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Synopsis:

This master thesis presents Cava, a new
concurrency model for Java. Develop-
ing Cava is motivated by the increas-
ing need for concurrent programs, and
the fact that Java’s present concurrency
model has various weaknesses.
Concurrency in Cava is achieved using
threads which can have either determin-
istic or non-deterministic behaviour. All
variables are thread local unless they
are marked as shared. Access to shared
variables is induced with STM seman-
tics as it must occur within transac-
tions. Cava also features a gate con-
struct which enables sending messages
between threads.
An experimental implementation is de-
veloped by modifying Sun’s Java com-
piler into a Cava compiler and imple-
menting a Cava Runtime System. More-
over, Cava is applied to model various
concurrency constructs and concurrent
problems.
In order to evaluate how Cava meets its
design criteria, and how it is compared
to Java, a method for assessing concur-
rency models is developed and applied.
Cava achieves a better score than Java,
primarily caused by a better integra-
tion with the object-oriented paradigm.
However, both are far from the highest
possible score and hence, potential fu-
ture work is presented.





Preface

This report is the result of a Dat6–project in the Department of Computer
Science at Aalborg University. The project was carried out during the spring
of 2007 within the Database and Programming Technologies research unit.

The report serves as a master thesis in computer science for the participants
and represents a continuation of the Dat5–project which was documented in
A Study in Concurrency [DH07].

Appendix A on page 114 contains definitions of basic concepts of concurrency.
These are used from the outset of the main report.

The project includes an experimental implementation of the Cava concur-
rency model which is enclosed on a CD-ROM. Instructions on how to com-
pile and execute Cava programs are also found on the CD-ROM. Finally, it
contains the Cava programs which are described in Chapter 6 on page 50
along with various other examples.

Citations in the report appear like [DH07, p. 15] and refer to the bibliography
on p. 112.

Aalborg University, 6 June, 2007.

Birthe Damborg Anders Mørk Hansen
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Chapter 1
Introduction

This chapter describes the motivation of the work behind this report in Sec-
tion 1.1. The scope of the project is addressed in Section 1.3 on the next
page. Finally, the project goals are stated in Section 1.4 on page 4.

1.1 Motivation

For several decades, computer hardware has evolved to become faster and
smaller. One of the latest evolutions in computer hardware is the introduction
of multi-core CPUs.

The multi-core technology is designed to enable program threads to execute
in parallel. This technology makes a single CPU just as powerful as multiple
CPUs have been collectively in the past. However, while it collects the power
of multiple processors in a single chip, it does not increase the execution
speed of non-concurrent programs. Hence, programs must be designed for
concurrent execution to fully utilise the potential computational power in the
new multi-core CPUs. According to [HPC07], this requires a change in how
software is developed since ways must be found to “make it easy to write
programs that run efficiently on manycore systems”.

In order to design concurrent programs, software developers must be pro-
vided with tools which enable them to create such software. One such tool
is programming languages which support concurrency and a large number of
languages already exist which have this feature. The languages apply dif-
ferent concepts and strategies to enable the programmer to work with con-
currency. Since the introduction of multi-core CPUs requires that programs
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CHAPTER 1. INTRODUCTION

become more concurrent, concurrency support is an increasingly important
part of programming language design. A focus on the quality of concurrency
support should therefore be prioritised.

The various approaches to concurrency have strengths and weaknesses. This
makes it unlikely that a simple and ideal concurrency model which fits every
purpose and application should exist [DH07]. However, trying to improve
the concurrency support in an existing language is still an interesting and
important challenge.

1.2 Object-orientation and Java

The object-oriented paradigm has become dominant in relation to software
development. Hence, this project only considers concurrency within the
object-oriented paradigm. Furthermore, the scope is limited to Java which
has contributed significantly to the success of the object-oriented paradigm.
Hence, the aim of this project is to develop a new concurrency model for
Java. The new concurrency model is termed Cava.

There are several reasons why concurrency in Java is targeted. It is a main-
stream language with a focus on concurrency support, it is a well-tested and
stable language, and it is widely used. All of these aspects imply that it
comprises a solid foundation on which to build Cava. Chapter 2 on page 5
contains details about Java’s present concurrency model and some of the
problems which it induces. At this point, it suffices to say that the concur-
rency support in Java could be characterised as low-level and error-prone.
Hence, a challenge lies in improving the concurrency support in Java.

1.3 Scope

This section presents the scope of the project. That is, the areas which the
work of the project covers.

1.3.1 A New Concurrency Model for Java

Fundamentally, there are two motivations for applying concurrency to a pro-
gram: to model a naturally concurrent problem or to gain an execution speed-
up. This is described further below and is based on [DH07, Section 2.4].
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1.3. SCOPE

Some problems are concurrent by nature. These consist of independent parts
which interact in some defined manner and collectively make up a larger sys-
tem. Applying concurrency as a natural abstraction for concurrent problems
is simply allowing a programmer to easily express concurrent problems in
a programming language. If the programming language supports this mod-
elling, a concurrent problem becomes intuitive since the problem does not
have to be fitted into a sequential programming model.

Optimising a sequential program by making it concurrent makes it possible to
utilise the power of multi-core CPUs and systems with multiple CPUs. In or-
der to make a sequential program concurrent, the programmer must identify
the parts of the program which can be run concurrently, split the sequential
code into these concurrent parts, and ensure that the changes do not affect
the semantics of the program. When a programmer is applying optimisation
through concurrency, the sequential task is actually being transformed into
a set of concurrent tasks. That is, the sequential task is being fitted into a
concurrent programming model. As a consequence, optimisation of sequen-
tial programs can be viewed simply as a special case of applying concurrency
as a natural abstraction.

Cava should support the programmer in modelling both types of problems.
The support should be present both with regard to language abstractions
and modelling abstractions. That is, it should be straightforward for the pro-
grammer to reason about concurrent problems using the concurrency model.
This is also in compliance with [HPC07] which states that in order to utilise
the computational potential of multi-core CPUs, the parallel programming
model must be “human-centric, not machine-centric”.

Furthermore, Cava should not suffer from the weaknesses currently found
in Java and described in Section 2.2 on page 8. The goal is to obtain a
concurrency model which is modern, high-level and developer friendly both
with regard to language abstractions and modelling abstractions. Chapter 3
on page 11 presents the design criteria of Cava in more detail. Note that the
development of Cava is done without consideration to breaking existing Java
code.

1.3.2 Implementation

Developing a new concurrency model will only remain a theoretical exercise
if the new language constructs cannot be tested and evaluated by applying
them to concurrent problems. Hence, the scope of the project also includes an
implementation of Cava. This allows for experimenting with and testing the
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CHAPTER 1. INTRODUCTION

model by actually writing and executing concurrent software which utilises
the new language constructs.

1.3.3 Assessment of Concurrency Models

Since a new concurrency model for Java is developed, it appears natural to
compare it to Java’s present concurrency model. In general, it is useful to be
able to assess the strengths and weaknesses of a given existing concurrency
model in a programming language. Hence, the scope of the project also in-
cludes the development of a method for assessing and comparing concurrency
models.

1.4 Goals

The previous section presented the areas which the project targets. To sum-
marise, the goals of the project consist of the following:

• Developing a new concurrency model for the Java language which reme-
dies some of the weaknesses of the present concurrency model.

• Making an implementation of the new concurrency model.

• Applying the concurrency model to various examples of classical con-
currency constructs and concurrent problems to investigate its applica-
bility.

• Developing a method for assessing and comparing concurrency models.

• Applying the assessment method to Java and Cava, and comparing the
results.

4



Chapter 2
Concurrency in Java

When developing a new concurrency model for Java, comprehensive insight
into how concurrency is presently achieved is valuable since it may reveal
areas which are particularly interesting to target in the new model. This
chapter contains a description of Java’s concurrency model in Section 2.1
and a discussion of its strengths and weaknesses is included in Section 2.2
on page 8. The contents of the chapter are a markedly abridged version
of [DH07, Chapter 5].

2.1 Concurrency Model

According to The JavaTM Language Specification, Third Edition, Java is
“a general-purpose concurrent class-based object-oriented programming lan-
guage” [G+05, p. 1]. Hence, explicit attention has been given in the construc-
tion of Java to the ability of expressing concurrency. Concurrency in Java
is realised using threads and synchronised objects [San04]. The following
sections contain, respectively, a description of threads and synchronisation
in Java.

2.1.1 Threads

The first edition of The JavaTM Language Specification defines a thread as “a
single sequential flow of control” [G+96, p. 587]. A Java program may spawn
several threads, hence supporting concurrent programming. Threads in Java
are encapsulated in the Thread class from the java.lang package. Hence, a
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CHAPTER 2. CONCURRENCY IN JAVA

new thread can be created by making an instance of a class which extends
Thread. A thread does not start to execute until its start method has been
invoked. The call to start effects the Java Virtual Machine (JVM) to call
the run method in the new thread. The run method should be overridden in
the subclass since this implements what the thread actually executes once it
starts running [JAS, Thread].

Inheriting from Thread poses a problem if a subclass also needs to extend
some other class since multiple inheritance is not supported in Java. In that
case, the inheritance from Thread can be substituted with implementing the
Runnable interface which provides only the abstract method run. This allows
for the creation of new threads by passing an instance of the new class to a
Thread constructor. Again, the start method must be called, and the new class
must implement the run method since this constitutes the implementation of
what the new thread should actually realise [JAS, Runnable].

2.1.2 Synchronisation

Threads in a Java program “independently execute code that operates on
values and objects residing in a shared main memory” [G+05, p. 553]. Hence,
when several threads execute concurrently, synchronisation between them
may be required as is always the case in the advent of shared memory. The
synchronisation is realised using monitors since “Each object in Java is as-
sociated with a monitor, which a thread can lock or unlock” [G+05, p. 554].
Since only one thread can hold a given lock on a monitor at a time, other
threads attempting to acquire the lock are blocked and their execution is
suspended. The fact that each object is associated with a monitor implies
that the programmer does not need to manipulate semaphores directly to
obtain synchronisation [San04].

Competition synchronisation is implemented using the synchronized keyword
which marks a critical section and may appear in relation to blocks of state-
ments as well as methods. When a block is synchronized, a reference to an
object must be specified. This is the case since a monitor must be available
to realise the synchronisation. The actual statements in the block are not
executed until a lock on the monitor of the specified object is obtained.

When a synchronized method is invoked, it automatically attempts to lock the
monitor associated with the object on which the method must operate. The
body of the method is not executed until the appropriate lock is obtained.
When the execution of the synchronized block or method has finished, any
locks held are automatically released [G+05].
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2.1. CONCURRENCY MODEL

Co-operation synchronisation can be obtained using the methods wait, notify,
and notifyAll. These methods are all found in the Object class which implies
that they can be invoked on every object [JAS, Object].

The wait method can either be called without arguments or with a timeout
period. In either case, the thread enters a state in which it suspends its
execution. The thread waits either indefinitely, for the specified amount of
time, or until it is interrupted by another thread. In the latter case, a checked
exception is thrown which the thread must handle. The wait method can only
be called within a synchronized block or method since the thread must hold
the lock on the object. This is an implication of the fact that once wait has
been called, the lock on the object is released which makes it possible for
another thread to obtain the lock.

A thread which is in a state of waiting continues to be so until another thread
invokes the notify or notifyAll method. It may, however, also leave its state of
waiting if wait was invoked with a specified amount of time and this expires.
The difference between the two notification methods is that notify wakes
up a single arbitrary thread waiting on the lock of the given object, whereas
notifyAll wakes up all threads waiting for the lock. When one or more awaken
threads are trying to acquire the given lock, they do so in competition with
any other threads requesting the lock. Hence, there is no guarantee that the
thread chosen to execute is the one which has been waiting for the longest
period of time.

Similarly to the wait method, notify and notifyAll can only be called within
a synchronized block or method. However, in contrast to the wait method,
notify and notifyAll do not cause the lock to be released immediately. They
only prepare one or more threads such that they can be executed when the
lock is released by either a call to wait or at the end of the synchronized block
or method.

2.1.3 Concurrency Utilities in Java 5

In Java 5, a Concurrency Utilities package was included. The java.util.concur-
rent package comprises a number of useful abstractions in relation to concur-
rent programming such as concurrent collections and synchronisation classes
like semaphores, mutexes, and barriers.

The goal of the package was to provide the programmer with “a powerful,
extensible framework of high-performance threading utilities” [JCU]. On the
same note, the idea behind the framework was to simplify working with
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CHAPTER 2. CONCURRENCY IN JAVA

concurrency in a program since the programmer would otherwise have to
implement the utilities himself.

2.2 Strengths and Weaknesses

This section presents some strengths and weaknesses of Java’s concurrency
model.

2.2.1 Threads

Threads are encapsulated in the Thread class and the Runnable interface.
Hence, threads appear as objects and are instantiated using the new keyword
which complies with Java’s object-oriented model. Having the option of ei-
ther extending Thread or implementing Runnable allows a class which should
realise a thread to extend another non-thread class. Furthermore, it induces
flexibility that there are more ways of realising the same construction. How-
ever, it also requires the programmer to master two constructs which have
fundamentally equivalent semantics. Both encapsulations of threads allow
the programmer to concentrate on what the threads should execute in their
run methods. Hence, threads in Java support modelling concurrent prob-
lems since it is often natural to assign the various entities in the problem to
separate threads.

The separation of the start-up of a thread from its instantiation allows for
manipulations on the thread before it begins its execution. However, the
separation can also be a source of error if the programmer fails to invoke the
start method. Similarly, it is not legal to invoke start several times.

2.2.2 Synchronisation

Synchronisation is inherently supported in Java via the monitor which is
associated with every object. Competition synchronisation can be obtained
without much effort using the synchronized keyword (see Section 2.1.2 on
page 6). That is, the programmer does not need to manipulate semaphores
directly which induces a higher degree of reliability since unblocking actions
are not forgotten or lost.

When using monitors, the problem of nested monitors may appear [Lea99].
This is the scenario where a thread obtains a lock on one object and subse-
quently requests a lock on another object. If another thread holds the lock
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2.2. STRENGTHS AND WEAKNESSES

on the latter object, the first thread becomes blocked but the lock on the first
object is not released. Hence, other threads cannot obtain this lock which
may result in the thread being blocked interminably. This scenario can be a
major source of error in concurrent programs and difficult to debug.

Synchronisation can also be obtained explicitly using the wait, notify, and no-
tifyAll methods which enable co-operation synchronisation (see Section 2.1.2).
The methods are placed in the Object class making it possible to synchronise
on any object. This could be seen as an advantage since the flexibility of the
methods gives the “thread programmer considerable freedom” [San04, p. 24].
However, there are also disadvantages of the possibility of synchronising on
any object. Firstly, the programmer has to maintain control of which ob-
jects were used for synchronisation. Secondly, invoking notify or notifyAll on
an object, on which wait has not been invoked, is not an error. Hence, the
programmer may think that the synchronisation patterns in a program are
correct when in fact notifications are lost and threads may remain suspended
interminably. That is, the flexibility which the methods provide also makes
Java’s concurrency model error prone [San04].

In relation to the wait, notify, and notifyAll methods, an issue is the seman-
tics of Java’s signalling mechanism. This involves there being little or no
control over which thread is awaken by a notify or which thread is allowed to
execute following a notifyAll. The choice is made non-deterministically and
as a consequence, there are no guarantees of timing between threads since
it may not be the thread which has been blocked for the longest period of
time which is chosen. However, this non-determinism can also be seen as
a strength since it forces the programmer not to assume any deterministic
sequence of executions between threads.

2.2.3 Other Issues

The introduction of the java.util.concurrent package can be seen as an admis-
sion to the fact that designing multi-threaded programs is challenging. This
is particularly prominent in relation to synchronisation issues which “often
intrude into apparently unrelated aspects of class design, leading to unneces-
sary conceptual overhead and code complexity” [Lea99, p. 219]. More simply
put, concurrency invades a program; once threads have been introduced,
everything must be made thread-safe. As a consequence, the fundamental
object-oriented principle of encapsulation may be violated. This is the case
since it may be necessary for a class to get access to implementation details
of the classes with which synchronisation must be made.
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CHAPTER 2. CONCURRENCY IN JAVA

Java is prone to several classical concurrency issues. An example of these is
deadlock if a thread, which has invoked wait, never receives a notification.
Furthermore, a thread may experience starvation since the next thread al-
lowed to execute is chosen non-deterministically. It is, however, possible for
a programmer to exercise some control over which thread is chosen by the
scheduler. Every Thread object has an associated priority which the pro-
grammer can assign and thus enforce a hierarchy between threads. However,
using priorities invariably induces the danger of priority inversion.

Like some other object-oriented languages, Java suffers from the inheritance
anomaly [MY93]. That is, a problem may arise when inheriting methods
which are involved in obtaining concurrency. The programmer has to take the
intended synchronisation into account when overriding an inherited method.
This is the case whether the synchronisation is obtained using the synchro-
nized construct or the wait, notify, and notifyAll methods.

10



Chapter 3
Design Criteria

Section 1.3 on page 2 introduced some rather general criteria for the new
concurrency model: it is targeted at the Java language, it should support
modelling naturally concurrent problems as well parallel problems, and it
should be developer friendly, high-level, and modern. This chapter presents
four design criteria which are more specific. Some of the criteria are derived
from the problems with Java’s present concurrency model which were de-
scribed in Section 2.2 on page 8. A common trait in the design criteria is
that they represent characteristics which a concurrency model should ide-
ally have. It may be difficult to fulfil the criteria simultaneously which is
addressed in Section 3.5 on page 14 by prioritising the criteria.

3.1 Object-oriented Model

The integration of concurrency into object-oriented languages has proven
to be difficult. In [Pap89, p. 34], Papathomas states that this is the case
since “Concurrency is not orthogonal to other aspects of object-oriented pro-
gramming”. Encapsulation and inheritance are prominent features of the
object-oriented paradigm, and problems may occur in the form of broken
encapsulation and the inheritance anomaly when concurrency has to be in-
troduced into an object-oriented language [DH07, Section 2.3].

The new concurrency model is to build on the Java programming language.
This implies that it should be compatible with the object-oriented program-
ming model in general and that of Java in particular. That is, the concurrency
model should adhere to the general principles of the object-oriented paradigm
such as supporting inheritance, encapsulation, and reusability. Furthermore,
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the model should not introduce errors or pose limits on the existing program-
ming model.

Besides from remedying the problems introduced by concurrency in the object-
oriented paradigm, the concurrency model should also appear as an inte-
grated part of the paradigm. This entails that the concurrency model should
readily support the programmer in applying an object-oriented approach to
modelling concurrent programs.

3.2 Expressiveness

Fundamentally, a concurrency model can be applied to the development of
concurrent software in two ways. Either when modelling naturally concurrent
problems or when introducing parallelism to a program [DH07, Section 2.4].
In Java, the former is well supported whereas the latter is less so since Java
was developed under the assumption that programs are executed on a single-
core architecture. Ideally, the new concurrency model should support in-
troducing parallelism and modelling naturally concurrent problems equally
well. Hence, the abstractions and constructs of the model should be expres-
sive enough to embrace both scenarios. Furthermore, it should be possible to
model classical concurrency constructs like locks and semaphores using the
new concurrency model in order to demonstrate its expressiveness.

A concurrency model can feature either implicit or explicit concurrency con-
structs or both [DH07, Section 3.1]. Explicit concurrency provides program-
mers with the constructs needed to model naturally concurrent problems.
Explicit constructs can also be applied when introducing parallelism but they
induce an overhead in the form of low-level modelling. Implicit concurrency
constructs can remedy this shortcoming. Since the new concurrency model
should have a high degree of expressiveness, it is desirable to provide the
programmer with explicit as well as implicit concurrency constructs.

Shared data is an integral part of concurrent programming. The protection
of such data can be obtained at different levels in a program, i.e. it can be
specified on large blocks such as methods or small blocks such as individual
variables. The new model should be able to handle both levels of concurrency
such that a programmer is not restrained when introducing concurrency to
a program.

12



3.3. FAULT RESTRICTION

3.3 Fault Restriction

Java’s concurrency model has only very limited fault restriction. This im-
plies that there is almost no support offered to the programmer with regard
to preventing him from introducing concurrency errors which are not inher-
ent to the problem which is being modelled. There are no rules in Java which
prevents the programmer from combining the few available concurrency con-
structs in problematic ways. Java only provides the constructs, leaving the
responsibility for correctness to the programmer. Since the programmer must
also model his problem in a low-level manner, there is a high risk of intro-
ducing errors. The concurrency constructs in Java also have a tendency of
easily creating concurrency problems under simple uses. This could e.g. be
in the form of lost notifications (see Section 2.2.2 on page 8).

Protection of shared data is fundamental to concurrent programming. With
regard to fault restriction, this should be lifted away from the programmer
and instead primarily handled by the concurrency model. Another prominent
source of error in concurrent programs is classical concurrency issues such as
race conditions, deadlocks, livelocks, and resource starvation. The impact of
such issues should be removed or severely reduced in the new concurrency
model.

Based on the above, the new concurrency model should enable the program-
mer to model concurrency with some level of fault restriction. That is, the
programmer should be prevented from introducing concurrency errors with-
out his knowledge.

3.4 Simple

Java’s concurrency model could be said to be simple since there are few
constructs which are still very expressive. However, with regard to usability,
the model leaves the majority of the work to the programmer. Furthermore,
Java is very verbose which implies that the programmer has to write a lot of
code in order to introduce the desired concurrency in a program.

The concurrency constructs in Java form a homogeneous concurrency API
since synchronisation is achieved using the same constructs regardless of its
purpose. The new concurrency model should preferably also appear homo-
geneous and coherent instead of consisting of a range of constructs which all
serve a limited and specialised purpose.

Interaction between threads is a prerequisite of concurrent programming.
This implies that interleaving of threads should be easy to comprehend and
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variable protection schemes easy to apply. Furthermore, the concurrency
model should not affect modelling sequential problems.

With reference to this, the new model should be simple. That is, the pro-
grammer should be able to express concurrency in a short and concise manner
but only when it is necessary to model the problem in question.

3.5 Prioritisation of Criteria

The specific criteria in Sections 3.1–3.4 are all desirable properties and ideally
the new concurrency should adhere fully to them all. However, this may not
be possible e.g. because some of the criteria may be in conflict with each other.
Hence, when developing the concurrency model, choices of which criteria to
favour have to be made when a conflict is encountered and a compromise has
to be reached.

Various potential conflicts exist between the four criteria and three such con-
flicts are addressed in the following. The first is between the object-oriented
model and fault restriction criteria. The object-oriented model enforces cer-
tain design principles which are utilised to induce structure in programs.
While the structures may be intuitive when modelling sequential programs,
they may not necessarily be suitable for concurrent programs. Enforcing the
object-oriented model criterion may therefore result in a concurrency model
which is difficult to also make fault restricted. Oppositely, it may be nec-
essary to relax the object-oriented design principles to obtain a acceptable
restriction of concurrency errors.

The second conflict is between the expressiveness and fault restriction cri-
teria. Typically, fault restriction is induced by preventing the programmer
from introducing concurrency errors. Any kind of restriction also reduces
the expressiveness of the language. Similarly, if the language has a high de-
gree of expressiveness, the programmer is able to model any kind of intricate
concurrent problem, including faulty ones.

The last conflict is between the expressiveness and simple criteria. There is
not necessarily a conflict involved in a concurrency model which is highly
expressive while it is also simple. Java’s present concurrency model could be
said to fulfil both criteria. However, there may be a potential conflict if the
concurrency constructs prohibit the programmer from making a simple model
of the concurrent problem. Similarly, if the constructs are very simple, it may
pose a limit on the expressiveness of the language since there are concurrent
problems which cannot be modelled using the constructs.
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In order to determine how conflicts should be resolved, the criteria are pri-
oritised. The three priority levels are presented in Table 3.1. In case criteria
at the same priority level are in conflict, they are prioritised according to the
order in which they appear in Table 3.1.

Priority Criteria
1. Object-oriented model

Expressiveness
2. Fault restriction

Simple

Table 3.1: Prioritisation of criteria.

The prioritisation is based on the importance of the design criteria and the
potential conflicts. The object-oriented model and expressiveness criteria
are favoured because one of the overall goals of the concurrency model is
to be well integrated into the object-oriented model. At the same time, the
concurrency model should be at least as useful as the present concurrency
model in Java, and hence it needs to be expressive. The fault restriction
and simple criteria are at the second level because of the potential conflicts
with the two criteria at the first level. It is important to develop a fault
restricted concurrency model but it should not be valued over expressiveness
or influence the object-oriented design principles. Similarly, simplicity could
be valuable in the concurrency model but it is not rated as valuable as the
criteria at higher levels.
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Chapter 4
Concurrency Model Assessment

As mentioned in Section 1.3.3 on page 4, it is useful to be able to assess
the strengths and weaknesses of a given existing concurrency model in a
programming language. There is also a need for assessment when developing
a new concurrency model or modifying an existing one. Moreover, a method
is needed for comparing multiple concurrency models.

This chapter presents a new question based method for assessing and com-
paring concurrency models. Section 4.1 contains criteria to which an opti-
mal method should adhere. This is followed by a presentation of the actual
method in Section 4.2 and an evaluation of it in Section 4.3 on page 18.
Finally, the questions used in the method for this project are included in
Section 4.4 on page 19.

4.1 Criteria for a Method

Section 10.1 on page 98 presents two approaches to assessing concurrency
models. The descriptions reveal various problems of the methods which can
be used to set up criteria to which a method should ideally adhere. The
criteria are listed and described below.

• Absolute: The method should be absolute, implying that it is suitable
for assessing a single concurrency model. That is, the assessment should
not be dependent on the assessment of other models. In addition, the
method should also embrace the comparison of multiple models.

16



4.2. QUESTION BASED METHOD

• Unbiased: The method should be unbiased, implying that it is suitable
for assessing the concurrency model of any object-oriented language.
That is, the method should not favour particular languages.

• Transparent: The method should be transparent, implying that it is
easily established how a given model has obtained its assessment. This
criterion also induces objectivity in the method since the assessment of
a given model may depend on who performs the assessment. However,
by making the method transparent, it can easily be uncovered in which
areas one disagrees with the assessment.

4.2 Question Based Method

This section describes the assessment method which is developed and applied
to compare Cava and Java. The basic strategy of the method is to formulate a
series of questions. The answers then form the basis for the actual assessment.
In the present context, the questions are based on the design criteria for
Cava found in Chapter 3 on page 11 since they are the driving force in the
development. In other contexts, the questions may e.g. be based on desirable
characteristics of a concurrency model.

The method has the design criteria as its starting point so it should be
able to assess the model with regard to how well these criteria are fulfilled.
Since it may be difficult to fulfil all the design criteria equally well, they
were prioritised in Table 3.1 on page 15, and the method should take this
prioritisation into account. Fundamentally, the method consists of the two
steps described below. The two steps are described in further detail in the
following sections.

1. Assessing the design criteria individually.

2. Constructing an overall assessment.

4.2.1 Assessment of Individual Criteria

The assessment of the individual design criteria is done by formulating a series
of questions which in combination uncovers the properties of the criterion.
In this case, the questions are all formulated such that it is preferable if the
answer to them is yes. Based on the answers to the questions, the criterion
is assigned a numerical value which shows how well the concurrency model
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adheres to the given criterion. Depending on how much information about the
criterion the individual question carries, a weighting between the questions
could be induced. Since a numerical value is assigned to each criterion, the
goal of having an absolute method is fulfilled. Similarly, it is transparent
since the questions are available and an analysis of the answers and weights,
if applied, reveals how a model obtained its assessment.

The above approach of formulating questions and assigning numerical values
can be applied regardless of which design criteria or other characteristics they
are intended to evaluate. This is simply reflected in the particular questions.
Section 4.4 presents the particular questions which are formulated in relation
to the design criteria in Chapter 3 on page 11.

4.2.2 Overall Assessment

The overall assessment appears as a combination of the individual assess-
ments. That is, a single numerical value is assigned to the concurrency model
based on the numerical values assigned to the individual design criteria. This
value shows how well the concurrency model adheres to the design criteria.
A weighting between the individual assessments could be induced according
to the prioritisation between the criteria.

4.3 Evaluation of the Method

The method enables the absolute assessment of a single model since a numer-
ical value is assigned to this. Furthermore, the questions define a maximum
score which is obtained if a model can answer yes to all questions. This
allows for evaluating how close a model is to possessing the qualities which
are being assessed by the method and identifying the areas in which a model
could be improved.

In order to fully understand and evaluate an assessment, it may be necessary
to investigate this in detail. The availability of the questions and answers
enables such an investigation which induces transparency to the method.
This is perceived as a strength since it is possible to locate the exact areas
in which one might disagree with the assessment. Another strength is that
the individual models do not affect the scores of other models when assessing
multiple models.

The unbiased criterion is fulfilled for the method itself but the particular
questions may make the method biased. However, the availability of the
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questions counters the risk. This makes the method objective since biased
questions cannot be hidden.

With the above approach, two concurrency models may very well be assigned
the same numerical value. However, this does not necessarily imply any
kind of similarity since the overall assessment is a combination of numerous
individual assessments. Hence, in order to perform an actual comparison of
the characteristics of two models with the same overall assessment, the scores
of the individual assessments must be investigated in detail.

4.4 Questions

This section presents the questions which are formulated when applying the
question based method to the design criteria of Chapter 3. Moreover, it is
described what is required for the answer to be either yes or no.

4.4.1 Object-oriented Model

The questions in relation to the object-oriented model criterion are listed
below. There are eight questions which reveal various aspects of the crite-
rion such as fundamental object-oriented characteristics like encapsulation,
inheritance, and reusability. Furthermore, mismatches between concurrency
and the object-oriented model are addressed.

• Is the concurrency model integrated into the object-oriented model?

– The answer is yes if some part of the concurrency model is inte-
grated into the main programming language. If the concurrency
model is provided only as a library extension without affecting the
main programming language, the answer is no.

• Does the concurrency model protect against broken encapsulation?

– The answer is yes if the concurrency model is not disposed towards
introducing broken encapsulation. Oppositely, the answer is no if
the concurrency constructs are difficult to apply without breaking
the encapsulation established by the object-oriented model. This
includes if the programmer is forced to open the encapsulation
and allow direct access to the internal synchronisation of a given
object when it is applied in another (part of) the program.

19



CHAPTER 4. CONCURRENCY MODEL ASSESSMENT

• Does the concurrency model protect against the inheritance anomaly?

– The answer is yes if the concurrency model is not disposed to-
wards introducing the inheritance anomaly. The answer is no if
overriding a class containing concurrency constructs can lead to
the inheritance anomaly in the subclass.

• Does the concurrency model support reuse of existing classes?

– The answer is yes if a class, which was implemented utilising con-
currency features, can be reused without modifications and with
correct synchronisation when implementing other classes. If the
class requires modifications in order to function with the intended
semantics, the answer is no.

• Are objects utilised to encapsulate concurrency constructs?

– The answer is yes if the concurrency model contains some kind of
concurrency constructs or concepts which are encapsulated inside
some kind of object. That is, if objects are utilised to induce
structure to concurrency constructs.

• Are thread constructs encapsulated in objects?

– The answer is yes if threads are bound to object instances such
that threads can be referenced as any other object.

• Are co-operation synchronisation constructs encapsulated in objects?

– The answer is yes if co-operation synchronisation constructs are
bound to object instances such that they can be referenced as any
other object. This is an advantage since co-operation synchronisa-
tion is an integral part of concurrent problems, and thus modelling
co-operation can be done in an object-oriented way.

• Are competition synchronisation constructs integrated directly into the
language?

– The answer is yes if competition synchronisation constructs are
independent of object instances. This is an advantage since com-
petition synchronisation is an inherent and unavoidable part of
concurrent programming and should not be modelled as part of
the object-oriented design. Hence, competition synchronisation is
better handled at the language level in a orthogonal manner.
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4.4.2 Expressiveness

The questions in relation to the expressiveness criterion are listed below.
There are 13 questions which reveal various aspects of the criterion such as
how well the model supports modelling concurrent and parallel problems, the
level on which concurrency is obtained, and whether it is possible to model
classical concurrency constructs like locks and semaphores.

• Are constructs available to the programmer to introduce concurrency?

– The answer is yes if the concurrency model includes constructs
which can be applied to model concurrent problems in a natu-
ral way. If the programmer is forced to convert the concurrent
problem into a parallel problem, the answer is no.

• Are naturally concurrent problems easily modelled without introducing
concurrency errors which are not inherent to the problem?

– The answer is yes if the concurrency model allows a programmer
to model a naturally concurrent problem without introducing con-
currency errors which are not part of the original problem. Fur-
thermore, the programmer should be able to do this in a timely
fashion if he is fairly knowledgeable about the problem and the
programming language.

• Are parallel constructs available to the programmer to introduce paral-
lelism?

– The answer is yes if the concurrency model includes constructs
which can be applied to model parallelism in a natural way. An
example of such a construct is for-loops which can be executed in
parallel without the programmer having to implement this explic-
itly. If the programmer is forced to convert the parallel problem
intro a concurrent problem to achieve parallelism, the answer is
no.

• Are parallel problems easily modelled without introducing concurrency
errors?

– The answer is yes if the concurrency model allows a programmer
to model a parallel problem without introducing concurrency er-
rors. Furthermore, the programmer should be able to do this in
a timely fashion if he is fairly knowledgeable about the problem
and the programming language.
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• Is coarse-grained concurrency easily obtained?

– The answer is yes if the concurrency model allows the program-
mer to directly model coarse-grained concurrency which is charac-
terised in that concurrent access to data is granted in large blocks.
Note, the coarse-grained protection pattern may result in ineffi-
cient concurrency since a thread may protect data which it does
not access. Thus, it prevents other threads from accessing it.

• Is fine-grained concurrency easily obtained?

– The answer is yes if the concurrency model allows the programmer
to directly model fine-grained concurrency which is characterised
in that concurrent access to data is granted in small blocks. Note,
the fine-grained protection pattern enables achieving optimal con-
currency since a thread only protects the data it needs against race
conditions. That is, any data which is not accessed by a thread
may be accessed by any other thread.

• Are the synchronisation constructs composable?

– The answer is yes if the synchronisation constructs can be com-
bined to implement more intricate synchronisation constructs and
this can be done without introducing concurrency problems.

• Is it possible to model a lock?

– The answer is yes if a lock can be modelled in the concurrency
model. The lock should be usable as a synchronisation mechanism
when implementing concurrent problems.

• Is it possible to model a semaphore?

– The answer is yes if a semaphore can be modelled in the concur-
rency model. The semaphore should be usable as a synchronisa-
tion mechanism when implementing concurrent problems.

• Is it possible to model message passing?

– The answer is yes if message passing can be modelled in the con-
currency model. The message passing construct should be usable
as a synchronisation mechanism when implementing concurrent
problems.

• Does the concurrency model include shared variables?

– The answer is yes if the concurrency model features shared vari-
ables. These can be accessed by multiple threads and if they are
changed by one thread, other threads are able to see the changes.
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The answer is no if the concurrency model does not include such
variables.

• Can thread execution be prioritised?

– The answer is yes if the concurrency model includes a mechanism
for prioritising the order of thread execution. This allows the
programmer to specify important threads and ensure that these
threads receive sufficient resources. If the programmer must build
prioritisation into the thread implementation manually, the an-
swer is no.

• Can suspended threads be interrupted?

– The answer is yes if the concurrency model includes a mechanism
for resuming a thread which has been suspended. This implies that
the programmer should be allowed to resume a suspended thread
even though the condition, on which the thread was suspended,
has not been fulfilled. If a suspended thread can only be resumed
by fulfilling the condition, the answer is no.

4.4.3 Fault Restriction

The questions in relation to the fault restriction criterion are listed below.
There are 14 questions which reveal various aspects of the criterion such as
how threads are managed, whether the model avoids classical concurrency
problems such as race conditions, deadlocks, livelocks, and resource starva-
tion, and how variables are protected against corruption.

• Is thread management handled by the concurrency model?

– The answer is yes if the concurrency model exclusively handles
thread management such as starting, suspending, and stopping
threads. If the programmer is allowed to exercise such low-level
management, the answer is no.

• Is the model free from resource starvation?

– The answer is yes if waiting threads are resumed in the order which
they were suspended. That is, scheduling and resource sharing are
fair between threads. If a thread is allowed access to a resource
which other threads have waited on for a longer period of time,
the answer is no.
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• Is the model free from priority inversion?

– The answer is yes if a low priority thread is never allowed to block
high priority threads competing for the same resources.

• Does the fundamental concurrency model rely on a mathematical foun-
dation?

– The answer is yes if the concurrency model is built on top of
a mathematical model, e.g. a complete formal semantics for the
concurrency model. If the model is built without an underlying
mathematical system, the answer is no.

• Is non-determinism only present as an option to the programmer?

– The answer is yes if program execution is guaranteed to be de-
terministic unless the programmer explicitly has requested non-
deterministic behaviour. The request could apply to the entire
program or only parts of it. If the concurrency model only sup-
ports non-deterministic behaviour, the answer is no.

• Are shared variables protected against corruption by default?

– The answer is yes if shared variables by default are not subjected
to race conditions, i.e. if the programmer does not have to express
the actual synchronisation. If changes to shared variables may
result in race conditions without the programmer being forced
by the concurrency model to apply explicit synchronisation, the
answer is no.

• Is a variable initialised for all occurrences once it has been initialised?

– The answer is yes if a variable is initialised for all thread instances
once it has been initialised. That is, if a thread initialises a vari-
able, it can be accessed by any other thread without these have
to initialise the variable again. If this is not the case, and other
threads have to initialise the variable themselves, the answer is no.

• Is the concurrency model disinclined to runtime exceptions which appear
due to timing issues?

– The answer is yes if the concurrency model automatically handles
synchronisation of concurrency constructs. If runtime exceptions
can be raised because of timing issues when using the concurrency
constructs, the answer is no. That is, if the programmer does not
ensure sufficient synchronisation between threads, an exception
can be raised when invoking concurrency mechanisms.
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• Is it impossible to experience race conditions?

– The answer is yes if the programmer cannot create a race condition
between threads.

• Is it impossible to create a deadlock between two threads?

– The answer is yes if the programmer cannot create a deadlock
between two threads in the concurrency model. If a deadlock can
be created, the answer is no. The latter constitutes the minimal
case which implies that deadlocks between more than two threads
can also be created.

• Is it impossible to create a livelock between two threads?

– The answer is yes if the programmer cannot create a livelock be-
tween two threads in the concurrency model. If a livelock can be
created, the answer is no. The latter constitutes the minimal case
which implies that livelocks between more than two threads can
also be created.

• Does the concurrency model by default protect against race conditions?

– The answer is yes if the programmer must take explicit action to
introduce the possibility of race conditions. That is, race condi-
tions do not appear in the program unless the programmer allows
it. If race conditions can arise without the programmer having
explicitly allowed it, the answer is no.

• Does the concurrency model by default protect against deadlock?

– The answer is yes if the programmer must take explicit action to
introduce the possibility of deadlocks. That is, deadlocks do not
appear in the program unless the programmer allows it. If dead-
locks can arise without the programmer having explicitly allowed
it, the answer is no.

• Does the concurrency model by default protect against livelock?

– The answer is yes if the programmer must take explicit action
to introduce the possibility of livelocks. That is, livelocks do not
appear in the program unless the programmer allows it. If livelocks
can arise without the programmer having explicitly allowed it, the
answer is no.
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4.4.4 Simple

The questions in relation to the simple criterion are listed below. There
are nine questions which reveal various aspects of the criterion such as how
the model affects modelling sequential problems, whether the rules of the
concurrency model are enforced on compile time, how easy it is to compre-
hend e.g. interleaving of threads and variable protection schemes, and the
homogeneity of the various constructs of the concurrency model.

• Is it possible to model sequential problems without considering concur-
rency?

– The answer is yes if the concurrency model does not interfere with
writing sequential programs. Hence, these do not become more
complex than they would be if the programming language did not
support concurrency. If the programmer is forced to consider con-
currency features when modelling sequential problems, the answer
is no.

• Is code executed in a sequential order similar to sequential programs?

– The answer is yes if the concurrency model executes code se-
quentially, statement upon statement. By applying this execution
pattern, the concurrent programming model simulates sequential
programs, and therefore the concurrency model becomes readily
understandable to sequential programmers. If the concurrency
model executes code non-sequentially, e.g. by trying and retrying
to execute blocks, the answer is no.

• Does the model consist only of a few simple elements?

– The answer is yes if concurrency is built around a small number
of behaviourally simple elements. That is, the concurrency model
consists of a number of elements which can be combined into larger
constructs. If the concurrency model has a large number of con-
structs, each handling a dedicated usage scenario, the answer is
no.

• Is competition and co-operation synchronisation achieved using the same
language constructs?

– The answer is yes if the concurrency model applies the same key-
words and constructs to achieve competition and co-operation syn-
chronisation. That is, the concurrency model contains one united
set of keywords and constructs which are applicable to all pur-
poses. If the concurrency model features one set of keywords and
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constructs for competition synchronisation, and another for co-
operation synchronisation, the answer is no.

• Are sequential and implicitly parallel constructs applied using the same
keywords?

– The answer is yes if the concurrency model applies traditionally
sequential keywords for implicitly parallel constructs. An example
is if the keyword for is applied to both sequential for-loops and
parallel for-loops. If the parallel for-loop instead applies a keyword
like e.g. parfor, the answer is no.

• Are most rules enforced on compile time?

– The answer is yes if rules, which are defined by the concurrency
model, are checkable on compile time. Furthermore, the answer
is only yes if the concurrency model requires that the rules are
checked. If all rules defined by the concurrency model are only
checkable on runtime, the answer is no.

• Is potential interleaving between threads easy to comprehend and iden-
tify?

– The answer is yes if the concurrency model only exhibits a small
number of possible interleaving patterns between threads. That
is, the programmer can identify potential thread interleaving in
a straightforward manner and take this into consideration. If a
large number of possible interleaving patterns are possible, and
the patterns are complex, the answer is no.

• Are variable protection schemes easy to comprehend?

– The answer is yes if the concurrency model has a simple, easily
understandable, and structured way of protecting variables from
race conditions. Hence, the concurrency model applies a general
and straightforward scheme for variable protection. If the concur-
rency model applies a large number of specialised constructs to
enforce different kinds of variable protection, the answer is no.

• Is the concurrency model separated from the computer architecture?

– The answer is yes if the concurrency model is not bound to spe-
cific computer architectures. By keeping the concurrency model
separate, concurrency abstractions are not subjected to hardware
limitations. If the concurrency constructs are based on specific
hardware features, the answer is no.
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Chapter 5
Concurrency in Cava

This chapter describes the design of Cava. The new concurrency constructs
are introduced by first presenting a high-level overview of Cava in Section 5.1.
This is followed by the Cava syntax and informal semantics in Section 5.2 on
page 31. Note that examples of applying Cava are included in Chapter 6 on
page 50.

5.1 Introduction

This section contains a high-level introduction to the constructs in Cava.

5.1.1 Differences from Java

The foundation of Cava is the Java programming language. Most parts of
Java are still available in Cava with a few exceptions: the synchronized key-
word is removed as are the methods wait, notify, and notifyAll on the Java
Object class. All remaining parts of Java are still valid in Cava.

5.1.2 Threads

In Cava, concurrency is introduced using a thread construct. It bears some
resemblance to the threads in Java, but there are also differences between
the constructs. The strategy in both languages is to encapsulate threads
inside special Thread objects, which are instances of the Thread class. In
Cava, a thread starts to execute immediately when the thread object has
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been created. The code which the thread executes can be defined in two
ways: in the run method in a class extending the Thread class or in the run
method in a class implementing the Runnable interface.

Threads in Cava have one significant runtime difference compared to threads
in Java. In Cava, all variables are by default local to each thread. Hence,
such thread local variables can potentially have different values in each thread
instance. When a variable is thread local, the thread can read and change
the variable but the values are only visible to the given thread.

Cava features two different kinds of threads. These are termed deterministic
and non-deterministic threads with reference to the way they are executed,
or more precisely how they interact. When a deterministic thread needs to
perform an operation, and the result could be affected by or affect another
deterministic thread, the thread is suspended until it can be ensured that
the thread operations will proceed in a predefined order. This semantics
implies that programs, which solely use deterministic threads, always return
the same result.

The execution of non-deterministic threads is similar to the execution of
threads in Java. That is, non-deterministic threads are not subjected to an
order on operations which can affect other threads.

5.1.3 Shared Variables

As described in the previous section, all variables in Cava are thread local by
default. If a variable should not be thread local, it can be made available to
several threads by using the shared keyword in the variable declaration. If a
variable is shared, all threads will be reading or changing the same variable,
and they all see the results of other threads changing the variable.

The usage of shared variables is restricted since they cannot be read or
changed inside a conventional method. This is only allowed inside trans-
action methods or transaction blocks (see the following section).

5.1.4 Transactions

Any non-constructor method in Cava can be specified as a transaction method
by using the transaction keyword in the method declaration. When a method
is marked as a transaction method, the semantics of its execution is changed
compared to conventional methods. The difference lies in that Cava applies
Software Transactional Memory (STM). Hence, a transaction method is ex-
ecuted as an STM transaction which implies that it is executed atomically,
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i.e. without interleaving [HLM06]. Seen from all other threads, a transaction
method may commit its operations and complete successfully or abort its
operations and appear to have not run at all. If a transaction is aborted,
its operations are rolled back and it is re-executed at some later time. Sec-
tion 10.2 on page 101 contains a more detailed description of STM and how
it can be implemented.

Cava also features transaction blocks. These are defined inside methods and
code inside such a block is executed with STM semantics. Transaction blocks
are also specified using the transaction keyword.

A transaction method or block can be programmed in much the same way
as a conventional method since it can call other methods, both conventional
and transactions. However, these calls are part of the transactional semantics
of the transaction method or block, implying that the changes made by the
called methods are also under STM semantics. In contradiction to conven-
tional methods, transaction methods and blocks are allowed to access both
thread local and shared variables. This implies that shared variables can be
used similarly to local variables.

There is one special rule attached to the usage of transaction methods. This
states that a method, which contains multiple calls to transaction methods,
must itself be a transaction method. This rule, however, may be circumvented
by enclosing the calls to transaction methods in transaction blocks instead.

5.1.5 Gates

Gates are a message passing mechanism encapsulated in objects. The idea is
that a message, which may or may not carry a value in the form of an object,
can be sent to a gate. The messages are then retrieved by invoking a receive
method on the gate which returns the sent message. If receive is invoked at
a time when a message is not waiting in the gate, the thread is blocked until
a message becomes available.

Gates are divided into two different kinds: gates with“or”semantics and gates
with “and” semantics. An or-gate forwards a message to one and only one
recipient (i.e. thread). An and-gate forwards all messages to all recipients
which subscribe to the gate. That is, a thread has to invoke a subscribe
method before it can receive messages from an and-gate. Two classes OrGate
and AndGate define the two kinds of gates.

Gates can be joined together to form a network of gates. In the network,
messages are passed between the gates when a reception occurs on one of the
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gates. That is, when receive is invoked on one of the gates, this propagates
through the network until it reaches a gate which contains a message. If
there are no signals available in the network, the thread becomes blocked on
the invocation of receive. The individual gates in a network preserve their
semantics as or-gates or and-gates.

5.1.6 Inheritance

Inheritance in Cava is obtained in the same way as in Java with a few ex-
ceptions. The main difference is that transaction methods are visible on
inheritance. This implies that on interfaces and classes, it is possible to see
which methods are marked with the transaction keyword and which are not.
Furthermore, when overriding a method from a super class or an interface,
the transactional status of the method must be preserved. Hence, a transac-
tion method must be overridden by a transaction method and a conventional
method must be overridden by a conventional method.

5.2 Syntax and Semantics

This section describes Cava’s concurrency model in more detail. This is done
by specifying the syntax of the new constructs. Furthermore, the semantics
of the constructs is addressed at an informal level.

5.2.1 Threads

This section describes the syntax and semantics of threads in Cava. The
section builds on the description provided in Section 5.1.2 on page 28.

5.2.1.1 The Thread Class

Cava threads are bound to the Thread class which provides an encapsulation
of the construct. A new thread is created when an instance is made of either
the Thread class or a class which extends the Thread class. Each thread
object only provides one executing thread.

The Thread class contains a run method which is invoked by the thread when
it is started. Thus, the actual functionality of the Thread object is imple-
mented in the run method which therefore should be overridden in the derived
class. In case a class needs to inherit from another class than Thread, the
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thread functionality can be obtained by implementing the Runnable interface.
This design is necessary since Cava does not support multiple inheritance.
Runnable itself consists only of a run method which has to be overridden in
a class which implements the interface. Again, the run method implements
the actual functionality of the thread. The Thread class includes a number
of constructors which take a Runnable object as a parameter.

The different constructors available in the Thread class are presented in Ta-
ble 5.1. Note, the difference between deterministic and non-deterministic
threads is addressed in Section 5.2.1.2.

Constructor Summary:
Thread()

Creates a deterministic thread which executes the run method on
the Thread object.

Thread(Runnable runnable)
Creates a deterministic thread which executes the run method on
the Runnable object.

Thread(boolean nondeterministic)
Creates a thread which can be either deterministic or non-
deterministic and which executes the run method on the Thread
object.

Thread(Runnable runnable, boolean nondeterministic)
Creates a thread which can be either deterministic or non-
deterministic and which executes the run method on the Runnable
object.

Table 5.1: The constructors in the Thread class.

In Cava, all threads are started automatically when they are created. The
exact start time of the thread is defined based on whether the Thread object
is created inside or outside of a transaction. If the thread is created inside
a transaction method or block, the execution of the thread is delayed until
the transaction has been committed. This implies that when a transaction
commits successfully, any Thread object created inside the transaction is
started as an effect of the commit. When a thread is created outside of a
transaction, the thread is started as soon as the Thread object has been fully
created and initialised. That is, when a Thread object is created with the new
keyword, all appropriate constructors on the object and parent objects must
complete their execution inside the creating thread before the new thread
is started. The result of this is that the thread is started after all object
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constructors have been executed but before the object is returned by the new
keyword.

Threads in Cava cannot be managed directly by the programmer. This im-
plies that when a thread is first created, the programmer does not have any
default handles to control the execution of the thread. That is, methods like
stop, suspend, and resume, which were available in early version of Java, are
not available in Cava. If a programmer needs to perform explicit manage-
ment, this must be implemented as part of the functionality of the thread
which is easily obtained since threads are bound to Thread objects.

5.2.1.2 Deterministic and Non-deterministic Threads

Deterministic threads are threads which do not display non-deterministic
behaviour. The natural non-determinism of threads is removed by enforcing
a global ordering on operations performed by the threads. This implies that
when a deterministic thread needs to perform an operation which may be
affected by or affect another thread, the thread is suspended until it can
be ensured that the thread operations will proceed in a predefined order.
This semantics implies that programs, which solely use deterministic threads,
always return the same result.

Cava automatically manages the order on deterministic threads, so a pro-
grammer cannot directly influence the order of threads. The ordering is
achieved by assigning a unique id to each thread based on the order in which
they are created. All deterministic threads execute concurrently as long as
they only access local variables. When a deterministic thread needs to create
a new thread or access a shared variable or gate, the thread is suspended.
When all deterministic threads have been suspended, the threads are allowed
to resume execution in ascending order on their id and perform their non-local
operations. This pattern is repeated every time the threads need to perform
non-local operations. A collection of threads, which run deterministically to
each other, are said to be in the same deterministic zone.

The execution of non-deterministic threads is similar to the execution of
threads in Java. That is, non-deterministic threads are not subjected to
an order on operations which can affect other threads. This implies that the
programmer must ensure that the non-deterministic behaviour of the threads
does not cause problems with the semantics of a program.

The default behaviour of threads is deterministic execution. Hence, a call
to new Thread() results in a deterministic thread. However, the Thread class
has overloaded constructors which makes it possible for the programmer to
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specify a Boolean parameter indicating whether the thread should have non-
deterministic behaviour (see Table 5.1). Hence, a call to new Thread(true)
creates a non-deterministic thread.

A program may utilise both deterministic and non-deterministic threads.
When compared to the thread which created it, a thread always exhibits
the semantics with which it was created. That is, if a thread creates a
deterministic thread, this is in the same deterministic zone as the creating
thread. If the thread creates a non-deterministic thread, this is placed in
a new deterministic zone. The result of this is that a non-deterministic
thread runs non-deterministically compared to its creating thread while a
deterministic thread runs deterministically compared to its creating thread.

5.2.1.3 Thread Local Variables

Variables in Cava are thread local by default. That is, unless a variable is
marked with the shared keyword, the variable is thread local and each thread
operates on its own copy of the variable. This implies that a thread can read
and change the values of variables but the values are only visible to the given
thread.

When a thread is started, it inherits the values of thread local variables
from its creating thread. Hence, all thread local variables, which have been
assigned a value in the thread which creates a new Thread object, are copied
to the new thread. This implies that a new thread has an updated copy of
the values of thread local variables.

When a thread creates an object, the thread local variables inside the object
are only initialised for the current thread. That is, the initialisation code
provided for the object is executed by the current thread making assignments
to thread local variables. The result of this is that thread local variables in
the newly created object will not have a defined value for existing threads.

Code 5.1 shows an example of two threads working on the same thread local
variable, value. The code shows how the threads are created and how the
functionality is implemented in the run method. After execution, value is 1
in each of the threads. In the main program thread, value is still 0.

5.2.2 Shared Variables

This section describes the syntax and semantics of shared variables in Cava.
The section builds on the description provided in Section 5.1.3 on page 29.
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1 public class Example {
2

3 private int value = 0;
4

5 public class ExampleThread extends Thread {
6 public void run() {
7 value++;
8 System.out.println(value) ;
9 }

10 }
11

12 public void execute() {
13 new ExampleThread();
14 new ExampleThread();
15 }
16 }

Code 5.1: Creating two threads with a thread local variable, value.

5.2.2.1 The shared Keyword

In some scenarios, it is necessary to have variables which are shared between
several threads. This can be obtained by adding the shared keyword to the
variable declaration. That is, shared is added to the set of modifiers in Cava
which can be seen in Table 5.2 on the next page. Note that transaction is
also added as a modifier (see Section 5.2.3 on page 37 for more details).
Furthermore, the synchronized keyword is not an access modifier in Cava. All
other modifiers from Java are preserved and taken from the formal grammar
found in“The JavaTM Language Specification, Third Edition”[G+05, pp. 591–
592].

5.2.2.2 Application of shared

The shared modifier can only be applied to variables in Cava. That is, meth-
ods, classes, and interfaces cannot be marked as shared. Furthermore, only
instance variables can be marked as shared. This implies that variables, which
are declared within a method, are always local to the given thread invoking
the method. If a variable is marked as shared, all threads will be reading
or changing the same variable. As a result, they all see the results of other
threads changing the variable.
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Modifier:
Annotation
public
protected
private
shared
transaction
static
abstract
final
native
transient
volatile
strictfp

Table 5.2: Access modifiers in Cava.

The shared modifier can be combined with the private, default, protected,
and public access control modifiers. The access control modifiers define from
where a variable can be accessed, and the shared modifier defines the seman-
tics of the variable when it is being accessed. The difference in semantics
implies that all combinations of the access control modifiers and the shared
modifier are allowed, and that each combination induces a different overall
semantics. All combinations of the shared modifier and the access control
modifiers can be seen in Code 5.2.

1 public shared int publicSharedValue;
2 protected shared int protectedSharedValue;
3 shared int defaultSharedValue;
4 private shared int privateSharedValue;

Code 5.2: The combinations of access control modifiers and the shared
modifier.

Since shared variables can be accessed by multiple threads, they have to
be protected from corruption. This is obtained by requiring that shared
variables are only accessed within methods or blocks marked with the trans-
action keyword.
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5.2.3 Transactions

This section describes the syntax and semantics of transactions in Cava. The
section builds on the description provided in Section 5.1.4 on page 29.

As mentioned above, access to shared variables has to be protected against
corruption. The key idea in transaction methods and blocks is that access
is induced with STM semantics. This implies that in case two threads try
to access a shared variable simultaneously, only one is allowed to manipulate
the variable and the execution of the other thread is aborted. The result of
this is that access to the variable becomes interleaved.

5.2.3.1 The transaction Keyword

The STM semantics is obtained by adding the transaction keyword to the
set of modifiers in Cava which can be seen in Table 5.2. The transaction
keyword can be applied to either a non-constructor method or a block. This
is described in the following sections.

5.2.3.2 Transaction Methods

A non-constructor method can be defined as a transaction method by in-
cluding the transaction keyword in the method declaration. This implies that
the entire body of the method is performed atomically as a single transac-
tion. Unlike conventional methods, transaction methods are allowed to access
both shared and thread local variables. The changes made by a transaction
method on variables can be either committed or rolled back, regardless of
whether the variables are thread local or shared.

Code 5.3 on the next page shows an example with a shared variable, value,
which is incremented using a transaction method, incrementValue. Depending
on the order in which the two threads are allowed access to value, the output
will either be “Thread #1 incremented value to 1” followed by “Thread #2
incremented value to 2”, or “Thread #2 incremented value to 1” followed
by “Thread #1 incremented value to 2”. Notice that the two different re-
sults are only possible because the constructor of the ExampleThread class
includes a call to super(true) which implies that the threads execute non-
deterministically.

Transaction methods are allowed to call both conventional and transaction
methods, including constructors. Calls to conventional methods become part
of the transactional semantics which implies that the changes made by the
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1 public class Example {
2

3 private shared int value = 0;
4 private int id = 0;
5

6 private class ExampleThread extends Thread {
7 public ExampleThread () {
8 super(true);
9 id++;

10 }
11

12 public void run() {
13 incrementValue();
14 }
15

16 public transaction void incrementValue() {
17 value++;
18 printValue(value) ;
19 }
20

21 public void printValue(int value) {
22 System.out.println(”Thread #” + id + ” incremented value to ” + value)

;
23 }
24 }
25

26 public void execute() {
27 new ExampleThread();
28 new ExampleThread();
29 }
30 }

Code 5.3: Two threads accessing a shared variable, value, using a transaction
method, incrementValue.
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conventional methods are also under STM semantics. Similar to transaction
methods, conventional methods are also allowed to invoke both conventional
and transaction methods. Code 5.3 illustrates some of these points. The
conventional run method invokes a transaction method, incrementValue. The
incrementValue method invokes the conventional printValue method. Since the
call is made inside a transaction method, printValue is under STM semantics
similarly to incrementValue.

Even though conventional methods are allowed to invoke transaction meth-
ods, they may only invoke one such method. If multiple transaction meth-
ods are invoked, the method must itself be a transaction method or utilise
transaction blocks. Code 5.4 shows an example of this. The increment-
Value method must be a transaction method since it invokes the transaction
methods getValue and setValue. Had incrementValue not been a transaction
method, interleaving between two threads invoking incrementValue could pro-
duce incorrect results.

1 public class Example {
2

3 private shared int value = 0;
4

5 public transaction void incrementValue() {
6 int temp;
7

8 temp = getValue();
9 temp++;

10 setValue(temp);
11 }
12

13 private transaction int getValue() {
14 return value;
15 }
16

17 private transaction void setValue(int value) {
18 this.value = value;
19 }
20 }

Code 5.4: A method, incrementValue, invoking multiple transaction methods.

When a transaction method invokes another transaction method, the two
methods are executed as a single transaction. That is, Cava features nested
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transactions. These are handled as one single large transaction which has
several implications. The first is that an inner transaction can see all changes
made by parent transactions even before the parent transaction has been
committed. This also implies that an inner transaction does not cause the
parent transaction to be aborted by accessing the same variables as the parent
transaction. Another consequence is that inner and parent transactions are
committed or aborted collectively. That is, inner transactions are rolled
back together with the outer transaction if a conflict arises. An example of
nested transactions can be seen in Code 5.4 where the transaction method,
incrementValue, invokes two transaction methods. The getValue and setValue
methods are executed as nested transactions to incrementValue.

As mentioned, transaction methods are allowed to access both thread local
and shared variables. As a consequence, it is not incorrect to have a transac-
tion method which only accesses thread local variables. However, the prob-
lem of two threads wishing to access a variable simultaneously never arises.
Hence, the method never has to perform roll backs or re-exectutions and
thus, the transaction keyword has no effect on the semantics of the program.

5.2.3.3 Transaction Blocks

The transaction keyword can also be applied to a block of code. This can be
seen in Table 5.3 which shows the statements in Cava. The other statements
are taken from the formal grammar found in “The JavaTM Language Speci-
fication, Third Edition” [G+05, p. 590]. Note that since synchronized is not
an access modifier in Cava, the Java statement synchronized ParExpression
Block is excluded from Table 5.3.

The operations within a transaction block are under STM semantics which
implies that either none of the operations are performed or all are performed.
A method may contain several transaction blocks and each block is under
STM semantics. That is, other threads can see the result of changes to
shared variables at the end of each block, i.e. before the entire method has
completed its execution. Code 5.5 shows an example with a transaction
block. The code implements the same functionality as Code 5.4.

As is the case with transaction methods, having a transaction block which
only accesses thread local variables is not incorrect. However, once again
the transaction keyword is without effect on program semantics. Similarly, it
is not incorrect to have transaction blocks within a transaction method or
block. This has the semantics of nested transactions.

Using transaction blocks makes it possible to circumvent the rule which states
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Statement:
Block
assert Expression [ : Expression] ;
if ParExpression Statement [ else Statement]
for ( ForControl ) Statement
while ParExpression Statement
do Statement while ParExpression ;
try Block ( Catches | [Catches] finally Block )
switch ParExpression { SwitchBlockStatementGroups }
transaction Block
return [Expression] ;
throw Expression ;
break [Identifier]
continue [Identifier]
;
StatementExpression ;
Identifier : Statement

Table 5.3: Statements in Cava.

1 public class Example {
2

3 private shared int value = 0;
4

5 public void incrementValue() {
6 int temp;
7

8 transaction {
9 temp = value;

10 temp++;
11 value = temp;
12 }
13 }
14 }

Code 5.5: A transaction block protecting a shared variable, value.

41



CHAPTER 5. CONCURRENCY IN CAVA

that a method invoking multiple transaction methods must itself be a trans-
action method. This is because the rule does not apply to transaction blocks
so all methods are allowed to contain multiple transaction blocks. Similarly,
invocations of transaction methods inside a transaction block does not re-
quire the enclosing method to become a transaction method. That is, unless
the method also contains multiple invocations of transaction methods which
are not enclosed in transaction blocks.

5.2.4 Gates

This section describes the gates which are part of Cava. The section builds
on the description provided in Section 5.1.5 on page 30.

Gates constitute a message passing mechanism which is encapsulated in ob-
jects. That is, gates are not applied in a program by using new keywords or
other language constructs. The fundamental idea is that threads can send
messages to gates. The message may carry a value in the form of some object
but this is not required. Other threads, including the sender, can retrieve
the messages from the gate which enables communication and co-operation
between threads.

There are two different types of gates in Cava: gates with “or” semantics en-
capsulated in the OrGate class, and gates with “and” semantics encapsulated
in the AndGate class. The two types of gates are described in Sections 5.2.4.3
and 5.2.4.4 on page 44. However, some of the constructs are common to the
two types of gates and these are described in the following two sections.

5.2.4.1 The Gate Interface

Both types of gates implement the Gate interface which is seen in Table 5.4.

Method Summary:
public transaction abstract void signal()

Sends an empty signal to the gate.
public transaction abstract void signal(T message)

Sends a signal to the gate with a message attached.
public transaction abstract void tap(Gate gate)

Connects to the gate to receive signals from the gate.

Table 5.4: The methods in the Gate interface.
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The interface declares an overloaded signal method which is used to send a
new signal to the gate. The last method, tap, is used to create gate networks
(see Section 5.2.4.5 on page 46).

There are two signal methods since one is used to send signals without a
message and the other is used to send a signal carrying a message. Each
signal can only carry one message but there is no restriction on the type
of messages. This is the case since the messages are handled in the form of
objects and hence, any type of object can be sent through a gate. Both types
of gates utilise the generic feature introduced in Java 5. This implies that
when a gate is declared, the object type of the messages can be specified.

The signal methods on the Gate interface are transaction methods. This
implies that only one thread has access to the gate at a time. If two threads
invoke signal on the gate simultaneously, it is not possible to assume any
order on which thread is allowed to actually execute signal before the other.
This is the case since the operations are transactions which may interfere and
interrupt each other. However, in case a single thread invokes signal several
times, these messages arrive in order at the gate.

5.2.4.2 The Receiver Interface

The Receiver interface, which can be seen in Table 5.5, defines a receive
method which is applied to retrieve signals from gates. If the signal carried
a message, this becomes the return value af receive. Otherwise, the return
value is null.

Method Summary:
public transaction T receive()

Retrieves a signal from the gate. The method call is blocked if no
signals are available.

Table 5.5: The method in the Receiver interface.

Both or-gates and and-gates use the Receiver interface. However, because
of the difference in semantics in the two types of gates, the Receiver inter-
face is used on different constructs which is addressed in Section 5.2.4.3 and
Section 5.2.4.4.
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5.2.4.3 The OrGate Class

The semantics of an or-gate is to forward a given message to one and only
one recipient (i.e. thread). The OrGate class implements both the Gate and
Receiver interfaces. Hence, the methods available on or-gates are the methods
in Table 5.4 and Table 5.5.

As mentioned, a thread may send a signal, which may or may not carry an
actual message, to an or-gate by invoking the signal method on the gate. A
message can be retrieved from an or-gate by invoking the receive method on
the same gate. A call to receive is matched against an invocation of signal, and
the parameter of signal becomes available if a such was provided. If no signals
are available when receive is invoked, the receiving thread is blocked until a
signal arrives to the gate. The signal and receive methods are transaction
methods.

The semantics of the or-gate implies that any thread may send a signal to
an or-gate but only one thread receives a given signal by invoking receive
on the gate. An example of this is seen in Code 5.6. Here, the instance of
the SendThread class sends a signal to gate which the instance of the Re-
ceptionThread class receives. Note, the run methods need not be transaction
methods since they only invoke one transaction method each.

5.2.4.4 The AndGate Class

The semantics of an and-gate is to forward a given message to all recipients
(i.e. threads) wishing to receive messages from the gate. The AndGate class
implements the Gate interface but not the Receiver interface. Hence, the
methods available on and-gates are the methods in Table 5.4 along with the
subscribe method shown in Table 5.6.

Method Summary:
public transaction Receiver<T> subscribe()

Returns a Receiver object which can be used to retrieve signals from
the gate.

Table 5.6: The additional method in the AndGate class.

As mentioned, a thread may send a signal, which may or may not carry an
actual message, to an and-gate by invoking the signal method on the gate.
However, since the AndGate class does not implement the Receiver interface,
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1 public class Example {
2

3 class ReceptionThread extends Thread {
4 Receiver receiver ;
5

6 public ReceptionThread(Receiver receiver) {
7 this. receiver = receiver ;
8 }
9

10 public void run() {
11 receiver . receive () ;
12 }
13 }
14

15 class SendThread extends Thread {
16 Gate gate;
17

18 public SendThread(Gate gate) {
19 this.gate = gate;
20 }
21

22 public void run() {
23 gate. signal () ;
24 }
25 }
26

27 public void execute() {
28 OrGate gate = new OrGate();
29 new ReceptionThread(gate);
30 new SendThread(gate);
31 }
32 }

Code 5.6: One thread sending a signal to another thread using an or-gate.
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there is no receive method directly on and-gates. Instead, threads wishing
to receive the signals have to invoke the subscribe method. This results in a
Receiver object which handles the signals from the and-gate. Once a signal
arrives at the and-gate, it is forwarded to the Receiver objects of all threads
which have subscribed to the and-gate. The effect of this is that old messages
are not retained in the and-gate. The receive method on the Receiver object
has to be invoked to actually receive the signals from the gate. A call to
receive is matched against an invocation of signal in the Receiver object, and
the parameter of signal becomes available if a such was provided. If no signals
are available when receive is invoked, the receiving thread is blocked until a
signal arrives to the Receiver object.

The semantics of an and-gate implies that any thread may send a signal to an
and-gate but only threads which have invoked subscribe on the gate receive
the signal. A thread may subscribe to an and-gate at any time but it is not
possible to unsubscribe to and-gates. If there are no subscribers to an and-
gate when a signal is sent to it, the signal could be said to be lost. However,
all threads subscribing to an and-gate receive all signals sent after they have
subscribed to the gate.

An example using an and-gate is seen in Code 5.7. Here, the instance of the
SendThread class sends a signal to gate. The instance of the ReceptionThread
class receives the signal by invoking receive on the Receiver object, receiver,
which was returned from the invocation of subscribe on gate. Note, it would
be possible to have more threads subscribing to the and-gate.

5.2.4.5 Networks of Gates

Both types of gates may be linked together to form a gate network which is a
decentralised construct formed by the individual gates which are connected
into the network structure. That is, it is not manifested in a network struc-
ture object or any other representation, it is only present in the semantics of
the gates. When gates are connected in a network, signals sent to the gates
can propagate between the gates in the network. This implies that if a gate
has been connected to another gate, a call to receive on the gate can also
return a signal which was sent to the other gate.

A gate network is built by making connections between different gates. The
connections are established by invoking the tap method on the gate which
should receive signals from another gate. The other gate in the connection
is defined by passing it as a parameter to the tap method. Invoking tap on a
gate using itself as a parameter is ignored. Similarly, if the same connection is
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1 public class Example {
2

3 class ReceptionThread extends Thread {
4 Receiver receiver ;
5

6 public ReceptionThread(Receiver receiver) {
7 this. receiver = receiver ;
8 }
9

10 public void run() {
11 receiver . receive () ;
12 }
13 }
14

15 class SendThread extends Thread {
16 Gate gate;
17

18 public SendThread(Gate gate) {
19 this.gate = gate;
20 }
21

22 public void run() {
23 gate. signal () ;
24 }
25 }
26

27 public void execute() {
28 AndGate gate = new AndGate();
29 new ReceptionThread(gate.subscribe());
30 new SendThread(gate);
31 }
32 }

Code 5.7: One thread sending a signal to another thread using an and-gate.
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established multiple times. Note that the gates, which are being connected,
can already be part of existing gate networks. Joining the gates together
introduces a connection between the two gate networks, resulting in a larger
gate network composed of the two previous networks. When two gates have
been connected they cannot be disconnected again. There is no restriction on
how gates can be connected which implies that any two gates can be linked
together. Loops in the network are also allowed.

Gate connections are asymmetric, implying that signals only flow in one
direction. That is, when two gates, a and b, are connected by a.tap(b), only
a is able to receive signals from b. A signal sent to a cannot be retrieved
through b. If this should also be the case, tap must also be called on b with
a as the parameter.

The individual gate in a network preserves its semantics as either an or-gate
or an and-gate which has two implications. The first is that the individual
gate can still function as a stand-alone or-gate or and-gate when it is part of
a gate network. This occurs if no calls are made to signal or receive on other
gates in the network. The other implication is that signals are propagated
in the network in accordance with the semantics of the individual gates.
This implies that when a signal passes through an or-gate, only one of the
gates tapping the gate receives the signal, and when a signal passes through
an and-gate, all gates tapping the gate receive the signal. Note that when
a signal passes through an and-gate, all subscribers receive a copy of the
signal, including gates tapping the and-gate and all non-gate subscribers
(i.e. threads). When a signal passes through an or-gate, it is passed either to
a gate tapping the or-gate or a thread which has invoked receive directly on
the gate.

The propagation of signals in a gate network is under lazy evaluation, im-
plying that signals are passed between gates when a reception occurs on one
of the gates, and not when a signal is sent to a gate. That is, when receive
is invoked on one of the gates, this propagates through the network until it
reaches a gate which contains a message. If there are no signals available in
the network, the thread becomes blocked on the invocation of receive. Note,
the propagation of a signal takes place immediately if a call to receive has
been made somewhere in the gate network prior to the signal being sent.

5.2.5 Inheritance

This section presents points in relation to inheritance in Cava. The section
builds on the description provided in Section 5.1.6 on page 31.
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Inheritance in Cava is obtained using the extends keyword and only single
inheritance is supported. If a class needs to have the functionality of several
other classes, this can be obtained by utilising interfaces.

5.2.5.1 Overriding Methods

Transaction methods may be viewed as code which implements synchronisa-
tion between threads. Transaction methods in Cava are visible on inheritance
which implies that the transactional status of methods is part of the interface
of a class. Hence, when overriding a method, the programmer is able to see
whether or not it is a transaction method. This is necessary since transaction
methods should be overridden with transaction methods and conventional
methods should be overridden with conventional methods.

If a method in a super-class is a transaction method, it is likely because
it accesses some shared variables. The method in the subclass may not
necessarily need to access shared variables but in order to comply with the
interface of the method in the super-class, the overriding method should also
be a transaction method. If the overriding method does not access any shared
variables, the transaction keyword is without effect.

If a method in a super-class is a conventional method, it cannot be upgraded
to a transaction method in the subclass. This is the case since it could cause
violations of the rule that a method has to be a transaction method if it
invokes multiple transaction methods. That is, a method, which invokes a
transaction method as well as the overriding method in question, would have
to be upgraded as well. In case the overriding method needs to access shared
variables, this can be handled within transaction blocks.

Transaction blocks within methods also implement synchronisation between
threads. However, this is not visible on inheritance since it is not part of the
interface of the method. This does not pose a problem since any shared vari-
ables accessed within the overridden transaction blocks cannot be changed in
the new method without applying a transaction block. Therefore, race con-
ditions cannot be introduced by overriding a method containing transaction
blocks.
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Application of Cava

This chapter contains various applications of Cava. Examples of how clas-
sical concurrency constructs can be modelled in Cava are included in Sec-
tions 6.1–6.2. Furthermore, extracts are presented from implementations of
Dining Philosophers in Section 6.3 on page 53 and the Santa Claus prob-
lem in Section 6.4 on page 58. Finally, Cava is applied to model a parallel
version of the Quicksort algorithm in Section 6.5 on page 62. Note, all exam-
ples presented in this chapter can be found in their entirety on the enclosed
CD-ROM.

6.1 Lock

This section illustrates how a lock can be modelled in Cava. Code 6.1 shows
a Lock class with an or-gate, gate, as the only instance variable. It is shared
since multiple threads should be able to access it when using the lock.

As part of the Lock constructor, a signal is sent to gate. This ensures that
the first thread, which invokes the acquire method, is allowed to continue
its execution since a signal is available in gate when receive is invoked. Any
thread which subsequently invokes acquire is blocked since there is no signal
available on gate. Once the current thread invokes the release method, a
signal is sent to gate allowing another thread to obtain the lock since it
becomes unblocked on the receive method.

Code 6.1 shows that a lock is very easily modelled in Cava. The functionality
of or-gates makes it straightforward to block a thread when it invokes acquire
on a Lock object which is not available.
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3 public class Lock {
4

5 private shared OrGate gate = new OrGate();
6

7 public Lock() {
8 transaction {
9 gate. signal () ;

10 }
11 }
12

13 public transaction void acquire() {
14 gate. receive () ;
15 }
16

17 public transaction void release() {
18 gate. signal () ;
19 }
20 }

Code 6.1: Modelling a lock in Cava.

6.2 Emulating wait, notify, and notifyAll

This section describes how the Java methods wait, notify, and notifyAll can
be emulated in Cava.

Code 6.2 on the next page shows a WaitNotify class with an or-gate, gate, and
an integer, waitingThreads, as instance variables. The latter registers how
many threads have invoked halt. Both variables are shared since multiple
threads should be able to access them. The halt method is the equivalent of
wait, while proceed and proceedAll are the equivalents of notify and notifyAll.

When a thread invokes halt, the waitingThreads variable is incremented to
indicate that there are threads which are suspended on gate. Furthermore,
waitingThreads registers exactly how many threads are blocked on a call to
halt which is needed in the proceedAll method. The gate object is replaced
with a new or-gate as part of the proceed and proceedAll methods which is
addressed later in this section. Hence, the or-gate, which is available when
waitingThreads is incremented, is saved in waitGate. The next step is to
actually suspend the thread by invoking receive on waitGate. The two steps
are surrounded by separate transaction blocks to ensure that the invocation

51



CHAPTER 6. APPLICATION OF CAVA

3 public class WaitNotify {
4

5 private shared int waitingThreads = 0;
6 private shared OrGate gate = new OrGate();
7

8 public void halt() {
9 OrGate waitGate = null;

10

11 transaction {
12 waitingThreads++;
13 waitGate = gate;
14 }
15

16 transaction {
17 waitGate.receive() ;
18 }
19 }
20

21 public transaction void proceed() {
22 OrGate signalGate;
23

24 if (waitingThreads > 0) {
25 gate. signal () ;
26 waitingThreads−−;
27

28 signalGate = gate;
29 gate = new OrGate();
30

31 if (waitingThreads > 0) {
32 signalGate.tap(gate);
33 }
34 }
35 }
36

37 public transaction void proceedAll() {
38 while (waitingThreads > 0) {
39 gate. signal () ;
40 waitingThreads−−;
41 }
42

43 gate = new OrGate();
44 }
45 }

Code 6.2: Emulating wait, notify, and notifyAll.52
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of halt is registered in waitingThreads before the thread is suspended on
waitGate.

An invocation of proceed sends a single signal to gate if waitingThreads is
positive and decrements waitingThreads. The signal is received by a single
thread blocked on receive on the given gate and thus emulates notify which
only wakes up a single thread. The fact that a signal is only sent if wait-
ingThreads is positive emulates the possibility of losing notifications in Java
in case notify or notifyAll is invoked before wait. Hence, if no threads have
invoked halt, a signal should not be sent to gate since this would be available
in a subsequent call to halt. As part of the method, a new or-gate object
is assigned to gate in line 29. This is done to ensure that the signal just
sent only can be received by already waiting threads and not by new threads
invoking halt. However, if multiple threads are waiting on the previous gate,
these should also be able to receive signals from future invocation of pro-
ceed. This semantics is achieved by constructing a gate network in line 32
consisting of the old gate and the new one.

The proceedAll method also emulates the possibility of losing notifications
since signals are only sent to gate if waitingThreads is positive. The proceedAll
method sends a number of signals to gate which matches the number of
threads which have invoked halt at the time proceedAll is invoked. The correct
number of signals is ensured since proceedAll is a transaction method which
implies that any following calls to halt are delayed until proceedAll has finished
its execution. Because these latter threads should not be able to receive one of
the current signals on the gate, a new or-gate is assigned to the gate variable
in line 43.

Code 6.2 shows that an emulation of wait, notify, and notifyAll can be obtained
in Cava. As was the case with the Lock class in Section 6.1, the functionality
of or-gates makes it straightforward to block a thread when it invokes halt
on a WaitNotify object. Furthermore, the semantics of transaction methods
implies that inference in the proceedAll method is easily prevented. However,
in order to obtain the correct semantics, the gate variable must be manipu-
lated and gate networks are required. This is also easily obtained since the
manipulations are protected using transactions.

6.3 Dining Philosophers

Dining Philosophers is a classical concurrent problem and this section pre-
sents how it can be modelled in Cava. Fundamentally, the allocation of forks
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between philosophers can be viewed as either competition or co-operation.
Both scenarios are included in the following sections.

6.3.1 Competition

This section describes the Dining Philosophers problem when the philoso-
phers compete for the forks. Code 6.3 shows the constructor declaration of
the Philosopher class and it is seen that his forks are parameters to this. This
is the case since the philosophers have to share the forks so these have to be
instantiated outside the Philosopher class.

9 public Philosopher(int id, Fork leftFork , Fork rightFork) {

Code 6.3: The constructor declaration of the Philosopher class.

The run method of the Philosopher class is seen in Code 6.4. It simply shows
that a philosopher alternates between thinking and eating. The think method
consists only of printing a message and a sleep period and is not included.

16 public void run() {
17 while (true) {
18 think() ;
19 eat() ;
20 }
21 }

Code 6.4: The run method of the Philosopher class.

Code 6.5 shows the eat method. This is a transaction method since the
forksUp and forksDown methods are transaction methods. Hence, the rule,
that a method invoking multiple transaction methods should be a transaction
method, is applied. Moreover, it ensures that a philosopher is allowed to
pick up his forks, eat, and put down his forks without interleaving with other
philosophers.

The forksUp method is seen in Code 6.6 and it shows that a pickUp method
is invoked on each fork. It is marked as a transaction method since pickUp
is a transaction method. Furthermore, it ensures that a philosopher picks

54



6.3. DINING PHILOSOPHERS

28 private transaction void eat() {
29 forksUp();
30 System.out.println(this + ” took ” + leftFork + ” and ” + rightFork);
31 System.out.println(this + ” eating”) ;
32 Thread.sleep(200);
33 forksDown();
34 System.out.println(this + ” put down ” + leftFork + ” and ” + rightFork);
35 }

Code 6.5: The eat method of the Philosopher class.

37 private transaction void forksUp() {
38 leftFork .pickUp();
39 rightFork.pickUp();
40 }

Code 6.6: The forksUp method of the Philosopher class.

up both forks in one go. The forksDown method only differs from forksUp in
that a putDown method is invoked on the forks and is not included.

Code 6.7 on the following page shows the Fork class. It contains a Boolean
instance variable, taken which indicates whether the fork is presently being
used. The pickUp and putDown methods change the status of the fork and
they are transaction methods since taken is a shared variable.

That two philosophers cannot pick up the same fork is ensured by the shared
variable taken. This is the case since a philosopher which has invoked pickUp
on a fork accesses taken. Hence, if another philosopher invokes pickUp on the
same fork, the forksUp method of that philosopher will experience a conflict
and not be allowed to access the fork until the first philosopher’s eat method,
which is a transaction, has finished its execution or is aborted.

The above shows that the STM semantics of transaction methods makes it
easy to prevent two philosophers from picking up the same fork. Furthermore,
a philosopher is allowed to pick up his forks, eat, and put down his forks
uninterrupted simply because eat is a transaction method. It is noted that
the implementation is deadlock-free due to the STM semantics of transaction
methods. However, it is not free of the possibility of starvation.

The implementation of Dining Philosophers appears more elegant than an
equivalent one made in Java. This is based on the fact that the main focus can
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3 public class Fork {
4

5 private int id;
6 private shared boolean taken;
7

8 public Fork (int id) {
9 this. id = id;

10 transaction {
11 taken = false;
12 }
13 }
14

15 public transaction void pickUp() {
16 taken = true;
17 }
18

19 public transaction void putDown() {
20 taken = false;
21 }

Code 6.7: The Fork class.

be on implementing the functionality and less effort is put into the required
synchronisation since this is obtained using transaction methods. Moreover,
this also makes the code more readable since the synchronisation does not
have to be made explicit.

6.3.2 Co-operation

This section describes the Dining Philosophers problem when the philoso-
phers co-operate about the forks. Code 6.8 shows the Fork class. It contains
an or-gate instance variable, gate, which is used to obtain co-operation be-
tween the philosophers. The pickUp method simply invokes receive on gate
which implies that a philosopher is only allowed to pick up the fork in case
there is a signal. If this is not the case, the philosopher is blocked on receive
until a signal becomes available. This is provided in the putDown method.
Note, the first signal to gate is sent as part of the Fork constructor.

The run method of the Philosopher class is seen in Code 6.9. It shows that a
philosopher repeats thinking, picking up his forks, eating, and putting down
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3 public class Fork {
4

5 private int id;
6 private OrGate gate = new OrGate();
7

8 public Fork (int id) {
9 this. id = id;

10 gate. signal () ;
11 }
12

13 public void pickUp() {
14 gate. receive () ;
15 }
16

17 public void putDown() {
18 gate. signal () ;
19 }

Code 6.8: The Fork class.

his forks. Similarly to the competing philosophers, the think method only
consists of printing a message and a sleep period and is not included. The
same is the case for the eat method.

16 public void run() {
17 while (true) {
18 think() ;
19 forksUp();
20 eat() ;
21 forksDown();
22 }
23 }

Code 6.9: The run method of the Philosopher class.

Code 6.10 on the next page shows the forksUp method which is invoked in the
run method. It shows that pickUp is invoked on each fork which effectively
corresponds to invoking receive on the or-gates in the forks. The invocations
of pickUp are enclosed in a transaction block to ensure that the philosopher
is granted both forks collectively. This prevents the deadlock scenario where
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each philosopher picks up e.g. his left fork and waits for access to his right
fork. This would never be granted since all philosophers are blocked on a
call to receive on his right fork. Again, the forksDown method only differs in
that putDown is invoked on the forks. Furthermore, there is no need for a
transaction block around the invocations of putDown since they correspond
to invoking the non-blocking signal method on the or-gates in the forks.

35 private void forksUp() {
36 transaction {
37 leftFork .pickUp();
38 rightFork.pickUp();
39 }
40

41 System.out.println(this + ” took ” + leftFork + ” and ” + rightFork);
42 }

Code 6.10: The forksUp method of the Philosopher class.

The above shows that the functionality of or-gates makes it straightforward
to block a philosopher when he tries to pick up a fork which is already in
use. The co-operation is obtained solely by the transaction block in the fork-
sUp method in Code 6.10 and the functionality of or-gates. Furthermore,
the transaction block in the forksUp method prevents the philosophers from
introducing a circular dependency. Hence, similarly to the competing philoso-
phers, the implementation is deadlock-free. However, it is again possible to
witness starvation.

6.4 The Santa Claus Problem

This section contains extracts from an implementation of the Santa Claus
problem in Cava. A description of the problem can be found in Appendix B
on page 117.

Code 6.11 shows part of the code which initialises the Santa Claus problem.
Note, the Santa, Pixy, and Reindeer classes all extend the Thread class.

Lines 16 and 19 in Code 6.11 illustrate that there is a circle of dependency
between the Santa and Barn classes since they appear as variables in each
other. This is initialised by invoking setSanta on barn and invoking setBarn
on santa. The invocation of setBarn on santa has to be made before the
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8 public static void main(String[] args) {
9 System.out.println(”System starting”);

10

11 Barn barn = new Barn();
12 Shop shop = new Shop();
13 Sleigh sleigh = new Sleigh();
14 Santa santa = new Santa();
15

16 barn.setSanta(santa);
17 shop.setSanta(santa);
18

19 santa.setBarn(barn);
20 santa. setSleigh ( sleigh ) ;
21

22 santa. start () ;

Code 6.11: Part of the initialisation of the Santa Claus problem.

Santa thread is allowed to start its execution. However, threads are started
as part as their constructors so a delayed start, similarly to that of Java, has
to be implemented. This is observed in line 22 where an explicit start method
is invoked on santa.

Code 6.12 shows how the delayed start is obtained by letting the very first
operation in the run method of the Santa class be an invocation of receive on
an or-gate, waitForStart. This blocks the Santa thread until a signal arrives
on the or-gate.

27 public void run() {
28 waitForStart. receive () ;

Code 6.12: The first operation in the run method of the Santa class.

The start method, which is seen in Code 6.13 on the next page, then simply
sends this signal to waitForStart which effectively starts the actual execution
of the Santa thread. It is noted that a similar construction is applied to the
Pixy and Reindeer classes which need to know the Shop and Barn objects,
respectively.

Part of Santa’s functionality is to wait for the reindeer and pixies. This is
implemented using an or-gate, santaSleeping, on which receive is invoked,
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106 public void start() {
107 waitForStart. signal () ;
108 }

Code 6.13: The start method of the Santa class.

blocking the Santa thread. The signal to santaSleeping is sent as part of the
wakeUp method which is invoked by the last reindeer or a group of pixies
with problems. This method appears in Code 6.14.

110 public transaction void wakeup(Object source) {
111 if (source instanceof Reindeer) {
112 reindeersReady = true;
113 } else {
114 pixies = (List<Pixy>) source;
115 }
116 santaSleeping. signal () ;
117 }

Code 6.14: The wakeUp method of the Santa class.

The run method in the Reindeer class is seen in Code 6.15. It shows that the
behaviour of a reindeer is implemented using two or-gates: reindeerWait and
santaWait. Two gates are needed because the Santa thread must wait for an
acknowledgement from the Reindeer thread when it has completed harnessing
or unharnessing. In order to ensure that the right thread receives the signal,
the reindeer and Santa cannot wait on the same or-gate.

Once a reindeer has arrived at the barn in lines 29–32, it awaits harnessing
by invoking receive on reindeerWait. The matching invocation of signal on
reindeerWait is provided by the harness method which is invoked by Santa
and is seen in Code 6.16. The harnessing is completed when the reindeer
signals an acknowledgment to Santa on santaWait. Unharnessing is achieved
by a similar synchronisation pattern, and is therefore not included. Further-
more, a similar construction is used when pixies need to go to Santa’s shop
to get their problems fixed.

Code 6.17 on page 62 shows the arrival method of the Barn class which is
invoked by a reindeer in line 31 of the run method in the Reindeer class (see
Code 6.15). When a reindeer arrives at the barn, it is added to a list of
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21 public void run() {
22 waitForStart. receive () ;
23

24 while (true) {
25 System.out.println(this + ” going on holiday”) ;
26

27 Thread.sleep(1000);
28

29 transaction {
30 System.out.println(this + ” back for Christmas”);
31 barn. arrival (this);
32 }
33

34 transaction {
35 reindeerWait.receive () ;
36 System.out.println(this + ” being harnessed”);
37 santaWait.signal() ;
38 }
39

40 transaction {
41 reindeerWait.receive () ;
42 System.out.println(this + ” being unharnessed”);
43 santaWait.signal() ;
44 }
45 }
46 }

Code 6.15: The run method of the Reindeer class.

52 public void harness() {
53 transaction {
54 reindeerWait.signal () ;
55 }
56

57 transaction {
58 santaWait.receive() ;
59 }
60 }

Code 6.16: The harness method of the Reindeer class.
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reindeer, reindeers. Following this, it is checked whether the reindeer was
the last one to arrive. If this is the case, it wakes up Santa in line 20 by
invoking the wakeup method which is seen in Code 6.14 on page 60.

16 public transaction void arrival(Reindeer reindeer) {
17 reindeers .add(reindeer);
18

19 if (reindeers . size () == 9) {
20 santa.wakeup(reindeer);
21 }
22 }

Code 6.17: The arrival method of the Barn class.

The functionality of or-gates enables implementing a very fine-grained, yet
simple, management of the behaviour of the actors in the Santa Claus prob-
lem. The possibility of modelling a delayed start of a thread, similar to that
of Java, using an or-gate also illustrates the Cava’s expressiveness.

6.5 Quicksort

This section contains extracts from a parallel implementation of the Quick-
sort algorithm in Cava. The description of the algorithm is based on [C+01].
Quicksort performs the sorting of an array in place using a divide-and-conquer
strategy. This makes it well-suited for introducing parallelism which is ad-
dressed later.

The three steps of the divide-and-conquer process applied to a subarray,
A[p .. r] is shown below [C+01, p. 145]:

Divide: Partition A[p .. r] into two subarrays A[p .. q − 1] and A[q + 1 .. r].
These subarrays fulfil that the elements in A[p..q − 1] are less than
or equal to A[q] which, in turn, is less than or equal to the elements
in A[q + 1 .. r]. The value of the index q is returned as part of the
partitioning.

Conquer: Sort the subarrays A[p..q−1] and A[q+1 ..r] by making recursive
calls to the Quicksort algorithm.

Combine: Since the algorithm sorts in place, there is no need for combining
the subarrays.
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Code 6.18 shows the instance variable, data, and sort method of the Quick-
Sort class. The array, data, is marked as shared since several threads are
going to perform the sorting concurrently. The sort method utilises an inner
class SortThread and an or-gate, gate, to block the current thread until the
SortThread has finished its execution.

5 public class QuickSort {
6

7 private shared int[] data;
8

9 public int[] sort(int [] input) {
10 OrGate gate = new OrGate();
11 int [] output;
12

13 transaction {
14 data = input;
15 }
16

17 new SortThread(0, input.length − 1, gate);
18

19 transaction {
20 gate. receive () ;
21 output = data;
22 }
23

24 return output;
25 }

Code 6.18: The instance variable, data, and sort method of the QuickSort
class.

The constructor of the inner SortThread class is seen in Code 6.19 on the
following page. An instance of SortThread saves the gate which was provided
by its creating thread since it needs to signal this gate when it has finished
its execution. It is the run method of the SortThread class which actually
implements the divide-and-conquer strategy of Quicksort. This method is
seen in Code 6.20 on the next page.

The run method follows the steps which were described above closely by
calculating the dividing index, q, and creating two new SortThreads to handle
the subarrays. The current SortThread is blocked until the two threads have
finished their part of the sorting by invoking receive twice on gate which
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27 private class SortThread extends Thread {
28 OrGate parentGate;
29 int p;
30 int r ;
31

32 public SortThread(int p, int r, OrGate gate) {
33 this.p = p;
34 this.r = r;
35 parentGate = gate;
36 }

Code 6.19: The constructor of the inner SortThread class in the QuickSort
class.

38 public void run() {
39 if (p < r) {
40 OrGate gate = new OrGate();
41

42 int q = partition(p, r) ;
43

44 new SortThread(p, q − 1, gate);
45 new SortThread(q + 1, r, gate);
46

47 transaction {
48 gate. receive () ;
49 gate. receive () ;
50 }
51 }
52

53 transaction {
54 parentGate.signal() ;
55 }
56 }

Code 6.20: The run method of the SortThread class.
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was sent as a parameter to the threads. Once the signals from the threads
have been received, the current thread completes its execution by signalling
parentGate.

The partition method performs the actual sorting. This method is seen in
Code 6.21. It is a transaction method since it manipulates the shared vari-
able, data. The exchange method is trivial and not included.

58 private transaction int partition(int p, int r) {
59 int x = data[r ];
60 int i = p − 1;
61

62 for (int j = p; j < r; j++) {
63 if (data[j ] <= x) {
64 i++;
65 exchange(i, j) ;
66 }
67 }
68

69 exchange(i + 1, r) ;
70

71 return i + 1;
72 }

Code 6.21: The partition method of the SortThread class.

The above shows that parallelism is easily introduced in the implementation
of Quicksort. The fact that the array is marked as shared allows for multi-
ple threads to operate on it concurrently. The synchronisation between the
threads is also easily obtained using or-gates.
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Chapter 7
Implementation of Cava

As mentioned in Section 1.3.2 on page 3, developing a new concurrency model
remains a theoretical exercise if the new language constructs cannot be tested
and evaluated by applying them to concurrent problems. This chapter de-
scribes a partial and experimental implementation of Cava which was devel-
oped as part of the project. Requirements for an implementation are de-
scribed in Section 7.1 along with the overall structure of the implementation.
Section 7.2 on page 69 and Section 7.3 on page 74 describe the implemented
compiler and runtime system, respectively. In the remainder of the report,
the compiler is referred to as the Cava compiler and the runtime system as
the Cava Runtime System.

7.1 Specification

This section contains a specification for the implementation of Cava. That
is, the goals and requirements for the implementation along with the selec-
tion of which features to implement. Finally, the overall structure of the
implementation is presented.

7.1.1 Implementation Goals and Requirements

The experimental implementation of Cava has two goals: ensuring that the
Cava concurrency constructs are indeed implementable and creating a plat-
form for experiments with applying Cava. The first goal is important if the
model should not remain a purely theoretical entity. The second goal creates
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the opportunity of writing executable code in Cava which renders reliable in-
sight into how the concurrency model is to work with for a programmer. This
is important since the concurrency constructs may appear sound in theory
but may not be so in practical usage.

Evidently, having a full implementation of Cava is preferable but in order to
fulfil the goals, only part of the concurrency model needs to be implemented.
That is, only the features, which are especially interesting in relation to ex-
periments, are covered (see Section 7.1.2). A positive effect of the goals is
that it induces flexibility in the design of the implementation. This includes
that it does not have to consist of production quality code and it does not
have to be optimised. This implies that simpler designs can be applied. Fur-
thermore, it makes the entire process of ensuring that the Cava concurrency
model is implemented correctly more reliable.

7.1.2 Implemented Features

As mentioned above only a subset of the features in Cava are selected for
implementation. These are selected based on a principle of implementing
features which are required to execute examples of applying Cava, including
the examples found in Chapter 6 on page 50.

The implemented subset consists of: non-deterministic threads, thread local
variables, shared variables, transaction methods and blocks, the Gate and
Receiver interfaces, and the OrGate and AndGate classes. Hence, the following
parts are not implemented in the experimental system: deterministic threads
and gate networks.

Some of Cava’s concurrency concepts are not new inventions. They may have
appeared in other systems or contexts and thus have been implemented be-
fore. However, they may not have been implemented in the combination, and
with the modifications, that they appear in Cava. An example of this is the
STM semantics which e.g. has been implemented in the DSTM2 framework
(see Section 10.2 on page 101).

The implementation is experimental in relation to which three points can be
made. The first is that static constraint checks are not implemented. Exam-
ples of this are whether shared variables are accessed outside of transactions,
whether a conventional method invokes multiple transaction methods, and
whether the transactional status of methods is preserved on inheritance. This
implies that it becomes the programmer’s responsibility to ensure that Cava
programs comply with these rules.
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The second point is that the implemented features are not systematically
tested. That is, the constructs are confirmed to work on representative ex-
amples but the system may not recognise all usages even though these are
correct according to the Cava syntax and semantics found in Chapter 5 on
page 28.

The last point is that the implementation has not been optimised. However,
an optimisation would not impact the semantics of the various constructs
and it is therefore not considered important when it comes to gaining in-
sight into how the concurrency model is to work with for the programmer.
This choice also implies that the implementation cannot be used to compare
the performance of Cava to that of Java. If such a comparison should be
performed, the Cava implementation should first be optimised.

7.1.3 Overall Design

Since Cava is built on top of Java, an implementation of Cava can be made
by modifying an existing Java implementation of which several are available.
The basic design behind Java implementations is that of a compiler which
translates Java code into Java bytecode, i.e. class files, which can then be
executed on the target computer on a JVM. An adapted version of this strat-
egy is applied when implementing Cava. The Cava implementation consists
of two parts: a compiler and a runtime system.

The Cava compiler compiles Cava code into Java bytecode. This is achieved
by hijacking a Java compiler and modifying the Cava code into equivalent
Java code before the class files are generated. This way, the compiled Cava
code can be executed on a standard JVM. However, some Cava constructs
are not easily translated into Java code. This implies that in many cases, the
Cava code is translated into Java code which utilises features implemented
in a special Cava Runtime System (CRS). Hence, the CRS must be installed
in the JVM before the translated Cava classes can be executed. The CRS
is designed as a number of class files which the compiler imports into the
generated class files by default. The CRS is compiled on a standard Java
compiler and packed into a JAR file. This JAR file should then be specified
on the JVM Classpath, thereby making the CRS available for the execution
of Cava code.
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7.2 Cava Compiler

This section contains a description of the Cava compiler and details on how
it is implemented.

7.2.1 Sun’s Java Compiler

As mentioned, an obvious base point for a Cava compiler is an existing Java
compiler. There exist several implementations of the Java programming lan-
guage, and the compiler chosen in this project is Sun’s Java compiler. Early
2007, Sun released a copy of its Java compiler under a project called Open-
JDK [Ope]. The compiler is still under development but stable releases are
provided roughly once a month. The Cava compiler is based on the b07 ver-
sion which was released on 1 February, 2007. The Java compiler is written
in Java and is compiled using a standard Java compiler.

There are several reasons why the Sun compiler was chosen as a base point.
It is a full implementation of a Java compiler and since it is widely used, it is
also very stable. The benefit of this is that it is not necessary to implement
existing Java constructs. Another reason is that the compiler directly creates
class files. This is an advantage since the Cava compiler thereby also can
produce class files and not just java files which must then be compiled with
a Java compiler.

7.2.2 Structure of the Java Compiler

In general, the Java compiler is reasonably structured and applies object-
oriented principles to create a division of components. However, the compiler
is a fairly large piece of software since it contains 20 packages and 251 classes.

The Java compiler has a logical structure which is comparable to a standard
compiler layout. The basic steps are: an abstract syntax tree (AST) is built
by parsing the Java source files, the AST is annotated and used for verifica-
tion of the code, and the compiler generates class files based on the AST. All
this resembles the normal layout of a compiler. However, in the end, the Java
compiler is more complex since a number of other steps are added. These
steps involve adding implicit code like default constructors, type checking
the AST, making dataflow analyses, and desugaring Java constructs. Each
step is defined in a separate class which induces encapsulation and prevents
interference between the steps.
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7.2.3 Compiler Modifications

In order to turn the Java compiler into a Cava compiler, a strategy is applied
of hijacking the former just after the source files are parsed into an AST as
shown in Figure 7.1. The AST is then traversed by a modifier component such
that Cava specific constructs are replaced with equivalent Java code. The
modified AST can then follow the normal flow of the Java compiler. That
is, there is no need to change the most complex parts of the compiler such
as the code generation system which would also require changes in the JVM.
Another positive side of the strategy is that the compiler can check whether
the code modifications are indeed valid Java constructs. This ensures that
the code generated by the compiler is valid and executional. The negative
side of the strategy is that errors reported by the compiler are on the modified
code, implying that error messages are more difficult to understand for the
compiler user.

Code generation

Desugaring

Dataflow analysis

Context-dependant analysis

Annotation processing

Parser

Lexer

Modifier

Figure 7.1: Component structure of the Cava compiler.

Because of the structure of the compiler, the strategy is easily adapted at
component level. The parser component returns the AST which can then be
directed into a Modifier object which returns the modified AST. The func-
tionality of the modifier component is to traverse the AST and replace all
Cava constructs with equivalent Java code. The Java code is generated as
ASTs and inserted in the overall AST structure.

The implementation of the modifier component is less straightforward. The
translation process from Cava to Java can be divided into two scenarios: sim-
ple Cava elements are identified and translated into predefined closed code
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segments, or the surrounding code must be taken into consideration to gen-
erate a correct code segment. In the latter scenario, the modifier component
must identify the Cava construct along with the context in which it is ap-
plied. This implies that more scenarios must be embraced in the translation
which adds to the complexity of the modifier component. However, because
of the overall design of having both a compiler and a runtime system, the
amount of code inserted into the AST can be limited since it can utilise the
CRS.

7.2.4 Translation Examples

This section presents two examples of how Cava code is translated into Java
code in the modifier component. The purpose of this is to illustrate the
translation of basic Cava constructs since implementing these on top of Java
is a non-trivial process. Note that the translation occurs according to the
design of the CRS which is described in Section 7.3 on page 74.

7.2.4.1 Translation of Variables

The first example shows how local and shared variables are translated. The
Cava example to be translated appears in Code 7.1 on the next page. The
example has two variables: a thread local variable, localVariable, and a shared
variable, sharedVariable. The resulting Java code from the translation is
shown in Code 7.2 on the following page.

The modifier component identifies the declaration of variables one at a time
as part of a traversal of the AST. During this, the traversal can be inter-
rupted and replacements of code can be performed. In Code 7.1, the modifier
component applies the same processing when meeting the localVariable and
sharedVariable declarations. The strategy is to encapsulate the variable in
an object called a MemField which appears in two different forms: LocalMem-
Field and SharedMemField. Which one to apply is determined by whether the
variable is thread local or shared. Hence, the modifier component looks for
the shared access modifier to identify which of the two MemFields to apply.

Encapsulating variables in MemFields changes the way they should be ac-
cessed. Two methods, get and set, are defined on MemField to allow reading
and changing the value of a variable. The compiler has to identify the usage
of the variables and replace them with calls to the get and set methods. In
the example code, this is shown in the increment method where localVariable
is read, incremented by one, and saved back to the variable. The read and
write operations can be translated individually by the compiler.
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1 int localVariable = 2;
2 shared int sharedVariable = 4;
3

4 public void increment() {
5 localVariable = localVariable + 1;
6 }

Code 7.1: Two class variables defined in Cava. A thread local variable, local-
Variable, and a shared variable, sharedVariable.

1 MemField localVariable = new LocalMemField(2);
2 MemField sharedVariable = new SharedMemField(4);
3

4 public void increment() {
5 localVariable . set ((Integer) localVariable .get() + 1);
6 }

Code 7.2: Java code produced by the compiler when translating the Cava
code from Code 7.1.

7.2.4.2 Translation of Transactions

The second example shows how a transaction method and a transaction block
are translated. The Cava example to be translated appears in Code 7.3. The
example includes a transaction method, increment, and a method containing a
transaction block, incrementInBlock. The two methods both perform the same
operation on sharedVariable. The resulting Java code from the translation is
shown in Code 7.4.

In general, the translation process of transactions is fairly simple. When
processing the method declaration in the Cava code, the modifier component
identifies that the method is a transaction method. It then removes the trans-
action keyword from the access modifiers and encapsulates the entire method
statement block in a large transactional Java construct. When the modifier
component identifies a transaction block inside a method similar action is
taken. A large Java construct is required since some of the operations needed
to make Java execute transactionally cannot be implemented in the CRS.

The first part of the transactional construct is a do-while loop which allows
the CRS to execute the transaction multiple times. Each time the loop is
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1 public transaction void increment() {
2 sharedVariable = sharedVariable + 1;
3 }
4

5 public void incrementInBlock() {
6 transaction {
7 sharedVariable = sharedVariable + 1;
8 }
9 }

Code 7.3: A transaction method, increment, and a method containing a trans-
action block, incrementInBlock.

1 public void increment() {
2 Transaction trans;
3 do {
4 trans = new Transaction();
5 try {
6 sharedVariable.set ((Integer)sharedVariable.get() + 1);
7 } catch (TransactionAbortException e) {
8 }
9 } while (!trans.commit());

10 }
11

12 public void incrementInBlock() {
13 {
14 Transaction trans1;
15 do {
16 trans1 = new Transaction();
17 try {
18 sharedVariable.set ((Integer)sharedVariable.get() + 1);
19 } catch (TransactionAbortException e1) {
20 }
21 } while (!trans1.commit());
22 }
23 }

Code 7.4: Java code produced by the compiler when translating the Cava
code from Code 7.3.
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executed, a new Transaction object is created e.g. in line 4 of Code 7.4. This
object is utilised by the CRS to identify the transaction and to enable roll
back and commit operations. A new Transaction object must be created each
time since the CRS does not allow Transaction objects to be reused.

The inner part of the transaction is a try-catch block. Semantically, this
block is not necessary but it increases the performance of the system since a
transaction can be aborted at any time. The corresponding thread eventually
detects the change in the state of the transaction and throws a Transaction-
AbortException. This is caught at the end of the transaction code block,
effectively short-circuiting the execution of the transaction.

When the entire transaction code block has been executed, a call is made
on the Transaction object requesting a commit of the transaction. If this
commit fails, the do loop re-executes the transaction. If it succeeds, the
thread continues by executing the code following the transaction.

In both cases in Code 7.3, the translation of the transactions does not require
any major changes inside the transactional construct. However, if e.g. a
return statement is present in the code, this should be replaced with a special
transactional return construct.

7.3 Cava Runtime System

This section contains a description of the CRS and details on how it is im-
plemented.

In order to execute Cava program, two things are needed: a JVM and the
CRS. The CRS contains a number of class files which collectively create the
platform against which Cava programs are compiled. The CRS is packed into
a JAR file which must be defined as part of the JVM Classpath, otherwise
Cava programs are not able to run. The CRS is compiled using a Java
compiler.

7.3.1 Library Structure

The CRS consists of two different parts: the Cava System Library (CSL) and
a class library which are described in the following two sections. The two
parts serve different purposes and apply different implementation strategies
since the CSL is implemented in Java whereas the class library is implemented
in Cava.
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7.3.2 Cava Class Library

The Cava class library is the equivalent of the API of the Java Runtime
Environment, which is also called the standard class library. The Java stan-
dard class library contains a large number of components, data structures,
and other kinds of partial programs with everything from linked lists to GUI
components. The Cava class library is not of the same structure nor size but
Cava requires its own standard library due to how the CSL system works.
This is the case since e.g. data structures have to be under STM semantics
which they are not in the Java class library.

In its current form, the Cava class library consists only of a very basic set of
elements. The most noticeable part is the cava.lang package. The contents
of the package is seen in Table 7.1. The System class contains a out variable
as known from Java. The InputSerialiser and OutputSerialiser classes are used
to make otherwise sequential processes work in a concurrent program (see
Section 7.3.2.1 for details).

Interfaces: Gate, Receiver, Runnable
Classes: AndGate, OrGate, InputSerialiser, OutputSerialiser,

Thread, System, InputStream, PrintStream

Table 7.1: The contents of the cava.lang package.

The contents of the cava.util package is seen in Table 7.2. The interface and
classes all have the functionality indicated by their names.

Interfaces: List
Classes: ArrayList, LinkedList, Random

Table 7.2: The contents of the cava.util package.

7.3.2.1 InputSerialiser and OutputSerialiser

The purpose of the two classes is to provide a standard way of converting
components which execute sequentially into executing concurrently. The
classes are abstract so that instances cannot be made directly of the classes.

The general concept is to let a single thread handle and manage the sequential
component. The functionality of the thread is to wait for signals on an
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internal gate and perform some operation, defined in the message of a signal,
on the sequential component. This way only one operation is performed at a
time on the component, even though multiple threads can request operations
on the component concurrently. It is the responsibility of the programmer
to ensure that the concurrent operations are performed correctly since the
InputSerialiser and OutputSerialiser classes only enable concurrent access.

An example of the application of the OutputSerialiser class appears in the
variable System.out. Messages on the screen must be written sequentially
such that printing from different threads does not interleave. If a thread has
to print a large block of text, the thread can simply perform the printing in
a single transaction.

7.3.3 Cava System Library

The CSL consists of the cava.system package which is implemented in Java
and forms the CRS. Even though the package is in fact a Java library, it must
not be called directly by the programmer. Instead, the classes and methods
should only be used in the code generated by the Cava compiler.

The package contains a total of 24 classes and interfaces which can be divided
into a few categories. The first is classes used directly by the Java code
generated by the Cava compiler. These classes are seen in Table 7.3.

Classes: MemField, LocalMemField, SharedMemField, LocalMem-
oryException, SharedAccessDeniedException, Transaction,
TransactionAbortException, Creator, Array, Operator

Table 7.3: Part of the contents of the cava.system package.

The second category is classes which implements parts of the Cava class
library. These classes are seen in Table 7.4.

Interfaces: SystemRunnable
Classes: SystemOrGate, SystemThread

Table 7.4: Part of the contents of the cava.system package.

Some parts of the Cava library are in fact implemented in the CSL since the
components are so fundamental to Cava that they could not be implemented
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using other Cava constructs. The solution has been to implement these
components in the cava.system package and then let the cava.lang classes
extend the cava.system classes.

The third category is classes which are used internally in the CSL to make the
entire CRS work. These can be divided further into sub-categories: classes
used to create the internal data structures of the CRS, seen in Table 7.5, and
classes which manage the execution of Cava programs, seen in Table 7.6.

Interfaces: Waitable
Classes: ThreadLocalMem, ThreadGlobalMem, ThreadStorage,

ThreadSuspend, TransactionData, TransactionStatistics,
SystemList

Table 7.5: Part of the contents of the cava.system package.

Classes: Manager, MemManager, TransactionManager

Table 7.6: Part of the contents of the cava.system package.

While the categories divide the classes into a structure, it only shows the
structure of the system not the way it operates. The operations in the system
normally involve several of the classes. In the following sections some of the
runtime operations are described.

7.3.4 Thread Local Memory System

Each thread local variable in Cava is encapsulated in a LocalMemField object
by the Cava compiler (see Code 7.1 and 7.2 on page 72). To read the variable,
the compiler inserts a call to the get method on the variable object. To write
a new value to the variable, the compiler inserts a call to the set method
on the variable object. The two methods in the LocalMemField object call
a method on the MemManager object. When the CSL is initialised, a single
MemManager object is created which is used during the entire execution
period of the program and for all variables. The MemManager object handles
the mapping of the MemField of a variable into an actual value.

Figure 7.2 on the next page shows the data structures which are involved
in this mapping in the case of thread local variables. The manager first
identifies which thread accessed the variable. A ThreadStorage data structure
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is attached to each Cava thread which contains all the data needed by the
CRS about a thread instance. One of the items in the ThreadStorage is a
ThreadLocalMem object which in essence is a hash map structure. This hash
map stores the values of all initialised thread local variables. This implies
that when the MemManager needs to retrieve the value of a thread local
variable, it must identify the ThreadLocalMem object of the thread, and then
fetch the actual value of the variable from the hash map.

ThreadLocalMem

ThreadStorage

MemManager

LocalMemField

Figure 7.2: Data structures involved in mapping a LocalMemField to its value.

This is the basic implementation behind thread local variables. However,
in reality the implementation is more complex since thread local variables
must also be transactional. Hence, the data structures which implement
STM semantics are also applied in the implementation (see Section vrefsub-
sec:sharedmemorysystem).

While the thread local variable implementation in the CSL introduces a large
overhead on reading and changing variables, the implementation captures
the isolation scenario which Cava requires. The implementation also enables
easily capturing the feature that the values of thread local variables should
be copied into new threads from the creator thread. This is achieved with
the CSL implementation design by making a copy of the hash map in the
ThreadLocalMem object. This effectively makes a copy of the values of all
variables which are known to the creator thread and induces a relative small
overhead when creating new threads.

7.3.5 Shared Memory System

Fundamentally, shared variables are implemented similarly to thread local
variables. Each shared variable in Cava is encapsulated in a SharedMemField
object by the Cava compiler (see Code 7.1 and 7.2). To read the variable,
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the compiler inserts a call to the get method on the variable object. To write
a new value to the variable, the compiler inserts a call to the set method on
the variable object. The two methods in the SharedMemField object call a
method on the MemManager object.

The implementation of shared variables differs from local variables in that
the actual value of a variable is directly attached to the SharedMemField
object. However, because of the STM semantics, the value is encapsulated
inside a number of data structures which create an atomic environment. The
data structures, which are seen in Figure 7.3, are based on the concepts of
obstruction-free STM from [HLM06] (see Section 10.2.3 on page 102).

TransactionData

ThreadGlobalMem

MemManager

SharedMemField

Figure 7.3: Data structures involved in mapping a SharedMemField to its
value.

The basic design is that the SharedMemField has a ThreadGlobalMem data
structure attached. The ThreadGlobalMem object contains a reference to
a data structure called TransactionData. The reference is atomic which is
obtained using the AtomicReference class from the java.concurrent.util package
introduced in Java 5. The TransactionData object contains a reference to a
Transaction object, and an old and a new actual value of the variable. The
Transaction object points to the transaction which currently operates on the
variable or to the transaction which was the last to do so. The old value stored
is the actual value of the variable before the transaction took control of the
variable, and the new value stored is the current value of the variable. The
operations on the data structures utilise the algorithms described in [HLM06]
and Section 10.2.3.

7.3.6 Transaction System

The fundamental construct of the transaction system is a data structure
called Transaction. Each transaction has its own Transaction object attached
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and each thread has a Transaction object. The latter is saved inside the
ThreadStorage object of the thread and represents either a currently active
transaction or the most recent transaction executed by the thread. This
construction enables calls to LocalMemFields and SharedMemFields to retrieve
the transaction to which they belong. Only one Transaction object is attached
to a given thread at any given time. This effectively implies that nested
transactions are executed as if they were part of the outermost transaction.

A Transaction object can be in four different states: active, aborted, com-
mitting, and committed. In general, the Transaction objects functions like
the ones described in [HLM06]. However, the extra state of committing has
been added which is used when a transaction is in the process of performing
a commit. This is necessary since some of the transactions in Cava cannot
be committed completely atomically. Hence, the transaction is put into the
committing state which cannot be aborted.

7.3.7 Contention Management System

When two transactions attempt to access the same shared variable, the trans-
actions are said to collide. In the CSL, collisions are detected by the second
transaction when it tries to access the variable. The detection occurs since
the Transaction object attached to the variable data structure indicates that
it is already part of an active transaction. When a collision is detected, the
second transaction reports the collision to a TransactionManager object.

When the CSL is initialised, a single TransactionManager object is created
which is used during the entire execution period of the program. The Trans-
actionManager object implements contention management between threads.
When a collision is reported to the transaction manager, this decides on a
course of action to resolve the collision. The transaction manager in the CSL
applies a simple exponential back off strategy. This implies that the first two
times a transaction reports a collision, the thread is simply aborted leaving
the other thread alone. If the thread has already been aborted twice on
the transaction, both the reporting thread and the other thread are aborted.
This is repeated as long as the collision continues to occur. Each time, the
potential back off period is doubled.
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Chapter 8
Assessment of Cava

This chapter contains an assessment of Cava and a comparison Java in Sec-
tion 8.1. Both are obtained by applying the question based assessment
method which was developed in Chapter 4 on page 16. The assessment
and comparison includes a discussion of the results. This is followed by a
summary of Cava’s most important strengths and weaknesses in Section 8.2
on page 91.

8.1 Assessment and Comparison to Java

The assessment and comparison is obtained by applying the question based
assessment method which consists of two steps: an assessment of the in-
dividual design criteria which is contained in Section 8.1.1, and an overall
assessment which is presented in Section 8.1.2 on page 89.

8.1.1 Assessment of Individual Criteria

The assessment of the individual design criteria is made by answering the
questions which were formulated in Section 4.4 on page 19. Note that what
is required in order to answer yes or no can also be seen in that section.
Following each assessment is a discussion of the most noticeable results along
with any points which are not directly uncovered by the assessment.
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8.1.1.1 Object-oriented Model

Table 8.1 contains the answers to the questions about the object-oriented
model criterion. The results show that Cava complies very well with the
object-oriented model criterion since there is a positive answer to every single
question. This is considered a strength of Cava since the criterion is at
priority level 1 (see Table 3.1 on page 15).

Object-oriented model Java Cava

Is the concurrency model integrated into the object-
oriented model?

√ √

Does the concurrency model protect against broken en-
capsulation?

÷
√

Does the concurrency model protect against the inheri-
tance anomaly?

÷
√

Does the concurrency model support reuse of existing
classes?

÷
√

Are objects utilised to encapsulate concurrency con-
structs?

√ √

Are thread constructs encapsulated in objects?
√ √

Are co-operation synchronisation constructs encapsu-
lated in objects?

÷
√

Are competition synchronisation constructs integrated
directly into the language?

√ √

Table 8.1: Object-oriented model.

Compared to Java, the most distinctive results are that Cava avoids the prob-
lems of broken encapsulation and the inheritance anomaly. The former is the
case since Cava’s transactions are composable. The latter since the trans-
actional status of a method is part of its interface on inheritance. However,
there is one scenario in which encapsulation may be threatened. This appears
in the following specific communication pattern of conventional methods. It
consists of a conventional method sending a signal to a gate within a trans-
action block and then waiting for a response on another gate within another
transaction block. In case a transaction method invokes such a conventional
method, the communication is broken since this results in one single transac-
tion. Hence, other threads are not able to receive the signal from the method
and respond to that signal. However, this type of error is deterministic since
the errors are produced every time the invocation is made.
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Another interesting result is that co-operation synchronisation constructs
are encapsulated in objects in Cava. This is obtained by the OrGate and
AndGate classes which enable modelling intricate synchronisation patterns at
a higher level than in Java. Concurrency in Cava can be introduced using
gates without the risk of losing signals as opposed to how notifications can be
lost in Java. Furthermore, it is easier to identify synchronisation constructs
in Cava since gates represent dedicated synchronisation objects. This is in
contrast to Java where the wait, notify, and notifyAll methods are implemented
in every object. A final point is that the semantics of gates is not dependent
on the state of any threads which is perceived as a major strength of the
construct.

8.1.1.2 Expressiveness

Table 8.2 on the following page contains the answers to the questions about
the expressiveness criterion. The results show that Cava complies fairly well
with the expressiveness criterion but so does Java. The result for Cava is con-
sidered a strength of the concurrency model since the criterion is at priority
level 1 (see Table 3.1).

A noticeable result is that naturally concurrent problems are not easily mod-
elled without introducing concurrency errors which are not inherent to the
problem. This is perceived as a significantly poor result since Cava has a
fundamental objective of supporting the programmer in modelling concur-
rent problems (see Section 1.3.1 on page 2). Co-operation synchronisation is
an integral part of modelling concurrent problems which is handled in Cava
using gates. The semantics of these (see Section 5.2.4 on page 42) makes them
easier to reason about than Java’s wait, notify, and notifyAll methods. An
example of this is that signals cannot be lost using gates as opposed to how
notifications can be lost in Java. Still, the programmer has to consider the
following when modelling a concurrent problem: where to apply gates, when
they should be signalled, which threads should receive the signals, and so on.
Hence, the modelling is not made significantly easier by the straightforward
semantics of gates.

Contrary to concurrent problems, parallel problems are easily modelled in
Cava without introducing concurrency errors which is the result of the de-
terministic threads in Cava. The execution of these is predictable which
makes them ideal for modelling parallel problems. This is considered a sig-
nificant result since Cava also has a fundamental objective of supporting the
programmer in modelling parallel problems (see Section 1.3.1).
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Expressiveness Java Cava

Are constructs available to the programmer to introduce
concurrency?

√ √

Are naturally concurrent problems easily modelled with-
out introducing concurrency errors which are not inher-
ent to the problem?

÷ ÷

Are parallel constructs available to the programmer to
introduce parallelism?

÷ ÷

Are parallel problems easily modelled without introduc-
ing concurrency errors?

÷
√

Is coarse-grained concurrency easily obtained?
√ √

Is fine-grained concurrency easily obtained? ÷
√

Are the synchronisation constructs composable?
√ √

Is it possible to model a lock?
√ √

Is it possible to model a semaphore?
√ √

Is it possible to model message passing?
√ √

Does the concurrency model include shared variables?
√ √

Can thread execution be prioritised? 1
√

÷
Can suspended threads be interrupted?

√
÷

1 Cava does not feature priorities on threads

Table 8.2: Expressiveness.

Another interesting result is that fine-grained concurrency is easily obtained
in Cava. The main factor behind this is the STM semantics of transac-
tions which ensures that only shared variables, which are accessed by a given
thread, are locked. That is, two transactions which do not access the same
shared variables can be executed concurrently. This all appears as the default
behaviour without the programmer having to express it. The concurrency
achieved using transactions appears at a higher level than in Java since the
responsibility of implementing the actual protection of shared variables is
lifted away from the programmer.

In contrast to Java, Cava fails the question about the possibility of inter-
rupting threads. Not having this possibility could be perceived as a strength
since it disallows the programmer from manipulating the suspended threads
directly and instead, he must handle the threads by respecting their intended
functionality. This implies that if the programmer wants to resume a sus-
pended thread without fulfilling a certain condition, he must build that func-
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tionality into the wait condition. However, with regard to the expressiveness
criterion, it is a disadvantage since the programmer does not have a default
way of interrupting a thread.

A characteristic of threads in Cava which does not directly appear in the
assessment is concerning start-up. Unlike in Java, threads in Cava are auto-
matically started as the last operation in the constructor of the Thread object
which can be perceived as both a strength and a weakness. It implies that
there is no risk of forgetting to invoke e.g. a start method or invoking it mul-
tiple times which is considered a strength of Cava’s thread implementation.
Conversely, it also rules out the default possibility of manipulating threads
after instantiation but prior to execution which could be seen as a reduction
in expressive power compared to Java. However, the behaviour of Java can
easily be emulated using an or-gate which allows for blocking and manip-
ulating the thread until a signal has been to the gate. The technique was
utilised in the implementation of the Santa Claus problem (see Section 6.4
on page 58). This shows that starting threads immediately does not pose
any limits on the expressive power of Cava.

8.1.1.3 Fault Restriction

Table 8.3 on the following page contains the answers to the questions about
the fault restriction criterion. The results show that Cava only complies
partially with the fault restriction criterion. The result for Cava is still con-
sidered acceptable since the criterion is at priority level 2 (see Table 3.1).

A noticeable result is that non-determinism is only present as an option to the
programmer. This result is considered a major strength of Cava since non-
determinism is the source of most classical concurrency problems. Threads
in Cava exhibit deterministic behaviour unless they are explicitly instanti-
ated as non-deterministic threads (see Section 5.2.1.2 on page 33). This
implies that the default behaviour of a Cava program may resemble sequen-
tial execution. In order to obtain a higher level of concurrency in a program,
non-deterministic execution of threads can be induced.

Shared variables in Cava are protected against corruption by default which
induces fault restriction. The protection is a consequence of the fact that vari-
ables which are marked with shared may only be accessed within transaction
methods or blocks (see Section 5.2.2 on page 34). The transactions ensure
that only one thread at a time accesses a shared variable. Furthermore, the
explicit indication of shared data heightens the programmer’s consciousness
about what data should be protected against race conditions and what should
not.
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Fault restriction Java Cava

Is thread management handled by the concurrency
model?

√ √

Is the model free from resource starvation? ÷ ÷
Is the model free from priority inversion? 1 ÷

√

Does the fundamental concurrency model rely on a
mathematical foundation?

÷ ÷

Is non-determinism only present as an option to the pro-
grammer?

÷
√

Are shared variables protected against corruption by de-
fault?

÷
√

Is a variable initialised for all occurrences once it has
been initialised?

√
÷

Is the concurrency model disinclined to runtime excep-
tions which appear due to timing issues?

÷
√

Is it impossible to experience race conditions? ÷ ÷
Is it impossible to create a deadlock between two
threads?

÷ ÷

Is it impossible to create a livelock between two threads? ÷ ÷
Does the concurrency model by default protect against
race conditions?

÷
√

Does the concurrency model by default protect against
deadlock?

÷
√

Does the concurrency model by default protect against
livelock?

√
÷

1 Cava does not feature priorities on threads

Table 8.3: Fault restriction.
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A factor, which could be perceived as a weakness of Cava’s concurrency
model, is that variables may not necessarily be initialised for all occurrences
when it has been initialised once. When an object is created, its variables are
initialised to some specific value. However, if the object contains thread local
variables, these are only initialised for the current thread. All threads, which
are descendants of the thread, receive a copy of the values of the thread local
variables on thread creation, so the variable is initialised for these threads.
If a thread is not a descendant, this thread does not inherit an initial value
for the variable, and the value will therefore be undefined. This is a problem
since there is no default way of knowing whether a variable was created by
an ancestor. Hence, unforeseen errors may occur if the variable is referenced
before initialisation.

Table 8.3 shows that it is possible to experience classical concurrency prob-
lems like race conditions, deadlock, and livelock in Cava. Hence, Cava does
not eliminate these problems which are a common source of error in concur-
rent programs. However, Cava’s concurrency model offers some protection
against the problems since it by default protects against race conditions and
deadlock. This is a consequence of the fact that threads only share the vari-
ables which are necessary to obtain the required concurrency and these have
to be accessed within transactions which cannot exhibit neither race condi-
tions nor deadlocks. However, they may exhibit livelocks if several transac-
tions need to access the same shared variable. This may result in a scenario
in which the transactions repeatedly abort each other and thus induce a loss
of progress in the program.

It is possible in Cava to experience a scenario similar to the problem of nested
monitors in Java [Lea99]. However, this does not cause Cava’s concurrency
model to fail on the question whether it protects against deadlock by default
since it may be categorised as a deadlock which is the result of the program-
mer taking explicit action to introduce it (see the description of the question
about protection against deadlock in Section 4.4.3 on page 25). The problem
may arise if the programmer utilises two gates and lets a thread invoke receive
on the gates in one order and another thread invoke receive in the opposite
order. In order to produce the problem the receive calls must be made in
separate transaction blocks. If the calls are made in a single transaction, it
is not a problem since both signals would be received transactionally.

8.1.1.4 Simple

Table 8.4 on the next page contains the answers to the questions about the
simple criterion. The results show that Cava complies fairly well with the
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simple criterion but so does Java. The result for Cava is considered acceptable
since the criterion is at priority level 2 (see Table 3.1).

Simple Java Cava

Is it possible to model sequential problems without con-
sidering concurrency?

√ √

Is code executed in a sequential order similar to sequen-
tial programs?

√
÷

Does the model consist only of a few simple elements?
√

÷
Is competition and co-operation synchronisation
achieved using the same language constructs?

√
÷

Are sequential and implicitly parallel constructs applied
using the same keywords? 1

÷ ÷

Are most rules enforced on compile time? ÷
√

Is potential interleaving between threads easy to com-
prehend and identify?

÷
√

Are variable protection schemes easy to comprehend?
√ √

Is the concurrency model separated from the computer
architecture?

√ √

1 Neither Java nor Cava feature parallel constructs

Table 8.4: Simple.

A distinctive strength of Cava’s concurrency model is that potential inter-
leaving between threads is easy to comprehend and identify. This is the
case since transaction methods and blocks divide the code into larger enti-
ties which reduces the amount of possible interleaving between threads. This
supports the programmer in modelling and reasoning about concurrent and
parallel problems. Furthermore, it makes debugging easier.

Cava’s concurrency model fails on the question about few simple elements
since it comprises variables marked with shared, methods and blocks marked
with transaction, and gates. Moreover, the constructs have dedicated appli-
cation areas, i.e. the same language constructs cannot be used to achieve
competition as well as co-operation synchronisation which affects the homo-
geneity of Cava.

The fact that Cava features transaction methods as well as blocks which
have the same fundamental semantics is a weakness with regard to simplicity.
However, it is necessary since the transactional status of methods is visible
on inheritance. Conventional methods have to be overridden by conventional
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methods so they are not allowed to access shared variables directly. This can
be circumvented by accessing such variables within transaction blocks. Had
this not been possible, the original method would have to be a transaction
method as well even though this might not be necessary in itself. This could
lead to a scenario where methods are made into transactions just in case they
need to be transactional in a future subclass. Hence, it could also be seen as
a strength to have both constructs in Cava.

A final point on simplicity is that there is an exception to the rule of threads
starting immediately in Cava. This occurs when the thread is created within
a transaction method or block since such threads are not started until the
transaction commits. It may be viewed as an unfortunate feature for the
programmer that there are two timings with regard to when threads are
started.

8.1.2 Overall Assessment

This section presents the overall assessment of Java and Cava which is con-
structed by calculating the score based on the answers to the questions in
Section 8.1.1.

8.1.2.1 Calculated Score

The four design criteria were prioritised in Table 3.1 on page 15, and in order
to take this into account, the priority levels are assigned weights when calcu-
lating the overall score. The level 1 criteria of the object-oriented model and
expressiveness are given weight 3 while the level 2 criteria of fault restriction
and simple are given weight 2.

It varies greatly among the criteria how many questions are used to uncover
the individual criterion which also has to be taken into account when calcu-
lating the overall score. This is done by assigning each criterion a maximum
obtainable score based on its priority level, i.e. the object-oriented model
and expressiveness criteria are each assigned the maximum value 15, and the
fault restriction and simple criteria are each assigned the maximum value 10.
Note that this reflects the weighing described above and results in a max-
imum obtainable overall score of 50. Furthermore, weighing is not applied
between the question in the individual criteria.

The overall score of a given criterion is then calculated by multiplying the
maximum value by the ratio of questions which could be answered positively.
E.g. the simple criterion has a maximum value of 10, and 5 out of 7 questions

89



CHAPTER 8. ASSESSMENT OF CAVA

were answered positively for Cava. Hence, the overall score of the criterion
becomes 10 · 5

7
≈ 7.1 for Cava.

The calculated score of Java’s and Cava’s concurrency models is seen in
Table 8.5.

Assessment Java Cava Maximum

Object-oriented model 7.5 15 15
Expressiveness 10.4 10.4 15
Fault restriction 2.1 5 10
Simple 6.7 5.6 10

Score 26.7 35.9 50

Table 8.5: Calculated score for Java and Cava.

8.1.2.2 Evaluation of Calculated Score

The scores in Table 8.5 show that Cava’s concurrency model rates better than
that of Java. However, both models rate significantly below the maximum
score of 50. The difference in score between Java and Cava is primarily related
to how Cava complies with the object-oriented model criterion. Here, Cava
obtains the maximal score of 15 which is twice the score of Java. The result is
attributed to Cava being better integrated with the object-oriented paradigm
which was one of the main goals of the new concurrency model.

Cava also scores better than Java on the fault restriction criterion. However,
while the score is significantly better than Java’s, 5 compared to 2.1, the
score is well below the maximum score of 10. Cava scores slightly worse than
Java on the simple criterion, 5.6 compared to 6.7. This is mainly attributed
to Cava’s lack of homogeneity. On the expressiveness criterion, Cava and
Java are tied.

If the scores are viewed as the percentage of positive answers, Cava achieves
a 100% on the object-oriented model criterion, 69% on the expressiveness cri-
terion, and 56% on the simple criterion. The first of these results is very sat-
isfying in particular since the integration of concurrency into object-oriented
programming languages is considered difficult (see Section 3.1 on page 11).

With regard to the results in Table 8.5, it should be noted that the scores
rely heavily on the questions related to the individual criterion. That is,
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the scores would probably be different if someone else had defined the ques-
tions. Furthermore, the fact that Java and Cava obtain the same score on
the expressiveness criterion does not necessarily imply that the two models
are similar in that area. Table 8.2 on page 84 shows that Java and Cava
have identical answers to the majority of questions but it is also possible to
identify the areas in which they differ. The opportunity to make such anal-
yses is exactly what is considered one of the strengths of the question based
assessment method since it is transparent (see also Section 4.3 on page 18).

8.2 Strengths and Weaknesses

This section lists the most important strengths and weaknesses of Cava which
were identified in the previous section.

8.2.1 Strengths

• Broken encapsulation and the inheritance anomaly are avoided. Both
are well-known and fundamental problems when integrating concur-
rency into object-oriented programming languages.

• Threads only share the necessary data. This implies that threads which
only operate on local variables, and thus do not require any synchro-
nisation, can be executed safely in a concurrent way since they can be
executed in isolation.

• Non-determinism is only introduced by choice. The non-determinism
which is inherent to thread execution in most programming languages
is a complicating factor when writing concurrent software.

• Signals cannot be lost on gates. The application of gates is not depen-
dent on the state of the threads which have to utilise the gate to obtain
synchronisation.

8.2.2 Weaknesses

• Concurrent problems are not easily modelled which was a fundamen-
tal goal of the Cava concurrency model. The concurrency constructs
themselves are high-level and semantically easy to reason about but
their application in a concurrent problem is still challenging.

91



CHAPTER 8. ASSESSMENT OF CAVA

• A variable may not necessarily be initialised for all occurrences when it
has been initialised once. Hence, it has to be initialised locally which
may be a source of errors.

• Invoking a conventional method inside a transaction method may break
the implementation of the conventional method. The programmer can
therefore be required to know how a method is implemented. However,
this type of error is deterministic since the errors are produced every
time the invocation is made.

• Transactions may exhibit livelocks. This problem can be reduced by
the choice of implementation of the contention manager.
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Future Work

This chapter presents areas of possible future work on Cava. Section 9.1
discusses how further experiments with the concurrency model are needed
to verify the value of the model. Section 9.2 on the following page presents
known problems and ideas for future development of the concurrency model.

9.1 Experiments

As was concluded in Section 8.1.2 on page 89, Cava obtains a better score
than Java in the overall assessment. While this is a noticeable feat for Cava,
the result is mainly theoretical since the assessment method is based on key
concurrency concepts rather than on practical experiments. What is missing
in the assessment are less tangible issues like how the model functions in real
development projects, whether the programmer gets the right sense of con-
trol over synchronisation, and whether it is easily ensured that a concurrent
program design is solid. These types of questions can only be answered by
making extensive experiments and getting feedback from real programmers.

Some experiments have already been conducted with Cava but the majority of
these were small and rather simple, so larger and more complex experiments
are needed. A selection of experiments were documented in Chapter 6 on
page 50, and they were conducted using the experimental implementation
described in Chapter 7 on page 66. This implementation could be used for
further experiments but some general improvements to it are required if the
merits of the concurrency model should be verified.

First of all, the implementation should cover the entire concurrency model.
In its current incarnation, the implementation does not support deterministic
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threads and gate networks. Since these are fundamental constructs in Cava,
they should be supported when doing further experiments. Another missing
feature is static constraint checks in the compiler. Cava has various con-
straints built into the model: whether shared variables are accessed outside
of transactions, whether a conventional method invokes multiple transaction
methods, and whether the transactional status of methods is preserved on
inheritance. At present, the Cava compiler ignores these constraints.

Because of differences in semantics, Cava cannot reuse the Java class library
so the Cava implementation includes a new class library. However, this li-
brary is severely limited compared to the one provided with Java 6 so in
order to use Cava for more experiments, the size of the class library has to
be increased. This extension should be rather straightforward since it can be
constructed on top of Cava. Besides, implementing an extended class library
would serve as a very large experiment and thus test the capabilities of Cava.

9.2 Improvements of Cava

The goal of extended experiments is to identify areas of Cava which functions
less satisfactorily and therefore should receive further attention. Some areas
already appear to be problematic but this cannot be verified until further
experiments are performed. Hence, some of the problem areas could simply
prove not to be problems in reality.

9.2.1 Thread Local Variable Initialisation

Currently, there may be a problem with the initialisation of thread local
variables. If an object with thread local variables was created by a thread,
which is not an ancestor of the current thread, the variables may not have
been initialised. In the experimental implementation, this scenario is handled
by letting the CRS raise an exception when a thread accesses a variable with
an undefined value. This is a problematic approach since it is impossible for
a thread to know if a thread local variable has been initialised. Therefore,
any access to thread local variables in an object involves the risk of raising an
exception. If a programmer is to ensure that this does not happen, it must
be modelled explicitly. This can be very tedious so a simpler solution for the
programmer may be to simply mark all variables as shared. However, this
introduces more and larger transactions and would go against the design of
Cava.
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A way to remedy the thread local variable initialisation problem is to change
the semantics of initialisation of variables. One approach would be to cache
the first value of the variable and then apply this as the initial value for all
non-descendant threads. This implies that a thread, which is not in relation
with the thread which created an object, sees the value which the variable
was originally initialised with. This would solve the problem with exceptions
being thrown because all thread local variables have a default value for any
thread. However, it could end up creating more problems than it fixes. The
problem is that the initial value may not be the correct value for a specific
thread. When the thread executes, it performs calculations based on a wrong
value and therefore produces a wrong result. This type of error is harder to
detect and correct than runtime exceptions and because of this, the solution
was not applied in Cava. In order to determine which solution is the best
course of action, more experiments are needed. This could render insight
into whether the initialisation poses a genuine problem and how it could be
solved.

9.2.2 Nested Transactions

The transactions in Cava appear to be easier to manage than monitors in
Java. However, they also display problematic behaviour since certain trans-
actional constructs may result in errors. One particular problem arises if a
conventional method contains multiple transaction blocks in order to enable
communication with other threads. When such a method is invoked inside
a transaction, all transaction blocks are executed as a single transaction,
preventing the intended communication.

The problem with this scenario is that a programmer needs to know the
inner workings of a method to discover that calling the method inside a
transaction poses a problem. If the programmer is not aware of this, the
problem manifests itself when the method is invoked. However, the semantics
which produces the problem is well-defined and deterministic, implying that
the problem appears on every execution of the program. Hence, it is easy to
debug since the problem is reproducible. An open question is how common
the problem is. If it is very common, extensive testing of programs is required
to ensure that the problem does not appear in the end program.

A solution would be if the transaction invoking pattern could be detected
at compile time. One way to allow this detection is to introduce a “non-
transactional” keyword which could be visible in the class interfaces just like
the transaction keyword already is in Cava. Any calls to a method marked
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with the non-transactional keyword inside a transaction would then consti-
tute a compile time error. However, a problem with this approach is that any
conventional method can be invoked from inside a transaction and thereby
become transactional. Such a conventional method could have calls to meth-
ods marked as non-transactional which would then also be executed as a
single transaction. This would produce the same problem but now in a more
complex pattern. However, even though the solution would not remove the
problem completely, it may reduce the number of occurrences at runtime.

Another solution is to introduce the possibility of marking transactions as
“local” which implies that they commit their changes even though they ap-
pear in nested transactions. Hence, calling a method containing multiple
local transaction blocks from inside a transaction would allow communica-
tion with other threads. However, this approach also introduces problems
since the parent transaction may be aborted at some point. If this occurs,
changes made by local transactions cannot be rolled back since they have
been committed. This could be remedied by making transactions span mul-
tiple threads such that the local transactions only appear to have committed
their operations to other threads. This would allow the thread communica-
tion to be rolled back as well. However, this would be a fundamental and
extensive change to the concurrency model.

An ingenious solution to this problem is not obvious and further investigation
of the problem is therefore needed.

9.2.3 Other Improvements

An area, which was not given priority in the development of Cava, was per-
formance. This was intentional since the goal was to develop a concurrency
model which was easy to work with rather than a fast concurrency model.
However, if Cava is to gain widespread use and popularity, performance can-
not be ignored.

In its current form, Cava should be able to function in most concurrent
settings. This is reflected in the assessment of the expressiveness criterion
where Cava and Java obtain the same score (see Table 8.5 on page 90).
While this indicates that the current model is expressive, it does not indicate
whether the model is unnecessarily extensive. In the conducted experiments,
the deterministic thread construct has not come into use. Moreover, the gate
network construct has only been applied in one case, namely in modelling
Java’s wait, notify, and notifyAll constructs (see Section 6.2 on page 51).
Deterministic threads and gate networks are therefore constructs which must
be investigated further to determine how they actually contribute to Cava.
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In the assessment of the expressiveness criterion in Table 8.2 on page 84,
Cava failed a number of questions concerning parallel constructs since Cava
presently does not feature such constructs. An obvious improvement to
the model would therefore be to introduce various parallel constructs which
would make it easier to model parallel problems. However, parallel con-
structs should first be introduced when the underlying concurrency model is
solid and stable. If this is the case, introducing parallel constructs should
be straightforward since they can be implemented on top of Cava’s existing
features.
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Chapter 10
Related Work

This chapter presents related work along several lines. This includes methods
for assessing and comparing concurrency models in Section 10.1, the DSTM2
framework for implementing Software Transactional Memory in Section 10.2
on page 101, revocation techniques for Java in Section 10.3 on page 104, and
the X10 programming language in Section 10.4 on page 106.

10.1 Concurrency Model Assessment

This sections presents two methods for assessing concurrency models

10.1.1 Assessment by Concurrency Characteristics

In [DH07], Damborg and Hansen describe a method of assessing concurrency
models using various characteristics of these. The characteristics are all de-
fined by two opposing extremes which then define a scale on which a con-
currency model can be placed. The characteristics are listed and described
below and is based on [DH07, Chapter 3].

• Implicit or explicit concurrency: In an implicit concurrency model,
the concurrency constructs are encapsulated within e.g. libraries, meth-
ods, or language constructs. In an explicit concurrency model, the con-
currency constructs tend to be relatively low-level, e.g. in the form of
locks and semaphores.
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• Fault restricted or expressive model: A fault restricted concur-
rency model prevents the programmer from introducing concurrency
problems into programs. Opposed to this, an expressive concurrency
model places no restrictions on the programmer when expressing the
required concurrency.

• Pessimistic or optimistic model: A pessimistic concurrency model
only runs threads when it can be guaranteed that this can be done
safely. Contrary, an optimistic model runs as many threads as possible
at any given time. The latter approach requires a recovery mechanism
to correct any problems of interfering executions.

• Automatic or manual parallelisation: A fundamental objective in
concurrent programming is the simultaneous execution of several tasks.
When introducing parallelism to a program, the concurrency model pro-
vides either automatic parallelisation through the compiler or runtime
system, or manual parallelisation which is performed exclusively by the
programmer.

Using the above characteristics for assessing concurrency models by placing
them on the scales defined by the extremes is suitable for comparing multiple
models. However, the placement of a given concurrency model is always
subjective since it depends on the experience and knowledge of the person
performing the placement. Furthermore, the characteristics are less suitable
for assessing a single model since the scales are not absolute. That is, the
characteristics cannot be used to assign an objective, e.g. numeric, value to
a given concurrency model. It is noted that the characteristics were never
intended to serve this purpose.

Another issue in relation to applying the concurrency characteristics is the
question whether other or additional characteristics would yield more infor-
mation about concurrency models.

10.1.2 Assessment by Categories

In [ST98], Skillicorn and Talia present a survey of numerous models and lan-
guages for parallel computation. They argue that “an ideal model should be
easy to program, should have a software development methodology, should
be architecture-independent, should be easy to understand, should guarantee
performance, and should provide accurate information about the cost of pro-
grams” [ST98, p. 123]. On the basis of this, the various models are placed into
categories depending on the level of abstraction which the models provide.
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The categories are defined by exploring the criterion“easy to program”. That
is, a model should conceal various aspects of parallelism from the program-
mer. These aspects are: decomposition of a program into parallel threads,
mapping of threads to processors, communication among threads, and syn-
chronisation among threads. Hence, six categories can be made from this
where the level of abstraction decreases [ST98, pp. 135–36].

• Models which abstract from parallelism completely.

• Models in which parallelism is made explicit, but the decomposition of
programs into threads is implicit (and hence so is mapping, communi-
cation, and synchronisation).

• Models in which parallelism and decomposition both are made explicit,
but mapping, communication, and synchronisation are implicit.

• Models in which parallelism, decomposition, and mapping are explicit,
but communication and synchronisation are implicit.

• Models in which parallelism, decomposition, mapping, and communi-
cation are explicit, but synchronisation is implicit.

• Models in which everything is explicit.

The above levels of abstraction are used as the primary criterion when assess-
ing various parallel models and languages. However, the six categories are
subdivided further according to the degree of control over thread structure
and communication. This results in three sub-categories: models in which
thread structure is dynamic, models in which thread structure is static but
communication is not limited, and models in which thread structure is static
and communication is limited.

The categories and sub-categories can be viewed as a 6×3-matrix into which
models and languages can be placed. Note, Java is placed in the entry where
everything is explicit and as having dynamic thread structure. The 6 × 3-
matrix allows for a very fine-grained categorisation of parallel models and
languages which must be perceived as a strength of the method. Models and
languages can be distinguished at a detailed level which makes the method
useful for assessing a single model or language. Similarly, the comparison of
multiple models or languages is supported since it is clear exactly how they
differ along the two axes of the matrix.

A negative side of the method appears in relation to the six categories and the
aspects of parallelism which define the categories. The aspects of decompo-
sition, mapping, communication, and synchronisation represent a hierarchy
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in which only one aspect is moved from implicit to explicit when the level of
abstraction decreases. Hence, the method does not embrace the assessment
of a model in which the aspects appear in a combination different from the
six categories.

There is a strong focus on performance and cost when a given model or
language is categorised. These issues are not the primary focus of Cava which
implies that applying the method to Cava would result in an assessment which
does not comply with the design criteria of Chapter 3 on page 11.

10.2 DSTM2

In [HLM06], Herlihy, Luchangco, and Moir present the DSTM2 framework
for implementing Software Transactional Memory. Some of the concepts in
the article are utilised in the transaction system of the CRS (see Section 7.3.6
on page 79).

10.2.1 Overview

The DTSM2 framework is a Java software library which provides a trans-
actional model of synchronisation rather than utilising locks and monitors
to manage concurrent access to shared data. This entails that “code that
accesses shared memory is divided into transactions, which are intended to
be executed atomically: operations of two different transactions should not
appear to be interleaved” [HLM06, p. 253]. The atomicity of a transaction
implies that its operations have either completed successfully and atomically
or that they appear to have not taken place at all. The first scenario arises
when a transaction commits its operations whereas the second arises when it
aborts its operations. A transaction may abort if a conflict occurs between
two transactions which is the case if they both need to access the same shared
data, and at least one of the transactions needs to write to the data. When
a transaction is aborted, it is retried until it can commit and complete its
operations successfully. In order to reduce the risk of another conflict, the
transaction usually takes precautions against this e.g. by waiting a period of
time before re-executing. Different strategies can be implemented in what is
called a contention manager.
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10.2.2 The DSTM2 Library

A fundamental construct of the DSTM2 library is a special dedicated thread
implementation which “can execute transactions, which access shared atomic
objects” [HLM06, p. 254]. That is, DSTM2 features atomic classes which are
also at the core of obtaining the STM semantics.

An atomic class is declared in the shape of an atomic interface annotated
with an atomic attribute. The interface consists of a number of methods
defining the so-called properties of the class. A property defines a virtual
field in the class since it is comprised of a pair of methods, getX and setX,
where X is the name of the property. The atomic interfaces are passed to
the constructor of a so-called transactional factory which can then be used
to create instances of the atomic class. This is done by invoking create which
is the only available method on the factory. A factory also implements the
pairs of getX and setX methods which were defined in the atomic interface
passed to it. The DSTM2 library provides a variety of factories but it is also
possible to implement new factories.

Transactions in DSTM2 are written in much the same way as a regular se-
quential method in Java. The only difference is that objects are instantiated
by invoking the create method rather than using the new keyword, and that
access to the fields in a given object must be made using the getX and setX
methods which were defined in the atomic interface of the atomic class. It is
the sole responsibility of the programmer to ensure that any objects, which
should be shared between threads, are indeed instances of atomic classes. If
this is the case, DSTM2 manages all access to such shared objects, alleviating
the programmer from ensuring correct synchronisation between threads.

10.2.3 The Obstruction-free Factory

This section describes the obstruction-free factory in DSTM2 since it is ap-
plied in the CRS.

A concurrent object is said to be obstruction-free “if any thread that runs by
itself for long enough makes progress” [HLM06, p. 257]. The obstruction-free
factory creates obstruction-free objects which are represented in the three
levels seen in Figure 10.1.

An object consists of a start cell which points to a locator. This has three
fields, namely a pointer to the last transaction to write to the object, the old
version of the object, and the new version of the object.
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lustrate an important point: some applications are likely to require
escape mechanisms, and the nature of these mechanisms cannot be
foreseen.

To address this issue, we partition the methods declared by
@atomic interfaces into two classes: property declarations, with
fixed syntax and semantics, and other methods, whose interpreta-
tions are specific to the factory. For example, if your application
requires a release or snapshot method, then you are free to declare
one in your interface, but you must also provide a factory that can
implement such a method. A transactional factory that encounters
an unfamiliar method in an interface passed to it should throw an
exception.

Transactions are managed by the dstm2.Thread package,
which provides the following essential service: A transactional
factory (or any other package) can register a method to be called
when a transaction (1) validates, checking whether it can com-
mit, (2) aborts, discovering that it cannot commit, or (3) commits,
discovering that it can. This service allows any package to veto
transaction commitment, or to clean up in an application-specific
way on commit or abort.

As mentioned, the type of every “field” of an atomic object
must be scalar or atomic. This restriction means that the fields
of atomic objects cannot be arrays. Instead, DSTM2 provides an
AtomicArray<T> class that can be used whenever an array of T is
needed. This class provides its own class-specific synchronization
and recovery. Eventually, we plan to provide a library of efficient
basic types, analogous to the Java Collections Framework, to facil-
itate transactional applications.

3.1 The Base Factory

The transactional factories provided by DSTM2 are subclasses
of a BaseFactory class, which handles many tasks common to
all transactional factories. Programmers who implement their own
factories are advised, but not required, to extend BaseFactory<T>.

As usual for Java subclasses, each factory constructor first calls
the BaseFactory<T> constructor, which takes a single argument,
the class descriptor for the interface being implemented. The base
class constructor uses reflection to examine the interface, splitting
the method declarations into property definitions and other meth-
ods. It parses the property methods (checking, for example, that
method names agree and that all types are @atomic or scalar). The
property methods are stored in one symbol table, and the remaining
uninterpreted methods are stored in another symbol table. When
the base class constructor returns, these tables are available to the
actual factory constructor.

In each of the DSTM2 factories described in the next sections,
the first time a transaction accesses an object, it opens the object,
checking whether the object is in use by a conflicting transaction.
If so, it consults a contention manager module [6, 12, 14] to decide
whether to abort the conflicting transaction, to wait for a while
for the conflicting transaction to commit, or to abort and restart
itself. User-defined factories need not be organized in this way. For
example, one could provide a factory that checks for conflicts only
when a transaction is about to commit, in the style of the OSTM
package of Harris and Fraser [8].

To illustrate how DSTM2 supports heterogeneous transactional
factories, we now describe the implementations of two factories
that represent very different approaches to implementing atomic
objects. We emphasize that these examples, different as they are,
barely scratch the surface of possible factory implementations. Be-
cause these two factories represent thoroughly different approaches
to transactional synchronization, it is instructive to observe how
they can both be accommodated in a single library.
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Figure 4. Structure of objects created by obstruction-free factory

3.2 Obstruction-Free Factory

A concurrent object is obstruction-free [11, 12] if any thread that
runs by itself for long enough makes progress (pragmatically, this
condition means that any thread will make progress if it runs for
long enough without encountering a synchronization conflict from
a concurrent thread). Like stronger nonblocking progress condi-
tions such as lock-freedom and wait-freedom, obstruction-freedom
ensures that a halted thread cannot prevent other threads from mak-
ing progress.

The obstruction-free factory is based on the obstruction-free
algorithm introduced in the earlier version of DSTM [12]. Objects
created by the obstruction-free factory are represented in three
levels: a start cell holds a reference to a locator, which has three
fields: the old version of the object, the new version, and a reference
to the transaction descriptor of the last transaction to open the
object for writing (see Figure 4). The “logical value” of the object
is the old version if that transaction is still active or has aborted,
and is the new version if it has committed.

The factory synthesizes a clone() method that creates a “shal-
low copy” of an object. (In the earlier DSTM, the application pro-
grammer was required to provide such a method.)

The first time a transaction invokes a set method for a field
of a particular object, it opens the object for writing. To do so, it
first checks whether the previous writer committed or aborted. (As
mentioned, if the previous writer is still active, then the transaction
consults a contention manager to decide whether to pause, allowing
the other transaction a chance to complete, or whether to abort the
other, allowing the transaction to proceed immediately.) If the pre-
vious writer committed, the transaction creates a new locator whose
old version is the prior new version, and whose new version is a
cloned copy of the old version, created using the factory’s synthe-
sized clone method (see Figure 5). If the prior transaction aborted,
the transaction behaves similarly, except that the prior old version
is used instead of the new one (see Figure 6). It then installs the
new locator in the start cell, using the atomic compareAndSet
method to ensure consistency in the face of conflicts with compet-
ing transactions. This protocol ensures that the logical value of the
object does not change upon opening, and that the logical values of
all objects so opened by the transaction become the new versions
when and if the transaction successfully commits. Henceforth, this
transaction’s invocations of the object’s set methods will update
the new version directly.

There are two variants of the obstruction-free factory that differ
in the way they deal with read sharing. In the visible-read version
of the factory, each object maintains a list of readers’ transaction
descriptors, and a transaction intending to modify the object must
first abort them. In the invisible-read version of the factory, each
transaction keeps a private list of the values it has read. (As a rule,
factories keep transaction-local information as thread-local data,
which is updated at important transitions such as transaction start,
validation, commit, and abort.) When a transaction tries to commit,
it must validate itself by checking that the values it read are still
current. The invisible-read factory implements this functionality by

257

Figure 10.1: Structure of objects created by the obstruction-free fac-
tory [HLM06, p. 257].

When a thread needs to write to an object, it checks whether the object is
being manipulated by an active transaction. If so, the thread consults the
contention manager on which action to take. The actions can be either for the
thread to wait a while, to abort the conflicting transaction, or to abort itself.
In case the last thread either committed or aborted, the object is available
to the current thread. Depending on the status of the previous thread, two
scenarios may occur.

If the last transaction committed, the new version of the object is valid.
Hence, the thread makes a new locator which points to the current trans-
action, the previous new version is cloned to the current new version, and
the current old version points to the previous new version. This is seen in
Figure 10.2. This ensures that if the thread commits successfully, the current
new version is valid. Contrary, if the thread aborts, the current old version
is valid since it points to the prior new version.
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registering methods to be called at transaction validation (to check
the currency of the values read), commit, and abort (to discard the
list of values read).

3.3 Shadow Factory

The shadow factory uses short critical sections to avoid the indi-
rection and allocation costs of the obstruction-free factory. This ap-
proach substantially lowers the overhead associated with opening
an object, but it may not be as well suited to multiprogrammed en-
vironments (where multiple transactions share a single processor).
Although this factory uses locks, these locks are managed by the
system, and they are not held while application code is executed,
so the application programmer need not think about them. In future
architectures, some of these critical sections could be replaced by
small hardware-supported transactions.

For each property defined in the interface, the shadow factory
generates both a field and a shadow field (Figure 7). It synthesizes
a backup() method that copies each regular field to its shadow, and
a restore() method that copies the values in the other direction.
As usual, when a transaction opens an object, it checks whether
the last transaction to write the object committed or aborted. If it
committed, then the object’s fields hold the current state, so the
transaction calls backup() to copy the fields to the shadow fields
(Figure 8). If, instead, the most recent writer aborted, then the
shadow fields hold the object’s current state, and the transaction
calls restore() to copy the shadow field values back to the regular
fields (Figure 9). Either way, the factory has established the ability
to restore the object’s state if the current transaction aborts, and
subsequent property calls directly read or write the object’s fields.
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4. Performance
We ran a number of simple benchmarks using the obstruction-free
factory (with visible reads), the obstruction-free factory with invis-
ible reads, and the shadow factory. We present results for two of
these benchmarks, to demonstrate how DSTM2 can be used exper-
imentally to evaluate the relative performance of different factories.
(A thorough analysis of factory performance would require many
more experiments, and would distract from the point of this paper.)

All the results presented here are from runs on a Sun FireTM

T2000 server. This server has a single UltraSPARC R© T1 processor
containing eight computing cores, each with four hardware strands,
clocked at 1200 MHz. Each four-strand core has a single 8 KByte
level-1 data cache and a single 16 KByte instruction cache. All
eight cores share a single 3 MByte level-2 unified cache, and a four-
way interleaved 32GB main memory. Data access latency ratios are
approximately 1:8:50 for L1:L2:Memory accesses.

4.1 List Benchmark

We first considered a simple linked list using the same list node in-
terface shown in Figure 1. The list is sorted, and threads randomly
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Figure 10.2: The previous thread committed successfully [HLM06, p. 258].

If the last transaction aborted, the old version of the object is valid. Hence,
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the thread makes a new locator which points to the current transaction, the
previous old version is cloned to the current new version, and the current old
version points to the previous old version. This is seen in Figure 10.3. This
ensures that if the thread commits successfully, the current new version is
valid. Contrary, if the thread aborts, the current old version is valid since it
points to the prior old version.
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registering methods to be called at transaction validation (to check
the currency of the values read), commit, and abort (to discard the
list of values read).

3.3 Shadow Factory

The shadow factory uses short critical sections to avoid the indi-
rection and allocation costs of the obstruction-free factory. This ap-
proach substantially lowers the overhead associated with opening
an object, but it may not be as well suited to multiprogrammed en-
vironments (where multiple transactions share a single processor).
Although this factory uses locks, these locks are managed by the
system, and they are not held while application code is executed,
so the application programmer need not think about them. In future
architectures, some of these critical sections could be replaced by
small hardware-supported transactions.

For each property defined in the interface, the shadow factory
generates both a field and a shadow field (Figure 7). It synthesizes
a backup() method that copies each regular field to its shadow, and
a restore() method that copies the values in the other direction.
As usual, when a transaction opens an object, it checks whether
the last transaction to write the object committed or aborted. If it
committed, then the object’s fields hold the current state, so the
transaction calls backup() to copy the fields to the shadow fields
(Figure 8). If, instead, the most recent writer aborted, then the
shadow fields hold the object’s current state, and the transaction
calls restore() to copy the shadow field values back to the regular
fields (Figure 9). Either way, the factory has established the ability
to restore the object’s state if the current transaction aborts, and
subsequent property calls directly read or write the object’s fields.
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4. Performance
We ran a number of simple benchmarks using the obstruction-free
factory (with visible reads), the obstruction-free factory with invis-
ible reads, and the shadow factory. We present results for two of
these benchmarks, to demonstrate how DSTM2 can be used exper-
imentally to evaluate the relative performance of different factories.
(A thorough analysis of factory performance would require many
more experiments, and would distract from the point of this paper.)

All the results presented here are from runs on a Sun FireTM

T2000 server. This server has a single UltraSPARC R© T1 processor
containing eight computing cores, each with four hardware strands,
clocked at 1200 MHz. Each four-strand core has a single 8 KByte
level-1 data cache and a single 16 KByte instruction cache. All
eight cores share a single 3 MByte level-2 unified cache, and a four-
way interleaved 32GB main memory. Data access latency ratios are
approximately 1:8:50 for L1:L2:Memory accesses.

4.1 List Benchmark

We first considered a simple linked list using the same list node in-
terface shown in Figure 1. The list is sorted, and threads randomly
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Figure 10.3: The previous thread aborted [HLM06, p. 258].

In both cases, DSTM2 achieves atomicity by swinging the start reference to
the new locator object using a compare-and-swap reference pointer. This
makes the entire creation of the locator object appear atomic when other
threads look at the object.

10.3 Revocation Techniques for Java

In Revocation techniques for Java concurrency [WJH06], Welc, Jagannathan,
and Hosking describe an approach to managing concurrency in Java. Some
of the concepts in the article are similar to transactions in Cava.

10.3.1 Overview

In concurrent programming, a major challenge lies in protecting shared data.
Many languages support this by offering the concept of guarded code regions.
In [WJH06, p. 1614], these are characterised by “accesses to shared data per-
formed by one thread are isolated from accesses performed by other threads,
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and all updates performed by a thread within a guarded region become visible
to the other threads atomically, once the executing thread exits the region”.
In Java, guarded regions are provided by synchronised methods and blocks
and in Cava by transaction methods and blocks.

Normally, guarded regions are implemented by applying some scheme of mu-
tual exclusion, e.g. locks or monitors. A number of concurrency problems
are related to using locks and monitors, e.g. race conditions, deadlocks, live-
locks, etc. [WJH06] presents two new implementations of monitors which
offer guarded regions and may alleviate the problems of monitors while also
increasing performance of a concurrent program. The two types are denoted
revocable monitors and transactional monitors where the latter is more in-
teresting in relation to Cava.

10.3.2 Revocable Monitors

The main principle behind revocable monitors is the ability to revoke the
operations which a thread has performed within a monitor. This is necessary
when a conflict on the monitor is detected by the runtime system. That is,
the operations of a thread may be rolled back and retried at a later point.
The revocation of operations is enabled by logging the operations of each
thread.

Revocable monitors solve the problem of priority inversion and thus increases
throughput for threads with high priority. Deadlocks may also be resolved
but if they are inherent to the program, and thus not the result of scheduling,
they appear as livelocks instead [WJH06, p. 1615].

10.3.3 Transactional Monitors

Transactional monitors extend the functionality of revocable monitors. They
are described as “an entirely new synchronization framework that addresses
the performance impact of classical mutual exclusion while simplifying con-
current programming” [WJH06, p. 1615]. Transactional monitors are able to
increase throughput of a program since they do not rely on mutual exclusion
to guarded regions the way revocable monitors do. Instead, it is only re-
quired that transactional monitors appear to acquire monitors serially. That
is, when multiple threads operate within the same monitor, they are allowed
to do so as long as their operations are serialisable, i.e. the operations of
the threads are equivalent to some serial schedule without interleaving. It is
the responsibility of the implementation to manage transactional monitors
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which implies that the programmer can specify guarded regions more exten-
sively without affecting performance. The implementation simply relaxes the
guarded regions by inducing transactional semantics on these.

The transactional semantics is enabled by logging the operations of each
thread in a thread specific log. Once a thread is ready to leave the monitor,
it attempts to commit its operations using the log. In case this fails, the
thread re-executes its operations and retries the commit operation.

10.4 The X10 Programming Language

This section presents the X10 programming language. The description is
based on [ESS04] and [Sar06] and has a particular focus on the concurrency
constructs of the language. This is the case since there are some similarities
to thread local and shared variables as well as transactions in Cava.

X10 is an experimental programming language currently under development
at IBM. It is based on Java and has the goal of being an object-oriented
programming language designed specifically for high-performance and high-
productivity programming of large-scale computer systems [ESS04, p. 1].
Since X10 is based on Java, the basic parts of the language resemble those
of Java. However, some of Java’s constructs have been removed such as the
Thread class and the wait, notify, and notifyAll methods. All other constructs
from Java have been adopted largely unchanged.

The basic construct in X10’s concurrency model is the concept of a place.
This is a logical unit which encapsulates data and processing power and a
typical place is a single multi-core processor. A place consists of a finite col-
lection of light-weight threads, which are termed activities, and data [Sar06].
Activities are located at one place for their entire lifetime and unlike the
thread construct in Java, activities in X10 are not bound to an object. Ob-
jects in X10 are separated into two categories: value objects and reference
objects. Value objects are immutable and stateless and can therefore be
copied between places. Reference objects may contain state and are located
at a particular place for their entire lifetime. The data in an X10 program is
divided into four storage classes [ESS04, p. 2] which are listed below.

• Activity-local : Data in this class is private to an activity and is located
at the same place as the activity.

• Place-local : Data in this class is shared between all activities at the
given place.
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• Partitioned-global : Data in this class can be accessed both by activities
in the same place and activities at other places. This storage class
represents a global address space between places and activities.

• Values : Data in this class is immutable and stateless which implies that
it can be copied between places. Furthermore, methods on such data
can be invoked from any place.

There are various constructs in X10 for obtaining synchronisation between
activities: futures, unconditional or conditional atomic sections, and clocks.
In case an activity needs to access data which is neither activity-local nor
place-local, it does so by spawning an asynchronous activity at the place
where the data is located. The creating activity continues its execution in
parallel with the spawned activity. An asynchronous activity may return a
value to the creating activity which is done in the form of a future. When
an activity wishes to access the future, it becomes blocked until the value is
available.

To protect activities from interfering with each other, X10 features atomic
sections which have STM semantics. An atomic section may be either un-
conditional or conditional. The latter does not process the block statements
until a certain Boolean condition is satisfied.

The last major concurrency concept is that of a clock which is a generalisation
of the classical synchronisation barrier. However, the collection of activities
which synchronise on a given clock may change dynamically which makes
clocks more expressive than classical barriers. Clocks support “deadlock-free
parallel computation” [Sar06, p. 4].
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Chapter 11
Conclusion

This chapter addresses how the results of the project relate to the goals
in Section 1.4 on page 4. Cava and differences from Java are discussed in
Section 11.1. The assessment of Cava and Java is the focus of Section 11.2.
Finally, Section 11.3 on page 110 addresses the Cava implementation and the
examples modelled in Cava.

11.1 Cava and Differences from Java

The motivation behind Cava was to create a new concurrency model for Java
which would enable the programmer to easily design concurrent programs in
order to utilise the processing potential introduced by multi-core CPUs. The
new concurrency model should be tightly integrated with the object-oriented
paradigm and embrace both modelling naturally concurrent problems and
parallel optimisation.

Cava grew out of two different studies. The first was of Java’s present concur-
rency model to gather information about its constructs and problem areas.
The second had the purpose of identifying design criteria for the new model
to pinpoint the goals of the design.

Cava’s most important differences from Java are addressed in the follow-
ing. In Cava, non-deterministic execution of threads is a choice available
to the programmer which implies that it is only introduced if the program-
mer explicitly requests it. This is contrary to Java where non-deterministic
behaviour is the only option. Transactions in Cava restrict interleaving on
shared variables to large blocks. This reduces the potential interleaving to
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be considered by the programmer in contrast to Java where interleaving may
appear at any level. Even though a Cava program may have large transac-
tional code regions, Cava maintains a high degree of concurrency. In Java, a
programmer must manually specify the level of concurrency. Cava features
a reliable communication construct in the form of gates which remedies the
problem of losing notifications in Java if an object is not in the right state.

The differences described above appear at different levels and have different
complexity. However, the changes in Cava improve various aspects of Java
such that they collectively resulted in a concurrency model which is stronger
than Java’s present one.

11.2 Assessment of Cava

When designing a new concurrency model, a natural issue becomes how to
measure the result. A comparison is important since it helps decide whether
the new concurrency model is actually an improvement over the old one. As
a result, a new assessment method was introduced in Chapter 4 on page 16.

The assessment method was developed in accordance with three criteria:
the method should produce an absolute result, it should be unbiased, and
it should be transparent. These criteria led to a question based assessment
method which in this context had its starting point in the four design criteria
of Cava found in Chapter 3 on page 11. However, the questions in the method
could be used to uncover other characteristics of concurrency models.

The assessment method was applied to Java and Cava in Section 8.1 on
page 81 with the questions which were defined in Section 4.4 on page 19.
The result of the assessment, seen in Table 8.5 on page 90, was that Java
had an overall score of 26.7 while Cava had an overall score of 35.9 compared
to a maximum obtainable score of 50. This showed that Cava constitutes an
improvement to Java’s concurrency model. However, Cava was still far from
the maximum score.

The difference in score between Java and Cava was primarily related to how
Cava complies with the object-oriented model criterion. Here, Cava obtained
the maximal score and twice the score of Java. The result can be attributed
to Cava being better integrated with the object-oriented paradigm which
was one of the main goals of the new concurrency model. Cava also scored
better than Java on the fault restriction criterion. However, while the score
was significantly better than Java’s, the score was well below the maximum
score of the criterion. Cava scored slightly worse than Java on the simple
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criterion which was mainly attributed to Cava’s lack of homogeneity. On the
expressiveness criterion, Cava and Java were tied.

The criteria of Chapter 3 drove the design of Cava as well as the devel-
opment of the assessment method. Hence, it could be argued that Cava’s
better score was predictable. However, the overall score reflected that the
design of Cava focussed mainly on the high priority criteria and relaxed the
low priority criteria. Moreover, the assessment method is rather theoretical
and will therefore probably favour individual constructs and concepts rather
than the applicability of the complete concurrency model. The result of the
assessment should therefore be taken as an indication that Cava’s constructs
are stronger than those of Java but they may not necessarily be easier to
apply in programs.

11.3 Implementation and Examples

As mentioned in the previous section, Cava’s applicability was not targeted
in the assessment method. Hence, it is difficult to predict how easy it is to
comprehend the concurrency constructs and whether the model supports the
programmer when designing concurrent programs. How well Cava performs
with regard to such issues can only be determined by actually applying it to
concurrent and parallel problems.

In order to facilitate gaining practical experience with Cava, an experimental
implementation was developed. This was obtained by changing Sun’s Java
compiler into a Cava compiler and implementing a Cava Runtime System.
The fundamental implementation strategy is to let the Cava compiler hijack
the Java compiler after the latter has parsed the source files into an abstract
syntax tree. A tree traversal is performed during which the Cava code is
replaced with equivalent Java code. The component, which performs the
replacements, is rather complex since the surrounding code and the context
in general may influence how the equivalent Java code should be constructed.
Since the rest of the Java compiler is left unchanged, the Cava compiler
generates class files which can be executed on a standard JVM as long as the
Cava Runtime System is specified to this.

The implementation was utilised to write and execute various Cava programs.
These included concurrency constructs such as a lock and Java’s wait, notify,
and notifyAll methods. Moreover, classical concurrent problems such as Din-
ing Philosophers and the Santa Claus Problem were modelled along with a
parallel version of Quicksort. The examples showed that synchronisation be-
tween threads was easily obtained, regardless of whether the purpose was to

110



11.3. IMPLEMENTATION AND EXAMPLES

protect shared data or to enable co-operation. An important point in relation
to this is that all examples were modelled by the project participants who
necessarily have extensive prior knowledge of the syntax and semantics of
the various constructs. Hence, it would be fruitful to let programmers, who
are inexperienced with Cava, apply it to concurrent and parallel problems.
Still, the overall impression is that Cava contributes positively to making
modelling easier than in Java but it remains challenging to design concurrent
programs.
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Appendix A
Basic Concepts

This appendix presents some basic concepts which are related to concurrency.
Several views on and definitions of these basic concepts exist, depending
on the approach taken to concurrency. The purpose of this appendix is to
establish how the various concepts are used in the main report. With the
exception of Definition A.3 and Definition A.7 on page 116, the definitions
are similar to these ones presented in [DH07, Appendix A].

A.1 Definitions

A.1.1 Process, Thread, and Task

Definition A.1 (Process). A process is an instance of a program executed
in isolation from other processes. It consists of program code and data.

With the above definition, examples of processes are an instance of a word
processor or an instance of a CD player. It is noted that Definition A.1
is largely consistent with the prevalent process definition used within the
operating systems research field.

Definition A.2 (Thread). A thread is associated with a specific process and
it realises (part of) the execution of the program which the process represents.
The thread operates on the same memory as the process which created the
thread.

With the above definition, a process may be an instance of a word processor
and this may spawn a thread handling the editor, a thread handling the spell
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checker, and a thread handling pagination. The above shows that it is the
threads which realise the actual execution of the program which the process
represents. Furthermore, a given process always spawns at least one thread.

Definition A.3 (Task). A task realises (part of) what an entire program is
intended to realise.

With the above definition, a single statement or method within a program is
a task. On the other hand, an entire program is also perceived as a task.

A.1.2 Concurrency and Parallelism

Definition A.4 (Concurrency). Concurrency is the simultaneous execution
of tasks.

With the above definition, concurrency is observed in the simultaneous exe-
cution of instances of a word processor and a CD player. Likewise, a server
which handles requests by setting up a new thread for each request exhibits
concurrency. Concurrency can appear at several levels: instruction level,
statement level, subprogram level, and program level [Seb03, p. 496]. Note,
a task as defined in Definition A.3 can be either of these four entities. Fur-
thermore, concurrency can be characterised as either physical (or true) where
several processors are available or as logical where only one processor is pre-
sent but concurrency is simulated by interleaving the execution of several
threads [Seb03, p. 498].

Definition A.5 (Parallelism). Parallelism involves the partitioning of tasks
into a number of subtasks which can be executed independently.

With the above definition, parallelism can be applied when calculating the
factorial of 100. This can safely be divided into several subtasks which each
calculates only part of the result.

A.1.3 Synchronisation

Definition A.6 (Synchronisation). Synchronisation involves the co-ordin-
ation between threads such that they can perform a task by executing concur-
rently.
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The goal of synchronisation can either be to prevent competition if access
to shared memory is required by multiple tasks or to obtain co-operation
between multiple tasks [Seb03, p. 500].

With the above definition, an example of competition synchronisation is the
scenario in which two threads both have to write to a shared variable. Con-
versely, a buffer constitutes a scenario in which co-operation synchronisation
is required. Note, Definition A.6 also embraces synchronisation between pro-
cesses since every process spawns at least one thread.

A.1.4 Concurrency Model

Definition A.7 (Concurrency Model). The concurrency model of a pro-
gramming language consists of the constructs which are included in the lan-
guage with the sole purpose of supporting modelling concurrent and introduc-
ing parallelism.

With the above definition, the following elements can be part of a concurrency
model: keywords, methods, dedicated classes (e.g. in libraries), and dedicated
objects.
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Appendix B
Santa Claus Problem

This chapter introduces a concurrent problem known as the Santa Claus prob-
lem. The description of the problem is largely identical to [DH07, Chapter 4].
The Santa Claus problem was designed by John A. Trono and published in
1994 in the article A New Exercise in Concurrency [Tro94].

B.1 Problem Description

The participants in the problem are Santa Claus, nine reindeer, and an un-
specified number of pixies who manufacture toys.

Santa likes to sleep in his shop so he does so as often as he can.
However, he is eventually awakened by pixies who are having prob-
lems making toys, or by the reindeer when all nine are back from
their year long vacation. One pixy with a problem is not impor-
tant enough to wake up Santa, so the pixies always visit Santa
in groups of three. While a group of pixies are in Santa’s shop
to have their problems fixed, any other pixy who wishes to visit
Santa must wait for the other pixies to return.

The reindeer do not return from their vacations until the last
possible moment. The last reindeer to arrive back must get Santa
while the others wait in a warming hut until Santa is ready to
harness them to the sleigh. Once they are harnessed, they are
ready to deliver the presents. When they return from this trip,
Santa releases the reindeer and sends them back on vacation.
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In case Santa wakes up to find three pixies waiting at the door to
his shop along with the last of the reindeer having returned from
vacation, Santa has decided that the pixies must wait until after
Christmas. This is because it is more important to get his sleigh
ready as soon as possible.

B.2 Properties

There are several reasons why the Santa Claus problem was selected as an
example of a concurrent problem. Firstly, the problem does not assume
any specific concurrency model. Furthermore, the Santa Claus problem was
designed as a problem where concurrency appears as a natural part. Lastly,
the nature of the Santa Claus problem contributes with several non-trivial
synchronisation patterns.
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Summary

The goal of the project was to develop a new concurrency model, called
Cava, for the Java programming language. The motivation was the increasing
need for concurrent programs e.g. to utilise the power of multi-core CPUs.
Moreover, Java’s present concurrency model suffers from various weaknesses
such as broken encapsulation and the inheritance anomaly.

Based on an investigation of Java’s present concurrency model, design cri-
teria for a new concurrency model were defined: it should comply with the
underlying object-oriented model, be expressive, offer fault restriction, and
be simple. Assessing the new model was important to evaluate how it met
the design criteria. Moreover, it should be investigated whether the new
concurrency model is stronger than Java and offers better support for mod-
elling concurrent problems and introducing parallelism. Hence, an assess-
ment method, which assigns a numerical value to a concurrency model, was
developed based on posing questions about each design criterion.

Cava builds on Java but the wait, notify, and notifyAll methods were removed
along with the synchronized keyword. The fundamental concurrency con-
struct in Cava is still the thread. However, non-deterministic behaviour of
threads appears only by choice. Moreover, all variables are thread local un-
less they are marked as shared between threads with the new shared modifier.
Access to shared variables is restricted since it must occur within methods or
blocks which are marked with the new transaction keyword. Such methods
and blocks apply Software Transactional Memory which allows for perform-
ing roll backs in case of conflicts on variables. The transactional status of
methods is preserved on inheritance. Cava also features a gate construct
which enables sending messages between threads. There are two types of
gates: or-gates which forward a message to a single thread, and and-gates
which forward a message to multiple threads.

An experimental implementation of Cava was developed as part of the project
by changing Sun’s Java compiler into a Cava compiler and implementing a
Cava Runtime System. The strategy was to hijack the Java compiler which
implies that the generated class files can be executed on a standard JVM if
the Cava Runtime System is specified to this. The implementation enabled
writing and testing Cava programs, e.g. Cava was applied to model a lock,
Dining Philosophers, the Santa Claus Problem, and a parallel version of
Quicksort.

Cava achieved a better score than Java in the comparison. This was pri-
marily obtained on a significantly better integration with the object-oriented
paradigm and more fault restriction. There was a tie with regard to ex-
pressiveness while Cava scored slightly worse than Java on simplicity. Since
Cava was far from the maximum score, areas of potential future work were
presented along with examples of related work.
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