〉 〈aspect-member〉

〈native-interface-member-list〉 =
〈native-interface-member〉 |
〈native-interface-member-list〉 〈native-interface-member〉

〈abstract-aspect-member〉 =
〈pointcut-declaration〉 |
〈abstract-pointcut-declaration〉 |
〈advice-declaration〉 |
〈policy-declaration〉 |
〈abstract-method-declaration〉 |
〈method-declaration〉 |
〈field-declaration〉
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〈aspect-member〉 =
〈pointcut-declaration〉 |
〈advice-declaration〉 |
〈policy-declaration〉 |
〈field-declaration〉 |
〈method-declaration〉

〈native-interface-member〉 =
〈identifier〉 〈identifier〉 ’;’ |
〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’;’

〈method-declaration〉 =
〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’{’ 〈method-body〉 ’}’

〈field-declaration〉 =
〈identifier〉 〈identifier〉 ’=’ expression ’;’ |
〈identifier〉 〈identifier〉 ’;’

〈policy-declaration〉 =
’policy’ 〈identifier〉 ’forbids’ 〈identifier〉 ’:’ ’"’ 〈policy-message〉 ’"’ ’;’ |
’policy’ 〈identifier〉 〈identifier〉 ’requires’ 〈identifier〉 ’:’ ’"’ 〈policy-message〉 ’"’ ’;’

〈advice-declaration〉 =
’advice’ 〈identifier〉 ’:’ ’around’ 〈identifier〉 ’{’ 〈advice-body〉 ’}’ |
’advice’ 〈identifier〉 ’:’ ’narrows’ 〈identifier〉 ’{’ 〈advice-body-narrows〉 ’}’ |
’advice’ 〈identifier〉 ’:’ ’replaces’ 〈identifier〉 ’{’ 〈advice-body-replaces〉 ’}’

〈pointcut-declaration〉 =
’pointcut’ 〈identifier〉 ’[’ 〈pointcut-parameter〉 ’]’ ’:=’ ’"’ 〈pointcut-expression〉 ’"’ ’;’

〈abstract-pointcut-declaration〉 =
’abstract’ ’pointcut’ 〈identifier〉 ’[’ 〈pointcut-parameter〉 ’]’ ’;’

〈abstract-method-declaration〉 =
’abstract’ 〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’;’

〈native-interface-method-declaration〉 =
〈identifier〉 〈identifier〉 ’(’ 〈method-argument-list〉 ’)’ ’;’

〈native-interface-field-declaration〉 =
〈identifier〉 〈identifier〉 ’;’

〈method-argument-list〉 =
〈method-argument〉 |
〈method-argument-list〉 ’,’ 〈method-argument〉

〈method-body〉 =
〈method-body-statement-list〉
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〈method-body-statement-list〉 =
〈method-body-statement〉 |
〈method-body-statement-list〉 〈method-body-statement〉

〈policy-message〉 =
〈string-literal〉

〈advice-body〉 =
〈advice-boyd-statement-list〉

〈advice-body-replaces〉 =
〈advice-body-replaces-statement-list〉

〈advice-body-narrows〉 =
’condition’ ’{’ 〈advice-expression〉 ’}’ ’success’ ’{’ 〈advice-body〉 ’}’ ’failure’ ’{’ 〈advice-

body-replaces〉 ’}’

〈pointcut-expression〉 =
〈string-literal〉

〈pointcut-parameter〉 =
〈identifier〉

〈method-body-statement〉 =
〈variable-declaration-statement〉 |
〈variable-declaration-assignment-statement〉 |
〈assignment-statement〉 |
〈invoke-statement〉 |
〈native-interface-invoke-statement〉 |
〈compound-if-statement〉 |
〈while-statement〉 |
〈method-foreach-statement〉 |
〈method-return-statement〉

〈invoke-statement〉 =
〈identifier〉 ’(’ 〈invoke-argument-list〉 ’)’ ’;’

〈advice-body-replaces-statement〉 =
〈advice-variable-declaration-statement〉 |
〈advice-variable-declaration-assignment-statement〉 |
〈advice-assignment-statement〉 |
〈advice-invoke-statement〉 |
〈advice-native-interface-invoke-statement〉 |
〈advice-replaces-compound-if-statement〉 |
〈advice-replaces-while-statement〉 |
〈advice-replaces-foreach-statement〉 |
〈advice-return-statement〉

〈advice-body-statement〉 =
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〈advice-variable-declaration-statement〉 |
〈advice-variable-declaration-assignment-statement〉 |
〈advice-assignment-statement〉 |
〈advice-invoke-statement〉 |
〈advice-native-interface-invoke-statement〉 |
〈advice-compound-if-statement〉 |
〈advice-while-statement〉 |
〈advice-foreach-statement〉 |
〈advice-return-statement〉 |
〈advice-proceed-statement〉

〈expression〉 =
〈primary-expression〉 |
〈expression〉 〈operator〉 〈primary-expression〉

〈primary-expression〉 =
〈integer-literal〉 |
〈float-literal〉 |
〈boolean-literal〉 |
〈string-literal〉 |
〈identifier〉 |
〈invoke-expression〉 |
〈native-interface-invoke-expression〉 |
’+’ 〈primary-expression〉 |
’-’ 〈primary-expression〉 |
’(’ 〈expression〉 ’)’

〈operator〉 =
’+’ |
’-’ |
’*’ |
’/’ |
’<’ |
’>’ |
’==’ |
’!=’ |
’<=’ |
’>=’ |
’&&’ |
’||’

〈invoke-argument-list〉 =
〈expression〉 |
〈invoke-argument-list〉 ’,’ 〈expression〉

〈variable-declaration-assignment-statement〉 =
〈identifier〉 〈identifier〉 ’=’ 〈expression〉 ’;’

〈variable-declaration-statement〉 =
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〈identifier〉 〈identifier〉 ’;’

〈assignment-statement〉 =
〈identifier〉 ’=’ 〈expression〉 ’;’

〈compound-if-statement〉 =
〈if-statement〉 |
〈if-statement〉 〈else-if-statement-list〉 |
〈if-statement〉 〈else-if-statement-list〉 〈else-statement〉 |
〈if-statement〉 〈else-statement〉

〈if-statement〉 =
’if’ ’(’ 〈conditional-expression〉 ’)’ ’{’ 〈method-body〉 ’}’

〈else-if-statement〉 =
’else’ ’if’ ’(’ 〈conditional-expression〉 ’)’ ’{’ 〈method-body〉 ’}’

〈else-statement〉 =
’else’ ’{’ 〈method-body〉 ’}’

〈while-statement〉 =
’while’ ’(’ 〈conditional-expression〉 ’)’ ’{’ 〈method-body〉 ’}’

〈conditional-expression〉 =
〈expression〉

〈advice-variable-declaration-assignment-statement〉 =
〈identifier〉 〈identifier〉 ’=’ 〈advice-expression〉 ’;’

〈advice-assignment-statement〉 =
〈identifier〉 ’=’ 〈advice-expression〉 ’;’

〈advice-invoke-statement〉 =
〈identifier〉 ’(’ 〈advice-invoke-argument-list〉 ’)’ ’;’

〈advice-replaces-compound-if-statement〉 =
〈advice-replaces-if-statement〉 |
〈advice-replaces-if-statement〉 〈advice-replaces-else-if-statement-list〉 |
〈advice-replaces-if-statement〉 〈advice-replaces-else-if-statement-list〉 〈advice-replaces-else-

statement〉 |
〈advice-replaces-if-statement〉 〈advice-replaces-else-statement〉

〈advice-replaces-if-statement〉 =
’if’ ’(’ 〈advice-conditional-expression〉 ’)’ ’{’ 〈advice-body-replaces〉 ’}’

〈advice-replaces-else-if-statement〉 =
’else’ ’if’ ’(’ 〈advice-conditional-expression〉 ’)’ ’{’ 〈advice-body-replaces〉 ’}’

〈advice-replaces-else-statement〉 =
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’else’ ’{’ 〈advice-body-replaces〉 ’}’

〈advice-replaces-while-statement〉 =
’while’ ’(’ 〈advice-conditional-expression〉 ’)’ ’{’ 〈advice-body-replaces〉 ’}’

〈advice-conditional-expression〉 =
〈advice-expression〉

〈advice-expression〉 =
〈advice-primary-expression〉 |
〈advice-expression〉 〈operator〉 〈advice-primary-expression〉

〈advice-primary-expression〉 =
〈integer-literal〉 |
〈float-literal〉 |
〈boolean-literal〉 |
〈string-literal〉 |
〈identifier〉 |
〈advice-invoke-expression〉 |
〈advice-native-interface-invoke-expression〉 |
’+’ 〈primary-expression〉 |
’-’ 〈primary-expression〉 |
’(’ 〈expression〉 ’)’ |
〈meta-variable-expression〉 |
〈meta-variable-indexer-expression〉 |
〈proceed-result〉

〈advice-while-statement〉 =
’while’ ’(’ 〈advice-conditional-expression〉 ’)’ ’{’ 〈advice-body〉 ’}’

〈advice-foreach-statement〉 =
’foreach’ ’(’ 〈advice-foreach-expression〉 ’)’ ’{’ 〈advice-body〉 ’}’ |
’foreach’ ’(’ 〈method-foreach-expression〉 ’)’ ’{’ 〈advice-body〉 ’}’

〈advice-replaces-foreach-statement〉 =
’foreach’ ’(’ 〈advice-foreach-expression〉 ’)’ ’{’ 〈advice-body-replaces〉 ’}’ |
’foreach’ ’(’ 〈method-foreach-expression〉 ’)’ ’{’ 〈advice-body-replaces〉 ’}’

〈method-foreach-statement〉 =
’foreach’ ’(’ 〈method-foreach-expression〉 ’)’ ’{’ 〈advice-body-replaces〉 ’}’

〈advice-foreach-expression〉 =
〈meta-variable-expression〉 ’as’ 〈identifier〉

〈method-foreach-expression〉 =
〈identifier〉 ’as’ 〈identifier〉

〈advice-compound-if-statement〉 =
〈advice-if-statement〉 |
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〈advice-if-statement〉 〈advice-else-if-statement-list〉 |
〈advice-if-statement〉 〈advice-else-if-statement-list〉 〈advice-else-statement〉 |
〈advice-if-statement〉 〈advice-else-statement〉

〈advice-if-statement〉 =
’if’ ’(’ 〈advice-conditional-expression〉 ’)’ ’{’ 〈advice-body〉 ’}’

〈advice-else-if-statement〉 =
’else’ ’if’ ’(’ 〈advice-conditional-expression〉 ’)’ ’{’ 〈advice-body〉 ’}’

〈advice-else-statement〉 =
’else’ ’{’ 〈advice-body〉 ’}’

〈advice-variable-declaration-statement〉 =
〈identifier〉 〈identifier〉 ’;’

〈advice-native-interface-invoke-expression〉 =
’NativeInterface’ ’.’ 〈identifier〉 ’(’ 〈advice-invoke-argument-list〉 ’)’

〈advice-native-interface-invoke-statement〉 =
’NativeInterface’ ’.’ 〈identifier〉 ’(’ 〈advice-invoke-argument-list〉 ’)’ ’;’

〈unary-operator〉 =
’+’ |
’-’

〈meta-variable-expression〉 =
〈meta-variable〉 ’.’ 〈identifier〉

〈advice-invoke-argument-list〉 =
〈advice-expression〉 |
〈advice-expression〉 ’,’ 〈advice-invoke-argument-list〉

〈native-interface-invoke-expression〉 =
’NativeInterface’ ’.’ 〈identifier〉 ’(’ 〈invoke-argument-list〉 ’)’

〈native-interface-invoke-statement〉 =
’NativeInterface’ ’.’ 〈identifier〉 ’(’ 〈invoke-argument-list〉 ’)’ ’;’

〈invoke-expression〉 =
〈identifier〉 ’(’ 〈invoke-argument-list〉 ’)’

〈advice-invoke-expression〉 =
〈identifier〉 ’(’ 〈advice-invoke-argument-list〉 ’)’
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