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Abstract: We study sufficient conditions for a decomposition system
for L2(Rd) such that it also forms a decomposition system for Triebel-
Lizorkin and Besov spaces. Moreover we obtain a norm equivalence
that allows us to distinguish the membership of a distribution in
these spaces by the coefficients of its expansion. Particularly we show
that a nice biorthogonal wavelet system forms a unconditional basis
for Triebel-Lizorkin and Besov spaces. Afterwards we apply non-
linear n-term approximation to these bases and fully characterize the
approximation spaces in terms of interpolation spaces by Jackson
and Bernstein inequalities. For decomposition systems we show
that a Jackson inequality can still be obtained, yielding that the
interpolation space is embedded in the approximation space. Finally
we give a method for construction of an unconditional basis for
Triebel-Lizorkin and Besov spaces by a finite linear combination of
shifts and dilates of a single function with sufficient smoothness and
decay and no vanishing moments. Applying n-term approximation
to shifts and dilates of this function we again establish a Jackson
inequality.
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Summary

In recent years there has been great interest in non-linear wavelet approximation,
among other things in numerical applications in statistics and signal and image
processing. In this thesis we study non-linear n-term approximation in Triebel-
Lizorkin and Besov spaces which include a wide range of function spaces for
example Lp and the Sobolev spaces. We examine n-term approximation in three
cases:

• Biorthogonal wavelet bases in L2(Rd)

• Decomposition systems in L2(Rd)

• Shifts and dilates of a single function.

In the case of nice biorthogonal wavelet bases we obtain Jackson and Bernstein
inequalities which allows to characterize the approximation spaces completely by
interpolation spaces. Here the requirements of nice becomes sufficient smoothness,
decay and vanishing moments. In the second case we generalize the setting to nice
decomposition systems, which includes frames. This generalization comes at the
cost of the Bernstein inequality. The Jackson inequality still allows us to obtain
that the interpolation spaces are embedded in the approximation spaces. In the
third case we take a single function with sufficient smoothness and decay and no
vanishing moments. We show that a Jackson inequality can also be obtained for
n-term approximation by shifts and dilates of this single function. Although as
in the second case we still lack the Bernstein inequality.
The prerequisites for reading this thesis is knowledge in the fields of distribution
theory and function spaces, see for example [15] and [12].

1 Triebel-Lizorkin and Besov spaces 1

We begin by introducing the Triebel-Lizorkin and Besov spaces (denoted Ḟs
p,q and

Ḃs
p,q) with the aid of Littlewood-Paley operators and Bump functions φ. Next we

study the convergence of Calderon’s reproducing formula in S′/Pk and show that
φ is a decomposition system for distributions f in Triebel-Lizorkin and Besov
spaces with convergence in S′/Pk. From this we prove the norm equivalence
between the Ḟs

p,q-norm of f and the corresponding ḟ s
p,q-norm of the coefficients of

the expansion of f by φ. We conclude this section with showing that Ḟs
p,q and Ḃs

p,q
are complete quasi-normed spaces by using the norm equivalence. This section is
based on [8], [4] and [6].

2 Bounded operators and decomposition systems 15

In this section we show the boundedness of the matrix associated with a nice
system Θ and φ on ḟ s

p,q and ḃs
p,q. Combinded with the norm equivalence of φ

from the previous section this gives us a norm equivalence for Θ. Applied to a
nice decomposition system Θ for L2(R

d) we show that this gives an unconditional
decomposition system for Ḟs

p,q and Ḃs
p,q. We end this section with showing that

the uniqueness of the expansion for a nice biorthogonal wavelet basis Ψ in L2(R
d)
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carries on to Ḟs
p,q and Ḃs

p,q for coefficients in ḟ s
p,q and ḃs

p,q. This section is based
on [9] and [8].

3 Interpolation and approximation spaces 26

We start with introducing interpolation spaces and show a few properties of the
interpolation space derived from the K-functional, especially the discretization of
the norm. Next we prove a relation between the K-functional and the Jackson
and Bernstein inequalities. This leads us to defining approximation spaces and
under the assumptions of the Jackson and Bernstein inequalties we characterize
the approximation spaces by interpolations spaces. Finally we apply this to the
setting of non-linear n-term approximation from the wavelet bases for Ḟs

p,q or Ḃs
p,q

from the previous section. This section is based on [3], [1] and [7].

4 New bases by almost diagonal matrices 44

In this section we study a new nice system Θ sufficiently close to a wavelet bases Ψ

from Section 2. By the use of almost diagonal matrices we prove that the matrix
associated with Θ and Ψ has a bounded inverse. With this in hand we repeat the
procedure of the last half of Section 2 to show that Θ is an unconditional wavelet
basis for Ḟs

p,q and Ḃs
p,q with the corresponding norm equivalence. Following this we

show that a finite linear combination of shifts and dilates of a single nice function
ϕ constitutes a nice system Θ, thereby forming a basis for Ḟs

p,q and Ḃs
p,q. We end

this section with proving Jackson inequalties for n-term approximation by shifts
and dilates of ϕ. This section is based on [9] and [5].

Henry Berthelsen Kenneth N. Rasmussen
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1 Triebel-Lizorkin and Besov spaces

In this section we introduce the bump function φ by which we define the Triebel-
Lizorkin and Besov spaces and we show a norm equivalence between these spaces
and a corresponding sequence space. We begin with some notation.
Denote by S = S(Rd) the Schwartz space of infinitely differentiable and rapidly
decreasing functions on Rd and by S′ = S′(Rd) its dual, the space of tempered
distributions. We also denote by Sk, 0 ≤ k ≤ ∞ the subspace of S consisting
of the Schwartz functions with k vanishing moments and by S′/Pk the space of
equivalence classes of distributions in S′ modulo polynomials of degree less then
and equal to k. For the sake of notation we denote S′/P∞ = S′/P and S−1 = S.
We write D for the family of all dyadic cubes in R

d and Dm, m ∈ Z for the
collection of all cubes I ∈ D with sidelength `(I) = 2−m. For any dyadic cube
I ∈ D we use xI for its lower-left corner and |I| = `(I)d for its volume. We denote
〈 f , η〉 the inner product

∫
f η̄ of two functions when this makes sense and else the

same notation is used for a distribution f taken on a Schwartz function η̄. Also
we denote the Fourier transform of a integrable function f by

f̂ (ξ) =
∫

Rd
f (x)e−ix·ξdx.

The Fourier transform is extended to S′ by duality. Finally we write Y ↪→ X
if Y is continuously embedded in X. If we furthermore have X ↪→ Y we write
‖·‖X � ‖·‖Y and X = Y.
We now introduce decomposition systems and wavelets for L2(Rd). Let E be a

finite set and B = {θe
I , θ̃e

I : e ∈ E, I ∈ D} a family of functions in L2(Rd). We say

that B forms a decomposition system for L2(Rd) if for f ∈ L2(Rd),

f = ∑
e∈E

∑
I∈D

〈
f , θ̃e

I
〉
θe

I ,

in L2(Rd). In the special case where
〈
θe

I , θ̃e′
J
〉

= δ(I,e),(J,e′), where δ(I,e),(J,e′) is the
Kronecker delta function and that

θe
I(·) = |I|−1/2θe

( · − xI
`(I)

)
,

then Θ = {θe, θ̃e : e ∈ E} forms a biorthogonal wavelet basis for L2(Rd). In

the case θe = θ̃e we say that Θ = {θe}e∈E forms a orthonormal wavelet basis for
L2(Rd). Later on we shall show that B and Θ form unconditional decomposition
systems and wavelet bases for the Triebel-Lizorkin and Besov spaces, and to this
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end we shall require some decay and vanishing moments for B ⊂ Cr(R
d)

|(θe
I)

(α)(x)| ≤ C|I|−1/2−|α|/d
(

1 +
|x − xI |

`(I)
)−M

, |α| ≤ r2,

|(θ̃e
I)

(α)(x)| ≤ C|I|−1/2−|α|/d
(

1 +
|x − xI |

`(I)
)−M

, |α| ≤ r1,
∫

Rd
xαθe

I(x)dx = 0, |α| ≤ r1 − 1,
∫

Rd
xα θ̃e

I(x)dx = 0, |α| ≤ r2 − 1. (1.1)

A function θ̃e
I is said to have r2 − 1 vanishing moments if it satisfies (1.1). An

example of a orthonormal wavelet in R which satisfies these conditions for any
choice of r1, r2, M is the Meyer wavelet ψ [2, p.137] obtained from a multiresolution
analysis. Its Fourier transform ψ̂ ∈ C∞(R) is supported on [−8π/3,−2π/3] ∪
[2π/3, 8π/3], so it follows that ψ ∈ S∞(R). The associated scaling function φ
has a Fourier transform φ̂ ∈ C∞(R) which is supported on [−4π/3, 4π/3]. We
entend the basis to Rd using tensorproducts. Denote φ = ψ0,ψ = ψ1 and

ψe(x) = ψe1(x1) · · ·ψed(xd) (1.2)

where e = (e1, . . . , ed) ∈ E and E is the set of nonzero vertices of the unit cube
in Rd. By using [10, Proposition 5.2] we get that {ψe}e∈E forms a orthonormal
wavelet basis for L2(Rd) and it follows that ψe ∈ S∞(Rd).
In the following the Tribel-Lizorkin and Besov spaces are introduced, which will
be the spaces of our main interest. Let φ ∈ S be such that for ν ∈ Z, φν(·) =
2νdφ(2ν·) satisfies the following conditions

supp φ̂ν(ξ) ⊂ {ξ : 2ν−1 ≤ |ξ| ≤ 2ν+1}, (1.3)

|φ̂(β)
ν (ξ)| ≤ C2−ν|β|, for β ∈ Nd, (1.4)

∑ν∈Z |φ̂ν(ξ)|2 = 1, for ξ ∈ Rd\{0}. (1.5)

A function φ satisfying these conditions will be denoted a bump function
and the existence follows by taking g ∈ S, supp ĝ ⊆ [1/2, 2] and defining
φ̂(·) = ĝ(·)/(∑ν∈Z |ĝν(·)|2)1/2. Associated with a bump function we define the

Littlewood-Paley operators ∆
φ
ν = ∆ν as convolution with the functions φν(·).

Notice that (∆ν f )̂ = φ̂ν f̂ , so (∆ν f )̂ has compact support which by Proposition
A.1 gives that ∆ν f is a function in C∞. This allow us to define the Triebel-Lizorkin
and Besov spaces.

Definition 1.1

For s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞ we define the homogeneous Triebel-Lizorkin
space Ḟs

p,q as the set of all f ∈ S′/P such that

‖ f‖Ḟsp,q
=





www
(

∑
ν∈Z

(2νs|∆ν f |)q
)1/qwww

Lp
, if q < ∞

www sup
ν∈Z

2νs|∆ν f |
www

Lp
, if q = ∞





< ∞. (1.6)
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1 Triebel-Lizorkin and Besov spaces

We also define the sequence space ḟ s
p,q consisting of all sequences c = (cI)I∈D such

that

‖c‖ ḟ sp,q
=

www
(

∑
I∈D

(|I|−s/d−1/2|cI |χI)
q
)1/qwww

Lp
< ∞, (1.7)

with an modification as in (1.6) for the case of q = ∞. For s ∈ R, 0 < p, q ≤ ∞

we define the homogeneous Besov space as the set of all f ∈ S′/P such that

‖ f‖Ḃsp,q
=

(
∑

ν∈Z

(2νs‖∆ν f‖Lp)q
)1/q

< ∞. (1.8)

We also define ḃs
p,q consisting of all sequences c = (cI)I∈D such that

‖c‖ḃsp,q
=

(
∑

m∈Z

(
∑

I∈Dm

(|I|−s/d+1/p−1/2|cI |)p
)q/p)1/q

< ∞. (1.9)

The notation ‖c‖X = ‖cI‖X is used when no confusion arises. �

The Triebel-Lizorkin and Besov spaces are linear and quasi-normed which follows
by the properties of the `q- and Lp-norms. Later we shall prove a norm equivalence
between Ḟs

p,q and ḟ s
p,q (and Ḃs

p,q and ḃs
p,q), Proposition 1.4, which yields the

completeness of the Triebel-Lizorkin and Besov spaces, Proposition 1.5. It is also
worth noting that the definition of the spaces Ḟs

p,q and Ḃs
p,q is independent of the

specific choice of bump function. Two different functions φ and κ satisfying the
conditions (1.3) - (1.5) will yield equivalent Triebel-Lizorkin and Besov quasi-
norms [6, p.484 and p.482]. Certain well known function spaces are in fact
particular Triebel-Lizorkin spaces. By the Littlewood-Paley characterization
of the Sololev spaces [6, Section 6.2, p.424-433] one has that W p

s � Ḟs
p,2 for

1 < p < ∞ if one identifies the equivalence class f + P with the distribution
where the polynomial is 0. Especially the Lp-spaces for 1 < p < ∞ can be viewed
as Triebel-Lizorkin spaces, namely Ḟ0

p,2.

Norm equivalence by φ

Using the inverse Fourier transform one finds that (1.5) yields for f ∈ L2(Rd)
that

∑
ν∈Z

φ̃ν ∗ φν ∗ f = f (1.10)

with f̃ (x) = f (−x), where the convergence considered is in L2. This equation is
known as Calderon’s reproducing formula. To study the convergence in S′/Pk for
f ∈ Ḟs

p,q, Ḃs
p,q we need the following lemma.

Lemma 1.2

Let f , g ∈ S′ and k ≥ −1. Then the following three statements are equivalent:

1) ∑ν∈Z φ̃ν ∗ φν ∗ f = g with convergence in (Sk)
′.
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2) There exist polynomials p′N ,p ∈ Pk such that

lim
N→∞

∞

∑
ν=−N

φ̃ν ∗ φν ∗ f + p′N = g + p, (1.11)

in S′.

3) For any α ∈ Nd with |α| > k the series ∑
0
ν=−∞(φ̃ν ∗ φν ∗ f )(α) converges in

S′.

Proof:

We shall assume that k > −1 since the case k = −1 is easily seen to be
true. It will be shown that the first statement is equivalent to the other two
statements.

1) ⇒ 2) Take κ ∈ S with the properties that κ̂(ξ) = 1 for |ξ| ≤ 2 and κ̂(ξ) = 0
when |ξ| > 4. Let us construct polynomials such that (1.11) holds. For
ν > 0 define pν = 0 while for ν ≤ 0 define

pν = ∑
|α|≤k

cα,νxα, where cα,ν = − (−i)|α|
α!

〈
|φ̂ν(ξ)|2 f̂ (ξ), ξακ̂(ξ)

〉
. (1.12)

For η ∈ S, we have

lim
N→∞

∞

∑
ν=−N

〈
φ̃ν ∗ φν ∗ f + pν, η

〉

=
∞

∑
ν=1

〈
φ̃ν ∗ φν ∗ f , η

〉
+ lim

N→∞

0
∑

ν=−N

〈
φ̃ν ∗ φν ∗ f + pν, η

〉
. (1.13)

For the first sum in (1.13) we use [6, Proposition 2.3.4 (b), p.110] which
states that for f ∈ S′ there exists r, s ∈ N such that for φ ∈ S we have

|
〈

f , φ
〉
| ≤ C ∑

|α|≤r
∑
|β|≤s

sup
x∈Rd

|xαφ(β)(x)|.

This yields

∞

∑
ν=1

|
〈
φ̃ν ∗ φν ∗ f , η

〉
| =

∞

∑
ν=1

|
〈

f̂ , |φ̂ν|2η̂
〉
|

≤ C
∞

∑
ν=1

∑
|α|≤r

∑
|β|≤s

sup
ξ∈Rd

|ξα(|φ̂ν(ξ)|2η̂(ξ))(β)|

≤ C
∞

∑
ν=1

∑
|α|≤r

∑
|β|≤s

sup
ξ∈Rd

∑
γ≤β

|(|φ̂ν(ξ)|2)(γ)||ξαη̂(β−γ)|.

(1.14)
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1 Triebel-Lizorkin and Besov spaces

We shall consider (1.14) in two cases. First when γ = 0 we have by (1.5)
and (1.3) that

∞

∑
ν=1

∑
|α|≤r

∑
|β|≤s

sup
ξ∈Rd

|φ̂ν(ξ)|2|ξαη̂(β)(ξ)|

≤ ∑
|α|≤r

∑
|β|≤s

sup
ξ∈Rd

|ξαη̂(β)(ξ)| ∑
ν∈Z

|φ̂ν(ξ)|2

= ∑
|α|≤r

∑
|β|≤s

sup
ξ∈Rd

|ξαη̂(β)(ξ)| ≤ C,

since η ∈ S. For the case when γ > 0 we have that (1.14) can be estimated
using (1.4) as follows

∞

∑
ν=1

∑
|α|≤r

∑
|β|≤s

sup
ξ∈Rd

∑
0<γ≤β

|(|φ̂ν(ξ)|2)(γ)||ξαη̂(β−γ)(ξ)|

≤C
∞

∑
ν=1

∑
|α|≤r

∑
|β|≤s

∑
0<γ≤β

2−ν|γ| sup
ξ∈Rd

|ξαη̂(β−γ)(ξ)|

≤C
∞

∑
ν=1

2−ν ∑
|α|≤r

∑
|β|≤s

∑
0<γ≤β

sup
ξ∈Rd

|ξαη̂(β−γ)(ξ)|

≤C
∞

∑
ν=1

2−ν ≤ C,

which shows that the first sum in (1.13) converges absolutely in S′. For the
second sum notice that by the properties of the Fourier transform we have
that

〈pν, η〉 = ∑
|α|≤k

cα,ν 〈xα, η〉 = ∑
|α|≤k

cα,ν(−i)−|α|η̂(α)(0).

From this and the properties of κ we have for the second sum in (1.13) that

lim
N→∞

0
∑

ν=−N

〈
φ̃ν ∗ φν ∗ f + pν, η

〉

= lim
N→∞

0
∑

ν=−N

〈
|φ̂ν|2 f̂ , η̂

〉
+ 〈pν, η〉

= lim
N→∞

0
∑

ν=−N

〈
|φ̂ν|2 f̂ , κ̂η̂

〉
+ ∑

|α|≤k
cα,ν(−i)−|α|η̂(α)(0).
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From the definition of cα,ν, see (1.12), we have

= lim
N→∞

0
∑

ν=−N

〈
|φ̂ν(ξ)|2 f̂ (ξ), θ̂(ξ)

(
η̂(ξ) − ∑

|α|≤k

ξα

α! η̂(α)(0)
)〉

= lim
N→∞

0
∑

ν=−N

〈
|φ̂ν(ξ)|2 f̂ (ξ), ω̂(ξ)

〉

=
0
∑

ν=−∞

〈
φ̃ν ∗ φν ∗ f , ω

〉
, (1.15)

where we have set ω̂(ξ) = θ̂(ξ)
(

η̂(ξ)− ∑|α|≤k
ξα

α! η̂(α)(0)
)
. As we have that

Sk = {θ(x) ∈ S : θ̂(α)(0) = 0, |α| ≤ k} one finds by using Leibniz’ rule
and differentiating the second factor that ω ∈ Sk and therefore that (1.15)
is finite. As a consequence of the Banach-Steinhaus theorem [16, Theorem
2.8, p.46] we can define a distribution h in S′ as

h = lim
N→∞

( ∞

∑
ν=−N

φ̃ν ∗ φν ∗ f + p′N
)

,

where p′N = ∑
0
ν=−N pν. One has that supp(ĥ − ĝ) = {0}, by using that if

η ∈ S and 0 /∈ supp η then η̂ ∈ S∞. This implies that h − g is a polynomial
[6, Corollary 2.4.2., p.123], furthermore we have that it vanishes on Sk. Note
that for |α| > k and η ∈ S one has by partial integration that

∫

Rd
xβη(α)(x)dx = (−1)|α|C

∫

Rd
η(x)(xβ)(α)dx = 0, for |β| ≤ k, (1.16)

which shows that η(α) ∈ Sk. Thereby we have

〈
(h − g)(α), η

〉
= (−1)|α|

〈
h − g, η(α)

〉
= 0,

showing that h − g = p ∈ Pk.

2) ⇒ 1) A trivial consequence of the space Sk ⊂ S.

1) ⇒ 3) Assume that η ∈ S and |α| > k. As noted in (1.16) this implies that

η(α) ∈ Sk. From 1) one finds

∑
ν∈Z

〈
(φ̃ν ∗ φν ∗ f )(α), η

〉
= (−1)|α| ∑

ν∈Z

〈
φ̃ν ∗ φν ∗ f , η(α)

〉

= (−1)|α|
〈

g, η(α)
〉
.

3) ⇒ 1) From the first part of the proof of 1) ⇒ 2) we already have that ∑ν>0 φ̃ν ∗
φν ∗ f converges in S′ therefore in S′

k. We now show that ∑ν≤0 φ̃ν ∗ φν ∗ f
also converges in S′

k by using Taylor expansion. Let η ∈ Sk. A slight
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1 Triebel-Lizorkin and Besov spaces

alteration to the proof of Lagrange’s remainder theorem [18, Theorem 7.52,
p.212] using that

∑
|β|=k

xβη(β)(tx) = η
(k)
x (t)

where ηx : t → η(xt) shows that the remainder term can be written as

Rη̂,0
k (x) = ∑

|β|=k

ξβ

(k − 1)!

∫ 1

0
η̂(β)(tξ)tk−1dt.

Now by the vanishing moments of η and Taylor expansion of order k at 0
we have that

η̂(ξ) = ∑
|β|=k+1

ξβ

k!

∫ 1

0
η̂(β)(tξ)tkdt = ∑

|β|=k+1
ξβ ĝβ(ξ), (1.17)

where we set ĝβ(ξ) = 1
k!

∫ 1
0 η̂(β)(tξ)tkdt. Notice that ĝβ(ξ) is a bounded

function, since η̂(β) is bounded. Next we multiply (1.17) with κ(x) from the
beginning of the proof and use the inverse Fourier transform to get

κ ∗ η = ∑
|β|=k+1

η
(β)
β ,

where we define η̂β = (−i)|β|κ̂ ĝβ ∈ S. From this we get

0
∑

ν=−∞

〈
φ̃ν ∗ φν ∗ f , η

〉
=

0
∑

ν=−∞

〈
φ̃ν ∗ φν ∗ f , κ ∗ η

〉

= ∑
|β|=k+1

0
∑

ν=−∞

〈
φ̃ν ∗ φν ∗ f , η

(β)
β

〉

= ∑
|β|=k+1

0
∑

ν=−∞

(−1)|β|
〈
(φ̃ν ∗ φν ∗ f )(β), ηβ

〉
,

where the convergence of the last sums follows from property 3). �

Note that in the scope of the lemma we have that (Sk)
′ = S′/Pk.

Now we examine the convergence of (1.10) when f ∈ Ḟs
p,q, s ∈ R, 0 < p < ∞ and

0 < q ≤ ∞. Since supp (2νd(φν ∗ f )̂ (2νx)) ⊂ {x : |x| < 2} we have from [17,
Theorem, p.22] that

‖φν ∗ f (2−νx)‖L∞ ≤ C‖φν ∗ f (2−νx)‖Lp . (1.18)

From (1.18) one has

‖(φ̃ν ∗ φν ∗ f )(α)‖L∞ ≤ ‖φ̃
(α)
ν ‖L1‖φν ∗ f‖L∞

= C2ν|α|‖φν ∗ f (2−νx)‖L∞

≤ C2ν(|α|+d/p)‖φν ∗ f‖Lp . (1.19)
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By the embedding of `q we have that Ḟs
p,q1 ⊆ Ḟs

p,q2 if q1 ≤ q2. From this embedding

property and the estimate in (1.19) we have for |α| > s − d/p that

∑
ν<0

‖(φ̃ν ∗ φν ∗ f )(α)‖L∞ ≤ C sup
ν<0

2νs‖φν ∗ f‖Lp (1.20)

≤ C‖sup
ν<0

2νs|φν ∗ f |‖Lp

= C‖ f‖Fsp,∞ ≤ C‖ f‖Ḟsp,q
,

implying that ∑ν<0(φ̃ν ∗ φν ∗ f )(α) converges in S′. For the Besov space notice
that the term on the right side of (1.20) is less then or equal to C‖ f‖Ḃsp,q

.

Choosing k = max{bs − d/pc ,−1} we can use Lemma 1.2 to find polynomials
p′N ∈ Pk such that

lim
N→∞

( ∞

∑
ν=−N

φ̃ν ∗ φν ∗ f + p′N
)

= g

converges in S′. We also have that supp(ĝ − f̂ ) = {0}, therefore there exists a
polynomial p ∈ P such that g = f + p in S′. Which implies

∑
ν∈Z

φ̃ν ∗ φν ∗ f = f , in S′/P.

The sum on the left-hand side converges to g modulo Pk, so by identifying the
equivalence class f + p with g, we write

∑
ν∈Z

φ̃ν ∗ φν ∗ f = f , in S′/Pk. (1.21)

Taking the class f + p and identifying it with g modulo Pk, the Triebel-Lizorkin
and Besov-spaces can be considered as subsets of the space S′/Pk.
Take I ∈ D with `(I) = 2−ν, xI = 2−νl and define

φI(·) = |I|−1/2φ
( · − xI

`(I)
)

= 2−νd/2φν(· − 2−νl).

By using (1.21) we get the following lemma which shows that {φI}I∈D is a
decomposition system in S′/Pk. This will be crucial in proving the norm
equivalence between Ḟs

p,q and ḟ s
p,q (and Ḃs

p,q and ḃs
p,q).

Lemma 1.3

Suppose that f ∈ Ḟs
p,q or Ḃs

p,q then

f = ∑
I∈D

〈 f , φI〉 φI , (1.22)

where the convergence is in S′/Pk with k = max{bs − d/pc ,−1}.
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1 Triebel-Lizorkin and Besov spaces

Proof:

By (1.21) we have
f = ∑

ν∈Z

φν ∗ φ̃ν ∗ f ,

in S′/Pk. Hence (1.22) will follow if we can show that

φν ∗ φ̃ν ∗ f = 2−νd ∑
l∈Zd

〈
f , φν(· − 2−νl)

〉
φν(· − 2−νl) = ∑

I∈Dν

〈 f , φI〉 φI ,

in S′. As φ̂ is compactly supported we have that (φ̃ν ∗ f )̂ is also compactly
supported so from Proposition A.1 we get that (φ̃ν ∗ f )(x) is slowly

increasing and in C∞. Take θ ∈ S with θ̂(0) = 1, let θε(x) = εdθ(εx)
and δx the delta function in x, we have

〈
δ2−ν l , θε(−·) ∗ φ̃ν ∗ f

〉
=

∫

Rd
θε(x − 2−νl)φ̃ν ∗ f (x)dx (1.23)

=
〈
φ̃ν ∗ f , θε(· − 2−νl)

〉

=
〈

f , φν ∗ θε(· − 2−νl)
〉

=
〈

f , φν(· − 2−νl) ∗ θε
〉
. (1.24)

The left-hand side of (1.23) converges to (φ̃ν ∗ f )(2−νl) as ε → ∞ by [19,
Lemma 1, p.157] and the term in (1.24) converges to

〈
f , φν(· − 2−νl)

〉
by

[14, Proposition, p.326], so we need to show that

φν ∗ φ̃ν ∗ f = 2−νd ∑
l∈Zd

(φ̃ν ∗ f )(2−νl)φν(· − 2−νl) (1.25)

in S′. Take

fν,δ(x) = (φ̃ν ∗ f )(x)
d

∏
i=1

(
sin(δxi)

δxi

)j
,

with j large enough so that fν,δ ∈ L2(R
d). We have supp f̂ν,δ ⊂ {ξ : |ξ| <

2νπ} if δ is sufficiently small, which follows from

ĝ(x) =
( d

∏
i=1

1
2δ χ[−δ,δ](ξi)

)
(̂x) =

d
∏
i=1

sin(δxi)
δxi

,

〈
(φ̃ν ∗ f )̂ , η ∗ g ∗ · · · ∗

j times

g
〉

=

〈
φ̃ν ∗ f , η̂

d
∏
i=1

(
sin(δxi)

δxi

)j〉

=
∫

Rd
f̂ν,δ(x)η(x)dx

and supp φ̂ν ⊂ {ξ : |ξ| < 2ν+1} ⊂ {ξ : |ξ| < 2νπ}. This we can use
together with

(φν ∗ fν,δ)(x) = (2π)−d
∫

Rd
f̂ν,δ(ξ)φ̂ν(ξ)eixξdξ, (1.26)
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by extending φ̂νeixξ periodically with period 2ν+1π in each variable and
represent it as its Fourier series

φ̂ν(ξ)eixξ = ∑
l∈Zd

(2ν+1π)−d
∫

Rd
φ̂ν(y)eixye−i2−νlydy ei2−ν lξ

= 2−νd ∑
l∈Zd

φν(x − 2−νl)ei2−ν lξ (1.27)

for |ξ| < 2νπ almost everywhere, [6, Proposition 3.1.14 p.165]. By inserting
(1.27) in (1.26) we get

(φν ∗ fν,δ)(x) = (2ν+1π)−d
∫

Rd
f̂ν,δ(ξ) ∑

l∈Zd
φν(x − 2−νl)ei2−ν lξdξ

= 2−νd ∑
l∈Zd

fν,δ(2−νl)φν(x − 2−νl),

using Fubini’s theorem. Now we let δ → 0 which gives us

(φν ∗ φ̃ν ∗ f )(x) = 2−νd ∑
l∈Zd

(φ̃ν ∗ f )(2−νl)φν(x − 2−νl) (1.28)

almost everywhere, where the convergence follows from φ̃ν ∗ f being slowly
increasing and the dominated convergence theorem with the counting
measure applied on the right-hand side. We finally get (1.25) by justifying
that (1.28) also converges in S′. This follows again from the dominated
convergence theorem where we use (|φν| ∗ |φ̃ν ∗ f |)(x)|η(x)| to dominate
the right-hand side. �

The following theorem shows the norm equivalence between an element f ∈ Ḟs
p,q

and the sequence (
〈

f , φI
〉
)I∈D ∈ ḟ s

p,q from (1.22) and thereby the connection

between the space of distributions Ḟs
p,q and the sequence space ḟ s

p,q by φ. Similary

for Ḃs
p,q and ḃs

p,q.

Proposition 1.4

Let s ∈ R and for Ḟs
p,q take 0 < p < ∞, 0 < q ≤ ∞ and for Ḃs

p,q take 0 < p, q ≤ ∞.

Given f = ∑ J∈D
〈

f , φJ
〉

φJ in S′/P then f ∈ Ḟs
p,q if and only if

(〈
f , φJ

〉)
J∈D ∈ ḟ s

p,q
and if affirmative, one has

‖
〈

f , φJ
〉
‖ ḟ sp,q

� ‖ f‖Ḟsp,q

Proof:

Assume that
〈

f , φJ
〉

J∈D ∈ ḟ s
p,q and f = ∑ J∈D

〈
f , φJ

〉
φJ in S′/P. Let ∆κ

j be

the Littlewood-Paley operator associated with the bump function κ (1.3)-
(1.5). Since φ ∈ S then for every J ∈ Dm we have that

|φ(γ)
J (y)| ≤ C2−md/2 2|γ|m+md

(1 + 2m|y − xI |)M ,

10



1 Triebel-Lizorkin and Besov spaces

for every γ ∈ N
d and M ∈ N. We also have that the bump function κ

satisfies the estimate

|κ(γ)
j (y − x)| ≤ C 2j|γ|+jd

(1 + 2j|y − x|)M ,

for every γ ∈ Nd and M ∈ N. Since both functions have Fourier transforms
that are compactly supported away from the origin, we have by using
Lemma A.2 twice

|∆κ
j (φJ)(x)| ≤ C2−md/2 2min{j,m}d−|m−j|L

(1 + 2min{j,m}|x − xJ |)M , (1.29)

regardsless of whether j ≤ m or m < j, and where L can be chosen as
large as necessary for M large enough. Let t = min{1, p, q} and choose
L > max{d/t − d − s, s}. By a similar proof as the one for Lemma A.4 one
has for M > d/t, n ∈ Z and x ∈ I ∈ Dn that

∑
J∈Dm

|
〈

f , φJ
〉
|
(

1 +
|x − xJ |

2−min{j,m}

)−M

≤C2max{m−j,0}d/tMt
(

∑
J∈Dm

|
〈

f , φJ
〉
|χJ

)
(x),

where

Mt( f )(x) =
(

sup
{Q:x∈Q}

|Q|−1
∫

Q
| f (y)|tdy

)1/t
,

the supremum being taken over all cubes Q with sidelength parallel to the
axes. Using this estimate and (1.29) one has

2js ∑
m∈Z

∑
J∈Dm

|
〈

f , φJ
〉
||∆κ

j (φJ)(x)| (1.30)

≤C ∑
m∈Z

2min{j,m}d2−|j−m|L2−md2(j−m)s2max{m−j,0}d/t

· Mt
(

∑
J∈Dm

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x).

(1.31)

In (1.30) we now take the lq-norm over j and the Lp-norm over x (with the
usual modification for q = ∞). This gives

‖ f‖Ḟsp,q

≤
∥∥∥
(

∑
j∈Z

(
∑

m∈Z

δ(j − m)Mt
(

∑
J∈Dm

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)

)q)1/q∥∥∥
Lp

,

(1.32)

where we define

δ(j − m) = C2min{j−m,0}(d−d/t)2−|j−m|L2(j−m)s.

11



Notice that δ(j − m) does not depend on a specific values of j or m but on
the difference between them. For 0 < q ≤ 1 we can assess the term inside
the Lp-norm from (1.32) as

(
∑
j∈Z

δ(j)q
)1/q(

∑
m∈Z

Mt
(

∑
J∈Dm

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)q

)1/q
.

In the case where 1 < q we use Minkovski’s inequality to find

(
∑
j∈Z

(
∑

m∈Z

δ(j − m)Mt
(

∑
J∈Dm

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)

)q)1/q

=
(

∑
j∈Z

(
∑

m∈Z

δ(−m)Mt
(

∑
J∈Dm+j

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)

)q)1/q

≤ ∑
m∈Z

(
∑
j∈Z

(
δ(−m)Mt

(
∑

J∈Dm+j

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)

)q)1/q

=
(

∑
m∈Z

δ(m)
)(

∑
j∈Z

Mt
(

∑
J∈Dj

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)q

)1/q
.

In both cases we have that the first factor can be estimated as a constant
since L > max{d/t − d − s, s}. Together with Fefferman Stein’s maximal
inequality (A.4) this implies that

‖ f‖Ḟsp,q
≤C

www
(

∑
m∈Z

Mt
(

∑
J∈Dm

|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)
(x)q

)1/qwww
Lp

≤C
www

(
∑

m∈Z

∑
J∈Dm

(
|
〈

f , φJ
〉
||J|−s/d−1/2χJ

)q)1/qwww
Lp

= C‖
〈

f , φJ
〉
‖ ḟ sp,q

.

Conversly we have by (1.23) and (1.24) that

〈
f , φJ

〉
= 2−md/2φ̃m ∗ f (2−mk),

where x J = k2−m. This we use together with the fact that for any x ∈ Rd

there is only one J ∈ Dm that contains x

∑
J∈Dm

(
|J|−s/d−1/2|

〈
f , φJ

〉
|χJ

)q

≤ ∑
J∈Dm

(
2ms sup

y∈J
|(φ̃m ∗ f )(y)|χJ

)q

≤C sup
|y|≤2−m

√
d

(
2ms(1 + 2m|y|)−b|φ̃m ∗ f (x − y)|

)q
(1 + 2m|y|)bq

≤C
(
2msM∗∗

b,m( f ; φ̃)(x)
)q,

12



1 Triebel-Lizorkin and Besov spaces

where

M∗∗
b,m( f ; φ)(x) = sup

y∈Rd

|(φ̃m ∗ f )(x − y)|
(1 + 2m|y|)−b .

If we now sum over all m ∈ Z, then raising to the power 1/q and taking the
Lp-norm we find by using [6, Theorem 6.5.6., p.483] with b > d/ min{p, q}
that

‖
〈

f , φJ
〉
‖ ḟ sp,q

≤C
www

(
∑

m∈Z

∣∣2msM∗∗
b,m( f ; φ̃)(x)

∣∣q)1/qwww
Lp

≤C
www

(
∑

m∈Z

(2ms|∆φ
m( f )|)q

)1/qwww
Lp

= C‖ f‖Ḟsp,q
.

�

The norm equivalence between Ḟs
p,q and ḟ s

p,q (and Ḃs
p,q and ḃs

p,q), can be used to

show that Ḟs
p,q and Ḃs

p,q are complete as ḟ s
p,q and ḃs

p,q are complete, whereby Ḟs
p,q

and Ḃs
p,q are complete quasi-normed spaces. The proof follows by using Lemma

2.3 which is placed later for continuity. This approach seems new compared to
earlier proofs.

Proposition 1.5

Let s ∈ R and 1 ≤ p, q < ∞. Then Ḟs
p,q and Ḃs

p,q are complete quasi-normed
spaces.

Proof:

We only give the proof for Ḟs
p,q since the proof for Ḃs

p,q follows similarly.

As pointed out that earlier Ḟs
p,q is quasi-normed follows from the properties

of the lq, Lp-norms. So completeness remains. Take a Cauchy sequence
fn ∈ Ḟs

p,q and let ε > 0 be given. Fix J and then by the norm equivalence of
the previous theorem we have

‖ fn − fm‖Ḟsp,q
≥ C‖

〈
fn, φJ

〉
−

〈
fm, φJ

〉
‖ ḟ sp,q

≥ C‖|J|−s/d−1/2(
〈

fn, φJ
〉
−

〈
fm, φJ

〉
)χJ‖Lp

= C|J|−s/d+1/p−1/2|
〈

fn, φJ
〉
−

〈
fm, φJ

〉
|.

As fn is Cauchy in Ḟs
p,q we can for every J ∈ D find N such that for n, m > N

we have that

ε > |J|s/d−1/p+1/2‖ fn − fm‖Ḟsp,q
≥ |

〈
fn, φJ

〉
−

〈
fm, φJ

〉
|.

This shows that
〈

fn, φJ
〉

is Cauchy in C and therefore convergent. Its limit

we shall denote by
〈

f , φJ
〉
. From Lemma 2.3 we have that ∑J∈D

〈
f , φJ

〉
φJ =

13



f in S′/P. Then by Fatou’s lemma with the counting measure we find

(
∑
I∈D

(
|I|−s/d−1/2(〈 f , φJ

〉)
χJ

)q)1/q

≤ lim inf
n

(
∑
I∈D

(
|I|−s/d−1/2(〈 fn, φJ

〉)
χJ

)q)1/q
(1.33)

Using Fatou’s lemma with the Lebesgue measure yields

‖lim inf
n

(
∑
I∈D

(
|I|−s/d−1/2(〈 fn, φJ

〉)
χJ

)q)1/q
‖Lp

≤ lim inf
n

‖
(

∑
I∈D

(
|I|−s/d−1/2(〈 fn, φJ

〉)
χJ

)q)1/q
‖Lp . (1.34)

Combining Proposition 1.4 and (1.33), (1.34) we have that

‖ f‖Ḟsp,q
≤C‖

(
∑
I∈D

(
|I|−s/d−1/2(〈 f , φJ

〉)
χJ

)q)1/q
‖Lp

≤ lim inf
n

C‖
(

∑
I∈D

(
|I|−s/d−1/2(〈 fn, φJ

〉)
χJ

)q)1/q
‖Lp

≤ lim inf
n

C‖ fn‖Ḟsp,q
< ∞,

which shows that f ∈ Ḟs
p,q. By repeating the calculations with fm − f instead

of f and
〈

fn, φJ
〉
−

〈
fm, φJ

〉
instead of

〈
fn, φJ

〉
we find

‖ f − fm‖Ḟsp,q
≤ lim inf

n
C‖ fm − fn‖Ḟsp,q

.

Since fn is Cauchy in Ḟs
p,q we can find N such that for m, n > N we have

‖ fm − fn‖Ḟsp,q
< εC−1 which shows that Ḟs

p,q is complete. �
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2 Bounded operators and decomposition systems

In this section we shall prove one of our main results: namely that a nice
decomposition system for L2(Rd) is also a decomposition system for Ḟs

p,q and Ḃs
p,q.

The proof of this will in no small part depend on the boundedness of operators
on the spaces ḟ s

p,q and ḃs
p,q and the fact that we have a norm equivalence with Ḟs

p,q
and Ḃs

p,q by φ.

Let B = {θe
I , θ̃e

I : I ∈ D, e ∈ E} be a decomposition system for L2(Rd), we then
have

φI = ∑
e∈E

∑
J∈D

〈
φI , θ̃e

J
〉
θe

J , for I ∈ D.

At the same time we have by Lemma 1.3

θe
I = ∑

J∈D

〈
θe

I , φJ
〉

φJ , for e ∈ E, I ∈ D

in S′/Pk. We shall first prove that the matrices of coefficients of one decomposition
system with respect to the other

Ãe =
(〈

φJ , θ̃e
I
〉)

I,J∈D Ae =
(〈

θe
J , φI

〉)
I,J∈D. (2.1)

are bounded operators on ḟ s
p,q and ḃs

p,q for a certain range of the indices s, p, q.
To prove this the following lemma will be needed.

Lemma 2.1

Let I, J ∈ D, with |J| ≤ |I|, and let ηJ be a measurable function on Rd and

θJ ∈ Cr(Rd) with the properties that for some r ≥ 0 and M > d + r,
∫

Rd
xαηJ(x)dx = 0, |α| ≤ r − 1, which is void if r = 0, (2.2)

|ηJ(x)| ≤ C|J|−1/2
(

1 +
|x − xJ |

`(J)

)−M
, (2.3)

|θ(α)
I (x)| ≤ C|I|−1/2−|α|/d

(
1 +

|x − xI |
`(I)

)−M
, |α| ≤ r. (2.4)

Then
∣∣〈θI , ηJ

〉∣∣ = C
(

`(J)
`(I)

)r+d/2(
1 +

|xI − xJ |
`(I)

)−M
. (2.5)

Proof:

In the first part of the proof we shall assume that r ≥ 1. At the end of the
proof we shall comment on the case when η has no vanishing moments. By
the vanishing moments of η, (2.2) we can add a polynomial in the integral
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free of charge

∣∣〈θI , ηJ
〉∣∣ =

∣∣∣∣
∫

Rd
θI(x)ηJ(x)dx

∣∣∣∣

≤
∫

Rd

∣∣∣∣
(

θI(x) − ∑
|α|<r

(x − xJ)α

α! (θI)
(α)(xJ)

)∣∣∣∣
∣∣ηJ(x)

∣∣ dx.

By a change of variable x = `(I)x + xI we find that

=
∫

Rd

∣∣∣∣θI(`(I)x + xI) − ∑
|α|<r

(`(I)x + xI − xJ)α

α! (θI)
(α)(xJ)

∣∣∣∣

·
∣∣ηJ(`(I)x + xI)

∣∣ `(I)ddx.
(2.6)

At this point we shall split the integral into two, by integrating over the

area A = {x : |x − xI,J | ≥ 1} and its complement, where xI,J =
xJ−xI
`(I) . First

we deal with the integral over the area A, where we employ (2.3) and (2.4)
to obtain

C
(

`(J)
`(I)

)−d/2 ∫

A

(
(1 + |x|)−M +

∣∣x − xI,J
∣∣r−1

(1 + |xI,J |)M

)(
1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M
dx

=B1 + B2,

where

B1 = C
(

`(J)
`(I)

)−d/2 ∫

A
(1 + |x|)−M

(
1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M
dx

and

B2 = C
(

`(J)
`(I)

)−d/2 ∫

A

∣∣x − xI,J
∣∣r−1

(1 + |xI,J |)M

(
1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M
dx.

In the case of B1 we once again consider two cases. In the first case we
consider |x| ≤ 1

2 |xI,J|. Then we have that
∣∣xI,J − x

∣∣ ≥ 1
2 |xI,J |, and by the

definition of the area A

|x − xI,J | ≥ 1
2 (1 + |x − xI,J |) ≥ 1

4 (1 + |xI,J|).

Using this we find

C
(

`(J)
`(I)

)−d/2 ∫

A∩{x:|x|≤ 1
2 |xI,J |}

(1 + |x|)−M
(

1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M
dx

≤C
(

`(J)
`(I)

)M−d/2
(1 + |xI,J |)−M

∫

Rd
(1 + |x|)−Mdx

≤C
(

`(J)
`(I)

)M−d/2
(1 + |xI,J |)−M.
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2 Bounded operators and decomposition systems

On the other hand if |x| >
1
2 |xI,J | then (1 + |x|)−M ≤ 2M(1 + |xI,J |)−M.

For the complementary area we also note that if |x| ≥ c > 0 and h ∈ R+

then

1 +
|x|
h =

( |x|
|x|+ 1

)(
1 +

|x|
h +

1
|x| +

1
h
)

≥
( c

c + 1
)(1 + |x|

h
)

,
(2.7)

which, together with the first observation, yields

C
(

`(J)
`(I)

)−d/2 ∫

A∩{x:|x|> 1
2 |xI,J |}

(1 + |x|)−M
(

1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M
dx

≤C
(

`(J)
`(I)

)−d/2
(1 + |xI,J |)−M

∫

Rd

(1 +
∣∣x − xI,J

∣∣
`(J)/`(I)

)−M
dx

≤C
(

`(J)
`(I)

)M−d/2
(1 + |xI,J|)−M.

Turning our attention to B2 we utilize that
∣∣x − xI,J

∣∣ ≥ 1 and M > d + r to
obtain

B2 ≤ C
(

`(J)
`(I)

)r−1−d/2
(1 + |xI,J |)−M

∫

A

(
1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)r−1−M
dx

≤ C
(

`(J)
`(I)

)M−d/2
(1 + |xI,J |)−M.

Combining these three estimates and the fact that we assumed M −
d/2 > r + d/2 we find that (2.6), over the area A, can be bounded

by C
(

`(J)
`(I)

)r+d/2
(1 + |xI,J |)−M. For the integral over Ac we use Taylor’s

formula
∫

Ac

∣∣∣∣θI(`(I)x + xI)− ∑
|α|<r

(`(I)x + xI − xJ)α

α! (θI)
(α)(xJ)

∣∣∣∣

·
∣∣ηJ(`(I)x + xI)

∣∣ `(I)ddx

=
∫

Ac

∣∣∣∣ ∑
|α|=r

(`(I)x + xI − xJ)α

α! (θI)
(α)(x0)

∣∣∣∣
∣∣ηJ(`(I)x + xI)

∣∣ `(I)ddx,

where x0 is a point on the linesegment between x J and `(I)x + xI . By the
assumptions (2.3) and (2.4) one finds

≤ C
(

`(J)
`(I)

)−d/2 ∫

Ac
|x − xI,J|r

· sup
z∈l(xJ ,`(I)x+xI)

(
1 +

|z − xI |
`(I)

)−M(
1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M
dx

≤ C
(

`(J)
`(I)

)r−d/2 ∫

Ac
sup

z∈l(xI,J,x)

(1 + |z|)−M
(

1 +

∣∣x − xI,J
∣∣

`(J)/`(I)

)−M+r
dx. (2.8)
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The properties of the set Ac =
{

x :
∣∣x − xI,J

∣∣ < 1
}

imply that

1 + |xI,J | ≤ 1 + |z − xI,J| + |z| ≤ 2(1 + |z|).

This in turn yields the following equation

sup
z∈l(xI,J,x)

(1 + |z|)−M ≤ 2M(1 + |xI,J |)−M. (2.9)

Substituting (2.9) into (2.8) we find

C
(

`(J)
`(I)

)r−d/2
(1 + |xI,J |)−M

∫

Ac

(
1 +

|x − xI,J |
`(J)/`(I)

)−M+r
dx

≤C
(

`(J)
`(I)

)r+d/2
(1 + |xI,J |)−M

∫

Rd
(1 + |x|)−M+rdx

≤C
(

`(J)
`(I)

)r+d/2
(1 + |xI,J |)−M,

where we have used that M > d + r in the last inequality to assess the
integral, thereby yielding the desired conclusion for r ≥ 1.
In the case of no vanishing moments of η, B1 from the first part estimates the
integral over A. For

∫
Ac |θI(x)||ηJ(x)|dx we use that 1 + |xI,J | ≤ 2(1 + |x|),

which together with (2.3) and (2.4) shows that

|
〈
θI , ηJ

〉
| ≤C

(
`(J)
`(I)

)−d/2 ∫

Ac
(1 + |x|)−M

(
1 +

|x − xI,J|
`(J)/`(I)

)−M
dx

≤C
(

`(J)
`(I)

)d/2
(1 + |xI,J |)−M.

�

For the remainder of this section we will assume that for r1, r2 ∈ N, M > d +
max{r1, r2} the functions ηI ∈ Cr1(Rd) and θI ∈ Cr2(Rd) satisfy

∫

Rd
xαθI(x)dx = 0, |α| ≤ r1 − 1, which is void if r1 = 0, (2.10)

|θ(α)
I (x)| ≤ C|I|−1/2−|α|/d

(
1 +

|x − xI |
`(I)

)−M
, |α| ≤ r2, (2.11)

∫

Rd
xαηI(x)dx = 0, |α| ≤ r2 − 1, which is void if r2 = 0, (2.12)

|η(α)
I (x)| ≤ C|I|−1/2−|α|/d

(
1 +

|x − xI |
`(I)

)−M
, |α| ≤ r1, (2.13)

thereby guaranteeing a suitable decay of |
〈
θJ , ηI

〉
| regardless of the relative size

of |I| and |J| by the previous lemma. As the next propositions will show, choosing
r1, r2 and M large enough will insure that the infinite matrix

A =
(〈

θJ , ηI
〉)

I,J∈D (2.14)

is a bounded operator on the ḟ s
p,q and ḃs

p,q.

18



2 Bounded operators and decomposition systems

Proposition 2.2

Let {θI}I∈D, {ηI}I∈D be families of functions satisfying (2.10)-(2.13) for r1, r2 ∈
N, M > d + max{r1, r2}. Moreover let s ∈ R, 0 < q ≤ ∞ and for Ḟs

p,q let

0 < p < ∞, L = d/ min{1, p, q} and for Ḃs
p,q let 0 < p ≤ ∞, L = d/ min{1, p}.

If r2 > s, r1 > L − d − s and M > L then the infinite matrix defined in (2.14) is
a bounded operator on ḟ s

p,q or ḃs
p,q.

Proof:

We prove the result for Ḟs
p,q where q < ∞ as the proof for Ḃs

p,q follows
similarly and the case q = ∞ follows in exactly the same way as q < ∞,
with `∞ instead of `q. For every h ∈ ḟ s

p,q we have (Ah)I = ∑J∈D
〈
θJ , ηI

〉
hJ .

We take the ḟ s
p,q-norm and split the sequence in two

‖Ah‖ ḟ sp,q
≤

www
(

∑
I∈D

(
|I|−s/d−1/2 ∑

J∈D
|
〈
θJ , ηI

〉
||hJ |χI

)q)1/qwww
Lp

≤C(σ1 + σ2),

where

σ1 =
www

(
∑
I∈D

(
|I|−s/d−1/2 ∑

|J|≤|I|
|
〈
θJ , ηI

〉
||hJ |χI

)q)1/qwww
Lp

σ2 =
www

(
∑
I∈D

(
|I|−s/d−1/2 ∑

|J|>|I|
|
〈
θJ , ηI

〉
||hJ |χI

)q)1/qwww
Lp

.

Choose 0 < t < min{1, p, q} such that M > d/t and r1 > d/t − d − s and
denote |I|−s/d−1/2χI = λI . For σ1 the inequality |J| ≤ |I| holds and thus
Lemma 2.1 can be applied in this case. Together with Lemma A.4 we infer

σ1 ≤ C
www

(
∑
I∈D

(
∑

|J|≤|I|

(
`(J)
`(I)

)r1+d/2(
1 +

|xI − xJ |
`(I)

)−M
|hJ |λI

)q)1/qwww
Lp

= C
www

(
∑

n∈Z

∑
I∈Dn

(
∑

m≥n
2(n−m)(r1+d/2)

· ∑
J∈Dm

(
1 +

|xI − xJ |
`(I)

)−M
|hJ |λI

)q)1/qwww
Lp

≤ C
www

(
∑

n∈Z

∑
I∈Dn

(
∑

m≥n
2(n−m)(r1+d/2−d/t)

· Mt
(

∑
J∈Dm

|hJ |χJ
)
(x)λI

)q)1/qwww
Lp

= C
www

(
∑

n∈Z

(
∑

m≥n
2(n−m)(r1+d−d/t+s)Mt

(
∑

J∈Dm

|hJ |λJ
)
(x)

)q)1/qwww
Lp

,
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where in the last equality we used ∑I∈Dn χI = 1. Next we change n
to −n, m to −m and use Lemma A.5 with µ = 1, λ = 0, am =

Mt
(

∑J∈D−m |hJ |λJ
)
(x) and

bn = ∑m≤n 2(m−n)(r1+d−d/t+s)Mt
(

∑I∈D−m |hI |λI
)
(x) which yields

≤ C
www

(
∑

n∈Z

(
Mt

(
∑

I∈Dn

|hI |λI
)
(x)

)q)1/qwww
Lp

≤ C‖h‖ ḟ sp,q
,

where we in the last inequality have imployed Fefferman Stein’s maximal
inequality (A.4) and the fact that | ∑I∈Dn hIλI |q = ∑I∈Dn |hIλI |q, since the
elements of Dn are disjoint. For the other half, were |J| > |I|, we interchange
the roles of ηJ and θI in Lemma 2.1 together with Lemma A.4 to find

σ2 ≤C
www

(
∑
I∈D

(
∑

|J|>|I|

(
`(I)
`(J)

)r2+d/2(
1 +

|xI − xJ |
`(J)

)−M
|hJ |λI

)q)1/qwww
Lp

=C
www

(
∑

n∈Z

∑
I∈Dn

(
∑

m<n
2(m−n)(r2+d/2)

· ∑
J∈Dm

(
1 +

|xI − xJ |
`(J)

)−M
|hJ |λI

)q)1/qwww
Lp

≤C
www

(
∑

n∈Z

∑
I∈Dn

(
∑

m<n
2(m−n)(r2+d/2)Mt

(
∑

J∈Dm

|hJ |χJ
)
(x)λI(x)

)q)1/qwww
Lp

=C
www

(
∑

n∈Z

(
∑

m<n
2(m−n)(r2−s)Mt

(
∑

J∈Dm

|hJ |λJ
)
(x)

)q)1/qwww
Lp

.

Since r2 > s we can use Lemma A.5 and Fefferman Stein’s maximal
inequality (A.4) as before to find that

≤C
www

(
∑

n∈Z

Mt
(

∑
I∈Dn

|hI |λI
)
(x)

)q)1/qwww
Lp

≤C‖h‖ ḟ sp,q
.

�

Decomposition systems and wavelet bases

Assuming that {θI}I∈D satisfies (2.10)-(2.11) and {θ̃I}I∈D satisfies (2.12)-(2.13)
we now have by Proposition 2.2 that Ae and Ãe in (2.1) are bounded operators
on ḟ s

p,q and ḃs
p,q. The last detail we need to examine before proving that B forms

a decomposition system for Ḟs
p,q and Ḃs

p,q is the convergence of the series ∑I∈D θI
in S′/Pk.
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2 Bounded operators and decomposition systems

Lemma 2.3

Let s ∈ R, 0 < q ≤ ∞. For Ḟs
p,q let 0 < p < ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p ≤ ∞, L = d/ min{1, p} and for both spaces k = max{bs − d/pc ,−1}.
If {θI}I∈D satisfies (2.10) and (2.11) for r1, r2 ∈ N with r1 > L − d − s, r2 > s
and M > max{L, d + r1, d + r2}, then for a ∈ ḟ s

p,q or a ∈ ḃs
p,q and η ∈ Sk

∑
I∈D

|aI || 〈θI , η〉 | < ∞

so the series ∑I∈D aIθI converges in S′/Pk.

Proof:

We only prove the result for Ḟs
p,q as the result for Ḃs

p,q follows similarly. By

Lemma 2.1 we have for |I| > 1

|〈θI , η〉| ≤ C`(I)−(k+1+d/2)

(
1 +

|xI |
`(I)

)−M
,

because r2 ≥ k + 1, while for |I| ≤ 1,

|〈θI , η〉| ≤ C`(I)r1+d/2(1 + |xI |)−M. (2.15)

We also have

|I|−s/d−1/2+1/p|aI | = ‖aI‖ ḟ sp,q
≤ ‖a‖ ḟ sp,q

,

which we will use to estimate the series for |I| > 1.

∑
|I|>1

|aI | |〈θI , η〉| ≤ C ∑
|I|>1

`(I)s+d/2−d/p−(k+1+d/2)
(1 + |xI |

`(I)
)−M

= ∑
n>0

2n(s−k−1−d/p) ∑
j∈Zd

(1 + |j|)−M

≤ ∑
n>0

2n(s−k−1−d/p)
< ∞,

where we have used Lemma A.6 and k + 1 > s− d/p. To estimate the series
for |I| ≤ 1 we use Lemma A.4 with t chosen such that 0 < t < min{1, p, q},
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M > d/t and r1 > d/t − d − s,

∑
|I|≤1

|aI | |〈θI , η〉| ≤ ∑
|I|≤1

`(I)r1+d/2|aI |(1 + |xI |)−M

≤ C ∑
n≥0

2−n(r1+d/2) ∑
I∈Dn

|aI |(1 + |xI |)−M

≤ C ∑
n≥0

2−n(r1+d/2−d/t)Mt
(

∑
I∈Dn

|aI |χI
)
(x)

= C ∑
n≥0

2−n(r1+s+d−d/t)Mt
(

∑
I∈Dn

|I|−s/d−1/2|aI |χI
)
(x)

≤ C sup
n≥0

Mt
(

∑
I∈Dn

|I|−s/d−1/2|aI |χI
)
(x)

≤ C
(

∑
n≥0

(
Mt

(
∑

I∈Dn

|I|−s/d−1/2|aI |χI
)
(x)

)q)1/q
,

where x is in the unit cube I0 and the usual change is made if q = ∞.
Taking the Lp(I0) norm on both sides and using Fefferman Stein’s maximal
inequality (A.4) we get

∑
|I|≤1

|aI | |〈θI , η〉| ≤ C
∥∥∥
(

∑
n≥0

(
Mt

(
∑

I∈Dn

|I|−s/d−1/2|aI |χI
)
(x)

)q)1/q∥∥∥
Lp(I0)

≤ C‖a‖ ḟ sp,q
.

�

Remark 2.4

Observe that the series ∑I∈D aI 〈θI , η〉 in Lemma 2.3 converges not only for η ∈ Sk
but for any η with k vanishing moments and satisfying

|η(α)(x)| ≤ C(1 + |x|)−M, |α| ≤ r1.

Therefore if f = ∑I∈D aIθI we may define

〈 f , η〉 = ∑
I∈D

dI 〈θI , η〉 ,

dispite the fact that η 6∈ Sk. ◦

We are now ready to state and prove that a nice decomposition system for L2(Rd)
is also a decomposition system for the Triebel-Lizorkin and Besov space if θe

I , θ̃e
I

have adequate decay and vanishing moments.

Theorem 2.5

Let s ∈ R, 0 < q ≤ ∞. For Ḟs
p,q let 0 < p < ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p ≤ ∞, L = d/ min{1, p} and for both spaces k = max{bs − d/pc ,−1}.
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2 Bounded operators and decomposition systems

Assume that {θe
I ,θ̃

e
I : I ∈ D, e ∈ E} forms a decomposition system for L2(R

d)
satisfying (2.10)-(2.13) for r1, r2 ∈ N with r1 > L − d − s, r2 > s and M >

max{L, d + r1, d + r2}. Then for f ∈ Ḟs
p,q

f = ∑
e∈E

∑
J∈D

〈
f , θ̃e

J
〉
θe

J ,

unconditionally in S′/Pk (see page 8), where
〈

f , θ̃e
J
〉

= ∑I∈D
〈

f , φI
〉〈

φI , θ̃e
J
〉

. We
also have

‖ f‖Ḟsp,q
� ∑

e∈E

∥∥〈
f , θ̃e

I
〉∥∥

ḟ sp,q
(2.16)

and for q 6= ∞ the series also converges unconditionally in Ḟs
p,q, where a similar

statement and norm equivalence applies for Ḃs
p,q and convergence in Ḃs

p,q is
guaranteed if p, q 6= ∞.

Proof:

We only prove the result for Ḟs
p,q as the result for Ḃs

p,q follows in a similar

fashion. We begin by showing the convergence in S′/Pk. Since θe
I , θ̃e

I is a

decomposition system for L2(Rd) we have

φI = ∑
e∈E

∑
J∈D

〈
φI , θ̃e

J
〉
θe

J ,

with convergence in S′. Together with Lemma 1.3 we formally get

f = ∑
I∈D

〈 f , φI〉 φI = ∑
I∈D

∑
e∈E

∑
J∈D

〈 f , φI〉
〈
φI , θ̃e

J
〉
θe

J

= ∑
e∈E

∑
J∈D

∑
I∈D

〈
f , φI

〉〈
φI , θ̃e

J
〉
θe

J (2.17)

= ∑
e∈E

∑
J∈D

〈
f , θ̃e

J
〉
θe

J , (2.18)

with convergence in S′/Pk. To justify (2.17) we first note from Proposition
1.4 that (〈 f , φI〉)I∈D ∈ ḟ s

p,q. From Proposition 2.2 we have that Ãe =(〈
φJ , θ̃e

I
〉)

I,J∈D is bounded on ḟ s
p,q, so

(〈
f , θ̃e

J
〉)

J∈D = Ãe(〈 f , φI〉)I∈D ∈ ḟ s
p,q.

Now using Lemma 2.3 we have that

∑
J∈D

∣∣〈 f , θ̃e
J
〉∣∣∣∣〈θe

J , η
〉∣∣ < ∞,

for η ∈ Sk which allows us to interchange the order of summation.
Next we prove (2.16) and from (2.18) we get

〈 f , φI〉 = ∑
e∈E

∑
J∈D

〈
f , θ̃e

J
〉〈

θe
J , φI

〉
,

so we have
(〈 f , φI〉)I∈D = ∑

e∈E
Ae

(〈
f , θ̃e

J
〉)

J∈D .
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From Proposition 2.2 it follows that Ae is bounded on ḟ s
p,q and together

with the boundedness of Ãe this gives that

‖(〈 f , φI〉)I∈D‖ ḟ sp,q
=

∥∥∥ ∑
e∈E

AT
e
(〈

f , θ̃e
J
〉)

J∈D

∥∥∥
ḟ sp,q

≤ C ∑
e∈E

∥∥(〈
f , θ̃e

J
〉)

J∈D
∥∥

ḟ sp,q

= C ∑
e∈E

∥∥ÃT
e (〈 f , φI〉)I∈D

∥∥
ḟ sp,q

≤ C‖(〈 f , φI〉)I∈D‖ ḟ sp,q
.

Using Proposition 1.4 we get (2.16).
To see the unconditional convergence in Ḟs

p,q for q 6= ∞ we take a sequence

(H)N∈N of finite subsets of D such that HN ⊆ HM if N ≤ M and
∪N∈NHN = D and use (2.16)

∥∥∥ f − ∑
e∈E

∑
I∈HN

〈
f , θ̃e

I
〉
θe

I

∥∥∥
Ḟsp,q

≤ C ∑
e∈E

∥∥∥ ∑
I∈D\HN

〈
f , θ̃e

I
〉
θe

I

∥∥∥
Ḟsp,q

≤ C ∑
e∈E

∥∥〈
f , θ̃e

I
〉
χI∈D\HN

∥∥
ḟ sp,q

.

We recall from (1.7) that

∥∥〈
f , θ̃e

I
〉
χI∈D\HN

∥∥
ḟ sp,q

=
∥∥∥
(

∑
I∈D

(∣∣I|−s/d−1/2|
〈

f , θ̃e
I
〉∣∣χI∈D\HN χI

)q)1/q∥∥∥
Lp

,

(2.19)
fix a point in I and use the dominated convergence theorem with the
counting measure on the lq-norm, next use the dominated convergence
theorem on the Lp-norm to get that (2.19) goes to zero for N → ∞. �

In the case where our decomposition system is a biorthogonal wavelet basis, we
can sharpen the result, such that the coefficients in ḟ s

p,q, ḃs
p,q are unique.

Proposition 2.6

Let s ∈ R, 0 < q ≤ ∞. For Ḟs
p,q let 0 < p < ∞, L = d/ min{1, p, q} and for

Ḃs
p,q let 0 < p ≤ ∞ and L = d/ min{1, p} and k = max{bs − d/pc ,−1} for both

spaces. Assume that Ψ forms a biorthogonal wavelet basis for L2(R
d) satisfying

|(ψe)(α)(x)| ≤ C(1 + |x|)−M, |α| ≤ r2

|(ψ̃e)(α)(x)| ≤ C(1 + |x|)−M, |α| ≤ r1∫
xαψe(x)dx = 0, |α| ≤ r1 − 1

∫
xαψ̃e(x)dx = 0, |α| ≤ r2 − 1,

for r1, r2 ∈ N with r1 > L − d − s, r2 > s and M > max{L, d + r1, d + r2}. Then
for all f ∈ Ḟs

p,q there exists unique coefficients in ḟ s
p,q such that

f = ∑
e∈E

∑
J∈D

〈
f , ψ̃e

J
〉
ψe

J , (2.20)
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2 Bounded operators and decomposition systems

unconditional in S′/Pk where
〈

f , ψ̃e
J
〉

= ∑I∈D 〈 f , φI〉
〈
φI , ψe

J
〉
. We also have

‖ f‖Ḟsp,q
� ∑

e∈E

∥∥〈
f , ψ̃e

I
〉∥∥

ḟ sp,q
(2.21)

and for q 6= ∞ the series (2.20) also converges unconditionally in Ḟs
p,q, where a

similar statement and norm equivalence applies for Ḃs
p,q, and convergence in Ḃs

p,q
is guaranteed if p, q 6= ∞.

Proof:

We prove the result for Ḟs
p,q as the proof for Ḃs

p,q follows in a similar way.
Note that Ψ fulfills the requirements of Theorem 2.5 proving the proposition
except for the uniqueness of the coefficients. Assume that there exists
(ce

J)J∈D ∈ ḟ s
p,q such that

f = ∑
e∈E

∑
J∈D

ce
Jψ

e
J

with convergence in S′/Pk or Ḟs
p,q. This implies

0 =
www f − ∑

e∈E
∑
J∈D

ce
Jψ

e
J

www
Ḟsp,q

�
www

〈
f − ∑

e∈E
∑
J∈D

ce
Jψ

e
J , ψ̃e′

K
〉www

ḟ sp,q
.

From which we get
〈

f , ψ̃e′
K
〉

=
〈

∑
e∈E

∑
J∈D

ce
Jψ

e
J , ψ̃e′

K
〉

(2.22)

= ∑
I∈D

〈
∑
e∈E

∑
J∈D

ce
Jψ

e
J , φI

〉〈
φI , ψ̃e′

K
〉

= ∑
I∈D

∑
e∈E

∑
J∈D

ce
J
〈
ψe

J , φI
〉〈

φI , ψ̃e′
K
〉
.

From the assumption that (ce
J)J∈D ∈ ḟ s

p,q, and the boundedness of Ae and Ãe
on ḟ s

p,q, we have that the series converges absolutely, and we may therefore
interchange the sums.

= ∑
e∈E

∑
J∈D

∑
I∈D

ce
J
〈
ψe

J , φI
〉〈

φI , ψ̃e′
K
〉

= ∑
e∈E

∑
J∈D

ce
J
〈

∑
I∈D

〈
ψe

J , φI
〉
φI , ψ̃e′

K
〉

(2.23)

= ∑
e∈E

∑
J∈D

ce
J
〈
ψe

J , ψ̃e′
K
〉

(2.24)

= ce′
K

the equality (2.23) follows from the continuity of 〈·, ·〉 in L2, and (2.24)
follows from (1.10) by adapting the proof of Lemma 1.3. �

One should notice that series with only a finite number of terms from the wavelet
decomposition are in ḟ s

p,q and ḃs
p,q. This will be of interrest when we study n-term

approximation, especially the Bernstein inequality.
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3 Interpolation and approximation spaces

In this section we wish to characterize the space of functions which by n-
term approximation from a basis from Proposition 2.6 have a certain decay in
the error of approximation in Ḟs

p,q or Ḃs
p,q. The characterization will be done

with an interpolation space Xθ,q that involves the K-functional. Proving this
characterization will depend on Jackson and Bernstein inequalities for Xθ,q. We
begin by introducing the interpolation space Xθ,q.
Let X0, X1 be quasi-normed complete linear spaces. They are called a pair
(X0, X1) if each of them are continuously embedded in a linear Hausdorff
topological space Υ. For a pair we define the linear space X0 + X1 consisting
of elements f = f0 + f1, fi ∈ Xi, i = 0, 1 for which

‖ f‖X0+X1 = inf
f = f0+ f1

(‖ f0‖X0 + ‖ f1‖X1) < ∞. (3.1)

We also define the linear space X0 ∩ X1 for which

‖ f‖X0∩X1 = max{‖ f‖X0 , ‖ f‖X1} < ∞. (3.2)

Proposition 3.1

The spaces X0 ∩ X1 and X0 + X1 are complete in the quasi-norms (3.2) and (3.1),
respectively, and furthermore if X0, X1 are Banach spaces then so are X0 ∩ X1
and X0 + X1.

Proof:

First we observe that it follows from the definition of ‖·‖X0∩X1 that X0 ∩ X1
is quasi-normed (normed) if the spaces X0, X1 are. For the completeness
let xn be a Cauchy sequence in X0 ∩ X1. By the definition of ‖·‖X0∩X1 this
implies that xn is also Cauchy in X0 and X1. Since these spaces are complete
there exists element x0 ∈ X0 and x1 ∈ X1 such that

‖x0 − xn‖X0 → 0 ‖x1 − xn‖X1 → 0, for n → ∞. (3.3)

Since both spaces are continuously embedded in Y we have that xn → x0

and xn → x1 in Y. By the Hausdorff property we must have x0 = x1. The
element x = x0 = x1 is in X0 and X1, hence in X0 ∩ X1 and by (3.3) we
have that xn converges to x in ‖·‖X0∩X1 .
For ‖·‖X0+X1 it easily follows that ‖a f‖X0+X1 = |a|‖ f‖X0+X1 by the same
property of X0 and X1. For the triangle inequality notice that

inf
f +g=h0+h1

{‖h0‖X0 + ‖h1‖X1} ≤ ‖ f0 + g0‖X0 + ‖ f1 + g1‖X1

≤ C(‖ f0‖X0 + ‖ f1‖X1 + ‖g0‖X0 + ‖g1‖X1),
(3.4)
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3 Interpolation and approximation spaces

where f = f0 + f1 and g = g0 + g1 with f0,g0 ∈ X0 and f1,g1 ∈ X1.
Taking the infimum over all such decompositions of f and g in (3.4) yields
the triangle inequality (with C = 1 if X0, X1 are normed). Last we check
whether ‖x‖X0+X1 = 0 implies x = 0. Assume that ‖x‖X0+X1 = 0. As the

‖·‖X0+X1-norm is an infimum, there exists x0
n ∈ X0, x1

n ∈ X1 for all n ∈ N

such that
x = x0

n + x1
n

and

0 = ‖x‖X0+X1 ≤ ‖x0
n‖X0 + ‖x1

n‖X1 ≤ ‖x‖X0+X1 +
1
n =

1
n .

This implies that the sequence x0
n converges to 0 in X0, and also in Y since

X0 is continuosly embedded in Y. The same holds for x1
n. Then the sequence

{x0
n + x1

n}∞
n=1 converges to 0 in Y. Since x = x0

n + x1
n this implies that x = 0.

To establish the completeness we shall prove that every absolute convergent
series in X0 + X1 is convergent in X0 + X1. Assume that {xn}∞

n=1 is a
sequence in X0 + X1 such that ∑

∞
n=1‖xn‖X0+X1 < ∞. As before we can

write xn = x0
n + x1

n where x0
n ∈ X0 and x1

n ∈ X1, such that

‖x0
n‖X0 + ‖x1

n‖X1 ≤ ‖xn‖X0+X1 + 2−n.

This gives that ∑
∞
n=1‖x0

n‖X0 < ∞ and ∑
∞
n=1‖x1

n‖X1 < ∞, which by the

completeness of X0 and X1 implies that there exists an element x0 ∈ X0
and x1 ∈ X1 such that

lim
N→∞

www
N
∑
n=1

x0
n − x0

www
X0

= 0 lim
N→∞

www
N
∑
n=1

x1
n − x1

www
X1

= 0. (3.5)

The element x = x0 + x1 belongs to X0 + X1 as we have that x0 ∈ X0 and
x1 ∈ X1. Moreover

www
N
∑
n=1

xn − x
www

X0+X1
≤

www
N
∑
n=1

x0
n − x0

www
X0

+
www

N
∑
n=1

x1
n − x1

www
X1

.

Taking the limit for N → ∞ we have by (3.5) that ∑
N
n=1 xn converges to x

in X0 + X1. �

It is easy to see that X0 ∩ X1 ↪→ X0, X1 ↪→ X0 + X1. A third quasi-normed space
X is called an intermediate space for (X0, X1) if there are continuous embeddings

X0 ∩ X1 ↪→ X ↪→ X0 + X1. (3.6)

When X1 ↪→ X0, (3.6) simplifies to X1 ↪→ X ↪→ X0. As mentioned earlier we
shall work with the intermediate space Xθ,q, which we will need the K-functional
to define. The K-functional for f ∈ X0 + X1 and t ≥ 0 is given by

K( f , t) = inf
f = f0+ f1

(‖ f0‖X0 + t‖ f1‖X1).
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Note that the K-functional as a function of t is continuous and increasing and we
have

min{1, t}‖ f‖X0+X1 ≤ K( f , t) ≤ max{1, t}‖ f‖X0+X1 . (3.7)

If X1 ↪→ X0 then the K-functional simplifies to

K( f , t) = inf
g∈X1

(‖ f − g‖X0 + t‖g‖X1) (3.8)

and this quantity gives some approximation properties of f ∈ X0 by X1. When
K( f , t) < ε for some t then (3.8) implies that f can be approximated with error
‖ f − g‖X0 < ε by an element g ∈ X1 with norm ‖g‖X1 < εt−1. We can now
define the space Xθ,q = (X0, X1)θ,q for 0 < θ < 1, 0 < q ≤ ∞, consisting of the
functions f ∈ X0 + X1 for which

ρ( f )θ,q =





( ∫ ∞

0
(t−θK( f , t))q dt

t
) 1

q , 0 < q < ∞

sup
t>0

t−θK( f , t), q = ∞





< ∞. (3.9)

Our purpose is not to study Xθ,q in great detail, but we give some well-known
examples, show that they are complete and give a discretization of ρ( f )θ,q which
we will need in the charactization of the approximation spaces mentioned at the
beginning of the section.

Example 3.2

i) (Lr, Ls)θ,q = Lp,q where 1/p = (1 − θ)/r + θ/s and Lp,q is the Lorentz
space.

ii) (Lp, W p
r )θ,q = Bθr

p,q where W p
r is the Sobolev space and Bθr

p,q is the
inhomogenous Besov space.

For both examples see [3, p. 196]. ?

To show that Xθ,q is complete we first show that it is an intermediate space. By
using (3.7) we get that Xθ,q ↪→ X0 + X1 which follows from

ρ( f )q
θ,q ≥

∫ ∞

0
(t−θ min{1, t}‖ f‖X0+X1)

q dt
t ≥ C‖ f‖q

X0+X1
. (3.10)

That X0 ∩ X1 ↪→ Xθ,q follows from

ρ( f )q
θ,q ≤

∫ ‖ f‖X0
‖ f‖X1

0
(t−θt‖ f‖X1)

q dt
t +

∫ ∞

‖ f‖X0
‖ f‖X1

(t−θ‖ f‖X0)
q dt

t

≤ C
(‖ f‖X0

‖ f‖X1

)−θq
‖ f‖q

X0
≤ C‖ f‖q

X0∩X1
.

Proposition 3.3

The space Xθ,q is a complete linear space with quasi-norm ρ( f )θ,q. Moreover if
X0 and X1 are Banach spaces and 1 ≤ q ≤ ∞ then Xθ,q is also a Banach space.
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3 Interpolation and approximation spaces

Proof:

First we show that Xθ,q is quasi-normed (normed). The triangle inequality
(with C = 1 if X0, X1 are Banach spaces) and |a|ρ( f )θ,q = ρ(a f )θ,q follow
directly from the properties of X0 and X1. That f = 0 implies ρ( f )θ,q = 0
follows the same way as in X0 + X1, because we have K( f , t) = 0. For the
completeness we note two things. From (3.7) we have that as a quasi-norm
on X0 + X1, the K-functional for fixed t is equivalent to ‖·‖X0+X1 = K(·, 1).
Secondly from (3.10) we get that Xθ,q ↪→ X0 + X1. Take a Cauchy sequence
{ fn}n∈N in Xθ,q. We then have that there exists a f ∈ X0 + X1 such that
limn→∞ fn = f in X0 + X1 and K( fn, t) converges pointwise to K( f , t). By
using Fatou’s lemma we have

∫ ∞

0
(t−θK( f , t))q dt

t ≤ lim inf
n→∞

∫ ∞

0
(t−θK( fn, t))q dt

t < ∞,

as the Cauchy sequence fn is bounded in Xθ,q. Similary we apply Fatou’s
lemma to fm − fn to get that fn converges to f in Xθ,q. �

When X1 ↪→ X0 then the integral in (3.9) can be taken over [0, a] for any fixed
a > 0 to get

ρ( f )θ,q �





( ∫ a

0
(t−θK( f , t))q dt

t
) 1

q , 0 < q < ∞

sup
0<t≤a

t−θK( f , t), q = ∞

, (3.11)

as follows. For t ≥ a and g ∈ X1 we have

K( f , t) ≤ ‖ f‖X0 ≤ C(‖ f − g‖X0 + ‖g‖X0) ≤ C(‖ f − g‖X0 + a‖g‖X1),
so K( f , t) ≤ CK( f , a), t ≥ a. This implies that

∫ ∞

a
(t−θK( f , t))q dt

t ≤ CK( f , a)q ≤ CK( f , a
2 )q ≤ C

∫ a

a
2

(t−θK( f , t))q dt
t .

From (3.11) we can obtain discrete versions of the quasi-norm ρ( f )θ,q.

Proposition 3.4

Assume that X1 ↪→ X0 then

ρ( f )θ,q �





( ∞

∑
n=N

(2nrθK( f , 2−nr))q
) 1

q , 0 < q < ∞

sup
n≥N

2rnθK( f , 2−nr), q = ∞

(3.12)

and

ρ( f )θ,q �





( ∞

∑
n=N

(nrθK( f , n−r))q 1
n

) 1
q , 0 < q < ∞

sup
n≥N

nrθK( f , n−r), q = ∞,
(3.13)

where N ∈ N and r > 0 are arbitrary but fixed.
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Proof:

The equation in (3.11) can be rewritten as

ρ( f )θ,q �
( ∞

∑
n=N

∫ 2−nr

2−(n+1)r
(t−θK( f , t))q dt

t
)1/q

. (3.14)

Notice that
K( f , t) ≤ max{1, t

s}K( f , s),
which implies that K( f , ·) satisfies

2−rK( f , 2−nr) ≤ K( f , t) ≤ K( f , 2−nr), 2−(n+1)r ≤ t ≤ 2−nr. (3.15)

Consequently

2nθr2−rK( f , 2nr) ≤ t−θK( f , t) ≤ 2θr2nθrK( f , 2nr), 2−(n+1)r ≤ t ≤ 2−nr.

Which by substitution into (3.14) yields (3.12).
The other discrete version of ρ( f )θ,q we get by averaging over the number
of terms instead of only using the dyadic ones. Let N be fixed and observe
that by the monotonicity of K( f , t) we have

2n+1−1
∑

m=2n

(
mrθK( f , m−r)

)q 1
m ≤

2n+1−1
∑

m=2n

(
2(n+1)rθK( f , 2−nr)

)q 1
m

≤
(
2(n+1)rθK( f , 2−nr)

)q 2n

2n

= C
(
2nrθK( f , 2−nr)

)q
(3.16)

and also

2n+1−1
∑

m=2n

(
mrθK( f , m−r)

)q 1
m ≥

2n+1−1
∑

m=2n

(
2nrθK( f , 2−(n+1)r)

)q 1
m

≥
(
2nrθK( f , 2−(n+1)r)

)q 2n

2n+1

= C
(
2nrθK( f , 2−(n+1)r)

)q. (3.17)

By (3.16) and (3.17) we obtain

C
∞

∑
n=N+1

(
2nrθK( f , 2−nr)

)q
(3.18)

≤
∞

∑
n=N

2n+1−1
∑

m=2n

(
mrθK( f , m−r)

)q 1
m (3.19)

≤C
∞

∑
n=N

(
2nrθK( f , 2−nr)

)q.
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3 Interpolation and approximation spaces

Estimating the sum in (3.19) by the first term

∞

∑
m=2N

(
mrθK( f , m−r)

)q 1
m ≥

(
2NrθK( f , 2−Nr)

)q 1
2N

we readily obtain the missing first term in (3.18) such that we have

C
∞

∑
n=N

(
2nrθK( f , 2−nr)

)q ≤ 2
∞

∑
n=2N

(
nrθK( f , n−r)

)q 1
n

≤ C
∞

∑
n=N

(
2nrθK( f , 2−nr)

)q

which yields (3.13) for n = 2N by using (3.12). For general n we find m
such that 2m ≤ n ≤ 2m+1 and again apply (3.12). �

If we have X1 ↪→ X0, then equation (3.12) gives the following embedding
properties of Xθ,q

Xθ,s ↪→ Xα,r (3.20)

if θ > α or if θ = α and q ≤ r which we now show. The case θ = α and q ≤ r
follows directly from the embeddings of lp and the case θ > α from

( ∞

∑
n=N

(2nrαK( f , 2−nr))s
)1/s

≤
( ∞

∑
n=N

2nr(α−θ)s
)1/s

sup
n≥N

2nrθK( f , 2−nr)

≤ C
( ∞

∑
n=N

(2nrθK( f , 2−nr))q
)1/q

.

Before we introduce the approximation spaces and characterize them by Xθ,q we
need to impose some conditions on the subspaces Φn, n ∈ N0 by which we shall
approximate f ∈ X. We will also introduce the Jackson and Bernstein inequalities
needed.
We assume that X is a complete linear space with quasi-norm ‖·‖X and that the
sequence of subspaces Φ = {Φn}∞

n=0 have the properties listed below

i) 0 ∈ Φn; Φ0 = {0},
ii) Φn ⊂ Φn+1,
iii) aΦn = Φn for all a 6= 0,
iv) Φn + Φn ⊂ Φcn for some fixed constant c ∈ N,
v) ∪ Φn is dense in X.





(3.21)

If the subspaces Φn are linear then one has c = 1 in iii). Property v) is not
necessary for the characterization, but seems natural. For every f ∈ X we define
the error of approximation σn( f )X for f by the subspace Φn as

σn( f )X = inf
φ∈Φn

‖ f − φ‖X, n ∈ N and σ0( f ) = ‖ f‖X.
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We also denote gn ∈ Φn a near-best approximation to f from Φn if

‖ f − gn‖X ≤ Cσn( f )X .

We shall futhermore assume that there exists a complete linear space Y with quasi-
norm ‖·‖Y that is continuously embedded in X such that the following Jackson
and Bernstein inequalities hold for n ∈ N

σn( f )X ≤ Cn−r‖ f‖Y, f ∈ Y, (J)

‖φ‖Y ≤ Cnr‖φ‖X, φ ∈ Φn. (B)

The conditions (3.21), (J) and (B) give us the following proposition which will be
the key to characterizing the approximation spaces as Xθ,q.

Lemma 3.5

Assume that X, Y are a pair and that Y ↪→ X. Furthermore assume that r > 0
and that {Φn}∞

n=0 satisfies the conditions from (3.21).

i) If Jackson inequality (J) is satisfied for n ∈ N, then

σn( f )X ≤ CK( f , n−r), f ∈ X, n ∈ N . (3.22)

ii) If Bernstein inequality (B) is satisfied for n ∈ N, then with µ sufficiently
small depending on Y

K( f , 2−mr) ≤ C2−mr
( m

∑
k=0

(
2krσ2k−1 ( f )X

)µ
)1/µ

, f ∈ X, n ∈ N,

(3.23)
where σ2−1 = σ0.

Proof:

i) Take g ∈ Y. From the triangle inequality and Jacksons inequality (J) we
have that

σn( f )X ≤ C(‖ f − g‖X + σn(g)X) ≤ C(‖ f − g‖X + n−r‖g‖Y).

Taking the infimum over all g ∈ Y we find by (3.8) that (3.22) is fulfilled.
ii) First we intend to prove (3.23) for n = 2m. Let φk be a near-best
approximation to f from Φ2k , i.e. ‖ f − φk‖X ≤ Cσ2k ( f )X, k ∈ N0. Now
define φ′

k = φk − φk−1, k ∈ N, with φ−1 = 0. This gives

‖φ′
k‖X ≤ C‖ f − φk‖X + C‖ f − φk−1‖X ≤ Cσ2k−1 ( f ), for k ∈ N0, (3.24)

where we use (3.21) i) in the case k = 0. From the definition of φ′
k we have

that ∑
m
k=0 φ′

k = φm, using Lemma A.7 we furthermore have that ‖φm‖Y ≤
C(∑

m
k=0‖φ′

k‖
µ
Y)1/µ which yields

K( f , 2−mr) ≤‖ f − φm‖X + 2−mr‖φm‖Y

≤Cσ2m( f )X + 2−mr
( m

∑
k=0

‖φ′
k‖

µ
Y

)1/µ
.
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3 Interpolation and approximation spaces

Then by the use of (B) and (3.24), as we have that φ′
k ∈ Φc2k by property

ii)-iv) from (3.21), we find that

≤Cσ2m( f )X + C2−mr
( m

∑
k=0

(2kr‖φ′
k‖X)µ

)1/µ

≤C2−mr
( m

∑
k=0

(2krσ2k−1 ( f )X)µ
)1/µ

. (3.25)

�

We are now ready to define the approximation spaces and give their charateriza-
tion as interpolation spaces. Let

‖ f‖A αq =





( ∞

∑
n=1

(
nασn−1( f )X

)q 1
n

)1/q
, if q < ∞

sup
n≥1

(
nασn−1( f )X

)
, if q = ∞,

(3.26)

and define the approximation spaces A α
q (X, Φ) = A α

q as all f ∈ X for which

‖ f‖A αq is finite. A
α

q can be seen as the space of functions for which the error of

approximation σn−1( f )X decays at the rate n−α with q as a fine tuning parameter.
Some details are worth noting. If ‖ f‖A αq = 0 then in particular one has that

σ0( f )X = 0 proving that f = 0, from (3.21) iii) and (3.21) iv) one has that
σcn(a f + bg) ≤ C(aσn( f ) + bσn(g)), f , g ∈ A

α
q , a, b ∈ C showing that ‖·‖A αq is

a quasi-norm. By the same means as in the proof of Proposition 3.3 we get that
A α

q is complete. Using the same technique as was used to achieve (3.20) we have
the following continuous embeddings

A
α1q1 ↪→ A

α2q2 (3.27)

if α2 < α1 or if α1 = α2 and q1 ≤ q2. By omitting the term n = 1 in (3.26) we get
the quasi-seminorm | · |A αq and by the same technique as was used in the proof of

Proposition 3.4 we have the equivalence

| f |A αq �





(
∑

∞
n=1

(
2nασ2n−1 ( f )X

)q)1/q
, if q < ∞

supn≥1
(
2nασ2n−1 ( f )X

)
, if q = ∞.

(3.28)

Using the discrete versions of the norms we have the following proposition.

Proposition 3.6

Assume that X, Y is a pair and that Y ↪→ X. Futhermore assume that Φ are
subsets of X satisfying the conditions of (3.21). If the Jackson inequality (J) and
Bernstein inequality (B) are valid for the spaces X and Y with r > 0, then for
0 < α < r and 0 < q ≤ ∞ we have that

A
α

q (X, Φ) = (X, Y)α/r,q. (3.29)
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Proof:

For the sake of notation define Z = (X, Y)α/r,q and ‖ f‖Z = ρ( f )α/r,q,
with equivalent discrete representation (3.12) with θ = α/r. We first show
that Z ↪→ A α

q by using (J). The conditions of Lemma 3.5 i) are satisfied

such that we have that σ2n( f )X ≤ CK( f , 2−nr) yielding | f |A αq ≤ C‖ f‖Z.

Futhermore using that Z is an intermediate space we have ‖ f‖X ≤ C‖ f‖Z,
resulting in ‖ f‖A αq ≤ ‖ f‖Z.

Next we show that A
α

q ↪→ Z by using (B). Set bn = K( f , 2−nr) for n ≥ 0
and bn = 0 for n < 0 and an = σ2n−1( f )X for n ≥ 0 and an = 0 for n < 0,
then by Lemma 3.5 ii) we have that

bn ≤ C2−nr
( n

∑
j=−∞

(2jraj)
µ
)1/µ

.

So by Lemma A.5 we obtain

( ∞

∑
n=0

(
2nαK( f , 2−nr)

)q)1/q
≤ C

( ∞

∑
n=0

(
2nασ2n−1 ( f )X

)q)1/q

for all α < r, which implies that ‖ f‖Z ≤ C‖ f‖A αq . �

n-term approximation from wavelet bases

We now apply the characterization to approximation spaces with n-term approx-
imation by a basis B from Proposition 2.6. For appropriate indices we set X
to Ḟs

p,t or Ḃs
p,t and Y = Ḃγ

τ,r and let B be a basis for X and Y with the related

norm equivalence (2.21). By Proposition 3.6 we need to show that (3.21) and the
Jackson and Bernstein inequalities are satisfied. We define Φn as

Φn =
{

f : f = ∑
I∈H

∑
e∈E

ae
Iψe

I , ae
I ∈ C, ψe

I ∈ B, #H = n
}

and note that (3.21) i)-iii) follow directly. Property iv) follows with c = 2 and
v) is fulfilled because B is a basis for Ḟs

p,t and Ḃs
p,t. To simplify the notation we

denote

AI( f ) = ∑
e∈E

〈
f , ψ̃e

I
〉

ψe
I and aI( f ) = ∑

e∈E
|
〈

f , ψ̃e
I
〉
|

which gives

‖ f‖Ḟs
p,t

� ‖aI( f )‖ ḟ s
p,t

and similarly for Ḃs
p,t. As B is a basis in the sense that the coefficients in ḟ s

p,t or

ḃs
p,t are unique we also have

Φn =
{

f : f = ∑
I∈H

AI( f ), #H = n
}

,
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3 Interpolation and approximation spaces

which will be crucial in showing the Bernstein inequalities. Part of the setup for
applying Proposition 3.6 are also the embeddings Ḃγ

τ,τ ↪→ Ḟs
p,t and Ḃγ

τ,r ↪→ Ḃs
p,t

which will follow by the proof of the Jackson inequalities. We begin with the
Jackson inequality for the Triebel-Lizorkin space.

Proposition 3.7

Let 0 < p < ∞, 0 < t ≤ ∞ and s < γ. If furthermore 1/τ = (γ − s)/d + 1/p
then for f ∈ Ḃγ

τ,τ we have

σn( f )Ḟs
p,t

≤ Cn−(γ−s)/d‖ f‖Ḃγ
τ,τ

. (3.30)

Proof:

We set ãI( f ) = aI( f )|I|−γ/d+1/τ−1/2 and M = ‖ãI( f )‖`τ = ‖ f‖Bγ
τ,τ

. For

j ∈ Z, ε > 0 we define

Λj,ε = {I : 2−jε < ãI( f ) ≤ 2−j+1ε}
and Sj,ε = ∑I∈Λj,ε AI( f ). We will approximate f by Tk,ε = ∑j≤k Sj,ε. Since

(ãI( f ))I∈D ∈ `τ it follows that for r > 0 we have

#{I : ãI( f ) ≥ r} ≤ Mτr−τ

which gives that Tk,ε ∈ ΦN , N =
⌊

Mτ2kτε−τ
⌋
. To prove (3.30) we will

show that
‖ f − Tk,ε‖Ḟs

p,t
≤ C(Mτ2kτε−τ)−(γ−s)/d‖ f‖Ḃγ

τ,τ
.

and the result for general n ∈ N will then follow from choosing ε = Mn−1/τ

and k = 0. First we take t ≥ p and get

‖ f − Tk,ε‖p
Ḟs

p,t
=

∫

Rd

(
∑

j≥k+1
∑

I∈Λj,ε

(aI( f )|I|−s/d−1/2χI)
t
)p/t

dx

≤
∫

Rd ∑
j≥k+1

∑
I∈Λj,ε

(aI( f )|I|−s/d−1/2χI)
pdx

≤ 2pεp ∑
j≥k+1

2−jp ∑
I∈Λj,ε

∫

Rd
(|I|−1/pχI)

pdx

= 2pεp ∑
j≥k+1

2−jp#Λj,ε

≤ 2pεp−τ Mτ ∑
j≥k+1

2−j(p−τ) ≤ CMτ(2−kε)p−τ.

Next for t < p we have

‖ f − Tk‖p
Ḟs

p,t
=

∫

Rd

(
∑

j≥k+1
∑

I∈Λj,ε

(aI( f )|I|−s/d−1/2χI)
t
)p/t

dx

≤ 2pεp
∫

Rd

(
∑

j≥k+1
∑

I∈Λj,ε

(2−j|I|−1/pχI)
t
)p/t

dx.
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Since p > τ we can choose δ > 0 sufficiently small such that (t− δ)p/t > τ.
Using Hölder’s inequality with p/(p − t) and p/t we get

= 2pεp
∫

Rd

(
∑

j≥k+1
2−jδ ∑

I∈Λj,ε

2−j(t−δ)|I|−t/pχI
)p/t

dx

≤ 2pεp
∫

Rd

(
∑

j≥k+1
2−jδp/(p−t)

) p
t

p−t
p

· ∑
j≥k+1

(
∑

I∈Λj,ε

2−j(t−δ)|I|−t/pχI
)p/t

dx

≤ Cεp2−kδp/t
∫

Rd ∑
j≥k+1

(
∑

I∈Λj,ε

2−j(t−δ)|I|−t/pχI
)p/t

dx

= Cεp2−kδp/t ∑
j≥k+1

2−j(t−δ)p/t
∫

Rd

(
∑

I∈Λj,ε

|I|−t/pχI
)p/t

dx.

For each finite set of dyadic cubes Λ we let IΛ(x) denote the smallest cube
in Λ that contains x.

≤ Cεp2−kδp/t ∑
j≥k+1

2−j(t−δ)p/t
∫

Rd
|IΛj,ε (x)|−1dx

≤ Cεp2−kδp/t ∑
j≥k+1

2−j(t−δ)p/t#Λj,ε

≤ CMτεp−τ2−kδp/t ∑
j≥k+1

2−j((t−δ)/t−τ)

≤ CMτ(2−kε)p−τ.

In both cases we have proved that

‖ f − Tk‖Ḟs
p,t

≤ C(Mτ2kτε−τ)−(p−τ)/(pτ)‖ f‖Ḃγ
τ,τ

= C(Mτ2kτε−τ)−(γ−s)/d‖ f‖Ḃγ
τ,τ

.

�

We note that Ḃγ
τ,τ ↪→ Ḟs

p,t follows by choosing M2kε−1 < 1, so that Tk = 0.
We proceed with the Jackson inequality for the Besov space which will use the
preceding Jackson inequality for the Triebel-Lizorkin space.

Proposition 3.8

Let 0 < p < ∞, 0 < t ≤ ∞ and s < γ. If furthermore 1/τ − 1/p = 1/r − 1/t =
(γ − s)/d then for f ∈ Ḃγ

τ,r we have

σn( f )Ḃs
p,t

≤ Cn−(γ−s)/d‖ f‖Ḃγ
τ,r

. (3.31)
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3 Interpolation and approximation spaces

Proof:

Let ε > 0 and define for every j ∈ Z

Λj,ε = {m ∈ Z : 2jε <

(
∑

I∈Dm

ãI( f )τ
)1/τ

≤ 2j+1ε},

where ãI( f ) is defined as in the previous proof to be |I|−γ/d+1/τ−1/2aI( f ).
Using 1/τ − 1/p = (γ − s)/d we note that

‖ f‖Ḃs
p,t

�
(

∑
m∈Z

(
ãI( f )p

)t/p)1/t
.

We now apply Proposition 3.7 on fm = ∑I∈Dm AI( f ) for m ∈ Z. Then for
every n ∈ Z+ we can find subsets Km

n ⊂ Dm with cardinality not exceding
n, such that

(
∑

I∈Dm\Kmn

ãI( f )p
)1/p

≤ C‖ fm − Sm
n ‖Ḟsp,p

≤ Cn−(γ−s)/d‖ fm − Sm
n ‖Ḃγ

τ,τ

≤ Cn(γ−s)/d
(

∑
I∈Dm

ãI( f )τ
)1/τ

, (3.32)

where Sm
n = ∑I∈Kmn AI( f ) ∈ Φn. Define Tε = ∑j≥0 ∑m∈Λj,ε Sm

b2jrc. By

construction we have that Tε ∈ ΦNε where Nε ≤ ∑j≥0 #Λj,ε2jr. We have by
definition of Λj,ε that

‖ f‖r
Ḃγ

τ,r
= ∑

j∈Z

∑
m∈Λj,ε

(
∑

I∈Dm

ãI( f )τ
)r/τ

≥ ∑
j∈Z

#Λj,ε(2jε)r,

whereby the estimate on Nε becomes Nε ≤ ε−r‖ f‖r
Ḃγ

τ,r
. We intend to prove

that

σNε( f )Ḃs
p,t

≤ C(ε−r‖ f‖r
Ḃγ

τ,r
)−(γ−s)/d‖ f‖Ḃγ

τ,r
.

The result for n ∈ N will follow by choosing ε = n−1/r‖ f‖Ḃγ
τ,r

and the

monotonicity of σn( f ). We estimate σNε( f )t
Ḃs

p,t
by splitting into two cases

σNε( f )t
Ḃs

p,t
≤ C

(www ∑
j<0

∑
m∈Λj,ε

fm
www

t

Ḃs
p,t

+
www ∑

j≥0
∑

m∈Λj,ε

( fm − Sm
b2jrc)

www
t

Ḃs
p,t

)

= C(At
1 + At

2). (3.33)

We estimate A1 by using the definition of Λj,ε and the assumptions that
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p > τ and t > r

At
1 ≤ C ∑

j<0
∑

m∈Λj,ε

(
∑

I∈Dm

ãI( f )τ
)t/τ

≤ C ∑
j<0

#Λj,ε(2jε)t

≤ Cεt−r ∑
j<0

#Λj,ε(2jε)r

≤ Cεt−r ∑
m∈Λj,ε

(
∑

I∈Dm

ãI( f )τ
)r/τ

≤ Cεt−r‖ f‖r
Ḃγ

τ,r
. (3.34)

For A2 we use (3.32) and the fact that 1/r − 1/t = (γ − s)/d to obtain

At
2 ≤ C ∑

j≥0
∑

m∈Λj,ε

(
∑

I∈Dm\Km
b2jrc

ãI( f )p
)t/p

≤ C ∑
j≥0

∑
m∈Λj,ε

2jrt(γ−s)/d
(

∑
I∈Dm

ãI( f )τ
)t/τ

= C ∑
j≥0

∑
m∈Λj,ε

(
∑

I∈Dm

ãI( f )τ
)t/τ

.

Now using the same technique as in the estimate for A1 we have that

≤ C ∑
j≥0

∑
m∈Λj,ε

2−j(t−r)(2jε)t

≤ C ∑
j≥0

#Λj,ε2jrεt

≤ Cεt−r‖ f‖r
Ḃγ

τ,r
. (3.35)

Recalling again that 1/r − 1/t = (γ − s)/d we observe that the estimates
(3.34) and (3.35) inserted into (3.33) yields

σNε( f )Ḃs
p,t

≤ C(ε−r‖ f‖r
Ḃγ

τ,r
)−(γ−s)/d‖ f‖Ḃγ

τ,r
. (3.36)

�

As before we note that Ḃγ
τ,r ↪→ Ḃs

p,t follows by choosing ε−1‖ f‖Ḃγ
τ,r

< 1. It

only remains to establish the Bernstein inequalities. We prove it for the Triebel-
Lizorkin space as the Besov space follows in a similar vein.
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3 Interpolation and approximation spaces

Proposition 3.9

Let 0 < p < ∞, 0 < t ≤ ∞ and s < γ. Define τ by the equation 1/τ =
(γ − s)/d + 1/p, then for every S ∈ Φn

‖S‖Ḃγ
τ,τ

≤ Cn(γ−s)/d‖S‖Ḟs
p,t

.

Proof:

Let S = ∑I∈Λ AI(S) ∈ Φn and consider the following

‖S‖τ
Ḃγ

τ,τ
= ∑

I∈Λ

(|I|−γ/d+1/τ−1/2aI(S))τ

=
∫

Rd ∑
I∈Λ

|I|τ(s−γ)/d(|I|−s/d−1/2aI(S))τχIdx

≤
∫

Rd

(
sup
I∈D

(
|I|−s/d−1/2aI(S)

)τ
χI

)
∑
I∈Λ

|I|τ(s−γ)/dχIdx

≤
∫

Rd

(
∑
I∈D

(|I|−s/d−1/2aI(S))χI)
t
)τ/t

∑
I∈Λ

|I|τ(s−γ)/dχIdx,

where we have used Hölder’s inequality and the embedding properties of
the `t/τ-norm. By using Hölder’s inequality once more with exponents p/τ
and p/(p − τ) we find

≤
www ∑

I∈D
(|I|−s/d−1/2aI(S))χI)

t
)1/twww

τ

Lp

·
( ∫

Rd

(
∑
I∈Λ

|I|τ(s−γ)/dχI
)p/p−τ

dx
)p−τ/p

≤C‖S‖τ
Ḟs

p,t

( ∫

Rd
|IΛ(x)|τp(s−γ)/d(p−τ)dx

)(p−τ)/p
,

where IΛ(x) denotes the smallest cube in Λ that contains x. From the
equation defining τ we have

= C‖S‖τ
Ḟs

p,t

( ∫

Rd
|IΛ(x)|−1dx

)(p−τ)/p

≤C(#Λ)(p−τ)/p‖S‖τ
Ḟs

p,t

= Cnτ(γ−s)/d‖S‖τ
Ḟs

p,t
.

�

Proposition 3.10

Let 0 < p < ∞, 0 < t ≤ ∞ and s < γ. Define τ and r by the equation
1/τ − 1/p = 1/r − 1/t = (γ − s)/d. Then for S ∈ Φn one has

‖S‖Ḃγ
τ,r

≤ Cn(γ−s)/d‖S‖Ḃs
p,t

. �
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Having proved (3.21) for our choice of Φ and the Jackson and Bernstein
inequalities we now have the desired characterization of the approximation spaces
by interpolation spaces.

Theorem 3.11

Let 0 < p < ∞, 0 < q,t ≤ ∞, γ,s ∈ R. If 0 < α < γ − s and τ is defined as
1/τ = (γ − s)/d + 1/p then

A
α/d

q (Ḟs
p,t) = (Ḟs

p,t, Ḃγ
τ,τ)α/(γ−s),q.

�

Theorem 3.12

Let 0 < p < ∞, 0 < q,t ≤ ∞, γ,s ∈ R. If 0 < α < γ − s and τ and r is defined
as 1/τ − 1/p = 1/r − 1/t = (γ − s)/d then

A
α/d

q (Ḃs
p,t) = (Ḃs

p,t, Ḃγ
τ,r)α/(γ−s),q.

�

Note that if we had taken a decomposition system from Theorem 2.5 instead
of a basis the Jackson inequalities would still hold, since they only require the
system to be spanning and have the related norm equivalences. The proof of the
Bernstein inequalities on the other hand require norm equivalence for all n-term
approximations. So for decomposition systems we only have the embeddings

(Ḟs
p,t, Ḃγ

τ,τ)α/(γ−s),q ↪→ A
α/d

q (Ḟs
p,t)

(Ḃs
p,tḂ

γ
τ,r)α/(γ−s),q ↪→ A

α/d
q (Ḃs

p,t).

We end this section with a result that follows from the Jackson and Bernstein
estimates in the Triebel-Lizorkin space and the following lemma.

Lemma 3.13

Let s ∈ R, 0 < p, γ < ∞ and 1/q = α/d + 1/p. If 0 < α < γ and 1/τ =
γ/d + 1/p then (

Ḃs
p,p, Ḃs+γ

τ,τ
)

α/γ,q = Ḃs+α
q,q .

Proof:

Assume that T is a linear mapping of a distribution f to its wavelet
coefficients by the form

T : f → (|I|−s/d+1/p−1/2aI( f ))I .
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3 Interpolation and approximation spaces

Especially one has for any f ∈ Ḃs
p,p that

‖T f‖p
`p = ∑

I∈D
(|I|−s/d+1/p−1/2aI( f ))p

= ‖ f‖p
Ḃsp,p

.

As we have assumed that 1/τ = γ/d + 1/p we also have that

‖T f‖τ
`τ = ∑

I∈D
(|I|−(s+γ)/d+1/τ−1/2aI( f ))τ

= ‖ f‖τ
Ḃs+γ

τ,τ
.

By this we have that f ∈ (Ḃs
p,p, Ḃs+γ

τ,τ )θ,q if and only if we have that T f ∈
(`p, `τ)θ,q. If 1/q = (1 − θ)/p + θ/τ then (`p, `τ)θ,q = `q, this follows by
using example 3.2 with the counting measure and the fact that `q,q = `q. If
we choose θ = α/γ then 1/q = α/d + 1/p and we have

‖T f‖(`p,`τ)α/γ,q = ‖T f‖`q

=
(

∑
I∈D

(|I|−s/d+1/p−1/2aI( f ))q)1/q

= ‖ f‖Ḃs+α
q,q

,

which proves that f ∈ (Ḃs
p,p, Ḃs+γ

τ,τ )α/γ,q if and only if f ∈ Ḃs+α
q,q . �

The following proposition shows that the approximation space does not depend
on the fine tuning parameter t of the Triebel-Lizorkin space.

Proposition 3.14

Let 0 < p < ∞, 0 < q ≤ ∞, α > 0 and s ∈ R. Then for 0 < t1, t2 ≤ ∞ we have

A
α/d

q (Ḟs
p,t1) = A

α/d
q (Ḟs

p,t2) .

Moreover, if 1/q = α/d + 1/p and 0 < t ≤ ∞ then one has

A
α/d

q (Ḟs
p,t) = Ḃs+α

q,q .

Proof:

We shall first prove that for τ with the property that 1/τ = 1/p + α/d and
τ̃ = min{1, τ} we have

A
α/d

τ̃ (Ḟs
p,t) ↪→ Ḃs+α

τ,τ ↪→ A
α/d

∞ (Ḟs
p,t) , (3.37)

where 0 < t ≤ ∞. Using the Jackson inequality from Proposition 3.7 we
get that

| f |
A

α/d
∞ (Ḟs

p,t)
= sup

n≥1
2nα/dσ2n−1 ( f )Ḟs

p,t

≤ C sup
n≥1

2(α−(s+α−s))(n−1)/d‖ f‖Ḃs+α
τ,τ

= C‖ f‖Ḃs+α
τ,τ

.
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Together with the embedding Ḃs+α
τ,τ ↪→ Ḟs

p,t obtained from Proposition 3.7
we get

‖ f‖
A

α/d
∞ (Ḟs

p,t)
≤ C‖ f‖Ḃs+α

τ,τ
,

thereby proving the right-hand side of (3.37). To prove the left-hand side
take a near-best approximation Sk to f from Φ2k−1 for k ∈ N and let S0 = 0.
Then since ∪k∈NΦk is dense in Ḃs+α

τ,τ and by using the Bernstein inequality
Proposition 3.9 we find

‖ f‖τ̃
Ḃs+α

τ,τ
≤

∞

∑
k=1

‖Sk − Sk−1‖τ̃
Ḃs+α

τ,τ

≤ C
∞

∑
k=1

2kτ̃α/d‖Sk − Sk−1‖τ̃
Ḟs

p,t

≤ C
( ∞

∑
k=1

2kτ̃α/dσ2k−1 ( f )τ̃
Ḟs

p,t
+ ‖ f‖τ̃

Ḟs
p,t

)

≤ C‖ f‖τ̃
A

α/d
τ̃ (Ḟs

p,t)
,

proving (3.37). Let 0 < θ < 1 and q > 0, then if 1/τ1 = 1/p + α1/d and
1/τ2 = 1/p + α2/d one has

(
A

α1/d
τ̃1

(Ḟs
p,t), A α2/d

τ̃2
(Ḟs

p,t)
)

θ,q ⊂
(
Ḃs+α1

τ1,τ1 , Ḃs+α2
τ2,τ2

)
θ,q

⊂
(
A

α1/d
∞ (Ḟs

p,t), A α2/d
∞ (Ḟs

p,t)
)

θ,q .

However by the reiteration theorem [3, Theorem 7.3, p.195] and Theorem
3.11 we also have for 1/τ = γ/d + 1/p and max{α1, α2} < γ < ∞ that

(
A

α1/d
τ̃1

(Ḟs
p,t), A α2/d

τ̃2
(Ḟs

p,t)
)

θ,q =
((

Ḟs
p,t, Ḃs+γ

τ,τ
)

α1/γ,τ̃1
,
(
Ḟs

p,t, Ḃs+γ
τ,τ

)
α2/γ,τ̃2

)
θ,q

=
(

Ḟs
p,t, Ḃs+γ

τ,τ
)

α/γ,q

= A
α/d

q (Ḟs
p,t) .

with α = (1 − θ)α1 + θα2. An identical calculation with τ̃1, τ̃2 replaced by
∞ yields

A
α/d

q (Ḟs
p,t) =

(
A

α1/d
∞ (Ḟs

p,t), A α2/d
∞ (Ḟs

p,t)
)

θ,q .

This shows that

A
α/d

q (Ḟs
p,t) =

(
Ḃs+α1

τ1,τ1 , Ḃs+α2
τ2,τ2

)
θ,q,

for any t > 0. To prove the second part of the proposition we use Lemma
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3 Interpolation and approximation spaces

3.13 to get

A
α/d

q (Ḟs
p,t) =

(
Ḃs+α1

τ1,τ1 , Ḃs+α2
τ2,τ2

)
θ,q

=
((

Ḃs
p,p, Ḃs+γ

τ,τ
)

α1/γ,τ1
,
(
Ḃs

p,p, Ḃs+γ
τ,τ

)
α2/γ,τ2

)
θ,q

=
(
Ḃs

p,p, Ḃs+γ
τ,τ

)
α/γ,q. (3.38)

Since we have assumed that 1/q = α/d + 1/p we have by using Lemma
3.13 again that (3.38) equals Ḃs+α

q,q . �

As a corollary of Theorem 3.11 and Proposition 3.14 we have

Corollary 3.15

Let 0 < p < ∞, 0 < t ≤ ∞, γ ∈ R and 0 < α < γ − s. If 1/τ = (γ − s)/d + 1/p
and 1/q = α/d + 1/p, then

(
Ḟs

p,t, Ḃγ
τ,τ

)
α/(γ−s),q = Ḃs+α

q,q

�
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4 New bases by almost diagonal matrices

In this section we will apply some of the previous techniques to a new system Θ

consisting of functions that approximate one of the previous bases for Ḟs
p,q or Ḃs

p,q
to such a degree that they also form an unconditional wavelet basis. Afterwards
we will show that such a new system can be created by a finite linear combination
of shifts and dilates of a single nice function ϕ that has sufficient smoothness and
decay and no vanishing moments.
Take Ψ from Proposition 2.6. Choose ε > 0 and take Θ = {θe}e∈E satisfying

|(θe)(α)(x)− (ψe)(α)(x)| ≤ ε(1 + |x|)−M, |α| ≤ r2 (4.1)
∫

xαθe(x)dx = 0, |α| ≤ r1 − 1. (4.2)

Compared to earlier we are missing a way to expand ψe
I in the new system Θ,

the boundedness of the matrix that results from this and the uniqueness of this
expansion in Ḟs

p,q or Ḃs
p,q. All three things will follow from showing that the matrix

B =
(〈

θe′
J , ψ̃e

I
〉)

(I,e),(J,e′)∈D×E has a bounded invers on ḟ s
p,q or ḃs

p,q. To prove this

we introduce the term almost diagonal.

Definition 4.1

Let s ∈ R and for ḟ s
p,q let 0 < p < ∞, 0 < q ≤ ∞ and for ḃs

p,q let 0 < p, q ≤ ∞.
The infinite matrix

C = (c(I,e),(J,e′))(I,e),(J,e′)∈D×E

is called almost diagonal on ḟ s
p,q or ḃs

p,q if there exists ε > 0 and C > 0 such that

|c(I,e),(J,e′)| ≤ Cωs
ε,ε(I, J)

with

ωs
ε,ε̃(I, J) = min

{ (
`(I)
`(J)

)(d+ε̃)/2+s
,
(

`(J)
`(I)

)(ε̃−d)/2+L−s }

·
(

1 +
|xI − xJ |

max{`(I), `(J)}

)−L−ε

,

where L = d/ min{1, p, q} for ḟ s
p,q and L = d/ min{1, p} for ḃs

p,q. When no
confusion arises we use the notation ωs

ε,ε = ωε. �

Proposition 4.2

Let s ∈ R and for ḟ s
p,q let 0 < p < ∞, 0 < q ≤ ∞ and for ḃs

p,q let 0 < p, q ≤ ∞.

Assume that C is almost diagonal on ḟ s
p,q or ḃs

p,q then C is bounded on ḟ s
p,q or

ḃs
p,q.

Proof:

This follows by repeating the proof of Proposition 2.2. �
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4 New bases by almost diagonal matrices

Proposition 4.3

Let ε > 0, s ∈ R and for ḟ s
p,q let 0 < p < ∞, 0 < q ≤ ∞ and for ḃs

p,q let

0 < p, q ≤ ∞. There exists δ > 0 such that if C is almost diagonal on ḟ s
p,q or ḃs

p,q
and ‖I − C‖ε < δ, where

‖C‖ε = sup
(I,e),(J,e′)

|c(I,e),(J,e′)|
ωε(I, J) ,

then C has an invers on ḟ s
p,q or ḃs

p,q which is almost diagonal.

Proof:

Denote I − C = C̃ and assume that |c̃(I,e),(J,e′)| ≤ δωε(I, J) for some ε,

δ > 0. By the definition of ωε,ε̃(I, J) one has that it is a non-decreasing
function of ε and ε̃. This implies that ωε(I, J) < ωε̃,ε̃(I, J) for fixed ε̃ < ε.
We define an

I,J = bI,J for An = B. Lemma A.9 yields the following

|c̃2
(I,e),(J,e′)| =

∣∣ ∑
K,e′′

c̃(I,e),(K,e′′) c̃(K,e′′),(J,e′)
∣∣

≤ δ2 ∑
K,e′′

ωε(I, K)ωε̃(K, J)

≤ δ2 ∑
K,e

ωε̃,ε(I, K)ωε̃,ε̃(K, J)

≤ Cδ2ωε̃,ε̃(I, J)
= Cδ2ωε̃(I, J).

By induction one finds that |c̃n
(I,e),(J,e′)| ≤ Cn−1δnωε̃(I, J) for all n ∈ N.

Choosing δ such that δ < min{1, C−1} insures the convergence of the
Neumann series ∑n≥0 C̃n since the space of almost diagonal matrices with
finite ‖·‖ε̃ is a weighted `∞-space, therefore a Banach space. The Neumann
series ∑n≥0 C̃n = (I − C̃)−1 = C−1. By construction we have that

|c−1
(I,e),(J,e′)| ≤ (1 − Cδ)−1ωε̃(I, J). �

By using Proposition 4.3 and Proposition 4.2 we now show that B has a bounded
invers on ḟ s

p,q or ḃs
p,q.

Lemma 4.4

Let s ∈ R and for Ḟs
p,q let 0 < p < ∞, 0 < q ≤ ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p, q ≤ ∞, L = d/ min{1, p}. Furthermore let k = max{bs − d/pc ,−1},
r1 > L− d− s, r2 > s and M = max{L, d + r1, d + r2} for Ḟs

p,q and M = max{d +

r1, d + r2} for Ḃs
p,q. Take Ψ from Proposition 2.6. If Θ satisfies (4.1) and (4.2)

with sufficiently small δ, then B =
(〈

θe′
J , ψ̃e

I
〉)

(I,e),(J,e′)∈D×E has a bounded invers

on ḟ s
p,q or ḃs

p,q.
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Proof:

Choose ε > 0 such that L + ε ≤ M, s + ε/2 ≤ r2 and L − d − s + ε/2 ≤
r1 from Proposition 2.6. By Proposition 4.3 and Proposition 4.2 we only
need to show that B is almost diagonal and ‖I − B‖ε < δε. Take (I, e) 6=
(J, e′), |J| ≤ |I|. By the ortogonality of Ψ we have

∣∣〈θe′
J , ψ̃e

I
〉∣∣ =

∣∣
∫

Rd
(θe′

J (x) − ψe′
J (x))ψ̃e

I(x)dx
∣∣.

By repeating the proof of Lemma 2.1 we get

≤ Cδ
(

`(J)
`(I)

)r1+d/2(
1 +

|xI − xJ |
`(I)

)−M

≤ Cδωε(I, J)

Similary for (I, e) 6= (J, e′), |J| > |I|. For (I, e) = (J, e′) we use the
biorthogonality of Ψ to get

〈
θe

I , ψ̃e
I
〉

= 1 +
∫

Rd
(θe

I(x) − ψe
I(x))ψ̃e

I(x)dx

which gives

∣∣〈θe
I , ψ̃e

I
〉
− 1

∣∣ =
∣∣
∫

Rd
(θe

I(x) − ψe
I(x))ψ̃e

I(x)dx
∣∣ ≤ Cδ,

where we used the technique of the proof of Lemma 2.1 again. We now have
that B is almost diagonal and that ‖I − B‖ε ≤ Cδ. Choosing δ sufficiently
small such that Cδ < δε the result follows. �

We will follow the steps of page 20-25 to show that Θ forms an unconditional
wavelet basis for Ḟs

p,q or Ḃs
p,q. As previously we first insure that the series converges

in S′/Pk by bounding the series with the ḟ s
p,q, ḃs

p,q-norm of the coefficients.

Lemma 4.5

Let s ∈ R and for Ḟs
p,q let 0 < p < ∞, 0 < q ≤ ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p, q ≤ ∞, L = d/ min{1, p}. Furthermore let k = max{bs − d/pc ,−1},
r1 > L− d− s, r2 > s and M = max{L, d + r1, d + r2} for Ḟs

p,q and M = max{d +

r1, d + r2} for Ḃs
p,q. Take Ψ from Proposition 2.6 and let Θ be a family of functions

satisfying the conditions (4.1) and (4.2). If d = {d I,e} ∈ ḟ s
p,q or ḃs

p,q then the series

∑
(I,e)∈D×E

dI,eθe
I

converges in S′/Pk.
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4 New bases by almost diagonal matrices

Proof:

Notice that the assumption (4.1) implies that |(θe)(α)(x)| ≤ C(1 + |x|)−M.
We have that θe

I fulfills the same demands as θI from Lemma 2.3. By
repeating the proof of said lemma with θe

I instead of θI proves this lemma.
�

Next we need to expand the elements of Ψ in our new system Θ. Previously
in Theorem 2.6 we used that Θ formed a wavelet basis for L2(R

d). To prove
the result for our new system we will instead use the boundedness of B−1 as the
following lemma shows. We denote the entries of B−1 = (

〈
ψe

I , θ̃e′
J
〉
) as it seems to

be the most natural notation.

Lemma 4.6

Let s ∈ R and for Ḟs
p,q let 0 < p < ∞, 0 < q ≤ ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p, q ≤ ∞, L = d/ min{1, p}. Furthermore let k = max{bs − d/pc ,−1},
r1 > L− d− s, r2 > s and M = max{L, d + r1, d + r2} for Ḟs

p,q and M = max{d +

r1, d + r2} for Ḃs
p,q. Take Ψ from Proposition 2.6 and let Θ be a family of functions

satisfying the conditions (4.1) and (4.2). Then one has that

ψe
I = ∑

(J,e′)∈D×E

〈
ψe

I , θ̃e′
J
〉
θe′

J , (I, e) ∈ D × E, (4.3)

in S′/Pk.

Proof:

We shall prove the lemma for Ḟs
p,q, since Ḃs

p,q follows in a similar man-

ner. Using Kroneckers delta function we define the sequence δ I,e ={
δ(I,e),(J,e′)

}
J,e′∈D×Efor (I, e) ∈ D× E. We now use δI,e to write the sequence

of the series in (4.3), (
〈
ψe

I , θ̃e′
J
〉
)J,e′ = B−1δI,e. The conditions of Lemma 4.4

are satisfied and we therefore have that the matrix B−1 is bounded on ḟ s
p,q.

Since our sequence δI,e ∈ ḟ s
p,q it follows that (

〈
ψe

I , θ̃e′
J
〉
)J,e′ is in ḟ s

p,q. By

Lemma 4.5 we have that the series in (4.3) converges in S′/Pk. From this
we have

〈
∑
J,e′

〈
ψe

I , θ̃e′
J
〉
θe′

J , φK
〉

= ∑
J,e′

〈
ψe

I , θ̃e′
J
〉〈

θe′
J , φK

〉
.

By Proposition 2.2 we have that the matrix (
〈
θe′

J , φK
〉
)K,J is bounded on

ḟ s
p,q. Using the norm equivalence of φ, Proposition 1.4, we have that
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∑ J,e′
〈
ψe

I , θ̃e′
J
〉
θe′

J ∈ Ḟs
p,q. Next we expand in Ψ and for this we notice that

〈
∑
J,e′

〈
ψe

I , θ̃e′
J
〉
θe′

J , ψ̃e′′
∆

〉
= ∑

K
∑
J,e′

〈
ψe

I , θ̃e′
J
〉〈

θe′
J , φK

〉〈
φK, ψ̃e′′

∆

〉

= ∑
J,e′

〈
ψe

I , θ̃e′
J
〉〈

θe′
J , ψ̃e′′

∆

〉

=

{
1, if (I, e) = (∆, e′′),
0, if (I, e) 6= (∆, e′′),

which gives

∑
J,e′

〈
ψe

I , θ̃e′
J
〉
θe′

J = ∑
∆,e′′

〈
∑
J,e′

〈
ψe

I , θ̃e′
J
〉
θe′

J , ψ̃e′′
∆

〉
ψe′′

∆ = ψe
I .

�

Using the previous lemmas we now prove that the new system Θ also forms an
unconditional wavelet basis for Ḟs

p,q or Ḃs
p,q for appropriate indeces. This theorem

will be pivotal in the proof that a finite number of shifts and dilates of a single
function forms a basis for Ḟs

p,q or Ḃs
p,q.

Theorem 4.7

Let s ∈ R and for Ḟs
p,q let 0 < p < ∞, 0 < q ≤ ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p, q ≤ ∞, L = d/ min{1, p}. Furthermore let k = max{bs − d/pc ,−1},
r1 > L− d− s, r2 > s and M = max{L, d + r1, d + r2} for Ḟs

p,q and M = max{d +

r1, d + r2} for Ḃs
p,q. Take Ψ from Proposition 2.6 and let Θ be a family of functions

satisfying the conditions (4.1) and (4.2). Then for f ∈ Ḟs
p,q there exists unique

coefficients d = (dI,e)(I,e)∈D×E ∈ ḟ s
p,q such that

f = ∑
(I,e)∈D×E

dI,eθ
e
I (4.4)

in S′/Pk and in Ḟs
p,q if q 6= ∞. Furthermore one has that

‖ f‖Ḟsp,q
� ‖∑

e∈E
dI,e‖ ḟ sp,q

.

In Ḃs
p,q a similar phrasing applies with convergens in Ḃs

p,q for p, q 6= ∞.

Proof:

We give the proof for Ḟs
p,q as the proof for Ḃs

p,q follows in a similar vein. By

Lemma 4.6 we have that ψe
I = ∑J,e′

〈
ψe

I , θ̃e′
J
〉
θe′

J in S′/Pk. From Lemma 4.4

one has the boundedness of the matrix B−1 on ḟ s
p,q. With minor alterations

the proof in Theorem 2.5 can be repeated to show the norm equivalence
and the convergence of (4.4) with d J,e′ = ∑I,e

〈
f , ψ̃e

I
〉〈

ψe
I , θ̃e′

J
〉
. To show the
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4 New bases by almost diagonal matrices

uniqueness of the coefficients in ḟ s
p,q, assume that there are two sequences

d1 and d2 both in ḟ s
p,q such that

∑
J,e′

d1
J,e′θ

e′
J = f = ∑

J,e′
d2

J,e′θ
e′
J in S′/Pk.

We expand each θe′
J in the wavelet basis formed by Ψ and get

∑
J,e′

∑
I,e

di
J,e′

〈
θe′

J , ψ̃e
I
〉
ψe

I = ∑
I,e

∑
J,e′

di
J,e′

〈
θe′

J , ψ̃e
I
〉
ψe

I , i = 1, 2

using the boundedness of B on ḟ s
p,q and Lemma 2.3. By the uniqueness of

the wavelet coefficients in ḟ s
p,q from the wavelet basis formed by Ψ we then

have that

Bd1 = Bd2.

Finally we apply Lemma 4.4 to get d1 = d2. �

Bases from shifts and dilates of a single function

We now show that a finite number of linear combinations of shifts and dilates of
a single function with sufficient smoothness and decay and no vanishing moments
fulfills (4.1) and (4.2) with Meyer’s wavelet set [2, p.137]. Therefore we can use
Theorem 4.7 to create a basis for Ḟs

p,q or Ḃs
p,q from these. Let {ϕn}n∈N be a family

of functions in Cr2+1(Rd), which satisfy:

There exists M′
> d + r1, µ > 0 such that

|ϕ(α)
n (x)| ≤ C n|α|µ+d

(1 + n|x|)M′ , |α| ≤ r2 + 1,
(4.5)

∫

Rd
ϕn(x)dx = 1. (4.6)

One way of constructing ϕn is taking a function ζ ∈ Cr2+1(R+) with |ζ(α)(t)| ≤
C(1 + t)−M′

, |α| ≤ r2 + 1, and then defining ϕn(·) = C1ndζ(n| · |) with C1 chosen

such that (4.6) is satisfied. Examples of ζ are e−· and (1 + ·)−M′′
, M′′ ≥ M′.

To approximate Meyer wavelets we will use the set ΘK,n,

ΘK,n =
{

θ : θ(·) =
K
∑
i=1

ai ϕn(· + bi), ai ∈ R, bi ∈ R
d}

Proposition 4.8

Let {ϕn}n∈N satisfy (4.5) and (4.6) with M′ > M > d and let Ψ be Meyer’s
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wavelet set. Then for ε > 0 there exists K, n ≥ 1 such that for ψe ∈ Ψ there is
θ ∈ ΘK,n for which

|(ψe)(α)(x)− θ(α)(x)| ≤ ε(1 + |x|)−M, |α| ≤ r2, (4.7)
∫

Rd
xαθ(x)dx = 0, |α| ≤ r1 − 1. (4.8)

Proof:

We begin with showing that for any function g ∈ Cr2+1(Rd) satisfying

|g(α)(x)| ≤ C(1 + |x|)−M′ , |α| ≤ r2 + 1 (4.9)

there exists θ′ ∈ ΘK,n for which

|g(α)(x) − (θ′)(α)(x)| ≤ ε(1 + |x|)−M, |α| ≤ r2.

This we will do in three steps first approximating g by a convolution operator
ωn = g ∗ ϕn, then approximating ωn by λq,n which is the integral in ωn
taken over a dyadic cube and finally approximating λq,n by a discretization
θm,q,n. We have

g(α)(x)− ω
(α)
n (x) =

∫

Rd
(g(α)(x)− g(α)(x − y))ϕn(y)dy, |α| ≤ r2, (4.10)

by using (4.6). Define U = nη/2M, where η = min{1, M′− M}. For |x| ≤ U
we have by using the mean value theorem that

|g(α)(x) − g(α)(x − y)| ≤ C|y|, |α| ≤ r2.

Inserting this in (4.10) we get

|g(α)(x)− ω
(α)
n (x)| ≤ C

∫

Rd

|y|nd

(1 + n|y|)M′ dy

≤ Cn−1 ≤ Cn−η/2

UM ≤ Cn−η/2

(1 + |x|)M , (4.11)

using that U ≥ 1 and M′ > d + 1. For |x| > U we split the integral over
Ω = {y : |y| ≤ |x|/2} and Ωc. If y ∈ Ω then |x − y| ≥ |x|/2 and we have

|g(α)(x)− g(α)(x − y)| ≤ |g(α)(x)| + |g(α)(x − y)| ≤ C
(1 + |x|)M′ .

Therefore
∫

Ω
|g(α)(x)− g(α)(x − y)||ϕn(y)|dy ≤ C

(1 + |x|)M′

≤ C
(1 + |U|)η(1 + |x|)M ≤ Cn−η2/2M

(1 + |x|)M .

(4.12)
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4 New bases by almost diagonal matrices

Integrating over Ωc = {y : y > |x|/2} for |x| > U we get
∫

Ωc
|g(α)(x) − g(α)(x − y)||ϕn(y)|dy

≤
∫

Ωc
|g(α)(x)||ϕn(y)| dy +

∫

Ωc
|g(α)(x − y)||ϕn(y)|dy

≤ C
(1 + |x|)M′ +

∫

Ωc

Cnd

(1 + |x − y|)M′(1 + n|y|)M′ dy

≤ C
(1 + |x|)M′ +

Cnd

(1 + n|x|)M′ ≤
C(1 + nd−M′

)

(1 + |x|)M′ ≤ C(n−η2/2M + n−η3/2M)

(1 + |x|)M ,

(4.13)

where we used (2.7) and the same estimate as in (4.12). So by choosing n
sufficiently large in (4.11), (4.12) and (4.13) we get

|g(α)(x)− ω
(α)
n (x)| ≤ ε(1 + |x|)−M, |α| ≤ r2. (4.14)

For the next step we fix n and approximate ωn by λq,n defined as

λq,n(·) =
∫

Q
g(y)ϕn(· − y)dy,

where Q = [−2q, 2q]d, q ∈ N. Obviously we have

ω
(α)
n (x)− λ

(α)
q,n (x) =

∫

Rd\Q
g(y)ϕ

(α)
n (x − y)dy, |α| ≤ r2,

from which we get

|ω(α)
n (x)− λ

(α)
q,n (x)| ≤ C

∫

Rd\Q

nr2µ+d

(1 + |y|)M′(1 + n|x − y|)M′ dy = L.

We first estimate the integral for |x| ≤ 2q−1, which gives that |y| ≥ 2|x|
and |x − y| ≥ 2q−1 and hence

L ≤ Cnr2µ+d

(1 + |x|)M′

∫

Rd\Q

1
(1 + n|x − y|)M′ dy

≤ Cnr2µ+d

(1 + |x|)M′

∫

|u|≥2q−1

1
(1 + n|u|)M′ du ≤ Cnr2µ+d−M′2(d−M′)(q−1)

(1 + |x|)M′ .

For |x| > 2q−1 we split the integral over Ω = (R
d\Q) ∩ {y : |y| ≤ |x|/2}

and Ω′ = (Rd\Q)\Ω. If y ∈ Ω then |x − y| ≥ |x|/2 so we get

∫

Ω

nr2µ+d

(1 + |y|)M′(1 + n|x − y|)M′ dy ≤ Cnr2µ+d

(1 + n|x|)M′

∫

Rd

1
(1 + |y|)M′ dy

≤ Cnr2µ+d−M′

(1 + |x|)M′ ≤ Cnr2µ+d−M′2−η(q−1)

(1 + |x|)M .
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If y ∈ Ω′ then |y| > |x|/2 and hence

∫

Ω′

nr2µ+d

(1 + |y|)M′(1 + n|x − y|)M′ dy ≤ Cnr2µ

(1 + |x|)M′

∫

Rd

nd

(1 + n|x − y|)M′ dy

≤ Cnr2µ

(1 + |x|)M′ ≤
Cnr2µ2−η(q−1)

(1 + |x|)M .

Therefore in both cases we have

L ≤ Cnr2µ2−ηq

(1 + |x|)M .

Choosing q sufficiently large we obtain

|ω(α)
n (x) − λ

(α)
q,n (x)| ≤ ε(1 + |x|)−M, |α| ≤ r2. (4.15)

For the final step we fix q and approximate λq,n by a discretization θm,q,n.
Let Hm,q denote the set of all dyadic subcubes of Q of sidelength 2−m,
m ∈ N. We define

θm,q,n(·) = ∑
I∈Hm,q

|I|g(xI)ϕn(· − xI)

and note that θm,q,n ∈ Θ2d(q+m+1) ,n. We have

λ
(α)
q,n (x) − θ

(α)
m,q,n(x) = ∑

I∈Hm,q

∫

I
g(y)ϕ

(α)
n (x − y) − g(xI)ϕ

(α)
n (x − xI)dy

= ∑
I∈Hm,q

∫

I
F(y) − F(xI)dy, |α| ≤ r2,

where F(·) = g(·)ϕ(α)(x − ·). By using the mean value theorem we get

|λ(α)
q,n (x) − θ

(α)
m,q,n(x)| ≤ C ∑

I∈Hm,q

∫

I
|y − xI | max

z∈l(xI ,y)
|β|=1

|F(β)(z)|dy

≤ C2qd−m max
z∈Q
|β|=1

|F(β)(z)|

≤ C2qd−m max
z∈Q

|α|≤r2+1

|ϕ(α)
n (x − z)|

where l(xI , y) is the line-segment between xI and y. If |x| ≤
√

d2q+1, z ∈ Q
and |α| ≤ r2 + 1 then

|ϕ(α)
n (x − z)| ≤ Cn(r2+1)µ+d ≤ Cn(r2+1)µ+d2qM

(1 + |x|)M .
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4 New bases by almost diagonal matrices

If |x| >
√

d2q+1 and z ∈ Q then |x − z| ≥ |x|/2 and hence for |α| ≤ r2 + 1
we have

|ϕ(α)
n (x − z)| ≤ Cn(r2+1)µ+d

(1 + n|x|)M′ ≤
Cn(r2+1)µ+d−M′

(1 + |x|)M .

In both cases by choosing m sufficiently large we obtain

|λ(α)
q,n (x)− θ

(α)
m,q,n(x)| ≤ ε(1 + |x|)−M, |α| ≤ r2. (4.16)

From (4.14)-(4.16) we conclude that for any ε > 0 there exists K, n ≥ 1
such that for any g satisfying (4.9) there exists θ ′ ∈ ΘK,n (K = 2d(q+m+1),
θ′ = θm,q,n) such that

|g(α)(x)− (θ′)(α)(x)| ≤ 3ε(1 + |x|)−M, |α| ≤ r2. (4.17)

Next we will use the first part of the proof to show that there exists θ ∈ ΘK,n
which satisfies both (4.7) and (4.8). We shall do this using some of the
specific properties of Meyers wavelets and the operator ∆r

hvj

(∆r
hvj

f )(x) =
r

∑
k=0

(−1)r+k
(r

k

)
f (x + khvj),

where vj is the unitvector in the j’te direction. By using the binomial
formula we get that

(∆r
hvj

f )̂ (ξ) =
∫

Rd

r
∑
k=0

(−1)r+k
(r

k

)
f (x)e−i(x−khvj)ξdx

= (eihξ j − 1)r f̂ (ξ).

If | f (x)| ≤ C(1 + |x)−M′
we have that

∫

Rd
xα(∆

r1
hvj

f )(x)dx = i|α|(∆
r1
hvj

f )̂ (α)(0)

= i|α|((eihξ j − 1)r
1 f̂ (ξ))(α)(0) = 0, |α| ≤ r1 − 1.

Take ψe ∈ Ψ and define g by ĝ(ξ) = ψ̂e(ξ)(eiξ j/2 − 1)−r, where j is chosen

such that ej = 1 (see (1.2)). Observe that eiξ j/2 − 1 vanishes only at the

integer multiples of 4π which are not in the support of ψ̂e and hence g ∈ S.
Now using the first part of the proof (see (4.17)) we have that there exists
θ′ ∈ ΘK,n such that

|g(α)(x)− (θ′)(α)(x)| ≤ 3ε(1 + |x|)−M, |α| ≤ r2. (4.18)

Furthermore we have that

|θ′(x)| ≤ C(1 + |x|)−M′ . (4.19)
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which follows from |ϕn(x + b)| ≤ Cnd(1 + |b|)(1 + |x|)−M′
. We define

θ = ∆
r1
vj/2θ′, so θ ∈ Θ(r1+1)K,n. We have ψe − θ = ∆

r1
vj/2(g − θ′) and using

(4.18) we get

|(ψe)(α)(x) − θ(α)(x)| ≤ Cε(1 + |x|)−M, |α| ≤ r2.

by using the same estimates as for (4.19). Moreover from θ = ∆
r1
vj/2θ′ and

(4.19) it follows that

∫

Rd
xαθ(x)dx = 0, |α| ≤ r1 − 1.

�

By combining Proposition 4.8 and Theorem 4.7 we have a that a finite number
of linear combinations of shifts and dilates of a single nice function forms an
unconditional wavelet basis for Ḟs

p,q or Ḃs
p,q.

Proposition 4.9

Let s ∈ R and for Ḟs
p,q let 0 < p < ∞, 0 < q ≤ ∞, L = d/ min{1, p, q} and for Ḃs

p,q
let 0 < p, q ≤ ∞, L = d/ min{1, p}. Furthermore let k = max{bs − d/pc ,−1},
r1 > L − d − s, r2 > s and M = max{L, d + r1, d + r2} for Ḟs

p,q and M =

max{d + r1, d + r2} for Ḃs
p,q. If {ϕn}n∈N satisfies (4.5) and (4.6) with M′ > M

then there exists K, n ≥ 1 and a family of functions Θ ⊂ ΘK,n such that Θ forms
an unconditional basis for Ḟs

p,q or Ḃs
p,q and we have the norm equivalence as in

Theorem 4.7. �

We conclude this section with considering n-term approximation from a single
nice function in light of the previous proposition. Especially whether the Jackson
and Bernstein inequalities are satisfied, so we can characterize the approxmation
space by an interpolation space by Proposition 3.6. We define

G(ϕ) =
{

ϕ(a ·+b) : a ∈ R, b ∈ R
d}

Gn(ϕ) =
{

S : S =
n
∑
j=1

aj ϕj, ϕj ∈ G(ϕ)
}

and σ
ϕ
n ( f )Ḟs

p,t
= infS∈Gn(ϕ)‖ f − S‖Ḟs

p,t
. By Proposition 4.9 we have that there

exists K, m such that there exists Θ ⊂ ΘK,m which forms an unconditional wavelet
basis for Ḟs

p,t. As on page 34 define the error of approximation and let us here

denote it σθ
n( f )Ḟs

p,t
. Then from Proposition 3.7 we have the Jackson inequality

σθ
n( f )Ḟs

p,t
≤ Cn−(γ−s)/d‖ f‖Bγ

τ,τ
.
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4 New bases by almost diagonal matrices

Next we use the fact that σ
ϕ

(2d−1)Kn( f )Ḟs
p,t

≤ σθ
n( f )Ḟs

p,t
to show the Jackson

inequality for n-term approximation by the single function ϕ. Let n > (2d − 1)K
and find n1 ∈ N such that (2d − 1)Kn1 < n ≤ (2d − 1)K(n1 + 1) we then have

σ
ϕ
n ( f )Ḟs

p,t
≤ σ

ϕ

(2d−1)Kn1
( f )Ḟs

p,t

≤ σθ
n1( f )Ḟs

p,t

≤ Cn−(γ−s)/d
1 ‖ f‖Ḃγ

τ,τ

≤ C((2d − 1)K(n1 + 1))−(γ−s)/d‖ f‖Ḃγ
τ,τ

≤ Cn−(γ−s)/d‖ f‖Ḃγ
τ,τ

.

For 0 < n ≤ (2d − 1)K we use the embedding Ḃγ
τ,τ ↪→ Ḟs

p,t which was achieved by
the proof of the Jackson inequality in Proposition 3.7

σ
ϕ
n ( f )Ḟs

p,t
≤ ‖ f‖Ḟs

p,t

≤ C‖ f‖Ḃγ
τ,τ

≤ C((2d − 1)K)−(γ−s)/d‖ f‖Ḃγ
τ,τ

≤ Cn−(γ−s)/d‖ f‖Ḃγ
τ,τ

.

In a similar manner one also finds that

σ
ϕ
n ( f )Ḃs

p,t
≤ Cn−(γ−s)/d‖ f‖Ḃγ

τ,r

holds in the Besov case. From these Jackson inequalities and Proposition 3.6 we
have

(Ḟs
p,t, Ḃγ

τ,τ)α/(γ−s),q ↪→ A
α/d

q (Ḟs
p,t, {Gn(ϕ)}∞

n=0)

(Ḃs
p,tḂ

γ
τ,r)α/(γ−s),q ↪→ A

α/d
q (Ḃs

p,t, {Gn(ϕ)}∞
n=0).

However it remains an unanswered question whether there also exists Bernstein
inequalities for Gn(ϕ), so that the approximation spaces can be entirely charac-
terized by interpolation spaces as in Theorem 3.11 and Theorem 3.12. At the
moment the only known function for which one can obtain this, is when d = 1
and the function is (1 + x2)−N [9, p.773]. The Bernstein inequality is here a result
of the inverse estimate of Pekarskii ([9] refers to [13] and the references therein).
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A for Appendix

We start the appendix with the following result that is used extensively in Ḟs
p,q

and Ḃs
p,q for example to justify the norm on both spaces defined in (1.6) and

(1.8). We first introduce some notation. Let E(Rd) be the space of all infinitely
differential functions on Rd and with convergence of fk to f in E(Rd) if and only
if fk, f ∈ E(Rd) and

lim
k→∞

ρ̃N,β( fk − f ) = lim
k→∞

sup
|x|≤N

|( fk − f )(β)| = 0

for β ∈ Nd
0 and N ∈ N. By [6, p.115] one sees that E

′(Rd) is the space of
distributions with compact support.

Proposition A.1

If f is a distribution with compact support then f̂ is a C∞ function with derivatives
that have polynomial growth.

Proof:

In this proof we use f (η) instead of 〈 f , η〉 to emphasize the fact that f is a
continuous functional on E(Rd). This also gives that the function f (e−2πix·)
is well defined. Let η ∈ S we then have

〈
f̂ , η

〉
=

〈
f , η̂

〉
= f

( ∫

Rn
η(x)e−2πix·dx

)
=

∫

Rn
η(x) f (e−2πix·)dx,

provided we justify the last inequality. We wish to show that the Riemann
sum converges in the topology of E(Rd) to the integral, such that we can
use the continuity of the distribution f to move the Riemann sum out of f .
Choose ρ̃N,0, the result for ρ̃N,β follows from the fact that (2πix)βη(x) ∈ S.

Take a partition of R
d into cubes Qj with sidelength 1

2
√

dN , and select

tj ∈ Qj. We examine the convergence of the Riemann sum and the integral.

∣∣∣
∫

Rd
η(x)e−2πixξdx − ∑

j
η(tj)e−2πitjξ |Qj|

∣∣∣

=
∣∣∣ ∑

j

∫

Qj
η(x)e−2πixξ − η(tj)e−2πitjξdx

∣∣∣

≤∑
j

∣∣∣
∫

Qj
η(x)(e−2πixξ − e−2πitjξ)dx

∣∣∣ +
∣∣∣
∫

Qj
(η(x) − η(tj))e−2πitjξdx

∣∣∣

≤∑
j

∫

Qj
|η(x)||1 − e2πi(x−tj)ξ |dx +

∫

Qj
|η(x) − η(tj)|dx,

≤∑
j

∫

Qj
|η(x)||1 − e2πi|x−tj|N |dx +

∫

Qj
|η(x)− η(tj)|dx,
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where |ξ| ≤ N and the last inequality follows from the fact that 2π|x −
tj|N ≤ π. Now by the use of the dominated convergence theorem on the
first and the second term the entire expressions tends to zero as |Q j| → 0.

Next to prove that f (e−2πix·) is in C∞ we show that

f[ξ](−2πiξvi e−2πixξ) = f ((e−2πix·)(vi)) = f (e−2πix·)(vi), (A.1)

where vi is the unitvector in the i’te direction. The result for general α
then follows by repeated use of this since −2πiξαe−2πixξ ∈ C∞. We need
that (e−2πi(x+viδ)ξ − e−2πixξ)δ−1 converges to −2πiξvi e−2πixξ in E(R

d) for
δ → 0. Choose ρ̃N,0 and take δ small enough such that δN ≤ 1

2 . The result
for generel β follows from similar calculations with terms that impose lesser
conditions. We then have

∣∣∣∣
( e−2πi(x+viδ)ξ − e−2πixξ

δ
+ 2πiξie−2πixξ

)∣∣∣∣

=

∣∣∣∣
e−2πiδξi − 1

δ
+ 2πiξi

∣∣∣∣

≤
( | cos(2πδξi)− 1|

δ
+

∣∣∣∣
sin(2πδξi)

δ
− 2πξi

∣∣∣∣
)

≤
( | cos(2πδN) − 1|

δ
+

∣∣∣∣
sin(2πδN)

δ
− 2πN

∣∣∣∣
)

for |ξ| ≤ N. [6, Proposition 2.3.4, p.110] gives that there exists N, m such
that

| 〈 f , θ〉 | ≤ C ∑
|β|≤m

sup
|ξ|≤N

|θ(β)(ξ)|,

for θ ∈ C∞. By applying this to f (e−2πix·) we get the polynomial growth.

�

This lemma is used in showing the norm equivalence in Proposition 1.4.

Lemma A.2

Let xj, xm ∈ Rd, M, N > 0 and L be a non-negative integer. Assume that φm and

φj are two functions on Rd that satisfy

|∂αφm(x)| ≤ Aα2md2mL

(1 + 2m|x − xm|)M , for all |α| = L,

|φj(x)| ≤ B2jd

(1 + 2j|x − xj|)N ,

for constants Aα, B and
∫

Rd
φj(x)xβdx = 0, for all |β| ≤ L − 1, which is void if L = 0.
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If N > M + L + d and j ≥ m, then

∣∣∣∣
∫

Rd
φm(x)φj(x)dx

∣∣∣∣ ≤ C 2md2−(j−m)L

(1 + 2m|xm − xj|)M . (A.2)

Proof:

As in the proof of Lemma 2.1 we introduce a Taylor polynomial of order
L − 1 at the point xj in the integral on the left-hand side of (A.2). Using
the remainder theorem we have by the assumed estimates that

∣∣∣∣
∫

Rd
φm(x)φj(x)dx

∣∣∣∣

≤ B ∑
|α|=L

Aα

α!

∫

Rd

|x − xj|L2md2mL

(1 + 2m|x0 − xm|)M
2jd

(1 + 2j|x − xj|)N dx, (A.3)

where x0 ∈ l(x, xj). Since j ≥ m we have that

(1 + 2m|x0 − xm|)(1 + 2j|x − xj|) ≥ 1 + 2m|xm − xj|.
Using this estimate in (A.3) we get

∣∣∣∣
∫

Rd
φm(x)φj(x)dx

∣∣∣∣ ≤ C
∫

Rd

|x − xj|L2md2mL

(1 + 2m|xm − xj|)M
2jd

(1 + 2j|x − xj|)N−M dx

≤ C 2md2(m−j)L

(1 + 2m|xm − xj|)M

∫ ∞

0
(1 + r)−N+M+L+d−1dr.

Because we have N > M + L + d the integral is finite. �

Next we present Fefferman Stein’s maximal inequality which is a deep result in
analysis so therefore we omit the proof, [6, Theorem 4.6.6., p.331]. It was used
in showing the norm equivalence of φ (Proposition 1.4) and the boundedness of
operators on ḟ s

p,q and ḃs
p,q (Proposition 2.2).

Proposition A.3

For a locally integrabel function f and t > 0 we recall the maximal operator Mt
as

Mt( f )(x) =
(

sup
{Q:x∈Q}

|Q|−1
∫

Q
| f (y)|tdy

)1/t
,

where the supremum is taken over all cubes with sidelengths parallel to the axes.
If 0 < t < min{p, q} then for any sequence of functions f j and 0 < p < ∞,
0 < q ≤ ∞ one has

www
(

∑
j∈Z

|Mt( f j)|q
)1/qwww

Lp
≤ C

www
(

∑
j∈Z

| f j|q
)1/qwww

Lp
. (A.4)

�
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Now follows a lemma about the maximal operator which was used in Proposition
2.2 and Lemma 2.3.

Lemma A.4

If 0 < t ≤ 1 and M > d/t, then for any m ∈ Z, any sequence of complex numbers
(hJ)I∈D, and x ∈ I ∈ D one has

∑
J∈Dm

|hJ |
(

1 +
|xI − xJ |

max(`(I), `(J))
)−M

≤ C max((|I|/|J|)1/t, 1)Mt
(

∑
J∈Dm

|hJ |χJ
)
(x).

Proof:

We consider two cases. First |I| ≤ 2−md. Set δ = M/d − 1/t, and define
for all j ∈ N the set Qj = {J ∈ Dm : 2m(xI − xJ) ∈ [−2j, 2j]}. We also
define the disjoint sets Ωj = Qj \ Qj−1 where Ω0 = Q0. Then for x ∈ I, we
have by the use of Hölder’s inequality that

∑
J∈Dm

|hJ |(1 + 2m|xI − xJ |)−M

≤C
∞

∑
j=0

∑
J∈Ωj

|hJ |2−jM

= C
∞

∑
j=0

2−jd/t−jδd ∑
J∈Ωj

|hJ |

≤C sup
j≥0

(
2−jd/t ∑

J∈Ωj

|hJ |
)( ∞

∑
j=0

2−jδd
)

,

where the last factor in the second inequality is a constant since δ > 0. We
use 0 < t ≤ 1 to take a `t-norm and introduce an integral in the sum, which
is possible due to the disjointness of the J ∈ Dm

≤C sup
j≥0

(
2−jd ∑

J∈Ωj

|hJ |t
)1/t

= C
(

sup
j≥0

2−jd2md
∫

Rd

(
∑

J∈Ωj

|hJ |χJ
)t

dx
)1/t

.

We now turn our attention to the size of | ∪ J∈Qj J|. It can be estimated by

2−md multiplied with the number of integers in the cube centred in x I (or

the origin) with sidelength 2j+1. So | ∪J∈Qj J| ≤ 2(j+2)d2−md which yields

≤C
(

sup
j≥0

1
| ∪J∈Qj J|

∫

∪J∈Qj J

(
∑

J∈Qj

|hJ |χJ
)t

dx
)1/t

≤CMt
(

∑
J∈Dm

|hJ |χJ
)
(x).
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If we instead have |I| > 2−md, assume that `(I) = 2−n, where n < m. Define
the sets Qj = {J ∈ Dm : 2n(xI − xJ) ∈ [−2j, 2j]}, and Ωj = Qj \Qj−1 where
Ω0 = Q0. Now in the exactly same fashion as before we find for x ∈ I

∑
J∈Dm

|hJ |(1 + 2n|xI − xJ |)−M

≤C
∞

∑
j=0

∑
J∈Ω

|hJ |2−jM

≤C
(

sup
j≥0

2−jd ∑
J∈Ωj

|hJ |t
)1/t

= C
(

sup
j≥0

2−jd2md
∫

Rd

(
∑

J∈Ωj

|hJ |χJ
)t

dx
)1/t

.

We estimate the set ∪ J∈Qj J in the same manner as before. To do this we

need to estimate the number of integers in cube with sidelengths 2j+1, and
multiply this figure with the area of a cubes in Dm. This yields the estimate
| ∪J∈Qj J| ≤ 2(j+2−n)d

≤C2(m−n)d/t
(

sup
j≥0

1
| ∪J∈Qj J|

∫

∪J∈Qj J

(
∑

J∈Qj

|hJ |χJ
)t

dx
)1/t

≤C2(m−n)d/tMt
(

∑
J∈Dm

|hJ |χJ
)
(x).

�

The following Hardy type inequality finds its use among other things in Lemma
3.5.

Lemma A.5

Let 0 ≤ λ < θ, 0 < q ≤ ∞ and let an, bn be two positive sequences. If sequences
an and bn satisfy

bn ≤ C
(

∑
m≤n

(2(m−n)θam)µ
)1/µ

, (A.5)

then (
∑

n∈Z

(2λnbn)q
)1/q

≤ C
(

∑
n∈Z

(2λnan)q
)1/q

(A.6)

Proof:

From (A.5) and the embedding properties of the `q-norms we have

bn ≤ C
(

∑
m≤n

(
2(m−n)θam

)µ′)1/µ′
,
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for all 0 < µ′ ≤ µ, especially we will assume that it holds for µ′ < q.
Choose r so that µ′/q + µ′/r = 1 and β such that λ < β < θ. Then

by writing am = 2m(β−λ)am2−m(β−λ) and using Hölder’s inequality with
exponents q/µ′ and r/µ′ we have that

bn ≤ C2−nθ
(

∑
m≤n

(
2mθ2−m(β−λ)am

)q)1/q(
∑

m≤n
2m(β−λ)r

)1/r

≤ C2−nθ2n(β−λ)
(

∑
m≤n

(
2mθ2−m(β−λ)am

)q)1/q
.

This implies that

(
∑

n∈Z

(2nλbn)q
)1/q

≤ C
(

∑
n∈Z

2−n(θ−β)q ∑
m≤n

2m(θ+λ−β)qaq
m
)1/q

= C
(

∑
m∈Z

2m(θ+λ−β)qaq
m ∑

n≥m
2−n(θ−β)q

)1/q

≤ C
(

∑
m∈Z

2m(θ+λ−β)qaq
m2−m(θ−β)q

)1/q

= C
(

∑
m∈Z

(2mλam)q
)1/q

.

�

The next lemma is used in Lemma 2.3.

Lemma A.6

Let m, n ∈ Z with m ≥ n, if J ∈ Dn and M > d then

∑
I∈Dm

(
1 +

|xI − xJ |
`(J)

)−M
≤ C2(m−n)d.

Proof:

We have

∑
I∈Dm

(
1 +

|xI − xJ |
`(J)

)−M
= 2(m−n)M ∑

j∈Zd
(2m−n + |2mxJ − j|)−M.

We wish to use

∑
j∈Zd

(ρ + |j|)−M ≤ Cρd−M, (A.7)

ρ ≥ 1, by which the lemma follows. We will show (A.7) for d = 1 the generel
result follows by induction (see the proof of [11, Lemma 2.7, p.9]). Choose
a ∈ Z closest to ρ and estimate the sum by an integral except for j = a

∑
j∈Z\{a}

(ρ + |j|)−M ≤
∫

R

(ρ + |x|)−Mdx ≤ Cρ1−M,
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then estimate the term j = a by ρ−M. �

This lemma was also used in Lemma 3.5.

Lemma A.7

Let X be a quasi-normed linear space with quasi-norm ‖·‖. Then there exists an
equivalent quasi-norm ‖·‖0 and scalar µ > 0 such that ‖·‖µ

0 is subadditiv i.e. for
f , g ∈ X one has

‖ f + g‖µ
0 ≤ ‖ f‖µ

0 + ‖g‖µ
0 . (A.8)

Proof:

Let C denote the constant used with the quasi-norm ‖·‖. Let C0 = 2C and
note that C ≥ 1 can be chosen. For f , g ∈ X we immediately have that

‖ f + g‖ ≤ max{C0‖ f‖, C0‖g‖}. (A.9)

By repetion one has that

‖ f1 + · · ·+ fn‖ ≤ max
1≤j≤n

{Cj
0‖ f j‖}. (A.10)

Take µ such that it satisfies Cµ
0 = 2 and define ‖·‖0 as

‖ f‖0 = inf
f = f1+···+ fn

(
‖ f1‖µ + · · ·+ ‖ fn‖µ

)1/µ,

with the infimum being over all decompositions of f ∈ X. We then have
that

‖ f + g‖µ
0 ≤

(
‖ f1‖µ + · · ·+ ‖ fm‖µ

)
+

(
‖g1‖µ + · · ·+ ‖gn‖µ

)
, (A.11)

where ∑
m
j=1 f j = f and ∑

n
j=1 gj = g. Taking the infimum over all

decompositions for f and g on the right-hand side of (A.11), we find that
(A.8) is fulfilled. Taking the decomposition f1 = f and f j = 0 for i ≥ 2 one
clearly sees that ‖ f‖0 ≤ ‖ f‖. For the other inequality define

N( f ) =

{
0, if f = 0
Ck

0, if Ck−1
0 < ‖ f‖ ≤ Ck

0, for k ∈ Z.

If we can establish that

‖ f1 + · · ·+ fn‖ ≤ C0
( n

∑
i=1

N( fi)
µ
)1/µ

, (A.12)

then the equivalence will be proved since C−1
0 N( f ) ≤ ‖ f‖ ≤ N( f ). We

prove (A.12) by induction. For n = 1 the equation holds by definition of
N( f ). Now assume that (A.12) holds for n − 1, and we shall prove that it
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also holds for n. Take f j ∈ X for 1 ≤ j ≤ n and without loss of generality
we shall assume that ‖ f1‖ ≥ · · · ≥ ‖ fn‖. First we consider the case were
the values of all N( f j) are distict. This implies that for every 1 ≤ j < n − 1
one has that

N( f j) ≥ C0N( f j+1).
From this we have

Cj
0‖ f j‖ ≤ Cj

0N( f j) ≤ C0N( f1) ≤ C0
( n

∑
i=1

N( fi)
µ
)1/µ

which together with (A.10) proves (A.12) for this case. If we instead have
N( f j) = N( f j+1) = Cl

0 for some 1 ≤ j < n and l ∈ Z then one has that

‖ f j + f j+1‖ ≤ C0‖ f j‖ ≤ Cl+1
0 by (A.9). This in turn implies that

N( f j + f j+1)
µ ≤ Cµ(l+1)

0 = 2l+1 = N( f j)
µ + N( f j+1)

µ. (A.13)

Using (A.13) and the induction hypothesis we have

‖ f1 + · · ·+ fn‖ ≤ C0
{

N( f1)
µ + · · ·+ N( f j + f j+1)

µ + · · ·+ N( fn)µ
}1/µ

≤ C0
( n

∑
i=1

N( fi)
µ
)1/µ

.

That the triangel inequality holds for ‖·‖0 follows from the equivalence with
the ‖·‖-norm. Same for ‖ f‖0 ≥ 0 and ‖ f‖0 = 0 if and only if f = 0. The
property ‖a f‖0 = |a|‖ f‖0 for all scalars a and f ∈ X follows from the
definition of the ‖·‖0-norm. �

To prove that some of the almost diagonal matrices have inverses that are
also almost diagonal (Proposition 4.3) we shall need the following two lemmas.

Lemma A.8

Assume that `(J) ≤ `(I), r ∈ Z and M > d. For x ∈ R
d, let

gI,J,M,r(x) = ∑
K∈Dr

(
1 +

|xK − xI |
max{`(K), `(I)}

)−M(
1 +

|x − xK|
max{`(K), `(J)}

)−M
.

(A.14)
Then one has that

gI,J,M,r(x) ≤ C
(

1 +
|x − xI |

max{`(K), `(I)}
)−M

max
{

1, `(J)
`(K)

}d
.

Proof:

Note that from the proof of Lemma A.4 with hK = 1 for all K ∈ Dr and
t = 1 we have the following inequality for x ∈ J

∑
K∈Dr

(
1 +

|x − xK|
max{`(K), `(J)}

)−M
≤ C max

{
1, `(J)

`(K)

}d
. (A.15)
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We consider the case were |x − xI | ≤ max{`(K), `(I)}. Together with the
estimate (1 + |xK − xI |/ max{`(K), `(I)})−M ≤ 1 we have that (A.14) can
be estimated as

gI,J,M,r(x) ≤ ∑
K∈Dr

(
1 +

|x − xK|
max{`(K), `(J)}

)−M

≤ C max
{

1, `(J)
`(K)

}d

≤ C
(

1 +
|x − xI |

max{`(K), `(I)}
)−M

max
{

1, `(J)
`(K)

}d
,

where we in the last line used the fact that |x − x I | ≤ max{`(K), `(I)}. If
|x − xI | ≥ max{`(K), `(I)} define the sets

Ar = {K ∈ Dr : |xK − xI | <
1
2 |x − xI |}

Ac
r = {K ∈ Dr : |xK − xI | ≥ 1

2 |x − xI |}.

Consider splitting the sum in two

gI,J,M,r(x) = ∑
Ar

+ ∑
Acr

= I + II.

By the properties of Ac
r we have that

(
1 +

|xK − xI |
max{`(K), `(I)}

)−M
≤ C

(
1 +

|x − xI |
max{`(K), `(I)}

)−M

such that (A.14) for II with the use of (A.15) yields the desired estimate.
For K ∈ Ar notice that |x − xK| >

1
2 |x − xI |. By this and the same kind

of estimation as (2.7) because we have |x − x I | ≥ max{`(K), `(I)} and
`(J) ≤ `(I) we find for I that

(
1 +

|x − xK|
max{`(K), `(J)}

)−M

≤
(

1 +
1
2 |x − xI |

max{`(K), `(I)}
max{`(K), `(I)}
max{`(K), `(J)}

)−M

≤C
(max{`(K), `(J)}

max{`(K), `(I)}
)d(

1 +
|x − xI |

max{`(K), `(I)}
)−M

. (A.16)

Using (A.15) with x = xI we obtain

∑
K∈Dr

(
1 +

|xK − xI |
max{`(K), `(I)}

)−M
≤ C`(K)−d(max{`(K), `(I)})d.

From this and the estimate in (A.16) the lemma follows. �
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Before we give the next lemma we will introduce some new notation. Take L =
d/ min{1, p, q} for ḟ s

p,q and L = d/ min{1, p} for ḃs
p,q, and recall that

ωα
β,γ(I, J) =

(
`(I)
`(J)

)α(
1 +

|xI − xJ |
max{`(I), `(J)}

)−L−β

· min
{(

`(I)
`(J)

)(d+γ)/2
,
(

`(J)
`(I)

)(d+γ)/2+L−d}
,

and define

Wα
β,γ1,γ2

(I, J) = ∑
K∈D

ωα
β,γ1

(I, K)ωα
β,γ2

(K, J).

Lemma A.9

Let α ∈ R. If β, γ1, γ2 > 0 where γ1 6= γ2 and γ1 + γ2 > 2β then

Wα
β,γ1,γ2

(I, J) ≤ Cωα
β,min{γ1,γ2}(I, J).

Proof:

Choose γ = min{γ1, γ2}. First we consider the case `(J) ≤ `(I).
Notice that the factor `(K)α in ωα

β,γ1
(I, K) and ωα

β,γ2
(K, J) cancel eachother

out leaving the factor (`(I)/`(J))α which can be moved out of the sum.
Therefore we only need to deal with the two last factors of ωα

β,γ1
(I, K) and

ωα
β,γ2

(K, J). We split into three subcases

Wα
β,γ1,γ2

(I, J) =
(

`(I)
`(J)

)α(
∑

`(K)<`(J)≤`(I)
+ ∑

`(J)≤`(K)≤`(I)
+ ∑

`(J)≤`(I)<`(K)

)

=
(

`(I)
`(J)

)α(
I + II + III

)
.

Assume that K ∈ Dr, J ∈ Dm and I ∈ Dn. Now for I we have

I =
∞

∑
r=m+1

∑
K∈Dr

(
1 +

|xI − xK|
`(I)

)−L−β(
`(K)

`(I)
)(d+γ1)/2+L−d

·
(

1 +
|xK − xJ |

`(J)
)−L−β(

`(K)

`(J)
)(d+γ2)/2

= 2n((d+γ1)/2+L−d)2m(d+γ2)/2
∞

∑
r=m+1

2−r((γ1+γ2)/2+L)gI,J,L+β,r(xJ).

65



We now employ Lemma A.8 to find

≤ C2n((d+γ1)/2+L−d)2−m(d−γ2)/2
(

1 +
|xI − xJ |

`(I)
)−L−β

·
∞

∑
r=m+1

2−r((γ1+γ2)/2+L−d)

= C2(n−m)((d+γ1)/2+L−d)
(

1 +
|xI − xJ |

`(I)
)−L−β ∞

∑
r=1

2−r((γ1+γ2)/2+L−d)

≤ C
(

1 +
|xI − xJ |

`(I)
)−L−β(

`(J)
`(I)

)(d+γ)/2+L−d
.

For II we first consider γ1 > γ2 and find in a similar way as earlier using
Lemma A.8 that

II = 2n((d+γ1)/2+L−d)2−m((d+γ2)/2+L−d)
m
∑
r=n

2−r(γ1−γ2)/2gI,J,L+β,r(xJ)

≤ C2n((d+γ1)/2+L−d)2−m((d+γ2)/2+L−d)2−n(γ1−γ2)/2

·
(

1 +
|xI − xJ |

`(I)
)−M ∞

∑
r=0

2−r(γ1−γ2)/2

= C
(

1 +
|xI − xJ |

`(I)
)−M(

`(J)
`(I)

)(d+γ)/2+L−d
.

Following the same technique one finds for γ1 < γ2 that

II = 2n((d+γ1)/2+L−d)2−m((d+γ2)/2+L−d)
m
∑
r=n

2−r(γ1−γ2)/2gI,J,L+β,r(xJ)

≤ C2n((d+γ1)/2+L−d)2−m((d+γ2)/2+L−d)2−m(γ1−γ2)/2

·
(

1 +
|xI − xJ |

`(I)
)−M ∞

∑
r=0

2−r(γ2−γ1)/2

= C
(

1 +
|xJ − xI |

`(I)
)−M(

`(J)
`(I)

)(d+γ)/2+L−d
,

yielding the estimate for II. We now turn to III and have the following

III = 2−n(d+γ1)/22−m((d+γ2)/2+L−d)
n−1
∑

r=−∞

2r((γ1+γ2)/2+L)gI,J,L+β,r(xJ).

(A.17)
Using Lemma A.8 we have that

gI,J,L+β,r(xJ) ≤ C
(

1 +
|xI − xJ |

`(K)

)−L−β

≤ C
(

1 +
|xI − xJ |

`(I)
)−L−β(

`(I)
`(K)

)−L−β
.
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Inserting this into (A.17) we find that

III ≤ C2−n((d+γ1)/2−L−β)2−m((d+γ2)/2+L−d)

·
(

1 +
|xI − xJ |

`(I)
)−L−β n−1

∑
r=−∞

2r((γ1+γ2)/2−β)

= C2−n((d+γ1)/2−L−β)2−m((d+γ2)/2+L−d)
(

1 +
|xI − xJ |

`(I)
)−L−β

· 2n((γ1+γ2)/2−β)
∞

∑
r=1

2−r((γ1+γ2)/2−β)

= C
(

1 +
|xI − xJ |

`(I)
)−L−β(

`(J)
`(I)

)(d+γ)/2+L−d
,

where we in the last equation used that γ1 + γ2 > 2β such that the sum is
finite. This proves the lemma when `(J) ≤ `(I).
For the case when `(I) ≤ `(J) we observe that ωα

β,γ(I, J) = ωL−α−d
β,γ (J, I).

From this observation one also has that Wα
β,γ1,γ2

(I, J) = WL−α−d
β,γ2,γ1

(J, I).
Applying the first case to WL−α−d

β,γ2,γ1
(J, I) proves the lemma for the case

`(I) ≤ `(J). �
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[19] Kôsaku Yosida. Functional analysis. Classics in Mathematics. Springer-
Verlag, Berlin, 1995. Reprint of the sixth (1980) edition.

69


