
Efficient Retrieval from Vast Music Collections

Master’s Thesis

Claus Åge Jensen
Ester Moses Mungure

Kenneth Rand Sørensen

June 13th, 2006

Department of Computer Science, Aalborg University, Denmark

The Faculty of Engineering and Science
Aalborg University

Department of Computer Science

Efficient Retrieval from Vast Music Collections

PROJECT PERIOD:
DAT6, F10S, CIS4,
February 1st, 2006 -
June 13th, 2006

PROJECT GROUP:
E1-209

STUDENTS:
Claus Åge Jensen
Ester Moses Mungure
Kenneth Rand Sørensen

SUPERVISOR:
Torben Bach Pedersen

COPIES: 7

REPORT PAGES: 61

APPENDIX PAGES: 6

TOTAL PAGES: 67

ABSTRACT:

When considering the development of musical digitization,
new challenges emerge within the field of Music Informa-
tion Retrieval, where our focus of research is querying on
vast music collections. For that purpose we introduce and
evaluate theMusic On Demand frameworkwhere songs are
queried as a continuous stream. When querying songs a lis-
tener is able to influence the songs ahead in the stream dy-
namically by performing the following actions:play sim-
ilar songs, play random songs, skip songs, restrict collec-
tion and specify collection. In order to do so, a generic
music data model and associated query functionalities are
defined.
Applying bitmap indices to index metadata as well as mu-
sical similarity derived from the musical content, we en-
able support for efficient retrieval within vast music col-
lections by the use of bit-wise operations. The retrieval
process concerns a combination of both the metadata and
the similarity of songs. In this context we examine the use
of the Word-Aligned Hybridcompression scheme and the
Attribute Value Decompositiontechnique for representing
content based similarity.
Experimental test results show that our framework imple-
mentation ensures efficient access to music within vast mu-
sic collections, at the cost of only a small additional space
consumption when compared to the stored music files.

Contents

1 Introduction 1

2 Related Work 4

3 Motivation and System Interplay 6
3.1 A Vision of Usage . 6
3.2 Formalization of System Interplay 7

4 Data Model and Query Functionality 8
4.1 Music Data Model . 9
4.2 Retrieval Operators . 13
4.3 Restriction Operators . 17

5 Technical Design 18
5.1 Bitmap Indexing . 19
5.2 Handling of Collection Query Parameters 22
5.3 Distance Management . 23
5.4 Metadata Management . 29

6 Query Evaluation 35
6.1 Cost Model . 35
6.2 Retrieval Queries . 36
6.3 Restriction Queries . 45

7 Experiments and Test Results 46
7.1 Test Setup . 46
7.2 Space Consumption . 47
7.3 Query Performance . 52

8 Conclusion and Future Work 56

Appendix 61

A Database Table Definitions 62

B Music On Demand API 65

Efficient Retrieval from Vast Music Collections

Claus Åge Jensen<caj@cs.aau.dk>
Ester Moses Mungure<moses@cs.aau.dk>
Kenneth Rand Sørensen<krs@cs.aau.dk>

June 13th, 2006

Abstract

When considering the development of musical digitization,new challenges emerge
within the field of Music Information Retrieval, where our focus of research is
querying on vast music collections. For that purpose we introduce and evaluate
theMusic On Demand frameworkwhere songs are queried as a continuous stream.
When querying songs a listener is able to influence the songs ahead in the stream
dynamically by performing the following actions:play similar songs, play random
songs, skip songs, restrict collectionand specify collection. In order to do so, a
generic music data model and associated query functionalities are defined.

Applying bitmap indices to index metadata as well as musicalsimilarity derived
from the musical content, we enable support for efficient retrieval within vast mu-
sic collections by the use of bit-wise operations. The retrieval process concerns a
combination of both the metadata and the similarity of songs. In this context we
examine the use of theWord-Aligned Hybridcompression scheme and theAttribute
Value Decompositiontechnique for representing content based similarity.

Experimental test results show that our framework implementation ensures ef-
ficient access to music within vast music collections, at thecost of only a small
additional space consumption when compared to the stored music files.

1 Introduction

In recent years the field of music distribution has changed from being medium based to
becoming digitized, in particularly with the advent of lossy compression techniques such
as the MP3 format. Moreover, the accessibility of digital music is constantly improving
as high speed Internet connections are becoming more and more common. As a con-
sequence of this development, digital music stores are emerging, causing the consumer

This project took place within the Intelligent Sound research project, funded by the Danish Research
Council for Technology and Production Sciences as project no. 26-04-0092.

1

behaviour to change through a high degree of accessibility and collaborative filtering
techniques. Based on these techniques, personal recommendations are derived based on
the preferences of other individuals.

As a consequence of easy access to music and decreasing storage costs, the current
tendency is that personal music collections grow in size. Thus, we are facing the chal-
lenge of supporting query functionalities onvast music collectionswhere only limited
or no prior knowledge about the content of the music collection is available.

To ensure efficient handling of query functionalities with respect to vast music col-
lections, this paper introduces theMusic On Demand frameworkhenceforth referred to
as the MOD framework. The main characteristic of the framework is to combine meta-
data of music with musical similarity derived from the musical content of the respective
songs. In doing so, two basic properties of the framework is ensured. First, using meta-
data it is possible to browse the entire music collection in order to select subsets thereof,
e.g., all songs by U2. Second, with respect to the musical similarity between songs, the
framework ensures an efficient foundation for indexing content based similarity between
songs.

The most significant contribution of the MOD framework, is the introduction of
bitmaps used for indexing purposes in order to ensure efficient management of both
metadata and content based similarity. Representing the entire music collection as well
as subsets thereof as bitmaps, we are able to use bit-wise operations to ensure efficient
generation of multi attribute subsets representing, e.g.,all songs of Madonna released in
the year 2005. These subsets may in turn be applied as restrictions to the entire music
collection. Similarly, using bitmaps to represent groupings of similar songs with respect
to a given base song, we are able to identify and retrieve similar/dissimilar songs ef-
ficiently using bit-wise operations. We believe to be the first to use bitmap indexing
techniques to facilitate retrieval and restriction queries in vast music collections. An
important aspect of our contribution in this connection is to use bitmaps to combine
metadata with content based music similarity. As a consequence of this combination,
we are able to ensure low response times on retrieval queries, where similarity requests
are applied on a restricted music collection.

Relating to the experimental test results of the MOD framework, 10.6GB of space is
required to index 100,000 songs. When compared to the space consumption required to
store the actual digitized music collection, the indices comprise only a minor overhead of
2.7% of the stored audio files when considering an average filesize of 4MB. Moreover,
when retrieving songs from a restricted music collection, the MOD framework is able to
reply with a similar song in 23ms and a random song in 14ms in average.

Based on the concept of impulsive user interactions, the MODframework enables
listeners to perform the following five basic actions;skip songsthat are disliked,play
similar songswith respect to a given base song,play random songs, performmetadata
restrictionssupporting a hierarchical metadata structure and manageuser specified col-
lections. Compared to our previous research considering playlist generation [JMS05],
this paper describes a different approach using infinite streams of music rather than the
well-known concepts of static playlists. Hence, instead ofspecifying the content or

2

Metadata

Cube

Distance

Management

Audio

Files

MOD API

Music

Player 1 . . .

MOD Framework

Music

Player 2

Music

Player n

RDBMS RDBMS

Figure 1: Architecture of MOD framework.

characteristics of the generated playlist on beforehand, the stream abstraction enables a
listener to influence the songs ahead in the stream by performing one of the five basic
actions.

In Figure 1 a simplified illustration of the framework architecture is presented. In
this connection, the audio files, the metadata and the distances between songs are main-
tained by the framework where the metadata and the distancesare stored separately in
an RDBMS. Using the framework, a music device running a musicplayer application is
able to request songs one at a time. In addition, multiple music player applications are
able to interact with the framework simultaneously. In the remainder of this paper we
refer to any music device running the music player application simply as amusic player.

The organization of the remainder of this paper is as follows. Initially, in Section 2
we describe related work. In Section 3 we present a motivating use case scenario as well
as a formalization of the system interplay between system objectives and usage of the
MOD framework. Section 4 defines a music data model along withformal descriptions
of the associated query functionalities. The technical design of the MOD framework is
described in Section 5, where emphasis is put on bitmap indexing techniques. In Sec-
tion 6, query evaluation techniques are described. In Section 7 we present experimental
results for an implementation of the MOD framework. Finally, in Section 8 we conclude
on our research with respect to using bitmaps for indexing ofvast music collections.
Moreover, the section presents a number of suggestions for future work.

Additionally, Appendix A presents the database table definitions for the applied ta-
bles. Appendix B describes the functionality of the MOD API.The enclosed CD-ROM
contains an electronic copy of this paper and the source codefor the MOD framework.

3

2 Related Work

Within the field of MIR (Music Information Retrieval), much effort has been put into
the task of enabling music lovers to explore individual music collections as is the case
for, e.g., [NDR05, Lüb05]. Within this context, several research projects, e.g., [ME05,
Pam05], have been conducted in order to pursue a suitable similarity measure for mu-
sic, for which reason a feature representation of the musical content is required. One
such feature representation is constituted by the MFCC (Mel-Frequency Cepstral Co-
efficients) features known from the field of speech recognition [JPH00]. An alterna-
tive approach to the MFCCs is found in the MPEG-7 audio features as specified in
[SS02]. MPEG-7 uses well-defined components such as the beat, pitch, etc. of the
music, whereas MFCCs consider the overall musical impression with respect to human
perception.

When considering indexing of high dimensional musical feature representations, ex-
isting indexing techniques such as, e.g., the M-grid [DN05]and the M-tree [CPZ97] can
be applied. However, as a consequence of the subjective nature of musical perception,
the triangular inequality property of the metric space typically can not be obeyed for a
similarity measure. Hence, as the M-tree and the M-grid, a.o., rely on the use of a metric
space, these turn out to be insufficient. As a consequence, additional techniques are to
be applied, to ensure a suitable foundation for musical similarity search.

In accordance with the different feature representations of musical content, the cur-
rent research is going in the direction of automating the task of finding similar songs
within music collections. In this context it is suggested that the combination of sev-
eral similarity measures ensures the most valid results. In[AP02] the authors describe
a similarity measure of what is denoted as theglobal timbreof music. Similarly, in
[PFW05], the authors present a similarity measure where spectral similarity is combined
with three additional similarity measures based on fluctuation patterns. An alternative
approach used to measure similarity between songs is described in [LS01], where the au-
thors compare signatures of songs using EMD (Earth Mover’s Distance) [RTG00]. The
signatures are constructed based on k-means clustering of MFCCs in accordance with
their location in the MFCC vector space. The objective of clustering is thus to group
feature vectors such that the location of feature vectors ofthe same group also are close
in the MFCC vector space. The signature for a given song is then based on the mean,
covariance and weight of each cluster.

The research presented in this paper is based upon the results of the conducted re-
search within the field of content based music similarity in general. In particular, we
choose to extend this concept further by combining the musical content similarity and
metadata of music with respect to the retrieval process of songs. For this purpose we
apply an efficient indexing technique by way of bitmap indices within the MOD frame-
work.

To ensure efficient retrieval of read-mostly data, bitmap indices are popular data
structures for use in commercial data warehouse applications [KRT+98]. In addition,
bitmap indices are used with respect to bulky scientific datain order to represent static

4

information. One such approach is described in [SDHS00], considering High-Energy
Physics.

As a different approach to automated similarity measures, the company Pandora Me-
dia, Inc. uses a human expert panel in order to capture the musical details of songs
in association with the Music Genome ProjectTM [Pan06]. Though the task of finding
similar songs within PandoraTM to some extent is exposed to subjective opinions of the
expert panel, it is conceptually very similar to our work. Using dynamic user interaction
such as “I like this song” and “I don’t like this song”, PandoraTM is able to generate a
personal playlist that may be influenced dynamically. With respect to the MOD frame-
work, we rely on automated similarity algorithms rather than a human expert panel, to
ensure both objectiveness and scalability. Furthermore, we are able to perform explicit
metadata restrictions on music collections.

An approach using musical content to find similar songs is described in [PPW05],
where immediate user interaction in terms of skipping behaviour is used to restrict the
music collection. Upon returning a similar song to the listener, it is determined whether
the song to return is closer to either a previously accepted song or a skipped song. In
either case the distances between the individual songs are to be consulted, in order to de-
termine what song to return. Unlike this approach we do not rely on the actual distances
when determining what song to return, as songs are clusteredinto groups of similar
songs. As a consequence of this grouping, a more compact representation of the songs
is possible. Moreover, as all songs within a group are considered alike with respect to
similarity, any of the songs can be retrieved without compromising the quality of the
retrieved song. Hence, the retrieval process becomes more efficient.

In most commercial media players such as WinampTM, the metadata of music pre-
sumes a flat structure. However, to enable an enriched description of the metadata of
music, we choose explicitly to view metadata in the form of amultidimensional cube
known from the literature of multidimensional databases [PJ05, Tho97]. The metadata
of music is thus considered as a number of metadata dimensions, modelled in a hierar-
chical manner, which constitutes a multidimensional cube.Through this approach we
are able to select songs in accordance with the individual levels of a given hierarchy of a
metadata dimension.

Looking at the current organization of metadata attributes, e.g., the genre of a song,
there exists no standard for what genres to make available, and even the different com-
pression formats have their own types of genres. To clarify,ID3-tags used in the MP3
format contains a fixed number of different genres [ID305], whereas the Ogg Vorbis
format has an unlimited number of genres as anything specified as text is allowed to rep-
resent genres [xip05]. However, the authors of the presented paper are convinced that a
standard for the metadata of music will emerge as the use of digitized music increases.
To support a richer description of the metadata of music, it is moreover expected that
metadata is becoming hierarchical to facilitate navigation within vast music collections.
Also, to better classify music into genres, ongoing research, e.g., within the Intelligent
Sound research project [Int06a], is being conducted in order to perform genre classifica-
tion using the musical content.

5

In an earlier research paper, we investigated the possibilities to explore music col-
lections based on the musical content of the associated audio files [JMS05]. In order to
present the chosen songs, a playlist was then generated as a sequence of songs. In the
context of this paper, however, it is believed that precomputed playlists do not suit the
impulsive behaviour of humans interacting with a music player. Therefore, the concept
of playlist generation is reduced to the task of returning a single song based on dynamic
user interaction. Still, over time, the list of played songsresembles a playlist.

3 Motivation and System Interplay

In this section we study a motivating use case scenario concerning music lovers who
wish minimal interaction with their music player of choice,as a consequence of phys-
ical restraints. A simple example of a physical restraint may involve interacting with a
portable music palyer while wearing gloves. For the sake of convenience we restrict this
study to focus solely on the exercise routines of a single person named Jane. Addition-
ally, the use case scenario describes a vision of usage for a music player handling a vast
music collection, where traditional navigational methodsare both cumbersome and time
consuming [JMS05]. The study serves as the basis for presenting the usability of the
MOD framework in terms of the interplay between a listener and a music player using
the framework.

3.1 A Vision of Usage

This quiet winter morning Jane is going for a run in the hilly terrain around the area
where she lives, for which reason she chooses to wear lined gloves to keep her fingers
from freezing. To accompany her during her regular jogging sessions, Jane has pur-
chased a portable music player, as she has learned that the music accompaniment to
exercise provides an important beneficial effect to the exercise experience [Mas86].

In the last couple of months since Jane bought the music player, she has marked
a number songs in her entire music collection that she believes provide her the best
motivation for her workouts. However, for today’s jogging session Jane finds herself in a
dilemma, as she would like to listen to some new releases recently added to the collection
as well as her favourite workout songs. Hence, prior to engaging in the impending
session, Jane restricts her music collection to respond only with songs released in the
year 2006 and songs marked as her favourite workout songs. For the remainder of the
case study, we refer to this restricted music collection simply as themusic collection.

Entering the dull sunlight of dawn, Jane turns on the music player and engages in
her jogging exercise with great enthusiasm. To ensure a variation in the songs being
listened to, she initially requests the music player to playsongs chosen randomly among
the songs in the music collection. Soon a new and unknown songis being played and
Jane enjoys how the beat of the song motivates her to perform even better. To retain
this motivation, Jane decides to listen to songs similar to this particular new song. To do
so, she applies a single push on theSimilar Songbutton of the music player, causing the

6

playing mode to change. Thus, for as long as the music collection allows, and presuming
that Jane does not change the mode of the music player, a steady flow of high beat and
energized music is ensured, just as Jane prefers at this particular time. Upon pushing the
button, Jane again is pleasantly surprised by the ease in interacting with the music player,
even though the sun has still not raised over the horizon and she wears lined gloves.

After a while, the terrain changes and Jane decides once again to listen to songs
chosen randomly from the music collection. While running uphill the music player
starts to play a new song that does not at all appeal to the taste of Jane. Afraid that
more songs of the same style is going to be played during this stage of exhaustion,
Jane decides to eliminate all resembling songs from being retrieved. She does so by
pushing theSkipbutton on the music player. Fortunately, the following songis one of
Janes favourite workout songs performed by the group AC/DC.She knows that the music
collection contains numerous songs performed by this group, and she believes firmly that
the sound of AC/DC will help her climb the hill. Hence, she pushes theSimilar Artist
button and restricts the music collection even further in accordance with the artist name
of the currently playing song. For as long as Jane does not interact with the music player,
she will be presented with a continuous stream of randomly chosen AC/DC songs.

Reaching the top of the hill, Jane believes it is about time tohead back to her home.
She feels exhausted from climbing the hill and decides to slow down on the way back
in order to recuperate. For this purpose she enters the menu of the music player, and
changes the initial restriction (songs released in the year2006 and favourite workout
songs) to include only her favourite relaxation songs.

Back home in the warmth of her living room, Jane reflects on thejust completed
exercise session. Even though the music collection used forthis exercise session is
vast, she was required to interact with the music player as few as four times during the
whole run, and still she was presented the songs which corresponded with her current
state of mind. Additionally, because Jane is being motivated at the right times with
the right music, the benefit of the exercise is enhanced and her performance increased
[BT90, TLL+04].

3.2 Formalization of System Interplay

In Table 1, three system objectives are presented which correspond to the characteristics
of the described usage. The purpose of these objectives is toformalize the interplay
between a listener and the music player using the MOD framework in accordance with
the use case scenario.

The first objective,Replies with a song, states what possible uses ensure that the
listener is supplied with a steady stream of music in accordance with the playing mode
of the music player.

The second objective,Affects music collection, determines what uses cause a restric-
tion to the music collection. In case of the skipping behaviour, the restriction is implicitly
induced in accordance with the musical content of a skipped song, indicating that a song
similar to a skipped song can not be retrieved from the music collection. Metadata on the

7

other hand is used solely for explicit restrictions. Worth emphasizing in this connection
is restriction on similar metadata, where the metadata of the current playing song may
be used to restrain the music collection.

The last objective,Uses current song, states which of the uses apply the current
playing song as basis for song retrieval or a collection restraint. A special case for this
objective however, is the marking of favourite songs, as this usage apply to neither of the
previously mentioned objectives. The task of marking a songas a favourite song implies
that a separate collection of songs is maintained to supportthe amendment of favorite
songs.

Table 1: Table describing the interplay between usage and system objectives.

System Objectives
Usage Replies with a song Affects music collection Uses current song

Find random songs yes
Find similar songs yes yes
Skip song yes yes
Restrict on metadata yes
Restrict to similar metadata yes yes
Mark favourite songs yes

To summarize on the interplay between usage and system objectives, the nature of
interaction indicates a dynamical environment, where the listeners may react impulsively
in accordance with their current state of mind. Hence, the framework is to be suscepti-
ble to frequent interaction while still allowing for long-term planning of what music to
make available for the listener. As it is impossible to foresee patterns in the interaction
process with the music player, asingle song approachis pursued, where a playlist is
generated dynamically while requesting one song at a time. Hence, rather than stating
on beforehand what music to hear using static playlists, listeners may intervene in the
playlist construction and thus explicitly put influence on the content of the dynamically
constructed playlist.

4 Data Model and Query Functionality

The purpose of this section is to describe a music data model and the associated query
functionalities for music retrieval. Initially, we define adata model followed by a de-
scription of the formal semantics of the operators to be usedon the music data model.
As the listener may choose to interact with the music player at any point in time, the
operations dealing with music retrieval only returns a single song at a time.

In the following, a subscript notation,Operatorparameters(arguments), is used to
identify parameters for the operators. Furtermore,N denotes the domain of positive
integers.

8

4.1 Music Data Model

This section describes a music data model constituted by a number of elements and their
corresponding domains. The purpose of these elements is to support the functionalities
of the MOD framework by applying each of them on an instance ofthe data model in
order to fulfil the usages specified in Section 3.2. Definitions 1 to 3 of the presented
music data model are based on our previous research described in [JMS05].

To extend the usage of metadata selection we introduce a metadata dimension in
order to apply an abstraction to a hierarchical representation of the metadata of music.
This metadata dimension is described in Definition 1 where the hierarchical ordering of
the metadata of music is described as two partially ordered sets (posets). The first poset
represents the hierarchical ordering of dimension levels and the second poset represents
the hierarchical ordering of the dimension values. The ideaused to model dimensions
as two posets is inspired by [PRP02]. The use of hierarchies reflects a generic approach
for the support of both flat and hierarchical metadata structures. As for the latter case,
involving a hierarchical structure, elements such as year of release may be grouped into
a superordinate dimension level, forming, e.g., a decade.

Definition 1 (Metadata dimension) A metadata dimensiondj is defined as a 2-tuple
dj = (Lj, Vj), whereLj is a poset ofdimension levelsandVj is a poset ofdimension
values. LetD be the domain containing all such metadata dimensions.

A poset of dimension levelsLj is defined as a 2-tuple(LN j,⊑j), whereLN j =
{lnj1, . . . , lnjn} ∈ 2LN is a set of unique level names, andLN is the domain of all
possible level names.⊑j is a partial order on the level names inLN j with⊤j ∈ LN j

and⊥j ∈ LN j being the unique top and bottom elements of⊑j , respectively. A level
namelnjk ∈ LN j is a name identifying a set of dimension values, where1 ≤ k ≤ n.
The poset of dimension levels is referred to as a metadata dimension schema.

Let DV constitute the domain of all possible dimension values. Then the function
LevelValues : LN → 2DV, takes a level name as input and returns the set of dimension
values associated with the given level name.

A poset of dimension valuesVj is defined as a 2-tuple(DVj,⊑dj
), whereDVj =

⋃

k LevelValues(lnjk) is the set of all dimension values from all the level names in meta-
data dimensiondj ∈ D for 1 ≤ k ≤ n. ⊑dj

is a partial order on the set of dimension
valuesDVj. The union used is a disjoint union that ensures the uniqueness among di-
mension values from all levels, i.e., the sets of dimension values for different levels are
pairwise disjoint. The dimension value⊤dj

∈ DVj is the unique top element of the par-
tial order⊑dj

. With the notationdv ∈ dj we shall denote a dimension value belonging
to a metadata dimensiondj ∈ D, wheredv ∈ DVj. The poset of dimension values is
referred to as a metadata dimension instance.

Given two level nameslnjk, lnjp ∈ LN, where bothlnjk and lnjp are in a metadata
dimensiondj ∈ D, the partial order⊑dj

between dimension values satisfies thatdv1 ⊑dj

dv2, iff dv1 ∈ LevelValues(lnjk), dv2 ∈ LevelValues(lnjp) andlnjk ⊑j lnjp.

9

As given by Definition 1, a metadata dimension consists of both dimension levels
and dimension values, where a dimension level has a number ofassociated dimension
values. Using posets to model hierarchies we achieve that both regular and irregular
dimension hierarchies are supported. Irregular hierarchies occur when the mappings in
the dimension values do not obey the properties stating thata given hierarchy should
be onto, coveringandstrict [PJ05]. Informally, a hierarchy is onto if the hierarchy is
balanced, covering when no paths skip a level and strict if a child in the hierarchy has
just one parent. In Section 5.4 we are going to elaborate on how irregular hierarchies
are handled. To illustrate the intuition behind the hierarchical structure of the metadata
dimensions, consider Example 1.

Example 1 Let a metadata dimensiondgenre = (Lgenre, Vgenre) represent the genre of
songs and the corresponding schema. The poset of dimension levelsLgenre, defined as
(LNgenre,⊑genre), thus consists of the level namesLNgenre = {⊤genre,Genre, Subgenre}
and a partial order⊑genre on these. The partial order ensures an ordering of the level
names in thedgenre dimension and is given by the reflective and transitive closure of the
order Subgenre ⊑genre Genre ⊑genre ⊤genre. The schema for the metadata dimension
dgenre is presented in Figure 2(a).

The poset of dimension valuesVgenre, is defined by the 2-tuple(DVgenre,⊑dgenre
)

and consists of all the dimension valuesDVgenre = {⊤dgenre
,Rock ,Pop,Pop/Rock},

and a partial order⊑dgenre
on these. This partial order is based on the partial order of

level names⊑genre, and is given by the reflective and transitive closure, shownas the
metadata dimension instancedgenre in Figure 2(b). This example illustrates a non-strict
hierarchy, as the dimension value “Pop/Rock” has two parents, namely the dimension
values “Pop” and “Rock”

In addition, the schema and an instance for the metadata dimensiondrelease is shown
in Figure 2. The metadata dimensiondrelease is constructed in a similar fashion as the

Decade

Century

Subgenre

Genre

dgenre drelease

Tgenre
Trelease

Year

(a)Metadata dimen-
sion schemas.

18
th

2000'sPop/Rock

RockPop

dgenre drelease

T releasedT genred

1980's

1982 20062005

(b) Metadata dimension instances.

Figure 2: Schema and instance for the metadata dimensionsdgenre anddrelease.

10

metadata dimensiondgenre. The metadata dimensiondrelease implies a non-covering
hierarchy, as the songs are not required to have a century associated. Omitting a given
level, the number of steps required to traverse the dimension is reduced, which in turn
improves the usability. Hence, from a user point of view, information may be added only
where it suits a given purpose. Aside from the release hierarchy being non-covering, it
is also non-onto as the songs from the18th century have no decade associated.

The metadata of music is composed of descriptive attributessuch as artist, title, etc.
For the remainder of this paper, we assume the existence of the metadata attribute and
their associated metadata dimension schemas as shown in Figure 3. The metadata at-
tributes are presented as dimension values in Definition 2, where a metadata item and
the corresponding schema are defined.

Subgenre

Genre

dgenre

Tgenre

Filename

dfilename

Tfilename

Album

dalbum

Talbum

Title

dtitle

Ttitle

Artist

dartist

Tartist

Decade

Century

drelease

Trelease

Year

Figure 3: Schemas representing the metadata dimensions of a song, as used within the
context of this paper.

Definition 2 (Metadata item and schema)A metadata itemm is defined as an n-tuple
m = (dv1, dv2, . . . , dvn), wheren ∈ N and dimension valuedvj ∈ DV, for 1 ≤ j ≤ n.
A metadata schemams for the metadata itemm, is an n-tuplems = (d1, . . . , dn), where
the metadata dimensiondj ∈ D and the dimension valuedvj ∈ dj for 1 ≤ j ≤ n.
Let M be the domain of all such metadata items, and letMS be the domain of all such
metadata schemas. In connection with the metadata item and schema two functions
exists. The functionSchema : M → MS, takes a metadata itemm as input and returns
the corresponding metadata schemams. The functionMetaValue : M×D ⇀ DV takes
a metadata itemm and a metadata dimensiondj as input and returns the dimension
valuedvj from metadata itemm, which corresponds to the metadata dimensiondj given
thatdvj ∈ dj .

Example 2 To illustrate the structure of the metadata item, assume theexistence of
the three metadata dimensionsdartist, dtitle and dgenre. In this case the song of the
“Rock” genre with the title “The Fly” performed by the band “U2” is represented as
the metadata itemm = (“U2” , “The Fly” , “Rock”). The associated metadata schema
ms is given byms = Schema(m) = (dartist, dtitle, dgenre).

11

In Definition 3 a song and its associated domain is described.For this purpose, the
existence of a feature representation of the musical content of an audio file is assumed. In
addition, the functiondist may be used to calculate the content based similarity between
two songs with respect to their associated feature representations.

Definition 3 (Song) A songs is defined as a 2-tuples = (m, f), wherem ∈ M is
a metadata item andf ∈ F is a feature representation of the musical content of the
song, whereF is the feature domain for all feature representations. LetS be the domain
containing all such songs. A functiondist : S × S → R, that obeys the symmetric and
identity properties of a metric space, takes two songs as input and returns the distance
between the feature representations associated with the songs as a real number.

As users have audio files and not songs as presented in Definition 3, we assume the
existence of a functionSongInstanceGenerator that constructs a song instance from a
given audio file. During this process a feature representation of the audio file is gen-
erated, and the available metadata are extracted to be included in the song instance.
Additionally, to provide the full picture we introduce the functionFetchMusicFile that
returns the music filename associated with a given song instance. To retrieve the music
filename, the function uses the filename from thedfilename metadata dimension presented
in Figure 3.

When considering the content based similarity between songs, Definition 4 presents
a distance store that introduces an abstraction to the already defined distance function
applicable to the feature representations of songs as described in Definition 3. The dis-
tance store provides the ability to group songs into partitions based on their respective
distances to a given base song. As no unique correct answer exists as to whether two
distinct songs are considered similar, the grouping does not compromise the quality of
the distance function. Moreover, songs may be grouped into partitions while omitting
the base song, which allows for the generation of a compositedistance store.

A distance store is said to be a complete partitioning of the distance domain, implying
that no partitions are omitted and that no partitions shouldever lap over one another.
Thus, each partition constitutes a unique and non-overlapping distance interval.

Definition 4 (Distance store) Given an optional base songs ∈ S and a set of songs
S ∈ 2S, a distance storeds[s],S is defined as sequence of sets of songs,ds[s],S = S1 · · ·Sn,
where it applies thatSi ∈ 2S for 1 ≤ i ≤ n constitutes a partition andn ∈ N denotes
the number of partitions. In addition, it applies thatSi ⊆ S,

⋃

i Si = S andSj ∪Sk = ∅
for 1 ≤ j, k ≤ n, wherej 6= k. In case the optional base songs is present, it holds that
∀t ∈ Si(∀u ∈ Si+1(dist(s, t) < dist(s, u))). LetDSn be the domain containing all such
distance stores, wheren corresponds to the number of partitions.

Within the context of Definition 4, the rearrangement of songs from the set of songs
S into partitions, reflects how similar songs are to the base song s. To support this un-
derstanding, one can think of the partitioning as starting from partitions holding highly
similar songs and gradually degrading towards partitions holding less similar songs. As

12

songs becomes more and more dissimilar, it is likely that theaverage listener con not
judge the difference of the similarity degree. Hence, 10 to 20 partitions is typically
sufficient to ensure a diversified distribution of the songs.To ensure a fair basis for com-
parison with respect to content based similarity all songs within a given music collection
should belong to the same distance store domainDSn, indicating that all associated dis-
tance stores are to contain the same number of partitions. InExample 3 the structure of
the distance store is illustrated.

Example 3 Given a base songs and a music collection represented by the set of songs
S that contains songs and six additional songs denoted bya throughf , we say that
S = {s a b c d e f}. The songs withinS have individual distances to the base song
s given as 0, 1, 2, 3, 4, 5 and 6, respectively. In Figure 4(a) a valid distance store
is illustrated. However, the distance store shown in Figure4(b) constitutes an invalid
distance store, as the songf is located in partitionS2 and songe is located in partition
S3. As a consequence, the intervals of the two partitions overlap for which reason the
properties of the complete partitioning are disobeyed.

{ a, b, s } { f }
dss,S

{ c, d, e }

S1 S2 S3

[1 – 3) [3 – 6) [6 –]

(a) Valid distance store.

{ a, b, s } { e }
dss,S

{ c, d, f }

S1 S2 S3

[1 – 3) [3 – 7) [5 –]

(b) Invalid distance store.

Figure 4: The structure of a distance store.

As it can be seen from Example 3, the base song may be present within the given
set of songs. The distance to the base song is in this case zeroas we compare the song
with itself. Hence, it will be located in the partition representing the most similar songs
within the distance store. In the case an application using the MOD framework maintains
a history of the played songs, the history will ensure that, when playing similar songs to
songs, the songs is chosen for playback only when it is discarded from the history.

4.2 Retrieval Operators

For the purpose of retrieving songs from a music collection,this section presents opera-
tors for the retrieval of songs chosen randomly and songs chosen in accordance with the
musical similarity derived from the musical content of the songs. Within the retrieval
process of either similar or random songs, the aspect of skipped songs is considered.

Initially, Definition 5 presents a helper operator used to perform a union on two
distance stores. This operator is essential with respect tohandling of skipped songs, as
the operator may be used to construct a single composite distance store for all skipped
songs. Having all skipped songs represented by a single distance store, we obtain the

13

minimum distances from any skipped song to all the remainingsongs within the music
collection. This in turn eases the task of finding both similar and random songs as we
shall see in Definitions 6 and 7. Hence, based on the compositedistance stores it is
determinable whether a given song is similar or dissimilar to any of the skipped songs.

Definition 5 (Distance store union) Given two distance storesdsr,P = P1 · · ·Pn ∈
DSn and dst,Q = Q1 · · ·Qn ∈ DSn the operator∪ : DSn × DSn → DSn constructs
the union of the two distance stores denoteddsS = S1 · · ·Sn ∈ DSn, where the optional
base song is omitted. All the songs contained within the two sets of songsP andQ are
represented exactly once in the set of songsS associated with the constructed distance
store. Hence, a songu that is an element in bothPi ∈ dsr,P andQj ∈ dst,Q is now con-
tained only once in the constructed distance stored such that u ∈ Sk, whereSk ∈ dsS

andk = min(i, j) for 1 ≤ i, j ≤ n. The semantics of the∪ is defined as follows:

dsr,P ∪ dst,Q = dsS, where S = P ∪Q, dsS = S1 · · ·Sn, Si = (Pi ∪Qi) \
i−1⋃

j=1

Sj

(1)

In Example 4 we elaborate on the construction of a composite distance store using
the distance store union operator.

Example 4 Using the distance store union operator introduced in Definition 5, Figure 5
illustrates a union performed on the two distance storesdsa,P anddse,Q. Six songs are
contained in both distance stores and denoted bya throughg indicating thatP = Q.
Within the composite distance storedsS, it is ensured that any song is represented only
once while favouring early occurrences of each of the songs,i.e., a song is represented
by the partition holding the most similar songs of the two partitions. Hence looking
at the partitionS2 of the distance storedsS the songd is omitted as songd is already
considered by the previous partitionS1. Similarly, in partitionS3 no songs are included
as all songs occur in previous partitions.

{ d, f } { b, c, e }

dse,Q

{ a }

dsS

{ a, d, e }

{ b, c, g }

{ b, c, f, g }

{ a, f }{ d, e }

S1 S2 S3

Q1 Q2 Q3

P1 P2 P3
dsa,P

{ }

Figure 5: The union process of two distance stores.

14

In Definition 6 we describe an operator for retrieval of random songs. In order for
the operator to handle the aspect of skipped songs, we assumethe existence of a function
Randomn(S) that, given a set of songsS, randomly chooses and returns a set of songs
containingn ∈ N songs fromS. For this function it applies thatn ≤ |S|. The purpose
of the functionRandomn(S) is to ensure the quality of the song returned by the operator
described in Definition 6. Ifn = 1 only a single candidate song would be chosen and
returned to the listener. However, it may be the case that this song is very close to an
already skipped song, for which reason the chosen song is an unacceptable candidate.
Instead, choosing several songs as possible candidates andreturning only the song least
similar to all the skipped songs, the quality of the returnedsong increases. Moreover,
we assume the existence of the functionRandom(S), that given a set of songsS returns
a single song chosen randomly among the songs in the set of songsS.

Definition 6 (Random song) Given a set of songsS ∈ 2S, a set of skipped songs
Sskip ∈ 2S, a set of played songsShist ∈ 2S and a number of songsq ∈ N indicat-
ing the retrieval quality, the operatorRandomSong : 2S × 2S × 2S × N ⇀ S retrieves
a song chosen randomly among the songs within the set of songsS. The possible songs
that are candidates for retrieval should not be contained within the set of skipped songs
Sskip or the set of played songsShist. Moreover, to avoid retrieving a song similar to
any skipped songs, while ensuring randomness, a subset of songs is chosen randomly as
candidate songs. The distances from all skipped songs to each of the candidate songs are
consulted, and the candidate song considered least similarto any of the skipped songs
is returned. The semantics of theRandomSong is defined as follows:

RandomSongShist,Sskip,q(S) = s ∈ S, where s = Random(S ′
j), dsS′ = S ′

1 · · ·S
′
n

=

m⋃

i=1

ds
s
skip
i ,S′, dsS′ ∈ DSn, 1 ≤ j ≤ n, n ∈ N, Sskip = {sskip

1 , . . . , sskip
m },

m ∈ N, S ′ = Randomq(S \ Shist \ Sskip), ∄S ′
k(j < k ≤ n ∧ |S ′

k| > 0), k ∈ N

(2)

With respect to the quality of the retrieved song, Definition6 introduces the param-
eterq stating a number of candidate songs chosen randomly among the songs contained
in the music collection. Within this context, the value ofq should be large enough to
ensure an acceptable quality of the returned song and still small enough to avoid any
unnecessary overhead. However, as the candidate songs are chosen randomly within a
vast music collection, chances are that even a smallq is able to ensure retrieval of an
acceptable song. Assuming thatq = 10 it is likely that one or more songs are dissimilar
to the skipped songs. In Example 5 we elaborate on the retrieval of random songs.

Example 5 To illustrate the selection process of songs chosen randomly, we initially
assume that a music collection represented by the set of songs S contains seven songs
denoteda throughg. For this collection it holds that the songsa ande are skipped and
that the songg is a played song and thus contained in the history. Moreover,assuming

15

{ d } { b, c }{ }

{ d }

{ b, c }

{ b, c }
ds

S'1 S'2 S'3

S'1 S'2 S'3

S'1 S'2 S'3
dse,S'

dsa,S'

S'

{ d } { }

{ }

Figure 6: The selection process of a random song.

that q = 3 we may obtain three candidate songs chosen randomly among the possible
songs in the music collection, i.e., songsb, c, d andf . The chosen candidate songsb, c
andd are included in the set of candidate songsS ′. Based on this information, Figure
6 illustrates the construction of the composite distance store dsS′ for the skipped songs
a ande. In doing so a union is performed on the distance stores of theskipped songs,
dsa,S′ and dse,S′, where the distance stores are restricted to contain only songs from
the chosen set of candidate songs,S ′. The song to return is the candidate song most
dissimilar to both skipped songs, which in this case is either the songb or c.

In Definition 7 the operator for retrieving songs similar to agiven seed song is pre-
sented. In addition, an example presenting the selection ofa similar song is described in
Example 6.

Definition 7 (Similar song) Given a set of songsS ∈ 2S, a set of skipped songsSskip ∈
2S, a set of played songsShist ∈ 2S and a seed songs0 ∈ S, the operatorSimilarSong :
2S × 2S × 2S × S ⇀ S retrieves a song from the set of songsS most similar to the seed
songs0. The songs that are candidates to retrieval should not be contained within the
set of skipped songsSskip or the set of played songsShist. Moreover, to avoid retrieving
a song similar to any skipped song the composite distance store for all skipped songs
is consulted with respect to the distance store of the seed song containing all candidate
songs. The song considered least similar to any of the skipped songs and most similar to
the seed song is returned. The semantics of theSimilarSong is defined as follows:

SimilarSongShist,Sskip,s0
(S) = s ∈ S, where s = Random

(
S ′′′

i

)
, dss0,S′′′ = S ′′′

1 · · ·S
′′′
n ,

S ′′′
i = S ′′

i \
i⋃

j=1

S ′
j , dss0,S′′ = S ′′

1 · · ·S
′′
n, dss0,S′′ ∈ DSn, dsS′ = S ′

1 · · ·S
′
n (3)

=
m⋃

j=1

ds
s
skip
j ,S′

, dsS′ ∈ DSn, 1 ≤ i ≤ n, n ∈ N, S ′ = S ′′ = S \ Shist \ Sskip,

Sskip = {sskip
1 , . . . , sskip

m }, m ∈ N, ∄S ′′′
k (1 ≤ k < i ∧ |S ′′′

k | > 0), k ∈ N

16

Example 6 In Figure 7 we elaborate on how similar songs are retrieved inaccordance
with the constraints induced by the skipped songs. It is assumed that the music collec-
tion represented by set of songsS contains seven songs denoteda throughg. For this
collection it holds that the songg is in the history. The distance storedss0,S′′ holds the
associated partitions for a given seed songs0. The composite distance storedsS′ is com-
posed of the skipped songsa ande, respectively. For each of the partitionsS ′

i ∈ dsS′ the
associated songs are accumulated to become included in the partition S ′

i+1 denoted by
the parentheses in the figure. Then, for each of the partitions S ′′

i ∈ dss0,S′′ the content
is restricted with the content of partitionS ′

i ∈ dsS′. Thus, from the restricted distance
storedss0,S′′′ the song to return is any of the songs most similar to the seed songs0. In
this case either of the songsc or f may be returned.

{ b } { d }{ c, f }

{ c, f }

{ (d), b, c, f }

{ b }

{ (b, c, d, f) }{ d }

dss0,S''

dsS'

dss0,S'''

S'''1 S'''2 S'''3

S'1 S'2 S'3

S''1 S''2 S''3

{ }

Figure 7: The selection process of a similar song.

4.3 Restriction Operators

In addition to the retrieval operators, we define a number of restriction operators, which
consider the descriptive metadata attributes of the music.

In Definition 8 a selection operator is described, where a music collection is restricted
in accordance with a single metadata attribute.

Definition 8 (Select) Given a set of songsS ∈ 2S, a dimension valuedv ∈ DV and a
metadata dimensiondj ∈ D the operatorSelect : 2S×DV×D ⇀ 2S constructs a set of
songsS ′ containing exactly the songs that are within and below the dimension valuedv
when concerning the partial order of dimension values within the associated metadata
dimensiondj. The semantics of theSelect is defined as follows:

Selectdv,dj
(S) = S ′ ∈ 2S, where dv ∈ dj,

s ∈ S ′ ⇔ s = (m, f) ∈ S ∧MetaValuedj
(m) ⊑dj

dv
(4)

17

In order to restrict on metadata, the set operators∪ and∩may be applied to perform
logical operations on selected subsets of the entire music collection. The subsets are
produced using theSelect operator. In Example 7 the combined usage of the three
operators is explained.

Example 7 Assuming that the set of songsS represents the entire music collection, a
restriction toS denoted asS ′ may be used to reduce the number of retrievable songs.
Restricting the music collection to contain only songs performed by the artist U2 that
are released in the 1990’s and with songs of the classical genre, the restriction onS is
equal toS ′ = (Select1990′s,drelease

(S) ∩ SelectU2,dartist
(S)) ∪ SelectClassical,dgenre

(S)

In addition to the described selection operator, Definition9 describes how a music
collection may be restricted in accordance with the metadata for a given song.

Definition 9 (Similar Meta) Given a set of songsS ∈ 2S, a seed songs0 = (m, f) ∈ S
and a set of metadata dimensions{d1, . . . , dn}, which is a subset of the metadata di-
mensions represented bySchema(m), the operatorSimilarMeta : 2S × S × 2D ⇀ 2S

constructs a set of songs containing exactly the songs fromS having metadata associ-
ated with the dimension values of the given metadata dimensions. The semantics of the
SimilarMeta is defined as follows:

SimilarMetas0,{d1,...,dn}(S) = S ′ ∈ 2S, where S ′ =
n⋂

i=1

SelectMetaValuedi
(m),di

(S) (5)

To elaborate on the usage of theSimilarMeta operator, Example 8 uses a single song
to apply a restriction to the full music collection.

Example 8 Assume that the song being played by a music player is described by the
metadata itemm = (“U2” , “The Fly” , “Rock”) as presented in Example 2. Based on
this song, the listener of the music may choose to restrict the music collection by one
or more of the available metadata attributes. Thus, a possible restriction is to restrict
by artist, which ensures that only songs played by U2 are retrievable within the entire
music collection.

5 Technical Design

The purpose of this section is to introduce the key design considerations with respect
to the MOD framework. The basis for these considerations is the data model presented
in Section 4.1. Within this context, the area of responsibility may be divided into two
branches constituting a music player and the MOD framework,respectively, as shown
in Figure 1 on page 3. Though the music player acts on top of theframework, its area
of responsibility is limited to the handling of query parameters with respect to collection

18

maintenance, in order to decide as to whether a given song is valid to return. With
regard to the MOD framework, the area of responsibility is more diversified, as both
aspects concerning musical content similarity and metadata restrictions are to be taken
into consideration.

Prior to elaborating on both branches of responsibility, werelate to the theory of
bitmap indexing, as this technique constitutes an efficientindexing approach for pro-
cessing complex ad hoc queries in read-mostly environments[CI98]. In particularly,
this approach seems interesting when considering the humaninteraction with vast mu-
sic collections, where such complex ad hoc queries are present in terms of combining
retrieval and restriction operators.

Reverting to the objectives of the data model and the query functionalities described
in Section 4, sets of songs are essential elements within thepresented definitions. We
assume that a certain known order of the songs within a music collection exists. Hence, a
subset of songs from the music collection can be representedby a bitmap, i.e., a sequence
of bits, following the same order as the order of the songs within the music collection,
where 1 bits are found only for the songs contained in the subset. Thus, aside from
representing the overall music collection of available songs, bitmaps may moreover be
used to represent subsets of the music collection such as songs having a similar metadata
attribute, the skipped songs or the songs contained in the history. Moreover, having a
known order of the songs within the music collection a singlesong is uniquely identified
by its position within the music collection, indicating that the first song is located at
position one.

In the following we describe bitmap indices and the applied compression schema.
Moreover, with respect to the music player, we briefly cover the handling of query pa-
rameters. Finally, we present the design considerations with respect the distance man-
agement and handling of metadata.

5.1 Bitmap Indexing

Bitmap indices supply an efficient indexing structure in order to accelerate decision sup-
port [Joh99]. The basics behind bitmap indexing is to use a sequence of bits to indicate
whether an attribute in a record is equal to a specific value. Using theequality encoding
scheme for bitmap indices, each distinct attribute value isencoded as one bitmap having
as many bits as the number of records in the relation [CI98, AKS02]. In this connec-
tion it is notable that the bitmaps for a specific attribute contain mutual exclusive bits,
indicating that for any position across all the bitmaps in the index only a single 1 bit
is allowed. As a consequence, bitmaps for high cardinality attributes tend to be sparse
indicating a lowbit densitycalculated asδ = i

n
wherei denotes the number of 1 bits and

n denotes the total number of bits in the bitmap.
The position of each bit in the bitmaps denotes a separate record from the indexed

relation. For a bitmap corresponding to a given attribute value the 1 bits are found only
where the associated records contain the attribute value represented by the bitmap. To
illustrate this, a simple example of a bitmap index usage involves a relation holding a

19

gender attribute with the associated value domain{male, female}. In accordance with
the equality encoding scheme, this attribute implies that two bitmaps are required, one
for each gender. If, e.g., the first bit in the male bitmap is set to 1, it implies that the
attribute value of the first record of the indexed relation is“male”.

To observe the advantage of the bitmap indices, we must initially relate to the com-
puter architecture, where aword usually consists of 32 or 64 bits, depending on the
architecture [AKS02]. Using this knowledge, we know that a single bit-wise instruction
computes, e.g., 32 bits at once. However, the main advantageof introducing bitmap
indexing is notable mainly when performing selections on multiple attributes across sev-
eral relations, where bit-wise bitmap operations can replace expensive joins performed
between the involved relations [OG95, OQ97]. Supposedly that a listener wishes to
select all music performed by the artists Madonna and U2 released in the year 2005.
For this particular example, a bit-wise OR is performed on the appropriate bitmaps of
the artist relation in order to generate the combined bitmaprepresenting the songs per-
formed by both Madonna and U2. In addition, performing a bit-wise AND on the com-
bined bitmap and the bitmap representing all songs releasedin the year 2005 associated
with the release relation, the wished selection is achieved. Additionally, using bitmaps
to represent the history of played songs and the collection of skipped songs, bit-wise
operations may be used to ensure that neither songs recentlyplayed nor songs contained
is the collection of skipped songs are returned to the listener.

Moreover, appending an additional record to a relation, only the bitmap for the as-
sociated attribute value is to be updated with the appropriate 1 bit, indicating that con-
secutive 0 bits are omitted from the end of the remaining bitmaps. By omitted these bits
the exhaustive task of appending additional 0 bits to all bitmaps, each time a new record
is added to the relation, is avoided. Still, performing bitwise operations on bitmaps of
unequal length is supported as the shortest bitmap is virtually padded with 0 bits.

Bitmap Compression

As bitmaps consists solely of 0 and 1’s it may be possible to compress the bitmaps
significantly depending on the number of consecutive 0 or 1 bits. Thus, having bitmaps
with highly clustered 0 and 1’s, a better compression is achievable than having a uniform
scattering of the 1 bits. In a worst case scenario the compressed version of a bitmap
occupies even more space than the uncompressed version. A consequence of bitmap
compression is moreover an increased overhead when performing bit-wise operations,
for which reason a tradeoff between the space consumption and the performance should
be considered.

With regard to vast music collections, query performance can not be neglected even
when dealing with compressed bitmaps. Hence, using theWAH (Word-Aligned Hybrid)
[WOSN, WOS06] compression approach the bitmaps are compressed using words as a
unit of grouping. A WAH compressed bitmap consists of a sequence of WAH words,
which each can be of theliteral word or fill word type. In Figure 8, we present the
structure of a literal word and a fill word. The MSB (Most Significant Bit) in the WAH

20

0

Literal

flag

Word length

Literal bits

(a) WAH literal word.

1 0/1

Fill

flag

Fill

type

Fill counter

Word length

(b) WAH fill word.

Figure 8: Compression scheme for WAH literal words and fill words.

words is an identifying flag indicating whether the current word is a literal word or a
fill word. Having a literal word, as illustrated in Figure 8(a), the remaining literal bits
are used to store the bits from the uncompressed bitmap. Hence, the number of literal
bits corresponds to an alignment group. The fill word, illustrated in Figure 8(b), uses
the second MSB to indicate whether 0 bits or 1 bits are to be counted. The remaining
bits are used to store an integer specifying the number of consecutive alignment groups
that are of the specified fill type. Hence, word alignment is ensured as the number of
consecutive bits represented by the fill word is a multiple ofthe number of literal bits in
a literal word. In Example 9 a WAH compression of a sample bitmap is performed.

Example 9 Assuming a word length of 32 bits, the bitmap containing the 128 bit se-
quence 1, 20×0, 3×1, 79×0, 25×1, is split into groups of 31 consecutive bits, which is
the size of the alignment groups. The groups can be seen in Figure 9 represented both as
a number of bits and in hexadecimal notation. Moreover, the WAH compressed bitmap
is presented in the figure, where it consist of a literal word followed by a fill word and
two literal words.

31-bit groups 1, 20×0, 3×1, 7×0 31×0 31×0 10×0, 21×1 4×1

Groups in hex 40000380 00000000 00000000 001FFFFF 0000000F
literal word fill word literal word literal word

WAH (hex) 40000380 80000002 001FFFFF 0000000F

Figure 9: A bitmap split into alignment groups and the corresponding WAH compressed
bitmap [WOS06].

As a consequence of aligning bitmaps in words, bit-wise instructions such as bit-wise
AND, OR and XOR may be performed directly on literal words within the compressed
bitmaps, avoiding additional expensive decompression andcompression techniques. Ex-
ample 10 illustrate such an alignment while performing a bit-wise AND operation.

21

Example 10 Figure 10 illustrates how the alignment of groups enables a bit-wise AND
to be performed on the two WAH compressed bitmaps A and B, bothconsisting of 128-
bits. In the figure all words are represented in hexadecimal notation.

Grp. 1 Grp. 2 Grp. 3 Grp. 4 Grp. 5
literal word fill word literal word literal word

A 40000380 80000002 001FFFFF 0000000F
fill word literal word literal word literal word

B C0000002 7C0001E0 3FE00000 00000003
literal word fill word literal word

C 40000380 80000003 00000003

Figure 10: Example showing how a bit-wise AND is performed on the WAH compressed
bitmap A and B. The WAH compressed bitmap C is the result [WOS06].

As can be seen from Figure 10, the alignment ensures direct use of bit-wise instruc-
tions for handling two aligned literal words (Grp. 4 and 5). For handling aligned fill
words the type of the resulting fill word is found, while concerning merging of fill words
having fill counters that overlap when they are aligned (Grp.2). Similarly, handling an
alignment of a fill word and a literal word the result of the bit-wise operation is either a
literal word (Grp. 1) or fill word (Grp. 3).

5.2 Handling of Collection Query Parameters

In connection with the music player using the MOD framework,a number of collection
parameters are to be managed. These parameters are subsets of the songs contained in
the music collection, and represent the set of skipped songs, the history and as well the
current metadata restricted collection. The parameters are passed along to the relevant
queries. Common for all parameters is that they apply to onlya single music player. In
the following listing we elaborate on the characteristics of the respective collections.

• Current collection: The current collection is represented by a bitmap holding 1
bits only for the songs that fulfil the metadata restrictionsof the listener. Thus, the
content of the current collection may change on demand in order to accommodate
the impulsive behavior of the listener interacting with themusic player.

• Set of skipped songs: Holds all songs that have explicitly been skipped by the
listener. As for all other subsets of songs from the music collection, the set of
skipped songs is represented by a bitmap containing 1 bits for all skipped songs.
Hence, when performing the actual skipping of a song, the bitrepresenting the
song is set to 1.

• History: The history is constituting the subset of recently played songs and is rep-
resented by a bitmap, expressing which songs are in the history. The size of the

22

history may be specified by the user. As bitmaps are unable to represent an order-
ing among songs, an explicit ordering is to be applied withinthe music player, for
the purpose of specifying the order of the songs as they enterthe history. To avoid
duplicate songs only the most recent occurrence of two identical songs remain in
the history.

5.3 Distance Management

In Section 4.1 a formal definition of the distance store is presented. To elaborate on the
technical aspects of the distance management, this sectiondescribes how a number of
distance stores constitute the handling of the distances between the songs managed by
the MOD framework.

To ensure distance management, knowledge about all the distances between any two
songs managed by the framework is required. The distances from a single base song to
all the remaining songs are represented by a distance store.Hence, in order to include
distances between all songs,n distance stores are needed, wheren denotes the number
of songs.

As defined in Section 4.1 a distance store consists of a numberof partitions, each
corresponding to an associated distance interval. Hence, each partition is represented by
a single bitmap indicating the songs belonging to the associated distance interval. The
collection of bitmaps required for a single distance store,constitutes a bitmap index for
the distances of the songs with respect to the base song of thedistance store. In Figure
11 an abstraction of a bitmap index of a distance store is illustrated for a collection of 10
songs having songs as the base song for the distance store.

All distance stores are subject to persistent storage within an RDBMS, handled by
the MOD framework. The distance management relation contains partition records as
presented in Figure 12. The first part of the record is the position of the base song of the
distance store, which is presented as a 24-bit integer. Using an 8-bit integer for the stor-
age, the second part represents a numbered index indicatingthe position of the partition
within the distance store. The index ranges from0 to m − 1, wherem is the number

dss,S

S1 S2 S3

[1 – 3) [3 – 6) [6 –]

0

1

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

0

1

1

1

0

Figure 11: A distance store representing songs within the partitions as a bitmap index.

23

Base song position
(24-bit integer)

Index
(8-bit integer)

Partition bitmap
(blob)

part 1 part 2 part 3

Primary key

Figure 12: Partition record of the distance management relation used for persistent stor-
age of the distances between the songs managed by the MOD framework.

of partitions in the distance store. The first and second partcombined is specified as a
composite primary key to ensure efficient lookup of a given partition bitmap from the re-
lation. The third part contains the partition bitmap, whichidentifies all songs contained
in the partition defined by the first and second part. The partition bitmap is stored as
a blob. The primary index is specified as a clustered index to ensure that the blob en-
tries are maintained within the index, in order to enable efficient access to all partitions
associated with a given distance store.

Theoretical Worst-Case Space Analysis

In the following we conduct a worst-case space analysis withrespect to the space con-
sumption of the distance management.

The space occupied by the first two parts of the partition record increases linearly as
the number of songs increases. The space occupied by the partition bitmap, i.e., the third
part in the partition record presented, constitutes the most crucial part of the total space
required for the distance management. In this worst-case analysis it is assumed that the
1 bits within a partition bitmap are located at certain places to archive the worst possible
compression. In addition, all 1 bits are distributed equally among the given number of
partitions. To illustrate, having just a single 1 bit represented in each word to compress,
it implies that no space reduction is achievable when applying WAH compression, as all
compressed words are literal words.

The space occupied in bytes by the distance management, where no compression is
achievable in worst-case, is given by Equation 6, wherei states the number of partitions
andn states the number of songs. The word length is denoted by the abbreviationwl.

S(n, i) =

part 1+2
︷ ︸︸ ︷

32

8
· i · n +

part 3
︷ ︸︸ ︷⌈

n

wl − 1

⌉

·
wl

8
· i · n =

(

4 +

⌈
n

wl − 1

⌉

·
wl

8

)

· i · n (6)

With respect to Equation 6, the worst-case space consumption applies only when
densityδ = n

i
≥ n

(wl−1)·2
which can be simplified asi ≤ (wl − 1) · 2, indicating

the threshold where no space reduction is achieved in worst-case, when applying WAH
compression.

24

Having more than(wl−1)·2 partitions, a space reduction is possible in the worst-case
when applying the WAH compression scheme as presented in Equation 7. In a worst-
case scenario, where all 1 bits are uniformly scattered among and within the partition
bitmaps of each of the distance stores, the space occupied requires a zero fill word and a
literal word for each 1 bit in a partition bitmap. To count allthen distance stores for the
n songsn2 bits are needed.

S(n, i)compressed =

part 1+2
︷ ︸︸ ︷

32

8
· i · n +

part 3
︷ ︸︸ ︷

2 · n2 ·
wl

8
=

(
4 · i + n ·

wl

4

)
· n (7)

As it can be seen from Equation 7, the space consumption of thethird part is no
longer bounded by the number of partitionsi, but only by the number of songsn. The
total worst-case space consumption is given by Equation 8.

S(n, i)total =

{

S(n, i) i ≤ (wl − 1) · 2

S(n, i)compressed otherwise
(8)

Assuming a word length of 32 bits the calculations of the worst-case space consump-
tion for the distance management is presented in Example 11.

Example 11 Having a music collection with 1,000 songs, the worst-case space con-
sumption induced by the distance management can be calculated. Assuming two cases
where the number of maintained partitions is set to 12 and 100respectively, the space
consumption is calculated as follows:

S(1000, 12)total =
(

4 +

⌈
1000

32− 1

⌉

·
32

8

)

· 12 · 1000 = 1.56MB

S(1000, 100)total =
(

4 · 100 + 1000 ·
32

4

)

· 1000 = 8.01MB

Having 100 partitions we see that WAH compression is possible compared with 12
partitions. However, more space is required as more bitmapsare needed for the in-
creased number of partitions. Performing two similar calculations for 100,000 songs,
while maintaining the number of partitions at 12 and 100, respectively, we achieve the
following:

S(100000, 12)total =
(

4 +

⌈
100000

32− 1

⌉

·
32

8

)

· 12 · 100000 = 14.43GB

S(100000, 100)total =
(

4 · 100 + 100000 ·
32

4

)

· 100000 = 74.54GB

25

0

500

1000

1500

2000

2500

3000

3500

4000

0 200000 400000 600000 800000 1000000

Number of songs

D
is

ta
n
c
e
 m

a
n
a
g
e
m

e
n
t
in

d
e
x
 s

iz
e
 [
G

B
]

6

12

20

40100 / 60

Figure 13: The worst-case space consumption by the distance management given the
number of partitions; 6, 12, 20, 40, 60 and 100. The dashed line represents
the space needed to store the music files.

The worst-case space consumption for the distance management presented in Exam-
ple 11 indicates a squared increase of the space consumption, as the number of songs
increase. This can however not be avoided as the number of distances between the songs
is a square of the number of songs. In addition, the example shows a significant differ-
ence in the space consumption, as to whether compression of the partition bitmaps is
possible or not. Having few partitions, i.e.,i ≤ (wl − 1) · 2, implies that the number
of partitions directly influences the total worst-case space consumption. On the other
side, having many partitions, the total worst-case space consumption would be nearly
independent of the number of partitions within the distancestores. This can be seen in
Figure 13, where the change from 60 to 100 partitions is small. Drawing the line for
200 partitions it will be very close to the line representing100 partitions. In addition,
Figure 13 presents the space consumption for a given number of songs when using 6,
12, 20, 40, 60 and 100 partitions, respectively. Moreover, the space consumption of the
actual music files is represented by the dashed line, assuming an average song size at
4.0MB.

Independent of the number of partitions, Figure 13 shows that having 200,000 songs
indexed occupies less than 50% of the space required for the music files. However, hav-
ing only 12 distance intervals, less than a 10% space overhead is introduced. Moreover,
indexing 1,000,000 songs having 12 partitions, the overhead introduced by the distance
management is below 50% for a theoretical worst-case.

As can be seen, the number of partitions play an important factor for the space con-
sumption with respect to the distance management. In general it can be said, that a large
number of partitions ensure a better reflection of the provided similarity measure. How-
ever, the more partitions introduced, the more time should be expected when executing
the queries. This tradeoff is concerned in the Section 7.

26

Attribute Value Decomposition

When considering the usage of the distance stores it is likely that the number of parti-
tions specified is below the given threshold for possible worst-case compression. Hence,
considering the worst-case scenario, WAH compression doesnot achieve any space re-
duction.

In case the usage of bitmap indices obey the two following constraints, space reduc-
tion techniques different than compression techniques canbe applied. The technique
considered isAVD (Attribute Value Decomposition)as presented in [CI98].

• The attribute cardinality of the bitmap index should at all times be below a known
constant.

• All items indexed by the bitmap index should presume exactlyone value.

Considering the above constraints, the distance management obey the first constraint
as the cardinality of the values to index equals the constantnumber of partitions chosen
for a specific usage of the MOD framework. The second constraint is obeyed as all
songs contained by the index belong to exactly one of the partitions, i.e., the distance
from any song to the base song of the distance store is always able to be mapped to a
single interval in the complete partitioning. Thus, obeying the two constraints, AVD can
be applied to the distance management. Explaining the properties of AVD in brief, this
technique encodes the numbers indicating the associated bitmaps in the bitmap index,
i.e., the attribute values. The encoding is performed by theuse of a base specification
< basen, . . . , base1 >, wheren is the number of bases. A base should be understood as
a base of a number system. An example of a base specification isbase< 3, 3 >. This
specifies a two digit number, where each digit has the base three. Such a specification
allows to express nine values in the range form 0 to 8. Example12 presents an example
of a distance store using base< 3, 3 > AVD encoding.

When applying the AVD bases, it should be ensured that the sumof the bases is
as small as possible while the product of all bases provide atleast the required number
of partitions. Hence, to represent 12 partitions the base< 3, 4 > constitutes a better
approach than base< 2, 6 > as the latter approach uses eight bitmaps rather than seven.

Example 12 Assume that 12 songs are indexed in accordance with the distance store
represented in Figure 14 having nine partitions. Performing AVD, the position of the 1
bits can be represented by a single index vector containing aprojection of the indexed
attribute values. These numbers can be encoded using a givenbase specification. In the
case of the base specification< 3, 3 > the encoding would be as presented in Figure 15
having two bitmap indices of each group of three bitmaps, i.e., the given bases. Each
number in the index vector is now represented by the sum of twonumbers given by each
digit, where the second digit is a multiple of the product of the previous bases like in
regular number representation. As an example the index, 3 isdecomposed to1 · 3 + 0,
which corresponds to a 1 bit inb1

2 andb0
1, respectively.

27

dss,S

p0 p1 p2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

0

p3 p4 p5 p6 p7 p8

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

3

2

1

2

8

2

2

0

7

5

6

4

Index

vector

Figure 14: Distance store and the associated index vector.

b1 b1 b1

0

1

0

1

1

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

b2 b2 b2

0

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

0

0

0

2 1 0

1 · 3 + 0

0 · 3 + 2

0 · 3 + 1

0 · 3 + 2

2 · 3 + 2

0 · 3 + 2

0 · 3 + 2

0 · 3 + 0

2 · 3 + 1

1 · 3 + 2

2 · 3 + 0

1 · 3 + 1

2 1 0

3

2

1

2

8

2

2

0

7

5

6

4

Index

vector

Figure 15: Encoding process from the index vector to a base< 3, 3 > encoded index.

The bitmap for the most similar songs identified by the distance store can be accessed
knowing the associated index of the partition in the distance store, in this case index
zero. The zero index bitmap,p0, is found by performing decomposition into the base
specification0 · 3 + 0, i.e., the corresponding bitmap is accessed by performing abit-
wise AND operation on the bitmapsb0

2 andb0
1.

As can be seen from Example 12, a distance store containing nine partitions can be
represented by the use of six bitmaps when applying AVD. In this case an additional
bit-wise AND operation is required for every access to a given partition. Moreover,
applying AVD the space consumption is reduced by 33.3% at thecost of a single bit-
wise operation for each access to a partition bitmap.

WAH compression could be applied on the AVD encoded bitmaps.However, con-
sulting the worst-case space analysis a compression overhead is introduced, as this case
can be assumed to be equivalent to the case of having fewer partitions in the non-AVD
bitmaps. Thereby, the worst-case space consumption is as presented in Figure 13, except
that a distance store with, e.g., nine partitions corresponds to a distance store with six

28

partitions. To conclude from this, the way to ensure more efficient use of space for the
partition bitmaps is to apply AVD.

The record needed to be stored in the distance management relation would presume
the same structure as the partition record presented in Figure 12 on page 24. The index
part is now just an index representing the location in the setof base encoded bitmaps.
Hence, the space consumption can be calculated as describedby Equation 9, wheren
states the number of songs.

S(n, < basem, . . . , base1 >)total =

part 1+2
︷ ︸︸ ︷

m∑

i=1

basei · n ·
32

8
+

part 3
︷ ︸︸ ︷

n ·
m∑

i=1

basei · n · 1/8

= (32 + n) ·
m∑

i=1

basei · n · 1/8

(9)

Assuming a music collection with 100,000 songs, Example 13 presents the space
consumption when applying AVD on the associated distance stores while using 12 par-
titions.

Example 13 Having distance stores with 12 partitions, the AVD representation may be
applied using base< 3, 4 >, in order to calculate the space consumption for 100,000
songs.

S(100000, < 3, 4 >)total =
(
32 + 100000

)
· 100000 · (4 + 3) · 1/8 = 8.15GB

Referring to the equivalent calculation of Example 11 on page 25 with respect to
100,000 songs represented by 12 partitions, we here see a space reduction of 43.5%.

In addition, applying WAH compression might in the best casereduce the space
requirement even further depending on the clustering within the bitmaps. As mentioned,
worst-case implies an additional overhead. Still this overhead may be desired as other
elements within the MOD framework benefits from the WAH compression.

5.4 Metadata Management

As stated in Section 4.1, a set of descriptive metadata attributes are associated with any
given song. In order to provide efficient access of these metadata attributes within a vast
music collection, we apply a multidimensional cube to storemetadata attributes and their
associated bitmaps. In this section, we describe the designof such a multidimensional
cube and the handling of both regular and irregular metadatahierarchies. In addition, we
introduce the handling of user collections which are a part of the MOD framework.

29

Cube Representation

To represent the multidimensional cube in a relational database, we adopt thesnowflake
schemaknown from the theory of multidimensional databases [Tho97]. The snowflake
schema is composed of a central fact table and a set of associated dimensions. The
snowflake schema satisfies the structure of the metadata hierarchies by allowing a meta-
data dimension to be represented as a number of dimension tables. Each dimension
level in the metadata hierarchy corresponds to a dimension table. The snowflake schema
normalizes dimensions to eliminate redundancy. That is, the dimension data has been
grouped into multiple tables instead of one large table as apply to thestar schemaap-
proach [KR02]. While this saves space, it is known to increases the number of dimension
tables thus resulting in more complex queries and reduced query performance [KR02].
However, as the purpose of the multidimensional cube in the MOD framework is to
find the bitmaps, no expensive join queries are to be performed, as selections based on
multiple attributes are performed by applying bit-wise operations on the corresponding
bitmaps.

As stated, a metadata dimension in a relational database is represented as a number
of dimension tables, where each dimension table corresponds to a level in a metadata hi-
erarchy. According to the snowflake schema representing themetadata within the MOD
framework, there exists two types of relations used as dimension tables. Records of both
types of relations can be seen in Figure 16. Thelevel recordin Figure 16(a) is used
for the highest level within each dimension. For efficient access, the relation is defined
as clustered having the id attribute as the primary key. Thesub level recordin Figure
16(b) is clustered in accordance with the super id attribute, that is associated with a
given superordinate level. This ensures an efficient foundation for hierarchical metadata
navigation, as, e.g., the subgenres of a given genre are stored consecutively within the
relation. However, as metadata may be accessed using id’s, we maintain an index on the
id attribute of the relation. The bitmap contained within each of the records, represents
the songs which are associated with the dimension value of the records. Example 14
illustrates how a two level hierarchy is mapped to dimensiontables.

ID
(integer)

Dimension value
(varchar)

Bitmap
(blob)

Primary key

(a) Level record for the highest
level in a dimension.

ID
(integer)

Dimension value
(varchar)

SuperID
(integer)

Bitmap
(blob)

Primary key Secondary key (clustered)

(b) Sub level record for all the sub levels in a
dimension.

Figure 16: The two record types used within the metadata dimension tables.

30

Example 14 Consider the metadata dimension schema for the genre dimension, pre-
sented in Figure 17(a). For such a schema, two dimension tables are required, namely a
genre dimension table storing level records and a subgenre dimension table storing sub
level records. The two dimension tables are presented in Figure 17(b). The genre id in
the subgenre dimension table is a foreign key of the genre id within the genre dimension
table.

Subgenre

Genre

dgenre

Tgenre

(a) Schema.

SubgenreID Subgenre GenreID

.

.
.
.

.

.

Subgenre

Bitmap

.

.

GenreID Genre

.

.
.
.

Genre

Bitmap

.

.

(b) Two dimension tables associated
with thedgenre metadata dimension.

Figure 17: The dimension tables defined from the schema of metadata dimensiondgenre.

Aside from the dimension tables, a snowflake schema consistsof a fact table. The
fact table contains afact recordfor each of the songs managed by the MOD framework.
For each dimension in the cube the fact record contains an id and a level depth for
the most specific dimension value. The level depth corresponds to a given dimension
table within the current dimension, where the highest levelin a dimension has level
depth one. The id is a foreign key to the id within the dimension table identified by the
associated dimension and level depth. The mapping from a level depth and a dimension
to a dimension table name is to be found in a hierarchy relation, which is stored persistent
within the database. The reason for storing the level depth of the most specific dimension
value is that the most specific dimension value may not necessarily be at the bottom level
of the hierarchy in the case of a irregular hierarchy. In addition, the fact table states the
order of the songs managed by the MOD framework.

In Example 15 we consider the structure of the snowflake schema representing the
fact table and dimension tables discussed above.

Example 15 In Figure 18 the snowflake schema for the metadata dimensionsdtitle and
dgenre and the associated fact table are presented. From the fact table it appears that
four songs are currently stored in the music collection, having the song titles; “The
Fine Art”, “T.N.T”, “Wonder Wall” and “Twentysomething”, respectively. Moreover,

31

TitleID SubgenreID

1
2
3
4

1
2
3
4

Fact table

SubgenreID Subgenre GenreID

1
2
3
4

”Soft Pop”
”Hard Rock”

”Brit Pop”
”Modern Jazz”

1
2
1
3

Subgenre (depth 2)

Bitmap

1000
0100
0010
0001

GenreID Genre

1
2
3

”Pop”
”Rock”
”Jazz”

Genre (depth 1)

Bitmap

1010
0100
0001

TitleID Title

1
2
3
4

”The Fine Art”
”T.N.T.”

”Wonder Wall”
”Twentysomething”

Title (depth 1)

Bitmap

1000
0100
0010
0001

TitleLevelDepth

1
1
1
1

GenreLevelDepth

2
2
2
2

Figure 18: Illustrates a snowflake schema having thedtitle anddgenre metadata dimen-
sions.

the songs belong to the subgenres; “Soft Pop”, “Hard Rock”, “Brit Pop” and “Modern
Jazz”, respectively. Hence, this small music collection isrepresented by a bitmap with
four bits. The first bit in the each bitmap corresponds to the first song in the managed
music collection, the second bit to the second song, etc. Along with the foreign keys in
the fact table, the level depths appears. From these it can beseen, that the most specific
dimension value of all the songs corresponds to the bottom level of the hierarchies.

In addition, it can be seen from Figure 18 that aggregation ofthe bitmaps from a sub
level to a superordinate level is applied within the dimension hierarchy by use of bit-wise
operations on the associated bitmaps from the sub level.

Handling of Irregular Hierarchies

In Section 2 it is argued that metadata for digitized music, to some degree, is expected
to become standardized. However, as not everyone can be expected to conform to such
a standard, irregularities in the metadata hierarchies should be anticipated.

To support irregular hierarchies, i.e.,non-onto, non-coveringandnon-stricthierar-
chies, different design techniques have been applied. To describe these, we initially
look at how irregular hierarchies could occur with respect to the metadata of music and
thereafter at the techniques applied to handle the irregularities.

Adding songs to the music collection, where the metadata of the songs is incomplete,
causes a non-onto hierarchy for an instance of the metadata dimension to occur. To
illustrate, consider the example shown in Figure 19 having two songs, where a song is
added under the “Rock” genre solely, as the subgenre is omitted.

32

Jazz

Modern Jazz

dgenre

Rock[01]

[01]

T genred

[10]

Figure 19: A non-onto genre instance.

Due to the fact that the bitmaps are stored in all the levels inthe hierarchy, and that
the cube is used to find bitmaps, the expected results will be retrieved from the hierarchy
even though it is non-onto.

Should the metadata of music skip a level within a given dimension, the hierarchy be-
comes non-covering. To illustrate this type of hierarchy, consider the metadata schema
presented in Figure 20(a), where the century level can be skipped if desired. In Fig-
ure 20(b) this is the actual case, where the dimension value “2000’s” is mapped directly
to the dimension value “⊤drelease

”, and thereby skipping the century level.
To enable support for non-covering hierarchies the dimension value “dummy” is to

be inserted into the skipped hierarchy level [PJD99]. To illustrate, consider Figure 20(c)
where a new “dummy” dimension value is inserted into the century level such that the
dimension value “2000’s” is now mapped to “dummy” instead ofthe “⊤drelease

” dimen-
sion value. As a result of inserting the “dummy” dimension value, a covering hierarchy
structure is obtained. The hierarchy is now mapped to a regular hierarchy and can thus
be represented by dimension tables.

To exclude “dummy” dimension values from being retrieved, the values are implic-
itly marked such that, whenever these values appear, the values in the sub level will be

Decade

drelease

T release

Year

Century

(a) Schema.

18
th

2000's

drelease

T released

20062005

[100]

[011]

[001][010]

(b) Non-covering instance.

18
th

2000's

drelease

T released

20062005

dummy[100]

[011]

[010] [001]

(c) Covering instance.

Figure 20: Transformation of a non-covering hierarchy into a coveringhierarchy.

33

retrieved instead. Considering the example shown in Figure20(b), the dimension values
“2000’s” and “18th” are retrieved if the query states that all dimension valuesbelow the
top level are to be retrieved. Hence, as we apply this hierarchical way of retrieval, we do
not store bitmaps associated with the “dummy” dimension values.

As a consequence of handling non-covering hierarchies, the“dummy” dimension
values inserted, impose an additional space overhead. However, the space overhead is
small as bitmaps for the dummies are not present. Adding additional “dummy” dimen-
sion values, it is ensured that the non-covering hierarchy is transformed into a covering
hierarchy.

A song with conflicting attribute properties could be added to the music collec-
tion, causing the hierarchy associated with the attributesto become non-strict. To il-
lustrate this structure, consider Figure 21(a), where a song is associated with the sub-
genre “Pop/Rock” and thus to the two genres “Rock” and “Pop”.To normalize the non-
strictness of the hierarchy, duplicate dimension values are introduced as illustrated in
Figure 21(b). As a consequence, redundant versions of the dimension value “Pop/Rock”
are mapped the to both the “Pop” and “Rock” dimension values,respectively.

Pop

Pop/Rock

dgenre

Rock[101]

[001]

T genred

[011]

(a)Non-strict instance.

Pop

Pop/Rock

dgenre

Rock[101]

[001]

T genred

[011]

Pop/Rock[001]

(b) Strict instance.

Figure 21: Transformation of a non-strict hierarchy into a strict hierarchy

The consequence for transforming a non-strict hierarchy into a strict hierarchy is that
duplicate dimension values are introduced, which in turn introduces an additional space
overhead as the bitmaps are redundant. However, this is a necessity in order to support a
non-strict hierarchy in a relational snowflake schema.

Management of User Collections

In addition to the efficient indexing of the metadata of music, the MOD framework
supports user managed collections, i.e., collections thatmay be constructed and altered
on demand by the user. The idea behind the user managed collection is that the user
manually should be able to group a number of songs into a givencollection, e.g., a
collection of favorite songs.

Each of the user collections can be modeled as a separate bitmap. To store the associ-
ated bitmaps, a metadata dimension would be the obvious choice. Thereby, the metadata

34

selections may include the user specified dimensions, e.g.,the users collections of fa-
vorite songs can be intermixed with all recently released songs as a metadata restriction.
However, modelling the favorite collections as dimension values within a user specified
dimension should differ from the regular metadata defined dimensions.

The regular metadata dimensions, such as the genre, differsin the way that it is
associated with the fact table, which is not the case for the user specified dimensions.
The reason is that, having a position of a song the genre should be determinable. On the
other hand, knowing, e.g., in what favorite collection a song is contained is unnecessary
as this is not the goal of having user managed collections. Moreover, the fact that songs
could be in either none or several user managed collections complicates the structure
of the fact table. Thus, the purpose for using dimension tables to store user managed
collections, is to enable a generalized selection support.

6 Query Evaluation

In this section we describe how to perform query evaluation of the query functionalities
described in Section 4 while relating to the technical design presented in Section 5. The
purpose of the query evaluation is to clarify the algorithms, that form the basis for an
implementation. The algorithms are based on the concept of achieving a best worst-case
implementation while also assuring a good average-case implementation.

In the following we initially introduce a cost model followed by a description of the
evaluation techniques for both retrieval and restriction queries.

6.1 Cost Model

To support the query evaluation design, we introduce a basiccost model in order to count
the number of operations performed within the following three categories of operations
appointed to have the highest influence on the performance ofthe MOD framework.

The first category includes the bitmap functionsBitCount, GetBitmapForSetBit
andRandom. The functionBitCount returns the number of 1 bits in a given bitmap.
The task ofGetBitmapForSetBit is to generate a bitmap where only theith is a 1 bit,
whereasRandom returns the position for a randomly chosen 1 bit among all 1 bits in
the given bitmap. In a worst-case scenario each function require that all bits are counted
once, for which reason they are treated equally in terms of evaluation costs.

The second category of operations is the bit-wise operations which are required in
order to combine the bitmaps used for indexing. In general, bit-wise operations are con-
sidered to have low computational costs, as discussed in Section 5.1. However, as a
consequence of bitmap compression, an increased performance overhead is introduced
for which reason the bit-wise operations are considered in the cost model. Within this
context, all used bit-wise operations are assumed to have equal computational costs for
which reason they also are treated equally in terms of evaluation costs. However, to look
into the ratio between the occurrences of the different bit-wise operators, they are pre-
sented as individual entries in the cost model. As a consequence of bitmap compression,

35

the computational costs required to perform bit-wise operations exceed the evaluation
costs related to the bitmap functions of the first category.

The last category of operations is related to the task of performing a database lookup,
as these operations require I/O interaction. The operations are divided into two group-
ings; a metadata cube lookup and a distance management lookup. For each grouping it
is assumed, that the index associated with each relation in the grouping is cached, indi-
cating that one lookup is equivalent to one disk I/O. Moreover, in relation to a distance
management lookup a range query is considered as a single disk I/O, as records of the
distance management relation are clustered in accordance with individual base songs as
described in Section 5.3. Also, the number of records to scanin a range query are few,
as only a single distance store is concerned at a time.

6.2 Retrieval Queries

In the following we describe the retrieval functionsRandomSong andSimilarSong used
for the retrieval of a randomly chosen song and a song having similar musical content
to a given seed song, respectively. In this connection we initially introduce the two
helper functionsGenerateCompositeSkipDS and FetchRandomSongs. The task of
GenerateCompositeSkipDS is to cache the composite distance stores representing the
distance stores of all skipped songs for each of the individual music players interacting
with the MOD framework. The composite distance store representing the distance stores
of all skipped songs is denoted as thecomposite skip distance store. Using a unique user
id representing a specific music player, the cached composite skip distance store is ac-
cessible for retrieval and manipulation. The purpose ofFetchRandomSongs is to enable
the possibility to retrieve a specified number of randomly chosen songs from a given
music collection represented by a bitmap. Each of the four functions are presented as
individual algorithms in the following.

To ease the description of the functionality of the algorithms used for query evalua-
tion, we initially clarify the properties of various types of music collections. The music
collection initially passed to the respective functions isdenoted as thesearch collection
and constitutes either the entire music collection or a subset of the entire collection. The
search collection is a subset of the entire collection if a metadata restriction has occurred.
Once the search collection has been restricted by the skipped songs and the songs con-
tained in the history of played songs, the collection of the remaining songs is denoted as
thevalid collection. Performing a further restriction by all songs similar to the skipped
songs we end up with a collection of songs denoted as thecandidate collection.

All restrictions, i.e.,p \ q, are performed using the syntaxp AND (p XOR q) where
p is the collection to restrict andq is the collection to restrict by. The alternative syntax,
p AND NOT q, is unusable as the size of the entire music collection can not be derived
from the individual bitmaps where consecutive 0 bits are omitted from the end of the
bitmaps as described in Section 5.1. Additionally, for all pseudo code descriptions it
applies that variable names with the prefix notationb_ represent bitmaps.

36

Generate Composite Skip Distance Store

In Algorithm 1 we elaborate on the evaluation ofGenerateCompositeSkipDS. The
function is applied in Algorithm 3 and 4 in order to generate and cache composite skip
distance stores. The composite skip distance stores are cached in main memory. In
case a composite skip distance store is cached and no changeshas occurred on the set
of skipped songs represented by the cached composite skip distance store, the cached
version is returned rather than performing an attempt to generate a new composite skip
distance store. Similarly, if songs are only added to the setof skipped songs, the cached
composite skip distance store may simply be updated with information form the distance
stores associated with the added songs.

As input parameters, the function takes a bitmap representing all skipped songs and
a user id indicating the music player currently interactingwith the MOD framework.

GENERATECOMPOSITESKIPDS(b_skip, userId)

1 compSkipDS ← empty distance store
2 b_storedSkip← FETCHCACHEDSKIPBITMAP (userId)
3 cachedCompSkipDS ← FETCHCACHEDSKIPDS(userId)
4 b_modifiedSongs ← b_skip XOR b_storedSkip

5 if BITCOUNT(b_modifiedSongs) = 0
6 then� No changes was made to the skipped songs since last
7 compSkipDS ← cachedCompSkipDS

8 else � Check whether songs are only appended to the cached distancestore
9 if BITCOUNT(b_modifiedSongs AND b_storedSkip) > 0

10 then� The cached distance store can not be extended and should be discarded
11 b_modifiedSongs ← b_skip

12 cachedCompSkipDS ← empty distance store
13 distanceStoreColl← empty collection
14 for each positionpos of 1 bits inb_modifiedSongs

15 do � Fetch the distance store for the given song
16 distanceStoreColl.ADD(DISTANCESTORELOOKUP(pos))
17 b_restriction← empty bitmap
18 size← |distanceStoreColl|
19 for each partitionb_p in eachdistanceStore in distanceStoreColl and

partitionb_q in cachedCompSkipDS and partitionb_r in compSkipDS

starting with the partitions representing the most similarsongs.
20 do � Compute a partition of the composite distance store
21 b_compPartition← b_q OR b_p1 OR b_p2 OR · · · OR b_psize

22 b_r ← b_compPartition AND (b_compPartition XOR b_restriction)
23 b_restriction← b_restriction OR b_compPartition

24 STORECACHEDSKIPBITMAP (b_skip, userId)
25 STORECACHEDSKIPDS(compSkipDS , userId)
26 return compSkipDS

Algorithm 1: Pseudocode presenting query evaluation forGenerateCompositeSkipDS

37

Thus, individual composite skip distance stores are generated and maintained for each
music player associated with the framework.

Stepping through the functionality of Algorithm 1, an attempt to fetch a cached com-
posite skip distance store is initially performed using theuser id as key (line 2 and 3). To
see whether the content of the provided bitmap representingall skipped songs has been
modified compared with the content of the bitmap representing all cached skipped songs,
a bitmap representing all changes as 1 bits is generated (line 4). Based on the content of
the provided bitmaps representing all skipped songs, the remainder of the pseudo code
can be split into two distinct cases.

In the first case (line 5 to 7) no modifications have been performed to the provided
bitmap representing all currently skipped songs, for whichreason the cached composite
skip distance store can be returned.

The second case (line 8 to 25) covers two individual scenarios. In the first scenario a
new composite skip distance store is to be generated, as the cached instance of the com-
posite skip distance store contains songs that are no longerto be skipped. For the second
scenario additional songs are skipped and the cached composite skip distance store is to
be extended to include the distance stores associated with the additional skipped songs.

Based on the content of the bitmap representing all modified songs, the algorithm
either generates a new composite skip distance store or appends the distance stores as-
sociated with the additional songs to a cached instance of the composite skip distance
store. Initially, it is clarified whether the current instance of the cached composite skip
distance store is invalid and is to be discarded. Thereby, the bitmap representing all
modified songs is set to represent all skipped songs (line 8 to12). Traversing the bitmap
representing all modified songs, the distance stores associated with all 1 bits positions
are fetched (line 14 to 16). In order to generate the content of the composite skip distance
store to return, the content of a number of distance stores are to be consulted. The in-
volved distance stores are; all distance stores representing all modified songs, the cached
composite skip distance store and the empty composite skip distance store to return. All
distances stores are traversed starting with the partitions representing the most similar
songs (line 19 to 23). An example of the generation process ispresented in Example
16. Once the composite skip distance store is generated, thepreviously stored version is
replaced (line 24 and 25).

Example 16 In association with Algorithm 1 line 19 to 23, we assume that two addi-
tional songsa ande have been skipped as illustrated in Figure 22. Hence, the content
of the distance storesdsa,p′ anddse,p′′ associated with the skipped songsa and e is to
be appended to the content of the cached composite skip distance storedsq. Initially a
union is performed over the content of the partitionsp′1, p

′′
1 andq1 and the result is stored

in partition r1 of the distance storedsr. Then a union over the of content of the parti-
tionsp′2, p′′2 andq2 is performed and the result is stored in partitionr2 while restricting
by the content of all previous partitions ofdsr, i.e.,r1. The same procedure apply to the
last partitions, where the content of the partitionsp′3, p′′3 and q3 is consulted. Once all
distance stores have been traversed, the updated compositeskip distance storedsr can

38

ds

p'

r1 r2 r3

dse,p''

dsa,p'

r

q1 q2 q3
dsq

p'1 2 p'3

p'' p''1 2 p''3

Figure 22: Extending the composite skip distance storedsq with the two additional
skipped songsa ande.

be returned. As all songs contained in the music collection are included in the individual
distance stores, it applies that entire music collection equalsr = p′ = p′′ = q.

To measure the costs of query evaluation with respect toGenerateCompositeSkipDS,
we collect information concerning the occurrences of bitmap operations and database
lookups. The information is gathered in Table 2.

Table 2: Worst-case costs forGenerateCompositeSkipDS. The variablesj and i de-
notes the number of skipped songs and the number of partitions, respectively.

Cost Description Evaluation Costs

Bit-wise Operation
AND 1 + i

OR i(j + 1)
XOR 1 + i

Bitmap Function
BitCount 2
Random 0
GetBitmapForSetBit 0

Database Lookup
Metadata Cube 0
Distance Management j

Focusing on Table 2 we observe that the functionGenerateCompositeSkipDS is
bounded byi · j with respect to the bit-wise OR operation. Asi denotes the number of
partitions in the distance stores used for similarity groupings it is likely thati remains
relatively small as described in Section 4. In a worst-case scenario the value ofj re-
sembles the number of all skipped songs, whereas in an average-case scenarioj only
corresponds to the number of additional skipped songs, which for this case can assumed
to be small. Thus, in an average-caseGenerateCompositeSkipDS is bounded by the
number of partitions,i.

39

Fetch Random Songs

The functionality ofFetchRandomSongs is presented in Algorithm 2. The task of this
function is to generate a bitmap containing a specified number of 1 bits chosen randomly
among the 1 bits of the provided search collection. As input parameters the function
takes an integer indicating the number of songs to fetch and abitmap representing the
provided search collection.

FETCHRANDOMSONGS(songsToFind , b_coll)

1 b_randomColl← empty bitmap
2 collSize ← BITCOUNT(b_coll)
3 orgCollSize ← collSize

4 if songsToFind > collSize

5 then� Select the requested amount of songs randomly
6 count = 0
7 missingSongs← songsToFind

8 while count < songsToFind

9 do � for all the missing songs
10 for i← 0 to missingSongs

11 do � Add randomly chosen songs to the random collection
12 setBitNumber← GENERATERANDOMNUMBER(1, collSize)
13 b_randomColl← b_randomColl OR

GETBITMAPFORSETBIT (setBitNumber, b_coll)
14 count← BITCOUNT(b_randomColl)
15 if count < songsToFind

16 then� Restrict the search collection for the next iteration
17 b_coll ← b_coll AND (b_coll XOR b_randomColl)
18 collSize ← orgCollSize − count

19 missingSongs← songsToFind− count

20 else � The provided collection should be returned
21 b_randomColl← b_coll

22 return b_randomColl

Algorithm 2: Pseudo code presenting query evaluation forFetchRandomSongs.

To elaborate on the functionality of Algorithm 2, it is initially ensured that the num-
ber of songs to include in the bitmap representing the randomly chosen songs can not
exceed the number songs represented by the search collection (line 4). If too few songs
are present in the search collection, the search collectionis returned (line 21). Otherwise,
as long as the required number of songs has not yet been found,a number of operations
is continuously being invoked (line 8 to 19). First, for as long as songs are still missing,
a random number is generated indicating the position of an arbitrarily chosen 1 bit from
the search collection. Using the position of this 1 bit, a bitmap representing this par-
ticular position is generated and added to the bitmap representing all randomly chosen
songs (line 10 to 13). Chances are that the same randomly generated number (line 12)

40

occurs several times, for which reason not all required songs necessarily are found in one
iteration. Should it happen that all songs are not found, thesearch collection is restricted
by the already chosen songs, and the number of missing songs is decremented (line 15
to 19). In Table 3 we present the costs of query evaluation with respect to the function
FetchRandomSongs.

Table 3: Worst-case costs forFetchRandomSongs. The variablek denotes the number
of songs to find randomly from the given collection.

Cost Description Evaluation Costs

Bit-wise Operation
AND k

OR k(1+k)
2

XOR k

Bitmap Function
BitCount 1 + k

Random 0

GetBitmapForSetBit k(1+k)
2

Database Lookup
Metadata Cube 0
Distance Management 0

From Table 3 we see thatFetchRandomSongs is bounded byk2 with respect to the
bit-wise OR operation. In a worst-case scenario the value ofk corresponds to the number
of songs to fetch randomly. However, considering the randomgeneration of positions
the average-case is expected to improve, i.e., the bound of the function is closer tok than
k2.

Random Song

Referring to Definition 6 on page 15, the task ofRandomSong, is to find a subset of
randomly chosen candidate songs from which the song least similar to any of the skipped
songs is to be returned. The purpose of the selected candidate songs is to constitute a
quality measure for the song to return.

The functionRandomSong described in Algorithm 3, takes as input parameters three
bitmaps representing the current search collection, the history and the set of skipped
songs. In addition, an integerq is passed in order to specify the number of candidate
songs among which to choose the song to return. Finally, the function takes a parameter
representing a user id indicating the music player currently interacting with the MOD
framework. The id is used to identify a cached composite skipdistance store.

Stepping through the functionality of Algorithm 3, we initially generate a collection
containing a specified number of randomly chosen songs (line4). To ensure that songs

41

RANDOMSONG(b_coll , b_hist , b_skip, q , userId)

1 filePath← empty string
2 songPosition← Null
3 b_validColl ← b_coll AND (b_coll XOR (b_skip OR b_hist))
4 b_randomColl← FETCHRANDOMSONGS(q, b_restrictedColl)
5 compositeSkipDS ← GENERATECOMPOSITESKIPDS(b_skip, userId)
6 for each partitionb_p in compositeSkipDS starting with the partition representing the

least similar songs.
7 do � Check if candidate songs are available
8 b_candidateColl ← b_randomColl AND b_p

9 if BITCOUNT(b_candidateColl) > 0
10 then� Choose a position for a random song
11 songPosition← RANDOM(b_candidateColl)
12 break
13 if songPosition <> Null
14 then� Fetch the file path for the song found
15 songRecord← FACTTABLELOOKUP(songPosition)
16 filePath← CUBELOOKUPFETCHATTR(songRecord .filenameID , “Filename”)
17 return filePath

Algorithm 3: Pseudo code presenting query evaluation forRandomSong.

similar to any of the skipped songs are not returned to the listener, a composite skip dis-
tance store is fetched (line 5). Traversing the composite skip distance store starting with
the partition representing the least similar songs, each ofthe associated partitions may
be consulted (line 6 to 12), which causes the collection of candidate songs to become
generated (line 8). From the collection of candidate songs the position of a song chosen
randomly from the partition representing the least similarsongs is returned (line 11). In
case a song is found, the retrieval of the file path initially involves a lookup in the fact
table in order to fetch id’s for all metadata dimensions of the song (line 15). Using these
details a lookup in the filename dimension of the metadata cube retrieves the file path
for the audio file of the found song (line 16).

To measure the costs of query evaluation with respect toRandomSong, we collect
information concerning the occurrences of bitmap operations and database lookups. The
information is gathered in Table 4.

As shown in Table 4, the operations occurring locally are dependent only of the
number of partitionsi. As reasoned in connection withGenerateCompositeSkipDS,
the number of partitions in a distance store remains relative small, i.e.,i remains relative
small. Globally the function is bounded byi·j+k2. However, as thek songs are retrieved
randomly,k is expected to be small as argued in Section 4. Hence, assuming that only a
few songs are skipped at a time, i.e.,j is small, we observe that the average-case costs
are bounded byi.

42

Table 4: Worst-case costs forRandomSong. The variablesj, k andi denotes the num-
ber of skipped songs, the specified quality and the number of partitions, respec-
tively.

Evaluation Costs
Cost Description Local Local + Helper Functions

Bit-wise Operation
AND 1 + i 2 + 2i + k

OR 1 1 + i(j + 1) + k(1+k)
2

XOR 1 2 + i + k

Bitmap Function
BitCount i 3 + i + k

Random 1 1

GetBitmapForSetBit 0 k(1+k)
2

Database Lookup
Metadata Cube 2 2
Distance Management 0 j

Helper Function
GenerateCompositeSkipDS 1
FecthRandomSongs 1

Similar Song

Referring to Definition 7 on page 16, the task ofSimilarSong, is to find and return a
single song considered most similar to a given seed song. In this context it is ensured,
that no songs close to any skipped songs is returned.

As input parameters, the functionSimilarSong described in Algorithm 4 takes three
bitmaps representing the search collection, the history and the set of skipped songs. In
addition, the position of the seed song is passed to the function, stating the position of
the song within a bitmap corresponding to all songs in the music collection. Finally, the
function takes a parameter representing an user id indicating the music player currently
interacting with the MOD framework. The id is used to identify a cached composite skip
distance store.

To a great extent, the functionality of Algorithm 4 reflects that of Algorithm 3, for
which reason only the parts ofSimilarSong which differ from those ofRandomSong
are described in detail.

After generation of the valid collection and the composite skip distance store, the dis-
tance store for the seed song is retrieved using the positionof the seed song to perform a
lookup in the distance management relation (line 5). To find the collection of candidate
songs, the seed song distance store is traversed starting with the partition containing the
songs most similar to the seed song. This is done while consulting the content of the
corresponding partitions associated with the composite skip distance store (line 6 to 12).

43

SIMILAR SONG(b_coll , b_hist , b_skip, seedsongPosition, userId)

1 filePath← empty string
2 songPosition← Null
3 b_validColl ← b_coll AND (b_coll XOR (b_skip OR b_hist))
4 compositeSkipDS ← GENERATECOMPOSITESKIPDS(b_skip, userId)
5 seedsongDS ← DISTANCESTORELOOKUP(seedsongPosition)
6 for each partitionb_p in compositeSkipDS andb_q in seedsongDS starting

with the partition representing the most similar songs
7 do � Check if candidate songs are available
8 b_candidateColl ← validColl AND (b_q AND (b_q XOR b_p))
9 if BITCOUNT(b_candidateColl) > 0

10 then� Choose a position for a random song
11 songPosition← RANDOM(b_candidateColl)
12 break
13 if songPosition <> Null
14 then� Fetch the file path for the song found
15 songRecord← FACTTABLELOOKUP(songPosition)
16 filePath← CUBELOOKUPFETCHATTR(songRecord .filenameID , “Filename”)
17 return filePath

Algorithm 4: Pseudo code presenting query evaluation forSimilarSong.

Thus, restricting the partitions of the seed song distance store by the corresponding par-
titions of the composite skip distance store while considering only the songs contained
in the valid collection, the collection of candidate songs is obtained (line 8). In the re-
mainder of the algorithm, the position of a selected candidate song is used to retrieve the
file path of the associated audio file.

In Table 5 we present the costs of query evaluation with respect to SimilarSong,
where the operations occurring locally are dependent only of the number of partitionsi.
As reasoned in connection withGenerateCompositeSkipDS, the number of partitions
in a distance store remains relative small, i.e.,i remains relative small. Globally the
function is bounded byi · j with respect to the number bit-wise OR operations occur-
ring inGenerateCompositeSkipDS. Indeed, the costs of the worst-case scenario and the
average-case scenario is bounded entirely by the helper functionGenerateCompositeSkipDS.
Therefor, the function is bounded byi.

When concluding on the costs for query evaluation of the fourfunctions, we may
observe that the number of songs contained in a music collection is not represented.
However, as the bit-wise operations are applied on the bitmaps, these operations are
implicitly influenced by the number of songs in the collection. In turn this entails that,
as the size of a music collection increases the only additional cost to be applied is the
execution of bit-wise operations.

44

Table 5: Worst-case costs forSimilarSong. The variablesj and i denotes the number
of skipped songs and the number of partitions, respectively.

Evaluation Costs
Cost Description Local Local + Helper Funtions

Bit-wise Operation
AND 1 + 2i 2 + 3i

OR 1 1 + i(j + 1)
XOR 1 + i 2 + 2i

Bitmap Function
BitCount i i + 2
Random 1 1
GetBitmapForSetBit 0 0

Database Lookup
Metadata Cube 2 2
Distance Management 1 1 + j

Helper Function
GenerateCompositeSkipDS 1
FecthRandomSongs 0

6.3 Restriction Queries

The restriction operators defined in Section 4.1 have been omitted from being described
as pseudo code, as they are considered both simple and are notcomputational demand-
ing. When considering the individual functions related to the restriction operators, the
functionSelect requires access to the database only once in order to locate the bitmap
corresponding to the presented metadata attributes. The reason for counting only one
disc I/O is that the table from which to retrieve the bitmap isknown and the keys on
which to perform a lookup are indexed. The index is moreover assumed to be present in
the cache of the RDBMS.

With respect to the functionSimilarMeta, the database may be accessed as many
times as the number of distinct metadata attributes for a given song. In a worst-case
scenario, all metadata attributes are passed as input parameters to the function, which
in turn causes multiple database access the corresponding dimension tables to occur.
Furthermore, to restrict the current search collection an equal number of bit-wise AND
operations are to be performed.

Common for both functions is however, that their complexitydoes not depend on
the number of songs to retrieve, but only the number of chosendimensions. Therefore,
changes to the metadata restriction causes only few database lookups and bit-wise oper-
ations to be performed.

45

7 Experiments and Test Results

In this section the MOD framework is evaluated using variousconfigurations. The eval-
uation concerns the space consumption introduced by the framework as well as the query
performance when random and similar songs are retrieved. Initially, we elaborate on the
test setup. To conduct the individual tests an implementation of the MOD framework
is required. Such an implementation has been constructed using Java 5.0 and MS SQL
Server 2000. In Appendix A, the database table definitions for the applied tables are
presented.

7.1 Test Setup

To support evaluation for both the retrieval process and thespace consumption, a number
of databases are constructed. Regarding the bitmaps withinthe databases, the bitmaps
can be configured as being uncompressed or WAH compressed. Additionally, when con-
cerning the distance management, the bitmaps for the distance stores can be represented
using either AVD or not, which gives a total of four differentbitmap representations. In
addition, the number of partitions in the distance stores may vary, which implies even
more possible configurations.

To conduct the evaluation, databases with a different number of songs are to be cre-
ated. We construct these databases with basis in a personal music collection containing
1,000 songs. As we only have this limited number of songs available, we are to generate
synthetic data in order to conduct tests on music collections of more than 1,000 songs. A
possible solution to extend the existing dataset was to add the same 1,000 songs several
times. However, considering the metadata of music, an erroneous distribution of, e.g.,
of the artist metadata attribute would occur, as it is intuitively wrong simply to scale the
artists for a collection of 1,000 songs to, e.g., a collection of 100,000 songs.

To reflect a real life music collection, it is initially ensured that some artists are
more productive than others when generating the synthetic data. In this connection it
is moreover ensured that a given artist only has a limited career of maximal 30 years,
while ensuring that artists with a long career are more productive than artists with a short
career. It is assumed that all song titles and album names areunique and that an album
contains between 10 and 15 songs. In this context all songs onan album are considered
of the same genre. Upon adding synthetic data to the music collection, entire albums are
added in continuation of one another, to reflect a frequent real life situation.

Additionally, considering the distances between the individual songs, the use of iden-
tical songs would create a very special and unrealistic casefor the distances managed.
Hence, when creating distance stores for synthetic data we apply random distances be-
tween the songs. The random distances are chosen such that the number of songs within
each of the partitions of the distance stores gradually increases, starting from the partition
representing the most similar songs. As we assume a highly diversified music collection,
only few songs are located in the partitions representing the most similar songs.

To reduce insertion time when generating the databases, that index a large number

46

of songs, we insert the relations for the distance stores directly into the database relation
rather than through the MOD API. The reason why this way of insertion is faster, is be-
cause we omit the symmetric property of the distances. This implies that the distances
between songs are not symmetric when requesting similar songs, which does not intro-
duce a problem as we are only concerned with the response timeand not the quality of
the retrieved songs. The total insertion time is consideredto be beyond the scope of this
paper, as the required distance calculations constitute the absolute majority of the time
used for insertion.

When inserting the real 1,000 songs, we apply the Intelligent Sound Processing tool-
box R1 [Int06b] to calculate the distances between all songsin the music collection. The
algorithm used is a training algorithm based on a statistical model applied on MFCCs.
The algorithm is implemented in MatLab. Using the MOD API, the 1,000 songs are
inserted in less than 45 seconds, when excluding the time of the exhaustive distance
calculation. The configuration used for insertion is based on 100 partitions where both
WAH compression and AVD are applied.

To conduct performance tests with respect to requesting random and similar songs,
a query evaluator application is constructed. The query evaluator models a music player
application using the MOD framework, for which reason it implements history man-
agement, metadata restriction and handling of skipped songs. To ensure real conditions
when performing the queries, an initial setup is performed.Thus, to ensure that songs
are maintained in the history, 100 random songs are queried and “played” on initializa-
tion. In addition, the collection is restricted to 75% of theentire collection in a random
manner and the number of skipped songs is as default set to 50 songs. Considering
the properties of the skipping behaviour of the MOD framework, 50 songs constitutes
a rather large collection of skipped songs as all songs resembling any of the skipped
songs are restricted from being retrieved. Then, after initialization, the actual query per-
formance tests are conducted. The query execution time logged by the query evaluator
is the average of 50 requests, where the history parameter isaltered for each request.
Between each run of the query evaluator the cache of the SQL Server is emptied in order
to ensure a fair comparison.

The tests are performed on a Pentium M @ 1.7 GHz supplied with 1GB of main
memory, running both the query evaluator and the SQL Server.Thereby, we conduct all
our tests on a 32-bit architecture. The harddisk used rotates at 7200rpm and has a 16MB
cache.

7.2 Space Consumption

As explained above, four different bitmap representationsexists within the MOD frame-
work; Uncompressed, WAH, AVD and AVD+WAH. This section thusconsiders the ac-
tual space consumption by each of the four bitmap representations.

Using 12 partitions, the space occupied is presented in Figure 23 for databases in-
dexing 10,000, 50,000 and 100,000 songs, respectively. As can be seen from the figures,
the uncompressed bitmaps occupy most space, whereas WAH compression reduces the

47

0

25

50

75

100

125

150

175

200

U
n
c
o
m

p
.

W
A

H

A
V

D

A
V

D
+
W

A
H

S
p
a
c
e
 [
M

B
]

(a)Space consumption
for 10,000 songs.

0

1

2

3

4

5

6

U
n
c
o
m

p
.

W
A

H

A
V

D

A
V

D
+
W

A
H

S
p
a
c
e
 [
G

B
]

(b) Space consumption
for 50,000 songs.

0

4

8

12

16

20

24

U
n
c
o
m

p
.

W
A

H

A
V

D

A
V

D
+
W

A
H

S
p
a
c
e
 [
G

B
]

(c) Space consumption
for 100,000 songs.

Figure 23: Space consumption of the framework configured to each of the four different
bitmap representations, while having the number of partitions fixed to 12.

overall space consumption. The distance store contributeswith a large number of the
bitmaps used for the indexing by the MOD framework. Thus, representing the distance
stores using AVD the total space consumption in reduced. As can be seen from the
third pillar in the graphs in Figure 23, this is found to be thecase when compared with
WAH compression. Finally, the fourth representation, AVD combined with WAH com-
pression, introduces an additional reduction of the occupied space compared to applying
only AVD. It can be seen that these results apply independently of number of songs. The
variations within the results are presented in Table 6, where the uncompressed represen-
tation is compared with each of the three remaining representations in order to deduce
the actual reduction gained.

Table 6: The variations of space reduction when comparing the uncompressed type with
each of the remaining types.

No. of songs Uncomp. –> WAH Uncomp. –> AVD Uncomp. –> AVD+WAH

1,000 7.0% 24.6% 26.0%
10,000 11.0% 37.2% 42.9%
50,000 14.6% 37.8% 46.7%
100,000 20.2% 38.4% 46.6%

Based on Table 6 we conclude that, the most space optimized indexing is achieved,
when applying both AVD and WAH compression. In doing so a reduction of 46.6%
for indexing 100,000 songs is achieved when compared to the space consumption of the
uncompressed music collection. Additionally, we can compare the space consumption

48

with the space needed to store the actual digitized music. Assuming average sized songs,
1,000 songs occupy 4GB, which can be scaled linearly to 40GB for 10,000 songs and so
on. The results of the index size for AVD+WAH compared to the number of songs and
the space occupied by those are presented in Table 7. As expected, it can be seen from
Table 7, that the more songs that are indexed, the more space is required in average for
each song.

Table 7: Comparison of space consumption of songs and index size.

No. of songs Space consumption of songs Index size Index size/ song

1,000 4GB 3.4MB 3.5kB
10,000 40GB 106.7MB 10.9kB
50,000 200GB 2.7GB 56.6kB
100,000 400GB 10.6GB 111.0kB

Moreover, it is interesting to consult the average bitmap sizes for the applied index-
ing. The average compression that is possible when considering all bitmaps used for
indexing is reflected by the reduced space consumption as shown in Table 6. However,
it is expected that a difference exists when considering thebitmaps of the metadata cube
and the distance management in isolation. Intuitively, thebitmaps within the metadata
cube contains many consecutive 0 bits and are by this subjectto high compression while
the bitmaps of the distance management are more diversified with respect to occurrences
of 0 and 1 bits.

In Figure 24 the average bitmap sizes are presented for bitmaps within the metadata
cube and bitmaps within the distance management, respectively. The distance man-
agement is configured to use AVD, for which reason the 12 partitions are represented

0

200

400

600

800

1000

1200

1400

Distance Cube

A
v
g

.
b

it
m

a
p

 s
iz

e
 [
B

y
te

s
] 10000 bits

(a) Average bitmap sizes for
10,000 songs.

0

1000

2000

3000

4000

5000

6000

7000

Distance Cube

A
v
g

.
b

it
m

a
p

 s
iz

e
 [
B

y
te

s
]

Uncompressed

WAH

50000 bits

(b) Average bitmap sizes for 50,000 songs.

Figure 24: Average bitmap size for the distance management and the metadata cube
while having 12 partitions and applying AVD.

49

using only seven bitmaps. In the figures the dashed horizontal lines indicates the thresh-
old size needed to store 10,000 and 50,000 bits, respectively. Concerning the average
bitmap sizes for the distance management (70,000 and 350,000 bitmaps, respectively)
the WAH compression yields a space overhead, i.e., no compression is possible. The
average bitmap sizes for the metadata cube (21,216 and 105,802 bitmaps, respectively)
is, as expected, reduced significantly when applying WAH compression. In this case
nine bytes are used for the average bitmap for both 10,000 and50,000 songs. This in
turn causes the pillars representing the cube to become invisible on Figure 24. In the
case of uncompressed bitmaps the average bitmap size withinthe cube is much below
the threshold size of 10,000 and 50,000 bits respectively. The reason for this is that 0
bits in the end of the bitmaps is omitted, as explained in Section 5.1.

Finally, it is interesting to see how the number of partitions used within the distance
management influence the space consumption for the four different bitmap representa-
tions. Figure 25 presents test results for 10,000 songs having a varying number of parti-
tions. As it can be seen, the space consumption having uncompressed bitmaps increase
linearly as the number of partitions increases. The other three bitmap representations
seem to reach an upper bound. The growth of the WAH compressedtype was expected
to become minimal around 62 partitions when applying worst-case WAH compression
as discussed in Section 5.3. This seems to be confirmed by the test results in Figure 25.
Reverting to the theoretical worst-case calculations presented in Equation 8 on page 25,
the results using 100 partitions would be 766MB for indexing10,000 songs. This can
be compared to the test results for WAH compression given 100partitions which im-
plies a space consumption of 480MB. A difference was expected as we compare against
worst-case calculations. We can conclude from this that WAHcompression performs
better in practice than compared to the worst-case. Moreover, the resulting line nears an
asymptote around the expected 62 partitions.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100

Number of partitions

S
p

a
c
e

 [
M

B
] WAH

AVD+WAH

AVD

Uncompressed

Figure 25: Space consumption for indexing 10,000 songs on all bitmap representations.

50

The remaining two bitmap representations are very close as seen on Figure 25. This
indicates that WAH compression on an AVD represented distance store does not gain a
notable reduction. In fact, for 6 and 12 partitions a minor overhead is introduced. For 20
partitions and above a minor reduction is achieved. Still the space consumption seems
to be bounded as the number of partitions increased. The bound, however, is no longer
influenced by the WAH compression but instead by the chosen bases of the AVD repre-
sentation. Table 8 presents the bases chosen for the different number of partitions. These
reflects the same development with respect to databases applying AVD as illustrated in
Figure 25.

Table 8: The chosen AVD bases and the number of bitmaps required for each distinct
number of partitions.

Number of partitions Chosen AVD bases Bitmaps required

6 <3, 2> 5
12 <4, 3> 7
20 <3, 3, 3> 9
40 <4, 4, 3> 11
60 <4, 4, 4> 12
100 <4, 3, 3, 3> 13

To conclude on the space consumption, we have obtained results showing that we
are able to create an index for 10,000 songs occupying 106MB of space when applying
both WAH and AVD. The space consumption should be compared tothe size of the
digitized music, which in the case of 10,000 songs is estimated to 40GB. Considering the
space consumption per song, it increases squared as the number of songs increases. The
main reason for this is that the squared number of distances between all songs should
be maintained within the distance management. However, thespace consumption for
indexing 100,000 songs is found to be 111kB per song, which isjust 2.7% of the assumed
average song size of 4MB.

Concerning the different bitmap representations, the mostspace efficient indexing
is found to be when applying both WAH and AVD. Compared to the uncompressed
representation we gain more than a 40% space reduction with respect to vast music
collections. In general, the space reduction obtained by applying AVD is significant and
AVD is thereby an obvious choice within the distance management. Moreover, only
applying AVD we avoid the WAH compression overhead. However, the bitmaps found
within the metadata cube are then not reduced in size as it would have been the case
when applying WAH compression. Hence, the total space reduction is more optimal
applying both WAH and AVD.

To optimize the space consumption one might suggest to separate the usage of WAH
compression such that we apply WAH compression on the metadata cube and solely
AVD on the distance management. However, such a solution should be able to manage

51

and combine the diversified bitmap representations. Implementing and testing such an
approach is subject for future work.

Furthermore, we have examined the impact of the number of partitions within the
distance stores of the distance management. As explained, the more partitions chosen,
the better the distance stores are able to reflect the similarity measure applied. However,
a rather limited number of partitions might in fact not influence the quality experienced
by the subjective listener. The space consumption is found to be bounded by the chosen
bases used for the AVD representation when varying the number of partitions. Hence,
it is interesting to note, that an increase to the number of partitions only has insignifi-
cant influence on the number of bitmaps needed to represent the bases, as described in
Table 8.

7.3 Query Performance

In addition to the space experiments, we consider query performance when evaluating
queries to obtain random and similar songs, respectively. As for the space experiments
we conduct the query performance experiments on the four different bitmap representa-
tions as well as for databases indexing a different number ofsongs.

In Figure 26, the average query execution time is presented for both random and
similar songs. From the figure we can deduce that, for both types of queries, the query
execution time increase as the number of songs increases. All average query execution
times on a collection of 100,000 songs are found to be at most 60ms. In case of solely
applying WAH compression we have obtained an average query execution time at 14ms
and 21ms for querying random and similar songs, respectively. Comparing the two
types of queries the results obtained reflect each other as the number of songs indexed
increases, except that all average query execution times for a random song are a little

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000

Number of songs

Q
u

e
ry

 e
x
e

c
u

ti
o

n
 t
im

e
 [
m

s
]

(a) Random songs.

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000

Number of songs

Q
u
e
ry

 e
x
e
c
u
ti
o
n
 t

im
e
 [

m
s
]

(b) Similar songs.

WAH

AVD+WAH

AVD

Uncompressed

Figure 26: Average query execution time used to handle a request for random and sim-
ilar songs, respectively. A fixed number of 12 partitions forthe distance
stores is used.

52

faster than for the corresponding similar song query. The reason for this difference is
due to, that a random song is retrieved within a small subset of the entire collection. In
average, the bitmap representing this small subset has manyomitted 0 bits in the end.
Therefore, bit-wise operations perform faster.

Moreover, it can be seen that the two WAH compressed representations yield faster
query evaluation compared to the uncompressed representations. This was however not
expected as WAH applies an additional computation overheadwhen performing bit-wise
operations on the bitmaps as explained in Section 5.1. The reason for this is explainable
by the reduced size of the bitmaps when searching for a candidate song in partitions of
a distance store. Requesting a random song, the bitmap representing the random set of
songs chosen is small when applying WAH compression. Similarly, when requesting a
similar song, the song to return is often found by consultingonly the partitions represent-
ing the most similar songs. As stated earlier, these partitions only hold few songs, for
which reason the corresponding bitmaps are small when applying WAH compression.
Performing a bit-wise operation where one of the bitmaps in the argument is compact,
i.e., it contains few literal words, the performance is increased compared to the case of
having two large bitmaps in the argument.

All the previously presented query performance experiments was conducted having
12 distance partitions. Varying the number of partitions might influence the results. Ex-
periments to consult this issue have been conducted specifying the number of partitions
at 6, 12, 20, 40, 60 and 100. However, the results indicated aninsignificant increase in
the query execution time as the number of partitions increases. The tests were conducted
on databases indexing 10,000 songs where the maximum average query execution time
measured was 14ms for requesting a similar song given an uncompressed bitmap rep-
resentation and 100 partitions. More deviating results might have been observed when
indexing more songs in the consulted databases. However, these experiments have not
been conducted due to lack of available space in order to store the required number of
databases indexing 100,000 songs.

As the previous tests have been conducted while measuring anaverage query execu-
tion time, it is interesting to consider a worst-case query execution time. The worst-case
execution time is to be found when an additional number of songs have to be skipped,
i.e., the skipped songs are to be appended to the cached composite skip distance store.
In the case of a music player interacting with the MOD framework, the usual way to
interact would be either continuing with an unchanged collection of skipped songs or
having a single additional skipped song. On the contrary onemight imagine a music
player able to skip several songs simultaneously, which is reflected by the worst-case
query execution times presented in Figure 27. The results are the maximum query exe-
cution time when performing three independent requests, where we force generation of
the composite skip distance store for the skipped songs.

As can be seen from Figure 27 the results are linear, which reflects the expected lin-
earity of appending skipped songs to the composite skip distance store. Independent on
the chosen bitmap representation, less than 250ms is required to generate the composite
skip distance store when none or a single additional song is skipped. When skipping 100

53

0

250

500

750

1000

1250

1500

1750

2000

2250

0 20 40 60 80 100

Number of songs skipped

Q
u
e
ry

 e
x
e
c
u
ti
o
n
 t

im
e
 [

m
s
]

WAH

AVD+WAH

AVD

Uncompressed

Figure 27: Query execution time in the worst-case is considered to be equal to the case
of generating the composite skip distance store. The tests are conducted for
each of the four bitmap representation, while using 12 partitions for indexing
100,000 songs.

songs for each bitmap representation, we initially see thatthe WAH representation takes
as long as 2.1s to construct the composite skip distance store. For the same amount of
skipped songs, the AVD representation performs faster compared to the three other rep-
resentations. As we consider generation of the composite skip distance store, distance
stores for all the skipped songs should be retrieved from thedatabase. Using an AVD
representation of the distance stores, fewer records should be fetched, which explains
the improved query performance. However, applying both AVDand WAH compression
no reduction is achieved. The reason for this is that, when applying WAH compression
we introduce an overhead in execution time when accessing the partitions of the distance
store as they are represented by AVD.

The previous tests consider the query performance for single requests. However, the
MOD framework is not limited to a single-user environment, as it may be used in a server
setup. In the following we conduct a throughput test to examine how many requests the
MOD framework is able to handle over time, when a different number of songs are
indexed. To conduct the tests we create multiplerequest threads, which simulates music
players, including history management, restriction and handling of skipped songs. As for
all of the other tests performed, we restrict the collectionto 75% of the available songs
and specify 50 randomly skipped songs. The request threads performs both random and
similar requests, switching between performing 20 random requests and 20 requests of
similar songs for a single seed song. The tests are conductedby instantiating 50 threads,
where one half starts by requesting similar songs, while therest starts by requesting
random songs.

In Figure 28 the results obtained by execution of the throughput test are presented.
The results have been obtained running both the SQL Server and all request threads on

54

0

50

100

150

200

250

300

350

400
0

1
5

3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

1
5
0

1
6
5

1
8
0

1
9
5

2
1
0

2
2
5

2
4
0

2
5
5

2
7
0

2
8
5

3
0
0

Time [s]

N
u
m

b
e
r

o
f
re

q
u
e
s
ts

 p
e
rf

o
rm

e
d
 e

a
c
h
 s

e
c
o
n
d

(a) Neither AVD nor WAH are ap-
plied.

0

50

100

150

200

250

300

350

400

0

1
5

3
0

4
5

6
0

7
5

9
0

1
0
5

1
2
0

1
3
5

1
5
0

1
6
5

1
8
0

1
9
5

2
1
0

2
2
5

2
4
0

2
5
5

2
7
0

2
8
5

3
0
0

Time [s]

N
u
m

b
e
r

o
f
re

q
u
e
s
ts

 p
e
rf

o
rm

e
d
 e

a
c
h
 s

e
c
o
n
d

(b) Both AVD and WAH are applied.

10000 songs

50000 songs

100000 songs

Figure 28: The number of requests accomplished per second, where 50 threads contin-
uously perform both random and similar requests.

a single machine, as specified earlier. The graphs indicatesthat, for all the test setups,
no requests are served in the beginning of the conducted tests. In addition, some time
elapses until the number of requests served stabilize. The reason for this behavior is that
the composite skip distance stores are generated during thefirst requests.

Figure 28(a) presents the results when applying neither AVDnor WAH. In this case
we are able to serve around 300, 150 and 25 requests per secondfor indexing 10,000,
50,000 and 100,000 songs, respectively. As expected from the previous results obtained,
the performance decreases when the number of indexed songs increases. When applying
both AVD and WAH we have obtained the results presented in Figure 28(b). With respect
to 10,000 songs we see that AVD and WAH does not increase the number of request the
MOD framework can handle. However, having more songs we observe an increase. For
50,000 and 100,000 songs we are able to handle around 175 and 100 requests per second,
respectively.

Assuming an average request frequency for each listener, the number of requests
per second can be turned into a the number of users that can be served simultaneously.
Moreover, assuming an average duration of three minutes persong, the average request
frequency of a listener can be assumed to be once every three minutes.

Assuming an average duration of three minutes per song, the average request fre-
quency of a listener can be set to once every three minutes. Hence, converted into sec-
onds the frequency is5.56 · 10−3 request per second. Thereby, serving 100 requests
per second can be deduced to correspond to approximately 18,000 simultaneous listen-
ers. Indeed, considering the test setup with respect to hardware limitations, the obtained
results seems very promising.

55

To conclude on the performance tests we have found that the databases applying
WAH compression are the fastest to perform both random and similar queries. Using
solely WAH compression we have obtained an average query execution time of 14ms
and 21ms for requesting a random and similar songs, respectively on a database indexing
100,000 songs. Additionally, applying AVD for the distancestores a minor overhead is
introduced, now having average query execution times of 14ms and 23ms, respectively.

Moreover, concerning the amount of partitions specified we have found that query
execution time seams only to be influenced insignificantly asthe number of partitions
increases. These tests have only been conducted using 10,000 songs, for which reason
other results may be found from databases indexing 100,000 songs.

Concerning the performed throughput test we have found thatthe MOD framework
configured to use both AVD and WAH, is able to support 18,000 simultaneous users
running on a regular laptop, when 100,000 songs are indexed.

Finally, with respect to both the space consumption and performance experiments
we are able to conclude that applying both AVD and WAH compression provides the
best tradeoff between the space consumption and the averagequery execution time. As-
suming 12 partitions we are to index 100,000 songs using 10.6GB of space and perform
queries of a random and similar song in 14ms and 23ms, respectively. We believe this is
sufficient to support most applications using the MOD framework.

8 Conclusion and Future Work

To ensure efficient navigation within vast music collections, we have presented and eval-
uated theMusic On Demand frameworkcapable of supporting retrieval of songs in a con-
tinuous stream. The listener can retrieve either randomly chosen songs or songs similar
to a given seed song. Furthermore, the listener is able to influence the stream dynami-
cally, by skipping disliked songs or by restricting the collection by combining metadata
attributes such that only desired songs are subject for retrieval. In addition, the listener
can specify new collections representing a subset of the entire collection, which may be
used for restriction purposes.

We have constructed a generic music data model and query operators, where a com-
bination of both the metadata of music and the musical content of songs is included. In
this context, songs may be retrieved with respect to their metadata and/or their content
based similarity.

In order to ensure efficient retrieval of songs from a vast music collection, we have
applied bitmap indices to index the metadata of music. The bitmaps for this purpose are
maintained in a multidimensional cube mapped to a snowflake schema in an RDBMS.

Due to the fact that musical similarity is a subjective matter, there exist no unique
correct answer as to whether two distinct songs are considered similar. Thus, we have ap-
plied bitmap indices to represent groupings of similar songs with respect to a base song.
Based on that we are able to identify and retrieve similar/dissimilar songs efficiently us-
ing bit-wise operations on the bitmaps. We believe to be the first to use bitmap indexing

56

techniques to facilitate retrieval and restriction queries in vast music collections, which
combines the metadata and the content based similarity of music.

To reduce space consumption we have applied the Word-Aligned Hybrid compres-
sion scheme in order to compress bitmaps. In addition, we have examined the use of
the Attribute Value Decomposition technique applied on thebitmap indices within the
distance management. Experiments have shown that Attribute Value Decomposition
should be applied in the MOD framework as the technique reduces the space consump-
tion significantly at the cost of only a small decrease of the query performance. When
considering both space consumption and query performance,the best test results were
obtained having the framework configured to use both the Word-Aligned Hybrid com-
pression scheme and Attribute Value Decomposition. Indexing 100,000 songs, 10.6GB
of space is occupied, while querying of randomly chosen songs and similar songs are
performed at an average of 14ms and 23ms for each song, respectively. In addition, the
MOD framework may be used in a server setup, where a single instance serves multiple
music players. A throughput test on 100,000 songs, indicates that the MOD framework
running on a standard laptop is able to serve 18,000 simultaneous users. Indeed, consid-
ering the test setup with respect to hardware limitations, the obtained results seems very
promising.

As future work, we address the use of the Word-Aligned Hybridbitmap representa-
tion in order to optimize to the performance of the MOD framework. Based on the test
results, a significant reduction of the space occupied by themetadata of music was ob-
served when Word-Aligned Hybrid compression was applied. However, concerning the
distance management, Word-Aligned Hybrid compression implies an overhead. For this
reason we suggest a framework which allows to apply Word-Aligned Hybrid compres-
sion on the bitmaps within the metadata cube, while omittingit from the bitmaps within
the distance management. Such an extension should enable support for combining both
types of bitmaps within the bit-wise bitmap operations.

With respect to the costs found from the algorithms used to perform query evalua-
tion, we observe that the operations are bounded by the bit-wise operations. In case that
numerous bitmaps are to be combined using regular bit-wise operations,lazyimplemen-
tations of the Word-Aligned Hybrid compressed bitmap operations could increase the
overall performance of the algorithms. Hence, rather than generating several intermedi-
ate results, the full result is generated and returned only when required. Thus, instead
of instantly performing several bit-wise operation in order to obtain the intermediate re-
sults, the bitmaps are to be stored in a special structure delaying the combination until
the result is required. Hence, special multi bitmap bit-wise operations may consult all
the bitmaps in parallel when deducing the result and therebyincrease the performance.

By applying the similarity measure from the Intelligent Sound Processing toolbox
R1 to calculate the distances between any two songs, we were able to supply satisfactory
results for both finding similar songs and avoiding retrieval of songs similar to skipped
songs. Moreover, as we apply the MOD framework we are able to answer fast. Finally
to conclude, we believe that the MOD framework provides efficient retrieval of music
within vast music collections.

57

Acknowledgment

We would like to thank the authors of the Intelligent Sound Processing toolbox R1 for
providing the similarity measure algorithm we have used within the project. In addition,
we would like to thank the Intelligent Sound project for giving us the oppotunity to
present our work in progress on the 2nd Intelligent Sound workshop, Sæby 2006.

References

[AKS02] A.Silberschatz, H.F. Korth, and S. Sudershan.Database System Concepts.
McGraw-Hill, Inc., 2002. ISBN 0-07-120489-x.

[AP02] J. Aucouturier and F. Pachet. Music Similarity Measures: What’s the Use?
In Proceedings of the 3rd International Conference on Music Information
Retrieval, pp. 157–163, 2002.

[BT90] S. H. Boutcher and M. Trenske. The Effects of Sensory Deprivation and
Music on Perceived Exertion and Affect During Exercise.Journal of Sport
and Exercise Psychology, 12(2):167–176, 1990.

[CI98] C. Y. Chan and Y. E. Ioannidis. Bitmap Index Design andEvaluation. In
Proceedings of the 1998 ACM SIGMOD International Conference on Man-
agement of Data, pp. 355–366, 1998.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. InProceedings of the 23rd International
Conference on Very Large Data Bases, pp. 426–435, 1997.

[DN05] C. Digout and M. A. Nascimento. High-Dimensional Similarity Searches
Using A Metric Pseudo-Grid. InProceedings of the 21st International Con-
ference on Data Engineering Workshops, pp. 1174–1183, 2005.

[ID305] ID3v2. ID3v2 - The audience is informed, 2005.

http://www.id3.org (Seen June 4th, 2006).

[Int06a] Intelligent Sound Project. Intelligent Sound – A research project on search
in sound files, 2006.

http://www.intelligentsound.org (Seen May 26th, 2006).

[Int06b] Intelligent Sound Project. Intelligent Sound – Home of the MATLAB tool-
box, 2006.

http://isound.kom.auc.dk (Seen June 4th, 2006).

58

[JMS05] C. Jensen, E. Mungure, and K. Sørensen. A Foundationfor Playlist Genera-
tion based on Musical Content., 2005. DAT 5 project at Aalborg University.

https://www.cs.aau.dk/library/files/rapbibfiles1/1137101143.pdf
(Seen May 26th, 2006).

[Joh99] T. Johnson. Performance Measurements of Compressed Bitmap Indices. In
Proceedings of the 25th International Conference on Very Large Data Bases,
pp. 278–289, 1999.

[JPH00] J. R. Deller Jr., J. G. Proakis, and J. H. Hansen.Discrete-Time Processing of
Speech Signals.IEEE Press, 2nd edition, 2000. ISBN 0-7803-5386-2.

[KR02] R. Kimball and M. Ross.The Data Warehouse Toolkit: The Complete Guide
to Dimensional Modeling. John Wiley & Sons, Inc., 2002. ISBN 0-471-
20024-7.

[KRT+98] R. Kimball, L. Reeves, W. Thornthwaite, M. Ross, and W. Thornwaite.The
Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Develop-
ing and Deploying Data Warehouses. John Wiley & Sons, Inc., 1998. ISBN
0-471-25547-5.

[LS01] B. Logan and A. Salomon. A Music Similarity Function based on Signal
Analysis. InProceedings of IEEE International Conference on Multimedia
and Expo, pp. 745–748, 2001.

[Lüb05] D. Lübbers. SoniXplorer: Combining Visualizationand Auralization for
Content-Based Exploration of Music Collections. InProceedings of the
6th International Conference on Music Information Retrieval, pp. 590–593,
2005.

[Mas86] P. M. Maslar. The Structural Components of Music Perception: A Functional
Anatomical Study.The Arts in Psychotherapy, 13(3):215–219, 1986.

[ME05] M. Mandel and D. Ellis. Song-Level Features and SVMS for Music Classifi-
cation.Presented at the 2nd Annual Music Information Retrieval Evaluation
eXchange, 2005.

http://www.music-ir.org/evaluation/mirex-results/articles/audio_genre/
mandel.pdf (Seen June 11th, 2006).

[NDR05] R. Neumayer, M. Dittenbach, and A. Rauber. PlaySOM and PocketSOM-
Player, Alternative Interfaces to Large Music Collections. In Proceedings of
the 6th International Conference on Music Information Retrieval, pp. 618–
623, 2005.

59

[OG95] P. O’Neil and G. Graefe. Multi-table joins through bitmapped join indices.
ACM SIGMOD Record, 24(3):8–11, 1995.

[OQ97] P. O’Neil and D. Quass. Improved Query Performance with Variant In-
dexes. InProceedings of the 1997 ACM SIGMOD International Conference
on Management of Data, pp. 38–49, 1997.

[Pam05] E. Pampalk. Speeding up Music Similarity.Presented at the 2nd Annual
Music Information Retrieval Evaluation eXchange, 2005.

http://www.music-ir.org/evaluation/mirex-results/articles/audio_genre/
pampalk.pdf (Seen June 11th, 2006).

[Pan06] Pandora Media, Inc. Music Genome ProjectTM, 2006.

http://www.pandora.com/mgp.shtml (Seen May 26th, 2006).

[PFW05] E. Pampalk, A. Flexer, and G. Widmer. Improvements of Audio-Based Mu-
sic Similarity and Genre Classification. InProceedings of the 6th Interna-
tional Conference on Music Information Retrieval, pp. 628–633, 2005.

[PJ05] T. B. Pedersen and C. S. Jensen. Multidimensional Databases. InThe Indus-
trial Information Technology Handbook, pp. 1–13, Chapter 12. CRC Press,
2005. ISBN 0-8493-1985-4.

[PJD99] Torben Bach Pedersen, Christian S. Jensen, and Curtis E. Dyreson. Extend-
ing Practical Pre-Aggegation in On-Line Analytical Processing. InProceed-
ings of the 25th International Conference on Very Large DataBases, pp.
663–674, 1999.

[PPW05] E. Pampalk, T. Pohle, and G. Widmer. Dynamic Playlist Generation Based
on Skipping Behavior. InProceedings of the 6th International Conference
on Music Information Retrieval, pp. 634–637, 2005.

[PRP02] D. Pedersen, K. Riis, and T. B. Pedersen. A Powerful and SQL-compatible
Data Model and Query Language for OLAP. InProceedings of the 13th
Australasian Conference on Database Technologies, pp. 121–130, 2002.

[RTG00] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval.International Journal of Computer Vision, 40
(2):99–121, 2000.

[SDHS00] K. Stockinger, D. Düllmann, W. Hoschek, and E. Schikuta. Improving the
Performance of High-Energy Physics Analysis through Bitmap Indices. In
Proceedings of the 11th International Conference on Database and Expert
Systems Applications, pp. 835–845, 2000.

60

[SS02] P. Salembier and T. Sikora.Introduction to MPEG-7: Multimedia Content
Description Interface. John Wiley & Sons, Inc., 2002. ISBN 0-471-48678-7.

[Tho97] E. Thomsen.OLAP Solutions: Building Multidimensional Information Sys-
tems.John Wiley & Sons, Inc., 1997. ISBN 0-471-14931-4.

[TLL +04] G. Tenenbaum, R. Lidor, N. Lavyan, K. Morrow, S. Tonnel, A. Gershgoren,
J.Meis, and M. Johnson. The Effect of Music Type on Running Perseverance
and Coping with Effort Sensations.Psychology of Sport and Exercise, 5(2):
89–109, 2004.

[WOS06] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing BitmapIndices With Ef-
ficient Compression.ACM Transactions on Database Systems, 31(1):1–38,
2006.

[WOSN] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg. Notes on Design and
Implementation of Compressed Bit Vectors. Technical Report LBNL/PUB-
3161, Lawrence Berkeley National Laboratory

http://crd.lbl.gov/̃ kewu/ps/PUB-3161.pdf (Seen June 5th, 2006).

[xip05] xiph.org. Ogg Vorbis Documentation, 2005.

http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html (Seen June 5th, 2006).

61

A Database Table Definitions

This appendix contains database table definitions for the database tables managed by the
MOD framework. All the definitions are presented by SQL Server DDL (Data Definition
Language) commands, which are used to create the tables. In the following, these are
presented separately for the metadata cube and the distancemanagement.

Metadata Cube
The DDL commands are presented separately for each metadatadimension specified.

Album Dimension

CREATE TABLE Album (
ID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Album varchar(50) COLLATE Danish_Norwegian_CS_AS NOT NULL,
Bitmap image NULL

)

Artist Dimension

CREATE TABLE Artist (
ID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Artist varchar(50) COLLATE Danish_Norwegian_CS_AS NOT NULL,
Bitmap image NULL

)

Filename Dimension

CREATE TABLE Filename (
ID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Filename varchar(512) COLLATE Danish_Norwegian_CS_AS NOT NULL,
Bitmap image NULL

)

Genre Dimension

CREATE TABLE Genre (
ID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Genre varchar(50) COLLATE Danish_Norwegian_CS_AS NOT NULL,
Bitmap image NULL

)

CREATE TABLE Subgenre (
ID int INDENTITY(1,1) PRIMARY KEY NONCLUSTERED NOT NULL,
Subgenre varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
Genre int NOT NULL,
Bitmap image NULL,
CONSTRAINT FK_Subgenre_Genre FOREIGN KEY (Genre) REFERENCES Genre(ID)

)
CREATE CLUSTERED INDEX IX_Subgenre ON Subgenre(Genre)

62

Release Dimension

CREATE TABLE Century (
ID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Century varchar(50) COLLATE Danish_Norwegian_CS_AS NOT NULL,
Bitmap image NULL

)

CREATE TABLE Decade (
ID int INDENTITY(1,1) PRIMARY KEY NONCLUSTERED NOT NULL,
Decade varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
Century int NOT NULL,
Bitmap image NULL,
CONSTRAINT FK_Decade_Century FOREIGN KEY (Century)

REFERENCES Century(ID)
)
CREATE CLUSTERED INDEX IX_Decade ON Decade(Century)

CREATE TABLE Year (
ID int INDENTITY(1,1) PRIMARY KEY NONCLUSTERED NOT NULL,
Year varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
Decade int NOT NULL,
Bitmap image NULL,
CONSTRAINT FK_Year_Decade FOREIGN KEY (Decade) REFERENCES Decade(ID)

)
CREATE CLUSTERED INDEX IX_Year ON Year(Decade)

Title Dimension

CREATE TABLE Title (
ID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Title varchar(512) COLLATE Danish_Norwegian_CS_AS NOT NULL,
Bitmap image NULL

)

Cube Management

CREATE TABLE Dimension (
DimID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Name varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL

)

CREATE TABLE Hierarchy (
DimID int NOT NULL,
Name varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
SuperName varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
LevelDepth tinyint NOT NULL,
CONSTRAINT FK_Hierarchy_Dimension FOREIGN KEY (DimID)

REFERENCES Dimension(DimID)
)
CREATE CLUSTERED INDEX IX_Hierarchy ON Hierarchy(DimID)

63

CREATE TABLE UserDimension (
DimID int IDENTITY(1,1) PRIMARY KEY CLUSTERED NOT NULL,
Name varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
UserId int NOT NULL

)

CREATE TABLE UserHierarchy (
DimID int NOT NULL,
Name varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
SuperName varchar(50) COLLATE Danish_Norwegian_CI_AS NOT NULL,
LevelDepth tinyint NOT NULL,
CONSTRAINT FK_UserHierarchy_UserDimension FOREIGN KEY (DimID)

REFERENCES UserDimension(DimID)
)
CREATE CLUSTERED INDEX IX_UserHierarchy ON UserHierarchy(DimID)

Distance Management
CREATE TABLE Distance (

RefSongPosition int PRIMARY KEY CLUSTERED NOT NULL,
Bitmap image NULL

)

64

B Music On Demand API

This section outlines the functionalities provided by the MOD API. The functionalities
provide the possibility to retrieve songs, manage user dimensions and browse through
the entire collection using metadata. In addition, it is also possible to insert songs into
the framework and close the database connection. The MOD APIis presented in the
following as Java methods together with the JavaDoc documentation.

public interface MODAPI {

/******************************* Song Retrieval ************************************/

/**
* Finds and returns a random song. The song returned is neither in the

* list of skipped songs nor similar to any of the skipped songs.

*
* @param collection as a bitmap presenting songs in the restricted music collection.

* @param history as a bitmap presenting songs recently played which are

* not subjected for retrieval.

* @param skiplist as a bitmap presenting songs that are currently skipped.

* @param quality stating the number of candidate songs to be found.

* @param userid identifies the music player application.

* @return a bitmap containing one 1 bit for the randomly chosen song from the

* collection.

* @throws EmpytBitmapException if there was no available song to return.

*/
public int[] getRandomSong(int[] collection, int[] history, int[] skiplist,

int quality, int userid) throws EmptyBitmapException;

/**
* Finds and returns a song similar to the given seed song. The song

* returned is neither in the list of skipped songs nor similar to any of the

* skipped songs.

*
* @param collection as a bitmap presenting songs in the restricted music collection.

* @param history as a bitmap presenting songs recently played which are

* not subjected for retrieval.

* @param skiplist as a bitmap presenting songs that are currently skipped.

* @param seedSong as a position of a song for which a similar song should be

* retrieved.

* @param userid identifies the music player application.

* @return a bitmap containing one 1 bit for the chosen song that is similar to the

* seed song.

* @throws EmpyBitmapException if there was no available song similar to the

* seed song.

*/
public int[] getSimilarSong(int[] collection, int[] history, int[] skiplist,

int seedSong, int userid) throws EmptyBitmapException;

65

/************************* User Dimensions Management ******************************/

/**
* Creates a user dimension and its hierarchies.

*
* @param dimName the name of the dimension table to be created.

* @param dimensionHierarchy the levels to be created as dimension tables.

* @param userID the id of the user who owns the dimension.

* @throws Exception if an invalid dimension hierarchy specified.

*/
public void createDimension(String dimName, String[][] dimensionHierarchy,

int userID) throws Exception;

/**
* Inserts a song into a user collection. If the collection does not exist, a new

* is created.

*
* @param songInfoToInsert indentifies the user collection of where the song

* should be inserted.

* @param bitmapSongToInsert song to be inserted presented as a bitmap having one

* 1 bit.

* @param userID identifies the music player application.

*/
public void insertSongInUserDimension(Song songInfoToInsert,

int[] bitmapSongToInsert, int userID);

/**
* Deletes users level in a database.

*
* @param levelName name of the level to be deleted.

*/
public void deleteLevel(String levelName);

/**
* Deletes a user collection.

*
* @param levelName the level name where the collection is to be deleted from.

* @param collection a user collection to be deleted.

*/
public void deleteCollection(String levelName, String collection);

/**
* Deletes a song in a users defined collection.

*
* @param levelName to identify a user collection.

* @param collectionName name of a collection of songs, from where the song is

* to be deleted.

* @param bitmapTodelete bitmap containing one 1 bit representing the song to

* be deleted.

*/
public void deleteSongFromCollection(String levelName, String collectionName,

int[] bitmapTodelete);

66

/**************************** Browsing management ***********************************/

/**
* Fetches all the available dimensions for the given user in a database.

*
* @param userID identifies the user.

* @return SongDimensionInfo which represents all dimensions and

* all user dimensions related to the userID

*/
public SongDimensionInfo[] getAvailableDimensions(int userID);

/**
* Fetches the sub dimension values for a given level.

*
* @param songDimInfo identifies the level to fetch sub values from.

* @return a SongDimenensionInfo containing the sub dimension values.

* @throws Exception if more than a single level was specified.

*/
public SongDimensionInfo getSubItems(SongDimensionInfo songDimInfo) throws Exception;

/**
* Returns a full collection presented as a bitmap where all bits are set to 1.

*
* @return full set bitmap.

*/
public int[] getFullCollection();

/**
* Fetches song information.

*
* @param bitmap representing the song to fetch information.

* @param dimensions a number of dimensions from where song information are to be

* fetched.

* @return song containing the information requested.

*/
public Song getInfo(int[] bitmap, String[] dimensions);

/********************* Song insertion and closing of connection *********************/

/**
* Inserts a number of songs and all their corresponding metadata into a database.

*
* @param songToInsert a number of songs to be inserted.

*/
public void insertSong(Song[] songToInsert);

/**
* Closes the connection to the database safely.

*/
public void close();

}

67

