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Abstract

When considering the development of musical digitizatioew challenges emerge
within the field of Music Information Retrieval, where ourcies of research is
querying on vast music collections. For that purpose wethtce and evaluate
the Music On Demand frameworkhere songs are queried as a continuous stream.
When querying songs a listener is able to influence the samgmdain the stream
dynamically by performing the following actionplay similar songsplay random
songs skip songsrestrict collectionand specify collection In order to do so, a
generic music data model and associated query functimsalite defined.

Applying bitmap indices to index metadata as well as musicallarity derived
from the musical content, we enable support for efficierrieedl within vast mu-
sic collections by the use of bit-wise operations. The eg#l process concerns a
combination of both the metadata and the similarity of sorigsthis context we
examine the use of th&ord-Aligned Hybriccompression scheme and ttribute
Value Decompositiotechnigue for representing content based similarity.

Experimental test results show that our framework impldiien ensures ef-
ficient access to music within vast music collections, atdbst of only a small
additional space consumption when compared to the storsttiles.

1 Introduction

In recent years the field of music distribution has changehfbeing medium based to
becoming digitized, in particularly with the advent of lgg®mpression techniques such
as the MP3 format. Moreover, the accessibility of digitalsiaus constantly improving
as high speed Internet connections are becoming more argl coormon. As a con-
sequence of this development, digital music stores areginigrcausing the consumer
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behaviour to change through a high degree of accessibilitycllaborative filtering
techniques. Based on these techniques, personal recoratioersthre derived based on
the preferences of other individuals.

As a consequence of easy access to music and decreasirgestosts, the current
tendency is that personal music collections grow in sizeusT e are facing the chal-
lenge of supporting query functionalities @ast music collectiona/here only limited
or no prior knowledge about the content of the music coltects available.

To ensure efficient handling of query functionalities widispect to vast music col-
lections, this paper introduces tMusic On Demand framewotkenceforth referred to
as the MOD framework. The main characteristic of the franm&i®to combine meta-
data of music with musical similarity derived from the maicontent of the respective
songs. In doing so, two basic properties of the frameworksueged. First, using meta-
data it is possible to browse the entire music collectiorrdeoto select subsets thereof,
e.g., all songs by U2. Second, with respect to the musicalasity between songs, the
framework ensures an efficient foundation for indexing eahbased similarity between
songs.

The most significant contribution of the MOD framework, i® timtroduction of
bitmaps used for indexing purposes in order to ensure gfficiteanagement of both
metadata and content based similarity. Representing time emusic collection as well
as subsets thereof as bitmaps, we are able to use bit-wisatiops to ensure efficient
generation of multi attribute subsets representing, allgspngs of Madonna released in
the year 2005. These subsets may in turn be applied as tiestsito the entire music
collection. Similarly, using bitmaps to represent grogginf similar songs with respect
to a given base song, we are able to identify and retrieveaifdissimilar songs ef-
ficiently using bit-wise operations. We believe to be thet ficsuse bitmap indexing
techniques to facilitate retrieval and restriction querie vast music collections. An
important aspect of our contribution in this connectiondsuse bitmaps to combine
metadata with content based music similarity. As a conssmpief this combination,
we are able to ensure low response times on retrieval queriesse similarity requests
are applied on a restricted music collection.

Relating to the experimental test results of the MOD franméawd0.6GB of space is
required to index 100,000 songs. When compared to the spasemption required to
store the actual digitized music collection, the indicesmpdse only a minor overhead of
2.7% of the stored audio files when considering an averagsiféeof 4MB. Moreover,
when retrieving songs from a restricted music collectibe,MOD framework is able to
reply with a similar song in 23ms and a random song in 14msénaae.

Based on the concept of impulsive user interactions, the Mi@Bework enables
listeners to perform the following five basic actiors&ip songghat are dislikedplay
similar songswith respect to a given base soday random songerformmetadata
restrictionssupporting a hierarchical metadata structure and mansgespecified col-
lections Compared to our previous research considering playliseggion [JMS05],
this paper describes a different approach using infiniesastis of music rather than the
well-known concepts of static playlists. Hence, insteadsécifying the content or
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Figure 1: Architecture of MOD framework.

characteristics of the generated playlist on beforehdredstream abstraction enables a
listener to influence the songs ahead in the stream by perfgrane of the five basic
actions.

In Figure 1 a simplified illustration of the framework aratture is presented. In
this connection, the audio files, the metadata and the distdmetween songs are main-
tained by the framework where the metadata and the distameestored separately in
an RDBMS. Using the framework, a music device running a mpisiger application is
able to request songs one at a time. In addition, multipleieqlayer applications are
able to interact with the framework simultaneously. In temainder of this paper we
refer to any music device running the music player applcesimply as anusic player

The organization of the remainder of this paper is as follomgially, in Section 2
we describe related work. In Section 3 we present a motiyatse case scenario as well
as a formalization of the system interplay between systejectibes and usage of the
MOD framework. Section 4 defines a music data model along feitimal descriptions
of the associated query functionalities. The technicaighesf the MOD framework is
described in Section 5, where emphasis is put on bitmap ingegchniques. In Sec-
tion 6, query evaluation techniques are described. In @edtiwe present experimental
results for an implementation of the MOD framework. FinailySection 8 we conclude
on our research with respect to using bitmaps for indexingast music collections.
Moreover, the section presents a number of suggestionatiaref work.

Additionally, Appendix A presents the database table dafims for the applied ta-
bles. Appendix B describes the functionality of the MOD APhe enclosed CD-ROM
contains an electronic copy of this paper and the source foodiee MOD framework.



2 Related Work

Within the field of MIR (Music Information Retrieval), muctfert has been put into
the task of enabling music lovers to explore individual musillections as is the case
for, e.g., [NDRO5, LUb05]. Within this context, several@asch projects, e.g., [MEO5,
PamO05], have been conducted in order to pursue a suitabisiynmeasure for mu-
sic, for which reason a feature representation of the musaratent is required. One
such feature representation is constituted by the MFCC -fefjuency Cepstral Co-
efficients) features known from the field of speech recognifJPHOO]. An alterna-
tive approach to the MFCCs is found in the MPEG-7 audio festwas specified in
[SS02]. MPEG-7 uses well-defined components such as the pigett, etc. of the
music, whereas MFCCs consider the overall musical impsassith respect to human
perception.

When considering indexing of high dimensional musicaldeatepresentations, ex-
isting indexing techniques such as, e.g., the M-grid [DN&¥4] the M-tree [CPZ97] can
be applied. However, as a consequence of the subjectiveenaitinusical perception,
the triangular inequality property of the metric space ¢gafly can not be obeyed for a
similarity measure. Hence, as the M-tree and the M-grid, eety on the use of a metric
space, these turn out to be insufficient. As a consequendéicaxhl techniques are to
be applied, to ensure a suitable foundation for musicallaiity search.

In accordance with the different feature representatidmsusical content, the cur-
rent research is going in the direction of automating th& tdgfinding similar songs
within music collections. In this context it is suggestedttthe combination of sev-
eral similarity measures ensures the most valid resultfARD2] the authors describe
a similarity measure of what is denoted as tebal timbreof music. Similarly, in
[PFWO05], the authors present a similarity measure wheretsgeimilarity is combined
with three additional similarity measures based on fluasbuagpatterns. An alternative
approach used to measure similarity between songs is dedan [LS01], where the au-
thors compare signatures of songs using EMD (Earth Moveastabce) [RTGO0O0]. The
signatures are constructed based on k-means clusterind=6f0d in accordance with
their location in the MFCC vector space. The objective oktdung is thus to group
feature vectors such that the location of feature vectote@fame group also are close
in the MFCC vector space. The signature for a given song is tiased on the mean,
covariance and weight of each cluster.

The research presented in this paper is based upon thesre$tiite conducted re-
search within the field of content based music similarity @meral. In particular, we
choose to extend this concept further by combining the nalisizntent similarity and
metadata of music with respect to the retrieval process fso For this purpose we
apply an efficient indexing technique by way of bitmap indiegthin the MOD frame-
work.

To ensure efficient retrieval of read-mostly data, bitmagidas are popular data
structures for use in commercial data warehouse applita{iiRTT98]. In addition,
bitmap indices are used with respect to bulky scientific datader to represent static
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information. One such approach is described in [SDHSOQjsic®ring High-Energy
Physics.

As a different approach to automated similarity measuhesgompany Pandora Me-
dia, Inc. uses a human expert panel in order to capture thécahwetails of songs
in association with the Music Genome Projét{Pan06]. Though the task of finding
similar songs within Pandol4 to some extent is exposed to subjective opinions of the
expert panel, it is conceptually very similar to our work.itggdynamic user interaction
such as “I like this song” and “I don't like this song”, PandBf is able to generate a
personal playlist that may be influenced dynamically. Webpect to the MOD frame-
work, we rely on automated similarity algorithms rathermtl@ahuman expert panel, to
ensure both objectiveness and scalability. Furthermoeeane able to perform explicit
metadata restrictions on music collections.

An approach using musical content to find similar songs i€nilesd in [PPWO05],
where immediate user interaction in terms of skipping b&haus used to restrict the
music collection. Upon returning a similar song to the h&te it is determined whether
the song to return is closer to either a previously accepbeg sr a skipped song. In
either case the distances between the individual songe aeedonsulted, in order to de-
termine what song to return. Unlike this approach we do rigtae the actual distances
when determining what song to return, as songs are clustetedyroups of similar
songs. As a consequence of this grouping, a more compaeisegation of the songs
is possible. Moreover, as all songs within a group are cemsdlalike with respect to
similarity, any of the songs can be retrieved without compging the quality of the
retrieved song. Hence, the retrieval process becomes rfimiers.

In most commercial media players such as Win&hpghe metadata of music pre-
sumes a flat structure. However, to enable an enriched gésariof the metadata of
music, we choose explicitly to view metadata in the form ahaltidimensional cube
known from the literature of multidimensional database¥)i? Tho97]. The metadata
of music is thus considered as a number of metadata dimensiwdelled in a hierar-
chical manner, which constitutes a multidimensional cublerough this approach we
are able to select songs in accordance with the individualdeof a given hierarchy of a
metadata dimension.

Looking at the current organization of metadata attributes., the genre of a song,
there exists no standard for what genres to make availatdegeen the different com-
pression formats have their own types of genres. To cldiif§;tags used in the MP3
format contains a fixed number of different genres [ID305heveas the Ogg Vorbis
format has an unlimited number of genres as anything specfig¢ext is allowed to rep-
resent genres [xip05]. However, the authors of the predgrdper are convinced that a
standard for the metadata of music will emerge as the usegafzdid music increases.
To support a richer description of the metadata of music moreover expected that
metadata is becoming hierarchical to facilitate navigatdthin vast music collections.
Also, to better classify music into genres, ongoing reseagq., within the Intelligent
Sound research project [Int06a], is being conducted inrdadperform genre classifica-
tion using the musical content.



In an earlier research paper, we investigated the poggbilio explore music col-
lections based on the musical content of the associated &ledi [JMSO05]. In order to
present the chosen songs, a playlist was then generatedegsiense of songs. In the
context of this paper, however, it is believed that precotegylaylists do not suit the
impulsive behaviour of humans interacting with a music pfayl herefore, the concept
of playlist generation is reduced to the task of returningngle song based on dynamic
user interaction. Still, over time, the list of played songsembles a playlist.

3 Motivation and System Interplay

In this section we study a motivating use case scenario commgemusic lovers who
wish minimal interaction with their music player of choi@s a consequence of phys-
ical restraints. A simple example of a physical restrainy nm&olve interacting with a
portable music palyer while wearing gloves. For the sakeoafenience we restrict this
study to focus solely on the exercise routines of a singlsggenamed Jane. Addition-
ally, the use case scenario describes a vision of usage fase player handling a vast
music collection, where traditional navigational methadsboth cumbersome and time
consuming [JMSO05]. The study serves as the basis for piagethie usability of the
MOD framework in terms of the interplay between a listenadt aimusic player using
the framework.

3.1 AVision of Usage

This quiet winter morning Jane is going for a run in the higyrain around the area
where she lives, for which reason she chooses to wear lireaglto keep her fingers
from freezing. To accompany her during her regular joggiegssns, Jane has pur-
chased a portable music player, as she has learned that $ie amcompaniment to
exercise provides an important beneficial effect to the@serrexperience [Mas86].

In the last couple of months since Jane bought the music plajie has marked
a number songs in her entire music collection that she ledi@rovide her the best
motivation for her workouts. However, for today’s joggiression Jane finds herself in a
dilemma, as she would like to listen to some new releasestig@ded to the collection
as well as her favourite workout songs. Hence, prior to eimgam the impending
session, Jane restricts her music collection to respondwith songs released in the
year 2006 and songs marked as her favourite workout songgh&oemainder of the
case study, we refer to this restricted music collectiorpsas themusic collection

Entering the dull sunlight of dawn, Jane turns on the musaggx and engages in
her jogging exercise with great enthusiasm. To ensure ati@miin the songs being
listened to, she initially requests the music player to glalygs chosen randomly among
the songs in the music collection. Soon a new and unknown sobging played and
Jane enjoys how the beat of the song motivates her to perfoem leetter. To retain
this motivation, Jane decides to listen to songs similanigarticular new song. To do
so, she applies a single push on 8imilar Songoutton of the music player, causing the
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playing mode to change. Thus, for as long as the music callteatlows, and presuming
that Jane does not change the mode of the music player, & steadf high beat and
energized music is ensured, just as Jane prefers at thisydartime. Upon pushing the
button, Jane again is pleasantly surprised by the easesiaating with the music player,
even though the sun has still not raised over the horizon aadvears lined gloves.

After a while, the terrain changes and Jane decides once &mdisten to songs
chosen randomly from the music collection. While runnindnilighe music player
starts to play a new song that does not at all appeal to the tdstane. Afraid that
more songs of the same style is going to be played during thgesof exhaustion,
Jane decides to eliminate all resembling songs from beitiggved. She does so by
pushing theSkipbutton on the music player. Fortunately, the following sagne of
Janes favourite workout songs performed by the group AC&Me.knows that the music
collection contains numerous songs performed by this gragbshe believes firmly that
the sound of AC/DC will help her climb the hill. Hence, she Ipes theSimilar Artist
button and restricts the music collection even further icoadance with the artist name
of the currently playing song. For as long as Jane does resticttwith the music player,
she will be presented with a continuous stream of randondgeh AC/DC songs.

Reaching the top of the hill, Jane believes it is about timesad back to her home.
She feels exhausted from climbing the hill and decides te slown on the way back
in order to recuperate. For this purpose she enters the nfete onusic player, and
changes the initial restriction (songs released in the 2686 and favourite workout
songs) to include only her favourite relaxation songs.

Back home in the warmth of her living room, Jane reflects onjtise completed
exercise session. Even though the music collection usethierexercise session is
vast, she was required to interact with the music playerwasatefour times during the
whole run, and still she was presented the songs which gmneled with her current
state of mind. Additionally, because Jane is being mott/atethe right times with
the right music, the benefit of the exercise is enhanced angdr®rmance increased
[BT90, TLL104].

3.2 Formalization of System Interplay

In Table 1, three system objectives are presented whiclkesjpond to the characteristics
of the described usage. The purpose of these objectivesfasralize the interplay
between a listener and the music player using the MOD frameimoaccordance with
the use case scenario.

The first objective Replies with a songstates what possible uses ensure that the
listener is supplied with a steady stream of music in acaudavith the playing mode
of the music player.

The second objectivé\ffects music collectigmetermines what uses cause a restric-
tion to the music collection. In case of the skipping behaxjithe restriction is implicitly
induced in accordance with the musical content of a skippad,andicating that a song
similar to a skipped song can not be retrieved from the mudiection. Metadata on the
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other hand is used solely for explicit restrictions. Wonthpdasizing in this connection
is restriction on similar metadata, where the metadataetthrent playing song may
be used to restrain the music collection.

The last objectivelUses current songstates which of the uses apply the current
playing song as basis for song retrieval or a collectiorragst A special case for this
objective however, is the marking of favourite songs, asuisage apply to neither of the
previously mentioned objectives. The task of marking a ssg favourite song implies
that a separate collection of songs is maintained to supperamendment of favorite
songs.

Table 1: Table describing the interplay between usage and systeecings.

System Objectives

Usage Replies with a song  Affects music collection Uses currenggso
Find random songs yes

Find similar songs yes yes

Skip song yes yes
Restrict on metadata yes

Restrict to similar metadata yes yes
Mark favourite songs yes

To summarize on the interplay between usage and systemtigbgdhe nature of
interaction indicates a dynamical environment, whereidteriers may react impulsively
in accordance with their current state of mind. Hence, taméwork is to be suscepti-
ble to frequent interaction while still allowing for long#im planning of what music to
make available for the listener. As it is impossible to feepatterns in the interaction
process with the music player,single song approacks pursued, where a playlist is
generated dynamically while requesting one song at a tinenckl rather than stating
on beforehand what music to hear using static playlisteriesrs may intervene in the
playlist construction and thus explicitly put influence ae tontent of the dynamically
constructed playlist.

4 Data Model and Query Functionality

The purpose of this section is to describe a music data modethee associated query
functionalities for music retrieval. Initially, we definedata model followed by a de-
scription of the formal semantics of the operators to be wsethe music data model.
As the listener may choose to interact with the music playemg point in time, the
operations dealing with music retrieval only returns a Erspng at a time.

In the following, a subscript notatiom)perator,arameters(arguments), is used to
identify parameters for the operators. Furtermd¥edenotes the domain of positive
integers.



4.1 Music Data Model

This section describes a music data model constituted byrdoeauof elements and their
corresponding domains. The purpose of these elements igppmg the functionalities
of the MOD framework by applying each of them on an instancthefdata model in
order to fulfil the usages specified in Section 3.2. Defingidnto 3 of the presented
music data model are based on our previous research desoripi/S05].

To extend the usage of metadata selection we introduce adatatdimension in
order to apply an abstraction to a hierarchical representaff the metadata of music.
This metadata dimension is described in Definition 1 wheeehibrarchical ordering of
the metadata of music is described as two partially ordezesi(posets). The first poset
represents the hierarchical ordering of dimension levaisthe second poset represents
the hierarchical ordering of the dimension values. The igg=d to model dimensions
as two posets is inspired by [PRP02]. The use of hierarckitects a generic approach
for the support of both flat and hierarchical metadata strest As for the latter case,
involving a hierarchical structure, elements such as yemlease may be grouped into
a superordinate dimension level, forming, e.g., a decade.

Definition 1 (Metadata dimension) A metadata dimensiod; is defined as a 2-tuple
d; = (L;,V;), whereL; is a poset ofdimension leveland V; is a poset ofdimension
values LetD be the domain containing all such metadata dimensions.

A poset of dimension levels; is defined as a 2-tupléLN;,C;), whereLN; =
{inj,...,In;} € 2N is a set of unique level names, ahdN is the domain of all
possible level names.; is a partial order on the level names iV, with T, € LN,
and L; € LN; being the unique top and bottom element&of respectively. A level
nameln;, € LN; is a name identifying a set of dimension values, where £ < n.
The poset of dimension levels is referred to as a metadatardion schema.

Let DV constitute the domain of all possible dimension values.nTthe function
LevelValues : LN — 2PV takes a level name as input and returns the set of dimension
values associated with the given level name.

A poset of dimension valué§ is defined as a 2-tupléDV;, Cg4, ), where DV; =
(U, LevelValues(Inj;,) is the set of all dimension values from all the level namesdtam
data dimensionl; € D for 1 < k£ < n. &, is a partial order on the set of dimension
valuesDV;. The union used is a disjoint union that ensures the uniggeamong di-
mension values from all levels, i.e., the sets of dimensatres for different levels are
pairwise disjoint. The dimension valle;, € DV; is the unique top element of the par-
tial order C,4,. With the notation/v € d; we shall denote a dimension value belonging
to a metadata dimensiat), € D, wheredv € DV;. The poset of dimension values is
referred to as a metadata dimension instance.

Given two level namés,;,, In;, € LN, where bothin;, andin;, are in a metadata
dimensioni; € D, the partial orderc,, between dimension values satisfies thatC,,
dvy, iff dvy € LevelValues(Inj), dve € LevelValues(In;,) anding, C; Inj,.
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As given by Definition 1, a metadata dimension consists offi limension levels
and dimension values, where a dimension level has a numlzessoiated dimension
values. Using posets to model hierarchies we achieve thatregular and irregular
dimension hierarchies are supported. Irregular hieraschccur when the mappings in
the dimension values do not obey the properties statingalmaten hierarchy should
be onto, coveringandstrict [PJO5]. Informally, a hierarchy is onto if the hierarchy is
balanced, covering when no paths skip a level and strict ifild én the hierarchy has
just one parent. In Section 5.4 we are going to elaborate @nitregular hierarchies
are handled. To illustrate the intuition behind the hienaral structure of the metadata
dimensions, consider Example 1.

Example 1 Let a metadata dimensiafyc,.c = (Lgenre, Vyenre) represent the genre of
songs and the corresponding schema. The poset of dimewrsielsL,.,, ., defined as
(LNgenres Cgenre), thus consists of the level named .., = {T jenre, Genre, Subgenre}
and a partial orderC,,,,,. on these. The partial order ensures an ordering of the level
names in thel,.,,.. dimension and is given by the reflective and transitive ctosfithe
order Subgenre Cgenre Genre Cyepre Tgenre- 1he schema for the metadata dimension
dgenre 1S Presented in Figure 2(a).

The poset of dimension valug.,.., is defined by the 2-tupleDV,c,re, Ca, ... )
and consists of all the dimension valub$/.,,,.. = {Ta,.,,., Rock, Pop, Pop/Rock},
and a partial orderC,, .. on these. This partial order is based on the partial order of
level names_.,.,., and is given by the reflective and transitive closure, shag/he
metadata dimension instandg.,,,.. in Figure 2(b). This example illustrates a non-strict
hierarchy, as the dimension value “Pop/Rock” has two pasemiamely the dimension
values “Pop” and “Rock”

In addition, the schema and an instance for the metadatamimad, ;... IS shown
in Figure 2. The metadata dimensidp,..s. iS constructed in a similar fashion as the

Agenre Urelease dyenre Orelease
Toene Trelease Tdgenre Tdrelease
/\
Genre Century Pop Rock 18"
\/
Subgenre Decade Pop/Rock 1980's 2000's
VN
Year 1982 2005 2006
(a) Metadata dimen- (b) Metadata dimension instances.

sion schemas.

Figure 2: Schema and instance for the metadata dimensigns. andd, c;cqse-
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metadata dimensiof,.,,.. The metadata dimensiaf)...s. implies a non-covering
hierarchy, as the songs are not required to have a centurg@ated. Omitting a given
level, the number of steps required to traverse the dimensiceduced, which in turn
improves the usability. Hence, from a user point of vievgrimiation may be added only
where it suits a given purpose. Aside from the release htbgabeing non-covering, it

is also non-onto as the songs from & century have no decade associated.
|

The metadata of music is composed of descriptive attribauel as artist, title, etc.
For the remainder of this paper, we assume the existences shétadata attribute and
their associated metadata dimension schemas as shownureldg The metadata at-
tributes are presented as dimension values in Definitionh&areva metadata item and
the corresponding schema are defined.

a ) .
release Qartist diitte Caibum ditename Agenre
Trelease Tartist Tiite Taibum Ttiename Tgenre
Century Artist Title Album Filename Genre
Decade Subgenre

Year

Figure 3. Schemas representing the metadata dimensions of a songedsithin the
context of this paper.

Definition 2 (Metadata item and schema)A metadata itemn is defined as an n-tuple
m = (dvy,dv,, . ..,dv,), wheren € N and dimension valuév; € DV, for1 < j < n.
A metadata schemas for the metadata item, is an n-tuplens = (dy, ..., d,), where
the metadata dimensiafy € D and the dimension valuév; € d; for1 < j < n.
Let M be the domain of all such metadata items, andVi& be the domain of all such
metadata schemas. In connection with the metadata item emehsa two functions
exists. The functio§chema : M — MS, takes a metadata item as input and returns
the corresponding metadata schema. The functionVeta Value : M x D — DV takes
a metadata itemn and a metadata dimensiaf} as input and returns the dimension
valuedv; from metadata itenm, which corresponds to the metadata dimensipgiven
thatdv; € d,.

Example 2 To illustrate the structure of the metadata item, assumeettistence of
the three metadata dimensiods.,;s;, diye and dge,,.. In this case the song of the
“Rock” genre with the title “The Fly” performed by the band “®J' is represented as
the metadata iterm = (“U2” ,“The Fly” ,“Rock”). The associated metadata schema

ms is given byms = Schema(m) = (dartist; dritie, dgenre)-
|
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In Definition 3 a song and its associated domain is describedthis purpose, the
existence of a feature representation of the musical cootem audio file is assumed. In
addition, the functionlist may be used to calculate the content based similarity betwee
two songs with respect to their associated feature repiatsams.

Definition 3 (Song) A songs is defined as a 2-tuple = (m, f), wherem € M is

a metadata item ang € F is a feature representation of the musical content of the
song, wherd is the feature domain for all feature representations. £&e the domain
containing all such songs. A functiatist : S x S — R, that obeys the symmetric and
identity properties of a metric space, takes two songs astiapd returns the distance
between the feature representations associated with thgssas a real number.

As users have audio files and not songs as presented in DefiBitwe assume the
existence of a functio®onglnstanceGenerator that constructs a song instance from a
given audio file. During this process a feature represemtaif the audio file is gen-
erated, and the available metadata are extracted to bed@tlin the song instance.
Additionally, to provide the full picture we introduce therfction FetchMusicFile that
returns the music filename associated with a given songiostalo retrieve the music
filename, the function uses the filename fromdhg,,.... metadata dimension presented
in Figure 3.

When considering the content based similarity betweensddefinition 4 presents
a distance store that introduces an abstraction to thedgirdefined distance function
applicable to the feature representations of songs asidedan Definition 3. The dis-
tance store provides the ability to group songs into partgibased on their respective
distances to a given base song. As no unique correct ansvgts as to whether two
distinct songs are considered similar, the grouping do¢sammpromise the quality of
the distance function. Moreover, songs may be grouped iatbtipns while omitting
the base song, which allows for the generation of a compdsstance store.

A distance store is said to be a complete partitioning of tiadce domain, implying
that no partitions are omitted and that no partitions shewier lap over one another.
Thus, each partition constitutes a unique and non-oveirigapstance interval.

Definition 4 (Distance store) Given an optional base song € S and a set of songs
S € 25 adistance stords(, s is defined as sequence of sets of soigg,s = S - - - Sy,
where it applies thats; € 2° for 1 < i < n constitutes a partition anad € N denotes
the number of partitions. In addition, it applies th&tC S, | J, S; = SandS; U S, = 0
for1 < j,k < n, wherej # k. In case the optional base sorgs present, it holds that
Vt € S;(Vu € Siy1(dist(s,t) < dist(s,u))). LetDS™ be the domain containing all such
distance stores, wherecorresponds to the number of partitions.

Within the context of Definition 4, the rearrangement of sofigm the set of songs
S into partitions, reflects how similar songs are to the basg so To support this un-
derstanding, one can think of the partitioning as startmgifpartitions holding highly
similar songs and gradually degrading towards partitiaidihg less similar songs. As
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songs becomes more and more dissimilar, it is likely thatatrerage listener con not
judge the difference of the similarity degree. Hence, 10Qaopartitions is typically
sufficient to ensure a diversified distribution of the sorigsensure a fair basis for com-
parison with respect to content based similarity all sondisima given music collection
should belong to the same distance store do&ify indicating that all associated dis-
tance stores are to contain the same number of partitiortSxdmple 3 the structure of
the distance store is illustrated.

Example 3 Given a base songand a music collection represented by the set of songs
S that contains song and six additional songs denoted bythrough f, we say that
S={s abcde f} Thesongs withit have individual distances to the base song
sgivenas 0, 1, 2, 3, 4, 5 and 6, respectively. In Figure 4(a) kdvdistance store

is illustrated. However, the distance store shown in Figdfle) constitutes an invalid
distance store, as the sorfgs located in partitionS, and song: is located in partition

S3. As a consequence, the intervals of the two partitions apefidr which reason the
properties of the complete partitioning are disobeyed.

-3 [3-6) [6 -] [1-3) B-7) [5-=]

S Sz . Ss ds S Sz ‘ Ss
{a,bs} {cde} {f} ° {a,b,s}  {c.df} {e}

dSs,s

(a) Valid distance store. (b) Invalid distance store.

Figure 4: The structure of a distance store.

|
As it can be seen from Example 3, the base song may be predhim e given
set of songs. The distance to the base song is in this cas@z&e compare the song
with itself. Hence, it will be located in the partition regenting the most similar songs
within the distance store. In the case an application usia@tOD framework maintains
a history of the played songs, the history will ensure thagmvplaying similar songs to
songs, the songs is chosen for playback only when it is discarded from thednyst

4.2 Retrieval Operators

For the purpose of retrieving songs from a music collectibis, section presents opera-
tors for the retrieval of songs chosen randomly and songserhim accordance with the
musical similarity derived from the musical content of tlemgs. Within the retrieval
process of either similar or random songs, the aspect opskigongs is considered.
Initially, Definition 5 presents a helper operator used tofgren a union on two

distance stores. This operator is essential with respewndling of skipped songs, as
the operator may be used to construct a single compositendeststore for all skipped
songs. Having all skipped songs represented by a singlendiststore, we obtain the
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minimum distances from any skipped song to all the remaisomgs within the music
collection. This in turn eases the task of finding both siméliad random songs as we
shall see in Definitions 6 and 7. Hence, based on the compdisii@nce stores it is
determinable whether a given song is similar or dissimdaarty of the skipped songs.

Definition 5 (Distance store union) Given two distance storess,p = P,--- P, €
DS"™ andds, g = Q1---Q, € DS" the operatoru : DS" x DS" — DS" constructs
the union of the two distance stores denafed = S, - - - S,, € DS", where the optional
base song is omitted. All the songs contained within the et®af songs” and () are
represented exactly once in the set of sofigssociated with the constructed distance
store. Hence, a songthat is an element in botR, € ds, p and@; € ds, g is now con-
tained only once in the constructed distance stored sudhitha S, whereS, € dsg
andk = min(i, j) for 1 < 1,5 < n. The semantics of theis defined as follows:

i—1
ds,p Udsyg = dss, where S =PUQ, dss=5--S,, Si=(PuQ)\ ]S

J=1

(1)

In Example 4 we elaborate on the construction of a composstartte store using
the distance store union operator.

Example 4 Using the distance store union operator introduced in D&bni5, Figure 5
illustrates a union performed on the two distance stetesr andds. . Six songs are
contained in both distance stores and denoted: ltlgrough g indicating thatP = Q.
Within the composite distance states, it is ensured that any song is represented only
once while favouring early occurrences of each of the songs,a song is represented
by the partition holding the most similar songs of the twotpi@ans. Hence looking
at the partitionS, of the distance stordsg the songd is omitted as song is already
considered by the previous partitidfy. Similarly, in partitionS; no songs are included
as all songs occur in previous partitions.

P4 P P3
dsap t t
{a} {d f} {b,ce}
U
dseq I Q: : Qs
{d, e} {b,c,g} {af}
dss S : Se : Se
{a,d,e} {b,cfg} {1}

Figure 5: The union process of two distance stores.
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In Definition 6 we describe an operator for retrieval of ramdsongs. In order for
the operator to handle the aspect of skipped songs, we asbareeistence of a function
Random,,(S) that, given a set of songs, randomly chooses and returns a set of songs
containingn. € N songs fromS. For this function it applies that < |S|. The purpose
of the functionRandom,,(.S) is to ensure the quality of the song returned by the operator
described in Definition 6. I = 1 only a single candidate song would be chosen and
returned to the listener. However, it may be the case thatsibing is very close to an
already skipped song, for which reason the chosen song isarceptable candidate.
Instead, choosing several songs as possible candidatestanaing only the song least
similar to all the skipped songs, the quality of the retursedg increases. Moreover,
we assume the existence of the functidamdom(S), that given a set of songsreturns
a single song chosen randomly among the songs in the setgd$ Son

Definition 6 (Random song) Given a set of songs§ < 2° a set of skipped songs
Sskir ¢ 925 a set of played songs"** ¢ 2% and a number of songs € N indicat-
ing the retrieval quality, the operataRandomSong : 2° x 25 x 2° x N — § retrieves
a song chosen randomly among the songs within the set of $onjse possible songs
that are candidates for retrieval should not be containethinithe set of skipped songs
Sk or the set of played song%"s‘. Moreover, to avoid retrieving a song similar to
any skipped songs, while ensuring randomness, a subseaigs gochosen randomly as
candidate songs. The distances from all skipped songs toddloe candidate songs are
consulted, and the candidate song considered least sitmlany of the skipped songs
is returned. The semantics of tiRandomSong is defined as follows:

RandomSonggnis: gsrin o(S) = 8 €S, where s = Random(S}), dss = S7---S,

=Jdsgrn g, dsg €DS", 1<j<n, neN, §={s"" ... 557},
i=1
m €N, S = Random,(S\ S"*'\ S*P) BS,(j <k <nAl|S,| >0), k€N
(2)

With respect to the quality of the retrieved song, Definittbimtroduces the param-
eterq stating a number of candidate songs chosen randomly amersptigs contained
in the music collection. Within this context, the valueg$hould be large enough to
ensure an acceptable quality of the returned song and i@l £nough to avoid any
unnecessary overhead. However, as the candidate songsomenaandomly within a
vast music collection, chances are that even a sgnallable to ensure retrieval of an
acceptable song. Assuming that 10 it is likely that one or more songs are dissimilar
to the skipped songs. In Example 5 we elaborate on the rateévandom songs.

Example 5 To illustrate the selection process of songs chosen rangong initially
assume that a music collection represented by the set oksbrgntains seven songs
denoted: throughg. For this collection it holds that the songsande are skipped and
that the songy is a played song and thus contained in the history. More@ssuming
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S S, S's
dsa s t t
{1} {d} {b,c}
U
dses S St : St
{d} {b,c} {1}
dsg S Se : S
{d} {b,c} {1}

Figure 6: The selection process of a random song.

thatg = 3 we may obtain three candidate songs chosen randomly amengotsible
songs in the music collection, i.e., sorigs, d and f. The chosen candidate songs:
andd are included in the set of candidate sortg§fs Based on this information, Figure

6 illustrates the construction of the composite distanoeestss: for the skipped songs

a ande. In doing so a union is performed on the distance stores otkiygped songs,
ds. s andds. s/, where the distance stores are restricted to contain ontygsdrom
the chosen set of candidate songs, The song to return is the candidate song most

dissimilar to both skipped songs, which in this case is eitiwe song or c.
|

In Definition 7 the operator for retrieving songs similar tgigen seed song is pre-
sented. In addition, an example presenting the selectiarsohilar song is described in
Example 6.

Definition 7 (Similar song) Given a set of songs ¢ 2°, a set of skipped songg** ¢
25, a set of played songs"** ¢ 2° and a seed song, < S, the operatorSimilarSong :
25 x 25 x 2% x S — S retrieves a song from the set of songysost similar to the seed
songsy. The songs that are candidates to retrieval should not beéatoed within the
set of skipped song®* or the set of played song&*'. Moreover, to avoid retrieving
a song similar to any skipped song the composite distance &to all skipped songs
is consulted with respect to the distance store of the seegl sontaining all candidate
songs. The song considered least similar to any of the s#tippegs and most similar to
the seed song is returned. The semantics obthelarSong is defined as follows:

SimilarSonggnis gorin ¢,(S) = s € S, where s = Random (S]"), dss,sm =Sy --- Sy,

Sz{// = Sz// \ U S;’ dSso,S” = Si/ e S;:7 dSSo,S” € DS", dsg = Si T ST/l 3)
j=1

-

ds ki g, dsg €DS", 1<i<n, neN, §=8"=g8\ g\ ghr
J b

1

J
Sekip — [k gskip) e N, ASY(1<k <iA|SY|>0), keN

m
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Example 6 In Figure 7 we elaborate on how similar songs are retrieveddéoordance
with the constraints induced by the skipped songs. It israssithat the music collec-
tion represented by set of son§scontains seven songs denotethroughg. For this
collection it holds that the songis in the history. The distance stoiB,, s~ holds the
associated partitions for a given seed seggThe composite distance stafes is com-
posed of the skipped songande, respectively. For each of the partitios$ € dsg the
associated songs are accumulated to become included iratttiéign S; ; denoted by
the parentheses in the figure. Then, for each of the parstifhe ds,, s» the content
is restricted with the content of partitioff € dsg.. Thus, from the restricted distance
storeds,, s the song to return is any of the songs most similar to the seed<s. In
this case either of the song®r f may be returned.

S" S", S";
dSSg,S 1 T
{c.f} {b} {d}
\ \ \
S S’ S's
dsg t }
{d} {(d.b,c.f}  {(bc,df}
dSsu,S S ! sz S s
{c.f} {b} {}

Figure 7: The selection process of a similar song.

4.3 Restriction Operators

In addition to the retrieval operators, we define a numbeesiiriction operators, which
consider the descriptive metadata attributes of the music.

In Definition 8 a selection operator is described, where acramdlection is restricted
in accordance with a single metadata attribute.

Definition 8 (Select) Given a set of songS < 2°, a dimension valudv € DV and a
metadata dimensios; € D the operatorSelect : 2° x DV x D — 2° constructs a set of
songsS’ containing exactly the songs that are within and below tmeeatfision valuev
when concerning the partial order of dimension values withie associated metadata
dimensiond;. The semantics of theelect is defined as follows:

Selectgyq, (S) = 5" € 25 where dv € dj,
se€ S e s=(m,f) €SN MetaValueq,(m) Cq, dv

(4)
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In order to restrict on metadata, the set operatoasndn may be applied to perform
logical operations on selected subsets of the entire madliection. The subsets are
produced using th&elect operator. In Example 7 the combined usage of the three
operators is explained.

Example 7 Assuming that the set of son§srepresents the entire music collection, a
restriction to.S denoted asS>” may be used to reduce the number of retrievable songs.
Restricting the music collection to contain only songs @enked by the artist U2 that
are released in the 1990’s and with songs of the classicaleggehe restriction onS is
equal toS” = (Selectig90/s.4 (S) N Selectia,g,, i, (S)) U Select crassicat,dgenre (S)

release
|
In addition to the described selection operator, DefiniBathescribes how a music
collection may be restricted in accordance with the metaftata given song.

Definition 9 (Similar Meta) Given a set of songs € 2°, a seed song, = (m, f) € S
and a set of metadata dimensiofi$, ..., d,}, which is a subset of the metadata di-
mensions represented Byhema(m), the operatorSimilarMeta : 2° x S x 2P — 2°
constructs a set of songs containing exactly the songs ffdraving metadata associ-
ated with the dimension values of the given metadata dimessiThe semantics of the
SimilarMeta is defined as follows:

SimilarMetas, tq,,..4,1(5) = S" € 25 where S’ = m SelectMemValuedi(m) 4 (S) (5)

..... 1di

i=1

To elaborate on the usage of thi@nilarMeta operator, Example 8 uses a single song
to apply a restriction to the full music collection.

Example 8 Assume that the song being played by a music player is deschi the
metadata itemn = (“U2” |“The Fly” ,“Rock” ) as presented in Example 2. Based on
this song, the listener of the music may choose to restreettiasic collection by one
or more of the available metadata attributes. Thus, a pdssistriction is to restrict
by artist, which ensures that only songs played by U2 areeredible within the entire

music collection. .

5 Technical Design

The purpose of this section is to introduce the key desigrsidenations with respect
to the MOD framework. The basis for these considerationsesiata model presented
in Section 4.1. Within this context, the area of respongjbihay be divided into two
branches constituting a music player and the MOD framewsdpectively, as shown
in Figure 1 on page 3. Though the music player acts on top ofrémeework, its area
of responsibility is limited to the handling of query parasrs with respect to collection
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maintenance, in order to decide as to whether a given songlis o return. With
regard to the MOD framework, the area of responsibility isrendiversified, as both
aspects concerning musical content similarity and mesastrictions are to be taken
into consideration.

Prior to elaborating on both branches of responsibility, relate to the theory of
bitmap indexing, as this technique constitutes an efficiet¢&xing approach for pro-
cessing complex ad hoc queries in read-mostly environn{€ni€8]. In particularly,
this approach seems interesting when considering the himtenaction with vast mu-
sic collections, where such complex ad hoc queries are praséerms of combining
retrieval and restriction operators.

Reverting to the objectives of the data model and the quergtionalities described
in Section 4, sets of songs are essential elements withiprésented definitions. We
assume that a certain known order of the songs within a molextion exists. Hence, a
subset of songs from the music collection can be represegtatitmap, i.e., a sequence
of bits, following the same order as the order of the songkiwithe music collection,
where 1 bits are found only for the songs contained in theetub§hus, aside from
representing the overall music collection of availablegsybitmaps may moreover be
used to represent subsets of the music collection such gs baming a similar metadata
attribute, the skipped songs or the songs contained in #terlsi Moreover, having a
known order of the songs within the music collection a sirsgleg is uniquely identified
by its position within the music collection, indicating thihe first song is located at
position one.

In the following we describe bitmap indices and the appliethpression schema.
Moreover, with respect to the music player, we briefly coler handling of query pa-
rameters. Finally, we present the design consideratiotis n@spect the distance man-
agement and handling of metadata.

5.1 Bitmap Indexing

Bitmap indices supply an efficient indexing structure inesrth accelerate decision sup-
port [Joh99]. The basics behind bitmap indexing is to usejaesgce of bits to indicate
whether an attribute in a record is equal to a specific valsndtheequality encoding
scheme for bitmap indices, each distinct attribute val@nsoded as one bitmap having
as many bits as the number of records in the relation [CI98S@X]. In this connec-
tion it is notable that the bitmaps for a specific attributatatn mutual exclusive bits,
indicating that for any position across all the bitmaps ie ihdex only a single 1 bit
is allowed. As a consequence, bitmaps for high cardinatitybates tend to be sparse
indicating a lowbit densitycalculated ag = % wherei denotes the number of 1 bits and
n denotes the total number of bits in the bitmap.

The position of each bit in the bitmaps denotes a separateddmm the indexed
relation. For a bitmap corresponding to a given attributaevéhe 1 bits are found only
where the associated records contain the attribute vapresented by the bitmap. To
illustrate this, a simple example of a bitmap index usageluas a relation holding a
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gender attribute with the associated value dor{airale, femalé. In accordance with
the equality encoding scheme, this attribute implies tvat hitmaps are required, one
for each gender. If, e.g., the first bit in the male bitmap istgel, it implies that the
attribute value of the first record of the indexed relatiofmsile”.

To observe the advantage of the bitmap indices, we musiligitielate to the com-
puter architecture, whereword usually consists of 32 or 64 bits, depending on the
architecture [AKS02]. Using this knowledge, we know thatregke bit-wise instruction
computes, e.g., 32 bits at once. However, the main advamtagegroducing bitmap
indexing is notable mainly when performing selections oritiple attributes across sev-
eral relations, where bit-wise bitmap operations can mpkxpensive joins performed
between the involved relations [OG95, OQ97]. Supposedly ¢hlistener wishes to
select all music performed by the artists Madonna and Uzselé in the year 2005.
For this particular example, a bit-wise OR is performed amdppropriate bitmaps of
the artist relation in order to generate the combined bitnegpesenting the songs per-
formed by both Madonna and U2. In addition, performing adige AND on the com-
bined bitmap and the bitmap representing all songs reldagbd year 2005 associated
with the release relation, the wished selection is achieyettlitionally, using bitmaps
to represent the history of played songs and the collectiskipped songs, bit-wise
operations may be used to ensure that neither songs repéantd nor songs contained
is the collection of skipped songs are returned to the lesten

Moreover, appending an additional record to a relationy tim¢ bitmap for the as-
sociated attribute value is to be updated with the apprtepfisbit, indicating that con-
secutive 0O bits are omitted from the end of the remaining &jiten By omitted these bits
the exhaustive task of appending additional O bits to athbjis, each time a new record
is added to the relation, is avoided. Still, performing lissvoperations on bitmaps of
unequal length is supported as the shortest bitmap is Wyrpadded with O bits.

Bitmap Compression

As bitmaps consists solely of 0 and 1's it may be possible topress the bitmaps
significantly depending on the number of consecutive 0 otd. Aihus, having bitmaps
with highly clustered 0 and 1's, a better compression ise@hle than having a uniform
scattering of the 1 bits. In a worst case scenario the corspdegersion of a bitmap
occupies even more space than the uncompressed versionns&greence of bitmap
compression is moreover an increased overhead when pénfpbit-wise operations,
for which reason a tradeoff between the space consumptibtha@performance should
be considered.

With regard to vast music collections, query performangeroat be neglected even
when dealing with compressed bitmaps. Hence, using\tAel (Word-Aligned Hybrid)
[WOSN, WOSO06] compression approach the bitmaps are cosguatassing words as a
unit of grouping. A WAH compressed bitmap consists of a saqaef WAH words,
which each can be of thigeral word or fill word type. In Figure 8, we present the
structure of a literal word and a fill word. The MSB (Most Sifycant Bit) in the WAH
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Word length Word length

0 1 0/1
\ I \ I Il
Literal Literal bits Fill Fill Fill counter
flag flag type
(a) WAH literal word. (b) WAH fill word.

Figure 8: Compression scheme for WAH literal words and fill words.

words is an identifying flag indicating whether the curremravis a literal word or a

fill word. Having a literal word, as illustrated in Figure 8(@he remaining literal bits

are used to store the bits from the uncompressed bitmap. eH#me number of literal

bits corresponds to an alignment group. The fill word, iHatd in Figure 8(b), uses
the second MSB to indicate whether O bits or 1 bits are to bateolu The remaining

bits are used to store an integer specifying the number cfemurtive alignment groups
that are of the specified fill type. Hence, word alignment isueed as the number of
consecutive bits represented by the fill word is a multiplehefnumber of literal bits in

a literal word. In Example 9 a WAH compression of a sample afins performed.

Example 9 Assuming a word length of 32 bits, the bitmap containing tB@ hit se-
quence 1, 280, 3x1, 79x0, 25x1, is split into groups of 31 consecutive bits, which is
the size of the alignment groups. The groups can be seenumd®yepresented both as
a number of bits and in hexadecimal notation. Moreover, tdHWompressed bitmap
is presented in the figure, where it consist of a literal waslliolved by a fill word and
two literal words.

31-bit groups 1,20x0,3x1,7x0 31x0 31x0 10x0,21x1 4x1

Groups in hex 40000380 00000000 00000000 OO01FFFFF 0O0O0OOOF
literal word fill word literal word literal word

WAH (hex) 40000380 80000002 001FFFFF 000O0OQOF

Figure 9: A bitmap splitinto alignment groups and the correspondig¥ompressed
bitmap [WOS06].

|
As a consequence of aligning bitmaps in words, bit-wiseirt$ions such as bit-wise
AND, OR and XOR may be performed directly on literal wordshantthe compressed
bitmaps, avoiding additional expensive decompressiorcantpression techniques. Ex-
ample 10 illustrate such an alignment while performing aige AND operation.
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Example 10 Figure 10 illustrates how the alignment of groups enable#-avise AND
to be performed on the two WAH compressed bitmaps A and Bcba#isting of 128-
bits. In the figure all words are represented in hexadecinmahtion.

Grp. 1 Grp. 2 Grp. 3 Grp. 4 Grp. 5
literal word fill word literal word literal word

A | 40000380 80000002 O0O01FFFFF 0000OQOF
fill word literal word literal word literal word

B | CO000002 7CO001EO 3FEOOOOO 00000003
literal word fill word literal word

C | 40000380 80000003 00000003

Figure 10: Example showing how a bit-wise AND is performed on the WAHoessed
bitmap A and B. The WAH compressed bitmap C is the result [WPS0

As can be seen from Figure 10, the alignment ensures direcbisit-wise instruc-
tions for handling two aligned literal words (Grp. 4 and 5)orFhandling aligned fill
words the type of the resulting fill word is found, while caméeg merging of fill words
having fill counters that overlap when they are aligned (&}p. Similarly, handling an
alignment of a fill word and a literal word the result of the-itse operation is either a

literal word (Grp. 1) or fill word (Grp. 3). .

5.2 Handling of Collection Query Parameters

In connection with the music player using the MOD framewarkumber of collection
parameters are to be managed. These parameters are stilbsetsangs contained in
the music collection, and represent the set of skipped sohghistory and as well the
current metadata restricted collection. The parameterpassed along to the relevant
queries. Common for all parameters is that they apply to ardingle music player. In
the following listing we elaborate on the characteristitthe respective collections.

e Current collection The current collection is represented by a bitmap holding 1
bits only for the songs that fulfil the metadata restrictiohthe listener. Thus, the
content of the current collection may change on demand ierdmdaccommodate
the impulsive behavior of the listener interacting with thasic player.

e Set of skipped songgHolds all songs that have explicitly been skipped by the
listener. As for all other subsets of songs from the musitectbn, the set of
skipped songs is represented by a bitmap containing 1 hitlifskipped songs.
Hence, when performing the actual skipping of a song, thedptesenting the
song is set to 1.

e History: The history is constituting the subset of recently playaugs and is rep-
resented by a bitmap, expressing which songs are in therhiskbe size of the
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history may be specified by the user. As bitmaps are unabkpi@sent an order-
ing among songs, an explicit ordering is to be applied withexamusic player, for

the purpose of specifying the order of the songs as they grgdristory. To avoid

duplicate songs only the most recent occurrence of two ickdrgongs remain in
the history.

5.3 Distance Management

In Section 4.1 a formal definition of the distance store ispreed. To elaborate on the
technical aspects of the distance management, this setggoribes how a number of
distance stores constitute the handling of the distancegcle@ the songs managed by
the MOD framework.

To ensure distance management, knowledge about all trendest between any two
songs managed by the framework is required. The distangesdrsingle base song to
all the remaining songs are represented by a distance $terce, in order to include
distances between all songsdistance stores are needed, whemenotes the number
of songs.

As defined in Section 4.1 a distance store consists of a nuoflqgartitions, each
corresponding to an associated distance interval. Heach, @artition is represented by
a single bitmap indicating the songs belonging to the aasedtidistance interval. The
collection of bitmaps required for a single distance stoomstitutes a bitmap index for
the distances of the songs with respect to the base song distaece store. In Figure
11 an abstraction of a bitmap index of a distance store istitied for a collection of 10
songs having songas the base song for the distance store.

All distance stores are subject to persistent storage wahiRDBMS, handled by
the MOD framework. The distance management relation cosifaartition records as
presented in Figure 12. The first part of the record is thetjposdf the base song of the
distance store, which is presented as a 24-bit integer.glsir8-bit integer for the stor-
age, the second part represents a numbered index indithénppsition of the partition
within the distance store. The index ranges frono m — 1, wherem is the number

[1-3) [3-6) [6 — =]

S S S
dsss A 2 . &

coocoo-000-0
~o0oo0ococo-a-200
Onhaso0-a00O0-

Figure 11: A distance store representing songs within the partitiona ditmap index.
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Primary key
r A A}
Base song position | Index | Partition bitmap
(24-bit integer) (8-bit integer) (blob)
v N —
part 1 part 2 part 3

Figure 12: Partition record of the distance management relation useg@érsistent stor-
age of the distances between the songs managed by the MOBvwak

of partitions in the distance store. The first and secondquartbined is specified as a
composite primary key to ensure efficient lookup of a givenifian bitmap from the re-
lation. The third part contains the partition bitmap, whidantifies all songs contained
in the partition defined by the first and second part. The p@mtbitmap is stored as
a blob. The primary index is specified as a clustered indexsum that the blob en-
tries are maintained within the index, in order to enableieiffit access to all partitions
associated with a given distance store.

Theoretical Worst-Case Space Analysis

In the following we conduct a worst-case space analysis kei$pect to the space con-
sumption of the distance management.

The space occupied by the first two parts of the partitionnieowreases linearly as
the number of songs increases. The space occupied by titeopaditmap, i.e., the third
part in the partition record presented, constitutes thet crogial part of the total space
required for the distance management. In this worst-caalysis it is assumed that the
1 bits within a partition bitmap are located at certain ptaiwearchive the worst possible
compression. In addition, all 1 bits are distributed equathong the given number of
partitions. To illustrate, having just a single 1 bit regeted in each word to compress,
it implies that no space reduction is achievable when apglyWAH compression, as all
compressed words are literal words.

The space occupied in bytes by the distance managemenie wbheompression is
achievable in worst-case, is given by Equation 6, whestates the number of partitions
andn states the number of songs. The word length is denoted bybtireaationw!.

part 1+2 pe}r\tS
32 T n wl ) n wl
S(n,i) =% in+ LUZ_J Sin= (4+ [m—J '§> i-n (6)

With respect to Equation 6, the worst-case space consumppplies only when
densityd = 2 > W which can be simplified as < (wl — 1) - 2, indicating
the threshold where no space reduction is achieved in wast; when applying WAH

compression.
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Having more tharfwl—1)-2 partitions, a space reduction is possible in the worst-case

when applying the WAH compression scheme as presented iatiégu/. In a worst-
case scenario, where all 1 bits are uniformly scattered gnaoil within the partition
bitmaps of each of the distance stores, the space occupjaentles a zero fill word and a
literal word for each 1 bit in a partition bitmap. To counttlén distance stores for the
n songsn? bits are needed.

part 1+2 part 3
32 [ wl
w
S(n7i)compressed: g Zn+2n2 . ? = (42—}—111) .n (7)

As it can be seen from Equation 7, the space consumption ahtree part is no
longer bounded by the number of partitioin$ut only by the number of songs The
total worst-case space consumption is given by Equation 8.

S(n,1i) i <(wl—1)-2

S(n7 i)compressed otherwise

S(nai)total = { (8)

Assuming a word length of 32 bits the calculations of the Wwoese space consump-
tion for the distance management is presented in Example 11.

Example 11 Having a music collection with 1,000 songs, the worst-cqsees con-
sumption induced by the distance management can be cadulaissuming two cases
where the number of maintained partitions is set to 12 andré8pectively, the space
consumption is calculated as follows:

1000 —‘ 32

S22 191000 = 1.56M B
= ) 000 = 1.56

S(1000,12) 00 = <4+ { -

32
S(1000, 100) sorar = (4 -100 + 1000 - Z) -1000 = 8.01M B

Having 100 partitions we see that WAH compression is passibmpared with 12
partitions. However, more space is required as more bitmeesneeded for the in-
creased number of partitions. Performing two similar cadétions for 100,000 songs,
while maintaining the number of partitions at 12 and 100 pedively, we achieve the
following:

— ) - 12-100000 = 14.43GB
32 -1 >

1 2
S(100000,12)00 = (4+ [ 00000} E

32
S5(100000, 100)sora; = <4 - 100 + 100000 - Z) 100000 = 74.54G B
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Figure 13: The worst-case space consumption by the distance managegien the
number of partitions; 6, 12, 20, 40, 60 and 100. The dashezriépresents
the space needed to store the music files.

The worst-case space consumption for the distance managpnmesented in Exam-
ple 11 indicates a squared increase of the space consumasidhe number of songs
increase. This can however not be avoided as the numbertahdes between the songs
is a square of the number of songs. In addition, the examplesh significant differ-
ence in the space consumption, as to whether compressidre gfatrtition bitmaps is
possible or not. Having few patrtitions, i.6.< (wl — 1) - 2, implies that the number
of partitions directly influences the total worst-case gpeansumption. On the other
side, having many partitions, the total worst-case spaosuwuption would be nearly
independent of the number of partitions within the distastcges. This can be seen in
Figure 13, where the change from 60 to 100 partitions is sniaddwing the line for
200 partitions it will be very close to the line representk@ partitions. In addition,
Figure 13 presents the space consumption for a given nunfls®ngs when using 6,
12, 20, 40, 60 and 100 partitions, respectively. Moreover gpace consumption of the
actual music files is represented by the dashed line, asgusmiraverage song size at
4.0MB.

Independent of the number of partitions, Figure 13 showsitaaaing 200,000 songs
indexed occupies less than 50% of the space required for tisecrfiles. However, hav-
ing only 12 distance intervals, less than a 10% space ovélikeéatroduced. Moreover,
indexing 1,000,000 songs having 12 patrtitions, the ovetlmtaoduced by the distance
management is below 50% for a theoretical worst-case.

As can be seen, the number of partitions play an importatifdor the space con-
sumption with respect to the distance management. In geébesa be said, that a large
number of partitions ensure a better reflection of the pedisimilarity measure. How-
ever, the more partitions introduced, the more time shoaldxpected when executing
the queries. This tradeoff is concerned in the Section 7.
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Attribute Value Decomposition

When considering the usage of the distance stores it ig/likelt the number of parti-
tions specified is below the given threshold for possiblestvoase compression. Hence,
considering the worst-case scenario, WAH compression doeachieve any space re-
duction.

In case the usage of bitmap indices obey the two followingtramts, space reduc-
tion techniques different than compression techniquesbeaapplied. The technique
considered i®AVD (Attribute Value Decompositioay presented in [CI98].

e The attribute cardinality of the bitmap index should at iafie¢s be below a known
constant.

¢ All items indexed by the bitmap index should presume examrtly value.

Considering the above constraints, the distance manadaieythe first constraint
as the cardinality of the values to index equals the constamiber of partitions chosen
for a specific usage of the MOD framework. The second comgtiaiobeyed as all
songs contained by the index belong to exactly one of thetipad, i.e., the distance
from any song to the base song of the distance store is alvAg<@be mapped to a
single interval in the complete partitioning. Thus, obgyihe two constraints, AVD can
be applied to the distance management. Explaining the prep@f AVD in brief, this
technique encodes the numbers indicating the associatedfs in the bitmap index,
i.e., the attribute values. The encoding is performed byusgeof a base specification
< base,, ..., base; >, wheren is the number of bases. A base should be understood as
a base of a number system. An example of a base specificati@sés< 3,3 >. This
specifies a two digit number, where each digit has the base.tf8uch a specification
allows to express nine values in the range form 0 to 8. ExaiDlaresents an example
of a distance store using base3, 3 > AVD encoding.

When applying the AVD bases, it should be ensured that the cfutine bases is
as small as possible while the product of all bases provideaat the required number
of partitions. Hence, to represent 12 partitions the basg 4 > constitutes a better
approach than base 2,6 > as the latter approach uses eight bitmaps rather than seven.

Example 12 Assume that 12 songs are indexed in accordance with thendeststore
represented in Figure 14 having nine partitions. Perforgn#VD, the position of the 1
bits can be represented by a single index vector containipgpgection of the indexed
attribute values. These numbers can be encoded using a lgagenspecification. In the
case of the base specificatien3, 3 > the encoding would be as presented in Figure 15
having two bitmap indices of each group of three bitmaps, e given bases. Each
number in the index vector is now represented by the sum dfitvvdoers given by each
digit, where the second digit is a multiple of the productld previous bases like in
regular number representation. As an example the indexd&emposed td - 3 + 0,
which corresponds to a 1 bit i}, and??, respectively.
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Index

vector Po P1 P2 P3 Psa Ps Pe P77 Ps
o dsssg ——+—+—+—+—+—+—+—+—
3 0 0 0 1 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0
2 0 0 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1
2 0 0 1 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 1 0 0
| 4] lo] [o] [of Lo L[1] Lol Lol Lol Lol

Figure 14: Distance store and the associated index vector.

Index P

vector bz b; bg b? b% b?
3] 1:3+0 o7 17 [o] o7 [o] [1]
2 0-3+2 0 0 1 1 0 0
1 0-3+1 0 0 1 0 1 0
2 0:3+2 0 0 1 1 0 0
8 —2:3+2 1 0 0 1 0 0
2 0-3+2 0 0 1 1 0 0
2 0-3+2 0 0 1 1 0 0
0 0:3+0 5 0 0 1 0 0 1
7 2-3+1 1 0 0 0 1 0
5 1:3+2 0 1 0 1 0 0
6 2:3+0 1 0 0 0 0 1
| 4] 13+ 1 0| L1 L0 1 0| L1 L0

Figure 15: Encoding process from the index vector to a basg 3 > encoded index.

The bitmap for the most similar songs identified by the dstastore can be accessed
knowing the associated index of the partition in the diséastore, in this case index
zero. The zero index bitmapg, is found by performing decomposition into the base
specificatior0 - 3 + 0, i.e., the corresponding bitmap is accessed by performibg-a
wise AND operation on the bitmap$and?!.

]

As can be seen from Example 12, a distance store containigpairtitions can be
represented by the use of six bitmaps when applying AVD. is thse an additional
bit-wise AND operation is required for every access to a mgipartition. Moreover,
applying AVD the space consumption is reduced by 33.3% atdts¢ of a single bit-
wise operation for each access to a partition bitmap.

WAH compression could be applied on the AVD encoded bitmé&fswvever, con-
sulting the worst-case space analysis a compression aerbhétroduced, as this case
can be assumed to be equivalent to the case of having fewérques in the non-AVD
bitmaps. Thereby, the worst-case space consumption igasrmied in Figure 13, except
that a distance store with, e.g., nine partitions corredpda a distance store with six
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partitions. To conclude from this, the way to ensure moreiefiit use of space for the
partition bitmaps is to apply AVD.

The record needed to be stored in the distance managematimelould presume
the same structure as the partition record presented ind-i2ion page 24. The index
part is now just an index representing the location in theosétase encoded bitmaps.
Hence, the space consumption can be calculated as desbgildfeguation 9, where,
states the number of songs.

part 1+2 part 3

la ~N

S(n, < basen, . ..,baser >)ioa = Z base; - n - n +n- Z base; - m - 1/8
i—1 i—1 9)

:(32+n)~2basei-n-1/8

1=1

Assuming a music collection with 100,000 songs, Example rE3gnts the space
consumption when applying AVD on the associated distarmestwhile using 12 par-
titions.

Example 13 Having distance stores with 12 partitions, the AVD repréagan may be
applied using base: 3,4 >, in order to calculate the space consumption for 100,000
songs.

S(100000, < 3,4 >)pt = (32 + 100000) - 100000 - (4 + 3) - /s = 8.15G B

]

Referring to the equivalent calculation of Example 11 ongx2§ with respect to
100,000 songs represented by 12 partitions, we here seeagohiction of 43.5%.

In addition, applying WAH compression might in the best cesduce the space
requirement even further depending on the clustering witine bitmaps. As mentioned,
worst-case implies an additional overhead. Still this bead may be desired as other
elements within the MOD framework benefits from the WAH coegsion.

5.4 Metadata Management

As stated in Section 4.1, a set of descriptive metadatdatés are associated with any
given song. In order to provide efficient access of these da¢daattributes within a vast
music collection, we apply a multidimensional cube to stostadata attributes and their
associated bitmaps. In this section, we describe the degignch a multidimensional
cube and the handling of both regular and irregular metddatarchies. In addition, we
introduce the handling of user collections which are a pettt@ MOD framework.
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Cube Representation

To represent the multidimensional cube in a relationallzteta, we adopt thenowflake
schemaknown from the theory of multidimensional databases [Tho9he snowflake
schema is composed of a central fact table and a set of asbcianensions. The
snowflake schema satisfies the structure of the metadata¢hérs by allowing a meta-
data dimension to be represented as a nhumber of dimensitas.taBach dimension
level in the metadata hierarchy corresponds to a dimenalwa.t The snowflake schema
normalizes dimensions to eliminate redundancy. That & dilnension data has been
grouped into multiple tables instead of one large table a$ydp thestar schemap-
proach [KR02]. While this saves space, itis known to incesdke number of dimension
tables thus resulting in more complex queries and reduced/qerformance [KROZ2].
However, as the purpose of the multidimensional cube in ti@DMramework is to
find the bitmaps, no expensive join queries are to be perfdy@ae selections based on
multiple attributes are performed by applying bit-wise i@i@ns on the corresponding
bitmaps.

As stated, a metadata dimension in a relational databaseresented as a number
of dimension tables, where each dimension table corresporallevel in a metadata hi-
erarchy. According to the snowflake schema representingétadata within the MOD
framework, there exists two types of relations used as démertables. Records of both
types of relations can be seen in Figure 16. Téwel recordin Figure 16(a) is used
for the highest level within each dimension. For efficientess, the relation is defined
as clustered having the id attribute as the primary key. dutelevel recordn Figure
16(b) is clustered in accordance with the super id attribtitat is associated with a
given superordinate level. This ensures an efficient fotiod#or hierarchical metadata
navigation, as, e.g., the subgenres of a given genre amdstonsecutively within the
relation. However, as metadata may be accessed using &lisiaintain an index on the
id attribute of the relation. The bitmap contained withicleaf the records, represents
the songs which are associated with the dimension valueeofabords. Example 14
illustrates how a two level hierarchy is mapped to dimensidues.

Primary key Primary key Secondary key (clustered)
f_j%
ID Dimension value | Bitmap ID Dimension value SuperlD Bitmap

(integer) (varchar) (blob) (integer) (varchar) (integer) (blob)

(a)Level record for the highest (b) Sub level record for all the sub levels in a
level in a dimension. dimension.

Figure 16: The two record types used within the metadata dimensioesabl
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Example 14 Consider the metadata dimension schema for the genre diomgnse-
sented in Figure 17(a). For such a schema, two dimensiomsadnle required, namely a
genre dimension table storing level records and a subgeimesion table storing sub
level records. The two dimension tables are presented iar€ig7(b). The genre id in
the subgenre dimension table is a foreign key of the genrétidnithe genre dimension
table.

Genre

d GenrelD Genre Bitmap

'genre
Tgenre
Genre

Subgenre
SubgenrelD Subgenre GenrelD Bitmap
Subgenre

(a) Schema. (b) Two dimension tables associated
with thed.,,,. metadata dimension.

Figure 17: The dimension tables defined from the schema of metadatasiond,.,,,.

|

Aside from the dimension tables, a snowflake schema condist$act table. The
fact table contains fact recordfor each of the songs managed by the MOD framework.
For each dimension in the cube the fact record contains amddaalevel depth for
the most specific dimension value. The level depth corredpom a given dimension
table within the current dimension, where the highest léwed dimension has level
depth one. The id is a foreign key to the id within the dimengable identified by the
associated dimension and level depth. The mapping fromehdipth and a dimension
to a dimensiontable name is to be found in a hierarchy relatibich is stored persistent
within the database. The reason for storing the level defgtieanost specific dimension
value is that the most specific dimension value may not nadgsbe at the bottom level
of the hierarchy in the case of a irregular hierarchy. In tddj the fact table states the
order of the songs managed by the MOD framework.

In Example 15 we consider the structure of the snowflake sahepresenting the
fact table and dimension tables discussed above.

Example 15 In Figure 18 the snowflake schema for the metadata dimensdignsand

dgenre and the associated fact table are presented. From the féte tia appears that
four songs are currently stored in the music collection, ihgwthe song titles; “The
Fine Art”, “T.N.T”, “Wonder Wall” and “Twentysomething”, espectively. Moreover,

31



Fact table

TitlelD TitleLevelDepth | SubgenrelD | GenrelLevelDepth

1 1 2

AN =

1 2 2
1 3 2
1 4 2

Title (depth 1) Subgenre (depth 2)

TitleID Title Bitmap SubgenrelD Subgenre GenrelD Bitmap

"The Fine Art” 1000 "Soft Pop” 1000
"TNT.” 0100 "Hard Rock” 0100
"Brit Pop” 0010

"Modern Jazz” 0001

"Wonder Wall” 0010
"Twentysomething” 0001

ENNAN NI
A=
W =N =

Genre (depth 1)

GenrelD Genre Bitmap

1 "Pop” 1010
2 "Rock” 0100
3 *Jazz” 0001

Figure 18: lllustrates a snowflake schema having thg. andd,.,,. metadata dimen-
sions.

the songs belong to the subgenres; “Soft Pop”, “Hard RockBrit Pop” and “Modern
Jazz”, respectively. Hence, this small music collectioreesented by a bitmap with
four bits. The first bit in the each bitmap corresponds to thet §ong in the managed
music collection, the second bit to the second song, etmgAlath the foreign keys in
the fact table, the level depths appears. From these it caseba, that the most specific
dimension value of all the songs corresponds to the botteal & the hierarchies.

In addition, it can be seen from Figure 18 that aggregatiothefbitmaps from a sub
level to a superordinate level is applied within the dimendiierarchy by use of bit-wise
operations on the associated bitmaps from the sub level.

]

Handling of Irregular Hierarchies

In Section 2 it is argued that metadata for digitized musicsdme degree, is expected
to become standardized. However, as not everyone can betegge conform to such
a standard, irregularities in the metadata hierarchiesldhi® anticipated.

To support irregular hierarchies, i.@on-ontg non-coveringand non-stricthierar-
chies, different design techniques have been applied. $oribe these, we initially
look at how irregular hierarchies could occur with respedhie metadata of music and
thereafter at the techniques applied to handle the irreijea

Adding songs to the music collection, where the metadataeo$ongs is incomplete,
causes a non-onto hierarchy for an instance of the metadatndion to occur. To
illustrate, consider the example shown in Figure 19 havwng $ongs, where a song is
added under the “Rock” genre solely, as the subgenre iseuhitt
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dgenre

ngenre

TN

Jazz [01] Rock [10]

Modern Jazz [01]

Figure 19: A non-onto genre instance.

Due to the fact that the bitmaps are stored in all the leveteemierarchy, and that
the cube is used to find bitmaps, the expected results wiktreved from the hierarchy
even though it is non-onto.

Should the metadata of music skip a level within a given disi@m the hierarchy be-
comes non-covering. To illustrate this type of hierarclonsider the metadata schema
presented in Figure 20(a), where the century level can ks if desired. In Fig-
ure 20(b) this is the actual case, where the dimension va0@0’s” is mapped directly
to the dimension valueT, , ", and thereby skipping the century level.

To enable support for non-covering hierarchies the dinmengalue “dummy” is to
be inserted into the skipped hierarchy level [PJD99]. Tesiitate, consider Figure 20(c)
where a new “dummy” dimension value is inserted into the wsnlevel such that the
dimension value “2000’s” is now mapped to “dummy” insteadref “T; " dimen-
sion value. As a result of inserting the “dummy” dimensiotueaa covering hierarchy
structure is obtained. The hierarchy is now mapped to a aednrarchy and can thus
be represented by dimension tables.

To exclude “dummy” dimension values from being retrievéxd values are implic-
itly marked such that, whenever these values appear, thevat the sub level will be

Orelease Orelease Orelease

T release Tdrelease Tdrelease

Century 18" [100] 18" [100] dummy

Decade 2000's [011] 2000's [011]

Year [010] 2005 2006 [001] [010] 2005 2006 [001]
(a) Schema. (b) Non-covering instance. (c) Covering instance.

Figure 20: Transformation of a non-covering hierarchy into a coverkgrarchy.

33



retrieved instead. Considering the example shown in FigQ¢k), the dimension values
“2000's” and “18'"" are retrieved if the query states that all dimension vah&sw the
top level are to be retrieved. Hence, as we apply this hibreaitway of retrieval, we do
not store bitmaps associated with the “dummy” dimensiones

As a consequence of handling non-covering hierarchies;dhmmy” dimension
values inserted, impose an additional space overhead. \Howble space overhead is
small as bitmaps for the dummies are not present. Addingiaddi “dummy” dimen-
sion values, it is ensured that the non-covering hierarshgansformed into a covering
hierarchy.

A song with conflicting attribute properties could be addedhe music collec-
tion, causing the hierarchy associated with the attribtddsecome non-strict. To il-
lustrate this structure, consider Figure 21(a), where @ s®m@ssociated with the sub-
genre “Pop/Rock” and thus to the two genres “Rock” and “Pdw’normalize the non-
strictness of the hierarchy, duplicate dimension valuesiatroduced as illustrated in
Figure 21(b). As a consequence, redundant versions of therdiion value “Pop/Rock”
are mapped the to both the “Pop” and “Rock” dimension valtespectively.

dgenre dgenre
Tdgenre Tdgenre
[101] Pop Rock [011] [101] Pop Rock [011]
Pop/Rock [001] [001] Pop/Rock Pop/Rock [001]
(a) Non-strict instance. (b) Strict instance.

Figure 21: Transformation of a non-strict hierarchy into a strict hagchy

The consequence for transforming a non-strict hierarctoyarstrict hierarchy is that
duplicate dimension values are introduced, which in tutrooluces an additional space
overhead as the bitmaps are redundant. However, this issssigcin order to support a
non-strict hierarchy in a relational snowflake schema.

Management of User Collections

In addition to the efficient indexing of the metadata of musiee MOD framework
supports user managed collections, i.e., collectionsrtiaat be constructed and altered
on demand by the user. The idea behind the user managedticoilecthat the user
manually should be able to group a number of songs into a grediection, e.g., a
collection of favorite songs.

Each of the user collections can be modeled as a separatbilio store the associ-
ated bitmaps, a metadata dimension would be the obviouse&hdhereby, the metadata
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selections may include the user specified dimensions, tegysers collections of fa-

vorite songs can be intermixed with all recently releasetjs@s a metadata restriction.
However, modelling the favorite collections as dimensialues within a user specified
dimension should differ from the regular metadata definetkedisions.

The regular metadata dimensions, such as the genre, difféhe way that it is
associated with the fact table, which is not the case for e specified dimensions.
The reason is that, having a position of a song the genre dlheuleterminable. On the
other hand, knowing, e.g., in what favorite collection agsacontained is unnecessary
as this is not the goal of having user managed collectiongeMeer, the fact that songs
could be in either none or several user managed collectiomgplicates the structure
of the fact table. Thus, the purpose for using dimensioretahd store user managed
collections, is to enable a generalized selection support.

6 Query Evaluation

In this section we describe how to perform query evaluaticth® query functionalities
described in Section 4 while relating to the technical degigesented in Section 5. The
purpose of the query evaluation is to clarify the algoriththsit form the basis for an
implementation. The algorithms are based on the concemthiéang a best worst-case
implementation while also assuring a good average-caskemgntation.

In the following we initially introduce a cost model followdoy a description of the
evaluation techniques for both retrieval and restrictioarées.

6.1 Cost Model

To support the query evaluation design, we introduce a leasicmodel in order to count
the number of operations performed within the followingethicategories of operations
appointed to have the highest influence on the performanttedOD framework.

The first category includes the bitmap functiddig Count, GetBitmapForSetBit
and Random. The functionBitCount returns the number of 1 bits in a given bitmap.
The task ofGetBitmapForSetBit is to generate a bitmap where only tieis a 1 bit,
whereasRandom returns the position for a randomly chosen 1 bit among allt4 ibi
the given bitmap. In a worst-case scenario each functiommethat all bits are counted
once, for which reason they are treated equally in termsafietion costs.

The second category of operations is the bit-wise operatidnich are required in
order to combine the bitmaps used for indexing. In generalyise operations are con-
sidered to have low computational costs, as discussed itioSes.1. However, as a
consequence of bitmap compression, an increased perfoenoerhead is introduced
for which reason the bit-wise operations are consideretiercost model. Within this
context, all used bit-wise operations are assumed to hava egmputational costs for
which reason they also are treated equally in terms of etralueosts. However, to look
into the ratio between the occurrences of the differentse operators, they are pre-
sented as individual entries in the cost model. As a conseguaf bitmap compression,
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the computational costs required to perform bit-wise ojp@ma exceed the evaluation
costs related to the bitmap functions of the first category.

The last category of operations is related to the task obpaifhig a database lookup,
as these operations require I/O interaction. The opemt@oa divided into two group-
ings; a metadata cube lookup and a distance managemenploB&ueach grouping it
Is assumed, that the index associated with each relatidreigriouping is cached, indi-
cating that one lookup is equivalent to one disk 1/0. Morepierelation to a distance
management lookup a range query is considered as a singl&#@isas records of the
distance management relation are clustered in accordaiticéndividual base songs as
described in Section 5.3. Also, the number of records to starrange query are few,
as only a single distance store is concerned at a time.

6.2 Retrieval Queries

In the following we describe the retrieval functioRsndomSong andSimilarSong used
for the retrieval of a randomly chosen song and a song hawnitgs musical content
to a given seed song, respectively. In this connection wllyi introduce the two
helper functionsGenerateCompositeSkipDS and FetchRandomSongs. The task of
GenerateCompositeSkipDS is to cache the composite distance stores representing the
distance stores of all skipped songs for each of the indalicwsic players interacting
with the MOD framework. The composite distance store regrsg the distance stores
of all skipped songs is denoted as ttmnposite skip distance stofdsing a unique user
id representing a specific music player, the cached congskip distance store is ac-
cessible for retrieval and manipulation. The purposBeoéhRandomSongs is to enable
the possibility to retrieve a specified number of randomlgsgn songs from a given
music collection represented by a bitmap. Each of the fonctians are presented as
individual algorithms in the following.

To ease the description of the functionality of the alganshused for query evalua-
tion, we initially clarify the properties of various typesmusic collections. The music
collection initially passed to the respective functiondésioted as theearch collection
and constitutes either the entire music collection or asidigthe entire collection. The
search collection is a subset of the entire collection if taai@ta restriction has occurred.
Once the search collection has been restricted by the gkippegs and the songs con-
tained in the history of played songs, the collection of gr@aining songs is denoted as
thevalid collection Performing a further restriction by all songs similar te 8kipped
songs we end up with a collection of songs denoted asdhdidate collection

All restrictions, i.e.p \ ¢, are performed using the syntaXAND (p XOR ¢) where
p is the collection to restrict anglis the collection to restrict by. The alternative syntax,
p AND NOT g, is unusable as the size of the entire music collection cabexderived
from the individual bitmaps where consecutive 0 bits aretwdifrom the end of the
bitmaps as described in Section 5.1. Additionally, for aépdo code descriptions it
applies that variable names with the prefix notationmepresent bitmaps.
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Generate Composite Skip Distance Store

In Algorithm 1 we elaborate on the evaluation @énerateCompositeSkipDS. The
function is applied in Algorithm 3 and 4 in order to generate aache composite skip
distance stores. The composite skip distance stores ahedtac main memory. In
case a composite skip distance store is cached and no chaagescurred on the set
of skipped songs represented by the cached composite sitgnde store, the cached
version is returned rather than performing an attempt t@gda a new composite skip
distance store. Similarly, if songs are only added to thekskipped songs, the cached
composite skip distance store may simply be updated witirimétion form the distance
stores associated with the added songs.

As input parameters, the function takes a bitmap reprasgatl skipped songs and
a user id indicating the music player currently interactmth the MOD framework.

GENERATECOMPOSITESKIPDS(b_skip, userld)

1 compSkipDS <« empty distance store
2 b_storedSkip « FETCHCACHEDSKIPBITMAP (userld)
3  cachedCompSkipDS «— FETCHCACHEDSKIPDS(userld)
4  b_modifiedSongs < b_skip XOR b_storedSkip
5 if BITCOUNT(b_modifiedSongs) = 0
6 thenrt> No changes was made to the skipped songs since last
7 compSkipDS — cachedCompSkipDS
8 else > Check whether songs are only appended to the cached disttmee
9 if BITCOUNT(b_modifiedSongs AND b_storedSkip) > 0
10 thent> The cached distance store can not be extended and shoulscheddid
11 b_modifiedSongs < b_skip
12 cachedCompSkipDS «— empty distance store
13 distanceStoreColl < empty collection
14 for each positionpos of 1 bits inb_modifiedSongs
15 do > Fetch the distance store for the given song
16 distanceStoreColl. ADD(DISTANCESTOREL OOKUP(pos))
17 b_restriction « empty bitmap
18 size « |distanceStoreColl|
19 for each partitionb_p in eachdistanceStore in distanceStoreColl and
partitionb_q in cachedCompSkipD.S and partitionb_r in compSkipDS
starting with the partitions representing the most sinstamgs.
20 do > Compute a partition of the composite distance store
21 b_compPartition — b_q ORb_p' ORb_p? OR --- ORb_p*i*®
22 b_r <« b_compPartition AND (b_compPartition XOR b_restriction)
23 b_restriction < b_restriction ORb_compPartition
24 STORECACHEDSKIPBITMAP (b_skip, userld)
25 STORECACHEDSKIPDS(compSkipDS, userld)

26 return compSkipDS

Algorithm 1: Pseudocode presenting query evaluationdenerateCompositeSkipDS
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Thus, individual composite skip distance stores are géeer@and maintained for each
music player associated with the framework.

Stepping through the functionality of Algorithm 1, an aty&ro fetch a cached com-
posite skip distance store is initially performed usinguker id as key (line 2 and 3). To
see whether the content of the provided bitmap represeatisffipped songs has been
modified compared with the content of the bitmap represgmtilcached skipped songs,
a bitmap representing all changes as 1 bits is generated(JirBased on the content of
the provided bitmaps representing all skipped songs, timaireder of the pseudo code
can be split into two distinct cases.

In the first case (line 5 to 7) no modifications have been peréarto the provided
bitmap representing all currently skipped songs, for whedson the cached composite
skip distance store can be returned.

The second case (line 8 to 25) covers two individual scesahothe first scenario a
new composite skip distance store is to be generated, aathea instance of the com-
posite skip distance store contains songs that are no leogerskipped. For the second
scenario additional songs are skipped and the cached campkip distance store is to
be extended to include the distance stores associatedheitididitional skipped songs.

Based on the content of the bitmap representing all modited)s the algorithm
either generates a new composite skip distance store ondpjplee distance stores as-
sociated with the additional songs to a cached instanceeof@mposite skip distance
store. Initially, it is clarified whether the current instanof the cached composite skip
distance store is invalid and is to be discarded. Therelgybttmap representing all
modified songs is set to represent all skipped songs (linel&)toTraversing the bitmap
representing all modified songs, the distance stores adedabith all 1 bits positions
are fetched (line 14 to 16). In order to generate the confeheaomposite skip distance
store to return, the content of a number of distance stoeegoabe consulted. The in-
volved distance stores are; all distance stores repraggaitimodified songs, the cached
composite skip distance store and the empty composite sitginde store to return. All
distances stores are traversed starting with the paritiepresenting the most similar
songs (line 19 to 23). An example of the generation procepseisented in Example
16. Once the composite skip distance store is generatefrelimusly stored version is
replaced (line 24 and 25).

Example 16 In association with Algorithm 1 line 19 to 23, we assume that addi-
tional songse and e have been skipped as illustrated in Figure 22. Hence, théetdn
of the distance storess, ,, andds. ,» associated with the skipped songande is to
be appended to the content of the cached composite skimdesttoreds,. Initially a
union is performed over the content of the partitiphsp] andg, and the result is stored
in partition ; of the distance storés,. Then a union over the of content of the parti-
tionsp), pi and g, is performed and the result is stored in partitionwhile restricting
by the content of all previous partitions @4,, i.e.,r;. The same procedure apply to the
last partitions, where the content of the partitiopls p; and ¢; is consulted. Once all
distance stores have been traversed, the updated compgégtdistance stords, can
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Figure 22: Extending the composite skip distance stdsg with the two additional
skipped songs ande.

be returned. As all songs contained in the music collectrenracluded in the individual
distance stores, it applies that entire music collectionagr = p’ = p” = q.
|
To measure the costs of query evaluation with respeagti@rateCompositeSkipDS,
we collect information concerning the occurrences of bfiroperations and database
lookups. The information is gathered in Table 2.

Table 2: Worst-case costs fdenerateCompositeSkipDS. The variables) and i de-
notes the number of skipped songs and the number of padjtiespectively.

Cost Description Evaluation Costs
Bit-wise Operation
AND 1414
OR i(j+1)
XOR 1414
Bitmap Function
BitCount 2
Random 0
GetBitmapForSetBit 0
Database Lookup
Metadata Cube
Distance Management J

Focusing on Table 2 we observe that the functi@merateCompositeSkipDS is
bounded byi - ; with respect to the bit-wise OR operation. Adenotes the number of
partitions in the distance stores used for similarity gingp it is likely that: remains
relatively small as described in Section 4. In a worst-casmario the value of re-
sembles the number of all skipped songs, whereas in an &+eesmg scenarip only
corresponds to the number of additional skipped songs,whicthis case can assumed
to be small. Thus, in an average-cdsencrateCompositeSkipDS is bounded by the
number of partitionsi.
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Fetch Random Songs

The functionality ofFetchRandomSongs is presented in Algorithm 2. The task of this
function is to generate a bitmap containing a specified numiikebits chosen randomly
among the 1 bits of the provided search collection. As inrameters the function
takes an integer indicating the number of songs to fetch ditheap representing the
provided search collection.

FETCHRANDOMSONGS(songsToF'ind, b_coll)

1 b randomColl +— empty bitmap

2 collSize «— BITCOUNT(b_coll)

3 o0rgCollSize «— collSize

4 if songsToFind > collSize

5 then> Select the requested amount of songs randomly
6 count = 0

7 missingSongs «— songsToFind

8 while count < songsToFind

9 do > for all the missing songs
10 for i < 0to missingSongs
11 do > Add randomly chosen songs to the random collection
12 setBit Number « GENERATERANDOMNUMBER(1, collSize)
13 b_randomColl — b_randomColl OR
GETBITMAPFORSETBIT (set Bit Number, b_coll)
14 count < BITCOUNT(b_randomColl)
15 if count < songsToFind
16 then > Restrict the search collection for the next iteration
17 b_coll <+ b_coll AND (b_coll XOR b_randomColl)
18 collSize «— orgCollSize — count
19 missingSongs «— songsToFind — count
20 else > The provided collection should be returned
21 b_randomColl «— b_coll

22 return b_randomColl

Algorithm 2: Pseudo code presenting query evaluationHetchRandomSongs.

To elaborate on the functionality of Algorithm 2, it is iratly ensured that the num-
ber of songs to include in the bitmap representing the ramglchosen songs can not
exceed the number songs represented by the search call@ot®4). If too few songs
are present in the search collection, the search colleti@turned (line 21). Otherwise,
as long as the required number of songs has not yet been faumainber of operations
Is continuously being invoked (line 8 to 19). First, for asdas songs are still missing,
a random number is generated indicating the position of itrarily chosen 1 bit from
the search collection. Using the position of this 1 bit, anlaip representing this par-
ticular position is generated and added to the bitmap reptegy all randomly chosen
songs (line 10 to 13). Chances are that the same randomlyagedenumber (line 12)
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occurs several times, for which reason not all required soegessarily are found in one
iteration. Should it happen that all songs are not foundséaech collection is restricted
by the already chosen songs, and the number of missing senigeiemented (line 15

to 19). In Table 3 we present the costs of query evaluatioh mgpect to the function

FetchRandomSongs.

Table 3: Worst-case costs fdfetchRandomSongs. The variablek denotes the number
of songs to find randomly from the given collection.

Cost Description Evaluation Costs
Bit-wise Operation
AND k
OR k(l;—k)
XOR k
Bitmap Function
BitCount 1+k
Random 0
GetBitmapForSetBit M
Database Lookup
Metadata Cube 0
Distance Management 0

From Table 3 we see th&ittchRandomSongs is bounded by:? with respect to the
bit-wise OR operation. In a worst-case scenario the vallecofresponds to the number
of songs to fetch randomly. However, considering the randemeration of positions
the average-case is expected to improve, i.e., the boume dfibction is closer té than
k2.

Random Song

Referring to Definition 6 on page 15, the taskiR¥ndomSong, is to find a subset of
randomly chosen candidate songs from which the song leagasto any of the skipped
songs is to be returned. The purpose of the selected caadidags is to constitute a
guality measure for the song to return.

The functionRandomSong described in Algorithm 3, takes as input parameters three
bitmaps representing the current search collection, te®ityi and the set of skipped
songs. In addition, an integeris passed in order to specify the number of candidate
songs among which to choose the song to return. Finallyuhetion takes a parameter
representing a user id indicating the music player curyenteracting with the MOD
framework. The id is used to identify a cached composite digfance store.

Stepping through the functionality of Algorithm 3, we irillly generate a collection
containing a specified number of randomly chosen songs4lné&o ensure that songs
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RANDOMSONG(b_coll, b_hist, b_skip, q, userld)

filePath «— empty string
songPosition «— Null
b_validColl < b_coll AND (b_coll XOR (b_skip ORb_hist))
b_randomColl — FETCHRANDOMSONGS(q, b_restrictedColl)
compositeSkipDS «— GENERATECOMPOSITESKIPDS(b_skip, userld)
for each partitionb_p in compositeSkipDS starting with the partition representing the
least similar songs.
7 do > Check if candidate songs are available
8 b_candidateColl — b_randomColl AND b_p
9 if BITCOUNT(b_candidateColl) > 0
10 then> Choose a position for a random song
11 songPosition < RANDOM (b_candidateColl)
12 break
13 if songPosition <> Null
14 then > Fetch the file path for the song found
15 songRecord « FACTTABLELOOKUP(songPosition)
16 filePath «— CUBELOOKUPFETCHATTR (songRecord.filenamelD, “Filename”)
17 return filePath

oLk, WN P

Algorithm 3: Pseudo code presenting query evaluationfandomSong.

similar to any of the skipped songs are not returned to thenes, a composite skip dis-
tance store is fetched (line 5). Traversing the compositediktance store starting with

the partition representing the least similar songs, eatheofssociated partitions may
be consulted (line 6 to 12), which causes the collection afldate songs to become
generated (line 8). From the collection of candidate sohg$osition of a song chosen
randomly from the partition representing the least sinstamgs is returned (line 11). In
case a song is found, the retrieval of the file path initiatlyolves a lookup in the fact

table in order to fetch id’s for all metadata dimensions efsbng (line 15). Using these
details a lookup in the filename dimension of the metadat@ catrsieves the file path

for the audio file of the found song (line 16).

To measure the costs of query evaluation with respeatoadomSong, we collect
information concerning the occurrences of bitmap openatend database lookups. The
information is gathered in Table 4.

As shown in Table 4, the operations occurring locally areedelent only of the
number of partitions. As reasoned in connection withenerateCompositeSkipDS,
the number of partitions in a distance store remains reatmall, i.e.j remains relative
small. Globally the function is bounded by + k2. However, as thé songs are retrieved
randomly,k is expected to be small as argued in Section 4. Hence, asguinanonly a
few songs are skipped at a time, i.¢is small, we observe that the average-case costs
are bounded by.
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Table 4: Worst-case costs fd&kandomSong. The variableg, £ and: denotes the num-
ber of skipped songs, the specified quality and the numbertfipns, respec-

tively.
Evaluation Costs

Cost Description Local Local + Helper Functions
Bit-wise Operation

AND 1414 2+2i+k

OR 1 14i(j+ 1) + B0

XOR 1 24+i+k
Bitmap Function

BitCount i 3+i+k

Random 1 1

GetBitmapForSetBit 0 M
Database Lookup

Metadata Cube 2 2

Distance Management 0 ]

Helper Function
GenerateCompositeSkipDS
FecthRandomSongs 1

—_

Similar Song

Referring to Definition 7 on page 16, the taskSifnilarSong, is to find and return a
single song considered most similar to a given seed sondidrcontext it is ensured,
that no songs close to any skipped songs is returned.

As input parameters, the functi®imilarSong described in Algorithm 4 takes three
bitmaps representing the search collection, the histodythe set of skipped songs. In
addition, the position of the seed song is passed to theitmdtating the position of
the song within a bitmap corresponding to all songs in theicralection. Finally, the
function takes a parameter representing an user id indggéttie music player currently
interacting with the MOD framework. The id is used to ideyptfcached composite skip
distance store.

To a great extent, the functionality of Algorithm 4 refledtsit of Algorithm 3, for
which reason only the parts 6imilarSong which differ from those ofRandomSong
are described in detail.

After generation of the valid collection and the compodkie slistance store, the dis-
tance store for the seed song is retrieved using the positithe seed song to perform a
lookup in the distance management relation (line 5). To fireddollection of candidate
songs, the seed song distance store is traversed startimgheipartition containing the
songs most similar to the seed song. This is done while conguhe content of the
corresponding partitions associated with the composifediktance store (line 6 to 12).
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SIMILAR SONG(b_coll, b_hist, b_skip, seedsongPosition, userld)

1 filePath «— empty string

2 songPosition «— Null

3 b_wvalidColl « b_coll AND (b_coll XOR (b_skip ORb_hist))

4 compositeSkipDS «— GENERATECOMPOSITESKIPDS(b_skip, userId)

5 seedsongDS < DISTANCESTOREL OOKUP(seedsongPosition)

6 for each partitionb_p in compositeSkipDS andb_g in seedsongD.S starting
with the partition representing the most similar songs

7 do > Check if candidate songs are available
8 b_candidateColl « validColl AND (b_q AND (b_g XOR b_p))
9 if BITCOUNT(b_candidateColl) > 0

10 then> Choose a position for a random song

11 songPosition «— RANDOM (b_candidateColl)

12 break

13 if songPosition <> Null

14 then > Fetch the file path for the song found

15 songRecord « FACTTABLELOOKUP(songPosition)

16 filePath «— CUBELOOKUPFETCHATTR (songRecord.filenamelD, “Filename”)
17 return filePath

Algorithm 4: Pseudo code presenting query evaluationSanilarSong.

Thus, restricting the partitions of the seed song distatare $y the corresponding par-
titions of the composite skip distance store while consigeonly the songs contained
in the valid collection, the collection of candidate song®btained (line 8). In the re-
mainder of the algorithm, the position of a selected carndidang is used to retrieve the
file path of the associated audio file.

In Table 5 we present the costs of query evaluation with E@sfeSimilarSong,
where the operations occurring locally are dependent dirtlyeonumber of partitions.
As reasoned in connection withenerateCompositeSkipDS, the number of partitions
in a distance store remains relative small, iieremains relative small. Globally the
function is bounded by - j with respect to the number bit-wise OR operations occur-
ring in GenerateCompositeSkipDS. Indeed, the costs of the worst-case scenario and the
average-case scenario is bounded entirely by the helpetidmizenerateCompositeSkipDS.
Therefor, the function is bounded by

When concluding on the costs for query evaluation of the faactions, we may
observe that the number of songs contained in a music doltet not represented.
However, as the bit-wise operations are applied on the Ilpgmthese operations are
implicitly influenced by the number of songs in the collentidn turn this entails that,
as the size of a music collection increases the only additioost to be applied is the
execution of bit-wise operations.
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Table 5: Worst-case costs fdimilarSong. The variables and: denotes the number
of skipped songs and the number of partitions, respectively

Evaluation Costs

Cost Description Local Local + Helper Funtions
Bit-wise Operation
AND 1420 2+ 31
OR 1 1+i(j+1)
XOR 144 2+2¢
Bitmap Function
BitCount i 1+ 2
Random 1 1
GetBitmapForSetBit
Database Lookup
Metadata Cube 2 2
Distance Management 1 1+

Helper Function
GenerateCompositeSkipDS
FecthRandomSongs 0

—_

6.3 Restriction Queries

The restriction operators defined in Section 4.1 have beetteziirom being described
as pseudo code, as they are considered both simple and aremptitational demand-
ing. When considering the individual functions relatedtte testriction operators, the
function Select requires access to the database only once in order to |dewatatmap
corresponding to the presented metadata attributes. Hsemeor counting only one
disc 1/O is that the table from which to retrieve the bitmakmwn and the keys on
which to perform a lookup are indexed. The index is moreogssumed to be present in
the cache of the RDBMS.

With respect to the functiofimilarMeta, the database may be accessed as many
times as the number of distinct metadata attributes for argsong. In a worst-case
scenario, all metadata attributes are passed as input pemanto the function, which
in turn causes multiple database access the corresponuivansion tables to occur.
Furthermore, to restrict the current search collectionguraenumber of bit-wise AND
operations are to be performed.

Common for both functions is however, that their complexibes not depend on
the number of songs to retrieve, but only the number of chdgaensions. Therefore,
changes to the metadata restriction causes only few datétaisups and bit-wise oper-
ations to be performed.
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7 Experiments and Test Results

In this section the MOD framework is evaluated using varicusfigurations. The eval-
uation concerns the space consumption introduced by thmefrark as well as the query
performance when random and similar songs are retrievéally) we elaborate on the
test setup. To conduct the individual tests an implemesntadf the MOD framework

is required. Such an implementation has been constructed dava 5.0 and MS SQL
Server 2000. In Appendix A, the database table definitiongtfe applied tables are
presented.

7.1 Test Setup

To support evaluation for both the retrieval process angplaee consumption, a number
of databases are constructed. Regarding the bitmaps wWhthidatabases, the bitmaps
can be configured as being uncompressed or WAH compressediohally, when con-
cerning the distance management, the bitmaps for the distnres can be represented
using either AVD or not, which gives a total of four differdsitmap representations. In
addition, the number of partitions in the distance storeg waay, which implies even
more possible configurations.

To conduct the evaluation, databases with a different nummisongs are to be cre-
ated. We construct these databases with basis in a persosal collection containing
1,000 songs. As we only have this limited number of songdaiviai, we are to generate
synthetic data in order to conduct tests on music collestadmore than 1,000 songs. A
possible solution to extend the existing dataset was tofaeldame 1,000 songs several
times. However, considering the metadata of music, an eows distribution of, e.g.,
of the artist metadata attribute would occur, as it is intaly wrong simply to scale the
artists for a collection of 1,000 songs to, e.g., a collectb100,000 songs.

To reflect a real life music collection, it is initially ensgd that some artists are
more productive than others when generating the synthata. dn this connection it
is moreover ensured that a given artist only has a limitedezanf maximal 30 years,
while ensuring that artists with a long career are more prodeithan artists with a short
career. Itis assumed that all song titles and album namasn&gee and that an album
contains between 10 and 15 songs. In this context all songs atbum are considered
of the same genre. Upon adding synthetic data to the mudectioh, entire aloums are
added in continuation of one another, to reflect a frequeattife situation.

Additionally, considering the distances between the iigial songs, the use of iden-
tical songs would create a very special and unrealistic fiasitne distances managed.
Hence, when creating distance stores for synthetic datgpply eandom distances be-
tween the songs. The random distances are chosen suchematrtitber of songs within
each of the partitions of the distance stores graduallysmses, starting from the partition
representing the most similar songs. As we assume a highdydiied music collection,
only few songs are located in the partitions representiagrbst similar songs.

To reduce insertion time when generating the databasdsnttex a large number
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of songs, we insert the relations for the distance storestlyrinto the database relation
rather than through the MOD API. The reason why this way oéiitisn is faster, is be-
cause we omit the symmetric property of the distances. Tinidiés that the distances
between songs are not symmetric when requesting simil@ssevhich does not intro-
duce a problem as we are only concerned with the responseatithaot the quality of
the retrieved songs. The total insertion time is consideydsk beyond the scope of this
paper, as the required distance calculations constitetalisolute majority of the time
used for insertion.

When inserting the real 1,000 songs, we apply the Intelti§@und Processing tool-
box R1 [IntO6b] to calculate the distances between all sontiee music collection. The
algorithm used is a training algorithm based on a statisticadel applied on MFCCs.
The algorithm is implemented in MatLab. Using the MOD APIe th,000 songs are
inserted in less than 45 seconds, when excluding the timbeokxhaustive distance
calculation. The configuration used for insertion is based @0 partitions where both
WAH compression and AVD are applied.

To conduct performance tests with respect to requestindgorarand similar songs,
a query evaluator application is constructed. The querjuat@ models a music player
application using the MOD framework, for which reason it lempents history man-
agement, metadata restriction and handling of skippedssofgensure real conditions
when performing the queries, an initial setup is perform&dus, to ensure that songs
are maintained in the history, 100 random songs are queniédmayed” on initializa-
tion. In addition, the collection is restricted to 75% of #@tire collection in a random
manner and the number of skipped songs is as default set torigs.s Considering
the properties of the skipping behaviour of the MOD framéw®&O0 songs constitutes
a rather large collection of skipped songs as all songs Helsggnany of the skipped
songs are restricted from being retrieved. Then, aftemaiigation, the actual query per-
formance tests are conducted. The query execution timeatbgy the query evaluator
is the average of 50 requests, where the history parametdteigd for each request.
Between each run of the query evaluator the cache of the S@eiSe emptied in order
to ensure a fair comparison.

The tests are performed on a Pentium M @ 1.7 GHz supplied vidB &f main
memory, running both the query evaluator and the SQL Sefareby, we conduct all
our tests on a 32-bit architecture. The harddisk used wtté200rpm and has a 16MB
cache.

7.2 Space Consumption

As explained above, four different bitmap representatedasts within the MOD frame-
work; Uncompressed, WAH, AVD and AVD+WAH. This section theansiders the ac-
tual space consumption by each of the four bitmap represemnsa

Using 12 partitions, the space occupied is presented inr€&ig8 for databases in-
dexing 10,000, 50,000 and 100,000 songs, respectivelyaA®e seen from the figures,
the uncompressed bitmaps occupy most space, whereas WApression reduces the
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Figure 23: Space consumption of the framework configured to each obthalffferent
bitmap representations, while having the number of pantsifixed to 12.

overall space consumption. The distance store contrilwitisa large number of the
bitmaps used for the indexing by the MOD framework. Thusresenting the distance
stores using AVD the total space consumption in reduced. akshbe seen from the
third pillar in the graphs in Figure 23, this is found to be tase when compared with
WAH compression. Finally, the fourth representation, Avidribined with WAH com-
pression, introduces an additional reduction of the oaalippace compared to applying
only AVD. It can be seen that these results apply indepehdehhumber of songs. The
variations within the results are presented in Table 6, higg uncompressed represen-
tation is compared with each of the three remaining reptasiens in order to deduce
the actual reduction gained.

Table 6: The variations of space reduction when comparing the uncesspd type with
each of the remaining types.

No. of songs Uncomp. —>WAH Uncomp.—>AVD Uncomp. —> AVD+WAH

1,000 7.0% 24.6% 26.0%
10,000 11.0% 37.2% 42.9%
50,000 14.6% 37.8% 46.7%
100,000 20.2% 38.4% 46.6%

Based on Table 6 we conclude that, the most space optimidediimg is achieved,
when applying both AVD and WAH compression. In doing so a otidm of 46.6%
for indexing 100,000 songs is achieved when compared tgodheesconsumption of the
uncompressed music collection. Additionally, we can compghe space consumption
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with the space needed to store the actual digitized musisusig average sized songs,
1,000 songs occupy 4GB, which can be scaled linearly to 4@&Bd,000 songs and so
on. The results of the index size for AVvD+WAH compared to thenber of songs and
the space occupied by those are presented in Table 7. Astedpéaan be seen from
Table 7, that the more songs that are indexed, the more spaegquiired in average for
each song.

Table 7: Comparison of space consumption of songs and index size.

No. of songs Space consumption of songs Index size Index sy

1,000 4GB 3.4MB 3.5kB
10,000 40GB 106.7MB 10.9kB
50,000 200GB 2.7GB 56.6kB
100,000 400GB 10.6GB 111.0kB

Moreover, it is interesting to consult the average bitmapsior the applied index-
ing. The average compression that is possible when comsidall bitmaps used for
indexing is reflected by the reduced space consumption agnsinoTable 6. However,
it is expected that a difference exists when consideringpifmeaps of the metadata cube
and the distance management in isolation. Intuitively,diteaps within the metadata
cube contains many consecutive 0 bits and are by this subjeajh compression while
the bitmaps of the distance management are more diversifiedegpect to occurrences
of 0 and 1 bits.

In Figure 24 the average bitmap sizes are presented for jpsimahin the metadata
cube and bitmaps within the distance management, resphctiihe distance man-
agement is configured to use AVD, for which reason the 12 tpar are represented
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> >
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8 8
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Distance Cube Distance Cube
(a) Average bitmap sizes for (b) Average bitmap sizes for 50,000 songs.

10,000 songs.

Figure 24: Average bitmap size for the distance management and thedatataube
while having 12 partitions and applying AVD.
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using only seven bitmaps. In the figures the dashed horilziomea indicates the thresh-
old size needed to store 10,000 and 50,000 bits, respeacti@eincerning the average
bitmap sizes for the distance management (70,000 and 350j00aps, respectively)
the WAH compression yields a space overhead, i.e., no casipreis possible. The
average bitmap sizes for the metadata cube (21,216 andQObiiBnaps, respectively)
is, as expected, reduced significantly when applying WAH pa@ssion. In this case
nine bytes are used for the average bitmap for both 10,00Ga/2D0 songs. This in
turn causes the pillars representing the cube to becomsbieion Figure 24. In the
case of uncompressed bitmaps the average bitmap size whiicube is much below
the threshold size of 10,000 and 50,000 bits respectiveiye réason for this is that O
bits in the end of the bitmaps is omitted, as explained iniSe&.1.

Finally, it is interesting to see how the number of partisarsed within the distance
management influence the space consumption for the fowrelift bitmap representa-
tions. Figure 25 presents test results for 10,000 songsi@awarying number of parti-
tions. As it can be seen, the space consumption having urressga bitmaps increase
linearly as the number of partitions increases. The otheretlbitmap representations
seem to reach an upper bound. The growth of the WAH comprégpedvas expected
to become minimal around 62 partitions when applying woeste WAH compression
as discussed in Section 5.3. This seems to be confirmed bggheesults in Figure 25.
Reverting to the theoretical worst-case calculationsepriesi in Equation 8 on page 25,
the results using 100 partitions would be 766MB for indexif®g000 songs. This can
be compared to the test results for WAH compression givenpgidttions which im-
plies a space consumption of 480MB. A difference was explegsave compare against
worst-case calculations. We can conclude from this that Vé&khpression performs
better in practice than compared to the worst-case. Morgtheresulting line nears an
asymptote around the expected 62 partitions.
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Figure 25: Space consumption for indexing 10,000 songs on all bitmaesentations.
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The remaining two bitmap representations are very closeas an Figure 25. This
indicates that WAH compression on an AVD represented distatore does not gain a
notable reduction. In fact, for 6 and 12 partitions a minagrbead is introduced. For 20
partitions and above a minor reduction is achieved. Stdldhace consumption seems
to be bounded as the number of partitions increased. Thedhtwavever, is no longer
influenced by the WAH compression but instead by the chossesoaf the AVD repre-
sentation. Table 8 presents the bases chosen for the diffesmber of partitions. These
reflects the same development with respect to databasesrapplVD as illustrated in
Figure 25.

Table 8: The chosen AVD bases and the number of bitmaps required ébr @giatinct
number of partitions.

Number of partitions Chosen AVD bases Bitmaps required

6 <3, 2> 5
12 <4, 3> 7
20 <3,3,3> 9
40 <4,4,3> 11
60 <4,4,4> 12
100 <4,3,3,3> 13

To conclude on the space consumption, we have obtainedgetidwing that we
are able to create an index for 10,000 songs occupying 106\MBaxe when applying
both WAH and AVD. The space consumption should be compardtigcsize of the
digitized music, which in the case of 10,000 songs is esthat 40GB. Considering the
space consumption per song, it increases squared as thenafrdongs increases. The
main reason for this is that the squared number of distanewgelen all songs should
be maintained within the distance management. Howeverspghee consumption for
indexing 100,000 songs is found to be 111kB per song, whigist.7% of the assumed
average song size of 4MB.

Concerning the different bitmap representations, the repate efficient indexing
is found to be when applying both WAH and AVD. Compared to tneampressed
representation we gain more than a 40% space reduction esfect to vast music
collections. In general, the space reduction obtained plyam AVD is significant and
AVD is thereby an obvious choice within the distance manag@m Moreover, only
applying AVD we avoid the WAH compression overhead. Howgtres bitmaps found
within the metadata cube are then not reduced in size as ikdwave been the case
when applying WAH compression. Hence, the total space temucs more optimal
applying both WAH and AVD.

To optimize the space consumption one might suggest toatepde usage of WAH
compression such that we apply WAH compression on the migtadoe and solely
AVD on the distance management. However, such a solutionlghie able to manage
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and combine the diversified bitmap representations. Imelgimg and testing such an
approach is subject for future work.

Furthermore, we have examined the impact of the number d¢itipas within the
distance stores of the distance management. As explaimedndre partitions chosen,
the better the distance stores are able to reflect the sityilaeasure applied. However,
a rather limited number of partitions might in fact not inthee the quality experienced
by the subjective listener. The space consumption is foare bounded by the chosen
bases used for the AVD representation when varying the nuofigartitions. Hence,
it is interesting to note, that an increase to the number dftjmems only has insignifi-
cant influence on the number of bitmaps needed to represemiates, as described in
Table 8.

7.3 Query Performance

In addition to the space experiments, we consider querppagnce when evaluating
queries to obtain random and similar songs, respectivetyfoAthe space experiments
we conduct the query performance experiments on the folardift bitmap representa-
tions as well as for databases indexing a different numbsowgs.

In Figure 26, the average query execution time is presemeddth random and
similar songs. From the figure we can deduce that, for botestyy queries, the query
execution time increase as the number of songs increaskavekhge query execution
times on a collection of 100,000 songs are found to be at nes6 In case of solely
applying WAH compression we have obtained an average queguéon time at 14ms
and 21ms for querying random and similar songs, respegtiv€omparing the two
types of queries the results obtained reflect each othereasuimber of songs indexed
increases, except that all average query execution tinres fandom song are a little
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Figure 26: Average query execution time used to handle a request falorarand sim-
ilar songs, respectively. A fixed number of 12 partitionstfee distance
stores is used.
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faster than for the corresponding similar song query. Tlasae for this difference is
due to, that a random song is retrieved within a small sulfsecentire collection. In
average, the bitmap representing this small subset has omaitied O bits in the end.
Therefore, bit-wise operations perform faster.

Moreover, it can be seen that the two WAH compressed reptasams yield faster
query evaluation compared to the uncompressed represestal his was however not
expected as WAH applies an additional computation overimdeh performing bit-wise
operations on the bitmaps as explained in Section 5.1. Tds®refor this is explainable
by the reduced size of the bitmaps when searching for a cated&bng in partitions of
a distance store. Requesting a random song, the bitmasesireg the random set of
songs chosen is small when applying WAH compression. Silpilahen requesting a
similar song, the song to return is often found by consultinky the partitions represent-
ing the most similar songs. As stated earlier, these pamstonly hold few songs, for
which reason the corresponding bitmaps are small when iygpWWAH compression.
Performing a bit-wise operation where one of the bitmaps@argument is compact,
i.e., it contains few literal words, the performance is @ased compared to the case of
having two large bitmaps in the argument.

All the previously presented query performance experisieras conducted having
12 distance partitions. Varying the number of partitionglminfluence the results. Ex-
periments to consult this issue have been conducted spegifye number of partitions
at 6, 12, 20, 40, 60 and 100. However, the results indicatedsagnificant increase in
the query execution time as the number of partitions ine@®ashe tests were conducted
on databases indexing 10,000 songs where the maximum avguagy execution time
measured was 14ms for requesting a similar song given amypressed bitmap rep-
resentation and 100 partitions. More deviating resultshiniave been observed when
indexing more songs in the consulted databases. Howeese #xperiments have not
been conducted due to lack of available space in order te gherrequired number of
databases indexing 100,000 songs.

As the previous tests have been conducted while measuriagesage query execu-
tion time, it is interesting to consider a worst-case quasceation time. The worst-case
execution time is to be found when an additional number ofjsdrave to be skipped,
i.e., the skipped songs are to be appended to the cached sibengkip distance store.
In the case of a music player interacting with the MOD framegthe usual way to
interact would be either continuing with an unchanged ctilbe of skipped songs or
having a single additional skipped song. On the contraryroight imagine a music
player able to skip several songs simultaneously, whiclefieeted by the worst-case
query execution times presented in Figure 27. The resudtth@a maximum query exe-
cution time when performing three independent requestsyewve force generation of
the composite skip distance store for the skipped songs.

As can be seen from Figure 27 the results are linear, whiokctsfthe expected lin-
earity of appending skipped songs to the composite skipnlist store. Independent on
the chosen bitmap representation, less than 250ms is eglwigenerate the composite
skip distance store when none or a single additional sorigpped. When skipping 100
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Figure 27: Query execution time in the worst-case is considered to baleq the case
of generating the composite skip distance store. The testsanducted for
each of the four bitmap representation, while using 12 piaris for indexing
100,000 songs.

songs for each bitmap representation, we initially seetti@¥WAH representation takes
as long as 2.1s to construct the composite skip distance. Skar the same amount of
skipped songs, the AVD representation performs faster epegpto the three other rep-
resentations. As we consider generation of the composipeds&tance store, distance
stores for all the skipped songs should be retrieved frond#tabase. Using an AVD
representation of the distance stores, fewer records dhmufetched, which explains
the improved query performance. However, applying both Aid WAH compression
no reduction is achieved. The reason for this is that, whetyapm WAH compression
we introduce an overhead in execution time when accessagdiftitions of the distance
store as they are represented by AVD.

The previous tests consider the query performance foresmegjuests. However, the
MOD framework is not limited to a single-user environmemtitanay be used in a server
setup. In the following we conduct a throughput test to exantiow many requests the
MOD framework is able to handle over time, when a differentnber of songs are
indexed. To conduct the tests we create multiptpiest threadswvhich simulates music
players, including history management, restriction andlliag of skipped songs. As for
all of the other tests performed, we restrict the collectmi@5% of the available songs
and specify 50 randomly skipped songs. The request threafls'ms both random and
similar requests, switching between performing 20 randequests and 20 requests of
similar songs for a single seed song. The tests are condogtedtantiating 50 threads,
where one half starts by requesting similar songs, whileréis¢ starts by requesting
random songs.

In Figure 28 the results obtained by execution of the thrpuglest are presented.
The results have been obtained running both the SQL Serdealarequest threads on
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Figure 28: The number of requests accomplished per second, where é&fdthcontin-
uously perform both random and similar requests.

a single machine, as specified earlier. The graphs inditla#esfor all the test setups,
no requests are served in the beginning of the conductesl testddition, some time
elapses until the number of requests served stabilize. 8dson for this behavior is that
the composite skip distance stores are generated durifigghequests.

Figure 28(a) presents the results when applying neither AGDWAH. In this case
we are able to serve around 300, 150 and 25 requests per siecaondexing 10,000,
50,000 and 100,000 songs, respectively. As expected fremrevious results obtained,
the performance decreases when the number of indexed sumgases. When applying
both AVD and WAH we have obtained the results presented inr€ig8(b). With respect
to 10,000 songs we see that AVD and WAH does not increase thé&uof request the
MOD framework can handle. However, having more songs wergbse increase. For
50,000 and 100,000 songs we are able to handle around 17®ameduests per second,
respectively.

Assuming an average request frequency for each listeremuimber of requests
per second can be turned into a the number of users that camnsE simultaneously.
Moreover, assuming an average duration of three minutesquey, the average request
frequency of a listener can be assumed to be once every thinegas

Assuming an average duration of three minutes per song,vérage request fre-
guency of a listener can be set to once every three minutescdieonverted into sec-
onds the frequency i5.56 - 1073 request per second. Thereby, serving 100 requests
per second can be deduced to correspond to approximat€@Q8imultaneous listen-
ers. Indeed, considering the test setup with respect taMaaedimitations, the obtained
results seems very promising.
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To conclude on the performance tests we have found that ttabakes applying
WAH compression are the fastest to perform both random andasiqueries. Using
solely WAH compression we have obtained an average quergugza time of 14ms
and 21ms for requesting a random and similar songs, resphobin a database indexing
100,000 songs. Additionally, applying AVD for the distarsteres a minor overhead is
introduced, now having average query execution times ofsldma 23ms, respectively.

Moreover, concerning the amount of partitions specified aeehound that query
execution time seams only to be influenced insignificantlyhasnumber of partitions
increases. These tests have only been conducted usingd1€hA6s, for which reason
other results may be found from databases indexing 100 @@gss

Concerning the performed throughput test we have foundtieaMOD framework
configured to use both AVD and WAH, is able to support 18,000usianeous users
running on a regular laptop, when 100,000 songs are indexed.

Finally, with respect to both the space consumption andop@idnce experiments
we are able to conclude that applying both AVD and WAH comgimes provides the
best tradeoff between the space consumption and the avguageexecution time. As-
suming 12 partitions we are to index 100,000 songs usingd® @& space and perform
gueries of a random and similar song in 14ms and 23ms, regglgciVe believe this is
sufficient to support most applications using the MOD fraroeu

8 Conclusion and Future Work

To ensure efficient navigation within vast music collecipme have presented and eval-
uated theMusic On Demand framewodapable of supporting retrieval of songs in a con-
tinuous stream. The listener can retrieve either randommbgen songs or songs similar
to a given seed song. Furthermore, the listener is able teeinle the stream dynami-
cally, by skipping disliked songs or by restricting the ection by combining metadata
attributes such that only desired songs are subject faevatr In addition, the listener
can specify new collections representing a subset of theeardllection, which may be
used for restriction purposes.

We have constructed a generic music data model and quergtopgrwhere a com-
bination of both the metadata of music and the musical comtesongs is included. In
this context, songs may be retrieved with respect to thetadaa and/or their content
based similarity.

In order to ensure efficient retrieval of songs from a vastimesllection, we have
applied bitmap indices to index the metadata of music. Ttradps for this purpose are
maintained in a multidimensional cube mapped to a snowflelkeraa in an RDBMS.

Due to the fact that musical similarity is a subjective nrattieere exist no unique
correct answer as to whether two distinct songs are coregidémilar. Thus, we have ap-
plied bitmap indices to represent groupings of similar songh respect to a base song.
Based on that we are able to identify and retrieve similasidiilar songs efficiently us-
ing bit-wise operations on the bitmaps. We believe to be tketh use bitmap indexing
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techniques to facilitate retrieval and restriction queiievast music collections, which
combines the metadata and the content based similarity sicmu

To reduce space consumption we have applied the Word-Adigthbdrid compres-
sion scheme in order to compress bitmaps. In addition, we Baamined the use of
the Attribute Value Decomposition technique applied onliimap indices within the
distance management. Experiments have shown that Attrifaliue Decomposition
should be applied in the MOD framework as the technique resitite space consump-
tion significantly at the cost of only a small decrease of therg performance. When
considering both space consumption and query performanedyest test results were
obtained having the framework configured to use both the Wdighed Hybrid com-
pression scheme and Attribute Value Decomposition. Imdei00,000 songs, 10.6GB
of space is occupied, while querying of randomly chosen s@mgl similar songs are
performed at an average of 14ms and 23ms for each song, tespedn addition, the
MOD framework may be used in a server setup, where a singlenos serves multiple
music players. A throughput test on 100,000 songs, incsdate the MOD framework
running on a standard laptop is able to serve 18,000 sinmedisiusers. Indeed, consid-
ering the test setup with respect to hardware limitatidms gbtained results seems very
promising.

As future work, we address the use of the Word-Aligned Hybrichap representa-
tion in order to optimize to the performance of the MOD framekv Based on the test
results, a significant reduction of the space occupied byrtbdata of music was ob-
served when Word-Aligned Hybrid compression was applieoeéier, concerning the
distance management, Word-Aligned Hybrid compressioniesan overhead. For this
reason we suggest a framework which allows to apply Wordwdd Hybrid compres-
sion on the bitmaps within the metadata cube, while omittifrgm the bitmaps within
the distance management. Such an extension should engiplerstor combining both
types of bitmaps within the bit-wise bitmap operations.

With respect to the costs found from the algorithms used ttopa query evalua-
tion, we observe that the operations are bounded by theibd-@perations. In case that
numerous bitmaps are to be combined using regular bit-vaseabions|azyimplemen-
tations of the Word-Aligned Hybrid compressed bitmap opers could increase the
overall performance of the algorithms. Hence, rather tremegating several intermedi-
ate results, the full result is generated and returned ohlgnarequired. Thus, instead
of instantly performing several bit-wise operation in artieobtain the intermediate re-
sults, the bitmaps are to be stored in a special structueyithgl the combination until
the result is required. Hence, special multi bitmap bitenaperations may consult all
the bitmaps in parallel when deducing the result and theiretrgase the performance.

By applying the similarity measure from the Intelligent &duProcessing toolbox
R1 to calculate the distances between any two songs, we Wkréoesupply satisfactory
results for both finding similar songs and avoiding retriefasongs similar to skipped
songs. Moreover, as we apply the MOD framework we are ableswer fast. Finally
to conclude, we believe that the MOD framework provides igffitretrieval of music
within vast music collections.
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A Database Table Definitions

This appendix contains database table definitions for ttebdae tables managed by the
MOD framework. All the definitions are presented by SQL SeB¥L (Data Definition
Language) commands, which are used to create the tableke lioltowing, these are
presented separately for the metadata cube and the distemagement.

Metadata Cube
The DDL commands are presented separately for each metéidatasion specified.

Album Dimension
CREATE TABLE Al bum (

I D int | DENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Al bum var char (50) COLLATE Dani sh_Norwegi an_CS_AS NOT NULL,
Bi t map i mage NULL

)

Artist Dimension
CREATE TABLE Artist (

I D int | DENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Artist varchar (50) COLLATE Dani sh_Norwegi an_CS_AS NOT NULL,
Bi t map i mage NULL

)

Filename Dimension

CREATE TABLE Fi | ename (

ID int | DENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Fi | ename varchar (512) COLLATE Dani sh_Norwegi an_CS_AS NOT NULL,
Bi t map i mage NULL

Genre Dimension

CREATE TABLE Genre (

I D int | DENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Genre varchar (50) COLLATE Dani sh_Norwegi an_CS_AS NOT NULL,
Bi t map i mage NULL

)

CREATE TABLE Subgenre (

I D int | NDENTITY(1,1) PRI MARY KEY NONCLUSTERED NOT NULL,
Subgenr e var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Genre i nt NOT NULL,
Bi t map i mage NULL,

CONSTRAI NT FK_Subgenre_Genre FORElI GN KEY (Genre) REFERENCES Genre(l D)

)
CREATE CLUSTERED | NDEX | X_Subgenre ON Subgenre( Genre)
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Release Dimension
CREATE TABLE Century (

ID int | DENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Century varchar (50) COLLATE Dani sh_Norwegi an_CS_AS NOT NULL,
Bitmap inmage NULL

)

CREATE TABLE Decade (

I D int | NDENTITY(1, 1) PRI MARY KEY NONCLUSTERED NOT NULL,
Decade varchar (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Century int NOT NULL,
Bitmap image NULL,

CONSTRAI NT FK_Decade_Cent ury FOREI GN KEY (Cent ury)
REFERENCES Cent ury( | D)

)
CREATE CLUSTERED | NDEX | X _Decade ON Decade( Cent ury)

CREATE TABLE Year (

I D int | NDENTITY(1, 1) PRI MARY KEY NONCLUSTERED NOT NULL,
Year var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Decade i nt NOT NULL,
Bi t map i mage NULL,

CONSTRAI NT FK_Year Decade FOREI GN KEY (Decade) REFERENCES Decade( | D)

)
CREATE CLUSTERED | NDEX | X _Year ON Year ( Decade)

Title Dimension
CREATE TABLE Title (

I D int IDENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Title varchar(512) COLLATE Dani sh_Norwegi an_CS_AS NOT NULL,
Bi t map i mage NULL

)

Cube Management

CREATE TABLE Di nensi on (
Dimi D int IDENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Nanme varchar (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL

)

CREATE TABLE Hi erarchy (

Dim D i nt NOT NULL,
Nare var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Super Nanme var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Level Dept h tinyint NOT NULL,

CONSTRAI NT FK_Hi erar chy_Di nensi on FOREI GN KEY (Di m D)
REFERENCES Di mensi on( Di m D)

)
CREATE CLUSTERED | NDEX | X _Hi erarchy ON Hi erarchy(D m D)
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CREATE TABLE User Di nensi on (

DimD int IDENTITY(1,1) PRI MARY KEY CLUSTERED NOT NULL,
Nane var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Userld int NOT NULL

)

CREATE TABLE User Hi erarchy (

Dim D i nt NOT NULL,
Nane var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Super Nane var char (50) COLLATE Dani sh_Norwegi an_Cl _AS NOT NULL,
Level Depth tinyint NOT NULL,

CONSTRAI NT FK_User Hi erarchy_User Di nensi on FOREI GN KEY (Di ml D)
REFERENCES User Di nensi on( Di ml D)

)
CREATE CLUSTERED | NDEX | X_User Hi erarchy ON User Hi erarchy(D m D)

Distance Management

CREATE TABLE Di st ance (
Ref SongPosi tion int PRI MARY KEY CLUSTERED NOT NULL,
Bi t map i mge NULL
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B Music On Demand API

This section outlines the functionalities provided by th®BDIAPI. The functionalities

provide the possibility to retrieve songs, manage user agioes and browse through
the entire collection using metadata. In addition, it iogiessible to insert songs into
the framework and close the database connection. The MODiABYesented in the
following as Java methods together with the JavaDoc doctatien.

public interface MODAPI {

[hkkkhkhkhkhkhkhkkkkkkkhkkkkkkk kk* Song Retrieval **xxkkxkkkkkhkkkhhkkhkkkkkkkkkkhkkkkkx [

[ **
* Finds and returns a random song. The song returned is neither in the
* |ist of skipped songs nor simlar to any of the skipped songs.

@eturn a bitmap containing one 1 bit for the randomly chosen song fromthe
col I ection.
@ hrows Enpyt Bi t mapException if there was no avail able song to return.

*

* @aramcollection as a bitnmap presenting songs in the restricted nusic collection.
* @aram history as a bitmap presenting songs recently played which are

* not subjected for retrieval.

* @aram ski plist as a bitmap presenting songs that are currently ski pped.

* @aramaquality stating the nunber of candidate songs to be found.

* @aram userid identifies the music player application.

*

*

*

*/
public int[] getRandonSong(int[] collection, int[] history, int[] skiplist,
int quality, int userid) throws EnptyBitnmapException;

*

Finds and returns a song simlar to the given seed song. The song
returned is neither in the list of skipped songs nor simlar to any of the
ski pped songs.

@aram col l ection as a bitnmap presenting songs in the restricted nmusic collection.
@ar am hi story as a bitmap presenting songs recently played which are
not subjected for retrieval.
@ar am ski pli st as a bitmap presenting songs that are currently ski pped.
@ar am seedSong as a position of a song for which a simlar song should be
retrieved.
@aram userid identifies the music player application.
@eturn a bitmap containing one 1 bit for the chosen song that is simlar to the
seed song.
@ hrows EnpyBitmapException if there was no available song sinilar to the
seed song.

ECE I N I N

*

*/
public int[] getSimlarSong(int[] collection, int[] history, int[] skiplist,
int seedSong, int userid) throws EnptyBitmapException;
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[*xxxxxxxxxxxxxxx%**xxxxxxx User Di mensi ons Managenent Kk kkkhhkhkhkhkhkhkkkkkkkkkhkkhkkkkkx [

| *x
* Creates a user dinension and its hierarchies.
*
* @ar am di nNane the name of the dinmension table to be created.
* @aram di mensi onH erarchy the levels to be created as di nension tabl es.
* @aram user| D the id of the user who owns the di nension.

* @hrows Exception if an invalid dimension hierarchy specified.
*/
public void createDi nension(String di mName, String[][] dinmensionHi erarchy,
int userl D) throws Exception;

[ xx
* Inserts a song into a user collection. If the collection does not exist, a new
* is created.
*
* @ar am songl nf oTol nsert indentifies the user collection of where the song
* shoul d be inserted.
* @aram bit mapSongTol nsert song to be inserted presented as a bitmap havi ng one
* 1 bit.
* @aram user| D identifies the music player application.
*/

public void insertSongl nUserDi mensi on( Song songl nfoTol nsert,
int[] bitmapSongTol nsert, int userlD);

[ xx

* Del etes users level in a database.

*

* @aram | evel Nane nanme of the level to be del eted.
*/

public void del eteLevel (String |evel Nane);

| *x

* Del etes a user collection.

*

* @aram | evel Nane the |evel nane where the collection is to be deleted from
* @aramcollection a user collection to be del eted.

*/

public void del eteCollection(String | evel Nane, String collection);

| *x
* Del etes a song in a users defined collection.
*
* @aram | evel Nanme to identify a user collection.
* @aram col | ecti onName nane of a collection of songs, fromwhere the song is
* to be del eted.
* @aram bit mapTodel ete bitnmap containing one 1 bit representing the song to

* be del et ed.
*/
public void del et eSongFronCol | ection(String | evel Nane, String collecti onNane,
int[] bitmapTodel ete);
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[k kkkhkhhhkhkkkhkkhhhhkhkhkkkkkk* Bromsing managenent hhkkkhkhkkhhhkkkkkkkhhhkhkhkkkkkk kX Xk k& & % [

[ *

* Fetches all the avail abl e dimensions for the given user in a database.
*

* @aramuserl D identifies the user.

* @eturn SongDi nmensi onl nfo which represents all dinensions and

* all user dinensions related to the userlD
*/

publ i ¢ SongDi nensi onl nfo[] get Avai | abl eDi nensi ons(int userlD);

Fet ches the sub di nension values for a given |evel.

@aram songDimnfo identifies the level to fetch sub val ues from

@eturn a SongDi menensi onl nfo containing the sub di mensi on val ues.

* @hrows Exception if nmore than a single | evel was specified.

*/

publ i ¢ SongDi nensi onl nf o get Subl t ens( SongDi nensi onl nf o songDi m nfo) throws Exception;

*
*
*
*
*

[ *x

* Returns a full collection presented as a bitmap where all bits are set to 1.
*

* @eturn full set bitmap.

*/

public int[] getFull Collection();

[ **

* Fetches song information.

*

* @ar am bit map representing the song to fetch information.

* @aram di nensi ons a nunber of dinensions fromwhere song information are to be
* f et ched.

* @eturn song containing the information requested.

*/

public Song getinfo(int[] bitmap, String[] dinensions);

[*xkxxxxxxkxxxxxxxxxxx SONQ i nsertion and cl 0Sing Of CONNECLi ON ****xxk ks kkkxkkkkkkxx/

[ **

* I nserts a nunber of songs and all their corresponding netadata i nto a dat abase.
*

* @aram songTol nsert a nunber of songs to be inserted.
*

/
public void insertSong(Song[] songTol nsert);

[ *x

* Closes the connection to the database safely.
*/

public void close();
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