
Master Thesis

June 2006

Jakob T. Andersen jta@cs.aau.dk

Rune D. Hammerskov rdh@cs.aau.dk

Lars H. Nielsen dengmao@cs.aau.dk

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

Title:

Amigo

Subtitle:

An Object Relational Query

Language

Project period:

Dat6

2006

Project group:

d632a

Group members:

Rune D. Hammerskov

Jakob T. Andersen

Lars H. Nielsen

Supervisor:

Lone Leth Thomsen

Copies: 7

Pages: 123

Abstract:

Amigo is a language for querying relational

databases from an object oriented setting. Tra-

ditionally, querying relational data from object

oriented programming languages entails using

SQL queries embedded in strings. This ap-

proach is not optimal, as queries are neither

syntax nor type checked until they are sent

to the database at runtime, with the result

that fatal errors could occur during execution.

Amigo addresses this problem by providing syn-

tax and type checking of its queries. Further-

more, Amigo is designed with intuitiveness and

ease of use in mind. Amigo queries are ex-

pressed using the concept of filters that was es-

tablished in the previous project Language In-

tegrated Persistence. This concept is further

developed and expanded to accommodate the

language features of Amigo.

Rune D. Hammerskov Jakob T. Andersen Lars H. Nielsen

Preface

Prerequisites

This report is aimed at software engineers. The reader should have a basic

knowledge of both object oriented programming and relational databases.

As the report deals with language development the reader should have some

knowledge about this as well.

Reading notes

The report consists of nine chapters and three appendices. The first chapter

introduces the problem that this report tries to solve. Chapter two consists

of an analysis of existing technologies and discussion about the features that

the Amigo language should support. Chapter two is summarised in the last

section of the chapter. Chapter three describes the design and development

process. Chapter three is also summarised in the last section of the chapter.

In chapter three an example scenario is presented which is used throughout

the rest of the report. Chapter four describes the implementation, and is

summarised in the last section of the chapter. Chapter five describes the

test of the Amigo language, both a validation and technical test. In this

chapter, the a summary is present as well. Chapter six describes related

work. Chapter seven is an evaluation of the report, process, and Amigo

language. Chapter eight, as a direct continuation of chapter seven, describes

future work which could be done in the development of Amigo. Chapter

nine is a short conclusion concerning the report, process, tools, and Amigo

language.

Throughout this report, an extensive number of abbreviations are used.

When a new concept is introduced, for which an abbreviation is applicable,

the full name is presented first, and then the abbreviation of that concept

follows in parentheses. For instance, Language Integrated Query (LIP).

v

Typography

There are two types of code examples in this report. The first we call

Listings, and this type is reserved for larger and more complete examples.

Listings look like this:

Listing 1: Test
1 This i s a t e s t .

In the back of the a report there is a complete list of all listings.

The second type of examples is reserved for smaller examples which often

only portray as small part of some code. These examples look like this:

This is a test.

Tools

In the course of this project, we have made use of several tools. This report

is written using Latex and the Latex package memoir. The Amigo compiler

is implemented in C# and it runs on both the .NET platform as well as

the Mono platform. The integrated development environments used for the

implementation is SharpDevelop and Monodevelop.

Compiler & Source code

The implemented Amigo compiler and it’s source code, is included on a

CD-ROM which can be found in the back of this report. Furthermore, an

electronic version of the report is available in PDF format on the disc.

Contents

Contents i

1 Introduction 3

1.1 Problem Statement . 4

2 Analysis 7

2.1 LIP . 8

2.2 SQL . 11

2.3 HaskellDB . 17

2.4 Hibernate Query Language 19

2.5 Discussion . 20

2.6 Summary . 22

3 Design 23

3.1 Limitations . 23

3.2 Example Scenario . 25

3.3 Functionality . 27

3.4 Syntax . 34

3.5 Semantics . 36

3.6 Type System . 40

3.7 Mapping . 43

3.8 Summary . 45

4 Implementation 47

4.1 Compiler Structure . 47

4.2 Code Generation . 55

4.3 Summary . 59

5 Test 61

5.1 Code Testing . 62

5.2 Validation . 63

i

ii CONTENTS

5.3 Summary . 66

6 Related Work 69

6.1 Language Integrated Query 69

6.2 NHibernate . 70

7 Evaluation 73

7.1 Validation Test . 73

7.2 Technical Test . 74

7.3 Analysed Technologies . 75

7.4 Functionality . 75

7.5 Limitations . 78

7.6 Tools . 80

8 Future Work 81

8.1 Language Integration . 81

8.2 Object-relational mapping 82

8.3 Industrial Application . 83

9 Conclusion 85

Bibliography 87

A Grammar 93

B Amigo manual 103

C Validation test 113

D Summary 119

List of Figures 121

Listings 122

Acknowledgements

We would like to thank our supervisor Lone Leth Thomsen for her invaluable

help and constructive criticism for this project.

We would also like to thank a few of our fellow students, namely Jacob

Elkjaer Hansen, and Thomas Legaard Kjeldsen for agreeing to participate

in the testing of Amigo, even though they had to work on their own projects.

1

Chapter 1

Introduction

In developing software today, a popular approach is to make use of an ob-

ject oriented programming language to describe the logic and model of the

application, and a relational database as data storage. However, as popu-

lar as this approach is, there are problems associated with it. The general

problem concerning the interaction between the object oriented world and

the relational world is often referred to as the impedance mismatch prob-

lem [20].

Traditionally, querying a database from an object oriented programming

language involves the use of a call level interface (CLI) such as ODBC [6] or

JDBC [14]. Structured Query Language (SQL) queries are expressed in text

strings which are sent to the database. This is also sometimes referred to as

explicit query execution. Expressing the queries in simple strings does not

provide syntax or type checking of those queries. The result of this, is that

errors in the queries are not caught until runtime, extending development

time and causing frustration for the programmer. We will refer to the issue

of explicit queries not being type checked at compile time as weakly typed

explicit query execution.

We worked on solving this problem in the development of an extension

to the C# language called Language Integrated Persistence (LIP), described

in [16]. LIP tries to solve, at least to some extent, the impedance mismatch.

By extending C# with a number of constructs and keywords LIP relieves

the application programmer from being concerned with the database, and

instead focus on the development of the application. The database is hidden

from the programmer and the database automatically reflects the applica-

tion. However, in the final design of LIP the database shined through.

We realised that if one wants to use more than basic database function-

3

4 Chapter 1. Introduction

ality the database cannot be completely hidden from the programmer. In

order to utilise the functionality provided by the Database Management

System (DBMS), the programmer needs to be aware of the database, which

in effect means that there is no reason for hiding it completely from him.

In this project we are concerned with creating a solution for expressing

database queries that, on the one hand, is well suited for use in an object

oriented language and, on the other hand, provides the use of DBMS specific

functionality while also making sure that queries are correct.

The solution is implemented as a query language, called Amigo, which

could later be integrated in an object oriented host language. Unlike LIP

we do not try to hide the database from the programmer. We assume that

most programmers have some database experience and will find it difficult

to completely let go of the database. In other words, most programmers are

comfortable thinking about data represented as tables, but have difficulty

handling complex table operations. It is often when programmers have to

create SQL queries where several tables are combined that problems occur.

We want to alleviate the programmer from having to concentrate on this.

Although LIP was not the right solution some of the ideas from it are

worth keeping. Most notably the idea of of using filters. Filters are method

like constructs which can be used on groups of data and in the context of

relational databases they represent SQL queries. LIP is presented in greater

detail in section 2.1.

1.1 Problem Statement

In this project we address the problem of weakly typed explicit query exe-

cution performed in object oriented programming languages on data stored

in relational database management systems (RDBMS). The primary goal

is to extend the filter concept from LIP and develop it further to utilise

more of the RDBMS’s features. The new concept is to be implemented as a

query language called Amigo. Because Amigo access data stored in relation

databases it has to be compatible with SQL. The filters should comply with

the object oriented model but the relational model should be clearly visi-

ble. The programmer should be aware of when he is using the database and

when not. The specific goals of this project are to analyse known languages

and technologies, that deal with similar issues, to identify which features

are to be available in Amigo, design the language creating a complete syn-

tax and informal structured semantics. The core features of the language

1.1. Problem Statement 5

are to be implemented along with some additional features implemented as

proof-of-concept. Unit tests are to be written for each feature implemented,

and to test the usability of the language a test with a number of people is

to be devised and performed.

Chapter 2

Analysis

Before designing and implementing a new query language, it is important

to investigate existing solutions in order to gain a broad understanding of

the work and experiences of others. We begin this chapter by describing

the LIP project which is the basis of the Amigo project. Then we describe

the query languages and technologies we have found of particular relevance

to this project. They are:

HaskellDB: A query library for the Haskell programming language. Haskell-

DB is interesting because it has some filter-like language constructions.

HQL: The query language used by the object oriented persistence frame-

work Hibernate. HQL is interesting because it is the query language

from a popular object relational mapper.

PL/SQL: The language used in the Oracle Database. PL/SQL is interest-

ing because it extends standard SQL with some interesting features.

T-SQL: The language used in MSSQL. T-SQL is interesting because it

extends standard SQL with some interesting features.

Each of these languages and technologies have a different approach to

the concept of data extraction from a database. This fact makes it easier

to identify their strong and weak points in relation to each other and also

to determine which features should be adapted by Amigo. Following the

analysis of the existing solutions, the features and functionality of these are

discussed, as well as how they apply to this particular project.

The analysis serves as both a general exploration of existing solutions

but also as a way of determining how others have dealt with specific problem

areas. In the introduction we presented a few basic requirements we have

for the language. Amigo has to be SQL compatible and make use of a

7

8 Chapter 2. Analysis

method like construct called filters. The aim of the analysis is on one

hand to investigate how, or if, others have found a solution to these issues

and on the other hand if others have additional features which we have

not thought of. We have expressed a desire to make use of the DBMS as

much as possible, for instance to let the DBMS perform aggregate functions

instead of the host language.

In the following we focus on retrieval of data. Several of the technologies

also support insertion and update of data, but this is not relevant to this

project.

2.1 LIP

This section introduces the project [16] that lead up to the Amigo project.

The project aimed at finding a solution to the impedance mismatch prob-

lem. The solution was implemented as a language called Language Inte-

grated Persistence(LIP), an extended version of C#. Unlike Amigo, LIP

was designed to handle everything that had to do with connecting object

oriented applications with relational databases. We decided on a very pure

or clean approach in which the programmer did not see the database at

all. Clean or pure refers to the fact that we chose one paradigm and not a

mix of several paradigms. Or rather, this was the original plan. The idea

was that the programmer would write the application with no regard to the

database. The database would then be generated automatically at compile

time. The choice of hiding the database meant that all data operations

would have to be handled in the application. This realisation came to us

some way into the development, and it made us reconsider the choices we

had made. We reasoned that if you were to do all data operations in the

application, many of the arguments for using a relational database would

be gone. In many situations using an object oriented database would be

much easier. If we wanted to create a language that would appeal to people

who for some reason were forced, or preferred, to use rational databases, we

would have to provide ways of utilising database functionality.

The project still had as a goal to hide much of the database, but it was

important that the programmer could utilize database functionality. The

basic design idea was a filter construction that should make it out for the

WHERE clause and any sorting or limitations in a corresponding SQL query.

The filter construction resembles a method and it is intended to be used

just like a method. As the goal was to handle all database related areas,

2.1. LIP 9

data retrieval was not the only thing we had to address.

We decided, as we had already broken with the idea of hiding the

database, that programmers would feel more comfortable being able to con-

trol what should be persisted and when it should be saved and deleted. The

first part was accomplished by treating all objects as transient unless other-

wise indicated. The programmer indicated which fields should be persisted

by using the persistent keyword that we introduced. Although techni-

cally unnecessary, we decided that if there were persistent fields in a class

the class declaration itself had to contain the persistent keyword. This

was done as a help for the programmer, so that if he had a class that at

some point during development was persistent, but later should not be, he

could be sure that no fields where accidentally persisted. The second part

was accomplished by introducing save and delete methods.

Before going on with our intentions with LIP here are two examples.

Example 2.1 shows how the save and delete methods are used.

Listing 2.1: LIP example
1 Employee e = new Employee () ;

2 e .Name = ”John Doe ” ;

3 e . Save () ; // Object i s i n s e r t e d in database

4 e . IsManager = true ;

5 e . Save () ; // Object i s updated in database

6 e . De lete () ; // Object i s d e l e t ed in database

Example 2.2 shows a persistent class and what a filter looks like and

how it is used.

Listing 2.2: LIP example
1 pub l i c p e r s i s t e n t c l a s s Employee {
2 pub l i c p e r s i s t e n t primary i n t Id ;

3 pub l i c p e r s i s t e n t s t r i n g Name ;

4 pub l i c p e r s i s t e n t i n t HourlyRate ;

5 }
6

7 pub l i c p e r s i s t e n t c l a s s WorkSession {
8 pub l i c p e r s i s t e n t primary i n t Id ;

9 pub l i c p e r s i s t e n t Employee Employee ;

10 pub l i c p e r s i s t e n t i n t Hours ;

11

12 p r i va t e f i l t e r WorkSession ByEmployee (Employee e) {
13 Employee == e ;

14 }
15 }

10 Chapter 2. Analysis

16

17 pub l i c c l a s s PaymentCalculator {
18 p r i va t e WorkSession s e s s i o n ;

19

20 pub l i c PaymentCalculator () {
21 s e s s i o n = new WorkSession () ;

22 }
23

24 pub l i c void CalculatePayment (Employee emp) {
25 i n t TotalPayment = 0 ;

26

27 fo r each (WorkSession s in s e s s i o n . ByEmployee (emp)) {
28 i n t SessionPayment = s . Hours ∗ emp . HourlyRate ;

29 Console . WriteLine (” Se s s i on payment {0}” , SessionPayment) ;

30 TotalPayment += SessionPayment ;

31 }
32

33 Console . WriteLine (” Total payment {0}” , TotalPayment) ;

34 }
35 }

As mentioned, introducing indication of persistent fields and save and

delete methods went directly against the language requirement of hiding

the database. We did not see a way around this problem. As we were

already leaning more and more towards the idea of showing parts of the

database, we determined it to be the best solution. We reasoned that most

programmers would have some knowledge or experience with databases.

They would be comfortable with the concept of data represented in tables

and the basic mapping between tables and objects. The real problem for

most programmers is that database queries where several tables have to be

combined quickly become complex and difficult to write.

In the development of LIP we went from, what was perhaps, a naive

idea of a clean language to a more realistic idea of simply making the use

of a database from an object oriented language as easy as possible. This is

essentially the goal we have brought into the Amigo project. The problem

with LIP was twofold. It ended up being a mix of several ideas and it made

it somewhat confusing to use. It was obvious that many of the constructions

were not part of the original idea. The second problem was that we could see

features such as aggregate functions and union etc. would be very difficult

to include without making LIP even more confusing to use. Developing LIP

gave us some good ideas but we had to go back and start from scratch if all

the ideas were to work.

2.2. SQL 11

2.2 SQL

The Structured Query Language which is specified by the SQL92 [17] and

SQL99 [18] standards is the query language of choice in the most widely

used RDBMS’s. Most of the RDBMS’s implement a superset of SQL, which

includes extended functionality and/or containing language features known

from existing programming languages. We have chosen to investigate the

features found in two of these supersets of SQL. The two languages we will

look at in the following is PL/SQL used in the Oracle Database and T-SQL

used in the MSSQL Database. It is important to note that T-SQL and

PL/SQL are supersets of SQL so both the extensions to SQL and the SQL

language itself are discussed in this section.

2.2.1 Motivation for extending SQL

Using SQL, the programmer is limited to executing single or batches of

declarative statements. In T-SQL and PL/SQL, features are introduced to

give the ability to perform more advanced data focused tasks directly in the

database using many known programming language constructs like iterative

and conditional statements. Even though the languages are powerful, they

are mainly used for administrative tasks concerning the database system

and the data stored within as the flexibility of a general purpose language is

missing. However, the languages can still be useful in advanced applications

as the programs written in T-SQL and PL/SQL can be called in the same

way that SQL can be used from general purpose programming languages.

2.2.2 Main features

Both T-SQL and PL/SQL programs are executed in an imperative fashion

and have the common features mentioned here:

• Variable declaration and assignment

• Procedure declaration

• Conditional statements

• Iterative statements

Assignment to a variable can be the result of an SQL query. This variable

can be used in iterative statements to iterate through relational data and

perform operations on this data.

As we might host Amigo in a general purpose programming language, it

is important to note the ability to use queries in this fashion. However, the

12 Chapter 2. Analysis

ability to declare procedures and use iterative and conditional statements

is of little interest as these features are available in the host language.

The SQL92/99/2003 specifications describe the syntax of a SELECT state-

ment and the basic functionality is the ability to retrieve zero or more

columns from one or more tables with the possibility of using the basic

SQL features listed here:

• Ordering rows

• Grouping rows

• Filtering rows

• Joining columns from multiple tables using key-relationships

All of these features are well documented, for instance in [19] and will

not be discussed further in this chapter.

2.2.3 Key data extraction features

Set operators

The result of a SELECT statement is a set of tuples. Operations for working

with multiple sets of tuples are available in both T-SQL and PL/SQL. The

combined set operators in the two languages are listed here:

• UNION

• UNION ALL

• INTERSECT

• MINUS

They all work by combining two sets, but each with different semantics.

UNION takes all distinct rows from either set and places them in the new

set. UNION ALL takes all rows from the two sets and places them in the new

set, including duplicates. INTERSECT takes all distinct rows present in both

sets and places them in the new set. Lastly, MINUS takes all distinct rows,

from the first set, not in the second set and places them in the new set.

Subselects

Using the result of one query execution in another is possible in T-SQL and

PL/SQL by assigning the result of a query to a variable. A more powerful

approach is subselects which gives the developer the ability to use the result

of one query as a part of another for instance in the WHERE clause. In both

Key data extraction features 13

T-SQL and PL/SQL operators for working with lists are present. These can

be used in the context of sub-queries, as in this T-SQL example:

SELECT Name, Age

FROM Employees

WHERE EmployeeID

IN (SELECT EmployeeID

FROM DepartmentEmployees

WHERE Department = ’Sales’)

The type of query presented in the example is very useful when querying

data which is part of a many-to-many relation in the database as you can

easily use the table, which is used for modeling the relation, in your WHERE

clause using a subselect.

In addition to using the IN operator on a statement, it can be used on

a set of numbers, hence retrieving for instance a list of rows given by their

primary key:

SELECT Name, Age

FROM Employees

WHERE EmployeeID IN (1,20,40);

Other operators exist that can be used with subselects, for instance the

EXISTS keyword which can used to check if a subselect returns a result. In

the following example only Departments that has employees associated is

returned:

SELECT * FROM Departments WHERE EXISTS(SELECT * FROM WorksIn

WHERE DepartmentID = Departments.DepartmentID);

The same query can easily be rewritten using IN instead:

SELECT * FROM Departments WHERE DepartmentID

IN(SELECT DepartmentID FROM WorksIn);

14 Chapter 2. Analysis

The EXISTS provides a shortcut to these type of queries that could be

created using IN and just compare the primary key as seen in the example.

2.2.4 Built in functions

Both T-SQL and PL/SQL have a large number of built in functionality used

for mathematical and various other tasks.

Functions that vary from what we know from most programming lan-

guages are those that operate on a set of single or multiple rows returned

from statements. These statements are referred to as Single-Row functions

and Aggregate functions.

Single-Row functions return a single result for each row resulting from

a query. An example of a Single-Row function could be the square root

function SQRT. A query on the form

SELECT SQRT(Salary) FROM Employees;

would return one row for each row present in Employees containing the

square root of the value present in Salary of that row. We have divided

Single-Row functions into categories which gives an indication of which data

types they can be applied to:

• Date and time functions

• Mathematical functions

• String/Character functions

• Null handling functions

• Conversion and cast functions

• Comparison functions

• Text and Image functions

One special group of functions is the null handling functions. This has

a special significance in database systems because of the fact that all data

types can be NULL and that an operator applied to a value and a NULL value

will always return null. The last group of functions called Text and Image

functions is used to work with large amounts of data in either text or binary

form stored in the database.

Aggregate functions operate in a completely different fashion. An ag-

gregate function returns a single result row based on a set of rows. An

Built in functions 15

example of an aggregate function could be the AVG function which returns

the average of a column in a set. A query on the form

SELECT AVG(Salary) FROM Employees;

would return a single row containing the average of all the values of

Salary present in Employees. Many different aggregate functions are avail-

able. All share the characteristics of AVG in the fact that they return a single

row result operation on a set of rows. Often aggregate functions are used

with the GROUP BY clause to retrieve only the aggregate value for certain

groups of rows present in a table. An example could be to find the average

salary in several departments in a company’s employee database:

SELECT AVG(Salary) FROM Employees GROUP BY department;

This would return one result row for each department containing the

average salary for employees related to that specific department.

Interval/Ranges

In SQL’s conditional clauses, the developer has the opportunity to work with

ranges. That is, to specify a range of, for instance, integers that should be

given for a certain column in the database. This is done using the BETWEEN

keyword. For instance, the following query will return all rows from the

Employee table where the value of the Salary column is between 10.000

and 20.000:

SELECT * FROM Employees WHERE Salary BETWEEN 10000 AND 20000;

Looking at the above purely from a language perspective, and not think-

ing of how the database can use this special syntax to optimize queries, it

is equivalent to the following query using the comparison operators which

is a part of SQL:

16 Chapter 2. Analysis

SELECT * FROM Employees WHERE Salary >= 10000 AND Salary <= 20000;

Hierarchical queries

PL/SQL has a feature for working with hierarchical data stored in a database

with parent-child relationships between rows in tables. This is accomplished

by adding extra functionality to the SELECT statement from SQL. The syn-

tax for querying hierarchical data is shown here:

SELECT-STATEMENT START WITH condition

CONNECT BY [NOCYCLE] condition

The underlined words are keywords and the first condition must contain

an expression prefixed with the PRIOR operator which indicates the reference

to the parent row.

If this feature was not included, as is the case with standard SQL im-

plementations, the hierarchical data could only be retrieved by

1. Using multiple queries(recursive database calls or recursion in TSQL

using a temporary table as a stack

2. Let the table join itself, however its only suitable for getting paths

and not getting all the columns

3. Maintaining a nodepath in a seperate column in the database and

sorting by this to get the rows in their correct order

4. Using various techniques like nested sets or nested intervals which

makes it very complex to insert new rows

An example of using a table joining itself i shown below:

SELECT Top.Name Top, Second.Name Second, Elements.Name Element

FROM Elements

INNER JOIN Elements AS Second ON Elements.ParentID=Second.ElementID

INNER JOIN Elements Top ON Seconsd.ParentID=Top.ElementID;

This will show all paths in the hierachi for instance if the hierarchy is

2.3. HaskellDB 17

Element1

- Element1.1

-- Element1.1.2

--- Element1.1.2.1

--- Element1.1.2.2

The above query will return the following rows:

Element1 Element1.1 Element1.1.2

Element1.1 Element.1.1.2 Element1.1.2.1

Element1.1 Element.1.1.2 Element1.1.2.2

which is the path of the subnodes from the parent, however if we want

all the data for each row the query becomes more complicated and one of

the more advanced models would be better suited.

In PL/SQL it can easily be done using START WITH...CONNECT BY as

shown here:

SELECT lpad(’ ’,level*2,’ ’)||Name

FROM Elements

START WITH ParentID IS NULL

CONNECT BY PRIOR ElementID = ParentID

This will print the whole tree with nice padding and sorted, the padding

can be left out and the level can be retrieve.

2.3 HaskellDB

Haskell[8] is a functional programming language. HaskellDB[4][3] is a li-

brary for Haskell that provides a means of communicating with a back-end

DBMS from a Haskell program. Instead of using explicit queries in strings,

HaskellDB enables the programmer to express those queries using standard

Haskell functions. Using the Haskell type system, the queries are checked

at compile time and thus a type safe way of expressing database queries are

the result - in contrast to strings embedded explicit SQL queries.

Consider the following SQL query:

18 Chapter 2. Analysis

SELECT * FROM Employees WHERE fname = "John"

This simple query can easily be expressed using HaskellDB:

employees = do

x <- table employee;

restrict (x!e_fname .==. constant "John");

project (e_fname = x!e_fname, e_lname = x!e_lname)

The table employee is bound to the variable x. The restrict func-

tion is equivalent to the WHERE clause in standard SQL. The (!) operator

is used to select attributes on a table — or relation as they are called in

HaskellDB terms. The (.==.) operator is the relational comparison oper-

ator for equality. All relational comparison operators available in SQL are

also available in Haskell. The project function is used to create a projec-

tion of the e fname and e lname attributes. employees is of type Query,

and it simply returns the SQL query equivalent to the HaskellDB query.

HaskellDB also provides the ability to use aggregate functions on rela-

tions. Consider this example:

countProgrammers = do

x <- table employee;

restrict (x!e_role .==. constant "Programmer");

project (e_role = count x e_role)

The code in the example counts the number of employees who are pro-

grammers. As can be seen, the count function is given the variable that

holds the relation, in this case employee, and the attribute on which the

count should be performed. Although aggregate functions are often avail-

able natively in the DBMS, HaskellDB implements these functions as part

of the library.

Ordering works in a similar manner as the count aggregate function

described above. The function order takes a list of attributes, and orders

according to that list either ascending or descending.

2.4. Hibernate Query Language 19

2.4 Hibernate Query Language

Hibernate is an Object Relational Mapper(O/RM) API for Java. The Hi-

bernate Query Language (HQL) is Hibernate’s query language designed to

look like SQL but with object orientation in mind. HQL is similar to SQL

as it uses many of the same keywords, and queries may consist of clauses,

aggregate functions, and sub-queries.

Let us start with a simple example:

SELECT * FROM Employee AS employee

Writing FROM Employee AS employee will return all instances of object

Employee. The alias employee can be referenced in the rest of the query.

HQL supports polymorphism, thus writing the above query also returns all

subclasses of Employee.

It is possible to specify more precisely what is to be extracted. Writ-

ing SELECT employee.name FROM Employee AS employee will return all

values of name in all instances of employee.

In the WHERE condition all the standard logical operators known from

SQL can be used. ORDER BY and GROUP BY also work as they do in SQL.

Furthermore, inner, left outer, right outer, and full joins are available and

working as in SQL. The following aggregate functions are available:

• avg()

• sum()

• min()

• max()

• count(*)

• count(...)

• count(distinct ...)

• count(all...)

SQL arithmetic operators, concatenation, and recognised SQL functions

are allowed in the SELECT clause. As mentioned, subselects are supported

by HQL but only if the underlying database supports it. Subselects work

just like in SQL, or more precisely, they work like other HQL queries. HQL

queries return results as objects or arrays of objects. Hibernate has some

helper functions which allow the results to be iterated easily. Also it is

possible to force the returned results to be typecast. These features are

essentially not part of HQL, but a part of Hibernate, so we will not delve

deeper into the effects of these features.

Let us look at a larger example [5]:

20 Chapter 2. Analysis

select order.id, sum(price.amount), count(item)

from Order as order

join order.lineItems as item

join item.product as product,

Catalog as catalog

join catalog.prices as price

where order.paid = false

and order.customer = :customer

and price.product = product

and catalog = :currentCatalog

group by order

having sum(price.amount) > :minAmount

order by sum(price.amount) desc @@

This query returns the order id, number of items and total value of the

order for all unpaid orders for a particular customer and given minimum

total value, ordering the results by total value.

2.5 Discussion

As stated in our problem statement, one of the goals of this project is to

design a query language suitable for hosting in a general purpose object

oriented language. Because of this fact some of the features described in

the previous sections will be implemented using constructs similar to those

of the host language. In this section we discuss which features are relevant

for use in the scope of the Amigo query language.

2.5.1 Tables or Objects

We design Amigo to operate on objects like seen in HQL and not on ta-

bles like SQL and HaskellDB. The mapping between objects and tables is

fairly straightforward so the programmer can easily identify the tables and

columns even though he is dealing with objects. The mapping will not be

discussed in much detail, as well known solutions to this problem have al-

ready been suggested by various O/R-Mappers like Hibernate. However,

the features of the database are to be present so we need to specify a syn-

tax that allows for the features normally applied to tables to be applied to

objects.

Combination of filters 21

2.5.2 Combination of filters

In Section 2.1 we described the idea of a filter and the fact that it is a

method-like construct in the general purpose programming language, and

correspond to a single SQL statement. It is an obvious choice to allow

the user to apply functions from SQL, which are normally applied to one

or more queries, to one or more filters. This means that we have to have

operators that work on two filters to perform tasks like UNION, JOIN, and

INTERSECT. And while these operators are applied to two filters we allow

the code generation to combine those to a single query to be executed by

the database system.

Another possibility for combining filters is the idea of subselects. In

our case we have chosen to abandon the idea of writing one ”anonymous”

query inside another to keep our syntax simple. Instead we give the user the

possibility to use one filter as part of another filter’s body through a kind

of call. Access modifiers should be in place for filters just as with methods,

so filters that are only used as part of other queries is not accessible from

outside the class where the filter is present.

2.5.3 Built in function

The built in functions available in T-SQL and PL/SQL will have to be

available in the filter bodies. These functions are often used and considered

by many to be essential when using SQL. The functions should work just like

they do in T- SQL and PL/SQL because they are so well known. Functions

such as SQRT and AVG can be directly mapped to Amigo. Functions such as

the range function using the BETWEEN keyword is not as easily mapped.

2.5.4 Query mechanisms

All of the query languages we have investigated in this chapter provides the

ability to specify constraints on queries. In the SQL based languages, the

WHERE clause is used to specify the constraints. In HaskellDB, the restrict

function is used. It is clear that Amigo must support this ability as well.

Without it, the flexibility and expressiveness of Amigo filters is greatly

reduced - and the language will be largely useless.

Along with being able to specify constraints for queries, it is also neces-

sary to be able to sort and group the results of a query. The functionality of

the standard SQL features ORDER and GROUP BY is also available in Amigo.

22 Chapter 2. Analysis

2.5.5 General purpose features

As we have seen in both PL/SQL, T-SQL, and HaskellDB, it is possible to

use some general purpose functionality in the query languages. This is also

possible in Amigo but these features are used just as the ones in the host

language. That is, a conditional statement in the filter will be on the same

form as the one in the host language, and the code generated will still only

be SQL not using these conditional statements. These features makes it

easier to write general purpose filters.

Variable assignments are also possible in both PL/SQL and T-SQL and

this notion can be very useful to avoid multiple queries to the database. A

variable assignment, with results of named filters, in the body of a filter is

translated to a variable assignment in the generated code, hence sending

only one query to the database. The results of all variables are returned

by the query so that the contents of variables after query execution is as

expected by a normal assignment done elsewhere in the host language.

2.5.6 Advanced features

Some advanced features could help the programmer write far less code by

hand. The functionality in PL/SQL to work with hierarchical data is one

of these features. We introduce an operator for this, and then generate

recursive joins to the level needed to return a tree-structure.

2.6 Summary

In this chapter we have analysed a number of existing query languages and

technologies, in order to gain a broader understanding of the features of

existing solutions that might be of relevance to us in this particular project.

The analysed technologies were Hibernate HQL, HaskellDB, PL/SQL, and

T-SQL. Each of these have features that are specific to them individually,

but most are seen in all of the technologies. Along with this analysis,

the LIP programming language was described in order to communicate the

background and rationale for the Amigo query language. The features of

LIP and the analysed technologies was the basis for a discussion on which

features could be adapted into Amigo. Important results of this discussion

includes the possibility of combining filters, and the ability to use aggregate

functions within the filters.

Chapter 3

Design

During the analysis of the already existing query languages for database

systems, we have learned what features are crucial for the success of a query

language. In this section the syntax for utilising these features in our query

language is specified as well as the semantics of the constructs introduced in

the syntax. First, however, we establish a number of limitations for Amigo.

3.1 Limitations

Designing and implementing a programming language is a large and com-

plex task. There are many issues that must be addressed and discussed in

order to make sure that the language meets its goals. Once the language

is adopted by programmers it is very difficult to make changes to the lan-

guage. Furthermore, it is often the norm that it takes several years before

a new programming language breaks through into mainstream. Because of

these facts, we have found that it is necessary to introduce some limitations

to the functionality and scope of the Amigo project. This section briefly

describes these limitations.

3.1.1 Queries

Due to the fact that the Amigo language is a direct derivation of the LIP

filter concept, an obvious limitation of this project is that Amigo only con-

centrates on selection queries. Amigo - in its current form - does not provide

any functionality to insert, update, delete, or alter data or the database it-

self. We find, that the most interesting aspect of query languages is the

actual selection of data. Insertion, updating, and deletion are relatively

23

24 Chapter 3. Design

trivial features of a query language, but is by the LIP filter definition not

a part of the filter concept and thus not applicable in the focus area of the

Amigo query language.

3.1.2 Mapping

In order to provide static type-checking for a database query language, it

is necessary that the type checker is aware of the actual database schema.

The database schema has information about tables and columns. The type

checker compares references to elements in the database schema from within

the language with the database schema itself, to make sure that compatible

types are used on both sides. Ideally the static type-checking is done by

means of direct communication between the compiler and the database. In

this project we have decided to rely on Hibernate mapping files to represent

the database schema. Hibernate mapping files provide a simple means of

representing the schema using XML, which is easily parsed into a data

structure that can be used in the compiler. This subject is more thoroughly

discussed in Section 3.7.

3.1.3 Language Integration

As was mentioned in Chapter 1, integrating Amigo in an existing program-

ming language, for instance C#, is an issue that is not in the focus area

of this particular project. It is, however, a distinct possibility that it will

be done at a later time. To that end, we are concerned with designing

Amigo such that the language is ready for future integration. Integrating a

language like Amigo in an object oriented host language should provide a

low coupling between the two languages, which would require an extensive

analysis of how Amigo could interface seamlessly between the object ori-

ented language and the relational database without having to compromise

with either of the two. Normally, an object oriented model of the relational

database schema is needed to make sure that the data retrieved from the

database can be correctly represented in the host language. This kind of

object/relational mapping is outside the scope of this project, and we will

not get into the integration of Amigo in a host language.

3.1.4 Object orientation

In the previous subsection it was mentioned, that Amigo is likely to be

integrated in an object oriented host language some time in the future. This

Testing 25

means that, unlike SQL, Amigo takes a more object oriented approach to

the way queries are expressed and represented. However, object orientation

is a relatively complex subject, that involves many aspects. In this project

we will disregard issues like inheritance and polymorphism, in order to keep

focus on creating a clean and easy-to-use query language. These features

should be added in future versions of the Amigo query language.

3.1.5 Testing

Testing a new programming language is important to make sure that all

semantics work as intended. Although we do plan to test Amigo in the

this project, it is not possible to carry out an extensive user test with

several programmers, due to the simple fact that we have to both design and

implement the language and compiler in the course of the project period.

This leaves little time to perform user testing. Therefore, we will limit the

user testing to 2-3 programmers in this project. This gives us an idea of

how programmers will receive the Amigo language, but we will not catch

all problems associated with the language in its initial version.

3.1.6 Performance

In order for a programming language to become successful it is important,

among other things, that there is an efficient compiler or interpreter avail-

able for the language. Measuring performance of compilers and interpreters

requires considerable effort to cover all aspects of the application of these

tools. Since we, in this project, mainly are concerned with designing the

Amigo language and implementing a compiler, that shows the capabilities

of the language, we will not be focusing on the performance of the compiler

— let alone possible performance enhancements.

3.2 Example Scenario

In order to make sure that as few misunderstandings as possible occur while

reading this chapter, we briefly describe a scenario that will be used for all of

the Amigo code examples throughout the rest of the report. The example

scenario is described using an ER-diagram of a database for a fictional

company. Figure 3.1 shows the diagram.

As the diagram shows, the database consists of a number of tables

Employees, Departments, Products, OrderLines, and Customers. Each

26 Chapter 3. Design

Figure 3.1: Diagram of example scenario

table has a column that is set as the primary key, along with a number of

other columns. Between the tables there are relations WorksIn, WorksOn,

On, Contains, and HavePlaced - each with associated cardinalities. Note,

that tables in the database are named in plural. When referring to these

tables in Amigo, they are named in singular. This is due to popular naming

conventions in both the relational and object oriented world.

As mentioned, this example scenario is used as a basis for the examples

that describe the Amigo language and its features in the rest of the report.

Along with this, it is also used for testing the language. This is more

thoroughly described in Chapter 7.

3.3. Functionality 27

3.3 Functionality

The feature-set available in Amigo is partly derived from the query lan-

guages described in the analysis and partly from our own experience working

with both relational data and object oriented programming languages.

The main structure in Amigo is the filter construction, known from the

LIP programming language, which corresponds to an SQL query. Each

filter is to be named and hosted in a method-like construct that could,

at some point, be integrated in an object oriented programming language.

Furthermore filters can be used within filters to achieve the power of SQL’s

subselects. New filters cannot be defined inside a filter but a previously

defined filter can be used.

Amigo is not meant to be a complete general purpose programming

language. This means that it is going to be used in connection with another

general purpose language. It is not clear how this is going to be devised but

one possibility is to implement a pre-processor. In any case the filters must

be self contained. It has to be possible to evaluate filters without knowing

the context. This makes sense in more than one way. First of all it makes

reading the code easier and second of all it is a way of keeping all options

open since we do not tie Amigo to one general purpose language or one way

of using it.

In Amigo, a filter declaration looks very similar to a method declara-

tion in object oriented languages such as Java or C#. If Amigo at some

point is integrated in an existing language, the filters will not look like com-

plete aliens in the host language’s syntax, but rather resemble the already

available constructs. A filter declaration looks like this:

public var NameOfFilter(int arg) {
}

The reason for using the keyword var here, is that in this project we

are not very concerned with the return types of a filter, since this is mainly

a matter where a complete object/relational mapping is present. var is

simply a placeholder for the return type. This issue is more thoroughly

discussed in Section 3.6

Moving on to the internals of filters we continue to follow the object

model and create blocks for each part of the filter. The first block which is

called the object block is used to state what kind of objects to return. If

28 Chapter 3. Design

we look at the example scenario presented in Section 3.2 a filter that would

return a collection of employees is written like this:

public var Employees() {
object:

Employee;

}

The filter header states that the filter is public, the type is inferred,

and the name of the filter is Employees. The filter contains a single block,

namely an object block which in turn contains a reference to the Employee

object. Converting this filter to SQL would result in:

SELECT * FROM Employees

The query returns all employees from the Employees table.

We can now retrieve all objects of a given type. The next issue is to

impose restrictions so that only objects which have certain attributes are

returned. In SQL this is handled in the WHERE clause. We borrow this idea

and introduce a new block called the where-block. We keep the name be-

cause programmers are used to the terminology and will inevitably think in

terms of SQL when they write Amigo code. There is no reason to change the

terminology as it will most likely just lead to confusion. For the where-block

to have any effect we introduce boolean expressions. Boolean expressions

can be constructed using comparison operators to get boolean values from

comparing values and variables. The comparison operators supported in

Amigo are:

• ! =

• ==

• <=

• >=

• <

• >

It is also possible to use true and false values.

The where-block can contain any number of boolean expression. Each

expression is ended with a semicolon. To make it easier to write the where-

block the default behavior is to assume that the boolean expression have

3.3. Functionality 29

an and operator between them. So if we want to get all employees with

salaries above 10.000 and who are also managers we simply write:

public var HighPaidManagers() {
object:

Employee;

where:

Employee.Salary > 10000;

Employee.IsManager == true;

}

On the other hand if we want to get all employees with salaries above

10.000 or who are also managers we write:

public var HighPaidOrManagers() {
object:

Employee;

where:

or {
Employee.Salary > 10000;

Employee.IsManager == true;

}
}

It is legal to write and in the first example but it is not necessary.

Having only the object and where block, filters can only return objects

or collection of objects. We introduce the value block which allows the

programmer to state that the filter should return something other than and

object or collection of objects, for instance a single value or collection of

values.

One of the problems we had when developing LIP was that we wanted

to make use of the database’s aggregate functions. Keeping with the idea

of letting the programmer see the database aggregate functions are written

just like they would be in SQL. Aggregate functions are allowed in the

where-block and in the value-block. If it used in the value-block, Amigo

infers that the returned result is a single value. For instance, if we wanted

30 Chapter 3. Design

to know the average salary of all the employees by using the AVG() function,

supported by most databases, we would write:

public var AverageSalary() {
object:

Employee;

value:

AVG(Employee.Salary);

}

The value-block overrides the object-block and the filter return a single

value and not objects of type Employee. In the value block we can see that

the aggregate function is written like you would write in SQL. The argument

to the function is the Salary property on the Employee object.

In Amigo, it is possible to combine filters in order to provide the same

functionality as the SQL subselects. This is accomplished, not by declaring

a filter within another filter, but by calling a filter in the same way as a

method is called in a general purpose programming language.

Variables can be assigned values as you would expect, but they can also

be used to hold results from filter calls. All of this requires a new block

which we call init. Variables declared in the init block can be used in all

other block in the filter. Being able to call one filter from another makes

filters very modular and helps minimise the size of filters. Assume that we

have a filter called AverageDepartmentSalary which takes a department

id as argument and returns the average salary for that department. Using

this filter we can now write a new filter:

public var LessThanDepartmentAverageSalary(int departmentId) {
init:

float X = AverageDepartmentSalary(departmentId);

object:

Employee;

where:

Employee.DepartmentID == departmentId;

Employee.Salary < X;

}

3.3. Functionality 31

This new filter called LessThanDepartmentAverageSalary also takes a

department id as argument. In the init block we call the

AverageDepartmentSalary filter with the department id. The result is

assigned to variable X. The object block states that the return type is

Employee. In the where block we state that we want all employees in the de-

partment in question and that they must have a salary below the average. In

the latter we use X which holds the result from the AverageDepartmentSalary

filter.

From our study of SQL, it is clear that an additional three blocks are

required to make Amigo filters expressive enough to be of use. These blocks

are join, order, and group. In the join block the programmer can join

object as he would join tables in SQL and the supported types of join

are the same. In addition we saw an opportunity to help the programmer

by introducing the tree join which performs a recursive join. A join is

written using an infix operator and the left/right side of the operator can

be primary-foreign key relationship or any other to fields. The following

example for retrieving all employees who work in a department with a given

department name shows how a join is used within a filter:

public var EmployeesByDepartmentName(string name) {
object:

Employee;

join:

Employee.DepartmentID === Department.DepartmentID;

where:

Department.Name == name;

}

In the order-block, the programmer can specify that the result should

be ordered by a specific property in ascending or descending order. To

indicate whether it should be in ascending or descending order we use a

prefix notation. We borrow the naming from SQL giving us [ASC] for

ascending and [DESC] for descending ordering. If we want all employees in

a department ordered by their salary beginning with highest paid, it is a

simple matter of writing:

32 Chapter 3. Design

public var OrderedEmployees(int departmentId) {
object:

Employee;

order:

[DESC]Employee.Salary;

}

In the group-block, the programmer is able to use the database function

for grouping results by a specific field. This is normally used in conjunction

with aggregate functions. For instance if we want the average salary for

employees in each department we can write:

public var AverageSalaryPerDepartment() {
object:

Employee;

value:

AVG(Employee.Salary);

group:

Employee.DepartmentID;

}

In Amigo filters, it is allowed to use if-else and for statements within

the various filter blocks. These statements are mainly included in Amigo

in order to provide the ability to write more generic filters. That is, filters

that can be used in more than a single context. The example below shows

how an if-else statement can be used within a filter.

public var (int modifier) {
object:

Employee;

where:

if(modifier == 1) {
Employee.Salary <= 10000;

} else if (modifier == 2) {
Employee.Salary <= 10000;

Employee.IsManager == true;

3.3. Functionality 33

} else {
Employee.Salary <= 10000;

Employee.IsManager == false;

}
}

Amigo also provides the ability to use arrays within the filters. Arrays

are used in exactly the same manner as in most programming languages.

However, in Amigo they can be used in the where-block to specify that

the value of a row in a certain column must be one of the values in the

array. To clarify what we mean by this, the following example shows this

functionality:

public var EmployeesSalaryArray() {
init:

int[] salaries = {5000, 10000, 15000, 20000};
object:

Employee;

where:

Employee.Salary == salaries;

}

The last feature is not essential but it is very useful in many circum-

stances. Limiting the number of returned object or values is applied in the

object block as a prefix. There are three limitations:

• [x..y] Limits from index x to index y

• [..y] Limits to index y

• [x..] Limits from index x

If we want only the first 20 employees out of all of them we write:

public var FirstTwentyEmplyees() {
object:

[..20]Employee;

}

34 Chapter 3. Design

3.4 Syntax

In this section, we briefly cover the actual syntax of the Amigo query lan-

guage. This is done in order to give a full overview of how the language looks,

and what is allowed in the bodies of Amigo filters, syntax wise. The gram-

mar for the language is shown in Extended Backus Naur Form (EBNF). The

grammar should be relatively easy to follow - especially when held against

the code examples in the previous section, as well as the description of the

language semantics in the following section. We will not get into the details

of each production of the grammar for the same reason. We will, however,

briefly explain the syntax for this particular EBNF grammar, since this

tends to vary in some publications.

The name of a production always starts with a capital letter. Tokens are

written inside apostrophes. Production names are placed on the left hand

side of a ::= in the production declaration. The body of the production are

on the right side of that symbol. In order to group symbols or alternatives

in the production (..) is used. Separation is marked using |. Repetitions

are marked using either * for zero or more repetitions, or + for one or

more repetitions. Optional productions or symbols are marked using ?.

Furthermore, it is important to note, that some simple productions have

been left out for space considerations. For instance, the Number production

is not included here, but the meaning of it should already be clear; namely

a number consisting of one or more digits between 0 and 9.

Listing 3.1 shows the grammar for the Amigo query language.

Listing 3.1: Amigo EBNF grammar

1 Amigo : := (F i l t e r)∗
2

3 F i l t e r : := Modi f i e r ’ var ’ I d e n t i f i e r ’ (’ (ParamList)? ’) ’ ’{ ’ (Block)∗ ’} ’

4

5 ParamList : := Type I d e n t i f i e r (’ , ’ Type Var iab le)∗
6

7 F i l t e rC a l l : := I d e n t i f i e r ’ (’ (ArgList)? ’) ’

8

9 AggregateCal l : := I d e n t i f i e r ’ (’ Var iab le ’) ’

10

11 ArgList : := Express ion (’ , ’ Express ion)∗
12

13 Type : := (SimpleType | I d e n t i f i e r) (’ [’ ’] ’) ?

14

15 SimpleType : := ’ int ’ | ’ f l o a t ’ | ’ s t r i ng ’ | ’ boolean ’

16

17 Var iab le : := I d e n t i f i e r (’ . ’ I d e n t i f i e r ’) ∗ (’ [’ Express ion ’] ’) ?

18

3.4. Syntax 35

19 VarDeclarat ion : := Type Var iab le (’= ’ (Express ion |
20 ’{ ’ Express ion (’ , ’ Express ion)∗ ’} ’)) ?

21

22 Assignment : := Var iab le ’= ’ Express ion

23

24 Limit : := Number? ’ . ’ ’ . ’ Number?

25

26 ForStatement : := ’ for ’ ’ (’ VarDec larat ion ’ ; ’ Express ion ’ ; ’ Assignment ’) ’

27 Mult iOrSingleStatement

28

29 I fE l s eStatement : := ’ i f ’ ’ (’ Express ion ’) ’ Mult iOrSingleStatement

30 (’ e l s e ’ ’ i f ’ ’ (’ Express ion ’) ’ Mult iOrSingleStatement ∗
31 (’ e l s e ’ Mult iOrSingleStatement)?

32

33 OrStatement : := ’ or ’ Mult iOrSingleStatement

34

35 AndStatement : := ’ and ’ Mult iOrSingleStatement

36

37 Mult iOrSingleStatement : := (’{ ’ Statement∗ ’} ’ | Statement)

38

39 Statement : := ForStatement

40 | I fE l s eStatement

41 | OrStatement

42 | AndStatement

43 | OrderExpress ion

44 | VarDeclarat ion ’ ; ’

45 | Assignment ’ ; ’

46 | Express ion ’ ; ’

47

48 OrderExpress ion : := (’ [’ (’ASC’ | ’DESC’) ’] ’) Var iab le ’ ; ’

49

50 Block : := In i tB lo ck

51 | ObjectBlock

52 | ValueBlock

53 | JoinBlock

54 | WhereBlock

55 | GroupBlock

56 | OrderBlock

57

58 In i tB lo ck : := ’ i n i t ’ ’ : ’ Statement∗
59

60 ObjectBlock : := ’ object ’ ’ : ’ ObjectBlockBody

61

62 ObjectBlockBody : := (’ [’ Limit ’] ’) ? Var iab le ’ ; ’

63

64 ValueBlock : := ’ value ’ ’ : ’ Statement∗
65

66 JoinBlock : := ’ jo in ’ ’ : ’ Statement∗
67

68 WhereBlock : := ’ where ’ ’ : ’ Statement∗
69

70 GroupBlock : := ’ group ’ ’ : ’ Statement∗
71

72 OrderBlock : := ’ order ’ ’ : ’ Statement∗
73

74 Express ion : := RelExpress ion (JoinOperator RelExpress ion)?

75

76 RelExpress ion : := SimpleExpress ion (RelOperator SimpleExpress ion)?

77

36 Chapter 3. Design

78 SimpleExpress ion : := Term (AddOperator Term)∗
79

80 Term : := Factor (MulOperator Factor)∗
81

82 Factor : := ’ (’ Express ion ’) ’

83 | F i l t e rC a l l

84 | AggregateCal l

85 | Var iab le

86 | Number

87 | St r ing

88 | Char

89 | Null

90 | True

91 | False

92

93 JoinOperator : := ’===’ | ’ |= ’ | ’= | ’ | ’ | ˜ ’ | ’ ˜ | ’ | ’><’ | ’−>’

94

95 RelOperator : := ’==’ | ’< ’ | ’> ’ | ’<=’ | ’>=’

96

97 AddOperator : := ’+ ’ | ’− ’

98

99 MulOperator : := ’∗ ’ | ’ / ’

100

101 Modi f i e r : := ’ pr ivate ’ | ’ publ ic ’

102

103 SimpleType : := ’ int ’ | ’ f l o a t ’ | ’ s t r i ng ’ | ’ char ’ | ’ bool ’

104

105 True : := ’ true ’

106

107 Fa l se : := ’ f a l s e

3.5 Semantics

In this section we will outline the semantics of Amigo in an informal manor.

As seen in the syntax, in Section 3.4, the body of a filter consists of multiple

similarly labeled structures called filter-blocks. Each of these blocks and the

statements that are allowed within them are described.

3.5.1 General structures

Most of the language statements of Amigo are not specific to single filter-

blocks, but can be in all of the available blocks. These include declaration

of variables, for statements, and if-else statements. This is functionality

known from most general purpose programming languages. The seman-

tics of this functionality aims to mirror the semantics of that in the host

language.

General structures 37

Declaration of variables are allowed in all blocks but it should be noted

that semantics for variable declarations is different in the init filter-block.

A variable declaration allocates space for an identifier with the given type in

the current scope and can optionally assign a value to it at the same time.

A collection of Amigo filters has a top scope. Each filter in the collection

has its own scope. Furthermore, new scopes are created in the bodies of a

for or if-else statement.

Along with the simple values that can be assigned to a variable, Amigo

also supports the use of one-dimensional arrays. The basic semantics of

arrays are very similar to those known from various general purpose pro-

gramming languages. An array is a data structure with a fixed number of

elements of the same type. In Amigo, an array can only be declared with its

initial values explicitly stated. Elements of the array are accessed through

the [index] notation, where index is an integer value that indicates the

element’s position in the array.

Arithmetic expressions are limited, as the implementation of these is

not the focus of this project. Addition, subtraction, multiplication and

division are supported through the use of binary infix operators +, −, ∗,
and /. Operators can be used on both floating point and integer values.

The precedence of the arithmetic operators is (evaluated in listed order,

starting from the top):

• Multiplication

• Division

• Addition

• Subtraction

Boolean expressions are available and can be constructed using compar-

ison operators to get boolean values from comparing values and variables.

Furthermore the true and false values can be used.

Boolean values are also returned when using the built in comparison

operators:

• ! = - Not equal

• == - Equal

• <= - Less than or equal

• >= - More than or equal

• < - Less than

• > - More than

These operators have the same semantics as the corresponding operators

in the host language.

In the init, value, where, and order blocks we allow the conditional

statement if-else where the else part is optional. Several if-else blocks

38 Chapter 3. Design

can be nested to allow for multiple checks of conditions and optionally an

else block at the end which will be executed if none of the conditions

evaluate to true.

if (CONDITION1) {
STATEMENTS1

} else if (CONDITION2) {
STATEMENTS2

} else {
STATEMENTS3

}

The semantics of the conditional statement above should be known to

the user from general purpose languages. Also, in the where and init

block we allow the iterative for statement known from imperative general

purpose languages like C, C#, Java etc.

The for statement has three sections apart from the body that contains

the statements of the iteration:

for-initializer where one or more variables can be declared. This is only

executed once before the first iteration of the loop.

for-condition that must evaluate to true for the body of the statement to

be executed. The condition is tested before each iteration.

for-iterator that can update variables in scope of the filter-block or vari-

ables declared in the for-initializer. This is executed after each itera-

tion.

3.5.2 The init block

In the init-block the user can define variables containing the result from

other filters. The advantage of declaring these variables in the init-block

is that multiple database connections will not be used as the variable dec-

laration will be translated to SQL code using either subselects, temporary

tables, or variable declaration depending on the database used. The init-

block can contain both if-else statements and for statements.

The object block 39

3.5.3 The object block

The object-block defines what kind of objects to return from the query

unless a value block is present. If the return type is a single object or

a strongly typed collection of the objects, the type is inferred using the

where-block. If a condition is added in the where-block comparing a single

value to a primary or unique column in the database the result is a single

value otherwise the result is a collection.

3.5.4 The value block

The value block gives the developer the power to return results of queries

not necessarily returning an object or collection of objects. This is useful

for returning results of aggregate functions, single values, or collections of

values. Function calls made in this block are attempted to be mapped to a

function in the database. If this is not possible an error occurs.

3.5.5 The join block

The join-block is used to reflect the join statements allowed in SQL. How-

ever, multiple operators are introduced to join two tables. The join tables

all reflect the corresponding join types in SQL and hence have the same

semantics. In addition to the join types present in SQL we introduce the

tree-join operator which performs a recursive join on tables representing a

tree structure in the database. This operator will have the column that

points to the parent on the right side and the column that points to the

child column on the right and will retrieve all nodes in a branch according

to conditions set in the where block.

The left/right side of the join operators (except tree join) can be a

primary-foreign key relationship or any other two fields the user might want

to join. Furthermore, we allow just for two object names to be on both sides

and their primary-foreign key relationship in the database will be inferred

from the mapping files if possible.

3.5.6 The where block

The ability to filter the data returned is done using boolean expressions

working on properties on objects. They can be compared with simple types

or values defined in the init-block or parameters send to the filter. The

operators available correspond to the operators used in SQL’s WHERE clause

40 Chapter 3. Design

of the SELECT statement. Variables declared in the init-block as results of

other filters will be used as subselects, temporary tables or variable decla-

ration if the database SQL implementation supports it.

If an array-variable is written on the right hand side of the boolean

expression, the array is treated as a list of values, and the left hand side of

the expression is compared to each of the elements in the list.

3.5.7 The group block

Results can be grouped just like in SQL. This gives the user the ability to

group by a specific property or even to return an aggregate value based on

grouping.

3.5.8 The order block

The order-block is used to sort the returned data either ascending or de-

scending according to one or more properties. This semantics is equivalent

to the ORDER statement when used in SQL.

3.6 Type System

The type system is an important component of a programming language.

Depending on the design of the language, the type system can be more

or less complex and comprehensive. Amigo is a statically strongly typed

language. This means that all values and expressions are type checked at

compile time, and in the source code variables must be declared of a specific

type. This provides Amigo queries with a level of safety that is not present

in traditional string based SQL queries. In this section the type system of

the Amigo language is described.

3.6.1 Basic types

Amigo provides a small set of basic types. These types are well known from

other programming languages, and we will not get into them in much detail.

The basic types are:

• int - Integer value

• float - Floating point value

• bool - Boolean value

Type inference 41

• char - Character value

• string - String value

These types are normally used when declaring variables, for instance

in the init-block. Each type is rather self explanatory, but for complete

clarification consider the following example:

public var TypeExample() {
init:

int a = 1;

float b = 1.5;

boolean c = true;

char d = ’c’;

string e = "abcd";

...

}

The above variables can be used in all blocks of the filter, since variables

declared in the init-block are in the scope of the entire filter. However,

because of the strong typing of variables, assignments to a declared vari-

able must be of the same type as that variable. The following example

assignments will result in type errors at compile-time:

...

a = ’c’;

c = "false";

e = 10;

...

3.6.2 Type inference

Amigo allows for filters to be called from within a filter. This means, that

the return value of a filter can be used in an expression. It also means,

however, that in order to be able to type check the expression, the type of

the called filter must be known by the type checker. Filters, in the current

incarnation of Amigo at least, does not return data of a specific type. This

is mainly due to the fact, that no actual mapping of the database schema

42 Chapter 3. Design

in the object model exists. In future versions of Amigo, the type inference

of filters may be replaced by strongly typed filters. Consider the following

example:

public var GetEmployee(int e id) {
object:

Employee;

where:

Employee.EmployeeID == e id;

}

The filter in the example will retrieve employees with the id specified

by the e id parameter. But how is the filter to know what to return in

this case? Should it return a collection of employees or just a single em-

ployee? The Amigo type checker will infer, that the filter returns just a

single employee, by looking up the Employee table in the database schema

and conclude that the EmployeeID column of that table is the primary key,

and thus unique for each record in the table. However, if the column was

non-unique the return type would be inferred to be a collection of employees.

Consider now the next example:

public var IsManager(int e id) {
object:

Employee;

value:

Employee.IsManager;

where:

Employee.EmployeeID == e id;

}

In the filter above, we again focus on the Employee table. However, this

time we just want to know whether an employee is a manager or not. The

IsManager column on the Employee table is used to determine this. But the

filter still needs to know what to return. This is done by the type checker

looking up the type of the IsManager column in the database schema. In

this case it is a boolean, and since the value-block only can return a single

value, the filter will return a single boolean value.

3.7. Mapping 43

As mentioned, the value-block is used to return single values from filters.

Therefore, it is particularly useful for returning the value of an aggregate

function. The following example shows a filter that returns the average

salary of all employees.

public var AverageSalary() {
object:

Employee;

value:

AVG(Employee.Salary);

}

The Amigo type checker will infer the type of the return value for the

filter by determining the type of the value returned by the aggregate func-

tion.

3.7 Mapping

Hibernate, or more precisely the .NET version NHibernate, is a complete

object/relational mapper. It has a query language, methods for saving and

updating etc., and it handles data conversion. It does all of this based

on information stored in XML files detailing relations between tables and

classes. We refer to these files as mapping files. It is these files that we are

interested in. As explained in Section 3.1 we opted for not type checking

against the database. Instead we use NHibernate mapping files. An alter-

native was to devise a new XML structure similar to NHibernate’s, but it

is not clear what solution is optimal. It is not important for this project

that the mapping files contain only the necessary information as the focus

is on queries.

None of NHibernate’s other features are used, in fact NHibernate itself

is not used. The mapping files are independent of NHibernate and can be

generated by hand or by one of several mapping file generators.

As we are not concerned with how a class is persisted, the examples in

this section uses NHibernate’s approach. A persistent Employee class could

look like the one in Listing 3.2.

44 Chapter 3. Design

Listing 3.2: NHibernate
1 us ing System ;

2

3 namespace Firm

4 {
5 pub l i c c l a s s Employee

6 {
7 p r i va t e i n t employeeid ;

8 p r i va t e s t r i n g f i r s tname ;

9 p r i va t e s t r i n g lastname ;

10 p r i va t e f l o a t s a l a r y ;

11

12 pub l i c Employee () {
13 }
14

15 pub l i c i n t EmployeeID {
16 get { r e turn employeeid ; }
17 s e t { employeeid = value ; }
18 }
19

20 pub l i c s t r i n g Firstname {
21 get { r e turn f i r s tname ; }
22 s e t { f i r s tname = value ; }
23 }
24

25 pub l i c s t r i n g Lastname {
26 get { r e turn lastname ; }
27 s e t { lastname = value ; }
28 }
29

30 pub l i c f l o a t Sa lary {
31 get { r e turn s a l a r y ; }
32 s e t { s a l a r y = value ; }
33 }
34 }
35 }

The mapping file maps the class Employee to a table, conveniently

named Employees could look like Listing 3.3.

Listing 3.3: NHibernate
1 <?xml ve r s i on =”1.0” encoding=”utf −8” ?>

2 <hibernate−mapping xmlns=”urn : nhibernate−mapping−2.0” namespace=”Firm” assembly=”Firm”>

3

4 <c l a s s name=”Employee” tab l e=”employees”>

5 <id name=”EmployeeID” column=”employeeid ” type=”Int32”>

6 <genera to r c l a s s=”nat ive ” />

7 </id>

8

9 <property name=”Firstname” column=”f i r s tname ” type=”s t r i n g ”/>

10 <property name=”Lastname” column=”lastname” type=”s t r i n g ”/>

11 <property name=”Salary ” column” sa l a r y ” type=” f l o a t ”/>

12 </c l a s s >

3.8. Summary 45

13

14 </hibernate−mapping>

Several of the elements in the mapping file deal with NHibernate’s han-

dling of data, and as we are not using NHibernate itself, we are not interested

in these. The focus is on the part of the files that deal with the mapping

only.

The following list explains each relevant element in the mapping file and

which parts are used in Amigo.

hibernate-mapping: The hibernate-mapping element has several, op-

tional, attributes but the ones we use are assembly and namespace

respectively defining where the persistent classes are located and in

which namespace they are declared.

class: The class element is where the mapping between class and table is

defined. The attribute name is the name of the class and the attribute

table is the name of the table. As with the above element the class

element has additional attributes but they are not useful for Amigo.

id: The id element is basically the same as a property element, except that

i defines the primary key column. The name attribute is the name

of the property in the class that holds the unique identifier, in the

example it is employeeid. The column attribute is the corresponding

column. The type indicates the type. Inside the id element there is a

generator element which indicates which algorithm NHibernate uses

to generate unique ids.

property: The property element is where mapping between properties of

a class is mapped to a column in a table. The name attribute is the

name of the property and the column attribute is the name of the

column. The type attribute indicates the type. In the example it is

a string.

3.8 Summary

This chapter described the language design of Amigo. First, a number of

limitations was established in order for us to keep focus on what is most

important at this time; namely designing a safe query language that serves

both the object oriented world as well as the relational. The functionality

of Amigo was presented in an exemplified manner. The main concept in

46 Chapter 3. Design

Amigo is filters and filter blocks. These make up what corresponds to

traditional SQL queries. Other functionality of Amigo include the use of

general purpose constructs such as if-else and for statements.

The full syntax of Amigo was given in EBNF form, and the semantics

of each of the language constructs was described in an informal manner.

Furthermore, the type system, and especially the type inference mechanisms

of Amigo, was presented, along with how the mapping between database

and language is handled.

Chapter 4

Implementation

In the previous chapters, we have described a number of inspirational sources

for Amigo, and the design for the language. Although we are very focused

on creating a strong language design for Amigo in this project, we also feel

it is important to implement that design in the form of a working compiler.

This enables us to analyse whether the language design is actually a good

practical solution. Furthermore, others are able to test and try out the

language and its features, to give us an idea of how programmers will take

to the language.

This chapter describes the implementation of an Amigo compiler for the

Microsoft .NET platform. The software development kit for .NET includes

a flexible and easy to use reflection API for generating native .NET interme-

diate language, which is used in the Amigo code generation. Furthermore,

the .NET platform has some advantages when dealing with databases that,

for instance, the Java JVM does not. The notion of null-able types, for

instance, is a feature that can be very useful in this case, since values in the

database are often null no matter what kind of type is in question.

The chapter is divided in two major sections. In the first section we

describe the structure of the compiler, and how the syntactical and contex-

tual analysis works. In the other section the code generation from Amigo

to SQL and Common Intermediate Language (CIL) for the .NET platform

is thoroughly explained.

4.1 Compiler Structure

In order to get an understanding of how the Amigo compiler is structured,

this section provides a detailed description of the various aspects of the im-

47

48 Chapter 4. Implementation

plementation of the compiler. First, the parser generator used is described

followed by an explanation of the concrete syntax tree, that makes use of the

visitor pattern [21]. General type checking and how the Hibernate mapping

files are used to type check database references is described last.

4.1.1 Coco/R

Implementing a full programming language compiler is normally a large

task. Many issues needs consideration and attention. However, some parts

of the compiler can be more or less automatically generated by using spe-

cialised tools. In the implementation of the Amigo compiler, a tool for

generating the scanner and parser parts of the compiler is used. Several

such tools exist, but we have chosen to use a parser generator called Co-

co/R [7] for this particular project.

Coco/R takes as input an attributed grammar on Extended Backus-Naur

Form (EBNF) of a source language and generates a scanner and a recursive

descent parser. Coco/R supports multi-symbol lookahead, so LL(1) conflicts

can be solved by looking k symbols ahead, making Coco/R accept any

correctly formed LL(k) grammars.

The choice for using Coco/R as the parser generator for the Amigo

compiler, is based on previous experiences with a number of other parser

generators, as well as an investigation of Coco/R itself. In the LIP project,

we used the parser generators SableCC [12] and Jay [9], neither of which

suited our needs very well, and sported various problems during implemen-

tation. Coco/R is a lean and simple tool, and supports generating C# based

parsers, which is needed in this project.

The language for describing Coco/R grammars is called Cocol/R. This

language enables the programmer to specify the grammar for a language in

EBNF form, symbol attributes, and semantic actions. Attributes are used

to specify the parameters of a production. Semantic actions are inserted di-

rectly in the generated parser at the position of the production. To illustrate

how language grammars look in Cocol/R we present an example production

from the Amigo grammar. This production is used when declaring a filter:

Filter<out e.Filter f> (. string name; string mod;

e.FilterBlock fb;

e.VariableList pl; .)

=

Modifier<out mod>

Coco/R 49

var

Identifier<out name> (. f = new e.Filter(name, mod); .)

lparen

[ParamList<out pl> (. f.Parameters = pl; .)

]

rparen

lcurly

Block<out fb> (. f.Blocks.Add(fb); .)

rcurly

.

Initially, the example may look a little confusing, but if we look at the

EBNF version of the example it quickly becomes apparent what the meaning

of it is:

Filter = Modifier var Identifier lparen [ParamList] rparen

lcurly Block rcurly

In the production, symbols that starts with a capital letter refers to

other productions, and symbols starting with a lower case letter refers to

previously defined tokens. In the Cocol/R syntax for EBNF, a [..] means

that something is optional. { .. } means zero or more repetitions, and (..

) simply groups alternatives whereas | separates alternatives.

Attributes are defined inside < .. >. They represent the input or output

parameters of the symbol for which they are specified. In the above example,

only output parameters of other productions are used.

Semantic actions are defined inside (. .. .). Since the semantic actions

are directly inserted into the generated parser method for the production,

any code that is valid in the host language of Coco/R itself, in our case C#,

can be specified here. This means that all code for, for instance, contextual

analysis could be inserted in the semantic actions. However, this will almost

certainly lead to a huge amount of code within the grammar file. In order to

keep the Amigo grammar file as simple as possible, we have decided to create

a tree representation of the parsed Amigo source code, the construction of

which is what the semantic actions are used for. This means, that the

output of the parser generated by Coco/R is a tree representation of the

50 Chapter 4. Implementation

parsed Amigo source code. We will get more thoroughly into this concrete

syntax tree in the following section.

The full Coco/R grammar for the Amigo language can be found in Ap-

pendix A.

4.1.2 Concrete Syntax Tree

As mentioned in the previous section, the output of the parser of the Amigo

compiler is a tree representation of the parsed source code. This concrete

syntax tree is used by the compiler in the contextual analysis of the source

code. Using the visitor design pattern, we can easily traverse the tree for

performing the contextual analysis and code generation.

Each node in the tree is a representation of the corresponding production

in the grammar - at least where such a representation is necessary. We refer

to these representations as elements. The elements of the Amigo compiler

are placed in a library called Elements which is referenced from the core

compiler. The library consists of several classes that represent each of the

elements. An example of an element class can be seen in Listing 4.1.

Listing 4.1: Filter element

1 us ing System ;

2 us ing System . Co l l e c t i o n s . Generic ;

3 us ing System . Text ;

4

5 namespace Amigo . Elements {
6 pub l i c c l a s s F i l t e r : Element {
7 pub l i c ov e r r i d e void Accept (V i s i t o r v) {
8 v . V i s i t I n (t h i s) ;

9 f o r each (F i l t e rB l o ck fb in Blocks) {
10 fb . Accept (v) ;

11 }
12 fo r each (Var iab le v a r i a b l e in Parameters) {
13 va r i ab l e . Accept (v) ;

14 }
15 v . Vis i tOut (t h i s) ;

16 }
17

18 p r i va t e Lis t<Fi l t e rB lock > Blocks ;

19 p r i va t e s t r i n g Name ;

20 p r i va t e s t r i n g Mod i f i e r ;

21 p r i va t e Lis t<Variable> Parameters ;

22

23 pub l i c s t r i n g Name {
24 get { r e turn Name ; }
25 }
26

27 pub l i c s t r i n g Modi f i e r {

Concrete Syntax Tree 51

28 get { r e turn Mod i f i e r ; }
29 }
30

31 pub l i c L i s t<Fi l t e rB lock > Blocks {
32 get { r e turn Blocks ;}
33 }
34

35 pub l i c L i s t<Variable> Parameters {
36 get { r e turn Parameters ; }
37 s e t { Parameters = value ; }
38 }
39

40 pub l i c F i l t e r (s t r i n g name , s t r i n g mod i f i e r) {
41 Blocks = new List<Fi l t e rB lock >() ;

42 Parameters = new List<Variable >() ;

43 Mod i f i e r = mod i f i e r ;

44 Name = name ;

45 }
46 }
47 }

The element in Listing 4.1 corresponds to the production shown in the

example in the previous section. As can be seen, there are a number of

properties specific to the element defined in the class. The value of these

properties are set during parsing of Amigo source code. If a property is

supposed to hold an arbitrary number of other elements, the elements are

added to a generic list that has the type of those elements. Figure 4.1 shows

a class diagram of the entire Elements library.

Figure 4.1: Class diagram for the Elements library

52 Chapter 4. Implementation

All elements inherit directly or indirectly from the abstract Element

class, that holds an abstract Accept() method. This method is overridden

in every element in order for the visitor design pattern to be able to visit

all the elements of the tree. Each element is visited twice; once before all

of its child elements are visited, and once after. This provides us with a

little more flexibility when using the visitor. Every time the tree is tra-

versed, once in the contextual analysis, and once in the code generation

phase, a visitor is used. The class ContextAnalyzer in the ContextualAna-

lyzer library implements the IVisitor interface, meaning that for each call

to an element’s Accept() method, the corresponding visit methods of the

element are called in the ContextAnalyzer class. The same applies for the

CodeGenerator class.

The use of the visitor pattern, and several classes to create the concrete

syntax tree may not be the optimal solution - performance wise. We could

possibly save a pass over the tree by leaving more code in the semantic

actions of the Coco/R grammar, for instance for contextual analysis. How-

ever, we have decided on this solution in order to keep the compiler as easy

to understand and explain as possible, and since we are not concerned with

performance in this particular project, the solution does not in any way

conflict with the initial goals for this project.

4.1.3 Type Checking

In Section 3.6 we described the reasoning behind the type system of Amigo.

Now we discuss how it is implemented in the actual Amigo compiler.

Since Amigo source code is parsed into a concrete syntax tree, as ex-

plained earlier, all necessary parts of the source code is represented as ele-

ments in the tree. The basic types of Amigo are represented by the element

class NativeType. This class has properties that are set according to which

basic type is currently in question. Variables are represented by the element

class Variable. The type and value of the variable is specified within the

class. All variables are declared in some scope. If a variable is declared

within the init-block, it is available in the entire filter, whereas a variable

declared anywhere else is only available from within its own scope. In order

to keep track of variables and their scope levels, each variable, upon its dec-

laration, is entered into the SymbolTable class. This class is a part of the

ContextualAnalyzer library. When the contextual analyser, while visiting

the elements of the concrete syntax tree, leaves a scope, the variables in

that scope are removed from the SymbolTable so that they are unavailable

Type Checking 53

Figure 4.2: A subtree in the concrete syntax tree

outside the scope in which they have been declared.

As can be seen in Figure 4.1, Amigo expressions are represented in the

syntax tree by a group of elements that are all specialisations of the abstract

Expression class. This class has a non-abstract property that holds the

type of the expression. Imagine, that the following variable declaration is

found inside an init-block in an Amigo source file:

int i = 2 + x * 10;

This simple example corresponds to the subtree seen in Figure 4.2 of the

concrete syntax tree.

When the contextual analyser checks this variable declaration, it will

first check whether all elements of the expression (the part to the right of

the assignment operator =) are of the same type. For each binary operator

in the expression, an instance of the BinaryExpression is present in the

tree, with a left and right hand side, and a property that holds the operator

itself. Because of the Amigo precedence rules, the subexpression x * 10 is

checked first. Native types are easily checked, since their type is already

known. Variables, or member accessors, are looked up in the symbol table

54 Chapter 4. Implementation

to make sure that they have been declared, and if that is the case, the

type of the variable is thus known from its declaration. It is important to

note, that only member accessors that are actually variables are looked up

in the symbol table. If the member accessor is a call to another filter, or

a reference to a field in the database schema, appropriate action is taken

to make sure that the member accessor is valid. Filter calls are looked up

in a table that holds information on all declared filters, and schema field

references are looked up in the mapping file. The latter is further explained

in the next section.

Once the contextual analyser has determined the type of the elements

of the binary expression, the two types are compared, and the type of the

entire binary expression is set to the type of its elements if they are in fact

the same. Next, the same apply for the binary expression 2 + (x * 10).

Since the contextual analyser already know the type of the right hand side

of the expression, it merely has to compare that to the type of the left hand

side, which is easily determined since it is a native type. Now, the type of

the full expression has been determined and it can be compared to the type

specified in the variable declaration. If they are not the same, a type error

occurs.

4.1.4 Mapping

As was mentioned in Section 3.7, we use NHibernate mapping files to rep-

resent the database schema. In order to avoid type errors at runtime, when

referencing fields in the database schema, all of those references are type

checked at compile time. Recall, that the element class MemberAccessor

could represent both internally declared variables as well as external schema

references. The contextual analyser will determine which of the two are ap-

plicable in the given case by first looking up whether the member accessor

is a variable present in the symbol table. If that is not the case, it is looked

up in the schema mapping.

In order to ease looking up the member accessor in the schema, a library

for representing the schema in a simplified tree version of the NHibernate

mapping file has been implemented. This library is called MappingTree and

is referenced from the ContextualAnalyzer library. In Section 3.7 we ar-

gued that not all parts of a Hibernate mapping file is useful to us. Therefore,

the elements that make out the mapping tree are simply MappingClass,

MappingProperty, and MappingRelation. We refer to these classes as map-

ping classes. Furthermore, a Root class is present. The main responsibility

4.2. Code Generation 55

of this class is to actually construct the tree by reading and parsing the

XML that make up the mapping file.

Each of the mapping classes has properties that hold the appropriate

information for the particular class. For instance, MappingClass represents

the mapping between a class in the application and its corresponding table

in the database. This means that information about the class name, table

name, and properties of that class is held by this mapping class.

4.2 Code Generation

The main task of generating the code from the syntax tree, which is built

using the semantic actions in the Coco/R grammar and validated using

the contextual analyser, is to translate the query expressed in Amigo to

SQL commands that can be nested in Common Language Runtime objects.

These objects can then be invoked from any language running on the Com-

mon Language Runtime.

4.2.1 SQL Generation

As covered in the previous section we use a concrete syntax tree, which is

traversed using the visitor pattern, to perform contextual analysis. This

approach is also used to generate both the SQL code and to produce an

assembly, containing the filters in the form of instance methods that can be

invoked from .NET.

The information present in the syntax tree is very detailed and only few

decorations of the tree is needed during contextual analysis. However, a few

issues regarding types is checked and arithmetic expressions are decorated

with their overall result type. This information is very valuable as it guar-

antees that the SQL code generated will have the correct type information

when the SQL statements are constructed.

Basically, a SELECT statement in SQL is built of six parts: SELECT, FROM,

WHERE, JOIN, ORDER, GROUP and LIMIT. Because we mostly build plain SQL

statements, a data structure to store these elements during the visitors visit

of each filter in a source file is used. When the code-generator visitor leaves

the filter element in the tree, the SQL is flattened to an SQL string which

is later wrapped in calls to database functionality during the Intermediate

Language code generation.

In Amigo, some expressions have a slightly different semantics than

would be expected in comparison to most general purpose programming

56 Chapter 4. Implementation

language. For instance, a list (or array) of values can be compared with a

single value in the where-block of Amigo. This requires special attention in

the SQL generation as this has to be translated to a clause that makes use

of the range feature of SQL. So the list is flattened to a comma separated

list of its values and is injected into the SQL statements WHERE part as an

expression on the form:

... WHERE colX IN (1,2,3,4) ...

Another problem that has to be resolved when generating the SQL code

is to prefix all columns with their table names, so that column names that

are used in several tables, which are part of a query, can be distinguished.

This is not a straight forward task as we, in case of many-to-one relation-

ships, only have this data available on one end of the relationship in the

mapping files. And as the complete mapping tree needs to be loaded to

make sure that the other end of a relationship is available, the task of as-

signing table names to all fields is done by looking up the table names in

the mapping tree in the situation that it is not available in the mapping

for a relation. A fragment of two class mappings is shown in Listing 4.2,

which illustrates the problem with the missing information in the mapping

for the Orders class.

Listing 4.2: Relationship mapping
1 <?xml ve r s i on =”1.0” encoding=”i so −8859−1”?>

2 <hibernate−mapping xmlns : xsd=”http ://www.w3 . org /2001/XMLSchema”

3 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t ance ”

4 xmlns=”urn : nhibernate−mapping−2.0”>

5 <c l a s s name=”Firm . Customers , Firm” tab l e=”Customers” lazy=” f a l s e ”>

6

7 <bag name=”Orders ” a c c e s s=”property ” tab l e=”Orders ” lazy=” f a l s e ”>

8 <key column=”CustomerId” />

9 <one−to−many c l a s s=”Firm . Orders , Firm” />

10 </bag>

11 </c l a s s >

12

13 <c l a s s name=”Firm . Order , Firm” tab l e=”Orders ” lazy=” f a l s e ”>

14

15 <many−to−one name=”Customer” ac c e s s=”property ”

16 c l a s s=”Firm . Customers , Firm” column=”CustomerId” />

17 </c l a s s >

Intermediate Language 57

The generation of the SQL statement itself is straight forward, provided

that the type system and syntax tree is correct. SELECT statements have

a relatively fixed structure and are, as mentioned, composed of keyword-

groups that describe the separate functionalities of the statement. This is

the case in almost any scenario.

4.2.2 Intermediate Language

The generation of Intermediate Language (IL) [2] code for the .NET plat-

form is not as straight forward as the generation of the SQL statement.

The Common Language Runtime is a stack based virtual machine, and

even though the intermediate language is powerful, it is still often more like

programming low level assembly code than a general purpose programming

language. The System.Reflection API provided by the .NET framework

facilitates the generation of IL code, without having to concentrate on low

level aspects of the code generation. This API includes builder classes for

building specific parts of IL code, and provides easy generation of common

structures like classes, constructors, methods etc. A diagram showing the

builder classes can be seen in Figure 4.3.

Figure 4.3: Structure of builders

The builder classes are structured in a Factory pattern. As Figure 4.3

shows, one builder class is used to create one or more builders for subtypes

58 Chapter 4. Implementation

and it is possible to gain access to a ILGenerator that generates the body

of either a method or a constructor. The ILGenerator has methods for

emitting code to a stream of IL operations. This is done either by calling

the Emit method with an operand code found in the OpCodes enumera-

tion. The Emit method is available in several overloads. Depending on

the demands for the operand code, multiple arguments can be sent to, for

instance, describe what input is present on the stack.

Additionally, the ILGenerator have a collection of methods for more

advanced tasks. Some of these are listed below:

• BeginScope: opens a new scope level for variables

• EndScope: ends the current scope

• DeclareLocal: declares a local variable in the current scope

In the Amigo compiler, the ModuleBuilder and TypeBuilder instances

are used in the constructor on the CodeGenerator visitor. When the visitor

enters a Filter element of the syntax tree, a new MethodBuilder is created

and its ILGenerator is stored as a variable on the CodeGenerator visitor,

so that it is accessible from all visit methods that might need to generate

IL code. When the visitor leaves the Filter element, the last IL code for

executing the SQL statement is generated using the ILGenerator. The

generated code is simply a Connection object and a Command object, that

makes it possible to connect to the back-end database. Depending on the

contents of the filter, the method that is built returns either a DataTable

or an object.

To illustrate the use of the above builder classes and the ILGenerators

received from them, a small example that generates a class with a single

method is shown in Listing 4.3

Listing 4.3: Buidling an assembly using TypeBuilder, ModuleBuilder etc.

1 // Def ine c l a s s f o r ho ld ing name o f the assembly

2 //and a s s i gn a name to i t s Name property

3 AssemblyName an = AssemblyName () ;

4 an .Name = ”myAssemblyName ” ;

5

6 // Ret r i eve the AppDomain f o r the cur rent Thread

7 AppDomain appdom = AppDomain . CurrentDomain ;

8

9 //Use the AppDomain to c r e a t e a dynamic assembly and r e t r i e v e i t s

10 //AssemblyBuilder , as an argument i t takes an AssemblyName and an

11 // i nd i c a t i o n i f the assembly should be saved in memory or on d i sk

12 AssemblyBuilder ab = appdom . DefineDynamicAssembly (an , AssemblyBui lderAccess . Save) ;

13

4.3. Summary 59

14 //We use the AssemblyBuilder to r e t r i e v e a ModelBuilder f o r the

15 //Assembly and s p e c i f y the name o f the module , the name o f the f i l e i t

16 // should be saved in and whether i t s h a l l automat i ca l l y emit symbol in fo (names)

17 // e tc .

18 ModuleBuilder mb = ab . DefineDynamicModule (an .Name, an .Name + ” . d l l ” , t rue) ;

19

20 //We use the ModuleBuilder to d e f i n e a type in the Module and r e t r i e v e

21 //a TypeBuilder , the arguments s p e c i f y the name and TypeAttr ibutes in our

22 // case we de f i n e a pub l i c c l a s s

23 TypeBuilder tb =

24 mb. DefineType (”MyNamespace . MyClass ” ,

25 TypeAttr ibutes . Publ ic | TypeAttr ibutes . Class) ;

26

27 //We use the TypeBuilder to d e f i n e a method in the Type and r e t r i e v e a

28 //MethodBuilder , thte arguments s p e c i f y the name o f the method , and

29 // methodattr ibutes which could be i f i t s s t a t i c e t c . th i rd we de f i n e the

30 // re turn type o f the method and at l a s t a l i s t with types o f the parameters

31 MethodBuilder meb =

32 tb . DefineMethod (”MethodName” , MethodAttributes . Public ,

33 typeo f (s t r i n g) , new Type [] { typeo f (i n t) }) ;

34

35 //We r e t r i e v e an ILGenerator from the MethodBuilder which we can use to

36 // emit IL code to the body o f the method

37 ILGenerator i l g e n = meb . GetILGenerator () ;

38

39 //We dec l a r e a l o c a l v a r i a b l e in the method body

40 i l g e n . Dec lareLoca l (typeo f (s t r i n g)) ;

41

42 //A s t r i n g ” He l lo world” i s loaded on top o f the s tack

43 i l g e n . Emit (OpCodes . Ldstr , ” He l lo world ”) ;

44

45 //And the top element o f the s tack (our s t r i n g) i s s to r ed to

46 // the va r i ab l e with index 0 which we j u s t decared above

47 i l g e n . Emit (OpCodes . S t l o c \ 0) ;

48

49 //The Type i s c r ea ted us ing the typebu i l d e r

50 tb . CreateType () ;

51

52 //The asssembly i s saved to d i sk

53 ab . Save (an .Name + ” . d l l ”) ;

4.3 Summary

This chapter described the implementation of Amigo. First, Coco/R was

introduced. Coco/R takes a grammar on Extended Backus Naur Form

(EBNF) and produces a scanner and recursive descent parser. The choice

of Coco/R was based on bad experience with other parser generators, mainly

from the LIP project. The language for describing grammars in Coco/R,

Cocol/R was described. The output from the parser in the Amigo compiler

is a tree representation of the parsed source code. The visitor pattern allows

60 Chapter 4. Implementation

us to easily traverse the tree to perform the contextual analysis and code

generation. Then the type checking was described. Following this was a

description of the mapping which is done using Hibernate mapping files

representing the database schema. Finally code generation was described.

The description explained how Amigo code is translated into SQL queries,

as well as how these queries are inserted in an assembly of methods, that

each corresponds to a filter. These methods can be called from any .NET

based language that can reference the assembly.

Chapter 5

Test

When working with programming languages and compilers, creating a good

syntax or a well performing compiler are not the only things to worry about.

There are several aspects that have to be dealt with, one of which is testing.

It is very important to make sure that the language and compiler is working

in a correct manner. Since a programming language is used to write an ap-

plication, and a compiler is used to translate that application into running

code, there is little room for errors in the compilation process. If the gener-

ated code is erroneous, by fault of the compiler, it will cause confusion and

irritation for the programmer using the language and compiler to create his

application. It will most likely not be clear that an error is an error in the

compiler and not in the source code of the application.

When we talk about software testing we talk about testing strategies and

testing tactics. Strategies describe how testing is conducted; if the entire

program is tested or only parts of it; if the tests should be run every day or

only when the entire program is finished. Tactics describe the specific tests

on a technical level.

There are a plethora of testing strategies and many theories on how to

vary or combine them. Most involve testing smaller parts on their own,

testing the program as a whole which basically means testing if the smaller

parts work together, testing the program on the system on which it will

be used, and validating the program. Some strategies do these sequentially

but most use some sort of incremental test strategy. A software develop-

ment process usually starts with a customer expressing requirements that

the final program should meet. Then a rough model of the entire program

is designed. This is refined and interfaces are generated. Then classes are

designed and implemented one by one. Depending on time and money each

61

62 Chapter 5. Test

class or unit is tested when it is done. In some cases the entire system is

regularly tested using dummy classes as substitutions for those that have

not been implemented yet. As soon as parts of the program works, vali-

dation begins. This is the part where the customer evaluates the program

against the requirements, which are not specific enough to account for ev-

ery detail. At some point, depending on the specific task, system testing

begins. Some developers choose to perform these tests only once, or as few

times as possible. They will most likely only test when the entire program

is done, correct the errors and test again. This is not advisable, especially

for larger projects, as debugging errors are much harder at this point. A

more advisable approach is one where all tests are performed several times

throughout the process. Again there are variations of this approach, and

most development teams will customise a strategy to suit their particular

situation.

Testing Amigo entails testing whether the compiler works as it should,

and testing whether the Amigo language is useful. To test whether the

compiler works as intended, we use unit testing and test it with a number

of example filters against the scenario specified in Section 3.2. To test

how programmers take to the language, a validation test is performed and

described. The test subjects for this test have not in any way been involved

in the development of Amigo.

5.1 Code Testing

We have chosen to perform unit tests based on the expected output from

the database. That is, the data output of an SQL query is compared to the

data output of the corresponding Amigo code. To perform this operation

we have used the NUnit test framework [11], along with a few helper classes

to execute SQL on the DBMS. The DBMS we have chosen to use for the

test is PostgreSQL [13]. This particular DBMS is very feature rich, and we

are familiar with it from previous projects.

5.1.1 Unit Tests

Unit tests are performed by testing the result of a filter against a sample

database to verify that the filter returns the rows/values from the database

that are expected. As these tests work by comparing two data tables, one

generated by the Amigo query and one by the SQL statement, we have

written some custom code to perform a comparison between two data tables,

5.2. Validation 63

disregarding issues like column aliases, as these are generated by the Amigo

compiler. The comparison is done solely on the data and not on meta-data

such as headers and so forth.

To integrate the unit test with an existing test tool, we have decided to

execute them using the NUnit[11] testing framework. We have implemented

a method called DataTableComparer that compares two data tables by

taking a DataTable and an SQL query string as input arguments. The

DataTable is the result of an Amigo query. The SQL query is executed on

the DBMS and the resulting DataTable is compared to that of the Amigo

query. If these contain the same values the method returns true, otherwise

false. This method is used in ordinary unit test setups.

[Test]

public void TestSimpleEmployeeQuery() {
Compiler c = new Compiler("inputfile.amigo");

Assert.AreEqual(true, DataTableComparer.AreEqual(

c.Queries[0].DataTable,

"SELECT EmployeeID, Name, ... FROM Employees"

);

}

In the example, all mapped columns in the database must be specified

in the SELECT statement, so that the resulting data is consistent with what

Amigo generates. An error in the output test will be presented in the NUnit

GUI so that data that is not returned in the expected format is found and

can be debugged.

The approach outlined above ensures that all compiler tests that fail are

present in a single tool, integrated in modern development tools and hence

is visible for us during development of the Amigo compiler.

5.2 Validation

Normally, validation testing is performed against a set of requirements from

the customer. But in this case, there are only potential customers and thus

no explicit requirements. The requirements are defined by the develop-

ers and validation testing of Amigo is therefore also a test of whether the

requirements defined by the developers match those of the potential cus-

tomers. One of the requirements was that Amigo should be easy to under-

64 Chapter 5. Test

stand for any programmer with experience in object oriented programming

and relational databases. The test subject is given a short Amigo manual;

see Appendix B. He is then presented with nine exercises. The exercises are

based on the scenario from Section 3.2. Each exercise is formulated in plain

English and the test subject is asked to write Amigo code which will solve

each exercise. An example of such an exercise could be:

”Write one or more filters which will retrieve all employees with a salary

of more than 20.000.”

The Amigo code which we expect the test subject to write would look

like this:

public var HighPaidEmployees() {
object:

Employee;

where:

Employee.Salary > 20000;

}

The exercises are all presented in Appendix C in the same form as the

test subject is presented with. The queries are fairly simple, meaning that

they do not involve more than two tables. We expect to learn if the block

structures of the Amigo filters make sense to users. In other words, we are

interested in testing the basic concepts of Amigo. The Amigo code, that the

test subject writes, is evaluated in two ways. First, did he manage to write

code that has the result which the exercise stated. Second, is the solution

the same as we expected. The first tells us whether some data retrieval

problems are more difficult to translate into Amigo code than others. The

second tells us if there are more than one way of doing the same thing, and

which way is the better or more intuitive choice. The test subjects are given

45 minutes to read the manual and complete as many exercises, out of a

total of nine, as possible.

5.2.1 Results

We present the results for each test subject and after wards a conclusion.

Results 65

Test subject 1

Subject 1 managed to complete the first six exercises. He rated the com-

pleted exercises as follows:

Exercise Difficulty Rating

1 1

2 2

3 3

4 2

5 5

6 1

As can be seen, exercise 5 was rated more difficult than the others.

In this exercise, the solution calls for the use of joins. The test subject

commented on this in the overall evaluation of Amigo. He wrote that he

likes the block structure but that he did not like the join construct. He felt

it was conceptually different than the other blocks and that it would take

longer to get used to. Overall, he felt that Amigo was well structured and

fairly easy to use.

Test subject 2

Subject 2 also managed to complete the first six exercises. He rated the

completed exercises as follows:

Exercise Difficulty Rating

1 1

2 1

3 1

4 3

5 3

6 1

Once again the same pattern is seen, although with lower numbers.

This test subject did not find joins as problematic as test subject 1, which

is also reflected in his evaluation. He commented that Amigo seems very

intuitive in the way queries are formed. He pointed out, however, that it

requires a different approach than SQL. He especially liked the way Amigo

handles joins which is better than having to explicitly specify primary keys

66 Chapter 5. Test

and foreign keys. This is in contrast to the opinion of test subject 1. Test

subject 2 found that the exercises very relatively easy and simple. He would

have liked to try Amigo in more complex scenarios. He finally states that

Amigo certainly bridges the gap between the object oriented and relational

worlds, and that further development could prove very interesting.

Conclusion

During the tests, both of the test subjects seemed to think in terms of tables

and SQL and not in terms objects. They had trouble adjusting to the idea

of not specifying primary and foreign keys relationships when joining tables.

The fact that both subjects read the manual and completed six out nine

exercises in 45 minutes, we believe reaffirms that Amigo is easy to learn.

As test subject 2 pointed out, the exercises and scenario were simple. The

test then confirms only that Amigo is easy to learn for simple tasks. It

is yet to be proved that it is also easy for complex tasks and scenarios. A

longer test, maybe several days, would perhaps make them think in terms of

objects more than in terms of tables. All in all, the outcome was as we had

hoped. Both test subjects thought that Amigo was interesting and worth

developing further. They wrote solutions that were very close to the ones

we thought they would write. This indicates that it is obvious how to use

Amigo to solve different types of tasks. The join construct could be worth

re-investigating and possibly redesign its syntax. But the fact that the two

subjects did not agree on this means that further testing has to be done.

5.3 Summary

This chapter described the testing of Amigo. First, different approaches

to testing was discussed. Then a description of which methods to test

Amigo was presented. Unit tests were chosen to test code correctness, and

validation test was chosen to test what programmers thought of Amigo.

Both tests used the example scenario defined in Section 3.2. The unit tests

were performed on database output. That is, compare the output of an

Amigo query and the output of a corresponding SQL query.

In the validation test, two test subject were presented with an Amigo

language manual and an exercise set with nine exercises. They got 45

minutes to read the manual and complete as many exercises as possible.

The result was, that both subjects found that Amigo was intuitive and easy

to use. One subject however, thought that the join construct was difficult

5.3. Summary 67

to understand and use. Finally, it was concluded that the simple validation

test was a success, but also that even more testing is necessary.

Chapter 6

Related Work

In this chapter we briefly discuss some of the major contributers to work

related to the area of which Amigo is part. More specifically, Language

Integrated Query, a technology being developed by Microsoft Corporation,

and Hibernate are discussed. We describe how they relate to the Amigo

project as well as compare strong and weak points of the technologies in

relation to Amigo.

6.1 Language Integrated Query

Language Integrated Query (LINQ) [10] is a set of features for the C#

and VB.NET languages for the Microsoft .NET platform. The features

are being developed by Microsoft itself, and are planned to be a part of

C# 3.0 [15]. LINQ provides the programmer with the ability to query

any collection of data in much the same manner as using SQL queries to

query a database. A number of extensions are added to the language and

compiler in order to make LINQ work. These extensions include: extension

methods, anonymous types, type inference, and lambda expressions. The

extensions are, among other things, used to implement a set of standard

query operators, that are added to the generic type IEnumerable (by using

extension methods) which all generic collections inherit from. The standard

query operators makes it possible to query the collections. The C# 3.0

compiler adds syntactic sugar to the language in order to make the use of

the standard query operators look more declarative - or more SQL-like.

The LINQ extensions are used to implement DLINQ, which in turn is

used to query relational data. This means, that a database query can be

expressed directly in the language, by using the standard query operators.

69

70 Chapter 6. Related Work

6.1.1 LINQ vs. Amigo

The philosophy behind the LINQ project - and especially DLINQ - is quite

similar to that of Amigo. Furthermore, both projects operate on the same

software platform. This could possibly mean direct competition between the

two. However, Amigo does not require any extensions to neither the C#

language nor the C# compiler - let alone the .NET runtime platform itself.

To that end, the Amigo compiler could relatively easily be reimplemented

to use LINQ, and thus benefit from the same features as DLINQ, while still

using the Amigo language syntax and features.

The look-and-feel of LINQ is very similar to SQL - at least while using

the syntactic sugar versions of the standard query operators. This kind of

syntax will most likely fall natural to most programmers, who are already

familiar with SQL. Amigo, on the other hand does not use a SQL-like syn-

tax, which possibly could scare some programmers away from the language.

We do believe however, that the Amigo syntax provides a simple way of

expressing queries, that would be very complex to express in a SQL-like

language. The general expressiveness of LINQ and Amigo, however, is very

similar - although LINQ provides means to query all kinds of collections,

while Amigo can only query relational databases.

6.2 NHibernate

NHibernate is an object/relational mapper for the .NET platform. As

such,it maps data from the object model to the relational model. NHiber-

nate also has a query language, HQL as described in section 2.4, making

data retrieval easier. The idea behind NHibernate is that the programmer

for the most part can ignore the database a concentrate on NHibernate

and the application. There are several tools to help in generating the XML

mapping files from the object model and the database schema from the

mapping files. The people behind NHibernate does recommend that the

files should be examined by a person to ensure the most effective and logi-

cal mapping. There are tools which can do the reverse which is helpful the

database already exists.

NHibernate acts as a layer between .NET applications and the underly-

ing database. Any object which is persisted go through the layer and every

query and also pass through the layer. If the programmer follows coding

recommendations, NHibernate handles the generation of unique id’s for all

NHibernate vs. Amigo 71

persisted classes and subsequently lets the programmer retrieve a specific

class if the id is known.

NHibernate uses several methods to enhance performance. The first is

cache which holds retrieved classes. The second is the option to lazy-load

classes or collections of classes. An example where both methods come into

play could be a situation where the programmer has to perform something

on a number of objects which cannot be expressed in a query. NHibernate al-

lows the programmer to return a query as a System.Collections.IEnumerable.

Doing this only returns the ids of the objects and the IEnumerable lets the

programmer iterate through them. The objects are loaded when the enu-

merator gets to them. If only half the objects are used, then only half is

loaded. If any of the object are in cache they are not retrieved from the

database.

6.2.1 NHibernate vs. Amigo

In the analysis we have already discussed the pros and cons of HQL but

we deliberately did not discuss the rest of NHibernate. It works very well

and judging by the amount of downloads from sourceforge.com it is very

popular. We think Amigo is easier to use than HQL and that it supports

the programmer more than HQL does. HQL does add many new functions

to SQL but it still suffers from the very problems that Amigo tries to solve.

The interesting question is whether Amigo could be implemented as a

part of NHibernate. As we argued above in the LINQ section on unifying

Amigo and LINQ, Amigo could also be made to use NHibernate. Initially,

Amigo could be reimplemented to simply return HQL instead of SQL, but

it is also a possibility to bypass the HQL and let Amigo use NHibernate’s

O/R-mapping features directly.

Chapter 7

Evaluation

In this chapter we evaluate the Amigo language, the report, the process, and

the tools used to develop Amigo. The chapter starts with an evaluation of

the two types of tests we performed, beginning with the validation test

and then the technical test. Then we evaluate the functionality of Amigo,

whether we met the requirements we stated in the problem statement in

Section 1.1. Following this, we evaluate the requirements themselves, deter-

mining whether or not they were the right ones for this project. Next, an

evaluation of Amigo itself is presented. In Section 3.1 we stated some limi-

tations and it is important to evaluate them to determine if they were the

right ones and what impact they have had on Amigo. Finally we evaluate

the tools we have used to develop Amigo.

Several times in this section we use the term useful. We define use-

ful as the ability for programmers to incorporate Amigo in their software

development environment, or chose Amigo over an existing solution that

accomplishes the same task.

7.1 Validation Test

In Section 5.2 we described how we had devised a set of exercises which was

used in a test with two test subjects. The test had three aspects. The first

was the actual exercises where we tested if the subjects were able to write

Amigo code. Second we asked them to rate the difficulty of each exercise.

And third, we asked them to evaluate Amigo.

The exercises increased in difficulty and we expected the Amigo code

they wrote to give us an indication of what types of tasks where particularly

difficult. When we devised the exercises we also discussed what solutions

73

74 Chapter 7. Evaluation

we expected the subjects write. It would help to have a preconceived idea

of how we believed certain tasks should be accomplished in Amigo. If the

subjects chose to create different solutions then perhaps the Amigo syntax

had to be revised, or maybe the manual needed improvement.

We selected two persons as test subjects. This is too few to create

any type of meaningful statistics. This, however, was not the goal of the

test. The reason why we asked them to rate the difficulty of each exercise

was to add another way of determining whether certain task were harder

to accomplish than others. The exercises were formulated in a way that

resembles everyday programming tasks. If they both rated three out of five

on each exercise except one were they both rate five out of five it would

mean that that particular type of task is difficult to carry out in Amigo and

something has to be changed to remedy this fact.

In the final question of the test, the test subjects were asked to evaluate

Amigo. We expected to get information about how intuitive it was to use,

and aspects of that sort. And of course the verdict whether they thought

it was a something they would use or not. In our view, this was the most

beneficial part of the test, as we got an idea of what the subjects thought

about the language as a whole.

We gave each test subject 45 minutes to read the manual and complete

the exercises. In retrospect this was perhaps not enough time, as they

both only managed to complete six of the nine exercises. An hour or more

would have let them finish all the exercises, or at least try to finish them.

In Section 5.2.1 we concluded two things from the test. One, Amigo was

intuitive and easy to use, although it takes a little time to fully understand

the Amigo train of thought. Second, the join construct may need to be

changed, but the subjects differed on this, so additional testing of this is

required. We did not get as much information from the exercise ratings

as we had hoped. We should have imposed a few criteria for each rating,

so that if the subject had no problems solving the exercise and write the

correct code in one go, it should be rated at 1. If the subject solved the

exercise but had to try several times it would be rate at 2 etc. Overall the

test was a success but could have been even more successful.

7.2 Technical Test

The unit tests worked by comparing the results from Amigo code and cor-

responding SQL statements. This makes finding errors more difficult as

7.3. Analysed Technologies 75

backtracking from the database result to the error in the code generation is

difficult. It would be better to test even smaller fragments of Amigo one at

a time. The problem is that we generate the code by traversing the syntax

tree, and each element in the tree calls methods on its children. We cannot

jump into middle of the tree and generate code from that point. Based

on this technical limitation, testing based on database results is a tolerable

solution.

7.3 Analysed Technologies

In Chapter 2 we investigated a number of technologies that we found inter-

esting in relation to the development of Amigo. We analysed the querying

features of HQL, T-SQL, PL/SQL, and HaskellDB. The primary goal of this

analysis was to gain inspiration and further knowledge of already existing

technologies. We feel, that this investigation was successful in the way that

we did learn a number of things in the process. These things in some cases

did indeed serve as inspiration for the further development of Amigo.

The one technology that stood out in the investigation was HaskellDB.

The reason for investigating HaskellDB was that the reasoning and argu-

ments behind this technology was very similar to those of Amigo. However,

the actual implementation of HaskellDB and the practical side of this solu-

tion did not have a very big impact on the design and implementation of

Amigo. We still think, that the investigation of HaskellDB served a pur-

pose, as it proved to us that it is possible to create a safe way of interfacing

between the relational paradigm and a completely different paradigm - in

this case the functional.

7.4 Functionality

In the problem statement in Section 1.1 we stated several goals. In this

section we evaluate these goals. One goal was to extend the filter con-

cept, which we developed in the LIP project, to use more RDBMS features.

Amigo supports the same types of queries achievable by standard SQL. We

even made sure that it will be possible to use RDBMS functions unknown

to us. Every call is mapped to a database function — if it exists. Amigo

first test if the call is to another filter and the tries to map to a database

function.

76 Chapter 7. Evaluation

We also stated that filters should fit in the object oriented paradigm and

comply with its model. Our notion of this is that the syntax and semantics

of the basic structures from the object oriented paradigm is preserved within

the filters. Examples of this are loops, conditional statements and arith-

metic expressions which all share the semantics of the corresponding C#

constructs. When we introduced features we strove to use known concepts

from the object oriented world with a common C# syntax. For instance, a

join is performed by applying a binary operator on two types. The block

that a filter consists of shares syntax with the goto and case constructs

known from C#.

Even though the new constructs introduced use common syntax with

existing features in C#, the filter has a mostly declarative body whereas

the existing method construct in C# has an imperative body. However the

declarative syntax is well suited for the query languages as SQL has shown.

This declarative form of filters complies with the goal stated in the problem

statement that the relational model is not meant to be abstracted away in

Amigo.

The final thing we stated, was that the programmer should be aware

of when he is using the database. This goal is trivially solved after having

solved the above. All database interaction occurs inside filters and the

programmer is fully aware of that.

7.4.1 Project Goals

We have evaluated the project goals in regards to whether we met them or

not. Now we have to ask the question, if these were the right goals. The

primary goal was to extend the filter concept from LIP to use more RDBMS

features.

In our analysis of other technologies, both in this report and in the LIP

report, it is apparent that programmers who use relational databases do so

because they use the built-in functionality.

Using filters ensures that database related code is not spread out through

the other code. This also allows combination of filters - with the use of filter

calls - improving the modularity of filters. Furthermore, this helps to reduce

the size of filters and should also reduce the overall amount of code, while

increasing readability and writeability.

We have been pleased with working with this concept, and we still are

confident that filters are a clean and intuitive means of expressing database

queries - although there are room for improvements, as our tests have shown.

Project Goals 77

The second goal was to implement the filter concept as a new query

language. This is an obvious goal, as it is the only way to really test the

concept in practice. Programmers would have had a difficult time testing

the concepts of Amigo if they did have the possibility to get a hands-on feel

of it.

The next goal was that Amigo had to support most of the functionality

provided by SQL. This goal has been met to some degree. Amigo supports

the basic SQL functionality as well as some more advanced features. Fur-

thermore, Amigo includes a few features that are not directly available in

SQL. However, there are features in SQL that are not present in Amigo.

These features have been left out in this project, as their functionality would

not have a significant effect on the Amigo syntax and semantics. The ba-

sic idea of a query language is to be able to retrieve data from a relational

database, and SQL by itself accomplishes this very well - and is an extremely

popular approach among programmers. Therefore, this goal was one that

could not be left out, and we are generally pleased with the results of it.

The next goal was that the filters should comply with the object oriented

model but the relational database should be visible. The details of this

goal was not stated clearly enough when the goal was initially presented.

Furthermore, it is arguable whether it is relevant to this particular project.

Obviously some notion of object orientation is required in Amigo, since it is

meant as a bridging between the object oriented and the relational world.

However, there is no need for a complete object model in Amigo until it is

integrated in an object oriented host language.

The next goal was again a direct consequence of LIP. The programmer

should be aware of when he is using the database and when he is not. LIP

handled insertion and updates, in addition to queries. We established that

the programmer would feel more in control if insertions, updates, and dele-

tions were explicit commands. Amigo does not perform insertions, updates,

and deletes and the goal thus becomes meaningless. This is at least true as

long as all query code is inside filters, where it is obvious to the programmer

that he is using the database.

We also stated as goals that we needed to analyse existing technolo-

gies to establish which features Amigo should support. We also stated that

Amigo should be tested both from in a technical test and in a validation

test. Analysing existing technologies is almost an unwritten rule when de-

veloping new software or concepts. Others may have developed software

that has been tested by end-users over a period of time, which is reflected

by the software. In other words, analysing other technologies will help to

78 Chapter 7. Evaluation

establish user requirements. Testing is also something that simply must be

done, at least the technical test. There is no point in releasing buggy code.

Performing a validation test is not a must, but it is very useful and based

on the test we performed, a great deal of information is acquired. When

you spend a lot of time on a project it is difficult to evaluate the product

objectively. An independent tester will spot things you did not think of. We

are very pleased with the results of the tests, even if some did not comply

with our own thoughts about Amigo. To that end this goal was a good one,

but could certainly be expanded at a later time.

7.4.2 Usefulness of Amigo

Most of the goals that were established for Amigo have been met, some to

a higher degree than others. Now, the question is if Amigo is good enough

to be used by programmers in projects today. A decision has to made

about how the language is to be used, and Amigo must be implemented

accordingly. We are very confident that Amigo would be practically usable

when this is done. The decision is not an obvious one and it would be

valuable to do further testing of whether Amigo should be used as a pre-

processor or natively integrated into a host language to determine in what

form Amigo would be of most value. This means that Amigo in its present

form is not fit for use in a professional software development environment.

However, the concepts and fundamentals are sound.

7.5 Limitations

In Section 3.1 we stated some limitations and it is important to examine

what impact this has had on the outcome of Amigo. First we introduced

each limitation along with a few comments and then we discussed the gen-

eral impact they have had — if any.

We stated focus of the Amigo project was on querying and not on other

parts of mapping and persistence. Although we did not focus on these

there is nothing in Amigo which prevents them from being implemented.

As we pointed out in Chapter 6, Amigo could be used as part of LINQ

or Hibernate. We attribute this, in part, to the filter construction which

encapsulates every query.

Amigo checks type mapping via the Hibernate mapping files. If Amigo

is to be used as part of Hibernate there would be no reason to change this

as Hibernate relies on these as well, and in this case the limitation is not a

7.5. Limitations 79

limitation at all. If Amigo is to be used as part of C# or any other language

it is better to let Amigo communicate directly with the database, as making

mapping files only impose extra work for the programmer.

We stated that we would not focus on integrating Amigo in a general

purpose language. This is true in the sense that we have not focused on how

to most effectively integrate Amigo in for instance C#. We have argued in

e.g. Chapter 6 that it would be possible to do so. This issue is discussed

further in Chapter 8.

Based on the experience with LIP, we expected inheritance and poly-

morphism to be an area requiring a great amount of work and thus best not

have that as primary focus. It is unclear how important this issue is. We

have not investigated the issue but we did not encounter problems either.

The issue is something that we believe could be worth investigating. It is

likely that we have simply not thought of examples where Amigo would

need to support inheritance. If Amigo is expanded to handle persistence of

objects, and not just data retrieval, it will definitely become an issue.

As we have discussed there are parts of Amigo which will have to be

implemented before it is useful to the programming community. The appeal

or usefulness of programming languages is a very subjective matter. For

some it is most important that it is easy to read and write, for others it

is performance. Testing the language with programmers is very important

and before Amigo could be released more tests have to be performed. It is

especially interesting to know whether Amigo would be the first choice in

all types of projects or only in certain types.

The focus of Amigo was to create an easy and intuitive query language.

We have chosen not to focus on performance as it is something that can be

done at a later stage. That is not to say that performance is not important,

it is. But if no one will use the Amigo because they think it is not useful,

it is not important how fast it performs. Enhancing the performance of

Amigo involves among other things optimising the generated SQL queries.

If the choice is to extend Amigo so it can handle returned data, an area of

interest would be caching of results. In any case, testing the performance

of Amigo as it is, would be the first thing to do.

The object of the Amigo project was to implement Amigo as a proof-of-

concept, meaning determining if the core ideas are viable. We do not believe

that the limitations have negatively affected this goal, quite the opposite. In

the LIP project we aimed at creating a complete object relational mapper

similar to Hibernate, on a smaller scale, and the result was that none of

the separate parts were fully explored. As we discovered, object relation

80 Chapter 7. Evaluation

mappers can be divided into virtually disconnected parts. We chose to

focus on the query part and the limitations helped us keep the focus. If we

look at what we have identified as missing in Amigo they are not critical

areas in the sense that they might not be possible. For instance the fact that

it is not possible to use while statements is not critical as we have shown

that it is easily implemented as we have implemented for statements.

7.6 Tools

In the implementation and testing of the Amigo compiler a number of tools

have been used. For the actual implementation we settled on .NET as

execution platform, which in turn led to the choice of implementing the

compiler in C#. We have been very satisfied with this choice. The main

reason for this is, that the reflection API for generating native .NET inter-

mediate language is relatively easy to use, although some problems during

the implementation of the code generator did occur.

Generating the parser was easy, since the Coco/R parser generator posed

no problems during implementation. Coco/R fit our needs very well, and

it’s syntax for the attributed grammar is quite easy to comprehend. Fur-

thermore, it is very well documented compared to other parser generators

we have worked with previously.

The integrated development environments (IDE) used in this project

was Visual Studio.NET and also SharpDevelop on Microsoft Windows, and

Monodevelop on Linux. Both the latter of these IDEs are open source, and

are works-in-progress. Unfortunately, this means that they are both flawed

in some circumstances, most notably Monodevelop. This has caused a bit

of frustration during implementation, since work at times seemed wasted

when dealing with the flaws of the IDE.

During testing we have made use of the NUnit framework. This has

been of great help in determining errors in the compiler and the generated

code.

As back-end data store, PostgreSQL was used. This DBMS is very fea-

ture rich, and we have been pleased working with this particular application.

Chapter 8

Future Work

In the course of this project, we have designed and implemented a new lan-

guage for querying relational data from an object oriented setting. Although

the implementation consists of a working compiler, there is still room for

improvements and additional features in Amigo. It is clear that the limita-

tions that were established for the Amigo project in the beginning of this

report, needs to be addressed in the future. In this section, however, we will

not get further into these, as they have already been thoroughly discussed.

Instead, the focus is on the ”big picture”.

8.1 Language Integration

In Chapter 1, and throughout the report, we have stated that Amigo at one

point should be integrated in some way or another in an object oriented host

language. The main argument for integrating Amigo in a host language is

to lower the coupling between application language and query language.

This should result in writing both queries and general purpose code in a

single language and provide a more natural feel for the programmer when

developing applications in - for instance C# - and using Amigo as a query

language for accessing a relational database.

The practical side of integrating Amigo in a host language poses a few

different possible solutions. One solution could be to extend the host lan-

guage’s compiler, adding the syntax and semantics of Amigo. This approach

is beneficial in the way, that the programmer only has to worry about using

a single compiler, and that Amigo would exist as a natural part of the host

language. However, our experience with integrating the LIP language fea-

tures in the Mono C# compiler shows that this approach is quite difficult

81

82 Chapter 8. Future Work

in practice. The Mono C# compiler is a complex piece of software that is

very specific in the task it performs. It takes a long time to get to know

the source code in so much detail that it is possible to add several language

features. Obviously this approach requires that the source code for the host

language compiler is available. This severely limits the number of compilers

for which Amigo could be integrated.

A more viable solution to the integration, could be to implement some

kind of Amigo preprocessor for the host language. The implementation of

such a preprocessor is relatively simple compared to the previously proposed

solution. It is very likely that the currently implemented compiler could be

reused in this approach - at least if the host language is available on the

.NET platform. Furthermore, this approach would work for any object

oriented host language - even languages where the compiler source code is

not available.

8.2 Object-relational mapping

Amigo is only a query language and in this report the focus have been on de-

veloping the language and its features. No effort have been made concerning

the actual returning of data from filters in strongly typed data structures.

Multiple solutions exist that handles this, however. One approach is the

one used in most object/relational mappers[5], where the mapped object is

filled with the data using already built-in language constructs such as con-

structors or getters and setters. Another approach is seen in LINQ where

a combination of type inference and anonymous types is used to return the

requested data in a strongly typed anonymous type.

The actual mapping of the relational structure to objects in Amigo is

done by reading mapping files from NHibernate. This is not the optimal

solution. As we discussed when implementing LIP[16], many mapping fea-

tures can be retrieved directly from the database if the database exposes its

schema information. A hybrid of these approaches can be seen in the Ac-

tiveRecord project[1] which in fact is an abstraction built on top of NHiber-

nate where many properties of the mapping is inferred. And in fact, the

mapping can be generated using a tool which queries the database schema

using OleDb.

The third solution is to integrate the mapping in the language itself in

a manner so that persistent types are marked using special keywords. This

is a large extension to the language, as properties such as length of fields in

8.3. Industrial Application 83

the database would have to be specified on each persistent property if the

database and the language does not share the same type system, which is

rarely the case.

8.3 Industrial Application

It is our firm belief that the integration of Amigo in a host programming

language is necessary if Amigo is to be accepted as a practical usable query

language. The language itself may be intuitive and easy to use, but if the

tools for developing software in the language are not up to par, most pro-

grammers will return to the technologies they are used to, thus abandoning

Amigo entirely.

Making sure that the Amigo compiler, and the integration of Amigo in a

host language works correctly and does not pose unnecessary problems for

the programmer, requires a massive amount of testing. In this project we

have only tested Amigo in a small setting. It would be very interesting to

carry out an extensive and thorough test and evaluation of Amigo among

professional software developers. This would allow us to make more qualified

decisions of how to improve Amigo to facilitate use in an industrial setting.

Chapter 9

Conclusion

In this report we have presented Amigo, a language for querying relational

data from an object oriented setting. Amigo provides syntax and type

checking of the queries at compile-time as opposed to traditional string

based SQL queries that are not checked in anyway until runtime. Amigo

was designed with the intention of creating an intuitive and concise query

language.

The conclusions drawn from our experience in developing the LIP pro-

gramming language provided a sound basis for further development of the

filter concept initially conceived in the LIP project. A number of existing

technologies and query languages were analysed before the design of Amigo

began. These technologies served as inspiration for the development of the

language, and some features specific to some of the analysed technologies

found their way to the design of Amigo.

A proof-of-concept implementation of a compiler for the Amigo language

has been realised in the course of this project as well. Implementing a

working compiler has been of great importance to us, since we believe that

a programming language needs to be tested in practice before any real

conclusions can be drawn from it. Therefore a simple test of Amigo was

performed among a few programmers in order for us to get an idea of how

others saw Amigo. It is clear however, that this test does not suffice to give

the full picture of the applicability and future potential of Amigo.

During the initial steps of this project period we quickly set up a number

of goals for the project. We feel that most of these goals have been met

to a high degree. Not necessarily in the way that we had thought, since

as the project progressed we grew more knowledgeable in the area of query

languages. Still, there are several issues that needs to be addressed in

85

86 Chapter 9. Conclusion

order for Amigo to be complete and ready for practical use in a software

development environment. These are issues that we are ready to delve

deeper into at a later time, as we are confident that Amigo could in fact

be a player in the field of statically typed query languages that seem to get

more and more attention from the programming community at large.

Bibliography

[1] Castle Project - ActiveRecord.
http://www.castleproject.org/index.php/ActiveRecord.
[cited at p. 82]

[2] The CLI Specification.
http://msdn.microsoft.com/netframework/programming/clr/.
[cited at p. 57]

[3] HaskellDB Homepage at haskell.org.
http://www.haskell.org/haskellDB.
[cited at p. 17]

[4] HaskellDB Homepage at sourceforge.net.
http://haskelldb.sourceforge.net.
[cited at p. 17]

[5] Hibernate - relational persistence for idiomatic java.
http://www.hibernate.org/hib_docs/v3/reference/en/html/.
[cited at p. 19, 82]

[6] Microsoft’s open database connectivity (odbc) interface.
http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/odbc/htm/dasdkodbcoverview.asp.
[cited at p. 3]

[7] Official Coco/R Homepage.
http://www.ssw.uni-linz.ac.at/Coco/.
[cited at p. 48]

[8] Official Haskell Homepage.
http://www.haskell.org.
[cited at p. 17]

[9] Official Jay Homepage.
http://www.informatik.uni-osnabrueck.de/alumni/bernd/jay/.
[cited at p. 48]

[10] Official LINQ Homepage.

87

http://www.castleproject.org/index.php/ActiveRecord
http://msdn.microsoft.com/netframework/programming/clr/
http://www.haskell.org/haskellDB
http://haskelldb.sourceforge.net
http://www.hibernate.org/hib_docs/v3/reference/en/html/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://www.ssw.uni-linz.ac.at/Coco/
http://www.haskell.org
http://www.informatik.uni-osnabrueck.de/alumni/bernd/jay/

88 BIBLIOGRAPHY

http://msdn.microsoft.com/data/ref/linq/.
[cited at p. 69]

[11] Official NUnit Homepage.
http://nunit.org/.
[cited at p. 62, 63]

[12] Official SableCC Homepage.
http://www.sablecc.org.
[cited at p. 48]

[13] PostgreSQL database manual.
http://www.postgresql.org/docs/manuals/.
[cited at p. 62]

[14] Suns’s java database connectivity (jdbc) interface.
http://java.sun.com/products/jdbc/.
[cited at p. 3]

[15] Microsoft Corporation.
C# 3.0 language specification.
http://download.microsoft.com/download/9/5/0/

9503e33e-fde6-4aed-b5d0-ffe749822f1b/csharp%203.0%

20specification.doc.
[cited at p. 69]

[16] Rune Hammerskov, Jakob Andersen, and Lars Nielsen.
Language Integrated Persistence.
Report is unpublished but available through AAU.
[cited at p. 3, 8, 82]

[17] International Organization for Standardization.
ISO/IEC 9075:1992: Title: Information technology — Database languages

— SQL.
International Organization for Standardization, Geneva, Switzerland, 1992.
Available in English only.
[cited at p. 11]

[18] International Organization for Standardization.
ISO/IEC 9075-1:1999: Information technology — Database languages —

SQL — Part 1: Framework (SQL/Framework).
International Organization for Standardization, Geneva, Switzerland, 1999.
[cited at p. 11]

[19] Alex Krieger and Boris M. Trukhnov.
SQL Bible.
John Wiley & Sons, 2003.
[cited at p. 12]

http://msdn.microsoft.com/data/ref/linq/
http://nunit.org/
http://www.sablecc.org
http://www.postgresql.org/docs/manuals/
http://java.sun.com/products/jdbc/
http://download.microsoft.com/download/9/5/0/9503e33e-fde6-4aed-b5d0-ffe749822f1b/csharp%203.0%20specification.doc
http://download.microsoft.com/download/9/5/0/9503e33e-fde6-4aed-b5d0-ffe749822f1b/csharp%203.0%20specification.doc
http://download.microsoft.com/download/9/5/0/9503e33e-fde6-4aed-b5d0-ffe749822f1b/csharp%203.0%20specification.doc

89

[20] David Maier.
Representing database programs as objects.
In François Bancilhon and Peter Buneman, editors, DBPL, pages 377–386.

ACM Press / Addison-Wesley, 1987.
[cited at p. 3]

[21] C. Robert Martin.
Agile Software Development, Principles, Patterns, and Practices.
Prentice Hall, 2002.
[cited at p. 48]

Appendices

91

Appendix A

Grammar

1 using e = Amigo.Elements;

2 using System.Collections;

3

4 COMPILER Amigo

5 /* Global variables n’ stuff... */

6 private e.FilterCollection fc = new e.FilterCollection();

7

8 public e.FilterCollection Tree {

9 get { return fc; }

10 }

11

12 /* LL1 conflict resolver methods

13 *

14 */

15

16 /* identifier ’=’ */

17 bool IsAssignment() {

18 bool b = la.kind == _identifier && scanner.Peek().kind == _assign;

19 return b;

20 }

21

22 /* Type identifier ’=’ | Type identifier ’;’ */

23 bool IsVarDeclaration() {

24 Token x = scanner.Peek();

25 while (x.kind != _identifier) {

26 x = scanner.Peek();

27 }

28 Token y = scanner.Peek();

29 scanner.ResetPeek();

30 bool b = x.kind == _identifier && (y.kind == _assign || y.kind == _semicolon);

31 return b;

32 }

33

34

35 CHARACTERS

36 letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

37 digit = "0123456789" .

38 cr = ’\r’ .

39 lf = ’\n’ .

40 tab = ’\t’ .

93

94 Chapter A. Grammar

41 nl = cr + lf .

42 str = ANY - ’"’ - ’\\’ - nl .

43 chr = ANY - ’\’’ - ’\\’ - nl .

44

45 TOKENS

46 identifier = letter { letter | digit } .

47 number = digit { digit } .

48 tstr = ’"’ { str } ’"’ .

49 tchr = ’\’’ { chr } ’\’’ .

50

51 assign = ’=’ .

52 semicolon = ’;’ .

53 colon = ’:’ .

54 comma = ’,’ .

55 dot = ’.’ .

56 neg = ’!’ .

57 lcurly = ’{’ .

58 rcurly = ’}’ .

59 lparen = ’(’ .

60 rparen = ’)’ .

61 lbrack = ’[’ .

62 rbrack = ’]’ .

63

64 plus = ’+’ .

65 minus = ’-’ .

66 div = ’/’ .

67 mul = ’*’ .

68 eq = "==" .

69 neq = "!=" .

70 lt = ’<’ .

71 gt = ’>’ .

72 lteq = "<=" .

73 gteq = ">=" .

74 ijoin = "===" .

75 lijoin = "|=" .

76 rijoin = "=|" .

77 lojoin = "|~" .

78 rojoin = "~|" .

79 crjoin = "><" .

80 trjoin = "->" .

81

82 if = "if" .

83 else = "else" .

84 var = "var" .

85 for = "for" .

86 or = "or" .

87 and = "and" .

88 public = "public" .

89 private = "private" .

90 init = "init" .

91 object = "object" .

92 value = "value" .

93 where = "where" .

94 join = "join" .

95 group = "group" .

96 order = "order" .

97 asc = "ASC" .

98 desc = "DESC" .

99 string = "string" .

95

100 int = "int" .

101 float = "float" .

102 bool = "bool" .

103 char = "char" .

104 null = "null" .

105 true = "true" .

106 false = "false" .

107

108 COMMENTS FROM "/*" TO "*/" NESTED

109 COMMENTS FROM "//" TO cr lf

110

111 IGNORE cr + lf + tab

112

113 PRODUCTIONS

114 Amigo (. e.Filter f; .)

115 =

116 { Filter<out f> (. fc.Filters.Add(f); .)

117 }

118 .

119

120 Filter<out e.Filter f> (. string name; string mod; e.FilterBlock fb;

121 e.VariableList pl; .)

122 =

123 Modifier<out mod>

124 var

125 Identifier<out name> (. f = new e.Filter(name, mod); .)

126 lparen

127 [ParamList<out pl> (. f.Parameters = pl; .)

128]

129 rparen

130 lcurly

131 { Block<out fb> (. f.Blocks.Add(fb); .)

132 }

133 rcurly

134 .

135

136 ParamList<out e.VariableList pl>(. e.Variable v = null; pl = new e.VariableList();

137 string vt = null; bool ita = false; .)

138 =

139 Type<out vt, out ita>

140 Variable<out v> (. v.Type = vt; v.IsArrayType = ita; pl.Add(v); .)

141 { comma

142 Type<out vt, out ita>

143 Variable<out v> (. v.Type = vt; v.IsArrayType = ita; pl.Add(v); .)

144 }

145 .

146

147 Type<out string vt, out bool ita>(. string type = null; ita = false; vt = null; .)

148 =

149 (SimpleType<out type> (. vt = type; .)

150 | Identifier<out type> (. vt = type; .)

151)

152 [lbrack

153 rbrack (. ita = true; .)

154]

155 .

156

157 ArgList<out e.ExpressionList al>(. al = new e.ExpressionList(); e.Expression exp = null; .)

158 =

96 Chapter A. Grammar

159 Expression<out exp> (. al.Add(exp); .)

160 { comma

161 Expression<out exp> (. al.Add(exp); .)

162 }

163 .

164

165 Variable<out e.Variable v> (. string s = null, n = null, name; e.Expression exp; .)

166 =

167 Identifier<out name> (. s += name; .)

168 { dot (. s += "."; .)

169 Identifier<out name> (. s += name; .)

170 } (. if (s.Contains(".")) {

171 n = s.Substring(0, s.LastIndexOf(’.’));

172 s = s.Substring(s.LastIndexOf(’.’)+1);

173 }

174 v = new e.Variable(s, n); .)

175 [lbrack

176 Expression<out exp> (. v.Index = exp; .)

177 rbrack

178]

179 .

180

181 VarDeclaration<out e.VarDeclaration vd>(. e.Variable v; string vt = null; bool ita = false;

182 e.Expression exp; .)

183 =

184 Type<out vt, out ita>

185 Variable<out v> (. v.Type = vt; v.IsArrayType = ita;

186 vd = new e.VarDeclaration(v); .)

187 [assign

188 (Expression<out exp> (. vd.Value = exp; .)

189 | lcurly

190 Expression<out exp> (. vd.ValueSet.Add(exp); .)

191 { comma

192 Expression<out exp> (. vd.ValueSet.Add(exp); .)

193 }

194 rcurly

195)

196]

197 .

198

199 Assignment<out e.Assignment a> (. e.Variable v; e.Expression exp; .)

200 =

201 Variable<out v>

202 assign

203 Expression<out exp> (. a = new e.Assignment(v, exp); .)

204 .

205

206 Limit<out int? lf, out int? lt> (. lf = null; lt = null; int n;.)

207 =

208 [Number<out n> (. lf = n; .)

209]

210 dot dot

211 [Number<out n> (. lt = n; .)

212]

213 .

214

215

216 /** Block productions **/

217 Block<out e.FilterBlock fb> (. fb = null; e.InitBlock ib; e.ValueBlock vb;

97

218 e.JoinBlock jb; e.WhereBlock wb; e.GroupBlock gb;

219 e.OrderBlock ob; e.ObjectBlock obj; .)

220 =

221 InitBlock<out ib> (. fb = ib; .)

222 | ObjectBlock<out obj> (. fb = obj; .)

223 | ValueBlock<out vb> (. fb = vb; .)

224 | JoinBlock<out jb> (. fb = jb; .)

225 | WhereBlock<out wb> (. fb = wb; .)

226 | GroupBlock<out gb> (. fb = gb; .)

227 | OrderBlock<out ob> (. fb = ob; .)

228 .

229

230 InitBlock<out e.InitBlock ib> (. e.VarDeclaration vd; e.Statement stmt = null;.)

231 =

232 init (. ib = new e.InitBlock(); .)

233 colon

234 { (IF (IsVarDeclaration())

235 VarDeclaration<out vd> (. ib.VarDeclarations.Add(vd); .)

236 semicolon

237 | Statement<out stmt> (. ib.Statements.Add(stmt); .)

238)

239 }

240 .

241

242 ObjectBlock<out e.ObjectBlock obj>(. e.Variable name; int? lf = null; int? lt = null; .)

243 =

244 object

245 colon

246 [lbrack

247 Limit<out lf, out lt>

248 rbrack

249]

250 Variable<out name> (. obj = new e.ObjectBlock(name, lf, lt); .)

251 semicolon

252 .

253

254 ValueBlock<out e.ValueBlock vb> (. e.Statement stmt = null; .)

255 =

256 value (. vb = new e.ValueBlock(); .)

257 colon

258 { Statement<out stmt> (. vb.Statements.Add(stmt); .)

259 }

260 .

261

262 JoinBlock<out e.JoinBlock jb> (. e.Statement stmt = null; .)

263 =

264 join (. jb = new e.JoinBlock(); .)

265 colon

266 { Statement<out stmt> (. jb.Statements.Add(stmt); .)

267 }

268 .

269

270 WhereBlock<out e.WhereBlock wb> (. e.Statement stmt = null; .)

271 =

272 where (. wb = new e.WhereBlock(); .)

273 colon

274 { Statement<out stmt> (. wb.Statements.Add(stmt); .)

275 }

276 .

98 Chapter A. Grammar

277

278 GroupBlock<out e.GroupBlock gb> (. e.Statement stmt = null; .)

279 =

280 group (. gb = new e.GroupBlock(); .)

281 colon

282 { Statement<out stmt> (. gb.Statements.Add(stmt); .)

283 }

284 .

285

286 OrderBlock<out e.OrderBlock ob> (. e.Statement stmt = null; .)

287 =

288 order (. ob = new e.OrderBlock(); .)

289 colon

290 { Statement<out stmt> (. ob.Statements.Add(stmt); .)

291 }

292 .

293

294

295 /** Statement productions **/

296

297 Statement<out e.Statement stmt> (. e.Assignment a; e.OrStatement ors; e.AndStatement ands;

298 e.OrderExpression oe; e.Expression exp; e.BlockStatement bs;

299 e.ForStatement fors; stmt = null; e.IfElseStatement ies; .)

300 =

301 BlockStatement<out bs> (. stmt = bs; .)

302 | ForStatement<out fors> (. stmt = fors; .)

303 | IfElseStatement<out ies> (. stmt = ies; .)

304 | OrStatement<out ors> (. stmt = ors; .)

305 | AndStatement<out ands> (. stmt = ands; .)

306 | OrderExpression<out oe> (. stmt = oe; .)

307 | (IF (IsAssignment()) Assignment<out a>(. stmt = a; .)

308 semicolon

309 |

310 Expression<out exp> (. stmt = exp; .)

311 semicolon

312)

313 .

314

315 BlockStatement<out e.BlockStatement bs>(. bs = new e.BlockStatement(); e.Statement st = null; .)

316 =

317 lcurly

318 { Statement<out st> (. bs.Contents.Add(st); .)

319 }

320 rcurly

321 .

322

323 ForStatement<out e.ForStatement stmt>(. e.VarDeclaration vd; e.Assignment a;

324 e.Expression exp; e.Statement st; .)

325 =

326 for (. stmt = new e.ForStatement(); .)

327 lparen

328 VarDeclaration<out vd> (. stmt.VarDeclaration = vd; .)

329 semicolon

330 Expression<out exp> (. stmt.Expression = exp; .)

331 semicolon

332 Assignment<out a> (. stmt.Assignment = a; .)

333 rparen

334 Statement<out st> (. stmt.Statement = st; .)

335 .

99

336

337 IfElseStatement<out e.IfElseStatement stmt>(. stmt = new e.IfElseStatement(); e.Expression exp;

338 e.Statement st = null; .)

339 =

340 if

341 lparen

342 Expression<out exp> (. stmt.IfExpression = exp; .)

343 rparen

344 Statement<out st> (. stmt.IfStatement = st; .)

345 [else

346 Statement<out st> (. stmt.ElseStatement = st; .)

347]

348 .

349

350 OrStatement<out e.OrStatement stmt>(. stmt = new e.OrStatement(); e.Statement st; .)

351 =

352 or

353 Statement<out st> (. stmt.Statement = st; .)

354 .

355

356 AndStatement<out e.AndStatement stmt>(. stmt = new e.AndStatement(); e.Statement st; .)

357 =

358 and

359 Statement<out st> (. stmt.Statement = st; .)

360 .

361

362

363 /** Expression productions **/

364

365 OrderExpression<out e.OrderExpression oe>(. e.Variable v; bool asc = false; oe = null; .)

366 =

367 lbrack

368 asc (. asc = true; .)

369 | desc

370 rbrack

371 Variable<out v> (. oe = new e.OrderExpression(v, asc); .)

372 semicolon

373 .

374

375 Expression<out e.Expression exp> (. exp = null; e.Expression rel = null;

376 e.Expression rer = null; string op = null;

377 e.BinaryExpression bin = null; e.Expression temp = null; .)

378 =

379 RelExpression<out rel> (. temp = rel; .)

380 [JoinOperator<out op> (. bin = new e.BinaryExpression(); bin.Left = temp;

381 bin.Operator = op; .)

382 RelExpression<out rer> (. bin.Right = rer; temp = bin; .)

383] (. exp = temp; .)

384 .

385

386 RelExpression<out e.Expression exp>(. exp = null; e.Expression sel = null;

387 e.Expression ser = null; string op = null;

388 e.BinaryExpression bin = null; e.Expression temp = null; .)

389 =

390 SimpleExpression<out sel> (. temp = sel; .)

391 [RelOperator<out op> (. bin = new e.BinaryExpression(); bin.Left = temp;

392 bin.Operator = op; .)

393 SimpleExpression<out ser> (. bin.Right = ser; temp = bin; .)

394] (. exp = temp; .)

100 Chapter A. Grammar

395 .

396

397

398 SimpleExpression<out e.Expression exp>(. exp = null; string op = null;

399 e.Expression tel = null; e.Expression ter = null;

400 e.Expression temp = null; e.BinaryExpression bin = null; .)

401 =

402 Term<out tel> (. temp = tel; .)

403 { AddOperator<out op> (. bin = new e.BinaryExpression(); bin.Left = temp;

404 bin.Operator = op; .)

405 Term<out ter> (. bin.Right = ter; temp = bin; .)

406 } (. exp = temp; .)

407 .

408

409 Term<out e.Expression exp> (. string op = null; exp = null; e.Expression facl;

410 e.Expression facr; e.Expression temp; e.BinaryExpression bin; .)

411 =

412 Factor<out facl> (. temp = facl; .)

413 { MulOperator<out op> (. bin = new e.BinaryExpression(); bin.Left = temp;

414 bin.Operator = op; .)

415 Factor<out facr> (. bin.Right = facr; temp = bin; .)

416 } (. exp = temp; .)

417 .

418

419 MemberAccessor<out e.MemberAccessor ma>(. ma = new e.MemberAccessor(); e.Variable v;

420 e.ExpressionList al; .)

421 =

422 Variable<out v> (. ma.Variable = v; .)

423 [lparen (. ma.IsProcedure = true; .)

424 [ArgList<out al> (. ma.Arguments = al; .)

425]

426 rparen

427]

428 .

429

430 Factor<out e.Expression fac> (. fac = null; int number; string s; bool tf; char c;

431 e.Expression exp; bool negated = false; e.MemberAccessor ma; .)

432 =

433 [neg (. negated = true; .)

434]

435 lparen

436 Expression<out exp> (. exp.Negated = negated; fac = exp; .)

437 rparen

438 | MemberAccessor<out ma> (. fac = ma; .)

439 | Number<out number> (. fac = new e.NativeType("int", number); .)

440 | String<out s> (. fac = new e.NativeType("string", s); .)

441 | Null (. fac = new e.NullType(); .)

442 | TrueOrFalse<out tf> (. fac = new e.NativeType("bool", tf); .)

443 | Char<out c> (. fac = new e.NativeType("char", c); .)

444 .

445

446

447 /** Operator productions **/

448 JoinOperator<out string op> (. op = null; .)

449 =

450 ijoin (. op = t.val; .)

451 | lijoin (. op = t.val; .)

452 | rijoin (. op = t.val; .)

453 | lojoin (. op = t.val; .)

101

454 | rojoin (. op = t.val; .)

455 | crjoin (. op = t.val; .)

456 | trjoin (. op = t.val; .)

457 .

458

459 RelOperator<out string op> (. op = null; .)

460 =

461 eq (. op = t.val; .)

462 | neq (. op = t.val; .)

463 | lt (. op = t.val; .)

464 | gt (. op = t.val; .)

465 | lteq (. op = t.val; .)

466 | gteq (. op = t.val; .)

467 .

468

469

470 AddOperator<out string op> (. op = null; .)

471 =

472 plus (. op = t.val; .)

473 | minus (. op = t.val; .)

474 .

475

476 MulOperator<out string op> (. op = null; .)

477 =

478 mul (. op = t.val; .)

479 | div (. op = t.val; .)

480 .

481

482

483 /** Simple productions **/

484 Modifier<out string mod> (. mod = null; .)

485 =

486 private (. mod = t.val; .)

487 | public (. mod = t.val; .)

488 .

489

490 SimpleType<out string st> (. st = null; .)

491 =

492 int (. st = t.val; .)

493 | float (. st = t.val; .)

494 | string (. st = t.val; .)

495 | char (. st = t.val; .)

496 | bool (. st = t.val; .)

497 .

498

499 TrueOrFalse<out bool b> (. b = false; .)

500 =

501 true (. b = true; .)

502 | false (. b = false; .)

503 .

504

505 Number<out int number>

506 =

507 number (. number = Convert.ToInt32(t.val); .) .

508

509 Null

510 =

511 null .

512

102 Chapter A. Grammar

513 String<out string s>

514 =

515 tstr (. s = t.val.Replace("\"", ""); .) .

516

517 Char<out char c>

518 =

519 tchr (. c = Convert.ToChar(t.val.Replace("’", "")); .) .

520

521 Identifier<out string name>

522 =

523 identifier (. name = t.val; .) .

524

525 END Amigo .

Appendix B

Amigo manual

The Amigo query language is an object oriented query language. Amigo

works by translating Amigo source code into SQL queries. Amigo’s core

idea is a method-like construct called a filter. Filters are built up of filter-

blocks. Filters cannot be defined within other filters but existing filters can

be called from within other filters; see explanation of the init block.

Before we describe the different filter blocks we will look at a few general

issues.

First, all mapping between the database and the application is defined

in Hibernate mapping files which you can read more about on the Hibernate

website at www.hibernate.org.

Second, you can declare variables, use for statements and if-else

statements in most of the filter-blocks. The syntax and semantics of these

are the same as in most general purpose languages. Declaration of variables

in the init block works a little different; see explanation of the init block.

Arithmetic operations

Amigo support the following arithmetic operations using infix notation:

• ∗ Multiplication

• / Division

• + Addition

• − Subtraction

The arithmetic operator could for instance be use in the init block like

this:

103

104 Chapter B. Amigo manual

public var Arithmetic() {
init:

int i = 5 + 2 * 10;

}

The variable i is assigned the value 25. The basic types of the Amigo

language are: int, float, bool, char, and string. Strings are specified in "..".

Boolean expressions

Boolean expression can be constructed using comparison operators to get

boolean values from comparing values and variables. True and False values

can be used.

The comparison operators supported by Amigo are:

• ! =

• ==

• <=

• >=

• <

• >

Filter Blocks

There are seven types of filter-blocks:

• object

• init

• value

• join

• where

• group

• order

The object block

In the object block you can define which kind of objects the filter should

return. If a condition is added in the where block comparing a single value

to a primary or unique column in the database the result is a single value

otherwise the result is a collection. If a value block is present the filter will

return a single value.

105

In this example we have a filter called AverageSalary which take no

arguments.

public var AverageSalary() {
object:

Employee;

}

The object block contains one return type, Employee. This example

would correspond to SELECT * FROM Employees in SQL.

It is possible to limit the returned result to only a certain number. This

is a feature which works exactly like it does in SQL. Amigo allows you to

limit in three ways

• [x..y] Limits from index x to index y

• [..y] Limits to index y

• [x..] Limits from index x

You use a prefix notation like this

public var AverageSalary() {
object:

[..20]Employee;

}

if you only want the first 20 results.

The value block

In the value block you are able to define a return result other than objects

or collections of objects. This is primarily used for aggregate functions, as

any method call in this block is matched to a function in the database. If

the method call cannot be mapped to a function an error occurs.

In this example we have a filter called AverageSalary.

106 Chapter B. Amigo manual

public var AverageSalary() {
object:

Employee;

value:

AVG(Employee.Salary);

}

Just as the previous example, the object block contains one return type,

Employee. But now we have added a value block containing a method call

to AVG which can be mapped to an aggregate function of the same name

in the database. Adding the value block means the filter returns a single

value, because the AVG returns a single value, namely the average salary.

The init block

In the init block you can define variables which can be used in the entire

filter. Variables can contain any type of data including results from other

filters. This is the only way to use filters within filters.

In this example we have a filter called Employees which takes an integer

as argument. We also have an init block a variable declarations.

public var Employees(int age) {
init:

float X = AverageSalary(age);

}

X is assigned the value of another filter called AverageSalary. This is

the filter we created in the previous two examples. AverageSalary takes

an integer age as argument is the argument the Employees filter takes.

The where block

In the where you can specify how returned data should be filtered. You do

this by using boolean expressions. These expressions work on properties on

107

objects which can be compared with simple types or values defined in the

init block or the filter parameters.

In this example, we extend the AverageSalary filter with a where block.

public var AverageSalary(int age) {
object:

Employee;

value:

AVG(Employee.Salary);

where:

Employee.Age >= age;

}

The where block contains a boolean expression which makes the filter

return the average salary for employees over a certain age.

The where block can contain any number of boolean expressions. Amigo

will interpret all boolean expressions in the where block as if there were an

AND in between. That is, if you write:

public var AverageSalary(int age) {
object:

Employee;

value:

AVG(Employee.Salary);

where:

Employee.Age >= age;

Employee.Salary > 20000;

}

Amigo will interpret this as employees who’s age is more than age AND

who’s salary is more than 20000. If you want employees who’s age is more

than age OR who’s salary is more than 20000 you need to use an OR block

like this:

108 Chapter B. Amigo manual

public var AverageSalary(int age) {
object:

Employee;

value:

AVG(Employee.Salary);

where:

or {
Employee.Age >= age;

Employee.Salary > 20000;

}
}

You can have additional expressions before or after the or block and

Amigo will and them.

The join block

The join block is used to give you the option of joining tables as you would

in SQL. Amigo supports the same types of joins as SQL. In addition to

the join types present in SQL, Amigo also introduce the tree- join operator

which performs a recursive join on tables representing a tree structure in

the database. This operator will have the column that points to the parent

on the right side and the column that points to the child column on the

right and will retrieve all nodes in a branch according to conditions set in

the where block. Here is an example of how to write a tree join:

public var EmployeesByDepartmentName(string name) {
object:

Employee;

join:

Employee.DepartmentID === Department.DepartmentID;

where:

Department.Name == name;

}

109

The left/right side of the join operators (except tree-join) can be a

primary-foreign key relationship or any other two fields the user might want

to join. Amigo allows just for two object names to be on both sides and

their primary- foreign key relationship in the database will be inferred from

the mapping files if possible.

As you can see in the example Amigo uses an infix notation to indicate

the type of join. All the join types are listed here along with the corre-

sponding operator:

• === Inner join

• |= Left-Inner join

• =| Right-Inner join

• |∼ Left-Outer join

• ∼| Right-Outer join

• >< Cross join

• -> Tree join

The order block

The order block is used to sort the returned data either ascending or de-

scending according to one or more properties. We use prefix notation with

either [ASC] or [DESC].

In this example, we want all employees ordered after their salary begin-

ning with highest paid

public var OrderedEmployees() {
object:

Employee;

order:

[DESC]Employee.Salary;

}

110 Chapter B. Amigo manual

The group block

The group block allows you to group results. Either by a specific property

or even to return an aggregate value based on grouping.

In this example we expand the previous example by grouping the em-

ployees by department

public var OrderedEmployees() {
object:

Employee;

value:

SUM(Department.Salary);

group:

Employee.DepartmentID;

}

giving us all employees ordered by salary and grouped by department.

Conditional statements

Amigo supports for statements and if-else statements in any block in

the filters. They work like they do in Java and C#, so a filter using an

if-else statement could look like this:

111

public var (int modifier) {
object:

Employee;

where:

if(modifier == 1) {
Employee.Salary <= 10000;

} else if (modifier == 2) {
Employee.Salary <= 10000;

Employee.IsManager == true;

} else {
Employee.Salary <= 10000;

Employee.IsManager == false;

}
}

Appendix C

Validation test

In this test you will be presented with nine exercises. Each exercise de-

scribes a data retrieval problem. It is formulated in spoken English and you

are asked to write Amigo code that solves the problem. All the exercises

assumes that a database already exists. The database is visualised in the

following ER-diagram:

113

114 Chapter C. Validation test

An exercise could look like this:

”Write one or more filters which will retrieve all employees with a salary

of more than 20.000.”

and the solution to this exercise could look something like this:

public var HighPaidEmployees() {
object:

Employee;

where:

Employee.Salary > 20000;

}

Additionally you are asked to evaluate how easy or difficult it was to do

the exercise.

After completing all the exercises you are asked to write a short evalu-

ation of Amigo.

115

Exercise 1

”Write one or more filters which will return all departments.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 2

”Write one or more filters which will return the 3 lowest paid employees.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 3

”Write one or more filters which will return the number of employees who

are managers.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 4

”Write one or more filters which will return all orders made by the customer

with ID 3.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

116 Chapter C. Validation test

Exercise 5

”Modify the filter, or filters, from exercise 4 so that it will return all orders

made by the customer from the company ”Smittys Shoeshine Inc.”.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 6

”Write one or more filters which will return all employees with salaries

under 10.000 or above 20.000.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 7

”Write one or more filters which will return the average salary for each

department.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 8

”Write one or more filters which can take an integer as argument. If the

integer is 1, the filter must return all employees with salaries below 10.000.

If the integer is 2 the filter must return all employees with a salaries between

10.000 and 20.000. If the integer is 3 the filter must return all employees

with salaries above 20.000.”

117

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

Exercise 9

”Write one or more filters which will return all employees working on the

product with ID 2. The employees should be ordered by department.”

Please indicate how difficult you found this exercise

(Easy) 1 2 3 4 5 (Difficult)

118 Chapter C. Validation test

Please write a short evaluation of Amigo. What are the strong points and

what are the week points. If there are things which you think should be

changed, what are they?

Appendix D

Summary

The general problem that is dealt with in this report, is that of weakly

typed explicit queries. In object oriented languages a relational database

is accessed through Call Level Interfaces (CLI) using SQL embedded in

strings. These strings are neither syntax nor type checked. This imposes a

problem for programmers in the fact that development time is extended or

that errors are not caught before the application is shipped to the end-user.

This report is based on a former report called Language Integrated Per-

sistence (LIP), which also dealt with this problem. In LIP a method-like

construct called a filter was proposed. In this report the filter concept is

developed further and extended to make better use of native Relational

Database Management System (RDBMS) features. The extended concept

of filters is the basis for the query language Amigo. This report describes

the design of the language and an implementation of a proof-of-concept

compiler for the language.

Several technologies, which deal with the same issue as Amigo, are anal-

ysed to determine what features Amigo should include. The technologies

in question are: SQL, PL/SQL, T-SQL, HaskellDB, and Hibernate Query

Language (HQL). The result of the analysis is that Amigo has to be stat-

ically checked and strongly typed and bridge the object oriented and the

relational worlds in a manner that serves both. Inner, left, right, and outer

join are supported, as well as standard aggregate function like MAX, MIN, AVG,

and COUNT. Combination of filters is also supported to provide functionality

that is similar to SQL’s subselects.

Designing Amigo required a number of limitations to help keep focus

on designing a safe query language that serves both the object oriented

world as well as the relational. The functionality of Amigo is presented in

119

120 Chapter D. Summary

a series of examples. The main concept of Amigo is filters and blocks. A

filter is made up of filter blocks. There are seven blocks: init, object,

where, value, join, order, and group block. Additionally Amigo supports

general purpose construct such as if-else and for statements. The full

syntax is given in EBNF form and the semantics explained in a structured

but informal manner. The type system, and especially the type inference

mechanisms are presented along with a description of how the mapping

between the database and Amigo is handled.

The implementation of the Amigo compiler is written in C# and the

process is described in the report.

Amigo is tested using traditional testing methods. Unit tests are per-

formed to test the correctness of the compiler. Also a validation test in-

volving two test subjects is carried out. The main result of the test is that

Amigo is intuitive and easy to use. A part of the language syntax might

need to be altered slightly, but the test subjects did not agree with each

other on this particular area.

Two related technologies are compared to Amigo in the report. First

Microsoft’s LINQ project and next Hibernate and in particular Hibernate’s

query language HQL.

Following this, all parts of the report is evaluated along with an eval-

uation of Amigo itself. The test with two subjects is evaluated as being

a successful test, but the time each subject had was not enough. One of

the subjects pointed out, that a test using a more complex scenario could

be out. Following the evaluation is a description of which areas could be

of interest to work on in the future. Basically, further testing is required

to determine what has to be modified or added to Amigo if it is to be a

competitor to related technologies.

Finally a conclusion is reached where the main point is that the project

has been a success. There is still work ahead before Amigo will be able to

compete with similar projects, but the main concepts of Amigo do not need

to be changed.

List of Figures

3.1 Diagram of example scenario . 26

4.1 Class diagram for the Elements library 51

4.2 A subtree in the concrete syntax tree 53

4.3 Structure of builders . 57

121

Listings

1 Test . vi

2.1 LIP example . 9

2.2 LIP example . 9

3.1 Amigo EBNF grammar . 34

3.2 NHibernate . 43

3.3 NHibernate . 44

4.1 Filter element . 50

4.2 Relationship mapping . 56

4.3 Buidling an assembly using TypeBuilder, ModuleBuilder etc. 58

122

	Contents
	1 Introduction
	1.1 Problem Statement

	2 Analysis
	2.1 LIP
	2.2 SQL
	2.3 HaskellDB
	2.4 Hibernate Query Language
	2.5 Discussion
	2.6 Summary

	3 Design
	3.1 Limitations
	3.2 Example Scenario
	3.3 Functionality
	3.4 Syntax
	3.5 Semantics
	3.6 Type System
	3.7 Mapping
	3.8 Summary

	4 Implementation
	4.1 Compiler Structure
	4.2 Code Generation
	4.3 Summary

	5 Test
	5.1 Code Testing
	5.2 Validation
	5.3 Summary

	6 Related Work
	6.1 Language Integrated Query
	6.2 NHibernate

	7 Evaluation
	7.1 Validation Test
	7.2 Technical Test
	7.3 Analysed Technologies
	7.4 Functionality
	7.5 Limitations
	7.6 Tools

	8 Future Work
	8.1 Language Integration
	8.2 Object-relational mapping
	8.3 Industrial Application

	9 Conclusion
	Bibliography
	A Grammar
	B Amigo manual
	C Validation test
	D Summary
	List of Figures
	Listings

