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Chapter 1

Introduction

Swarm Intelligence is a relatively new research area that takes a computa-
tional approach to decision making, optimisation problems, and multi agent
cooperation strategies. By observing the behaviors of naturally occuring
swarm systems exemplified primarily by social insect societies, swarm in-
telligence seeks to mimic the robustness, adaptivity and efficiency of these
systems, which emerges as a result of multiple interactions between simple
components.

One specific field within swarm intelligence deals with the collective building
behaviors that result in complex structures such as termite nests and wasps
hives. Applications of collective building algorithms typically involve simula-
tions of a number of agents that act according to very simple rules, governing
the construction of large architectures.

Purpose

The purpose of the work presented in this report is to examine the feasibility
of applying the concepts of swarm intelligence to the problem of constructing
human-like architecture through the use of a collective building algorithm.
We will develop an algorithm for this purpose and examine a method of
supporting the algorithm by evolving the necessary computational rules that
control agent behavior and decision making.

Motivation

Research into collective building algorithms in swarm intelligence has so far
been focused mainly on simulating natural construction such as those con-
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2 CHAPTER 1. INTRODUCTION

structed by termites. There has been hardly any work done into the appli-
cation of swarm based algorithms to the construction of human-like archi-
tecture. This makes the topic of this document an interesting proposition.
Moreover, prior work within this field has not fully explored the combination
of both quantitative and qualitative stigmergy within the same algorithm,
and this presents another interesting challenge.

Structure of this report

The following chapter reviews a number of important concepts particular to
swarm intelligence. Concepts are introduced and explained, with references
to seminal works in the area.

Chapter 3 details the development of the SwarmArchitect algorithm which
we propose as a potential method of extending the reach of collective building
algorithms into the realm of human-like construction.

Chapter 4 goes on to examine a strategy for utilising a genetic algorithm to
evolve the rules used by SwarmArchitect agents.

In chapter 5 we describe the implementation of a graphical environment
meant to aid the development of SwarmArchitect.

Chapter 6 looks at a number of experiments that demonstrate some of the
capabilities of SwarmArchitect and the genetic algorithm.

We finish off with chapter 7, in which we summarise and discuss the results
of our work, and propose topics for future work.



Chapter 2

Preliminaries

This chapter introduces some of the underlying principles that provide the
basis for the SwarmArchitect algorithm and which we shall refer to through-
out this report.

The first section reviews some of the fundamental concepts of swarm intelli-
gence and presents some seminal works in this area. In the section following
that, we introduce two approaches to collective building algorithms.

2.1 Swarm Intelligence

In their book, Bonabeau et al. [2] define the term swarm intelligence as
“any attempt to design algorithms or distributed problem-solving devices in-
spired by the collective behavior of social insect colonies and other animals”.
When observing social insects, the question arises of how they manage to per-
form elaborate construction, division of labor, path-finding and much more
without hierarchies and command structures. Societies consisting of several
thousand unremarkable individuals collaborate to perform remarkably com-
plex tasks and exhibit flexibility, adaptability and fault-tolerance in doing
so. With swarm intelligence, we attempt to leverage these highly desirable
properties and put them to use in the design of algorithms.

The approach taken in swarm intelligence is to start by observing specific
aspects of, typically, social insect behaviors. Based upon observations we
attempt to construct a computational model that captures these properties,
in order to learn more about the complex interplay that makes them possible.
Based upon such a model, we can then refine and apply these techniques to
problem-solving and decision-making.

3



4 CHAPTER 2. PRELIMINARIES

Swarm intelligence, as well as the natural systems we base it on, relies heav-
ily upon two important concepts: self-organisation and stigmergy. These
are what enables swarms of very simple individuals acting and interacting
according to simple rules to exhibit highly complex collective behaviors, such
as the path-finding and trail-following behavior of ant colonies.

2.1.1 Self-organisation

Self-organisation is based upon four important mechanisms.

• Positive feedback
Positive feedback mechanisms influence actions in a feedback loop. In
the example of ant trail following the positive feedback loop consists of
individuals depositing pheromone whereever they walk, which attracts
more individuals who in turn deposit more pheromone.

• Negative feedback
Negative feedback provides a counter to positive feedback. In the exam-
ple of ant trail following behavior, gradual evaporation of pheromone
ensures that a trail will disappear when it is no longer relevant.

• Randomness
In self-organising systems, randomness is an essential requirement, en-
suring the exploration of the problem space that is necessary to discover
new solutions. In the ant example, the slight tendency to random walks
away from established trails are what lead to the discovery of new food
sources or shorter paths between nests.

• Multiple interactions
Self-organisation is highly dependent on multiple interactions between
component parts. Multiple individuals may explore, share knowledge
and build upon the actions of others.

2.1.2 Stigmergy

Stigmergy is the concept of communication by way of changing one’s envi-
ronment. Stigmergy works by an individual acting upon the configuration of
it’s local environment, performing an action which changes the environment
into another configuration. This, in turn, affects the decision of the next
individual that senses this new configuration.
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In swarm intelligence we often talk of two kinds of stigmergy: quantitative
and qualitative. Pheromone trails are the archetypical example of quanti-
tative stigmergy. They influence decisions in proportion to their intensity.
Qualitative stigmergy involves coupling specific stimuli with specific actions,
such as in the case of wasp nest construction. Wasps returning with building
materials sense and recognise the configuration of the nest which influences
their choice of where to place their mouthful of paper.

Stigmergy as a communication strategy provides a great deal of benefits.
Particularly, information is stored locally, in the environment where it is
pertinent, so deciding when and to whom to transmit information becomes a
non-issue. We do not need to theorise about which individual might benefit
from a certain piece of knowledge, nor take steps to avoid redundant re-
transmission.

2.1.3 Selected Works

In this section we provide brief examinations of selected works within the area
of swarm intelligence. These works serve as examples of the many models of
insect behavior that have influenced later research, and we shall refer back
to these examples in later chapters.

Trail Following

In experiments with ant path-finding, Deneubourg et al. [3] devised a model
of ant trail-following behavior. The experiment involved placing a paper
bridge between an ant colony and a food source as shown in figure 2.1.

From this experiment, Deneubourg et al. came up with an equation describ-
ing the trail following behavior. If an ant has a choice between two paths A

and B, then the probability PA of chosing path A is given by:

PA =
(k + Ai)

n

(k + Ai)n + (k + Bi)n
= 1− PB, (2.1)

where Ai and Bi are the amounts of pheromone on paths A and B, respec-
tively. The parameter k controls the randomness of the function, as a high
k increases the likelyhood that an ant chooses it’s path regardless of phero-
mone intensities. The parameter n describes the linearity of the function,
such that a high n will make even a small difference in pheromone between
the two paths influence the decision to a large degree. The authors found
that setting n = 2 and k = 20 provided the best fit of the experimental data.
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Figure 2.1: Live ant experiment. After Bonabeau et al. [2].

This equation has since been generalised and adapted to many different
swarm intelligence applications in later works.

Clustering

In another article, Deneubourg et al. [4] describe a model for the observed
clustering behavior of certain ant species that arrange corpses of dead ants
in cemetaries. Figure 2.2 shows this observed behavior.

Figure 2.2: Ant workers form clusters from 1500 scattered corpses. After
Bonabeau et al. [2].
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The model consists of a number of agents moving randomly in a space, decid-
ing upon an action to take after every step. If an unladen agent encounters
a corpse it must decide whether or not to pick it up as a function of the
perceived density of corpses in the immediate area. The probability pp that
the agent will pick up the corpse is given by:

pp =

(

k1

k1 + f

)2

, (2.2)

where k1 is a threshold value and f is a measure of the perceived fraction of
corpses in the area. As is evident from this equation, when the density of
corpses f increases far above the threshold, the probability that the agent
will pick up the corpse approaches 0, thus making agents less likely to remove
corpses from clusters that have already formed.

Conversely, after every step an agent carrying a corpse must decide whether
or not to drop it. The probability pd that the agent drops the corpse is given
by:

pd =

(

f

k2 + f

)2

, (2.3)

where k2 is another threshold value. The effect of this equation is opposite
of the former in that an increasing density of corpses makes it more likely
that the agent will drop the one it is carrying.

2.2 Collective Building

This section describes some of the previous works dealing with collective
building algorithms.

Quantitative Stigmergy

A large body of research exists which deals with quantitative stigmergy based
collective building algorithms which mimic termite nest construction. An ex-
ample of such an approach is examined in [9]. It consist of a three-dimensional
world where pheromone concentrations influence agents’ decision to place
building blocks. Different kinds of pheromone are deposited and diffuse out
across the environment. The gradient of pheromone affects the probability
of an agent placing a block.

In [9], termite foragers are spawned into the world with the sole purpose of
travelling from one point to the other, depositing pheromone along the way.
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Builder termites then place blocks with a certain probability within a limited
band of pheromone concentration such that a building neither takes place in
areas of very high concentrations (where traffic is high), nor areas with very
low consentrations. The result is the formation of tunnels which cover the
trails travelled by foraging termites, as shown in figure 2.3.

Figure 2.3: Tunnels are built covering the paths travelled by forager termites.
After Ladley and Bullock [9].

Another source of pheromone, a simulated termite queen emitting a steady
stream acts as template function, the gradient of which guides the building
of the royal chamber. This is shown in figure 2.4.

Figure 2.4: A royal chamber is formed around a queen emitting a pheromone
template guiding construction. After Ladley and Bullock [9].

Qualitative Stigmergy

Theraulaz and Bonabeau [11, 10] introduced a simple algorithm for the pur-
poses of experimenting with collective building controlled by qualitative stig-
mergy. In their approach, a number of agents move about randomly in a
three-dimensional lattice and deposit building blocks when they encounter a
triggering configuration.

Agents posess a library of rules which they consult every time they move. If
the local configuration matches a rule in it’s library, the agent performs the
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specified building action. Using randomly generated rule sets, occasionally a
structure would be constructed which resembled a wasps nest, examples of
which are shown in figure 2.5.

Figure 2.5: Examples of structures built by agents using qualitative stig-
mergy. After Theraulaz and Bonabeau [11].

In a later article, Bonabeau et al. [1] applied a genetic algorithm to the
problem of generation rule sets. Deeming it problematic to quantify struc-
turedness of a generated wasps nest in an algorithmic fitness function, they
used human evaluation to ascertain a fitness value.
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Chapter 3

SwarmArchitect

This chapter examines the development of SwarmArchitect; a collective con-
struction algorithm based upon the principles of swarm intelligence. Each
section presents the challenges of a specific problem area and examines the
different solution strategies considered during development of SwarmArchi-
tect.

The first section summarises the overall architecture of the algorithm, de-
scribing the basic concepts and stating some of the important constraints
imposed by our problem specification. Each following section examines the
details of a specific area of implementation, describing and analysing the
challenges posed and a number of different possible implementation choices.

3.1 General Architecture

In [11, 10], one of the first experiments with qualitative stigmergy in swarm
construction, Theraulaz and Bonabeau described a very simple swarm build-
ing architecture where agents moved randomly without restriction in a 3-
dimensional space, placing a building block at their current position when
they encountered a triggering configuration. This work serves as the inspi-
ration for SwarmArchitect.

3.1.1 World and Agent Architecture

The SwarmArchitect algorithm makes use of a number of simple agents that
move about in a discrete, 3-dimensional lattice, depositing building materials

11



12 CHAPTER 3. SWARMARCHITECT

according to a set of stimulus-response rules. The lattice is constructed as a
3-dimensional array of objects containing information about the state of each
cell in the lattice, such as the presence of a building block and the intensity
of pheromone. One cell may contain 1 or 0 building blocks.

When a building block is placed in the world, a certain amount of pheromone
is deposited along with it. These pheromone concentrations diffuse and decay
as the simulation proceeds.

It is important to note that the concept of an ’agent’ in most swarm in-
telligence applications bears no resemblance to the common notion of inde-
pendent, intelligent agents. When we refer to agents in this document, we
merely use the term as a useful way to visualise the concepts of insect-inspired
construction.

In SwarmArchitect, an agent is represented by a set of coordinates (x, y, z),
designating a position in the lattice. A looping construct takes the role of
performing all actions and decisions on behalf of our imagined agents, visiting
each of these coordinates in turn, performing the appropriate building actions
and updating pheromone intensities in the surrounding area. An agent is a
means of keeping track of which point in the world we are operating on.
As the algorithm runs, agents are moved about the world by changing their
coordinates. Agents move in turn, selecting their direction stochastically
taking into account the pheromone intensities in the world. Agents will tend
to move towards areas with fresh building activity.

Individual agents are able to directly sense the environment in a small area
around their position. Agents match this direct sensory perception to a
library containing a limited number of triggering configurations, acting upon
these in different ways when they are encountered. Agents may also refer to
three different aggregate views of the densities of building material in their
current position.

Agents do not sense each other, nor do they communicate or act according
to any explicit cooperation strategies. All communication and coordination
is achieved by means of stigmergy. When an agent changes the environment,
this change, in turn, affects subsequent decisions of other agents.

SwarmArchitect employs a combination of quantitative and qualitative stig-
mergy. While an approach based purely on qualitative stigmergy could theo-
retically allow the expression of human-like architecture on its own, the space
of possible stimulating configurations would be enourmous, since large scale
architectural features would require a very large sensory range. By limiting
the sensory range of agents to a 3× 3 × 3 cube, the size of this space is re-
duced. Provisions for large scale features are made in the form of quantitative
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stigmergy which influences the choice of action when an agent encounters a
stimulating configuration.

The algorithm stops after a predetermined number of iterations.

3.2 Pheromone

In this section we examine the role of pheromone in SwarmArchitect. Phero-
mone is one example of a stigmergic messaging medium, and in many swarm
intelligence applications, it is the sole means of communication and coordi-
nation between individual agents. Chapter 2 described a number of swarm
intelligence applications that put pheromone to great use. There is, how-
ever, no reason that the use of pheromone deposits must always take such
an exclusive role in swarm intelligence applications.

In SwarmArchitect, pheromone is used to guide agents towards areas of in-
tensive building activity, in order to achieve faster convergence towards a
solution. Pheromone is deposited in the world along with building blocks
as they are placed, in effect pointing out areas where building activity has
taken place recently. In SwarmArchitect, pheromone takes a slightly lesser
role than what is the norm for many swarm intelligence algorithms. However,
pheromone deposits are an important measure which facilitates cooperation
between agents. This mechanism takes the place of more sophisticated co-
ordination and communication strategies, becoming what is effectively a call
for aid. Figure 3.1 shows an example of pheromone deposits around newly
placed building blocks.

Figure 3.1: Pheromone deposits formed around newly placed blocks in the
SwarmArchitect world.
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Swarm intelligence applications often rely on the ability of the actions of an
individual to recruit other individuals to assist in whatever effort is being
carried out. In SwarmArchitect, we exploit the fact that the occurrence of
multiple pheromone deposits is an indication that an area has the potential of
additional rule matching possibilities and thus could benefit from attracting
attention from several agents. In what Bonabeau and Theraulaz ([11]) name
a coordinated algorithm, the building action associated with the matching of
one rule will often result in a new configuration which is also present in the
library of building rules. It is therefore reasonable to suggest that there is a
higher chance that agents will locate buildable configurations in areas where
building activity has recently taken place.

Since SwarmArchitect relies on other measures for guiding the exact place-
ment of building blocks, it is only necessary to track pheromone concentra-
tions in two dimensions. Pheromone deposits will have fulfilled their role
if they just have the effect of attracting agents to the general area; thus,
when we apply pheromone we can simply ignore the height dimension and
apply all pheromone deposits and updates to the ’floor’ of the environment.
Therefore, unlike other algorithms which have to perform pheromone update
operations in every cell in a three-dimensional environment, SwarmArchitect
is able to process this operational step fairly quickly.

3.2.1 Diffusion and Decay

In order for pheromone deposits to serve their purpose as a means to recruit
agents to areas where building activity is happening, it is necessary for the
deposits to spread over a larger area beyond the cell where a fresh block has
been placed.

One possible solution would be to simply deposit pheromone in a larger area
around each building block, adding to the pheromone intensities already
present in these cells. Pheromone would thus reach out in a predetermined
radius around a building block.

Another approach would be to implement a mechanism for diffusing phe-
romone deposits, allowing them to spread further and further out as the
simulation progresses. One simple approach to diffusion involves moving
part of the pheromone of a cell to its neighboring cells. Assuming each cell
diffuses pheromone to each of its eight neigbors, the amount of pheromone
∆τci

that each neighbor receives from cell ci can be expressed as:

∆τci
=

τci
· d

8
, (3.1)
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where 0 < d < 1 is the diffusion coefficient, which regulates the percentage
of pheromone moved from a cell to its neighbors and τci

is the amount of
pheromone in cell ci. A higher d results in more rapid diffusion.

Figure 3.2: Example of diffusion of pheromone from the middle cell to its
neighbors (only 4 shown) with d = 0.5. (a) Before. (b) After.

In SwarmArchitect, the spread of pheromone is achieved by means of diffu-
sion, since this allows for pheromone to spread dynamically and reach out
as far as necessary to attract agents, eliminating the need to theorise about
which fixed radius is sufficient.

While the choice to utilise diffusion does involve more computation, the fact
that the operation is only applied to a limited number of cells in the envi-
ronment means that it does not increase overall computational complexity
by any significant amount.

Once an area has been built up to the point where rules are no longer being
matched, we must ensure that agents do not continue to be recruited to the
area. In order to ensure this, pheromone will evaporate at a steady rate, such
that recruitment ends fairly quickly after building actions cease, and agents
may be directed to another area.

Pheromone evaporation can be applied to a cell ci with a simple procedure
as shown below:

τci
← (1− ρ) · τci

, (3.2)

where τci
is the amount of pheromone in cell ci and 0 < ρ < 1 is a coefficient

dictating the speed of evaporation.

At the end of every iteration the evaporation rule of Equation 3.2 is applied
in one pass to every cell of the environment floor. Then, a diffusion pass
visits each cell once more and for every cell moves an amount of pheromone
according to Equation 3.1 to each neighbor. The diffusion procedure does not
incur any loss in the overall amount of pheromone present in the environment,
except when pheromone is diffused out beyond the edges of the world.



16 CHAPTER 3. SWARMARCHITECT

3.2.2 Repulsion Pheromone

In the discussion above, we have only mentioned one type of pheromone;
the building pheromone which attracts agents to areas with recent building
activity. However, SwarmArchitect makes use of another type of pheromone
as well. A small amount of repulsion pheromone is placed by every agent
each time it enters a new cell. The purpose of repulsion pheromone is to
ensure that agents do not clump together in a small area unless there is a
reason to do so; that is, when the area has recently been built on. As the
name suggests, agents are repulsed by this type of pheromone and will tend
to move away from areas with high concentrations. This causes agents to
distribute more evenly during their search for suitable building sites, and to
scatter more quickly once building in an area has ceased.

In order that repulsion pheromone does not become counterproductive, it
is deposited in much smaller quantities than building pheromone so that
it’s influence becomes negligible when building activity is occurring. It’s
primary use is during periods where little or no building is taking place and
agents need to distribute their search efforts over a larger portion of the
world space. Therefore, repulsion pheromone is deposited at a fixed fraction
of 5-10% of the amount of building pheromone deposited with a single block.
Repulsion pheromone is diffused and evaporated in the same way as building
pheromone.

Another mechanism of repulsion was utilised in the Ant Colony System
(ACS) algorithm [6, 5] for the travelling salesman problem in order to pre-
vent agents from clustering around a single path. In that algorithm, the
presence of an agent simply cause the amount of attractive pheromone to de-
crease. In SwarmArchitect we use a seperate repulsion pheromone since we
require a repulsion mechanism that also works when no attractive pheromone
is present.

3.2.3 Purpose of Pheromone

These measures combined provide a robust and easily adjustable means for
distributing pheromone in a way that can support an effective distribution
of agents across the virtual building site, recruiting the help of additional
agents in areas that are ready to receive further building efforts. Indirectly,
agents construct and share a dynamic, real-time knowledge base of desirable
building locations, leading to more efficient utilisation of agents and thus
quicker convergence of the algorithm towards a solution.
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3.3 Agent Perception

Agents must be able to perceive some features of their environment in order
to make decisions about where to focus building efforts and where to place
blocks. As in the work by Theraulaz and Bonabeau [11], SwarmArchitect
agents have a direct perception range which is limited to a cube of 3 ×
3 × 3 cells in the environment surrounding its position. Additionally, in
SwarmArchitect, agents are able to sense concentrations of pheromone on
the ground in a small area in each of the directions they can travel. The
range of pheromone perception is 2 squares ahead, behind, left and right of
the agent. Being able to sense pheromone beyond their visible range aids the
agent in travelling in the right direction towards the source of pheromone
being diffused outwards.

Figure 3.3: An illustration showing the perception ranges of the SwarmAr-
chitect agents. The large transparent box represents the visual range and
the darkened areas on the ground represent the agents’ range of smell. The
black box in the middle represents the agent itself.

Since the construction of human-like architecture requires the formation of
features that are much larger than this very small perception range, addi-
tional sensory information must be made available to agents. The following
section details a novel approach that provides agents with immediate sen-
sation of block density as it pertains to the cell where the placement of a
building block is being considered.
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3.3.1 Density Maps

As building progresses, SwarmArchitect maintains three aggregate views of
the overall density of building blocks, which we call density maps. These den-
sity maps may be likened to an x-ray photograph of the simulated environ-
ment, taken from three different positions outside the simulated environment;
front, side and top. Figure 3.4 illustrates this concept.

Figure 3.4: An illustration of a small building with the corresponding front,
side and top density maps shown as grey-scale images

The maps are implemented as 2-dimensional arrays, with each cell containing
a count of blocks. Consider the top map in figure 3.4. We construct this map
by placing our viewpoint directly above the model. To determine the ’colour’
of each ’pixel’ in the map, we count the number of blocks as we look down
one coloumn in the environment. We use the same approach to construct



CHAPTER 3. SWARMARCHITECT 19

the other two maps, but simply repositioning our viewpoint. In the actual
implementation, we construct and update all density maps simultaneously,
when a building block is placed in the world. We map the 3-dimensional
world coordinates to the 2-dimensional map coordinates as follows:

World Coordinate
Front Map x x

y y

Side Map x z

y y

Top Map x x

y z

As the density maps can be updated in constant time every time a building
action occurs, they provide a valuable means of large scale indirect perception
at the cost of a negligible increase in computational complexity. Agents can
immediately access aggregate density values and include this information in
their decision making process. We shall see exactly how agents make use of
density maps in section 3.4.1.

3.4 Agent Movement

The work by Ladley and Bullock [9] on a simulation of termite nest con-
struction, shows that placing constraints on agent movement may be useful
in achieving faster convergence towards a solution. The authors reported a
significant improvement in running time of their algorithm when logistic con-
straints were utilised. The addition of such constraints is another measure
by which the space of possible solutions is reduced, as agents become much
less likely to spend time travelling in areas that are unlikely to exhibit any
sort of triggering stimulus. When agents are unable to move randomly in
empty space, but instead restricted to movement along existing architecture,
more time is dedicated to finding ways of expanding the architecture already
in place and less on meaningless travel. For this reason, SwarmArchitect also
places restrictions on agent movement.

Agents may not move diagonally, nor may they move in free space. Agents
may only move into an empty cell (containing no building block) and then
only if it shares a face with at least one non-empty cell. Intuitively, agents
are subject to the laws of gravity, but they have the ability to climb existing
architecture.
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When an agent moves, it chooses a direction by stochastic selection, taking
into account the amount of pheromone of the surrounding cells. Agents
are attracted to high concentrations of pheromone deposited as a result of
building action.

We utilise an adapted form of the movement selection equation from the work
by Deneubourg et al. [3], which we described in section 2.1.3 as equation
2.1. We generalise this equation so that it becomes suitable for an arbitrary
number of directions. Let C be the set of all allowable target cells. ηci

is the
desirability of the target cell ci ∈ C. The probability pci

that an agent will
move to cell ci ∈ C is given by:

pci
=

(r + ηci
)α

Σcj∈C(r + ηcj
)α

. (3.3)

Note that instead of basing the decision upon raw pheromone concentration
values, we calculate a desirability ηci

of moving to cell ci, in order to support
the increased range of smell as well as the effects of repulsion pheromone.
The desirability ηci

is calculated according to pheromone concentrations, by
adding the concentrations of building pheromone in the two squares in the
direction of cell ci and the concentration of repulsion pheromone present in
the opposite direction. Thus, a high concentration of repulsion pheromone
to the south has a positive impact on the probability of the agent choosing
to move north.

The parameters r and α make it possible to adjust the pheromone attraction
behavior of agents. The parameter α controls the linearity of the function. A
high value of α will make even small differences in pheromone concentrations
have a high impact on the choice of the agent. Thus, α is an important way
of affecting the path that an agent takes toward a source of pheromone, with
a high α making agents follow the pheromone cloud directly to the strongest
source. The parameter r adjusts the tendency of the agent to choose it’s
direction randomly. It serves a different purpose than α in that it allows us
to adjust the proportion of exploration vs. exploitation.

3.4.1 Build Rules

Mapping a perceived configuration to an appropriate building action could
conceivably be done in a number of different ways. In this section we examine
some of the issues involved in making such decisions.



CHAPTER 3. SWARMARCHITECT 21

In the simple agent architecture described in [11] agents place a building block
in the cell they are occupying at the time that a triggering configuration is
encountered. A triggering configuration is a specific placement of building
blocks in a 3×3×3 cube surrounding the agent. Every time an agent moves,
it checks its surroundings and tries to match this information to one of the
triggering configurations in its rule set. A rule is a mapping from exactly one
triggering configuration to exactly one building action which in Theraulaz
and Bonabeau’s [11] system is the placement of a block of one of two colours
in the cell that the agent is occupying.

Another possible approach would entail sensing a configuration and map-
ping this to an entirely different configuration, in effect performing multiple
building actions in a single turn.

SwarmArchitect allows only one block to be placed after a triggering config-
uration has been encountered, but the block may be placed in any position
within the perception range of the agent. SwarmArchitect rules therefore
map a triggering configuration to the placement of a block in a specific loca-
tion.

3.5 Branching Rules

The goal of SwarmArchitect is different from existing work on swarm con-
struction, in that we wish to produce human-like architecture. If we view
the SwarmArchitect algorithm as a language, then our goal is to develop
a language that is powerful enough to express features that are indicative
of human-like architecture. These include long straight walls, right-angled
corners, and openings within walls, such as doors and windows.

If the swarm is to be able to construct a corner, for instance, certain con-
ditions must be met. At some point during the construction of a straight
wall, an agent must be able to decide to no longer continue extending the
wall, and instead place a block off to the side in order to start a corner. It is
clear that such a decision is simply not possible if we map a single triggering
configuration in the form of a block placement pattern in a 3 × 3 × 3 cube
to exactly one resulting configuration. In this case, the rule that allows the
building of a long straight wall would always result in walls being built all
the way to the edge of the world or until they hit existing structures.

Two novel approaches in SwarmArchitect make it possible for agents to build
features such as corners. First, branching rules allow the mapping of a single
triggering configuration to several different building actions. When an agent
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Figure 3.5: An illustration of a SwarmArchitect rule. The darkened blocks
show the two possible block placements.

encounters a triggering configuration, it must then decide which building
action to take. Second, the aforementioned density maps add a layer of large
scale information about the environment which can be taken into account
when deciding between different possible courses of action. Figure 3.5 shows
an example of a SwarmArchitect rule.

Let A be the set of all possible actions that an agent has to choose from when
encountering a specific triggering configuration. The probability pai

that an
agent choses build action ai ∈ A is given by:

pai
=

ηF i + ηSi + ηT i
∑

aj∈A ηFj + ηSj + ηTj

, (3.4)

where ηF i, ηSi, and ηT i are the front, side, and top desirability values for the
cell being considered for block placement by action ai.

We wish to make our decision on which building action to take dependent
on the density values read from the density maps. In order to do so, we
calculate desirabilities using an adaptation of the equations from the Basic
Model of clustering behavior from Deneubourg et al. [4] described in section
2.1.3. We use equations 2.2 and 2.3 as follows:

Let M = {F, S, T} be the set of density maps; front, side and top. The
desirability value ηmi for action ai and map m ∈M is given by:
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ηmi =















(

Dmi

δmi+Dmi

)2

, if δmi > 0
(

|δmi|
|δmi|+Dmi

)2

, if δmi < 0

0, if δmi = 0

, (3.5)

where δmi is the density threshold and Dmi is the density value read from
density map m for the cell being considered for block placement by action
ai. The density thresholds associated with each action (or posterior) in a
rule make it possible to adjust the influence of building densities on our
choice. If we wish for the desirability of an action to drop as the density of
blocks from the front map increases, we set the density threshold DF i to a
negative value. If we want the desirability to increase, we set the threshold
to a positive value. If we want a particular density reading to have no effect
on the desirability, then we set the threshold to 0.

In the equation above, we calculate a probability for each building action,
however, in the implementation of SwarmArchitect, the actual selection is
done deterministically. The action with the highest calculated pai

is the
one we select. It is entirely possible and straight-forward to make Swarm-
Architect use stochastic selection such as basic roulette wheel selection but
deterministic selection makes it easier to guarantee that certain large scale
features can be consistently produced. For instance, with the right coef-
ficients for densities set, it becomes possible to ensure that walls forming
the outside shell of a building can join together, for instance, by making a
corner-producing action always take place if a high density is detected in the
direction perpendicular to the wall. This would indicate that a parallel wall
has already formed a corner, which we would want to meet up with.

Despite using deterministic rules, we can still produce different buildings from
the same set of rules due to initial perturbations, such as the distribution of
agents and pre-built material and the stochastic movement selection.

To lessen the risk of non-convergence, SwarmArchitect does not allow removal
of building blocks once they have been placed. While removal of blocks might
provide the means for cleaning up misplaced blocks, this is not implemented
in SwarmArchitect, since one of the major goals of the algorithm is quick
convergence. In terms of the expressiveness of the language that the algo-
rithm represents, there is nothing to suggest that allowing removal of blocks
would make this language any more powerful. The intuitive notion is that it
is more efficient to place blocks in the correct positions from the beginning,
rather than relying on cleaning up mistakes afterwards.
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In order to facilitate fast and efficient matching, rules are encoded as strings
of bits. Comparing the anterior of the rules to the local configuration of the
worlds is straight-forward. First, a similarly encoded bit string representation
of the 3 × 3 × 3 area around the agent is constructed. Then, each anterior
rule may be matched against this string.

As an additional measure to encourage human-like architecture, SwarmAr-
chitect excludes certain types of rules. Diagonal placement of blocks is not
allowed, so any building block placed in the world must share a face with at
least one other block.

3.6 SwarmArchitect Algorithm

Algorithm 1 provides a high-level description of the SwarmArchitect algo-
rithm.

The algorithm progresses as follows.

First, the world data structures are initialised, a rule set is taken as input and
a number k of agents are created and scattered randomly across the world.

In the main loop, the simulation runs for a predetermined number of intera-
tions.

In each iteration, every agent performs a number of actions. First, the agent
senses the configuration of the environment within it’s perception range and
looks up this configuration in the rule set. If the configuration matches a
rule, then the agent must decide which action (posterior) to take. It does so
by utilising equation 3.4. Once an action has been decided upon, the agent
places a building block in the appropriate position, along with an amount of
building pheromone at ground level.

The agent must then decide which direction to move. It examines each
possible cell it can move to and calculates the probability of moving there
using equation 3.3. Using roulette wheel selection, the agent then decides
upon a cell and moves there.

At the end of an iteration, all agents have performed their actions. The world
then applies diffusion and evaporation to the pheromone concentrations and
once these operations have completed, a new iteration can begin.
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Algorithm 1 SwarmArchitect Algorithm

/* Initialisation */
Input: A set of rules
Input: Simulation parameters including max iterations and k

Initialise world
Construct initial density maps
for each agent k do

set random (xk, yk, zk)
end for
/* Main loop */
for 0 to max iterations do

/* Agent loop */
for each agent k do

Construct sensory information for (xk, yk, zk)
for each anterior rule do

if (sensory information matches rule) then
for each posterior rule ai ∈ A do

Calculate pai
according to equation 3.4

end for
Place building block according to the rule with the highest pai

Deposit pheromone in the appropriate floor cell beneath the
newly placed building block

end if
end for
for all allowable target cells ci ∈ C do

Calculate pci
according to equation 3.3

end for
Select target cell with Roulette Wheel selection
Move agent to chosen cell

end for
for each cell ci in world do

Evaporate pheromone according to equation 3.2
end for
for each cell ci in world do

Move an amount of pheromone from ci according to equation 3.1 to
each neighboring cell

end for
end for
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3.7 Summary

The SwarmArchitect algorithm combines many concepts from previous work
in collective building and swarm intelligence and introduces entirely new ones
as well. It demonstrates a way to combine both quantitative and qualitative
stigmergy in the same agent architecture through the use of both phero-
mone deposits and the mapping of local configurations to building actions.
Agents are able to sense both their immediate environment as well as refer to
large scale aggregate views of building densities. Combined with branching
rules, this makes it possible for agents to build architectural features that
are indicative of human construction and which are much larger than their
immediate visual range.
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Evolving SwarmArchitect Rules

The quality of the architecture that is output by SwarmArchitect is depen-
dent on the set of rules it receives as input. Agents can only perform a build-
ing action when their library of building rules contains a rule that matches
the local configuration of building blocks in the immediate vicinity of the
agent.

The highly complex interplay between rules is not easily understood nor
predicted and while one can manually construct rule sets that together form
simple shapes, this is not feasible if we wish to construct rule sets capable of
more advanced architecture. Even with efforts to reduce the space of possible
solutions, the number of different possible rules and combinations thereof is
still immense. Therefore it is necessary to rely on other means to explore
this space in order to discover rule sets that make it possible to achieve more
complex architecture.

This chapter examines the design of a genetic algorithm which is tasked with
generating rule sets for use with SwarmArchitect in order to examine the
feasibility of such an approach. The following sections introduce the concept
of genetic algorithms and details a number of key points that must be con-
sidered when one wishes to use a genetic algorithm to solve a given problem.
Subsequent sections detail the implementation of the genetic algorithm for
SwarmArchitect, including a discussion of the all important fitness function.

4.1 Genetic Algorithms

Genetic algorithms [7, 8] provide a useful means of searching a very large
problem space in order to discover a “good” solution to a specific problem.

27
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A genetic algorithm applies the principles of natural evolution to a computa-
tional problem, whereby a population of potential solutions evolve from one
generation to the next. Natural selection influenced by the quality of genetic
properties determines the chances of reproduction.

The implementation of a simple genetic algorithm generally requires a num-
ber of key features:

• A population of potential solutions (individuals).

• A method for determining the relative fitness of each individual.

• A strategy for selecting individuals for reproduction.

• Methods of applying evolutionary variation such as mutation and cross-
over.

A population typically consists of a number of potential solutions encoded
as strings of bits, but other representation schemes exist. The simple ge-
netic algorithm starts with a population of randomly generated solutions or
genomes. A genome includes all the chromosomes that make up a solution,
and it is these that we are interested in evolving.

Constructing an appropriate fitness function that is able to evaluate and
quantify the fitness of each individual in the population is vital to the im-
plementation of a genetic algorithm. The fitness function must be able to
measure how well suited an individual is as a solution to the problem in
question, in order that the population can gradually move towards higher
and higher fitness values and a good solution. Genetic algorithms cannot be
used to solve problems where it is impossible to construct a fitness function.

After all individuals in a population have been evaluated for fitness, a selec-
tion process selects pairs of genomes that will be used to produce the new
generation. Selection favours individuals with higher fitness.

When a pair of genomes has been selected, there is a chance that crossover

will occur. This involves choosing a random crossover point in the genome
sequence, and exchanging the chromosomes of the two parents at that point
to produce two children. If crossover does not occur, the parent genomes
are simply copied into the new generation. In practical implementations of
genetic algorithms, the probability of crossover is typically fairly high.

After a pair of offspring has been produced, a mutation pass is applied.
During the mutation phase, each bit in a genome has a very small chance of
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being reversed. In the case of bit string encoded chromosomes, the parameter
for mutation is usually a very low number, such as 0.001.

In order to leverage the benefits that a genetic algorithm affords us in terms of
an evolutionary approach to producing effective rule sets for SwarmArchitect,
these implementation details must be carefully considered and tailored to
this unique problem space. The population must consist of a number of
appropriately encoded potential solutions to the problem and a method for
evaluating the fitness of different rule sets must be developed.

4.2 Fitness Function

The major challenge in developing the genetic algorithm for SwarmArchitect
is designing an appropriate fitness function. Our ultimate goals are mainly
subjective, as we are searching for ways to construct architecture with fea-
tures that are functional and aesthetically pleasing from a human point of
view. The problem then becomes one of extracting an objective fitness score
for use in natural selection, from information that, to a large extent, is sub-
jective.

Theraulaz and Bonabeau [11] suggested using human evaluation as the fitness
function for a genetic algorithm. A generation consisting of a number of
rule sets would be generated, and the simulation would be run with each of
these sets to produce a number of structures. Human observers would rank
each resulting structure on it’s subjective qualities, such as ’structuredness’.
Note, however, that this fitness function does not operate directly on the rule
sets, but rather on the structures they produce, which will differ from one
simulation run to the next, due to the stochastic nature of agent movement.

This approach was also considered for SwarmArchitect, but subsequently
rejected. In order to avoid the need to recruit human observers and due to
the expected number of generations needed to evolve useful rule sets, the
decision was made to look for an algorithmic approach.

The solution is an algorithm which can compare architecture built by Swarm-
Architect to hand crafted architecture and return an objective measure of
their similarity. By comparing generated architecture to human built archi-
tecture, we are still able to include subjective qualities in the fitness calcu-
lation. The hand crafted architecture captures the subjective qualities in a
representation that may be compared directly to the generated architecture.
However, as with the approach developed by Theraulaz and Bonabeau [11],
this strategy does not provide a 1:1 mapping between a single individual
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and a fitness score. The score achieved by a rule set may differ from one
simulation run to the next, due to stochastic agent movement.

4.2.1 Image Comparison of Density Maps

Devising a method for comparing two 3-dimensional structures is by no means
straight-forward. The fitness function for SwarmArchitect makes use of the
density maps which influence agent decisions. The three density maps to-
gether represent a complete representation of a struture. Since the maps are
equivalent to gray-scale images, we can use image comparison algorithms to
calculate an objective measure of the similarity between two structures. In
fact, the original representation of the structures is no longer important, as
all that is needed in order to compare two structures is to compare their
associated density maps.

One of the most commonly used methods for grey-scale image comparison
is the root-mean-squared error (RMS) calculation [12]. The RMS method
is simple to implement and processing even large images is nearly instanta-
neous.

In order to compare two grey-scale images, a measure of their dissimilarity,
the root-mean-squared error, is calculated. Let f and g be two grey-scale
images. The root-mean-squared error is then given by:

RMS(f, g) =

√

1

n(X)

∑

x∈X

(f(x)− g(x))2, (4.1)

where n(X) is the number of pixels in an image X and f(x) is a single pixel
in the image. The method is based on examining the intensity of each pixel
in the first image and comparing it to the corresponding pixel in the second
image.

The genetic algorithm for SwarmArchitect utilises the RMS measure by com-
paring each of the three density maps associated with some generated archi-
tecture, with the density maps of some hand crafted architecture. This, then,
gives us an objective measure of the dissimilarity between the two pieces of
architecture, which we can then use as a base for the fitness score of a rule
set as follows:

fitness =

(

RMS(fF , gF ) + RMS(fS , gS) + RMS(fT , gT )

3
+ 1

)−1

, (4.2)
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where fF , fS and fT are the front, side and top density maps of the generated
architecture and gF , gS and gT are the front, side and top density maps of
the hand crafted architecture. The fitness is thus a number between 0 and 1.
The highest possible fitness, 1, can only be achieved in the case of a perfect
match between the density maps where the RMS would be 0.

The RMS method for grey-scale image comparison has some limitations,
however, since it matches each pixel in one image to the corresponding pixel
in the next. The biggest concern for the purposes of SwarmArchitect is the
fact the RMS is unable to recognize two pieces of identical architecture if
they are merely placed in different locations. In this case the RMS algorithm
can produce a rather large value for the dissimilarity. In order to alleviate
this problem we can assist the SwarmArchitect algorithm in positioning con-
struction in the right place, by strategically placing one or more corner stones
from with building can start.

Although other more accurate and specialised image comparison methods
exist, such as the ∆g measure developed by Wilson et al. [12], the RMS
approach is forms the basis for the fitness function for SwarmArchitect, par-
ticularly because of its low computational complexity and ease of implemen-
tation.

4.2.2 Performance

In implementing the genetic algorithm it is important to consider certain per-
formance concerns. In an attempt to speed up the evolutionary process, one
could choose to increase the probability of mutation, so that each generation
can potentially take larger steps. However, such an approach carries with
it the risk of uncontrollable evolution where good solutions may be ruined
by large mutations. The better choice is to attempt to make as many small
steps as possible, starting from a large initial population.

However, the fitness function relies on running the full SwarmArchitect algo-
rithm to generate one instance of architecture for every rule set in population.
This is the biggest drawback to this fitness function, since it limits the speed
with which we can evolve good rule sets.

One possible approach to achieving faster performance of the genetic algo-
rithm is to limit the SwarmArchitect simulation runs to a relatively small
number of iterations so as to make fitness evaluation quicker. This also has
the added benefit of rewarding rule sets that result in fast construction, since
they will be more likely have produced a sufficiently large construction before
the maximum number of iterations is reached.
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As another way to improve performance, the number of rules in each rule set
can be dramatically increased. SwarmArchitect uses an efficient method for
matching a sensed configuration against rules, and adding several thousand
rules will not increase the running time by any significant amount. Therefore,
it is possible to search a much larger portion of the search space in every
generation by increasing the number of rules in a rule set. The number of
rules in a rule set may be decreased each generation, in order to favour wild
exploration during the early phases and gradually shift the focus towards
smaller refinement in later generations.

As a final performance improving measure, the search space can be reduced
in the early generations by only producing rules that ignore the top layer
of the agents’ sight range. This will allow the genetic algorithm to focus
on producing rules that can build the ’floor plan’ of the architecture before
considering rules that build upwards.

4.3 Selection and Reproduction

This section examines the details of the selection and reproduction methods
implemented in the genetic algorithm for SwarmArchitect. We will discuss
the selection strategy and review the constituent parts of a SwarmArchitect
rule, examining the way rules are encoded as a genome in this implementa-
tion.

4.3.1 Selection

Many different methods and combinations of methods exist for selection of
individuals in genetic algorithms. For the purposes of this work, we opt
for a simple approach that may be implemented fairly quickly. The genetic
algorithm for SwarmArchitect uses basic roulette wheel selection combined
with elitist selection of the first two genomes. At the beginning of each new
generation, the two genomes with the highest fitness are chosen immediately
for reproduction through elitist selection, before roulette wheel selection is
applied to chose the parents of the rest of the generation.

Roulette wheel selection provides a simple means of selecting parent pairs,
and elitist selection of the first pair ensures that we never risk discarding the
best solution during a selection pass.
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4.3.2 Population and Encoding

The purpose of the genetic algorithm is to evolve a rule set which agents
can act upon to produce architecture that is similar to the hand crafted
architecture we use for comparison. A population is therefore a number of
different rule sets. Each rule set contains a number of building rules. A single
rule is made up of the following parts:

• One anterior rule for matching against a world configuration.
The anterior is encoded as a string of 27 bits, one bit for each of the
27 spaces in an agent’s perception range. A bit set to 1 signifies the
presence of a building block in that space.

• Two or more posterior rules, designating the placement of a block
Each posterior rule is encoded as a string of 9 bits, designating the
coordinates for placing a block, relative to the agent’s position. This
encoding is only used by the agents, however, as the genetic algorithm
does not mutate the bits directly, but rather operates on a list of valid
positions.

• For each posterior i; front, side and top density thresholds DF i, DSi

and DT i.
These are encoded as strings of 8 bits when the genetic algorithm op-
erates on them, and normalised to a range of [-1:1] during run-time.

Note that the definition of the SwarmArchitect building rules allow for several
possible block placements in response to a local configuration, but throughout
this report, we have assumed only two posteriors in each rule.

4.3.3 Genetic Variation

In genetic algorithms an entire genome is commonly encoded as a single
string of bits, and the genetic variation operations such as crossover and mu-
tation are applied to this single string. However, rather than serializing each
ruleset as one very long bit-string and attempting to recover from the invalid
rules that would invariably result from indiscriminate genetic variation, we
maintain the encoding of rules used in the simulation and ensure validity of
the resulting rule sets as we apply the variation operations.

A rule set is implemented as a vector of rule objects. When we apply crossover
on a pair of parent rule sets we select a random number as an index into this
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vector. Every rule that occurs after this position in the vector is exchanged
with the other parent rule set. This ensures that crossover produces new
genomes with every rule intact.

Mutation requires careful thought in order to maintain the constraints on
SwarmArchitect rules. As mentioned above, a rule has three different types
of data and each of these need special consideration when applying mutation.

First, the 27 bit anterior rule is mutated simply by visiting each bit and
flipping it with a small probability. The integrity of the resulting anterior is
ensured by checking that it is not already present in the genome of the new
individual. If this is found to be the case, the anterior is copied over without
mutation.

Second, from the mutated anterior, a list of valid building positions is con-
structed. Each posterior rule is mutated with a probability of 6 × the muta-
tion parameter by chosing a new building position randomly from this list.
This also occurs if a posterior is made invalid by the mutation of the anterior.

Lastly, the density thresholds are mutated in the same way as the anterior,
by simply flipping each bit with a small probability and then normalising the
resulting integer to the range of [-1:1].

4.4 Algorithm Listing

Algorithm 2 provides a high-level description of the genetic algorithm for
SwarmArchitect.

When the genetic algorithm begins, a population of random rule sets is gen-
erated. These form the initial population.

The main loop runs for a specified maximum number of generations or until
the algorithm is terminated. For each generation, the algorithm looks at
every individual in turn.

In the simulation loop, a single individual – a rule set – is fed to the SwarmAr-
chitect algorithm which is allowed to run for a specified number of iterations.
When SwarmArchitect returns, it will have generated a structure and from
those a set of density maps which are used in the fitness evaluation of the rule
set. The genetic algorithm runs the fitness function described in equation 4.2
to determine the fitness of the rule set and saves the result in a temporary
data structure.

Once every rule set has had it’s fitness determined the genetic algorithm
moves on to the selection and variation stage where a number of parent pairs
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must be selected. First, the two highest scoring rule sets are chosen through
elitist selection. Then, the remainder of the parent pairs are chosen through
normal roulette wheel selection.

Finally, each parent pair produces two offspring for the next generation,
through crossover and mutation as described in section 4.3.3.

Algorithm 2 Genetic Algorithm for SwarmArchitect

/* Initialisation */ Generate population of random rule sets
/* Main loop */
for 0 to max generations do

/* Simulation loop */
for each rule set R in population do

Run SwarmArchitect for max iterations with Rule Set R

Determine fitness F from resulting density maps using equation 4.2
Save (R, F ) pair

end for
/* Selection and variation stage */
Save parent pair (R1, R2) of rules with highest fitness
for 0 to max population

2
− 2 do

Save parent pair (R1, R2) of rules with Roulette Wheel selection based
on fitness.

end for
Empty population
for each saved pair (R1, R2) do

Apply crossover and mutation as described in section 4.3.3
Save children to population

end for
end for

4.5 Summary

The genetic algorithm developed for use with SwarmArchitect may provide
a solution to the difficult problem of producing a rule set that can construct
architecture with the subjective features that we desire. It does so using a
novel approach based on aggregate views, or density maps, which provide
three seperate 2-dimensional ’x-ray’ photographs of buildings. These maps
may then be compared to maps of hand crafted buildings in order to gain
an objective measure of the dissimilarity, which is used as the basis for the
fitness score.
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There are, however, certain problematic areas. First, the RMS method of
grey-scale image comparions has shortcomings that make it unable to cope
with, for instance, situations where a building very similar to the desired
result has been constructed in a different position from the hand crafted ar-
chitecture. Second, the fact remains that in order to evaluate the fitness of
a rule set, it is necessary to first run a simulation on the set and construct
some architecture. This architecture is then evaluated by the fitness function
rather than the rules that were used in it’s construction. Due to the stochas-
tic nature of the simulation, the resulting architecture will differ from one
simulation to the next. This lack of a 1:1 correspondence between a rule set
and it’s fitness value means that certain favourable genetic properties may
be lost due to an ’unlucky’ run of the simulation.



Chapter 5

Test & Visualisation
Environment

When working with swarm intelligence, part of the process is discovering the
unpredictable, emergent patterns that arise as a consequence of the myriad
of simple interactions. Therefore, it became necessary to develop a special
purpose tool for SwarmArchitect to allow not only visualisation of pertinent
data, but also online experimentation with various parameter adjustments.
The Test & Visualisation Environment was developed for SwarmArchitect
with the purpose of aiding in the design of the algorithm and represents a
significant investment in development time.

This chapter examines the features of the Test & Visualisation Environment
and highlights some of the different ways in which the tool supports the
development of and experimentation with the SwarmArchitect algorithm.

The first section describes the different options for visualising data during
the running of SwarmArchitect, and the next section goes into detail about
the interactive features, such as the ability to build structures and adjust
parameters on the fly.

5.1 Data Visualisation

The basic requirement of the Test & Visualisation Environment was to pro-
vide a view of the three-dimensional world that the SwarmArchitect agents
inhabit. The main portion of the screen is dedicated to this 3D view. It
is possible to move about freely in the environment, in order to inspect the
building process and behavior of agents from any angle.
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Figure 5.1: Main view of the Test & Visualisation Environment for SwarmAr-
chitect. A number of agents moving about in an empty world with repulsion
pheromone visible.

One very important feature is the ability to view the presence and concen-
trations of pheromone desposits in the world as the simulation progresses.
It is difficult, if not impossible, to predict the complex interplay between
the many parameters that control the distribution of pheromone and agents’
reaction towards it. The Test & Visualisation Environment makes the infor-
mation about these emerging patterns available at a glance, and the effects
of parameters becomes immediately visible. Figure 5.1 shows an instance of
a number of agents moving about in an empty world space, with their trails
of repulsion pheromone visible at ground level. The brightness of pheromone
colours is directly proportional to the concentration present in the world. By
making pheromone concentrations immediately visible, the Test & Visualisa-
tion Environment supports the researcher in experimenting with and setting
these parameters to their optimal values for the task at hand.

Through shortcut keys, every visible component in the three-dimensional
view may be switched on or off. Ground, building blocks, agents and both
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kinds of pheromone may be hidden in order to provide unobstructed views
of specific aspects of the simulation.

5.2 Interactivity

The Test & Visualisation Environment provides the means to interact with
the simulation in a number of ways.

Almost every parameter of the simulation may be set up and changed through
controls available on screen, allowing for easy experimentation.

Under most circumstances, the SwarmArchitect simulations run so quickly
that it becomes impossible to perceive the actions of individual agents. There-
fore, the Test & Visualisation Environment implements controls that make it
possible to start and pause the simulation as well as step through it, a single
iteration at a time, or even specify a delay between each iteration.

In order to easily set up experiments and test agents’ reactions to specific
configurations of blocks, the Test & Visualisation Environment may be put
into build mode, where the researcher can place building blocks, pheromone
or both in the environment while the simulation is paused. Once a structure
has been built, the configuration of the world may be saved in a file and used
later as the basis for further testing or as the comparison structure for the
genetic algorithm.

5.3 Summary

The Test & Visualisation Environment developed for SwarmArchitect is a
vital tool in experimenting with the algorithm. As with most swarm intelli-
gence applications, the unpredictable and complex interplay between many
simple components makes a highly experimental approach to setting up pa-
rameters and developing the algorithms a necessity. Implementing a robust
and flexible visualisation and experimentation tool was a vital first step in
the work presented in this report.
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Chapter 6

Experimental Results

This chapter presents the results of experiments performed with SwarmArchi-
tect and the genetic algorithm. In the first section we examine experiments
that highlight and explain some of the details of the SwarmArchitect algo-
rithm and the expressiveness of its language. In the following section we will
present results from the genetic algorithm, showing the progression of the
agent genome over time and the resulting structures after training.

All experiments were carried out on a 2.5 GHz AMD Athlon64 processor.

6.1 SwarmArchitect

When examining the SwarmArchitect algorithm, perhaps the most important
aspect to show is the expressiveness of the language. If it can be shown that
the algorithm is capable of expressing the kinds of features we are interested
in, then it follows that given enough time, and a sensible evolution strat-
egy, a genetic algorithm will be able to evolve a set of rules that meets our
requirements. We will start this section with some small scale experiments
designed to demonstrate these points.

6.1.1 Cornering Problem

Straight walls and right angled corners are very important and ubiquitous
features of human architecture, so therefore, the ability to express these to-
gether in the same rule set becomes a primary concern. Breaking the problem
down further, if we have a rule that allows agents to place consecutive blocks,
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forming a wall, then it is necessary to have a mechanism in place that will
allow agents to stop following this rule, and take a different action. This is
the reason that SwarmArchitect uses branching rules, where a single trigger-
ing configuration may result in different building actions. We will conduct
a number of experiments related to the cornering problem in order to show
the expressiveness of the SwarmArchitect language.

Figure 6.1: An illustration of the cornering problem. The darkened blocks
show the block placements under consideration.

Figure 6.1 shows the setup of this problem. An agent has placed several
bricks in a row, according to a rule that triggers a building action once a
specific configuration is encountered. If we did not have branching rules,
then the wall would invariably be built all the way the edge of the world,
since agents do not have a choice to stop performing the building action.

With branching rules affected by density map readings, we are able to make
agents stop building straight ahead, and instead place a block to the side,
thus forming a corner. Figure 6.3 shows how the probability of continuing the
wall gradually falls as a function of the block density. When the probability
of building a corner becomes higher, the next time an agent encounters the
triggering configuration, the other building action will be carried out.

Experiment 1 - Cornering at a specific density

The first experiment related to the cornering problem aims to show that we
can create a rule which will recursively place blocks in a straight line until a
certain density has been achieved. After this, the rule must place a block off
to the side in order to start a corner. It is fairly straight-forward to create
the anterior and posteriors of such a rule as figure 6.2 shows.
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Figure 6.2: An illustration of the SwarmArchitect rule for the cornering
problem. The darkened blocks show the two possible block placements.

For this experiment we wish to build a corner once the wall is 10 squares
long.

In order to demonstrate the exact working of the choice mechanism we refer
once again to Equation 3.4 repeated below. Recall that A is the set of all
possible actions that an agent may choose from when encountering a specific
triggering configuration. The probability pai

that an agent choses action
ai ∈ A is given by:

pai
=

ηF i + ηSi + ηT i
∑

aj∈A ηFj + ηSj + ηTj

,

where ηF i, ηSi, and ηT i are the front, side, and top desirability values for the
cell being considered for block placement by action ai.

Let M = {F, S, T} be the set of density maps; front, side and top. The
desirability value ηmi for action ai and map m ∈M is given by:

ηmi =















(

Dmi

δmi+Dmi

)2

, if δmi > 0
(

|δmi|
|δmi|+Dmi

)2

, if δmi < 0

0, if δmi = 0

,

where δmi is the density threshold and Dmi is the density value read from
density map m for the cell being considered for block placement by action
ai.
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For this experiment, we shall set the following density thresholds:

δF1 = −0.24; δS1 = 0; δT1 = 0;
δF2 = 0; δS2 = 0.1; δT2 = 0;

δF1 is set to −0.24 so that the desirability of Posterior 1 drops as the front
density DF1 increases, ie. as the wall becomes longer.

By setting most of the thresholds to 0, we can disregard their corresponding
desirabilities. Thus, when considering Posterior 1, we are only concerned
with the density value read from the front density map, and for Posterior 2
we are only concerned with the side density. Furthermore, it is immediately
apparent that the side density for Posterior 2 remains constant in this exam-
ple, as in this position we will always be influenced by a single piece of the
wall already in place.

Also, with these settings, we can simply observe the desirabilities ηF1 and
ηS2. As long as ηF1 > ηS2 we extend the wall.

Figure 6.3 shows the progression of the desirabilities in this example. Recall
that the density value is defined as number of blocks

world dimension
. The straight dashed line

is the desirability of Posterior 2, which remains constant. We see that as
the front density DF1 for Posterior 1 reads 0.45 – 9 blocks divided by world
dimension of 20 – the desirability of Posterior 1 is still greater than that
of Posterior 2. When the 10th block is placed – when DF1 = 0.5 – the
desirability of Posterior 1 drops below that of Posterior 2, meaning that the
wall will no longer be extended ahead, but instead a corner will be built.

Figure 6.4 shows the progression of the simulation in SwarmArchitect. We
start off with two blocks placed in the world, from which the agents will
begin building. Simulation continues until the wall has been extended to a
length of 10 squares and a corner has been built.

This experiment demonstrates the ability of the SwarmArchitect rules to
allow recursive building of a wall until the desired length has been achieved,
after which the agents place a block off to the side, producing a corner.

Experiment 2 - Cornering early to meet perpendicular wall

This example uses the same parameters as the one above. In this case,
however, a perpendicular wall is placed in the initial setup. Figure 6.5 shows
the experiment.

In this example, using the same rule as the one in example 1, we produce
a corner before the wall has been extended to 10 in length. Instead, the
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Figure 6.3: Experiment 1 – Graph showing the desirability of Posterior 1 as
a function of its front density reading. Solid line: ηF1. Dashed line: ηS2

Figure 6.4: Experiment 1 – (a) Initial setup. (b) Building underway. (c)
Wall has been extended to 10 squares and a corner has been built.

presence of the perpendicular wall influences the desirability of Posterior 2,
resulting in a corner being built which lines up with this wall.

6.1.2 Building Performance

Experiment 3 - Pheromone

In this experiment we wish to show the effects of pheromone. Pheromone
plays an important part in guiding agents towards sites that are ready for
building. In this experiment, agents will be tasked with building a fairly large
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Figure 6.5: Experiment 2 – (a) Initial setup. (b) A corner has been built in
order to line up with the perpendicular wall

construction. The simple rule used in this experiment has been crafted so as
to ensure that the there can be no variation in the finished construction from
one simulation run to the next. We will run the simulation several times,
with pheromone deposits both on and off and record the number of iterations
needed before the construction is complete. When no pheromone is present
in the world, the movement decisions of agents will be entirely random.

The world is set to 50 × 50 × 50 and the number of agents is 40. We will
use the same rule as in the previous two experiments, except with thresholds
altered so that corners are never built. The world is initially setup with 10
different sites where building may start from. Each of these sites must be
extended all the way to the end of the world before the task is considered to
be finished.

Figure 6.6: Experiment 3 – The world is setup with a number of building
sites.

The simulation was run 10 times both with and without pheromone. The
table below shows the number of iterations needed to finish construction in
each simulation run.

Run # 1 2 3 4 5 6 7 8 9 10 Avg.

Pheromone 658 678 644 731 407 658 787 1008 610 890 707.1

No pheromone 3279 4634 6235 5785 6357 4283 4569 4370 5213 3755 4848
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These results show quite clearly that the pheromone strategy implemented in
SwarmArchitect has a large impact on the effectiveness of the builder agents.
When pheromone is switched off and agents move completely at random,
the number of iterations needed is an order of magnitude greater than when
pheromone is being utilised.

Repulsion pheromone ensures that agents search a wide area for suitable
building sites and building pheromone ensures that once a building site has
been found, additional help is recruited to the area, resulting in sustained
building activity.

Figure 6.7: Experiment 3 – All building sites have been expanded into walls
that run to the edge of the world.

6.2 Genetic Algorithm

As is evident from the discussion above, the branching rules of the Swarm-
Architect algorithm are not easily constructed by hand. This complexity
becomes even more pronounced when several rules are required to work to-
gether to form larger structures. The exact settings of the density thresholds
is of vital concern if the set of rules are to produce satisfactory results.

In this section we detail the results of experiments conducted using the ge-
netic algorithm for SwarmArchitect in order to develop individual rules and
rule sets that are capable of producing the kinds of architectural features we
wish to express.

6.2.1 Experiments Setup

It is common for genetic algorithms to start with very large initial random
populations, in order to cover the entire search space. However, because of
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performance concerns in regards to the fitness function, we will limit the
population to 20 randomly generated rule sets.

As discussed in chapter 4, the major downside the genetic algorithm for
SwarmArchitect is the fact that in order to evaluate the fitness of an indi-
vidual in the population – a set of rules – we must run the simulation with
the rule set in question and build a structure which then forms the basis for
the evaluation. The process of performing several simulation runs for every
generation can be very time consuming, and as such not well suited for gain-
ing results with a genetic algorithm in a timely fashion. Therefore, every
effort must be taken to ensure that simulation runs complete as quickly as
possible, and this necessitates certain compromises.

The running time of the SwarmArchitect algorithm is mostly dependent on
the number of agents. At every iteration, every agent must sense its environ-
ment, look for a match in its library of rules, decide upon a building action
if relevant, and then decide which direction to move. In order to ensure fast
running times of every simulation run, we must limit the number of agents
as well as the number of iterations. This, however, means that we must take
steps to ensure that we are able to build our structures with few agents and
before we have used all of our allotted iterations.

For these experiments, we will limit ourselves to testing small scale archi-
tectural features. This means that agents can complete building in fewer
iterations, especially if we also limit the total area of the simulation. If we
limit the area to just cover the architectural features we are trying to develop,
agents spend less time moving in empty areas and are able to find building
sites quicker.

Using the RMS image comparison algorithm as the basis of the fitness func-
tion, we must contend with the fact that two identical pieces of architecture
placed in different positions can show a large root-mean-squared error, since
the algorithm only compares each pixel in one image to the corresponding
pixel in the other. However, strategic placement of one or more cornerstones
can remedy this shortcoming. A cornerstone can be a small structure cut
out of the hand crafted architecture that we are using for comparison in the
fitness function.

An ideal fitness function will reward every small step in the right direction,
but for many problems, such a fitness function does not exist. This is cer-
tainly true for the problem of generating rules for SwarmArchitect, and this
point brings up another potential problem in using image comparison as the
basis for the fitness function. During the early stages, there is a high risk
that the evolutionary process could stall because rule sets which do not yield
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any construction at all would recieve a higher fitness score than sets which
actually do place down building blocks, albeit in the wrong positions.

At the very least, a rule set should be able to match a configuration of the
seed structure and be able to build something. Rule sets which do not meet
this elementary requirement of being able to start building from the seed
structure can obviously not evolve in any reasonable way. The fitness score
that they do receive from simply not building anything would not be in-
dicative of the worth of their genetic properties. Since we do not wish to
reward inactivity, this problem must be addressed. In the genetic algorithm
for SwarmArchitect we will keep track of whether or not a rule set has man-
aged to build anything at all, and if not, reduce its fitness score by a large
percentage. The justification is that a rule set which has achieved it’s fitness
score through building rather than inaction is far more valuable, as the basic
ability to build something from the seed structure is a step in the right di-
rection. We will not discard the inactive rule sets completely, since they will
still hold some value as a source of genetic variation.

The genetic algorithm parameters common for all experiments are set at:
Mutation factor: 0.05
. Crossover probability: 0.7
Fitness reduction for inactive sets: 80%

6.2.2 Experiment 1

The first experiment will demonstrate the basic function of the genetic algo-
rithm. The objective is for the genetic algorithm to produce a single corner-
building rule, much like the one described above. The rule must, from a
seed structure of two blocks, extend a wall until it is 5 squares long, and
then make a corner. Figure 6.8 shows the seed structure and the comparison
structure for this experiment.

This experiment uses fairly tight parameters, with 8 agents, world dimensions
of 12× 12× 12 and maximum iterations of 200. Moreover, the top layer of
the rules is not available.

Figure 6.9 shows the progression of the experiment. After 739 generations,
the genetic algorithm had developed a rule which yields a perfect fit of our
comparison structure, thereby earning the maximum fitness score of 1. This
was achieved in approximately 25 minutes. Visual observation of the early
stages of the process revealed that after the first individual discovered an
anterior matching the seed structure, this highly desirable genetic property
quickly spread throughout the population.
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Figure 6.8: GA Experiments 1 and 2 – (a) Seed structure for both experi-
ments. (b) Comparison structure for experiment 1. (c) Comparison structure
for experiment 2.
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Figure 6.9: GA Experiment 1 – The graph shows the gradual improvement
of the maximum fitness over time.

Figure 6.10 is an illustration of the rule developed by the genetic algorithm
in this experiment. The density thresholds of the rule were as follows:

δF1 = −0.345; δS1 = 0.125; δT1 = −0.973;
δF2 = −0.267; δS2 = −0.533; δT2 = −0.839;

Note that most of the thresholds in this rule are irrelevant and could just as
well be set to 0 as in the hand crafted rule in section 6.1.1, since the related
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Figure 6.10: GA Experiment 1 – An illustration of the rule developed by the
genetic algorithm.

density readings remain constant in this simple setup.

Figure 6.11: GA Experiment 1 – Four agents use the evolved rule to build
an exact duplicate of the comparison structure.

This experiment shows that the genetic algorithm for SwarmArchitect is
capable of producing a rule that can build a simple structure to our specifi-
cations. The resulting rule, when employed by SwarmArchitect agents, will
produce the exact same structure as the one used by the fitness function to
calculate the fitness value, as is shown in figure 6.11.
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6.2.3 Experiment 2

Experiment 2 is designed to show how the genetic algorithm performs when
we wish to evolve several rules which work together. In this experiment, the
genetic algorithm must produce a set of rules which are able to build an open
square. This will test the ability of the genetic algorithm to develop a set of
rules that achieve a high fitness in a large and complex problem space.

Figure 6.8 shows the seed structure and the comparison structure for this
experiment.

In this experiment, the world has the dimensions 12×12×12 and we will use
8 agents who are allowed 200 iterations to do their work. Furthermore, the
rule set which achieved the perfect fitness score in Experiment 1 is included
in the initial population.
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Figure 6.12: GA Experiment 2 – The graph shows the progression of the
maximum and average fitness over time.

The experiment was terminated after about 3 hours 20 minutes at 6000 gen-
erations when it became apparent that the algorithm would not significantly
improve the fitness in any reasonable time frame.
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6.2.4 Experiment 3

Experiment 3 will test the performance of the genetic algorithm with a much
larger and more complex structure for comparison. Figure 6.13 shows the
seed structure and figure 6.14 shows the comparison structure for this exper-
iment.

Figure 6.13: GA Experiment 3 – The seed structure for experiment 3.

Figure 6.14: GA Experiment 3 – The target structure for experiment 3.

Since the size of both the world space and the target structure is so much
greater than in the previous experiments, it becomes necessary to increase
the number of agents and the number of iterations in order to ensure that
there are enough resources to build such a large structure. This comes at the
cost of slower progression through the generations.

The world dimensions are 25 × 25 × 25, the number of agents is 12, and
maximum iterations is set at 500.

The experiment was terminated after about 3 hours at 1500 generations
when it became apparent that the algorithm would not significantly improve
the fitness in any reasonable time frame.
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Figure 6.15: GA Experiment 3 – The graph shows the progression of the
maximum and average fitness over time.

6.3 Summary

6.3.1 SwarmArchitect

The experiments conducted with the SwarmArchitect algorithm demonstrate
the capability of the branching rules and the performance increasing effects
of the pheromone system.

The experiments on branching rules demonstrate how an agent can make
fairly complex decisions on where to place building blocks, without the need
for very complex artificial intelligence. The encoding of the branching rules
coupled with the constantly maintained density maps allow such decisions
to be taken practically instantaneously as the result of strictly numerical
computation.

The third experiment shows a dramatic improvement in the time it takes
agents to find building sites and complete construction when the pheromone
system is put to use. The results demonstrate the efficiency and adaptabil-
ity of this simple communication and cooperation strategy based upon the
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principles of stigmergy where information is shared through the environment.

6.3.2 Genetic Algorithm

In the first experiment, the genetic algorithm showed a good result, finding a
perfect rule to fit the comparison structure. The other two experiments were
unsuccessful in developing any useful rule sets in the limited time allowed.

As the graphs show, in all three experiments, noticeable improvements in
fitness did not happen continually in small increments, but rather in larger
leaps every so often. These results speak to the highly complex nature of the
problem space. Small steps in the right direction are very difficult to identify
and reward adequately, and as such, improvements must happen in greater
leaps before they are able to affect the evolutionary process. This makes the
genetic algorithm much more dependent on raw computing power to cover
more of the search space in a shorter amount of time in order to find the
larger improvements that are able to be picked up by the fitness function.

Moreover, the implementation described in this work is very basic. It does
not make use of the large body of research describing methods of improving
the performance of genetic algorithms with a less than ideal fitness func-
tion. In experiments 2 and 3, the genetic algorithm became stuck in local
optima, from which it would have been difficult and time consuming to es-
cape. Smoothing out the problem landscape by adjusting the fitness function
would undoubtedly help prevent this situation, as would a more focused ex-
amination into more advanced selection and reproduction strategies to suit
this particular problem.

The success of the first experiment, however, is an indication that with fur-
ther efforts to reduce the noise and granularity of the fitness function, as well
as general performance improvements, an approach based on image compar-
ison could eventually produce more complex sets of build rules for Swarm-
Architect.
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Chapter 7

Conclusion

7.1 SwarmArchitect

The design and implementation of SwarmArchitect encompasses numerous
achievements. First, recall that in the scientific process employed in swarm
intelligence we progress from observation of natural behavior, to modelling
said behavior and, finally, to practical application of the knowledge gained
from the model. SwarmArchitect demonstrates a way of progressing collec-
tive building from the modelling stage into the application stage.

Moreover, the combination of short range direct perception and large scale
indirect perception in the form of density maps is a novel approach to the
problem of allowing agents to construct large scale architectural features.
Implementations that rely solely on gradients of pheromone and template
functions to guide large scale construction commonly produce architecture
with an organic and natural appearance. The fact that the SwarmArchitect
approach allows large scale features to be constructed without an organic
appearance is owing to the combination of quantitative and qualitative stig-
mergy which both influence building decisions. We are able to qualitatively
match a specific local configuration to specific building actions, and let the
choice between them depend on the quantitative influence of global building
densities.

Our use of density maps for large scale perception is highly efficient. When
agents require large scale information upon which to base their decisions,
they have instantaneous access to an always up-to-date aggregate data view.
Keeping maps up-to-date is merely a matter of incrementing a counter when
a building block is placed.
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The use of branching rules influenced by density map values remains true
to the ideals of swarm intelligence as agents decide upon a course of action
by means of fast mathematical computation, rather than complex symbolic
AI. Also, the presence of this slightly more complex decision making has
no adverse affects on the task of searching the environment for triggering
configurations as it only comes into play after a triggering configuration has
been found.

7.2 Genetic Algorithm

Experiments showed disappointing results from the genetic algorithm. When
attempting to evolve more complex rule sets, the algorithm would quickly
become stuck in a local optimal and move very little after that.

Designing a completely algorithmic fitness function for this problem space
is obviously very challenging. At best, one can hope to develop a general
heuristic.

While using RMS image comparison to obtain an objective measure of the
similarities of two three-dimensional structures is a valid approach, it clearly
cannot stand alone as the sole measure of fitness in anything but the simplest
cases. This objective similarity measure must be coupled with other indica-
tors of fitness in order to reduce the granularity of the fitness function and
better reward small steps in the right direction, even when these steps result
in a short term drop in similarity between the structures being compared.

Of course, it is also possible that a more advanced evolution strategy could
help mitigate the limitations of our fitness function, however the development
of such was deemed outside the scope of this work.

7.3 Summary of Contributions

The major contributions of this work are contained within the SwarmArchi-
tect algorithm. SwarmArchitect contributes with the following:

• A collective building algorithm incorporating methods from other swarm
intelligence applications.

• A demonstration of a way to combine both quantitative and qualitative
stigmergy in one collective building algorithm.
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• A mechanism for providing instant large scale environmental informa-
tion to simple agents with very small direct perception ranges.

• A powerful language in the form of branching rules, capable of express-
ing a variety of large scale features indicative of human-like architec-
ture.

Minor contributions include the following:

• A method for comparing two three-dimensional structures based on
RMS image comparison.

• A graphical test and visualisation environment allowing for experimen-
tation and interaction with the running algorithm.

7.4 Future Work

The work in this report spans very wide, and therefore a number of interesting
aspects could benefit from a much more in-depth treatment.

7.4.1 SwarmArchitect

The branching rule innovation of SwarmArchitect is a powerful feature which
should be explored more thoroughly. This feature could benefit from further
experimentation to uncover both strengths and weaknesses of the approach.

In this work we have assumed only 2 branches to every rule, however, the
definition allows for an arbitrary number of possible actions and as such, it
would no doubt be interesting to discover whether the benefits gained from
adding more branches would outweigh the added complexity concerns.

Additionally, the current design does not allow agents to decide to take no ac-
tion when they encounter a triggering configuration. This means that agents
are only able to stop building if they, through building actions, eliminate all
triggering configurations from the world. The impact of allowing agents to
not perform any action is certainly worthy of further study.
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7.4.2 Genetic Algorithm

The one aspect of this work which is in most need of additional work is
the genetic algorithm. Although the method of comparing two structures
based on their density maps provides us with an objective measure of the
dissimilarity between them, the fitness function must take other objective
features into account as well. A serious inquiry into which ways the fitness
function could be improved would prove highly beneficial to the whole body
of work within this report.

Furthermore, longer term experiments and general performance improve-
ments to the genetic algorithm could also yield better results than the ones
demonstrated here.

7.4.3 Test & Visualisation Environment

As a useful addition to further experimentation with SwarmArchitect, an
extension to the Test & Visualisation Environment which would aid the re-
searcher in hand crafting rules would prove very beneficial. In the current
implementation, making rules for SwarmArchitect is an arduous task requir-
ing lots of work with pen, paper and calculator in order to encode the various
component parts of each rule. A graphical tool to quickly make up and in-
spect rules and inject them into a running simulation would greatly ease
efforts to test and understand the interplay between several rules.

The current implementation of the Test & Visualisation Environment is very
closely tied to the SwarmArchitect algorithm. Additional design and de-
velopment could expand it into a general purpose architecture for collective
building research. This could entail packaging the Test & Visualisation Envi-
ronment as a library for inclusion in C++ programs and provide a standard
interface to provide efficient access between the environment and the simu-
lation.
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Summary

Inspired primarily by insects, swarm intelligence is a method of constructing
robust and adaptive decision making and optimisation systems of various sort
by mimicing the behavior of naturally occurring swarm systems. Fundamen-
tal concepts in swarm intelligence include self-organisation and stigmergy.
Stigmergy is the concept of agents communicating through their environ-
ment rather than directly between individuals. Swarm intelligence has been
applied to a variety of different problem areas with good results, and in
particular, the approach known as Ant Colony Optimisation has been the
subject of extensive research.

Another field within swarm intelligence deals with collective construction of
different kinds, inspired by nest building behavior in social insects. So far,
research in this area has been focused mainly on simulating natural construc-
tion behaviors. This report details the development of a collective building
algorithm which we dub SwarmArchitect, which is meant to explore the pos-
sibilities of applying the swarm intelligence approach to the construction of
human-like architecture.

SwarmArchitect combines and adapts concepts and approaches from existing
work within swarm intelligence and contributes some novel solutions. It
serves as a demonstration of how the particular challenges in using collective
building to achieve human-like structures may be overcome. Our solution
makes use of both quantitative and qualitative stigmergy. A number of simple
agents move about in a three-dimensional space, placing building blocks when
they encounter a configuration that can be matched from their library of
building rules. Agents’ movement is influenced by two types of pheromone,
one attractive type which is deposited along with building blocks and one
repulsive type which is deposited whereever agents move.
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A proposal for the use of a genetic algorithm is presented, along with a
discussion of the challenges involved in applying this technique to Swarm-
Architect. We propose the use of grey-scale image comparison algorithms in
the implementation of the fitness function.

Experiments show how our proposed branching rule structure in combina-
tion with instantaneously and constantly updated aggregate views of global
building densities can be used to make complex building decisions based on
local and global stigmergic information. We also show the usefulness of our
pheromone deposit strategy which dramatically increases efficiency of agents
as a means of coordinating and distributing search and building efforts. Ex-
periments made with the genetic algorithm show that the approach based on
image comparison shows promise but requires much more focused develop-
ment in order to be truely useful.

In the beginning stages of development it became necessary to create a graph-
ical environment in order to view, control and interact with the SwarmAr-
chitect algorithm. We describe the Test & Visualisation Environment for
SwarmArchitect, a tool which aids development and experimentation on our
algorithm by providing at-a-glance views of pertinent information and emerg-
ing patterns.
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