
Building Graphical Promela
Models using UPPAAL GUI

Master’s Thesis Report

by

Vasu Hossaholal Lingegowda
Software Systems Engineering

Group: B2-201

under the guidance of

Dr. Alexandre David

Department of Computer Science
Aalborg University, Aalborg

Spring 2006

Abstract

The report proposes a new graphical input specification language g-Promela for
SPIN model checker. Basic features of PROMELA language are defined using
the formal syntax of graphical elements as an extension of labeled transition sys-
tems. The labels are specified with valid PROMELA statements. To facilitate the
handling of g-Promela specifications, we have sketched the design of the Graph-
ical Promela Interface(GPI) toolset, which is built upon the existing UPPAAL
GUI. The graphical models are then translated to textual PROMELA to verify
temporal properties using SPIN engine in the background. The translation is
automated by building a parser which is part of the adapter tool built between
the User Interface and SPIN engine. As a prime example, peterson’s Mutual
Exclusion Algorithm is modeled and verified.

Acknowledgements

I would like to express my gratitude to the people who supported me during
the preparation of this thesis. Professor Alexandre David always had time for
patiently supervising my work. I did benefit from his valuable support and guid-
ance, and from many fruitful discussions. Finally, no part of my studies had been
possible without the generous support from my parents. Thank you all!

Contents

1 Introduction 6
1.1 Overview . 6
1.2 Model Checking . 6
1.3 Comparison of Model Checking tools 8

1.3.1 SPIN . 8
1.3.2 UPPAAL . 9

1.4 Related Work . 11
1.5 Outline . 12

2 g-Promela language description 13
2.1 PROMELA language summary 13

2.1.1 PROMELA Model . 14
2.1.2 Executability of statements 14
2.1.3 Processes . 15
2.1.4 The init process . 15
2.1.5 Message channels . 16
2.1.6 Variables and datatypes 16
2.1.7 Expressions and Declarations 16
2.1.8 Atomic statement . 17
2.1.9 IF..FI selection . 17
2.1.10 DO..OD repetition . 18
2.1.11 Other commands . 18
2.1.12 PROMELA Example . 19

2.2 Informal Description of g-Promela 19
2.2.1 Modeling . 19

2.3 Basic Definitions . 21
2.4 Formal Syntax . 22

2.4.1 Syntax of PROMELA Model 22
2.4.2 Syntax of g-Promela Model 24

2.5 Trace Semantics . 25

3

3 Translation from g-Promela to PROMELA model 27
3.1 Modeling . 27

3.1.1 Mutual exclusion algorithm 27
3.2 Translation . 29

4 Implementation 31
4.1 Architecture of GPI tool . 31
4.2 Adapter . 32
4.3 Verification of the system’s correctness properties 34

4.3.1 Types of properties . 34
4.3.2 Verification steps in SPIN 36

5 Conclusion and Future Work 37

Appendix 38

A Generated PROMELA model 39
A.1 Example: Mutual Exclusion Algorithm 39

Bibliography 39

List of Figures

2.1 Example of g-Promela model to compute GCD 20

3.1 g-Promela Model: Template User 28

4.1 Architecture . 31

Chapter 1

Introduction

1.1 Overview

The work presented in this report aims at providing a graphical specification
language to model checker SPIN [1] and a tool editor for building and verify-
ing the correctness of graphical models. SPIN is a tool for analyzing the logical
consistency of concurrent systems, specially data communication protocols. The
system is described in PROMELA [2], a textual based modeling language having
c-like syntax. Inspired by easy-to-use graphical based tools such as UPPAAL
[3, 4], we propose a graphical approach equivalent to textual PROMELA.

The newly defined graphical specification language is called g-Promela. The
models are based on the formal models of LTS and is then mapped to an imple-
mentation (a textual PROMELA program). Formal rules are defined for transla-
tion from LTS model to generate a PROMELA specification that can be input to
the SPIN model checker to verify a wide range of properties. To define the formal
syntax and semantics for the graphical elements, we use the existing graphical
notations of UPPAAL. Tools such as UPPAAL with their interactive, easy to use
graphical interface and use of the extended version of Labeled Transition Systems
(LTS) with clocks and invariants (called Timed Automata [5]) have gained wide
acceptance in recent years. The reasons the selecting SPIN and UPPAAL out of
various existing tools is given in the subsequent section after a brief introduction
for model checking in general.

1.2 Model Checking

As defined by Clarke & Emerson in 1981, Model checking is ”an automated tech-
nique that given a finite-state model of a system and a logical property, system-

6

atically checks whether this property holds for that model”. Model Checking is
mostly employed in verification and validation of concurrent processes, communi-
cation protocols and reactive systems. It has several advantages over traditional
approaches to these kind of problems such as simulation, testing and deductive
reasoning. Popular tools include: SPIN, Design/CPN, UPPAAL, NUSMV2 and
Kronos.

Model checking limits itself to systems where decidability is guaranteed (e.g.
systems with only a finite number of state bits). Given sufficient amount of time
and memory, a model checking tool is guaranteed to terminate with a YES/NO
answer. Instances of finite state systems handled with model checking include
e.g. hardware controllers and communication protocols. In some cases bugs can
be found from infinite state systems by restricting them to finite state ones. One
can for example model message FIFOs of infinite size with bounded size FIFOs,
and still find some of the bugs bugs which appear in the (harder) infinite-state
case. Note that if no bugs are found in the finite-state version, that does not
mean that the infinite-state version is correct!
In model checking process the following phase can be identified:

• Modeling - How to model the system in a way acceptable from a model
checking perspective.

• Specification - What properties should the system satisfy? Most model
checkers use temporal logic to specify the properties.

• Verification - Push the “model check” button. In practice life is not this
easy, and analysis of the model checking results is needed. If for example a
property does not hold, where does the bug exist? Model checkers produce
counterexamples which help in locating the bug. The bug might also be
in the specification or in the system model, so these must be analyzed
carefully.

With main focus to validate and verify common design flaws in distributed sys-
tems such as deadlock, livelock, underspecification, overspecification, violations
of constraints and real-time performances, there are wide variety of Model check-
ing tools available. Selecting the right tool for the job is sometimes hard. In the
next sub-sections, a survey of various popular tools has been discussed. SPIN
and UPPAAL are discussed and compared in greater detail as both act as prime
tools in the report.

7

1.3 Comparison of Model Checking tools

1.3.1 SPIN

SPIN is a widely distributed software package that supports the formal verifi-
cation of distributed systems. The software was developed at Bell Labs in the
formal methods and verification group starting in 1980 and since then targets
only efficient software verification and not hardware verification.

SPIN uses a high level language to specify systems descriptions, called PROMELA
(PROcess MEta LAnguage). SPIN has been used to trace logical design errors
in distributed systems design, such as operating systems, data communications
protocols, switching systems, concurrent algorithms, railway signaling protocols,
etc. The tool checks the logical consistency of a specification. It reports on
deadlocks, unspecified receptions, flags incompleteness, race conditions, and un-
warranted assumptions about the relative speeds of processes.

SPIN works on-the-fly, which means that it avoids the need to construct of a
global state graph, or a Kripke structure, as a prerequisite for the verification of
any system properties.

SPIN can be used as a full LTL model checking system, supporting all correctness
requirements expressible in linear time temporal logic, but it can also be used as
an efficient on-the-fly verifier for more basic safety and liveness properties. Many
of the latter properties can be expressed, and verified, without the use of LTL.
Correctness properties can be specified as system or process invariants (using as-
sertions), or as general linear temporal logic requirements (LTL), either directly
in the syntax of LTL, or indirectly as Büchi Automata (called never claims).

SPIN supports both rendezvous and buffered message passing, and communi-
cation through shared memory. Mixed systems, using both synchronous and
asynchronous communications, are also supported. Message channel identifiers
for both rendezvous and buffered channels, can be passed from one process to
another in messages.

SPIN supports random, interactive and guided simulation, and both exhaustive
and partial proof techniques. The tool is meant to scale smoothly with problem
size, and is specifically designed to handle even very large problem sizes. To
optimize the verification runs, the tool exploits efficient partial order reduction
techniques, and (optionally) BDD-like storage techniques.

SPIN can be used in three basic modes:

8

1. as a simulator, allowing for rapid prototyping with a random, guided, or
interactive simulations

2. as an exhaustive state space analyzer, capable of rigorously proving the
validity of user specified correctness requirements (using partial order re-
duction theory to optimize the search)

3. as a bit-state space analyzer that can validate even very large protocol
systems with maximal coverage of the state space (a proof approximation
technique).

1.3.2 UPPAAL

UPPAAL is a tool for modeling, simulation and verification of real-time systems.
UPPAAL is developed jointly by Uppsala University and Aalborg University.
UPPAAL usage is appropriate for systems that can be modeled as a collection of
non-deterministic processes with finite control structure and real valued clocks,
communicating through channels or shared variables. The verification is done
by automatic model-checker engine. Using UPPAAL we can construct abstract
models of any system, simulate its dynamic behavior, specify and verify its safety
and bounded liveness properties which can be useful to analyse and design em-
bedded systems and real time systems. It consists of two main parts: a graphical
user interface and a model-checker engine. It requires that Java 1.5 is installed
on the computer. The engine part is by default executed on the same computer
as the user interface, but can also run on a more powerful server.

UPPAAL has three main utilities: a description language, a simulator, and a
model-checker. The description language is useful to represent the system as col-
lection of inter related Timed Automata. Description language also has several
data variables which can be applied on these Timed Automata designed with its
help. The simulator and verifier are useful to graphically analyse the system be-
havior by considering various constraints on state space generated by the system.
The simulator graphically represents the system behavior, it represents each and
every transition the system took and the corresponding values for each transition.
Verifier on the other hand is useful to check the properties of the system. In the
query box we can verify any property whether its satisfiable or not for the whole
state space generated by the system.

The following list summaries the selected features for comparison of SPIN and
UPPAAL tool with related verification systems.

9

SPIN

• Modeling formalism: Promela language, systems can be seen as a set of
synchronized extended finite state machines

• Model Checkers: on-the-fly LTL, safety through assertions, LTL to Büchi
translation

• Other features: partial order reductions and bit-state hashing can be com-
bined with LTL model checking, model slicing

• Comments: Very fast state space generation, fast partial order reduction
algorithm,hash table stored in physical memory (instead of on a file on
hard-disk). Has a primitive user interface XSPIN to display the random
traces.

• Suggested uses: Modeling of communication protocols, LTL model checker

UPPAAL

• Modeling formalism: Networks of Timed Automata

• Model Checkers: subset of CTL(Computation tree logic)

• Other features: clocks, integer variables, structured data types & channel
synchronization

• Comments: ported to different platforms and in constant development of
various flavors such as cost-UPPAAL, distributed-UPPAAL,T-UPPAAL.

• Suggested uses: communication protocols, multimedia applications

NUSMV2

• Modeling formalism: SMV input language, a simple circuit description lan-
guage

• Model Checkers: BDD based CTL and LTL model checkers (under fairness),
bounded model checking with LTL (including past operators).

• Other features: Deadlock checking, computing the number of reachable
states, simulation

• Comments: A strong BDD based CTL model checker (a SMV rewrite), a
reasonable bounded LTL model checker

• Suggested uses: verifying digital circuits (or systems easily modeled as cir-
cuits), CTL under fairness model checking, bounded model checking

10

MARIA

• Modeling formalism: Algebraic Petri nets (including P/T-nets)

• Model Checkers: on-the-fly LTL model checking under (strong and weak)
fairness, safety

• Other features: extensive support for structured data types, parallel safety
model checker

• Comments: useful for systems with complex data manipulations, uses disk
to manage larger state spaces

• Suggested uses: systems with lots of fairness constraints, as a back-end for
programming languages (data type support eases this tremendously)

SPIN vs UPPAAL

Both the tools are quite popular and have been used to detect design errors in
applications from many different domains. Both the tools has a different input
language. SPIN’s input language, PROMELA, is a state-based, imperative lan-
guage. Whereas, UPPAAL’s input language is a specific class of timed automata,
combining both action-based and state-based features. Both the specification
languages used for systems verification are mainly focused on the specification
of process interaction at the system level. Each tool handles time differently
but, has a similar temporal logic for expressing properties of a model: SPIN uses
LTL while UPPAAL uses TCTL respectively. Each of these tools use a different
strategy for verification: SPIN does model checking on-the-fly. UPPAAL checks
invariant and liveness properties by on-the-fly exploration of the state space of a
system in terms of symbolic states represented by constraints.

1.4 Related Work

Recent technical developments have made concurrent behavior to be animated,
mechanically analyzed and then verified automatically by making design models
visual. v-Promela, a visual object-oriented language interface for SPIN also rec-
onciles Promela with graphical notations for design of concurrent systems using
UML-RT and ROOM. It introduces a graphical notation to describe both the
behavior and structure of a system in a hierarchical fashion [6]. Attempts have
been made to translate UML activity diagrams and state charts to PROMELA
code. [7]
SPIN also serves as a background engine in many other tools, e.g.:PEP, Bandera
[8], Java Pathfinder-1, Approve, VIP, JSPIN.

11

1.5 Outline

The remainder of the report is structured as follows. Chapter 2 defines the syntax
and semantics of graphical elements introduced in g-Promela language. Chapter 3
details rules that effective translation of g-Promela models into PROMELA and
presents some examples of property verifications. In Chapter 4, describes the
implementation of the adapter tool which communicates between the Graphical
Promela Interface(GPI) and the verification engine - SPIN. The last chapter
outlines conclusion and hints future work.

12

Chapter 2

g-Promela language description

g-Promela is a the graphical description language. It is a non-deterministic
guarded command language with data types and is defined as a extended la-
belled transition system. g-Promela language features are discussed by defining
the syntax of the graphical elements introduced and also of the basic textual con-
structs inherited from PROMELA. Since g-Promela language inherits the basic
structure of the model, constructs, syntax and semantics of traditional textual
Promela language, we start with a brief summary of the structure of Promela
language constructs.

2.1 PROMELA language summary

The Spin Model Checker have been developed for the analysis and verification
of communication protocols. Its input language syntax is derived from C and
control statements based on Dijkstra’s guarded commands. Also it uses the de-
notations for communications from Hoare’s CSP language: the send operator is
represented by an exclamation mark and the receiver operator is represented by
an question mark [9, 10].

In Promela, system components are modeled as processes that can communicate
via channels either by buffered message exchanges or rendez-vous operations, and
also through shared memory represented as global variables. The execution of
statements is asynchronous and interleaved, which means that in every step only
one enabled action is performed, without any assumptions of the relative speed
of process executions.

Given as input a Promela model, Spin generates a C program that performs
a verification of the system by scanning the state space using a depth-first search
(DFS) algorithm. This way, both safety properties such as absence of deadlock,
unspecified message receptions, invalid end states and assertions can be checked,

13

as well as liveness properties such as non-progress cycles and eventual reception
of messages. The so-called never claims, which are best seen as monitoring pro-
cesses that run in lock step with the rest of the system, are the most general
way to express properties in Spin. Being Buchi Automata, they can express ar-
bitrary omega-regular properties. Spin provides an automatic translator from
formulae in linear-time temporal logic (LTL) to never claims. When errors are
reported, the trace of actions leading to an invalid state or cycle is saved, so that
the erroneous sequence can be replayed as a guided simulation. For large state
spaces methods, Spin features state-vector compressing, partial-order reduction
and bit-state hashing. The following sub-sections of this report, introduces the
primitive language features of textual PROMELA.

2.1.1 PROMELA Model

Promela is a language developed mainly to be used for specifying and validating
protocol models. On a given layer of a protocol there is a need for specifying pro-
cedure rules in a formal way in order to describe the service provided at the layer.
Promela is able to specify and verify the procedure rules. Note that the Promela
language is an abstraction of the protocol so only the model is validated. The
model describes the interaction of processes in a distributed system but does not
deal with implementation details such as how a message is transmitted, encoded
or stored.

By concentrating on the design of the interactions between processes, the foun-
dation of the protocol can be validated without worrying about minor details.
The model should be as simple as possible but also sufficiently detailed to rep-
resent all types of coordination problems that might occur in distributed systems.

The Promela language uses three types of objects when defining validation mod-
els:

• processes

• message channels

• state variables

All processes are global objects, whereas variables and channels can be either
global or local to a process.

2.1.2 Executability of statements

Concerning executability in Promela there is no difference between conditions and
statements. All statements have a truth value of the statement’s executability.

14

This means that all statements are either executable or blocked, depending on
the current values of variables or the contents of message channels. Some state-
ments are always executable such as assignments and declarations. The following
examples should explain this very important feature of Promela.

a == b; printf(”Promela execution blocked”)

If the value of variable a is equal to the value of variable b the printf command
is executed. If it is false, the process will in this case block and wait for an event
to happen in another process until the condition (a == b) becomes executable
(true).

a=b; printf(”Promela rules”’)

In this example the first statement is evaluated for its executability. But since it
is an assignment, which is always executable the printf command can be executed.

2.1.3 Processes

In order to execute a process it must be named, its type defined and instantiated.

proctype A() { byte state; state = 3 }

The process above declares a process named A with a local variable state that
is assigned to 3. A is of type proctype, which defines all types of processes that
can be instantiated. A proctype definition only declares process behavior. A
process execution can be started from the init process or from another process.
All processes are however children of the init process, which will be described
next.

2.1.4 The init process

Initially just one process is executed, the init process. The init process can start
processes. These processes can then again start new processes, which will run
concurrently with the other processes, but the init process is the root of all the
processes. The init process is comparable to the main() function in a C program.

init { run A(); run B() }

The init process above starts two processes A and B, which will run concurrently.

15

2.1.5 Message channels

Message channels are used to model the transfer of data from one process to
another.

chan qname = [3] of { int }

The statement above initializes a channel qname that can store up to 3 mes-
sages of the type int in a queue structure (first-in first-out). The statement

qname!expr

sends the value of the expression expr to the channel queue. The statement

qname?msg

retrieves a message from the head of the queue and stores it in the variable
msg. This form of communication is asynchronous communication. Promela can
also handle synchronous communication in cases where a channel doesn’t contain
a queue for storing messages. In such a case transmission can occur only when a
channel is used for sending and receiving simultaneously.

2.1.6 Variables and datatypes

A variable can be one of the following nine predefined data types:

Type Range of values

bit 0,1
bool false,true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short –215 .. 215 – 1
int –231 .. 231 – 1
unsigned 0 .. 2n – 1

2.1.7 Expressions and Declarations

The expression syntax of PROMELA and UPPAAL coincides with that of C
language. Hence, g-Promela also uses C-like expression language. The lexical el-
ements, or tokens of these two languages are identifiers, keywords, constants,

16

operator symbols, and punctuations. As in PROMELA language, processes,
channels, variables, etc must be declared before they can be used. Variables
and channels can be declared either locally, within a process, or globally. A pro-
cess can only be declared globally in a proctype declaration. Local declarations
may appear anywhere in a process body. A local variable can be referenced from
its point of declaration to the end of the proctype body in which it appears, even
when it appears in a nested block (i.e., a piece of code enclosed in curly braces).

2.1.8 Atomic statement

In Promela atomic sequences can be used. A sequence of statements enclosed in
parentheses prefixed with the keyword atomic indicates that the sequence is to
be executed as one indivisible unit, non-interleaved with other processes. Atomic
sequences is described with the following example.

byte state = 1;
proctype A() { atomic { (state == 1)− > state = state + 1 } }
proctype B() { atomic { (state == 1)− > state = state− 1 } }
init { run A(); run B() }

Both processes uses the global variable state. The final value would in this
case be either 0 or 2, because the sequences in both processes is executed atomic.
Had the sequences of A and B not been executed atomic both processes can pass
the condition simultaneously and the variable state could be incremented and
decremented and the final value of state would therefore be unpredictable since
it could be both 0,1 or 2.

2.1.9 IF..FI selection

The Promela language also contains a CASE selection structure. The following
is an example of such a structure.

if
:: (a != b) − > option1
:: (a == b) − > option2
fi

Only one sequence from the list is executed but the first statement, called a
guard must be executable. As described in section A.1 a guard can also be as
statement like for instance an assignment. More than one guard can be exe-
cutable. If this is the case one of the sequences is selected at random. If none of

17

the guards are executable, the process blocks until at least one of them can be
selected.

2.1.10 DO..OD repetition

Repetition is supported using a do..od construction. This construction is basically
an IF..FI selection that loops until a BREAK command is met. The following
example randomly increments or decrements the variable count.

byte count;
proctype counter()
{
do
:: count = count + 1
:: count = count - 1
:: (count == 0) − > break
od
}

After one of the options is completed the structure is repeated until the break
statement is reached. When the count variable has the value 0 the break state-
ment can be executed but it is not necessarily executed since the first two options
still can be executed.

2.1.11 Other commands

Promela also includes the goto statement which causes a jump unconditional to
a named label.

The timeout statement allows a process to abort when waiting for a condition
that can no longer become true, for example an input from an empty channel. It
can be considered an artificial, predefined condition that becomes true only when
no other statements in the distributed system are executable.

18

2.1.12 PROMELA Example

active proctype gcd(int x, y) {
L: if

:: (x > y) − > x = x-y; goto L

:: (x < y) − > y = y-x; goto L

:: (x == y) − > assert(x == y);

fi;

printf("gcd = %d\n", x)

}

2.2 Informal Description of g-Promela

This section presents an informal description of g-Promela model based on a sim-
ple example. The newly defined graphical modeling language based on transi-
tion system is formally introduced and then equipped it with trace-based formal
semantics. This semantics describes the specification language that allows for
safety and reachability. We have used the existing UPPAAL GUI as the basis for
Graphical Promela Interface(GPI) development for various reasons discussed in
chapter 1. We then elaborate this and give the formal syntax and semantics for
g-Promela models.

2.2.1 Modeling

Modeling of g-Promela models, is done in Graphical Promela Interface, which
uses the existing graphical components of UPPAAL. As an example, the textual
representation of the model to compute greatest common divisor(GCD) speci-
fied in section 2.1.11 and its equivalent graphical system description is given in
[fig 2.1]. The textual format (i.e., .pml) is the actual PROMELA specification
language. The g-Promela description language proposed supports only modeling
of simple PROMELA models. As described in chapter 2, there are various kinds
of language features and different ways to model the same problem description
in PROMELA language like in C and other high-level programming languages.
The init process can be complemented with active processes. The case selection
structure of if..fi and repetition do..od constructions can be represented by labeled
goto statements. The current implementation supports only active processes and
uses labeled goto statement when a valid transition occurs from one location to
the next location.

Locations

Consider the g-Promela model of [fig 2.1]. The model consists of a single process
gcd with control nodes and/or locations S0, S1, S2, S3, S4, S5. In addition to

19

Figure 2.1: Example of g-Promela model to compute GCD

these discrete control structures, the model uses two integer variables x and y.

Guards

A guard is a boolean expression enabling a transition. In [fig 2.1] the edge between
S0 and S1 can only be taken, when the value of the integer variable x is greater
than y. Similarly the edge between S0 and S3 can only be taken when the value
of the integer variable x equals y. Formally, guards are data constraint and is of
a similar form i v j or i - j v k but with k being an arbitrary integer and v∈ {<
, <=, ==, >=, >}. In general, the language used to define the expressions in the
guards are defined using the PROMELA language. The syntax of PROMELA
for simple expressions and assignments is similar to the syntax of C and C++.
The default guard of an edge is true.

Edges

The edges of the automata are decorated with three types of labels: a guard,
expressing a condition on the values of integer and boolean variables that must
be satisfied in order for the edge to be taken; a synchronization action which is
performed when the edge is taken and assignments to integer variables. All three
types of labels are optional.

UPPAAL GUI also has it’s control node decorated with invariants, which are
conditions expressing constraints on the clock values in order for control to re-

20

main in a particular node. This label is not considered and simply needs to be
ignored while building g-Promela models as by default, SPIN doesn’t have the
notion of time in terms of clock constraints. Though clocks can be simulated in
normal PROMELA models as shown in [] and attempts like in RT-SPIN [] to
include features of clock, the models considered in this report doesn’t support
clocks and it’s declarations.

Templates

Each process in a system is an instance of a template. A template consists
of an automaton with locations, edges, guards and actions. The template also
has formal parameters that can be replaced with actual channels, variables, and
constants when the template is instantiated as a process. The motivation for the
templates is that systems often have several processes that are very alike.

2.3 Basic Definitions

A common framework for the representation of distributed and concurrent sys-
tems is provided by the concept of transition systems. A transition system spec-
ifies the allowed evolutions of the system: starting from some initial state, the
system evolves by performing actions that take the system to a new state. It’s
also called Kripke structure, in honor of the logician Saul A. Kripke who used
transition systems to define the semantics of modal logics.

Definition 2.3.1 (Transition Systems) A transition system is a tuple 〈S, Act,→, I〉
where

• S is a set of states,

• Act is a set of actions,

• →⊆ S × Act × S is a transition relation,

• I ⊆ S is a set of initial states.

where S and Act are finite or countably infinite.

Definition 2.3.2 (Actions) Let Chan be a finite set of channels, ranged over
by c. We define Act to be a finite set of actions ranged over by a. For each
channel in Chan we define two actions such that Act={c!| c ∈ Chan }

⋃
{c?| c

∈ Chan}.We define a complement operator :̄ Act → Act as c̄!=c? and c̄?=c!.

21

Definition 2.3.3 (Labeled Transition Systems) A labeled transition sys-
tem relates the triple 〈S, `,→〉 in the following way.

• S is a set of states,

• ` is a set of labels, and

• → is a set of transitions →⊆ S× `× S.

• If (S1, α, S2) ∈→ we write S1 → S2

2.4 Formal Syntax

2.4.1 Syntax of PROMELA Model

The basis of the Promela model is the notion of classical finite state automata(FSA).
Every PROMELA proctype defines a FSA, (S,s0,L,T,F) as defined below. The set
of states of this automaton S corresponds to the possible points of control within
the proctype. Transition relation T defines the flow of control. The transition
label set L links each transition in T with a specific basic statement that defines
the executability and the effect of that transition. The set of final states F, finally
is defined with the help of PROMELA end-state, accept-state, and progress state
labels. To provide a more expressive model and to ease the modeling task, FSA
is further extended with more general types of data variables such as boolean and
integer variables.

Definition 2.4.1 (Process Automaton) Every Promela proctype defines a
finite state automaton, 〈S, s0, L, T, F 〉, where

• S is a set of states

• s0 is the initial state, s0 ∈ S

• L is a finite set of labels

• T is a set of transitions, T ⊆ S × L × S

• F is a set of final states, F ⊆ S

A label l ∈ L is one of the six basic statements:

• expression // executable if not zero

• assignment // always executable

• assert(expr) // always executable

22

• printf // output statement

• send (ch!) // executable if channel c is not full

• receive (ch?) // executable if channel c is not empty

Other Promela statements serve to specify possible flow of control, i.e. the tran-
sition relation T.

Alternatively, the definition of PROMELA model can be given using abstract
objects such as variables, message channels and asynchronous processes. The
semantics engine operates on these abstract objects to determine how a given
PROMELA model defines system executions, including the rules that apply to
the interleaved execution of process actions.

Definition 2.4.2 (Process) A process is a tuple
〈pid, lvars, lstates, initial, curstate, trans〉 where

• pid is a positive integer that uniquely identifies the process,

• lvars is a finite set of local variables, each with a scope that is restricted to
the process with instantiation number pid,

• lstates is a finite set of integers,

• initial and curstate are elements of set lstates, and

• trans is a finite set of transitions on lstates.

Definition 2.4.3 (System State) A globalsystem state is a tuple of the form
〈gvars, procs, chan, exclusive, handshake, timeout, else, stutter〉 where

• gvars is a finite set of variables with global scope,

• procs is a finite set of processes,

• chans is a finite set of message channels,

• exclusive, and handshake are integers,

• timeout, else and stuter are booleans.

Definition 2.4.4 (Transition) A transition in process P is defined by a tu-
ple 〈tr id, source, target, cond, effect, prty, rv〉 where

23

• tr id is a non-negative integer,

• source and target are elements from set P.lststes(i.e., integers),

• cond is a boolean condition on a global system state

• effect is a function that modifies the global system state

• prty and rv are integers used inside cond and effect definitions to enforce
the semantics of unless constructs and rendezous operations.

2.4.2 Syntax of g-Promela Model

A g-Promela model defines a network of communicating processes with transi-
tions labeled by the communications and other executable Promela statements.
We define formal syntax of these g-Promela models as a parallel composition
of processes. For simplicity, we assume a set of labels Labels that ranges over
syntactically correct assignments, guards and synchronization labels. As a well-
formedness condition, labels are constrained to occur only in appropriate places,
contain only declared variables, and have to respect the variable types.

Definition 2.4.5 (g-Promela Process) An g-Promela process A is a tuple
〈L, T, Type, l0〉, where

• L is a set of locations,

• T is a set of transitions l
g,s,a−→ l′, where l, l′∈ L, g is a guard, s is a

synchronization label optional , and a is an assignment possibly empty, and

• l0 ∈ L is the initial location.

We use the following access functions to refer to guards, synchronizations, and
assignments.

• Guard : T → Labels maps to the guard of a transition (possibly constant
true),

• Sync : T → Labels ∪{φ} maps to the synchronization label of a transition
(if any), and

• Assign : T → Labels ∪{φ} maps to the assignment associated with a tran-
sition (possibly the empty assignment).

Definition 2.4.6 (g-Promela Model) A g-Promela model is a tuple
〈

~A, V ars, Channels
〉
,

where

24

• ~A is a vector of processes A1, ..., An;
We use the index i to refer to Ai-specific parts Li, Ti, T ypei, andl0i ,

• Vars is a set of variables, i.e., integers and arrays,

• Channels is a set of synchronization and buffered channels, Channels ∩V ars =
φ,

Definition 2.4.7 (Configuration) A configuration of a g-Promela model〈
~A, V ars, Channels, Type

〉
, is a duplate (~l, e), where ~l is a vector of locations

and e is the environment for discrete variables i.e.:

• ~l = (l1, ..., ln), where li ∈ Li is a location of process Ai (called control situ-
ation) and

• e: Vars → (Z)∗ maps every variable v to a value (if int(v)) or a tuple of
values(in case of array(v))

2.5 Trace Semantics

The operational semantics of concurrent processes can be given in terms of au-
tomata commonly termed as Labeled Transition System. Informally, an automa-
ton is constructed using locations connected with edges. A state of the system
is determined by the current location of each process and the values of the data
variables. A transition from one state to the next follows an edge in one or two
processes and updates the variables according to the assignment label(s) of the
edge(s). To control when to fire a transition, it is possible to use guards and syn-
chronizations. A guard is a condition on the variables saying when a transition
is enabled. The synchronization mechanism in g-Promela allows two processes
to perform a hand-shaking synchronisation. If two processes have enabled tran-
sitions with complementary synchronisation labels, e.g. a! and a?, they may
take a compound transition. In a synchronisation both processes will change
location simultaneously. When taking a transition assignments of variables and
other basic executable statements are possible as actions. LTS used for modeling
the behavior of a program also gives us the relation with linear temporal logic, as
consequence of the fact that every LTL formula can be translated into a specific
class of labeled transition systems, known as Buchi automata. The formal se-
mantics of the g-Promela models in terms of an operational model with processes
defined as transition systems (i.e., automata) is given below.

g-Promela models evolve according to legal action steps and the compendium
of all legal steps defines the behavior of the model and is formulated as simple
and synchronized action steps. To modify the control situation ~l, we use the

25

notation ~l[l′/li] to indicate that at position i, li was replaced by l′i and other po-
sitions did not change. We use the notation e |=loc Φ to indicate that a boolean
expression Φ holds true under the evaluation e for the contained variables, and
(~l, e) |=loc Φ analogously in the case that Φ contains expressions of the form Ai.li
denoting that process Ai is in location li.

Definition 2.5.1 (Simple Action Step) For a configuration (~l, e), a simple

action step is enabled, if there is a transition li
g,a−→ l′i ∈ Ti, li in ~l, such that

e |=loc g.

Definition 2.5.2 (Synchronized Action Step) For a configuration (~l, e), a
synchronized action step is enabled, iff for a channel b there exist two transitions

li
gi,b!,ai−→ l′i ∈ T, and lj

gj ,b?,aj−→ l′j ∈ T, li, Lj in ~l, i 6= j such that e |=loc gi ∧ gj.

26

Chapter 3

Translation from g-Promela to
PROMELA model

3.1 Modeling

3.1.1 Mutual exclusion algorithm

To build a g-Promela model as an automaton, we study Petterson’s mutual ex-
clusion algorithm as an example. In the mutual exclusion problem, there is a
collection of asynchronous processes. Each process contains a distinct part of
the code called a critical section (or region). The process’s remaining code is
referred to as a noncritical section (or region). Each process alternately executes
its noncritical and critical sections. Processes can proceed in parallel outside of
the critical section but only one process at a time can execute the critical section.

The algorithm for two processes in textual PROMELA is as follows :

proctype User1 proctype User2

assert(pid==0 || pid==1); assert(pid==0 || pid==1);
req[1]=1; req[2]=1;
turn= pid; turn=1- pid;
(req[1 - pid] == 0 || turn == 1 - pid); (req[pid] == 0 || turn == pid);
//critical section //critical section
job1(); job2();
req[1]=0; req[2]=0;

// pid is a called process instantiation number which records the instantia-
tion number of the current running process and its value can range from 0 to 255.
In this example, it can take either 0 or 1 as we are considering only two processes.

27

The global array variable req[n] is associated with each process. When a process

Figure 3.1: g-Promela Model: Template User

want to enter the critical section it sets its req variable. The protocol also uses
the global variable turn that helps the processes to alternate their access to the
critical section so they get a fair share. As per the rules for executability, de-
pending on the system state, any statement in a SPIN model is either executable
or blocked i.e., if a process reaches a point in its code where it has no executable
statements left to execute, it simply blocks. So, the condition statement blocks
until the other process has left the critical section (if it was there). Notice that
the protocol is symmetric, so we may use as a template and create two instances
of it prefixing active [2] before the proctype declaration. Notice here that the
critical section part of the algorithm is abstracted as we are only interested in
the control structure.
On our way towards a model of the algorithm, we can observe that the algorithm
has four states. We mark them with a notation similar to goto labels as follows:

28

User 1

idle: assert(pid == 0 pid == 1)
req[1]=1;

want: turn= pid;
wait: (req[1 - pid] == 0 turn == 1 - pid);
CS: //critical section

job1();
//and return to idle
req[1]=0;

We now create a new template called User and draw the automaton as depicted
in [fig 3.1]. The location node idle is marked initial to state that it is the starting
point for execution. The transition edge can be edited with condition statement
in guard field, message channel statements for asynchronous communication in
sync field and unconditional executable statements such as print statements and
assignments in update field. Hence, the assert and wait conditions act as guards
for transition from idle to want and wait to cs respectively.

3.2 Translation

Once the model is created, translation and mapping of graphical elements used
in Graphical Promela Interface(GPI) to actual textual PROMELA specification
can be done using the following algorithm:

29

read GPI xml-file
system := find all Transition Systems(TS) from templates, declarations and instantiation
for each TS in system:

write system initializing information for TS
write local declarations
for each outgoing transition in node:

for each guard in location:
write guard

for each synchronization in transition
write synchronization

for each assignment in transition
write code that makes assignments iff transition is chosen

write processes
write init file that initializes global declarations on top and TS as run processes

Firstly, xml file is read and an abstract syntax tree(AST) is returned. Objects
from the information tree is then created and linked together in a hierarchical
structure. When all the information has been read, we have to process the infor-
mation. This step mainly converts template object to process objects, and lists
global declarations by running through all information in xml file and the ele-
ments of a transition system. In the generated system there will be total of n+1
processes, where n is the number of transition systems in the system followed by
an init process.

30

Chapter 4

Implementation

4.1 Architecture of GPI tool

Figure 4.1: Architecture

g-Promela is a graphical notation for automated model analysis. This means
that a comprehensive tool support for g-Promela is needed. As shown in [fig 4.1],

31

Graphical Promela Interface (GPI) is built upon the existing UPPAAL GUI. GPI,
which acts as a client is used for graphical editing g-Promela models and storing
them in an UPPAAL standard XML file. As mentioned in the section [1.3.2], the
UPPAAL GUI is developed using Java 1.5. An adapter is built in between the
GPI and SPIN Engine, which acts as a server. The adapter is also composed of a
Parser. Parser is built using LibXML2 library functions which accepts the model
built in GPI. Server acts as a communication channel and runs the PROMELA
input file on the SPIN executable engine using a ’system’ call. The verification
result from SPIN is directed on to an output file for analysis.

4.2 Adapter

Once the graphical models are built using GPI, the control flows to adapter mod-
ule as shown in the architecture. The adapter module is developed using the C++
programming language ans it constitutes two main modules. The parser module
receives the system file from the GPI and translates it into equivalent textual
PROMELA model. The current version of the tool outputs on to a .pml text
file. The parser module uses libXML2 library functions available for C++ lan-
guage. The pseudocode implementation of the parser is as shown in the next page:

32

proc xmlParse (xmlfile)
begin
string xmltags[]={’declaration’,’template’,’location’, ’transition’, ’instantiation’, ’system’ }
string tokens, xmlLine;
while not EOF
begin while
xmlLine = readline(xmlFile)

tokens = xmlfile getTokens(xmltags,xmlFile)
switch (tokens)
begin case

case declaration:
xmlParse deceleration(xmlLine)

case template:
xmlParse template(xmlLine)

case location:
xmlParse location(xmlLine)

case transition:
xmlParse transition(xmlLine)

case instantiation:
xmlParse instantiation(xmlLine)

case system:
xmlParse system(xmlLine)

end case
end while

end xmlparse

proc xmlParse transition()
begin
string sourceid, targetid, label kind[2], guard, assignment, synchronisation;
if sourceid==targetid then

appendstring(str,’do :: value(guard) ; value(assignment)od’)
else

appendstring(str,’if :: value(guard) ; value(assignment)fi’)
writefile(str, run.pml)
end xmlParse transition

Server aspects to handle the communication protocol are partially inherited from
the existing UPPAAL server. It handles transfer of system data by spooling to
a stream buffer. The main purpose of model analysis is then achieved by trans-
lating g-Promela models to textual PROMELA by switching from edit mode to
verification mode which uses SPIN model checker at the background. Properties
that have been identified will be passed on to SPIN together with PROMELA

33

code. A suitable way of capturing and specifying properties is investigated in
the next section. The analysis results can be fed back to interpret inside GPI
in order to make sense in the context of the original g-promela model. An ad-
ditional validation techniques for g-Promela models can be simulation to trace
and observe individual process instances, data objects and inter-object messages.
These advanced features are left as future work as it is not implemented in the
current version of the GPI tool.

4.3 Verification of the system’s correctness prop-

erties

Having introduced a modeling language for describing protocols this section fo-
cuses on the validation of a model. A complete verification model contains not
just the specification of system behavior but also a formalization of the correctness
requirements that apply to the system. Automata models offer a good formalism
for the analysis of distributed system models. Most relevant to the verification of
asynchronous process systems is a specific branch of temporal logic known as lin-
ear temporal logic, commonly abbreviated as LTL. Strictly speaking, the system
description language PROMELA does not include syntax for the specification of
temporal logic formulae, but SPIN does have a parser for such formulae and it
can machanically translate them into PROMELA syntax, so that LTL can effec-
tively become part of the language that is accepted by SPIN. LTL, however, can
only be used for specifying correctness requirements on PROMELA verification
models. The models themselves cannot be specified in LTL. SPIN’s conversion
algorithm translates LTL formulae into never claims, and it automatically places
labels within the claim to capture the semantics of the ω− regular property that
is expressed in LTL.

4.3.1 Types of properties

Assertion claims

Correctness claims for Promela models can be built up from simple propositions,
where a proposition in a given state is either true or false. Promela uses the
assert (condition) statement which is a boolean condition that must be satisfied
whenever a process reaches a given state. The assert statement is always ex-
ecutable and can be placed anywhere in a Promela model. If the condition is
true the statement has no effect. However if there is an execution sequence in
which the condition is false when the assert statement becomes executable then
the assertion claim fails. This example should show how the assertion claims is
used.

34

bytestate = 1;
proctype A() {(state == 1) − > state = state + 1;
assert (state == 2)}
proctype B() {(state == 1) − > state = state - 1;
assert (state == 0)}
init { run A(); run B()}

In this example assertion claims is inserted after A or B has either incremented
or decremented the variable state. As shown earlier the final value of state is not
2 or 0 for all execution sequences. The final value of state can also be 1, which
means that the assertion claims in this example fails.

System invariant

A more general way of using the assert statement is to use system invariants. For
instance if a boolean condition should be true in the start state of the system and
remain true in all states of the system independently of the execution sequence
that leads to each of the states. In Promela this can be done by creating a mon-
itor process.

proctype monitor(){assert(invariant)}

The monitor process is independent of the rest of the system and can evaluate
the assertion at any time. For every state of the system the assertion statement
is executable. The process must however be initialized and be running in order
to do the correctness check.

Deadlocks

In a finite state system all execution sequences either terminate or cycle back
to a previously visited state. It is necessary to distinguish between expected
and unexpected end-states when execution sequences cycles. The unexpected
end-states includes deadlock states, where processes are waiting for each other
in order to become executable, and error states. In promela end-state labels can
be used for defining expected end-states. A proper system end-state would be
a state where every process that was instantiated has either terminated or has
reached a state marked as a proper (expected) end-state.

Non-progress cycles

In order to avoid cycles that display an infinite behavior Promela has a progress
label. The progress label marks a state that must be executed for the protocol
to make progress. In this way infinite delays can be avoided.

35

Livelocks

With the accept state label it is possible to express that something cannot happen
infinitely often. In other words, an acceptance state label marks a state that may
not be a part of a sequences of states that can be repeated infinitely often.

4.3.2 Verification steps in SPIN

This section describes the steps to verify the properties of the generated textual
PROMELA models. First, a verifier is generated which is then compiled using
standard C complier to generated an executable of the verifier. If model.pml is
the verification model including an initial formalization of correctness properties,
in its most basic mode verification in SPIN is done as follows:

$ spin -A model.pml # perform syntax check

$ spin -a model.pml # generate verifier

$ cc -o pan pan.c # compile verifier

$./pan # perform verification

To specify an LTL formula and run the verifier, we need to define propo-
sitions in the formula by using global variables or #defines with all variables
having global scope. In the example, for the proposition #define p ncrit <= 1,
a PROMELA code can be generated for LTL formulae such as [](p) or []¡¿(!q) us-
ing -f option. The LTL claim gets converted to NEVER claim which is stored in
.ltl file. It is then appended to the generated textual PROMELA model file and
then verified by generating the verifier. The verifier by default searches for safety
properties i.e., assertion violations, deadlocks, etc. The other type of search is
for liveness properties to show the absence of non-progress cycles or acceptance
cycles. The default can be changed into a search for acceptance cycles if run-time
option -a is used. To perform a search for non-progress cycles, we have to compile
the pan.c source with the compile time directive -DNP and use run-time option
-l, instead of -a.

We consider the mutual exclusion algorithm example to verify the properties.
Two assert statements are considered in the example of [fig 3.1]. The assert(pid ==
0|| pid == 1) statement in the beginning of the model, checks that there are
only at most two instances with identifiers 0 and 1 where, pid is the iden-
tifier of the process. The assert statement stated in the critical section(CS)
assert(ncrit == 1) checks that there is always at most one process in the critical
section, where ncrit is a byte variable used to count the number of processes.

36

Chapter 5

Conclusion and Future Work

To summarise this thesis, we recall our initial intention: We aimed to define a
graphical input specification language for SPIN model checker. This has been
achieved for the basic features of PROMELA language by defining the syntax of
graphical elements as an extension of labeled transition systems.

Because g-Promela models are compiled into textual PROMELA, the graphical
models can be formal analysed using the SPIN model checker. To facilitate the
handling of g-Promela specifications, we have sketched the design of the Graphi-
cal Promela Interface(GPI) toolset by building upon the existing UPPAAL GUI.
The GPI tool architecture mainly includes the adapter program which constitutes
parser and server modules. For validation purposes, the GPI uses various formats
to specify properties specified in PROMELA. State properties can be attached
to the models using assertions. Linear Time Temporal Logic (LTL) formulas can
be used to capture temporal requirements which are translated automatically to
never claims using the built-in commands of SPIN. However, the current version
of GPI support only parsing of the g-Promela models and outputs the textual
PROMELA to a textual file. Verification is then done using the system com-
mands by generating the verifier and compiled using C complier to produce an
executable verifier pan which is then used to verify the LTL query.

The current version of GPI can be extended as a generic framework for building
graphical PROMELA models by implementing the following features:

Syntax checking of the PROMELA statements included as part of the labels in
the g-Promela models can be done before uploading the system to the adapter.
Syntax checking can also be done for the queries specified in the command state-
ment. The work presented in this report supports modeling of simple graphical
models with basic features of PROMELA language. This limitation can be over-
come and made to represent all the features of the textual PROMELA language
by exploiting the features of existing graphical elements and by specifying new

37

graphical elements. Like UPPAAL, the GPI tool can be made to support simu-
lation of execution, feedback for verifier and generation of error trace.

38

Appendix A

Generated PROMELA model

A.1 Example: Mutual Exclusion Algorithm

#define p ncrit <= 1 // Defining propositions
#define q ncrit = 0
bool turn, reqflag[2]; // Global declerations
byte ncrit;
active [2] proctype user(){ // Proctype body
idle: assert(pid == 0 || pid == 1);

reqflag[pid] = 1;
goto want;

want: turn = pid;
goto wait;

wait: (reqflag[1 - pid] == 0 || turn == 1 - pid);
printf(”\n in wait”);
ncrit++;
goto cs;

cs: assert(ncrit == 1);
ncrit–;
printf(”\n in cs”);
reqflag[pid] = 0;
goto idle;

}
never { /* [](p) */
accept init:
T0 init:
if
:: ((p)) − > goto T0 init
fi;
}

39

Bibliography

[1] G. J. Holzmann, The SPIN Model Checker: Primer and Reference Manual
(Addison-Wesley Professional, 2003).

[2] G. J. Holzmann, Basic spin manual, 1994.

[3] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, UPPAAL
- a tool suite for automatic verification of real-time systems, in Hybrid
Systems, pp. 232–243, 1995.

[4] A. David, G. Behrmann, and K. G. Larsen, A tutorial on uppaal, 2004.

[5] R. Alur and D. L. Dill, A theory of timed automata, 1994.

[6] S. Leue and G. Holzmann, v-promela: A visual, object-oriented language
for spin.

[7] S. Tripakis and C. Courcoubetis, Extending promela and spin for real time,
in Tools and Algorithms for Construction and Analysis of Systems, pp. 329–
348, 1996.

[8] J. C. Corbett et al., Bandera: extracting finite-state models from java source
code, in International Conference on Software Engineering, pp. 439–448,
2000.

[9] R. Milner, Communication and Concurrency (Prentice-Hall, 1989).

[10] K. G. Luca Aceto and A. Ingólfsdóttir, An introduction to milner’s
ccs, BRICS,Department of Computer Science,Aalborg University,Denmark,
2005.

40

	Introduction
	Overview
	Model Checking
	Comparison of Model Checking tools
	SPIN
	UPPAAL

	Related Work
	Outline

	g-Promela language description
	PROMELA language summary
	PROMELA Model
	Executability of statements
	Processes
	The init process
	Message channels
	Variables and datatypes
	Expressions and Declarations
	Atomic statement
	IF..FI selection
	DO..OD repetition
	Other commands
	PROMELA Example

	Informal Description of g-Promela
	Modeling

	Basic Definitions
	Formal Syntax
	Syntax of PROMELA Model
	Syntax of g-Promela Model

	Trace Semantics

	Translation from g-Promela to PROMELA model
	Modeling
	Mutual exclusion algorithm

	Translation

	Implementation
	Architecture of GPI tool
	Adapter
	Verification of the system's correctness properties
	Types of properties
	Verification steps in SPIN

	Conclusion and Future Work
	Appendix
	Generated PROMELA model
	Example: Mutual Exclusion Algorithm

	Bibliography

