[((8

AALBORG UNIVERSITET

Software System Engineering
Spring 2006

Digital Signature and Blocking in
Mobile Ambients

Supervisor: Hans Hiittel Group: B1-215
Anupam Palit

Bin Ren

Sagar Bingi

Yepeng Sun

Aalborg University
29th June 2006
Group: B1-215

Anupam Palit

Bin Ren

Sagar Bingi

Yepeng Sun

Preface

The calculus of Mobile Ambients derives its process primitives from the 7-calculus.
It introduces the notion of a bounded environment(the ambient) where processes
or mobile agents co-operate. An ambient consists of a set of local agents and
possibly other subambients. Ambients are moved as a whole under the control of
the enclosed agents, which are confined to their ambients. This report presents a
variant of Mobile Ambients. It addresses the security issues of robustness against
malicious tampering, access control and execution safety by introducing the con-
cept of digital signature and blocking into ambients. The model of Digitally Signed
Ambients with Blocking on Capabilities(DSABC) is similar to the Java Sandbox
model for JDK2.0 and Umbrella project developed for Linux security. A type
system which captures various security policies has been presented based on the
proposed calculus. This project report is developed as our master’s thesis at De-
partment of Computer Science, Aalborg University, Denmark.

We would like to thank Mr.Hans Hiittel for encouraging and challenging us
throughout the development of this project and constantly providing us with new
ideas and invaluable suggestions, never accepting less than our best efforts.

Contents

[1_Introductionl
(1.1 Mobility and Security|.o
(.2 Mobile Ambients(Review)|
(1.2.1 TheSyntax]
[1.3 The Characteristics of Digital Signaturel

(1.5 Blocking|o

Digital Signature for Mobile Ambients|

[2.1 Syntax and Semantics|
2.1.1 Syntax|.
2.1.2 Semanticsl

Digitally Signed Ambients|

[3.1 Signing Ambients oL
[3.2 Syntax and Semantics|o

Blocking in Mobile Ambients|

4.1 Blocking in Process Calculus|.
4.2 Blocking on Names: MABN|
[4.2.1 Syntax and Semantics|

4.3 Blocking on Capabilities: MABC}.
[4.3.1 Syntax and Semantics| L.
[4.3.2 'The Comparison between MABN and MABC|

4.4 Blocking at Ambient level: MABA[.
[4.4.1 Syntax and Semantics|

Digitally Signed Ambients with Blocking on Capabilities|

[>.1 Security Models|o
[5.2 Syntax and Semantics|

1

[5.3 Advantages 61

6 A Type System for DSABC| 64
[6.1 General Overview of Type Systems| 64
[6.2 The Ideas of Type System for DSABC|. 65
6.3 Typing Rules| 66
6.4 Type Safety] 76

[7_Conclusion| 82
[[1 Achievementd 82
(.2 Future Workl. 83

A ppend 83

[A Subject Congruence 84

(B Subject Reduction| 98

(Bibliography| 127

1l

List of Figures

(1.1 Modeling Sate System using Mobile Ambients| 6
(1.2 JDK 1.0 Security Model|] 7
(1.3 JDK 1.1 Security Model | 8
(1.4 Organization of the report| 11
[3.1 Modeling of Sate System using DSA| 30
[>.1 Java2 Platform Security Model| 55
.2 The Umbrella Modell oo 56
5.3 Modeling Sate System using DSABC|. 62

v

List of Tables

(1.1 The syntax of Mobile Ambients 4
(.2 The free names of Mobile Ambients| 5
2.1 The syntax of DISA| 16
2.2 The free names of DISAT 000 16
[2.3 The syntactic conventions of DISA| 17
[2.4 The structural congruence of DISA| 18
2.5 The reduction rules of DISAY. 19
[3.1 The syntax of DSAl 25
3.2 The free names of DSAl L. 25
[3.3 The syntactic conventions of DSA[. 26
[3.4 The definition of structural congruencef 27
(3.5 The reduction Rules of DSAl 29
4.1 The syntax of MABN| 36
M2 The free names of MABNI. 0. 36
4.3 The syntactic conventions of MABN| 36
4.4 The structural congruence of MABN|. 37
4.5 The reduction rules of MABNI 39
4.6 The syntax of MABC(| 44
K7 The free names of MABCI oo 44
4.8 The syntactic conventions of MABC| 44
4.9 The structural congruence ot MABC|. 45
.10 The reduction rules of MABOo 46
[4.11 The syntax of MABA|, 49
M.12 The free names of MABAI. 49
[4.13 The syntactic conventions of MABA[. 50
[4.14 The structural congruence of MABA. 51
.15 The reduction rules of MABAl 52
[>.1 The syntax of DSABC| 57
(.2 The free names of DSABCo 57
[>.3 The syntactic conventions of DSABC| 58

[>.4 The structural congruence of DSABC|

5.5 The reduction rules of DSABO

[6.1 Typing Rules|

Chapter 1

Introduction

This report describes two security mechanisms introduced into Mobile Ambients[I]:
digital signature and access control for migrating processes. This calculus is
named as Digitally Signed Ambients with Blocking on Capabilities (DSABC). This
idea emerged while investigating the concept of mobile ambients and the security
mechanism in Internet.

1.1 Mobility and Security

Mobile Computing is a generic term used to represent the ability to handle infor-
mation access, communication and business transaction, that wirelessly connect
and use centrally located information or application software while in the state of
motion. The devices that are involved in mobile computation could be portable
wireless computing and communication devices such as laptops, mobile phones,
PDA’s etc.

Mobile computation is the notion that running programs need not be forever
tied to a single network node. A program can cross barriers, move between dif-
ferent networks and be able to execute at different virtual locations. One of the
major concerns in the concept of mobile computation is security. Mobile com-
putation has to do with virtual mobility that is mobile software, while mobile
computing has to do with physical mobility that is mobile hardware.

The major security concerns of mobile computation are:

1. Confidentiality: Confidential information such as passwords, credit card
information etc, should not be intercepted by third parties when transmit-
ted over the Internet.

2. Integrity: It ensures that confidential information should not be gained
access, modified or destroyed during the transit.

3. Accountability: It ensures that all the entities in the network are held
responsible for their activities. For example we would not want migrating
processes over the network to wreak havoc at the receiving site. In such a
case we should be able to track the responsible entity.

4. Availability: It ensures that the authorized entities always have access to
the desired services. Attacks like denial of service must be prevented.

5. Legitimate use: It must ensure that only intended users are allowed to
gain access to the desired resources. For example, network servers should
be safeguarded against intrusion from unwanted parties.

6. Access Control: It refers to practice of restricting entrance to a property.
It is implemented by using access rights. In distributed systems some parts
of the system have restricted access rights that is not every process should
be allowed to have direct access to all the resources. For example, we would
not want all the processes to be able to gain access to the operating system
kernel.

1.2 Mobile Ambients(Review)

Ambient calculus [I] is a process calculus devised by Luca Cardelli and Andrew
D.Gordon in 1998. The main aim of Ambient calculus is to model new compu-
tational phenomena over wide areas network. Ambients are used to represent
bounded places for computation such as a web page (bounded by a file), a virtual
address space (bounded by an addressing range), a laptop (bounded by its case
and data ports) etc. Ambients move into and out of other ambients bringing
along moving processes, static processes and possibly other ambients. The three
basic ambient primitives are in , out and open . The following are the main
characteristics of mobile ambients:

e Fach ambient has a name.

e An ambient boundary defines the scope of a computation, therefore estab-
lish a container, which may be easily identified.

e An ambient is a collection of agents, i.e. processes, which run directly
inside the ambient. n[P] is an ambient named n with the running process
P inside.

e Ambients can move, i.e. they can enter or exit other ambients.

e An ambient moves with all the subambients and processes inside it. This
may occur by performing an in or out operation.

n names

P Q= processes
(vn)P restriction
0 inactivity
P|Q composition
'P replication
n[P] ambient
M.P action

M .= capabilities
inn can enter n
outn can exit n
open n can open n

Table 1.1: The syntax of Mobile Ambients

e Movement operations initiated by an ambient on itself are called subjective
moves, while objective moves are performed by an ambient on the other
ambient.

e Ambients can be nested inside other ambients. Each subambient has its
own name and behaves as an independent ambient. One example of nest-
ing is: A Java applet is running within a Java Virtual Machine, the Java
Virtual Machine is running within a Web Browser, the Web Browser is
running within an operating system, the operating system is running on a
workstation.

1.2.1 The Syntax

In the syntax we look at the mobility primitives. The main categories in the
syntax are the processes and their capabilities. The syntax is shown in Table[1.2.1}

Restriction, written as (vn) P, makes the name n private and unique to P. No
other process can use this name for interacting with P. Restriction is a binder
and P is its scope. Inactivity, is the process that does not reduce. Composition,
written as P|@ means that P and () are running in parallel. Replication, written
as | P, simulates recursion by spinning off copies of P. Ambient, written as n|P],
is composed of two parts (it is a binary operator) where n is the name of the
ambient and P is the active process inside it. The square brackets around P
indicate the perimeter of the ambient. If the ambient moves, everything inside
moves with it. Action prefix written as M.P, represents a process where P is
enabled only if the prefix M has been consumed. Capabilities can be thought as
terms that enable the ambients to perform some actions. An ambient gains the
ability to go inside ambient n with in n capability. An ambient gains the ability

fn((vn)P) = Mm(P)—{n} fu(in n) 2 [n}
fn(0) = fnout n) = {n}
fn(PlQ) = fm(P)UMm(Q) fo(open n) = {n}
fn(! P) 2 fn(P)

fn(n[P]) = {n}ufn(P)

fn(M.P) £ fn(M)Ufn(P)

Table 1.2: The free names of Mobile Ambients

to leave its parent ambient n with out n capability. Ambient n can be dissolved
by the means of open n capability.

The only ambient name binding operator is restriction. The names that are
not bound by a restriction operator are thus free names. We denote by fn(P)
the set of free names of process P, Table|1.2| gives the set of free names fn(P) for
Mobile Ambients.

We define the bound names bn(P) as those names created by a restriction
within a process P. For example, in (vn)n[Q)], n is a bound name. It is possible
that a name is a bound name and a free name at the same time. For example,
in n[0]|(vn)n[0], name n is a free name and also a bound name.

Safe Systems

The main characteristics of safe systems is that the system can avoid harmful
foreign codes over the Internet to enter or be executed. A safe system usually
provides access control on the incoming processes based on their source. We
model the safe system using various variants of the calculi of mobile ambients
during the evolution of this project.

Example 1.2.1 Modeling of Safe System using Mobile Ambients:
appi(in sys.Pllappslin sys.Q|sys[T] — syslapp:[P]lapp2|Q)|T]

In Example sys represents a safe system containing the internal resource 7.
Two applets app; and apps can get into the system by exercising in sys capability.
We can observe that the system can be modeled using mobile ambients to show
the movement of the applets but the security mechanism cannot be modeled
effectively using mobile ambients due to the following reasons:

e If appl is trusted whereas app2 is not an trusted ambient. The system
cannot distinguish the two kinds of ambients.

4

e The system does not provide access control on the incoming codes.

The diagrammatic representation of the model of safe system is shown in Fig-

ure [L11

In sys.P
T
appl
T — p Q
In sys.Q
sys sys
app2

Figure 1.1: Modeling Safe System using Mobile Ambients

1.3 The Characteristics of Digital Signature

A digital signature [2] is a string of bits that is computed from the data trans-
mitted and the private key of an entity. The signature can be used to verify if
the data comes from the correct entity and is not tampered during transit.

The main characteristics of digital signature are:

1. Authenticity: It ensures the correct sender sends the message. This can
be verified through authentication by using the public key corresponding
with the private key used to generate the signature. For example executa-
bles transmitted over the Internet. Authenticity is required when an update
claims to be a security update from Microsoft, the users should be able to
verify that the executable does come from Microsoft before they install it .

2. Integrity: It ensures that the message is not altered accidentally or mali-
ciously during the transit. For example it should not be possible for some
third party to be able to insert malicious behavior in a security update from
Microsoft.

3. Non-repudiation: The word non-repudiation is a synonym of non-denial
which means that it can be verified that the sender and the receiver were

the parties who claimed to send or receive the message in case the owner-
ship is denied by one of the parties. For example it could happen that when
an user downloads some security update from Microsoft website which has
some malicious behaviors in that case Microsoft should not be able to de-
fend themselves by proving that those updates were not downloaded from
their website.

1.4 Java Sandbox Model

Sandbox Model JDK1.0

The first sandbox model[3] was introduced in JDK1.0 to provide a restricted
environment to run untrusted code. This restricted environment was named
as sandbox and the code running within it was provided only limited access
to resources. The local code was provided complete access to all the system
resources. This model is shown in the Figure [I.2]

Local Code Remote Code

\ 4

Sandbox

JVM

Valuable Resources

Figure 1.2: JDK 1.0 Security Model

Sandbox Model JDK1.1

The notion of Signed Applet was introduced in JDK1.1. A digitally signed
applet whose signature could be verified by the receiver is treated as the local
code. Unsigned applets or applets whose signature cannot be verified are allowed
to run only within the sandbox. The applets along with their signatures, are
delivered in the JAR (Java Archive) format. The concept of signed applet is

6

shown in the Figure 1.3

Local Code Remote Code

\ 4

Sandbox

JVM

Valuable Resources

Figure 1.3: JDK 1.1 Security Model

Java uses the concept of digital signature[d] to recognize the source of the
code, and restricts the running of codes by using Protection Domain in sandbox
model.

e Protection Domain: It consists of a set of classes whose instances are
granted the same set of permissions. Those classes coming from the same
CodeSource which is a set of public keys together with a codebase(in the
form of wurl), are usually placed into the same domain according to the pub-
lic key which identifies where the classes come from. All code shipped as
part of the JDK is treated as trusted code, and is placed into the system
domain. All other applets and applications are placed into appropriate do-
main, determined by their CodeSource.

e Permission: An applet needs permission for accessing a particular re-
source. The security policy in a Java application environment specifies
which permissions are available for code from a specified CodeSource. Each
permission typically has a name. In JDK there are a number of built-in
permission types, and additional ones can be configured by the users.

e Policy: It specifies which permissions are available for code from various
code sources. The source location for the policy information is decided

by the policy implementation. The JDK contains a default Policy imple-
mentation that obtains its information from static policy configuration files.

e Security Manager: The main functionality of the security manager is to
check the policy currently in effect and perform access control checks. The
security manager prevents applet code from accessing resources unless it is
explicitly granted permission to do so by an entry in a policy file.

The analysis of the calculus of mobile ambients, advantages and applications
of digital signatures including the Java Sandbox model, provides us with the mo-
tivation to introduce the concept of digital signature into the calculus of mobile
ambients in the Chapter 2 We introduce a new notion like Java applet into our
calculus by introducing the concept of code along with two new capabilities auth
and enter.

1. A new notion of code is introduced. A code is a signed piece of information
which needs a carrier that is another ambient for its movement.

2. All the information(processes) contained within the code are passive i.e, it
cannot undergo any changes within the boundaries of the code.

3. The code is considered to be signed by default, and its signature is generated
by encrypting the hash value of its contents with the key k.

4. A code is represented as m{P};,, where P is the passive process enclosed
within the code.

5. The auth capability is introduced. The main functionality of this capability
is to authenticate a piece of code. This is used to ensure that the code
comes from the intended sender. In the following example:

m{ Pk, pyafauth(m, k).Q] — a[P|Q]

The code m is allowed to enter the ambient « if it can be authenticated i.e,
if the key k contained within the ambients auth capability matches the key
using which the code was signed.

6. The enter capability is introduced. The main functionality of this capability
is to sign a piece of code. The ambient holding the enter capability is the
holder of the private key k& and hence can sign itself through entering a code
with the matched key in the enter capability. So that the digital signature
of the code is recalculated. In the following example:

m{ P}k, pylalenter(m, k).Q] — m{P|a]Q]}nk,rlaq)

The ambient a can enter a code m if it holds the private key k with which
the code m was originally signed, once ambient enters into the code, the
signature of the code has to be recalculated and hence its digital signature
changes.

1.5 Blocking

For implementing the concept of access control in mobile ambients, we inves-
tigate the concept of blocking in m-calculus [5] by Vivas Frontana in his Phd
thesis. The concept of blocking is similar to access control on resources in the
real world. Unix restricts the access to its files using read, write and execute per-
missions. The Umbrella model [6] proposed for Linux enforces authentication of
files along with process based mandatory access control at process level, by a set
of restrictions for each process, where every process has at least the restrictions of
its parent. The further details of the Umbrella model are mentioned in Chapter 5]

After investigating the concept of blocking in Mobile Ambients, three kinds
of possible blocking were introduced:

e Blocking on Names
e Blocking on Capabilities
e Blocking at Ambient level

Out of the three kinds of blocking, the Blocking on Capability is flexible and is
similar to the access control mechanism of Umbrella. The capabilities which are
blocked cannot be exercised within the blocking scope. The concept of blocking
is explained in detail in Chapter [}

Ambient calculus is a process calculus used to effectively model the mobile
computations over the network. Mobile ambients in the real world are like agents
which are autonomous and intelligent programs that move through the network
interacting with other services over the network. Security in mobile computa-
tion is one of the major concerns which the calculus of Mobile Ambients cannot
address effectively. That is the main reason we introduce the concept of digital
signature and access control on migrating processes to ensure more security and
security. We develop a new model very similar to sandbox model for Java2 and
the Umbrella project developed for Linux with a few variations. The concept
of digital signature is introduced in the calculus of DSA by signing ambients di-
rectly using a private key. Access control on process is captured by introducing
the concept of blocking into mobile ambients. The calculus of Digitally Signed

Ambients(DSA), captures the concept of digital signature, while the calculus of
Mobile Ambients with Blocking on Capabilities(MABC) captures the property of
access control on processes. For capturing both these properties we combine the
two calculi into one hybrid calculus and name it as Digitally Signed Ambients
with Blocking on Capabilities(DSABC). Advance safety properties like key distri-
bution, who can visit whom and minimal blocking for access control on migrating
processes are captured in its type system.

Mobile Blocking
Ambients in Pi

Blocking

DSABC

Figure 1.4: Organization of the report

The report is organized as follows: Chapter [2| describes the review of our
previous work on Digital Signature for Mobile Ambients(DISA) along with its
syntax and semantics. In DISA we consider a piece of code to be digitally signed
by default. Chapter [3]is a discussion of the extension to the concept of DISA into
Digitally Signed Ambients(DSA). In the new concept of DSA we directly sign
an ambient instead of using code and describe its syntax and semantics. Chap-
ter 4] introduces a new concept of blocking into mobile ambients. In this chapter
we investigate the three different kinds of blocking in mobile ambients namely
Blocking on Names(MABN), Blocking on Capabilities(MABC) and Blocking at
Ambient Level(MABA) and describe their syntax and semantics. Chapter 5| de-
scribes a hybrid calculus formed by merging the calculus of DSA along with the

10

calculus of MABC and describe its syntax and semantics along with its advan-
tages. In Chapter [6] we give a detailed description of type system for the calculus
of DSABC. Finally, we conclude in Chapter [7] The organization of this report is
shown in Figure[I.4] The arrows in the figure indicate the evolution of the report.

11

Chapter 2

Digital Signature for Mobile
Ambients

The calculus of Mobile Ambients is effective in representing mobile computations
over complex network structures but has a few security breaches over the open
network. It is not secure enough to prevent intrusions and message tampering.
The concept of digital signature has been effectively implemented in the real
world to resolve this issue. The calculus of DISA [7] was developed in the previ-
ous semester with the main aim to introduce the concept of Digital Signature into
mobile ambients. This serves as the foundation for our present work on digital
signature and blocking in mobile ambients.

2.1 Syntax and Semantics

In this section, we introduce syntax and semantics for DISA .

2.1.1 Syntax

We now introduce the primitives for DISA . We assume there is an infinite set of
names, .4, ranged over by n and m, where n and m are the ambient and code
names respectively, k denotes the key in the digital signature, and C' denotes
a code group name. Table [2.1] shows the syntax of DISA . The main syntactic
categories are processes, digital signature and capabilities.

All the processes have the same informal meaning as described in mobile am-
bients. Two new processes primitives, restriction on code name, (vm : C')P, and

code m{ P}, are introduced.

The process (vm : C') P, creates a new code name m within a scope P, makes

13

the code name private and unique to P, C' is a code group name, m belong to
code group C. The new code name can be used to name codes and to be op-
erated within ambients by name. No other process can use this code name for
interacting with P.

A code is a bounded area surrounded by delimiters consisting of special kind of
passive process which is represented as m{P};,, where P is the passive process,
m is the code name, sig is the digital signature which is obtained by encrypting
the hash value of P with a key k. Each code has a name. A code may contain
other ambients or processes within it. A code can enter an ambient through au-
thentication and a code can allow an ambient to enter it through signing.

We define the form of digital signature, h(k, P) where h is a digital signature
creation algorithm. It first calculates the hash value of process P, and encrypts
hash value with the key k. For code m{P}px,p), in h(k, P), P is always the same
as the P inside the code m.

Two new capabilities are introduced, enter(m, k) can sign m with key k, and
auth(m, k) can authenticate m with key k. We will describe the two capabilities
in the reduction rules.

Table [2.2] gives the set of free names fn(P) for DISA .

Table [2.3] shows the syntactic conventions of DISA .

2.1.2 Semantics

Structural congruence is a way of identifying processes that we do not want to
differentiate for any semantic reason. Processes of calculus are grouped into
equivalence classes by the relation =, which denotes structural congruence to
identify the processes which intuitively represent the same thing. In particular,
structural congruence is an important relation because it is used to rearrange the
process so that they can reduce.

Table defines the structural congruence of DISA which inherits seventeen
rules from the calculus of mobile ambients, we only comment on the new clauses

in the definition.

(STrRUCT RESC): The restriction on code name has no effect on structurally
congruent processes.

14

k key
m,n names
C code group name
P.Q = processes

(vm : C)P restriction on code name

(vn)P restriction on ambient name

0 inactivity

P|Q composition

'P replication

n[P] ambient

M.P action

m{P}sig code
sig = h(k, P) digital signature
M = capabilities

inn can enter n

out n can exit n

open n can open n

enter(m, k) can sign m with key k

auth(m, k) can authenticate m with key k

Table 2.1: The syntax of DISA

fn((vm: C)P) £ fn(P)— {m} fn(h(k, P)) £ {k}ufn(P)
fn((vn)P) 2 fn(P) - {n} fn(in n) 2 [n}
fn(0) £ 0 fn(out n) 2 In}
fn(P|Q) £ fn(P)Un(Q) fn(open n) £ {n}
fn(! P) £ fn(P) fn(enter(m, k)) = {m,k}
fn(n[P]) £ {n} U fn(P) fn(auth(m, k)) = {m,k}
fn(M.P) £ fn(M)Ufn(P)
ftn(m{P}sy,) £ {m}U(P)U fn(sig)

Table 2.2: The free names of DISA

15

(vm: C)P|Q isread ((vm:C)P)|Q

(vn)P|Q isread ((vn)P)|Q
M.P|Q isread (M.P)|Q
(vny...nj)P & (vny)...(vn;)P
n[] = 0]

m{}Sig £ m{o}sig

M £ MO

Table 2.3: The syntactic conventions of DISA

(STrUCT RES RESC): More than one restriction of different names is applied
on a process consecutively, the order of restrictions does not matter.

(StrucT CODE): If P = @ then m{P}uu,p) and m{Q}nw,o) shows the same
behavioral properties, even if they have different hash values.

(STrRUCT RESC PAR): m ¢ fn(P), means m is not bound within process P,
therefore (vm : C')(P|Q) = P|(vm : C)Q is obtained.

(STRUCT ZERO RESC): The restriction on code name has no effect on inactivity.
We now introduce reduction relation — to identify the behavior of processes.

The calculus of DISA expresses mobility through the migration of processes,
from one locality to another. The meaning of computation is represented by the
interaction among codes and ambients. Ambients, with the appropriate capabil-
ity, can enter other ambients, an ambient from inside can exit or a boundary can
be dissolved, an ambient can allow a code to enter it or an ambient can enter
a code. These are the basic actions that define computation in the calculus of
DISA . The reduction relations as mathematical tool capture those basic move-
ments.

The Reduction rules of DISA inherits seven rules from the calculus of mobile
ambients, table [2.5] gives all the reduction rules.

For the two rules (RED ENTER) and (RED AUTH), the code and ambient
must be at the same level.

(RED ENTER) It expresses the ambient n can enter a code m if n has the same
key k with which the code m was signed, after the ambient enters the code, the

16

P=P
P=qQ
Q=P
P=Q.Q=R
P=R
P=qQ
(vm:C)P = (vm: C)Q
P=qQ
(vn)P = (vn)Q
P=qQ
PIR=Q|R
P=qQ
'P=1Q
P =
n[P] = n[Q)]
P=qQ
M.P = M.Q
P=qQ
AP Yk, p) = M{Q}n(k.@)
PlQ=QIP
(PIQ)|R = P|(Q|R)
'P=P|!P

(vm : Cl)(um C’) =(vm' :C")(vm:C)P

vn)(vn')P = (vn')(vn)P
vm : C)(P|Q) =
(P|IQ) = P\(yn) if n ¢ fu(P)

)
yn)(n[P]) = n'[(vn)P] it n #n

Pl(vm : C)Q if m ¢ fn(P)

(STRUCT REFL)

(STRUCT SYMM)

(STRUCT TRANS)

(STruCcT RESC)

(STrRUCT RES)

(STRUCT PAR)
(STRUCT REPL)

(STRUCT AMB)

(STRUCT ACTION)

(STrUCT CODE)

(STRUCT PAR COMM)
(STRUCT PAR ASSOC)
(STRUCT REPL PAR)
(STrRUCT RES RESC)
(STrRUCT RES RES)
(STrRUCT RESC PAR)
(STRUCT RES PAR)
(STRUCT RES AMB)

(STRUCT ZERO PAR)
(STRUCT ZERO RES)
(STRUCT ZERO RESC)
(STRUCT ZERO REPL)

Table 2.4: The structural congruence of DISA

17

afin 0.P|Q] [B[R] — B[R[a[P|Q]] RED IN)

(
blalout b.P|Q]|R] — b[R] |a[P|Q)] (RED OurT)
open a.P | a[@] — P|Q (RED OPEN)
m{P}h(hp) | a[enter(m, k‘)QlR] — m{P|a[Q|R]}h(k7p|a[Q|R]) (RED ENTER)
m{P}nw,p) | alauth(m, k).Q|R] — a[P|Q|R] (RED AUTH)
P—qQ
P = n)Q (RED RES)
P—qQ
(vm : CYP — (vm : C)Q (Rep ResC)
P—qQ
n[P] — n[Q] (RED AMB)
P—-Q
PR — Q|R (RED PAR)
PP=PP—QQ=Qq (RED =)

Pl — Q/

Table 2.5: The reduction rules of DISA

signature of the code has to be recalculated and hence its signature changes.

(RED AUTH) It expresses the ambient n allows the code m to enter it and acti-
vate processes P if the key k contained in its auth capability matches the key &
with which the code m was signed.

(RED RESC) It means the restriction has no effect on the internal event within
the restriction scope.

2.2 Discussion

In the DISA | we introduce the concept of code. We also introduced the interac-
tion among codes and ambients, an ambient can allow a code to enter it or vice
versa. In practice, one interesting feature of the calculus of DISA is the possibil-
ity to capture problems related to network security.

An ambient can be considered to be an administrative domain, such as a
PDA, and the process inside it accepts only trusted codes. Consider the follow-

18

ing process:

P =m{Q}nw.q) | m{ R} r) | blauth(m, k)[S]

There are two codes having the same name m signed using two different keys,
k and k'. If the two codes want to enter ambient b, according to the (RED AUTH)
rule, if the k in m is the same as the k in auth capability, then the code m with the
k can enter ambient b, another code m with £’ is rejected. If m with k& added to
PDA that the process) can interact with the process S. All data held on PDA
is fully protected, because only the trusted code is allowed to enter the PDA.
DISA has been developed to capture the notion of digital signatures. In the real
world we assume signed applets to be similar to code in our calculus. An attempt
was made to model the concept of digital signature into mobile ambients. There
are still scope of improvements as follows:

1.

The code is static that is it cannot move by itself. Movement is possible
only with the use of a carrier.

. All the processes within the code are passive that means reductions cannot

happen within the code which may not be true in the real world.

. The model of DISA is based on the sandbox model of Javal and not the

latest sandbox model of Java2. In DISA | the untrusted code is not allowed
to enter the system where as trusted code is given complete access to all
the system resources.

There is no key distribution i.e, it cannot be made sure if the code was
indeed signed by the desired signatory.

The concept of code and ambients is not unified. That is we consider code
and ambients to be two separate entities.

19

Chapter 3

Digitally Signed Ambients

In this chapter, we introduce the calculus of Digitally Signed Ambients. In Sec-
tion |3.1] we investigate the applications of DISA | its weakness, and introduce the
new concept of digitally signed ambients based on mobile agents. In Section [3.2]
we give the formal definition of the calculus of digitally signed ambients, and
discuss its security concerns.

3.1 Signing Ambients

In DISA | an ambient can be signed by a code by exercising the enter capability,
as a result the ambient enters the code and becomes a static process. If this code
is authenticated by another ambient, then the static processes contained within
the code become active, enters the authenticating ambient and becomes a part of
it. A code is a passive process which cannot move by itself but can only be carried
by other ambients. A code can be used to store ambients in passive state, and
guarantee integrity of the stored ambients by signing them using digital signature.

DISA can be used to model the traditional view of remote code: The source
site signs the code with its private key, and sends the signed code to the destina-
tion site; the destination site authenticates the code with the public key of the
source site, then activates the code as processes in case of successful authentica-
tion; during transit, the code cannot be altered, hence it cannot execute by itself.
For example, a signed applet downloaded from a website is a static Java byte
code, which can be executed after its authentication at the destination. Applets
are always treated as passive objects until they are executed.

However, it is believed that the current trends in Internet technology lead to

the use of mobile agents[8], which are different from Java applets. Mobile agents
are programs that can migrate from host to host in a network, decided by their

21

own choosing according to the times, places and other environmental factors. The
state of the running program is saved, transported to the new host, and restored,
allowing the program to continue where it left. Because mobile agents can make
decision and move by themselves, they can run as they move. Mobile agents can
be treated as some autonomous subjects.

The calculus of mobile ambients is a mathematic model for mobile agents. In
mobile ambients, a transporting ambient containing some critical information or
processes can be a subambient of a source host ambient; then the transporting
ambient moves itself into a destination host ambient through a series of reduc-
tions, and maybe travel across other untrustful ambients during the transit. This
arises some security concerns as following:

e How does the destination host ambient identify that the transporting am-
bient comes from the source host ambient it expects?

e How dose the destination host ambient guarantee that the transporting
ambient is not inserted some harmful processes by those untrustful ambients
during the transit?

As a solution for these security concerns, instead of signing ambients through
static code, we can sign ambients directly.

n[P]i denotes a digitally signed ambient. n is the ambient name, P is the
process, k is the key which is used to sign process P. Traditionally if a process
is digitally signed, it is supposed not to be changed during transit. However,
a digitally signed ambient should keep the capabilities of autonomous mobility,
so that the process enclosed by the signed ambient always changes, how do we
explain this? We can understand it like this: if an action is initiated by an
ambient, the ambient should be able to recalculate its own digital signature since
the process enclosed by the ambient is changed; on the contrary, a digitally signed
ambient does not allow to be changed by other ambients. For example:

P = afin b.5];|0[T)
Q = afin b.S]x|b[T]w

P can be reduced to b[T|a[S]g], ambient a can enter ambient b. After in b is
consumed, the process enclosed by ambient a is naturally changed, the signature
is recalculated by ambient a and it becomes a[S];. On the contrary, in process
@, in b cannot be executed, because ambient b is digitally signed, it will prevent
the change initiated by ambient a.

The only way to change a digitally signed ambient is that the action is initiated
by this digitally signed ambient. auth capability can be initiated by a digitally

signed ambient. For example:

22

a[S]k|blauth(a, k). T — b[T|a[S]]w

Ambient b authenticate digitally signed ambient a with key k, then ambient a
become unsigned and trusted by ambient b, so that ambient a become a subambi-
ent of ambient b. auth(a, k) is initiated by signed ambient b, so that it can accept
a trustful ambient through authentication and changes its own digital signature.

There is another case we have to consider: if an event only happen within a
digitally signed ambient, how dose this ambient deal with it? For example, in
n[ain b]|b[0]]x, ambient a can enter ambient b, this is an internal event for ambi-
ent n. Because ambient a and ambient b are subambients of ambient n, we can
take them as parts of ambient n, so that the internal event can be regarded as
an internal action of ambient n. Since we understand the internal action within
an ambient is also initiated by the ambient, the ambient can still recalculate the
digital signature after its enclosed process changes.

In general, an action is related with a subject and an object(In case of the
internal event, it is only related a subject), the action is initiated by the subject,
the subject can change its own digital signature. And if the object is digitally
signed, its digital signature cannot be changed by the subject, so that it can
prevent any change caused by the environment and guarantee the integrity of
the process. We will give the formal definition of the calculus of Digitally Signed
Ambient(DSA) in Section [3.2]

3.2 Syntax and Semantics

Table gives the formal definition of the syntax of Digitally Signed Ambients.
All the processes have the same meaning as described in section except, for
one new process, i.e, signed ambient. Ambient is signed directly and it is written
as:

n[P]s

Where n is the name of the ambient, P is the process running inside the ambient
and s can be either key k or an empty key. When s = k, n is signed ambient. As
we have seen in DISA | signed ambient can be written as n[P|,x,p), where h(k, P)
is the digital signature obtained by encrypting the hash value of the process P
using key k. But for simplicity, we write signed ambient as n[P]y. When s = ¢,
n is normal ambient, which can be opened by any process who holds open n
capability. The digital signature of a signed ambient can be changed by itself or
by its enclosed subambients or by any process who holds the sign capability with
the corresponding key.

23

n names

s = kle key
P Q.= processes
(vn)P restriction
0 inactivity
P|Q composition
'P replication
n[P], signed ambient
M.P action
M = capabilities
inn can enter n
outn can exit n
open n can open n
auth(n, k) can authenticate n with key k
sign(n, k) can sign n with key k

Table 3.1: The syntax of DSA

Table shows the definition of free names of DSA. The only difference
from that of DISA is fn(n[P]s). In DISA , the ambient is a normal ambient, but
here it is a signed ambient. Therefore, we should also consider the free names of s.

Table [3.3| shows the definition of syntactic conventions of DSA. Most of them
are similar to the syntactic conventions of mobile ambients. The only difference
is with signature. If s = k then that ambient is read as a singed ambient. If
s = €, the ambient is read as a normal ambient.

fn((vn)P) 2 fo(P)— {n} fn(in n) 2 [n}
fn(0) = fn(out n) 2 In}
fn(P|Q) = fn(P)uUfn(Q) fn(open n) £ {n}
fn(! P) £ fn(P) fn(sign(m, k) = {m,k}
fn(n[Pl;) = {n}Ufn(P)Ufn(s) fn(auth(m,k)) = {m,k}
fn(M.P) = fo(M)Ufn(P) fn(e) £ 0
M) 2 (k)

Table 3.2: The free names of DSA

24

M.P|Q is read (M.P)|Q
(vny..vng)P = (vni)...(vngy,) P
n[Ple N n[P]

n[]s = n[0];

M £ M.0

Table 3.3: The syntactic conventions of DSA

Table [3.4 shows the definition of structural congruence of DSA. The new rules
are explained as follows:

(STRUCT AMB) : If processes P and () which are enclosed in ambient n, are
structurally equivalent, then even though the digital signatures of the ambients
are different, the two ambients show the same behavioral properties.

(STrRUCT RES AMB) : This rule is the same as in Mobile Ambients. In
addition to the STRUCT RES AMB, the following should be emphasized:

(vn)(n'[Pl) # n'[(vn) Pl

The two processes (vn)(n'[P]) and n'[(vn)P], are not structurally equivalent.
Since the restriction present in (vn)(n'[P]i) is not signed, it can extend its scope.
Where as the restriction present in n'[(vn)P] is signed, therefore it can not ex-
tend its scope.

Table 3.5 shows the reduction rules of DSA.

(RED IN): Reduction IN can be performed only when an ambient enters an
unsigned ambient. As shown in Table [3.5] an ambient n tries to enter unsigned
ambient m. The reason is when the capability in m is exercised within the am-
bient n, the contents of n changes accordingly. However, a subject can change
its own digital signature, by exercising the in capability which will changes the
digital signature of n. In contrast, subject can not change the digital signature of
the object. When n enters m, the contents of m will automatically be changed.
Hence, if m is a signed ambient, the digital signature of m has to be changed by
n, which is not reasonable and hence the IN reduction is not possible.

(RED OuT): Reduction OUT can be performed only when an ambient moves
out of an unsigned ambient. In RED OUT rule the ambient n tries to move out
of an ambient m. Here ambient n is subject, which can change its own contents
by exercising out capability. When ambient n moves out from m, if m is a

25

P=qQ

M.P=MQ

PlQ=Q|P

(PlQ)|R = P|(Q[R)
'P=pP|IP

(vn)(vn)P = (vn')(vn)P

(
(

vn)

(
vn)(n'[P]) = n'[(vn)P] ifn #n'

P|Q) = P|(vn)Q if n ¢ fn(P)

(STRUCT REFL)

(STRUCT SYMM)

(STRUCT TRANS)

(STRUCT RES)

(STRUCT PAR)

(STRUCT REPL)

(STRUCT AMB)

(STRUCT ACTION)

(STRUCT PAR COMM)
(STRUCT PAR ASSOC)
(STRUCT REPL PAR)
(STrUCT RES RES)
(STRUCT RES PAR)
(STrUCT RES AMB)

(STRUCT ZERO PAR)
(STRUCT ZERO RES)
(STRUCT ZERO REPL)

Table 3.4: The definition of structural congruence

signed ambient, digital signature of m has to be changed by subject n, which is
not reasonable. Therefore, if m is signed ambient, RED OUT can not be possible.

(RED OPEN): Only an unsigned ambient can be opened. In RED OPEN rule
process P tries to open the ambient n through open capability. Therefore, if n
is signed ambient, it can not allow other processes to dissolve its boundary.

(RED AUTH): Reduction AUTH is special type of reduction rule, the only
way in which subject can accept the signed ambient. Here ambient n tries to
authenticate a signed ambient m through auth capability. In general, a subject
can not change the digital signature of an object. But in this rule, since ambient
n holds valid public key, it can accept the signed ambient m. Therefore, after
auth capability is exercised, ambient n changes its own contents, hence digital
signature of ambient n is recalculated.

(RED SIGN): Reduction SIGN is performed only when a process who holds
valid private key, signs an unsigned ambient.

(RED AMB): In n[P]y, it is understood that P is actively running, and that
P can be the parallel composition of several processes. We emphasize that P is
running even when the surrounding ambient is moving. As we know the digital
signature of an ambient can be changed by itself or by its enclosed ambients, we
express the fact that any reduction of the process which is enclosed in an signed
ambient will lead to recalculation of the hash value of that ambient.

Example 3.2.1 Modeling of the Secure Systems using DSA.

app:[auth(apps, k3)| Pl, |app2[Qlk, |apps[Rk, |appa[Rk, |sys[auth(app:, k)|
auth(appa, ka)|auth(apps, ks)|auth(apps, ks). Ts|pri[X]|pub[Y]],

— appi [apps[R]| Pli, |app2|Qlk, |appa[Rl |
sys|auth(appy, ky)|auth(appy, k)| auth(apps, ks)|pri[X]|pub[Y]],

— appz2[Qlr,|syslapp:[apps|R]|auth(appa, ks)|appa[Q]|pri[X]|publY]k,

In this model we consider four applets namely appl to app4. The resource T of
Secure Systems can be considered to be a combination of a private resource(pri[X]),
public resource(pub[Y]) and some additional processes. The model of the system
using DSA is shown in the Figure [3.1]

In the first reduction the app3 is authenticated by appl. In the second reduc-
tion app3 and appd are authenticated and hence have access to all the resources

27

nfin m.P|Q]s|m[R]c — m[n[P|Q]s|R]
m[P|nfout m.Q|R]s]c — m[P]|n[Q|R];
open n.P|n[Q]. — P|Q

m|[Pli|nfauth(m, k).Q|R]s — n[R|Qm[P]];
sign(m, k).Pim[Q]c — PIm|[Q]x

P—qQ
(vn)P — (vn)@Q

P—qQ
n[Pls — nlQ];

_P=@
P|R — QIR

PP=PP—Q,Q=0q
P/—>Q/

(

(RED OuT)

(RED OPEN)
(RED AUTH)
(RED SIGN)

(RED RES)

(RED AMB)
(RED PAR)

(RED =)

Table 3.5: The reduction Rules of DSA

28

within the ambient where as app2 cannot be authenticated as the key does not
match. From the reductions above it is evident that digitally signed ambients
can distinguish between trusted and untrusted code. There are a few problems
which still persist such as:

e In the first reduction we can see that the ambient app, trusts the key ks of
the ambient apps and hence authenticates it. There could be a case where
the key k3 is not trusted by the Secure System but we see from the reduc-
tion that even then apps ends up within system gaining access to all the
system resources. This could be taken as a Trojan horse example where
ambient app, acts as the horse.

e In the second reduction, we can see that the system trusts the key of app;
and app4 which are allowed access to all the resources within the system,
but this mechanism is not flexible as it is similar to the Java sandbox model
of JDK1.1 where the applet is either given complete access to the resource
or no access at all. We need to device a more flexible mechanism for access
control on processes. That is to provide different access control for different
processes based on their sources.

k1 ‘ k2 ‘ ks ‘ ka ‘ ks
appl app2 app3 app4 Sys
\ 4
ks
Q ks ke ka ks
app
appl app2 app4 Sys
v
k2 ks
app3
appl app4
app2 Sys

Figure 3.1: Modeling of Safe System using DSA

Security Concerns

29

Security is a major concern in mobile agents. For example in the following
reduction:

open n.P|n[Q]. — P|Q

An open operation dissolves the boundary of the ambient n. From the point
of view of P, we cannot predict the behavior of () when it is unleashed. From
the point of view of (), its environment is being ripped open. This is a security
concern as there could be a case where the ambient n does not wish its boundary
to be dissolved but there is no mechanism to prevent it. This is one of the
reasons why we introduce the concept of blocking which will be described in the

chapter

30

Chapter 4

Blocking in Mobile Ambients

In this chapter, we introduce the three kinds of blockings into Mobile Ambi-
ents. In Section .1} the concept of blocking in Calculus for Communicating
System(CCS) and 7 calculus is investigated; in Section [£.2] the calculus of Mo-
bile Ambients with Blocking on Names is introduced; in Section [4.3] the calculus
of Mobile Ambients with Blocking on Capabilities is introduced; in Section [4.4]
the calculus of Mobile Ambients with Blocking at Ambient Level is introduced.

4.1 Blocking in Process Calculus

In CCS[9], the concept of blocking is introduced as restriction. The following is
the syntax of C'CS:

P:= K | aP | P+P | PIQ | P[f] | P\L

K is the process name; «. P is the prefix, that means P can be executed only after
action « is executed; P + P is the nondeterministic process; P|Q is parallelism;
P[f] is relabeling, which is equivalent with substitution defined by f; P\L is
restriction, which blocks any process out of P to use port names in L. The
following is one example to represent the usage restriction[10]:

cm Y coin.coffee.C'M
cs pub.coin.coffee.C'S
def

CS" = pub.coin.coffee.C'S
SmUni < (CM|CS)\coin\ coffee
CM is a process that represents a coffee machine which accept a coin and then
output a coffee; C'S is a process that represents a computer scientist who is ini-

tially keen to produce a publication, then needs to get coffee from C'M and make
the next publication. CS’ is another computer scientist who competes for the

31

resource coffee machine with C'S inside process CM|CS|CS’. In order to make
the coffee machine private for C'S, the restriction on port names coin and coffee
is used to block any process other than C'M and C'S to know these port names,
therefore the port names coin and cof fee in C'S” do not mean the same channels
expressed by the same port names coin and coffee in SmUnq.

In his PhD thesis [5], Vivas Frontana introduced the concept of blocking into
m-calculus, which is different from the concept of restriction in m-calculus, but it
is similar as the concept of restriction in C'CS. The following is the syntax of the
first-order w-calculus with blocking:

P = 0 ‘ zy.P ‘ z(y).P ‘ T.P ‘ v(z)P ‘ [z =y|P ‘
PP | P+Q | Alyr, - ,yn) | P\z (4.1)

0 is the inactivity; Ty.P is the output prefix, which sends the channel name y
along the channel x before continuing as P; z(y).P is the input prefix, which
inputs an arbitrary name z from the channel x before continuing as P{z\y}; 7.P
is the prefix whose action is a silent action; v(z)P denotes a process P in which
occurrences of z in P are bound by v(z); the match [x = y|P acts as 0 if it
is not the case that = y, otherwise as P; P|P is the parallelism; P + @ is
the summation which represents alternative choice; A(yy, -+ ,y,) is the identifier
which defines a process template.

The blocking operator in m-calculus is denoted by P\a. It works as a firewall
which prevents any kind of communication through the channel a between pro-
cess P and its environment, but allows the communication of the channel name
a across the firewall. Therefore the blocking operator merely restricts the com-
munication capabilities of channel a by the means of name space management,
that the name a appeared out of the scope of the blocking does not bind with the
name a appeared within the scope of the blocking. In addition, the most signif-
icant difference between restriction and blocking is that the scope of restriction
can be extruded through communication of the restricted name but the scope of
blocking cannot be extruded in any way, even if the blocked names are leaked
out of the blocking scope through communications. The following is an example
to explain the above description:

P =7Za.a(y).R
Q = x(2).zb.S

For process v(a)P|Q, it is structural equivalent with process v(a)(P|Q). When
channel name a is transferred from P to (), the scope of the restriction is expanded
to () according to the semantic rules of 7-calculus, which is a mechanism called
extrusion of the restriction scope. (va)(P|Q) have the following reductions:

32

v(a)(ZTa.a(y).R|x(2).zb.S) — v(a)(a(y).R|ab.S{a\z}) — v(a)(R{b\y}|S{a\z})

On the contrary, process P\a|Q is not structurally equivalent to the process
(P|@)\a. In the first reduction step, channel name a can go through the blocking
through the communication along channel x, so that name a is leaked out of the
blocking scope:

Za.a(y).R\a|z(2).zb.S — a(y).R\a|ab.S{a\z}

After this step, the communication along a can not happen, because the block-
ing on name a divides the process into two different name spaces, where name a
within the blocking scope cannot bind with name a out of the blocking scope.

We can see that the two calculi above have the similar constructs in terms of
blocking, and they also have the similar constructs as mobile ambients, such as
inactivity, parallelism and prefix, so that it is feasible to introduce the concept
of blocking into the calculus of Mobile Ambients. In this chapter, we try to
introduce the concept of blocking into the calculus of Mobile Ambients which is
more complex than introducing blocking in CCS and m-calculus. In this chapter,
we propose the three different calculi for blocking in the following sections: in
Section [4.2] we introduce Mobile Ambients with Blocking on Names(MABN); in
Section we introduce Mobile Ambients with Blocking on Capabilities(MABC);
in Section .4 we introduce Mobile Ambients with Blocking defined at Ambient
Level(MABA).

4.2 Blocking on Names: MABN

In mobile ambients, any action in terms of movement has a subject and an object.
For example, in afin b], for the action in b, ambient a is the subject, ambient b
is the object, a takes the action on b, finally it will enter b. The blocking in 7-
calculus[I1][5] prohibits any communication between processes within and out of
the scope of blocking along any blocked channel name. Similarly the blocking on
names in mobile ambients can prohibit the actions applied on the objects whose
names are out of the scope of the blocking, and we denote P\a as name a is
blocked on process P . The following is one example:

P= alin b][b[0]
= (alin b))\b[b[0]
= alin b]|(b[0])\b

In P, it is evident that a can enter b after in b is exercised. In @), a cannot enter
b, because ambient b outside the blocking scope cannot be referenced by name b
within the blocking scope, that b within in b does not bind with ambient b. For
the same reason, within R, the action in b cannot be taken by ambient a, name b

33

outside the blocking scope cannot bind with ambient b within the blocking scope.
Therefore, we can say that blocking on names can make effect bi-directionally on
processes within the scope and out of the scope.

This section introduces the calculus of MABN. The subsection 4.2.1} gives the
formal definition of this calculus and its explanation. In subsection [4.2.2] some
topics about this calculus are discussed.

4.2.1 Syntax and Semantics

Table gives the formal definition of the syntax of MABA. It is assumed that
an infinite set of names .4#” ranges over ambient names. P\x denotes that the
ambient names belonging to N are blocked within the scope of process P. When
set NV has only one element such as n, it can be written as P\,. The other syn-
tactic elements have the same meaning as the calculus of Mobile Ambients.

Table shows the definition of free names in MABN. The rule fn(P\y) =
fn(P) U N tries to collect the free names in the blocking set.

Table [4.3] shows the syntactic conventions of MABN.
Table gives the definition of structural congruence of MABN. Most of
them are the same as in Mobile Ambients. The introduction of blocking opera-

tion brings some new rules which are explained as follows:

(STRUCT BLOCK): Blocking has no effects on the internal events within the
scope of the blocking.

(STRUCT BLOCK EMPTY): A process without blocking is equivalent with the
process with blocking of empty names set. Hence, general reduction rules for this

calculus are possible.

(STRUCT BLOCK UNION): Two consecutive blockings can be combined with
union of the two blocking name sets. This gives another rule: P\y\n' = P\n/\n-

(STRUCT ZERO BLOCK): Any blocking on inactivity does not make any effect.

(STRUCT BLOCK PAR SymM): The blocking on names makes the same effect
on bi-directions.

(STRUCT RES BLOCK): If there is no shared name between restriction and
blocking on names, they make no effect with each other.

34

names
sets of names

= processes
(vn)P restriction on ambient name
0 inactivity
P|Q composition
'P replication
n[P] ambient
P\n blocking on ambient names
M.P action
= capabilities
inn can enter n
outn can exit n
open n can open n

Table 4.1: The syntax of MABN

n((vn)P)2 fn(P) — {n} fn(M.P) = fo(M)U fn(P)
=N fn(inn) = {n}
£ fn(P)uUfn(Q) fn(outn) £ {n}
2 fn(P) fn(open n)2 {n}
£ fn(P)UN fn(n[P]) = f(P)U{n}
Table 4.2: The free names of MABN
P|Q\ N is read Pl(Q\N)
(vn)P|Q is read ((vn)P)|Q
M.P|Q is read (M.P)|Q
(vny...np)P = (vny)...(vn,)P
n] = n[0]
O\ = (0)\w
M £ M.0

Table 4.3: The syntactic conventions of MABN

35

P=P (STRUCT REFL)

P=Q

Q=P (STRUCT SYMM)

r EPQ’_QRE i (STRUCT TRANS)
P=Q

P\y =Q\w (STRUCT BLOCK)

P=qQ

(vn)P = (vn)Q (STRUCT RES)
P=qQ

PIR=Q|R (STRUCT PAR)

P=qQ

P =!Q (STRUCT REPL)
P=

n[P] = n[Q] (STRUCT AMB)

M i f %Q (STRUCT ACTION)

PlQ=QlP STRUCT PAR COMM)

(
(P|Q)|R = P|(Q|R) (STRUCT PAR ASSOC)
lP=P|!'P (STRUCT REPL PAR)
(vn)(vn')P = (vn')(vn)P (STrUCT RES RES)
(l/n)(P|Q) P|(Vn) if n ¢ fn(P) (STRUCT RES PAR)
(vn)(n'[P]) = n'[(vn)P] if n #n' (STRUCT RES AMB)

P
(

=
<

STRUCT ZERO PAR)
vn) STRUCT ZERO RES)
10=0 STRUCT ZERO REPL)

4 E

3 (
P\g=P ESTRUCT BrLock EMPTY)

(

(

(

0

P\n\n' = P\nun STRUCT BLOCK UNION)
O\y=0 STRUCT ZERO BLOCK)
(P)\n|Q = Pl(Q)\N STRUCT BLOCK PAR SymMm)
(vn)(P\n) = ((vn)P)\n if n ¢ N STRUCT RES BLOCK)

Table 4.4: The structural congruence of MABN

36

In addition, the following should be emphasized:

n[P\n] # n[P]\x
P\N|Q\n # (P|Q)\n

In n[P\n], the blocking of N is carried on by ambient n as a part of ambient
n. For example, nfin m.Q\y]|m[R] can be reduced to m[R|n[Q\y]] in the case
of m ¢ N, the blocking is carried by ambient n. On the contrary, in n[P]\y,
after ambient n exercises some capability in terms of movements, it can jump out
of the blocking scope of N. For example, n[in m.Q]\nx|m[R] can be reduced to
O\n|m[R|n[in m.Q]]. Hence blocking has different effects on an ambient within
and out of it.

In (P|Q)\n, P can interact with @ through some names, even though some
of these names belong to the blocking N, because P and () are within the same
scope of Blocking, according to (RED BLOCK), this blocking makes no effect
on the internal event within the scope of this blocking. On the contrary, for
P\n|Q\n, P cannot interact with @ through names belonging to N.

Table [4.5] shows the reduction rules of MABN.

In order to express that a reduction is managed by multi-level blocks, the
following evaluation context is defined:

Definition 4.2.1 (Evaluation Context)
V(D= (D\v | (@Y DIP)\wr(N =N UN") (4.2)

where N, N' and N" are three blocked name sets, P is an arbitrary process. (|)
1 a hole which can be filled up with any process, capability or another evaluation
context.

From (RED IN) (RED OuT) (RED OPEN), an action can occur if there is no
name blocking on its object along the way its subject moves. Additionally, the
blocking scope is fixed relative to the ambient in which it resides, ambients can
move into or out of blocking scopes by entering into or exit from ambients, and
the blocking within one ambient has to be moved along with the ambient.

From (RED BLOCK), we can see that, the blocking makes no effect on the
event happening within the scope of the blocking.

37

TN ale (inb.PYIQNEN(0[R])
= N QT (b[Rla[€™ (| P)IN(b ¢ NUN'UN") (RED IN)

bEN(al€™ (out b.P)]IQD] — &N (Q)]lal€™ (P)I(b ¢ NUN') (ReD Out)

N (| open b.P)[E (b[Q]) — €V (P)IEV(Q)(b & NUN) (RED OPEN)

P—qQ
(vn)P — (vn)Q

(RED RES)

P—qQ

nlP] — n[Q] (RED AMB)
P—Q

PIR — QR (RED PAR)
P—qQ

T (RED BLOCK)

PP=PP—Q,Q=q
P/_)Q/

(RED =)

Table 4.5: The reduction rules of MABN

38

4.2.2 Discussion

The introduction of blocking on names into mobile ambients brings some new
insights on name space management, and it is also worth comparing blocking
with restriction. We will have some discussion on these topics in the following.

1. Name Space Management and Dynamic Name Binding

Blocking on names can be considered as a mechanism of name space man-
agement and name dynamic binding. Name space management usually
adopts a hierarchical structure to organize names to avoid name collision
as Domain Name System[I2] in Internet. Dynamic name binding is a pat-
tern to associate identifiers or references to entities on runtime. An ambient
name can appear in two forms: when n appears as n[P], name n means an
entity which is an ambient encapsulates a process; when n appears in a
capability such as in n, name n means a reference to some ambient. There-
fore these two forms of names must be bound dynamically when an action
can happen, for example, in a[0]|b[c[in al]|a[0]], when in a is executed, a
inside in a is bound with ambient a inside ambient b, not ambient a outside
ambient b. Blocking on names can split a process into two separated name
spaces, but allow dynamic name binding on execution. For example,

(a[ir11 n) | n[|r21 a))\n| n[ni al | a[iréw1 n|

In the above process, the blocking splits the process into two name spaces in
which name n can only bind with the entity in the same name space. Every
ambient is labeled by a unique number in order to describe name dynamic
binding clearly. In the following, we use — to express the feasibility of
ambients movement, for example (1) — (2) means ambient a labeled by 1
can move into ambient n labeled by 2, (1) -+ (3) means ambient a labeled
by 1 can not move into ambient n labeled by 3. According to the semantics,
the process has the following feasibilities of movement:

(1) = (2) (1))
2) =0 2)—0¢
3) =) (3)—=(1)
4)—=06) @4)—(@2

From the left column, we can see that the blocking makes no effect on the
actions within the blocking scope. From the right column, we can see that
the movements by in n are blocked by the block on name n, but the block-
ing on name n makes no effect on the movements by in a.

39

The most important point is: the blocking cannot prohibit (1) — (3) for-
ever, this block can be overcome by name dynamic binding. Suppose that
the process has the following starting configuration:

(alin n]inla.out al | n[|r21 a))\n| n[lr?; al | a[ir;1 n|

It has the following reductions:

(alin n|in1a.out al | n[|r21 a))\n| n[|r31 al | a[ié n|

4
2

— (n[|r21 a))\n| n[lrz al | a[irj1 n| afin 1n\lout al]
— (n[in a])\n| n[in a] | alin n] | afin n]

3
2 1 4

— (n[in a])\n| n[in a| a[]] | a[in n]

Ambient a labeled by 1 can enter the name space where ambient a labeled
by 4 through (1) — (4), so that ambient a is in the same name space with
ambient n labeled by (3), ambient a labeled by (1) may have a chance to
enter ambient n labeled by (3). When ambient a labeled by (1) exits from
ambient a labeled by 4, name n in the capability in n of ambient a labeled
by 1 binds with ambient n labeled by 3.

. The Comparison between Blocking on Names and Restriction

Restriction is a mechanism to create a new name which can be used within
the scope of the restriction. In contrast, blocking on names does not cre-
ate new names but defines name spaces which limit dynamic name binding
within the same name space. The most obvious difference between the
scopes of restriction and blocking on names is: the scope of restriction can
be extruded using (STRUCT RES PAR); blocking on names is a fixed struc-
ture whose scope cannot be extruded. For example, (vm)m[in n]|n[0] =
(vm)(ml[in n]|n[0]) so that the scope of the restriction is extruded from am-
bient m to ambients m and n, as a result in n can be exercised; m/[in n|\,,|n[0]
is not structural congruent with (mlin n]|n[0])\,, although in n can be ex-
ercised in both cases according to our reduction rules.

However, after the difference is explored more deeply, it can be found that
restriction can prohibit dynamic name binding, but blocking on names al-
lows dynamic name binding. It is explained by the following example:

40

P = (vb)(b[0]|m][0])|n[in blin m.out m]
Q@ = (b[0]|m][0])\ e} |n[in blin m.out m)]

Process P can be converted to (vb)(b[0]|m/[0]|n[in ¥'|in m.out m|) using a-
conversion with which in b becomes in ', since name b within ambient n is
a free name. Therefore, ambient n can not enter ambient b in process P
forever, and the restriction on name b prohibits this.

For process (), it has the following reductions:
(b[0]|m[0])\ te3 |n[in blin m.out m]

— (b[0)|m[n[in blout m]])\)
— (b[0]|m[0]|n[in b))\ ()
— (b[n[0]]|m[0])\ 5y

Although the scope of the blocking on name b is fixed, ambient n can enter
the blocking scope by entering into ambient m which is not blocked, then
name b in in b binds with ambient b, as a result it can enter ambient b.
Therefore, ambient n can enter ambient b by circumventing through en-
tering ambient m which is not blocked but in the same blocking scope as
ambient b.

This comparison make it easier to answer the question why (va)(P\(.) =
((va)P)\, does not hold. The reason is simply that creating a name within
the scope of the blocking on the name is different from blocking a name
after creating it.

4.3 Blocking on Capabilities: MABC

In this section we will introduce the calculus of mobile ambients with Blocking
on Capabilities (MABC). In MABN, blocking on names prohibits the actions ap-
plied on the objects whose names are out of the scope of the blocking. In MABC,
blocking on capabilities controls the access capability on the objects. The idea
of block on capabilities is an inspiration from the concept of access control.

Access control[13] is a method of restricting access to resources, allowing only

privileged entities access. For example, when we access a web resource, access
can be granted or denied based on some criteria, such as the browser which we
are using. Access control is analogous to having a bouncer at the entrance, it

41

controls entrance by some arbitrary condition which may or may not have any-
thing to do with the attributes of the particular visitor.

We use Pl¢ to express blocking on capabilities, where C' is a set of abstract
capabilities, !¢ can block the interaction taken by those capabilities belonging to
C between process P and its environment. For example, consider the following
process,

open m.P lopenm | m[Q)]

In the above process, since open capability is blocked and the access can not
be executed. Hence, ambient m can not be dissolved. Here the scope of blocking
virtually represents the scope of access control.

4.3.1 Syntax and Semantics

Table [4.6] gives the formal definition of the syntax of MABC. It is assumed that
an infinite set of names .4 ranges over ambient names.

Table [4.7] defines the set of free names fn(P) for MABC.
Table [4.8| shows the syntactic conventions of MABC.

Table gives the structural congruence for MABC. We have the following
five new structural congruence rules,

(STrucT BC): Blocking has no effect on any processes that are structurally
congruent.

(STrRUCT RES BC): If the restricted name does not appear in the block set, the
restriction and blocking do not interrupt each other.

(STrUCT BC UNION): Two consecutive blocking can be combined with union
of the two blocking capability sets.

(STrRUCT BC EMPTY): Empty blocking set means no blocking within process.

42

n names

Cap = {in ,out ,open } the set of capabilities
Amb the complete ambient name set
C C Cap x Amb the blocking capability set
P.Q = processes
(vn)P restriction on ambient name
0 inactivity
P|Q composition
'P replication
n[P] ambient
M.P action
P blocking on capabilities
M = capabilities
inn can enter n
outn can exit n
open n can open n

Table 4.6: The syntax of MABC

fn((vn)P) 2 fo(P)— {n} fn(n[P]) £ [n}Ufn(P)
fn(0) = fn(Pie) 2 fn(P)Ufn(C)
fn(PlQ) £ fn(P)UM(Q) fn(in n) £ {n}
fn(! P) £ fn(P) fn(out n) = {n}
fn(M.P) £ fn(M)Ufn(P) fn(open n) = {n}
fn(C) = fn(M)

MeC

Table 4.7: The free names of MABC

P |Q isread (Plo)|@
(vn)P|Q isread ((vn)P)|Q
M.P|Q isread (M.P)|Q
(vni..nm)P & (vny)...(vng,)P
n|] 2 p[0]

Ne £ (0

M £ MO

Table 4.8: The syntactic conventions of MABC

43

PlQ=QlP
(PlQ)|R = P|(Q|R)
|P=P|IP

(vn)(vn')P = (vn')(vn)P
if n ¢ fn(P)

PIQ) = Pl(vn)Q

(vn)(
(vn)(n [P]) = n{(vn) P]
(vn)(

Pio) = ((vn)P)e if n ¢ In(C)

(STRUCT REFL)

(STRUCT SYMM)

(STRUCT TRANS)

(STRUCT RES)

(STRUCT PAR)
(STrRUCT REPL)

(STRUCT AMB)
(STRUCT ACTION)

STrRUCT BC)

(

(STRUCT PAR COMM)
(STRUCT PAR AsSSoOC)
(STRUCT REPL PAR)
(STRUCT RES RES)
(STRUCT RES PAR)
(STRUCT RES AMB)
(STrUCT RES BC)

(STRUCT ZERO PAR)
(STRUCT ZERO RES)
(STRUCT ZERO REPL)

(StrucT BC UNION)
(StruCcT BC EMPTY)
(STrUCT ZERO BC)

Table 4.9: The structural congruence of MABC

44

ZOTnl@” (i m P [Q) [2 (mIR])
—€°(Q) | € (m[R| n# | P)]]) (nm¢CUC)

m[€°(n[€"(out m.P)] | Q]
—m[EC(Q)] | n[£(P (out m ¢ C'UCY)

@ (open m.P) | € (m[Q])
= P)[£7(QD (openm ¢ C)

P—qQ
(vn)P — (vn)Q

P—qQ
n[P] — n|Q)]
P—qQ
PR — QIR
P—qQ
Pic — Qe

P=PP—QQ=Qq
P/_)Q/

(RED IN)

(RED OurT)

(RED OPEN)

(RED RES)

(RED AMB)
(RED PAR)

(RED BC)

(RED =)

Table 4.10: The reduction rules of MABC

(STrRUCT ZERO BC): The blocking on inactivity does not make any effect.

Since there are multi-level of blocking on capability, for example, n[P],
(P ¢ [n[@Q])¢cr. Hence, in order to express the reduction rules accurately, we
introduce the context of Blocking on Capabilities, written as €).

Definition 4.3.1 (The context of Blocking on Capabilities) . Let C, C”
and C” be blocked sets of capability, where C = C"U C”, P is a process, €€ (| |) de-
notes the context of blocking on capability, we write €°(|) =:= (ic| (€< ()| P)cr
to express multi-level blocking context in MABC. If C is equal to (), it means no

blocking.

We can think (]) as a hole which can be filled up with anything, like processes,

capabilities and another context.

Table .10l shows the all reduction rules for MABC.

45

There are four new reduction rules, namely, (RED IN), (RED OuT), (RED OPEN)

and (RED BC).

The first three rules express the reduction happening in multi-level blocking

contexts. If all of the blocked sets of capability are empty, then these three rules
are the same as the general reduction rules for in | out and open in mobile
ambients.

In (RED IN), if in m ¢ C'U (", then ambient n can enter ambient m, as the

result, ambient n leave block C, block C” will be moved along with n; block C”
does not control this movement.

In (RED OuT), if out m ¢ C' U C’, then ambient n can exit ambient m, as

the result, ambient n leave block C, block C” will be moved along with n.

In (RED OPEN), if open m ¢ C, after ambient m is dissolved, block C’" on

process () is reserved.

In (RED BC), blocking has no effect on internal event within the blocking

scope.

4.3.2 The Comparison between MABN and MABC

In MABN, the effect of blocking on names is name hiding. If a process accesses
some external resources, it must know the names of the resources it tries to visit.
In MABC, blocking on capabilities is a mechanism of the process based mandatory
access control. blocking on capabilities is used to apply restriction on processes.
Blocking on names more relax than blocking on capabilities.

We will consider the following process which illustrates what is difference

between blocking on names and blocking on capabilities.

(1) (2) (3) (4)
(afinn] | nfin a) 4, . | nlin a] | afin n]

We have four ambients which try to exercise in capability, and in n capability

is blocked within the scope of (a[in n]|n[in a]). We will use notations (1), (2), (3),
(4) instead of four ambients respectively.

In this example, only one different from the example in section 4.2.2, we

lin,, instead of \,. In the previous example, the process has the following

feasibilities of movement:

46

(1) =2 1)+
(2) = (1) (2) =4
3) =) ©3)—(1)
4)—06) @4)—+(@2

In this case, we have the following behavior of processes can happen or can
not happen:

(1) = (2) (1) 3)
(2) =1 (2)—¢)
3) =) ©B)—=)
4)—06) (@) -2

In both cases, we see the last reduction in the right column, in the first case, it
blocks any movement in terms of n. In the second case, in n capability is blocked
within its scope, it can not be exercised from scope to outside, on the contrary,
it is unblocked from outside to its scope.

In MABN, the rule (STRUCT BLOCK PAR SymMm),P\y|Q = P|Q\x expresses
the blocking on names makes the same effect on bi-directions. In MABC, a re-
markable is P o |Q #Z P|Qlc. The blocking on capabilities only make effect on
one direction.

4.4 Blocking at Ambient level: MABA

Mobile Ambients with Blocking at Ambient level (MABA) is one of the three kinds
of blockings available for the calculus of Mobile Ambients. The idea of blocking
at the ambient level is similar to the blocking on capability but is applied directly
on the ambient. That is ambients are assigned a set of blockings which must be
respected by the ambient during its movement. This kind of blocking moves
along with the ambient and can be dissolved in case the ambient is opened. The
blocking at ambient level is denoted by the notation n[P] (€1 where C' represents
the capabilities that are blocked within the ambient boundary. Consider the
following example:

nlin m_p][in al | fin C|Q][in c}|C[R][in b s mlin c|Q|n[P]][i” C}|c[R][i” b]

In the above example ambient n can enter an ambient m, but the ambient m
cannot enter ambient c¢. Therefore, we can say that blocking on ambient level
effects all the processes contained within that ambient.

47

n names
Clap = {in ,out ,open }

C C Cap x Amb

PQ = processes
(vn)P restriction
0 inactivity
PlQ composition
P replication
n[P]I¢] blocking at ambient level
M.P action

M = capabilities
inn can enter n
outn can exit n
open n can open n

Table 4.11: The syntax of MABA

4.4.1 Syntax and Semantics

Table give the formal definition of the syntax of MABA. It is assumed that
an infinite set of names .4 ranges over n, where n are the ambient name. C' de-
notes a set of capabilities which are blocked within the boundary of an ambient.
The other syntactic elements have the same meaning as the calculus of mobile
ambients.

Table shows the definition of free names in MABA.

fn((vn)P) = f(P)— {n} fn(in n) 2 [n}
fn(0) £ 0 fnout n) = {n}
fn(P|Q) = fn(P)ufn(Q) fn(open n) = {n}

fn(! P) £ fn(P) fn(C) = MLeJCfn(a)
fn(n[P)€l) & {n}Ufn(P)Uf(C)

fn(M.P) & fn(M)Ufn(P)

Table 4.12: The free names of MABA

48

M.P|Q isread (M.P)|Q
(vni...nm)P 2 (vny)...(vng)P
[l & o)
WP 2l
[/ 2 o)
M £ MO

Table 4.13: The syntactic conventions of MABA

Table shows the syntactic conventions of MABA.

Table gives the definition of structural congruence of MABA. Most of
them are the same as that of mobile ambients. The introduction of blocking
operation brings some new rules which are explained in the Table [4.14f

(STRUCT AMB): If two equivalent processes are enclosed within the same ambi-
ent having the same blocking then they will have the same behavioural properties.

(STRUCT RES AMB): If the restricted name is not the name of the ambient on
which there is a blocking, and the name is not contained in the blocking set then,
they do not make effect on each other(that is it does not matter if the restriction
is outside or within the ambient).

The behavior of a processes is given by its reduction rule. Table [£.15] shows
the reduction rules of MABA.

From (RED IN) and (RED OuT), the blocking is carried along with the am-
bient. This kind of blocking is effective on all the processes within that ambient
only on the first level i.e, it prohibits the capabilities from being exercised at the
process level directly enclosed within the ambient and not on its subambients.
From (RED OPEN), we can see that, the blocking dissolves along with the am-
bient boundary in case an ambient is opened.

4.4.2 Discussion

The calculus of MABA is different from the calculus of MABC in the sense that
the blocking is applied directly on the ambient as a result of which the blocking
can be carried along with an ambient. Hence we can say that the blocking at
ambient level is a self constraint placed on an ambient. Hence, it can prevent

49

P=P (STRUCT REFL)
P=qQ
Q=P (STRUCT SYMM)
P=QR=FR (STRUCT TRANS)

P=R

P=qQ
)P = (vn)Q (STRUCT RES)

P=Q

PIR= QIR (STRUCT PAR)
P=qQ
P =10 (STRUCT REPL)

F= (STRUCT AMB)
n[P]T = n[Q]
Mi 2 ?4.@ (STRUCT ACTION)
P|Q = Q|P STRUCT PAR COMM)
(P|Q)|R = P|(Q|R) STRUCT PAR ASSOC)
'lP=P|'P STRUCT REPL PAR)

S

= (vn)
v)(P|Q) Pl(vn)Q if n ¢ fn(P) STRUCT RES PAR)

(

E
(vn)(vn')P = (vn')(vn)P (STRUCT RES RES)
((
(vn)(n'[P)I)) = n'[(vn)P)I) if n #n' and n ¢ fn(C) (STRUCT RES AMB)

PlO=P (STRUCT ZERO PAR)
(vn)0 =0 (STRUCT ZERO RES)
10=0 (STRUCT ZERO REPL)

Table 4.14: The structural congruence of MABA

20

nfin m. Pl m[Q]€T — m[n[P]N Q]I (inm ¢ C) (RED IN)
m[nfout m. Pl QT — m[Q]I¢n[P)[! (out m ¢ C) (RED OuUT)

open m.Plm[Q]I“) — P|Q (RED OPEN)
P—-qQ

(I/n)P — (yn)Q (RED RES)
P—qQ

n[P]I€1 — n[Q]IC] (RED AMB)

P—Q
PIR — Q|R (RED PAR)
PP=PP—QQ=q (Rep =)

Pl — Q/

Table 4.15: The reduction rules of MABA

some harmful code from being executed within an ambient even if it manages
to enter it. There are also a few security concerns. One of the major security
concerns of MABA is that it cannot prevent the harmful execution of processes
effectively.

Example 4.4.1 Consider the following reduction:
d[a[open b][in b]|b[l-n ClQ][in c]][open m}lc[P][open al *, c[d[a[][i" b]’Q][open m]][in d]

In Example 4.4.1, we can observe that the capability in ¢ was blocked at ambient
level of ambient b but, as ambient b was opened the blocking was dissolved along
with the ambient boundary as a result the capability in ¢ was executed and the
process () within ambient b was able to enter the ambient ¢. This is a major
security concern of the calculus of MABA.

o1

Chapter 5

Digitally Signed Ambients with
Blocking on Capabilities

The calculus of DSA with Blocking on capability(DSABC) was developed by com-
bining the calculi of DSA and Blocking on capabilities. The main motive behind
this was to model the concept of digital signatures and access control on process
migration. The two pre existing models based on similar lines that served as a
motivation were the Sandbox model for Java2 and Umbrella.

5.1 Security Models

The two security models that were analyzed before creation of the calculus of
DSABC were the Sandbox model for Java2 and Umbrella model for Security in
Linux.

Sandbox Model for Java2

The architecture of the sandbox model[3] was further evolved in the Java2
Platform Security Architecture. In this model the local code is subjected to the
same security control as applets from an untrusted source. The difference being
that the policy on the local code is more liberal than the remote code, thus en-
abling such code to run effectively as totally trusted. The same principle applies
to signed applets and any Java application. That is a signed applet is subjected
to some security control based on its source which can be its key. It is shown in

the Figure

The main features of this model are:
1. Fine-grained access control.

2. Easily configurable security policy.

23

Security Policy —»(Remote Code)47 Class Loader

/ \
\

Sandbox2 Sandbox4

Sandbox1 A 4
Sandbox3

JVM

Valuable Resources

Figure 5.1: Java2 Platform Security Model

3. Easily extensible access control structure.

4. Extension of security checks to all Java programs.

Umbrella

Umbrella project was developed with an intention of providing more security
to the Linux platform. It carries out a combination of process based mandatory
access control (MAC) and authentication of files for Linux. In the MAC scheme
restrictions are enforced on individual processes. The Umbrella security server
first authenticates the signature of the file before allowing it to enter the system.
If the signature is valid then it enforces the restrictions that are included along
with the signature of that file. In the MAC scheme restrictions are enforced
on individual processes. If the file cannot be authenticated then it is assigned
a default set of restrictions. This eases the introduction of restrictions on the
system. The working of the Umbrella model[6] is shown in the Figure [5.2}

The two improvement areas provided by Umbrella were:

1. Discretionary access control (DAC) mechanism was supplemented by intro-
ducing the concept of mandatory access control(MAC). In MAC structure
as a tree, the children have at least all the restrictions of its parent. It
avoids the need for manual setting of restrictions for all programs in the
system.

2. Integrity of executables was implemented by introducing vendor-signing of
executable files.

o4

X X Authentication ‘ X
Signed File | Umbrella Security Server

System
Resources

8|l Hodw

A

<

. Execute File i
File System > Running Process

Linux

Figure 5.2: The Umbrella Model

DSA with Blocking on Capability(DSABC)

The calculus of DISA is different from the Sandbox model and Umbrella in
the following ways:

e In the sandbox model for Java2 the system assigns the restriction based
on the source of the code, in Umbrella the restrictions are included along
with the key and if there are no restrictions included or the key cannot be
authenticated then a default set of restrictions are applied on the processes
where as in DSABC a set of minimal blocking are associated with the group
of that ambient which must be respected during its movement.

e In sandbox model for Java2 and Umbrella a default set of blocking is applied
in case the signature cannot be verified but in DSABC the code is not allowed
to enter the system in case the authentication fails. That is signed ambients
can enter other signed ambients only in case they can be authenticated.

5.2 Syntax and Semantics

Table shows the syntax of DSABC. All the definitions have the same meaning
as described in the calculi of DSA and MABC.

Table £.2] defines the set of free names of DSABC.

Table [5.3]| shows the syntactic conventions of DSABC.

95

n
k

s=c¢lk

Cap = {in ,out ,open }
Amb

C C Cap x Amb

names

key

signature

the set of three capabilities

the complete ambient name set
the blocking capability set

P,Q = processes

(vn)P restriction

0 inactivity

P|Q composition

'P replication

n[P]; signed ambient

M.P action

P blocking on capabilities
M = capabilities

inn can enter n

out n can exit n

open n can open n

auth(m, k) can authenticate m with key k

sign(m, k) can sign m with key k

Table 5.1: The syntax of DSABC

fn((vn)P) = f(P)— {n} fn(e))
fn(0) £ 0 fn(k) £ {k}
fn(P|Q) £ fn(P)Ufn(Q) fn(in n) 2 {n}
fn(! P) 2 fn(P) fn(out n) 2 In}
fn(n[Pl,) = f(P)U{n}Ufn(s) fn(open n) £ {n}
fn(M.P) £ fn(M)U fn(P) fn(auth(m, k)) = {m,k}
fn(Pe) £ fn(P)uUfn(0) fn(sign(m,k)) = {m,k}
fn(C) £ fn(M)

Table 5.2: The free names of DSABC

o6

P |Q isread (Pl0)|@
(

(vn)P|Q isread ((vn)P)|Q
M.P|Q isread (M.P)|Q
(vni...nm)P 2 (vny)...(vng,)P
n[Pl £ n[P]

nfls = nf0],

Ot = (e

M £ MO

Table 5.3: The syntactic conventions of DSABC

The structural congruence of DSABC inherits all the rules from the calculus
of MABC. The only difference is in the rule (STRUCT AMB), where signed ambi-
ents are used instead of normal ambients. Table (.4l describes all the structural
congruence rules.

Similarly, we have the form of the evaluation context, €°(|) == () ¢
}(%Cl(l D|P)cr , where C' = C" U C". The Reduction rules of DSABC inherits
seven rules from the calculi of DSA and MABC, Table [5.5/shows all the reduction
rules.

It is important to notice that the rules, (RED IN), (RED OuT), (RED AUTH).
If all of the blocked sets of capabilities are empty, then these three rules are the
same as the reduction rules for in ; out and auth in DSA.

In (RED IN), if in m ¢ C U (', then signed ambient n can enter unsigned
ambient m, ambient n leave block C, block C” will be moved along with n; block
C" has no effect on this movement. (RED IN) expresses only the signed ambient
can enter the unsigned ambient.

In (RED OuT), if out m ¢ C'U C’, then signed ambient n can exit unsigned
ambient m, signed ambient n leaves block C, block C” will be moved along with
n. (RED OUT) expresses only the signed ambient can exit the unsigned ambient.

In (RED AuTH), For the authentication to occur, the authenticating ambient
should be within the same blocking level as the signed ambient to be authenti-
cated. After the authentication, the authenticated ambient becomes an unsigned

ambient and is assigned the same blocking scope as the auth capability.

(RED OPEN), this rules is more strict than the in MABC. It expresses that

57

aeliav
I

O

DO
Il

g

P=qQ
M.P=M.Q

P=qQ

Pie = Qe

PlQ=QlP
(PlQ)IR = Pl(QIR)
P = P|IP
(vn)(vn)P = (vn')(vn)P

(
(n [P])
(

PIQ) = Pln)Q if n ¢ fa(P)
=n((vn)P] ifn#n

((vn)P)¢ if n ¢ ftn(C)

(STRUCT REFL)

(STRUCT SYMM)

(STRUCT TRANS)

(STRUCT RES)

(STRUCT PAR)

(STRUCT REPL)

(STRUCT AMB)

(STRUCT ACTION)

StrucT BC)

(
(STRUCT PAR COMM)
(STRUCT PAR ASSOC)
(STRUCT REPL PAR)
(STrUCT RES RES)
(STRUCT RES PAR)
(STRUCT RES AMB)
(STrucT RES BC)
(STRUCT ZERO PAR)
(STRUCT ZERO RES)
(STRUCT ZERO REPL)

(StrucT BC COoMB)
(STrUCT BC EMPTY)
(STRUCT ZERO BC)

Table 5.4: The structural congruence of DSABC

o8

GOl Tin mP)L [Q)[4 (m[R])
—€°(Q) | € (m(R| 2l (P)L) (nm ¢ CUC)

m[€°(n[€"(out m.P)]. | Q)]
—m[E(Q) [n[€(Pl (out m ¢ C'UC)

open m.P | m[Q] — P | Q
m[Pln[€°(auth(m, k).Q)|R]s — n[€¢“(Q|m[P]) | R];
sign(m, k).P|m[Q]c — P|m|[Q]x

P—qQ
(vn)P — (vn)Q

P—Q
n[Pls — n[Q];
P—Q
PIR— QIR
P—Q
Plic — Qe

PP=PP—QQ=0q
Pl—>Q'

(RED IN)

(RED OuT)
(RED OPEN)
(RED AUTH)

(RED SIGN)

(RED RES)

(RED AMB)

(RED PAR)

(RED BC)

(RED =)

Table 5.5: The reduction rules of DSABC

29

our system only allows open operations to occur at the same blocking level.

5.3 Advantages

The hybrid calculus of DSABC is advantageous as the property of digital signa-
ture prevents the malicious code from being downloaded and run on the client
machine. The property of blocking ensures that the downloaded code is run with
some restrictions which ensure that it does not harm the system. Hence the
combination of the calculi of DSA and MABC we can ensure the properties of
trust provided by digital signature and access control provided by blocking on
capabilities. As a result of which the system can provide selective access control
that is assigning different access rights to different processes depending on the
key which makes the calculus more robust. Codes coming from trusted sources
are also given some restrictions. This model is similar to the Java sandbox model
in Java2 where even the trusted code are given some restrictions but which are
more liberal than the ones laid on untrusted code. In the system that calculus of
DSABC the untrusted code is not allowed to enter the system at all which ensures
a very high level of security. Every code is assigned a different set of restrictions
similar to the sandbox model where the different pieces of code coming from the
various sources are assigned different sandboxes and are executed separately.

Example 5.3.1 Modeling of the Safe System using DSABC:

app:[auth(apps, k3)| P, |app2[Q]k, |apps[out app:.in pub.out pub.in pri| Ry]y, |
appa[S|k, |sys[(auth(app, k1)) o |(auth(apps, ks)) 2er [pri[X][pub[Y]]x,

— appy [apps|out app,.in pub.out pub.in pri| Ry]| Pk, |app2|Qlk, |appa[S]k,|
sys[(auth(appy, k1)) io |(auth(apps, k) 2er |pri[X]|publY s,

— appa[Ql, |sys[(app: [apps[out appy.in pub.out pub.in pri|Ry]| P]) i |
(app4[S]) wr [pri[X][pub[Y]]x,

In this we further evolve the example and model the system using the concept
of blocking on capabilities. The diagrammatic representation of the system is
shown in Figure [5.3

In the first reduction, app3 is authenticated by appl. In the second reduction,
the authenticated applets app; and app, are assigned different capability blocking
corresponding to their source. The source of an ambient is identified using the
key with which it is signed. This resolves the issue of access control on processes.

The following are the security issues which are not covered by the calculus of
DSABC :

60

k1 k2 ks ka ks
appl app2 app3 app4 sys
\4
ks
ks ko ka ks
app3
appl app2 app4 Sys
\ 4
C C
e || o
app3
appl app4
app2 sys

Figure 5.3: Modeling Safe System using DSABC

e The problem of apps using app; as a Trojan horse to enter the system still
persists. A malicious process is still being executed within the system.

e The second problem is regarding key distribution. If ambient app; signs
some processes and releases the public key, how does system know that
app; is the right signatory and not an impostor?

e The third problem is regarding minimal blocking. When an ambient enters
another ambient its minimal blocking policy should be respected. In the
example above when the ambient app; enters into the Safe System, its
minimum blocking policy

To resolve this kind of security issues that may arise, the type system of DSABC
is proposed.

61

Chapter 6
A Type System for DSABC

In this chapter, we will introduce a type system for DSABC which captures three
safety properties: who visit whom, key distribution, and the minimal blocking
policy for ambients. In Section [6.1] the general characteristics of type systems is
introduced; in Section the three safety properties that our type system cares
for are introduced; in Section [6.3], the formal definition of the type system and
the explanation on typing rules are given; in Section [6.4] the semantic soundness
and type safety are given.

6.1 (General Overview of Type Systems

A type system[14] is used to classify values and variables into different types
and describe their way in which they interact and are manipulated. The basic
purpose of a type system is to indicate a set of values that have the same mean-
ing or purpose. Thus it prevents the execution errors from occurring during the
program execution. A program is supposed to run according to some constraints
which are specified in the type system. The compiler of a programming language
is constructed based on its type system which ensures that the program is type
safe.

Type systems can be used to do type checking. Type checking is the process of
verifying and enforcing the constraints predefined on types of values or processes.
There are two kinds of type checking:

1. Static Typing: In this way, type checking is performed at compilation time.
Static type checking is the primary task of the semantic analysis carried
out by a compiler.

2. Dynamic Typing: In this way, type checking is performed during the run-
time of a program. During the runtime, all type information must be col-

63

lected, and all changes on type information must be monitored and ana-
lyzed.

Type systems can provide the following advantages:
1. Safety: The compiler can detect invalid code using a type system.

2. Optimization: More information can be provided to the compiler using
static type checking.

3. Documentation: Type systems which are more expressive can serve as a
level of documentation.

4. Abstraction: It allows the programmers to think at a higher level and not
consider the lower level implementation details.

6.2 The Ideas of Type System for DSABC

DSABC was developed with the aim of modeling the sandbox model in Java2.
Umbrella was also analyzed with the ideas which are related to the sandbox
model in Java2. In Umbrella an executable file is authenticated before being
allowed to enter the system. If the authentication is successful, the file can be
executed as a process, and it is given a set of restrictions predefined according to
where the executable file comes from, which is identified through the authenti-
cation; otherwise a default set of restrictions is applied. The restrictions laid on
the active processes are checked by the Umbrella security server running in the
system, when the processes try to gain access to system resources.

The formulation of the type system for DSABC began with the investigating on
the safety properties in terms of blocking. The calculus of DSABC can prevent a
process to exercise the blocked capabilities to interact with its environment, when
the process is managed within the blocking scope; however, the blocking cannot
avoid the blocked capabilities to be prohibited forever. The blocking scope is
always fixed relative to the ambient enclosing it directly, so that once an ambient
moves out of the blocking scope which encloses the ambient directly, and enter
the scope of the other blocking, some capabilities prohibited by the former block-
ing may be executed, because the latter blocking maybe prohibit less capabilities
than the former. In order to avoid this situation, we introduced minimal block-
ing policy into our type system. Every ambient has its minimal blocking policy,
which is a set of blocked capabilities and must be respected during the tran-
sitions, that means the ambient must be always managed by the blocking more
restricted than its minimal blocking policy during the movements of the ambient.

64

Another important aspect of DSABC is who can wvisit whom. This is a very
important safety property, because we need to ensure who are the trusted visitors
and who are allowed to visit for the specified ambient. There exist following ways
for an ambient to visit another ambient: (1)If an ambient resides within another
ambient, then the former is regarded as the visitor of the later; (2) An ambient
uses in capability to enter another ambient; (3)when an ambient exercises out
capability, it leaves its parent ambient, and enters the ambient which encloses its
parent; (4) an ambient is authenticated by another ambient by exercising auth ca-
pability, the authenticated ambient is the visitor of the authenticating ambient;
(5) or an ambient can visit another ambient through entering an intermediate
ambient which can visit the later. For capturing this safety property, we use the
concept of Ambient Groups[15]. In our type system, every ambient belongs to
one group. We prefer to put the ambients with the same security policy into
the same ambient group, so that we can say ambients of which group can visit
ambients of the specified group. Based on the concept of ambient groups, we
also introduced abstract capabilities such as in A, which means ”enter ambients
of group A”. Our type system takes care of the location of a process. A pro-
cess or an ambient maybe reside within another ambient, but not every ambient
or process resides within a specified ambient, so that we have to introduce the
concept of the universal ambient Q. If we do not specify a location for a process
or an ambient, we say that it resides within the universal ambient @. Accord-
ingly there exist the universal group Uni, which has only one member ambient @.

The third property of our type system for DSABC is Key Distribution which
is captured by introducing the notion of key groups, which is similar to ambient
groups. Every key belongs to one key group, keys of the same key group has the
same key distribution policy, which check the following safety properties:

1. The group of ambients that can be authenticated by the ambients who holds
an auth capability with the corresponding public key.

2. The group of ambients who are allowed to sign an unsigned ambient with
the corresponding private key.

6.3 Typing Rules

Our type system is implicitly parameterized with respect to a set of security
constraints. Security constraints ensure which process migrations are allowed be-
tween the ambients. We have introduced the notion of groups, with the intention
that each ambient(a) belongs to an ambient group(A) and each key(k) belongs to
a key group(K’). Abstract capabilities are extracted from concrete capabilities,

65

which are explained in the definition type(03).
Process Types

Process types describe the behaviors that process may exhibit. We use set
notation for various components on process types. Process type of process P in
terms of components can be defined as follows:

P:u=(B,AT,U)

Where B is a set of abstract capabilities that can be exhibited by process P. A
is a set of ambient groups which are found within the scope of current blocking
level. 7 is a set of abstract auth capabilities that are found within the scope
of current blocking level. U is a set of all ambient groups whose ambients are
contained in P. This set also includes the ambient groups which are contained

in A. Therefore, A C U.
Security Policy and Environments

As [16] described, an ambient is a generalization of barriers, and security has
to do with the ability or inability to cross barriers. Therefore, the security policy
is defined at the ambient level. Suppose ambient a has the security policy s € .S,
where S is the set of security policies. s defines the relationship between ambient
groups, set of capabilities as follows:

su=(P(G)xP(C)xPE) YUu(PG xPG))

Where P(G) is a set of ambient groups, and P(C) is a set of abstract capabilities.
We define two kinds of environments, namely Group Environments, denoted
by I', and Security Policy Environments, denoted by A.

1. T Environment:

r : N—g¢g
F':ia— A
' : k— K

Where N is an infinite set of names ranged over ambients and keys, and
G is a set of ambient groups or key groups. I' is a function from names to
groups. Here, two kinds of ' environments can be possible. One is ambient
group environments and the other is key group environments. I' : a — A
means that ambient a belongs to ambient group A. I' : kK — K means that
key k belongs to key group K. Each ambient a holds a minimal blocking
policy which is described in A environment.

66

2. A Environment:

A:G—S
A: A (VA,I{A,MA)
A K (Ag, S

Where A is a function from ambient groups or key groups to security pol-
icy. Each ambient group or key group must follow the security policy. Here,
two kinds of A environments can be possible. A : A — (Vy4, k4, M4) means
that ambient group A follows the security policy (Va, k4, Ma). Where Vy
is the set of ambient groups who are allowed to visit any ambient of group
A, k4 is the set of abstract capabilities that can be contained by the ambi-
ents of group A, and M, is the set of blocked capabilities, which is known
as a minimal blocking policy that is defined on ambient of group A. The
minimal blocking policy should be respected during the movement of the
ambients, that means the ambients should be managed by blocking not
weaker than the minimal blocking policy. A : K — (A, Sk) means that
key group K follows the security policy (A, Sk), where Ay is the set of am-
bient groups who can be authenticated by any ambient that holds a valid
public key k of key group K, and S is the set of ambient groups who are al-
lowed to sign an ambient or who holds a valid private key & of key group K.

type()

type(3) is a function converting a set of concrete blocked capabilities(3) to a
set of corresponding abstract capabilities as described in the following definition:

Definition 6.3.1 (type(3)) .
0 iff=10
type(8) = | J{tupe(C)} ifB#0
type(in a) = in ffeich(a) =A
type(out a) = out A if I'(a) =
type(open a) = open A if I'(a) = A
type(auth(a, k)) = auth(A, K) if I'(a) = A, T'(k) = K
type(sign(a, k)) = sign(A, K) if I'(a) = A, I'(k) = K

Judgments

We base our type system on three judgments. Judgments usually have the
form A, T' - <, where S is either o or P : (B, A, 7,U). The pair I'; A are referred
to as group environment and security policy environment. The judgments have
the following standard meaning:

67

AFo well-formed environment
ATk, P:(B,A,7T,U) P hastype (B, A,7,U) within b
ATFS P:(B,AT,U) P is well-typed within @

b can also be @. @ is the universal ambient, which may contain any processes
and any ambients. In this report, we follow the convention, that if we specify
an arbitrary process without its location, then it is supposed to reside in the
universal ambient.

Every ambient has its own minimal blocking policy. When one ambient enters
another ambient, the minimal blocking policy of the entering ambient must be
respected during transit. i.e, a migrating process is not supposed to enter an area
with weaker blocking constraints than its minimal blocking policy. An environ-
ment can be considered as well-formed, if it satisfies the following predicate:

ATFo<=VYae Dom(')(T'(a)=A AN A(A) = Va,ka, Ma) A
(Vb € Dom(T')(I'(b) = BAA(B) = (Vp, kg, Mp)
AY(in BE€ kyVout B€ky))) = My C Mg)

Based on the discussion that we have had so far, we can formalize the typing
rules as described in table [6.1]

Explanation
(NIL) : Process 0 is well-typed within a well-formed environment.

(RES) & (REPL) : Restriction and replication that are applied on process P
will not change its type.

(PAR) : The process type of two parallel processes is the union of their re-
spective components from each process.

(IN) : If process P which is enclosed in an ambient b is well-typed, then in a.P
is also well-typed in case that it is within a well-formed environment, if it also
satisfies the following conditions: (1) Since ambient b tries to enter ambient a,
the ambients who can visit ambient b must also be the visitors of ambient a. (2)
Ambient b must be the visitor of ambient a, as ambient b itself performs subjec-
tive move in a. If these constraints are not satisfied, then the process violates the
security policy of "who visit whom”.

(OuT) : According to OUT rule, an ambient a is trying to move out from an
ambient b. Therefore, before exercising out a capability, the ambient b must be

68

ATkFo
AT H,0:(0,0,0,0)

ATH,P:(B,AT,U)
AT H, (vn)P: (B, AT, U)

AT, P:(BATU
AT P: (BAT.U

ATk, P:(B,AT.U) ATk P:B,ATU)

AT H, PIP:(BUB,AUA , TUT UUU)

ATH, P:(B,AT,U)
A THyina.P:(BU{in A}, A, T, U)

F(a) = A A(A) = (VA,HA,MA>
F(b) = B A(B) = (VB,KZB,MB)
Ve CVy BeVy

ATkH,P:(B,AT,U)
AT Fyouta.P: (BU{out A}, A, T,U)

F(a) = A A(A) = (VA,HA,MA>
F(b) =B A(B) = (VB,F&B, MB)
Ve CVy BeVy

Vr € Dom(I') (T'(r)=RAA(R) = (Vg, kg, MR)

/\AEVR — Bely)

AT, P: (B AT,U)
A, T, open a.P: (BU{open A} Uka, A, T,U)

F(a)=A A(A) = (Va,ka, My)
F(b) = B A(B) = (VB,/{B, MB)
Vi C Vg Ac Vs

69

(N1L)

(RES)

(REPL)

(OuT)

(OPEN)

AT, P:(B,ATU
A,F |_b PZﬂ : (B - type(ﬁ)a @,Q),Z/{)

B#0
VAe A (A(A) = (Va,ka, Ma) = My Ctype(3))

Vauth(D,K) € T (A(D) = (Vp,kp, Mp) = Mp C type(3))

AT, P:(B,AT,U)
AT, b[P]: (0, AU{B},0,UU{BY})

VAEA(F(CL) :A/\A(/UI(VA,RA,MA) — MAQMB)
F(b) =B A(B) = (VB,RB,MB) B Q KRB U Q VB
‘v’auth(D,K) = (A(D) = (VD, KD, MD) — Mp = @)

ATH, P:(B,AT,U)
AT, b[P],: (0, AU{BY},0,UU{B})

VA e A(F(CL) = A/\A(A) = (VA,RA,MA) = M, C MB)
I'(t) =B A(B) = (Vg kp, Mp)

(k)= K A(K) = (A, 52)

BCkg BeS, UCVp

Vauth(D, K) € T (A(D) = (Vi kip, Mp) — My = 0)

ATy P (B, AT.U)

AT Fpauth(a, k).P: (BU{auth(A, K)}, A, 7 U {auth(A, K)},U)

F(a) =A A(A) = (VA,I{A,MA)
I'(b) =B A(B) = (Vp, k5, Mp)
Ik)=K A(K)= (A, Sk)
Ac A, V,CVg AecVp

ATH, P:(B,A T, U)
ATy sign(a, k).P: (BU {sign(A, K)}, A, T,U)

F(a) =A A(A) = (VA,/{A,MA)
F(b) =B A(B) = (VB,KZB,MB)
P(k) = K A(K) = (Ax, Sk)
BeS, V4CVg AeVp

70

(BLOCK)

(S1IGN AMB)

(AuTh)

(SIGN)

B C By U ClUsy
VA e A1<A(A) = (VA,I{A,MA) A\ MA ?é @ = Ac ./42)
Vauth(D,K) € 71(A(D) = (VD, HD,MD) AN Mp 7é 0 (SUB)
= auth(D,K)e 7,)
(BlaAlaﬂaul) S (82744277'272/{2)

A,F |_b P (87 ‘AJ T,Z/{) (87 Aa T,Z/{) < (BlaA/JTlvul)

ATy P (B, A, T,U (SUBSUMPTION)
ATFa P: (B, AT,U)
VA € A(A(A) = (Va,ka, Ma) = My =10) (UN1)

Vauth(D, K) € T(A(D) = (Vp,kp, Mp) = Mp =10)
A,Fl—g (B, A, T,U)

Table 6.1: Typing Rules

inside ambient a, and the environment must also satisfy the following conditions:
(1) Since ambient b is inside ambient a, ambients who can visit the ambient b
must also be the visitors of ambient a. (2) And ambient b must be the visitor of
the ambient a. (3) After the out a capability is exercised, ambient b enters some
arbitrary ambient r. Therefore, we have to make sure that ambient b must be
the visitor of ambient 7.

(OPEN) : When a process dissolves the boundary of an ambient, the capa-
bilities that are enclosed by that ambient are unleashed and the process acquires
those capabilities. As a result those capabilities get exercised within the system.
Hence, this eventual action indirectly affects the behavior of the whole system.
Therefore, these capabilities must be reflected in the component B. And the
environment must also satisfy the following conditions: (1) The ambient that is
being opened must be the visitor of an ambient which contains the open capa-
bility, otherwise the open capability can never be exercised. (2) The ambients
who are the visitors of the ambient which is being opened, must be the visitors
of the opening ambient.

(BLOCK) : The crux of our type system is (BLOCK), in which every compo-
nent of the process type has some special feature. Each component of the process
type can be clearly explained with the following process:

P ::= a[0]|auth(m, k).0lin b.in n

The components of process type for above process can be defined as follows:

71

e 3 is the set of abstract capabilities that are exhibited by process P. i.e,
B = {in B,in N,auth(M, K)}.

e A is the set of ambient which are found within the scope of current blocking
level or the set of ambients that are waiting to be blocked by some blocking

ie, A={A}.

e 7T is the set of abstract auth capabilities that are found within the scope
of current blocking level or the set of abstract auth capabilities that are
waiting to be blocked by some blocking. i.e, 7 = {auth(M, K)}.

e U is the set of all ambient groups whose ambients are contained in P. i.e,

Uu=1{A}
When blocking 5 = {in b} is applied on the above process as follows:
(a[0]|auth(m, k).0fin b.in)y, ,
then the type of the resulting process changes as described below:

e [is aset of blocked capabilities that manages process P. Hence, those capa-
bilities are prohibited to get exercised to make interaction between process
P and its environment. Therefore, the resulting B must not include those
set of capabilities. In the example, the resulting B = {in N,auth(M, K)}.

e The condition, M4 C type(/3) ensures that the minimal blocking policy of
ambients in A must be respected within the scope of 4. If this condition
is satisfied, then the component A becomes empty set after the process is
enclosed by (.

e Similarly, Mp C type(3) ensures that the minimal blocking policy of ambi-
ents that are being authenticated, must also be respected within the scope
of 5. When this condition is satisfied, then the component 7 becomes
empty set after the process is enclosed by f.

e Component U collects all ambients that are contained in process P. There-
fore U remains the same.

(AMB) : In AMB rule, to ensure the environment to be well-formed when
process P is enclosed in an ambient b, process P must follow the security policy
of b. The environment must also satisfies the following conditions: (1) According
to My C Mp, the minimal blocking policy of all the ambients that are present
within the blocking scope of process P are respected when they are being migrated
to ambient b, that means the parent ambient should have more stronger minimal
blocking policy than its subambients if they are within the same blocking scope.
(2)According to U C Vp, the set of ambients U contained in P must be the

72

visitors of ambient b, since they are subambients of ambient b. (3) According to
B C kg, the set of capabilities that are exhibited by P can be held by ambient
b. (4)According to Mp = (), when a process enclosed in an ambient has auth
capabilities which are not managed by any blocking within the ambient, then
the ambients which are to be authenticated by these auth capabilities have no
requirement with respect to blocking. Consider the following example:

P ::=m[T]x|a[b|Q]|auth(m, k).R|c[in b.5]]

Here we think process P is b[@]|auth(m, k).R|c[in b.S], which is enclosed by am-
bient a, and we will check this with our typing rules. When ambient m is au-
thenticated, it is placed in parallel to process R. Since there is no blocking that
manages the auth capability, and if the minimal blocking policy of ambient m is
not empty, it may enter an area without blocking. Therefore, to avoid such type
of security inconsistency, the minimal blocking policy of m must be empty.

The components of process type can be changed as follows:

e The reason for the B = () is that when process P is enclosed in an ambient,
the behavior of the ambient becomes nothing with respect to the capabilities
that are exhibited by process P. An ambient can be regarded as process 0.

e As a new ambient a is checked, it should be collected in A.

e When process P is enclosed in an ambient, the behavior of the ambient
becomes nothing with respect to the auth capabilities that are exhibited
by process P, since the authenticated ambients have no requirements with
respect to blocking.

e Ambient ¢ must be added to the set U, since it is checked here.

(S1GN AMB): In addition to the conditions that are specified in AMB rule,
SING AMB rule must also follow the following one condition: Ambient b can sign
its own contents. Therefore, it must belong to the group of ambients who are
allowed to sign an ambient with the corresponding key k.

(AUTH) : In this typing rule, we try to check the ambients who can be au-
thenticated by an ambient that holds a valid public key k. A process auth(a, k).P
is well-formed if it satisfies the following conditions: (1) Since ambient a gets au-
thenticated by auth(a, k), it must belong to the set of ambients who are allowed
to be authenticated with key k. (2) Since this objective move reflects ambient
a to enter ambient b, the ambients who can visit ambient a must also be the
visitors of the ambient b. (3) And ambient a must be the visitor of ambient b.

73

(S1GN) : In this typing rule, we try to check the ambients who are allowed
to sign an ambient. A process sign(a, k).P is well-formed if it satisfies the follow-
ing conditions: (1) Since ambient b is the one who is going to sign the ambient
a, the ambient b must hold a valid private key. If it holds a valid private key,
it can belong to the set of ambients who are allowed to sign an ambient with key k.

(SuB) : As mentioned in[14], Subtyping captures the intuitive notion of inclu-
sion between types. An element of a type can be considered also as an element of
any of its super types. Therefore, if the type of a process is a subtype of another
process, it follows the following conditions: (1) All behaviors exhibited by the
former are also exhibited by the later as in By C Bs. (2) All ambients that are
present in the set U, are also part of the set Us. (3) The ambients which have no
requirement on blocking can not distinguish the behavioral properties of process
in terms of blocking.

(UNI) : A process can be well-typed within the universal ambient(@) through
type checking, if it can guarantee the safety properties that are mentioned in
Section [6.2) and the process satisfies the following two conditions: (1) VA €
A(A(A) = (Va, ka, My) = My =10, (2)Vauth(D,K) € T(A(D) = (Vp,kp, Mp) =
Mp = (. These two conditions ensure that there are no safety critical informa-
tion or subprocesses to be exposed to the universal ambient, then the process is
safe(marked by (®) in an open public environment.

The security issues discussed in Example 7?7 of Chapter |5| are resolved by the
type systems as follows:

e The issue of apps using app; as a Trojan horse to enter the system still
persists. A malicious process is still being executed within the system.
Solution: For this to be type safe, according to the auth rule V4, C Vg,
from the reductions it is evident that for this to be possible Vipps € Vipp
and V,,1 € Vsys hence we can ensure that if the applet app3 entered into
the system using a carrier, the system is still safe.

e The second issue was regarding key distribution. If ambient app; signs some

processes and releases the public key, how does system know that app; is
the right signatory and not an impostor?
Solution: Using the (SIGN) rule, the condition A € Ay ensure that only
valid signatories are allowed to sign. In addition to that the sideline con-
dition A € Vg that ensures that the ambient that will be signed will be in
its visitors list Vg

e The third issue was regarding minimal blocking. When an ambient enters

74

another ambient its minimal blocking policy should be respected. In the
example above when the ambient app; enters into the Safe System, its min-
imum blocking policy.

Solution: It is achieved in the (BLOCK),(AMB) and (SIGN AMB) rules.
When ever we come across an auth capability it is stored in the 7 compo-
nent, the ambients names are collected in the A component and the block
rules is used when ever we come across any blocking. This ensures that
minimum blocking is respected.

6.4 Type Safety

In this section, we show our type system is semantically sound. The semantic
soundness is formulated as subject reduction. Subject reduction is a property
stating that a well typed process always reduce to a well typed process, thus it
can guarantee that a well typed process cannot generate ”type errors” during its
reductions, and it behaves according to the safety properties. In Section [6.2] it
is pointed that the three safety properties are captured by our type system.

The soundness of our type system is expressed by the following theorem:

Theorem 1 (Subject Reduction) If AT+, P : (B, A,7T,U) and P — Q,
then AT, Q : (B, A, T,U).

Proor: By induction on the derivation of P — (). The basic idea is: For one
kind of reduction as P — @, suppose A, I' . P: (B, A, 7,U), then calculate the
process type of every term in process P according to typing rules. () is reduced
from P, hence the process () is composed of the terms in process P. Based on the
process types of those terms which have already been known, we can calculate
the process type of () according to typing rules.

In order to give proof for (RED =), Proposition [1|is given.

And in order to overcome the difficulties brought by multi-level blocking, the
six propositions [2|[3][4][b][6][7] are given.

All the proofs are found in Appendix [A] and Appendix
O

Proposition 1 (Subject Congruence) (1) If AT +, P : (B, A,7,U) and
P=Q, then AT, Q: (B, A T,U).

(2) If AT F, P (B, AT, U) and Q = P, then A,T - Q : (B, A, T, U).

5

We use the following function to catch the most interior blocking in an eval-
uation context:

Definition 6.4.1 (The Inner Most Blocking)

Inner MostBlk(€€() =

(() if C =1
type(C) ifC#0 and €°() = ()
type(C') if C # 0 and C' =0 and

G = (E7(DIP) 1 (C=C"UC)
InnerMostBlk(€° () if C # 0 and C' #0 and
TN = (EC(DIP) 1 (C=C"UC)

Proposition [2] is used to calculate the process type when an in capability is
consumed within one evaluation context.

Proposition 2 If AT+, €9(ina.P|) : (B, A, T,U) , then A,T =, €°(P) :
(B', A, T,U) , where I'(a) = A, B =B"U{in A} when ina ¢ C, B = B' when
ina € C.

Proposition |3| is used to calculate the process type when an out capability is
consumed within one evaluation context.

Proposition 3 If A,T +, €°(out a.P)) : (B, A, T,U) , then A, T =, €°(P) :
(B', A, T,U) where I'(a) = A, B =B U {out A} when out a ¢ C, B =B when
outa € C.

Proposition 4] is used to calculate the process type when an ambient leaves
out from an evaluation context.

Proposition 4 If AT +, €°(a[P],|Q) : (B, A, T,U) and A, T F, a[P], :
0, A,0,U"), then AT H €°(Q) : (B,A",T,U") when C = 0, AT ky
€°(Q) : (B, A,T,U") when C # 0, where A = A UA", andUd = U UU".

Proposition [5] is used to calculate the process type when an ambient enters
into another ambient which resides in an evaluation context.

Proposition 5 If A, T F, €°(b[R]) : (B, A, T,U), AT FyalQ],: (0, A4,0,U"),
U C Vg and My C Mp, then AT F, €°(b[R|a[Q]s]) : (B,AUA, T ,UJU")
when C = 0, A,T +, €°(b[R|a[Q)s]) : (B, A, T, UUU") when C # O, where
[(a) = A, A(A) = (Va, ka4, Ma), T'(b) = B, A(B) = (Vp, kp, Mp).

76

Proposition [0 is used to calculate the process type when an auth capability is
consumed within an evaluation context.

Proposition 6 IfAT I, € (auth(a,k).P)) : (B, A, T,U), then A,T -, €°(P) :
(B, AT U) when C = 0, AT +, €| P) : (B, AT, U) when C # 0,
where I'(a) = A, A(A) = (Va,ka,Ma), T'(k) = K, B = B' U {auth(A, K)},
T =T'U{auth(A,K)}.

Proposition 7] is used to calculate the process type when an ambient enters
into a blocking scope by being authenticated.

Proposition 7 If AT +, €°(Q) : (B, A, T,U), A, Tk alP)s : (0, A,0,U')
and My C InnerMostBIk(€C(), then A, T =, €°(Qla[P),) : (B, A, T, UU")
when C' # 0, AT F, €°(QlalP)s) : (B, AU A", T, UUU') when C = (), where
I'(a) = A and A(A) = (Va, ka, Ma).

The contribution of our type system is that, it can detect and prohibit the
error transition defined in Definition [6.4.2]

Definition 6.4.2 (Error Transition) —.,.., denotes error transition. Suppose
there exists predefined environments I' and A, which satisfy I'; A+ <. The error
transitions are defined in terms of I' and A as follows:

e (ERROR IN):

¢ b[¢ (ina.P))s | Q)€ (alR]) —er
c(Q) T (alR[b[€ (| P)L]) (inag¢CUC

when in A ¢ kg, or Vg L Va, or B ¢ V4, or B ¢ Sy if s = k, or
M, € InnerMostBIk(€C(), or My € InnerMostBIk(€C"(|), where
F(CL) = A; A<A> = (VA7"1A7MA>7 F = B: A(‘B) = (VB,I{B,MB), F(k) =
K, and A(K) = (A]k,S]k).

e (ERROR OUT):

al€C(b[6 (| out a.P)]s | Q)] —err al€C(Q)] | [E (| P)]s (outa ¢
cuc)

when out A & kg, or Vg € Va, or B & Va, or Mg € InnerMostBIk(€ (),
or B ¢ Sy if s =k, where I'(a) = A, A(A) = (Va,ka, My), I'(b) = B,
A(B) = (VB;/{/BaMB); F(k) = K’ and A(K) = (Akys]k)-

e (ERROR OPEN):

b (opena.P | al@QI)s | —err D[E(P | Q)]s

7

when open A & kg, or kg L kg, or Va L Vg, or A & Vg, or My €
InnerMostBlk(€C(|), or B ¢ Sy if s = k, where T'(a) = A, A(A) =
(Va,ka, Ma), T'(b) = B, A(B) = (Vg,kp, Mp), I'(k) = K, and A(K) =
(Ak, S]k).

e (ERROR AUTH):
a[P[b[¢(auth(a, k).Q)|R]s —err D[(Qla[P]) | Rl

when auth(A, K) ¢ kg, or Ma & InnerMostBIk(€¢(|), or A ¢ Sy, or
B ¢ Ay, or B ¢ S| if s = k', where I'(a) = A, A(A) = (Va,ka, My),
D(5) = B, A(B) = (Vi g, Mp), T(k) = K, A(K) = (Ae, S2), T(K) = K
and A(K") = (A, Sp).

e (ERROR SIGN):
blsign(a, k).Pla|Q]c]s —err b[Pla[Q]r]s
when B ¢ Sy, or Va € Vg, or A ¢ Vg, or B ¢ S if s = k', where I'(a) =
A, A(A) = (Va,ka,Ma), T'(b) = B, A(B) = (Vp,kp, M), I'(k) = K,
A(K) = (Ag, Sk), (k') = K', and A(K") = (A}, St).

¢ (ERROR RES):

P —>e7‘7" Q
(vn)P — e (vn)Q

e (ERROR AMB):

P —err Q
a[P]s —err a[Q]s

e (ERROR PAR):

P —>€T‘7' Q
P’R —>67”7" Q’R

e (ErRrROR BC):

78

P —err Q
PZC —err QZC

e (ERROR =):

P=P P —,Q Q=Q
P —>€T‘T‘ Q

(ERROR IN) (ERROR OuT) (ERROR OPEN) (ERROR AUTH) (ERROR SIGN)
define the basic transitions which violate the security policy with respect to our
type system; (ERROR RES) (ERROR AMB) (ERROR PAR) (ERROR BC) are
defined based on the basic error transitions, that means if an internal event of a
process is an error transition, then the reduction of the whole process caused by
the internal transition is also an error transition; (ERROR =) shows if a process
has error transitions, its semantic equivalent processes also have the same error
transitions.

A safe process should have no error transition in a predefined well formed
environment. Therefore, in order to make judgments if a process is safe, we can
define one predicate safe(I'; A, P) as following:

Definition 6.4.3 (Safety) Given the environments I';, A and process P, we say
that safe(T'; A, P) if T A F o and P —#¢. in the environments T' and A, where
P ... denotes there exists no error transition from P.

If a process is well typed in the universal ambient, it is supposed to satisfy

the safety defined in Definition [6.4.3] This can be expressed by the following
theorem:

Theorem 2 (Type Safety) If A, T I—g P: (B, A T,U), then safe(I', A, P).

PROOF: By inductions on the derivations of A, T'Faq P : (B, A, 7,U). O

79

Chapter 7

Conclusion

An extension of Mobile Ambients with digital signature and blocking is intro-
duced in this report. We introduced the concept of digital signatures and access
control in the form of blocking into Mobile Ambients for the first time. Section[7.]]
describes the main objectives that this project accomplishes, and in Section
we describe a few of the possible continuations of this project.

7.1 Achievements

Based on the application of digital signature and the sandbox model in Java, we
have developed the calculus of DISA , which describes a traditional view of the
Internet: a piece of code is signed in the sender site, and the code is authenticated
by the receiver site, if the authentication is successful, the code can be activated
as a process running within the receiver site. We introduce code as a new nota-
tion to express this. code is one kind of static structure, processes within code
are passive and digitally signed to prevent any tampering. An ambient uses the
sign capability to enter a code in order to sign itself, and the auth capability to
authenticate an incoming code and activate it in the case of a successful authen-
tication.

Inspired from mobile agents, we think over a mechanism for autonomous mi-
grating program to protect itself to be tampered. Ambients can be used to model
this kind of programs. Ambients are allowed to sign itself in the calculus of DSA.
In DSA, the concept of digitally signed ambients is introduced. A digitally signed
ambient can recalculate its own digital signature as it is moving, but prohibits the
other ambients without its private key to change its contents and digital signature.

Inspired from Java sandbox model and Umbrella, we introduced the concept

of blocking into mobile ambients to model restrictions on processes. We develop
three kinds of calculi of mobile ambients with blocking: MABN introduces block-

81

ing on names into mobile ambients, which is a mechanism to divide a process into
different name spaces, and prohibit actions with respect to the blocked names
through name hiding; MABC introduces blocking on capabilities into mobile am-
bients, which models process based mandatory access control; MABA introduces
blocking at ambient level into Mobile Ambients, which combines ambient bound-
ary with blocking together, in which blocking is applied along with the boundary
of ambients.

For the motivation of modeling Umbrella in which the foreign code gets the
corresponding blocking according to where it comes from(identified by its public
key), and for the motivation of proposing new solutions of mobile code, we com-
bine DSA and MABC together, and form the calculus of DSABC, which models
a predefined blocking assigned to an incoming code according to the key used to
calculate its digital signature.

Based on DSABC, we developed a type system which captures the three safety
properties to guarantee there is no error transition violating the security policy
predefined: who visit whom, the minimal blocking policy and key distribution.

7.2 Future Work

There are various directions for the future work of this project. One of the pos-
sible directions is to introduce communication primitives into our calculi with
blocking. This would enrich the semantics of blocking when we propose the
blocking on communication in mobile ambients.

To capture the property of hierarchical blocking at all levels that is at any
given level of an ambient for it to be well typed the child should have more re-
strictions than its parent.

Another possible direction is to investigate the critical problems of security
in the applications of mobile computing and mobile computation. To figure out
ways to use our calculi of blocking to solve those problems and improve the se-
curity of the applications, at the same time improve our calculi.

Finally, based on the improvements on the calculi, we can develop a type
checker and a series of tools.

82

Appendix A

Subject Congruence

Proposition 1 (Subject Congruence) (1) If AT+, P : (B, A, 7,U) and
P=Q, then AT, Q: (B, A T,U).

(2) If AT, P: (B, A, T,U) and Q = P, then A,T -, Q : (B, A, T,U).
ProOOF: By mutual induction on the derivations of P = @ and (Q = P.
(1) AT, P: (B, AT,U) and P=Q, then A, T F, Q: (B, A T,U).

(STRUCT REFL) Trival.

(STrRUCT SYMM) If P = @, then Q = P. According to hypothesis (2),
ATH,Q: (B AT U).

(STRUCT TRANS) For P = @, there exists R to make P = R, and R = Q.
We have A", P : (B, A,7,U), according to hypothesis (1), we can
get A,T'FH, R: (B, A, T,U). According to the same hypothesis, we can
get AT H,Q: (B, AT, U).

(STRUCT RES) P = (vn)P’, Q@ = (vn)Q', and P’ = @’'. Using (RES), we
have
AT, P (B, AT, U)

AT, (vn)P': (B, A, T,U)

from (A.1)), according to hypothesis (1), we have A, T+, Q' : (B, A, T,U).
Using (RES), we have

(A.1)

ATHQ : (B, AT, U)
AT, (vn)Q': (B, A, T,U)

(A.2)

83

(STRUCT PAR) P = P'|R, Q = Q'|R, P' = Q. Using (PAR)

ATk P (B, AT U) ATH,R: (B AT U"
ATk, P|R: (BUB, AUA T UT" U UU")

From ([A.3)),according to hypothesis (1), we have A, T' +, Q' : (B, A", 7", U").
Using (PAR)

AT, Q: (BAT U) ATk R: (B, AT U

(A.3)

A4
ATHQR: (BUB'AUA"T'UT" U JU") (A.-4)
(STrUCT REPL) P =!P'.Q =!Q',P' = Q. Using (REPL)
AT, P T
) b (B7 A7 71/{) (AE))

AT P (BAT,U

From (|A.5]), according to hypothesis (1), we have A, T' F, Q' : (B, A, 7,U).
Using (REPL)
ATHQ :(B,AT,U)
ATHIQ (B, AT, U)

(A.6)

(STRUCT AMB) P =n[P'];, Q =n|[Q']s, P’ = @'. Using (AMB) or (SIGN AMB)
AT, P (B, AT U

AT by n[Ps: (0,A,0,U)

Where F(b) =B A(B) = (VB,KB,MB>, B C kg, U C Vg, VA €

A(F(a) =A A(A) = (VA,HA7MA) — My C]\43)7 Vauth(D,K) €
T (AD) = (Vp,kp,Mp) = Mp=10), A= AU{N}, U =U'U{N}

(A7)

From (|A.7)), according to hypothesis (1), we have A, T' -, Q" : (B', A", 7", U').
Using (AMB)
A,F = Q/ . (B/,A,,T/,Z/{,
A7F I_b n[Q/]s : (@,A,@,U
Where F(b) = B A(B) = (VB7’€BuMB>, B C KB, U C VB, VA €

A(F((l) =A A(A) = (VA,HA,MA) — MA Q]\43)7 Vauth(D,K) €
T (A(D) = (VD,I{D,MD) = Mp = @), A= A’U{N},U = Z/[/U{N}

; (A8)

(STRUCT ACTION) P=M.P', Q=M.Q)’, P =Q'.
If M =ina: Using (IN),
ATH, P (B, AT, U)
AT kHyina. P :(B,AT,U)

(A.9)

84

WhereI'(a) = A, A(A) = (Va, ka, Ma), I'(b) = B, A(B) = (Vg, kg, Mp),
Ve C Vy, BEVA,B:B/U{inA}

From , according to hypothesis (1), we have A, T' F, Q' : (B, A, T,U).
Using (IN)
ATHQ :(B,AT,U)
AT Hyina.Q : (B, AT,U)
WhereI'(a) = A, A(A) = (Va, ka, Ma), T'(b) = B, A(B) = (Vg, kg, Mp),
VBQVA,BEVA,B:B'U{inA}

(A.10)

If M = out a: Using (OuT),

ATH,P (B, ATU)
AT Hkyouta.P : (B, AT,U)

(A.11)

WhereI'(a) = A, A(A) = (Va, ka, Ma), I'(b) = B, A(B) = (Vg, kg, Mp),
Ve CVa, B Vy,Vr € Dom(I)(T'(r) = RAA(R) = (Vg, kg, MR)NA €
Ve = B GVR), B:B/U{OUtA}

From (|A.11]), according to hypothesis (1), we have A, T' F, Q' : (B, A, T ,U).
Using (OuT)
A7 r l_b Q, : (B,7A7 772/{)
AT, outa.Q : (B, AT,U)

Where I'(a) = A, A(A) = (Va,ka, M), I'(b) = B, A(B) = (Vg, kg, Mp),
Ve CVa, BeVy,Vr € Dom(D)(I'(r) = RAA(R) = (Vgr, kg, MR)NA €
Ve = B EVR>, B:B,U{OUtA}

(A.12)

If M = open a: Using (OPEN),

ATH, P (B, AT, U)
AT, opena.P : (B, A T,U)

(A.13)

Where I'(a) = A, A(A) = (Va,ka, Ma), I'(b) = B, A(B) = (Vg, kg, Mp),
VaC Vg, Ac Vg, B=DB U{open A} Uky

From ([A.13)), according to hypothesis (1), we have AT+, Q" : (B, A, T,U).
Using (OPEN)
ATHQ (B, AT, U)
AT+, open a.Q' : (B, A, T,U)
Where I'(a) = A, A(A) = (Va,ka, M), I'(b) = B, A(B) = (Vg, kg, Mp),
VaC Vg, Ac Vg, B=B U{open A} Uky

(A.14)

85

If M = auth(a, k): Using (AUTH)

AT H, P (B, AT,U)
AT by auth(a, k).P': (B, A, T,U)

(A.15)

Where I'(a) = A, A(A) = (Va,ka, Ma), I'(b) = B, A(B) = (Vg, kg, Mp),
F(k’) = K, A(K) = (Ak,Sk), A€ A, Vy C Vg, A e Vg, B =
B’ U{auth(A, K)}, T =7"U{auth(A, K)}

From (|A.15)), according to hypothesis (1), we have A, I' -, Q' : (B, A, T, U).
Using (AUTH)

ATHQ (B, AT U)
A, T by auth(a, k).Q" : (B, A, T,U)

(A.16)

Where T(a) = A, A(A) = (Via, k4, Ma), T(b) = B, A(B) = (Vig, ks, M),
F(k‘) = K, A(K) = (Ak,S]k), A€ A, Vy C Vg, A e Vg, B =
B'U {auth(A, K)}, T = T' U {auth(A, K)}

If M = sign(a,k): Using (SIGN)

AT H, P (B, ATU)
ATy sign(a, k).P: (B, A, T,U)

(A.17)

Where F() =A, A(A) = (Va, k4, Ma),I'(b) = B, A(B) = (Vg, kg, Mp),
F(l{]) A() (Ak,Sk), B e S, Vy C Vg, Ae Vg B =
B’ U {sign(,K)}

From (A.17), according to hypothesis (1), we have AT+, Q" : (B', A, T,U).
Using (SIGN)
ATHQ :(B,AT,U)
AT by signak.QQ' - (B, A, T,U)
Where F() =A, A(A) = (Va, k4, Ma),I'(b) = B, A(B) = (Vg, kg, Mp),
F(k) A() (Ak,S[k), B e S, Vy C Vg, Ae Vg, B =
B’ U {sign(,K)}

(A.18)

(STRUCT BC) P=Plc,Q=QW«, P=Q', AT H, P: (B, A T,U), Using
(BLOCK)
ATk, P (B AT U
A,F"b P’Zc : (B ./4 T I/{)
Where VA € A(A(A) = (Va, ka, Ma) = Ma C type(C)), Vauth(D, K) €
T(A(D) = (Vp,kp, Mp) == Mp C type(C)), B = B' — type(C),

(A.19)

86

A=0,T=0

From (|A.19)), according to hypothesis (1), we have A, ' -, Q' : (B, A, T ,U).

Using (BLOCK)
ATHQ (B AT U)
A, r I_b QIZC : (B, A, T,U)
Where VA € A(A(A) = (Va,ka, M) = My C type(C)), Yauth(D, K) €
Z(A(@DI)T: ((Z)VD,K;D,MD) — Mp C type(C)), B = B' — type(C),

(A.20)

(STRUCT PAR CoMM) P = P'|Q',Q = Q'|P'. Using (PAR),

A7F l_b Pl . (817“4177371/{1) A,F }_b Q, : (BQ,AQ,?VQ,Z/{Q)

A.21
AT, PQ (B, AT, U) ()
WhereB:BluBg, A:A1UA2, T:,]-IU,]-Q, Z/I:Z/ﬁ UZ/{Q
From (A.21]), using (PAR), we have
A7F}_b Q/: (BQaA%IZ’?auQ) A7F|_b P/: (817-/4177’172/[1) (A 22)

A,F }_b PI|Q/ . (BQ U Bl,AQ U ./41,7; U 71,[/[2 Uul)
Where BQUBl :B, AQUAl :A, %Uz :T, UQUUQ =U
(STRUCT PAR Assoc) P = (P'|Q)|R,Q = P'|(Q'|R').Using (PAR), we
have the following:

A,F I_b P/|Q/ : (817“417717”1) A7F I_b R/ : (827A277§au2)
AT, (PR : (B, AT, U)

(A.23)

Wher66281UBQ,A:A1UA2,TZZU%,L[:UlUUQ

Aa r I_b P/ : (B/laA/bT/l)ull) Aa I I_b Q/ : (Bl/bA//laT”l)u”l)
A,F l_b P/|Q/ : (Bl,Al,Z,Ul)

(A.24)
Where Bl = B/l U B//l, Al - A/1 U A//l, ,]1 = T/l U T”l, Z/{l = Z/{/l UL{’/l

From ({A.23)) and (A.24), using (PAR), we have the following:

A? P l_b Q/ : (B”h AHI) T”17u”1) A7 F |_b R/ : <B27 AQ?EJUZ)
A, F I_b Q/|R/ . (BQ U B,/l,AQ U A/,1, 75 U T”l,Z/{Q UZ/I”l)

(A.25)

87

AT P (B,bAllaT,l;ull)
A, F I_b Q/’R/ . (BQ U B”l,AQ U ./4”1, 75 U T”l,Z/{Q UZ/I”l)
AT, PI(Q|R): (BLUB UB" L, A U A UA T UL UT U Ul UUY)
(A.26)
Where Bll U BQ U Bﬂl = B, All U ./42 U Alll = A, Tll U 7-2 U Tﬂl = T,
U, o UU" =B

(STrucT REPL PAR) P =!P',QQ = P'|! P'. Using (REPL), we have

ATty P (B, AT, U)

AT P (B ATU) (4.27)
From ({A.27)), using (PAR), we have
AT, P (B AT U ATHIP (B ATU) (A.28)

ATF, P'P: (B, AT, U)

(STRUCT RES RES) P = (vn)(vn/)P’, Q = (vn/)(vn)P’. Using (RES), we
have the following:

AT, (v)P (B, A, T,U)

ATk (vn)(vn/) P (B, A, T, U) e
ST e o
From (A.30)), Using (RES), we have:
ATk, P (B AT, U) (A.31)
AT+, (vn)P' - (B, A, T,U)
AT by (vn)P' 2 (B, AT, U) (A.32)

AT Fy (vn!)(vn)P' 2 (B, A, T,U)

(STrRUCT RES PAR) P = (vn)(P'|Q'), Q@ = P'|(vn)Q',n ¢ m(P’). Using
(REs) and (PAR), we have the following:

AT F, PQ (B, AT, U)

AT H, (vn)P'|Q : (B, A, T,U) (A.33)

88

A7F l_b Pl : (BlvAlaﬂvul) Av]-—‘ l_b Q/ : (82744277'272/[2)

A.34
AT H, PQ : (B, A T,U) ()
WhereB:BlLJBg, A:A1UA2, TZIJEU%, U:Lﬁ UZ/{Q
From ({A.34)), using (RES),we have
A7F l_b Ql : (827“4277'272/{2) (A 35)
A,F I_b (VR)Q/ : (BQ,AQ,’]VQ,Z/{Q) '
From (A.34), (A.35]), Using (PAR), we have
A,F l_b Pl : (Bl,Al,Z,Ul) A7F l_b (Vn)Q/ : ([527-/4277'27[/{2) (A 36)

AT, Pl(vn)Q : (B, A, T,U)

(STrUCT RES AMB) P = (vn)n/[P'], @ = n'[(vn)P'], n # n’. Using (RES),

we have

AT, n'[P]: (B, AT, U)
AT Hy (vn)n'[P]: (B, A, T,U)
Using (AMB), we have

(A.37)

AT F, P (B, AT U

)
A.
AT, [P (BAT.U) (A.38)
Where F(b) B A(B) (VB,HB,MB) B Q KRB, U Q VB, VA €
A(F() A A(A) = (VA,KA,MA) — M,y C MB), Vauth(D,K) €
T (A() = (VD, KD, MD) — MD @ A= AU {N’}, U =
UU{NY,B=0,T=0
From (A.38]), using (RES), we have
AT H,P: (B, AT U)
A.39
AT, (vn)P (B AT U ()
From ({A.39) and (A.38)), using (AMB), we have
AT, (vn)P (B, A, T, U (A.40)

ATy n/[(vn)P']: (0,A,0,U)

Where F(b) B A(B) = (VB,I{B,MB), B C kg, U C Vg, VA €
.A(() A A() = (VA,HA7MA) — M,y C]\43)7 Vauth(D,K) €
T (A() (V HD,MD) = Mp = @), A= AU {N/}, U =
U U N}

89

(StrucT RES BC) P = (vn)(P¢), Q@ = ((vn)P')Nic, n ¢ fn(C), Using
(RES), we have

A,F |_b P’ZC : (B,A,T,I/{)

A41
AT ()Pl (B.ATH) A
From ({A.41)), and using (BLOCK), we have:
ATk, P (B, AT
o P (B, ALTLU) (A.42)

AT H, P (B, A, ’]' U)
Where VA € A(A(A) = (VA,FLA,MA> = M, C type ()) Vauth(D,K) S
T(A(D) = (Vp,kp, Mp) = Mp C type(C)), B = B' — type(C),
A=0,7=0
From (A.42), using (RES), we have:

ATH, P (B AT U)

ATk, (vn)P (B, A, T U (A43)
From ({A.43]), using (BLOCK), we have:
ATk, (vn)P - (B, A, T U) (A1)

AT F, (vn)Pe : (BY, A7, T U")

Where VA € A(A(A) = (Va,ka, M) = My C type(C)), Yauth(D, K) €
T(A(D) = (Vp,kp, Mp) = Mp C type(C)), B" = B — type(C),
AN:®7 7/12@7 Z/{N:Z/{/

(STRUCT ZERO PAR) P = P'|0,P = P’. Using (PAR) and (NIL), we have
ATH, P (B AT U ATHO0:(0,0,0,0)

AT, P[0 (B, A T,U) (A.45)
Hence, we get A, '+, P': (B, A, T,U).
(STRUCT ZERO RES) P = (vn)0, @ = 0. Using (RES),we have
AT H,0:(0,0,0,0)
AT, ()0 : (0.0.0.0) 40
From ((A.46)), we have A, T, 0: (0,0,0,0).
(STRUCT ZERO REPL) P =!0, @ = 0.Using (REPL), we have
A I I_b (®7®7®7®)
AT F0:(0.0.0.0) (A47)

From (A.47)), we have A, T, 0: (0,0,0,0).

90

(STRUCT PAR BC) P = P10 |Qc, @ = (P'|Q)¢, Using (PAR), we have:

A,F |_b Plzc : (817/4177170{1) A,F }_b QIZC : (827“42;7;71/{2)

A .48
A,P}_b Pl Zc|QIZCI (B,A,T,U) ()
WhereB:BluBg, A:A1UA2, T:'TlU'TQ, L{:Lﬁ ng
From (A.48]), using (BLOCK), we have:
AT H, P: (B LT U
5 b (BhAl? 17u1) (A49)

A,F l_b PQC : (BlaAlaﬂvul)

Where VA € A(A(A) = (Va,ka, Ma) = My C type(C)), Yauth(D, K) €
T(A(D) = (Vp,kp,Mp) = Mp C type(C)), By = B’y — type(C),
A1:®77E:®7u1:u/1

A7 r l_b Q, : (8,27“4,277,272/{/2)
A? r |_b QIZC : (BQa A277-25Z/{2)
Where VA € A(A(A) = (Va, ka4, Ma) = My C type(C)), Yauth(D, K) €

T(A(D) = (Vp,kp, Mp) = Mp C type(C)), By = B'y — type(C),
Ay =0, T =0,Us =U",

(A.50)

From ({A.49)), (A.50), Using (PAR), we have:

A,F l_b Pl : (Bll,All,Tll,ull) A,F l_b Q/ . (8/2,A/2’T/2,u12>
A7F l_b PI’Q/ : (Bg,Ag,%,Z/{g)

(A.51)
Where Bg = Bll U Blg, ./43 == All U A,Q, 75, = Tll U 7,2, Z/{3 = Z/l’1 UZ/{/Q
From (A.51]), Using (BLOCK), we have:

ATy PQ": (Bs, Az, T3,Us)
A,F l_b (PI‘Q/)RC . (84,./44,721,]/{4)

(A.52)

Where VA € A(A(A) = (Va, ka, Ma) = My C type(C)), Vauth(D, K) €
T(A(D) = (Vp,kp,Mp) = Mp C type(C)), As=0=A, T, =0 =
T, U, = Z/{3 = ./4, s 64 = 83 — type(C) — 84 = (Bll U BIQ) —
type(C) = By = (B'1 — type(C)) U (B> — type(C)) = By =
BlUBQ — B

(STrucT BC CoMB) P = P ¢ e, Q@ = (P)lcucr, Using (BLOCK), we

have:
A,F I_b P/ZC . (BlaAlaﬂaul)

A.53
A,F }_b PIZCZC’:(B;-’LLTJ/{) ()

91

Where VA € A(A(A) = (Va,ka, M) = M4 C type(C)), Yauth(D, K) €
T(A(D) = (VD,KD,MD) = Mp C type(C)), A= @, T = , U =U,
, B =B, —type(C")

ATy P (By, Az, To, Us)

A.54
A Fl—b P/ (817“417717“1) ()
Where VA € A(A(A) = (Va, ka, Ma) = My C type(C)), Vauth(D, K) €
T(A(D) = (VDa/ﬁ;DaMD) — MD g type()) Al = @) ’]-1 = @7
Uy =Us, , By = By — type(C)
From ({A.54)), Using (BLOCK), we have:
Aarl_b Pl : (B27~A277-27Z/{2) (A55)

A7F |_b P CUC’ : (837A37757u3)

Where VA € A(A(A) = (Va, ka, Ma) = My C type(C)), Vauth(D, K) €
T(A(D) = (VD,I{D,MD) — Mp C type(C’)), As = @, T = Q),
Us = Uy, , By = By—type(CUC") = B3 = By—type(C)—type(C') =

Bs =B, — type(C”) = B3=DB

(StrucT BC EMPTY) Trivial as in P = P.

(STRUCT ZERO BC) P = 0¢, @ = 0. Using (BLOCK), we have:

AT, 0:(0,0,0,0)
AT F, O : (B, A T,U)

Where B = 0—type(C) = B = (). Hence, we get A, T, 0: (0,0,0,0)
(2) A TH, P:(B,AT,U) and Q = P, then AT H,Q: (B, A, T,U).

(A.56)

(STRUCT REFL) Trival.

(STRUCT SYMM) We have P = ().According to hypothesis (1), A, T, Q :
(B, A, T,U).

(STRUCT TRANS) For @ = P, there exists R to make Q = R,R = P. Sup-
pose A,I' b, P : (B, A,7,U), according to hypothesis (2), we have
ATH,R: (B, A,7,U). And according to the same hypothesis, we get
ATH,Q: (B, ATU).

(STrRUCT RES) (STRUCT PAR) (STRUCT REPL) (STRUCT AMB) (STRUCT ACTION)
(StrucT BC) (STRUCT PAR COMM) (STRUCT PAR Assoc) (STRUCT RES RES)
symmertical to case (1).

92

(STrUCT REPL PAR) P = P'|! P',QQ =! P'. Using (PAR), We have

ATty P (B ATU ATHIP:(BAT,U
ATF, P'P: (B, AT, U)

(A.57)

(STRUCT RES PAR) P = P'|(vn)Q',Q = (vn)(P'|Q"),n ¢ f(P’). Using
(PAR), we have

A7F l_b Pl : (817-/4177'17[/{1) A7F l_b (Vn)Q/ : ([527-/4277'27[/{2)

A.
AT, Pl(vn)@Q : (B, A, T,U) (A.58)
WhereB:BluBg, A:A1UA2, T:ﬂU%, L{:Lﬁ UZ/{Q
Using (RES), we have
A7F }_b QI : (BQaA27%7u2) <A59)

A,F l_b (VH)Q, . (BQ,AQ,B,UQ)
From (A.58)), we get A, ", P’ : (By, Ay, 71,U;). Using (PAR), we have
Aarl_b P (BlaAlaﬂaul) Aarl_b Q,: (82,./42,7-2,?/{2)

A.60
AT, PQ (B, AT, U) ()
WhereB:BluBg,Az.AlUAg, T:’]]UTQ,L{:LQ ng
Using (RES), we get
"Ny .

AT Fy (vn)P|Q": (B, A, T,U)

(STrRUCT RES AMB) P = s[(vn)P'],Q = (vn)s[P'],n # m. Using (AMB),

we have

AT ks (vn)P' 2 (B, A,T,U) (A.62)
AT F, s[(vn)P1]: (0, AU{S}, 0, U{S}) '
WhereVA € A(T'(a) = A A(A) = (Va,ka, Ma) = M, C Mg),I(s)
S A(S) = (Vs,KS,MS) BCkyg UC VS,Vauth(D,K) eT (A(D)
(VD,RD,MD) E MD :(Z)>
Using (RES),we have

ATF, P (BATU

A.63

AT F (vn)P': (B, AT,U) ()
From ({A.62)) and (A.63),using (AMB), we have
ATk, P (B ATU

’ (B, A) (A.64)

ATF, s[P]: (0, AU{S},0,UU (S}

93

Where VA € A(I'(a) = A A(A) = (Va,ka, Ma) = Ms C Mg),I'(s) =
S A(S) = (Vs,ﬁg,Ms) BCkrky UC VS,‘v’auth(D,K) eT (A(D) =
(VD,RD,MD) — Mp :@)

Using (RES), we get

AT, s[P]: (0, AU{S}, 0, U U{S})
AT, (vn)s[P]: (0, AU{S}, 0, U U{S})

(A.65)

(STRUCT ZERO PAR) P = P, Q = P’|0. Using (PAR) and (NIL), we have

ATty P (B, AT,U ATH0:(0,0,0,0)
AT+, P0: (B, A T,U)

(A.66)

(STRUC

T ZERO RES) P =0, @ = (vn)0. Using (NIL), we get A, T" -, 0 :
(0,0,0

,0). Using (RES), we have

AT, 0:(0,0,0,
50 (A.67)

0
AT, (vn)0: (0,0,0,0)

(STRUC

T ZERO REPL) P = 0, P =!0. Using (NIL), we get A,T" I, 0 :
(0,0,0

,0). Using (REPL), we have

ATH,0:(0,0,0,0)
Aarl_blo : (®7®7®7®)

(A.68)

(STrRucT BC CoMB) P = Plcuer, @ = P'icler. Using (BLOCK), we have

ATk, P (B, AT, U)
A, 'ty Pheuer : (B — type(C’ U O’), ®7 (Z),Z/[)

Where C U C’ 7é (ZLVA e A (A(A) = (VA,I{A,MA) — My C
type(CUC”)),‘v’auth(D,K) eT (A(D) = (VD,RD,MD) — Mp C
type(C U C")

Using (BLOCK), we get

(A.69)

ATy P (B, AT, U)
A, r I_b PQC : (B - type(C), @, @,U)

Where C # 0, VAe A (A(A) = (Va,ka, Ma) = My C type(C)),
Vauth(D,K) € T (A(D) = (Vp,kp, Mp) = Mp C type(C)
Using (BLOCK), we get

(A.70)

A,F I_b P/ZC : (B - type(C), @,@,U)
A,F |_b P lo o : (B — type(C’U O/),Q),@,U)

Where C'UC" # ()

(A.71)

94

(StrucT BC EmPTY) Trival.

(STrRUCT ZERO BC) P = 0, @ = 0¢. Using (NIL), we get AT, 0 :
(0,0,0,0). Using (BLOCK), we have

AT H,0:(0,0,0,0)
ATy 0 (0,0,0,0)

(A.72)

95

Appendix B

Subject Reduction

Proposition 2 If AT+, €9(ina.P|) : (B, A, T,U) , then A,T =, €°(P) :
(B', A, T,U) , where I'(a) = A, B =B"U{in A} when ina ¢ C, B = B' when
inacC.

PROOF: By induction on the structure of €).
(1) In the case of €°(|) = (|)ic:

o If C = 0:
We have AT ky in a.P : (B, A,7,U) and in a ¢ C, try to prove
ATH, P:(B,AT,U) where B=B"U{in A}. Using (IN), we get

ATty P (B, AT,U)
ATr,inaP: (B,AT.U)

(B.1)

where B = B'U {in A}, I'(a) = A, A(A) = (Va,ka,Ma), I'(b) = B,
A(B) = (VB,HB,MB), Ve CVa, BeVy.

o It C + 0:
We have A, T Fy, (in a.P)ic : (B,0,0,U), try to prove A, T F, (P)e :
(B',0,0,U) where B = B'U{in A} whenina ¢ C, B= B wheninae€ C.
Using (BLOCK), we get

A,F |_b ina.P : (Bl,Al,Z,Z/D
A,F |_b (In CL.P)ZC . (B,@,@,Z/{)

(B.2)

where B = By — type(C), VR € A1(A(R) = (Vg, kg, Mgp) — Mg C
type(C')), Yauth(D, K) € T, (A(D) = (Vp,kp, Mp) = Mp C type(C)).
From (B.2)),using (IN), we get

A,F l_b P . (Bll,Al,’]'l,U)
AT Fyina.P: (B, A, Ti,U)

(B.3)

97

where B, = B’ U {in A}, I'(a) = A, A(A) = (Va, k4, M4), T'(b) = B,
A(B) - (VB7ﬁB7MB)7 VB g VA, B e VA.

So that, we have the following:

From (B.3)), according to (B.2), using (BLOCK), we get

A,F l_b P (Bll,Alalz-lau)
A,F e (P)Zc . (B',@,@,U)

(B.4)
where B’ = B’y — type(C)

We have known B = By — type(C) and By = By U {in A}. From these,
we can get B = B'1U{in A} —type(C). Ifin a € C, then in A € type(C),
then B = (B'y — type(C)) U ({in A} — type(C)) = B’y — type(C) = B';
If ina ¢ C, then in A ¢ type(C), then B = (B'; — type(C)) U {in A} =
B U {in A}

(2) In the case of €°() = (€ ()| Py) v (C = C"UC"):
Suppose this proposition is hold in €¢’(| |), we must prove this proposition is
hold in €°().

o If C” = (:
We have A, T+, € (in a.P)|Py : (B, A, T,U), we must prove A, Tk,
¢°(P)|Py : (B,A,T,U), where B = B U {in A} when in a ¢ C,
B =B when ina e C.
Using (PAR), we get

AT, € (ina.P): (By, A, T, Uy) ATy Py (Ba, Ag, To, Us)
AT F, € (ina.P)|P: (B, AT,U)

(B.5)
where B:lglUBg, .A:.Alu.AQ, T:TlUTQ,Z/{:Z/ﬁ UZ/{Q.
According to the supposition, from (B.5]), we can have A, T' b, (| P) :
(B'y, Ay, T1,Uy) where By = B’y U{in A} when ina ¢ C’', or B = B4
when ina € C'.

So that, we have the following:

From (B.5)), using (PAR), we get

A,F I_b %Cl(l PD : (8,17“4177-17[/{1) A,F l_b PU : (B%AQ?,]-Z)Z/{Q)
AT, € (P)[Py: (BrUBs, AT, U)

(B.6)

Because B’y U By C B,using (SUB), we have (B'; U By, A, 7, U) <
(B, A, T,U).

98

Using (SUBSUMPTION), we have

A,F I_b (gqu PD|P0 : (Bll UBQ,A,T,U) (Bll UBQ,.A, T,Z/{) S (B, A, T,Ll)
A7F I_b %C’(I PD|P0 : (B,A,T,U)

(B.7)

If ¢ # 0):
We have A, F, (€¢(in a.P)|P)icr = (B,0,0,U), we must prove
AT, (€°(P)|Po)cr = (B,0,0,U). Using (BLOCK), we get

AT, €% (ina.P)|Py: (B, A, T, U)
AT, (€°(ina.P)|Po)er = (B,0,0,U)

(B.8)

where B = By — type(C"), VA € A, (A(A) = (Va,ka, My) = My C
type(C’”)), Vauth(D,K) c Z(A(D) = (VD,FLD,MD) — MD -
type(C")).

From (B.8)), using (PAR), we get

A,F l—b %CI(I in CLPD . (Bl,Al,ﬂ,ul) A,F |_b Po . (BQ,AQ,IZ’Q,UQ)
A,F "b %C’q in CLPD|P0 . (Bt,At,IZ;Z/{)

(B.9)
Where Bt :B1UBQ, .At :A1U.A2, Z:ZU%,u:ul UZ/IQ.
According to the supposition, from , we get AT F, €°(P) :
(B'1, A1, T1,Uy) where By = B’y U{in A} when ina ¢ C’, By = B’y when
ina e C’.
So that, we have the following:
From (B.9)), using (PAR), we get

A7F l_b %Clq PD . (Bll,Al,ﬂ,Z/{l) A,F l_b PO : (BQ,AQ,,]'Q,MQ)
A,F |_b %C’q P|)|P0 . (Bll UBQ,At,Z,u)

(B.10)
From (B.8)), using (BLOCK), we get
AT, C(P)|Py: (B'1UBy, A, T, U) (B.11)
AT, (671 PNl - (B1 OB, — type), 0.0.0)
Because B’y C By, B’y U By C B;. So that B’y U By — type(C”) C B.
Using (SUB), we have (B'y U By — type(C”),0,0,U) < (B,0,0,U)
Using (SUBSUMPTION), we get
AT by (€9 (P)|Po)cr = (B'1 U By — type(C"),0,0,U)
(B'y U By — type(C”),0,0,U) < (B,0,0,U) (B.12)
AT (€9(P Poer = (B, 0,0,U) '
]

99

Proposition 3 If A, T, €°(out a.P)) : (B, A, T,U) , then A, T =, €°(P) :
(B', A, T,U) where T'(a) = A, B =B U {out A} when out a ¢ C, B =B when
outa € C.

PROOF: By induction on the structure of €).
(1) In the case of €°(|) = (|)ic:

o If C =(:
We have AT -, out a.P : (B, A,7,U) and out a ¢ C, try to prove
ATk, P:(B,AT,U) where B=B"U{out A}. Using (OUT), we get

ATH,P:(B,AT,U)
AT hHy,outa.P: (B,AT,U)

(B.13)

where B = B' U {out A}, I'(a) = A, A(A) = (Va,ka,Ma), I'(b) = B,
A(B) = (Vg, kg, Mp), Vg C Va, B € Vy, ¥r € Dom(I')(I'(r) = RA
A(R) = (Va, kr, MR) NA € Vg = B € Vg).

o If C #0:
We have ATk (out a.P)i¢ : (B,0,0,U), try to prove A, T k=, (Pl :
(B',0,0,U) where B = B’ U {out A} when out a ¢ C, B = B’ when
out a € C. Using (BLOCK), we get

A,P '_b out a.P: (Bl,Al,Z,U)
A,P '_b (out CL.P)ZC : (B,@,@,U)

(B.14)

where B = By — type(C), VR € A;(A(R) = (Vg, kp, Mr) = Mpr C
type(C)), Yauth(D, K) € T, (A(D) = (Vp,kp, Mp) = Mp C type(C)).
From (B.14)),using (OUT), we get

A,F l_b P: (Bll,Al,’]'l,U)
AT Fyouta.P: (B, A, T, U)

(B.15)

where By = B'; U {out A}, I'(a) = A, A(A) = (Va,ka, M4), I'(b) = B,
A(B) = (Vg,kp,Mp), Vg C Vu, B € V4, Vr € Dom(I')(I'(r) =
R/\A(R) = (VR,/{R,MR) NAeVp = Be VR)

So that, we have the following:
From (B.15)), according to (B.14)), using (BLOCK), we get

ATy, P: (B, ALTLU)
AT, (Phe: (B,0,0,U)

(B.16)

where B = By — type(C)

100

We have known B = By — type(C) and By = B’y U {out A}. From
these, we can get B = B’y U {out A} — type(C). If out a € C, then
out A € type(C), then B = (B'; — type(C)) U ({out A} — type(C)) =
B'y — type(C) = B'; If out a ¢ C, then out A ¢ type(C), then B =
(B'y — type(C)) U {out A} = B U {out A}

(2) In the case of €€(|) = (€ ()| Py) 1 (C = C"UC™):
Suppose this proposition is hold in € (| |), we must prove this proposition is
hold in €°().

o If C" = (:
We have A, T, € (out a.P))| Py : (B, A, T,U), we must prove A, I'
€ P)|Py: (B, A, T,U), where B = B'U {out A} when out a ¢ C,
B = B’ when out a € C.
Using (PAR), we get

A, F I_b ch’(I out CLPD . (Bl,Al,,]i,ul) A,F l—b Po . (BQ,AQ,E,Z/{Q)
AT, €% (outa.P)|Py: (B, AT,U)

(B.17)
WhereB:BlLJBQ, A:A1UA2, T:’TlU’Tg,L{:Lﬁ UZ/{Q.
According to the supposition, from , we can have A, T' -, €°(P)) :
(B'y, Ay, T1,U;) where By = B’y U {out A} when out a ¢ C’, or By = B4
when out a € C".
So that, we have the following;:

From (B.17), using (PAR), we get

A7F I_b %C/q PD . (Bll,Al,ﬂ,Z/{l) A,F l_b PO . (627“427,]’272/[2)
A,F I—b ch’(I PD|P0 : (Bll UBQ,A,T,Z/[)

(B.18)
Because B’y U By C B,using (SUB), we have (B'; U By, A, 7, U) <
(B, A, T,U).
Using (SUBSUMPTION), we have

AT, @ (| P)|Py: (B U By, A, T,U) (B UBs, AT, U) < (B, A T,U)
A7F I_b %C’(I PD|P0 : (B,A,T,U)

(B.19)

o If C" 0
We have A, T F, (4°(out a.P)|Py)icr : (B,0,0,U), we must prove
AT, (€°(P)|Po)cr = (B,0,0,U). Using (BLOCK), we get

A, r '_b %C,q out CLPDlPO : (Bt,At, Z,U)
AT F, (69 out a.P)|Po)ier = (B,0,0,U)

(B.20)

101

where B = By — type(C"), VA € A(A(A) = (Va,ka, My) = My
type(C’”)), Vauth(D,K) S Z(A(D) = (VD,KD,MD) — Mp
type(C")).

From (B.20)), using (PAR), we get

A, r l_b ch’(I out CLPD : (Bl,Al,’]—l,Z/ﬁ) A,F I_b PO : (BQ,AQ,,]VQ,Z/{Q)
AT F, € (out a.P) Py : (B, Ay, T, U)

N 1N

(B.21)
where Bt:BlLJBQ, At:Alu.Az, Z:zU,]VQ7Z/{:Z/{1UZ/{2.
According to the supposition, from (B.21]), we get A, T F, €°'(P) :
(B'1, A1, T1,Uy) where By = B’y U {out A} when out a ¢ C’, By = By
when out a € C'.

So that, we have the following:

From (B.21)), using (PAR), we get

A7F l_b %Clq PD : (8/17“41;717“1) A,F l_b PO : (627“427,]'272/[2)
A,F |_b %C/q P|)|P0 . (Bll UBQ,At,Z,u)

(B.22)
From (B.20)), using (BLOCK), we get
A7F|_b CKC,GPMPO:(B,1UB27At77;7u) (B 23)
A, T l_b (CgC’(’ PD‘PO)ZC” : (Bll U BQ — type(C”), @, @,U) ’
Because B’y C By, B’y U By C B;. So that B’y U By — type(C”) C B.
Using (SuB), we have (B'y U By — type(C”),0,0,U) < (B,0,0,U)
Using (SUBSUMPTION), we get
ATy (6°(P)|Po)ier : (B'1U By — type(C”), 0,0,U)
(Bll UBQ —type(C”),(Z),(Z),LI) ((Z),Z/{) (B 24)
A,F l_b (%C’(y PD‘PO)ZC” : (B @ @ Z/{) ’
]

Proposition 4 If A,T +, €°(a[P|Q) : (B, A,T,U) and AT F, a[P],
0, A,0,U"), then AT H, €¢(Q) : (B, A", T,U") when C = 0, AT
€°(Q) : (B,A,T,U") when C # 0, where A = A UA", andUd = U UU".

PROOF:

e When C = 0:
It can be supposed that ‘5@(| a[P]|Q|) = a[P]s|Q|F;, %@q Q) = Q|P.

We have ATy, a[Ps|Q|P; : (B, A, T,U) and A, Tt a[P]s : (0, A, 0,U),
try to prove AT" b, Q|P, : (B, A", T,U"), where A = A" U A", and

102

U=uulu".

Using (PAR), we have

ATy alPls: (0, A,0,U) ATH,Q|P: (B, A, T,U")

B.25
AT by a[Pl|Q|P; - (B, A, T,U) ()
where A=A UA" andU =U' UU".
e When C # ():
By induction on the structure of €¢(|).
(1) In the case of €°(|) = (ic:
We have A Tk, (a[P]s|Q)¢ : (B, , 0,U)and A, Ty alP], - (0, A",0,U),
try to prove A, T Fy (Q)ic : (B,0,0,U") where U =U" UU".
Using (BLOCK), we have
A? F |_b a[P]S|Q : (Bt)Ata 7;71/{) <B26)

AT by (a[Pls|Q)c - (B,0,0,U)

where B = B, — type(C), VA € A(A(A) = (Va,ka, Ma) = M4 C
type(C)), Vauth(D, K) € T,(A(D) = (Vp,kp,Mp) = Mp C
type(C)).
From (B.26)), using (PAR), we have

A? I I_b @[P]s : ((Z),A,, @72/{/) A> I I_b Q : (Bt7~/417 Z?u”)

B.27
A,Fl_b Q[P]S|Q : (BtaAhZ?u) ()
where A, = A, UA U=U"UU'.
So that we have the following:
From (B.27)), using (BLOCK), we get
ATHQ: (B T, U"
) bQ (taAla tau) <B28)

AT, (Q) (B, 0,0,U")

since Ay C A;.

(2) In the case of €€ (|) = (€ ()| Py) 1 (C = C"UC"):
Suppose this proposition is held on ¢¢’(| |), we must prove it is held
on €°().

103

—ifC" =0:
We have AT F, €°(a[P],|Q)|P : (B, A, T,U) and AT
CL[P]S : (®7A/7®7u/)7 try to prove A,F |_b %C’q Q|)|P0 : (BvAa T,U)

Using (PAR), we have

AT, € (alPl|Q) : (By, AL, T, Uy) AT Fy Py (By, Ay, To, Us)
AT by, € (alPl|Q)| Py : (B, A, T,U)

(B.29)
WhereB:BluBg, A:A1UA2,T:7'1U7‘2,M:U1UU2.

We know C” # (). From (B.29)), according to the supposition, we
get A, T'H, (fcl(| Q) : (By, A, T;,U'y) where Uy =U'1 UU'.

So that we have the following:
Using (PAR), we get

AJF }_b %C,(I QD : (817“4177'17“,1) A7F |_b PO : (BQ,AQ,,]VQ,Z/{Q)
A,F |_b (gclq QD‘PO : (B, A, T,L{’1 UUQ)

(B.30)
Because U'y UlUy C U, (B, A, T,U'y UlUs) < (B, A,7,U). Using
(SUBSUMPTION), we get

A,F '_b %C’q Q|>|P0 : (B,A, T,L[’1 UZ/{Q)
(B, A, T,U Ulh) < (B, A, T,U)
A7F I_b %Cl(l QD’PO : (BvAu T,Z/I)

(B.31)

it £ 0
We have A, T F, (€°(a[P]s|Q)|Po)icr : (B,0,0,U) and A, T I,
alPly : (0, A,0,U), try to prove A, T' Fy (€°(Q)|Po)cr :
(B,0,0,U).

Using (BLOCK), we have
AT b €7 (a[PLIQDIPy = (By, A T U)
AaF |_b (%C/q a[P]8|QD|PO)ZC" : (8707@72/{)
where B = B; — type(C"), VA € A(A(A) = (Va,ka, My) =

My C type(C")), Yauth(D, K) € T,(A(D) = (Vp,kp, Mp) —
Mp C type(C")).

(B.32)

From (B.32)), using (PAR), we have

A7F l_b %C,(’ a/[P]S|Q|> . (B:L?Al?,]—iJul) Aa F l_b PO : (BQ7A277;7U2>
AT, 27 alPLIO) Py - Br v T, U)

(B.33)

104

WhereBt:BluBg, At:AluAQ,Z:ZU%,u:Z/ﬁUZ/{Q.

From (B.33)), according to the supposition, we get A, T'F, €°"(Q) :
(Bl,A/l,,]i,u/l) Where Z/ll = Z/{/l UL[’, .All == .A1 when Cl 7§ @,
A = A1 UA when C" = 0.

So that we have the following:
Using (PAR), we get

AvF |_b (gC/(I QD : (617“4,177172/{/1) A7F }_b PO . (827A27757u2)
A,F l_b CgC’(I QD‘PO . (Bt,.A,l U AQ,Z,ull UZ/{Q)

(B.34)
We know A’y U Ay C Ay and U’y UlUy C U. From (B.34) and
(B.32), using (BLOCK), we get

A,F |_b %C/q QD|P0 . (Bt,A,l U .AQ,IZ;,Z/{,l UUQ)
AT Ey (91 Q)P = (B,0,0,U' Ulhy)

Because U’y UlUy C U, according to (SUB) we have (B,0,0,U'; U
Uy) < (B,0,0,U). Using (SUBSUMPTION), we have

(B.35)

AT by (691 Q) Po)cr : (B0, 0,U's Ulhy)
(B,0,0.U'y Uly) < (B,0,0,U)

A>F Fo (%Cl(’ QD’PO)ZC” : (Bv@a @,U)

(B.36)
O

Proposition 5 If AT, €°(b[R]) : (B, A, T,U), A, T FyalQ],: (0, A,0,U"),
U C Vg and My C Mp, then AT F, €°(b[R|a[Q]s]) : (B,AUA, T,UUJU")
when C =0, A, T +, €°(b[R|alQ].]) : (B, A, T,UUU') when C # (0, where
['(a) = A, A(A) = (Va, k4, Ma), T(b) = B, A(B) = (Vp, kg, Mp).

PRrRoOOF:

e When C = ():
It can be supposed that €°(b[R]) = b[R]|P,, €°(b[R|a[Q]]) = b[R|a[Q].]|P:.
We have A, T+, b[R]|P; : (B, A, T,U), ATy alQ],: (0, A,0,U) U C Vp
and M4 C Mg, try to prove A, I' F, b[R|a|Q]s]| P : (B, AUA T, UJU),
VA € A/1<A(A) = (VA,HA,MA) = M,y C MB).
Using (PAR), we have

AJF }_n b[R] : (07“417@72/{1) A,F I_n Rﬁ : (Ba AQvTJUQ)
AT F, b[R||P,: (B, A T,U)

where .A = .Al U.AQ, U :Lﬁ UZ/{Q.

(B.37)

105

From (B.37)), using (AMB), we have

A,F I_b R: (BllaAllaTllaull)
A,F l_n b[R] : ((DaAb@aul)

(B.38)

where I'(b) = B, A(B) = (V, kg, Mp), B'y C kg, Yauth(D, K) € T';(A(D)
(VD, KD, MD) — MD = @), Z/ll = Z/{/1 U {B}, Z/{/1 - VB, ./41 = ./4/1 U {B}

So that, we have the following:
Using (PAR), we get

A; r I_b R: (8/17“4/177/172/{,1) Aa r I_b (Z[Q]S : (®7A,7 @)u/)
A, r |_b R|CL[Q]5 : (8/1,./4/1 U A/,Tll,ull UL[’)

(B.39)

From (B.39), according to (B.38]), we have know U’ C Vg, using (AMB),

we get
A, r l—b R|G[Q]S . (Bll, .All U A’,’T’l,Z/{’l UL{')

AT, B[R[a[Q].]: (0, A U A, 0,06 UL

From (B.40) and (B.37)), using (PAR), we get

AT b, b[R[alQy] : (0, 4, UA,0,Uy UU') AT F, B (B, Ay, T, Us)
AT, b[RIa[QLIE : (B, AUA, T.UUU)

(B.40)

(B.41)

When C' #
By induction on the structure of € |).

(1) In the case of €°() = (| ic:
We have A, T F, (b[R])ic : (0,0,0,U), AT+, al@)s = (0, A,0,U"),
U C Vg and My C Mp, try to prove AT +, (b[R|a[@Q]s)ic :
@,0,0,u uU").

Using (BLOCK), we have

AT+, B[R] : (0, A1,0,U)

d B.42
ATF, O : (0.0.0.00 2
where VA € A1 (A(A) = (Va, ka, Ma) = My C type(C)).
From (B.42), using (AMB), we have
ATH,R: (B, A, T, U
) bR (BlaAla 171/{1) <B43)

AT+, B[R] : (0, A1,0,U)

106

where T'(b) = B, A(B) = (Vp,kp,Mp), B’y C kp, Yauth(D, K) €
Z(A(D) == (VD,I{D,MD) - MD = (Z)),\V/A c All(A<A) == (VA,KA,MA) -
My C Mg), Ay = A, U{B},U=U 1 U{B}, U1 C V.

So that we have the following:

From (B.43), using (PAR), we get
A? F I_b R . (6/17“4/1771)“/1) Av F I_b G[Q]s . (wa -/4/7 @,U/)

B.44
A,Fl‘b R|CL[Q]S : (Bll,A,1UA/,ﬂ,ull UL{’) ()

From (B.44)) and (B.43)), using (AMB), we get
AT Fy Rla@)s - (B, A UA, LU uld) (B.45)

Aa 'k, b[R|a[Q]8] : (@7“41 U -’4/7 ®7u Uu,)
Because B € Ay, Mp C type(C). And because we have My C Mp,
My C type(C). And according to (SIGN AMB), VG € A(AG =
(Vg, el Mg) — MG g MA), so that VG € A/(AG = (Vg, el Mg) —
M¢ C type(C)). From (B.45)), using (BLOCK), we get

AT b BRIa[QL] : (0, Ay U A 0.0 L)
AT F, (b[R|a[Q]s)e : (0,0,0,U)

(B.46)

In the case of €°() = (€°"()| Py) v (C = C"UC"):
Suppose this proposition is held on €¢(| |), we must prove it is held
on €°().

—IfC" =0
We have AT +, €°(b[R])|P, : (B, A, T,U), AT F, a[Q]s :
0, A,0,U'), U C Vg and My C Mg, try to prove A, T +,
*(Rla[Qls)| Py : (B, A, T, UUU).

Using (PAR), we have

A,F l_n ch’q b[R]D . (Bl,Al,z,Lﬁ) A,P '_n P() . (BQ,AQ,%,UQ)
AT, € (0R])|P : (B, A T,U)

(B.47)
WheI‘eB:BlUBQ, A:A1UA2,T:ZU7§,UZU1UUQ.

We know C’ # (). From (B.47)), according to this supposition, we
get AT I, €°(b[R|alQ].]) : (B, Ay, Ty, Uy UU).

107

Using (PAR), we can get

AT, € (b[R|a[Ql]) : (B, AL, Ti,Uy UU') AT F, Py: (By, Ay, To,Us)

AT H, €Y(bR|alQ]s])|Fo: (B, A, T, UUU")
(B.48)

It ¢ # O

We have A, Tk, (€9 (b[R])|Po)icr : (B,0,0,U), AT+ alQ)s :
0,A,0,U), U C Vg and My C Mg, try to prove A T" F,
(€ ([R|a[QIIDPoer : (B,0,0,U uUd').

Using (BLOCK), we have

AT b, €9 (b[R])|Py : (B, A, T, U)
AT E, (€°(b[R])|Po)cr = (B,0,0,U)
where B = By — type(C"), VA € A(A(A) = (Va, k4, My) =

My C type(C")), Yauth(D, K) € T,(A(D) = (Vp,kp, Mp) —
Mp C type(C")).

(B.49)

From (B.49)), using (PAR), we have

A7F l_n CgC/d b[R]D : (617A17717u1) AaF |_n PO . (BQ,AQ,%,UQ)
AT E, G (bR P - (Bo A T.U)

(B.50)
where Bt :Bl UBQ, At :.Al U.Az, 7; :'TlU’TQ andleMl UZ/{Q.

From (B.50)), according to this supposition, we can get A, T" -,
¢°(b[R|alQ].]) : (B, A1, T, Uy UU'), where A"} = A; when
C'#0, A=A UA when C' = 0.

So that we have the following:
Using (PAR), we get

A) r |_n %Clq b[R|CL[Q]5]D : (81744/1771;“1 Uul) A7 r I_n PO : (BQa AQ)%,“Q)
AT H, €Y(b[R|aQ]s])|Fo : (B, Ay U Ay, T, U UU')
(B.51)
where A'1UA; = A; when C7 # 0, A'1UA; = A,UA" when C”" = ().

We have M, C Mg, and B € A, when C' = (), so that we have
VG € A/(A(G) = (Vg,lig,Mg) = Mg C type(C’”)). Using
(BLOCK), we can get

AT+, €°(b[R|a[Q]])|Po : (B, AL U Ay, T, U UUL)
AT Fy, (9 b[R[a[Q]s]D Po)er = (B, 0,0,U uU’)

(B.52)

108

a

Proposition 6 IfA T, €°(auth(a,k).P)) : (B, A, T,U), then A,T -, €°(P) :
(B, AT U) when C = 0, AT +, €°(P) : (B, AT, U) when C # 0,

where F(a) = A, A(A) = (VA,,‘{A,MA), I'k) = K, B = B' U {auth(A, K)},
T =T U{auth(A,K)}.

PROOF:
e When C' = {:
It can supposed that ¢ (auth(a, k).P)) = auth(a, k).P|P,, €°(P) = P|P..

We have A, I' k-, auth(a, k).P|P; : (B, A, T,U), try to prove A, I" i, P|P; :
(B', A, T",U), where B = B"U {auth(A, K)}, T = 7' U {auth(A, K)}.
Using (PAR), we have

AT by auth(a, k).P: (B, A, T, Uy) AT By Py (B, Az, To, Us)
ATy auth(a, k).P|P; : (B, A, T,U)

(B.53)
where B:BluBQ, A:A1UA2, T:ZUE, Z/{:Z/ll UZ/{Q.
From (B.53), using (AUTH), we have
A,F}_bpl (B’l,Al,T’l,L{l) (B54)

A, r l_b auth(a,k).P . (Bl,Al,,]-l,ul)

where By = B'; U{auth(A, K)} and 7; = 7'y U {auth(A4, K)}, I'(a) = A,
A(A) = (Va,ka,My), T'(b) = B, A(B) = (Vp,kp,Mp), T'(k) = K,
A(K) = (A]k,S]k), Ae Ak, V4 C VB, A€ Vp.

So that , we have the following:
Using (PAR), we get

AT P (Bll,AhT/l,Ul) AT P (327A2772,u2>
AT H, P]Pt : (B’,A,T’,L{)

(B.55)

where B = B'1 U By, 7' = 7'y U7, From (B.54), we can get B =
B U{auth(A, K)}, T = 7' U {auth(A, K)}.

e When C # 0):
By induction on the structure of €).

109

(1) In the case of €°() = (¢

We have A, T +, (auth(a, k) Phe : (B,0,0,U), try to prove AT F,
(P : (B',0,0,U) where B=B'U {auth(D, K)}.

Using (BLoCK), we have

A, T Fy auth(a, k).

P (BtaAtylz;?u)
A, T Fy (auth(a, k).P)Q

A

)

(B7 ®7 Q’L{)

Nc
() (VAa"{‘A?MA) - MA -
= (Vp,kp,Mp) = Mp C

(B.56)

where B = B, — type(C), VA € Ay
type(C)), Yauth(D,K) € T4(A(D
type(C)).

From (B.56)), using (AUTH), we have

A7F I_b P (B/taAbT/tau)
AT by auth(a, k).P : (B, Ay, Tp,U)
where B, = B/, U{auth(A, K)}, 7, = 7', U {auth(A, K)}, T'(a) =

A,
A(A) = (Va,ka, My), T'(b) = B, A(B) = (Vg,kp, Mp), T'(k) = K,
A(K) = (A]k,S]k), A€ A]k, V4 C Vg, A e Vg

(B.57)

So that , we have the following:

Using (BLOCK), we get
A, r l_b P (B/t, At,T,t,U)
A,F I_b (P>ZC : (B/,@,Q,U)

where B' = B'; — type(C). Since By = B'; U {auth(4,K)}, B =
B; — type(C) = B' U {auth(A, K)}.

(B.58)

In the case of €°() = (€ ()| Po) v (C = C"UC"):
Suppose this proposition is held on ¢¢(| |), we must prove it is held
on ().

— IfC” =0:
We have A, T -, € (auth(a, k).P))| Py : (B, A, T,U), try to prove
AT, € (P)|Py: (B, A, T,U) where B =B U {auth(4, K)}.

Using (PAR), we have

A,F l_b %C/(’ auth(a,]{Z)PD . (Bl,A1,7i,u1) A,F l_b Pg . (BQ,AQ,E,UQ}

AT b, €°(auth(a, k).P)| Py : (B, A, T,U)
(B.59)

110

WhereBzglLJBQ,A:A1UA2,T:771U7—2,Z/{:U1UZ/{2.

From (B.59)), according to this supposition, we can get A, T
¢ P) : (B'1, A, T,,U;) where By = B’y U {auth(A, K)}, since
C’ # 0.

So that we have the following:

Using (PAR), we get

A,F F %C/(I P|) : (3/1,-/41771,7/{1) A,F Fy B (827A2772>U2)
AT €Y (| PP : (B, AT, U)

(B.60)
where B = B’y U By. Since By = B’y U {auth(A,K)}, B =
B’ U {auth(A, K)}.

If C" # 0:

We have AT F, (€¢(auth(a,k).P)|P)icr = (B,0,0,U), try
to prove A, T, (€°°(P)|Po)ier : (B,0,0,U) where B =
B U {auth(A, K)}.

Using (BLOCK), we have
AT+, € (auth(a, k).P)| Py : (B, Ay, T, U)
ATy %ﬂc/q auth(a, k’)PD‘Po)ZC// : (B, @, @,M)
where B = B; — type(C), VA € A(A(A) = (Va,ka, My) =

My C type(C")), Yauth(D, K) € Ty (A(D) = (Vp,kp, Mp) =
Mp < type(C")).

(B.61)

From (B.61)), using (PAR), we have

A,F |_b %C’q auth(a, k‘)PD . (Bl,Al,ﬁ,ul) A,F |_b Pg . (BQ,AQ,E,UQ}
AT Iy, €9 (auth(a, k).P)| Py : (Br, Ar, 7o, U)
(B.62)
where Bt:BlLJBQ, .At :A1UA2, ’ZZ:’ZEUTQ,U:LA UUQ.

From (B.63)), according to this supposition, we can get AT
(KC'(I PD : (8,1,./41,7-/1,[/{1) where Bl = Bll U {auth(D,K)},
7'y =T, when C" # 0, T, = 7’1 U{auth(A, K)} when C' = 0.

So that we have the following:
Using (PAR), we get

AT, CC(P): (B, AL T LU ATy Py (B, A, To, Us)
AT, € (| P)|Py: (B, Ay, T', U To,U)

(B.63)

111

where B, = B’ U {auth(D, K)}.

From (B.64)), using (BLOCK), we get

AT, C(P)|Py: (B, A, T UT,U)
A?F l_b (%C/q PD’PO)zc” : (Bla (07@?2/0

where B = B’y — type(C"”). Since By = B'; U {auth(D, K)} and
B = B; — type(C"), B =B U{auth(D,K)}.

(B.64)

a

Proposition 7 If A,T F, €°(Q) : (B, A, T,U), AT +y a[P]s : (0, A",0,U")
and My C Inner MostBlk(€C(), then A, T =, €°(Qla[P)s) : (B, A, T, UUU’)
when C # 0, AT =, €°(Qla[Pls) : (B,AUA, T, UUU') when C = 0, where
F(G) = A and A(A) = (VA,KA,MA).

PROOF:

e When C = ():
It can be supposed that €°(Q) = Q|P; and €°(Q|a[P],) = Q|a[P],|P,.
And InnerMostBlk(€"() = 0, so that M4 = 0.

We have AT +, Q|F; : (B,A,T,U), A,T +, alP]s : (0, A,0,U') and
My C InnerMostBlk(€¢(), try to prove A, T+, Qla[P)s|P; : (B, AU
A T.UJU").

Using (PAR), we have
ATEQ: (B, AT, Ui) AT by B: By, As, To, Us)

B.65
AT H, QP : (B, AT, U) ()
WhereB:BlLJBQ, A:A1UA2, T:,]EU,]’Q, LI:Lﬁ UZ/{Q.
So that , we have the following:
Using (PAR), we get
A,F"bQZ (Bl,Al,ﬂ,ul) A,F"b a[P]S . ((Z),A’,(D,U’) (B 66)

A,F l_b Q|(I[P]S : (Bl,Al U A,,ﬁ,ul UL{’)

From (B.66) and (B.65), using (PAR), we get

A,F |_b Q|G[P]s : (BlaAl U A/77—i7u1 Uu’) Aa r |_b Pt : (827“4277571/{2)
AT, QalPLIP - (B AUA,T.ULW)

(B.67)

112

e When C # 0):
By induction on the structure of (| |).

(1)

In the case of €°(|) = ()¢

We have AT F, (Q) e = (B,0,0,U), AT by a[P]s = (0, A",0,U").
InnerMostBlk((| i) = type(C), so that My C type(C). Try to
prove A, Tk (Qla[Pls)ic : (B,0,0,U uldl).

Using (BLOCK), we have

A,F I_b Q : (BtaAtvlz;)u)
AT H, (@) U)

(
where B = B; — type(C), VA € A(A(A) = (Va, k4, My) = My C
type(C)), Vauth(D,K) € T,(A(D) = (Vp,kp,Mp) = Mp C
type(C)).

From (B.68)), using (PAR), we have
AT, Q: (B, Ay, T, U) ATy alPls - (0, A,0,U)

(B.68)

B.69
ATk, Qla[Pls : (B, Ay UA, T, UUU") ()

From (B.69)), using (BLOCK), we can get
AT, Qla[Pls: (By, AAUA, T, UUU") (B.70)

A,F |_b (Q|CL[P]S>ZC . (B,@,@,Z/{ UL{’)

since M4 C type(C), and those ambients of group sets A" — {A} are
within ambient a, so that VG € (A'—{A})(A(G) = Vg, ke, M) =
Mg C MA), hence VG € AI(A(G) = (Vg,lig, Mg) = Mg C
type(C)).

In the case of €°() = (€°"()| P) v (C = C"UC"):

Suppose this proposition is held on ¢¢’(|), we must prove it is held
on ().

— If C" = 0:
We have AT, €°(Q)P : (B, AT, U), AT F, alP],
0, A",0,U") and My C InnerMostBlk(€¢(|), try to prove
AT, € Qla[Pls)| Py : (B, A, T,UuU).

Using (PAR), we have

Aa r |_b %C/(I QD : (BI7A17737Z/{1> A7F |_b PO : <B2JA27757L{2)
ATH,E(Q)|P: (B, A, T,U)

(B.71)

113

WhereB:BluBg, .A:.A1UA2, T:’]EU’TQ,U:LAUZ/{Q.
From (B.71)), according to the supposition, we can get A, I'
¢ (Qla[Pls) : (Bi, A, T1,Uy UU'), since C' # (.

So that we have the following:
Using (PAR), we have

A7F|_b %C/(’Q|G[P]SD : (Bl,Al,ﬂ,Ul Uu’) A7F|_b PO : (‘827“4277571/{2)
AT, 27 QlalPL) P - (B, AT.UOW)
(B.72)

It ¢+ -

We have A, T F, (€9(Q)|Po)er = (B,0,0,U), AT -y a[P], :
0, A,0,U') and May C InnerMostBlk(€°(|), try to prove
AT (€9(QlalPl) | Po)en = (B,0,0,U).

Using (BLOCK), we have

A7F l_b %C,q QD|P0 : (BtJAtvlz;?u)
A,F }_b (CKCIG QD|P0)ZC” : (B,@,@,Z/{)
where B = By — type(C"), VA € A(A(A) = (Va, k4, My) =

My C type(C")), Yauth(D, K) € T,(A(D) = (Vp,kp, Mp) =
Mp C type(C")).

(B.73)

From (B.73)), using (PAR), we have

ATHEC(Q): (B, AL T, U) ATy Py (By, Ay, T, Us)
AT H,C(Q) P : (B, Ay, Ty, U)

(B.74)
where Bt :Blugz, At :A1UA2, Z:ZU’]—Q,UIZ/ﬁ UUQ.

From (B.74)), according to this supposition, we can get A, T" F
€ (Qla[Pls) : (B, A1, T;,Uy UU') where Ay = A; U A’ when
' = @, All = Al when C’ 7é @

So that, we have the following:

Using (PAR), we can get

A,F l—b ch’q Q|G[P]SD . (Bl,All,zJ/{l UL{’) A,F |_b P() . (BQ,AQ,IZ’Q,MQ)
A, F l_b CgC’(l Q|G[P]SD|P0 . (Bt,All U AQ,Z,U U(Z/{/))
B.75
If C" =0, InnerMostBlIk(€°(|)) = type(C"). So that M,y C
type(C"). Because all ambients of A'—{A} are in ambient a, VG €
(A" = {AN(A(G) = (Vg, kg, Mg) = Mg C Mja). Therefore
VG € A(AG) = (Vg, kg, Mg) = Mg C type(C")). If C" =

114

0, ATy €9\ Qla[Pl)|Py : (B, A U A, T,,U uU'). Using
(BLOCK), we get

AT, €% (Qla[Pl)|Py : (B, A, UA, T, U LU
ATy (9 QlalPls) [Pocr = (B,0,0,U)

(B.76)
If ¢ # 0, AT by, €°(Qla[Pl)|Py : (B, Ay, T;,Ud UU'). Using
(BLOCK), we get

AT, €% (Qla[Pl)|Py : (B, Ay, T, U LU
A,F |_b ((g(ﬂq Q|G[P]sD|P0)ZC" : (B,@,@,U)

(B.77)
O

Lemma 1 If AT+, P: (B, A T,U), then AT+, P: (B, AT,U).

Lemma 2 If AT b, a[P : (0,.4,0,U), then AT+, a[P] : (0, A,0,U).

Lemma 3 If A, T F, a[P]: (0, A 0,U), then AT &, a[Pl; - (0, A,0,U).

Theorem 1 (Subject Reduction) If AT+, P : (B, A,7T,U) and P — Q,
then AT+, Q : (B, A, T,U).

Proor: By induction on the derivation of P — Q).

(RED IN) P =% a[¢ (in b.P')],|Q')|€" (B[R], Q = €°(Q')|E"(b[R'|a[€"(P')]]),
and in b ¢ CUC'. Suppose A, T+, €€ al¢ (lin b.P')],|Q') %" (b[R')) -
(B, A, T,U), prove A, T F, €°(Q')€" (b[R'|a[€C (| P')]]) : (B, A, T,U).

Using (PAR), we have

AT, € al€ (inb.P)]|Q) : (B, A, T, Uy) AT, € (b[R]) : (B, Az, To, Us)
AT 9 a[€(inb.P/)LIQDE"(b[R]) - (B, AT, U)
(B.78)

WhereB:BluBg, A:A1UA2, T:,]iU,]-Q, Z/{:Z/ﬁ UZ/{Q.
Suppose
AT+, a[€C (inb.P)],: (0, As, 0, Us) (B.79)

From A, T, €°(a[€ (in b.P')],|Q') : (B1, A1, T1,U;) in (B.78), accord-
ing to Proposition [we can get

Aa r l_% (l QID : (817A/17,]-17u/1) (BSO)
where Z/{l = Z/{ll UZ/{3, ./41 = All U Ag when C = (Z), ./4/1 = ./41 when C 7& @

115

From (B.79), using (SIGN AMB) or (AMB), we have

A,F }_a ch’(] in bPID . (8/3,./4/3,7/3,[/{/3)
AT H, a[€C(inb.P)]s: (0, As,0,Us)
where I'(a) = A, A(A) = (Va, ka, Ma), B's C k4, Vauth(D, K) € T'3(A(D) =
=

(VDa/fDaMD) — Mp = @), VG e Alg(A(G) = (Vg,ﬁg,Mg) Mg C
MA)) Z/{IS - VA, .A‘g, = .Alg U {A}, Z/[g = Z/{lg U {A}

(B.81)

From A, T F, €°(in b.P") : (B'5, A'3,T'3,U's) in (B.81)), we have known
inb ¢ C', according to Proposition 2 we can get

AT, €9 (P): (B's, A3, T'5,U's) (B.82)
where B'3s = B"; U {in B}, I'(b) = B, A(B) = (Vp, kg, Mp).

From (B.82)) and (B.81)), using (SIGN AMB) or (AMB), we can get

AT F, CY(P): (B3, A3, T's,U's)
AT F,.al€C (| P)]s: (0, As,0,Us)

(B.83)

From A, T, a[€° (| P')]s : (0, As, 0, Us) in (B.83), according to Lemma ,
we get
ATy a6 (P : (0, As, 0,Us) (B.84)

From (B.81)), because in b ¢ C’, we can get in B € B'3, and because
B's C k4, so that in B € k4. According to the definition of A, I" - o, we
can get My C Mp.

From (B.81]), we can see that €"(| in b.P') is well typed, so that in b.P’
is also well typed, Suppose A, ', inb.P : (B, A", 7',U'). Using (IN), we

can have

ATk, P (B, AT U
AT F,inbP (B, A, T.U)
where I'(a) = A, A(A) = (Va,ka, Ma), I'(b) = B, A(B) = (Vp,kp, Mp),
Vi C Vg, Ae Vg, B =B"U/{in B}.

(B.85)

From (B.85) and (B.81)), we can get Us C V5.

From (B.84) and A, T F, €¢"(bR : (B, Ay, To,Us) in (B.78), we have
known Us C Vi and My C Mp, according to Proposition [5], we can get

AT+, € (b[R|a[€ (| P')]]) : (Ba, A, To, Uy UUs) (B.86)

116

where A’y = Ay U A3 when C” =0, A’y = Ay when C” # ().

From (B.86)) and (B.80)), using (PAR), we get

A,F |_r ch'q Q/D . (Bl,A’l,Tl,U’l) A,F |_r ch’”(I b[R’\a[‘fC/(l P,D]s”) . (BQ,A/Q,E,Z/{Q UU3)
AT GC(QC (D[R a[g< (| P/)L]) - (U, AU A, T, U)
(B.87)

Analyze A3 U A5, If C = 0, then A, = Ay U As; If C # 0, then
A1 = A TE C" = (), then Ay = Ay U As; if C” # (), then A,. So
that there exist 4 cases for calculating A’y UA’y. When C' # () and C” = (),
A1 UA, = AU As; in the other three cases, A"y U A5 = A, which satisfy
AT ECONQNET(0[Ra[€7 (| P - (B, A, T, U).

Let us prove the case of C' # () and C” = {):

Because €¢"(| b[R]) is within the universal ambient, so that we have
AT ke €°°(bR : (Ba, Ay, To,Us) from (B.78). According to the def-
inition of the well typed process within the universal ambient, we can get
VG € Ay (A(G) = (Vg, kg, Mg) = Mg = 0). Because B € Ay, Mp = ().
We have M, C Mg, VG € A/3<A(G) = (Vg, el Mg> = Mg C MA), and
Az = A'3U{A}, so that VG € A3(A(G) = Vg, kg, Mg) = Mg = 0). Ac-
cording (SuB), (B, AU A;,7.U) < (B, A, 7,U). Using (SUBSUMPTION),

we have
AT+, €9 Q’|)|(50"(| b[R’|a[(€C/([P')]sl) : (B, AU A3, T,U)
(B, AUA;, T, U) < (B, A, T,U)
AT (e (bR ol (P)L]) : (B, A, T,U)

(B.88)

(RED OUT) P = a[€°(b[€“(out a.P')],|Q)], Q
out a ¢ CUC'. Suppose A, T+, a[€¢(b[€
prove AT -, a[#<(Q)] bl (P, : (0,

, Q = a[6(QDB[E(P,
(| out a.P')]|Q)] : (0, A, 0,U),
A,0,U).

Using (AMB), we have

AT, €°(b[€° (out a.P')]|Q) : (B, A, T .U
ATk, al6C(b[€° | out a.P')]| Q)] : (0, A,0,U)

(B.89)

where T'(a) = A, A(A) = (Va, k4, My), B C ka4, A= A U{A}, U =
U U{A} U C Vy, VG € A(AG) = (Vo, kg, Mg) = Mg C My),
Vauth(D,K) S T/(A(D) = (VD,I{D,MD) — Mp = @)

Suppose
AT ko b[€7 (out a.P')], : (0, Ay, 0,Uy) (B.90)

117

From (B.89) and (B.90]), according to Proposition [4] we can get
ATH,€°(Q): (B, A", T U" (B.91)
where ' =U; UU", A/ = A, UA" when C =0, A” = A" when C # (.

From (B.91)) and (B.89)), using (AMB), we get
AT, 691Q) : (B, A T.U")

B.92
ATF ao(Q) AU (A bur oAy P

From (B.90), using (AMB) or (SIGN AMB), we have
A, 'k %ﬂc/q out a.P’D : (B/l,A/l,T/l,L{’l) (B 93)

AT F, b[¢7 (out a.P'), : (0, AL 0,U)
where F(b) == B, A(B) == (VB,I{B,MB), Bll g KB, ./41 = .All U {B}, Z/{l ==

L{'l U {B}, U’ C Vg, VG € All(A(G) = (VG',KJ(;,Mg) — Mg C MB),
Vauth(D,) € T, (A(D) = (V. kp, Mp) =5 Mp = 0).

From A, T F, € (out a.P')) : (B'1, Ay, 7'1,U{1) in (B.93), and out a ¢ C',
according to Proposition [3, we get

AT, (P (B", A, T, U") (B.94)

where B’y = B"”; U {out A}.

From (B.94)) and (B.93)), using (AMB) or (SIGN AMB), we get
AT ‘50’(] P (B", AT, UN)

B.95
AT, b7 P, : (0. A 0,U0) (B9

From (B.95)), according to Lemma |1, we get
AT F, b€ (P, : (0, A, 0,U) (B.96)

From (B.92)) and (B.96)), using (PAR), we get

AT, al€C(Q)] : (0,47 U{A},0,U" U{A}) AT F, b€ (P)s: (0,A,0,U)

AT F, a[€(Q)b[€C (| P, : (0, A" U{A} U A, 0,U" U {A}UU)
(B.97)

Analyze U" U {A} UlU;, we can get U U{A} UU; = U.

118

Analyze A" U {A} U A;:
When C' =), we can get A"U{A}UA; = A. When C # 0, A"U{A}UA, =
AUA;.

Let us analyze AU A;:
From VG € All(A(G) = (Vg,/ﬁg, MG) — Mg C MB) and A; =
A’y U{B}, we get VG € A;(A(G) = (Vg, kg, Mg) = Mg C Mp).

From (B.93), because out a ¢ C’, out A € B'y. Because By C kg,
out A € k. According to the definition of A, T" F ¢, we get Mg C M 4.

From VG € Al(A(G) = (VG,Ii(;,Mg) = Mg C MB> and Mg C
My, we can get VG € A (A(G) = Vo, kg, Mg) = Mg C My).
However, ambient a is within the universal ambient, that means AT q
al¢C(b[€“(out a.P')]Q)] : (B, A 0,U), we can get A € A and
VG € A(A(G) = (Vg, kg, Mg) = Mg = 0), so that M4 = (). Therefore,
VG € A (A(G) = (Vg, kg, Mg) = Mg =). According to (SUB), we
have (0, AU Ay, 0,U) < (0, A,0,U). Using (SUBSUMPTION), we have

AT FaleC(@ B[E (| P, - (0, AU AL D,U)
0, AUALD,U) < (0,A,0,U)

AT F, al€C(Q)b[€C (| P, : (0, A,0,U) (B.98)

(RED OPEN) P = open a.P'|a[Q'], @ = P'|Q’. Suppose A, T" I, open a.P’|a]Q'] :
(B, A, T,U), prove AT+, P'|Q": (B, A, T,U).
Using (PAR), we have

AT F.opena.P : (B, A, T,U) ATHE, a@Q]:(0,As,0,Us)
AT+, open a.P'|a[@'] : (B, A, T,U)

(B.99)
where .A = .Al U ./4.2, U= Z/ﬁ UZ/{Q.

From A,T" -, open a.P' : (B, Ay, 7,U;) in (B.99), using (OPEN), we have

A,F l_r Pl . (Bll,Al,T,Z/{l)
ATk, opena.P' : (B, A, T,U;)

(B.100)

where B = B'1UkaU{open A}, T'(r) = R, A(R) = (Vg, kg, M), T'(a0 = A,
A(A) = (VA,KA,MA), VaC Vg, A€ Vi

119

From A, Tk, a[Q'] : (0, A2, 0,Us) in (B.99)), using (AMB), we have

A? r }_a Q/ : (B,27A,27T,27u,2)
A,F |_7" CL[Q/] : (®7A27 (DauZ)

where I'(a) = A, A(A) = (Va, k4, Ma), B'y C ka, Ao = Ao U{A}, Uy =
Uy u {A}, Uy CVy, VG € AE(A(G) = (VG,FLg,Mg) = Ms C MA),
Vauth(D,K) S TIQ(A(D> = (VD,KD,MD) — Mp C @)

From (B.101]), according to Lemma , we get

(B.101)

ATE Q (B Ay, T, U') (B.102)

From (B.102)) and (B.100)), using (PAR), we have

A,F l_r P (B,laAlaTaul) A,F l_r Q/ : (B/27“4/27T/27L{,2)

B.103
AT H P|Q :(B1UBy A UAS, T UT U UU's) ()

From B = B’y Uks U {open A} and B’y C k4, we can get B’y UBy, C B.

From A; = A5 U{A} and A = A, U Ay, we can get 4, UA's C A.

From U =U; UUs and Uy = U’y U{A}, we can get Uy UU's CU.

Analyze TUT"y: we have already have Yauth(D, K) € T'y(A(D) = (Vp, kp, Mp) =
Mp C 0).

Therefore, according to (SUB), we can have (B'yUB’y, AyUA's, TUT o, Uy U

Usy) < (B, AT, U).

Using (SUBSUMPTION), we have

A,F l_r P/’Q/ . (8/1 U B/Q,Al U AIQ,TU T/Q,ul UZ/{/Q)
(BWUB oy, Ay UAS, TUT Uy UU'y) < (B, A T,U)

B.104
ATH PO (BAT.U) (B-104)

(RED AUTH) P = a[P']||b[€¢°(auth(a,k).Q')|R]s, @ = b[€°(Q'|a[P])|R]s.
Suppose A, T b, a[P']|b[€°(auth(a, k).Q')|R]s : (0,.A,0,U), prove A, T |,
b€ (| Q |al PR, : (0,.A,0,U).

Using (PAR), we have

AT F, alP: (0, AL,0,U) ATk, b[%C(auth(a, k).Q')| R, : (0, As, 0,U)
AT F, [P |b[€C (auth(a, k).Q')| R, : (0, A, 0,U)

(B.105)
where .A == Al U .AQ, U= Z/{l UZ/{Q.

From ATk, a[P']y : (0, A;,0,U;) in (B.107)), according to Lemma [2 we
can get
AT F,alP]: (0, A, 0,U) (B.106)

120

From (B.106|), according to Lemma , we can get

ATy alP: (0, AL 0,Uy) (B.107)

From AT F, b[€¢°(auth(a,k).Q')|Rs : (0, Az,0,Us) in (B.105), using
(S1IGN AMB) or (AMB), we have
AT+, €9 auth(a, k).Q')R : (B'a, A'a, T'o,U'5)
AT F, W0 auth(a, k).Q) R : (0, A, 0.06)

(B.108)

where T'(b) = B, A(B) = (Vg, kg, M), B's C kg, Ay = A5 U{B}, Uy =
Z/{/Q U {B}, Z/{/g - VB, VG e A/Q(A(G) = (Vg,Hg,Mg) — MG - MB),
Vauth(D,K) € TIQ(A(D> = (VD,KZD,MD) — Mp = @)

From (B.108])), using (PAR), we have

A, r I_b chq auth(a,]{Z)Q/|) . (Bg, Ag,%,]/[g) A, I I_b R/ . (84,./44, 7:171/{4)
A, r l_b (gc(l auth(a, k)Q,mR/ : (B/Q, A/Q, T’Q,Ulg)

(B.109)
where BIQ == Bg U B4, ./4/2 == ./43 U A4, TIQ == I]?), U IZZ, Z/IIQ == u?, UU4.

From AT, €°(auth(a, k).Q'|) : (Bs, As, T3,Us3) in (B.109)), according to
Proposition [6, we can get

A, r I_b %C(I Q/D : (B,g, Ag,T’g,Mg) (BllO)

where By = B3 U {auth(A, K)}, 73 = T'3 U {auth(A, K)} when C = 0,
T's = T3 when C # (.

From ATk, €°(auth(a,k).Q') : (Bs, A3, T3,Us) in (B.109), we can
see that €°(auth(a,k).Q') is well typed, so that auth(a,k).Q’ is also
well typed. Suppose A, I' b, auth(a,k).Q" : (B, A, 7,U"), according
to (AUTH), auth(A,K) € 7', where I'(a) = A, I'(k) = K. Because
€°(auth(a, k).Q'|) is well typed, according to (BLOCK), we have M, C
InnerMostBlk(€C() where A(A) = (Va, ka4, Ma).

From (B.110)), (B.107) and M4 C InnerMostBlk(€°(|), according to
Proposition [7, we can get

A, T l_b %Cq Q’|a[P'] D . (8/3, Allg,Tlg,Z/{l Ung) (Blll)

where ./4”3 = Ag when C 7é @, AN3 = ./43 U ./41 when C = @

121

From (B-I1T) and ATy B : (By, Ay, To,Us) in (B.109), using (PAR), we
can get
A, F |_b Cgcq Q/|Q[P/]D . (B/g,A//g, Tlg,ul UU3) A, F l—b RI . (84,./44, ’ZZL,Z/{4)
A, r I—b CgC(I Q/|CL[P/]D|R/ . (8/3 U 84,./4”3 U ./44, 7/3 U ,]:1,1/{1 UZ/[3 UU4)
(B.112)

Before we use (SIGN AMB) or (AMB), let us analyze those conditions which
can be satisfied:

Analyze B's U By: we can get B/'s U B, C By, from By C kg, we get
Blg U 84 Q KRB.

Analyze A”3U Ay: when C # (), A’3U Ay = A'y; when C =0, A"sU Ay =
AUA; In AT, alP'g : (0, Ay, 0,U;), ambient a is within the univer-
sal ambient, that means A, T tq a[P], : (0, A1,0,U;). So that we have
VG € A(A(G) = (Vg, kg, Mg) = Mg = (). Therefore, we have
VG e (./4”3 U A4)(A(G> = (Vg, Ka, Mg) — Mg C MB).

Analyze 7’3 U7 we can get T7'3 U7y CT's.

Analyze U; UlUs UU,: we can get Uy UlUs UU, = U's UU,. From ,
we can get Uy C Vy, where I'(a) = A, A(A) = (Va,ka, My). Because
auth(a, k).Q)" is well typed within ambient b, according to (AUTH), we can
get V4 C Vp. So that we can get U; C Vp.

So that, from (B.112), using (AMB), we can get

A, r I_b ch(I Q/‘CL[P,]D‘R, . (8/3 U 84,./4”3 U .A4, T/3 U 7:1,2/{1 UZ/{;», UZ/{4)
AT o[QalP)IRs - (0, A3 U AL UL{B},0,U)

(B.113)
where A"3 U Ay U{B} = Ay when C # (), A, C A; A’3U A, U{B} =
As UA; = A when C = (). So that, according to (SUB), we have (0, A”3 U
Ay U{B}0,U) < (0, A,0,U). Using (SUBSUMPTION), we have

AT, 6@ QlalP)IRs - (0, A" U AL U{B},0,U)
0, AU AL U{B},0,U) < (0,A,0,U)
AT R 0[EC(QalPIR]s : (0, A,0,U)

(B.114)

(RED SIGN) P =sign(a,k).P'|a]@’], @ = P'|a]Q']. Suppose A, T b, sign(a, k).P’|a]Q'] :
(B, A, T,U), prove AT+, P'|a]@]x : (B, A, T,U).

122

Using (PAR), we have

AT b, sign(a, k).P' - (B, A, T,Uy) AT H,.a[@Q]:(0,As,0,Us)
AT F, sign(a, k).P'|al@Q’] : (B, A, T,U)

(B.115)
where ./4 = .Al U AQ, U= Lﬁ UZ/{Q.

From A, T" &, sign(a,k).P" : (B, A;,7,U,) in (B.115)), using (SIGN), we

have
ATH, P (B,A,T,U)

ATk, sign(a, k).P : (B, A1, T,U)
where B = B U {sign(A, K)}, I'(a) = A, A(A) = (Va, k4, My), I'(r) = R,
A(R) = (VR,KZR, MR), VA - VR, Ac VR.

(B.116)

From A, T t, a[Q'] : (0, Az, 0,Us), according to Lemma 3] we get

AT H, a[@Qx: (0, Az, 0, Us) (B.117)

From (B.116)) and (B.117)), using (PAR), we get

A,F |_’r‘ P (B/7A1777u1) A7F l_r &[Ql]k : ((2)7'/427@7[/{2)
AT F, Plal@Qlx: (B, A T,U)

(B.118)

where B = B’ U {sign(A, K)}. So that we have (B, A,7,U) < (B, A, T,U)
according to (SUB). Using (SUBSUMPTION), we have

AT H,. Plal@1x: (B, A T,U)
(B, AT, U) < (B, AT,U)
AT F, Plal@x: (B, A T,U)

(B.119)

(RED RES) P = (vn)P', Q = (vn)Q', and P' — @Q'. Suppose A, T, (vn)P’:
(B, A, T,U), prove A, T+, (vn)Q' : (B, A, T,U).
Using (RES), we have

AT P (B,AT,U
AT H, (vn)P : (B, A T,U)

(B.120)

From AT+, P': (B, A, 7,U) in (B.120), and P’ — @', according to the
hypothesis, we have A, T'F, Q' : (B, A,7,U). Using (RES), we get

ATHQ :(B,AT,U)
AT H. (vn)Q : (B, AT,U)

(B.121)

123

(RED AMB) P = a[P]s, Q = a[Q']s, and P' — Q. Suppose A, k-, a[P']s
(0, A,0,U), prove A, T b a[P]s: (0,A,0,U).

Using (AMB) or (SIGN AMB), we have

ATH, P (B, AT U
A, F |_b CL[P,]S : (®7 A? @72/{)

where I'(a) = A, A(A) = (Va, ka, My), T'(b) = B, A(B) = (Vp,kp, M),
B C Ky, ‘v’auth(D,K) € T/<A(D) = (VD,I{D,MD) = Mp = @),
VG € A/(A(G) = (Vg,ﬁg,Mg) — Mg C MA) U C vy ./4 =AU {A},
U=U U{A}.

(B.122)

From A, T+, P': (B, A, 7",U') in (B.122) and P’ — @', according to the
hypothesis, we can get A, T' , Q" : (B, A", 7",U"). According to (B.122)),
using (AMB) or (SIGN AMB), we get

ATHQ :(B,A,T U
ATy al@)s: (0, A,0,U)

(B.123)

(RED PAR) P = P/|R', Q = Q'|R, and P' — @Q'. Suppose A,T' +,. P'|R :
(B, A, T,U), prove A,T' . Q'|R' : (B, A, T,U).
Using (PAR), we have

AaPI_T P/: (Bl,Al,Z,Ul) Aarl_’l‘ R/: (BQ,AQ,%,UQ)
AT, PR - (B,AT.U)

WhereB:BluBg,A:Alu.Ag,T:'ZEUTQ,Z/{:LQUZ/IQ.

(B.124)

From A, I' -, P': (By, Ay, 71,Uy) in (B.124) and P’ — @', according to the
hypothesis, we can get A, T' . Q' : (By, A1, 71,U;). Using (PAR), we can
get

Aa]-—‘l_r Q/: (617“417,]'172/[1) A7F|_T’ R/: (BQ,AQ,,ZE,Z/{Q)
ATE QR :B.AT.U

(B.125)

(RED BC) P = P, Q@ = Q¢, and PP — @Q'. Suppose AT . P
(B,0,0,U), prove A, T+, Qe : (B,0,0,U).

Using (BLOCK), we have

ATH P (B,AT,U)

AT, Pho:(B.0,0,U) (B.126)

124

where B = B’ — type(C), VG € A(A(G) = (Vg, ke, Mg) = Mg C
type(C)), Yauth(D, K) € T'"(A(D) = (Vp,kp, Mp) = Mp C type(C)).

From A,T', P : (B, A, T",U) in (B.126)), and P’ — @', according to the
hypothesis, we can get A, ', Q' : (B, A, 7'",U). Using (BLOCK), we can
get
ATH. P (B, AT, U)
Aa r l_r QQC : (87 ®7 @,U)

(RED=) P =P, P — Q,Q = Q. Suppose A,I' . P': (B, A,T,U), prove
ATH.Q (B, AT U).

(B.127)

From A,T'+, P': (B, A, T,U) and P’ = P, according to Proposition [I we
can get A\T'H,. P: (B, AT,U).

From A,T'F,. P: (B, A,7,U) and P — @, according to the hypothesis, we
can get AT . Q: (B, A, T,U).

From A,T'F, @ : (B, A, 7,U) and Q = @', according to Proposition 1, we
can get A,I'. Q' : (B, A, 7,U) and Q = Q'.

125

Bibliography

[1]

[12]
[13]

[14]

L. Cardelli and A. D. Gordon, Mobile ambients, in Foundations of Soft-
ware Science and Computation Structures: First International Conference,
FOSSACS 798, Springer-Verlag, Berlin Germany, 1998.

Digital signature standard (dss).

S. Microsystems, Java security architecture, http://java.sun.com/j2se/
1.5.0/docs/guide/security/spec/security-spec.docl.html.

S. Microsystems, Security in java 2, http://java.sun.com/docs/books/
tutorial/securityl.2/summary/glossary.html.

J. L. V. Frontana, Dynamic Binding of Names in Calculi for Mobile Pro-
cesses, PhD thesis, KTH, Stockholm, 2001.

K. S. Sgren Nghr Christensen and M. Thrysge, Umbrella, 2004.

S. B. Anupam Palit, Bin Ren and Y. Sun, Digital signature for mobile
ambients, 2005.

D. Kotz and R. S. Gray, SIGOPS Oper. Syst. Rev. 33, 7 (1999).
R. Milner, Communication and Concurrency (Prentice-Hall, 1989).

K. G. Luca Aceto and A. Ingolfsdéttir, An introduction to milner’s
ccs, BRICS,Department of Computer Science,Aalborg University, Denmark,
2005.

J.-L. Vivas and M. Dam, From higher-order pi-calculus to pi-calculus in the
presence of static operators, in International Conference on Concurrency
Theory, pp. 115-130, 1998.

DNSRD, Dns resources directory, http://www.dns.net/dnsrd/.

T. A. S. Foundation, Authentication, authorization and access control,
http://httpd.apache.org/docs/1.3/howto/auth.html#access.

L. Cardelli, ACM Comput. Surv. 28, 263 (1996).

127

http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc1.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc1.html
http://java.sun.com/docs/books/tutorial/security1.2/summary/glossary.html
http://java.sun.com/docs/books/tutorial/security1.2/summary/glossary.html
http://www.dns.net/dnsrd/
http://httpd.apache.org/docs/1.3/howto/auth.html#access

[15] L. Cardelli, G. Ghelli, and A. D. Gordon, Lecture Notes in Computer Science
1877, 365 (2000).

[16] L. Cardelli, Mobility and security, in Foundations of Secure Computation,
edited by F. L. Bauer and R. Steinbriiggen, NATO Science Series, pp. 3-37,
IOS Press, 2000.

128

	Introduction
	Mobility and Security
	Mobile Ambients(Review)
	The Syntax

	The Characteristics of Digital Signature
	Java Sandbox Model
	Blocking

	Digital Signature for Mobile Ambients
	Syntax and Semantics
	Syntax
	Semantics

	Discussion

	Digitally Signed Ambients
	Signing Ambients
	Syntax and Semantics

	Blocking in Mobile Ambients
	Blocking in Process Calculus
	Blocking on Names: MABN
	Syntax and Semantics
	Discussion

	Blocking on Capabilities: MABC
	Syntax and Semantics
	The Comparison between MABN and MABC

	Blocking at Ambient level: MABA
	Syntax and Semantics
	Discussion

	Digitally Signed Ambients with Blocking on Capabilities
	Security Models
	Syntax and Semantics
	Advantages

	 A Type System for DSABC
	General Overview of Type Systems
	The Ideas of Type System for DSABC
	Typing Rules
	Type Safety

	Conclusion
	Achievements
	Future Work

	Appendix
	Subject Congruence
	Subject Reduction
	Bibliography

