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Abstract
The feeding system is the product of the
SKOV company. It will be used in the
livestock buildings. It needs to be demon-
strated, that it can be implemented cor-
rectly in terms of its system specifica-
tion. During the project period, we model
its system specification in UPPAAL. Pro-
vided the emulate feeding system(Dub99)
as the implementation under test(IUT), we
perform the model-based testing manually
using the feeding system models. It is
demonstrated that, provided the IUT and
the adapter, the model can be applied on
the UPPAAL TRON engine for model-
based black-box online testing.





Contents

1 Introduction 9

1.1 Software testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 The testing life cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Black box conformance testing . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Black-box testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Conformance testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Model-based testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Offline testing Vs. Online testing . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Project motivation & description . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.2 Case description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Preliminaries 16

2.1 Timed Input/Output Transition Systems . . . . . . . . . . . . . . . . . . . . . 16

2.2 UPPAAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 UPPAAL toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3



CONTENTS

2.3 Relativized Timed Input/Output Conformance . . . . . . . . . . . . . . . . . . 22

2.4 TRON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Testing setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Case study of the Dimmer(smart lamp) . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Testing purpose & Testing setup . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.3 Hints in Adapter Modeling . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.4 IUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Case study: the feeding system 40

3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 System functionality decomposition . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Demand feed function . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Weighing function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Calibration function . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Emulate Labview system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Model1 - Demand feed 53

4.1 Model purpose and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4



CONTENTS

4.2.1 The feed demand template . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 The Dol7 template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 The Viper1 template . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 The Viper2 template . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 The shutter template . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.6 The alarm template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Manual testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Test case1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Test case2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 Test case3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Model2 - Calibration 71

5.1 Model purpose and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 The CalibrateUser template . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.2 The Viper1 template . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 The DrumPosition template . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.4 The Action template . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.5 The CheckSignal template . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



CONTENTS

5.4 Manual testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 System modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Test case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.3 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Model3 - Weighing 80

6.1 Model purpose and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 The Demand template . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 The Viper1 template . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 The OneWeighSub template . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.4 The RollDrumSub template . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.5 The Drum template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.6 The SiloAuger template . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.7 The CheckSignal template . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Manual testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Test case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusion & Future work 93

6



CONTENTS

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Climate Controller 96

A.1 Cooling Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1.1 Control Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1.2 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.2 SUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.3 Temperature Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.4 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7



CONTENTS

Acknowledgement

We would like to thank our supervisor Brian Nielsen, whose academic guidance and illumi-
nating suggestion have encouraged and helped us greatly during this project. Our heartfelt
gratitude goes to him for his patience and advise at all times.

We would like to thank Marius Mikucionis for his support.

We would like to thank Shuhao Li for his reviewing and criticizing on the near-final manuscript.

GROUP MEMBERS

Weiwei Zheng

8



Chapter 1Introduction

1.1 Software testing

In the software development life cycle, testing is an importance phase to improve the quality of
the product. The objective of the testing is to find errors, to evaluate the product and to check
whether the product fulfills the needs of the customers or not.

The missions of testing are summarized as follow [1]:

1. To demonstrate that the product performs each function as intended;

2. To demonstrate that the internal operation of the product performs according to specifica-
tion and all internal components have been adequately exercised;

3. To increase our confidence in the proper functioning of the software;

4. To show the product is free from defects.

Due to the inherent complexity of software products, software testing is usually a difficult work.
With the widespread deployment of safety-critical software systems and software devices and
controllers, testing is becoming more and more important. Traditional manually testing is labor-
intensive, error-prone and tedious. Therefore, it is beneficial for us to look to automated ap-
proach of software testing.

1.2 The testing life cycle

An appropriately formed and performed test process can contribute to the success of the product.
Although testing differs between testers, the cycle to testing is almost the same. The figure 1.1
shows one simple cycle for software testing.

It starts from the test PLANNING, which is required to propose a systematic way to test a
software. Typically, it contains detailed and clear idea of how the execution will be. In the
DESIGN phase, testers will analyze the requirements in the software development life cycle,
and to determine which one is testable and what’s needed to perform this test. The third step,

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Software testing cycle[2]

DEVELOPMENT, is test specification. Basically, here test cases are being generated, and being
collected into test suites. Based on those plans of the test, testers EXECUTE the test, and give
out the result. Then, ANALYSIS the results, report the test effort and to determine whether or
not the product is ready for release, if not, do REVIEW(retest).

1.3 Black box conformance testing

1.3.1 Black-box testing

According to the software accessibility, there are two methods to derive test case. One is white-
box testing, the other is black-box testing. See figure1.2.

Figure 1.2: White-box testing VS. Black-box testing [3]

White-box(glass-box) is referred to as code coverage method, aiming at checking the basic
structure of the program. With this method, the test cases are derived (1) to ensure that all the
independent paths have been covered at least once, or (2) to execute the both sides of all the
logical decisions, or to (3) perform all the loop statements within their restriction boundary, or
to (4) execute to ensure all the internal data structure. See Figure 1.2 (a), in this case, it will
execute paths ABCDFG, ABCEFG, with intention to cover both sides of the decision.

10



1.4. MODEL-BASED TESTING

In contrast to white-box testing, there is another way to derive test case, which is called Black-
box testing, that does not care about the code. It only uses the functional specification docu-
ments. It tries to find out: (1) functions which are concluded not according to the specification,
or (2) interface mistakes, or (3) incorrect data structure or external access manner, or (4)initial
and terminal phase mistakes.

These two testing methods are complementary. White-box tests the control structure. It is
executed at the early phase of the testing process. Whereas Black-box pays attention to the
functions. It will be applied in the later phase of the testing process.

1.3.2 Conformance testing

With respect to the different aspects of the system behaviors, testing can be classified into
conformance testing, performance testing, stress testing and others.

Conformance testing [4] Conformance testing checks the implementation of the system be-
haviors against the functional specification of the system [5]. It can be dealt with black-
box testing method, where the internal states of the implementation under test(IUT) are
assumed to be unavailable. Test cases are applied to IUT, and then "pass/fail" verdicts
are assigned according to whether the observations conform to the system specification
or not.

Performance testing [6] Performance testing is to figure out how fast the particular system
aspect performs with respect to a certain workload. It is used for different purposes.
For example, its result can be used to decide which one performs better among several
systems. It can be also used to check whether the system meets the performance criteria
or not. Or it can measure that which parts of a device or the system contributes to that
bad performance.

Stress testing [7] This form of testing evaluate the stability of a particular system under heavy
load. Compared to conformance testing, it prefers to determine how easily the software
crash under stressful conditions, e.g. insufficient computation resources. It can be classi-
fied into robustness, availability, and error handling.

1.4 Model-based testing

System specification can be written in natural languages, e.g. English or Danish, that is so
called informal specification. The informal specification leads to different interpretations. So
that it will not be clear about what the system should do, sequentially, test can not be explicitly
performed [8].

11



CHAPTER 1. INTRODUCTION

Formal methods are proposed to resolve those defects. With formal methods, testers interpret
systems into mathematical models. The test cases will be generated from the models. The main
advantage of the model-based testing can be collected as followed [9]:

• In contrast to the informal specification, the specifications based on formal models are
precise and unambiguous.

• The notation of formal models, makes the automated error checking possible, so that error
can be found in the early stages of the system development life cycle.

• Formal models make the automation of the whole testing process possible. Test cases can
be produced algorithmically from the formal models. After executing those test cases,
observations will be compared to the expected outputs to make the "pass/fail" verdict.

There are many kinds of formal models, e.g. Decision Tables, Finite State Machine, Markov
process. Model-based testing is a method for generating test cases automatically from behav-
ioral models of the system under test(SUT). The model is the presentation of the system require-
ments and the functional specifications. It can be constructed before or during the development
of the SUT. It can also be developed from the complete system.

A variety of the formal models exist for modeling the system behavior. In our project, we prefer
to use timed automaton(TA). TA is extended the Finite State Machine with the real-value of
clocks. That makes it an expressive modeling tool for real-time systems.

The test cases are produced from the model. They are consisted of the specified system inputs
and the expected outputs. Then the inputs are executed in the implementation under test(IUT).
And outputs of that test execution will then be compared with the expected outputs to deter-
mined success or failure.

Model-based testing makes it possible for the tester to easily guide the test case generation
according to the specific interests. However, to perform model-based testing requires highly
skilled testers. For example, as TA will be used in this project, testers are required to have
knowledge about the theory of the timed automata and the modeling techniques. In this sense
performing model-based testing is not always a good choice

1.5 Offline testing Vs. Online testing

There are two testing manner[10], one is called Offline or batch testing, as shown on the Figure
1.3 a, the other is online testing or on-the-fly testing, see Figure 1.3 b.

Offline approach in Figure 1.3 a does the test generation and the test execution separately. It
completely generates the test cases, and stores them in a test notation language, like TTCN[10].

12



1.5. OFFLINE TESTING VS. ONLINE TESTING

Then test cases are executed against the IUT, and determine "pass" or "fail" for the outputs
according to the specification. For all of the time constraints in the system specification have
been solved in advance.

Online testing in Figure 1.3 b, joins the two steps: test generation and the test execution together.
Here a single test event is generated from the model each time, and is executed on the SUT at
once, and then the Outputs from the SUT and the time of occurrence are compared to the
specification to check the conformance requirement. And new cycle is performed so forth until
being stopped.

Figure 1.3: Offline VS. Online test gerneration

There are some remarks for both the offline testing and the online testing.

• Offline testing is better choice for applying the manual or semi-manual test suite preparation[4].
Humans can make selection among test cases according to the test requirements. How-
ever it is not fast enough, if considering the speed requirement at run-time.

• Using offline strategy, all the required time constraints can be resolved during test gen-
eration. So offline strategy can also guarantee some restrictions, for example, the given
test-goal should consume as few resource as possible. All those may result in producing
easy and fast test case for execution. Compared to the online testing, that do all the com-
putations in run-time, the pre-computations of the offline approach make offline easier to
satisfy the IUT’s real-time requirements.

However, sometimes using offline generation is too expensive. For instance, in the non-
deterministic cases, outputs are infeasible to be predicted, it may lead to a very large test
cases. And it is not fit for handling the specification with huge size as well, because it
may cause state-explosion problem. But the complexity can be resolved by using means
of the user guidance and the online(on-the-fly) approaches[10].

Compared to offline testing, online method do not need to predict the test steps. That
results in reducing the state-space-explosion. Online test makes a single test run possible
to last for a very long time, since complicated test cases can be generated and executed
without interrupted.

13



CHAPTER 1. INTRODUCTION

• During the test execution, translation is necessary for the interface with the IUT[4]. On-
line approach is more difficult, because all the translation must be done at run-time. It
requires such a run-time translator must meet the time constraints, and that translator
must be generic enough for being reusable. Whereas, offline derivation, is possible to
pre-computed the abstract test cases into concrete ones with all the mapping details in-
cluded.

1.6 Project motivation & description

1.6.1 motivation

Although testing is still the dominating technique for software quality assurance, it is in prac-
tice labor-intensive, error-prone, and tedious. As an emerging technique, model-based testing
(MBT) offers the advantages of being a systematic, rigorous test method that can be fully auto-
mated and can be used in the early stage of the software life cycle. These features make it very
attractive to industry. The DSS group has expertise and competence in real-time modeling, ver-
ification and testing, and has been maintaining cooperations with companies such as Danfoss
and SKOV. These put us at an advantageous position to carry out further research on and further
application of our techniques in this area.

During the passed academic year, we have already gained the knowledge on the modeling, and
the basic theory of MBT. In order to validate the theory of model-based black box conformance
testing, we use tron in the industrial case study offered by the SKOV company. The case study
is about demonstrating the functionality of the SKOV feeding system.

The MBT is suitable for the SKOV case. Firstly, it is because that, the SKOV intends to verify
the system behavior. At this early stage of designing the feeding system, MBT helps to expose
the ambiguities in the system specification. Using MBT, makes it possible to produce many
non-repetitive and the meaningful test cases. It makes it easy to update the test cases in terms
of the changed system specification by means of modifying the model.

With the current specification of the feeding system, the model can be built. And the expected
test case will be generated from the model, including the expected inputs and outputs. The in-
puts are used to enabled the corresponding actions of the implementation (Dub99). The outputs
from the Dub99 are compared to the expected output, and pass/fail verdict will be made. The
test results help to make further decisions, e.g. the failure may be lead to the modification of
the model.

14



1.7. STRUCTURE OF THE REPORT

1.6.2 Case description

At the beginning of the testing, an industrial product called climate controller is proposed by the
SKOV company. The expected functions of that controller need to be maintained. So that, we
planed to apply the model-based online testing on this industrial case. We spend the first half
project period in translating the specification of the climate controller into the UPPAAL model.
Then, it is found that, the real climate controller product can not be offered. That means, we do
not have the implementation under test(IUT) for the model-based online testing using TRON.
The testing can not be moved further.

Then we accepts another proposal, which is also from SKOV. It is the feeding controlling sys-
tem, name viper. We complete the modeling phase. That is, modeling the system specification
of the feeding system, as well as its working environment(Dol99B) in UPPAAL. And the ex-
pected property is also verified. However, due to the limit of the time, we do not perform the
online testing using tron. With the emulate feeding system(Dub99), which is used to be the
IUT, we applied manually model-based testing using the UPPAAL feeding system.

1.7 Structure of the report

The remainder of the report is organized as follow. Chapter 2 give you the semantics necessary
for the online model-based testing, and also the testing setup structure. After that, we do a small
case study for smartlamp, present you a general idea for the testing using TRON. In chapter 3,
we presents the overview of the feeding system testing case. In chapter 4, 5, 6, we propose three
model systems based on the three function of the feeding system. We applied each model system
for manually testing with the Emulate feeding system(implementation). Chapter7, summaries
the work we have done during the project period, makes the conclusion, and outlines the work
for future. In Appdendix A, we describe the Skov climate controller model for testing purpose
in UPPAAL, which is done in the first semester.
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Chapter 2Preliminaries

The goal of the thesis is to use UPPAAL TRON to perform model-based online black-box
conformance testing. Tron uses relativized timed input/output conformance relation [11] as the
implementation relation, with intention to check whether the Implementation Under Test (IUT)
conforms to its specification S when being operated under environment assumptions ξ.

This section introduces the Timed Input/Output Transition Systems(TIOTS), Timed Automata
and the conformance relation we used named Relativized Input/Output Conformance relation,
and presents the testing setup.

More information about this can be found in [12], [11] and [13].

2.1 Timed Input/Output Transition Systems

We assume there is a set of actions Act that is consisted of input actions Actin and output actions
Actout, where Actin ∩ Actout = ∅. We also assume that there is a distinguished unobservable
action τ , where τ /∈ Act. We denote that Act ∪ {τ} = Actτ .

DEFINITION 1. A labelled transition systems(LTS) S is a triple (S, Actτ ,→), where:
S is a set of states,
Actτ is the set of actions,
→⊆ S ×Actτ × S is a transition relation such that s

a→ s
′
, iff (s, a, s

′
) ∈→, where a ∈ Actτ ,

s, s
′ ∈ S.

DEFINITION 2. A timed input/output transition systems(TIOTS, where TIOTS ⊆ LTS) S , is a
tuple (S, s0, Actin, Actout,→), where:
S is a set of states,
s0 ∈ S, is the initial state,
→⊆ S × (Actτ ∪ R≥0)× S is a transition relation, which satisfies those properties:

time determinism: if s
d→ s

′
, and s

d→ s
′′

then s
′
= s

′′
,

time additivity: if s
d1→ s

′
, and s

′ d2→ s
′′

then s
d1+d2−→ s

′′
,

d, d1, d2 ∈ R≥0, where R≥0 denotes non-negative real numbers.
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2.1. TIMED INPUT/OUTPUT TRANSITION SYSTEMS

DEFINITION 3. Let a, a1, a2...n ∈ Act, α, α1, α2...n ∈ Actτ ∪ R≥0 and d, d1, d2...n ∈ R≥0. we
denote that:
s

a→ iff ∃s′
such that s

a→ s
′
,

s
a⇒ s

′
iff ∃s′

such that s
τ∗
→ a→ τ∗

→ s
′
,

s
d⇒ s

′
iff ∃s′

such that s
τ∗
→ d1→ τ∗

→ d2→ τ∗
→ ...

τ∗
→dn→ τ∗

→ s
′
, where

∑N
i=1 di = d.

We extend ⇒ to sequence of actions and delays in the usual manner.

DEFINITION 4. The Timed Input/Output Transition System (TIOTS) S is strongly input enabled,
iff ∀s ∈ S,∀i ∈ Actin, such that s

i→
TIOTS is strongly input enabled implies it can accept any input in any state.

DEFINITION 5. The Timed Input/Output Transition Systems (TIOTS) S is non-blocking, iff

∀s ∈ S,∀t ∈ R≥0,∃σ = d1o1...dnon, such that s
σ⇒ and

∑N
i=1 di ≥ t.

Where d1, d2...n ∈ R≥0, o1, o2...n ∈ Actout.

Thus we assume the TIOTS S is strongly input enabled and non-blocking. It will not block time
in any input enabled environments. We also assume that the S with two properties: isolated
input, and deterministic.

DEFINITION 6. The Timed Input/Output Transition Systems (TIOTS) S has isolated outputs:
if s

o→ then s
τ9 and s

d9 (d > 0),

if (s o→ ∧s
o
′

→ ) then o = o
′
.

DEFINITION 7. The Timed Input/Output Transition Systems (TIOTS) S is deterministic
if ∀α ∈ Actτ ∪ R≥0,∀s ∈ S, such that, if (s

α→ s
′ ∧ s

α→ s
′′
), then s

′
= s

′′
.

We assume there are two input enabled, non-blocking TIOTS, S = (S, s0, Actin, Actout,→)

and ξ = (E, e0, Actout, Actin,→). ξ is regarded as an environment of the S. e0 is the initial
state of the E, where E is the set of the states of the environment ξ. Similarly, s0 ∈ S is the
initial state of S. The input actions of environment ξ are the output actions of S, whereas, the
input actions of S are identical to the output actions of ξ.

DEFINITION 8. Let S||ξ be a closed system parallelly consisted of S and ξ. The TIOTS S||ξ is
of the form (S × E, (s0, e0), Actin, Actout,→), where → is defined as:

s
α→s

′
e

α→e
′

(s,e)
α→(s

′
,e
′
)

s
τ→s

′

(s,e)
τ→(s

′
,e)

e
τ→e

′

(s,e)
τ→(s,e

′
)

s
d→s

′
e

d→e
′

(s,e)
d→(s

′
,e
′
)

In the following paragraph we will preset you the definition of the Time Automaton (TA), and
its semantics with regard to TIOTS.
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2.2 UPPAAL

UPPAAL is mature integrated tool environment for modeling, verification, and simulation of
real-time system. In UPPAAL, the system is modeled as networks of automata extended with
integer variables, structured data types, synchronizing channels [14], [12].

2.2.1 Timed Automata

Using UPPAAL-TRON (TRON for short) to carry out the testing, is based on the formal de-
scription of the real-time embedded systems as timed automata in UPPAAL. By definition a
timed automaton is a finite state machine extended with clock variables. Clocks progress syn-
chronously and can evaluate to real numbers (as can be seen in the definition of semantics).
This notion of dense time, implicit to a timed automaton, makes it a most useful tool to model
systems where time plays an important role and different entities of the system should be able
to interact through communication.

DEFINITION 9 (Timed Automaton). A timed automaton is 6-tuple (L, l0, C,Actτ , E, I) where:

L is the set of locations

l0 the initial location, l0 ∈ L

C is the set of clocks

Actτ a set of actions, co-actions and internal τ - actions

E ⊆ L× Actτ ×B(C)× 2C × L is a set of edges between locations with an action, a guard
and a set of clocks to be reset

I : L → B(C) assigns invariants to locations

B(C) is the set of conjunctions of conditions of the form x ./ c or x − y ./ c where x, y ∈ C

(are clocks), c ∈ N and ./∈ {<,≤, =,≥, >}.

Invariants on locations will be better understood after we give the semantics of TA. Before that,
let us introduce the notion of clock valuation: a clock valuation is a function u : C → R≥0 that
assigns a non-negative real number tos each elements in the C. Let RC be the set of all clock
valuations. And we assume that u0(x) = 0 for all x ∈ C.

We adopt the notation u ∈ I(L) and u ∈ g meaning that the clock valuation u satisfies the
invariant in location L and that the clock valuation u satisfies the guard g.
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2.2. UPPAAL

DEFINITION 10 (Semantics of TA). Let (L,l0,C,Actτ ,E,I) be a TA. The semantics is defined as
a TIOTS over state of the form s = (l, u), where l ∈ L is a location, and the u ∈ RC

≥0 is a clock
valuation satisfying the invariant of the location l, C is a set of non-negative real valued clocks.
There are two kinds of the transitions:

delay transition (l, u)
d→ (l, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l)

(The values of all clocks of the automaton are increased by the amount of the delay, and
still satisfies the invariant of the same location)

discrete transition (l, u)
a→ (l′, u′) if ∃e = (l, α, g, r, l′) ∈ E s.t. u ∈ g, u′ = [r 7→ 0]u and

u′ ∈ I(l′)

(When fires the edge e = (l, α, g, r, l′), the guard g is satisfied by u, the clock valuation of
the target state u′ simply maps to 0 according to the updates r, and satisfies the invariants
on l′ )

Let us note that for a TA to be on a given location it must satisfy the location invariant and
the guard condition in its outgoing edge, thus, a location with an invariant must always have an
outgoing edge.

DEFINITION 11 (Network of Timed Automaton). A Network of timed automata (NTA) is a
collection of n TA Ai = (Li, l

0
i , C,Act, Ei, Ii), 1 ≤ i ≤ n over a common set of clocks (C)

and of actions (Act) where a location is now a vector l̄ = (l1, ..., ln), the initial location is a
vector l̄0 = (l01, ..., l

0
n) and the invariant function over such a position vector is defined as the

conjunction of the invariant functions of each TA over the respective location I(l̄) =
∧

i Ii(li).

The semantics of NTA is defined. And it is useful to adopt the notation l̄[l
′
i/li] that denotes the

vector where the ith element li of l̄ is replaced by l
′
i.

DEFINITION 12 (Semantics of NTA). Let Ai = (Li, l
0
i , C,Act, Ei, Ii), 1 ≤ i ≤ n be an NTA.

Let l̄0 = (l01, ..., l
0
n) be the initial location vector. The semantics is defined as a TIOTS over state

of the form s = (l̄, u), where l̄ ∈ (L1 × ... × Ln) is a location, and the u ∈ RC
≥0 is a clock

valuation satisfying the invariant of the location l̄, C is a set of non-negative real valued clocks.
The transitions are defined as:

• (l̄, u) → (l̄, u + d) if ∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l̄)

• (l̄, u) → (l̄[l
′
i/li], u

′) if ∃li
α,g,r−→ l′i, where α ∈ Act ∪ {τ} s.t. u ∈ g, u′ = [r 7→ 0]u and

u′ ∈ l̄[l
′
i/li]

• (l̄, u) → (l̄[l′i/li, l
′
j/lj], u

′), where l′i, l′j ∈ l̄′ and l̄′ = (..., l′i, ..., l
′
j, ...), if ∃li

a!giri−→ l′i and

∃lj
a?gjrj−→ l′j , where a ∈ Act, s.t. u ∈ (gi ∧ gj), u′ = [ri ∪ rj 7→ 0]u and u′ ∈ I(l̄′)

(This is when two TA in the system synchronize through an action and a co-action, both
fire an edge).
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2.2.2 UPPAAL toolset

UPPAAL toolset is consisted of the graphical user interface and the model checker engine [12],
[15]. The graphical user interface, is implemented in Java. The model checker engine, also
called verifier. It is by default that, two parts are run on the same OS. The latest release version
of UPPAAL is available for Windows, Linux, Solaris and Mac OS X.

The UPPAAL tool serves for modeling the system into the network of the timed automata using
the graphical editor, simulating it to check whether the dynamic system behavior is expected,
verifying the expected system properties. Those three intentions are reflected by the graphical
interface. It contains the editor, the simulator and the verifier. They can be accessed via three
tabs marked with their names respectively. The following sections will give you a general idea
about them, for more detail, please refer to the UPPAAL tutorial [12].

Figure 2.1: The snapshot of the UPPAAL editor

Editor

The editor(see the Figure 2.1), is mainly consisted of two parts: the template drawing panel
and the tree panel. The template drawing panel is used to design the template. A template is
consisted of the location and the edge (transition). The location may be labeled with name,
status (initial, urgent, committed), invariant. The edge may be labeled with guard conditions,
synchronized signal, variant or clock updates. Each template must have at most one initial
location. Templates will be instantiated into the process in the system declaration part. All the
processes in the system consists that, is so called the network of the timed automata.
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Using the tree panel on the left of the Figure 2.1, can easily access to the Declarations part,
different template object, the System declaration part. The Declaration parts, contains the dec-
laration of the global invariants, variants, clocks and the synchronized channels. Each template
objects contains, the declaration of the local invariants, variants, clocks, and the channels. It
also has the drawing of the template behavior. The System declaration is the place to instantiate
the template into process, and list and declare all the processes.

Figure 2.2: The snapshot of the UPPAAL simulator

Simulator

The Figure 2.2 is the snapshot of the simulator. It mainly contains five panes, each pane con-
cerns different aspects of the current simulation. The top left pane indicates the possible transi-
tion for next step. The one below it, shows the state transited so far. The middle pane displays
all the value of all the variables and the clock constraints of current state. The one in the top
right, including all the automata, and the current system state by means of turning all the active
locations red. The right bottom pane is the message sequence chart, describing the synchronized
between process so far.

Verifier

The Figure 2.3 is the verifier. The overview panel lists the properties, that need to be checked.
The properties UPPAAL query language. That query language is a subset of the CTL. It con-
tains the state formulae and the path formulae [12]. The state formulae describes whether the
formulae is true at some particular state. The path formulae describes whether the states is true
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for some particular path. The path formulae are used to describe reachability, safety, liveness
properties. The reachability properties asks, whether the specified states are reachable. The
safety is used to detect that, the unexpected state will never occur. And the liveness properties
are detected, when the specified state are required to be eventually reached.

The comment panel is used to explain the meaning of the current selected property, that is
presented in the query panel. The status panel shows the checking status presented by server.
When it is demonstrated to be a satisfied property, it will be marked green, otherwise marked
red.

Figure 2.3: The snapshot of the UPPAAL verifier

2.3 Relativized Timed Input/Output Conformance

The following section presents the notion of relativized Timed Input/Output Conformance[11].
It is obtained from the input/output conformance relation (ioco) of Tretmans[16]. The rel-
ativized conformance makes sure that the implementation behaves exactly according to the
specification, i.e. the following two ways are not allowed:

• produce an output at a time which is not allowed by the specification

• omit to produce an output within certain delay which is required by the specification.

Let an observable timed trace σ with the form σ = d1a1d2a2...dnan where σ ∈ (Act ∪ R≥0)
∗.
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DEFINITION 13. The observable time traces TTr(s) of a state s is defined as:

TTr(s) = {σ ∈ (Act ∪ R≥0)
∗ | s σ⇒}

Like in Figure 2.4 (a), there exists a time trace σ1 = 10 · coin · 20 · req · 20 · weakcoffee, where
σ1 ∈ TTr((L0, 0))

DEFINITION 14. The set of states that can be reached after time trace σ, is defined as s After

σ:

s After σ = {s′ | s σ⇒ s
′}, S

′
After σ =

⋃
s∈S′ s After σ

where s ∈ S, S
′ ⊆ S.

See Figure 2.4 (a), if there exists σ1 = 10 · coin · 20 · req · 20 · weakcoffee such that (L0, 0)
10−→ coin−→ 20−→ req−→ 20−→weakCoffee−→ (L0, 20), we say (L0, 0) After σ1 = {(L0, 20)}. Let’s take σ2

= 10 · coin · 40 · req as another example. Then we can conclude that, (L0, 0) After σ2 =
{(L2, d2), (L3, d3) | 10 < d2 < 30, 30 < d3 < 50}.

DEFINITION 15. The set of observable outputs and delays of a state s or a state set S
′

is:

Out(s) = {α ∈ (Actout ∪ R≥0) | s
α⇒}, Out(S

′
) =

⋃
s∈S′ Out(s)

where s ∈ S, S
′ ⊆ S.

Such as in Figure 2.4 (a), Out((L0, 0)) = {d | d ≥ 0} which means any instance can stay in
location L0 as long as it wants to. Or e.g., Out((L2, 0)) = {a, d | a = WeakCoffee, 10 < d <

30}.

DEFINITION 16. The relativized input/output conformance relation between the systems states
s(∈ S), t(∈ S) in terms of the given environment e(∈ E) is defined as:

s rtiocoe t ⇔ ∀σ ∈ TTr(e): Out((s, e) After σ) ⊆ Out((t, e) After σ)

That is, applying the same environment input action(s) on the system states s, t. If the outputs
from the s is the subset of the outputs from t, then we can have s rtiocoe t. So that, we say, s is
the right implementation concerning the specification t with the environment e .

Figure 2.4 [11] shows three timed automata separately indicating a coffee machine system spec-
ification, mimic user, and its implementation under test. Figure 2.4 (a) is the specification of the
coffee machine system. It allows the user to pay at first, and then decide to get weak coffee or
strong coffee by pressing the request button on the machine. Delaying for less then 30 time units
will undoubtedly get weak coffee, however, delaying for more than 50 time units will certainly
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obtain strong one. But the waiting time units between 30 and 50 results in nondeterministic
choice, which waits for the IUT to decide which one to produce. After requesting, machine
spends an additional time units 10 to 30 in producing weak coffee, or 30 to 50 in producing
strong coffee.

Figure 2.4: Example of rtioco relation

Figure 2.4 (b) defines a potential user of the coffee machine, who pays before requesting coffee
and requests only before 20 time units, and we also assumes that he wants weak coffee. Figure
2.4 (c) is the deterministic implementation according to the value of the (DS, DW). It can output
weak coffee after waiting for less then or equal 40 time units , can output strong one after waiting
for more than 40 time units, both of them need additional brewing time DW and DS.

E.g., IUT (60, 5) is not rtiocoE with S , because the system specification S does not hold the
possible time trace subset indicated by the IUT (60, 5): { d1 · coin · d2 · req · 5 | d1 ≥ 0,
d2 < 30 }, i.e., it may be too fast to product a weak coffee not even having time to insert a
coffee cup. Well, it supposes to have another error, which may be producing strong coffee too
slowly. However, the user E will never request strong coffee, thus we can ignore the value of
DS. Such that, we can modify the pair (DS, DW) to IUT(60, 15), hence, IUT(60, 15) is rtiocoE

with S.

2.4 TRON

As an additional feature of UPPAAL, TRON can do the model-based black-box conformance
testing of the real-time embedded systems. TRON is in the place of the IUT environment with
two main functions: stimulating the IUT with Inputs, meanwhile, monitoring the Outputs to
check whether the result conforms to the system behavior specification.

UPPAAL TRON randomly plays one of the three basic actions: sends an input to the IUT, waits
for an output, restarts the IUT. The algorithm is shown in Algorithm1 [11]. The input for the
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Algorithm 1 Test generation and execution algorithm for TRON
< := {(s0, e0)}
while (< 6= ∅) ∧ (IterationNUM ≤ Max ) do

randomly choose to perform: action, delay, or restart
action:
if ENVoutput(<) 6= ∅ then

randomly choose a ∈ ENVoutput(<)

send a to the IUT

< := < After a

end if
delay:
randomly chooses d ∈ Delay(<)

sleep for d time units and wake up on output o

if o occurs at d
′ ≤ d then

< := < After d
′

if o /∈ IMPoutput(<) then
return fail

else
< := < After o

end if
else
< := < After d

end if
restart:
< := {(s0, e0)}
restart IUT

end while
if < = ∅ then

return fail
else

return pass
end if
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Algorithm 1 is two TIOTS with the form of S ‖ ξ, where S represents the SUT, and ξ is on
behalf of one of the environment. This algorithm is used to maintain the current reachable state
set < (⊆ S × ξ). It represents the current state that, the system specification can cover after the
timed trace has been observed.

The main idea is the following. The test starts from where < only contains the initial states of
the system specifications and its environment assumptions. Whenever an input is produced, an
output or a delay is observed, the state set < will be updated. When an output or a delay is
noted, its validity will be check according to the state set <. These will be done until no legal
state in state set <, or the iteration of the test reaches its maximum number.

The three functions are used in the algorithm:

• ENVoutput(<) = { a ∈ Actin | ∃(s, e) ∈ <.e
a→ }

is the environment input actions for some states in the current state set <. It is empty only
when environment model has no output to offer.

• IMPoutput(<) = { a ∈ Actout | ∃(s, e) ∈ <.s
a→ }

IMPoutput(<) is the output action for some states in the current state set <

• Delay(<) = { d | ∃(s, e) ∈ <.e
d⇒ }

Delay(<) is the set of real numbers, but it is not randomly picked up among the real-
number if the environment must offer an input to IUT model before a specified mo-
ment(invariant).

According to the algorithm 1, one of the three actions shown below will be taken each time by
TRON:

action : randomly choose an output among ENVoutput(<), send it to IUT, and update < ac-
cording to < After a

delay : randomly choose how long it should spend in waiting the output. If an output from
IUT occurs less then the chosen time, and < is updated according to the cost time. Then
it checks whether the output is legal according to IMPoutput(<). If it is, < will be
modified following the instruction < After o, otherwise, announces the fail verdict.

If during the chosen time, no output is observed, < is updates according to the total
amount of this chosen time.

restart : initialize the state set <, and restart IUT.
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2.5 Testing setup

Based on the theory we used, the testing framework is setup. The complete setup consists of
three parts, the TRON, the Adapter and the IUT (represents the "Implementation under test"),
as shown in Figure 2.5.

Figure 2.5: Testing using TRON

According to the relativized conformance testing theory, in UPPAAL, the model is specified
into two disjunct parts, which is mentioned above, the system specification and the environment
assumption part are synchronized with each other through channels which are declared in both
parts. The model is executed using TRON, in order to get the "event by event" test cases.

The Adapter is an IUT specific hardware/software element that plays the role of a translator, to
translate the abstract inputs into IUT recognizable inputs, and physical IUT’s outputs into the
SUT outputs.

And the IUT as shown in Figure 2.5, is considered as a black-box. This means that only input-
s/outputs are deemed visible, and not the inner states.

Based on the theory used for our testing, the model of the environment assumption executes to
offer an input, which will then be translated to an IUT input through Adapter. The Adapter will
interpret the result offered by IUT into an TRON understandable output. Then the validity for
the output being an legal output for the model of the system specification will be judged.

2.6 Case study of the Dimmer(smart lamp)

In order to have a good foundation for performing our industrial testing, we do a small case
study of the smartlamp with UPPAAL TRON. The smartlamp example is proposed by the UP-
PAAL TRON group[17]. They have already interpreted the specification of the smartlamp sys-
tem into UPPAAL model, called light controller. That model is considered as the SUT for this
case study. They also offer the IUT for the testing, as well as the adapter. Both are written in
JAVA.
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Figure 2.6: The complete testing setup of the smartlamp

Then we explain on explaining the SUT (in UPPAAL) and the IUT (in JAVA), with intention
to have good understanding of the smartlamp system. The explanations are presented in the
following sections. After that we apply the SUT on the testing tool TRON with its IUT, to
perform the model-based online testing. We also create several mutants in the IUT, in order to
prove that, TRON has the ability to detect the incongruent implementation in terms of the its
system specification(SUT). This case study helps us to understand the rtioco relation, as well as
the process of the model-based online testing using UPPAAL TRON.

2.6.1 Testing purpose & Testing setup

The smartlamp system is indeed a dimmer system. It is responsible for adjusting the brightness
of the lamp. Its actions are conducted by the user. The user can turn on/off the lamp by quickly
grasping/releasing the switch. If the lamp is in its On (Off) state, by holding the switch for
certain among of time, its brightness will be increased (decreased) one level by one level until
the brightest (darkest) level is reached. Then the brightness is adjusted in opposite direction. As
it is mentioned that, the smartlamp is modeled in UPPAAL, and the light controller implemen-
tation is written using JAVA. The model-based online testing of the smartlamp using TRON is
applied, checking whether the JAVA IUT conforms to the smartlamp specification.
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Figure 2.7: Signal Traveling

The complete testing setup is established, as shown in Figure2.6. In UPPAAL, the environment
assumption and the system specification are modeled separately, as it is shown by the "Environ-
ment" part and "SUT" (system under test) part in Figure2.6. The abstract behavior models in
these two parts commnicate through the grasp/release ∈ Actin and level ∈ Actout.

The Implementation (IUT) part is written in java code, mimicing the developed IUT. It in-
teracts with its real environment RealENV, which is a real smartlamp. The user controls the
level(status) of the smartlamp through java GUI. The RealENV and the IUT parts communicate
with each other by means of the input signal grasp/release and the output signal level.

In order to "event by event" generate test cases, the UPPAAL models will then be executed using
TRON. Each time only one test case will be translated to IUT through the Socket Adapter,
it acts as an input for the IUT. Then the output of executing the input in the IUT will go
through the Adapter reversely, as an "input" for TRON. And this "input" will be compared to
the specification to determine its pass(allowed) or not.

Figure 2.7 shows the data stream of the testing setup. The UPPAAL model contains the system
specification and the environment assumption. The model will then be applied in TRON to
generate input signal for testing IUT. After the input signals are produced by TRON, it will be
reported by the Reporter component to Adapter. Adapter will translate these signals into IUT
understandable signal. When IUT sends out its results, Adapter will also interpret them for
TRON, and TRON will get these output signals from Reporter.

2.6.2 Model description

The smartlamp, as well as its user are modeled as a network of the timed automata in UPPAAL.
According to the testing purpose, the model is consisted of two parts: one simulates the envi-
ronment, the other is interpreted from the system specification. This section will describe the
model system template by template.
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Figure 2.8: SampleUser template

Environment

• SimpleUser in Figure2.8(a) is the template simulating the simple user. It denotes grasp/release
to the lamp system SUT through the adapter template with any time tolerance. In
its idle and the busy location, it can receive input signal changeLevel, during this
transition, it updates the value of the level L with new level newLevel.

SampleUser is the template with two parameters (chan &changeLevel, int &newLevel)
shown in Figure 2.8(b) . It is the abstraction of the behavior of the real environment.
It performs grasp/release to the lamp system which is modeled as the SUT, and
that two signal results in changing light level(status) of the lamp. Then it gets the
changeLevel from the inner lamp system to denote the current light level(status) of
the lamp.

It starts from location idle with invariant z <= 2∗delay, it may then receive an input
changeLevel and update the lamp level L and stay in the same location. Otherwise
when local clock z is greater than or equals to the value of the delay, it will enable
the transition grasp which is synchronized with graspAdapter which is one of the
instantiations of the template Adapter in Figure2.12 (a). And SampleUser reaches
its busy location which is only satisfied when z does not exceed 10 ∗ delay. Here, it
can do three actions: it can receive an input action changeLevel, and update the level
L according to the newLevel; when the clock z is greater than or equal 2 ∗ delay,
it will enabled the synchronized channel release and reassign the clock z to 0; or
if level L > 8 and the clock z < delta, the synchronized transition release will be
activated, and clock z will be updated to 0.
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Figure 2.9: Interface template

SUT

Figure 2.9 models the interface between the adapter and the IUT. It accepts the grasp/release
command which is translated by the adapter (in Figure 2.12 (a)) from the user template (see the
Figure2.8). The duration between the arrival of the grasp and the release signal will be used
to decide whether to switch the lamp by activating the switch template (see the Figure 2.10), or
change brightness of the lamp using the dimmer template (see the Figure 2.11).

• The Interface template in Figure 2.9 starts from location idle, when it is grasped means
the synchronized transition grasp is enabled, it sets the local clock x to 0, and reaches
location ignoring with an invariant x <= epsilon + tolerance, which must be satisfied
in order to validate the location. The tolerance here is used to make the Interface can
distinguish among three subsequences. If the release signal arrives less than epsilon +

tolerance mtu, the template will be led to its initial location idle.

Otherwise, if the guard x >= epsilon is satisfied, the transition leads the system to the
location touching will be enabled. Then if the release signal arrives with the local clock
x being observed less than the delta+ tolerance, it will transited to the location touched
with invariant t < tolerance, after issuing touch signal to the Switch template, goes back
to idle.

Otherwise, in location touching, if the guard x >= delta is satisfied, the channel starthold
which is synchronized with Dimmer template in Figure 2.11 will be enabled. And the
system goes to the location holding, and stays there until getting input signal release.
When taking this release transition, it also reset local clock x to 0. Then it arrives at
location named releasing with invariant x < tolerance. By issuing endhold,which is
synchronized with Dimmer template, it goes back to idle.
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Figure 2.10: Switch template

Figure 2.11: Dimmer template

• See Figure 2.10, Switch template is designed to mimic turning on/off the smartlamp.
Its initial location idle. Starting from idle, it can receive an input signal touch. As it
is mentioned, it is synchronized with the template Interface(see the Figure 2.9) by the
channel touch. The Switch may perform two actions according to the variant on. The
on == 1 means, the lamp is currently in its "on" phase. And the transition leading the
system to the location goingOff will be enabled. During that transition, it does some
updates: OL = L, L = 0, on = 0. Then it immediately issues synchronized channel
setLevel, and goes back to the initial location idle.

However, if in idle location, it detects that the on equals 0, which means it is in lamp’s
"off" phase. It will then execute those updates L = OL, on = 1, and goes to the location
goingOn. After this, it enables the synchronized transition setLevel, and goes back to
idle without any delay.

• The Figure 2.11 shows the template named Dimmer, which is used to adjust the bright-
ness of the lamp. It starts from the PassiveUp. When the transition Starthold is enabled,
it does some updates: L = OL which is used to restore the last recorded brightness level
of the lamp, and reset the local clock x, as well as assigns the on with "1". After that
it reaches a committed location, and immediately transit to the location Up through the
synchronized channel setLevel.

In the location Up, it has three choices: if the guard L < Max and x >= delay is
satisfied, it will enable the transition which does increase the current level L using formula
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Figure 2.12: Adapter template

L = L + 1, and resets the local clock x to 0. Then it immediately sends the result
to levelAdapter which is an instance of the IntAdapter in Figure 2.12 (b). However,
if L == Max and x >= delay, then Up will take the transition, leading to location
Dn. Otherwise, when it receives the synchronized signal endhold, it is led to PassiveDn
from location Up, and waits for being synchronized with template Interface through
channel starthold. During the starthold transition, it restores the current level by means
of OL = L, updates clock x to 0, ensures the status of the lamp is "on" through on = 1.
And then, it is led to Dn from the location PassiveDn.

In location Dn, it may go further through three transitions. If the guard L > 0 and x >=

delay is satisfied, it will decrease the bright level of the lamp by means of L = L − 1,
and reassigns 0 to clock x. Then it immediately go through a committed location, and
synchronizes with the levelAdapter template with intention to send out the level of the
lamp to user. If L == 0 and x >= delay is satisfied, it will directly transit from Dn
to the location Up, waiting for being up. In the location Dn, it may also wait for being
synchronized with template Interface through channel endhold, and goes back to the
initial location PassiveUp.

2.6.3 Hints in Adapter Modeling

There are two automata in Figure 2.12(a) and Figure 2.12(b), simulate the function of the
adapter. As it is mentioned in Figure 2.7, the input/output signal travels through several steps in
both sides: TRON decides to offer input; TRON(IUT) sends input(output); Adapter translates
input(output); IUT(TRON) sense input(output).Delay exists in between each steps. The idea of
modeling the adapter is to model the communication latency caused by the signal traveling, and
the scheduling latency caused by OS. The invariant delay in both templates implies the latency.
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2.6.4 IUT

The IUT is written in JAVA. The java program of IUT contains several components(classes),
mainly are light controller, and the socket adapter. The following will explain you some main
components:

1 //−−−−−−−−−some code in the LightController.java−−−−−−−−−−−−
2 class LightController
3 {
4 ...
5 run ()
6 {
7 ...
8 case Idle :
9 try { cond.await () ; }

10 catch ( InterruptedException e) { alive = false ; }
11 break;
12 case Grasped:
13 try { cond.await ( epsilon , TimeUnit.MILLISECONDS); }
14 catch ( InterruptedException e) { alive = false ; }
15 finally {
16 if ( location == Loc.Grasped) location = Loc.Alert ;
17 }
18 break;
19 case Alert :
20 try { cond.await ( delta−epsilon, TimeUnit.MILLISECONDS); }
21 catch ( InterruptedException e) { alive = false ; }
22 finally {
23 if ( location == Loc.Alert ) {
24 location = Loc.Hold;
25 dimmer.handleStartHold( startTime +delta ) ;
26 }
27 }
28 break;
29 case Hold:
30 try { cond.await () ; }
31 catch ( InterruptedException e) { alive = false ; }
32 break;
33 ...
34 }
35 ...
36 }

LightController respectively carries out two basic actions: grasp and release through method
handleGrasp and handleRelease. Those two methods can be called when those two
cases occur: it receives the instruction signal from the mouse through mousePressed and
mouseReleased methods; or when the grasp/release signal is received from the TextFix-
ture, see Figure 2.6.

The LightController is the main component of the IUT. It carries out the same function
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as the interface as shown in Figure 2.9, translating the outer actions to the lamp. Its
run method mainly tried to deal with 4 different states(locations). I.e., it defines the
transferring rule among those LightController locations. When it is in location Idle or
Hold, it can wait as long as it wants. In location Grasped, it can delay for no more than
epsilon time units before being transferred to location Alert. However, after staying in
Alert for less than delta− epsilon, the state is changed to Hold, and it will also call the
handleStartHold method of the class Dimmer.

Dimmer is used to adjust the bright level or status of the lamp by means of transforming
among the four states: UpPassive, UpActive, DnPassive, DnActive. During its life
cycle, it can wait at its UpPassive state until receive start hold signal which leads it to
the UpActive state by means of the method handleStartHold(long startHold). it can
stay at the UpActive for some admitted delay, and it can perform increasing the current
level of the lamp by one through setLevel(level+1), however, if it is already in its highest
level, and should be transformed to DnActive state; when it receives the end hold signal,
it will be in DnPassive state through handleEndHold() method.

37 //−−−−−−−−−−some code in handleTouch() method of Dimmer.java−−−−−−−−−−−−−−−−
38 class Dimmer
39 {
40 ...
41 handleTouch()
42 {
43 ...
44 switch ( lightState ) {
45 case lightOff :
46 setLevel (oldLevel) ;
47 lightState =lightOn;
48 break;
49 case lightOn :
50 oldLevel = level ;
51 setLevel (0) ;
52 lightState = lightOff ;
53 break;
54 }
55 ... }
56 ... }
57

58 //−−−−−−−−−−some code in handleStartHold() method of Dimmer.java−−−−−−−−−−−−−
59 class Dimmer
60 {
61 ...
62 handleStartHold (long startHold )
63 {
64 ...
65 switch
66 ( location ) {
67 case UpPassive:
68 setLevel (oldLevel) ;
69 lightState = lightOn ;
70 location = Loc.UpActive;
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71 cond. signalAll () ;
72 break;
73 case DnPassive:
74 // setLevel ( oldLevel ) ;
75 oldLevel = level ;
76 lightState = lightOn ;
77 location = Loc.DnActive;
78 cond. signalAll () ;
79 break;
80 default :
81 System.out . println ("Dimmer: cannot accept startHold in "+
82 location ) ;
83 }
84 ...}
85 ...}
86

87 //−−−−−−−−−−−−some code in handleEndHold() method of Dimmer.java−−−−−−
88 class Dimmer
89 {
90 ...
91 handleEndHold()
92 {
93 ...
94 switch( location ){
95 case UpActive:
96 location = Loc.DnPassive;
97 cond. signalAll () ;
98 break;
99 case DnActive:

100 location = Loc.UpPassive;
101 cond. signalAll () ;
102 break;
103 default :
104 System.out . println ("Dimmer: cannot accept endHold in "+location);
105 }
106 ...}
107 ...}

When in the state DnPassive, it can wait as long as it wants until getting start hold
again, which will activate it to go to the DnActive state. It can remain in the DnActive
within the permitted delay. In contrast to the UpActive state, this time setLevel(level-1)
is called, it means to decrease the level of the lamp by one. But when the level is equal 0,
the state will be changed to UpActive. Otherwise, if it is issued end hold, the state will
be modified to UpPassive by means of the method handleEndHold().

LevelListener is an interface with intention to react to the change of the level according to
the Dimmer. The LevelBar, LevelHistory, LevelLamp are three classes implements
LevelListener.

LevelBar is used to intuitively demonstrate the current level of the lamp. As it is shown
in the Figure2.13, the graph of the level bar is consisted of 10 small rectangles with
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Figure 2.13: the GUI of the lamp

background color darkGray by means of the method setColor(Color.darkGray).
From the bottom of the bar, the number of the rectangle being turned to yellow
corresponds to the level of the lamp.

LevelLamp shown in Figure2.13, works with the same goal as the LeveBar. The color
of the bulb will be changed in terms of the level of the lamp. The color of each level
is calculated by means of the method Color(float a, float b, float c).

LevelHistory tries to clarify how was the lamp level going on. The current level of the
lamp is represented through drawLine(int x1, int y1, int x2, int y2) with different
value of the parameters. The difference between LevelHistory and the other two
level graphical tools mentioned before, is that LevelHistory stores the trace of the
level.

TestFixture does the basic configuration for the test. It instantiates the basic input/output in-
terface through configure(Reporter reporter) method.

Adapter and Reporter The Adapter provides an interface to IUT for the tester. It contains
two methods configure() and the perform(). Method configure() is called by Reporter
when the connection with the TRON is set up. During this method, it will configure the
input/output interface through those methods: addInput(), addOutput(), addVarToIn-
put() addVarToOutput(), setTimeUnit(), setTimeOut(). And when it receives an input
from the tester it will call method perform().

Reporter maintains one connection to tester. It receives the inputs and applies them to
the Adapter, or it reports the outputs from the IUT to TRON. Every connections goes
through two phases: initialization and testing activation. As it is mentioned, during the
initialization, it will configure the input/output interface by optionally calling the follow-
ing methods:

addInput() is used to adds the input channel to the testing interface, and returns a positive
channel ID; addOutput() is used to add the output channel to the testing interface, and
returns ID of the channel; addVarToInput() is to bind a model variable to the specified
input channel, the value of the variable is attached as parameters to an input action on
that channel; addVarToOutput() binds a model variable to the specified output channel,
the value of the variable is attached as parameters to an output action on that channel;
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Figure 2.14: Error detection capability

setTimeOut() sets the total amount of time units used for testing; setTimeUnit() sets
the length of the model time units in the real world time units . Because the nature
requirement of TRON, time units and the time out need to be set.

2.6.5 Experiments

This section presents the results of a small experiment using IUT. The purpose of this experi-
ment is to demonstrate the feasibility of TRON in terms of the error detection capability.

In this experiment, we choose SimpleUser in Figure 2.8(b) as the environment model. And we
also have created a number of inaccurate mutations(M1...7, where M1, M2 are given by the
developer) based on the assumed correct implementation(M0).

M1 : After touch the level is still 0 (instead for recover the old level).

M2 : When transferring from DnActive to UpActive, the extra delay (DoDelay) is allowed
(instead of forbidden).

M3 : When being issued EndHold in location UpActive, it will transfer to UpPassive (instead
of DnPassive).

M4 : The initial location for the Dimmer is DnPassive (instead of UpPassive).

M5 : After startHold, the state is transferred from UpPassive to DnActive directly (instead of
going through the location UpActive).

M6 : After StartHold, the state is transferred from DnPassive to UpActive directly (instead of
going through the location UpActive).

M7 : After being issued EndHold in location DnActive, it will transfer to DnPassive (instead
of UnPassive).
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The experiments uses simulated clock progressing. Each mutant is tested 10 times with 1000000mtu
as its upper bound of the time limit. It supposes that all running with M1...7 fail, all running
with M0 pass. The results are presented in Figure2.14.

The experiments show that the mutants with error assumptions can be detected very fast. It
used less than 250 input actions and less than 30000mtu. However, results of executing with
M0 were unexpected. A few of the executions with M0 fail with unknown reasons. But the
developer does not find the same problem, when performing the same experiment under the
Linux OS.
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Chapter 3Case study: the
feeding system

3.1 System Overview

We will do a case study with the SKOV feeding system(Viper). Briefly speaking, the main task
of this case study is to apply the Model-based online testing technique on the Viper testing.
Based on the product specification[18] and its executable software from SKOV, we will model
the Viper system using UPPAAL.

The subsections are organized as follows. First, we sketch out the overall process of the Viper
system. And we will also briefly present the overall structure of the expected model for the
system. After that, we will start describing the modeling detail. We use three independent
chapters to present three sub-models regarding three main functions of the feeding system.
Each chapter for each sub-model includes not only the overview and the structure of each model
system, but also the UPPAAL modeling process, the model checking, and manual testing for
each sub-system, and some discussions.

3.2 System functionality decomposition

The complete process of the Viper feeding system is shown in Figure 3.1. When the feed bin in
the livestock buildings indicates not enough food, this product is applied to automaticaly control
the feeding of the animal in the livestock buildings. As it is mentioned, Viper carries out this
function by means of correctly activating the feed storage and the transport system.

Figure 3.1 shows the abstract feeding process, in the case of two vipers sharing one Dol99B. It is
mainly consisted of the Dol99B(Figure 3.1, no.1), Silo Auger(Figure 3.1, no. 2), distribution
shutter(Figure 3.1, no. 3), and the feed bin(Figure 3.1, no.4,5), Dol7, and the Vipers marked
1,2 respectively. Figure 3.3 shows the realization of the part1 in Figure 3.1

Complete process It is shown in Figure 3.1. When there is feed demand in either feed bin
(Figure 3.1 no.4, 5), it will send the demand feed signal to its viper. The two vipers notify
the feed demand to each other through the resistor, called Dol7. And one of the viper is
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Figure 3.1: Workflow of the Viper Feeding System

decided to be the controlling viper. If there is feed demand in either bin, the controller will
activate the silo auger (Figure 3.1 no. 2) with intention to push food into the drum(inside
the Dol99B).

Using its weighing function(see section 3.2.2), the controller conduct the Dol99B to
weigh the acceptable amount of feed for the drum each time. When the drum reaches
that desired amount, the silo augers will be stopped. Then Viper stimulates the drum.
Drum rolls, transporting the feed to the feed bin who requires the feed using distribution
shutter.

Silo Auger It is shown in Figure 3.1 no. 2. It is used to transport the feed. Two silo augers will
be used, in the case of two vipers sharing the Dol99B. The silo auger1(2) will be started,
when the controller fulfills the feed demand from the Viper1(2). And the feed will be
transported into the drum in the Dol99B. It will not be stopped until the drum reaches its
desired amount of weight.

Dol99B The actual Dol99B(Figure 3.1 no.1) system is shown in Figure 3.2. The chief com-
ponents in Dol99B are weighing drum(Figure 3.2 no. 5), stop plate(Figure 3.2 no.8),
distribution shutter(Figure 3.2 no.12). When it is stimulated by the controlling viper,
the drum will start to weigh the demand feed(see section 3.2.2). When the desired weight
has been transported into the drum, it starts rotating to empty it. Stop plate will be sensed
by the sensor above the drum (Figure 3.4). The arrival of the stop plate indicates, the
drum is emptied. The feed in the drum has been sent to the bin by means of the distribu-
tion shutter.

• Roll Drum (or weighing drum, in Figure 3.2 no.5 ) is a container inside the Dol99B(Figure
3.1, no.1). It has a top plate(Figure 3.4) on the interface of it. The sensor on top of
the drum is used to sense the position of the top plate. Drum may be in its top plate
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Figure 3.2: The Dol99B component [18]

or rotating. When the top plate is precisely under the sensor, sensor presents the
highest signal than the top plate in any other place.

When in the top position, the drum is expected to be empty until being filled by the
feed from the silo auger. After the desire amount of feed is pushed into the drum, it
will be activated by Viper, and start to rotate one cycle. During that first half cycle,
the position of top plate is from top place to the bottom place where the sensor can
not feel it at all, so that the high to low signal will be indicated by the inductive
signal. Then top plate will be from the bottom with the lowest sensor signal to the
top position with the highest signal again, inductive signal will also indicate the
low to high state. With this cycle, the drum will be empty again.

In order to perform the weighing correctly, the user must order the calibrate of the
drum periodically. The weighing and the reference signals(see Figure 3.4 Vweigh
and Vref) are used to calculated the current weight of the drum. Those two signals
can be sensed by the spring sensor in Figure 3.4. Until one weigh signal above
5 volt is stable for 10 seconds, both the weigh signal and reference signal will be
recorded, and the maximum weight will be calculated. The weighing signal and
the reference signal will be checked, unless the first one weigh signal below 3 volt
is found, then it will recorded (together with the reference signal) to calculated the
minimum weight. The deviation of the maximum and the minimum weight will be
regarded as the result of the calibration.

Feed bin It is also called vessel(see Figure3.3 no.6), shown in Figure 3.3 no.6. Each feed bin
is responsible for one livestock building. The feed will transported to the animals from
the feed bin. The amount of the feed in the bin is checked by the Viper.

Dol7 It is shown in Figure 3.1. It is the device control the communication between two Vipers.
If one of the vipers has feed demand, the demand signal will be sent to the Dol7. It
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Figure 3.3: Feeding system controlled by Viper [18]

Figure 3.4: The drum component

helps to notify another viper about this demand, and also validate the holding status of
the ownership of the shutter.

Viper It is used to conduct the actual feeding action of the Dol99B. Each Viper corresponds
to one feed bin or vessel (see Figure 3.3 no. 6). In the case of two vipers sharing the
Dol99B, one of them will be determined to be the controller. It controls the feeding
system to perform the feed demand function(see the section 3.2.1), weighing function
(see the section 3.2.2), and the calibration function (see the section 3.2.3).

3.2.1 Demand feed function

When two vipers share the Dol99B as it is shown in Figure 3.1, the sharing is controlled by the
controlling viper. We assume that the Viper1 is the controller, the Viper2 is the not controlling
viper. The controlling viper is responsible for the distribution of the ownership of the shutter,
and adjust the shutter to its owner. The two vipers communicate with each other through the
resistor Dol7(see Figure 3.1).
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If either viper has the feed demand, it will try to ask the Viper1 for the ownership of the shutter,
and notify the other viper of the feed demand using the Dol7. There are three level of voltage
in the Dol7 represents whether the holding ownership is legal or not. The initial voltage of the
DOL7 must be less than 2 v, indicating that neither vipers holding the ownership. If it keeps
staying in 5 v at least 10 sec, means that only one of the vipers gets the ownership of the shutter
successfully. That is the legal status. Otherwise, if it is measured 6.7 v, means two vipers get
the ownership simultaneously. Then, both of them needs to release the ownership.

After one of the vipers gains the ownership successfully, the Viper1 will control to distribute
the shutter to its owner. Then, the Viper1 will also checks for validity of the position. That is,
if the shutter can not reach the position of the one holding the ownership, the shutter alarm will
be generated.

3.2.2 Weighing function

Figure 3.5: The weighing process

The Weighing function of Dol99B is used to control weighing request amount to satisfy the
feed demand. The complete process for carrying out the Weighing function is shown in Figure
3.5.

There are two kinds of feeding: destination feeding and the Ad Libitum (Ad) Feeding. When
Ad feeding is chosen, it will satisfy the feed bin with one fill amount(fill size or one portion)
whenever there is a feed demand. If the destination feeding is chosen, it can not directly weigh
the amount for the feed bin. It may need one or more weighing cycles, which mainly depend
on the feed demand amount. The destination feeding will follow the below strategy.

If the feed demand is below one fill size, it will directly weigh the demand for the feed bin by
means of the sub-process called OneWeighing_Rest(see following description "OneWeigh-
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ing"). If the feed demand is above the 2 times of the fill size, it will first call OneWeigh-
ing_Sub to fulfill the one fill size amount. So the rest of the demand will be the former total
feed demand minus the one fill size. Otherwise, if the feed demand is between one portion and
two portions, it will OneWeighing_Half the half of the demand. The rest should be another
half of the demand. So forth, until the former total demand is satisfied. And it starts to wait for
another feed demand.

• OneWeighing

Figure 3.6: One sub weighing process

Figure 3.6 shows sub-process of the Weighing named OneWeighing. Each time, when
this function is activated, it will first check the position of the drum(Figure 3.4). If
the sensor can not feel the top plate, it will start to rotate the drum(see the description
"RollDrum"). Otherwise, further steps can be carried out.

First, the volt to decide when the sub-weighing should be finished, which is so called stop
volt, will be calculated. And the silo auger will be starts. If the silo auger is running for
more than 5 minutes, it will active the alarm NoFeedInSilo alarm and the silo auger is
stopped as well. Otherwise, it waits until the silo finishing the feed transporting. Then
the weight of the feed will be calculated, and the drum will rolled

• RollDrum

RollDrum function is used to transport the weighted feed to the feed bin. Its workflow is
shown in Figure 3.7. At first, it checks whether the roll is allowed or not, which means if
the shutter is not in the desired position, it will be waited. As long as the drum is allowed
to be rolled, the drum motor will be started.

If the drum is started within the required time(time out does not happen), the inductive
signal will be checked. If the signal indicates from low to high, means the drum is
rolling(see Figure 3.4). Until the signal is stable, the drum will be stopped, and the
RollDrum is stopped as well.
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Figure 3.7: Drum roll process

3.2.3 Calibration function

Calibration is used to gain the exact value of the fill size of the drum. It can not be carried out
simultaneously with the weighing function. The main process is shown in Figure 3.8. When
Dol99B receives the calibration requirement from the user, it checks the position of the top
plate in the drum(see Figure 3.4) . If the plate can not be sensed by the sensor, the drum will
be rolled.

As soon as the top plate can be felt, the process called "weigh with weight" is started, the
maximum weight of the drum will be calculated. Each time when the weight signal which is
bigger than 5 volt is sensed, and lasts for 10 seconds, both the weight signal and the reference
signal(see Figure 3.4 Vweigh and Vref) will be saved. When it gets a minimum value and the
weight signal is below 5 volt, it will start to weigh without weight(weighing with no weight).
That is the weight signal is checked. If Weight signals below 5 volt and lasts 10 seconds, the
weight signal and the reference signal will be saved. Once a value below 3 volt is gained, the
calibration value will be started to calculated. And the deviation to the old calibration value will
also be calculated.

3.3 System structure

Based on the testing purpose of checking the correctly execution of the viper, and the testing
tool that we will use, we plan to separate and model the components of the feeding system into
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Figure 3.8: Calibration process

the system under test(SUT) part and the Enviroment(ENV) part. Figure 3.9 is the overview
of the the main components and the communications between them. They are abstracted from
the specification of the viper.

As is shown in Figure 3.9, Viper1 is the controlling viper, and it is in the SUT(system under test)
during the modeling and the testing. Other main components belongs to the ENV(environment)
part. The controlling viper will receive the "calibrate" requirement from the User object.
Viper1 can also communicate with the Viper2 about the feed demand. Controlling viper Viper1
is responsible for the "start" of the Dol99B, SiloAuger, Drum, Dol7. And after they finish their
task, they will send Viper1 the "stop" signal.

Figure 3.9: The overall cooperation between components

The real model is consisted of 3 sub-models according to its specified three main functions.
Each sub-model is modeled into the ENV and the SUT parts. The structure and the detail
explanation for each sub-model will be presented in later chapters.
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3.4 Emulate Labview system

The feeding system in UPPAAL will later be used to perform the manually testing with the
implementation(IUT). The IUT is a small executable emulate feeding system named Dub99. It
is produced using LabView. The following section will show you the main components of the
Dub99, that are considered useful for the manual testing.

Dol99B

Figure 3.10: The Dol99B component

Figure 3.10 displays the components inside the Dol99B. They are POS, drum, Motor, Weight,
Ref Volt box. The big rotundity outside the POS box represents the drum, the small rotundity
inside the big one is the top plate of the drum. The moving of the small rotundity represents
the rotating of the drum. The position of the top plate in Figure 3.10, indicates the drum is in
its top position. The drum is started when the drum Motor is on. The dark green of the Motor
in Figure 3.10, indicates the off status of the Motor. And the current weight and the reference
voltage will be presented in the Weight and the Ref Volt boxes respectively.

Silo auger

Figure 3.11: The silo auger component
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Figure 3.11 are the silo auger1 and the silo auger2. The feed for the Viper1(2) comes from the
silo auger1(2). Either auger starts importing the feed, its color box will be turned from the dark
green to (light) green. The AfterRun box displays the default times, that the silo auger may be
activated during the Max use time (see Figure 3.16, Max Use Time IM box).

Dol7

Figure 3.12: The Dol7 component

The Dol7 is the resistor in the IUT, it has three color boxes. They are box1, box2, Out Volt
box. The box1(2) represents the ownership holding status of viper1(2). I.e. if either viper gains
the shutter ownership, its box will be turned green, otherwise, it is dark(see the current status
in Figure 3.12). The Out Volt may show three level of the voltage. The initial value is "0". If
one of the viper box turn green, the voltage box will display "5". If both of the viper boxes are
green, the voltage will be "6.66666".

Flap(shutter)

Figure 3.13: The flap(shutter) component

The Flap box in Figure 3.13, indicates the position of the shutter. If the blue pointer direct to
the region from "0" to "1", the shutter is in the position of the Viper1. If it points to the "9"
to "10" region, it is in the position of the Viper2. Otherwise, the shutter is moving between
between two vipers.

Feed bin

Figure 3.14 shows the feed bin components. The light box indicates that there is feed demand
in the viper. If the bin is filled, that color box will turn to dark green. The FeedOutRate boxes
display the speed that, the feed is transited from the feed bins to the livestock buildings. And
the "up" and "down" of the Feed_Demand bars represents that, there is feed demand or no feed
demand respectively.
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Figure 3.14: The feed bin component

Alarm

Figure 3.15: The alarm component

The alarm system contains many sub-components. Each alarm in it represents one specific
error with regard to its expected status. E.g., the FlapPosAlarm box represents the alarm that,
monitoring the flap(shutter) position. It is expected that, when the ownership of the shutter
is determined, then the shutter can move to the position of its owner with certain amount of
time(50 is set in the Dub99). Otherwise, that alarm will be activated. The color box State will
be turned red from dark green.
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Vipers

Figure 3.16: The Viper1 and the Viper2 components

The vipers are shown in Figure 3.16. The master box of the Viper1 is clicked, meaning the
Viper1 is the controlling viper. That conforms to our model systems. And the sub-components
in the vipers, are the system items required to be controlled. E.g., the KeepTime box is respon-
sible for monitoring the viper who holds the ownership of the shutter. That is conforms to the
specification [18] that, the owner of the shutter can not keep the ownership more than certain
time.

3.5 Summary

In this chapter, we introduce you the overview of the SKOV feeding system, as well as the
system structure. Then we decompose the system into three sub-systems according to its three
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main functions. In the later chapters, the UPPAAL models will be established based on those
three functionalities respectively. And we also explain the emulate feeding system(Dub99)
established in LabView. That, not only helps us to capture the behavior of the feeding system
specification, but also will be used as the emulate IUT for our testing purpose.
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4.1 Model purpose and structure

When building the model, one of the requirements is to satisfy the control and communication
between two Vipers (Viper1 and Viper2) that are sharing the same Dol99B. So the control
and communication include granting the ownership of the shutter to the viper who has the feed
demand and adjusting the shutter to the position of its owner. Another purpose of the control
and communication is to check whether the shutter position is in its owner, if it is not, it will
generate an alarm.

In our system we assume that Viper1 is the controlling viper. Viper2 is the not controlling
viper. The model1 system contains 6 templates. They are displayed in Figure 4.2, 4.3, 4.4, 4.5,
4.6, 4.7 respectively. Either Viper1(see Figure 4.4) or Viper2(see Figure 4.5) has feed demand,
it will inform the other one through the resistor Dol7 in Figure 4.3. The resistor will active
the control function of the Viper1. It is responsible for granting the ownership of the shutter,
and distributing the shutter to the position of its owner. The Viper1 is also used to check if the
shutter position matches with the owner of the shutter. If shutter is in the position of its owner,
it will pass. Otherwise, the system will generate an alarm.

Figure 4.1 shows the structure of the model1. It contains the ENV(environment) part and the
SUT(system under test) part. The ENV contains 5 components, and the SUT only has the
Viper1 in it. The whole model1 system is consisted of 12 discrete integer variables and 16
channels. In Figure 4.1, the main templates and input/output signals of the model1 are drawn.
The functions of each channels are listed as following:

Bin1Demand/Bin2Demand When Bin1(Bin2) has feed demand, the feed demand template
will issue Bin1Demand(Bin2Demand) signal to the Viper1(Viper2) indicating that feed
demand.

Viper1(2)Demand/Viper1(2)Request When Viper1(Viper2) senses the feed demand from
the Bin1(Bin2), it will send the input signal Viper1Demand(Viper2Demand) to the
resistor Dol7. And the Dol7 outputs the Viper1Request(Viper2Request) to inform the
Viper2 and the Viper1 respectively that there is feed demand from another viper. As it is
mentioned, those two vipers will communicate through Dol7 [18].

On(Off)/ReleaseOwnership The Dol7 will react to the demand from the vipers by displaying
different levels of the voltage. When it reach to the middle amount(legal voltage), it issues
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Figure 4.1: Structure of the model1

the On signal to active the controlling Viper1 to distribute the shutter to the position of
its ownership. Otherwise, if the voltage of the Dol7 is illegal, it will notify the Viper1 by
the Off signal.

After doing the requiring internal action, the Viper1 will enable the ReleaseOwnership
to notify the Dol7 the ownership of the shutter being released.

DistributeShutter When the ownership of the shutter is legal(according to the voltage of the
Dol7), the controller Viper1 will issues the DistributeShutter for adjusting the position
of the shutter to its owner.

CheckPosition The controller Viper1 has the responsibility to check for the validity of the
shutter position("validity" means the ownership of the shutter matches with its position).
The checking is done by controller out-putting the requiring signal CheckPosition to the
shutter component(template).

ActiveAlarm If the real shutter position can not be matched with the ownership of the shutter,
the controller will active an alarm by means of stimulating the Alarm template.

4.2 Model description

4.2.1 The feed demand template

The feed demand template in Figure4.2 is used to nondeterministically create the feed demand
in either Vipers. From its idle location, it have two choices to go further. It does the selection
by nondeterministically choosing one way to go. In other words, it can either choose to go
through the channel leading from idle to vip1, or the channel from idle to vip2.
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Figure 4.2: The Feed Demand template

If the former(latter) one is chosen, it performs checking the demand of Bin1(Bin2). During the
transition from idle location to vip1(vip2) location, it nondeterministically assigns a boolean
value to the variant env_Demand1 (env_Demand2). If the env_Demand1 (env_Demand2)
equals "1", the synchronized channel labeled Bin1Demand (Bin2Demand) will be enabled
immediately, synchronizing with the Viper1(see Figure 4.4) and the Viper2(see Figure 4.5)
respectively.

Otherwise, if the env_Demand1 (env_Demand2) equals "0", it will directly go back to the
location idle from vip1(vip2) without any action and delay.

4.2.2 The Dol7 template

Figure 4.3: The Dol7 template

Figure 4.3 shows the resistor named Dol7. It is the communication tool between Viper1 and
Viper2. Whenever there is feed demand in either vipers, or ownership of the shutter is assigned
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to either one, they will notify each other through Dol7. This Dol7 template uses the Low, Mid1
(Mid2), High states to correspond with three level voltages: < 2v, 5v, 6.7v in the real resistor
Dol7. The Low state, is the initial state, representing the ownership is free. The Mid1 (Mid2)
states, there is only Viper2 (Viper1) holds the ownership of the shutter. Whereas, the High
is the illegal state, representing two vipers hold the ownership of the shutter at the same time.
That will then lead to force two vipers to release the ownership.

The Dol7 template starts from the location Low. It starts when it received synchronized signal
Viper1Demand (Viper2Demand) from the Viper1 and the Viper2. If it receives Viper1Demand
(Viper2Demand) when it is in the Low location, it will be led to an committed location
with label "C". During the transition Viper1Demand, the value of sut_Viper1Own will be
passed to the environment by means of the "env_Viper1Own = sut_Viper1Own". The demand
from the Viper1 (Viper2) will be notified the Viper2 (Viper1) using synchronized channel
Viper1Request (Viper2Request)(see Figure 4.5, 4.4) without any delay. The Viper1Request
leads the template to the location Mid2, whereas the Viper2Request leads the system to the
location Viper2RequestOwner. When in that location, it may pass value of a SUT variable
sut_Viper2Own to the ENV part by means of signal Ownership2. After the transition labeled
with Ownership2, the templates also moves on to the location Mid1.

In Mid2(Mid1), it can accept any demand from Viper1(Viper2) through the synchronized
channel Viper1Demand (Viper2Demand), and follow the same action as the description in
the last paragraph. It can also asking the Viper1 to control the distribution of the position of the
shutter through the synchronized channel On. And it is transited to the location controlling. It
stays in that location, until receiving the synchronized channel ReleaseOwnership from Viper1
indicating that the control is done. During the ReleaseOwnership transition, 4 variables will
be reset: env_Viper1Own, sut_Viper1Own, env_Viper2Own, sut_Viper2Own.

But when it gets the signal Viper2Demand(Viper1Demand) in location Mid2(Mid1) , it
will immediately inform Viper1(Viper2) using two ways respectively: Viper2Demand →
Viper2Request → Ownership2, and Viper1Demand → Viper1Request. Going through ei-
ther of the two ways, it will transit to the High location. In that location, without any delay, it
will ask the Viper1 to release the shutter ownership of the both Vipers using the synchronized
channel Off, and move to the location controlling. Unless getting the reaction from the Viper1,
the transition ReleaseOwnership will be enabled, and the 4 variables: the env_Viper1Own,
the sut_Viper1Own, the env_Viper2Own and the sut_Viper2Own will be reset as well. The
system goes back to the initial location Low.

4.2.3 The Viper1 template

The Viper1(see Figure 4.4) template acts as the controlling viper. It is not only responsible for
distributing the ownership of the shutter, but also controlling the shutter moving to its owner.
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Figure 4.4: The controller Viper1 template

In its initial location idle, it may receive the signal Bin1Demand, the feed demand of the Bin1
from the ENV part will be passed to it by means of assignment "sut_Demand1 = env_Demand1".
During the transition Bin1Demand, the controller Viper1 grants the ownership of the shutter
to itself as well. After that, it immediately inform the Dol7 (see Figure4.3) about those updates
by means of issuing the channel Viper1Demand.

In the location idle, if the Viper1 gets the signal Viper2Request from the Dol7, the demand
from the Viper2 will be notified by using "sut_Demand2 = env_Demand2". And it assigns the
ownership of the shutter to the Viper2 (sut_Viper2Own = 1) during that transition as well. With-
out any delay, it enables the synchronized channel Ownership2 to broadcast that the Viper2
gains the ownership of the shutter.

However, it is activated by the signal On when in the initial location idle, it starts the process
of adjusting the position of the shutter according to the ownership of the shutter. After the
transition On, it issues the synchronized channel DistributeShutter as soon as possible, and
arrives the location ShuSetting. Until the Shutter template in Figure 4.6 returns the current
position of the shutter through the synchronized channel ShutterPos, the Viper1 immediately
enables an action CheckPosition asking the Shutter template to check the validity of the shutter
position compared to the its ownership. The Shutter template will return the Viper1 about the
result of the comparison through the synchronized channel CheckDone using "sut_match =
env_match". If sut_match == 1, meaning the shutter position is in the owner of the shutter,
the transition will be led to the location controldone. As soon as arriving that location, it
will immediately enabled the synchronized channel ReleaseOwnership to inform the Dol7 the
releasing of the ownership, and goes back to the location idle.

Otherwise, if it is not matched(sut_match == 0), it will active the alarm by sending syn-
chronized input signal ActiveAlarm to the Alarm object in Figure 4.7, and go to the location
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Alarming without any delay. Until it receives the AlarmDone signal from the Alarm template,
and goes back to the location controldone. As soon as possible, it issues the signal Release-
Ownership to notify the Dol7 the releasing of the ownership, and moves back to the location
idle.

The Viper1 may also react to the signal Off when in the location idle. As soon as the Off
arrives, the Viper1 will issue the channel ReleaseOwnership, and then move back to the initial
location idle.

4.2.4 The Viper2 template

The Viper2 template in Figure 4.5 is modeled with respect to the real Viper2. It reacts to the
feed demand from Bin2 by means of asking the controller Viper1 for the ownership of the
shutter. It is also informed of the demand of the Viper1.

In the idle location of the Viper2 template (see Figure 4.5), if it senses the feed demand in the
Bin2 by the signal Bin2Demand, it will notify the Dol7 through the signal Viper2Demand as
soon as possible.

When in the initial location idle, the Viper2 may also get the notification Viper1Request from
the Dol7 about the feed demand of the Viper1.

Figure 4.5: The Viper2 template

4.2.5 The shutter template

The Shutter template in Figure 4.6 is used to move the shutter to its expected position according
to the command from the Viper1, and returns the current position to the Viper1 as well.It can be
activated by the synchronized channel DistributeShutter. During that synchronized transition,
it distributes the shutter to the nondeterministically chosen position by means of assigning either
"0" or "1" to the variant env_ShutterPosition. Then it is immediately passed to the controller
Viper1 using the synchronized signal ShutterPos (see Figure 4.4).

However, if the Shutter template receives the signal CheckPosition, it will also be activated
and led to a committed location labeled with "C". During that transition, it checks the validity of
the shutter position compared to its ownership using the function Check(env_ShutterPosition,
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env_Viper1Own), and stores the result in the env_match. After doing that, it will immediately
issue the signal CheckDone to inform the controller Viper1.

Figure 4.6: The Shutter template

4.2.6 The alarm template

Figure 4.7: The Alarm template

The Alarm object in Figure 4.7 is very simple. It only reacts to the synchronized signal Ac-
tiveAlarm, and then notify the completeness to the Viper1 by the synchronized channel Alar-
mDone immediately.

4.3 Model checking

As it will later be applied to the on-line testing in Tron, it is necessary that the important prop-
erties of the model are satisfied according to the system specification. The following we list the
properties having been proved.

• The most important properties is to demonstrate that the model is deadlock free. That
property can be written in the formal way, "A[]not deadlock". We apply this property for
this sub-model in the Uppaal verifier, and it is verified the satisfied property.

• The query "A[]Dol7.Low imply (env_Viper1Own == 0 && env_Viper2Own == 0)" is a
safety property. It states that, whenever the template Dol7 in its Low state, indicating
neither the Viper1 nor the Viper2 holds the ownership of the shutter.

• The query "A<>sut_Demand1 == 1 imply sut_Viper1Own == 1 ", indicates whenever
the Viper1 has the feed demand, it eventually gets the ownership of the shutter. The
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same property that the Viper2 holds, can be written "A<>sut_Demand2 == 1 imply
sut_Viper2Own == 1".

• The liveness property "Dol7.High −− > (env_Viper1Own == 1 && env_Viper2Own ==
1)" is demonstrated. It states that, the High location (of the Dol7 template) is representing
two vipers holding the ownership of the shutter simultaneously.

• The satisfied property "A[]Viper1.Alarming imply sut_match == 0" means the statement
that, the alarm is generated because of the not match of the shutter owner and its actual
position, is always true.

Figure 4.8: The MSC of the 1st test case for the model1

4.4 Manual testing

As it is expected that, the model of the demand feed system (as well as other two sub-models)
will be applied in the UPPAAL TRON for automatically test cases generation and online test ex-
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ecution. However, due to the limit of the testing resources, we propose to perform the manually
offline testing. Several timed traces (with specific test purpose) are picked up directly from the
UPPAAL simulator, being considered as the test cases. As it is mentioned that, SKOV offers us
an emulate feeding system(see the section 3.4) as the IUT for the testing. That emulate system
is established in Labview, named Dub99. We will then compare the selected test cases with the
Dub99, in order to check whether the emulate system conforms to the model specification.

4.4.1 Test case1

Figure 4.8 shows the timed trace for the 1st test case. As it is known that, the Viper1 is the
controller viper among the two sharing vipers: Viper1 and Viper2. The 1st case displays that,
when the feed demand from the Bin1 is sensed by the Viper1, the controller will responsible
for assigning the ownership to itself. And the shutter will successfully be moved to it. That test
case will then be carried out to check the same function of the Viper1 in the Dub99. The test
moves on step by step, the number of the steps are shown in Figure 4.8 as well.

Step1 & Step2 According to Figure 4.8, when there is a feed demand from the FeedDemand
template, the input channel Bin1Demand will be enabled to synchronized with the Viper1.
Then, in the Dub99, the feed demand from the Bin1 will also be issued(see Figure 4.9).

Figure 4.9: The snapshot of the feed demand in Bin1

The reaction to that demand is, the Viper1 grants the ownership to itself. And the result
will be informed the Viper2 through the Dol7. The Dol7 verdicts the legal or illegal
ownership of the shutter by means of displaying different level of the voltage. Figure
4.10 shows the status of the Dol7(in the Dub99) before the step1 and after the step2(in
Figure 4.8). The green box and the volt box in the Dol7(see the after status of the Figure
4.10) represent the output from the Viper1. That is according to the specification of the
signal Viper1Demand in Figure 4.8.

Step3 & Step4 After the ENV receives the information of the ownership of the shutter, it will
issues an On event to the controller Viper1 in the SUT part(Figure 4.8 step3). This
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Figure 4.10: The snapshot of the Dol7

input will also be sent to the Viper1 in the Dub99. In the Dub99, the Viper1 reacts
to that signal by issuing an event to distribute the position of the shutter according to
the owner of the shutter. Then the Flap(Shutter) component in the Dub99 displays the
current position of the shutter. Figure 4.11 shows the statuses of the Flap component in
the Dub99, that are corresponds to the before and after step3, 4 respectively in the timed
trace(see Figure 4.8). Those pair of actions are legal according to the signal On and the
DistributeShutter in Figure 4.8.

Figure 4.11: The snapshot of the Flap component

Step5 & Step6 When the input signal ShutterPos with the position of the shutter arrives in the
Viper1, that input will also be issued in the Dub99. It used to active the shutter position
checking function of the Viper1 in the Dub99. The Viper1 carries out that function by
activating the timer of the FlapPosError Alarm component in the Dub99(see Figure
4.12). And at the same time, in the timed trace (see Figure 4.8 step6), CheckPosition is
output to the ENV. When the In box in Figure 4.12 being turned to green from the before
status to the checking status, indicating the arriving of the coming of the ShutterPos
signal from the tester. If the timer is finished, and the State box in the after checking
status of Figure 4.12 is still dark green, meaning the shutter is in the position of its owner.

Figure 4.12: The snapshot of the FlapPosError Alarm Component

Step7 & Step8 Then the input channel CheckDone is enabled to notify the Viper1 about the
completeness of the position detection. The Viper1 in the Dub99 reacts to this input,
and release the ownership of the shutter then(see the Figure 4.13). Figure 4.13 shows the
statuses of the Dol7 before and after the step7 and the step8 signals in Figure 4.8. That
conforms to the output action ReleaseOwnership in Figure 4.8.
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Figure 4.13: The snapshot of the Dol7

Figure 4.14: The MSC of the 2nd test case for the model1

4.4.2 Test case2

Figure 4.14 shows the 2nd selected test case of the model1. It also describes the reaction of
the controller Viper1 to the feed demand from Bin1. Compared to the test case1 in the section
4.4.1, the test case2 is not only responsible for the granting of the ownership of the shutter, and
the distribution of shutter to the holder of its ownership, but also generating the alarm system
when the actual position of the shutter is not the shutter owner.
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Figure 4.15: The snapshot of the Bin1

Step1 & Step2 The signal Bin1Demand will be issued when the FeedDemand template in the
model creating the feed demand for the Bin1. That signal is used to inform the Viper1
about the feed demand, and tries to ask for the ownership of the shutter. In the implemen-
tation (Dub99), the arriving of the input signal is interpreted into the feed demand in the
Bin1 component(see Figure 4.15). When the Viper1 in the Dub99 receives the demand
from the Bin1, it assigns itself the ownership of the shutter. And it notify the Viper2 the
result through Dol7. The green box1 and the voltage box in Figure 4.15 after step2 status
indicates the output from the Viper1. That conforms to the output through the signal
Viper1Demand in the step2 of Figure 4.14.

Figure 4.16: The snapshot of the Dol7

Step3 & Step4 Then the signal On is enabled to active the control function of the Viper1(both
in the model system and in the Dub99 system). The Viper1 reacts to that by means of
issuing the action to move the shutter. The after status in Figure 4.17 shows the current
(erroneous) position of the shutter after the DistributeShutter transition (see Figure 4.14,
step4).

Figure 4.17: The snapshot of the Flap component

Step5...Step8 In the timed trace (see Figure 4.14), the step5 intends to sent the result of the
position to the controller Viper1 in the SUT through the synchronized channel Shutter-
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Pos. And the Viper1 issues the event CheckPosition to detect the validity of the current
position of the shutter in terms of the ownership. As in this case the actual position of the
shutter is not the expected one, so that the illegal result will be sent back to the Viper1
through the CheckDone signal (see Figure 4.14 step7). And the controller Viper1 will
enable the transition ActiveAlarm in order to generate the alarm for that invalidity.

The IUT Dub99 conforms to those specified actions(see Figure 4.12). The sub-Figure
called step6,7 checking shows the status (by means of the "In" box turning green) when
the CheckPosition requirement is issued. As soon as the "In" box changed to dark green,
the result of the detection will be sent to the Viper1 in the Dub99. And the alarm will be
generated according the input detection result. The "State box" turns red, indicating the
alarm is activated(see Figure 4.18).

Figure 4.18: The snapshot of the FlapPosError Alarm component

Step9 & Step10 The step9 in Figure 4.14 performs an extra action to ask the Viper1 to control
the releasing the ownership of the shutter. The step10 is the reaction of the Viper1 using
the transition ReleaseOwnership. The after step10 sub-Figure in Figure 4.19 presents
the status of the Dol7 after being issued to release the ownership of the shutter. Until
now, the test case2 is completed, and passed.

Figure 4.19: The snapshot of the Dol7 component

4.4.3 Test case3

The test case shown in Figure 4.20 describes that, when the Dol7 measures the two vipers
holding the ownership of the shutter simultaneously, the Viper1 will control both vipers to
release the ownership.

Step1 & Step2 The Bin1Demand signal is an input action, sent from the ENV part (the Feed-
Demand template) to the Viper1 in the SUT part. That input signal will be sent to the
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Figure 4.20: The MSC of the 3th test case for the model1

Dub99, indicating that there is feed demand in the Bin1(see Figure 4.21). The Viper1
senses the feed demand, and assigns the ownership of the shutter to itself. Then it notifies
the demand and the ownership to the Viper2 through the Dol7. The box1 in the Dol7
turns from the dark green to light green (see Figure 4.22) indicates that the Dol7 receiv-
ing the information from the Viper1. As it is shown in Figure 4.20, the output channel
Viper1Demand with the result of the ownership from the Viper1 to the Dol7 is the ex-
pected action. The "5" volt in the Dol7(see Figure 4.22) corresponds to the Mid2 in the
template Dol7 (see Figure 4.20), which is also legal.

Step3 & Step4 Then the Viper2 gets the demand signal Bin2Demand from the FeedDemand
template. It immediately informs the Viper1 about the Bin2 demand through the Dol7
template. When the input signal Viper2Request arrives in the Viper1 template(see Fig-
ure 4.20). The feed demand from the Bin2 in the Dub99(see Figure 4.23) performs the
same action as the Viper2Request. In the Dub99, the result of the reaction of the con-
troller Viper1 to the Bin2 demand is shown in the Dol7 voltage box(see Figure 4.24).
That is, the Viper2 gains the ownership of the shutter as well, and the voltage of the Dol7
is changed to "6.7"(see Figure 4.24 after step4 sub-Figure). This output action is a valid
action according to the output signal Ownership2 in Figure 4.20.

Step5 & Step6 According to the timed trace in Figure 4.20, the Off channel then is enabled for
the Viper1. In the Dub99, the output action for the input signal Off, leads to release the

66



4.5. AMBIGUITY

Figure 4.21: The snapshot of the Bin1 feed demand

Figure 4.22: The snapshot of the Dol7

ownership from both of the vipers. That is displayed in Figure 4.25, the green box1 and
the green box2 in the before step5 sub-Figures turn to the dark green as they are shown
in the after step6 sub-Figure. That conforms to the output ReleaseOwnership in Figure
4.20. It demonstrates that, the third test case is passed successfully.

4.5 Ambiguity

During the modeling, we found some ambiguous specifications. That we think is necessary but
is not specified in the SKOV document [18]. And we also found some inconsistencies between
the SKOV specification and the Dub99. We collect those unclear points, and discuss them in
the following.

• The initial position of the shutter is in the not controlling viper Viper2. We capture the
snapshot of the initial state of the shutter(see Figure 4.26). It is not the result of the
random choosing. In our model we assume that shutter is in the position of the Viper2 at
the beginning.

• We capture the screenshot of the Dol7 box in the Dub99B LabView(see Figure 4.27). It
presents, when Viper1 and Viper2 ask for the shutter ownership at the very same time,
the out volt in Figure 4.27 is changed from 5v → 6.7v → 0v immediately, and the two
color boxes after the number 1 and 2 in Dol7 in Figure 4.27 will also be changed. The
policy for those color box will be changed from one green box → two green boxes
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Figure 4.23: The snapshot of the Bin2 feed demand

Figure 4.24: The snapshot of the Dol7

→ two dark green boxes. The two green boxes indicates, the two vipers can hold the
ownership of the shutter in a very short amount of time when both of them require the
shutter. That is different from our former assumption that, two vipers can not hold the
shutter at the same time. So that we modified the model according to Dub99.

• In our model, we assume that, there are always two vipers sharing one Dol99B. They are
communicate with each other through the Dol7. In the Dub99 LabView, it also shows the
case when there is only one viper using Dol7. As it is specified, it don’t need the resistor
Dol7. In other words, the Dol7 will have no output(see Figure 4.28).

• Until now, the model1 system is not so ideal. Some restrictions, which is expected in
the SKOV document [18], are not specified in the model. E.g. the system specification
[18] indicates that, the shutter position alarm will be generated if the shutter can not be
adjusted to its owner within 5 minutes. That is presented by the FlapPosAlarm timer
component in the Dub99(see Figure 4.29). However, our model did not set the timer for
the alarm, due to that alarm timer will caused the deadlock in the model. Other small
functions, e.g. the resistor alarm is not modeled as well.

4.6 Summary

This chapter describes the modeling in terms of the demand feed function of the feeding system.
The model is explicitly established into the ENV and the SUT parts. Some of its important
properties are verified. Three test cases are manually generated, and run against (Dub99). And
it is demonstrated to pass all the three test cases. At the end of the chapter, the ambiguity
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Figure 4.25: The snapshot of the Dol7

Figure 4.26: Snapshot of the flap in Dub99 LabView

points, which may be caused by the unclear system specification and the inconsistence between
the specification and the Dub99, are presented.
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Figure 4.27: Snapshot of the Dol7 in Dub99 LabView

Figure 4.28: Snapshot of the Dol7 in Dub99 LabView(when there is only one
viper working)

Figure 4.29: Snapshot of the FlapPosAlarm
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5.1 Model purpose and structure

The Model2 simulates the calibration process of the feed system. It contains 5 templates, mainly
shown in Figure 5.2, 5.3, 5.4, 5.5, 5.6. It is also modeled into ENV and the SUT parts, see
Figure 5.1.

When the controlling viper Viper1in Figure 5.3 gets the calibrate request from the user in
Figure 5.2, it will start to react to the request by means of controlling the Dol99B. The function
of the Dol99B is separated into several sub-functions. They are carried out by means of instan-
tiating the template Action(see Figure 5.5) or the template CheckSignal(see Figure 5.6) with
different parameters. The Dol99B will not only return the Viper1 the current calibration value,
but also the deviation of the old and the current calibration value.

Figure 5.1: Structure of the model2

The model2 system has 19 synchronized channels, 9 variants, and 1 clock variable. Figure 5.1
shows the main components of the model2, and the communication between them. The main
communication channels are explained in the following paragraph.

RequireCalibrate The signal RequireCalibrate is used to inform the controlling viper (Viper1)
that, the user(farmer) asks for the calibration of the weighing drum. The Viper1 will start
the calibration process by means of controlling the Dol99B.
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CheckRefSignal/CheckWeighSignal They are used to check the reference signal and the weight
signal respectively. Those signals are used to calculate current weight.

WeighWithWeight/WeighWithoutWeight They are used to active the Dol99B to calibrate the
weight of the drum in the with feed and without feed situation. In other words, they are
used to calculated the the maximum and the minimum weight of the drum.

CalibrateCalculate It is used to enable calculating the deviation of the maximum and the
minimum weight, which is the current calibration of the drum.

DevCalculate The model2 can not only calibrate current weight of the drum, but also calculate
the deviation between the old calibrate and the current calibrate. When the Viper1 sends
this DevCalculate signal to the Dol99B, the Dol99B will do the Deviation calculation.

5.2 Model description

5.2.1 The CalibrateUser template

Figure 5.2: The CalibrateUser template

The user template in Figure 5.2 simulates the calibration requirement from the user(farmer).
If user issues the synchronized signal RequiredCalibrate, the location will be transited to
Calibrating. It indicates that, the controller Viper1 is waked to control the process of the
calibration. This template will not return to its start location until it gets the CalibrateDone
signal from the Viper1.

5.2.2 The Viper1 template

The Viper1 template(see Figure 5.3) is used to control the whole calibration process. It grants
the scale to the calibration process, adjusts the drum to the desired position, does the drum
weight calibration and calculates the deviation. It is activated when it receives the signal Re-
quiredCalibrate from the user in Figure 5.2. During this transition, it checks the legal scale
for calibration by nondeterministically making choice between "0" and "1". If the scale is ille-
gal("sut_scale == 1"), it will enable the synchronized channel CalibrateDone, and goes back
to the initial location.
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Figure 5.3: The viper1 template

Otherwise, if Viper1 owns the scale for calibration("sut_scale == 0"), it immediately sends out
the signal CheckDrum synchronized with the template in the Figure 5.4. The drum position
will be returned through the transition DrumPos using "sut_DrumPosition = env_DrumPosition".
If the drum is not in its top plate(sut_DrumPosition == 0 ), it will be rolled by means of the
channel RollDrum to synchronized with the drum template which is one of the instances of
the Action template(see Figure 5.5). The signal RollDrumDone indicates the channel current
drum rolling is finished.

Until the sut_DrumPosition == 1, it starts checking the weigh signal by issuing the tran-
sition CheckWeighSignal as soon as possible. The sut_WeighSignal arrives with the input
signal WeighSig. And During that transition the local clock variable x is reset, the template
is moved to the location WeighWeight as well. The template can not go further, unless the
sut_WeighSignal == 1, and the clock x ≥ TimeA(equals 2 mtu, represents 10 sec).

And the WeighWithWeight will be sent to the WithWeight template which is one of the in-
stances of the Action template(see Figure 5.5). It will not be moved on until the arriving of the
WeighDone signal.

Then the weigh signal will be observed again through the synchronized channel CheckWeighSig-
nal, until the channel WeighSig brings the value of the sut_WeighSignal. And the clock x is
reset as well. If the sut_WeighSignal equals "0" and lasts for TimeA mtu, and the WeighWith-
outWeight synchronized transition will be issued.

Unless the WeighDone is detected, it starts to calculate the current calibrate by means of the
signal CalibrateCalculate, and the deviation through the signal DevCalculate. The DevCal-
culateDone indicates the completion of the deviation calculation, and the template reaches
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location DoneCalibrate. It sends out the CalibrateDone signal to the template in Figure 5.2,
in order to inform the user about the finish of this calibration. Then it goes back to the initial
location.

5.2.3 The DrumPosition template

Figure 5.4: The drum position template

The DrumPosition template(see Figure 5.4) is activated by the synchronized signal Check-
Drum. During that transition, the value sut_scale will be passed to the environment indicating
that the calibrate can be started. And it also checks for the position of the drum, and stores it in
the environment variant env_DrumPosition. Then it enables the signal DrumPos to bring the
drum position to the controller Viper1.

5.2.4 The Action template

Figure 5.5: The Action template

The Action template in Figure 5.5, can be instantiated into 5 different templates(Drum, With-
Weight, WithoutWeight, Calculation, DevCalculation) by the instances of the parameter In-
Action and OutAction.

5.2.5 The CheckSignal template

The CheckSignal template in Figure 5.6 will be instantiated into WeighSignal template with
three parameters. It is controlled by the Viper1(see Figure 5.3) to check the weigh signal. The
signal is determined through nondeterministically making choice between "0" and "1".
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Figure 5.6: The Dol99B template

5.3 Model checking

Before going to the testing phase, there are some properties of the system need to be validated.

• The query "A[]not deadlock" is proposed. It assumes the deadlock will never happen in
the model2 system. It is later demonstrated that the model2 system satisfies this query. In
other words, the system is deadlock free.

• The weight calibration can only start when it owns the scale, and the drum is in its
top plate. The query is written "A[]Viper1.WeighWeight imply (sut_scale == 0 and
sut_DrumPosition == 1)" . And it is demonstrated by the Uppaal verifier.

5.4 Manual testing

For the model2 system, we perform the same testing manner as it is specified in the section 4.4.
As we’ve read from the the SKOV document [18] that, there are some important signal for the
calibration purpose, e.g. weigh signal, reference signal. However, we could only observe the
reference signal in the IUT Dub99. So that, we modify some of the templates of the model2
system regarding the testing purpose.

5.4.1 System modification

The Viper1 template

Figure 5.7 displays the modified Viper1. It is also activated by the signal RequiredCal-
ibrate from the user template(see Figure 5.2), asking for the scale for calibration. If the
sut_scale equals "0" , it will enable the channel CheckDrum to check whether the drum is
in its top position. Unless sut_DrumPosition equals "1", the main process of the calibrate
will start. It is done by enabling the channel CheckRefSignal synchronized with new instance
of the CheckSignal template(see Figure 5.6), to check the validity of the reference signal. If

75



CHAPTER 5. MODEL2 - CALIBRATION

Figure 5.7: The updated viper1 of the model2

"sut_ReferenceSignal==0", the synchronized signal CalibrateDone will be issued to notify the
user in Figure 5.2.

5.4.2 Test case 1

Figure 5.8: The MSC of the 1st test case for model2

The timed trace in Figure 5.8 presents you the case of successful calibration. It begins when
the scale for calibration is assigned successfully. Then it is demonstrated that the drum is in the
desired (top) position, and starts calibrating by means of detecting the reference signal. Unless
it returns that the required value of the reference signal, the system go back to the beginning
state. That means, the 1st test case is done.
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Figure 5.9: The snapshot of the feed bin1, 2

Step1 & Step2 As it is shown in Figure 5.8, the first step of the test case is, that the Viper1 in
the SUT receives the input signal RequiredCalibrate from the CalibrateUser template
in the ENV. The IUT Dub99 reacts to that signal as expected (see Figure 5.9 after step2).
It grants the calibration scale by means of block the feed demand from the feed bin. That
is presented in Figure 5.9 using the red rectangle, the before step1 status can still accepts
feed demand. However, the red rectangle in the after step2 figure indicates the block. The
step2 also issues an event to check the current drum position.

Figure 5.10: The snapshot of the Dol99B

Step3 & Step4 The step3 of the timed trace(see Figure 5.8) passes the position information
from the ENV to the SUT through the transition DrumPos. Then SUT starts the main
process of the calibration by means of outputting the signal CheckRefSignal to the Ref-
erenceSignal template in the ENV. The performance of the Dub99 conforms to those pair
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of actions. See Figure 5.10, the drum is in its top position. When the controller Viper1
gets that information, it will asks for calibration using (required) reference signal.

Figure 5.11: The snapshot of the feed bin1, 2

Step5 & Step6 When the expected reference signal is sensed by the Viper1 through the chan-
nel RefSignal, the Viper1 will notify the ENV the completion of this test case using the
transition CalibrateDone(see the step5, 6 in Figure 5.8). In the Dub99, when the "Ref
Volt" box in Figure 5.10 presents the desired reference signal, indicates the finish of the
calibration. Then the Viper1 (in the Dub99) release the ownership of the scale by means
of enabling the feed demand function, see the status changed in the red rectangle of the
before step5 and after step6 in Figure 5.11.

5.4.3 Ambiguity

The model2 also has the unclear point as it is specified in the section4.5.

• Figure 5.12 shows the reaction in the Dub99 when the reference voltage(signal) error is
issued. The sub-figure (b) is the expected reference signal, and (c) is the created incorrect
voltage. When the case is enabled as shown in the (a), the "Ref Volt Error Weight" alarm
timer is also activated(see Figure 5.12 (d)). If the voltage shown in the (c) sub-figure
keeps more than the fixed time of the timer, the alarm will be generated(see Figure 5.12
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Figure 5.12: The updated Dol99B of the model2

(e)). That is the action in the Dub99. However, when we refer to the SKOV document
[18], the generation of that alarm is not specified. So that, we are not sure whether is also
one of the expected actions of the feeding system.

5.5 Summary

This chapter presents you the model, established according to the calibration function of the
feeding system. It is also modeled into the ENV part and the SUT part. After going through
all the templates int the model, we propose some of its important properties that need to be
satisfied. Then we modify the model according to the Dub99. A test case is produced from the
modified model, and is manually teste with the Dub99. At the end of this chapter, the ambiguity
in calibration is presented.
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Chapter 6Model3 - Weighing

6.1 Model purpose and structure

The model3 mainly contains 8 templates in Figure 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8. The system is
separated into ENV and SUT parts, the main components of each part are shown in Figure 6.1.

It is used to mimic the weighing function of the feed system. When the Viper1 sense feed
demand from the feed bin, it will be started to fulfill the demand by means of correctly activating
and stoping the objects in Dol99B, e.g. the Siloauger in Figure 6.7, and the drum in Figure
6.6.

Figure 6.1: Structure of the model3

Figure 6.1 is the construction of the model3 system. The ENV is consisted of 4 templates,
and its SiloAuger will later be instantiated according to two input signal StartSilo1 and the
StartSilo2. SUT has 3 components. The OneWeighSub has 3 instances, mainly distinguished
by 3 input signals: the WeighSub, the WeighHalf, and the WeighRest. The whole systems
contains 19 variants, 6 invariant, 26 synchronized channels, and 3 clock variables. Figure 6.1
presents you the main communication channels, they are:

BinDemand This signal is used to notify the Viper1 about the current feed demand status of
the feed bin: the Bin1 demand feed, the Bin2 demand feed or no feed demand at all. This
transition will also help to ask for the weighing scale as well.

StartSilo1/StartSilo2 Different feed bin has its own feed resource. When there is feed demand
from the feed bin1(2), the controller Viper1 will ask the silo auger1(2) for desired amount
of feed, so that the channel StartSilo1(StartSilo2) will be issued.
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WeighSub/WeighHalf/WeighRest The feed demand from the bin may be the same as drum
maximum fill size (called "one portion"), or two times of the fill size, or maybe between
one and two portions. Different amount of the feed demand use distinguishing weighing
strategies by means of activating 3 templates. The three template are the instances of the
template OneWeighSub. Each template is activated by one specific signal. There are 3
signals: the WeighRest will be issued when the demand is less than or equals one portion;
the WeighHalf is responsible for the situation when the feed demand is more than one
portion, but less than 2 portions; and the WeighSub will be enabled when feed demand
is more than 2 times of the portion.

RollDrum/StartMotor The drum control process will be started by the OneweighSub through
the signal RollDrum. The enabling of the signal StartMotor, indicates the really start of
the drum rolling function. In the model3 system, two cases may need that functionality ,
i.e. before the silo auger transporting the feed to the drum, it is required in its top plate.
Otherwise, it will be forced to rotate to that position. And it is also rolling, when the feed
in the drum is transported to the feed bin.

ActiveAlarm If time out happens when the drum is rolling, or the silo auger is activating, alarm
will be stimulated by means of issuing the signal ActiveAlarm.

6.2 Model description

6.2.1 The Demand template

Figure 6.2: The Demand template

The feed demand template(see Figure 6.2) intends to create the feed demand from either feed
Bin. It enables the channel BinDemand synchronized with the Viper1(see Figure 6.3) template.
That sends the amount of the feed demand to the controller Viper1, and ask for the weighing
scale as well. Unless receiving the WeighDone notification, it will go back to its initial location
idle.
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Figure 6.3: The Viper1 template

6.2.2 The Viper1 template

The Viper1 template in Figure 6.3 controls the weighing process. It is not only responsible for
granting the scale to the weighing request, but also deciding the manner(kind) for the weighing.
It may make further choice among the three weighing strategies regarding the feed demand, if
the second manner(DesFeed) is chosen.

When the Demand template in Figure 6.2 issues the synchronized signal BinDemand, the
Viper1 in Figure 6.3 will be activated. It does its first step, checking the feed demand. The
env_FeedDemandSig will nondeterministically choose one integer among the integers 1, 2, 3,
and gives the corresponding amount of the demand to the variant env_FeedDemand. Then the
ENV values will be passed to its SUT variables sut_FeedDemandSig, and the sut_FeedDemand.
During that transition, the Viper1 also decides whether to grant the weighing scale or not. That
transition will also lead the template moving to the location DemandCheck. The system will
return its start state if the sut_FeedDemandSig equals "0", or the sut_scale equals "0".

Otherwise, the CheckKind channel will be enabled. That transition will synchronize with
the CheckSignal template in Figure 6.8, uses to determine which kind of weighing will be
chosen. The result will be returned through the signal KindNo using "sut_FeedingKind =
env_FeedindKind". If sut_FeedingKind == 0, it decides to go to the location AdFeed. The
value of the variant DrumMax will be immediately assigned to the OneWeighDemand. The
OneWeighDemand is the variant, indicating how much feed demand will be satisfied each time.
And the system will be transited to the location OneWeigh1. And the WeighRest channel will
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be enabled to active one instance of the OneWeighSub called Rest. After the Rest returns the
signal WeighRestDone, the Viper1 will go back to its start state.

Otherwise, the FeedingKind == 1, it will be transited to the location DesFeed the Viper1 may
have three choice to take. If feed demand is between the DrumMax(one portion) and the 2 ∗
DrumMax, the OneWeighDemand equals half amount of the sut_FeedDemand, and the rest
of the feed demand will be sut_FeedDemand − OneWeighDemand. And it immediately
takes the transition labeled WeighHalf to stimulated the instance of the OneWeighSub template
in Figure 6.4 named Half. Until gets the signal WeighHalfDone, it will be back to the location
DesFeed.

If the system feed demand sut_FeedDemand ≥ 2 ∗ DrumMax, the OneWeighDemand will
be the DrumMax. And the rest of the demand will be the result of the sut_FeedDemand minus
OneWeighDemand. Then the WeighSub will be issued without any delay, and template Sub
which is also an instance of the OneWeighSub will be called. The signal WeighSubDone
indicates its completion, and enables the channel leading it to the location DesFeed.

However, if SUT feed demand is less than or equal to the DrumMax, it will directly fulfill the
feed demand by using the Rest template with the OneWeighDemand equaling sut_FeedDemand.

Figure 6.4: One Weigh Sub template

6.2.3 The OneWeighSub template

The OneWeighSub template(see Figure 6.4) is subject to the Viper1. It simulates the process,
the demand feed is transported from the silo auger to the bin by means of correctly activating the
rolling drum. It starts when the channel OneWeighStart is enabled. And then it immediately
checks the drum position by means of enabling the synchronized transition CheckDrum with
the template in Figure 6.8. The synchronized channel DrumPos brings back the current position
of the drum using "sut_DrumPosition = env_DrumPosition". If the drum is not in the required
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position (sut_DrumPosition == 0), the drum will be controlled by means of issuing the channel
RollDrum which is synchronized with the drum template (see Figure 6.5).

If the sut_DrumPosition == 1, it will have two ways to go according to sut_FeedDemandSig.
The sut_FeedDemandSig equals "1" will enables the transition labeled StartSilo1 synchro-
nized with one instance of the template SiloAuger in Figure 6.7. Otherwise, the sut_FeedDe-
mandSig == 2 will issue the synchronized signal StartSilo2. Both of those transition will end
in the location StartAuger. After being informed that the silo auger action is finished, the input
channel AugerDone will be enabled. And the roll drum control will start again by the Roll-
Drum signal in order to transit the feed from the drum to the bin. In the end, it takes the channel
OneWeighDone, and returns to the start state.

6.2.4 The RollDrumSub template

Figure 6.5: The RollDrumSub template

The template in Figure 6.5, is used to control the start and the stop of the drum motor. During
the process, it may generated an alarm in terms of invalid starting the drum motor. It waits
until it receives the roll drum requirement RollDrum, then goes to the location StartDrum
from the start location. It issues the synchronized signal CheckAllowed without any delay. The
checking will continue unless it returns sut_Allowed == 1 through the channel AllowSig. And
it reaches the location MotorActivate, the sut_InductiveSignal is detected using the transition
StartMotor to synchronized with one of the instance of the CheckSignal template as soon as
possible. The Signal InductiveSignal brings back the amount of the inductive signal. During
that transition the clock variable x is reset as well. If the sut_InduRollSignal == 0 and the
clock x > TimeD(4 mtu), it will enables the StartMotor with the template in the Figure 6.6,
in order to the TimeoutTimes counter. The current time out times will be sent back through
MotorStopped Then it arrives a committed location with the label "C". It will return to the
location MotorActivate while the sut_TimeoutTimes ≤ TIMES(equals "5"). Whereas, the
sut_TimeoutTimes > the TIMES, an alarm will be activated by the signal ActiveAlarm, and
the location is moved to the Alarming. Until the transition AlarmDone is enabled, the clock
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x will be reset. It waits until clock x ≥ TimeE(12 mtu), and reset the TimeoutTimes counter,
returns to the MotorActivate.

Otherwise, the sut_InduRollSignal == 1, it will enable the transition StopMotor to do the real
drum rolling. When the rolling is ended in the committed location RollDone, it immediately
issues the signal RollDrumDone to notify its completeness to the template in Figure 6.4, and
reset the counter sut_TimeoutTimes too.

6.2.5 The Drum template

Figure 6.6: The Drum template

The Drum template in Figure 6.6, acts as a counter. It is activated by the signal StopMo-
tor. And signal also brings the system variant sut_TimeoutTimes to its environment. The
env_TimeoutTimes is increased by "1" through "env_TimeoutTimes ++". Then it immedi-
ately issues and synchronized channel MotorStopped to inform the result of the times counter
to the RollDrumSub in the SUT.

6.2.6 The SiloAuger template

Figure 6.7: The Silo auger template

The silo auger in Figure 6.7 is subject to the controller. It is an template in the SUT, controls the
actions of the silo auger in the ENV. It is enabled by the synchronized signal StartSiloAuger.
During that transition the clock x will be reset. Then it reaches the location AugerStart. And
checks the clock x there, if x ≥ TimeB(60 mtu), the alarm template in Figure4.7 will be acti-
vated by means of the synchronized signal ActiveAlarm. Otherwise, the synchronized channel
AugerDone will be issued.
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6.2.7 The CheckSignal template

Figure 6.8: The Check signal template

The CheckSignal will be instantiated into FeedKind, DrumPosition, Permit, InductiveSig
template through different parameters. It is used to nondeterministically selecting values for
some specified signals.

6.3 Model checking

Due to the time limit, we only propose some properties, which seems more important.

• Due to "deadlock free" property is important for model3 system as it is in the former
model systems. The query can be written as "A[]not deadlock". Then, it is applied in the
UPPAAL Verifier, and is demonstrated to be satisfied.

• The query "A[]Viper1.KindCheck imply (sut_scale == 1 and sut_FeedDemandSig != 0)"
indicates that, the Viper1 can only start deciding the kind for the weighing when there
are two state formulae being satisfied. That are, the weighing process must get the scale,
and there must be feed demand in either viper.

• The query "A[]Viper1.OneWeigh2 imply env_FeedDemand == FeedDemand[2]" describes
that, whenever the OneWeigh2 weighing strategy is chosen, is because the feed demand
equals FeedDemand[2]. Well, the FeedDemand[2] is set to be 7 in our model, which is
between the one portion and two portions.

• "A[] RollDrumSub.Alarming imply sut_TimeoutTimes >= 5" means, it is always true
that, the alarm is activated due to the timeout times is more than 5.
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Figure 6.9: The MSC of 1st test case for the model3(when Viper1 has feed
demand)

6.4 Manual testing

6.4.1 Test case 1

Figure 6.9 shows the case when the feed bin1 has the feed demand. The ENV will issues
an input signal BinDemand to the Viper1 in the SUT part. The Viper1 assigns the scale to
the weighing process, whenever it senses the demand from Bin1. Then it outputs the signals
CheckKind to the ENV, asking for the way of the weighing. Then the real weighing process
begins. It chooses the one weigh rest strategy by means of issuing the channel WeighRest
which will be synchronized with the Rest template. The Rest will then output the CheckDrum
and the StartSilo1 requirement in order to fill the drum with required amount of the feed. After
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silo auger finished its process, it will activate the process transporting the food from the drum to
the feed bin by means of enabling the RollDrum signal. Then the WeighRestDone is issued by
the Rest template to inform the Viper1 about the completion. Due to the limit of the Dub99,e.g
some of the signal or item is not presented, we explain the manually test by skip some steps.

Figure 6.10: The snapshot of the feed bin and the Dol99B

Step1„Step4 The trace in Figure 6.9 starts when the BinDemand is sent from the ENV to
the Viper1. And the Viper1 grants the weighing scale, and asks for the kind of the
weighing(see Figure 6.9 step2). As soon as the ENV returns the KindNo signal, the
CheckDrum transition is enabled from the SUT to the ENV checking for the current
drum position. The implementation (IUT) conforms those steps. The sub-figure before
step1 shows the feed demand of the bin1, which is sensed by the Viper1. And output is
the scale signal from the Viper1 is sent to the Dol99B(see Figure 6.10 before step1, red
rectangle). And then the Viper1 asks for selecting weighing kind, and checking for the
current drum position. The drum position is then displayed in the red rectangle of the
sun-figure after step4 in Figure 6.10.

Figure 6.11: The snapshot of the Dol99B and the silo auger
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Step5 & Step6 The step5 in Figure 6.9 passes the current drum position(top position) to the
the SUT. And the Viper1 in the SUT activate the StartSilo1 signal to start the silo1
according to the bin1 demand. In the IUT, the red rectangle in the sub-figure before step5
shows indicates the drum now is in its top position. That will notify the master Viper1
in the Dub99. And the master will control to start the silo auger1. The green box in the
sub-figure after step6 in Figure 6.11, indicates being activated.

Figure 6.12: The snapshot of the silo auger and the flap

Figure 6.13: The snapshot of the flap and the Dol99B

Step7 & Step8 After completing transport the desired feed to the drum, the silo1 stopes. And
inform the SUT through the signal AugerDone(see the step7 in the Figure 6.9). The
controller in the SUT asks whether it is allowed to transit the feed to the feed bin1 now
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using the signal CheckAllowed(see the step8 in Figure 6.9). And the Dub99 conforms
that pair of actions. As it is shown in Figure 6.12, the dark green silo1 box (in Figure
6.12 before step7) indicates the completion of the feed transporting. That will be inform
the master. The sub-Figure after step8 (in Figure 6.12) is the result of the CheckAllowed
event. It presents the flap is in the legal position with regard to the feed demand of bin1.

Step9 & Step10 The step9 does send the allow signal to the controller in the SUT through the
transition AllowSig . And the drum motor is activated in order to transit the feed to the
bin1(step10 in Figure 6.9). In the Dub99, the input signal with the result(see Figure 6.13
before step9) of the allowable checking, will be sent to the master Viper1. The master
issues an event to start the drum motor. Then motor status in the after step10 of Figure
6.13 indicates being activated by the controller Viper1.

Figure 6.14: The snapshot of the Dol99B

Step11 & Step12 The moving status of the drum is presented using the inductive signal, and it
is returned to the SUT through the channel InductiveSignal(see Figure 6.9, step11). The
controller in the SUT issues the StopMotor notify the drum about the time to stop(see the
step12). In the IUT Dub99, when the input signal arrives in the Viper1 with the inductive
signal (from low to high, as it is shown in the before step11 of Figure 6.14), the Viper1
will enable an output to stop the drum by means of stopping the drum motor. That is
displayed as dark green motor box in the sub-figure after step12 in Figure 6.14.

Step13 & Step14 The quiescence status of the drum is sent to the SUT through the Mo-
torStopped channel(see Figure 6.9 step13). That means the weighing process is com-
pleted. Then the WeighDone signal will be sent to the ENV(step14). As it is shown in
Figure 6.15, the Dub99 conforms to those input and output actions. The sub-figure after
step14 indicates the finish of this test case.
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Figure 6.15: The snapshot of the Dol99B and the feed bin

6.5 Ambiguity

We also propose two ambiguities for the model3 system due to the reason specified in the section
4.5.

• The silo auger is not used to mix kinds of food, as it is shown on the LabView, when feed
bin1 required food, the food will be pushed into the drum from silo auger 1, otherwise
if the bin2 require food, silo auger2 will be issued. See the snapshot of the Dol99B in
Figure 6.16. Our model is then be modified according to this feature.

Figure 6.16: The snapshot of the silo auger in the Dub99 LabView

Figure 6.17: The snapshot of the drum and the feed bin in the Dub99 LabView
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• Figure 6.17 is one of the snapshots of the Dub99 LabView. It indicates the initial state
of the system. The demand of the feed bin1 and the feed bin2 are set to be the same
amount. And the size of the weigh drum (or one portion) is the same as either feed bin. In
our model, due to the three sub-weighing strategies, we assign the amount of the demand
from the two feed bins with different values. We assumes that the demand amount of the
feed bin1 is 3, the demand of the feed bin2 is 7, whereas the weight amount of one portion
is 5.

6.6 Summary

This chapter explains the model. It carries out the weighing function of the feeding system.
The system are modeled into the ENV and the SUT parts. The model is described template by
template. Some of the system’s properties are also verified. We manually generate one test case
from the model, and manually execute it in the Dub99. The result of it is pass.
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7.1 Summary

This report has been presented here with two purposes: (1) to demonstrate that UPPAAL-TRON
is properly tool for model-based online testing, (2) to prove the Skov’s product works correctly
according to its specification. Throughout the report:

First, we have displayed you the basic theory for the testing: the semantics of the Timed In-
put/Output transition systems, the Timed Automaton(TA) and the theory of the relativized in-
put/output conformance relation. We also offer you a simple algorithm used by our model-based
online testing.

Besides, we have investigated an existing small system called smartlamp. We separately ex-
plain its system specification and the environment assumption which are written in UPPAAL
modeling language. And the testing have been performed with its java developed Implementa-
tion Under Test(IUT) part according to the former presented testing algorithm. By doing so, we
concluded that UPPAAL-TRON is a really suitable tool for this kind of testing purpose.

After that, we translated one of the SKOV product, the Climate controller , into UPPAAL
model with respect to the model-based online testing purpose. That is, separately established
the specification of "Climate Controller" and its working environment. Due to lack of the IUT,
we did not fulfill the online testing purpose.

Then, we planed to perform the testing with the SKOV feeding system. We modeled the feeding
system into three sub-models according to three main required functions. They are called the
demand feed model, the calibration model and the weighing model. Each model system is
established into ENV and the SUT parts for the testing purpose. We also verified some important
properties for them. Because of the limit time and resources, we only applied those models for
manually offline testing using the emulate feeding system called Dub99.

During the modeling, we also do effort to reduce the state space explosion. In the modeling of
the climate controller, we introduce a new method, that makes it flexible to select only the mean-
ingful elements of an array instead of covering all its elements. In the modeling of the feeding
system, we refer to as much as the committed location to reduce the state space explosion.

93



CHAPTER 7. CONCLUSION & FUTURE WORK

7.2 Conclusion

In this master project, we use the UPPAAL and UPPAAL TRON platforms to do model-based
black-box conformance testing of embedded real-time software systems. We use UPPAAL
timed automata to capture the behavior of the software system. Based on this models, we man-
ually derive some test cases, which can be applied on the emulate IUT established using Lab-
View. Some particular behaviors of system can be exercised by using the test cases. Therefore
we conclude that, we can use UPPAAL to generate meaningful test cases.

We can conclude that, it is trick and difficult to model the behavior of the system. The reasons
include: (1) we should be faithful to the requirements of the SKOV company, but it is nearly
impossible to capture all the requirements. (2) the requirements of the company are changed
over the time, this adds further difficulty of the modeling. (3) it is usually the case that, the
requirements of the company are partially specified, and they may sometimes be contradictory.

Due to lacking of the IUT, we can not use online testing method. So that, we can only depend
on the offline testing. Because of the limit time, we do not make a program to do the automate
generation of the test cases. We manually derive several test cases. And they are demonstrated
to be passed. By observing the execution trace of the test cases, we may conclude that, provided
the IUT and the adapter, we can do the model-based online testing using UPPAAL TRON.

7.3 Future work

During this long term project, we have only accomplished some of its missions, due to some
reasons. There are still many tasks waiting for us.

First, as we’ve known that, the UPPAAL TRON and the IUT can not communicate with each
other directly, an adapter acting as a translator between those two parts also required to be
established. And in the last step, online model-based black-box testing will be carried out to
prove how decent UPPAAL TRON is.

Provided the IUT and the adapter, the system model can be applied on TRON for the model-
based online testing. The conformance of the IUT in terms of the system specification will be
validated. The usability of TRON will be further discussed.
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Appendix AClimate Controller

A.1 Cooling Control System

Figure A.1, shows the complete process of the Cooling Control Systems. The main objective
of the cooling system is to take care of the heat. It is used in the livestock buildings when the
ventilation is insufficient to reduce the temperature inside. Compared to ventilation, cooling
can not only lower the temperature, but also increase the air humidity. The conjunction of the
high temperature and the high humidity is believed that, will do harm to the animal’s lives.
Since cooling will increase the humidity, this product is designed to automatically disconnect
when the humidity exceeds its setpoint of the buildings. This climate controller is established to
automatically control the inside temperature ensuring that it will never exceed the temperature
setpoint.

A.1.1 Control Process

The operation of the cooling control system is shown in Figure A.1. First, the system figures
out the current day’s temperature according to the temperature Curve. That curve represents
the temperature of the each day during certain period, where 50 days is the fixed temperature
period. Then it picks up another parameter useroffset set manually by user, goes though the
function interpolation which basically performs "temperature + useroffset" action. Then it
adds the Cool setpoint which is also set by user with the result of the function interpolation,
and gets the temperature setpoint Tset.

This cooling control system then follows some actions to calculate the cool demand. It com-
pares the result of the difference between Tset and the Tmol (which represents the real measured
temperature of the current day) to 0, and chooses the smaller one. The cooling demand is the
result of the smaller value be divided by a given constant K.

This cooling demand is only available for guide the cooling relay when the cooling control
system gets the required control signal. According to the Internal Cooling Rule, the control
signal is a boolean consequence of logic operations with 4 system parameters: HumidityCool-
Blocking, Vent Max, Vent AbsMax, VentLimitation.

If the control signal is "False", the cooling demand will be passed to the Cooing Relay.
Otherwise, if the control signal is "True" means no need to perform "cooling", 0 will be passed.
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Figure A.1: Workflow of the Cooling Control System

97



APPENDIX A. CLIMATE CONTROLLER

A.1.2 Model Structure

We will model the Cooling Control System as a network of UPPAAL Timed Automata. Due
to testing purpose, we propose separately modeling the specification of the system and its envi-
ronment. Figure A.2 depicted the abstract input/output actions.

Figure A.2: Model Inputs and Outputs

The model consists of 5 concurrent components (UPPAAL timed automaton), 2 clock variables,
25 discrete integer variables and 12 channels. Figure A.3 shows the main components and their
input/output communications. The following subsections will be organized in this way, first
the constants, variant, channels used in the model will be shown, and then the behavior will be
described, and all those will be done template by template.

Figure A.3: Main model components
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A.2 Model description

A.2.1 Environment

The automaton named dayClock_CS illustrated on Figure A.4 aiming at simulating the 24-hour
per day. The variables used in this automaton are showed below. The local clock variable x is
designed with intention to accumulate time units, when it reaches the value hour24, the global
integer variable Day will be increased by 1. And this Day is designed for storing current day’s
number, that will be used to pick up current day’s temperature from the temperature Curve
later.

Figure A.4: Day Updater of the Cooling Control System

Figure A.5: Period Updater of the Cooling Control System

108 //−−−−−−−−−−Global declaration for the "dayClock_CS"−−−−−−−−−−−−−−−−
109

110 const int hour24 = 24*60*60; // in the model, we assume that each
111 // time unit unit represents one second,
112 // so here number of seconds in 24 hours
113 int Day = 1;
114

115 //−−−−−−−−−−Local declaration for the "dayClock_CS"−−−−−−−−−−−−−−−−
116

117 clock x;

Likewise, in order to periodically activate the cooling control system , the template in Figure
A.5 named SystemUpdater_CS is designed. It uses local clock variant x to be the time units
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accumulator, when x equals to period as it’s shown in the following code section, it will syn-
chronize with the automaton shown in Figure A.8 through channel adjust. When this transition
is enabled, it will calculate the control signal ConSignal by means of ConSignal() function,
and get the current day’s temperature according to the Curve using TempCurve(int day, int
Number) with two parameters, where day’s value passes from global variable Day, and Num-
ber is from sut_CurveNo represents which curve is chosen for this iteration of the cooling
control system regulation.

119 //−−−−−−−−−−Global declaration for the "SystemUpdater_CS"−−−−−−−−−−−−−−−−
120

121 const int period = 10; chan adjust ;
122

123 //−−−−−−−−−−Local declaration for the "SystemUpdater_CS"−−−−−−−−−−−−−−−−
124 clock x;
125

126

127 void calConSignal (){
128

129 ConSignal = (env_HumCoBlock && ((!env_VenMax) || (!env_VenAbsMax)
130 || (! env_VenMin)));
131

132 }
133

134

135 void TempCurve(int day, int Number){
136

137 // in order to simplify the design of the model at the very beginning
138 // we assume the function to calculate the temperature of a Day equals to a constant e .g. y = 18,
139 // later we will propose the c code for the describing the temperature Curve
140 int y;
141

142 if (Number == 1) {
143 y = 18;
144 T_curve = y;
145 }
146

147 if (Number == 2) {
148 y = 15;
149 T_curve = y;
150 }
151

152 if (Number == 3) {
153 y = 12;
154 T_curve = y;
155 }
156

157 if (Number == 4) {
158 y = 9;
159 T_curve = y;
160 } return; }
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As shown on Figure A.6, the automaton Userhandler_CS is used to simulate the users’ way of
setting the system parameters. Each time, it nondeterministically chooses one transition to take.
Action in each transition plays in the same manner. Considering the synchronized channel
labeled HumCoBlock as an example. Each time it is enabled, it will pick out one integer
between its upper bound and its lower bound based on the UPPAAL select feature. In this
transition, it has only two choices, either 0 or 1, then assigns the value to the env_HumCoBlock
which is environment variable according to "separately model the environment part from SUT
part" principle.

Figure A.6: Template for setting the system parameters

Figure A.7: Template for passing value of the system parameter

When the channel HumCoBlock is stimulated, as mentioned above, the automaton in Figure
A.6 will synchronize with the automaton IntUpdater_CS in Figure A.7 through the channel
with the same label. IntUpdater_CS performs the action of passing the value, either passes the
value from the environment to the SUT, or in the inverse order. As it is shown in Figure A.7, af-
ter env_HumCoBlock being enabled, it sends env_HumCoBlock’s value to sut_HumCoBlock

101



APPENDIX A. CLIMATE CONTROLLER

according to the description of the update action.

161 //−−−−−−−−−−Global declaration for the "Userhandler_CS"−−−−−−−−−−−−−−−−
162

163 //−−−−userOffSet−−−−−
164

165 typedef int[−10, 10] Type_UOffset;
166

167 // typedef int [0, 20] VType_UOffSet;
168 typedef int [0, 4] VType_UOffSet;
169

170 const Type_UOffset UOffSet[21]={−10, −9, −8, −7, −6, −5, −4, −3,
171 −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
172 // const Type_UOffset UOffSet[5]={−10, −5, 0, 5, 10};
173

174 // In the model we add the prefix "env_" to all the environment
175 // variables , in the same manner, we add "sut_" to all the
176 // SUT variables
177

178 Type_UOffset env_UOffSet = 0 ; Type_UOffset sut_UOffSet = 0 ;
179

180

181 //−−−−measured temperature−−−−−
182

183 typedef int [0, 40] Type_TempMea;
184

185 // typedef int [0, 40] VType_TempMea;
186 typedef int [0, 2] VType_TempMea;
187

188 const Type_TempMea MeaTemp[41]={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
189 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
190 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40};
191

192 // const Type_TempMea MeaTemp[3]={0, 20, 40};
193

194 Type_TempMea env_TempMea = 0;
195

196 Type_TempMea sut_TempMea = 0;
197

198

199 //−−−−cool setpoint−−−−−−
200

201 typedef int [0, 20] Type_CoolSetPoint;
202

203 // typedef int [0, 20] VType_CoolSetPoint;
204 typedef int [0,2] VType_CoolSetPoint;
205

206 const Type_CoolSetPoint CoolSetPo[21]={0, 1, 2, 3, 4, 5, 6, 7, 8,
207 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
208 // const Type_CoolSetPoint CoolSetPo[3]={0, 10, 20};
209

210 Type_CoolSetPoint env_CoolSetPoint = 0;
211

212 Type_CoolSetPoint sut_CoolSetPoint = 0;
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213

214

215 //−−−−−−−−temperature curve−−−−−−−−−
216

217 typedef int [1, 4] CurveNum;
218

219 CurveNum env_CurveNo = 1;
220

221 CurveNum sut_CurveNo = 1;
222

223

224 //−−−−−−−−−variant related to control signals−−−−−−−−−−
225 int env_HumCoBlock = 0; int sut_HumCoBlock = 0;
226

227 int env_VenMax = 0; int sut_VenMax = 0;
228

229 int env_VenAbsMax = 0; int sut_VenAbsMax = 0;
230

231 int env_VenMin = 0; int sut_VenMin = 0;
232

233 int ConSignal = 0;
234

235 //−−−−−−−−−−−−−−−chan−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
236 chan TempMea; chan UserOffset; chan CoolSetpoint ;
237

238 chan ControlSignal ; chan HumCoBlock; chan VenMax;
239

240 chan VenAbsMax; chan VenMin; chan TempCurve;

A.2.2 SUT

The SystemRegulator_CS is shown in Figure A.8. It is used to calculate the amount of the
cooling demand, to determine whether it is necessary to activate the cooling process via relay.
This automaton is synchronized with the automaton shown in Figure A.5 through the channel
called adjust. As we mentioned before, the automaton SystemUpdater_CS in Figure A.5 is
activated periodically. Whenever this transition is enabled, it will also pass two results of the
automaton in Figure A.5: the global variant ConSignal and the temperature T_curve from the
Curve.

After a "committed" location which is signed "c", it calculates the temperature setpoint of the
SUT, and the setpoint will later be stored in the global variable T_set. The calculation is per-
formed through two functions. InterpolationTemp(T_curve, sut_UOffSet) which basically
adds the value of the useroffset sut_UOffSet to the temperature T_curve gets from the Curve,
obtains a result which is temporarily assigned to T_set. Then, it simply pluses the cool setpoint
of the SUT with the T_set by means of getTemSet(T_set, sut_CoolSetPoint) and gets T_set.
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After checking the value of the ConSignal it will be led to different status of the relay. if
ConSignal == 1 means the system gets the command to turn off the relay, during that transition
it also assigns the value of the sut_RcDemand == 0. Then it is led to a new location called
TurnOffRelay. After outputting a synchronize signal Roff to the template Relay_CS in Figure
A.9, until receiving the input signal realDone which comes from the Relay_CS, it will go back
to the initial location.

Whereas, if the ConSignal equals 0, means the "NO COOLING" condition is not satisfied ac-
cording to the system specification, the system calculates the demand of the cooling sut_RcDemand
by means of the function getRcDemand(T_set, sut_TempMea), and reaches to the location
TurnOnRelay. If the sut_RcDemand == 0, it will transit to location TurnOffRelay as well.
Otherwise, if the sut_RcDemand does not equal 0, it will send the synchronized signal Ron to
trigger the relay, and waits until getting the signal realDone from the relay, and then goes back
to the initial location.

Figure A.8: Template for simulating the internal cooling system
242 //−−−−−−−−−−Global declaration for the "SystemRegulator_CS"−−−−−−−−−−−−−−−−
243

244 int T_curve = 0; int T_set = 0;
245

246 const int K=1;
247

248 //−−−−−−cooling demand;−−−−−−−−−−
249 int sut_RcDemand = 0; int env_RcDemand = 0;
250

251

252 //−−−−−−channel−−−−−−−−−−−−−−−
253 chan Roff;
254

255 chan On;
256

257 //−−−−−−−−−−Local declaration for the "SystemRegulator_CS"−−−−−−−−−−−−−−−−
258

259 void InterpolationTemp ( int Tcurve, int uoffset ){
260
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261 T_set = 0;
262 T_set = Tcurve + uoffset ;
263 return;
264 }
265

266 void getTempSet(int Tset , int coolsetpoint ){
267

268 T_set = Tset + coolsetpoint ;
269 return ;
270

271 }
272

273 int getRcDemand(int Tset, int Tmea){
274 int MinTemp;
275 int RcDemand;
276 T_set = Tset − Tmea;
277

278 if (T_set >= 0){
279 MinTemp = 0;
280 } else MinTemp = (0 − T_set) ;
281

282 RcDemand = MinTemp/K;
283 return RcDemand;
284 }

Figure A.9: Template for simulating the relay

The relay template in Figure A.9, is used to simulate the inner working process of the relay. It
starts from the location RelayOn, if it gets the synchronized input signal Roff, it will be led to
the location Off, during the transition it will also reset local clock x to 0. After being asked to
turn Off, it will perform turning off the relay and pass the signal to the SystemRegulator_CS
in Figure A.8 by means of the synchronized channel realDone, and arrives at the location
RelayOff.

Otherwise, if it needs to be turned on, it requires to be turned off at first. The transition between
the location RelayOn and the location RelayOff performs with intention to turn off the relay

105



APPENDIX A. CLIMATE CONTROLLER

before the On trigger being activated. It must wait for more than minOfftime, then can receive
the synchronized input signal Ron in order to stimulate the On trigger. During that transition, it
calculates ontime by means of the function CalOntime with three parameters sut_RcDemand,
period, preRuntime, and resets the local clock x as well. After being turned on more than the
required on time ontime, it sends realDone to the SystemRegulator_CS, and assigns relay has
being turned on (relay = 1), and then goes back to RelayOn.

However, it may also receive the Roff signal to activate the Off trigger in the location RelayOff.

285 //−−−−−−−−−−Global declaration for the "Relay_CS"−−−−−−−−−−−−−−−−
286 const int preRuntime = 1; const int minOfftime = 1;
287

288 int relay = 1; // 0 represents the " off " status of the relay
289 // 1 represents the "on" status of the relay
290 int ontime = 0; // relay ontime
291

292 chan realDone;
293

294 //−−−−−−−−−−Local declaration for the "Relay_CS"−−−−−−−−−−−−−−−−
295 clock x;
296

297 int CalOntime(int demand, int cycletime , int pretime) {
298 ontime = 0;
299 ontime = (demand * cycletime) + pretime ;
300 return ontime;
301 }

A.3 Temperature Curve

As is described in the system specification, the temperature curve helps to calculate the current
day’s temperature setpoint. It is written in C.

The following we present the C code. It describes the way to draw temperature curve based on
the eight previously given temperature points.

302

303 int main() {
304

305 int i , j , points =8;
306 int day;
307 float tempCurve[8][2]={{3, 35}, {8, 31}, {13, 29}, {24, 27}, {31, 24}, {35, 23}, {37, 21}, {43,

18}};
308 float x0, y0, x1, y1, day, temp; // "temp" represents temperature
309

310 /*
311 // get the points manually
312
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313 printf ("The eight given points are :\ n") ;
314

315 for ( i=0; i<points; i++)
316 {
317

318 printf ("tempCurve[%d][0]=", i);
319 scanf("%f", &tempCurve[i][0]);
320

321 printf ("tempCurve[%d][1]=", i);
322 scanf("%f", &tempCurve[i][1]);
323

324 }
325 */
326 /* print out all the points */
327

328 printf ("The following is the first 100 points in the curve:\n") ;
329

330 for ( i=0; i<100; i++)
331 {
332

333 day = i+1;
334 printf ("Day: %d", day);
335 printf (" ");
336

337 if (day <= tempCurve[0][0]){
338

339 temp = tempCurve[0][1];
340 printf ("Temperature: %f\n", temp);
341

342 }
343

344 if (day >= tempCurve[7][0]){
345

346 temp = tempCurve[7][1];
347 printf ("Temperature: %f\n", temp);
348

349 }
350

351 if ((day > tempCurve[0][0]) && (day < tempCurve[7][0])){
352

353 j=0;
354

355 while(day > tempCurve[j ][0]) {
356

357 j++;
358

359 }
360

361

362 x0 = tempCurve[j−1][0];
363 y0 = tempCurve[j−1][1];
364

365 x1 = tempCurve[j ][0];
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366 y1 = tempCurve[j ][1];
367

368 temp = (y1−y0)*day/(x1−x0) + (x1*y0−y1*x0)/(x1−x0);
369 printf ("Temperature: %f\n", temp);
370

371 }
372

373 }
374

375 getch () ;
376 return 0;
377 }

A.4 Model checking

The model will be used for testing. Its properties need to be verified. As it is mentioned above,
this model contains many nondeterministic actions. For example, one of the transitions with
the channel named UserOffset in the template Userhandler_CS as shown in Figure A.6, each
time when it’s enabled, env_UOffSet nondeterministically chooses one integer value from its
domain which starts from −10 to 10. So many nondeterministic reasons will cause magnifying
of the explored state space undoubtedly, which may lead to unexpected result like unlimited
consuming time and so on.

With the testing purpose, we design the model in flexible way. See Figure A.6, for instance, the
channel labeled UserOffset. The selection action during this transition does not directly pick
up integer from the domain of the variable of user offset.

As shown in Figure A.6, in the UserOffset transition, the variable i supposes to make the
selection directly from −10 to 10, which is the domain of the user offset. Instead of that , we
develop a new way. See the code section below, first, we define a new type called Type_UOffset
represents the integer with the domain −10 to 10. And then we define another new type
VType_UOffSet which is also a integer type but with the range between 0 to 20. An array
UOffSet is bound with the type Type_UOffset. I.e, UOffSet [0] = −10, UOffSet [20] = 10.

So when performing the selecting action, the variable i is nondeterministically assigned with
one of the integers according to the declaration of the VType_UOffSet. And it turns to decide
which element in the array UOffSet to take by means of the UOffSet[i], then the system assigns
it to the environment variable env_UOffSet.

This design is suitable for the testing and verification purpose. It is really flexible to reduce the
state space through changing the size of the VType_UOffSet into a small amount e.g. from 0 to
2 with 3 elements, so that the size of the array is lowered down as well. I.e, UOffSet [0] = −10,
UOffSet [4] = −10.
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378 //−−−−−−−−−−Global declaration for the "Userhandler_CS"−−−−−−−−−−−−−−−−
379

380

381 //−−−−userOffSet−−−−−
382

383 typedef int[−10, 10] Type_UOffset;
384

385 typedef int [0, 4] VType_UOffSet;
386

387 // typedef int [0, 20] VType_UOffSet;
388

389 // const Type_UOffset UOffSet[21]={−10, −9, −8, −7, −6, −5, −4, −3,
390 −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
391 const Type_UOffset UOffSet[5]={−10, −5, 0, 5, 10};
392

393 Type_UOffset env_UOffSet ; Type_UOffset sut_UOffSet ;
394

395

396 //−−−−measured temperature−−−−−
397

398 typedef int [0, 2] VType_TempMea;
399

400 typedef int [0, 40] Type_TempMea;
401

402 // typedef int [0, 40] VType_TempMea;
403

404 // const Type_TempMea MeaTemp[41]={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
405 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
406 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40};
407

408 const Type_TempMea MeaTemp[3]={0, 20, 40};
409

410 Type_TempMea env_TempMea = 0;
411

412 Type_TempMea sut_TempMea = 0;
413

414

415 //−−−−cool setpoint−−−−−−
416

417 typedef int [0, 20] Type_CoolSetPoint;
418

419 typedef int [0,2] VType_CoolSetPoint;
420

421 // typedef int [0, 20] VType_CoolSetPoint;
422

423 // const Type_CoolSetPoint CoolSetPo[21]={0, 1, 2, 3, 4, 5, 6, 7, 8,
424 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
425

426 const Type_CoolSetPoint CoolSetPo[3]={0, 10, 20};
427

428 Type_CoolSetPoint env_CoolSetPoint;
429
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430 Type_CoolSetPoint sut_CoolSetPoint ;

The first query formula we proposed is "A[]not deadlock". It assumes that deadlock should
never happen. For the memory reason, we run it in the cs.aau.dk server. But until now that
query can not finish within one hours.
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