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Abstract: We study sufficient conditions for a decomposition system
for L2(IR?) such that it also forms a decomposition system for Triebel-
Lizorkin and Besov spaces. Moreover we obtain a norm equivalence
that allows us to distinguish the membership of a distribution in
these spaces by the coefficients of its expansion. Particularly we show
that a nice biorthogonal wavelet system forms a unconditional basis
for Triebel-Lizorkin and Besov spaces. Afterwards we apply non-
linear n-term approximation to these bases and fully characterize the
approximation spaces in terms of interpolation spaces by Jackson
and Bernstein inequalities. For decomposition systems we show
that a Jackson inequality can still be obtained, yielding that the
interpolation space is embedded in the approximation space. Finally
we give a method for construction of an unconditional basis for
Triebel-Lizorkin and Besov spaces by a finite linear combination of
shifts and dilates of a single function with sufficient smoothness and
decay and no vanishing moments. Applying n-term approximation
to shifts and dilates of this function we again establish a Jackson
inequality.






Summary

In recent years there has been great interest in non-linear wavelet approximation,
among other things in numerical applications in statistics and signal and image
processing. In this thesis we study non-linear n-term approximation in Triebel-
Lizorkin and Besov spaces which include a wide range of function spaces for
example LP and the Sobolev spaces. We examine n-term approximation in three
cases:

e Biorthogonal wavelet bases in L(IRY)
e Decomposition systems in LZ(IR%)
e Shifts and dilates of a single function.

In the case of nice biorthogonal wavelet bases we obtain Jackson and Bernstein
inequalities which allows to characterize the approximation spaces completely by
interpolation spaces. Here the requirements of nice becomes sufficient smoothness,
decay and vanishing moments. In the second case we generalize the setting to nice
decomposition systems, which includes frames. This generalization comes at the
cost of the Bernstein inequality. The Jackson inequality still allows us to obtain
that the interpolation spaces are embedded in the approximation spaces. In the
third case we take a single function with sufficient smoothness and decay and no
vanishing moments. We show that a Jackson inequality can also be obtained for
n-term approximation by shifts and dilates of this single function. Although as
in the second case we still lack the Bernstein inequality.

The prerequisites for reading this thesis is knowledge in the fields of distribution
theory and function spaces, see for example [15] and [12].

1 Triebel-Lizorkin and Besov spaces 1
We begin by introducing the Triebel-Lizorkin and Besov spaces (denoted F;lq and
B;,q) with the aid of Littlewood-Paley operators and Bump functions ¢. Next we
study the convergence of Calderon’s reproducing formula in $’/ P, and show that
¢ is a decomposition system for distributions f in Triebel-Lizorkin and Besov
spaces with convergence in S’/P,. From this we prove the norm equivalence
between the Ff,,q—norm of f and the corresponding f;,q-norm of the coefficients of

the expansion of f by ¢. We conclude this section with showing that leq and B;’,/q
are complete quasi-normed spaces by using the norm equivalence. This section is
based on [8], [4] and [6].

2 Bounded operators and decomposition systems 15
In this section we show the boundedness of the matrix associated with a nice
system © and ¢ on f;q and b;q Combinded with the norm equivalence of ¢
from the previous section this gives us a norm equivalence for ®@. Applied to a
nice decomposition system @ for L?(IR?) we show that this gives an unconditional
decomposition system for F;,q and Bf,,q. We end this section with showing that

the uniqueness of the expansion for a nice biorthogonal wavelet basis ¥ in L?(IR%)



. - S > S . . 'S i S . . .
carries on to F; , and By, ; for coefficients in f; , and b}, ;. This section is based

on [9] and [8].

3 Interpolation and approximation spaces 26
We start with introducing interpolation spaces and show a few properties of the
interpolation space derived from the K-functional, especially the discretization of
the norm. Next we prove a relation between the K-functional and the Jackson
and Bernstein inequalities. This leads us to defining approximation spaces and
under the assumptions of the Jackson and Bernstein inequalties we characterize
the approximation spaces by interpolations spaces. Finally we apply this to the
setting of non-linear n-term approximation from the wavelet bases for F;,q or B;,q
from the previous section. This section is based on [3], [1] and [7].

4 New bases by almost diagonal matrices 44
In this section we study a new nice system @ sufficiently close to a wavelet bases ¥
from Section 2. By the use of almost diagonal matrices we prove that the matrix
associated with @ and ¥ has a bounded inverse. With this in hand we repeat the
procedure of the last half of Section 2 to show that @ is an unconditional wavelet
basis for PS, and Bs, with the corresponding norm equivalence. Following this we
show that a finite linear combination of shifts and dilates of a single nice function
@ constitutes a nice system O, thereby forming a basis for P;,q and Bf,,q. We end
this section with proving Jackson inequalties for n-term approximation by shifts
and dilates of ¢. This section is based on [9] and [5].
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1 Triebel-Lizorkin and Besov spaces

In this section we introduce the bump function ¢ by which we define the Triebel-
Lizorkin and Besov spaces and we show a norm equivalence between these spaces
and a corresponding sequence space. We begin with some notation.

Denote by S = S(R?) the Schwartz space of infinitely differentiable and rapidly
decreasing functions on R? and by S’ = §'(IRY) its dual, the space of tempered
distributions. We also denote by S, 0 < k < oo the subspace of S consisting
of the Schwartz functions with k vanishing moments and by S’/P, the space of
equivalence classes of distributions in S’ modulo polynomials of degree less then
and equal to k. For the sake of notation we denote S’/P = S’/P and S_1 = S.
We write D for the family of all dyadic cubes in R? and D,,, m € Z for the
collection of all cubes I € D with sidelength ¢(I) = 2~™. For any dyadic cube
I € D we use xp for its lower-left corner and |I| = ¢(I)? for its volume. We denote
(f,n) the inner product [ f7j of two functions when this makes sense and else the
same notation is used for a distribution f taken on a Schwartz function 7. Also
we denote the Fourier transform of a integrable function f by

7&) = [, fx)e e,

The Fourier transform is extended to S’ by duality. Finally we write Y < X
if Y is continuously embedded in X. If we furthermore have X — Y we write
[[-lx = [I[ly and X =Y.

We now introduce decomposition systems and wavelets for L2(IR%). Let E be a
finite set and B = {65, 5‘; e € E,I € D} a family of functions in L2(RY). We say
that B forms a decomposition system for L2(IR¥) if for f € L2(RY),

f=2 Y (£,

ecEIeD

in L2(R%). In the special case where (68, 5?) = 0(1,e),(1,¢')> Where 810 (1) is the
Kronecker delta function and that

05(-) = |I|—1/29e<'€—(13;1)’

then ® = {6°,6° : e € E} forms a biorthogonal wavelet basis for L2(RY). In
the case 8¢ = 0¢ we say that © = {6°},cf forms a orthonormal wavelet basis for
L?(R%). Later on we shall show that B and ® form unconditional decomposition
systems and wavelet bases for the Triebel-Lizorkin and Besov spaces, and to this



end we shall require some decay and vanishing moments for B C C” (]Rd)

_1/2— x— x|\ M
(090 < it~ (1.4 B e <,
ne (a —1/2—|a x—xr|\ M
) o) < 2 Bt e <,

/]Rd x*0f(x)dx =0, |a]<r—1,
/d X0¢(x)dx =0, |a] <rp—1. (1.1)
R

A function 5? is said to have rp — 1 vanishing moments if it satisfies (1.1). An
example of a orthonormal wavelet in R which satisfies these conditions for any
choice of r1, 5, M is the Meyer wavelet ¢ [2, p.137] obtained from a multiresolution
analysis. Its Fourier transform ¢ € C®(R) is supported on [~87/3, —27/3] U
[271/3,87/3], so it follows that i € Se(R). The associated scaling function ¢
has a Fourier transform ¢ € C®(IR) which is supported on [—4m/3,47/3]. We
entend the basis to R? using tensorproducts. Denote ¢ = *,p = ! and

PE(x) = 9% (x1) - - % (xq) (1.2)
where e = (e1,...,e;) € E and E is the set of nonzero vertices of the unit cube
in R?. By using [10, Proposition 5.2] we get that {¢°}.cr forms a orthonormal
wavelet basis for L2(IR%) and it follows that ¢ € Se(IRY).

In the following the Tribel-Lizorkin and Besov spaces are introduced, which will
be the spaces of our main interest. Let ¢ € S be such that for v € Z, ¢,(-) =
2v4p(2V.) satisfies the following conditions

supp ¢y () C {g:2v71 < [g <2vf1y, (1.3)
PP (@) < c2a VBl for pe N9, (1.4)
YTvezlpo(@)> =1, for &€ RU\{0}. (1.5)

A function ¢ satisfying these conditions will be denoted a bump function
and the existence follows by taking ¢ € S, supp § C [1/2,2] and defining
o) =3()/ (Lyez 180 () [)/2. Associated with a bump function we define the
Littlewood-Paley operators Ag = A, as convolution with the functions ¢, (-).
Notice that (A, f) = ¢, f, so (A,f) has compact support which by Proposition
A.1 gives that Ay f is a function in C*. This allow us to define the Triebel-Lizorkin
and Besov spaces.

Definition 1.1
Fors € R,0 < p < c0cand 0 < g < co we define the homogeneous Triebel-Lizorkin
space Pz,q as the set of all f € §'/P such that

¥ esau)) | g <
1, = H<V€Z )l s <o, (16)
iténgVS\AVﬂHU, if g =00




1 Triebel-Lizorkin and Besov spaces

We also define the sequence space ff,q consisting of all sequences ¢ = (cy)ep such

that
lellgs, = || ( X 027" 2erlx)7)
IeD

with an modification as in (1.6) for the case of g = co. Fors € R, 0 < p,g < o
we define the homogeneous Besov space as the set of all f € S’/P such that

1/q
HU7 < 0o, (1.7)

£, = ( £ @ 1auf )" < o (1.8)

veZ

We also define l');,,q consisting of all sequences ¢ = (cj)ep such that

/p\1/
lellgy, = (& (& (/a2 yr) ) <o 1)

meZ " 1€Dy,
The notation ||c||x = ||c1]|x is used when no confusion arises. o

The Triebel-Lizorkin and Besov spaces are linear and quasi-normed which follows
by the properties of the £9- and LP-norms. Later we shall prove a norm equivalence
between Pf,,q and f;q (and B;,q and bz,q), Proposition 1.4, which yields the
completeness of the Triebel-Lizorkin and Besov spaces, Proposition 1.5. It is also
worth noting that the definition of the spaces Frs,,q and B]Sg,q is independent of the
specific choice of bump function. Two different functions ¢ and « satisfying the
conditions (1.3) - (1.5) will yield equivalent Triebel-Lizorkin and Besov quasi-
norms [6, p.484 and p.482]. Certain well known function spaces are in fact
particular Triebel-Lizorkin spaces. By the Littlewood-Paley characterization
of the Sololev spaces [6, Section 6.2, p.424-433] one has that W/ = F;Q for
1 < p < oo if one identifies the equivalence class f 4+ P with the distribution
where the polynomial is 0. Especially the LP-spaces for 1 < p < oo can be viewed
as Triebel-Lizorkin spaces, namely FSZ

Norm equivalence by ¢

Using the inverse Fourier transform one finds that (1.5) yields for f € L?(RY)
that _
Z¢V*¢V*f:f (1.10)
VEZ

with f(x) = f(—x), where the convergence considered is in L2. This equation is
known as Calderon’s reproducing formula. To study the convergence in S’/ Py for
f € Fy 4, By, we need the following lemma.

Lemma 1.2
Let f,g € S’ and k > —1. Then the following three statements are equivalent:

1) Yyez v * ¢y * f = g with convergence in (Sy)’.




2) There exist polynomials pj,,p € P such that

lim ) ¢y *f+py=g+p, (1.11)
v=—N

N—>00 _
in §'.

3) For any « € N? with |a| > k the series Y0_ _ (¢ * ¢y * f)(®) converges in

s’

Proof:
We shall assume that k > —1 since the case k = —1 is easily seen to be
true. It will be shown that the first statement is equivalent to the other two
statements.

1) = 2) Take x € S with the properties that ¥(¢) = 1 for || <2 and ¥({) =0
when |&| > 4. Let us construct polynomials such that (1.11) holds. For
v > 0 define p, = 0 while for v < 0 define

e ||Zk where G = — O (13,(8) (@), ER(@). (112)
For 5 € S:we have
&L%Vg@v o f o+ po)
:Ui@v*¢v*f,'7>+A1]iinmv_iN<$v*¢v*f+Pm7>- (1.13)

For the first sum in (1.13) we use [6, Proposition 2.3.4 (b), p.110] which
states that for f € S there exists 7,5 € IN such that for ¢ € S we have

[(fo)l<C Y. Y sup [x*¢pP)(x)|.

la|<r|B|<s xeR4

This yields

[e9) [e9)

2 | <$v*¢v*f,17> | = 2 <fAr|$V|277>|

v=1 =1

<CY Y Y sup [6(A@)RFE) P

v=1 |a|<r|B|<sEER?

<CY Y Y sup YD (B@P) a1

v=1|a|<r|B|<s EERT y<B

<

(1.14)
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We shall consider (1.14) in two cases. First when ¢ = 0 we have by (1.5)
and (1.3) that

Z Y sup [gu(Q)Ie* 7P (0)]

la|<r|B|<séeRr?

Y. sup [E7E ()] Y 140() P

IN
WM HM8

la|<r|B|<s EERA veZ
=Y Y sup |E7P @) <C
|a|<r[B|<s GERY

since # € S. For the case when 7y > 0 we have that (1.14) can be estimated
using (1.4) as follows

Z Y Yosup Y (6@ Iet 7 (0]

v=1|a|<r|B|<s EERI 0<y<p

€Y T Y Y 2 sup 261 @)

v=1|a|<r |B|<s 0<1<B ZeRY
<CY2v Yy Y Y sup @@
v=1 |a|<r|B|<s 0<y<B EcR?

<C) 27"<¢C,
v=1

which shows that the first sum in (1.13) converges absolutely in S’. For the
second sum notice that by the properties of the Fourier transform we have
that

pv/ Z szv /77> = Z Ca,v(_i)i‘“‘ﬁ(lx)(o)'

la| <k |a| <k

From this and the properties of x we have for the second sum in (1.13) that

0
lim Z ¢V*¢V*f+pl,,17>

N—>00 _

0
_Z (pu2F,77) + (pu. )

0

=Jim Y (BPERD) + 1 can(=)FO0).

v=— la|<k




From the definition of cu,y, see (1.12), we have

0 R 2 A ol
= lim Y (IRQPF@.00) 7@ - ¥ Fi00))

N—»ooinN |1X|§k
0

=lim Y (Ig.(&)IPF(&), (&)

NHOOV:_N

0
o SRR 115
where we have set @ () = 6(¢) (ﬁ(g) — Yja|<k %ﬁ(“)(o)). As we have that

S = {6(x) € S :8@W(0) = 0,|a| <k} one finds by using Leibniz’ rule
and differentiating the second factor that w € Sy and therefore that (1.15)
is finite. As a consequence of the Banach-Steinhaus theorem [16, Theorem
2.8, p.46] we can define a distribution & in S’ as

h = lim ( 3 &/*qh,*erpE\]),
°N

—00
N Y

where pj, = ZS:—N py. One has that supp(iz\ — %) = {0}, by using that if
n € S and 0 ¢ supp# then 77 € Seo. This implies that I — ¢ is a polynomial
[6, Corollary 2.4.2., p.123], furthermore we have that it vanishes on S;. Note
that for |a| > k and 57 € S one has by partial integration that

/Rd Py (x)dx = (=1)llC " n(x)(xP)®dx =0, for |B| <k, (1.16)

which shows that 7(%) € S;. Thereby we have

((r=8) W) = (=)l (h—g,n) =0,
showing that h — g =p € Py.
2) = 1) A trivial consequence of the space Sy C S.

1) = 3) Assume that 7 € S and || > k. As noted in (1.16) this implies that
7®) € Sy, From 1) one finds

Z <($v*¢v*f)(a);ﬂ> = (‘Ulul Z <4~7V*¢V*f/’7(a)>

veZ veEZ

= (-1 (g, ™).

3) = 1) From the first part of the proof of 1) = 2) we already have that }-,~ Py *
¢y * f converges in S therefore in S. We now show that Y-, <o ¢y * ¢y * f
also converges in S,’{ by using Taylor expansion. Let y € Si. A slight
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alteration to the proof of Lagrange’s remainder theorem [18, Theorem 7.52,

p.212] using that
> xPy® () = (1)
|Bl=k

where 7y : t — 57(xt) shows that the remainder term can be written as

RO = v & [T tE) - 1at.
) |5|Zk<k—1>!/0 7 (t5)

Now by the vanishing moments of 77 and Taylor expansion of order k at 0
we have that

B 1
0= Y & [iPuka= ¥ 5@, 0
Bl=k+1 " 0 |Bl=k+1

where we set $5(8) = g fO 7P (¢&)tkdt. Notice that gp(G) is a bounded

function, since 17(/3) is bounded. Next we multiply (1.17) with «(x) from the
beginning of the proof and use the inverse Fourier transform to get

Kx1 = Z 11

|Bl=k+1

where we define 75 = (—i)‘ﬁ‘fgﬁ € S. From this we get

0 0
Yo Agurpurfn) =Y (Puruxfxxn)
v=—00 V=—00
s (8)
= ) X <¢v*¢v*f/775 )
|Bl=k+1v=—c
0
= ¥ L COP (@ x )P ),
|Bl=k+1v="—00
where the convergence of the last sums follows from property 3). |

Note that in the scope of the lemma we have that (Sk) =S'/P.
Now we examine the convergence of (1.10) when f € F ;. s € R, 0 < p < co and

0 < g < oco. Since supp (2"4(¢, * f)(2Vx)) C {x : |x| < 2} we have from [17,
Theorem, p.22] that

v+ fF(27 %) || < Cllpw + f(27 ") |- (1.18)
From (1.18) one has

1o 9o ) i < 1B 12l * Il
= C2/1Mlpy x F272) |1
< C2" D) gy £ 1. (1.19)




By the embedding of #7 we have that Ff,,ql C F;,qz if g1 < gp. From this embedding

property and the estimate in (1.19) we have for |a| > s —d/p that

Y 1@y ¢y ) |1 < Csup2¥|lpy = fll 1o (1.20)

v<0 v<0
< Cllsup 2* (¢ = f1l[r
v<0

= Clfllg. < Clflls, -

implying that ¥, -o(¢y * ¢y * )@ converges in S’. For the Besov space notice
that the term on the right side of (1.20) is less then or equal to CHf”B;q'

Choosing k = max{|s —d/p],—1} we can use Lemma 1.2 to find polynomials
Pl € Py such that

lim Prxgpyxf+py) =g
NHOO(V:—N v v )

~

converges in S’. We also have that supp(g — f) = {0}, therefore there exists a
polynomial p € P such that g = f + p in S’. Which implies

Z&V*(pv*f:f, in §’/P.

veZ

The sum on the left-hand side converges to ¢ modulo Py, so by identifying the
equivalence class f + p with g, we write

Y durpurf=f  inS/P. (1.21)

veZ

Taking the class f + p and identifying it with ¢ modulo Py, the Triebel-Lizorkin
and Besov-spaces can be considered as subsets of the space S’/ Py.
Take I € D with £(I) =277, x; =271 and define

.7x1

(PI() — |I|_1/2¢(W> _ 2—vd/2¢v(. o 2—1/1).

By using (1.21) we get the following lemma which shows that {¢;}ep is a
decomposition system in S’/ Py. This will be crucial in proving the norm
equivalence between F, , and f; , (and By, and by, ).

Lemma 1.3
Suppose that f € F;SJ,q or B;,q then

f=Y (f¢n¢1 (1.22)

IeD

where the convergence is in S’/ P with k = max{[s—d/p|,—1}.
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Proof:
By (1.21) we have

f=Y pvxpuf,

VEZ
in §’/P;. Hence (1.22) will follow if we can show that

porduxf =27 (fipu(-—27D)pu(- =27 = ¥ (f ) g,

lezd leDy

inS'. As 4A) is compactly supported we have that (4~>V * f)"is also compactly
supported so from Proposition A.1 we get that (¢, * f)(x) is slowly
increasing and in C®. Take 6 € S with 8(0) = 1, let 6(x) = &960(ex)
and J, the delta function in x, we have

(6, 0= ) x g f) = [ 0(x=27Ddx flx)dx  (123)

= (P * f.0:(- —271))

= (frpvx0:(- —27"1))

= (f,pu(- —27V1) % 6;). (1.24)
The left-hand side of (1.23) converges to (¢, * f)(27V1) as e — oo by [19,

Lemma 1, p.157] and the term in (1.24) converges to (f,¢y(- —27"1)) by
[14, Proposition, p.326], so we need to show that

Pv * (Fﬁv * f = 2~V Z (Eﬁv * )27 "Dy (- —27Y1) (1.25)
lezd
in §’. Take ) j
— (G« sin(dx;)
fusle) = G N T (F507)

with j large enough so that f, 5 € Ly(IR?). We have suppf, ; C {&: |&] <
27} if 6 is sufficiently small, which follows from

‘ 4 sin(dx;
)= (T 510 ) @) =TT (S(jx)

=1 i=1

(Guefrimegs;: - 8) = <~ ﬁ( '5xl >]>
= [ Fustm(az

and supp ¢, C {& : |&] < 2T} € {& : |&| < 2Ym}. This we can use
together with

(¢v * fu,6)(x) = (2m)~ /f,,,; by (E)e*Cag, (1.26)




by extending (ﬁ/eixg periodically with period 2'*17r in each variable and
represent it as its Fourier series

$u(@)e = Y 2V 1)~ /Rd o (y)e Ve 2 Wy o2 I

lezd

=27 Y gy (x—27V1)e? (1.27)

lezd

for |¢| < 2Y7t almost everywhere, [6, Proposition 3.1.14 p.165]. By inserting
(1.27) in (1.26) we get

(o fuoa)(x) = @) [ Fs(@) T gulx—27"De? Mg

lezd

— 27 Y £ 2y (x —27),

lezd

using Fubini’s theorem. Now we let § — 0 which gives us

(¢v*gux f)(x) =27 Y (g )2 Dy (x —27"1) (1.28)

lezd

almost everywhere, where the convergence follows from 4~)U * f being slowly
increasing and the dominated convergence theorem with the counting
measure applied on the right-hand side. We finally get (1.25) by justifying
that (1.28) also converges in S’. This follows again from the dominated
convergence theorem where we use (|¢y| * [¢y * f|)(x)[7(x)| to dominate
the right-hand side.

The following theorem shows the norm equivalence between an element f € P;SJ,q
and the sequence ({f,¢1))rep € f;q from (1.22) and therel?y the connection
between the space of distributions F;lq and the sequence space f;q by ¢. Similary
for B;,q and b;q

Proposition 1.4
Let s € R and for F;,q take 0 < p < 00,0 < g < o0 and for B;,q take 0 < p,q < oo.

Given f = Yjep (f,¢5) ¢y in S'/P then f € Frs,,q if and only if (<f’¢/>)]eD € f;q

and if affirmative, one has

ICE @nllgs, = 1 fllg;,

Proof:

Assume that (f, ¢]>]€D € f;q and f =Y ep (f,¢y) ¢y in S'/P. Let A}‘ be
the Littlewood-Paley operator associated with the bump function x (1.3)-

(1.5). Since ¢ € S then for every | € Dy, we have that

2ly|m-+md
(1+ 2"y — x| )M

o) ()] < c27mr?

10
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for every v € N? and M € N. We also have that the bump function x
satisfies the estimate

ily|+jd
My 2 <c—2"
=0l < Cagy T

for every v € N and M € IN. Since both functions have Fourier transforms
that are compactly supported away from the origin, we have by using
Lemma A.2 twice

prmingjm}d—|m—|L
(14 2min{jm}|x — x;)M ’

—md
|AF () (x)] < C27m4/2 (1.29)
regardsless of whether j < m or m < j, and where L can be chosen as
large as necessary for M large enough. Let t = min{1,p,q} and choose

L > max{d/t —d —s,s}. By a similar proof as the one for Lemma A.4 one
has for M > d/t,n € Z and x € I € D,, that

_ -M
1o (14 5l

J€Dm

< szax{m—j,O}d/tMt( Z | <f’ ¢]> |X]) (x),

J€Dm

where
. N
M) = (sup_ 11" [ IFldy)
{Q:xeQ} Q
the supremum being taken over all cubes Q with sidelength parallel to the
axes. Using this estimate and (1.29) one has

25 Y Y [ {f ) 1859 ()] (1.30)

meZ J€Dy,
<C Z zmin{j,m}dz—\j—m\L2—mdz(j—m)szmax{m—j,o}d/t

Z.
e (1.31)

ML HFo) 42 ) (0.

J€Dnm

In (1.30) we now take the /9-norm over j and the LP-norm over x (with the
usual modification for g = o0). This gives

1 1gs,
SH (]g (mxelzd(] - m)Mt<]gm | <f’ ¢I> ||”_S/d_1/27(]) (x))q>1/q '
(1.32)

where we define

5<] o m) _ szin{jfm,O}(dfd/t)zf\jfm\Lz(jfm)s'

11



Notice that §(j — m) does not depend on a specific values of j or m but on
the difference between them. For 0 < g <1 we can assess the term inside
the LP-norm from (1.32) as

(.EZZ‘W) " M X e ) )

mez JED

In the case where 1 < q we use Minkovski’s inequality to find

(5 (5 00-mm( X 1o ) 0)") ™

JEZ “meZ
:(],EZZ: <’”;Z§(_m)Mt(]e§W \ <f, 4’I> H”fs/dfl/zxj) (x))q)l/q
L (]ezz (smm( IEDZW [fo) 11174712 ) (x))q)”q
:(m;Z(s(m)) (jEZZMt(]esz| (f.¢7) ||]‘fs/d71/le> (x)‘7>l/q,

In both cases we have that the first factor can be estimated as a constant
since L > max{d/t —d —s,s}. Together with Fefferman Stein’s maximal
inequality (A.4) this implies that

£, <[ (X M T 1) 42 ) w07) |

meZ J€Dy

<c| (£ T (o)) |,

mMEZ JEDy,

—Cllf oy, -
Conversly we have by (1.23) and (1.24) that

(fopr) = 27" 2@y 5 f(277K),

where x; = k27", This we use together with the fact that for any x € R4
there is only one | € Dy, that contains x

x (1742 () 1xg)

J€Dm
ms Y q
< ¥ (2™ supl(@n )
JE€Dm yej]
<Cosup (272" ly) g+ Flx— )] (L + 2"y
ly|<2—mv/d

<C@" My, (fi4)(x))",

12



1 Triebel-Lizorkin and Besov spaces

where

w60V (r) = su [(m * f)(x — )|
My (f5¢)(x) yseﬁlzd T

If we now sum over all m € Z, then raising to the power 1/4 and taking the

LP-norm we find by using [6, Theorem 6.5.6., p.483] with b > d/ min{p, q}
that

Kl << ( gl

<c|(Z = iheon) |, = clifls,

meZ

LP

The norm equivalence between F;lq and f;q (and B;’,,q and E;,q), can be used to
) 5 (s S sl
show that Fp,q and Bp,q are complete as fp,q and bp,q are complete, whereby Fp,q

and BS o, are complete quasi-normed spaces. The proof follows by using Lemma
2.3 which is placed later for continuity. This approach seems new compared to
earlier proofs.

Proposition 1.5
Let s € Rand 1 < p,q < co. Then F;, and B}, are complete quasi-normed
spaces.

Proof:
We only give the proof for F';,q since the proof for B;’W follows similarly.

As pointed out that earlier Pf,,q is quasi-normed follows from the properties
of the I7, LP-norms. So completeness remains. Take a Cauchy sequence
fu € F;lq and let € > 0 be given. Fix | and then by the norm equivalence of
the previous theorem we have

1o = Fullgg, = CUChar@p) = )l
> ClJI Y2 fur y) — (Fonrty)) g e
= CJ|=*/ VP2 (o p) = (o ).

As fy, is Cauchy in Frs,,q we can for every | € D find N such that for n,m > N
we have that

e > |V _fMHP;‘,,q > |(fu @) = (fns 01

This shows that (fy, ¢;) is Cauchy in C and therefore convergent. Its limit
we shall denote by (f,¢y). From Lemma 2.3 we have that Yjcp (f, ¢7)¢; =

13



fin §’/P. Then by Fatou’s lemma with the counting measure we find

(T (1722 f9))x)")

IeD

1/q

1/q

<timinf (¥ (117/*2((fu9)1)") (1.33)

IeD

Using Fatou’s lemma with the Lebesgue measure yields

fimint (X (11172 (( ) )") s

IeD

<timinf|( X (172((fo o))l (130

IeD
Combining Proposition 1.4 and (1.33), (1.34) we have that

71, <l ( X (1772 an)?) oo

IeD

glirr}1'1nfC||( y (|1|*S/d*“2(<fn,<P1>)X1)q)WHLP

IeD
Slirr}linfCanHp;ﬂ < 00,

which shows that f € Frs,/q. By repeating the calculations with f,; — f instead
of f and (fu, ;) — (fm, ¢;) instead of (fn, ¢j) we find

||f*fm||P;,q < lin}fnfcnfm *anF;;,q-

Since f is Cauchy in P;,q we can find N such that for m,n > N we have
Il for — full B, < eC~1 which shows that Ff;,q is complete. [

14



2 Bounded operators and decomposition systems

In this section we shall prove one of our main results: namely that a nice
decomposition system for L2(IR?) is also a decomposition system for F';,q and B;,q.
The proof of this will in no small part depend on the boundedness of operators
on the spaces f;q and b;:,q and the fact that we have a norm equivalence with P;,q
and B;,q by cp.~

Let B = {6¢,6°:1 € D,e € E} be a decomposition system for L?(IR?), we then
have

¢r = 2 2 <(P[,§;>9§ ,for I € D.

¢€E JED

At the same time we have by Lemma 1.3

9; = 2 <9?,¢]>q§] ,forece E,I €D
JeD

in S’/ P,. We shall first prove that the matrices of coefficients of one decomposition
system with respect to the other

Ze = (<¢]/a?>)1,]ep Ae = (<9§r¢1>)1,]ep' (2.1)

are bounded operators on ff, and b;,q for a certain range of the indices s, p,g.
To prove this the following lemma will be needed.

Lemma 2.1
Let I,] € D, with |J| < |I], and let 7; be a measurable function on R? and
0y € C’ (R?) with the properties that for some r > 0 and M > d + 7,

/le x*np(x)dx =0, |a| <r—1, which is void if r =0, (2.2)
-M
<C ‘1/2(1+|x_x]) , 2.3
()| <l - (2.3
-M
() —1/2—|a|/d |x — xi]

o ()l < Cl (+Eh) L msn e

Then o

(DN Y
Proof:

In the first part of the proof we shall assume that » > 1. At the end of the
proof we shall comment on the case when # has no vanishing moments. By
the vanishing moments of 7, (2.2) we can add a polynomial in the integral

15



free of charge

el =| [, @ r)ax

< [ (o - © W(G”(“)("’))"’”(’“”dx'

la|<r
By a change of variable x = ¢(I)x + x; we find that

:/Rd

(L(I)x +xp — xp)*
ol

0r(6(I)x+x)— Y (61)® (x)

la|<r

|y (e(D)x + xp)| (1) dx.
(2.6)

At this point we shall split the integral into two, by integrating over the

area A = {x: |[x —xpj| > 1} and its complement, where xj; = xé(_lj)”. First
we deal with the integral over the area A, where we employ (2.3) and (2.4)
to obtain

o)\~ ( Y ’xxL]r_l)( ]xxL])M
C(zu)) /A (1+x|) e Ut i)

=By + By,

where

_ ()2 . [ — gy

and

—d/2 ‘x—xI]r_l ]x—x” -M
B zc(@> / . <1+ : > dx.
PN Ja @ ey DM ) /()
In the case of By we once again consider two cases. In the first case we

consider |x| < %|xj|. Then we have that |x;; — x| > Z|x7;|, and by the
definition of the area A

x —xpy| > 31+ |x —xpg]) > (A + [x)).
Using this we find

(
(
(

~
—

—d/2 X —Xx | -M
] . iy X=Xy > q
D) Lo O (O ) o

M—d/2
) ™M [ )M

)
)

—

|

IN
~
=~
=

~|
~

IN

M—d/2
) (1+ |xpy[) ™.

o~
—~
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2 Bounded operators and decomposition systems

On the other hand if |x| > %|x; | then (1+ |x|)™™ < 2M(1 + |x; ;)= M.
For the complementary area we also note that if x| > ¢ > 0 and h € R4

ther %l _ (I 11
X X X
e = () O )
Cc

> (1) (5

which, together with the first observation, yields

iy LS
) fanperno iy 0 O+ ay)
M 1+|X—XIJ>_M
M (‘m)/e(r) &

M-d/2
(@) tlh™

(2.7)

—d/2
o]
C(%) (1+ |XIJ

IN

IN

(1)

Turning our attention to By we utilize that |x — x”’ >land M >d+rto
obtain

0] r—1-d/2 M |x—x1,]} r—1-M
B2§C< (I) (1+\x1,]\) /A 1+7€(])/€(I) dx

—

M—d/2
<c(@) Tash™

Combining these three estimates and the fact that we assumed M —
d/2 > r+d/2 we find that (2.6), over the area A, can be bounded

Vi r+d/2
by C(%) (1 + |xgy

formula

)_M. For the integral over A we use Taylor’s

(L(D)x +xp — xp)*

/A C 91<e(1>x+x1>—||2 & (61)(a)(x])’
|y e(D)x + xp)| £(1)%dx
= /.. (E(I)x+“3!q—x])"‘ (91)(“)(3(0) |ﬂ](f(1)x+xz)]€(1)ddx,

la|=r

where xj is a point on the linesegment between x; and £(I)x + xj. By the
assumptions (2.3) and (2.4) one finds

—d/2
oJ r
gc(zézg) /Ac|x—xl,]\

|z—x1| _M< ]x—x” )_M
sup 1+ 1+ 5~ dx
z€l(xp L(I)x+xg) ( E(I) ) E(])/K(I)

r—d/2 B |x7xl ‘ —M+r
<c(4n 1 M<1 7]) dx. (2.8
> (Z(I)) /AC ZEZS(I;LPI,X)( + ‘ZD + g(])/g(l) X ( )

17



The properties of the set A® = {x : ‘x — x1J| < 1} imply that
1+ ‘xl,]‘ <1+ |Z —X1]

+|z| <2(1+ Jz]).
This in turn yields the following equation

sup (1 [z]) M < 2M(1 + [y )™M, (2.9)
z€l(x,,x)

Substituting (2.9) into (2.8) we find
—M-+r
£]) r—d/2 7M/ w
C(ﬂ(l)) 1+ |xrg]) " 1+ 7 &
r+d/2
SC(%) <1+|x1,]|>7M/1Rd<1+‘x|)7M+rdx

r+d/2
SC(@) (14 Jxr )™,

(70

where we have used that M > d +r in the last inequality to assess the
integral, thereby yielding the desired conclusion for r > 1.

In the case of no vanishing moments of #, By from the first part estimates the
integral over A. For [, [01(x)|[n;(x)|dx we use that 14 |xg ;| < 2(1+ [x|),
which together with (2.3) and (2.4) shows that

)ﬂm /Ac(l + |x[)™M (1 + 729(6])/921&) ) 7de

d/2
) )M,

(
(

‘\/

[ (6 mp) | < (7

)

)

~
—

I
(I

—

<c(

N’

For the remainder of this section we will assume that for r1,7, € N, M > d +
max{ry, 72} the functions 7; € C"(R?) and 8; € C"2(R?) satisfy

/Rd X0y (x)dx =0,  |a| <7 — 1, which is void if r; = 0, (2.10)
10 (2)] < C|I|—1/zf|a|/d(1 + xg&’)”')M, | < 1y, (2.11)
/le x*nr(x)dx =0, la| <7y —1, which is void if r, =0, (2.12)
1 < e (i BT e, ey

thereby guaranteeing a suitable decay of | <6], 171> | regardless of the relative size
of |I] and |]J| by the previous lemma. As the next propositions will show, choosing
r1,72 and M large enough will insure that the infinite matrix

A= (<9]f771>)1,]61) (2.14)

; (s S
is a bounded operator on the f, , and b}, ;.

18



2 Bounded operators and decomposition systems

Proposition 2.2
Let {0;}1ep, {#1}1ep be families of functions satisfying (2.10)-(2.13) for rq,7; €
N, M > d+ max{ry,rp}. Moreover let s € R, 0 < g < oo and for Pz,q let

0<p<oo, L=d/min{l,p,q} and for B;  let 0 < p < oo, L = d/ min{1, p}.
Ifra>s,71>L—d—sand M > L then the infinite matrix defined in (2.14) is
a bounded operator on f} , or b}, .

Proof:
We prove the result for F;,q where g < oo as the proof for B;/q follows
similarly and the case g = oo follows in exactly the same way as g < oo,
with % instead of £1. For every h € ff,q we have (Ah); = Yjep (05, 71) hy.

We take the ';,q—norm and split the sequence in two

it <[ (5 (072 3 e es)”) ™,
<C(oq + ),

where

o =| (X (17772 % (e i)

IeD [71=11|
1/
ol 5, )

Choose 0 < t < min{1, p,q} such that M > d/t and ry > d/t —d — s and
denote |I|75/4=1/2x; = A;. For ¢y the inequality |J| < |I| holds and thus
Lemma 2.1 can be applied in this case. Together with Lemma A.4 we infer

asc| (g (T ()" 0 ™) mi)) ",

IeD “11<|1|

-¢ H (n%:Z IGXD: (m;nz(n_M)(rl+d/2)
— -M 1/
.]gm (1+ legmx]) WW)ﬂ) qHLP
cc|(g . (g

neZ1eD, ~m>n
1/
(5 o))

_ CH ( Z ( Z Z(nfm)(r1+d7d/t+s)Mt( Z |h]‘)\]) (X))q)l/qHLp,

neZ ~m>n JeDyy,
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where in the last equality we used }jcp, x1 = 1. Next we change n
to —n, m to —m and use Lemma A5 with y = 1, A = 0, a, =

Mt(Z]eD_m \hﬂ/\;)(x) and
by = Lonen 2(m—n>(r1+d—d/f+s)Mt( Yiep \h1|/\1) (x) which yields

<cll(g (e & mir)w)) ", < iy,

IeD,

where we in the last inequality have imployed Fefferman Stein’s maximal
inequality (A.4) and the fact that | Yjcp, hiAr|7 = Yrep, [hiAr]9, since the
elements of D, are disjoint. For the other half, were |J| > |I|, we interchange
the roles of 17; and 6 in Lemma 2.1 together with Lemma A.4 to find

nscl(5 (T G)™ 0 T )

IeD {J1>1]

_CH(Z y (sz n)(rp+d/2)

nEZIED m<n
r (e B ) )

JE€Dm
/
<c|( L % (£ 2o ¥ o) eon)) ],
=< (g (2 x mi)w)') ],

neZ. m<n

Since r» > s we can use Lemma A.5 and Fefferman Stein’s maximal
inequality (A.4) as before to find that

<c[( g m( 5 mim)w)) ",

nez IeD,
<Clnly;,

Decomposition systems and wavelet bases

Assuming that {0;};cp satisfies (2.10)-(2.11) and {67} 1ep satisfies (2.12)-(2.13)
we now have by Proposition 2.2 that A, and A, in (2.1) are bounded operators
on f;q and b;,q. The last detail we need to examine before proving that B forms

a decomposition system for F;,q and B;,q is the convergence of the series ) ;cp 01
in S//Pk.
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2 Bounded operators and decomposition systems

Lemma 2.3

Let s € R, 0 < g < co. For Fj,let 0 < p < oo, L =d/min{1,p,q} and for B ,
let 0 < p < oo, L =d/min{l, p} and for both spaces k = max{|s —d/p]|,—1}.
If {0;}1ep satisfies (2.10) and (2.11) for r1,7o € N with ry > L—d —s, 12 > s
and M > max{L,d +r1,d + 2}, then for a € f; , or a € b}, , and 1 € S¢

Y lag|| (61,m) | < o0

IeD

so the series Y jcp a0 converges in S/ Py.

Proof:
We only prove the result for F;,q as the result for B;‘,,q follows similarly. By
Lemma 2.1 we have for |I| > 1

-M
—(k+1+d/2) [xi|
rm)] < ce(n (1+35) -

because 1y > k+ 1, while for |I| <1,
[(6r,1)] < CLD)H2(1 4 g ) M. (2.15)
We also have

/A2 oy = ayll s < falls

which we will use to estimate the series for |I| > 1.

Y. lar [0 <C ) E(I)s+d/2—d/rﬂ—(k+1+d/z)(1 Zr Ile)—M
11>1 1[>1 (I)
= L2 (i)
n>0 jezd
< Y 2rle k1) <o,
n>0

where we have used Lemma A.6 and k+1 > s —d/p. To estimate the series
for |I| <1 we use Lemma A.4 with t chosen such that 0 < t < min{1, p,q},
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M>d/tandry >d/t—d—s,

Yo larl [0 m) < Y €D 2| (1 + )™M

l1]<1 <1
<C Y 22 Y g (1 )M
n>0 IeDy,
<c Z zfn(r1+d/27d/t)Mt( Z |a1|X1)(x)
n>0 IeDy
—cy 2—n(r1+s+d—d/t)Mt( Y \II_S/d_l/ZIﬂI\XI) (x)
n>0 IeD,
nguth< Z \I|7S/d71/2|al|XI)(x>
n>0 IeDy
a1/q
<C M 1]7/41 2 ay|x1 ) (x) ,
(5 (ol g i)

where x is in the unit cube Iy and the usual change is made if g = oo.
Taking the L¥(Iy) norm on both sides and using Fefferman Stein’s maximal
inequality (A.4) we get

Z lar| |{61,77)] < CH( Z (Mt< Z 1|S/dl/2|a1|X1)(x))q>l/qHLp(IO)

l1]<1 n>0 IED,
< is
= CH”Hf;,q

Remark 2.4
Observe that the series Y ;e p ay (67, 17) in Lemma 2.3 converges not only for y € Sy
but for any 7 with k vanishing moments and satisfying

W) < C+ )™, faf <rr.
Therefore if f =Y ;cpajf; we may define

(fon) =Y di(6r,m),

IeD
dispite the fact that 7 & Sk. o

We are now ready to state and prove that a nice decomposition system for L2 (]Rd)

is also a decomposition system for the Triebel-Lizorkin and Besov space if 6, 8}
have adequate decay and vanishing moments.

Theorem 2.5
Let s € R, 0 < g < 0. For F;,q let 0 < p < oo, L =d/min{l,p,q} and for B;,q
let 0 < p < oo, L =d/min{l,p} and for both spaces k = max{|s —d/p]|,—1}.
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2 Bounded operators and decomposition systems

Assume that {9?,5? : 1 € D,e € E} forms a decomposition system for L2(IR%)
satisfying (2.10)-(2.13) for 71,70 € N with r;y > L—d—s, 1, > s and M >
max{L,d +ry,d +r2}. Then for f € F; .

f=3 Y (1698,

ecE JeD

unconditionally in S’/ Py (see page 8), where <f, §;> =YD <f, ¢I><¢1,§;> _ We
also have N
1A, = I, 210
ecE ’

and for g # oo the series also converges unconditionally in Fz,q, where a similar

statement and norm equivalence applies for Bisg,q and convergence in B;,q is
guaranteed if p,q # oo.

Proof:
We only prove the result for Frs,,q as the result for B;,q follows in a similar
fashion. We begin by showing the convergence in S’/ Py. Since 65, gf is a
decomposition system for L2(IRY) we have

pr="73 ) (¢r,6)6],

e€L JED

with convergence in S’. Together with Lemma 1.3 we formally get

f=Y (foner=3 Y Y (fon) (1,66

IeD IeDecE JeD

=Y 2 Y (o) (¢ 6))65 (2.17)
ecEJeDIeD

=Y Y (f.6)6, (2.18)
ecE JeD

with convergence in §'/P;. To justify (2.17) we first note from Proposition
1.4 that ((f,¢1))iep € f;4 From Proposition 2.2 we have that A, =

(<q>], §?>)1,]ED is bounded on ff,,q, SO (<f’§§>)]eD = Ae(<f,¢1>)[€D € ff,q

Now using Lemma 2.3 we have that

L CF D5 m)] < oo,

JeD

for 7 € S which allows us to interchange the order of summation.
Next we prove (2.16) and from (2.18) we get

(foon) =Y Y (f.6))(60,¢1),
ecEJeD

so we have

((f o) 1ep = 3 Ac((f,65)) jep -

ecE
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From Proposition 2.2 it follows that A, is bounded on f;q and together
with the boundedness of A, this gives that

1 e0ienlyy, = | EATCE TN oo, <€ LICEE) ooy,
=CY A7 ((f, 1) IeDHfs < CI(frer)renllgs, -

ecE

Using Proposition 1.4 we get (2.16).
To see the unconditional convergence in Frs,,q for q # oo we take a sequence

(H)Nyen of finite subsets of D such that Hy € Hpy if N < M and
UnenHn = D and use (2.16)

lr-£ & e, <cf & <ranel,

ecEIe€Hy Fya e€E  IeD\Hy
< CY[IKF8) XIeD\HNHf;q-
ecE ’

We recall from (1.7) that

H( ’I‘—s/d—1/2|<f,§flz>‘XIED\HNXI)q)l/qHLPI

(2.19)
fix a point in I and use the dominated convergence theorem with the
counting measure on the [9-norm, next use the dominated convergence
theorem on the LP-norm to get that (2.19) goes to zero for N — oo. |

H <f 9[>XI€D\HN

In the case where our decomposition system is a bio.rthogonal wavelet basis, we
can sharpen the result, such that the coefficients in ff,,q, b, are unique.

Proposition 2.6
Let s € R, 0 < g < co. For Fj let 0 < p < oo, L = d/min{1,p,q} and for
B; g let 0 < p <ocoand L =d/min{l,p} and k = max{|s —d/p], —1} for both
spaces. Assume that ¥ forms a biorthogonal wavelet basis for L2 (]Rd ) satisfying
(@)@ <CO+ )™, |al <1
(@)@ <ca+[xh™, Jaf <n
/x"‘lpe(x)dx =0, |a|<rn-—-1
/x"‘{b'e(x)dx =0, |a]<rp—1,

for r1,70 € N with ry > L —d —s, rp > s and M > max{L,d +ry,d +r2}. Then
for all f € Ff,,q there exists unique coefficients in ff,q such that

f=Y Y (v (2.20)

e€EJED
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2 Bounded operators and decomposition systems

unconditional in S’/ P where (f, lﬁ?> =Y1ep (f, ¢1) <<p1,1/);>. We also have
11, = 2 ICE 90l (2:21)
eckE ’

and for g # oo the series (2.20) also converges unconditionally in Ff; g+ Where a
similar statement and norm equivalence applies for BS ., and convergence in B;,q

is guaranteed if p, g # oo.

Proof:
We prove the result for Pz,q as the proof for B;,q follows in a similar way.
Note that ¥ fulfills the requirements of Theorem 2.5 proving the proposition
except for the uniqueness of the coefficients. Assume that there exists

(c9)jep € ff,q such that
f=X L ¥

ecE JeD

pa>

with convergence in S’/ Py or Ps . This implies

0= Hf D Zcflpf H f=x ZCI¢IIIPK>‘

e€E J€D e€E JED

From which we get

(9% = (X X 5w, 9%) (2.22)

ecEJeD

=Y (XY S5ub o) (o %)

IeD ecEJeD

=Y L X i on{on ).

IeDecEJeD

From the assumption that (c‘;)]ep € f;,q, and the boundedness of A, and A,

on ff,,q, we have that the series converges absolutely, and we may therefore
interchange the sums.

=Y ¥ X 55 e (o %)

ecEJeDIeD

=Y Y SCY (¥ e k) (2.23)

ecEJeD IeD

P IPICIC/ATY (2.24)

ecE JeD
the equality (2.23) follows from the continuity of (-,-) in L2, and (2.24)
follows from (1.10) by adapting the proof of Lemma 1.3. ]

One should notice that series with only a finite number of terms from the wavelet
decomposition are in fs and b,fJ g This will be of interrest when we study n-term
approximation, espec1ally the Bernstein inequality.
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3 Interpolation and approximation spaces

In this section we wish to characterize the space of functions which by n-
term approximation from a basis from Proposition 2.6 have a certain decay in
the error of approximation in F 1 Or B - The characterization will be done
with an interpolation space Xp, that involves the K- functional. Proving this
characterization will depend on Jackson and Bernstein inequalities for Xg,. We
begin by introducing the interpolation space Xg ;.

Let Xy, X7 be quasi-normed complete linear spaces. They are called a pair
(Xo,X7) if each of them are continuously embedded in a linear Hausdorff
topological space Y. For a pair we define the linear space Xy + X7 consisting
of elements f = fo+ f1, fi € Xj, i =0,1 for which

= inf . 3.1
Ifllxo+ = dnf  (follx +1f1llx) < oo (3.1)

We also define the linear space Xg N Xy for which

HfHXoﬂXl = maX{Hf”Xol Hf”Xl} < 0. (3'2)

Proposition 3.1

The spaces Xo N X7 and Xg + X; are complete in the quasi-norms (3.2) and (3.1),
respectively, and furthermore if Xy, X; are Banach spaces then so are Xy N X
and X + X.

Proof:
First we observe that it follows from the definition of ||-|| x,nx, that Xo N X;
is quasi-normed (normed) if the spaces Xy, X7 are. For the completeness
let x, be a Cauchy sequence in Xo N Xj. By the definition of ||-||x,nx, this
implies that x;, is also Cauchy in Xy and X;. Since these spaces are complete
there exists element x° € X and x! € X; such that

|20 — xn||x, — O [x! = xu||x, = 0, forn — co. (3.3)
Since both spaces are continuously embedded in Y we have that xn — x0
and x, — x! in Y. By the Hausdorff property we must have x* = x!. The
element x = x0 = x! is in Xy and X;, hence in Xy N X; and by (33) we
have that x,, converges to x in ||-|| x,nx, -

For ||-[|x,+x, it easily follows that ||ﬂf||X0+X1 |a||| fllxy+x, by the same
property of Xy and Xj. For the triangle inequality notice that

pegnt L Ul + i} < lfo+gollx + /1 + &1llx,

< C(llfollxo + Il Allx, + [Igollx, + ||g1||;?),
3.4
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3 Interpolation and approximation spaces

where f = fo+ f1 and ¢ = g0+ &1 with fp,90 € Xo and f1,41 € Xi.
Taking the infimum over all such decompositions of f and g in (3.4) yields
the triangle inequality (with C = 1 if Xy, X; are normed). Last we check
whether [|x||x,+x, = 0 implies x = 0. Assume that [|x|/x,+x, = 0. As the
|||l xo+x,-norm is an infimum, there exists x € Xo, x} € Xj for all n € N
such that

X = xg + x,l1

and
1 1

0= xllxgix, < Ix8lxy + Nkl < Il + 5 = o

This implies that the sequence xg converges to 0 in X, and also in Y since

Xp is continuosly embedded in Y. The same holds for x}l. Then the sequence
{x9 +xL}%°_; converges to 0in Y. Since x = xJ + x}, this implies that x = 0.
To establish the completeness we shall prove that every absolute convergent
series in Xp 4+ Xj is convergent in Xo + X;. Assume that {x,}>" ; is a
sequence in X + Xy such that Y72 ||xu|/x,+x, < . As before we can
write x, = % + x} where 9 € Xy and x}, € X, such that

Ixallx, + lnllx, < llnllxg+x, +27"

This gives that 2;°:1|\x2||xo < oo and Zf:1|\x,11||xl < o0, which by the
completeness of Xg and Xj implies that there exists an element x0 € Xj
and x! € X; such that

[ - =0 | Labex] <0 6s)

The element x = xY + x! belongs to Xy + X as we have that x? € Xj and
x! € X;. Moreover

N
| X+
n=1

N N
S P PR P R e
Taking the limit for N — co we have by (3.5) that ZnN:1 X converges to x
in Xo + Xj. |

It is easy to see that Xo N X7 — Xp, X1 — Xp + X7. A third quasi-normed space
X is called an intermediate space for (Xg, X7) if there are continuous embeddings

XoN Xy — X — Xo + X;. (3.6)

When X; — X, (3.6) simplifies to X7 — X — Xj. As mentioned earlier we
shall work with the intermediate space Xg 4, which we will need the K-functional
to define. The K-functional for f € Xy + X1 and t > 0 is given by

K(f,t) :f:ifrgifl(l\follx() +tlfillx,)-
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Note that the K-functional as a function of ¢ is continuous and increasing and we
have

min{1, 1} fllxy+x, < K(f,£) < max{L, 1} fllxyex,- (3.7)
If X7 < Xp then the K-functional simplifies to
K(f,t) = inf — t .
(f,£) = jnf (1f = 8llx, + Hligllx) (3.8)

and this quantity gives some approximation properties of f € Xy by X;. When
K(f,t) < e for some t then (3.8) implies that f can be approximated with error
If —gllx, < € by an element ¢ € X; with norm [|g]|x, < et~!. We can now
define the space Xg,; = (Xo, X1)gq for 0 < 6 < 1,0 < g < oo, consisting of the
functions f € Xy + X for which

e dty s
(/ (OK(F0)15)", 0<g<oo
o(flog = ° < oo, (3.9)

supt "K(f,t), g=o0

t>0
Our purpose is not to study Xg, in great detail, but we give some well-known
examples, show that they are complete and give a discretization of p(f )grq which
we will need in the charactization of the approximation spaces mentioned at the
beginning of the section.

Example 3.2
i) (L",L%)gq = Lp,g where 1/p = (1 —0)/r+0/s and Ly, is the Lorentz
space.
ii) (L*, Wf)g,q = Bg,’q where WY is the Sobolev space and Bg,’q is the
inhomogenous Besov space.
For both examples see [3, p. 196]. *

To show that Xg, is complete we first show that it is an intermediate space. By
using (3.7) we get that Xg, < Xo + X; which follows from

® e . dt
p(fiy 2/0 (= min{L, 1} fllxex)? > Cllfllkx,-  (310)
That Xp N X; < X4 follows from
I£1x
20
X, (o — dt © dt
oy < [P HA I + fug, NS
T,
[FAE P 7
< < .
<C(ic) 1% < Cllox,

Proposition 3.3
The space Xg, is a complete linear space with quasi-norm p(f)g,. Moreover if
Xo and X are Banach spaces and 1 < q < co then Xy, is also a Banach space.
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3 Interpolation and approximation spaces

Proof:

First we show that Xy, is quasi-normed (normed). The triangle inequality
(with C = 1 if Xp, X1 are Banach spaces) and |a|o(f)e4 = p(af)g,, follow
directly from the properties of Xo and X;. That f = 0 implies p(f)g,; = 0
follows the same way as in Xy + Xj, because we have K(f,t) = 0. For the
completeness we note two things. From (3.7) we have that as a quasi-norm
on X + Xy, the K-functional for fixed t is equivalent to ||| x,+x, = K(-,1).
Secondly from (3.10) we get that Xg,q = Xo+ Xq. Take a Cauchy sequence
{fultnen in Xg,4- We then have that there exists a f € Xp + X7 such that
limy 0 fu = f in Xo + X; and K(fy, t) converges pointwise to K(f,t). By
using Fatou’s lemma we have

« —0 dt .. o0 —0 dt
/ (K0T < hmmf/ (K fu )15 < o,
O n—oo O
as the Cauchy sequence f,, is bounded in Xg,4- Similary we apply Fatou’s
lemma to fi — fu to get that f, converges to f in Xg,. [

When X; < Xj then the integral in (3.9) can be taken over [0,a] for any fixed
a >0 to get

. 1
EOK(F, )79, 0 <<
p(flog = (/0 \ / t> = (3.11)
sup t "K(f,t), g=o0

0<t<a

as follows. For t > a and g € X; we have

K(f,8) < M1 fllx, < CAULf = gllxy + l18llx,) < CIf = 8llx, +allgllx,),
so K(f,t) < CK(f,a), t > a. This implies that

o a
/ (£°K(f, t))q% < CK(f,a)" < CK(f,5)" < c/ (£OK(f, t))q%.
‘ ;
From (3.11) we can obtain discrete versions of the quasi-norm p(f)g -

Proposition 3.4
Assume that X; — X then

00 1

(L @K1, 0<q<oo

p(flog=4q =N (3.12)
sugZ’"GK(f,Z_”’), g =00
n=

and
(" K(f,n"))1=)T, 0<g<oo

(X W)l 0

p(flog=4q =N (3.13)
sup n"K(f,n"), g = oo,
n>N

where N € IN and r > 0 are arbitrary but fixed.
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Proof:
The equation in (3.11) can be rewritten as

(B L

1/q

Notice that
K(f, 1) < max{1, L}K(f,5),

which implies that K(f,-) satisfies

2771((](‘,27717) S K(f/ t) S K(f, 27717’), 2*(1’1*‘!’1)}’ S t S 277‘[7'

Consequently

(3.14)

(3.15)

2n6r27rK(f,2nr) < tfeK(f’ t) < ZBanGrK(f,Zm), 27(n+1)r <t< o—nr

Which by substitution into (3.14) yields (3.12).

The other discrete version of p(f )glq we get by averaging over the number
of terms instead of only using the dyadic ones. Let N be fixed and observe

that by the monotonicity of K(f,t) we have

2n+171 1 2n+171
Z (erK(f,mfr))qag Z (2(n+1)r9K(f,27nr))‘1
m=2" m=2"
(n+1)rf —nryy 72"
< (2 K(f,27") "5
— C(Z”VGK(f,Z‘”’))q
and also
211+171 1 211+1 1
2 (mr(-)K(f,m q > 2 (anGKfz n+1)r)) —
m=2" m=2"
nré —(n+1)r\\4 2"
Z (2 K(f’z )) 2n+]

_ C(zanK(flz—(n—l—l)r))‘]_

y (3.16) and (3.17) we obtain

C Z (zanKfz—nr))

n=N+1

00 2;1+1 1

<X X (mK(fmT)!

n=N m=2"

<C i (2nr9K(f’27nr))q'

n=N

I~

(3.16)

(3.17)

(3.18)

(3.19)
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3 Interpolation and approximation spaces

Estimating the sum in (3.19) by the first term

miZN (m’eK(f,m”)) % (erQK(flszr))qle

we readily obtain the missing first term in (3.18) such that we have

oo

C Z (Z”YQK(f,Z_’”))q <2

n=N n

(anK(f, n—r))‘i%

<C

gk .‘LZMS

(zanK(f, z—nr))‘i

n=N

which yields (3.13) for n = 2N by using (3.12). For general n we find m
such that 2" < n < 2"*1 and again apply (3.12). |

If we have X; — Xj, then equation (3.12) gives the following embedding
properties of Xg 4
Xos — Xy (3.20)

if 8 > a orif & = & and g < r which we now show. The case 8 =« and g < r
follows directly from the embeddings of I? and the case 6 > & from

( i anaK f - nr ) ( Z znr a—0)s ) sup zanK(f’zfnr)

n=N n>N

<c( ek

n=N

Before we introduce the approximation spaces and characterize them by Xy, we
need to impose some conditions on the subspaces ®,,n € INy by which we shall
approximate f € X. We will also introduce the Jackson and Bernstein inequalities
needed.

We assume that X is a complete linear space with quasi-norm ||-||x and that the
sequence of subspaces @ = {®,}° , have the properties listed below

i) 0€ d,; &) = {0},
11) q)n C q)n+l,

iii)  a®, = P, for all a # 0, (3.21)
iv) b, + b, C P, for some fixed constant ¢ € IN,
V) U @, is dense in X.

If the subspaces ®,, are linear then one has ¢ = 1 in iii). Property v) is not
necessary for the characterization, but seems natural. For every f € X we define
the error of approximation oy, (f)x for f by the subspace ®, as

on(f)x = ¢i€r1q§n!|f— ¢lx, ne€Nandoo(f) = [f]x-
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We also denote g, € ®, a near-best approximation to f from &, if

1f = gnllx < Cou(f)x-

We shall futhermore assume that there exists a complete linear space Y with quasi-
norm |||y that is continuously embedded in X such that the following Jackson
and Bernstein inequalities hold for n € IN

a(flx <Cn”'lIflly,  feY, )
plly < Cn'llpllx, ¢ € Pn. (B)

The conditions (3.21), (J) and (B) give us the following proposition which will be
the key to characterizing the approximation spaces as X ;.

Lemma 3.5
Assume that X,Y are a pair and that Y < X. Furthermore assume that r > 0
and that {®;,};>_, satisfies the conditions from (3.21).

i) If Jackson inequality (J) is satisfied for n € IN, then
on(f)x < CK(f,n™"), feX, mneN. (3.22)

ii) If Bernstein inequality (B) is satisfied for n € IN, then with p sufficiently
small depending on Y

m 1/p
K(f,27™) < cz—m’( Y (Mo (f)x)") ,  feX, neN,
k=0
(3.23)
where 0,-1 = 0p.
Proof:
i) Take ¢ € Y. From the triangle inequality and Jacksons inequality (J) we
have that

on(f)x < CUIf = gllx +u(8)x) < CIf = glx +n7"lIglly)-

Taking the infimum over all ¢ € Y we find by (3.8) that (3.22) is fulfilled.
ii) First we intend to prove (3.23) for n = 2™. Let ¢ be a near-best
approximation to f from @y, ie. ||f —¢xllx < Con(f)x, k € Np. Now
define ¢ = P — Pr_1, k € N, with ¢_1 = 0. This gives

lpillx < Cllf — ¢ellx + Cllf — pr—1llx < Copea(f),  for k € Ny, (3.24)

where we use (3.21) i) in the case k = 0. From the definition of ¢}, we have
that Y} ;. = ¢m, using Lemma A.7 we furthermore have that |||y <

C(I ol il )1/ # which yields
K(£,27") <IIf = ¢mllx + 27" || @mlly

m /
<com(Px+2( L lallt) "

k=0
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3 Interpolation and approximation spaces

Then by the use of (B) and (3.24), as we have that ¢; € @« by property
ii)-iv) from (3.21), we find that

m 1/
<Co (P + €2 ( L@ lgtlhor)
=0

gcsz(kf(zk’azkl ( f)X)ﬂ)W . (3.25)
=0
|

We are now ready to define the approximation spaces and give their charateriza-
tion as interpolation spaces. Let

( i (n”‘(fn_1(f)x)q%)l/q, if g < oo
1 flloe =9 =1 . (3.26)
sup (n*ou_1(f)x), if g = oo,

and define the approximation spaces %”‘(X,Cb) = %’J‘ as all f € X for which
ILf H%a is finite. @7 can be seen as the space of functions for which the error of
approximation 0;,_1(f)x decays at the rate n~% with g as a fine tuning parameter.
Some details are worth noting. If || f ||%u = 0 then in particular one has that
00(f)x = 0 proving that f = 0, from (3.21) iii) and (3.21) iv) one has that
Oen(af +bg) < Claou(f) +bon(g)), f.8 € ', a,b € C showing that ||-[| 5 is
a quasi-norm. By the same means as in the proof of Proposition 3.3 we get that
o is complete. Using the same technique as was used to achieve (3.20) we have
the following continuous embeddings

s ol (3.27)

if ap < a1 orif @3 = wp and g1 < gp. By omitting the term n = 1 in (3.26) we get
the quasi-seminorm | - | g and by the same technique as was used in the proof of
Proposition 3.4 we have the equivalence

1/
(ZZO:] (2”“0211—1 (f)X)q> q, if q < o0
floge =< (3.28)

sup, > (2" 01 (f)x), if g = oo.
Using the discrete versions of the norms we have the following proposition.
Proposition 3.6
Assume that X,Y is a pair and that ¥ <— X. Futhermore assume that & are
subsets of X satisfying the conditions of (3.21). If the Jackson inequality (J) and

Bernstein inequality (B) are valid for the spaces X and Y with r > 0, then for
0 <a <rand0 <g < oo we have that

%N(qu)) = (X/Y)a/r,q- (3.29)
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Proof:
For the sake of notation define Z = (X,Y)y/rq and |fllz = o(f)a/rg;
with equivalent discrete representation (3.12) with 6 = a/r. We first show
that Z — o7 by using (J). The conditions of Lemma 3.5 i) are satisfied

such that we have that oon(f)x < CK(f,27"") yielding |f|%a < ClIfllz-
Futhermore using that Z is an intermediate space we have || f||x < C||f|lz,
resulting in ||f||%a < Ifllz-

Next we show that @/ < Z by using (B). Set b, = K(f,27"") forn >0
and b, = 0 for n < 0 and a, = 0pu1(f)x for n > 0 and a, =0 for n < 0,
then by Lemma 3.5 ii) we have that

n

_ . 1/p
by < C2 ’”(’2 (2]’a]-)") :
So by Lemma A.5 we obtain

( » @ex(f,2)7) " < ¢ Y (2" (f)x)q)l/q

n=0 n=0

for all & < r, which implies that ||f|z < CHfH%a ]

n-term approximation from wavelet bases

We now apply the characterization to approximation spaces with n-term approx-
imation by a basis B from Proposition 2.6. For appropriate indices we set X
to F;t or B;,t and Y = B%r and let B be a basis for X and Y with the related

norm equivalence (2.21). By Proposition 3.6 we need to show that (3.21) and the
Jackson and Bernstein inequalities are satisfied. We define &, as

Oy ={f:f=Y Y aSyta$cCyScB#H=n}

I€HecE

and note that (3.21) i)-iii) follow directly. Property iv) follows with ¢ = 2 and
v) is fulfilled because B is a basis for F;Sz,t and B;,t. To simplify the notation we

denote
Al(f) = L Af 90D and ar(f) = Y [(f,95) ]

ecE ecE

which gives

flls, = llarCHl g,

and similarly for B;,t. As B is a basis in the sense that the coefficients in f;t or

b“;t are unique we also have

O, ={f:f= ) Alf),#H =n},

IeH
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3 Interpolation and approximation spaces

which will be crucial in showing the Bernstein inequalities. Part of the setup for
applying Proposition 3.6 are also the embeddings B;Y,T — F;,t and B’%r — let
which will follow by the proof of the Jackson inequalities. We begin with tfle
Jackson inequality for the Triebel-Lizorkin space.

Proposition 3.7
Let 0 < p<o00,0<t<o0ands < . If furthermore 1/7 = (y —s)/d+1/p
then for f € B%T we have

u(f)sy, < oA (3.30)
Proof:

We set @(f) = ap(f)|1|77/41/ 712 and M = [[a;(f)ll¢ = ||f]lpr . For
j € Z, e >0 we define

Aje={I:27Te <ay(f) <277 e}
and S = ZIEA]-,E Aj(f). We will approximate f by Tye = Y i<k Sje- Since
(ar(f))1ep € (™ it follows that for r > 0 we have

#HI:a;(f) >r} <M °

which gives that Ty, € &y, N = {MTZI‘TS_TJ. To prove (3.30) we will
show that

1f = Tiellgs, < CMT2Te) =9/ £ gy
and the result for general n € IN will then follow from choosing e = Mn /7
and k = 0. First we take t > p and get

p/t

Hf—Tk,sHIZ;J :/Rd( 2 Z (ﬂl(f)|1|*s/d71/le)t) dx

]szrl IGA]',S

<[, T T @Ol 2

j2k+1161\]’/5
<orer Y 27 Y0 / (11|77 xp)Pdx
PR IER R
= DP¢P Z Z*J'P#A].IS
j>k+1
<2PePTMT Y 27T < CcMT(27Re)P T
j>k+1

Next for t < p we have

”f_Tk”F;/f :/§d( Y Y (az(f)ll\—s/d—uzxz)t)P/tdx

jZk+11EN;,

) p/t
<o [ (X L @i i) ax

jk+1IEN,
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Since p > T we can choose § > 0 sufficiently small such that (t —d)p/t > T.
Using Holder’s inequality with p/(p —t) and p/t we get

. . p/t
:ngp/w( Y 2-Jo Y sz(tfé)mft/pxl) dx

i>k+1 I€A;,
, pp—t
< DPeP ( —fﬁp/(r’—t))f P
< 2P /Rd Y 2

j>k+1

Z ( Z zfj(tfé)u‘ft/pxl)lﬂ/tdx

k41 IEA;,

Y (T 27 0prg) e

d
j2kH1 IEA;,

— Ceb RO/t Y zfj(tfs)p/t/ﬂzd( Y |I|7t/p)(1)p/tdx.

]2k+1 IEA]',S

< CeP2kop/t /
N R

For each finite set of dyadic cubes A we let I (x) denote the smallest cube
in A that contains x.

< Ceba M/t Y g i/t / I, (x)]
2k R

< CePa R/t N i g
j=k+1

SCMTsprszép/t Z zfj((tfé)/tfr)
j>k+1

< CMT (27 Ke)P—T,
In both cases we have proved that
1f = Tellgs, < C(M 2% T) =P D) £y
= (M%) I
]

We note that B%T — F;,t follows by choosing M2ke=1 < 1, so that T = 0.
We proceed with the Jackson inequality for the Besov space which will use the
preceding Jackson inequality for the Triebel-Lizorkin space.

Proposition 3.8
Let 0 < p < 00,0 <t <ooands <. If furthermore 1/t —1/p=1/r -1/t =
(7 —s)/d then for f € BY, we have

on(f)gs, < Cn= T fl| gy (3.31)
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3 Interpolation and approximation spaces

Proof:
Let € > 0 and define for every j € Z

1/t

Ne={mez:2de< (L @m(p)7T) " <2t}

I€eDy,

where @;(f) is defined as in the previous proof to be |I|~7/d+1/T=1/24,(£),
Using 1/t —1/p = (v —s)/d we note that

||f|\3;/t = ( Z (al(f)p)t/lﬂ)l/t.

meZ

We now apply Proposition 3.7 on fiu = Yjcp, Ar(f) for m € Z. Then for
every n € Z, we can find subsets K C D, with cardinality not exceding
n, such that

v aln) " <clfu-srle,

IeD,,\KY
< Cn—(’Y—S)/d”fm B S1T||B¥T
1/t
IeDy,
where Si' = Y cxm Af(f) € ®y. Define T, = Y20 LmeA, S’[lzjrj. By

construction we have that Te € @y, where Ne <} > #A]-,Ser. We have by
definition of Aj, that

Iflly =X 8 (X @) = L #ne@ey,

JEZmEN;, " 1ED, jez

r/T

whereby the estimate on Ng becomes Ne < ¢7"[|f[|%,, . We intend to prove
that '
on (s, < Ce 5y )1 fllgg, -

The result for n € IN will follow by choosing ¢ = ”_1/r‘|f||B¥y and the

t

monotonicity of 0 (f). We estimate o (f) e by splitting into two cases
it

)
B,

= C(A] + A). (3.33)

t

iy, <<(| 5 5

J<OmeEN,

S8 PR IN(ZEE ]

S
B+ jZ0meR;,

We estimate A; by using the definition of A;. and the assumptions that
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p>tTandt>r

t/T

ai<cy ¥ (X @)

j<OmeA;, " I€Dy
< CY #A (Ve)
j<0
< Ce Y #A(Ve)
j<0

<ce ¥ (L ar)”

meN;. 1Dy,

Ce' £l - (3.34)

For A, we use (3.32) and the fact that 1/r — 1/t = (v —s)/d to obtain

- t/p
a<cy ¥ (X )
j=0meA, " IeD,y\K'!

(o
CZ Z 2]rt“r s/d( Z ﬁ[(f)T)

JZ0mEN;, €Dy

cy ¥ (xan)”

j>0meA;, 1Dy,

t/tT

Now using the same technique as in the estimate for A; we have that
<cY Y 27/t 2deyt
j>0 mGA

< CY #A; 27
j20

Ce N £l - (3.35)

Recalling again that 1/r — 1/t = (v —s)/d we observe that the estimates
(3.34) and (3.35) inserted into (3.33) yields

on (f)gs, = Cle I fll )™ =) Fll gy, - (3.36)
|
As before we note that B, — BS follows by choosing & 1Hf||Bw <1l It

only remains to establish the Bernstem inequalities. We prove it for the Triebel-
Lizorkin space as the Besov space follows in a similar vein.
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3 Interpolation and approximation spaces

Proposition 3.9
Let 0 < p < 00, 0 <t < o0 and s < 7. Define T by the equation 1/7 =
(y—s)/d+1/p, then for every S € ®,

11157, < a4,

Proof:
Let S =Y jcp Ar(S) € @, and consider the following

ISl = X (1|71 712 ()t

IeA
:/ Z ‘I|T(sf'y)/d(|Ilfs/d71/2a1<5))rxldx
RT {27
S/ (sup (|I|fs/d71/2al(s))77a) Z ‘I|T(S*’Y)/d7adx
R? \ jeD IEA
—s/d-1/2 T/t —y)/d
< Joo (DA 2ar()0)) 3 117 s,
€D IeA

where we have used Holder’s inequality and the embedding properties of
the ¢!/T-norm. By using Holder’s inequality once more with exponents p/t
and p/(p — 1) we find

<| a2 snp)

IeD

. (./]Rd ( Z |I|T(s—7)/dxl)p/l’—'fdx)p—T/p

IeA

T

LP

—7)/
SCHSHESt(/]Rd |IA(x)|Tp(S—’Y)/d(p—'r)dx)(p 7
P,

where I5(x) denotes the smallest cube in A that contains x. From the
equation defining T we have

(p
_ T -1
=cllsilg,, ( [, 1)1 ax)
< @A) PIPs|
pt

=7)/p

—s)/d
= Cn S|
u

Proposition 3.10
Let 0 < p < o0, 0 <t < coand s < 7. Define T and r by the equation
1/t—1/p=1/r—1/t = (v —s)/d. Then for S € ®, one has

1115, < CrlT=97)Is]|, 0
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Having proved (3.21) for our choice of ® and the Jackson and Bernstein
inequalities we now have the desired characterization of the approximation spaces
by interpolation spaces.

Theorem 3.11
Let 0 < p < 00,0 < gt <00, 9,5 € R If0<a < y—sand 7 is defined as
1/t =(y—s)/d+1/p then

%vc/d( .;S?,t) = (F;J,t/ Bg,’r)uc/('yfs),q'

Theorem 3.12
Let 0 < p <00, 0< gt <oo,ys€R IfO<a<y—sand T and r is defined
as1/t—1/p=1/r—1/t = (v —s)/d then

%a/d( .;,t) = (B;,t/ Bg,r)a/(y—s),q‘

O

Note that if we had taken a decomposition system from Theorem 2.5 instead
of a basis the Jackson inequalities would still hold, since they only require the
system to be spanning and have the related norm equivalences. The proof of the
Bernstein inequalities on the other hand require norm equivalence for all n-term
approximations. So for decomposition systems we only have the embeddings

(F;,t/ B?,T)lx/('y—s),q - %“/dui‘;,t)

(B;,tB;r,r)tx/('y—s),q - %a/d(B;,t)'

We end this section with a result that follows from the Jackson and Bernstein
estimates in the Triebel-Lizorkin space and the following lemma.

Lemma 3.13
Let s e R, 0 < p,y <o and 1/g = a/d+1/p. 0 < a < 7y and 1/7 =
v/d+1/p then
23S S +Y _ ps+a
(BPJ” BT'T )tx/'y,q - BM :
Proof:
Assume that T is a linear mapping of a distribution f to its wavelet
coeflicients by the form

T f = (U oy (),
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3 Interpolation and approximation spaces

Especially one has for any f € B;,p that

ITAIG = Yo (/4P =1 2a ()P
IeD

= [Ifllg, -

pp
As we have assumed that 1/7 = v/d + 1/p we also have that
_ d _
ITAIF = X (It 2 ()T
IeD

By this we have that f € (B“;,p,B?;Y)glq if and only if we have that Tf €
(b, €% 1£1/q = (1—0)/p+06/7 then (L7, L7)g, = £9, this follows by
using example 3.2 with the counting measure and the fact that £, , = £7. If

we choose 0 = a/y then 1/q = wa/d+1/p and we have

ITfler,e)y0g = NTSllea
= (L (/e g () e
IeD
= Wl
which proves that f € (B;,p,Bifﬂ)a/%q if and only if f € B;jg“. [ |

The following proposition shows that the approximation space does not depend
on the fine tuning parameter ¢ of the Triebel-Lizorkin space.

Proposition 3.14
Let 0 < p <o00,0<g <00, a>0ands &R. Then for 0 < t1,t < co we have
d(r d(r
oA B) = o U (E,)
Moreover, if 1/g =a/d+1/p and 0 < t < co then one has
w/d (s _ psta
% ( P/t> - Bq'q '
Proof:
We shall first prove that for T with the property that 1/t =1/p +«/d and
7 = min{1, T} we have

AINE,) o B o A NE,), (3:37)
where 0 < t < oo. Using the Jackson inequality from Proposition 3.7 we
get that

|f|£{ﬂ4/d(Fs ) = SUP Zl’lﬂé/d0.2”71 (f)Fst
0o pt n>1 P,

< CSup2(047(s+ocfs))(nfl)/dHfHBi#t = CHf”B;*}“

n>1
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Together with the embedding BSJ”" — Fst obtained from Proposition 3.7
we get

I o < Clllggse

thereby proving the right-hand side of (3.37). To prove the left-hand side
take a near-best approximation Sg to f from @1 for k € IN and let So = 0.
Then since U NPy is dense in B?JT”‘ and by using the Bernstein inequality
Proposition 3.9 we find

(o]
Hf||£w < k_ZlHSk - Sk_l”%j}a

[e9)
< C Y 2 s, — sk
k=1 P

< o okta/d ()T 7
<c( L 2™ opa (0, + 111,

< CHfHszx/d Fs ) 4

proving (3.37). Let 0 < 8 < 1and g > 0, then if 1/74 = 1/p+a1/d and
1/t =1/p+ay/d one has

(%gl/d( 1), g/"z/d( Fpi))e, C (Bi;ji‘ll,Biﬁf)g,q
d 4(f
C (B ), A (B})g, -

However by the reiteration theorem [3, Theorem 7.3, p.195] and Theorem
3.11 we also have for 1/t = v/d +1/p and max{aq,ap} <y < co that

(B 2 B)) gy = (B B s (Bt BE)
+
( ;trBs ’7)“/%{1
= A(E).

ﬂéz/%fz) 0,9

with &« = (1 — 0)ay + 0ay. An identical calculation with 71, % replaced by
oo yields

A1 E ) = (st (B ), (B ) -

This shows that

: + +
%ﬂ‘/d( }'Sl,t) = (B"sﬁ glllB’sfz ?zz)eq

for any f > 0. To prove the second part of the proposition we use Lemma
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3 Interpolation and approximation spaces

3.13 to get

%uc/d< S )

; (Bs+o¢1 Berucz
P,

1,17 21,0 )e,q

((B;,,,,, Bet) sy (

- 55+
BPrP/ BT,T )az/’Y’TZ)Q,q

(B, BeE), S

(3.38)

Since we have assumed that 1/q = a/d +1/p we have by using Lemma
3.13 again that (3.38) equals B;jq"". [

As a corollary of Theorem 3.11 and Proposition 3.14 we have

Corollary 3.15
Let0<p<o0,0<t<oo,yeRand0<a<y—s.Ifl/t=(y—s)/d+1/p
and 1/qg =a/d+1/p, then

~s RY — pstua
( ptr BTff)oc/('yfs),q — q4q

43



4 New bases by almost diagonal matrices

In this section we will apply some of the previous techniques to a new system ©
consisting of functions that approximate one of the previous bases for PS, or B;,q
to such a degree that they also form an unconditional wavelet basis. Afterwards
we will show that such a new system can be created by a finite linear combination
of shifts and dilates of a single nice function ¢ that has sufficient smoothness and
decay and no vanishing moments.

Take ¥ from Proposition 2.6. Choose € > 0 and take ® = {6°}.c satisfying

(09 (x) = (¥) W ()| < e(L+[x)) ™, |a| <72 (4.1)
/x“@e(x)dx =0, |a|]<r-1 (4.2)
Compared to earlier we are missing a way to expand 97 in the new system ©,

the boundedness of the matrix that results from this and the uniqueness of this
expansion in Fzsa,q or B;,q' All three things will follow from showing that the matrix

B = (<9§//¢{i,>>(I,e),(]'e,)eDXE has a bounded invers on f;q or b*;’,q To prove this
we introduce the term almost diagonal.

Definition 4.1 . .
LetsGIRandforf;,qlet0<p<oo,0<q§ooandf0rb§,rqlet0<p,qgoo.
The infinite matrix

C= (C(I,e),(],e’))(I,e),(],e/)EDxE

is called almost diagonal on f;an or b;/q if there exists € > 0 and C > 0 such that

C(Le),(,0) | < Cawie(L])

wi(I,]) =min { (%) (d+8)/2+s ’ (%) (5—d)/24+L—s }

. (1+ X — x/] )Le

max{£(I), £(])} '
where L = d/min{1,p,q} for f5, and L = d/min{1,p} for b5, When no
confusion arises we use the notation wg, = we. o

with

Proposition 4.2 .
LetsGIRandforf;,qlet0<p<oo,0<q§ooandf0rb§,rqlet0<p,qgoo.

: ; (s S ; (s
Assume that C is almost diagonal on fp,q or bp,q then C is bounded on fp,q or
bq

Proof:
This follows by repeating the proof of Proposition 2.2. |
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4 New bases by almost diagonal matrices

Proposition 4.3 _ .

Let ¢ > 0, s € R and for f;, let 0 < p < 00, 0 < g < co and for by, let
0 < p,q < co. There exists 6 > 0 such that if C is almost diagonal on f;q or l');,,q
and ||[I — C||¢ < &, where

c N
|IClle = sup 1E(Le), (N1

ey @eL1)
then C has an invers on f;q or l};,q which is almost diagonal.

Proof:
Denote I — C = C and assume that C(1e),(7,0)| < Owe(l,]) for some e,
d > 0. By the definition of wez(I,]) one has that it is a non-decreasing
function of € and & This implies that we(I,]) < wgz(1,]) for fixed & < .

We define a} ; = by for A" = B. Lemma A.9 yields the following
et |

L)) | Y e, (ke Cikem, e

Ke"

62 Y we(I, K)we(K, J)

K"

52 Zw§,£(11 K)a)g,g(K, ])
K,e

Co*we (I, ])
Co%we (L, ]).

IN

IN

By induction one finds that |5’(11 ! e,)\ < C"15"wi(1,]) for all n € N.

Choosing ¢ such that § < min{1,C~!} insures the convergence of the
Neumann series }_,~9 C" since the space of almost diagonal matrices with
finite |-||z is a weighted £*-space, therefore a Banach space. The Neumann
series ¥ ,50C" = (I—C)~! = C~'. By construction we have that

€ty .0 < (1= CO) M we(L)). |

By using Proposition 4.3 and Proposition 4.2 we now show that B has a bounded
invers on f, . or by, ..

Lemma 4.4 ) .

Let s € Rand for Fy ;let 0 < p < 00,0 < g < o0, L =d/min{l,p,q} and for B ,
let 0 < p,qg < oo, L =d/min{l,p}. Furthermore let k = max{|s —d/p]|,—1},
r1>L—d—s,rp>sand M = max{L,d+ry,d+rp} for F';,q and M = max{d +
r1,d+ 1y} for Blsg,q. Take ¥ from Proposition 2.6. If ® satisfies (4.1) and (4.2)

with sufficiently small J, then B = (<6§/, %))

on f;q or b;,q'

(Le),(],e')eDxE has a bounded invers
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Proof:
Choose ¢ > O such that L4+¢ < M,s+¢/2 <rpand L—d—s+¢/2 <
r1 from Proposition 2.6. By Proposition 4.3 and Proposition 4.2 we only
need to show that B is almost diagonal and ||I — B||¢ < J¢. Take (I, e) #
(J,e"), ]| < |I|. By the ortogonality of ¥ we have

o5 90| = | (67 ()9 () )]
By repeating the proof of Lemma 2.1 we get

< C(S(%)rlﬁ/Z(l—k |xle(_1)x]|)M

< Cowe(I,])

Similary for (I,e) # (J,€¢'),|J| > |I|. For (I,e) = (], ¢') we use the
biorthogonality of ¥ to get

(05,95 = 1+ [ (05(x) — 95 (x) i (x)dx

which gives

05,5 1] = | [, (85(0) = pi) P (x)ax| < Co,

where we used the technique of the proof of Lemma 2.1 again. We now have
that B is almost diagonal and that ||[I — B||. < Cé. Choosing J sufficiently
small such that Cé < J, the result follows. [ |

We will follow the steps of page 20-25 to show that ® forms an unconditional
wavelet basis for F;,q or B;‘,,q. As previously we first insure that the series converges

in §'/P. by bounding the series with the f;rq, b;rq—norm of the coeflicients.

Lemma 4.5 ) )

Lets € Rand for Fj , let 0 < p < 0,0 < g < oo, L =d/min{l,p,q} and for B; ,
let 0 < p,q < oo, L =d/min{1,p}. Furthermore let k = max{|s —d/p]|,—1},
rp>L—d—s,rp>sand M = max{L,d+r,d+rp} for Ff,lq and M = max{d +
r1,d+ 1o} for B;,q. Take ¥ from Proposition 2.6 and let ® be a family of functions
satisfying the conditions (4.1) and (4.2). If d = {d;,} € ff,q or b;,q then the series

Z dI,eei

(Le)eDXE

converges in S’/ Py.
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4 New bases by almost diagonal matrices

Proof:
Notice that the assumption (4.1) implies that |(6°)®)(x)| < C(1 + |x|)~M
We have that 67 fulfills the same demands as 6; from Lemma 2.3. By
repeating the proof of said lemma with 07 instead of 6; proves this lemma.

Next we need to expand the elements of ¥ in our new system ©®. Previously
in Theorem 2.6 we used that © formed a wavelet basis for L>(R?). To prove
the result for our new system we will instead use the boundedness of B~1 as the
following lemma shows. We denote the entries of B! = <1,DI, 0 )) as it seems to
be the most natural notation.

Lemma 4.6

Let s € R and for Fj  let 0 < p < 00,0 < g < oo, L = d/ min{1, p,q} and for B} ,
let 0 < p,qg < oo, L =d/min{1,p}. Furthermore let k = max{|s —d/p]|,—1},
r1>L—d—s,rp>sand M =max{L,d+ry,d+r,} for F 'S g and M = max{d +
r1,d+rp} for BS g Take ¥ from Proposition 2.6 and let @ be a family of functions
satisfying the conditions (4.1) and (4.2). Then one has that

W= Y (¢5,67)6, (Le)eDxE, (4.3)
(J.e')EDXE
in S//Pk.
Proof:
We shall prove the lemma for F;q, since B;,q follows in a similar man-

ner. Using Kroneckers delta function we define the sequence 61¢ =
{(5(1,8),(]13/) }] vepxpfor (I,e) € D x E. We now use 51 to write the sequence

of the series in (4.3), ({5, 9~§/>)],e, = B~16"¢. The conditions of Lemma 4.4
are satisfied and we therefore have that the matrix B~! is bounded on f; 7
Since our sequence ¢ € f;q it follows that (<1P1, >)]e/ is in qu By

Lemma 4.5 we have that the series in (4.3) converges in S’/ P;. From this
we have

(X (95,8765 9 ) = X (95,05 )(67 ).

J.e e

By Proposition 2.2 we have that the matrix (<9;/,¢K>)K,] is bounded on
f;q Using the norm equivalence of ¢, Proposition 1.4, we have that
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e (95, 9~;l>9;l € F;,q. Next we expand in ¥ and for this we notice that

(L wi 07)65, 9) = 0 (01,07 ) (65, o) (9 9 )

Ie K Je
=Y (¥i, 67 )6, va)
]’e/
A" if (I,e) = (A, €"),
o, if (Ie) # (A",

which gives

Yo (w5, 0005 = 3 (Y (ws, 05005, 9% )y =y

Je A e
[ |

Using the previous lemmas we now prove that the new system © also forms an
unconditional wavelet basis for FS, or B“;’W for appropriate indeces. This theorem
will be pivotal in the proof that a finite number of shifts and dilates of a single
function forms a basis for Frs,’q or Blsg,q.

Theorem 4.7 .

Let s € Rand for Fy  let 0 < p < 00,0 < g < oo, L =d/min{l,p,q} and for By ,
let 0 < p,q < oo, L =d/min{l,p}. Furthermore let k = max{[s —d/p], -1},
r1>L—d—s,rp>sand M =max{L,d+ry,d+ry} for F; ; and M = max{d +
r1,d+ 71y} for B;’q. Take ¥ from Proposition 2.6 and let ® be a family of functions
satisfying the conditions (4.1) and (4.2). Then for f € F;, there exists unique

coefficients d = (dp)(1e)epxE € f;q such that

f = Z dz,eG? (4~4)

(Ie)eDXE

in §’/P, and in Ff,,q if g # co. Furthermore one has that
715, = I el

In B;,q a similar phrasing applies with convergens in B;,q for p,q # .

Proof:
We give the proof for F;/q as the proof for B;/q follows in a similar vein. By
Lemma 4.6 we have that ¢$ = Y5 ./ (5, 5;»97, in §'/P. From Lemma 4.4

one has the boundedness of the matrix B~! on f;q With minor alterations
the proof in Theorem 2.5 can be repeated to show the norm equivalence
and the convergence of (4.4) with dj = Y1, (f, %) (5, 07 ). To show the
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4 New bases by almost diagonal matrices

uniqueness of the coefficients in f3 /. assume that there are two sequences

‘ P’
d' and d? both in fp,q such that

1 ! 2 ! .
Zd /6/96 = f = Zd ,6/9; m S//Pk.
Je Je
We expand each 9;, in the wavelet basis formed by ¥ and get

Yo (08, s =YYl (6, s, i=1,2

Je Le Le J,e

using the boundedness of B on frqu and Lemma 2.3. By the uniqueness of

the wavelet coefficients in f;q from the wavelet basis formed by ¥ we then
have that
Bd' = Bd”.

Finally we apply Lemma 4.4 to get d! = d?. ]

Bases from shifts and dilates of a single function

We now show that a finite number of linear combinations of shifts and dilates of
a single function with sufficient smoothness and decay and no vanishing moments
fulfills (4.1) and (4.2) with Meyer’s wavelet set [2, p.137]. Therefore we can use
Theorem 4.7 to create a basis for F;,q or B;,q from these. Let {@y }neN be a family

of functions in C"2+1(IRY), which satisfy:

There exists M’ > d +ry, u > 0 such that

el (4.5)
i ()] Scwr laf <72 +1,
/]Rd Pn(x)dx = 1. (4.6)

One way of constructing ¢, is taking a function ¢ € C"2*1(R,) with | (£)] <
C(14t)"M' |a| <ry+1, and then defining ¢, (-) = C1n¢(n| - |) with C; chosen
such that (4.6) is satisfied. Examples of { are e~ and (1+-)~M' M" > M.
To approximate Meyer wavelets we will use the set O,

K
®K,n = {9 : 9() = Zaicpn(- “rbi), a; € R, b; € ]Rd}
=

1

Proposition 4.8
Let {@n}nen satisfy (4.5) and (4.6) with M’ > M > d and let ¥ be Meyer’s
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wavelet set. Then for € > 0 there exists K,n > 1 such that for ¢° € ¥ there is
8 € Ok, for which

(@)@ (x) =00 ()| <e(+ [, |a <7z, (4.7)
/Rd x*0(x)dx =0, |af <r —1. (4.8)

Proof:
We begin with showing that for any function ¢ € C"2+1(R¥) satisfying

§W ()] < Ca+|x)™, Ja| <r+1 (4.9)
there exists 6’ € Ok ,, for which
8@ (x) — (@)W ()| <e(t+|x)™, |a| <1

This we will do in three steps first approximating g by a convolution operator
Wy = §* @y, then approximating wy, by A, which is the integral in wy
taken over a dyadic cube and finally approximating Aq, by a discretization
Om,qn- We have

UM - (@) = [V g —y)eu)dy, o] <rp, (410)

by using (4.6). Define U = n/?M where 5 = min{1, M’ — M}. For |x| < U
we have by using the mean value theorem that

g (@) —gW -yl <Clyl, fa| <72
Inserting this in (4.10) we get
d
(@) —wl® < / Ld
‘g (x) Wn (X>| —C RY (1+n‘y|>M/ y

—1/2 —1/2
-1 < Cn Cn

< C ’
=E ST = g M

(4.11)

using that U > 1 and M’ > d + 1. For |x| > U we split the integral over
Q={y:|y| <|x|/2} and Q. If y € O then |x —y| > |x|/2 and we have

@ () — ol (x — )| < |@ @ ()< — S
8" (x) =" (x —y)| < [g" (%) + [g" (x y)I_(H‘x')M,
Therefore
C
(@) () — o(®) (x — P C
/ng () =g = yllenldy < G
—n%/2M
< C < Cn—1 ‘
T A4 UnTA 4 )M T (14 )M

(4.12)
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4 New bases by almost diagonal matrices

Integrating over Q¢ = {y : y > |x|/2} for |x| > U we get
1896 =g = y)llga(vldy

< [ 9@l dy+ [ 18 0= y)llgn(n)ldy

- C +/ Cn? ay

A+ RDM O Jas (T4 |x = y)M (14 nly )M

S R R ¢ S R
T DM @)™ T (14 DM (1+[x)M ’

(4.13)

where we used (2.7) and the same estimate as in (4.12). So by choosing n
sufficiently large in (4.11), (4.12) and (4.13) we get

89 (@) — i (¥)] e+ x) ™™, [a] <7 (4.14)
For the next step we fix n and approximate wy by Ag, defined as
Agn() = /Qg(y)cpn(~ —y)dy,
where Q = [~24,27]%, g € N. Obviously we have
o @) A = [ sWe -y, el <r
o R1\Q -

from which we get

nr2y+d

i (x) = AR (x)| < C

, dy = L.
= /uzd\Q<1+|y|>M<1+n|x—y|>M Y

We first estimate the integral for |x| < 2971 which gives that |y| > 2|x|
and |x —y| > 2971 and hence

- Cnr2y+d 1 q
=t DY Jrivg (T4 nfx— g Y
Cnrah+d 1 CnrzthrdfM’z(dfM’)(qfl)
S 7// 7/(1“ S 7
(T4 [x )M Jjujz20-1 (1 + nfu|)M (1+[xM

For |x| > 2971 we split the integral over Q = (R\Q) N {y : |y| < |x|/2}
and O = (RY\Q)\Q. If y € Q then |x —y| > |x|/2 so we get

nrsz—d Cnrz;H—d 1
/ ; 7y < 7 / v
o (T4 yDM A +nlx —y)M (1+nfx )M Jre (1+y[)
Cprant+d—M Cpr2#t+d—M'9—1(q-1)
@M T (I M
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If y € Q) then |y| > |x|/2 and hence

nl2p+d Cn2H nt
/ M/ M/ dy S M/ / M/ dy
o (T+[yD™ (1 +nlx—y|) (L+[x )M Jre (1 +n|x —yl)
_ Cnl2t Cnr2ip—1(q-1)
T )M T (1 )M
Therefore in both cases we have
Cn'2#2—14
L< ——,
(1M
Choosing ¢ sufficiently large we obtain
i) () = A () < e+ [x)) ™M, Ja] <o (4.15)

For the final step we fix g and approximate A, by a discretization 6y,
Let Hp,q denote the set of all dyadic subcubes of Q of sidelength 27",
m € IN. We define

Omgn(-) = 1 ; 1118 (x1)@n (- — 1)

and note that 0y,qn € Onu(gimr1) - We have

N

Al () = B4 () = 1 ; /1 g (x — ) — glen) o (x — x1)dy
€Hpq

Y [Fw) - Fady, el <r,
I€Hu, 7!

where F(-) = g(-)9®(x — -). By using the mean value theorem we get

AR ) i <C ¥ [ly—xi|_max [FO @)y
I€Hy, "1 (x1y)

zel(xpy
|Bl=1
< €299 max |F(P)(z)]
zeQ
Bl=1
< C27=™ max |q0£1“)(x —z)|

zeQ
la]<rp+1

where I(x1,y) is the line-segment between xy and y. If |x| < /d21%1 z € Q
and |a| < rp + 1 then

(ro+1)p+dpqM
@) | < (72+1)14+d<cn—
i 2] < s < SETECE
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4 New bases by almost diagonal matrices

If [x| > v/d29%1 and z € Q then |x — z| > |x|/2 and hence for |a| < 7y +1

we have
Cn(r2t)u+d Cplratp+d-M

(o) o <
IS T = T A

In both cases by choosing m sufficiently large we obtain

AR (x) — 650 ()] < e(T+[x) ™, [a] <1 (4.16)

From (4.14)-(4.16) we conclude that for any ¢ > 0 there exists K,n > 1
such that for any g satisfying (4.9) there exists 8’ € Ok, (K = 2d(g+m+1),
0" = Op,q,n) such that

819 (0) = (0N ()| <3e(1+[x)™, o] <7 (4.17)

Next we will use the first part of the proof to show that there exists 8§ € Ok ,,
which satisfies both (4.7) and (4.8). We shall do this using some of the
specific properties of Meyers wavelets and the operator A}

j

(87, P)3) = Y (1) () -+ o),

k=0

where v; is the unitvector in the j’te direction. By using the binomial
formula we get that

(8 ) /Rd Z r+k( ) (x)e~ i (—HI0)2 g
= (elhé’ 1) f(&).

If [f(x)| < C(1+ |x)~™' we have that

/IRd (A;fv]f)( x)dx = i‘a‘(Azljf)A(“)(O)
= ilol (e — 1) f(g))(a)( 0)=0, |a]<r -1

Take ¢° € ¥ and define g by (&) = ¢°(&)(e'%/2 —1)~", where j is chosen
such that e; = 1 (see (1.2)). Observe that ¢'%’2 — 1 vanishes only at the

integer multiples of 47t which are not in the support of 1,36 and hence g € S.
Now using the first part of the proof (see (4.17)) we have that there exists
6’ € Ok, such that

8™ (x) — ()™ (x)| < 3e(1+[x])™™, |a| <. (4.18)
Furthermore we have that

10/ (x)] < C(1+|x]) M. (4.19)
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which follows from |@,(x +b)| < Cné(1+ [b)(1 + |x])~™. We define
6 = A;;_/ZQ’, 80 0 € O, 1)k We have p° — 0 = Ag_/z(g —6') and using
(4.18) we get

() (x) =0 (x)| < Ce(1+ |x|) ™, Ja| <.

by using the same estimates as for (4.19). Moreover from 6 = A:}_/ZG’ and
j
(4.19) it follows that

4 — _
/Rdx f(x)dx =0, |a] <rj—1.
|

By combining Proposition 4.8 and Theorem 4.7 we have a that a finite number
of linear combinations of shifts and dilates of a single nice function forms an
unconditional wavelet basis for F,S,,q or B;,q.

Proposition 4.9

Let s € Rand for F o let 0 < p < 00,0 < g < 00, L = d/ min{1,p,q} and for B;, ,
let 0 < p,qg < oo, L =d/min{1,p}. Furthermore let k = max{|s —d/p]|,—1},
rp >L—d—s, 1 >sand M = max{L,d + ry,d +rp} for Ff,lq and M =
max{d +ry,d + rp} for B;,q' If {@n}nen satisfies (4.5) and (4.6) with M’ > M
then there exists K,n > 1 ar_ld a farr_lily of functions ® C @, such that © forms
an unconditional basis for Frs,,q or B;q and we have the norm equivalence as in
Theorem 4.7. O

We conclude this section with considering n-term approximation from a single
nice function in light of the previous proposition. Especially whether the Jackson
and Bernstein inequalities are satisfied, so we can characterize the approxmation
space by an interpolation space by Proposition 3.6. We define

G(p) = {g(a-+b):a e R,be R}

Gulg) = {5:5= iamm € Glp)}
2

and ‘Ti(f(f)lf;,, = infgeq, (o) Il f — SHF;’,' By Proposition 4.9 we have that there

exists K, m such that there exists @ C Ok ,, which forms an unconditional wavelet
basis for F;,r As on page 34 define the error of approximation and let us here

denote it o (f) B Then from Proposition 3.7 we have the Jackson inequality
Py

Ug(f)ﬁ;,t < Cni(%s)/dHfHBlﬁ-
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4 New bases by almost diagonal matrices

Next we use the fact that U(2d 1)I<n(f>Fpt < aﬁ(f)F;,t to show the Jackson

inequality for n-term approximation by the single function @. Let n > (2¢ — 1)K
and find n; € N such that (27 — 1)Kny < n < (24 —1)K(ny + 1) we then have

Cny
< c((zd - 1)K(n1 + 1))‘(7‘5)/d|\f|lgzﬁ
Cr ) gy

For 0 < n < (2% — 1)K we use the embedding Bl — F;,t which was achieved by
the proof of the Jackson inequality in Proposition 3.7

ol s, < Il
< Clflg,
< (@' = DR fl gy

<Cn (1 MHfIleT-
In a similar manner one also finds that
ol gy, < v fll gy,

holds in the Besov case. From these Jackson inequalities and Proposition 3.6 we
have

( ptlBgT) /(v—s)q M“/d( pt/{GVl((P)};O:O)
(Bp,tBT,r)a/(“/—s)q d“/d( pt/{G (@) }uzo)-

However it remains an unanswered question whether there also exists Bernstein
inequalities for G, (¢@), so that the approximation spaces can be entirely charac-
terized by interpolation spaces as in Theorem 3.11 and Theorem 3.12. At the
moment the only known function for which one can obtain this, is when d = 1
and the function is (1 +x%)~N [9, p.773]. The Bernstein inequality is here a result
of the inverse estimate of Pekarskii ([9] refers to [13] and the references therein).
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A for Appendix

We start the appendix with the following result that is used extensively in Pz,q
and Bisg,q for example to justify the norm on both spaces defined in (1.6) and
(1.8). We first introduce some notation. Let &(IR?) be the space of all infinitely

differential functions on R? and with convergence of fi to f in &(IR) if and only
if fi, f € E(R?) and

lim sup |(fy —f)P| =0

]}ETC}OﬁN,/S(fk -f)

for B € Nd and N € N. By [6, p.115] one sees that &(IR?) is the space of
distributions with compact support.

Proposition A.1
If f is a distribution with compact support then f is a C* function with derivatives
that have polynomial growth.

Proof:
In this proof we use f(7) instead of (f,#) to emphasize the fact that f is a
continuous functional on &(IR?). This also gives that the function f(e=27*")
is well defined. Let 7 € S we then have

Fony =) = £ ([ e 2 ) = [ nofe s

provided we justify the last inequality. We wish to show that the Riemann
sum converges in the topology of S(IRd) to the integral, such that we can
use the continuity of the distribution f to move the Riemann sum out of f.
Choose p,0, the result for py g follows from the fact that (2mtix)Py(x) € S.

Take a partition of R? into cubes Q; with sidelength 2\/—%, and select
t; € Q;. We examine the convergence of the Riemann sum and the integral.

| [ e = Yy (te 2 E ||
]
:‘ Z/Q U(x)e—zm'xg _ n(tj)e_zmtf‘fdx’

(o) (e e ) ax| 1| [ () —n(t))e >
j

L=t [ () — (e,
j ] i

Gl = W ax s [ o) =y (tlax
]

] ]
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A for Appendix

where |¢| < N and the last inequality follows from the fact that 27|x —
tj|N < 7t. Now by the use of the dominated convergence theorem on the
first and the second term the entire expressions tends to zero as |Q;| — 0.

Next to prove that f(e=2™*") is in C* we show that

f[g](*ZT[llgvie_zqu — f((e—Znix')(vi)) — f(e—27rix~)(vi)’ (A.l)

where v; is the unitvector in the i’te direction. The result for general a
then follows by repeated use of this since —27i%e~27"*¢ ¢ C*. We need
that (e~ 2T (x+00)¢ _ p=27x8) 51 converges to —2miflie~ 2 in &(R?) for
6 — 0. Choose py o and take § small enough such that IN < % The result
for generel B follows from similar calculations with terms that impose lesser
conditions. We then have

—2mi(x+v;6)¢ __ ,—2mi .
‘(6 i(x+0,0)¢ _ p—2mixg _|_27-[i§l.€2mx§>‘

)
—27iég; _
I L
o
< | cos(27t6¢;) — 1| L sin(276¢;) o
é )
< <|cos(27r((55N) —1] n sm(Z;T(SN) —27TND

for |¢] < N. [6, Proposition 2.3.4, p.110] gives that there exists N,m such
that
[(f.0)|<C Y sup [0P(2)],
|| <m |S|<N
for 8 € C*. By applying this to f(efzmx') we get the polynomial growth.
|

This lemma is used in showing the norm equivalence in Proposition 1.4.

Lemma A.2
Let xj, xp € R? M, N > 0 and L be a non-negative integer. Assume that ¢ and

¢;j are two functions on R? that satisfy

A zmdsz
" < « . forall |a| =L,
| (Pm(x)| — (1—|—2’”\x—xm|)M or a. |1X‘
B2/
|¢(x)] <

A+ 2 — )N
for constants A,, B and

/d ¢;(x)xPdx =0, for all |8 < L— 1, which is void if L = 0.
R
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If N>M+L+dandj>m, then

<o 2ottt A2
= (T4 2 — xj )M (4.2)

[ on(x);(x)dx

Proof:
As in the proof of Lemma 2.1 we introduce a Taylor polynomial of order
L —1 at the point x; in the integral on the left-hand side of (A.2). Using
the remainder theorem we have by the assumed estimates that

[ on(y(x)ax
A x — x;|EomdymL 0jd
sy k| R _dx,  (A3)
o= & IR (T+27[x0 — 2 [)M (1 + 2/x — x5)
where x0 € I(x, x]-). Since j > m we have that
(14 2™x° —xm\)(1+2j|x—xj|) > 142" |xy — x;jl.
Using this estimate in (A.3) we get
W] <c [ oum 2y
x)¢i(x)dx . x
et P ()9; = 7 JRe (1427 xy —x]-|)M (142/|x — xj|)N-M

omdo(m—j)L
(1 + 2m|Xm - x M

1_|_1,) N+M+L+d— 1d1’

Because we have N > M + L + d the integral is finite. |

Next we present Fefferman Stein’s maximal inequality which is a deep result in
analysis so therefore we omit the proof, [6, Theorem 4.6.6., p.331]. It was used
in showing the norm equivalence of ¢ (Proposition 1.4) and the boundedness of
operators on frqu and B;’q (Proposition 2.2).

Proposition A.3
For a locally integrabel function f and t > 0 we recall the maximal operator M;
as
/t
M) = ( s 1017 [ 1l ay) ",
{Q:xeQ}

where the supremum is taken over all cubes with sidelengths parallel to the axes.
If 0 < t < min{p,q} then for any sequence of functions f; and 0 < p < oo,
0 < g < o0 one has

H(%Mt(fj”q)l/q” <CH( \f]|q) /qH . (A4)
j€

LP

0
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Now follows a lemma about the maximal operator which was used in Proposition
2.2 and Lemma 2.3.

Lemma A.4
If0 <t <1land M > d/t, then for any m € Z, any sequence of complex numbers
(hj)iep, and x € I € D one has

lx; — x| -M
Tl (1 oimay) < Cmax AT DM Py Iyl ) ().
Proof:

We consider two cases. First |I| <274, Set § = M/d —1/t, and define
for all j € N the set Qj = {] € Dy : 2"(x; — x7) € [~2/,2/]}. We also
define the disjoint sets (); = Q; \ Qj-1 where Qg = Qp. Then for x € I, we
have by the use of Holder’s inequality that

Y gl (2" =)
]eDWl

<cy ¥ [nyl ™

j:O ]EQ]

0
:C227]d/t7]5d Z |h]|
j=0 Jeqy

“cu T (5 )

where the last factor in the second inequality is a constant since § > 0. We
use 0 < f < 1 to take a ¢f-norm and introduce an integral in the sum, which
is possible due to the disjointness of the | € Dy,

<Csup (Z*jd ) |h]\t)l/t

:C(supzfdemd/ ( ) |h]|X])tdx)1/t
]ZO R ]EQ]

We now turn our attention to the size of | Ujeg; J|. It can be estimated by
2-md multiplied with the number of integers in the cube centred in xj (or

the origin) with sidelength 2/*1. So |Ujeq, J| < 20+2)dy—md which yields
t 1/t
SC(sup ( Z |h]|)(]) dx)

>0 | Vreq; /| Yreg;) *jeQ;

<cmi( % Iyl ) ()-

IeDm
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If we instead have |I| > 27"? assume that £(I) = 27", where n < m. Define
the sets Q; = {J € Dy : 2" (x1 — x7) € [~2/,2/]}, and O; = Q; \ Qj_1 where
0y = Qp. Now in the exactly same fashion as before we find for x € [

Y Iyl (2 —xg )M

J€Dm
<CY Y Inyl2oM
j=0jen
. 1/t
SC(supZ*]d ) |h]\t)
:C(sup2_jd2md/ ( ) |h]\)(])tdx)l/t
j>0 RY 2 ren;

We estimate the set U JeQ; J in the same manner as before. To do this we
need to estimate the number of integers in cube with sidelengths 2/*1, and
multiply this figure with the area of a cubes in Dy,. This yields the estimate

|Ujeq, J| < 2U%2=md

_ t 1/t
SCZ(’” n)d/t(supﬁ ( 2 \h]|X]) dx)
jz0 127€Q 11 MUjeq;] * jeg;

< Cz(mfn)d/tMt( Z |h]|X]) (x)
IeDnl

The following Hardy type inequality finds its use among other things in Lemma
3.5.

Lemma A.5
Let 0 <A < 6,0 < g < oo and let ay, by, be two positive sequences. If sequences
a, and by, satisfy

1/u
by < C( y (2<m—")9am)ﬂ) ) (A.5)
m<n
then 1/ 1/
q q
(L @.)7) " <c( L ")) (A.6)
nez nez
Proof:
From (A.5) and the embedding properties of the £7-norms we have
(m—n)6 I Vw
b, < C( Z (2 am) ) ’

m<n
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for all 0 < p' < p, especially we will assume that it holds for u’ < g.
Choose r so that p'/qg+ pu'/r = 1 and B such that A < B < 6. Then
by writing a, = 2m(B=A)g,,2-m(B=A) and using Holder’s inequality with
exponents g/p’ and r/u’ we have that

by < C2—n9( Z (2m92—m(/5_/\)am>q)l/ﬂ( Z 2m(ﬁ—A)r)

m<n m<n

< Cz—nezn(ﬁ—/\)( 2 (2m92—m(ﬂ—/\)am)q)l/q'

m<n

1/r

This implies that

9—n(6—p)q Z 2m(9+/\—‘5)qaz1)l/’1

nez m<n
mO+A-B)gl ¥ o-n(0-p)g) "7
2 al, ¥ 2 )
meZ n>m

(
(

< C( 2"1(9“\*/5)!4,1?”27111(97,5),4)1/’4
(

The next lemma is used in Lemma 2.3.

Lemma A.6
Let m,n € Z with m > n,if ] € D, and M > d then

|x1_x]| M (m—n)d
Ie%(”an) < c2mh

Proof:
We have

|x1 — xf| M _ n(m—n)M m—n m, _ \—M
Y (14 7 =2 Yo @ 2y — )M
IeD,, (]) jGZd

We wish to use

Y (p+ i)™ < cptM, (A7)
jezd
o > 1, by which the lemma follows. We will show (A.7) for d = 1 the generel

result follows by induction (see the proof of [11, Lemma 2.7, p.9]). Choose
a € Z closest to p and estimate the sum by an integral except for j =a

Y (o™ < [ (o Ix)Max < co =M,
j€Z\{a} '
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then estimate the term j = a by p~M. |

This lemma was also used in Lemma 3.5.

Lemma A.7

Let X be a quasi-normed linear space with quasi-norm ||-||. Then there exists an
equivalent quasi-norm |-||o and scalar y > 0 such that ||-||} is subadditiv i.e. for
f,g € X one has

Proof:

If +8lls < [1£15 + ligllp- (A-8)
Let C denote the constant used with the quasi-norm ||-||. Let Co = 2C and
note that C > 1 can be chosen. For f,g € X we immediately have that

1f + &l < max{Col|fIl, Collgll}- (A.9)

By repetion one has that
L4+ full < max (oI I} (A.10)
<j<n
Take p such that it satisfies C)) = 2 and define |-[|o as

—  inf e )
Iflo=,_inf _ (UAIF +---+ L5l

fi+

with the infimum being over all decompositions of f € X. We then have
that

If +gllo < AN+ + 1 fmll?) + (lgall* + -+ llgull¥),  (A1D)

where er-”:l fi = f and 27:1 gj = g Taking the infimum over all
decompositions for f and g on the right-hand side of (A.11), we find that
(A.8) is fulfilled. Taking the decomposition f; = f and f; = 0 for i > 2 one
clearly sees that || f||o < ||f]|. For the other inequality define

0, if f=0
ck, i Cl<|fl <Ch forkez.

N(f) = {
If we can establish that

Ui Al < o £ NG, (A12)

1

then the equivalence will be proved since Cy 'N(f) < [f|| < N(f). We
prove (A.12) by induction. For n = 1 the equation holds by definition of
N(f). Now assume that (A.12) holds for n — 1, and we shall prove that it
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also holds for n. Take f; € X for 1 < j < n and without loss of generality
we shall assume that ||fi|| > -+ > ||fu]|. First we consider the case were
the values of all N(f;) are distict. This implies that for every 1 <j <n—1

one has that
N(f;) = CoN(fj41)-
From this we have

Ne)

Chlfil < ChN() < QN(A) < G 1

n
1=

which together with (A.10) proves (A.12) for this case. If we instead have
N(f;) = N(fj+1) = Cl) for some 1 < j < n and | € Z then one has that

Ifi + fix1ll < Collfill < C5™ by (A.9). This in turn implies that

N(fi + fiya)F < CHUPD — 21— N(F) 4+ N(fj40)". (A.13)
Using (A.13) and the induction hypothesis we have

[fi+ -+ full  CofNCAY 44 NUfj+ fiaa) -+ N}
gq(inWf“

That the triangel inequality holds for ||-||o follows from the equivalence with
the [|-|[-norm. Same for ||f|lp > 0 and ||f|lo = 0 if and only if f = 0. The
property ||af|lo = |al||fl|lo for all scalars a and f € X follows from the
definition of the ||-||g-norm. [ |

To prove that some of the almost diagonal matrices have inverses that are
also almost diagonal (Proposition 4.3) we shall need the following two lemmas.

Lemma A.8
Assume that £(]) < £(I), 7 € Z and M > d. For x € R?, let

o C S| N S PPN k. B
suprls) = 2 O+ maem imy) O w0, ay)

(A.14)
Then one has that

X —X -M / d
g1 M (%) < C(l + max|{€(K),IL(I)}) max {1, é((1]<))} .

Proof:
Note that from the proof of Lemma A.4 with hg = 1 for all K € D, and
t =1 we have the following inequality for x € |

X—Xx -M /¢ d
y (1+nmw<)f<é(])}) §Cmax{1,£(<{<))}. (A.15)

KeD,
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We consider the case were |x — x;| < max{{(K),¢(I)}. Together with the
estimate (14 |xg — x7|/ max{£(K),£(I)})™™ < 1 we have that (A.14) can
be estimated as

_ -M
g1y mr(x) < Kg)r (1 + WK}CKZ(D})
d
< Cmax{l,%}
x—x -M tJ)“
Sc(l_._rrmx'{é(K),IL(I)}) max{l,e((K))} ,

where we in the last line used the fact that |x — x;| < max{¢(K),¢(I)}. If
|x — x| > max{¢(K), ¢(I)} define the sets

Ar={K€D,:|xg — x| < i|x —x/[}

AS={K € D, :|xx—x1| > 3|x — x|}

Consider splitting the sum in two

g[,]’M,,(x) = Z—F Z =I14+1IL
Ay AS

By the properties of AS we have that

XK — X -M x — xql -M
(+ matirimn) =0 maga )

such that (A.14) for IT with the use of (A.15) yields the desired estimate.
For K € A, notice that |x — xk| > 3|x — x;|. By this and the same kind
of estimation as (2.7) because we have |x — x;| > max{¢(K),¢(I)} and
£(]) < £(I) we find for I that

|x — xk] -M
(1 + max{E(K),E(])})
Hx—x1|  max{f(K),£(I)}\—M
<(1 max{£(K), £(D)} max{e(K),e(])})

max{£(K), £(J)} \ I
C<max{e(1<),e<1 ) (1+ :

-M
1 e my) A1)

Using (A.15) with x = x; we obtain

L (1 %)M < CU(K)~* (max{£(K), £(1)})".

KeDy

From this and the estimate in (A.16) the lemma follows. |
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Before we give the next lemma we will introduce some new notation. Take L =

d/min{1,p,q} for qu and L = d/ min{1, p} for bpq7 and recall that

Dy g e
mln{(v> ((1)) },

~—

and define

ng,?z (I’ ]) = K;D wgm <I’ K)wgﬁz (K' ])

Lemma A.9
Let &« € R. If B, v1, 72 > 0 where 1 # 2 and 1 + 72 > 28 then

Wﬁ Y1, ”72(1 I) = Cwﬁ min{71, 72}(1 ])

Proof:
Choose v = min{vy1,72}. First we consider the case £(]) < £(I).
Notice that the factor £(K)* in WE ., (I,K) and W (K, J) cancel eachother

out leaving the factor (£(I)/£(]))* which can be moved out of the sum.
Therefore we only need to deal with the two last factors of wg " (I,K) and

wg . (K, J). We split into three subcases

" 0(I)\«
Wﬁ/hrh(l’]) = (8) ( Z + Z + )
LK)<L(T)<e(I)  L()<LK)SLT) () <e(I)<l(K)
UM
= (m) (1+1+1).
Assume that K € D;, | € Dy, and I € Dy,. Now for I we have
3 |xp — xg|\ ~L=B (£(K)\ ([d+71)/2+L~d
1= 1412 AT
&0 mt) )
|xg — xj[\ ~L=B s £(K)\ (d+72)/2
(1+ W) (e(]))
= 2n{(m)/zetmdgnin) /2 Z 27 () /24 hlg, ) ().
r=m+1
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We now employ Lemma A.8 to find

< n((d+y1)/2+L—d)n—m(d—72)/2 M
< C2 2 (1+ G )
Z 2= r((11+72)/2+L—d)
r=m+1

= C2lr=m((@tr)/2+L-d) (1+ xlé(_lx”) 22 ((71+72)/2+L—d)

lxp — x|\ ~L=B (£(])\ (d+7)/2+L~d
< un DT\ .
B C(H (1) ) (m))

For II we first consider 7 > 77 and find in a similar way as earlier using
Lemma A.8 that

I = 2*((d+71)/2+L=d)y—m((d+72)/2+L—d) i —r(11—72)/2

r=n

S1yL+pr (X))

< c2m((@d+m)/2+L—d)y—m((d+72)/2+L~d)p—n(11—72) /2

.(1+‘x17x]|) 22 (m—72)/

M) (f(]))(d+'y)/2+L d.

(1) (0

Following the same technique one finds for 1 < v, that

:c(1+

I = 2*((d+m)/2+L=d)y—m((d+72)/2+L—d) i —r(11—72)/2

r=n

S1L+pr (X))

< c2m(@d+71)/2+L—d)g—m((d+72)/2+L~d)p—m(11-72)/2

.(1+x1<x1|) 22 (r2=m)/

M) (f(]))(d+'y)/2+L d

(1) (1

yielding the estimate for II. We now turn to III and have the following

4

:c(1+

-1
III = 2~ "(d+71)/29—m((d+72)/2+L—d) nz or((m+72)/2+L)

r=—oc0

S1,), L+ (X))

(A.17)
Using Lemma A.8 we have that

|xp — xp|\ —L—B
811,L+pr (X)) < C(l + W)

<e( ) )
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Inserting this into (A.17) we find that

111 < ¢2-"((d+71)/2=L=p)p—m((d+72) /2+L—d)

[xr — x|\ P r((11+72)/2-P)
(1+ 0 ) L2

r=—o0

_ Co—n(d+71)/2-L—B)g—m((d+72) /2+L—d) (1+ |XI£(_[)XI|)_L_ﬁ

on((r+72)/2-B) i r((11+72)/2—B)
N L
=C(l+ ——-+— —= ,
(1+ 70 ) (4(1))
where we in the last equation used that 1 + p > 2 such that the sum is

finite. This proves the lemma when £(]) < £(I).
For the case when £(I) < ¢(]) we observe that wgv(l’]) = wL a=d(1 ).

From this observation one also has that Wg, (L]) = WﬁLv;‘%d(] I).

Applying the first case to Wé ,Y;‘%d(],l) proves the lemma for the case

(1) < £(])- u
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