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Chapter 1

Introduction

Over the last ten years, enormous effort has been made by many scientists and researchers

on a very active scientific area, Computational Grid. To date, significant achievements

have been obtained, but there is still a large amount of work to do in this area.

We are very interested in computational grid, and have been working on Grid Information

Service (GIS) for two semesters. This report is the documentation of the second semester

and our Master thesis. As a beginning, we introduce the fundamental concept and the

anatomy of computational grid in Section 1.1 and Section 1.2, respectively. We locate our

concern on GIS, which is an important component of computational grid, as described in

Section 1.3. We also present our work that was done last semester and that will be done in

this semester in Section 1.4.

1.1 Introduction to computational grid

To date, computers have been widely used in industry, scientific research and daily life. It

is predictable that in the next decade, people will keep seeking for more and more compu-

tational power for a large number of applications that are significant to human being and

consume huge computational power, such as weather forecast, meteorology research, physical

simulation and so on. People always feel the inadequacy of computational environment for

such computationally sophisticated purposes, even though the performance of today’s PC

has been highly improved using chips produced by vendors such as Intel and AMD, while

IBM and SUN have been continuously working hard on supercomputers.

Computational grid is an infrastructure that provides high-end computational capabilities

7



CHAPTER 1. INTRODUCTION 8

by increasing demand-driven access to computational power, use of idle capacity, and sharing

of computational results. In [15], the definition of computational grid is introduced:

“A computational grid is a hardware and software infrastructure that provides dependable,

consistent, pervasive, and inexpensive access to high-end computational capabilities.”

The hardware infrastructure of computational grid interconnects large-scale resources re-

gardless of the location, and the software infrastructure of computational grid provides the

functionalities to monitor and control the computational environment.

Dependable means that users obtain assurances that they will receive predictable, sustained

and often high levels of performance.

Consistent means that standard, accessible via standard interfaces, and operating with stan-

dard parameters.

Pervasive means that users are able to count on services always being available.

Computational grid is able to be used for a large number of applications such as distrib-

uted supercomputing, high-throughput computing, on-demand computing, data-intensive

computing, collaborative computing and so on.

1.2 The anatomy of computational grid

Figure 1.1: Grid architecture

The grid concept is indeed motivated by a real and specific problem named grid problem, as
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defined in [16]:

“The real and specific problem that underlies the grid concept is coordinated resource sharing

and problem solving in dynamic, multi-institutional virtual organizations (VO).”

In [16], a grid architecture is presented. This grid architecture is a protocol architecture

with protocols defining the basic mechanisms by which users and resources negotiate, estab-

lish, manage and exploit sharing relationship. This architecture is an extensible, open and

layered architecture identifying requirements of general classes of components, as shown in

Figure 1.1. Components within each layer build on capabilities and behaviors provided by

any lower layer.

The Fabric layer provides the resources to which shared access is mediated by grid protocol,

such as computational resources, storage systems, catalogs, network resources, sensors and

so on. The fabric components implement the local, resource-specific operations on specific

resources, including enquiry mechanisms permitting discovery of the structure, state and

capabilities of resources, and resource management mechanisms providing the control of

delivered quality of service.

The Connectivity layer defines core communication and authentication protocols required

for grid-specific network transactions. Communication protocols enable the exchange of data

between Fabric layer resources. Authentication protocols build on communication services

to provide secure mechanisms for verifying the identity of users and resources.

The Resource layer builds on Connectivity layer communication and authentication proto-

cols to define protocols for the secure negotiation, initiation, monitoring, control, accounting

and payment of sharing operations on individual resources. Resource layer implementations

of these protocols call Fabric layer functions to access and control local resources. Two

primary classes of Resource layer protocols are: information protocols, which are used to

obtain information about the structure and state of a resource, and management protocols,

which are used to negotiate access to a shared resource.

The Collective layer contains protocols and services that are global in nature and capture

interactions across collections of resources, compared with Resource layer that is focused

on interactions with a single resource. Collective components build on Resource layer and

Connectivity layer, and implement a wide variety of behaviors on the resources, for example:

• Directory services allow VO participants to discover the existence and/or properties

of VO resources. A directory service may allow its users to query for resources by name

and/or by attributes such as type, availability, or load.
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• Co-allocation, scheduling and brokering services allow VO participants to request the

allocation of one or more resources for a specific purpose and the scheduling of tasks

on the appropriate resources.

• Monitoring and diagnostics services support the monitoring of VO resources for failure,

adversarial attack, overload, and so on.

• Data replication services support the management of VO storage resources.

• Community authorization servers enforce community policies governing resource ac-

cess, generating capabilities that community members can use to access community

resources.

• Community accounting and payment services gather resource usage information for

the purpose of accounting, payment, and/or limiting of resource usage by community

members.

Application layer comprises the user applications that operate within a VO environment.

Applications are constructed in terms of, and by calling upon, services defined at any lower

layer.

An example [16] illustrates how this grid architecture functions in practice. Table 1.1 shows

the services that may be used to implement the sharing of spare computing cycles to run

ray tracing computations.

Ray Tracing
Collective (application-specific) Checkpointing, job management, failover, staging
Collective (generic) Resource discovery, resource brokering, system monitoring, com-

munity authorization, certificate revocation
Resource Access to computation; access to data; access to information

about system structure, state, performance.
Connectivity Communication (IP), service discovery (DNS), authentication, au-

thorization, delegation
Fabric Storage systems, computers, networks, code repositories, catalogs

Table 1.1: The grid services used to construct the ray tracing application

1.3 Grid Information Service

In computational grid, the discovery, characterization and monitoring of resources, services

and computations are challenging due to the considerable diversity, large numbers, dynamic
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behavior and geographical distribution of the entities in which a user might be interested. As

a result, information services are a vital part of any grid software infrastructure, providing

fundamental mechanisms for discovery and monitoring and thus for planning and adapting

application behavior [12].

A few examples illustrate the wide range of applications that rely on GISs, which indicates

the importance of GIS [12].

• A service discovery service records the identity and essential characteristics of services

available to community members. Such a discovery service might enable a user to

determine that a new site has 100 new CPUs available for approved use. GIS provides

availability information of resources to service discovery service.

• A superscheduler routes computational requests to the best available computer in a grid

containing multiple high-end computers, where best can encompass issues of architec-

ture, installed software, performance, availability, and policy. GIS provides resource

information of computers, such as system configuration, instantaneous load and pre-

diction of future availability, to superscheduler.

• A replica selection service within a data grid responds to requests for the best copy

of files that are replicated on multiple storage systems. GIS provides resource infor-

mation of storage systems and networks, such as system configuration, instantaneous

performance and predictions, to replica selection service.

1.4 Our work

Last semester, we deeply studied computational grid and did a broad survey on GIS [14].

Through the survey, we realized that the existing GISs including MDS [12] and R-GMA [11]

are unable to work effectively and efficiently in a huge grid with respect to the requirements

of scalability, fault-tolerance and flexibility. As a result, we proposed a new GIS with self-

organized network and information traveling. We designed, implemented and tested only

the Optimized Link State Routing Protocol (OLSR) (see Section 2.1.1) subsystem, which is

a distributed program applying OLSR to self-organize the network structure. The testing

results indicate that the program with suitable configuration is able to automatically build

up and then maintain the network as expected.

In this semester, we will complete the implementation of our GIS, and then evaluate the

implementation by doing experiments. The rest of this report will be described as follow.
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Chapter 2 will describe the implementation of our system. Three main focuses, namely the

components, the working procedures and performance data measurement, are presented one

by one.

In Chapter 3, first we introduce the environment for our experiments. Second, all important

parameters are explained. Three main aspects, namely capacity, availability and scalability,

are described, respectively in Section 3.3, 3.4 and 3.5.

Chapter 4 will present the result of our experiment regarding capacity, availability and

scalability.

In Chapter 5, we analyze the results as described in Chapter 4. The main focuses are about

scalability and information traveling. After that, we design new experiments to observe more

behaviors of our system.

Chapter 6 will compare the results with different network sizes and shapes, namely compare

our system of ring backbone with line or net backbone. We also present the comparison

when the size of ring backbone is reduced.

Chapter 7 presents related work. We will make comparison with MDS and also introduce

two other approaches that also use peer-to-peer to develop GIS.

In Chapter 8, we present the conclusion and propose our future work.



Chapter 2

Implementation

This chapter mainly describes how we build up the GIS from our proposal. In addition,

Optimized Link State Routing Protocol (OLSR) and Twisted are introduced.

2.1 Introduction

2.1.1 Introduction to OLSR

In this section, we briefly introduce OLSR, which was developed for mobile ad hoc network

(MANET) and documented in the Request For Comment (RFC) 3626 [3]. The RFC 3626

defines the core functionality and a set of additional functions. The key point of OLSR is

multipoint relays (MPRs), which will be presented in Section 2.1.1.2. We also present a

short description of the core functionality in Section 2.1.1.3.

2.1.1.1 Overview of OLSR

OLSR is a proactive routing protocol, and it inherits the stability of the classic link state

algorithm and has the advantage of having routes immediately available when needed. OLSR

is an optimization over the classical link state protocol, tailored for mobile ad hoc networks.

The reason why we utilize OLSR in our proposal is that OLSR has two features that are

very valuable for building a GIS. These two features are quick response to network changes

and optimized information flooding.

In reality, a GIS is always built on a large and unstable computer network. Nodes of a

13
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GIS might crash from time to time. As a result, quick response to network changes is very

important to a good GIS.

In OLSR, only nodes, selected to be MPRs (see Section 2.1.1.2), are responsible for for-

warding control traffic, intended for diffusion into the entire network. Thus OLSR highly

optimizes the flooding of information among nodes on the network. This outstanding ap-

proach is very meaningful to a GIS. In a grid system, resource information is geographically

distributed on the network, and a GIS should efficiently provide resource information. This

leads to frequent information exchanges among the nodes of a GIS. Using optimized infor-

mation flooding will highly reduce unnecessary information transmission inside a GIS.

2.1.1.2 Mutipoint relays

The basic idea of multipoint relays is to minimize the overhead of flooding messages in the

network by reducing redundant retransmissions.

Each node in the network selects a set of nodes in its symmetric 1-hop neighbors which

may retransmit its messages. This set is called the Multipoint Relay (MPR) set of that node.

This set must cover all symmetric strict 2-hop neighbors. This means that the MPR

Set of node A, denoted as MPR(A), is a subset of the set of the symmetric 1-hop neighbors

of A, such that every symmetric strict 2-hop neighbor of A must have at least a symmetric

link to a node in MPR(A).

The terms symmetric 1-hop neighbor and symmetric strict 2-hop neighbor are definitely

defined in [3]. Brief descriptions are as follows. The symmetric 1-hop neighborhood of any

node X is the set of nodes which have at least one symmetric link1 to X. The symmetric

strict 2-hop neighborhood of X is the set of nodes, excluding X itself and its neighbors,

which have a symmetric link to some symmetric 1-hop neighbor, with willingness different

of WILL NEVER2, of X.

Figure 2.1 illustrates that node A selects nodes {M1,M2,M3,M4} as its MPR Set. All 2-hop

neighbors {B1,B2,...,B8} of A can be reached through its MPRs. Node N1 and N2 will not

retransmit traffic from A because they are not MPRs of A. N1 is not a MPR due to the fact

that it has no links to symmetric strict 2-hop neighbors of A. N2 is not a MPR because it

does not have a symmetric link to symmetric strict 2-hop neighbors.

1Symmetric link: a verified bi-directional link between two OLSR interfaces.
2A node with willingness WILL NEVER must never be selected as MPR by any node.
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Figure 2.1: Muiltipoint Relays

2.1.1.3 Core functioning

Core functioning is made up of the following functions:

Packet Format and Forwarding: This function provides specification of the packet format

for OLSR communication. This also provides processing and forwarding messages mecha-

nism.

Link Sensing: The purpose of this function is to establish the links over the nodes. The

information related to links is stored in local link information base. This function can be

accomplished through periodic emission of HELLO message3.

Neighbor Detection: This function maintains the neighborhood information base. By

having association with Link Sensing, it can populate the Neighbor Set4, 2-hop Neighbor

Set5 and MPR Set.

MPR Selection and Signaling: The objective of MPR selection is for a node to select

a subset of its neighbors such that a broadcast message, retransmitted by these selected

neighbors, will be received by all nodes 2 hops away. The information required to perform

3HELLO message is transmitted only between two neighboring nodes. Its format and generation is
detailedly described in [3].

4Neighbor Set is a set of records that a node makes to describes all neighbors.
52-hop Neighbor Set is a set of records that a node makes to describe symmetric (and, since MPR links

by definition are also symmetric, thereby also MPR) links between its neighbors and the symmetric 2-hop
neighborhood.
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this calculation is provided through periodic exchange of HELLO message.

Topology Discovery: This function is performed through exchanging topology controll

message. The purpose is to provide sufficient link-state information for each node in order

to have a route calculation.

Route Calculation: This function computes the routing table for each node. This is based

on given link-state information.

Since the optimized information flooding approach is of interest to our proposal, only four

core functions are necessary: Packet Format and Forwarding, Link Sensing, Neighbor De-

tection, MPR Selection and Signaling.

2.1.2 Introduction to Twisted

Twisted is an open source networking framework, which is implemented in Python and devel-

oped by Twisted Matrix Laboratories [8]. Twisted framework provides rich APIs at multiple

levels of abstraction to facilitate different kinds of network programming and different plat-

forms. With Twisted’s event-based and asynchronous framework, we can work with multiple

network connections at once within a single thread.

Figure 2.2: High-level overview of Twisted
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We choose Perspective Broker (one of core elements in Twisted that provides Remote Method

Call (RPC) and supports exchanging serialized Python objects) to implement the commu-

nication mechanism in our program. Figure 2.2 demonstrates the high-level overview of

Twisted.

As described in [7], the Perspective Broker (abbreviated PB) is based upon two central

concepts:

• serialization: PB provides the mechanism that an object can be serialized into into a

chunk of bytes, and this serialized object will be able to be sent to the other side.

• Remote Method Call : PB also provides the mechanism that a local object can have

methods that can be invoked remotely.

Due to the fact that our network structure is peer-to-peer, each node is both acting as server

and client. Being a server, each node simply inherits pb.Root class in order to support referen-

cable objects. To define a method that can be invoked remotely, the method name must begin

with remote prefix. Being a client, each node makes a connection to the server and requests

the reference of the server’s object. When the connection has been made, the client side can

invoke remote methods on the server by calling remote obj.callRemote("name of remote method")

(remote obj is the reference to the remote object.).

Figure 2.3 shows the fragments of the code which are implemented for the server side by

using PB. ISNodeHandler is a class that provides all methods that the other nodes can call

remotely. After running method run, a node will start a service that listens on the server port

and dispatches the remote method calls to the appropriate methods. The six remote methods

such as remote is static unit existed and so on are invoked by Producers or other nodes to

transfer resource information.

Figure 2.4 shows the fragments of the code which are implemented for the client side by using

PB. Class MakeConnection is used to make the connection to the server. When the connection

is made, the reference to the remote object is stored. Afterward method publish static unit

will be invoked and the method remote is static unit existed in the server side will be called

through the function call remote obj.callRemote("is static unit existed",...).

Resource information is transferred among nodes by using Python List. There is no need

to serialize Python List. However, serialization is necessary for HELLO messages, which are

periodically exchanged between two neighboring nodes to maintain network structure. Each

HELLO message is actually an object that will be passed as an argument in a RPC when

the sender is acting as client.
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from twisted.spread import pb, jelly

from twisted.internet import reactor, defer

class ISNodeHandler(pb.Root):

# remote method is named with remote_ prefix

def remote_is_static_unit_existed(self, ...):

#method body

...

def remote_is_dynamic_unit_existed(self, ...):

...

def remote_add_static_unit(self, ...):

...

def remote_update_static_unit(self, ...):

...

def remote_add_dynamic_unit(self, ...):

...

def remote_update_dynamic_unit(self, ...):

...

# start listening on server_port

def run(self):

reactor.listenTCP(server_port, pb.PBServerFactory(self))

Figure 2.3: Server side using Perspective Broker

class MakeConnection:

def set_up_connection(self):

...

# make a connection

factory = pb.PBClientFactory()

# get referenceable object

factory.getRootObject().addCallbacks(self.connection_made, ...)

reactor.connectTCP(...)

...

def connection_made(self, remote_obj):

self.root.remote_objs.append([self.neighbor, remote_obj])

...

class StaticHandler:

def publish_static_unit(self):

...

self.remote_obj.callRemote("is_static_unit_existed", ...).addCallbacks(...)

Figure 2.4: Client side using Perspective Broker
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class HelloMessage:

# the class body

...

class CopyableHelloMessage(HelloMessage, pb.Copyable):

# the class body

...

class ReceivableHelloMessage(pb.RemoteCopy, HelloMessage):

# the class body

...

def init_copyable_hello_msg():

pb.setUnjellyableForClass(CopyableHelloMessage, ReceivableHelloMessage)

Figure 2.5: Serialization using Perspective Broker

In order to provide a mechanism for serializing the HelloMessage objects, the following steps

have to be done:

1. A normal class HelloMessage is defined, but the objects of this class can not be passed

as an argument of a RPC. As a result, we have to define a new class that inherits class

HelloMessage as described in step 2.

2. Class CopyableHelloMessage is defined to inherit HelloMessage and pb.Copyable provided

by Perspective Broker. The objects of this new class can be passed as an argument

of a RPC. Therefore, whenever a node wants to transfer the HelloMessage object, an

instance of class CopyableHelloMessage should be created.

3. In the other node, when receiving the CopyableHelloMessage object, an instance of

class ReceivableHelloMessage will be created. Class ReceivableHelloMessage inherits

HelloMessage and pb.RemoteCopy. The objects of this class are used to receive the ob-

jects of class CopyableHelloMessage. The mapping between class CopyableHelloMessage

and ReceivableHelloMessage is described in step 4.

4. Function init copyable hello msg will be used to set up the mapping between two

classes: CopyableHelloMessage and ReceivableHelloMessage. This method should be

called before transferring the CopyableHelloMessage object as an argument of a RPC.

Figure 2.5 shows the fragments of 4 steps mentioned above.
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2.2 Components

In our proposal, the GIS has three components, namely Consumer, Producer and IS node,

as depicted in Figure 2.6.

Figure 2.6: Components of the GIS

For the purpose of experiments, we write three programs, MultiConsumer, MultiProducer

and ISNode, to implement three components of our GIS.

2.2.1 MultiConsumer

MultiConsumer is a program that simulates a predefined number of Consumers. A Con-

sumer periodically creates and sends queries to local IS node6, and then retrieves matched

information from local IS node.

2.2.2 MultiProducer

MultiProducer is a program that simulates a predefined number of Producers. A Producer

simulates generating resource information that belongs to a site, and periodically publishes

resource information of this site to local IS node7. We assume there is only one resource

6A local IS node of a Consumer is the IS node that is manually assigned to a Consumer and contacted
by this Consumer by default.

7A local IS node of a Producer is the IS node that is manually assigned to a Producer and contacted by
this Producer by default.
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at each site, so the resource information of a site is actually that of a single cluster or

supercomputer.

2.2.3 ISNode

ISNode is a program that implements an IS node. IS nodes construct a peer-to-peer network,

and each IS node performs identical tasks. The main tasks of an IS node are divided

into a few aspects: self-organizing network structure; information storage and management;

information traveling; and query answering.

The task of self-organizing network structure is that IS nodes self-organize the network

structure using OLSR. The implementation is described in Section 2.3.1.

The task of information storage and management is to store and manage resource information

in the local storage. The implementation is described in Section 2.3.2.

The task of information traveling is to exchange information with other IS nodes. The

implementation is described in Section 2.3.3.

The task of query answering is to answer the queries from Consumers or other IS nodes.

The implementation is described in Section 2.3.4.

2.3 Working procedure

2.3.1 Self-organized Network

We take most of the OLSR algorithms for Multipoint Relay (MPR) selection and also in-

troduce a few modifications in our proposal, for the purpose of setting up a self-organized

and fault-tolerant network structure. These modifications are: HELLO message transmis-

sion mechanism; Neighbor Set initialization at startup; and re-construction upon failure of

a node.

The description, design, implementation and testing of applying OLSR have been described

in our previous report [14]. The testing results show that the system using OLSR is able to

set up and maintain a self-organized and fault-tolerant network structure as expected.
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2.3.2 Resource information and query storage

In this section, we introduce what and how resource information is stored in our GIS imple-

mentation, in Section 2.3.2.1 and 2.3.2.2 respectively. In addition, we present how queries

are stored in Section 2.3.2.3.

2.3.2.1 Introduction to resource information

In our GIS implementation, MultiProducer simulates a predefined number of Producers. A

Producer simulates generating resource information that belongs to a site. For the purpose

of simulation, we studied NorduGrid information system [17], and then decided to take

most of the attributes regarding a cluster defined in NorduGrid information system. These

attributes describe the static and dynamic properties of a cluster.

Tables 2.1-2.5 show the attributes that are chosen. For simplicity, we choose only the at-

tributes regarding 3 categories of resource information, namely Cluster, Queue and Job

information. Detailed descriptions about these attributes are presented in the paper of

NorduGrid information system [10].

The Cluster and Queue information are split into 2 sub-categories, namely static and dy-

namic, due to the fact that some attributes are changing more frequently than others. The

Job information is always considered as dynamic. By splitting into 2 sub-categories, more

frequently changing attributes are being updated as needed, while others can hold for a

longer time. As a result of splitting, we have (i) dynamic and static Cluster information; (ii)

dynamic and static Queue information; and (iii) Job information.

In addition, we introduce a few new attributes into dynamic and static Cluster informa-

tion for the purpose of information traveling, as shown at the end of Table 2.1. For a

piece of resource information, STATIC TTL defines how far it can travel (hops); STA-

TIC VALIDFROM and STATIC VALIDTO define when it was generated and when it will

be expired respectively, and expired information will be removed; STATIC ORIGINATOR is

the address of this information’s Producer’s local IS node; STATIC SENDER is the address

of the sender IS node from which this piece of resource information came. The counterparts

at the end of Table 2.2 have the similar meanings.

The size of the resource information generated by a Producer on behalf of a cluster is about

7800 Bytes (We have this number by dumping resource information of a cluster into a file).
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Item

STATIC CLUSTER NAME

CLUSTER ALIASNAME

CLUSTER CONTACTSTRING

CLUSTER SUPPORT

CLUSTER LOCATION

CLUSTER OWNER

CLUSTER ISSUERCA

CLUSTER LRMS TYPE

CLUSTER LRMS VERSION

CLUSTER LRMS CONFIG

CLUSTER HOMOGENEITY

CLUSTER ARCHITECTURE

CLUSTER OPSYS

CLUSTER NODECPU

CLUSTER NODEMEMORY

CLUSTER TOTALCPUS

CLUSTER CPUDISTRIBUTION

CLUSTER SESSIONDIR TOTAL

CLUSTER CACHE TOTAL

CLUSTER RUNTIMEENVIRONMENT

CLUSTER LOCALSE

CLUSTER MIDDLEWARE

CLUSTER NODEACCESS

CLUSTER COMMENT

STATIC TTL

STATIC VALIDFROM

STATIC VALIDTO

STATIC ORIGINATOR

STATIC SENDER

Table 2.1: Static Cluster information

Item

DYNAMIC CLUSTER NAME

CLUSTER SESSIONDIR FREE

CLUSTER CACHE FREE

CLUSTER TOTALJOBS

CLUSTER USEDCPUS

CLUSTER QUEUEDJOBS

DYNAMIC TTL

DYNAMIC VALIDFROM

DYNAMIC VALIDTO

DYNAMIC ORIGINATOR

DYNAMIC SENDER

Table 2.2: Dynamic Cluster information
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Item

STATIC QUEUE CLUSTER NAME

QUEUE NAME

QUEUE MAXRUNNING

QUEUE MAXCPUTIME

QUEUE DEFAULTCPUTIME

QUEUE SCHEDULINGPOLICY

QUEUE TOTALCPUS

QUEUE NODECPU

QUEUE NODEMEMORY

QUEUE ARCHITECTURE

QUEUE OPSYS

Table 2.3: Static Queue information

Item

DYNAMIC QUEUE CLUSTER NAME

QUEUE NAME

QUEUE STATUS

QUEUE GRIDRUNNING

QUEUE GRIDQUEUED

Table 2.4: Dynamic Queue information

Item

JOB EXECCLUSTER

JOB EXECQUEUE

JOB GLOBALID

JOB GLOBALOWNER

JOB JOBNAME

JOB SUBMISSIONTIME

JOB STATUS

JOB QUEUERANK

JOB CPUCOUNT

JOB STDOUT

JOB STDERR

JOB GMLOG

JOB RUNTIMEENVIRONMENT

JOB SUBMISSIONUI

JOB CLIENTSOFTWARE

JOB PROXYEXPIRATIONTIME

Table 2.5: Job information
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2.3.2.2 Resource information data model

In previous report, we mentioned that the resource information data model of our GIS uses

XML format. However, using XML format requires a lot of operations to convert back and

forth and to retrieve the content of resource information. If we apply the XML data model

in our GIS implementation, the performance might not be as good as expected. As a result,

we decided to drop the idea of using XML in our GIS implementation.

Another solution has been examined, which is using the relational database as data model.

In the very beginning of this semester, we tried to use a relational database system, MySQL

[2]. Unfortunately, the result showed that the relational database is not suitable for our

implementation. The reason is because in our implementation, there is too much information

exchanging among IS nodes. Because information is being added or modified frequently in

each IS node, a huge number of database operations are required. We discovered that using

MySQL the performance was not good. We also tried one in-memory relational database

system, Gadfly [1], but the performance was even worse.

We choose to apply Python dictionary [5] for storing data, and thus resource information

data is kept in main memory. Python dictionaries are created by placing a comma-separated

list of key: value pairs within braces, for example: {’jack’: 4098, ’mike: 4127}. The following

list is a brief summary of Python dictionary characteristics:

• A dictionary is an unordered collection of objects.

• Values are accessed using a key rather than by using an ordinal numeric index.

• A dictionary can shrink or grow as needed.

• The contents of dictionaries can be modified.

• Dictionaries can be nested.

• Dictionaries are not sequences. Sequence operations such as slice cannot be used with

dictionaries.

Specifically, the Python dictionary is used for storing resource information published from

Producers and from other IS nodes. The size of the resource information generated by a

Producer on behalf of a site is about 7800 Bytes, so storing resource information data in

memory is acceptable for current computers that usually contain 512M Bytes memory or

even more.
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self.staticcluster = {}

self.dynamiccluster = {}

self.static_queue = {}

self.dynamic_queue = {}

self.job = {}

Figure 2.7: Initialize the data model

Figure 2.7 shows the initial codes for our data storage, and at this moment all the storage

variables are set to be empty.

staticcluster is the dictionary for storing static Cluster information. Its key is attribute

STATIC CLUSTER NAME, namely the name of the cluster. Its value is a Python List,

which has the structure as defined in Table 2.1.

dynamiccluster is the dictionary for storing dynamic Cluster information. Its key is attribute

DYNAMIC CLUSTER NAME, namely the name of the cluster. Its value is a Python List,

which has the structure as defined in Table 2.2.

static queue is a 2-level dictionary for storing static Queue information. Its key is attribute

STATIC QUEUE CLUSTER NAME, namely the name of the cluster holding the queue. Its

value is a bottom-level Python dictionary. The key of bottom-level dictionary is attribute

QUEUE NAME, namely the name of the queue. The value of bottom-level dictionary is a

Python List, which has the structure as defined in Table 2.3.

static queue is a 2-level dictionary for storing dynamic Queue information. Its key is attribute

DYNAMIC QUEUE CLUSTER NAME, namely the name of the cluster holding the queue.

Its value is a bottom-level Python dictionary. The key of bottom-level dictionary is attribute

QUEUE NAME, namely the name of the cluster. The value of bottom-level dictionary is a

Python List, which has the structure as defined in Table 2.4.

job is a 3-level dictionary for storing Job information. Its key is attribute JOB EXECCLUSTER,

namely the name of the cluster executing the job. Its value is a middle-level Python dic-

tionary. The key of middle-level dictionary is attribute JOB EXECQUEUE, namely the

name of the queue containing the job. The value of middle-level dictionary is a bottom-

level Python dictionary. The key of bottom-level dictionary is attribute JOB GLOBALID,

namely the unique global ID of the job. The value of bottom-level dictionary is a Python

List, which has the structure as defined in Table 2.5.
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2.3.2.3 Using Python dictionary for query storage

Queries are stored not only at IS node but also at Consumer. Query validation ensures that

if some queries have not been answered for a specific period of time, namely the life-time of

queries, they will be removed.

Item Description

QUERY ID unique global ID of this query

QUERY CONSU ADDR the address of the Consumer that created this query

QUERY TYPE the query type

QUERY CONTENT the query details

QUERY TTL the Time To Live, which defines how far it can travel

QUERY VALIDFROM the time when this query was created

QUERY VALIDTO the time when this query will be expired

QUERY ORIGINATOR the local IS node of the Consumer that created this query

QUERY SENDER the IS node from which this query came

QUERY ANSWERED the flag that shows whether this query has been answered or not

QUERY CONSUMER ID the ID of the Consumer that created this query (this ID is used to

identify a Consumer simulated by MultiConsumer.)

Table 2.6: Query storage data structure

We also choose Python dictionary for query storage. At IS node or Consumer, query storage

is the dictionary for storing all the queries that were received. Its key is attribute QUERY ID,

namely the unique global ID of a query. Its value is a Python List, which has the structure

defined in Table 2.6.

Specifically, QUERY VALIDFROM and QUERY VALIDTO are used to assure the vali-

dation of queries. QUERY ANSWERED is used to keep track of queries that have been

answered, and there are no further operations for answered queries. QUERY SENDER and

QUERY ORIGINATOR are used to avoid transmitting queries back to the originator or

previous sender IS nodes.

2.3.3 Information traveling

An outstanding feature of our proposal is that resource information is traveling among IS

nodes. The procedure is as follows:

1. MultiProducer that simulates a predefined number of Producers periodically provides

resource information to the local IS node.

2. The local IS node receives the information, stores and manages the information in the
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local storage, and then forwards the information to all its neighbor IS nodes8 after

subtracting 1 from the TTL of the information.

3. Any neighbor IS node receives the information, checks the validity of this information:

invalid information is discarded immediately, and there will be no further action; if the

information is valid, it stores the information in the local storage.

4. If the information is from an IS node in MPR Selector Set, it will be forwarded to all

the neighbor IS nodes again after subtracting 1 from the TTL of the information.

The information traveling in our GIS implementation has two features, namely unit transfer

and periodical publishing.

The resource information of a cluster consists of Cluster, Queue and Job information. We

consider the whole resource information of a cluster as a unit. An IS node uses one Remote

Procedure Call (RPC) to transfer one unit. There are two types of units, insert-unit and

update-unit. While insert-unit is complete, update-unit is a subset of insert-unit and thus

much smaller. The purpose of update-unit is to reduce the traffic, because update-unit only

contains changing attributes, for instance, the number of available CPUs. Before an IS node

transfers a unit to a neighbor IS node, it first checks the existence of the cluster name in the

local storage of the neighbor IS node and compare the freshness, and then decides to insert,

update the unit or do nothing. The publishing from MultiProducer to the local IS node also

works in the same way.

Information traveling is based on periodical actions. Figure 2.8 shows two functions periodic

publish static unit and periodic publish dynamic unit are being revoked periodically. These

two functions are used to transfer resource information to other IS nodes. Due to the fact that

there are 2 types of resource information: dynamic and static, 2 intervals9 are used. Function

periodic publish static unit is called at static interval, while periodic publish dynamic unit is

called at dynamic interval.

2.3.4 Query answering

In our system, for simplicity, we only implement 3 types of queries: (i) query for a specific

number of free CPUs; (ii) query for the whole cluster information; (iii) query for a specific

job information. These 3 types of queries are all latest-state query. Other types of queries

can be implemented in the future if necessary.

8A neighbor IS node is an IS node in the Neighbor Set.
9static interval: STATIC PUBLISH INTERVAL; dynamic interval: DYNAMIC PUBLISH INTERVAL.
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self.static_scheduler = task.LoopingCall(self.periodic_publish_static_unit)

self.static_scheduler.start(STATIC_PUBLISH_INTERVAL)

self.dynamic_scheduler = task.LoopingCall(self.periodic_publish_dynamic_unit)

self.dynamic_scheduler.start(DYNAMIC_PUBLISH_INTERVAL)

Figure 2.8: Setup for information traveling

In this section, we first introduce the query processing in Section 2.3.4.1, and then describe

the information retrieving and serving in Section 2.3.4.2.

2.3.4.1 Query processing

In the case that an IS node receives a query from a Consumer, the query processing is as

follows:

1. The IS node searches the matched resource information for the query in local storage.

2. If the IS node has the matched information, it directly serves the matched information

to the Consumer; if the IS node does not have the matched information, it claims that

it is the source IS node10 of this query, subtracts 1 from the TTL of the query and

then forwards this query to its neighbor IS nodes.

In the case that an IS node receives a query from another IS node, the query processing is

as follows:

1. The IS node first checks the validity of the query. An invalid query is discarded

immediately and there will be no further action.

2. If the query is valid, the IS node searches the matched resource information for this

query in the local storage.

3. If the IS node has the matched information, information retrieving and serving happens

between this IS node and source IS node, as described in Section 2.3.4.2. If the IS

node does not have the matched information and the query is from an IS node in MPR

Selector Set, it subtracts 1 from TTL of the query and then forwards this query to its

10The source IS node of a query is the local IS node of the Consumer that created this query.
QUERY ORIGINATOR is the address of the source IS node.
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from twisted.spread import pb, jelly

from twisted.internet import reactor, defer

class ISNodeHandler(pb.Root):

...

#remote method is named with remote_ prefix

def remote_request(self,...):

...

def remote_query(self,...):

...

def forward_query(self,...):

...

def get_cpu_info(self,...):

...

def get_job_info(self,...):

...

def get_cluster_info(self,...):

...

#start listening on server_port

def run(self):

server_port = ...

reactor.listenTCP(server_port, pb.PBServerFactory(self))

Figure 2.9: Query processing methods on IS node

neighbor IS nodes; the query from the IS node that is not in MPR Selector Set will

never be forwarded.

Unlike information traveling, which is based on periodic actions happening at IS node, query

forwarding is immediate. The implementation of query processing is based on Perspective

Broker framework provided by Twisted. Figure 2.9 shows the main methods of query process-

ing.

A query is created by Consumer. Remote method remote request is called by Consumer to

deliver a query. Remote method remote query is called by any remote IS node to deliver a

query. Local method get cpu info, get job info and get cluster info are used to get requested

information from local storage. Local method forward query is to forward queries to other IS

nodes. As mentioned in Section 2.3.2.3, each query has the attribute QUERY ORIGINATOR

and QUERY SENDER. A query will never be forwarded to its originator or sender IS node.
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from twisted.spread import pb, jelly

from twisted.internet import reactor, defer

class ISNodeHandler(pb.Root):

...

#remote method is named with remote_ prefix

def remote_query_result(self, qinfo, query_result):

...

#start listening on server_port

def run(self):

reactor.listenTCP(server_port, pb.PBServerFactory(self))

Figure 2.10: Remote method for information retrieving and serving on IS node

2.3.4.2 Information retrieving and serving

Information retrieving and serving happens between the servant IS node11 and source IS

node. For latest-state query, the working procedure of information retrieving and serving is

as follows:

1. Servant IS node delivers matched resource information of a query to source IS node.

2. If this query has been answered before, source IS node drops the answer and there

will be no further actions; otherwise, source IS node serves the matched resource

information to Consumer and then labels this query as answered .

The implementation of information retrieving and serving is also based on Perspective Broker

framework provided by Twisted. As shown in Figure 2.10, remote method remote query result

is called by servant IS node to transfer requested information to source IS node. As shown

in Figure 2.11, remote method remote query result is called by source IS node to transfer

requested information to Consumer.

2.3.5 Producer and Consumer membership maintenance

For simplicity, the local IS node is manually assigned to a Consumer or a Producer, and an

IS node does not record which Producer is publishing resource information to it.

11A servant IS node is the remote IS node that has the matched information is ready to serve.



CHAPTER 2. IMPLEMENTATION 32

from twisted.spread import pb, jelly

from twisted.internet import reactor, defer

class MultiConsumerHandler(pb.Root):

...

#start listening on server_port

def run(self):

try:

server_port = ...

reactor.listenTCP(server_port, pb.PBServerFactory(self))

...

#remote method is named with remote_ prefix

def remote_query_result(self, ...):

...

Figure 2.11: Remote method for information retrieving and serving on Consumer

2.3.6 Time synchronizing

Our GIS has to check the validity of queries and resource information, so a global time is

crucial. All our experiments will be done at the cluster of Aalborg University, which is a

stable and well-managed environment that uses NTP to synchronize the clocks of machines.

Actually NTP is widely used in grid systems, because time synchronizing is crucial to a grid.

We assume at the cluster the time is always synchronized, so currently there is not any time

synchronizing mechanism in our implementation.

2.3.7 Security

Because our proposal focuses on scalability, fault-tolerance and flexibility, we temporarily do

not consider any security issues. There is nothing regarding security in our implementation

at present.

2.3.8 Virtual Organization

For simplicity, we assume that our GIS implementation works only within one VO. There is

no consideration regarding multiple VOs in our current implementation.
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2.4 Performance data measurement

This section introduces how the results are recorded during our experiments. The primary

performance metrics in our study are the values regarding query answering and information

traveling. We collect performance data in memory and dump the data into files before the

termination of the system. With respect to query answering, we record performance data at

MultiConsumers, while the data is recorded at ISNodes regarding information traveling.

2.4.1 Query anwsering

For the whole system, we consider the things such as: the total number of queries that

have been made and answered, the maximum, minimum and average response time, and the

total throughput. The throughput is the average number of queries answered per second.

The response time is the amount of time required for the IS node to answer a query from a

Consumer.

At each MultiConsumer, the numbers of queries made and answered are obtained by using

counting variables. For response time of a query, actually the attribute QUERY VALIDFROM

recorded the timestamp when the Consumer made this query. When the Consumer got the

answer, the timestamp at that moment is also recorded. The response time is calculated

using those two timestamps, and correspondingly the maximum, minimum, and average re-

sponse time are being updated. For throughput, the duration of making query is recorded.

Thus the throughput is calculated using this duration and the number of queries answered.

At each MultiConsumer, data is dumped into files. In order to collect the data from all

MultiConsumers and generate a summary for the whole system, a program was written to

handle all files.

2.4.2 Information traveling

Regarding information traveling, these things should be taken into consideration: the max-

imum, minimum, and average traveling time of units versus the number of hops that the

units travel.

When the resource information is first published as a unit (see Section 2.3.3) from local

Producers to the IS node, the timestamp is recorded for the unit and put into the unit.

The path that the unit travels is also recorded and put into the unit. Whenever this unit
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arrives at a new IS node, the timestamp at that moment is recorded before this unit is

put into the local storage. Thus at each ISNode, the traveling time and the number of

hops are calculated using those timestamps and the path respectively. Correspondingly,

the maximum, minimum, and average traveling time versus the number of hops are being

updated.

The recorded data at ISNode is finally dumped into files. We also wrote a program to collect

the data from all ISnodes and generate a summary.

2.5 Summary

This chapter was mainly dedicated to describe how we implemented our GIS architecture.

The implementation is running well, and we will design some experiments regarding capa-

bility, scalability and scalability. These experiments will be presented in Chapter 3.



Chapter 3

Design of experiments

In this chapter, we will first introduce the environment for our experiments. The second

section will describe several important parameters for each component of our GIS system.

The remaining 3 sections focus on describing and designing experiments for verifying the

Capacity (Section 3.3), Availability (Section 3.4) and Scalability (Section 3.5).

3.1 Experimental environment

At Department of Computer Science, Aalborg University, there is a cluster named Benedict

cluster, which consists of 43 processing machines (brother1-36, sister1-7), a server (mother),

a fileserver (westmalle), and a gateway (benedict), as shown in Figure 3.1.

The brother machines each contain one 2.8GHz Pentium IV processor and have 2GB of RAM.

The sister machines each contain two 733MHz Pentium III processors and have 2GB of RAM.

The server (benedict) acts as gateway to the world, access point from the world (via ssh), and

frontend for performing interactive tasks such as compiling softwares and submitting batch

jobs. The server (mother) takes care of user authentication, file applications, scheduling,

backups and other administrative tasks. The fileserver (westmalle) takes care of file serving

of user files. All the machines are connected via Gigabit Ethernet switched network.

Torque system [6] is installed on the Benedict cluster. What it does is that users can submit

jobs to Torque and Torque will take care of scheduling and executing the job. Torque is a

branch of OpenPBS [4]. Torque server is running on the server (mother). Users can submit

jobs to it only from the gateway (benedict). Torque will schedule the jobs to the processing

machines and run them.

35
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Figure 3.1: Benedict cluster

All our experiments will be run on Benedict cluster. We choose only brother machines to

run our GIS system, because they are more powerful.

3.2 Parameters for experiments

In this section, we describe some important parameters that are used in all the experiments.

Changing the value of each parameter will lead to different results. Depending on different

network structures, the value of each parameter is set up differently to achieve the exper-

imental purposes. Table 3.1 shows a list of important parameters. The following Sections

(3.2.1, 3.2.2 and 3.2.3) will explain the meaning of each parameter one by one.

3.2.1 Parameters for ISNode

• ISNODE RUNNING TIME: This parameter specifies the total running time of each IS node.

Each IS node will stop after this running time period, and as a result, the GIS system

will stop after all the IS nodes are stopped. In fact, the ISNODE RUNNING TIME is also the

running time of our GIS system. This running time is measured in minutes (m).
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Parameters for ISNode

ISNODE RUNNING TIME (m)

ISNODE STATIC PUBLISH INTERVAL (s)

ISNODE DYNAMIC PUBLISH INTERVAL (s)

Parameters for Producer

PRODUCER RUNNING TIME (m)

PRODUCER STATIC PUBLISH INTERVAL (s)

PRODUCER DYNAMIC PUBLISH INTERVAL (s)

STATIC INFO LIFETIME (m)

DYNAMIC INFO LIFETIME (m)

PRODUCER DELAYING TIME (s)

PRODUCER STATIC TTL

PRODUCER DYNAMIC TTL

PRODUCER NO OF INSTANCE

Parameters for Consumer

CONSUMER RUNNING TIME (m)

CONSUMER NO OF CONSUMER

CONSUMER QUERY TTL

CONSUMER QUERY INTERVAL (s)

CONSUMER DELAYING TIME (s)

CONSUMER BEFOREHAND (s)

CONSUMER QUERY LIFETIME (m)

CONSUMER QUERY STRUCTURE

Table 3.1: Parameters for experiments

• ISNODE STATIC PUBLISH INTERVAL: This parameter specifies the frequency of making static

resource information travel. At each static publish interval, the static resource infor-

mation from the local storage will be transfered from one IS node to the neighbor IS

nodes. This interval is measured in seconds (s).

• ISNODE DYNAMIC PUBLISH INTERVAL: This parameter has the same meaning with static in-

terval, but it is used for dynamic information.

3.2.2 Parameters for Producer

• PRODUCER RUNNING TIME: This parameter specifies the running time of each Producer.

Within the running time of our GIS system, all Producers publish information to their

local IS nodes. Thus, the value of this Producer running time should be less than the

running time of the GIS system. The reason is that Producers only need to publish

information to their local IS nodes when IS nodes are running. After this running time,

Producers will automatically stop. This running time is measured in minutes (m).

• PRODUCER DELAYING TIME: This parameter is used to delay the process of publishing in-

formation from Producers to their local IS nodes. The reason to use this parameter
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is because the system needs to be established and stable before any further processes

can be operated. Thus, this delaying time value should be long enough. This delaying

time is measured in seconds (s).

• PRODUCER STATIC PUBLISH INTERVAL: This parameter specifies the frequency of publishing

information for static information. At each static publish interval, static information

from Producers will be published to their local IS nodes. In fact, in our GIS system,

this value is equal to the ISNODE STATIC PUBLISH INTERVAL. This interval is measured in

seconds (s).

• PRODUCER DYNAMIC PUBLISH INTERVAL: This parameter has the same meaning with the static

interval, but it is used for dynamic information. In fact, this value is equal to the

ISNODE DYNAMIC PUBLISH INTERVAL.

• STATIC INFO LIFETIME: This parameter specifies how long the static information is valid.

In our experiments, this life-time is set to 10 minutes. The purpose of this setup is

that we want the information can travel around the whole network if the TTL is large

enough. This parameter is measured in minutes (m).

• DYNAMIC INFO LIFETIME: This parameter has the same meaning and value with STATIC INFO

LIFETIME but it is used for dynamic information.

• PRODUCER STATIC TTL: This parameter specifies how many hops the static information can

travel. With the setup of STATIC INFO LIFETIME, the number of hops that information

can travel only depends on the value of TTL. This value is measured in number of hops.

• PRODUCER DYNAMIC TTL: This parameter has the same meaning with PRODUCER STATIC TTL,

but it is used for dynamic information.

• PRODUCER NO OF INSTANCE (NOP): This parameter specifies the number of Producers that

the MultiProducers will simulate running and publishing to each local IS node. Each

Producer simulates a site that provides resource information to the local IS node. At

each interval (static or dynamic), each Producer will publish information to its local

IS node. This value is measured in quantity.

3.2.3 Parameters for Consumer

• CONSUMER RUNNING TIME: This parameter specifies the running time of each Consumer.

Within the running time of the GIS system, all Consumers are querying the local IS
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node. Thus, the value of this Consumer running time should be less than the running

time of the system. The reason is that, the Consumer only needs to make queries to

its local IS node if that local IS node is running. After this running time, Consumer

will automatically stop. This running time is measured in minutes (m).

• CONSUMER DELAYING TIME: This parameter is used to temporarily delay the process of

making query to the local IS node. The reason to use this parameter is because the

system needs to be established and stable before any further processes can be operated.

Moreover, the local IS node should contain all information, published from the local

Producers and from other IS nodes as well. Thus, this delaying time should be long

enough to make sure that all information are in the local storage of local IS node. This

time is measured in seconds (s).

• CONSUMER BEFOREHAND: This parameter specifies the period of which the Consumer will

not making queries to the local IS node. This period is in the end of Consumer’s

running time. This value is measured in seconds (s).

• CONSUMER QUERY INTERVAL: This parameter specifies the frequency of making query to the

local IS node. The shorter the value is, the more queries have been made to the local

IS node. This interval is measured in seconds (s).

• CONSUMER QUERY LIFETIME: In our experiments, the query life-time is set to be 1 minute.

We expect that in this 1 minute period the GIS system can answer queries immediately.

This interval is measured in minutes (m).

• CONSUMER QUERY TTL: This parameter is used along with the query life-time. In order

to get the answer, queries might be forwarded around the whole network. Thus, this

value is set to be large enough. This value is measure in hops.

• CONSUMER NO OF CONSUMER (NOC): This parameter specifies the number of Consumers that

MultiConsumers will simulate making queries to its local IS node. Each Consumer

frequently makes a lot of queries to its local IS node. This value is measured in

quantity.

• QUERY STRUCTURE: This parameter specifies the source and the destination IS node of all

queries. The source IS node will be the node that receives the query from Consumer

and the destination IS node is the node whose local Producers generate the information

to answer the query from source IS node. This value is a structure that maps the source

IS nodes to destination IS nodes for the whole network. In all experiments, we set up
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all different types of source and destination nodes such that the distance between the

destination IS node and the source IS node is varied from 1 hop to 5 hops.

3.2.4 Workload

In Section 3.2.1, we have mentioned about the parameter NOP. However, it is not an easy

task to choose the reasonable value for this parameter.

One feature of our system is the information traveling. Information is published from Pro-

ducers to their local IS nodes, and then information stored in IS nodes will be transfered to

other neighbor IS nodes as well. If the value of TTL is large enough, the information from

one site can reach all IS nodes. As a result, information from all sites can travel around the

whole network.

(a) (b) (c)

Figure 3.2: Sample network structures

The network chosen in all our experiments is symmetric, as shown in Figure 3.2. Nodes are

divided into 2 types: backbone node (gray) and leaf-node (white). Backbone node is the

node in the ring. As in Figure 3.2 (a), backbone nodes are nodes 1, 2 and 3. Leaf-node is

the node that connects to backbone node. For instance, Figure 3.2 (a) shows that nodes 4,

5 and 6 are leaf-nodes of nodes 1, 2 and 3, respectively.

In order to find out the appropriate value for parameter NOP, we introduce two concepts

WORKLOAD and CAPACITY. We assume that the resource information travels around

the whole network.

Before setting up the formula, several terms are introduced as follow:
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• NON is the total number of running IS nodes in the system;

• NOP is the number of Producers running in the same machine with IS node, and

publishing information to IS node;

• NOL is the number of leaf-nodes that connect to 1 backbone node.

• WORKLOAD of an IS node is the number of sites of which resource information goes

through that IS node;

• CAPACITY is the largest workload that a node can support without any error.

For example, if we have a network of 1 node, and 10 Producers connect to this node, the

workload of this node is equal to the number of Producers. However, the situation becomes

more complicated when the network has more nodes and different structure. In almost all

of our experiments, we use symmetric network structure as the main network topology of

the system. Figure 3.2 (a), (b) and (c) show 3 samples of network with 6, 8, 15 node,

respectively. We will set up a formula to estimate the workload.

Figure 3.2 (a) shows a network with 6 nodes. NON is 6; NOP is set to 10; NOL is 1; We will

estimate the workload for node 1. Assume that the information travels around the whole

network, and thus the information that goes through node 1 is from two sides. First, resource

information goes from the node 4 (a leaf-node) through node 1 to all other nodes. Second,

resource information from the remaining nodes (1, 2, 3, 5 and 6) goes to node 4 through

node 1.

NOP is 10, which means that the MultiProducers will simulate 10 Producers publishing 10

site’s information to local IS node, and thus in the local IS node, there is 10 site’s information

stored. As a result, from node 4, 10 site’s information will go through node 1 in order to

travel around the whole network. Because there is only 1 leaf-node, the total number of

information from leaf-node goes through node 1 is:

NOL * NOP = 1 * 10 (3.1)

From the other side, there are 4 nodes (2, 3, 5 and 6), and thus the total information that

goes to node 4 is from local information of node 1 and all information of those 4 nodes:

1 * NOP + 4 * NOP = 1 * 10 + 4 * 10 (3.2)
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As a result, the workload of node 1 is the sum of information that goes from both sides.

From formula 3.1 and 3.2 we have:

WORKLOAD = 1 * 10 + 1 * 10 + 4 * 10 = 1 * 6 * 10 (3.3)

Formula 3.3 is, in fact,

WORKLOAD = NOL * NON * NOP (3.4)

Reasoning in the same way for 2 network structures shown in Figure 3.2 (b) and (c), we also

have the formula 3.4. In short, for symmetric network structures the formula to estimate

the workload is formula 3.4.

Thus, if we know the capacity (the largest workload) of a node, the value of NOP can be

estimated by the following formula:

NOP =
CAPACITY
NON * NOL

(3.5)

To find out this capacity, we design a experiment with only 1 node (NON=1), and increase

the number of Producers (NOP) until this node can not process any published information

from local Producers. The design of this experiment is in Section 3.3 and the result is in

Section 4.1.

Although the values of workload and capacity are not completely precise, using this value

helps setting up of all experimental environments with reasonable NOP values.

3.2.5 Time To Live (TTL)

There are 2 types of TTL, 1 for information traveling (PRODUCER STATIC TTL and

PRODUCER DYNAMIC TTL) and 1 for query forwarding (CONSUMER QUERY TTL).

Choosing the value for them has the same manner. For information traveling, the value

of TTL specifies how many hops the information can travel (with the assumption that the

life-time of information is long enough). For query forwarding, the value of the TTL specifies

how many hops the query can be forwarded. As a consequence, the total time information

traveling will increase if the information travels more and more. Besides, the response time

also increases if queries have to forward to more hops.
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For almost all of our experiments, the TTL is set to be large enough such that the information

can travel around the whole network, and the query can be forwarded to all the nodes to

get the expected answer.

For example, with the 6 nodes network shown in Figure 3.2 (a), from any node, the longest

number of hops is 3 (from node 6 to 4, 6 to 5, or 5 to 4). As a result, we choose the TTL to

be 4 (1 more hop).

Figure 3.2 (b) shows another example with 8 nodes network. From any node, the longest

number of hops is 4 (from node 6 - 2 - 1 - 4 - 8). As a result, we choose the TTL to be 5.

The reason of adding 1 more into TTL value is that, in experiments, sometime a node can

be busy. Another reason is that in our system, we transfer information from one node to

others periodically. Thus, in some cases, resource information has to wait for the periodic

interval in order to be transfered. One mechanism in our system is that information will not

be forwarded duplicately. As a consequence, information may go in other way that requires

1 more hop. We expect that, adding 1 more into TTL is enough for information to travel

around the whole network.

3.3 Capacity

In this section, we briefly describe the experimental configuration to evaluate the limit of a

single IS node. The goal of this experiment is to find the capacity of single IS node. Since

the resource information is periodically published by Producers into the IS node, we consider

the following:

• How many sites are provided by Producers to a single IS node within a specific period?

(Inserting and updating for both static and dynamic information)

• How long does it take to insert and/or update for static and dynamic information to

a single IS node with query answering?

By evaluating these questions, we can determine the limit number of sites for a single IS

node. In order to determine the workload of an IS node, we design an experiment as follows.

We set up the network with 7 brother machines in which there is one running both ISNode

and MultiConsumer. The MultiConsumer simulates a predefined number of Consumers

querying the IS node for 1.5 minute. Each Consumer creates and sends a query to the IS

node every second. The query is for the whole resource information of a randomly chosen
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site. 6 other machines will be running 6 MultiProducers, and totally 7 machines at benedict

cluster are involved. The MultiProducer simulates predefined number of Producers (NOP)

publishing information to local IS node. The results are recorded in log files during the

running time of the system. We set the system running time about 2 minutes. Other

parameters are also defined in table 3.2.

Parameters for ISNode

ISNODE RUNNING TIME = 2m

Parameters for Producer

PRODUCER RUNNING TIME = 1m30s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 10s

PRODUCER STATIC TTL = 0

PRODUCER DYNAMIC TTL = 0

PRODUCER NO OF INSTANCE = 400

Parameters for Consumer

CONSUMER RUNNING TIME = 1m30s

CONSUMER NO OF CONSUMER = 100

CONSUMER QUERY TTL = 5

CONSUMER QUERY INTERVAL = 6

CONSUMER DELAYING TIME = 24s

CONSUMER BEFOREHAND = 15s

CONSUMER QUERY LIFETIME = 1m

Table 3.2: Parameters - IS node capacity

The predefined number of Consumers (NOC) is 100 and does not change during the experi-

ment. The goal of this experiment is to determine a reasonable total number of Producers

that a single IS node can support.

We set the static and dynamic TTL=0 to guarantee that the resource information only

comes from Producers to local IS node and no longer travels. The IS node has its own log

file that records the resource information provided by its Producers. We observe and record

the total number of Producers (TNOP) in an IS node’s data storage every second. The

intervals for publishing static and dynamic information of Producers are 30 and 15 seconds,

respectively. Thus, we expect that we can find out the maximum TNOP that a single IS

node can support by increasing the value of TNOP. More specifically, it takes a period of

time to insert or update the information of all sites, and that period is known as inserting

and/or updating duration. Therefore, the maximum TNOP will be determined when the

inserting or updating duration is close to the publishing interval and the Consumers can still

be served.



CHAPTER 3. DESIGN OF EXPERIMENTS 45

3.4 Availability

Availability is desirable for a good GIS. First of all, in order to find out how well a single IS

node serves Consumers, we design an experiment as shown in Figure 3.3. The parameters

are shown in Table 3.3.

Figure 3.3: 1 IS node with increasing number of Consumers

Parameters for ISNode

ISNODE RUNNING TIME = 3m

ISNODE STATIC PUBLISH INTERVAL = 30s

ISNODE DYNAMIC PUBLISH INTERVAL = 15s

Parameters for Producer

PRODUCER RUNNING TIME = 2m50s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 6s

PRODUCER STATIC TTL = 0

PRODUCER DYNAMIC TTL = 0

PRODUCER NO OF INSTANCE = 10

Parameters for Consumer

CONSUMER RUNNING TIME = 2m30s

CONSUMER NO OF CONSUMER = increasing

CONSUMER QUERY TTL = 5

CONSUMER QUERY INTERVAL = 1s

CONSUMER DELAYING TIME = 30s

CONSUMER BEFOREHAND = 30s

CONSUMER QUERY LIFETIME = 1m

Table 3.3: Parameters – 1 IS node with increasing number of Consumers

Three brother machines run ISNode, MultiConsumer and MultiProducer respectively. The

system running time is 3 minutes. The MultiProducer simulates 10 Producers publishing

resource information to the IS node, which means resource information of 10 sites is in the

local storage of the IS node. The MultiConsumer simulates a predefined number of Con-

sumers querying the IS node for 1.5 minute. Each Consumer creates and sends a query to the

IS node every second. The only query created is the one for the whole resource information
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of a randomly chosen site, and the life-time of a query is 1 minute. The predefined numbers

of Consumers are 100, 200, 300, ...

We expect that one IS node can support queries from a large number of Consumers, and

the performance is acceptable. We guess when the number of Consumers is increasing, the

throughput of query answering will increase but the response time will also increase. We

expect to find out the maximum number of Consumers one IS node can serve.

3.5 Scalability

In order to verify how well our GIS system can scale when increasing the number of running IS

nodes, we design a series of experiments with different network size. Each ISNode in our GIS

system will run at 1 brother machine. In addition, the MultiConsumer and MultiProducer

will also be run at the same machine where ISNode runs. Thus, the ISNode will be considered

as local ISNode to MultiProducer and MultiConsumer, respectively.

For the first 3 network sizes (6, 8 and 15 nodes), we run experiments with a large enough

TTL such that all the information can travel around the whole network.

For the 24 and 36 nodes network respectively, the TTL is varied in order to observe different

behaviors of the system when the information does not travel (TTL=0), travels 1 hop away

(TTL=1), and travels around the whole network when the TTL is large enough. The results

of those experiments can show the best TTL parameters for our system to run effectively.

The total number of consumers (TNOC)1 is also varying in each network size to see how

good our system can be.

The total number of Producers (TNOP) is fixed for our experiments. The value for NOP

is chosen as described in Section 4.1.1. The purpose of fixing TNOP is that we want verify

our GIS system behavior when varying the network size and the TNOC.

There are 5 focuses in doing each experiment. Section 3.5.1 describes the focuses related

to query answering, and the remaining focuses are for information traveling as described in

Section 3.5.2.

As described in Section 2.3.4, there are 3 query types. However, in all of our experiments,

we only use one query type for simplicity. This query type is the one that gets the whole

cluster information.

1TNOC is the sum of all Consumers making queries to our GIS system.
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3.5.1 Query answering performance

For query answering, we focus on 3 important things as follows:

1. Determine the TNOC that our system can support by checking the data whenever

some abnormal behaviors occur.

2. Determine how quickly the system can answer all the queries by using the average

response time, regarding the TNOC in the system.

3. Determine the total throughput (queries/second) in the system when the TNOC is

increasing. The total throughput is the sum of all queries that the system can be

answered in 1 second.

With each experiment, we expect the system runs correctly and want to find out the result

for our focuses before the IS node reaches its limitation. The limitation is the point that our

system behaves abnormal when increasing the TNOC, for example, a lot of queries can not

be answered or the response time is very long.

1. For the first focus, we want to find the maximum TNOC by observing number of

queries that have been made and number of queries that have been answered. The

graph should show an gradually increasing line when increasing the TNOC until the

maximum TNOC that the system can support.

2. For the second focus, the average response time vs Consumers, we expect that the

average response time is not very long. When the TNOC increases, the response time

should only increase gradually.

3. We also expect that the throughput is also increasing when the TNOC increases and

the trend is also linear.

3.5.2 Information traveling performance

For the information traveling, we consider some issues as follows:

• How long does the resource information at Producers take to travel on the whole

network.

• The traveling time will not be longer than the life-time of information.
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In our implementation, since the simulated resource information is published from Producers,

the traveling time of resource information is actually the duration in which there are two

phases:

• Publishing time: This is the period when resource information is published by Pro-

ducers to local IS node.

• Traveling time: This is the period when the resource information travels among IS

nodes.

During all experiments, we would like to see how quickly the information (static and dy-

namic) can be published from Producers to their local IS node (0 hop away), and travel

around the whole network regarding the number of hops (1, 2, 3, etc hop away). More

specifically, the more hops the resource information travels, the longer average information

traveling time is. We guess the average traveling time is going to increase regarding the

number of hops, and the trends should be linear.

In addition, we also expect that the maximum average traveling time to the farthest hop

should be smaller than the life-time of information. Although this parameter is defined as

10 minutes throughout our experiments in order to see the system’s behavior, it could be

5 and 1 minute for static and dynamic information, respectively in reality. We want to see

the traveling time in all experiment should not be larger than 5 and 1 minute for static and

dynamic information, respectively.

By having the timestamps when the resource information travel, we can measure the duration

of the information traveling in our experiments. The data collected in all experiments will

be represented by using graph.

3.5.3 Experiment with 6 nodes

In this experiment, we set up a symmetric network structure of 6 nodes (see Figure 3.4)

with 3 backbone nodes. Table 3.4 shows the configuration for this experiment. The system

running time is 10 minutes. The delaying time for starting publish information from local

Producers is 10 seconds. The TTL is set to 4, so that all information can travel around the

whole network. The total number of Producers (TNOP) will be set when we have the result

of capacity that a node can support.

The NOC value, namely the number of Consumers that the MultiConsumer is simulating,

is varied from 30, 60, 90, and so on. The MultiProducer simulates number of Producers (X
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Figure 3.4: Network structure with 6 nodes

Producers) running and periodically publishing information to local IS node. The X value

is actually NOP that will be chosen when we run the experiment.

Parameters for ISNode

ISNODE RUNNING TIME = 10m

ISNODE STATIC PUBLISH INTERVAL = 30s

ISNODE DYNAMIC PUBLISH INTERVAL = 15s

Parameters for Producer

PRODUCER RUNNING TIME = 9m30s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 10s

PRODUCER STATIC TTL = 4

PRODUCER DYNAMIC TTL = 4

PRODUCER NO OF INSTANCE = X

Parameters for Consumer

CONSUMER RUNNING TIME = 9m30s

CONSUMER NO OF CONSUMER = increasing

CONSUMER QUERY TTL = 10

CONSUMER QUERY INTERVAL = 6

CONSUMER DELAYING TIME = 5m

CONSUMER BEFOREHAND = 2m

CONSUMER QUERY LIFETIME = 5m

Table 3.4: Experiments with 6 nodes

With the above configuration, we expect the system runs correctly before the IS node reaches

its limitation.

With respect to the information traveling performance as mentioned in 3.5.2, our interest

focuses on the average traveling time on the whole network. We guess the information

should at most take 3 hops away and the maximum average traveling time at 3 hops should

be within life-time limit in this experiment.
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3.5.4 Experiment with 8 nodes

This experiment is almost the same as before (see Section 3.5.3), except that we change the

number of nodes (8 nodes) and the network shape (see Figure 3.5). In this experiment, we

use 4 backbone nodes, while in 6 nodes network, it is 3. Table 3.5 shows the configuration for

this experiment. Almost all of parameters are similar to the experiment of 6 nodes network.

The NOP for each IS node will be chosen when experiments are executed.

Figure 3.5: Network structure with 8 nodes

Parameters for ISNode

ISNODE RUNNING TIME = 10m

ISNODE STATIC PUBLISH INTERVAL = 30s

ISNODE DYNAMIC PUBLISH INTERVAL = 15s

Parameters for Producer

PRODUCER RUNNING TIME = 9m30s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 10s

PRODUCER STATIC TTL = 5

PRODUCER DYNAMIC TTL = 5

PRODUCER NO OF INSTANCE = X

Parameters for Consumer

CONSUMER RUNNING TIME = 9m30s

CONSUMER NO OF CONSUMER = increasing

CONSUMER QUERY TTL = 10

CONSUMER QUERY INTERVAL = 6

CONSUMER DELAYING TIME = 5m

CONSUMER BEFOREHAND = 2m

CONSUMER QUERY LIFETIME = 5m

Table 3.5: Experiments with 8 nodes
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We expect the system runs correctly before the IS node reaches its limitation. Besides,

we expect that the result of this experiment also shows that the performance for 8 nodes

network will be better than in 6 nodes network.

Similar to previous experiment, the traveling time on the whole network is still our interest.

Due to the larger network size in this configuration, the information should at most travel

around 4 hops away. In this experiment, we also expect the average traveling time is still

acceptable and the maximum traveling time at 4 hops is still less than life-time.

3.5.5 Experiment with 15 nodes

In this experiment, we continue changing the network size and shape. There are 15 nodes,

5 backbone nodes (see Figure 3.6) in this experiment. Table 3.6 shows the configuration for

this experiment. The running time of each IS node is 12 minutes. The traveling TTL is set

to 6, so that all information can travel to the whole network. With the above configuration,

we vary the NOC value from 20, 40, 60, ... that the MultiConsumer is simulating in order

to observe the behavior of the system.

Figure 3.6: Network structure with 15 nodes

We expect that the system has a better performance than 8 and 6 nodes network.

Even though the network structure size becomes larger, we expect that the average infor-

mation traveling is still acceptable.
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Parameters for ISNode

ISNODE RUNNING TIME = 12m

ISNODE STATIC PUBLISH INTERVAL = 30s

ISNODE DYNAMIC PUBLISH INTERVAL = 15s

Parameters for Producer

PRODUCER RUNNING TIME = 11m30s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 10s

PRODUCER STATIC TTL = 6

PRODUCER DYNAMIC TTL = 6

PRODUCER NO OF INSTANCE = X

Parameters for Consumer

CONSUMER RUNNING TIME = 11m30s

CONSUMER NO OF CONSUMER = increasing

CONSUMER QUERY TTL = 10

CONSUMER QUERY INTERVAL = 6

CONSUMER DELAYING TIME = 5m

CONSUMER BEFOREHAND = 2m

CONSUMER QUERY LIFETIME = 5m

Table 3.6: Experiments with 15 nodes

3.5.6 Experiments with 24 nodes

We continue increasing the network size and the backbone for these experiments (symmetric

network structure of 24 nodes with 6 backbone nodes - see Figure 3.7). Table 3.7 shows the

configuration for this experiment. The running time of each IS node is 15 minutes. The

delaying time for starting publishing information from local Producers is 10 seconds.

In these experiments, TTL is varied from 0 to 5 in order to observe different behaviors of our

system. With TTL=0, there is no information traveling, while with TTL=5 the information

can travel to the whole network.

The step of changing NOC is 30, and thus in each experiment, the NOC will be 30, 60, 90

and so on, respectively.

We will compare all the results of different TTL from 0 to 5. We expect that we can find

the best configuration of 24 nodes network and the result of that configuration should has a

better performance than 15 nodes network described in Section 3.5.5.

Our interest regarding information traveling performance in this configuration remains un-

changed. We want to see the information traveling is still functioning well. The information

traveling should at most take 5 hops away and the longest traveling time should be still less

than life-time.
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Figure 3.7: Network structure with 24 nodes

Parameters for ISNode

ISNODE RUNNING TIME = 15m

ISNODE STATIC PUBLISH INTERVAL = 30s

ISNODE DYNAMIC PUBLISH INTERVAL = 15s

Parameters for Producer

PRODUCER RUNNING TIME = 14m30s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 10s

PRODUCER STATIC TTL = changing

PRODUCER DYNAMIC TTL = changing

PRODUCER NO OF INSTANCE = X

Parameters for Consumer

CONSUMER RUNNING TIME = 14m30s

CONSUMER NO OF CONSUMER = increasing

CONSUMER QUERY TTL = 10

CONSUMER QUERY INTERVAL = 6

CONSUMER DELAYING TIME = 7m

CONSUMER BEFOREHAND = 2m

CONSUMER QUERY LIFETIME = 5m

Table 3.7: Experiments with 24 nodes
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3.5.7 Experiments with 36 nodes

This is the largest network size in our experiments. Figure 3.8 shows a symmetric network

of 36 nodes with 6 backbone nodes. Table 3.8 shows the configuration for this experiment.

The running time of each IS node is 16 minutes.

In these experiments, the TTL is varied from 4 to 6 in order to verify different behaviors of

our system.

Figure 3.8: Network structure with 36 nodes

The MultiConsumer simulates an increasing NOC value is 30, 60, 90, ... for each experiment.

With this largest network size in our experiments, we expect the system will has the best

performance.

For information traveling performance, we still expect that the information traveling is still

working well.
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Parameters for ISNode

ISNODE RUNNING TIME = 16m

ISNODE STATIC PUBLISH INTERVAL = 30s

ISNODE DYNAMIC PUBLISH INTERVAL = 15s

Parameters for Producer

PRODUCER RUNNING TIME = 15m30s

PRODUCER STATIC PUBLISH INTERVAL = 30s

PRODUCER DYNAMIC PUBLISH INTERVAL = 15s

PRODUCER DELAYING TIME = 10s

PRODUCER STATIC TTL = changing

PRODUCER DYNAMIC TTL = changing

PRODUCER NO OF INSTANCE = X

Parameters for Consumer

CONSUMER RUNNING TIME = 14m30s

CONSUMER NO OF CONSUMER = increasing

CONSUMER QUERY TTL = 10

CONSUMER QUERY INTERVAL = 6

CONSUMER DELAYING TIME = 8m

CONSUMER BEFOREHAND = 2m

CONSUMER QUERY LIFETIME = 5m

Table 3.8: Experiments with 36 nodes

3.6 Summary

In this chapter, we have introduced the important designs of our experiments regarding

capacity, availability and scalability. For scalability, we have a series of experiments in

order to observe the system’s behavior when the network structures are changing. Our

interests regarding query answering and information traveling performance have been also

introduced.



Chapter 4

Results

In this chapter, we will describe all experimental results that we got.

In Section 4.1, we will describe the first series of experiments regrading the capacity of our

system. The results can help choosing a reasonable value for TNOP for each experiment

that will be carried out later.

The second series of experiments will describe the extreme case as can be seen in Section

4.2. The results can answer the question how many Consumers that our system of 1 node

can support.

The last series of experiments focus on scalability (see Section 4.3). Several network sizes

will be examined. The TNOC will also be varied while the TNOP is fixed.

4.1 Capacity

We have described the experiment in section 3.3. This section is dedicated to explanation

after the collection of data during experiment.

We started the experiment by increasing TNOP from 300, 400, etc distributed on 6 machines

running MultiProducers. We observed and examined the change in the number of sites

of single IS node within every second. When the TNOP was less than 2400, three our

components worked well. But with an increase in TNOP up to 2400, we got valuable results

as described below.

Figure 4.1 (a) shows the number of sites (inserting and updating static information) is

linearly increasing when the time elapses. Similarly, the results for dynamic information are

56
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shown in figure 4.1 (b). For dynamic information, it takes about 15 seconds (for inserting)

and 8 seconds (updating) total 2400 sites into the IS node, whereas for static information, it

correspondingly takes 15 and 6 seconds to insert and update total 2400 sites into the IS node.

We believe this is the limit TNOP because the intervals for publishing dynamic and static

information are defined as 15 and 30 seconds, and the duration of inserting and updating

information (both static and dynamic information) into the IS node should not be larger

than these corresponding intervals.

(a) Static Information (b) Dynamic Information

Figure 4.1: Publishing information - With query answering

This experiment shows that a single IS node can support relatively large number of sites as

expected and 2400 can be roughly seen as the limit.

4.1.1 Capacity for all experiments

From Section 4.1, we found that 2400 is the maximum number of Producers that a node can

support. However, a question is how to choose the reasonable total number of Producers

(TNOP) for our experiments?

We will run a series of experiments regarding the scalability to see the system behavior and

performance. The largest network size in our experiment will be the network with 36 nodes.

We will use this size to estimate the TNOP of our system. We assume that the information

can travel around the whole network.

Using the formula 3.5, with WORKLOAD=2400, NON=36 and NOL=5, we have:
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NOP =
2400

36 * 5
= 13.33 (4.1)

For simplicity, we manually choose NOP = 10. Thus, the total NOP (TNOP) that our system

can support is TNOP = 10 * 36 = 360. In order to compare the results of different network

size, we keep this TNOP=360 for all configurations in our experiments regarding scalability.

As a result, the NOP that each IS node can support will depend on the number of nodes in

the network.

Formula 4.2 shows how to estimate the NOP for all of our network structure.

NOP =
360

NON
(4.2)

4.2 Availability

The setup of this experiment was described in Section 3.4. After successfully running the

experiment, we obtained some valuable results as described below.

Figure 4.2 (a) shows the number of queries made and answered while the number of Con-

sumers (NOC) is increasing. While NOC is equal to or less than 700, all the queries made

are answered. When NOC is 712, only 5 percent of queries made are answered, and the

CPU usage on the machine running ISNode and the machine running MultiConsumer is

very close to 100 percent. In addition, timeout errors occur at MultiConsumer, which means

the MultiConsumer cannot get any response from the ISNode in time. Thus, we believe at

this experiment the maximum number of Consumers that one IS node can serve is about

700.

Figure 4.3 (a) shows the average response time of query answering while NOC is increasing.

While NOC is equal to or less than 700, the average response time is no longer than 1.16

second. When NOC is 712, the average response time suddenly reaches 10.12 seconds.

Figure 4.3 (b) shows the average, minimum and maximum response time of query answering

while NOC is equal to or less than 700. The longest response time is 5.62 seconds while

NOC is 700.

Figure 4.2 (b) shows the throughput of query answering while NOC is increasing. The

maximum throughput is 115 queries per second, when NOC is 700. The throughput suddenly

falls down to 6 queries per second when NOC is 712.
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(a) (b)

Figure 4.2: Queries and Throughput vs Consumers

(c) (d)

Figure 4.3: Response time vs Consumers
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The results described above show that one IS node can serve a large number of Consumers,

namely 700, as we expected. The longest response time of query answering is 5.62 seconds

and the maximum throughput is 115 queries per second, so the performance is definitely

acceptable. Due to the high CPU usage, the GIS system stops working effectively while

NOC is larger than 700, so 700 can be considered as the maximum of Consumers that one

IS node can serve.

4.3 Scalability

In this section, we will describe the result of our experiments. With the information traveling

mechanism, the information can travel around the whole network, which means all nodes in

the network will have information of all sites. As a result, when a Consumer makes queries

to its local node, the information is at the local storage of local node. Thus the response

time is very quick.

4.3.1 Experiment with 6 nodes

The configuration of this experiment was described in Section 3.5.3. Applying the formula

4.2 to estimate the NOP, we have:

NOP = 360
6 = 60

thus, in this experiment, the parameter NOP is set to be 60.

4.3.1.1 Query answering performance

In Figure 4.4 (a), the number of queries (NOQ) that have been made is equal to the NOQ

that have been answered when the total number of Consumers (TNOC) increases from 180

to about 2520. After the point that TNOC is 2520, the NOQ that have been answered goes

down sharply. With 2520 Consumers, our system can still answer 63000 queries correctly

with the average response time only about 1.14 seconds. Figure 4.4 (a) shows that the total

throughput is also increasing gradually and it peaks up at around 235 queries/second when

the TNOC is 2520. However, when the TNOC is larger than 2520, around 15 percent of

queries can not be answered and the throughput is going down.

Figure 4.5 (a) and (b) show the changing of response time when the TNOC increases; Figure

4.5 (a) in fact is the average line in Figure 4.5 (b). In Figure 4.5 (a), before the TNOC is larger
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(a) (b)

Figure 4.4: Queries and Throughput vs Consumers with 6 nodes

(a) (b)

Figure 4.5: Average and Max, Min, Average response time vs Consumers with 6 nodes
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than 2520, the average response time is not changing so much, just increasing slightly from 0

to 1 second. However, after the TNOC increases larger than 2520, the average response time

is changing rapidly to 2 seconds. Figure 4.5 (b) shows the relationship among the minimum,

average and maximum response time when the TNOC increases. The graph shows that the

minimum, average and maximum response time are increasing when the TNOC increases.

While the maximum of response time is around 11 seconds, the minimum is only 0.01 second.

The total maximum response time line in Figure 4.5 (b) shows an fluctuated increase, but

even at the peak of 2520 Consumers, the maximum response time is still acceptable (about

less than 12 seconds).

All things considered, the system works as expected with the TNOC less than or equal to

2520. We roughly conclude that for this network structure, 2520 Consumers is the limitation,

235 queries/second is the maximum throughput and 1.14s is the average response time.

4.3.1.2 Information traveling performance

(a) Static information (b) Dynamic information

Figure 4.6: Average traveling time vs Number of hops

Figure 4.6 (a) and (b) show the trend of traveling time vs the number of hops for static and

dynamic information, respectively. Actually, we have done this experiment on 14 samples

regarding the increasing TNOC on the whole network. The TNOC is increased from 180 to

2520. The results from this case are shown below. Each curve represents the traveling time

of each sample with the corresponding TNOC.
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(a) Static information (b) Dynamic information

Figure 4.7: Max, Min, Average traveling time vs Number of hops at limit point

Figure 4.6 (a) and (b) indicate that the trend of traveling time is linearly increasing regarding

the number of hops. Moreover, the maximum average traveling time for dynamic and static

information are about 36 and 80 seconds, respectively. The information traveling time is

within life-time limit.

As mentioned Section 4.3.1, 2520 NOC is the limit of this network structure. At this point,

the results shown in figure 4.7 (a) and figure 4.7 (b) also indicate that the maximum, mini-

mum and average duration of the information traveling are reasonable. For dynamic infor-

mation, the maximum, minimum and average traveling time at the last hop (hop=3) are

approximately 38, 21, and 27 seconds respectively, whereas for static information, these val-

ues are about 81, 80 and 80 seconds, respectively. However, static information takes 4 hops

way.

In this experiment, we set the TTL=4 in order to make the information travel around the

whole network. We guessed the maximum hop which the information could take is 3 hops

traveling. Nevertheless, from Figures 4.7 (a) to (b), we can see that the information traveling

takes 4 hops.

Figure 4.8 shows how information from node 4 travels 4 hops and arrives at node 5. This

happens due to the fact that information traveling is based on periodical actions happening

at IS nodes. At each publishing interval, information is transferred. If a piece of information

is so ’lucky’ that it arrives at a node right before the interval, it will quickly be transferred.

If it is so ’unlucky’ that it arrives right after the interval, it will have to wait for the next
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Figure 4.8: Network structure with 6 nodes

interval. As a result, information traveling through 1-3-2-5 arrives earlier and the same

information traveling through 1-2-5 will be discarded.

4.3.2 Experiment with 8 nodes

The configuration of this experiment was described in Section 3.5.4. Applying the formula

4.2 for estimating the NOP, we have:

NOP = 360
8 = 45

thus, in this experiment, the parameter NOP is set to be 45. With the result of experiment

with 6 nodes, we realized that the maximum number of hops that information can travel is

even 4. It means that the information can travel 1 hop longer than the maximum number of

hops that we observe from the network structure. Thus, we wonder whether the information

can travel 2 hops longer than what we can observe. As a result, in this experiment, we set

the TTL to be 6 (2 hops longer).

4.3.2.1 Query answering performance

Overall, Figures 4.9 (a) and (b) and Figures 4.10 (a) and (b) show the same trend with

those graphs of the experiment with 6 nodes. The results show that in 8 nodes network, the

performance is better.

First, the total NOC (TNOC) that this 8 nodes network can support (about 2880 Consumers)
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(a) (b)

Figure 4.9: Queries and Throughput vs Consumers with 8 nodes

is larger than in 6 nodes (about 2520 Consumers).

(a) (b)

Figure 4.10: Average and Max, Min, Average response time vs Consumers with 8 nodes

Second, Figure 4.10 (a) shows that the average response time of 8 nodes with TNOC equal

to 2880 is only around 1.00 second, while in 6 nodes network, with a smaller TNOC (2520

Consumers) the average response time is about 1.14 seconds (Figure 4.5 (a)). It means, in

8 nodes network with 4 backbone nodes, queries can be answered faster than in 6 nodes

network with 3 backbone nodes.

Last, Figure 4.9 (b) shows that the throughput of 8 nodes network is also larger (269
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queries/second), while in 6 nodes network, it is only 235 queries/second.

With things considered above, we conclude that the system works well and has a better

performance in 8 nodes than in 6 nodes. The limitation is 2880 Consumers, 1.00 second

is the average response time, and 269 queries/second is the throughput for this network

structure.

4.3.2.2 Information traveling performance

Regarding the traveling time, our interests remain unchanged. We believe the information

should at most travel 4 hops away as normal. In this experiment we intentionally modify

the TTL=6.

In this experiment, we have 12 samples with NOC from 30 to 360 on each node. So, the

TNOC on the whole network are varied from 240 to 2880. The results are shown in Figure

4.11 (a) and (b). Each curve represents the traveling time of each sample regarding TNOC.

It has been found that, the trends of traveling time grows linearly regarding the number of

hops as we expected.

(a) Static information (b) Dynamic information

Figure 4.11: Average traveling time vs Number of hops

In addition, the maximum, minimum and average traveling time at this limit point are still

reasonable. For static information the maximum, minimum and average traveling time for

the last hop (hop=4) are approximately 84, 52 and 74 seconds, respectively. Whereas for
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the dynamic information, these values are about 52, 22 and 36 seconds, respectively. The

information traveling has at most taken 4 hops even though the TTL is set to 6. This

indicates that the information traveling is functioning well as we expected.

The results are shown in Figure 4.12 (a) and (b). These values are also acceptable regarding

the life-time.

(a) Static information (b) Dynamic information

Figure 4.12: Max, Min, Average traveling time vs Number of hops at the limit point

4.3.3 Experiment with 15 nodes

The configuration of this experiment was described in Section 3.5.5. Applying the formula

4.2, we have:

NOP = 360
15 = 24

thus, in this experiment, the parameter NOP is set to be 24. With the result of experiment

with 8 nodes, we realized that the maximum number of hops that information can travel is

only 4. Thus, for the following experiments, if we want the information can travel around

the whole network, the TTL will be 1 hop longer than what we can observe from the network

structure. As a result, in this experiment, we set the TTL to be 6 (1 more hop).
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(a) (b)

Figure 4.13: Queries and Throughput vs Consumers with 15 nodes

4.3.3.1 Query answering performance

Overall, Figures 4.13 (a), (b) and Figures 4.14 (a), (b) show the same trend with those

graphs of the experiments with 8 nodes. The results show that in 15 nodes network with 5

backbone nodes has a better performance.

First, from Figures 4.13 (a), the total NOC (TNOC) that this 15 nodes network (about 5700

Consumers) can support is approximately 2 times as in 8 nodes (about 2880 Consumers).

(a) (b)

Figure 4.14: Average and Max, Min, Average response time vs Consumers with 15 nodes
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Second, Figure 4.14 (a) shows that the average response time of 15 nodes is 1.07 second,

while in 8 nodes network, this number is 1.00 seconds. Although the total maximum line in

Figure 4.14 (b) is fluctuated, the maximum response time is still acceptable (just below 11

seconds).

Last, with the TNOC equal to 5700, the result shows that the throughput is about 532

queries/second, nearly 2 times as in 8 nodes network.

All things discussed, we conclude that the system of 15 nodes with 5 backbone works well and

has a better performance than in 8 nodes. The limitation is 5700 Consumers, 1.07 second

is the average response time, and 532 queries/second is the throughput for this network

structure.

4.3.3.2 Information traveling performance

Regarding the traveling time, we keep our interests as done experiments with 6 and 8 nodes.

In this experiment we also set the TTL=6.

The TNOC on the whole network are varied from 300 to 5700. The results are shown in

Figure 4.15 (a) and (b). Each curve represents the traveling time of each sample regarding

TNOC.

(a) Static information (b) Dynamic information

Figure 4.15: Average traveling time vs Number of hops

As can be seen the average information traveling time has a linear relationship with the
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number of hops as we expected. From those figures, the information traveling takes 5 hops.

The average traveling time for both dynamic and static information are still acceptable

regarding the life-time. More specifically, the maximum average traveling time for dynamic

and static information are about 50 and 110 seconds, respectively.

The limit TNOC of this network structure is 5700. For static information, at this point

the maximum duration of information traveling is about 85 seconds, whereas for dynamic

information, this value is 55 seconds. These results are shown in Figure 4.16 (a) and (b)

regarding static and dynamic information.

(a) Static information (b) Dynamic information

Figure 4.16: Max, Min, Average traveling time vs Number of hops at the limit point

4.3.4 Experiments with 24 nodes

The configuration of these experiments was described in Section 3.5.6. Applying the formula

4.2, we have:

NOP = 360
24 = 15

thus, in this experiment, the parameter NOP is set to be 15.

Section 4.3.4.1 will compare the performance of 24 nodes network, 6 backbone nodes with

diferrent TTL values. Section 4.3.4.2 will describe the query answering performance of this

network structure with the best configuration and the last Section (Section 4.3.4.3) will show

the performance of of information traveling.
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4.3.4.1 Comparing performance with different TTL value

Figure 4.17 (a), (b) and (c) compare the performance of our system running with 24 nodes

and different TTL values (from 0 to 5). When the TTL is increasing, the maximum through-

put and the maximum TNOC that the system can support are also increased, but the average

response time is decreased. When the TTL is less than 4, the maximum throughput is slightly

changed with small values, from about 76 to 162 queries/second; the maximum TNOC is

also changing, from 720 to 1440 Consumers; and the average response time is between 3

and 4 seconds. However, when the TTL is 5, there is a sharply increase in both maximum

throughput and maximum TNOC, about 10 times in TNOC (8650 Consumers) more than

the first case when TTL is equal to 0 (720 Consumers), and 10 times in maximum through-

put (1032 queries/second) compared to the first case with only about 76 queries/seconds. In

Figure 4.17 (c), the result shows that the average response time reduces sharply from more

than 4 seconds to below 1 second.

(a) (b) (c)

Figure 4.17: Comparing performance with different TTL value of 24 nodes

From Figures 4.17 (a), (b) and (c), the results show that the performance is not good when

the TTL is small. It is worst when there is no information traveling at all (when TTL=0).

Thus, a question is why the performance is not good when the TTL is small? There are

several reasons for this issue, and we will describe as follow.

The first reason is because of the information traveling mechanism. If the TTL is small, re-

source information can not travel very far from the source node. As a result, when Consumer

makes queries that require information from very far nodes, queries have to be forwarded

several hops away in order to get answers. Consequently, the average response time should

be increased, and the maximum throughput and maximum TNOC, besides, are decreased.

If TTL is large enough, resource information can travel around the whole network, and as

a result, when Consumers make queries, IS nodes can answer immediately from the local
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storage. Thus, the performance will be much better.

The second reason is because of the query structure. As mentioned in Section 3.2.3, query

structure specifies the source and the destination IS node for all queries. In all of our

experiments, we varied the source and destination IS node, such that the distance between

2 node is various from 1 hop to 5 hops. As a result, if TTL is small, queries have to be

forwarded as most 5 hops in order to get the answer. Query forwarding very far will make

the performance worse.

In reality, if the network size is huge, resource information should not travel very far. Choos-

ing the best configuration for all network sizes is costly and nearly impossible, but for a

specific range of network size, at least we can find an reasonable configuration that has

acceptable performance.

4.3.4.2 Query answering performance

From the result shown in Section 4.3.4.1, we know that the network of 24 nodes has the best

answering performance when the TTL is 5. We will compare the result of this experiment

with the smaller network structure, namely 15 nodes network with 5 backbone nodes.

Overall, Figures 4.18 (a), (b) and Figures 4.19 (a) and (b) show the same trend with those

graphs of the experiments with 15 nodes. The results show that in 24 nodes network with

TTL equal to 5, the performance is better.

(a) (b)

Figure 4.18: Queries and Throughput vs Consumers with 24 nodes

First, the total NOC (TNOC) that this 24 nodes network can support is about 7920 Con-
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sumers much larger than in 15 nodes (about 5700 Consumers).

Second, Figure 4.18 (a) shows that when the TNOC is at the limit (about 7920 Consumers),

the average response time is also very short, 0.94 second, while in 15 nodes network, it is

1.07 seconds.

Last, when the TNOC equals to 7920, this result shows that the throughput is around 973

queries/second, nearly 2 times as in 15 nodes network.

(a) (b)

Figure 4.19: Average and Max, Min, Average response time vs Consumers with 24 nodes

In summary, we conclude that the system with 24 nodes and the TTL=5, works well and

has a better performance than in 15 nodes. The limitation is 7920 Consumers, 0.94 second

is the average response time, and 973 queries/second is the throughput for this network

structure.

4.3.4.3 Information traveling performance

In this experiment, the TNOC varied from 720 to 7920. We have 11 samples. The limit

TNOC of this network is 7920.

With respect to information traveling time behavior (static and dynamic information), the

results show that the information traveling time grows linearly with the number of hops as

expected. We also observe that it takes about maximum 103 and 50 seconds to make the

static and dynamic information, respectively travel around 5 hops away when the system

reaches the limit point. Figures 4.20 (a) to 4.20 (b) show the results obtained when we set

the TTL=5. Each curve represents the traveling time of each sample regarding TNOC.
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(a) Static information (b) Dynamic information

Figure 4.20: Average traveling time vs Number of hops

In addition, for the limit point, the maximum traveling time for static information is about

116 seconds, whereas for dynamic information, this value is 59 seconds. These values are

still acceptable regarding the life-time. Figure 4.21 (a) and (b) show the results.

4.3.5 Experiments with 36 nodes

The configuration of these experiments was described in Section 3.5.7. Applying the formula

4.2, we have:

NOP = 360
36 = 10

thus, in this experiment, the parameter NOP is set to be 10.

4.3.5.1 Comparing performance with different TTL value

Figure 4.22 (a) and (b) compare the performance of our system running with 36 nodes. The

TTL is varied from 4 to 6. When the TTL is increasing, the maximum throughput and the

maximum number of Consumers that the system can support are also increased. When the

TTL is 4 and 5, the graphs show that the maximum throughput does not change very much

(980 queries/second and 1003 queries/second for TTL=4 and TTL=5 respectively). The

maximum TNOC in both experiment is the same (8640 Consumers). However, when TTL
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(a) Static information (b) Dynamic information

Figure 4.21: Max, Min, Average traveling time vs Number of hops at the limit point

is set to 6, the performance is improved. The maximum throughput is about 200 more than

in the previous 2 experiments with smaller TTL. The maximum TNOC is also changed, up

to 10800. It means the system can support more Consumers (about 2000) than in previous

setup.

We have the same conclusion as in 24 nodes. It means when TTL is larger, the query

answering performance is better.

4.3.5.2 Query answering performance

We know that the network of 36 nodes has the best answering performance when the TTL

is 6. We will compare the result of this experiment with the smaller network structure.

Overall, the 4 graphs as in Figures 4.23 (a), (b) and Figures 4.24 (a) and (b) show the same

trend with those graphs of the experiments with 24 nodes. The results show that in 36 nodes

network, the performance is better.

First, the total NOC (TNOC) that this 36 nodes network is about 9720 Consumers much

larger than in 24 nodes (about 7920 Consumers).

Second, Figure 4.24 (a) shows that, the average response time of 36 nodes when the TNOC

peaks up at the limit (about 9720 Consumers) is 0.83 second, while in 24 nodes network,

this number is 0.94 seconds (Figure 4.24 (a)).
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(a) (b)

Figure 4.22: Maximum throughput and Consumers vs TTL of 36 nodes

(a) (b)

Figure 4.23: Queries and Throughput vs Consumers with 36 nodes
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(a) (b)

Figure 4.24: Average and Max, Min, Average response time vs Consumers with 24 nodes

The total throughput for 36 nodes network with 6 backbone has the throughput of 1128

queries/second, whereas in 24 nodes, this throughput is 973 queries/second.

All things considered, we conclude that the system of 36 nodes with TTL is 6 has a better

query answering performance than in 24 nodes network with the same backbone struc-

ture. The limitation is 9720 Consumers, 0.83 second is the average response time, and 1128

queries/second is the throughput for this network structure.

4.3.5.3 Information traveling performance

In this experiment, we have 9 samples with TTL=6 the TNOC varied from 1080 to 9720.

The limit TNOC of this network is 9720.

Figures 4.25 (a) to 4.25 (b) show the results obtained when we set the TTL is equal to 6.

Each curve represents the traveling time of each sample regarding TNOC.

With respect to information traveling time behavior (static and dynamic information), the

results show that the trend of information traveling time grows linearly as expected. We also

observe that it takes about maximum 112 and 52 seconds to make the static and dynamic

information, respectively travel around 6 hops away when the system reaches the limit point.

At the limit point, the maximum traveling time for static information is about 97 seconds,

whereas for dynamic information, this value is 46 seconds. The information traveling only

takes 5 hops, and these values are still acceptable regarding the life-time.



CHAPTER 4. RESULTS 78

(a) Static information (b) Dynamic information

Figure 4.25: Average traveling time vs Number of hops

(a) Static information (b) Dynamic information

Figure 4.26: Max, Min, Average traveling time vs Number of hops at the limit point
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All our concerns are examined regarding the information traveling performance during all

experiments. From the results, we realize that the average traveling time is reasonable and

acceptable with respect to the life-time even for the largest network structure that we have

done. As a consequence, we believe that the information traveling is functioning well.

4.4 Summary

We have described the results of our experiments. Regarding the scalability, although we

cannot conclude that our system is scalable, but at least, we are convinced that the system

appears to be scalable. The performance is quite good and the maximum TNOC and TNOP

that our system can support are also very large.



Chapter 5

Analysis

In this chapter, we analyze experimental results obtained before, and present some conclu-

sions regarding scalability and information traveling in Section 5.1 and 5.2 respectively. For

the purpose of observing the influence of network shape, we design some new experiments,

as described in Section 5.3.

5.1 Scalability

In all the experimental results regarding scalability described in Section 4.3, the data col-

lected at the specific moment when the total number of Consumers that can be served and

the total throughput arrive at the peak are most valuable. These data show that under a

fixed number of sites, when the GIS network size, namely the number of IS nodes, is increas-

ing, the maximum total number of Consumers that can be served and the maximum total

throughput are also increasing but the average query response time is decreasing. Figure 5.1

(a), (b) and (c) depict the increasing and decreasing are all linear. In addition, as shown

in Figure 5.2 (a) and (b), resource information is traveling effectively around the whole GIS

network: for the static information, the maximum traveling time is less than 97 seconds; for

the dynamic, the maximum is less than 52 seconds.

We conclude that our GIS appears to be scalable. Under a fixed number of sites, when

the number of IS nodes is increasing, the performance of our GIS is also increasing but will

finally arrive at the peak. However, due to the limitation of the experimental environment,

we could not find out the peak.
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(a) (b) (c)

Figure 5.1: Maximum throughput, NOC, and Average response time vs Number of nodes

(a) (b)

Figure 5.2: Average static and dynamic information traveling time vs Number of hops



CHAPTER 5. ANALYSIS 82

5.2 Information traveling

For the purpose of showing the behavior of information traveling, we defined the life-time

of static and dynamic information both equal to 10 minutes in all the experiments that we

have done. In reality, these two parameters should not be so long, which means a piece of

resource information stops traveling further when its life-time is over.

Because in our GIS implementation, information traveling is based on periodical actions

happening at IS nodes, traveling time is proportional to the number of hops. As shown in

Figure 5.2 (a) and (b), one hop takes nearly 20 seconds for static information and nearly

9 seconds for dynamic. In addition to TTL, the life-time determines how far a piece of

information can travel.

5.3 Design of more experiments

In all experiments we have done, we manually chose the network shapes. Then a question

is: are those network shapes the best for the performance? We decide to carry out more

experiments so that we can see how the network shape influences the performance.

5.3.1 Experiment of 24 nodes with net backbone

The configuration of this experiment is almost the same as before (see Section 3.5.6), except

that the network shape is changed as shown in Figure 5.3. While previously the 24-node

network had a 6-node ring backbone, the new backbone has three more cross links. TTL of

resource information is set to 5.

The purpose of this experiment is to see whether a net backbone is better than a ring.

We expect that compared with the experiment done before, it will take shorter time for

information from leaf nodes to travel around the whole network due to the fact that the

longest distance is one hop shorter. We guess the maximum throughput and maximum total

number of Consumers that can be served will not change a lot due to the fact that the

number of IS nodes is unchanged.
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Figure 5.3: Network structure of 24 nodes with net backbone

5.3.2 Experiment of 24 nodes with line backbone

In this experiment, again we only change the network shape, as shown in Figure 5.4. The

new backbone is a line. Correspondingly, TTL of resource information is set to 7.

The purpose of this experiment is to see whether a line backbone makes a lot of difference.

We guess the maximum throughput and maximum total number of Consumers that can be

served will not change a lot, either. However, much longer time is needed for information

from devious leaf nodes to travel around the whole network due to the fact that these nodes

are connected to the end of the line backbone.

Figure 5.4: Network structure of 24 nodes with line backbone
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5.3.3 Experiment of 36 nodes with 5-node backbone

In this experiment we keep almost the same configuration as defined in Section 3.5.7, but the

network shape is changed as shown in Figure 5.5. The new 36-node network has a 5-node

ring backbone. Thus, TTL of resource information is set to 5.

By doing this experiment, we want to see what will happen if backbone nodes are reduced

while leaf nodes are augmented. Because the backbone is one hop smaller, we expect that it

will take shorter time for information from leaf nodes to travel around the whole network.

We guess changing the backbone will not highly influence the performance.

Figure 5.5: Network structure of 36 nodes with 5-node backbone

5.4 Summary

By analyzing the experimental results, we concluded that our GIS appears to be scalable.

It was confirmed that both TTL and the life-time determine how far a piece of information

can travel. We designed a few new experiments in order to see how network shape influences

the performance. The results of these experiments will be described in Chapter 6.



Chapter 6

More experiments

In this series of experiments, we will compare the experimental results with different setups

by using some important values. The objects to be compared are:

• 24 nodes with 6 ring backbone nodes vs 24 nodes with 6 net backbone nodes;

• 24 nodes with 6 ring backbone nodes vs 24 nodes with 6 line backbone nodes;

• 36 nodes with 6 ring backbone nodes vs 36 nodes with 5 ring backbone nodes;

Firstly, we compare the number of queries has been made and answered in order to find out

the maximum TNOC that the system can support in each setup. This number shows the

availability of the system with different setups.

Secondly, we compare the maximum throughput that the system with each setup can sup-

port.

Thirdly, we consider the maximum of average response time for each setup. This result

shows how quick the system can be for each network structure.

Lastly, we consider the information traveling time for each setup.

6.1 Compare 24 nodes between ring and net backbone

The setup of this experiment was described in Section 5.3.1. Section 6.1.1 will compare the

performance of 24 nodes network with net backbone with the ring backbone as mentioned

in Section 4.3.4.2 and Section 6.1.2 will show the performance of information traveling.
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6.1.1 Query answering performance

(a) (b) (c)

Figure 6.1: Compare 24 nodes, 6 ring vs 6 net backbone nodes

Overall, the query answering performance is nearly the same in both setups, which are 24

nodes with ring backbone and 24 nodes with net backbone.

Figure 6.1 (a) shows that the number of queries that can be answer is similar. The total

number of queries that can be answered is the same as queries made around 435600 queries.

The maximum TNOC that our system can support is also the same about 7920 Consumers.

In Figure 6.1 (b), the maximum throughput is about 973 queries/second in both setups.

Figure 6.1 (c) shows that the maximum of average response time has similar values around

1 second.

For all results shown above, we observe that the query answering performance is simi-

lar in both setups. The limitation is 7920 Consumers, the maximum throughput is 973

queries/second, and the average response time is about 1 second.

6.1.2 Information traveling performance

Figure 6.2 (a) and (b) show the average traveling time for static and dynamic information in

both setups (24 nodes with ring backbone and 24 nodes with net backbone). Due to the fact

that information traveling can take one hop less in the network with net backbone, regarding

information traveling ring backbone is not as good as net backbone but still acceptable.
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(a) Static information (b) Dynamic information

Figure 6.2: 24 nodes-6 ring backbone vs 24 nodes-net backbone

6.2 Compare 24 nodes between ring and line backbone

The setup of this experiment was described in Section 5.3.2. Section 6.2.1 will compare the

performance of 24 nodes network, ring backbone with 24 nodes, line backbone, as described

in Section 4.3.4.2 and Section 6.2.2 will show the performance of information traveling.

6.2.1 Query answering performance

(a) (b) (c)

Figure 6.3: Compare 24 nodes - 6 ring vs 6 line backbone node

Overall, the performance of query answering for 24 nodes with line backbone is worse than

in 24 nodes with ring backbone network structure.

Figure 6.3 (a) shows that the number of queries that can be answered in ring backbone

is much larger than in line backbone. The total number of queries that can be answered
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is 435600 queries, whereas in line backbone, this number is just 396000 queries. While in

line backbone the maximum TNOC is about 7200, the maximum TNOC is 7920 in ring

backbone, 720 Consumers larger than in line backbone network.

In Figure 6.3 (b), the maximum throughput of ring backbone is about 973 queries/second,

while in line backbone, it is only about 885 queries/second.

The last Figure 6.3 (c) shows that the maximum of average response time has similar values,

around 1 second.

All things considered, we realize that the query answering performance of ring backbone is

better than line backbone network.

6.2.2 Information traveling performance

As can be seen in Figure 6.4 (a) and (b), the traveling time in 24 nodes with line backbone

is longer than that for 24 nodes with 6 ring backbone because information traveling takes

2 hops more in line backbone configuration. For dynamic information, in line backbone

configuration, the average traveling time is more than 60 seconds when the information

travels on the whole network (hop=7). For static information, the traveling time is still

acceptable. It just takes around 120 seconds to make the information travel at most 7 hops

away. With respect to the life-time, the traveling time for dynamic is unacceptable because

the life-time could be defined as 1 minute in reality.

By comparing the information traveling, we realize that the 24 nodes with ring backbone is

better than 24 nodes with line backbone.

6.3 Compare 36 nodes between 6 and 5 nodes ring

backbone

The setup of this experiment was described in Section 5.3.3. Section 6.3.1 will compare the

performance of 36 nodes network with 5 backbone nodes with the performance of 36 nodes

network with 6 backbone nodes as mentioned in Section 4.3.5.2. Section 6.3.2 will show the

performance of information traveling.
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Static information (a) Dynamic information (b)

Figure 6.4: 24 nodes-line backbone vs 24 nodes-6 ring backbone

(a) (b) (c)

Figure 6.5: Compare 36 nodes - 6 ring vs 5 ring backbone nodes
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6.3.1 Query answering performance

Overall, the performance of query answering for 36 nodes with 6 backbone and 5 backbone

nodes are similar.

Figure 6.5 (a) shows that the total number of queries that can be answered in 5 backbone

nodes is 437400 queries, whereas in 6 backbone nodes, this number is 437130 queries. The

maximum TNOC is the same in both network, about 9720.

In Figure 6.5 (b), the maximum throughput is completely similar, about 1128 queries/second.

The last Figure 6.5 (c) shows that the maximum of average response time has similar values,

around 1 second.

All things considered, we realize that the network with 5 backbone and 6 backbone nodes

have the same performance. Thus, we conclude that the backbone size does not affect the

query answering performance.

6.3.2 Information traveling performance

Static information (a) Dynamic information (b)

Figure 6.6: 36 nodes 5-node ring backbone vs 36 nodes with 6-node ring backbone

The traveling time results of 36 nodes with 6 backbone nodes and 36 nodes with 5 backbone

nodes are presented in Figure 6.6 (a) and (b). Due to the fact that information traveling

can take one hop less in the network with 5 backbone nodes, 6-node backbone is worse than

5-node backbone regarding information traveling but still acceptable.
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6.4 Analysis

In Section 6.2, the results show that the 24 nodes with line backbone is not suitable for our

system. The performance is slightly less than in the 24 nodes with ring backbone, but the

traveling time is unacceptable. The maximum number of hops is 7, and in order to make

information travel around the whole network, the traveling time of dynamic information is

more than 1 minute. Besides, the line structure is not robust as the ring and net backbone.

The net backbone (see Section 6.1), on the other hand, seems to be similar to the ring

backbone. The performance of query answering is not different, but the result of the net

backbone shows that the traveling time is slightly less. Regarding information traveling, net

backbone looks better. However, we are not sure what will happen if the backbone is fully

connected.

Regarding the experiments with 36 nodes, the results show that the query answering per-

formance of 5 nodes and 6 nodes ring backbone is almost the same. This means reducing

1 node in the ring backbone does not influence very much to query answering when the

network size is the same. Regarding information traveling, 5-node backbone looks better.

We conclude that if information traveling is working correctly and effectively, the perfor-

mance of query answering will depend on the network size, namely the number of IS nodes,

not the network shape. The reason is: due to the fact that the TNOP is unchanged, as long

as information is effectively traveling around the whole network, a larger network size can

serve more Consumers and has better performance. However, the performance of information

traveling depends on both the network size and shape.

6.5 Summary

In this chapter, we introduced the results of a few new experiments that have been done for

the purpose of indicating the influence of network shape, and presented some new findings

based on these results.



Chapter 7

Related work

In this chapter, we will make the comparison of our experimental results with MDS. Two

other projects will also be introduced with brief evaluation.

7.1 Compare with MDS

Since we obtained the valuable results from the experiments as done above, we are interested

in the quantitative study of the performance of the current GISs. This is useful and can help

us understand the performance limitations in our system compared with other GISs.

To date, there are not many studies that quantitatively evaluate the performance of the

current GISs. We found that there is a good study of the performance of GIS [18]. They

performed the experiments to test the scalability of the dominant GISs such as: Globus

Toolkit Monitoring and Discovery Service (MDS2), the European Data Grid Relational

Monitoring Architecture (R-GMA), and Hawkeye a part of Condor project. These results

are really meaningful to us, and we take the results of MDS into consideration due to the

fact that MDS presents better scalability than others.

Recall chapters 4, 5 and 6, it can be seen that our system seems to scale well regarding the

total number of Consumers (TNOC) as well as total number of Producers (TNOP). The

maximum TNOC throughout our experiments that the system can support is from 2520 (6

nodes) to 10800 (36 nodes), while TNOP is fixed and equal to 360. For MDS, the maximum

number of users is only up to 600, and the maximum number of information servers is only

less than 100. The counterparts of MDS regarding TNOC and TNOP are number of users

and information servers.
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With respect to the response time, our results presented are quite good. Even in the worst

case (6 nodes), the results show that the average response time is less than 1.5 seconds,

while the number of Consumers is 2520. This result is even better when the system with 36

nodes, the response time is less than 1 second. For MDS, the average response time is also

small (less than 2 seconds) even as the number of users increases (up to 600). However, the

TNOC in our experiments (equivalent to number of users) is much larger than MDS.

Due to the large TNOC, our results also show a higher throughput compared with MDS.

The maximum throughput in 6 nodes is 235 queries/second, whereas for MDS, the maximum

throughput is approximately 140 queries/second.

From the observations and numbers above, we are very much interested in a question why

we got such interesting results in comparison with MDS. Obviously, this is promising in

building a more scalable GIS. These results can be explained by major reasons:

1. Our GIS is distributed structure because it is based on peer-to-peer model, while MDS

is centralized one. Thus, our GIS can support a lot of Consumers and Producers by

distributing them on the whole network. The aggregate directory server in MDS can

be the bottleneck when a large growing number of users are making concurrent queries

to it and there is too much resource information contained.

2. An outstanding feature of our GIS is information traveling. Almost all queries can be

answered locally when this feature is functioning. In MDS usually the queries have to

go down from the top to bottom in aggregate directory, so the response time therefore

might be longer than ours.

Nevertheless, it is difficult to conclude that our system is more scalable or better than MDS

due to some different settings as follows:

1. Experimental setup: In their experiments, all machines’ configurations are worse than

ours. The best machine is only equipped with 1133 MHz Intel PIII CPU and 512 MB

RAM, while our machines are more powerful with 2.8GHz Pentium IV and each have

2GB RAM. In addition, they ran the experiments on both sites with the bandwidth

around 55 Mbits/sec, while ours is Gigabit Ethernet network and our experiments are

run on one site. This is a cause of higher query response time in MDS.

2. Resource information size: Our resource information of a site simulated is only 7800

Bytes, whereas for their experiments, the resource information is real data with the

variable size. Hence, this is also the reason for longer response time and less throughput

in MDS.



CHAPTER 7. RELATED WORK 94

In summary, our analysis above shows that our proposed idea of building a scalable GIS is

promising. In our future work, we plan to do more experiments to deeply study and keep

evaluating our system. Especially, a setup close to MDS will be performed in order to have

a more accurate comparison.

7.2 Other peer-to-peer approaches

In this section, we introduce two other approaches of building GIS with peer-to-peer tech-

nology and then present a brief evaluation on these approaches. These two research groups

proposed an peer-to-peer (P2P) model to setup the underlying network among Virtual Orga-

nizations (VOs). More precisely, the topology is the super-peer network architecture rather

than a pure P2P network.

7.2.1 A peer-to-peer information service for Grid

System overview Sample networks

Figure 7.1: An example of super-peer network: (a) without redundancy; (b) with redun-

dancy. Black nodes represent super-peer. White nodes represent the regular peers [13]

This project [13] proposed an approach to build GIS based on peer-to-peer model. Figure

7.1 shows that the system consists of two main components:

• Agent, which runs on the regular peer node, is responsible for publishing local infor-

mation to the super-peer;

• Aggregator, which runs on super-peer, is responsible for collecting data, replying to

queries, and forwarding queries to other super-peers. The Aggregator also has an index
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of information that is stored in each neighbor super-peer.

In fact, this project used the Indexing Service from GT3 (Globus ToolkitTM 3), and there-

fore the local structure is centralized/hierarchical. Moreover, this approach also provides a

redundant super-peer when the high reliability is needed.

7.2.2 Super-peer network

This project [9] proposed an approach for building resources discovery service which is also

based on P2P model. Each VO contains only one super-peer (see Figure 7.2). This approach

exploits the centralized/hierarchical information service provided by the grid infrastructure

of the local VO. It can be MDS-2 of GT2 (Globus ToolkitTM 2) or Indexing Service of GT3.

The working procedure of this system is as follow. Query messages generated by the grid

will be forwarded to the local super-peer. In here, the query is analyzed using the local

information service. If the requested resources belong to some nodes of this local VO, a

queryHit containing the ID of this node will be sent to the requesting node. The super-peer

will also forward a copy of this query to a selected list of other neighbor super-peer nodes.

The same procedure is used in those super-peer nodes.

System overview Sample networks

Figure 7.2: A grid network configuration exploiting the super-peer model [9]

7.2.3 Evaluation

The outstanding feature of these two projects is that the super-peer network architecture

was adopted for setting up the underlying network among VOs. These approaches have the
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advantages that are inherited from the super-peer network [9]. However, they still have some

drawbacks.

7.2.3.1 General evaluation

The first drawback of these two approaches is that the centralized/hierarchical architecture

is applied in the local VO. Therefore, the super-peer node will suffer from the bottle-neck

and single point of failure problem. The first project [13] applied the hierarchical structure

by using MDS-2 or Indexing Service of GT3 and the drawbacks of MDS have been discussed

in in our previous report [14]. In the second project [9], the client-server model is applied.

Although a redundant super-peer is provided to avoid the single point of failure as well as

reduce the workload for the other super-peer node, the bottle-neck and single point of failure

problem still occur when one super-peer is unavailable and the number of regular peers is

huge.

7.2.3.2 Evaluate the first project

In this project [13], experiments were performed on a grid that involved five organizations

located in different areas.

The result of experiments within a physical organization border was quite impressive (the

average response time is around few hundred milliseconds). However, the response time was

longer than 1 second when performing experiment across institutions’ border.

The experimental results showed that this approach has shorter response time than MDS,

but the experimental environment was limited in a small region. In fact, as authors of this

project also mentioned, for a very large and world-wide configuration, the caching approach

of MDS has more advantages than their approach and the performance of their system could

be slowed down as the network size increases.

It is very difficult to compare with our experimental results, due to the fact that they did

not describe the configurations parameters for running the experiments. For example, they

did not mention anything regarding the number of users (corresponding to in our system is

TNOC) making queries to the system, the running time and also the number of sites (ours

is TNOP). Moreover, there is no information of throughput. As a result, we do not make

any comparison.
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7.2.3.3 Evaluate the second project

In order to evaluate the performance in the second project [9], a grid network of fixed size

(10000 nodes) was setup and the cluster size c was chosen between 1 (the fully decentralized

network with 10000 nodes) to 5000 (the network is made up of 2 clusters and each cluster

has 5000 nodes including 1 super-peer):

1. Regarding the number of discovered resources versus c, the result showed that the

performance values increase with TTL if c is lower than 1000. In other words, it

would be inefficient if the c is higher than 1000.

2. Regarding the response time versus c, the result showed that the response time in-

creases with TTL value and decreases with the cluster size. It was also confirmed by

the experiments that the high value of TTL is only effective in case of small cluster

size.

However, while we carried out experiments to observe the behaviors of our system, what

they have done is only simulation. As a result, it we do not make any comparison.

7.3 Summary

We have compared the results of our experiments with MDS. Although the comparison result

shows that our system seems to have a better performance, due to the different configurations

and physical setups we cannot conclude that our system is better than MDS. In Section 8.1,

we will describe future work that could have a more precise comparison with MDS.



Chapter 8

Conclusion and Future work

We did a broad survey on Grid Information Service (GIS), and realized that the existing

GISs are not perfectly competent for working effectively and efficiently in a huge grid with

respect to the requirements of scalability, fault-tolerance and flexibility. Thus we proposed a

novel peer-to-peer GIS architecture. Two outstanding features of this architecture are nodes

applying Optimized Link State Routing Protocol (OLSR) to self-organize network structure

and resource information traveling around in terms of its validity. We implemented this

architecture, and then evaluated the implementation by doing many experiments.

The experimental results show that our GIS architecture is promising. On one hand, it

is confirmed that using OLSR our GIS system is able to automatically build up and then

maintain the network as expected, and the network structure is fault-tolerant and flexible.

On the other hand, the experimental data that we have collected so far show that our GIS

system appears to be scalable. Due to the experimental environment and limited time, we

could not absolutely prove the scalability. We plan to do more experiments for this purpose

in the future.

We have done some comparisons between our GIS and MDS (Section 7.1) and introduced

two other P2P approaches (Section 7.2). In our future work, we want to modify the current

query answering mechanism and carry out more experiments.

8.1 Compare with MDS

In Section 7.1, we compared the experimental results of our system with MDS. However, the

configuration of our experiments was different from theirs. Although the comparison result
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showed that the performance of our system is better, we can not conclude that it is really

better. As a result, we want to carry out more experiments with the configuration similar

to MDS.

Setup of our experiments can be:

• Set the number of Consumers 600 (as same as in MDS’s experiments).

• Set the number of Producers 50 (as same as in MDS’s experiments).

• The running time will be set the same as the experiments for MDS, namely 10 minutes.

8.2 New query answering mechanism

As mentioned in Section 2.3.4, our current query mechanism is always to search the infor-

mation. If the resource information is not stored in the local IS node (information published

from local Producers or transferred from other IS nodes), the response time will be not good.

If the the TTL is very small (TTL=0 for example), the query answering performance is even

worse.

The reason is that queries have to be forwarded several hops away in order to get answers.

Even if some queries have been answered previously, the whole process of finding the answer

will happen from the beginning to the end.

We propose a new mechanism for query answering in order to improve the performance using

caching. Query answering caching mechanism is the way to store a reasonable number of

queries that have been answered. The stored information should include the query itself and

the destination IS node that has the answer for this query. As a result, if the same query

is made to local IS node, IS node will immediately know where the answer is located rather

than searching the whole network again, and thus the local IS node only needs to contact

the destination IS node to get the answer.

Moreover, by using this mechanism, we can also reduce the value of TTL. Thus, resource

information is not necessary to travel around the whole network. In other words, it means

the traffic will be reduced effectively. This, consequently, can also improve the performance

of our system.
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8.3 Finding out the limit

Recall Chapter 4, 5 and 6, the performance of our system is very good when information

travels around the whole network. However, when TTL is small, the performance is not.

With new query answering mechanism, we want to find out the performance when TTL is

not very large for both static and dynamic information. The dynamic information always

has short life-time. As a result, it can not travel very far from its local IS node. We also

want to find out the limit regarding the TNOP and TNOC of our system.

With this new experimental results, we expect that we can find out the most acceptable

configuration for our system to run effectively.
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