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Abstract

As the branch of business, where locations based services matter, grows, the 
demand  for  reliable  and  fats  spatio  temporal  databases  capable  of  indexing 
dynamical data rises. The number of data structures able to handle this requirements 
is significantly small, thus the pressure on researchers grows to invent a simple and 
reliable  solution.  One  of  the  idea  to  improve  the  performance  is  to  move  the 
traditional databases in to the main memory. As the memory chips prices are falling 
the idea is starting to become reality.

In this paper we investigate how the TPR-tree, as a data structure originally 
implemented to the disk oriented environment,  behaves in the main-memory.  We 
verify, wide-spread thesis of memory access time as the first-ordered bottleneck for 
in-memory indexes, by running experiments on the TPR-tree. Furthermore we stress 
that  performance  of  the  index structure  running in  main-memory is  measured in 
different way and different indicators need to be considered. Experimental analysis 
leads  us to  the conclusion that  the TPR-tree is  to CPU heave structure and the 
simplest methods of improvements are achieved by limiting the number of needed 
computations. In order to demonstrate the path for the future analyses we introduce 
three different improvements for the update algorithms: lazy delete, bottom-up delete 
and new penalty insert.  
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1  Introduction

With the recent advances in mobile computing devices (e.g. cellular phones, 
PDA,  and  GPS)  as  well  as  wireless  technology  and  positioning  systems,  the 
importance of moving object environments have grown significantly. Numerous of 
real-life  applications,  providing  location  based  services  (LBS),  such  as  mobile 
communication  management,  traffic  monitoring,  intelligent  navigation,  integrated 
information  services,  e.g.,  tourist  information  services,  and location-based  games 
require enormous number of moving objects to be managed and queried. The main 
problem of these applications, employing disk as mass storage, is rapidly track the 
positions of moving objects and effectively supporting queries. As the hard drives 
bandwidths  are  relatively  small  for  the  numerous  operations  of  spatio-temporal 
databases a different solution has to be considered.

In a science-fiction story from 1986 “Johnny Mnemonic”, William Gibson 
uses 40 megabytes as shocking, unreachable size of memory. In 1995, in the film 
adaptation this value has been changed to 40 gigabytes to still shock the audience. 
Nowadays the size does not seem any fantastic and  certainly would not be used in 
any of science-fiction novels. While the prices of memory chips are dropping and 
one can buy more and more megabytes of memory for the same price, in the near 
future megabytes will  have to be changed in to gigabytes and then terabytes etc. 
Thus, it is becomes reasonable to have databases system with large amount memory 
and the idea of main-memory databases is not science-fiction any more.  In such 
environment, the entire database or most often used parts can be moved in to the 
main-memory.

In  previous  years  many  researches  were  conducted  to  optimize  the  disk 
oriented data structures. However a new approach, to put data structures in to main 
memory, started to come into prominence. Ailamaki et al. [3] show that for database 
resident in memory, half of the execution time is spent on memory access. Since 
then, the studies on main-memory indexes focus mainly on making  structures cache 
concious and minimize L2 cache misses [2, 22, 9]. In order to that the node size used 
in these indices is defined to be equal to the L2 cache line. As Hankins and Patel [10] 
shown this design ignores the large number of instructions executed on data elements 
after they are read into the CPU cache. This may be very important, especially in 
such complex spatio-temporal indexes as the TPR-tree.

In this paper we present the results of researches on Time Parametrized R-tree 
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(TPR-tree), proposed by Saltenis et al. [14], working in main memory environment. 
To the best of our knowledge this is the first such an attempt made for the TPR-tree. 
We choose the TPR-tree as the effective data structures for indexing moving objects 
in multi dimensional space. TPR-tree does not involve any space transformation and 
indexes  data  in  intuitive  way  using  the  time-parametrized  lineal  function  as 
movement representation. Modelling the position of moving objects as a function of 
time allows to answer future queries and reduce the frequency of updates.  

In our researches we  investigate the influence of changing the environment 
on the performance of update and query operations.  We follow the researches of 
Ailamaki et al. in [3] and prove that for such a complex data structure as the TPR-
tree  memory access  is  not  the  bottleneck  and takes  less  then  10% of  total  time 
independently of node sizes. Since the entries, basic components of nodes, keep the 
so-called time-parametrized bounding rectangle, the node size is always larger than 
the cache line size, even for a smallest node capacity. We investigate the evolution of 
existing  index  structure  and  point  that  these  structures  and  their  algorithms  are 
getting more and more CPU heavy to archive better disk I/O performance. We show 
that once the tree is in main-memory resident, significant improvements can be made 
by  simplifying  the  TPR-tree  algorithms  with  only  slight  decease  of  the  search 
performance. We introduce three new techniques; two for delete and one for insert. 
They crux is  to reduce the number of required calculations.  The improvement is 
significant as well for insertion as for deletion.        

The reminder of this parer is organized as follows.  In Section 2 we address 
the issue  of  moving objects  indexes  and present  TPR-tree  genesis  and structure. 
Section 3 discuses the evolution of databases from disc oriented to the in-memory 
databases  and  the  main  issues  involving  the  new environment.  In  Section  4,  we 
overview the main memory indexes. Section 5 provides our idea of improvements. 
The  experimental  results  are  discussed  in  Section  6.  While  the  conclusion  is 
presented in Section 7, future work is discussed in Section 8. 
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2  Indexing of Moving Points

In this section we first describe the reasons why the issue of indexing moving 
objects is so important nowadays. Then we outline the data that need to be indexed 
and  distinguish  three  types  of  queries.  Next  we  specialities  of  movement 
representation. Finally we describe the R-tree[19], R*-tree[18] and TPR-tree[14].

2.1  Why  do  we  need  Moving  Objects 
Indexes?

In the case of applications dealing with mobility, the main task is to keep 
track of where air planes, boats, cars, vessels at sea, people, and many other assorted 
moving objects are at any point in time. The consequence of mobility is continuous 
change  of  location  thus  keeping  data  accurate  to  the  reality  means  that  moving 
object's location has to be continuously updated. The main assumption of traditional 
database  management  systems  (DBMSs)  is  that  data  stored  in  database  remain 
constant unless it is explicitly modified. Thus, the model where updates are issued in 
discrete steps, at every unit of time is obviously inefficient and unworkable solution. 
If  DBMS  were  to  update  continuously  changing  location,  it  would  imply  a 
discouragingly high update  overhead.  This is the reason why the moving objects 
indexing  techniques  are  becoming  more  and  more  important.  To  avoid  all  the 
problems mentioned above, Wolfson et. al. [13] propose an approach to model each 
object's location attribute as a function of time x t  and update the database only 
when the parameters of the function change.  
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2.2  Movement  Representation  and 
Query Types

Modelling the position of moving objects as a function of time means that we 
have data representing movement of the objects. The most popular representation is 
by linear function, because of two non-trivial reasons: 

(1) minimum number of parameters required, 
(2) possible description of more complex movement by using interpolation [12]. 

Since  the  database  stores  the  information  about  the  moving  objects,  and 
objects update their positions, their significance in the system is essentially equal to 
the others' components. They become the part of the system and are responsible for 
updating  the  database  whenever  the  parameters  of  their  movement  change. 
Information  are  transmitted  via  wires  networks.  Because  the  required  number  of 
parameters is minimized we can limit the necessary wireless bandwidth between the 
database  and moving objects.  That  has  great  impact  on  the communication  cost, 
which is the component of total update cost[17].  Thanks to the (2), this relatively 
simple data representation does not limit us to one, and only one type of movement, 
where roads are straight and speed is constant. By interpolation of the gathered data 
we can manage more complex types of movements. 

Representation of movement by linear function requires only two parameters, 
which are data that need to be present in the index structure:

• object's initial position,
• velocity vector.

In  general,  an  object  can  be  moving  in  d-dimensional  space  using  some 
complex  motion,  but  in  real  world  objects  move  in  up  to  3-dimensional  space. 
However,  without  loss the generality,  in this  paper  we focus our attention on 2-
dimensional spaces where the motion of objects is represented by linear function. 

The first parameter of the function x t  is an object's position at particular 
time tref  and it is denoted as x t ref  . The time tref  is a reference time at which the 
object is stored.  The second parameter - velocity vector is denoted as  v t ref  . 
Thus, only the tuple  x t ref  ,v t ref  needs to be stored in the database and the 
movement of any objects is represented by Equation 1.

   

x=x t ref v⋅t−t ref 

When an update of an object arrives at time tup, the new position for the object 
is calculated using the Formula 1, in which tup becomes new tref. Position and velocity 
values are easy to obtain, directly from the GPS[16]. 
There are two  very important advantages of that solution:

(1) the reduced amount of updates, 
(2) the possibility of computing the location of an object in the near-future.
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The first  advantage has been proved  by Civilis  et  al.  [17] by comparing 
different update policies for moving vehicles, among others, so called, a point policy 
and a vector policy. In simple point policy positions of an objects are stored as a 
points and the current position is given by the most recent update. Vector policy 
deals with linear function as a movement representation and uses pair of  direction 
and speed for  a  position approximation.  The conclusion results  from comparison 
indicate  that  prediction  of  the  future  position  allows  to  significantly  reduce  the 
amount of updates. Authors have shown that for the accuracy threshold below 200 
meters vector policy is more then two times better then point policy.

The second advantage is very useful considering the predictive queries, such 
as “Give me the list  of all air planes over London in the next half an hour”. By 
modelling  the  moving  points  with  a  function  of  time  we  can  predict  the  future 
position and this way the answer for the query above is more accurate to the reality.

It is worth mentioning that the pair of parameters can be used not only for 
stored objects. In the  TPR-tree [14] the velocity vector and reference position are 
also used for representing the coordinates of bounding rectangles as functions of 
time. We will discus that, with more details in the subsection dedicated to TPR-tree. 

Moving  objects  indexes  should  support  queries  retrieve  all  points  within 
specific  region.  Following  the  distinction  in  [14]  we identify  following types  of 
queries:
● Timeslice queries return all objects that intersect a given rectangle at specified 

time t1, after the current time CT, where t1 >CT.
● Window  queries  return  all  objects  that  intersect  a  given  rectangle  at  same 

identified interval time from t1 to t2, where t1<t2, where  t1,,t2 >CT.
● Moving queries return all objects intersect a given moving rectangle sometime 

between  t1 and t2, where  t1,,t2 >CT.
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 In Figure 1 the examples of three query types, in one dimension space, are 
presented.  While  the  x-axis  symbolises  the  time,  the  y-axis  represents  the  one 
dimension object. O1 and Q2 are time slice queries, Q3 – window query and Q4 – 
moving query.

2.3  The TPR-tree genesis

Although the R-tree and R*-tree not prepared to index moving objects, they 
are the basic spatial indexes and the foundation for TPR-tree. We discuss the R*-tree 
and  R-tree  due  to  their  influence  on  TPR-tree  structure.  Reader  interested  in  an 
extensive  survey  of  R-tree  evolution,  its  variants  and  implementation  issues  is 
referred to the paper [21]. 

2.3.1  R-tree

The R-tree (Region Tree) was proposed by Guttman in 1984 [19]. Since then, 
together  with  its  descendants  it  has  become one  of  the  most  widespread  access 
methods. R-tree applications range from spatial and temporal to image and video 
(multimedia) databases [21]. The R-tree is an indexing method for multidimensional 
data, such as point, line segments, surfaces and volumes in high-dimensional spaces 
[19]. Data, that are d-dimensional geometric objects, are represented by minimum 
bounding d–dimensional rectangles (MBRs). Applying this approach, R-tree stores 
data without clipping them or transforming them to the higher dimensional points. 
Each internal node corresponds to the MBR that bounds all its children and contains 
entries of a form (R,p), where R is the MBR that contains the MBRs belonging to the 
child of which, a node is pointed by a pointer p. Leaf nodes contain entries of a form 
(R,o), such that o refers to the database object, and R is a MBR that contains that 
object. The root of a tree has no less then two children (unless it is a leaf) and every 
other node has between m (minimum number of entries) and M (maximum number 
of entries) entries, where 1m≤M /2 . Figure 2 depicts some objects and a spatial 
query (shaded rectangle) on  the left and the corresponding R-tree on the right. 10 
data rectangles D through M are stored in leaf nodes, whereas MBRs Ra, Rb and Rc 
are in the internal node. 
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The MBRs that bound different nodes might be overlapping, as it is shown in 
the  Figure  2:  Rc partly  overlaps  Ra  and  Rb.  Furthermore,  there  can  exist 
containment  relationship  between  rectangles.  This  means  that  search  algorithm, 
which descends the tree from the root, may need to search more than one subtree 
under the node visited. For example, in the Figure 2 the shaded rectangle defines the 
spatial query, which should return the objects that even partly overlap the query area. 
On the level Ra/Rb/Rc   the two MBRs are chosen - Rb and  Rc . Then the searching 
algorithm traverses two subtrees rooted respectively in  Rb and  Rc. As the answer for 
the query three objects are returned: H, I, and M.

The R-tree is dynamic (insert and delete operations can be intermixed with 
select  operations)  and balanced (all  leaves appear  on the same level).  Since it  is 
dynamic a non-periodic reorganisation becomes unnecessary.

The R-tree insertion algorithm can by divided into two steps. The first one is 
to choose  insertion path and the second one is to split overflowing node. The first 
step uses heuristic optimization method to allocate new entry and to find optimal 
MBR for it. The MBR that required the smallest area enlargement is chosen. The 
second one uses the optimizing heuristic by minimizing the area sum of the two 
rectangles resulted from the split. Guttman presents three alternative split algorithms 
of linear, quadratic and exponential complexity with respect to the number of entries 
of a node. Essentially, all the variants of R-tree that have been proposed later differ 
from  the  original  one  in  the  way  they  execute  the  split  by  proposing  different 
minimization heuristics. 
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2.3.2  R*-tree

The R*-tree have been proposed in 1990 [18]. Since it has become a well-
known access method widely accepted in the literature  and commonly used as a 
fundamental assumption for performance comparisons [14,23]. Basically, the main 
differences between the R*-tree and the R-tree are the optimization criteria. While 
the R-tree minimizes the sum of the area of the produced MBRs, the R*-tree takes 
under consideration additional criteria, such as:
● minimization of the overlapping between MBRs at he same level,
● minimization of the margins of the MBRs,
● optimization of the storage utilization.  

Other  novel  feature  of  R*-tree  is  a  new  technique,  so  called  'forced 
reinsertion', which is used during the insertion routine. When a node overflows and it 
happens first time on a certain level, R*-tree forces p* entries to be reinserted instead 
of directly splitting the node. If any of  p entries could be assigned to other node a 
split is avoided. That has an effect on the split occurrence frequency as well as on the 
overlapping  between  neighbouring  nodes.  Split  takes  place  quite  rarely  and  the 
overlap  decreases.  Thus,  the  heuristic  approach  applied  in  the  R*-tree  improves 
insert and split methods. That leads to a better tree structure (in comparison to the 
original R-tree) in the sense of  the retrieval performance.

The delete algorithm of the R*-tree first identifies the node that contains the 
entry to be removed and then two situations are possible. (1) There is still more then 
minimum number of entries in the node. Deletion terminates. (2) Node generates an 
underflow. In this situation the node is deleted and all the entries of the node are 
reinserted by regular insertion algorithm. Underflows may propagate to upper level 
and are handled in the same way. 

2.3.3  The TPR-tree Structure and Algorithms

The time-parametrized R-tree (the TPR-tree, for short) [14] is an extension of 
R*-tree, which efficiently supports querying moving objects in current and estimated 
future time. The structure of the TPR-tree is inherited from the R*-tree [18]. Every 
entry which is not in a leaf node contains the pointer to the child node and MBR 
which tightly encloses the entries in the child node in a current time. The Figure 3(a) 
presents the MBRs in  t=0, where t > current time. 

For  indexing  of  moving  objects  TPR-tree  employs  linear  function  as  a 

* p being the parameter. Optimal value for that parameter have been obtained experimentally by 
Guttman et al. [18] and that is equal to 30% of M (maximum capacity of the node).
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representation of objects' movement (See Section 3.2). It means that object's position 
and velocity vector are stored. Based on these two data one can compute current and 
projected future position of an object. 

Moreover  the  decision  about  the  assignment  of  objects  to  the  bounding 
rectangles is made on the basic of  the objects'  position and their velocities.  The 
Figure  3(a)  shows the  representation  of  the  MBR  R1 and  R2   each  contains  two 
objects,  which  are  MBRs  too.  The arrows  denote  the  directions  of  their  edges 
velocities, while the numbers correspond to their values. Negative values imply that 
the velocity is toward negative direction of the axis.

One of the basic conception of the TPR-tree is to employ time-parametrized 
MBRs.  Since  the  coordinates  of  the  MBRs  are  function  of  time,  the  bounding 
rectangles follow moving point or other rectangles as they move. That indicates that 
they are moveable, they have their velocity vectors which are determined in the way 
ensuring that the MBR always enclose the underlying objects. Specifically, upper 
(lower) bound of MBR is set to move with the maximum (minimum) speed of all 
speeds  of  enclosed  objects  on  this  dimension.  Figure  3(b)  shown a,  b,  c,  d  and 
enclosing them nodes R1 and R2 at time 1. Their positions and sizes are different then 
at time 0 (Figure 3(a)). The MBRa are not minimum all the time but only at the 
moment  when they are  created or updated.  TPR-tree uses,  so-called conservative 
bounding rectangles, which are minimum at certain time, but never shrink and almost 
always grow larger over time. In the case when all the enclosed point move exactly 
in the same way, conservative bounding rectangle move with them and their size 
remain unchanged. As a time passes the sizes of MBR becomes very large and are 
generally larger then strictly needed. That can drive to high region overlaps which 
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Figure 3: TPR-tree
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greatly decrease the query performance. To forestall that it would be desirable to 
correct MBRs ones in a while. The TPR-tree tightens them up every time when any 
of the moving point or rectangles is updated.  

The TPR-tree supports all the queries presented in Section 3.2. In order to 
answer the queries about location at future time t, it employs linear function (see 
Section 3.2) to calculate predicted object position as well as MBRs' future extends.

Considering indexes that predict future position the issue of how far in the 
future queries can ask needs to be taken under account. The TPR-tree employs for 
that propose parameter called querying window (W) as well as two other parameters. 
(1) Index usage time (U), which is a time interval during which an index will be used 
for querying, and (2) time horizon (H) which is the length of the time interval from 
which all the time instances specified in the query are drawn. Time horizon H is 
equal to the sum of index usage time (U) and the querying window (W). 

Let tl  denote the time when the index is created or loaded. During the interval 
time [ tl ,  tl  + H] all MBRs should be as small as possible. The insertion algorithm of 
TPR-tree is an extension of the R*-tree algorithm, which has been adapted to deal 
with moving points. The aim was to minimize three objective function, such as:

● areas of the bounding rectangles,
● their margins,
● overlap among the bounding rectangles. 

These functions are time dependent (let  A(s) denote such a function), and 
TPR-tree considers their evolution in [ tl ,  tl  + H] . Therefore, the main adoption was 
the minimization of the following definite integral instead of minimization of the 
objective function. 

∫tl

tlH
At dt

 

(2)

Thus,  the  TPR-tree  insertion  algorithm  is  the  same  as  the  R*-tree's,  but 
instead of  above functions  the integrals  of  those  functions,  as  in  Formula 2,  are 
computed. The algorithms for that are presented in [28]. It is worth to notice that split 
algorithm uses by TPR-tree takes under consideration velocity vector to make the 
bounding rectangles grow more slowly.   

The TPR-tree delete operation is performed exactly in the same way like in 
R*-tree (see Section above). When a node becomes under full it is deleted and its 
entries are reinserted.   
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3  The Idea of  Main Memory vs 
Secondary Storage Databases

In a case of highly critical database monitoring the trajectories of planes there 
is no place for results of queries arriving too late and putting human life at risk. 
Consideration  all  the factors  influencing  response  time of  that  database became 
essential. In this section we show those factors and explain the evolution of the high 
load  databases,  its  bottlenecks  and  commonly  used  solutions.  First  we  present 
databases  working on disk structures  and the  reasons  why evolving to  databases 
located in main memory (main memory database system – MMDBMS) is a good 
solution. Then we point the main bottleneck of MMDBS which is the memory access 
as presented by Ailamaki  et.  al.  in [3].  Because the cache memory takes part  in 
overcoming  that  problem we  briefly  describe  the  idea  of  CPU cache.  Then  we 
present how the cache works and what is the most important part of the cache from 
the databases' point of view. Although we need to remember that all the hardware 
solutions without proper utilization are not going to work by itself.

3.1  The  Typical  databases  –  Disk 
Oriented

Typically, when we think of databases we mean secondary storage databases, 
because nowadays it is the most commonly used type of databases. In that kind of 
databases the  data are stored on external mass memory, i.e. a hard drive. This way 
there is no limitation of capacity - one can have a single hard drive or a farm of 
servers seen as one logical disk. By overcoming that limit we can keep any kinds of 
data that we can imagine – i.e. a university database managing the employees can 
keep not only the names, addresses and their positions, but also the photos, videos 
from conferences etc.
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Problems may occur when we would like to use disk structures for high load 
databases.  The performance ratio will  drop down. Each time that an operation is 
preformed there has to be some input or output (I/O) operation. As Rosenblum, et al. 
points  in  [101]  this  operations  are  the  first-ordered  bottleneck  for  that  kind  of 
databases. It is because of the stalls – when the system has to wait for the data to 
arrive from the hard drive. That involves a mechanical movement of the head of a 
hard drive and pointing it to the right position. That time is measured in milliseconds 
but multiplied by a number of operations grows to a significant value [26]. 

In the 1990s the percentage of time wasted on I/O operations has grown from 
10% to almost 90%. That was the impulse for the researchers to start optimizing the 
disk structures in order to decrease the I/O latency. When that was not enough many 
efforts were spend moving the databases into the random access memory.   

3.2  The Idea of Main Memory Databases

The times where 640 kB were enough for everybody are gone. Nowadays we 
observe a trend that one dollar buy us more and more memory each year [21], so the 
memory capacity  is  not  the limit  any more.  That  is  why we can easily  think of 
putting a whole database into RAM. This way we get rid of all the disk databases 
problems that we have mentioned in the section above. With that the latencies are 
significantly smaller – counted in processor cycles. 

So why is  the whole world still  using the standard databases ?  There are 
couple of reasons for that and we will just point the most important:

• Price – one dollar buys more capacity of disk than of main memory. Not 
everybody is willing to pay the price for the extra speed. For most purposes 
the standard computer systems are enough,

• RAM is volatile memory. It is not considered reliable because when power 
supply or  system stability is shaken our data are at great risk of being lost 
forever. Uninterruptible power supply (UPS) is a simple fix for the power 
problems [20]. There are not really many solutions for the system instability 
except  for  the  backup/transaction  logging  systems  which  hurt  the 
performance,

• Capacity limits. Thanks to 64 bit architecture operating systems can address 
up to 264 bytes (16 exabytes) of memory. But the real life limits are far lower 
than that – there is no hardware supporting that large amounts of memory. In 
the environment where capacity is limited the set of the data to be stored need 
to be carefully selected. One of the solutions is to split the data into, so called 
'hot' and  'cold' parts.   Hot  data  are  accessed  frequently  and  usually  low 
volume,  while  cold  ones  are  access  rarely  and  more  voluminous  [29]. 
Considering the system tracing the buses in the city, the example of hot data 
is the current position and cold data is a type of the bus (brand, capacity). 
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Moving the database from disk to main memory reduces the main bottleneck. 
We switch the store from the hard drive to RAM.  This way we eliminate the key 
factor – the I/O operations to the hard drive. 

But still, overcoming one bottleneck leads us to another one. As shown in the 
Figure  4,  since  the  1990s  a  gap  between  the  performance  of  the  CPU  and  the 
memory has been observed. As McCalpin [25] predicts that gap is growing and it is 
becoming  to  be  the  main  bottleneck  of  the  current  programs  operating  in  main 
memory. So the goal is to limit the number of accesses to the RAM. We are going to 
explain why and how much is it going to cost us in the next paragraph about the 
cache memory.

3.3  The idea of CPU cache

When we look deeply in to a Central Processing Unit (CPU) we can see an 
equivalent of a computer system (see Figure 5). It has a processor - algorithmic and 
logical  unit  (ALU),  own  memory  –  registers,  and  communicates  with  external 
storage (i.e. RAM memory ) using I/O lines.
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Figure  4: Modern bottlenecks for in-memory 
databases. Based on [25] 
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ALU does pure calculations. That's the fastest part of the computer - its basic 
operation time is a processors tick (1/Processors Clock speed in Hz).Every operation 
requires to load the executed data from the RAM – memory a lot slower than the 
CPU. Every time that the data has to be read in from the RAM the processors time is 
wasted. To reduce the number of that kind of situations a go-between was added – 
the cache. It is a very fast (comparable to the CPU speed) but small memory build in 
to the processor that buffers data flow between RAM and the processor. In modern 
computer  systems  cache  is  split  in  to  at  least  two,  sometimes  three  parts,  more 
commonly called levels, as shown on Figure 6.

 The Level 1 (L1) is the one nearest to the registers and it is the fastest .It's 
size varies from 32 to 64 kB. It is split between instructions and data. The second 
level (L2) of cache is unified (instructions and data are kept together). Its size varies 
from 256 kB to 4 MB. Usually this part has the access to the RAM but some times 
level 3 is added.
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Figure 6: In-memory communication
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3.4  The Way the Cache Works

We are not going do go deeply in to cache operation problems and solutions 
but we just want to show the parts that we had in mind during the project. We omit 
the table look-aside buffer (TLB) on purpose because we have no control over that in 
our project. The following section has been based on [24] and on [28].

The cache works as a buffer. Each time that the next instruction of the code is 
executed it  has to be read from the program's memory and written to a register. 
Without the cache, once the address was bound, the CPU would have to wait for 
fetching the data. Once the instruction is loaded into the register the processing starts.

Because programs are a code put into the memory it is highly probable that 
the instructions lie  one after  another.  So small  but  very fast  part  of  CPU called 
branch prefetcher analyses the code, makes predictions of which part is going to be 
needed and reads a set of instructions in to the cache. More specifically it reads the 
set in to L2 and takes the currently needed part closer to the registers, to the L1. So 
now processing of our code is speeded up - once we have the address we call for the 
data that it carries. First it is checked if it is contained in the L1 cache. If not we call 
to check if L2 contains it. If not we still need to call the RAM - but now we do not 
grab a single instruction but block of instructions – highly probable candidates for 
the next parts of the code. 

All the calls to cache and RAM have a cost measured in processor cycles. 
Finding an instruction in the cache is called a cache-hit. A cache hit on in the L1 
takes one cycle. If the instruction is not in  the L1 that is counted as a cache-miss and 
the L2 is queried. Finding an instruction in L2 and loading takes, depending on the 
architecture and operating system, from 10 to 20 cycles. A cache-miss in L2 costs 
from 100 to 200 cycles.  So the speed up in a optimistic  situation is  around two 
hundred times. 

3.5  The Most Important Part of Cache for 
in-memory Databases

In a heavy load databases where we operate on huge amount of data it  is 
impossible to have everything cached. The instructions to data ratio drops down. 
Every part of information included in the DB has to go through the CPU – from 
RAM via cache to the CPU and go back in reverse order. The write to the memory is 
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buffered in the cache so it is handled once in a while (when the buffer is full). But 
when we need to execute some parts of the code the data is needed right away. Each 
time it is not cached, a call to the RAM needs to be made – that means that the CPU 
is  unused.  We  cannot  expect  the  huge  amount  of  data,  used  in  spatio-temporal 
database, will be present in the L1. The L1 cache misses penalty is necessary cost we 
have to bear. But we cannot afford continuous cache misses on the next level of 
cache.  We  have  to  minimized  the  number  of  those  misses.  This  is  possible  – 
especially when we use good operating system, the program is written according to 
cache-conscious programming rules [28], and we used a good compiler.

While we do not have great impact on the behaviour of L1, we can program 
the code, so that the utilization of L2 is going to be optimal. This optimization is 
especially important in the light of researches presented in reference [3]. Ailamaki et 
al. have shown that in the database management systems in main memory the main 
part of execution time is spend on second level data cache misses and first level 
instruction cache misses. That inspired us to to verify their conclusion for complex 
multidimensional data structures in main memory, such as TPR-tree.
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4  Existing Indexing Techniques 
for Main Memory

In this section we first explain two main techniques used by existing cache 
conscious trees. We next categorize indexes according to the compression technique 
and present most widely known cache conscious trees, namely, the CSB+-tree [2], the 
pkB+-tree [4],  and the CR–tree [5].  We do not  give details about the algorithms, 
(such as  insert,  delete,  and search)  used by the indexes.  The interested reader  is 
referred to the papers written by the indexes' authors [2, 4, 5]. Instead, we describe 
the structure and the most important principles of the compression used by given 
index.

Cache conscious indexing techniques can be distinguished into two different 
categories - those based on pointer compression (also so-called pointer elimination) 
and those based on key compression [1]. The idea of cache conscious trees is to 
increase the blocking factors of the node in the indexes. The most important factor 
influencing the performance of main memory DBMS is cache miss.

4.1  Pointer Elimination Technique

The  key  idea  of  cache  conscious  trees  grouped  into  pointer  elimination 
category is to eliminate most of the child pointers from the node to increase the 
blocking factor in the internal nodes. The pointer compression effectively reduces the 
tree height,  and thus improves the cache behaviour,  when the node size is set  to 
cache line size – the natural transfer size for reading and writing the main memory. 
The examples are  Cache  Sensitive B+  -  tree (CSB+  -  tree)  [2].  The  efficiency of 
pointer elimination depends on the relation between key size and pointer size. If the 
size of the key is much larger then pointer size the effect of the pointer compression 
technique is poor. 
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Cache Sensitive B+ - tree. In 2000, Jun Rao and Kenneth A. Ross proposed a 
structure called CSB+ - tree. It is a variant of B+ - tree [8]. Figure 7 shows an example 
of CSB+ - tree. Like B+ - tree, data is stored in the leaf nodes. The key difference 
between CSB+ - tree and B+ - tree is the structure of internal nodes. There is only one 
pointer  in  a  non-leaf  node.  This  pointer  references  the  node  group,  which  is 
represented  by a  dashed rectangle  in  the  figure.  Each node  in  a  group is  stored 
physically consecutively. Since the child nodes are allocated in that way in main 
memory, the parent node stores only pointer to the first node in a node group, which 
is represented by the solid arrow in the figure. The address of a child nodes can by 
computed from that pointer. By eliminating pointers to the child nodes in internal 
nodes, there is more room for additional keys and hence better cache performance. 

 

4.2  Node Compression Technique

In multidimensional index structures such as the R-tree[19] typically size of 
key, an MBR (minimum bounding rectangle), is much more larger then that of the 
pointer thus simple four-bytes pointers elimination technique does not help much to 
increase the blocking factors in the internal nodes and leaf nodes. Compression of 
MBR keys, which occupy almost 80% of index data in the two-dimensional case[5], 
reduce the space for entries and that way it is possible to pack more entries in a node. 

Multi-dimensional  index  structures  can  be  grouped  into  two  approaches 
according  to  their  space  reduction  method  [6].  First  approach  is  to  compress 
minimum bounding regions (MBRs) by quantizing coordinate values to the fixed 
number of bits. Second approach is to represent MBRs relatively to its parent MBR. 
The examples are pkB-tree [4] and Cache-conscious R-tree (CR-tree)[5].    
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Figure 7:  CSB+ - tree.
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PkB-Tree.  The  pkB-tree  is  a  modification  of  the  B-tree  that  uses  a  key 
compression.  It  performs  that  compression  by  managing  only  the  different  part 
between the base key and the key to be compressed. Its structure  is identical to B-
tree except for the structure of index keys. Each key is represented by tree items:

• a pointer to the data record containing the key, 
• the offset of the first bit at which the index key differs from base key, 
• the firstl bits of index key following this offset [4].

Internal nodes contain index keys and pointers to the subtree, while leaf nodes 
contain only index keys.  Figure  8 shows an example of  pkB-tree,  where dashed 
arrows denote the base keys for index keys and solid arrows represent pointers to 
child nodes. 
Bohannon et. al. [4] have proved that partial-key trees incur fewer cache misses than 
B-Trees with all beside the smallest key sizes. The above statement is true, but pkB-
tree is limited only to low-dimensional data.

Cache-concious R-tree. The basic idea of CR-tree is to widen index tree by 
compressing MBRs so as to make R-tree[19] cache conscious. The CR-tree makes 
use of the compression schema called Quantized Relative Representation of MBR 
(QRMBR). Since the coordinates of the QRMBR have smaller size then those of the 
actual MBR, the MBR compression technique of CR-tree increases the fanout of 
nodes.

The  key  compression  technique  used  by  CR-tree  first  represents  the 
coordinates of any given MBR key relatively to the lower left corner of its parent 
MBR and then, it quantizes the relative coordinates with a fixed number of bits.
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Figure 8:  pkB -tree.
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Figure 9 shows an example of QRMBR in the CR-tree: Figure 9(a) shows an 
absolute coordinates of  the out most rectangle R0, which is the parent node's MBR, 
and the inner rectangles R1, R2, and R3, which are child nodes' MBRs. Figure 9(b) 
shows the coordinates of R1~R3 represented relatively to the lower left corner of R0. 
Figure 9(c) shows the coordinate values of R1, R2, and R3 quantized in 16 units, 
which require only 4 bits. The QRMBR enlarges  slightly MBRs to align MBR to 
quantized  coordinate  values,  which  is  represented  in  the  figure  by  the  thick 
rectangles surrounding the child nodes' MBRs. The space to store the coordinates 
have been reduced thus the maximum number of entries become larger then normal 
R-tree.  QRMBR  technique  is  a  lossy  compression  scheme,  which  means  that 
compression algorithm actually reduces the amount of information in the data, rather 
than just the number of bits used to represent that information. Lossy compression 
can cause the anomalies, i.e., it  can choose a wrong  insertion path [9] or search 
performance can be poorer  than the original  R-tree.  The second anomaly can be 
avoided if the QRMBR schema is applied only to the internal nodes and the leaf 
nodes store actual MBRs [5]. This extension of CR-tree is called FF (false-hit free) 
CR-tree.  In  the  paper  defining  CR-tree[5],  the  authors  propose  also  two  other 
variants of CR-tree: PE (pointer-eliminated) CR-tree and SE (space-efficient) CR-
tree. 

The PE CR-tree employs pointer compression technique, because the size of 
the key in CR-tree is now small unlike in R-tree. That increases the fanout of the 
internal and leaf nodes, but on the other hand, like in CSB+-tree, node split becomes 
much more expensive. Split operation creates new node, that node has to be kept 
consecutively with its sibling, thus needs allocating and deallocating memory.

The main idea of second variant of CR-tree is to eliminate the reference MBR 
from nodes of the PE CR-tree. The elimination have been used because reference 
MBR of a given node can be computed from the matching entry in its parent node.
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5  Our  Idea  Based  on  Previous 
Reaserches

In this section we show our ideas of solving the performance limitations of 
the TPR-tree, based on previous researches. First we present the idea of adaptation of 
the TPR-tree to the main memory environment. Next we discuss the impact of the 
node  size for  the  performance of  the  in-memory index structures.  We notice  the 
complexity trends and heuristics, and to finally discuss our ideas of improvements.  

5.1  TPR-tree in Main Memory

Not many of up to date moving object access methods are directly dedicated 
for the main memory – we discuss some of them in the Section 4. Mostly spatio-
temporal  indexes  were  implemented  and  tested  in  so  much  different  disk 
environment  where  the  number  of  I/O  operations  was  considered  as  the  main 
performance  factor.  Most  of  researches  have  been  focused  on  reducing  this 
significant bottleneck.

When  speaking  about  in-memory  indexes  two  aspects  need  to  be 
distinguished: the theoretical and the practical one. The first one consists of rules 
about  the  tree  structure  and  algorithms  design.  Usually  cache  concious  index 
structure is  created form an existing index. It is adapted to the main memory by 
modifying the structure with a pointer or key elimination techniques (see Section 4). 
The algorithms are then corrected to suite the new structure. The practical part is the 
way  that  the  index  is  implemented  and  depends  on  several  factors,  such  as 
programming language and style, the operation system, the platform etc. The details 
of our implementation are described in experimental section.  

In this paper we concentrate on TPR-tree. Considering the theoretical rules 
about the tree structure ans the algorithms, there are no barriers for implementing it 
in the main memory environment. While Saltenis et al.  in [14] have focused and 
optimized  TPR-tree  for  the  disk,  our  researches  concern  main  memory 
implementation. 

In order to reimplement any disk resident index structure to the main memory 
one has to take under account the different characteristics of those environments, 
such as the capacity and average access times. Looking at the memory hierarchy (see 
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Figure 10) the memory speed is a trade off of capacity. Hard drives have a basic unit 
of memory equal to a page – which is usual  4 Kb or more  and the latency times 
measured  in  milliseconds.  The  situation  with  cache  is  completely  opposite.  The 
memory is ultra fast (measured in nanoseconds), but the capacity drops down – the 
basic unit is a cache line – depending on the processor from 32 to 128 bytes.

As mentioned in the Section 3 the RAM latency can be decreased or almost 
completely eliminated when the cache is properly utilized. So the main solution is 
the optimal cooperation with the cache, which guarantees that currently needed data 
are included in the cache. If they are not - the programs suffer the consequences of 
the average memory access time growth. While the natural data transfer unit in the 
main memory is the cache line, the basic of a tree structure is a node. Consequently, 
the node has to be optimized to fit in one or a multiplicity of a size of the cache line 
[27, 28]. Additionally, the node should be a compact structure so that it utilizes all 
the occupied lines.

It is worth to notice that implementation details are also important. It appears 
that, some of them, for a disk base index structures  are completely trivial and come 
into prominence in main memory.  We discuss our implementation deeply in Section 
6.  

5.2  Node  Size  Compared  to  the  Cache 
Line

What we found in many previous researches was a correlation between the 
size of the node and the performance of tree indexes. As Rao and Ross showed in 
[27] the performance was almost optimal when the node was fitting the cache line. 
Their  researches  were  done  on  a  B+-tree  which  carries  far  less  information  then 
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multidimensional data structure like TPR-tree. In case of TPR-tree a single entry is 
large in term of bytes (in our implementation it is 44 bytes). Thus a node as a set of 
entries does not fit to cache line. The same authors in [2], have proposed CSB+ - tree 
(see Section 2.1). They run experiments in the environment where the cache line was 
32 bytes. One cache line was enough to keep a full node containing 14 key, a child 
pointer and the number of keys used. It is worth to notice that even a single TPR-tree 
entry, occupies 44 bytes*, certainly would not fit the size of a cache line. 

In opposition to Rao's research, Hankins et. al. [10] had different experiences 
with CSB+-tree. Their experiments imply that nodes of sizes much larger than the size 
of a cache line give better results for a search operation. Authors have proved that, 
when the node size is in a range of 1280-3072 bytes, the performance of the index 
can be improved up to 19% over the performance when the node size is 32 bytes**. 
Furthermore, they demonstrated that using the common heuristic of setting the node 
size equal to the cache line for this index structure is often suboptimal. Thus, in our 
researches  we took a closer look at the correlation of the nodes size and the cache 
line in TPR-tree. We present the results in Section 6.

5.3   Complexity trends. Heuristics

Considering the last twenty years of researches in the branch of different data 
structures  and  access  methods  a  mainstream  is  observed:  the  performance 
improvement  beard by heavier  CPU calculations.  As an  example,  we investigate 
TRP-tree and its ancestors [14,18,19], literally R-tree and R*-tree.  We notice that, 
each descendant is  heavier, in the sense that more CPU calculations is required to 
build the tree. While the R-tree has only one minimization heuristic, its descendant, 
the R*-tree, uses four. Obviously, number of calculations required to minimize one 
heuristic  is  smaller  then  that  required  by  four  heuristics.  However,  the  R*-tree 
performance is improved up to 50% compared with R-tree. The TPR-tree extends the 
R*-tree and according to that trend a greater number of calculations is required to 
minimize heuristics, since integral of functions use by R*-tree are computed. ( see 
Section 2.3.3).  We observe that trend for disk resident indexes, where node size is 
equal to the disk page, one I/O operation is generated every time a node is accessed. 
For such structures the number of I/O operations is the determiner of performance, 
because the time spent on the disk access is far greater than the time spent on CPU 
calculations.  Thus,  the  most  desired  optimization  is  to  limit  the  number  of  I/O 
operations. And naturally, that is mainly achieved by increasing the number of CPU 
calculations, insignificant when considering disk based structures. 

However our researches focus on TPR-tree residing in main-memory, where 
I/O times are not the performance indicator. Since, the memory access time for RAM 
is  measured  in  processor  cycles,  the  complicated  calculations  come  into  the 

* 44 bytes is a size of the entry in our implementation which is discussed in details in Section 6.
** 32 bytes is a size of a cache line in the experimental setup used in [10]
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prominence. While one memory access takes up to 200 cycles, a calculation of some 
complicated integrals can take more than that.   

 Our idea is to investigate the situation with reversed trend. Which means that 
during our  researches  we will  take  under  consideration following question.  How 
much the performance of the TPR-tree suffers from reducing some complexity of 
calculations  in  heuristics?   Especially,  we  will  investigate  that  for  deletion  and 
insertion. According to our idea less CPU heavy algorithms may buy us more time, 
particularity in such a complex data structure as a TPR-tree where, for instance, an 
integral  has  to  be  counted  on  every  level  for  every  insert  and  delete  operation. 
Simpler algorithm also mean less data needed for recognizing the situation– less data 
means less memory accesses. That means less time lost on waiting for the data to 
arrive.

As  mentioned  in  the  introduction  section,  dealing  with  spatio-temporal 
databases, application where updates are more frequent than queries are easy to find. 
Lets assume the simplicity of insert operation save one second for each operation. 
Multiplying that by the number of insertions performed in huge database is going to 
result in a significant amount of time. We need to remember that, for TPR-tree every 
update operation consists of a pair: delete and insert. By updating, we rebuild the tree 
and there is high probability that simpler insert operation produces less effective tree 
structure. That means the performance of the search operation drops down. Since the 
deletion uses search algorithm to localize the entry to be removed, the time of an 
update  suffers.  That  leads  as  to  the  conclusion  that  the  insert  algorithm can  be 
simplified as long as the update time decreases. However, the performance of select 
operation must not be forgotten also.

The TPR-tree, as a index structure, supports tree basic operations: insertion, 
deletion and searching. The main goal for optimizing the insert and delete algorithms 
is to design them in the way ensuring the best structure for searching. As mentioned 
above, that optimizing usually leads to more complicated CPU calculations, which 
are  not  important  for  a  disc-based  structure,  but  in  our  case  can  be  one  of  the 
significant  factor.  We identify the heaviest  parts,  in terms of CPU cycles,   for a 
update operations.  

1. During  insertion,  when  choosing  an  appropriate  insertion  path  and  when 
correcting of the tree structure after the insertion, Correction involves split 
and reinsertion algorithms. These situations require heuristic's penalty metrics 
calculations, which are integrals of functions of time. Following functions are 
considered: area of the bounding rectangles, their margin (during the split), 
the intersection of two bounding rectangles,  and the distance between the 
centroid of an MBR (during reinserting). Those penalty metrics are used to 

2. During  deletion,  when  searching  for  the  entry  to  be  removed  and  when 
correcting the tree after underflow situation. While first situation involves the 
search algorithm, the other one involves the regular insert algorithm during 
the reinsertion. 

 During the experimental part of this project we will make an effort to take a closer 
look at the above conclusion.
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5.4  Our Idea of Improvements

5.4.1  Lazy Delete 

Analysing  the  delete  algorithm  of  TPR-tree  we  can  outline  following 
components:  (1)  locating  the  entry  to  be  removed,  (2)  removing  the  entry,  (3) 
correcting the MBRs. In a situation where a leaf node after removing the entry is 
underflow a correction more complex, then just updating the MBRs on the upper 
levels,  needs  to  be  made.  Underflow nodes  are  removed,  the  orphan entries  are 
reinserted, and sometimes the tree is shorted. It is worth to investigate how to evade 
those heavy situations during the deletion. Since all data are kept in leaf nodes all 
underflow situations start on the leaf level and perhaps propagate up. Lets assume a 
change of  underflow policy and remove the leaf nodes only when they become 
empty instead of less than half full. Notice that no more reinsertions of the entries 
from  the  leaf  nodes  will  occur.  For  the  internal  nodes  underflow  rules  remain 
unchanged. The crux of the new policy is not the improvement of every single delete 
operation  but  only  the  situations  on  the  leaf  level  where  the  original  TPR-tree 
underflow treatment would step in to the action. Furthermore the change of policy 
does not decrease the cost of single  tree rebuilding after deletion, but minimizes the 
frequency of occurrence. We term the new policy as lazy delete.

5.4.2  Bottom-Up Delete

 The other approach, unlike the one avoiding complex situations, applied in 
lazy delete, is to reduce the complexity of computations. Looking at the components 
of deletion operations one can locate the part where to adopt such a technique. The 
operation  of  removing  an  entry  (2)  is  simple  and  can  not  be  further  simplified. 
Frequent corrections of the tree, performed during the update operations, guarantee 
the the high performance of search operations. Since that performance depends on 
the quality of corrections, simplification of algorithms could result in the the growth 
of time needed for the search operations. Motivated by the researches in [33] we 
employ a different approach of locating the entry in delete algorithm. It is worth to 
notice that searching of entry to be deleted is led by the objects position and the 
usually  algorithm traverses  more then one path down the tree.  On the  leaf  level 
objects  are  verified by their  unique Id.  In  the worst  case the whole tree may be 
traversed and the last found entry may match the Id. Lets assume that we have an 
extra index table consisting of tuples (np,Id), where an  Id represents the objects Id 
and np is a pointer to the node containing the object (see Figure 11). 
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The table  is  updated  with  every  insert  and  delete  operation.  It  allows  to 
directly locate any given entry by unique Id with no tree searching. The introduced 
technique reduces the complexity of the delete algorithm with no decrease of search 
operations performance, because the corrections of the tree are performed as often 
and  with  the  quality  as  in  the  original  TPR-tree.  The  negative  side  effects  of 
operating  on  two rather  than  on  one  indexing  structure  are  overwhelmed by  the 
benefits of more efficient delete algorithm. Following the naming convention uses in 
[33] we term this technique bottom-up.  

The deletion in the TPR-tree involves two travels through the tree, one down 
to locate the entry and the other one up to correct the structure. Since the extra index 
table allows directly achieve the node containing the entry to be removed one travels 
is omitted. But still we need to go up the tree and for that purpose a parent pointer 
need to be added to each node. That add-on causes that maintenance of the tree is 
more expensive and split algorithm needs to be modified.  The modified algorithm 
reads all the child nodes in newly created node in order to rewrite the information 
about their new parent in each one of them.  Basically, during a split, a new node is 
added to the structure and half of the overfull node children are moved to the new 

one. The parent pointers in children of the new node need to be updated. An example 
is presented in the Figure 12. 

In the figure the maximum number of entries in a node is 4. A node, marked 
as A, is overfull and needs to be split. The situation after the split is presented on the 
Figure  12(b).  New node have been  added,   and  it  is  marked as  A'.  Without  the 
modification of the algorithm the parent pointers in its children indicate the node A, 
(dashed arrows). After the modification all A' children need to be accessed to make 
their parent pointers valid. 
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(a) Before the Split                                                         (b) After the Split

Figure 11: Additional Cost of Parent Pointer.
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In  the  Figure  12  only  two  updates  of  parent  pointers  are  required.  That 
number is equal M/2 where M is the maximum number of entries in the node. Thus, 
with the growth of M the bear of having the parent pointers is greater. Since the node 
needs  to  keep  an  extra  pointer,  the  other  disadvantage  for  the  in-memory  data 
structures is a larger amount of space used.

5.4.3  New Penalty Insertion 

In Section 5.3 we identified the complex parts of the insert algorithm. Since, 
to compute the penalty for a new entry to be inserted requires minimization of three 
heuristics to be calculated, we investigate how it can be simplified. We propose a 
different way to calculate the penalty by reducing the number of heuristic metrics in 
order to decrease the time spend on the calculations. Since that simplicity worsens 
the  tree  structure,  we  investigate  the  influence  of  new  penalty on  the  search 
performance.
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6  Experimental Evaluation 

In this section we present the performance results of the index structure. The 
structure has been tested with combination of different sets of modifications.  We 
present the test environment and the measured factors, followed by the description of 
the modifications and discussion of the results.

6.1  Experiments Settings

6.1.1  Test Configuration

In all our experiments we used a Pentium M 730 (Dothan) 1.6 GHz with 512 
MB of memory. The processor has 64 KB of L1 cache memory with line size of 64 
bytes. It consists of two 32 KB caches used for instructions and data. The 2048 KB 
of second level o cache are unified. All of the experimental implementations were 
compiled  using GCC version and glibc version 2.4. We have not used applied any 
compiler optimization (“-O0” flag) to be able to use the debbuging of programs and 
in order to obtain results from the cache simulator (explained in section below) the 
closest to the reality*.

* The Callgrind may give false results when using optimization. We assume that the performance 
improvements are compiler optimization independent.
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6.1.2  Measured Factors

Mainly, we have been measuring two factors :
• duration times
• cache performance.

Every time we mention of duration or time of a operation, experiment set 
time, we mean the number of processor cycles converted to wall clock time. We have 
used the read time-stamp counter (RDTSC) [28]. RDTSC is a set of registers build in 
to the processor counting all the ticks of the CPU from the system start. To convert 
the number of processor cycles to the wall clock time we use the following equation.

t= n
f

Where t  denotes  time  in  seconds,  n –  number  of  processor  cycles,  and f 
processor speed in Hz. I.e.,  the program execution is 216951259696 cycles on our 
machine it will take 

t= 216951259696
1600000000Hz

≈135,5 s

 
In some experiment, for certain proposes were comparing pure CPU cycles.

 
 To  measure  the  performance  improvement  of  certain  operation  or  total 
program time we use percentage improvement metric given by following Formula 1. 

performance before−performance after
performancebefore

%                           (1)   

The cache performance has been measured using Callgrind, a open source 
call-graph generating cache profiler [30]. Callgrind is a extension to cache simulator, 
Cachegrind  witch  is  a  part  of  Valgrind  [31],  a  open  source  dynamic  binary 
instrumentation framework. Cachegrind can simulate the behaviour of the cache on 
every level and give detailed performance statistics  such as the number of cache 
reads, misses, hits of the program or separate functions. Also it can point a line in the 
code responsible for analysed rates so that it is easier for programmers to rethink the 
construction  of  hot  parts  of  a  code.  Callgring,  with  its  graphical  frontend 
Kcachegring, can analyse the executed program (no simulation) and generate graph 
of calls between the functions. 
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I.e.  in our case the function  main calls  function  ParseCommand, which calls  for 
other functions, as presented in the Figure 13.

This,  combined  with  the  Cachegrind  can  visualize  a  path  to  a  most  of 
problematic code lines. For instance a small and simple function can be the source of 
all  the  problems  on  the  second  level  of  cache,  because  it  is  called  with  every 
operation on the node. So by having such path we can : reprogram the function and 
reduce the number of problems or reduce the number of calls to that function i.e. 
when this function cannot be corrected. 

6.2  Generator and Workload

The workload is expected to simulate a wide range of situation in which the 
tree can be used.  To create a workload for our experiment we use the generator 
developed originally for TPR-tree, by Saltenis et al. [14]. This generator is capable to 
intermix  the  queries  with  updates  with  a  chosen  proportion  and  a  numerous 
parameters allows to generate any desired workload. In case of our workloads we use 
following parameters:  

● Space parameters. In our experiments we simulate moving points (i.e. cars) 
in two dimensional space with are of 1 000 000 square kilometres. With the 
exception for a experiments where we investigate the scalability of the TPR-
tree. 

● Number of  moving  points.   For  most  of  experiments  it  is  set  to  100 000 
objects with the exception for the scalability experiment where we use 10 
000, 50 000, 100 000, 150 000, 200 000, 250 000 and 300 000 objects. For 
larger  number  of  objects  we scale  the spatial  dimensions  of  the  space  as 
recommended in [14]. The number of moving points is constant during one 
simulation, no new objects appear and no disappear. 

● Number of updates.  We set that parameters always as a multiplicity of the 
number of objects, that to update each object at least five times. 

● Number of destinations - ND.  The parameter determinates the skew of the 

36

Figure 12:  A sample Callgrid output



data and velocity. If it is set to 0, the generated data are uniformly distributed 
in a space. Mostly we use ND=20. That correspond to 380 one way routes. In 
the  experiment  where  we  investigate  the  influence  of  the  number  of 
destinations on the performance of the TPR-tree we use ND ={0, 2, 40, 160}. 

● Update frequency - UI. The average update interval is 20 seconds in the most 
of the experiments. The real time interval between two successful updates is 
uniformly distributed between 0 and 40 seconds (2UI). However, we also run 
experiments  to  investigate  the  update  frequently  influence  on  the 
performance, where we vary that parameter. 

● Speeds. The maximum speed of the point is chosen randomly from the set of 
maximum speeds. In all our experiment we use a set of speeds: 0.75, 1.5 and 
3 km/min. 

● Query interval.   That  parameters describe the query occurrence frequency 
measured in the number of insertions. We generate queries every 500 insert 
operations

● Query quantity. The number of queries generated in one query interval. In our 
experiments we produce 10 queries at one time. Thus, the total number of 
queries  generated  during  one  simulation  depends on  the  number  of  insert 
operations. 

● Query size.  The spatial  part  of  the query denoting percentage of  the  data 
space. Usually we set this query size to 0,1% of the area.     

Generator produce workload with the timeslice, window and moving queries 
and allows to set parameters denoting the fraction of each type in the total number of 
queries.  For  all  our  workloads  the  queries  listed  above  are  generated  with  the 
probabilities 0.4, 0.3, 0.3 respectively. For more detail about generator we refer to 
[14]. The experiments investigating the lazy delete, the bottom-up delete and the new 
penalty improvements assume the standard workload, with default parameter values 
mentioned above. Different set of parameters is used when investigating the impact 
of ND, number of indexed points and update frequency, on the improvements. When 
we vary the number of objects, we use uniform data.  In these cases appropriate 
comments are  added in  the experiment  description.  In  the Section 6.7 where we 
studying the select characteristics, we briefly describe used workloads. 

6.3  Implementations

As  mentioned  in  Section  5  the  performance  of  data  structures  in  main 
memory  depends  on  many  factors.  Having  the  platform,  operating  system  and 
programming language determined only the way how the structure is implemented 
give us the influence on the performance. 

Our implementation  is  based  on  the  original  TPR-tree  implementation  by 
Saltenis et al. [14] with some patches by Jing Wong making possible running it on 
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Linux  platforms.  All  the  examples  used  in  the  following  section  assume  as  a 
programming language C++  and came from our implementation. 

6.3.1  Locality

Lets assume that the node does not contain actual data but pointers to them. 
Most probably the node with data enclosed by its pointers occupies more than one 
cache line because pointed data are probably located at different memory address. So 
each line is not going to be utilized in 100% and more than just the necessary number 
of calls to cache or main memory is going to be needed.

According to that nodes with all  their content should be placed in area of 
memory, lying one next to each other. That placement policy of the data in main 
memory is  a  part  of  well-known cache  conscious  programming technique  called 
locality [30]. 

During the adaptation of the TPR-tree to new environment we designed the 
node following the rules of locality. The content of that structure can be theoretically 
divided to a part called a header and a table of entries as shown in the Figure 14. The 
header is where all the node parameters are located such as the level,  number of 
entries etc. The table of entries stores pairs of Minimum Bounding Rectangle (MBR) 
and pointer to the child, when considering internal node or directly to the data – on 
the leaf level. This way when a part of memory is caches it is highly probable that it 
contains a full node, or at least a part without any additional unneeded data. This 
approach is a key to minimize the number of cache misses and thanks to that the 
number of reads from the memory paying back with less CPU time wasted.
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Figure 13: The TPR-tree node for main memory database



6.3.2  Disadvantages  of  Obcject  Oriented 
Programming

In  order  to  move  the  implementation  of  TPR-tree  from disk  to  the  main 
memory we had  to  modify  the  structure  to  make it  more  compact.  The  original 
implementation was based on the Generalized Search Tree for Secondary Storage 
(GiST)  [32].  This  framework  takes  advantages  of  C++  language  –  uses  object-
orientation like inheritance and virtual functions. The next attribute of GiST is that 
pointers are commonly used. All the attributes of GiST we have presented can not be 
accepted for the index running in main memory. The idea of GiST was to support the 
secondary storage and not the main memory. The inheritance and pointers do not 
guarantee  a  coherent  memory  map  which  prevents  creation  of  compact  data 
structure. The virtual functions are less effective then regular functions. They need 
more time because  the  polymorphic call is required. Moreover, they use more space 
there needs to be a virtual table for each class that has a virtual method [31]. All that 
motivated us to code our implementation without using  GiST.

6.3.3  Space Utilization 

When it goes for the main memory resident indexes the size matters. The 
redundancy  reduction  of  data  in  the  structure  is  needed.  I.e.  our  tree  keeps  the 
information of the level only in the node while the original implementation stored it 
in the node and in each entry. Since the entries are the basic component of the nodes, 
a  simple  improvement  could  save  the  great  amount  of  the  memory  space.  Lets 
assume that a node has 10 entries and the information about the level is stored as 
integer in each entry. In each entry that information, keep as a integer, occupies 4 
bytes. Removing it from entries to the node 36 bytes are freed (4 bytes need to be 
kept in the node).

Another approach for saving a space is replacement large, complex structures 
with more simple ones. In our of adaptation, such a technique mentioned in Section 5 
is replacement of path by simple parent pointer. Originally in a GiST path is a table 
of pointers to the node, where a sequence of nodes' pointers from root to the certain 
node is kept. While for a search proposes MBRs and pointers to the child are used, 
path is used for traversing up. There is no algorithm in the TPR-tree where a node 
directly calls another node lying more then one level up. The only exception is a call 
to the root which is handled in a different way. Summarizing removing the  path 
saves  space  with  no  reduction  of  functionality  but  effects  in  more  complex 
algorithms. (See Section 5).  

More  space  can  be  bought  by  responsible  data  type  usage.  Variables  are 
represented by different data types, which occupy different size of memory. There is 
no sense in overestimating the range of stored data. I.e. in all of our experiments we 
never had tree higher than 20 levels, but the original implementation was using four 
bytes  (integer)  for  storing  that  information.  One  byte  can  store  up  to  256 
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combinations,  so a  char  type store  the  level  is  enough.  Similar  situation evolves 
variable storing number of entries in the node – for 512 entries 2 bytes are enough. 
An unsigned short is enough and there is no need of using the twice larger integer.

6.3.4  Functions

Sensible  way  of  implementing  the  functions  is  competition  of  the  data 
structure. We have observed that some parts of code implemented in similar ways 
can result different cache utilization and can cause a significant number of cache 
misses. A simple example which we had in our work was that object creation can 
very expensive.

1    for (int j=0; j<numEntries; 
j++)
2   {
3       RTnode node = *this;
4        if 
(query.Consistent(node,j))
5       {
6           return j;
7       } 
8    }

1    for (int j=0; j<numEntries; 
j++)
2   {
3       RTentry* e = (RTentry 
*)&entries[j];
4       if (query.Consistent(e,this-
>IsLeaf()))
5       {
6           return j;
7       } 
8    }

(a) Before                                                                             (b) After

Program listing
Creating a new object (Program listing (a) line 3) as a temporary copy of 

existing one will result in high load of cache because all the data needs to be read 
from the original and written to the copy. In functions that are often called that may 
result in great number of memory accesses and cache misses. If possible it is better to 
use the pointers to the current object (“this” - Program listing (b) line 4) or pointer 
copies of original objects (Program listing (b) line 3). The small difference we show 
in those two program listings -modification to the way function is called saved us 
30% of the global number of L2 cache misses.

It  is  important  to  identify  the  top  called  functions  during  the  program 
execution.  These functions  which may be very small  may take most  of  program 
execution time.  That is why they need to be optimized. Each error costs more than in 
function called only few times.
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6.4  Main Bottelneck

In the first experiment we vary the node size and measure the times of the 
global execution and the operations'  times. We measure the time spent on insert, 
delete and select operations. The we investigate what is the main bottleneck of TPR-
tree running in main memory is. We measure the percentage of time spent on cache 
misses and the structure of those misses.  

The Figure 15 presents the performance of the TPR-tree varies with the node 
size. The measures starts with the minimum reasonable number of entries, which is 
four when node size is equal to 236 bytes. On he Figure 10(a) the node size growths 
by  ten  entries  to  the  maximum of  100  (4020  bytes).  The  Figure  10(b)  is  more 
detailed and varies by every two entries up to 30 entries (1380 bytes). In general the 
times rise with the node growth as well for smaller node sizes as for greater ones. 
The only exception is for the smallest node 236 (carrying 4 entries). The global time 
of a program running exactly with the same workload, for a node size 1380 bytes is 
almost 2 times longer then the time spend with node size 236. 

The Figure 16 shows the dependency of single operation time varying form 
the  node  size.  The  performance  trend  of  update  operation  is  opposite  to  select 
operations. While the time of the single select operation sightly decreases with the 
growing node size a single update operation consisting of deletion and insertion rises. 
It is worth to notice that optimal node for update performance is the same as for the 
global performance of the TPR-tree.

Next we investigate the role of cache misses in main memory TPR-tree. We 
measure the total number of cache misses in the program. Then we estimate the time 
spent on memory access and the CPU calculations. Notice that the results are the 
estimations but always rounded to the worst case values. The cache miss penalties 
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Figure  14: The performance of operations of  
TPR-tree
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are not constant even on the same hardware, operation system and can vary by every 
experiment. In our setup we have assumed a penalty of 20 cycles on the fist level of 
cache  and  200  cycles  on  the  second  level.  Probably  such  bad  factors  are  never 
reached. The tests were run for three representative node sizes : the smallest one (236 
bytes)  ,  the  one  with  the  best  performance  (324  bytes)  and  one  illustrating  the 
decreasing performance (1380 bytes). Results are shown in the Table 1.

Node size 236 324 1380

Estimated  global  time 
spend on cache misses 6 421 820 620 5 326 742 200 3 223 677 540

Measured  execution 
time 274 189 899 957 248 699 909 561 541 201 704 506

Percentage  of  time 
spent  on  CPU 
calculations

97,71% 97,90% 99,41%

Percentage  of  time 
spent on cache misses 2,29% 2,10% 0,59%

Table 1:  The cache measurements and time estimations
The cache misses take only a small fraction of the execution time, reaching 

not more then 3% . For the smallest node size 2,29% of time is spent on the direct 
reads from memory. That rate drops down with the node size growth. While for the 
optimal node size it is equal to 2,10%, for the larger node it is only 0,59%.

The results obtained in our experiments indicate that the TPR-tree is diferent 
from the structures that were taken under consideration in experiments evolving main 
memory data structures. Previous researches have proved that the most significant 
part of execution time is spend on second level data cache misses and first level 
instruction  fetch  misses  [3].  Although  that  time  spend  on  cache  misses  in  our 
experiment is insignificant we check if the structure is similar. To investigate that we 
take a closer look at  the structure of the measured cache misses as shown in the 
Figure 17. 
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The Figure 17 presents the time structure of cache misses for the size 236 
bytes. This node resulted with the highest number of cache misses - 2,29% of the 
global program time. That number consists mostly of instruction fetch misses on the 
first level. The next key factor is the time spent on the L2 data read misses. And only 
a small amount of the time is spent on L1 data read misses while the L2 instruction 
fetch misses are insignificant. 

The above results  lead to the conclusion that for TPR-tree the cache misses 
are not a main factor influencing on its performance. The amount of cache misses is 
small, their structure is consistent with other main memory strictures [3].  Since more 
than  98%  of  program  execution  time  is  spent  on  CPU  calculations  in  next 
experiments we concentrate on simplifying the algorithms. Considering the update 
and looking at the Figure 15 we choose to improve first the delete as a more time 
consuming algorithm.

6.5  Delete Improvements

6.5.1  Lazy Delete

Following the investigations from Section 5 we implement the  lazy delete 
policy in to the TPR-tree. The following experiments compare the new policy with 
the original TPR-tree deletion. We vary the node capacity from 4 to 30 entries, which 
reflects the sizes from 236 to 1380 bytes. Figure 17(a) and (b)  shown the measured 
elapsed time per deletion and update operation respectively. 
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Figure  15:  The  time  structure  of   cache  
misses. 
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As we can observe in the Figure 17 the influence of  lazy delete on the tree 
performance is significant. In case of optimal node, obtained in previous experiment, 
where capacity equals 6 entries (324 bytes) the improvement of delete time is about 
45%.  While  the  average  update  time is  over-performed by  23%.  Looking  at  the 
Figure 17(b) we can observe that the optimal node size has not change in term of 
update  duration,  but  for  deletion  (Figure  17(a))  it  has  been  switched to  node  of 
capacity 10 entries (500 bytes). However, for lazy delete the optimal node size is not 
so obvious any more. Average delete times for all node 
sizes presented in the Figure 17(a) do not differ one from the other more then 8%. 
Moreover  the  node  size  is  no  longer  the  key  factor  of  the  delete  operation 
performance. 
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(a) Delete Time                                             (b) Update Time

Figure 16: Lazy Delete Performance
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Figure  17:  Delete  Improvement  
by Lazy Delete Policy 
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Figure  18:  Influence  of  Lazy  
Delete  on  the  Search 
Performance
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The tendency where delete time increase with node growth does not appear 
when  lazy  delete is  used.  Furthermore  as  shown on Figure  18  the  improvement 
caused by lazy delete increases as the node size grows. While for the smallest size of 
the node it is about 35%, for the node of capacity 30 entries it raises to up to 70%. 
This can be explained in the following way. 

The main change made by  lazy delete lies in avoiding reinsertion of entries 
from  underflow  nodes.  Considering  the  TPR-tree  with  original  algorithms  and 
maximum capacity of node 4 entries the underflow leaf nodes causes reinsertion of 
only one entry. In the same situation where node can hold 30 entries, 14 reinsertion 
take place. When applying lazy delete for a trees with small nodes it does not reduce 
the number of reinsertion significantly. In the Figures 17 and 18 we can observe that 
lazy delete improves the average time of delete for a small  node sizes,  but for a 
bigger nodes the improvement is much more noticeable. To investigate that more 
carefully  we  measure  how  many  times  the  underflow  situation  occurs  for  both 
policies  and  then  we  calculate  the  percentage  of  avoided  ones.  We  run  these 
experiments for the node capacity of 4 and 30 entries. The results we obtained show 
that for the smallest node size about 20% of underflow situation are avoided by lazy 
delete and that percentage grows to more then 65 for the other node size.   

We  investigate  what  cost  the  search  operation  bears  for  the  update 
improvement caused by lazy delete. Figure 19 presents the influence of lazy delete on 
the search performance. While the betterment of update and delete is undisputed, the 
negative influence on the select is hardly noticeable. The average select time in the 
original TPR-tree is never better by more then 3%. This slightly degradation can be 
simply explain. Applying lazy delete policy causes that for the same amount of kept 
data and the same node capacity the number of internal nodes and entries in the tree 
is greater. For search operation that means that more nodes and more entries in these 
nodes need to be checked during one select operation. Each entry is checked if its 
MBR satisfies the query to move down the tree with that path. Figure 20 presents the 
average number of visited nodes during one search operation. That number is slightly 
greater for a tree with lazy delete applied. 

The result of the researches presented above were obtained from with one 
simulation workload. The parameter that varied was the node size. We proceed to 
describe  how the  lazy  delete behaves  in  different  environment  simulated  by  the 
workload.  We  investigate   the  influence  of  skewed  and  uniform  data,  update 
frequency  and  number  of  indexed  points  on  the  tree  performance.  All  those 
experiments were run for a node size of 12 entires.
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Figure  21  presents  the  results  of  the  experiments  run  with  the  workloads 
where  the  parameter  ND (number  of  destinations)  was  varied.  The  influence  of 
number of destinations of the average update times is shown. As Saltenis et al. in 
[14] show that uniform distribution of the object positions and velocity vectors is the 
worst case. The more skewed data are, the assigning them to to bounding rectangles 
with small velocity extents, is easier. In our experiments we observe, that this trend 
remains unchanged for TPR-tree with applied lazy delete policy. 

In the TPR-tree during every update the MBRs are tightened. Thus, the more 
frequent updates lead to higher efficiency of the structure. With the update interval 
relatively long the MBRs grow in size increasing the overlap area drastically. As 
presented in the Figure 22 the average lazy delete time is smaller then the original. 
However gap decreases with updates occurring less frequent.

As shown in the Figure 23, when varying the number of objects, the average 
delete times for lazy delete approach and original TPR-tree differ by almost the same 
interval of time. 
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Figure 19: Search Performance
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Figure 20: Average Update Time for  
Varying Number of Destinations
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Figure 21: Average Delete Time for  
Varying UI  
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Figure 22: Average Delete Time for  
Varying Number of Indexed Points
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6.5.2  Bottom-Up Delete

Other  approach  (mentioned  in  Section  5)  -   the  bottom-up technique  is 
expected  to  improve  deletion   simultaneously  with  no  decreasing  the  search 
performance. The following experiment verifies that statement. The measured factors 
remain the same as in previous experiments. Figure 23(a) depicts relations between 
the average bottom-up delete time with varying  node size. 

       
Comparing the average time of bottom-up delete with the original TPR-tree in 

the  same case  as  done  in  the  previous  experiment  (optimal  node  size)  we  have 
obtained the  results  as  follows.  The delete  operations  are  improved by 19% and 
updates by 35% per every operation. But as presented in the Figures 24(a) and (b) 
and in contrast with the lazy delete policy the improvement depends on the node size. 
Furthermore it reacts  on the change of the node capacity in the same way as the 
original delete, it  can be observed in the Figure 23, where the TPR-tree curve is 
almost  parallel  to  bottom-up  curve.  With  the  exclusion  of  the  smallest  node  the 
results differ with constant interval of time. That is the time spent in original TPR-
tree on the searching the entry to be removed. The exception can be easily explained 
– the TPR-tree height with node  capacity 4 is drastically higher than for the capacity 
of 6. In case of smallest node (236 bytes) the tree has 11 levels. The growth of node 
to 324 bytes (two more entry in the node) causes reduction of tree height by 3 levels, 
while for further growth of node such a great reduction is not observed. For delete 
algorithm searching  the  entry  to  be  removed  is  more  expensive  in  higher  trees 
because number of nodes to be checked in a path form the root to the leaf grows 
rapidly. Since applying bottom-up approach eliminates searching from the deletion, 
the minimum average time is reached for node of capacity 4 entries. For the update 
the optimal node size is not changed compared with the TPR-tree - it is still caries 6 
entries.

Our experiments confirmed that bottom-up does not have any influence on the 
select operations. The results we obtained show that the average select times, for the 
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(a)Delete                                                      (b)Update

Figure 23: Bottom-Up Improvement
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original and  bottom-up approaches, differ from less the 0,5%  to 2%.  This small 
differences may be cause by way operating system works. It is worth to notice that 
even two identical experiments run one after another in the same environment may 
differ. However all remaining indicators of the tree structure like the tree hight, the 
number of internal and leaf nodes, average fill of nodes and average size of MBRs on 
each level are equal for the TPR-tree with and without bottom-up.

The following experiments were run for a node size of 12 entries. Experiment 
for the varied number of destinations shown (see Figure 25) that bottom-up delete, as 
expected, decrease the average delete time for TPR-tree by a constant value in each 
case. When the update interval is varied, average  bottom-up delete time does not 
grow so fast as TPR delete time does, as it  is observed in the Figure 26. That is 
natural,  since  bottom-up  does not  involve any searching and increase of   update 
interval  causes  the  overlap  enlargement.  Similarly,  like  for  the lazy  delete,  the 
improvement archived by the bottom-up does not depend on the number of indexed 
objects.  

6.5.3  Lazy and Bottom-Up Delete

The Figure 28 shows the comparison of two the introduced techniques as well 
the combination of them with the original TPR-tree. The new delete techniques refer 
to different parts of the algorithm they can be applied simultaneously. Thanks to that 
the  delete  becomes  almost  node  size  independent  at  least  for  the  nodes  sizes 
examined in our researches. That is the result of the  lazy delete since the previous 
experiments  show  that  the  bottom-up is  responsible  only  for  the  parallel  down 
displacement  of  the graph (see  Figure  24).  The  best  results  are  obtained for  the 
combination  of  lazy and  bottom-up for  the  deletion  as  well  as  for  the  update 
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Figure  25:  Average 
Delete  Time  for 
Varying UI
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Figure  26:  Average 
Delete  Time  with 
Varying  Number  of  
Indexed Points
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Figure  24:  Average 
Delete  Time  for 
Varying  Number  of  
Destinations

2 10 40 160 0 Uniform
0

25
50
75

100
125
150
175
200
225
250
275
300
325
350

TPR
Bottom-up

Number of Destinations

Av
era

ge
 D

ele
te 

Tim
e (

μs
)



performance. In the worst case (the smallest node size) the average time of delete is 
improved by 80% and grows for a largest node size measured to 90%. Hence the size 
still influences on the the average update times, with the growth of the node size 
performance decrease. 

Since both delete improvements separately show no significant influence on 
the select and there are no theoretical reasons for worsening the performance by their 
combination we do not discuss that.

However, we investigate both improvements applied in the same workloads 
that used in earlier experiments.  The combination of lazy and bottom-up delete does 
not  yield  any  unexpected  results.  The  Figeres  29,  30,  31  present  results  of  our 
experiments  for  varied  number  of  destinations,  update  interval  and  number  of 
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                        (a) Delete Time                              (b) Update  
Time

 Figure 27: Delete Improvements
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Figure  29:  Average 
Delete  Time  for 
Varying UI 
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Figure  30:  Average 
Delete  Time  for  
Varying  Number  of  
Indexed Points
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Figure  28:  Average 
Delete  Time  for 
Varying  Number  of  
Destinations
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indexed  points.  In  the  next  experiment  we  investigate  the  insert  algorithm  as  a 
significant component of update operation. All of our experiments ran for lazy and 
bottom-up combination  proved  that,  independently  of  simulated  situation,  the 
archived  improvement is significant.

6.6  Insert Improvement

Looking at the results of our earlier experiments it  becomes clear that the 
delete algorithm can be easily improved with no sufficient worsening of the select 
performance. According to the results obtained in the first experiment the most of the 
time in the TPR-tree structure is spent on the CPU calculations while the memory 
accesses is not the key factor to the general  improvement. In this experiment we 
follow the divagations about complexity from Section 5 and simplify the insertion 
algorithm showing that the select operation are not going to suffer. 

We check  our  implementation  using  the  Callgrind  program  for  functions 
occupying  the  most  of  execution  time.  The  same representative  node  sizes  were 
tested as in the previous experiments (4,6,30 entries in the node). Table 2 presents 
results  obtained  from the  Callgrind.  Notice  that  in  all  presented  cases  the  insert 
function takes about 50% of general execution time. The significant part of that time 
is spend on calculations employed by TPR-tree heuristics, since they are based on 
integrals (for details see Section 2). The heaviest of those heuristic, in term of CPU 
time  spent,  is  the  one  computing  the  integral  of  the  intersection  of  two  time-
parametrized rectangles and it is included in the Table 2. This algorithm is extension 
of select algorithm which check if those two rectangles overlap [34]. The insertion 
uses this heuristic during penalty calculation for determining the position for a new 
entry. 

Node Size (entries)
4 6 30

Percentage of program time taken by 
Insert 51,1 46,43 49,97

Percentage of program time taken by 
the integral of intersect area calculation 3,52 7,22 34,38

Number of overlap checked 3 096 136 4 016 206 10 725 690

Table 2: Results of Callgrind Analysis.

Looking at the Table 2 we observe that fraction of total program time taken 
by  the  integral  of  intersection  area  calculation  is  greater  when  the  node  size  is 
greater. While for a node of 4 entries it is only 3,52 % , for a node of 30 entries it 
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shoots up to 34,38%. Moreover the number of calls for that function is more then 
three times greater for the largest node compared with the smallest one. 

In the following experiment we check how omitting of the heaviest heuristic 
influences  on  the  TPR-tree  performance  including  insertion,  deletion  and  select 
operation.  We  term  insert  algorithm  without  the  intersection  calculations,  new 
penalty insertion. The Figure 32(a) and (b) shows two curves, one for the original 
TPR-tree and the other one for a new penalty insertion. Similarly to the lazy delete 
case, the average time of new penalty insertion does not depend significantly on the 
node size. Therefore the optimal node sizes, giving similar times for the insertion, are 
between 6 and 18 entries. The improvement of insertion for a node of 6 entries is 
only 6%, but grows with the node size to reach more than 50% for 30 entries in a 
node. Explanation for that is partly included in the Table 2, where we present the 
number  of  calls,  to  that  expensive  heuristic,  avoided  in  the  case  of  new penalty 
insertion. Since that number is greater for the greater nodes the better improvement 
for these nodes is obvious and can be observed in the Figure 32.

Deletion algorithm employs the regular insertion for the reinsertion proposes, 
thus each insertion improvement is expected to have positive influence on the delete 
performance. The next figure presents the influence of the new penalty insertion on 
the original TPR-tree deletion (Figure 33(a)),  combination of lazy  and bottom-up 
delete (Figure 33(b)). 
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(a) Insert                                                        (b) Update 

Figure 31:New Penalty Improvement
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As shown in the Figure 33(a) the influence of  new penalty insertion on the 
average delete time is significant. The improvement for a node sizes 4 and 6 entries 
is is minimal, only about 5%. With the increase of the node size, the improvement 
grows too. That occurrence is in accordance with previous experiments. During the 
delete operation reinsert occurs every time a node underflows. For nodes of little size 
the number of entries to be reinserted is smaller. Moreover the insertion for them is 
relatively cheaper comparing i.e. with the node of sizes 20 and 30 entries. Thus, that 
tendency has an influence on the average delete time. The distance between graphs 
for a TPR-tree and for a  new penalty (see Figure 33(a)) reflects the time which is 
spent on the reinsertion by the delete algorithm. 

In spite of expected betterment for combination of lazy delete and bottom-up 
improvements caused by  new penalty insertion,  it  has not been confirmed in the 
experiments. This can be observed in the Figure 33(b). We explain that in following 
way.  Since  the  lazy  delete avoid  most  of  reinsertions  the  improvement  of  insert 
looses the impact on the deletion.  
 Omitting  one  of  the  penalty  metrics,  what  is  applied  in  the  new penalty 
insertion, should effect with worst tree produced. But, as presented in the Figure 34, 
the results comparing the influence of TPR-tree and  new penalty insertions on the 
search times do not differ in a significant way. Surprisingly the graphs do not show 
any significant differences, but these results correlate with the structure indicators, 
like the number of internal entries, margin, or the the number of visited nodes (see 
Figure 35), not differing in significant way.
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(a) TPR-tree vs. New Penalty                     (b)Improved Delete vs. New  
Penalty

Figure 32: New Penalty Influence on Deletion
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Summarized, the update improvements do not decrease the performance of 
select operation significantly. 

We  proceed  to  investigate  how  the  new  penalty  insertion behaves  when 
differing the workloads parameters for the node size of 12 entries. For more skewed 
data the gap in average insert time between the TRP-tree and new penalty insertion 
decreases,  while  for  uniform  data  it  grows  significantly  (see  Figute  36).  The 
experiments for varied update interval (see Figure 37) show that, however  the new 
penalty  insertion  lessens  the  time by  a  constant  value,  for  both  presented  cases, 
average times grow steadily. Like in the case of delete improvements, new penalty, 
for different number of points the characteristics remain unchanged. 

6.7  Studying Select Characteristics

In  this  section  we  generally  investigate  the  negative  influence  of  our 
improvements on the select characteristics. In the first experiment we compare the 
average times of select for the combination of all our improvements and the original 
TPR-tree.  The default  parameters for  workload were uses in this  experiment.  As 
expected, TPR-tree over-performs the modified version  for all examined node sizes. 
However the difference is small and does not reach more  than 4% (see Figure 39). 
That is a result of the larger number of nodes visited during searching. In the Figure 
40 the comparison of this characteristic is presented. On average 10 more nodes are 
needed  to  locate  the  same  objects,  required  by  the  query  in  two  different  data 
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Figure  33:  The  New  Penalty  
Influence on the Select
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Figure  34:  Number  of  Visited 
Nodes During Search Operation
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structures produced. This is caused by  new penalty  and the  lazy delete.  While the 
new penalty leads to area  overlap enlargement, the lazy delete increases the number 
of leaf nodes in the tree.

Next we investigate if the worsen select performance is resulted also during 
different simulations. As a node size for that experiment we choose 12 entries as a 
representative, for the range, where the greatest influence of our improvements is 
observed.  Figures 41, 42, 43 depict obtained results when varying a the level of 
skew of  moving  objects  distribution  in  the  space,  the  update  frequency  and  the 
number of objects.  

In all of these situations, the original TPR-tree answer the queries faster, as it 
is better adapted to the varying conditions than our simplified version. 
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Figure  36: Average Number of 
Visited  Nodes  during  Search 
Operation
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Figure 35: Average Select Time
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Figure  37:  Average 
Select  Time  for 
Varying  Number  of  
Destinations
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Figure  38:  Average 
Select  Time  with 
Varying UI
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Figure  39:  Average 
Select  Time  with 
Varying  Number  of  
Indexed Points
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In the following experiment we compare search performance of original, and 
the TPR-tree with lazy delete, bottom-up and  new penalty applied simultaneously. 
We change the size of the query rectangles from 0.01% of the space to the 5%.  The 
other  characteristics  of  the  workload  remain  as  for  a  default  settings,  with  the 
exception for a  node size, which is 12 entries. Results of this experiment confirmed that 
TPR- tree needs less time to proceed a query operation independently of query spatial size.
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Figure  40:  Average  Select  Time  For  Varying  
Query SIze
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7  Conclusions

In  this  paper  we  have  made  the  first  attempt  of  analysing  the  Time 
Parametrized R-tree running in main-memory environment. We have verified that the 
growing gap between the memory and CPU speeds is not the main bottleneck in case 
of such complicated data structure. In contrast to that we prove that more than 90 % 
of time is spent on CPU calculations. Following these conclusions we propose three 
approaches of limiting the number of computations needed for the update operations: 
lazy delete – limiting the number of occurrences of heavily algorithms correcting the 
tree (underflow treatment, reinsertions and shortening the tree), the bottom up delete 
– where by using the additional indexing table we omit time-taking entry localization 
during the deletion. The third approach follows the ideas of earlier improvements and 
was implemented with help of binary program analyser - the Callgring. The program 
helped us to locate the heaviest of the heuristics used by the insertion – the overlap 
enlargement. We have modified the insert  algorithm so that it  omits this penalty 
metrics. As all of these improvements are applied in different parts of the algorithms 
there is no limitation of joining their performance. 

In  our  researches  we  improved  performance  of  update.  However  that 
improvement has just slight but  negative effect on the query operations time. We 
have proved that the query operations suffer from our improvments,  however we 
show that the decrease of the performance is less than 4%.
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8  Future Work

We have presented that the TPR-tree running as a data structure designed for 
the disk oriented environment can be easily over-performed by simple modifications. 
As  in  the  theory  the  CPU  heavy  algorithms  were  ensuring  the  performance  by 
limiting the number of disk I/O the main memory environment they become the main 
bottleneck. The tree characteristics change so that the tree is becoming horizontally 
expensive – the relative cost  of visiting an additional node drops down to values 
comparable to CPU cycles,  while the number of computations performed on one 
node remains the same. Visiting another node takes less time than examining one 
entry.  It would be interesting to rethink the number of penalty metrics needed for the 
update operations as well as the number of CPU heavy calculations involved in these 
metrics. 
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