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Abstract
In this paper we present a framework for implementing simi-
larity query enabled multimedia systems on top of a Relational
Database. Focus is on flexibility and different implementations
of the components of the framework are proposed. Special fo-
cus is put on the index structure M-Grid which can be used
in the framework.Formal description, Design, implementation
and optimizations of the M-Grid is described and evaluated.
Evaluation of the framework proves the flexibility and robust-
ness, and that it is a suitable platform for both test systems and
real-world implementations – which is also further supported
by different case study implementations.
Keywords: Algebra, Music, Similarity, Flexibility, Multi-
dimensional, M-Grid, JDO, Framework.
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Chapter 1

Introduction

1.1 Motivation
In recent years, audio music listeners around the world
have moved from being CD buyers to a more buy-what-
you-like approach, where audio music is bought track-
wise rather than as a compilation. At the same time our
audio music collections (commercially and private) have
grown increasingly every day, and with no ”albums” to
organize by, the task of organizing the audio music can
often become tiresome.

The listening patterns have also changed from listen-
ing to single albums to now where the listeners combine
songs in a playlist according to different factors instead
– e.g., mood, artist, genre, and tempo.

Both of these changes yield a new approach for or-
ganizing the audio music and generating playlists. One
approach is to look more on the actual content of the
audio music. Her it is possible to find specific charac-
teristics about the music – its features – and use these to
both organize by and query the audio music collection
with. An example could be audio music organized by
the beat of the song. The user could then query the au-
dio music collection for songs with the same beat (songs
having similar feature data for the beat), and from this,
get a playlist that is similar to this particular beat feature.

With this project we have addressed some of the prob-
lems surrounding the changes needed in order to set up
a system that support indexing of audio music with re-
spect to its features. The system should also support
queries for similarity according to one or more features
of the audio music – Hence make it possible to generate
playlists.

We handle this problem by implementing a modular
framework, that can ease the task of implementing and
test a system supporting these tasks.

The framework is based on the Intelligent Sound Al-
gebra (ISA) [1] which is a similarity query enabled al-

gebra for audio music databases.
We call the project “A MUSIQUE Framework”, which

is short for “Audio MUsic SImilarity QUEry Frame-
work”.

1.2 Audio Music Queries
The recent changes to the way people organize their au-
dio music and the way they look at the audio music to
generate playlists has led to other ways of querying an
audio music collection.

A playlist is a convenient method for ordering audio
music a user wants to listen to. The songs in the playlist
are mostly played in a sequential order and therefore the
ordering has great impact on the listening experience —
e.g., a heavy metal song between two or more pieces
of classical music would disturb the relaxation of the
listener. Often a music listener selects the audio music
according to his mood.

This presents some interesting queries the user could
perform in order to get a playlist he likes. We will focus
on three specific query types: Range queries, Nearest
Neighbor (kNN) queries, and Transition queries.

If the user is in the mood for some classical rock and
loves the song “Hotel California” by The Eagles, he
could consider performing a range query like:

Give me all songs that are X similar to Y

where X is the precision of similarity (in the range
[most similar ; least similar]) and Y is “Hotel Califor-
nia”. If he sets the X value to a too high precision he
might not get more than one or two songs in his playlist.
To circumvent this, he could then either loosen his preci-
sion value or he could consider performing a kNN query
like:

Give me the k songs that are most similar to Y
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This would return k songs that are “the most similar”
to the song Y.

Maybe the user already has a playlist full of songs.
The songs are however in a random order, which could
again disturb the listening experience. Therefore the
user may wish to order the songs in a manner such that
the transition between the songs is as smooth as possi-
ble. A transition query for this could be like:

Give me a transition between songs in the playlist D

Other transition queries could be derived from this,
if the user wants to have further control over the final
playlist. This could for instance be:

◦ having a specific start and/or end song in the
playlist.

◦ having a smooth transition in only a part of the
playlist.

◦ having a specific number of songs in the final
playlist.

While listening to the songs in a playlist the user may
bump into songs that he does not like. Therefore he
might want to update the playlist to exclude songs being
similar to the specific song that he did not like. The
query for that could be made from a combination of a
Difference operation and a Range query and could be
described with:

Remove all songs from the current playlist that are X
similar to Y

All of these queries could be interesting for the user to
perform, when working with his audio music collection,
but today this is not a possibility in any system to our
knowledge.

1.3 Prerequisites
In order to build a framework for similarity queries,
there is a minimum number of areas that needs to be
covered in order to make it acceptable. Some of the
requirements are absolutely necessary, while others are
just to optimize performance and get an optimal user ex-
perience with the system.

The following requirements are all necessary to get a
similarity system to work:

Good Features Without good features extracted from
the audio music, the system will never work. The
feature data is the fingerprint for a song and with-
out a “good” fingerprint, the system will not be
able to find similar songs.

Good Distance Function When working with songs of
variable length and with a dynamic content, it is
of severe importance that a good distance function
is present. The distance function is the final step
when measuring how similar two songs are.
A choice has to be made when it comes to the dis-
tance function. Should we adapt the songs to a
fixed length for direct distance measure or should
the distance function adapt the song dynamically.

Support for High-Dimensional Data When it comes
to feature data from audio music files, it is typi-
cally high-dimensional. There can be done a lot to
reduce the number of dimensions, but in the end it
is still either of a quite high number of dimensions
or useless due to approximations.
This means that the system has to be able to han-
dle high-dimensional data in order to work cor-
rectly with all types of feature data.

Besides the above requirements, there are the follow-
ing good-to-have performance requirement:

Fast Index Structure There are often large amounts of
feature data and traversing it for similar songs is
often a tedious task. An index structure for the
data can help speeding up similarity queries.

1.4 Contributions
The contributions of this project can be grouped into the
following parts:

Core System A JavaTM implementation of a middle-
ware that includes what is needed to support the
new way of indexing and querying by feature
data. The middleware is a modular framework and
includes a query server (including a query lan-
guage), a query processor, an index structure, and
a Data Mapper that maps an Object-Relational
Mapping (O/RM) of the data objects to the Un-
derlying Relational DataBase Management Sys-
tem (RDBMS). Focus is on designing and imple-
menting a flexible system, and not on finding and
testing different audio music features – hence the
choice of features to use is left open to the user of
the system.

Index Structure To explore the problems surrounding
indexing high-dimensional feature data, a JavaTM

implementation of the M-Grid [2] index structure
is conducted. The implementation is constructed
to be part of the XXL [3] framework, and flexibil-
ity is of severe importance in order do evaluations
of the system.
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Case Studies Two case studies on how the core system
can be used, has been explored by implementation
and evaluation. The first case is an on-line Web-
Player which is a proof-of-concept implementa-
tion of a client for the core system. The Web-
Player showcases all the features that the core sys-
tem offers to its clients. The second case is an
on-line music shop that sells audio music by the
track. The music shop is meant as a real-world
example of how the core system could be used in
already existing systems.

Evaluation A thorough evaluation of the implemented
parts is conducted to determine positive sides and
drawbacks of the flexibility in the system. Differ-
ent implementations of the changeable parts are
tested to see if a pattern can be found in the result.

1.5 Related Work
In this section we will look at three groups of related
work. The first is about implementation of frameworks
and similarity enabled systems. The second is about M-
Grid and related index structures, and finally, the last
group is about algebras and similarity query enabled al-
gebras in particular.

Framework construction is a common way to imple-
ment a system with flexibility in focus. Since we use
JavaTM for our implementation, a project worth men-
tioning is the XXL Framework [3] which implements
several different indexing structures (trees) and methods
to handle disk I/O. The structure used in XXL for its in-
dexing structures is copied in our implementation of the
M-Grid – and the M-Grid is hereby possible to use as
part of XXL.

In the area of implementing frameworks that supports
similarity queries in databases there has however (to
our knowledge) not been done any work besides ours.
Projects like the Cuidado Project [4] has developed a
framework to work with similarity queries in audio mu-
sic, but their primary focus is on the descriptors for the
feature data. Our framework is based on database theory
and does not deal with feature extraction so, the Cuidado
framework does not cover the same area of tasks as ours.

Uitdenbgerd et al. [5] presented in 1999 a framework
that performs audio music similarity matching in three
steps. This framework is used to compare a range of
techniques for determining the similarity of two pieces
of audio music. The framework does however rely on

midi-based music files and the ability to fetch transcrip-
tions from these. Since our framework relies only on the
extracted feature data and not the audio music files and
not midi music files, this approach would not be suffi-
cient for our needs.

Seeing our middleware as a complete system that
serves some client application with the ability to do sim-
ilarity queries, it comes very close to the system devel-
oped by Welsh et al. [6]. Their database in the system
is however implemented by the use of flat-files and to
calculate the distances they use a brute-force approach.
They have, as us, implemented a client for the system to
test it with real-world users.

M-Grid is the index structure we have chosen to fo-
cus on in our project. Digout introduces the M-Grid for
the first time in his thesis [7] and later in a technical
paper [2]. The M-Grid distinguishes itself from other
similar index structures by being able to handle met-
ric data and not just vector data, which its close relative
VA-File only can handle [8]. Both the VA-File and the
M-Grid uses pivot points to form a pseudo-grid to split
the space (vector and metric) into cells to represent the
high-dimensional data in lower dimensions. The con-
cept of using pivot points for proximity searches in met-
ric spaces have earlier been covered by Bustos et al [9].

In Digouts work, some questions and problems (like
“full coverage”) are, however, left unanswered, and we
have therefore elaborated on these in our work. Some
of the problems lack a formal description so this is also
given in this paper.

Algebras for audio music and audio music similar-
ity queries in particular is not a research area that has
been studied a lot. Bonatti et al. [10] constructed an ex-
tension to Relational Algebra (RA) to support similarity
queries. They investigated different approaches for the
operators. Some of their operator ideas are quite similar
to the ones in the Intelligent Sound Algebra (ISA) [1],
but the data structure they work on is normal relations
and not like the nested Dataset structure we have pre-
sented. Earlier work by Kosch et al. [11] researched in
implementing a similarity based algebra for multimedia
databases. Their work did, in contrast, only focus on
image files and not audio music. The features that can
be extracted from images can be seen as the feature for
a single sampling period of an audio music file. In our
case we do however have several sequences of features
of non-equal length for each song and the vast amount
of data this produces introduces some new problems that
Kosch did not foresee.
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1.6 Paper Outline
The rest of this paper is structured as follows:

Chapter 2 introduces the architecture of our core sys-
tem by describing the main parts: Query Processor,
Query Server and Index structure.

How the system will work with multiple features in
similarity queries is further described in details in Chap-
ter 3.

In Chapter 4 the index structure — M-Grid — is de-
scribed in details and the implementation design is rea-
soned for.

In Chapter 5 and 6 the project is evaluated – First by
looking at some case studies, and then by doing a formal
test and evaluation.

Finally in Chapter 7 we give a summary of the project
and elaborate on future work. In the back there is Ap-
pendices describing parts of the system suite and the
work-flow when using them, known issues and the con-
figuration files used for the system.
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Chapter 2

Architecture

2.1 Overview

In this chapter we will go through the main components
of the architecture of our middleware. An overview of
the components is shown in Figure 2.1. In the figure,
components marked with a * are changeable (also ap-
plies to Figures 2.2 and 2.4). Some components consist
of several sub-components which are considered impor-
tant parts of the main component. Each component is
described and argued for in this chapter, and the tech-
nologies used in them are listed.

In short, the setup is constructed as a middleware on
top op an RDBMS that function as persistent storage
for the object data. To handle the Object-Relational
Mapping (O/RM) between the Query Processor and the
RDBMS, the Data Mapper component is inserted. Sec-
tion 2.2 has a further description of the functionality of
the Data Mapper and describes how it is used to trans-
late between the ISA data model and relations in the
RDBMS.

The central part is the Query Processor component
which handles evaluation of queries formed as trees of
nested ISA operators. The Query Processor is further
described in Section 2.3.

Queries from clients are received in the Query Server
component, which is described in Section 2.4. The
queries are expressed in a query language – XQL –
which we have developed for this particular purpose.

The index structure is a component of its own. In Sec-
tion 2.5 and later in Chapter 4 we describe the require-
ments there is to the index structure, and how we imple-
mented them.

Query Server

Query Processor

Data Mapper
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Resultset

Figure 2.1: Overview of the main components in the
architecture. Components marked with a *
are changeable, and alternative implemen-
tations of the component can be inserted in-
stead.
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2.2 Data Mapper

In previous work [1] we introduced a new data model
with a main data structure, the Dataset (visualized in
the top of Figure 2.3), able to hold a set of Dataobjects
(songs) each having some metadata and an amount of
multi-dimensional feature data (collected in the Feature
Sequence Set (FSS) part). The data model is used in the
Query Server and Query Processor modules.

To facilitate persistence of the model, so it is not nec-
essary to store all data in main memory, we introduce
the component Data Mapper. This component provides
an abstraction over the data model, so that the persis-
tent storage handling is hidden from other components.
For the O/RM between the data model and the persistent
storage, Java Data Objects (JDO) [12] is used, which
is a specification for the JavaTM programming language
for handling persistence of objects. It has been chosen
to use the RDBMS as storage manager, so the O/RM
is mapping the in-memory Dataobjects into tables in
the RDBMS (middle and bottom of Figure 2.3 showing
class- and E-R diagram respectively).

The usage of JDO, the actual JDO implementation,
and the RDBMS will be described in the following. The
Data Mapper and the components it consists of is shown
in Figure 2.2.

Data Mapper
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JDO impl.* (JPOX)

Model metadata*

Persistence
Manager RDBMS*

JD
B

C
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Resultset

Figure 2.2: The Data Mapper component handling
O/RM of the data model between memory
and RDBMS.
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Figure 2.3: A simplified visualization of the three steps
in the data mapping:
1) The Dataset in its original form.
2) A class representation of the Dataset.
3) An E-R diagram of the RDBMS version.
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2.2.1 Object/Relational-Mapping using JDO
A JDO implementation use JDO metadata as a schema
descriptor in order handle the O/RM. The metadata con-
tains a description of which elements of the model to
make persistent, the connection between the elements,
and which tables in an RDBMS to map the elements to.

The Java classes representing the data model are
then modified according to the metadata in order to
the make the class instances “persistence-capable.” By
persistence-capable is meant that the data in the object
can be read and stored elsewhere (e.g., in an RDBMS)
and later be restored to object state again. The data
model metadata can be defined in many different ways
in order to specify mappings to different relational
schema.However, this does not affect the Dataobjects in
the system itself.

2.2.2 The JPOX JDO Implementation
The actual JDO implementation used in this system is
Java Persistent Objects (JPOX) that supports several
RDBMSs (see next section). JPOX handles the trans-
lation from several different query languages (JDOQL,
JPOXQL, SQL) into RDBMS specific SQL.

It also tags persistent-capable objects with informa-
tion about their persistence-state. That is, whether they
have been filled with persistent data from the database
(called a detached object) or if they contain no data
(called a hollow object). The application needs to detach
an object if it wants to use the data in it. If it changes
any of the data then it needs to attach it again in order to
make the data persistent (stored in the RDBMS). The ac-
tual attaching/detaching of the objects is handled by the
JPOX component, Persistence Manager (see Figure 2.2).

2.2.3 RDBMS and JDBC
The changeable RDBMS component is a normal
RDBMS supported by the JPOX JDO implementation.
JPOX supports the following RDBMSs:

◦ PostgreSQL
◦ MySQL
◦ (Oracle)
◦ MS SQL Server
◦ SAPDB/MaxDB
◦ Cloudscape/Apache
◦ HSQL DB Engine

◦ Sybase
◦ DB2
◦ McKoi
◦ Pointbase
◦ Firebird
◦ Informix

JPOX uses a Java Database Connectivity (JDBC) [13]
driver in order to connect to the RDBMS and execute
the SQL queries generated from the O/RM. The JDBC
driver is changeable but is specific to the RDBMS used.

We have successfully tested our system with JPOX con-
necting to both PostgreSQL and MySQL. Oracle is in
parentheses because it seems that JPOX has a problem
handling the BLOB type for that RDBMS.

2.3 Query Processor
A set of operators has been defined in our previous
work [1] – the ISA operators – working on Datasets, as
mentioned in Section 2.2. A subset of these operators
are implemented and may be used to describe queries on
Datasets. These operators include the simple relational
operators: Select (σ ) and Project (π), but also the sim-
ilarity operators supporting multiple features: Range,
kNN, and Transition.

Here, we briefly describe the architectural principles
regarding the query evaluation and the nested opera-
tor structure. The Query Processor, and especially the
multi-feature support, is described in details in Chap-
ter 3. An overview of the Query Processor component is
shown in Figure 2.4.
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Figure 2.4: The Query Processor handling evaluation
of queries expressed as ISA operator trees,
using the Index structures, and the Data
Mapper component.

2.3.1 Evaluation Principles
In general the Query Processor makes use of the Data
Mapper (see Section 2.2) during query evaluation – all
the way down to the RDBMS. But in case of similarity
queries, the indices are used to do a faster evaluation of
which songs should be in the result. To handle multiple
features, several indices are used – one for each feature.
Evaluation using several indices, indexing different fea-
ture data, is not a trivial task, which is why this issue is
handled in a chapter of its own (see Chapter 3).
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Whenever Dataobjects from the input Dataset are
needed they are retrieved from the Data Mapper. The
actual handling of the retrieval is done by the Object Re-
triever (see Figure 2.4).

All query processing is done with a naive evaluation
approach, meaning that the received query is evaluated
as-is, without any query optimizations performed.
2.3.2 Operator Design
The ISA operators are implemented using inheritance.
This means that every operator inherits from a basic op-
erator having the input Dataset argument as an attribute
in terms of an operator which can be evaluated to a
Dataset (see Figure 2.5). Each of the operators defines
its specific parameters as attributes in the corresponding
class – e.g., the Range operator has a query object and a
range as attributes.

The basic operator defines an abstract compute-
method used for evaluating a Dataset. The operators
all implement this method by first calling the compute
method of the nested operators. This returns the Dataset
that defines the input to the current operator on which
further computations are performed.

AbstractOperator

+compute() : Dataset

AbstractUnaryOperator

-input: AbstractOperator

AbstractSimilarityOperator

-fdw: FeatureDistanceWeighting

RangeOperator

-queryObject: DataObject
-range: float

SelectOperator

-condition

+compute() : Dataset

+compute() : Dataset

Figure 2.5: Class diagram showing the operator design
using inheritance.

2.4 Query Server
To connect all the parts in the middleware there is a
need for a service. The Query Server works as the main
process in the middleware and handles the following:
Loading of the index structures, listening for incoming
queries from the clients, transformation of the queries
into an operator-tree to be evaluated in the Query Pro-
cessor, and transformation/delivery of the result back to
the client.

In the following these parts are described in more
detail, referring to the abstract overview of the Query
Server shown in Figure 2.6.

Query Server

X
Q

L
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la

yl
is

t

Configuration

Playlist
Generator

XQL Parser

Decorator
Index
Loader

IS
A

 o
pe

ra
to

r 
tr

ee

D
at

as
et

Index init.

com
m

ands

Figure 2.6: The Query Server component handling in-
teraction with clients, including parsing of
incoming queries and transformation of the
result into a playlist. Furthermore taking
care of loading the index structures to be
used.

2.4.1 Loading the Index Structure
The index structures to be used for query processing are
to be loaded properly before any processing can occur.
The indices to use, and with which parameters, are spec-
ified in the configuration file depicted in Figure 2.6. An
example of the configuration of the complete middle-
ware is shown in Appendix B.

2.4.2 Query Language
To be able to test the system from different client appli-
cations, we have developed a generic and simple query
language named XQL. The language is based on XML
and simply wraps around the implemented operators
from ISA. Using a container language like XML is gen-
erally not an optimal solution, since it has a lot of syn-
tax not really relevant for the actual query. However, it
is very easy to construct, extend and parse – hence very
usable for a test framework like this.

<range>
<song>

< id>1432< / id>
< / song>
<rangeval>20< / rangeval>
<order> t rue < / order>
< re f ine > f a l s e < / re f ine >
<fdws>

<fdw>
< feature >AudioSpectrumEnvelope < / feature >
<distance>Manhattan< / distance>
<weight>1.0< / weight>

< / fdw>
< / fdws>

< / range>

Figure 2.7: Example of a Range Query in XQL.
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The language syntax supports Select, Project, Range,
kNN, Transition, Insert and Delete which is enough to
test the queries described in Section 1.2.

An example of a Range query expressed in XQL can
be seen in Figure 2.7
2.4.3 Query Parsing
The Query Server uses the library XStream [14] to parse
the XML-based input and translate it into a command-
tree, which is translated into the corresponding operator-
tree. Well-known parser and compiler techniques are
used or this process. The XQL Parser component is
constructed with the XStream library [14], and handles
the first steps transforming the raw query (expressed in
XQL) into an Abstract Syntax Tree (AST) representing
the command-tree. After that, the Decorator compo-
nent transforms the command-tree into the correspond-
ing operator-tree. During the transformation the differ-
ent operators are decorated with settings specific for the
individual operators (e.g., which index to use).
2.4.4 Serving Clients
The Query Server creates a TCP/IP socket and listens for
connections on it. A new thread is spawned every time
a connection from a client is made – hence multiple si-
multaneous client connections are supported. When a
client connects, the input is directed to the Query Parser,
and the process continues like mentioned in the previous
section. The operator-tree from the Decorator is given
to the Query Processor for evaluation. After the Query
Processor has evaluated the query into a Dataset, it is
transformed into a playlist (containing only the meta-
data part of the Dataobjects) via the Playlist Generator
and returned to the client.

2.5 Index Structure
In order to optimize the entire system for similarity
queries, an index structure is a commonly used solu-
tion. The index structure is used solely for the similarity
queries, since the Underlying RDBMS already keeps in-
dices for the persistent Dataset (see Section 2.2) stored
there – hence these are used for the relational queries
(e.g., Select).

To keep the middleware as flexible as possible, a clean
interface is kept against the index structure. This result
in the possibility for changing the index structure with
others as long as they obey the interface. The follow-
ing criteria are required for the index to be usable in the
middleware:

◦ Built-in Range query support.
◦ Built-in kNN query support.
◦ Preferably built-in Transition support.
◦ Support for high-dimensional data.

In our case we choose to use the M-Grid [2, 7] index
structure for our implementation. The M-Grid supports
all of the above criteria with the exception of the tran-
sition support. This we choose to add to the M-Grid
while implementing it. The M-Grid index structure is
described in full details in Chapter 4.

2.6 Problems and Solutions
During the design of this system, multiple aspects re-
garding the implementation of a middleware had to be
considered and tested. For this an overall Unit testing
system was setup to test both functionality and interfaces
and to identify problems in the structure.

In most cases, everything worked as we planned it dur-
ing the design of the system, but in one case an alterna-
tive solution was needed.

JPOX was the JDO implementation used for handling
the connection between the in-memory data structures
and the persistent copies in the underlying RDBMS.
During test we did, however, discover some serious
memory consumption problems, when performing sim-
ple Select queries such as the following:

SELECT ∗ FROM DATASET
WHERE ID=1
OR ID=2
OR ID=5
OR ID=1000
OR . . .

When the number of successive restrictions on the ID
attribute reached 20 or more, JPOX consumed hundreds
of megabytes, when it in fact only should take up around
1MB. If this was the case only for a short period of time
it would be acceptable. But because the memory was
never freed, caused the system to run very slow after
processing even a small number of such queries due to
memory-to-disk swapping. The memory consumption
issue made JPOX a bottleneck to the system – hence pre-
venting us from testing the performance of other parts of
the system. Communication with the JPOX developer
team did not reveal any problems with our use of JPOX,
but the developers did not consider this as an important
bug to fix.

In order to fix this problem, we implemented a work-
around in the Data Mapper component. The solution is
to introduce new sub-component called the JDBC Con-
nector, which is working directly on the RDBMS. The
component is used instead of JPOX and can be enabled
by a switch in the configuration file. Figure 2.8 shows
how the Data Mapper component ended up looking.
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Figure 2.8: Data Mapper as it ended up looking after
memory problems with JPOX.

The new sub-component, JDBC Connector, in the
Data Mapper basically emulates the functionality of
JPOX in Select queries, except that it does this with-
out using as much memory. It translates the incoming
Dataobject request into SQL and communicates directly
with the RDBMS via the JDBC driver.
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Chapter 3

Similarity Queries on Multiple Indices

3.1 Overview
In this chapter, we describe how the two similarity
queries, Range and kNN, are processed in the presence
of multiple features. In order to explain this, we first
present some definitions of the similarity queries in the
presence of a single feature. This is done in Section 3.2.
In Section 3.3, we introduce the use of multiple features
and in detail describe how input from the client needs
to be mapped in order to account for the use of multiple
features. The initial similarity query definitions are in
that relation reformulated to add multi feature support
for Range and kNN queries.

3.2 Similarity Queries
To explain how the similarity queries are processed in
our framework, we here give a generic introduction to
the similarity queries. To do so we assume that S is the
domain of all objects, Ii is in the domain I for all in-
dices such that ∂ Ii is a distance function in the domain
D used for indexing objects in index Ii. The signature
for the distance function is: S× S 7→ R+. With this, a
Range query can be defined as follows, where the result
contains all objects o ∈ S ⊆ S within distance r from the
query object o′.

Range

Rangeo′,r,Ii(S) =
{

o ∈ S | ∂ Ii(o′,o) ≤ r
}

(3.1)

In the case of a kNN query, the query definition is a
bit different since it has to take into account that the re-
sult should be ordered according to the distance. The
generic definition of a kNN query is as follows:

kNN

kNNo′,k,Ii (S) = 〈o1, . . . ,ok〉

where Forder
o′,∂ ,〈o1,...,ok〉

(S) holds
(3.2)

Here Forder
o′,∂ ,〈o1,...,ok〉

(S) is a function that is able to de-
termine if a list 〈o1, . . . ,ok〉 is sorted according to the
ascending distance to o′. Furthermore no other object o
in S can have a smaller distance to o′ than any element
in the list 〈o1, . . . ,ok〉. Formally:

Forder
o′,∂ ,〈o1,...,ok〉

(S) =

i=k
∧

i=2

(

oi,oi−1 ∈ S ∧
(

∂ (o′,oi−1) ≤ ∂ (o′,oi)
)

)

∧

@o ∈ S\{o1, . . . ,ok}
(

∂ (o′,o) < ∂ (o′,ok)
)

(3.3)
A straightforward implementation of these operators

can be created by performing a brute-force scan of all
objects o ∈ S. The task is to avoid this brute-force ap-
proach, and address the handling of the data in an opti-
mal manner.

3.3 Multiple Features
In order to support multiple features, we use an index Ii

for each feature. Support for p features results in a list of
indices I1, . . . , Ip. The only requirement for these indices
is that they index the same set of objects, S. Hence, we
omit the S as argument when we in the following present
definitions and functions working on multiple indices.

3.3.1 Integration of Features
The problem of using multiple features is that the space
of the feature domains can be different, i.e., the clus-
tering of the objects is different and hence, the distance
between two objects vary from feature to feature. This
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means that it is not possible to compare the distances
from different feature domains. We need a common do-
main for the distance values. This has been chosen to
be in the interval [0,1], which we denote as logical dis-
tances. The real distances of each feature domain are
mapped into logical distances, using the maximum dis-
tance between any two objects in the feature domain:

Fmax
Ii = max

o1,o2∈S

(

∂ Ii(o1,o2)
)

(3.4)

Equation 3.4 is used for mapping between the real and
logical distances in the following way:

FR→L
Ii (d) =

d
Fmax

Ii

(3.5)

The inverse mapping is straight-forward:

FL→R
Ii (d) = d ·Fmax

Ii (3.6)

Having mapped the real distances into their logical
counterpart we need to combine these. In that con-
nection we introduce a number of weights ω1, . . . ,ωp,
which put more or less importance to the logical dis-
tances calculated from the feature domain indexed by
I1, . . . , Ip. We require the weights being within the in-
terval [0,1] and sum to 1. The combined logical dis-
tance ∂ L is the sum of each of these weighted logical
distances. Formally:

∂ L
〈(I1,ω1),...,(Ip,ωp)〉(o,o′) =

p

∑
i=1

(

FR→L
Ii

(

∂ Ii(o,o′)
)

·ωi
)

(3.7)

3.3.2 Range
In order to support a range query with a query range
r on multiple indices I1, . . . , Ip with the associated
weights ω1, . . . ,ωp, we need to process all indices.
An object o is included in the result if the com-
bined logical distance as given by Equation 3.7 is
smaller than r. The signature for this operator is
Range : 2S × S × R+ × (I × R+)p 7→ 2S. Formally:

Rangeo′,r,〈(I1,ω1),...,(Ip,ωp)〉
(

S
)

=
{

o ∈ S |

∂ L
〈(I1,ω1),...,(Ip,ωp)〉(o,o′) < r

} (3.8)

3.3.3 kNN
A kNN query on multiple indices I1, . . . , Ip with the as-
sociated weights ω1, . . . ,ωp should return a list of size
k. Therefore, we require that ‖S‖ ≥ k. The result of

a kNN query is guaranteed to return the k nearest ob-
jects, according to the distance given by the logical dis-
tance function in Equation 3.7. Formally, the kNN op-
erator is defined as shown below. It has the signature
kNN : 2S × S × N+ × (I × R+)p 7→ 2S:

kNNo′,k,〈(I1,ω1),...,(Ip,ωp)〉
(

S
)

= 〈o1, . . . ,ok〉

where Forder
o′,∂ ω ,〈o1,...,ok〉

(S′) holds

with ∂ ω (o,o′) = ∂ L
〈(I1,ω1),...,(Ip,ωp)〉(o,o′)

(3.9)

3.3.4 Transition
No support for Transition on multiple indices has been
proposed in this paper. The reason is that we believe
that using multiple indices for this type of query is not
intuitive for the user. Generating a “smooth” transition
in a list of seed songs requires that all indices agree on
all songs in the transition such that a “smooth” transition
is formed. However, two dissimilar songs (as judged by
the user) may be similar according to some feature, since
each feature only captures a part of the characteristics of
a song.

Instead we will elaborate on Transition on a single in-
dex in Section 4.6.6 and 4.6.7, where we give a formal
description and show why it is complex even for just one
index.

3.4 Properties of Multi-Feature Range
The output from the multi-feature range operation in-
clude all objects from the input having a combined logi-
cal distance, within the query range r as defined in Equa-
tion 3.8. The combined logical distance is defined in
Equation 3.7 as the sum of the logical distances from
each of the indices involved. In the rest of this section
properties derived from these facts are described.

3.4.1 Pruning Range
There exists a pruning range rprune

i for every index Ii

with an attached weight ωi in a range query (having
query range r). The pruning range specifies when the
logical distance, in that feature domain alone, reaches
the query range r. The pruning range rprune

i for an index
Ii is defined using the query range r and the weight of
that particular index ωi. Formally:

rprune
i =

r
ωi

(3.10)

When the logical distance to an object exceeds the
pruning range, then the object can not be in the result
of the range query, since the combined logical distance
exceeds the query range.
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3.4.2 Inclusion and Exclusion Properties
In general four cases exist, when considering both the
query range r and the pruning ranges rprune

1 , . . . ,rprune
p

for the indices I1, . . . , Ip. Consider the following four
cases of logical distances in different feature domains,
from a query object o′ to a candidate object o:

1. All inside the query range r.
The candidate is inside the query range.

2. One or more outside the pruning range rprune
i .

The candidate is outside the query range.

3. All between the query range r and the pruning
range rprune

i .
The candidate is outside the query range.

4. One inside the query range and the rest between
the query range r and the pruning range rprune

i .
The candidate may be inside the query range.

An implementation may benefit from the cases listed
above, especially case 1–3 that strictly determines the
candidate to be in- or outside the query range.

An example of a multi-feature range query is shown
in Figure 3.1. In the example the range query is per-
formed with query object o′ on a set S with four objects
o1, . . . ,o4 using three indices I1, . . . , I3 weighted 1

2 , 1
4 ,

and 1
4 respectively.

Table 3.1 shows the logical distances to the objects
in each of the feature domains. The rightmost column

holds the combined logical distance ∂ L of each object
using Equation 3.7. Using a query range r = 0.25 would
therefore return a set including the objects o1 and o4.

Object ∂ I1 ∂ I2 ∂ I3 ∂ L

o1 0.20 0.15 0.05 0.15
o2 0.60 0.10 0.50 0.45
o3 0.40 0.50 0.90 0.55
o4 0.05 0.50 0.40 0.25

Table 3.1: Logical and combined distances from the
query object o′ to the candidate objects
o1, . . . ,o4.

3.4.3 Usage in the Actual Implementation
In the actual implementation of the multi-feature range
operator, which makes use of the range operation in the
index structure, it is case 2 that is the most suitable.
This is because the index implementation supports an in-
put candidate set containing objects, which are the only
objects allowed in the result. During evaluation of the
range operation in the index structure, only the distances
to objects within the candidate set are calculated.

So, when evaluating the multi-feature range operator
output, the indices are consulted one at a time, using the
result of the previous calculation as a candidate set to
the next one. Thereby we avoid investigating objects al-
ready excluded by the pruning range, during evaluation
on previous indices.

o2

Feature: I1
D-function:

Weight:     =½

Query range

Pruning range

I1

1

Feature: I2
D-function:

Weight:     =¼

I2

2

Feature: I3
D-function:

Weight:     =¼

I3

3

o' o'o'
o3o4

o1

o3

o2

o1 o4

o4

o2

o3

o1

Figure 3.1: Visual representation of a multi-feature range query using three indices on a set containing four objects.
Shown is the query and pruning ranges.
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Chapter 4

M-Grid

4.1 Overview
In this chapter we describe the M-Grid [2] index struc-
ture in details. This includes the theory behind the
different parts of the structure, the implementation de-
signed as a framework, issues with some of the archi-
tectural components, and finally optimizations added to
the structure initialization and query evaluation not men-
tioned in the original proposal.

After providing the motivation for the M-Grid in-
dex structure in Section 4.2, three sections follows that
present the theory behind the M-Grid and the query
types it supports.

In Section 4.3 the metric property is presented, and an
important pruning theorem is introduced that provides
the basis for the correctness of the M-Grid. The M-Grid
itself and all its different parts are formally defined in
Section 4.5. The queries supported by the M-Grid are
formally defined in Section 4.6 using the theory from
the previous sections.

Moving on to the implementation, Section 4.7
presents the design principles used and argues for why
a flexible framework is a good idea for this implemen-
tation. Section 4.8 introduces the architecture of the im-
plementation and describes the initialization process us-
ing the components of the architecture. Being familiar
with the architecture, issues specific to each of the com-
ponents, are described in the following sections: Pivot
points (Section 4.9), clustering (Section 4.10) and block
handling (Section 4.11).

Having described both initialization and querying of
the M-Grid, adding and deleting objects is described in
Section 4.12.

Section 4.13 describes some further optimizations not
proposed in the original M-Grid article [2].

4.2 Motivation
The motivation for the M-Grid is the presence of high-
dimensional feature vectors such as those described by
the MPEG7 standard [15]. If all feature vectors are ex-
tracted as specified in the standard, the size of the vec-
tors can become quite large – in the area of 180,000-
430,000 real numbers for a standard 3 minute piece of
music1. It has been shown that index structures such as
the R-Tree and its derivatives suffers from the “dimen-
sionality curse” [16]. Therefore another approach such
as mapping to a lower dimensional space is desirable in
order to avoid the curse.

Furthermore, studies have shown different results re-
garding the matter, what is “similar,” since this notion
is very subjective, and highly dependent on each indi-
vidual [17]. Therefore we assume that the feature vec-
tors extracted from the songs are representative for the
music, i.e., similar songs have feature vectors that lies
close to each other in the vector space compared to non-
similar songs. Using this assumption a metric distance
function can be used to calculate the distance between
two feature vectors giving a notion of their similarity.
Furthermore the metric distance function also guaran-
tees total recall and precision [18].

4.3 Metric Property
In order to answer similarity queries, existing index
structures such as the M-Grid [2], the M-Tree [16] and
the Slim-Tree [19], all rely on indexing the similarity be-
tween the objects to be queried. The similarity between
the objects is specified by a total metric distance func-
tion, ∂ , with the following properties, where o,o′, p ∈ S.

1Using 10-24 dimensions and a sample length of 10ms.
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1. Symmetry:
∂ (o, p) = ∂ (p,o)

2. Non-negativity:
o 6= p =⇒ ∂ (o, p) > 0

∧

∂ (o,o) = 0

3. Triangular inequality:
∂ (o,o′) ≤ ∂ (o, p)+∂ (p,o′)

The triangular inequality property is the most interest-
ing one, since it enables us to avoid distance calculations
under some given circumstances, which we will explore
in more detail. If we reformulate the triangular inequal-
ity assuming that a reference object (pivot point) p exists
and that the distance from all objects to p is known, we
reach the following theorem.

Theorem 4.1 (Pruning Criterion (e.g., [20])) Given a
range query with query object o′ and range r, no object
o satisfying the following inequality using a reference
point p belongs to the result:

∣

∣ ∂ (o′, p)−∂ (o, p)
∣

∣ > r

This theorem is illustrated in Figure 4.1 that shows
a reference point p, a query point o′, three objects
o1,o2,o3, the query range r, and the pruning radii
∂ (o′, p)− r and ∂ (o′, p)+ r.

o'

p

o3
o1

o2

r

(o',p) - r

(o',p) + r

Figure 4.1: Pruning of objects in a range query eval-
uation using pruning radii ∂ (o′, p)− r and
∂ (o′, p)+ r.

Theorem 4.1 is satisfied for an object o if and only if
o lies outside the two pruning radii. Clearly, object o1
does not satisfy the inequality and cannot be pruned –
and it should not, since it is within the query range. Ob-
ject o2 is clearly outside both the query and the pruning

radii, and it does satisfy the equation, and can therefore
be pruned. The last object, o3, is between the pruning
radii, so it cannot be pruned.

So, given that the distances from every object o to a
pivot point is known, Theorem 4.1 can be used in the fil-
tering process during query evaluation. It maintains the
recall property, but to gain precision, refinement has to
be performed on the result of the filtering process.

The absence of the triangular inequality in effect
would mean that no objects could be pruned without ac-
tually applying the distance calculation. Even though,
normally, the I/O cost is of an magnitude larger than
the computational cost, existing studies have shown that
computational cost can exceed the I/O cost. This hap-
pens when the feature vectors are of high dimension,
i.e., when greater than ten [16]. As the dimensional-
ity of the feature vectors increases, the ratio between the
distances of the nearest of farthest neighbor decreases.
This is the case for feature vectors such as MPEG7 [15],
MFCC [21], and MAR [22].

4.4 Informal Presentation
By using Figure 4.2, we will give an informal introduc-
tion to the definitions and terms used later in this paper.
The figure shows “a part of” a space that we will refer
to as the original vector space S. The objects o3, . . . ,o12
and p1, p2 are located in this space. The objects p1 and
p2 are special reference objects that we will refer to as
pivot points.

Every object o ∈ S can be mapped into a new space
denoted pivot space P, where the values of the new ob-
ject o′ is formed by distances to each of the pivots.

The pivot points are special because circles are cre-
ated originating from these, and all distances from each
object to each pivot are known (e.g., ∂ (o9, p1)). Two ad-
jacent circles from a pivot forms what is referred to as
a ring. The intersection of rings from each pivot form
regions.

The regions can also be expressed in terms of the ring
number for each pivot they are intersections of. This rep-
resentation is denoting cells in pivot space. An example
is the cell denoted 〈2,3〉 in pivot space, representing re-
gions in vector space, formed by the intersections of the
second and third ring of pivot p1 and p2 respectively.

Each cell is attributed with a point, referred to as the
cell center, which is used when a distance that involves
the cell needs to be computed – e.g., the point c〈2,3〉 is
the center of cell 〈2,3〉.
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Figure 4.2: Introducing the notations used in the M-Grid.

All shown objects are partitioned into clusters, where
close-by objects are placed in the same parts, which will
be denoted as a cluster. The shown clusters cl1, . . . ,cl4
are formed such that all objects from the same cell are
placed in the same cluster, and these clusters can span
multiple cells (e.g., cluster cl1). Since multiple objects
exists in a cluster, a representative object of the cluster
can be marked. This object is denoted the centroid (e.g.,
cluster cl1 has o4 as its centroid).

Assuming all distances from all objects o3, . . . ,o12 to
the pivots p1 and p2 are known, these distances can be
used to approximate the distance between any two ob-
jects. This new distance in the pivot space is denoted
∂ m. Using the difference of pivot distances as a distance
measure in the pivot space, it is seen in the figure that
the distance in pivot space between o6 and o8 using p1
is 0, but the distance in pivot space between o5 and o8
in close to the distance in vector space. The distance
in pivot space depends highly on which pivot is used as
reference point. Therefore the largest value computed
is used as the value of ∂ m for the distance between a
cell and a cluster. The underlying theory of the M-Grid
heavily relies on this simple fact.

4.5 Definitions
An M-Grid G is formally defined as a seven-tuple
(S,P,∂ ,Rings,Cells,Clusters,CCArray) where:

◦ S = {o1, . . . ,on} ⊆ S is a set of objects.

◦ P = 〈p1, . . . , pk〉 ⊆ S is a finite list of reference
points (pivots) used for mapping objects in S to
the pivot space P.

◦ ∂ : S2 7→R+ is a distance function having the met-
ric property as defined in Section 4.3.

◦ Rings defines a list of m+1 circles for each of the
k pivots all having center in the pivots specifying
m pivot rings.

◦ Cells is a finite set of well defined regions.

◦ Clusters is a finite list of sets partitioning the ob-
jects o ∈ S into logical clusters.

◦ CCArray is a relation over cells, clusters, and a
Boolean that indicates whether the cluster has one
or more objects in the cell.
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The domain of all M-Grids is denoted G. In the fol-
lowing the last four parts of the M-Grid tuple are de-
scribed into more detail and formally defined.

4.5.1 Metric Mapping
The objects in the original high-dimensional vector
space S are mapped into a new k-dimensional pivot
space P using the pivots P and the distance function ∂ .
Notice that the number of pivots defines the number of
dimensions in the new space.

The function Fmetric : S 7→ P maps the objects o ∈ S
into the k-dimensional space formed by the pivots,
where the ith dimension value is the distance to the ith

pivot. Formally:

Fmetric(o) = 〈∂ (o, p1), . . . ,∂ (o, pk)〉 (4.1)

4.5.2 Pivot Rings
The mapping of each object o ∈ S into the pivot space
P, using Fmetric, allows us to partition the objects.
This involves choosing m rings for each pivot p ∈
P such that each ring partitions the pivot space into
regions having an amount of objects in the interval
[

d n
me− (δ +1) , d n

me+δ
]

where n = ‖S‖ and δ a mar-
gin. By using this partitioning, the objects are divided
roughly into equally large parts, where we assume that
objects have unique distances to the pivots. Formally:

Rings = 〈〈r10,r11, . . . ,r1m〉 , . . . ,〈rk0,rk1, . . . ,rkm〉〉

where ∀i ∈ {1, . . . ,k}
(

ri0 = 0 ∧ rim = max
o∈S

(∂ (o, pi)) ∧

∀ j ∈ {1, . . . ,m−1}
(

⌈ n
m

⌉

− (δ +1) ≤

∥

∥

{

o ∈ S
∣

∣ ri j−1 ≤ ∂ (o, pi) ≤ ri j
}∥

∥ ≤
⌈ n

m

⌉

+δ
)

)

(4.2)
In the equation we make a special case for the lowest
radius ri0, which is set to zero. This is done in order
to adhere to our definition of a ring earlier such that a
ring i is formed by the radii ri and ri−1. Furthermore the
largest ring rim is also set to the largest distance between
any two objects in o,o′ ∈ S, in order to assure that all
objects are covered.

4.5.3 Cells
In the vector space an intersection of k rings, one from
each pivot p ∈ P, forms a region. Each region maps to
a corresponding cell in pivot space P. The cell being
mapped to is represented by the ring number for each
pivot.

By using the rings just expressed, it is now possible to
define a cell, which is simply the intersection of k rings,
one from each pivot p ∈ P. Each cell has a lower and
an upper bound circle for each pivot ring, i.e., each cell
is delimited by 2 · k circles. A cell is represented by the
ring number for each pivot.

The domain of cells using this representation is de-
noted C. The cells are formally defined below, where m
is the number of rings per pivot:

Cells =
{

〈c1, . . . ,ck〉 | c1, . . . ,ck ∈ {1, . . . ,m}
}

(4.3)

Figure 4.3 shows an interesting property of the cells
generated by Equation 4.3. The shaded regions in the
original vector space can be uniquely identified. But
mapping the regions into cells in the pivot space re-
moves this uniqueness, since both regions are mapped
into the same cell, identified by the pivot rings. There-
fore the cells in pivot space forms what is called a
pseudo-grid. No regions are mapping to the cells 〈1,1〉,
〈1,2〉 and 〈2,1〉, since no intersections exist for these
combinations of the pivot rings. Furthermore the areas
spanned by the dashed lines are not considered as re-
gions since a valid region requires that there is an inter-
section of pivot rings stemming from all k pivots.

p1 p2

3,3

3,3

2,3

3,2

2,21,
3 3,1

Figure 4.3: Example where two regions in vector space
are mapped into the same cell in pivot space
– 〈3,3〉.

From the above description and example we make the
following observation:

Observation 4.1 (The S 7→ P mapping is irreversible)
More than one region in vector space S can map to the
same cell in pivot space P.

Observation 4.2 (The S 7→ P mapping is not onto)
There may be one or more cells in the set Cells ⊆ P
that no region in vector space S maps to.

20



Having defined Cells, a function mapping from ob-
jects o ∈ S to the cell containing the object in the pivot
space is needed. In other words a function with the sig-
nature: Fcell : S 7→ C, expressed formally as:

Fcell(o) = 〈c1, . . . ,ck〉where the ci is given as follows

rici−1 < dpi ≤ rici , where

Fmetric(o) =
〈

dp1, . . . ,dpk

〉

(4.4)
In order to define the distance of an object o in the

pivot space P to a cell, we define a point in the cell to be
used as a reference point. The point chosen is the center
of the cell, found with a function having the signature:
Fcenter : C 7→ P. Such a function is defined below:

Fcenter
(

〈c1, . . . ,ck〉
)

= 〈dp1, . . . ,dpk〉, where

dpi =
rici + rici−1

2
(4.5)

4.5.4 Clusters
In order to connect the cells with close-by objects, we
introduce a new list of sets, denoted Clusters, that parti-
tions the objects. The domain of all possible clusters is
denoted K = {c | c ⊆ S}.

For the M-Grid to behave correctly, a number of post-
conditions to Equation 4.6, defined below, have to be
satisfied. As long as these conditions are satisfied then
how the clusters are formed does not effect the correct-
ness of the M-Grid. In order to increase the perfor-
mance, close-by objects should be placed in the same
cluster. The formal definition of the clusters and the
post-conditions follows:

Clusters = 〈cl1, . . . ,clh〉 where
h

⋃

i=1

(

cli
)

= S (4.6)

Non-overlapping clusters
Equation 4.7 states no two clusters include the
same object. This requirements is to ensure the
correctness.

∀c1,c2 ∈ Clusters
(

c1 6= c2 ⇒ c1 ∩ c2 = /0
)

(4.7)

All objects clustered
Equation 4.8 ensures that objects o ∈ S are all
indexed and therefore can be retrieved at a later
stage, when performing a query.

∀o ∈ S
(

∃c ∈ Clusters (o ∈ c)
)

(4.8)

To determine the distance to a cluster, a representa-
tive object for the cluster is needed – the “centroid.” For
that, a function with the signature Fcentroid : K 7→ S
is needed. This is expressed in the following equation,
which picks an object o from a cluster with the minimal
total distance to the other objects of that cluster. By do-
ing so, an object which lies in the “center” of the cluster
is chosen.

Fcentroid(cluster) = o ∈ cluster, where

@o′ ∈ cluster
(

∑
o∗∈Clusters

∂ (o′,o∗) < ∑
o∗∈Clusters

∂ (o,o∗)
)

(4.9)

4.5.5 Closeness in Pivot Space
We need to relate the Cells and Clusters defined in the
previous sections, making it possible to define which
cluster is closest to a given cell. A problem arises be-
cause Cells lies in the pivot space while Clusters lies
in the vector space. Since a mapping of S 7→ P is irre-
versible (see Observation 4.1), the only option is to map
cluster into the pivot space.

In order to find the distance between objects in pivot
space, we cannot use ∂ and therefore need a new dis-
tance function ∂ m : P2 7→ R+. To motivate this we use
Figure 4.2, where we only designate p1 as pivot and only
consider objects o6 and o8. By using only one pivot, the
pivot space is simply a one-dimensional space where
values are distances to p1. It can be seen that the ob-
jects o6 and o8 lie at the same distance from p1, i.e.,
∂ (o6, p1) = ∂ (o8, p1). If we instead choose pivot p2,
it can be seen that ∂ (o6, p1) 6= ∂ (o8, p1). So choosing
pivot p2 is more favorable in the given case.

The distance in the pivot space puts a lower bound on
the original distance in the vector space. In order to get
the tightest bound, the maximum difference of the pivot
distances, cf. Theorem 4.1, is chosen as ∂ m as defined
in the following:

∂ m(

〈m11, . . . ,m1k〉 ,〈m21, . . . ,m2k〉
)

=

k
max
i=1

(m1i −m2i)
(4.10)

s Using this new distance function, it is possible to
define a function that, given a cell, can map to the
closest cluster. The signature for this function is:
Fclosest : C 7→ K.

The following definition ensures that cells intersect-
ing a cluster are pointing to the that cluster, otherwise
the ∂ m function is used to determine the closest cluster:
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Fclosest(cell) = cluster ∈ Clusters where

Frepr(cell,cluster) ∨

¬Frepr(cell,cluster) ∧ @cluster′ ∈ Clusters
(

∂ m (

Fmetric
(

Fcentroid(cluster′)
)

,Fcenter(cell)
)

<

∂ m (Fmetric (Fcentroid(cluster)) ,Fcenter(cell))
)

(4.11)

4.5.6 CCArray
Being able to estimate the distance between a cell and
a cluster allows us to improve the execution of a range
query. In order to know which clusters to investigate
when evaluating a range query, a connection between
Cells and Clusters is needed. That connection is the
CCArray, which associates each cell ∈ Cells with the
cluster ∈ Clusters that is the closest one, together with
a Boolean indicating whether the cluster intersects with
the cell (i.e., whether the cell is represented). This al-
lows us to decide whether to fetch the cluster when per-
forming a range query. If a range query is performed, all
cells that are not represented need not to be visited and
can therefore be pruned. For that, a predicate with the
signature Frepr : C×K 7→B is needed, where B = {ff , tt}
is the domain of the Boolean values:

Frepr(cell,cluster) = ∃o ∈ cluster
(

Fcell(o) = cell
)

(4.12)

Figure 4.2 shows that no clusters are represented in
cell 〈3,3〉 but in 〈2,3〉 there is. The CCArray can now
be formally defined as follows:

CCArray =
{

〈cell,cluster,repr〉
∣

∣

cell ∈ Cells ∧

cluster = Fclosest(cell) ∧

repr = Frepr(cell,cluster)
}

(4.13)

If the conditions set in Equation 4.7-4.8 are satisfied
then the CCArray defined in Equation 4.13 is guaran-
teed to point to all h clusters. This can be formal-
ized in the following post-condition. However, there
are some more implementation-specific issues that need
more elaboration, which is addressed in Section 4.10.2.

These issues are only relevant for some of the clus-
tering algorithm used and therefore not relevant in the
formal theory of the M-Grid.

Full coverage
This post-condition is formally defined as:

∀cluster′ ∈ Clusters

∃〈cell,cluster,repr〉 ∈ CCArray
(

cluster = cluster′ ∧ repr = tt
)

(4.14)

4.6 Similarity Queries
In this section we describe how to perform the similarity
queries – Range, kNN and Transition – (defined in the
ISA paper [1]) using the M-Grid. We have changed the
semantics of the original Range operator slightly. It has
been redefined to return a set of objects within the given
query range.

By using the formal definition of the M-Grid, we can
precisely show which cells, clusters, and distance com-
putations are involved in the queries. This makes the
cost of evaluating a query very clear. Furthermore this
approach also makes the actual implementation of the
queries straightforward.

After each definition, we give an implementation-
specific description of the definition in a number of
steps. It has been attempted to map these steps to the
formal definition to the maximum extent.

4.6.1 Metric Range
A common property for all the similarity queries is a
need for performing a range query in pivot space P. This
is defined in the metric range function below, which has
the signature: Rangem

o′,r(G) : G × S × R+ 7→ 2C.

Rangem
o′,r(G) =

{

〈c1, . . . ,ck〉 ∈ Cells
∣

∣

Rings = 〈〈r11, . . . ,r1m〉 , . . . ,〈rk1, . . . ,rkm〉〉 ∧

Fmetric(o
′) =

〈

dp1, . . . ,dpk

〉

∧

k
∧

i=1

(

∃s, t ∈ N+

∃ris,rit ∈ 〈ri1, . . . ,rim〉 @ris∗ ,rit∗ ∈ 〈ri1, . . . ,rim〉
(

ris ≤ dpi − r ∧ ris∗ > ris ∧ ris∗ ≤ dpi − r ∧

rit ≥ dpi + r ∧ rit∗ < rit ∧ rit∗ ≥ dpi + r ∧

ci ∈ [s, t]
)

)}

(4.15)
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1. Map the query object into the pivot space (line 3).

2. Construct for each pivot an interval of ring num-
bers for the smallest and largest ring that sur-
rounds the range from the metric query point
(lines 4–7).

3. Return all cells having ring numbers within the
constructed ring number intervals (line 8).

Figure 4.4 shows an example with two pivots p1 and
p2 and a query object o′ depicted in vector space. The
query range from query object o′ intersects the shaded
regions. The pivot ring intervals described in the second
step above are found to be [2,3] and [1,3], and using
combinatorics the cells 〈2,1〉, 〈2,2〉, 〈2,3〉, 〈3,1〉, 〈3,2〉
and 〈3,3〉, are returned.

p1

o'

p2

Figure 4.4: Simple example showing a range query in
pseudo-grid with two pivots depicted in vec-
tor space. The shaded regions are inter-
sected by the query range, forming the pivot
ring ranges [2,3] and [1,3] used in the met-
ric range operation.

4.6.2 Range
The definition of the range operation on an M-Grid G
returns a set of objects o ∈ S given a query object o′ and
a radius r. More formally, this function has the signature
Rangeo′,r : G × S × R+ 7→ 2S. The formal definition
follows:

Rangeo′,r(G) =
{

o |

Cells′ = Rangem
o′,r(G) ∧

Clusters′ =
{

cluster | ∃〈cell,cluster, tt〉

∈ CCArray(cell ∈ Cells′)
}

∧

S′ =
{

o | o ∈ cluster ∧ cluster ∈ Clusters′ ∧

∂ m(

Fmetric(o),Fmetric(o
′)
)

≤ r
}

∧

o ∈ S′ ∧ ∂ (o,o′) ≤ r
}

(4.16)

The steps in the definitions can be described by the fol-
lowing:

1. Find all Cells′ within the range r from the query
object o′ (line 2).

2. Find all Clusters′ pointed to by the represented
Cells′ found (line 3–4).

3. Prune all objects that satisfy Theorem 4.1 (line 5–
6).

4. Perform distance computation in the vec-
tor space S and prune according to the given query
range r (line 7).

4.6.3 kNN
The definition of the kNN operation on an M-Grid G re-
turns a list of the k nearest objects o ∈ S given a query
object o′ and a number k. The signature of the function
is: kNNo′,k : G × S × N+ 7→ 2S. The formal definition
given below deviates slightly from the implementation.
The reason is that the following definition shows what
the final result is and which cell, cluster, and object dis-
tances need to be computed in order to reach the result.
The formal definition of the KNN operation follows:

KNNo′,k(G) = 〈o1, . . . ,ok〉 where

r = ∂ (o′,ok) ∧

Cells′ = Rangem
o′,r(G) ∧

Clusters′ =
{

cluster | ∃〈cell,cluster,repr〉

∈ CCArray
(

cell = Fcell(o
′) ∨

cell ∈ Cells′ ∧ repr = tt
)}

∧

S′ =
{

o | o ∈ cluster ∧ cluster ∈ Clusters′ ∧

∂ m(Fmetric(o
′),Fmetric(o)) ≤ r

}

∧

Forder
o′,∂ ,〈o1,...,ok〉

(S′)
(4.17)

The implementation of the kNN operation is more
complex than the Range operation because it consists
of two parts: the fetching of the nearest cluster and a
Range query in order to avoid false dismissals.

The distance of the kth object in the nearest cluster
(wrt. the query object o′) is used as an initial radius for
the following range query. The reason why this second
step is needed after the kth element is found in the near-
est cluster is that there may be other clusters containing
objects within the distance of the kth element. Always
performing the range query, ensures the correctness of
the algorithm, i.e., no false dismissals occur.
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The following steps concerns processing of the near-
est cluster:

1. Find the cell that contains the query object o′ via
Fcell(o′).

2. Find the closest cluster by looking up in the
CCArray using cell.

3. If k elements are not found in the nearest cluster,
range queries with increasing radii are performed
until at least k elements are found.

The second part consists of a Range query, where a list
of candidate clusters are traversed. After investigation of
a cluster in the list, the radius can possibly be tightened,
implying that some clusters can be pruned from the list
of candidate clusters:

1. Maintain a result list of the k best objects.

2. Let r be the largest distance in result.

3. Maintain a list of Clusters within radius r.

4. Visit a single cluster in Clusters and remove it
from the list (see Section 4.13.3 for further details
on the impact of the ordering of the clusters in the
list).

5. Update result and r.

6. Repeat step 4-5 until the list of Clusters is empty.

When the algorithm terminates, the result list contains
the k nearest objects from o′.
4.6.4 InBetween
Regardless of the kind of Transition, we need a no-
tion of an object o being near the line between two ob-
jects o1 and o2. This is computed wrt. a given dis-
tance function ∂ . The signature for this operation is
InBetweenS,o1,o2(G) : G × 2S × S2 7→ S. Formally:

InBetweenS,o1,o2(G) =o ∈ S where

@o′ ∈ S
(

∂ (o′,o1)+∂ (o′,o2) <

∂ (o,o1)+∂ (o,o2)
)

(4.18)

An example is shown in Figure 4.5 where the
InBetween operation is used to find the object
o ∈ {o1, . . . ,o4} being “most in between” objects o′

and o′′. According to the definition, this means the ob-
ject having the shortest total distance to both o′ and o′′,
where the minimum obviously is the distance between
those two objects (the dashed line).

Assuming ∂ (o′,o′′) = 1 the total distances from each
of the objects o1, . . . ,o4 are 1.022, 1.118, 1.005 and 1
respectively. Looking at the figure it can be seen that
the object o4 is the best since it is placed on the path
between o′ and o′′. Comparing o1 and o3 that have the
same orthogonal distance to the dashed line, o3 is be-
ing favored since it is closer to the middle of the dashed
line — thereby having the shortest total distance. But
even though o2 and o3 have equal horizontal distance to
each of the objects o′ and o′′, still o3 is favored since it
is closer to the dashed line.

o' o''

o1

o3

o2

o4

Figure 4.5: Example showing the principle of the In-
Between operation choosing which object
o ∈ {o1, . . . ,o4} is most in between o′ and
o′′. The best candidate is o4, followed by
o3, o1 and last o2.

4.6.5 Annulus
As a prerequisite to defining the Transition operator de-
scribed in Section 4.6.6 and 4.6.7, we introduce a new
function that returns a set of cells within and intersect-
ing a given upper and lower bound using the Metric
Range function, Rangem. This function has signature:
Annulusm

o′,rmax,rmin
(G) : G × S × R2

+ 7→ 2C. Formally:

Annulusm
o′,rmax,rmin

(G) =
{

cell
∣

∣

cell ∈
(

Rangem
o′,rmax

(G) \ Rangem
o′,rmin

(G)
)

⋃

(

Rangem
o′,rmax

(G)
⋂

Rangem
o′,rmin

(G)
)}

(4.19)

1. In line 2 we find all cells intersecting the upper
bound, and all cells within the bound set by rmax

and rmin, but not intersecting with range rmin.

2. Since we also need the cells intersecting rmin, we
address this issue in line 3.

4.6.6 TransR
In the following we describe the “Evolving Transition”
operation that was presented in the ISA [1]. The Transi-
tion operation produces a list of songs, that has a smooth
transition between each successive pair of songs in the
list. The smoothness is determined by criteria set by the
user.
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The operation has been modified to only accept two
seed songs denoted o1 and o j that represents the start
and an end song respectively. The operation computes a
list of songs

〈

o1, . . . ,o j
〉

, and it guarantees that the total
distance formed by the path in the list from the start to
end song is minimized. Furthermore, the distance be-
tween every two successive songs is between the two
given ranges rmin and rmax.

The signature for of the transition operation is
TransRo1,o j ,rmin,rmax(G) : G × S2 × R2

+ 7→ 2S. For-
mally:

TransRo1,o j,rmin,rmax(G) =
〈

o1, . . . ,o j
〉

where

j−2
∧

i=1

(

Cells′ = Annulusm
oi,rmin,rmax

(G) ∩

Annulusm
oi+2,rmin,rmax

(G)
∧

Clusters′ =
{

cluster |

∃〈cell,cluster, tt〉 ∈ CCArray(cell ∈ Cells′)
}

∧

S′ =
{

o | o ∈ cluster ∧ cluster ∈ Clusters′ ∧

∧
j∈{0,2}

rmin ≤ ∂ (oi+ j,o) ≤ rmax
}

∧

oi+1 = InBetweenS′,oi,oi+2(G)
)

(4.20)
The equation only defines the output — not the actual

implementation of the operation.
The implemented algorithm that reflects the definition

can be separated into two cases, where the base case can
be used to explain the equation. The base case occurs
when there is a song within the ranges rmin and rmax from
both o1 and o j. The recursive step occurs when no song
exists that satisfy the ranges. Let us briefly describe the
base case:

1. Find all Cells within the ranges rmin and rmax for
both songs o1 and o j (lines 2–3).

2. For all the found Cells, fetch the corresponding
Clusters (lines 4–5).

3. Prune all objects outside the ranges given by rmin

and rmax for both o1 and o j (lines 6–7).

4. Find the song that lies most in between o1 and o j

by minimizing the total distance (line 8).

This base case ensures the termination of the algorithm.
If no in common cells are found, we need to perform the
recursive step, which finds a song om most in between
o1 and o j and recursively apply the transition algorithm
on both o1,om and om,o j:

1. Find all Cells “in the middle” by using the metric
range query with r =

dist(o1,o j)
2 on both o1 and o j.

2. For all common Cells, fetch the corresponding
Clusters.

3. Find the song om which lies most in between o1
and o j.

4. Perform the transition recursively with
TransRo1,om,rmin,rmax and TransRom,o j ,rmin,rmax and
concatenate the results.

This recursive step can be extensive wrt. both time
and I/O and even though the algorithm does terminate,
it does not guarantee that any results are produced if the
given restriction on the ranges cannot be satisfied.
4.6.7 TransK
Here we describe the “Sized Transition” operation that
determines a smooth transition with a fixed number of
songs. The number k specifies how many songs there
should be between the given start and end song o1 and
o j. The ability to give a number k as parameter in-
stead of a range [rmin,rmax], gives a more intuitive way of
querying for a transition, since no knowledge about the
underlying features is required (such as the distribution
of the objects in the vector space). The choice of fea-
tures will influence the distances between the songs and
choosing “correct” ranges may not be straightforward.

To avoid this particular problem, we provide a new
operation TransK taking two seed songs o1 and o j and a
number k. The operation that returns a list of songs, has
the signature: TransKo1,o j ,k : G × S2 × N+ 7→ 2S.
Formally:

TransKo1,o j ,k(G) =
〈

o1, . . . ,o j
〉

where

k
∧

i=1

(

r =
∂ (oi,oi+2)

2 ∧

Cells′ = Rangem
oi,r(G) ∩ Rangem

oi+2,r(G) ∧

Clusters′ =
{

cluster | ∃〈cell,cluster,repr〉

∈ CCArray(cell ∈ Cells′)
}

∧

S′ =
{

o | o ∈ cluster ∧ cluster ∈ Clusters′
}

∧

oi+1 = InBetweenS′,oi,oi+2(G)
)

(4.21)
As previously, the implementation and the above for-

mal definition differs. The key idea is the same as in
Equation 4.20, which is to use a divide-and-conqueror
approach to find a smooth transition. The base case oc-
curs when k = 0, and the recursive case when k > 0,
which is described in the following.
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In order to generate a good result, we need to distin-
guish between when k is even and odd because when k
is even the result of k+1

2 is not a natural number.

◦ Odd

1. Find all Cells “in the middle” by using the
metric range query with r =

∂ (o1,o j)
2 on both

o1 and o j.
2. For all common Cells, fetch the correspond-

ing Clusters.
3. Find the song om in the “middle” between o1

and o j.
4. Recursively apply TransK to o1,om and

om,o j, using k = k−1
2 in both transitions.

5. Concatenate the results.

◦ Even

1. Compute the offset factors f1 = k
2·(k+1) and

f2 = 1− f1.
2. Find all Cells “in the middle” by using the

metric range query with r1 = ∂ (o1,o j) · f1
and r2 = ∂ (o1,o j) · f2 on o1 and o j.

3. For all common Cells, fetch the correspond-
ing Clusters.

4. Find the song om in the “middle” between o1
and o j.

5. Recursively apply TransK to o1,om and
om,o j, using k = k

2 − 1 and k = k
2 respec-

tively.

4.7 Design Principles
The original implementation of the M-Grid [2] was
solely done as a proof of concept and was not intended
to be reusable. This makes it difficult to explore and
optimize the M-Grid by testing other ideas such as dif-
ferent clustering algorithms, as suggested in the origi-
nal article [2]. The authors main purpose was merely to
test and verify the theory, and no consideration has been
given to re-usability or extendability.

In our work we extend the M-Grid with support for the
similarity algebra we described in our previous work [1].
Furthermore we also incorporated the M -Grid into the
existing framework XXL [3], which is an OO imple-
mentation of tools that allow fast prototyping in Java.
We do so because we believe that ideology behind XXL,
such as reproducibility and extendability is necessary.
This is mainly because audio similarity indexing is a
changing research area with a need for quick implemen-
tations of new theories.

Some problems arose as described in Section 4.10,
which has led to us implement requirements explicitly
in the source code for the M-Grid to prohibit the prob-
lems. We have done so by using the concept of design by
contract [23]. As an example we have have implemented
the full-coverage requirement as a post-condition that all
clustering classes automatically posses by inheritance.
Since this enforcement (and the others) are quite time
consuming, this check is run-time configurable in order
to avoid this overhead in a production system.

4.8 Construction of the M-Grid
In this section, we describe how the theory presented in
Section 4.5 is implemented by presenting an overview
of the entire M-Grid framework. Many of the equations
have been mapped to specific components, and some
new components have been introduced in order to im-
prove flexibility and performance.

A picture of the framework can be seen in Figure
4.6. In this figure, the components marked with a black
triangle denoted components that can be replaced or
extended. As can be seen, many components can be
changed, which provides much flexibility when differ-
ent algorithms need to be tested. The dashed boxes de-
notes helper components that are only present in order
to improve performance. In the following, we describe
the different components in the order they appear in the
construction of the M-Grid.

M-Grid

Pivot selector*

Clustering algorithm*

Block handler*

Cell index handler

Data structures

Pivot points

Pivot rings

Clusters

Distance function*

Distance matrix

Converters

Parameters

Number of pivots Number of rings Number of clusters

CC-Array

Components

Figure 4.6: Overview of the M -Grid framework.
The components, with an * attributed, de-
notes changeable components, whereas the
dashed ones denote components used only
for optimization. The dashed arrow indi-
cates parameters used for the M-Grid con-
struction.
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Parameters The parameter box encapsulate the con-
figuration used for the M-Grid, that is used as input
to the M-Grid as denote by the arrow in the figure. It
contains such parameters as the number of pivot points,
rings, and clusters. These parameters are used through-
out the entire construction of the M-Grid.

Distance Function Before the construction of the M-
Grid can commence, a distance function needs to be
defined. This component encapsulates such a distance
function and can be implemented in different ways as
long as the metric properties specified in Section 4.3 are
satisfied.

Pivot Selector This component selects the most suit-
able pivots from the entire set of objects. It can perform
an exhaustive search through all objects or select a ran-
dom subset and evaluate these. This option is described
in further detail in Section 4.9.2. After the selection
of pivots, rings can be formed that partition the vector
space. Furthermore, the distance calculations performed
in this step, are stored in the Distance Matrix, so that re-
dundant computations are avoided if other components
also need to perform some of the same computations.

Clustering Algorithm After the selections of the piv-
ots, the objects need to be clustered. Different criterias
can be used in order to determine the clusters, such as
the maximal amount of objects in a cluster, the total dis-
tance from the centroids to the objects in the cluster,
etc. However, the requirements specified by the post-
conditions in Section 4.5.4 need to be satisfied. The Dis-
tance Matrix is also used in this step.

CCArray The connection between Cells and the clos-
est cluster ∈ Clusters is maintained by the CCArray.
This is the underlying data structure of the M-Grid, and
this cannot be changed. This data structure makes use
of the Cell Index Handler, which enables fast look-up of
Cells in the CCArray. The hashing algorithm that pro-
vides this with Θ(1) complexity is described in further
detail in Section 4.13.2.

Block Handler When the construction of the M-Grid
is done, the generated Cells, Clusters and entries in the
CCArray need to stored on disk. This is handled by
the Block Handler component, which can be extend-
ed/changed to store the contents in different files if it
is more efficient to do so. In order to save the contents,
it uses different Converter components to write the con-
tents to the disk.

4.9 Pivots

In this section, we describe how to select some pivots
(also referred to as vantage points in the literature) that
are used as reference points in the construction of the M-
Grid. The choice of pivots influences the run-time per-
formance of the M-Grid, since the number of distance
calculations can be reduced in a similarity query. There-
fore the selection of pivots needs consideration and a
theoretical foundation for determining “suitable” pivots
needs to established.

4.9.1 Pruning using Pivots

The first step in evaluating a similarity query, given a
query object o′, is to map the query object into the pivot
space P, where each dimension value vi is defined by
the distance to the pivot pi. This step involves k distance
computations. In order to make the M-Grid efficient we
usually require that k � n where n = ‖S‖, so choosing
this small subset is an important task. This is done to
apply filtering and thereby reduce the number of expen-
sive I/O’s and distance computations. To do so, we need
to redefine the Pruning Criterion (Theorem 4.1) in the
presence of multiple pivots as in the following theorem:

Theorem 4.2 (Pruning Criterion with Pivots) Given
a range query on a set of objects S with query object o′

and range r, all objects o ∈ S satisfying the following
can be safely pruned from the result:

∂ m (

Fmetric(o
′),Fmetric(o)

)

> r

This theorem uses Equation 4.10, which defines the
distance between objects in the pivot space. Since the
distance is computed wrt. each pivot where the largest
value is used as the distance, we see that as long as one
of the pivots satisfy the criterion, the object o can be
safely pruned.

Figure 4.7 illustrates this situation with a range query
Rangeo′,r(G) on an M-Grid with two pivots and their
corresponding pruning radii. Like with a single refer-
ence point, the objects o1 and o2 lie outside both the
pruning radii and can therefore be pruned. Also o3 and
o4 satisfies Theorem 4.2, since they are outside the prun-
ing radii of p2 and p1. Only o5 and o6 are within the
pruning radii and can therefore not be pruned, but have
to go through a further refinement step.

27



o'r

p2p1
o6

o5

o2

o3

o4
o1

(o',p2) + r

(o',p1) - r
(o',p1) + r

(o',p2) - r

Figure 4.7: Range query pruning using two pivots with
each two pruning radii. Objects o1, . . . ,o4
are all pruned leaving only a single false-
positive result object o5, and still including
the true-positive o6.

Using Theorem 4.2 in combination with two or more
pivots increases the pruning power.

4.9.2 Pivot Selection
The pivot selection process can be summarized in the
following steps:

1. Choose a subset of candidates from the original
objects o ∈ S:

Candidates =
{

o ∈ S
∣

∣ isCandidate(o)
}

(4.22)

where isCandidate : S 7→ B is a predicate deter-
mining whether an object should be considered a
candidate.

2. From this subset, evaluate each candidate in turn:

P = 〈p1, . . . , pk〉 where

p1, . . . , pk ∈ Candidates ∧

@p ∈ Candidates
(

µS({p}) > µS({p1})
)

∧

k
∧

i=2

(

µS({pi, . . . , p1}) ≥ µS({pi−1, . . . , p1})
)

∧

@{p∗1, . . . , p∗k} ⊆ Candidates \ P
(

µS({p∗1, . . . , p∗k}) > µS(P)
)

(4.23)
where µS(P) specifies the efficiency of a set of
pivot points (see Section 4.9.3).

Since pivot selection can be done in different ways,
we provide an option in our framework for implement-
ing new algorithms as long as they fulfill the described
interface as described in the enumeration, i.e., they pro-
vide an isCandidate predicate.

4.9.3 Efficiency Criterion
In order to determine if some pivot p1 is better than an-
other pivot p2, a decision criterion for this is defined.
Usually, a pivot p1 is better than p2 if p1 is an out-
lier [24]. A good outlier is a pivot that lies far away
from the other objects in the set S, but being an outlier
in itself does not guarantee a good pivot, hence the need
for a efficiency criterion arises.

To increase the probability of satisfying Theorem 4.2,
and thereby gain an effective filtering, the mean of the
distance distribution of S, also denoted as µS(P) is intro-
duced. Here P is a set of pivots and is used to discrimi-
nate the objects of set S. The pivot selection from a set
of candidates maximizes the value of µS(P).

The pivot selection used is the Incremental Selection
Algorithm (ISA), since it has been shown to be effec-
tive [24]. The algorithm is defined below in terms of the
efficiency criterion:

µ IS
S (P) =

n

∑
i=1

max
p∈P

| ∂ (p,oi)−∂ (p,oi−n) |

where oi,oi−n ∈ S

(4.24)

4.10 Clustering Algorithms
In the original M-Grid article [2], it is stated that “any
clustering technique applicable to vector space” can be
applied. There are however some assumptions that are
not made very clear in that article. In the following we
present some of the problems affecting the clustering al-
gorithms and we define some criterias that these must
fulfill in order to be used. We do so by first defining the
a correctness criteria as the following:

4.10.1 Correctness
When using an index structure an important property is
the correctness of the query results. By correctness is
meant that the index structure maintains the recall prop-
erty and if possible a high degree of precision.

The recall property informally measures the percent-
age of the number of relevant results retrieved vs. the to-
tal number of relevant results (degree of false dismissals
avoided). An approach to achieve this is by ensuring
“full coverage” within the CCArray (formally defined
in Section 4.5.6).
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The precision, however, measures the number of rel-
evant results retrieved vs. total number of results re-
trieved (degree of false positives avoided).

Formally, the properties can be expressed as follows,
where A denotes the number of relevant results retrieved,
B the number of relevant results not retrieved and C the
number of irrelevant results retrieved:

Recall =
A

A+B
(4.25)

Precision =
A

A+C
(4.26)

4.10.2 Full Coverage
By full coverage is meant that the M-Grid has a refer-
ence to every object inserted. Objects not being ref-
erenced are not being investigated when performing a
similarity query, and therefore will never appear in any
query results. Since every object participates only in a
single cluster, full coverage is reduced to having a ref-
erence to every cluster. For this to happen every cluster
essentially has to be the one closest to some cell within
the pseudo-grid.

A situation can arise where a cluster is placed such
that it is in fact not being the closest cluster to any cell
– hence it is never referenced and full coverage is not
satisfied. Figure 4.8 shows a simplified picture of such a
situation, where the dark cluster is not the closest cluster
to any cell and is therefore not pointed to.

p1 p2

Figure 4.8: Example of a clustering where one clus-
ter will never be pointed to (the dark one in
the middle). The two surrounding clusters
is placed directly in a cell – hence they are
closest to that cell. No cell is closest to the
dark cluster.

Motivated by the figure we need to formally define the
criteria for valid clustering algorithms as follows:

Observation 4.3 (Valid Clustering) A valid clustering
is one specifying a set of clusters C = {c1, . . . ,cn} such
that the following holds:

∀c′,c′′ ∈ Clusters ∀o′ ∈ c′,o′′ ∈ c′′
(

c′ 6= c′′ ⇒ Fcell(o
′) 6= Fcell(o

′′)
)

The intuitive interpretation of Theorem 4.3, is that
we require all clustering algorithms to keep all objects
within the same cell in the same cluster. The original
authors mentions this in an informal manner, where we
explicitly require this of the clustering algorithm used,
since it may otherwise produce false dismissals.

4.10.3 Algorithms

One of the places where our M-Grid implementation
shows its strength is in the flexibility regarding cluster-
ing algorithms. In the following we describe some of
the clustering algorithms that have been implemented to
test the M-Grid.

K-Means Algorithm

The authors of the original M-Grid article uses the K-
Means algorithm [25] to find clusters due to the simplic-
ity of the implementation. Our experiments, however,
have shown that K-Means in its original version is not a
suitable algorithm for M-Grid. This is because it does
not satisfy the property presented in Observation 4.3.
Our current implementation has been carried out in or-
der to satisfy this property. The pseudo algorithm for
K-Means is as follows:

1. Randomly select h objects as cluster centroids –
these points represents initial group centroids.

2. Assign each object o to the cluster satisfying ei-
ther in the following order:

(a) Cluster already pointed to by cell where ob-
ject o is placed in.

(b) Cluster with the closest centroid.

3. When all objects have been assigned, recalculate
the centroids of the h centroids.

4. Repeat steps 2–3 until the centroids no longer
move or the number of iteration is reached.
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Space-Dividing Algorithm
As the name indicates this hierarchical clustering algo-
rithm divides the vector space. The space is divided by
grouping the rings for each of the pivots. Combinations
of ring groups from each pivot forms a cluster.

An M-Grid having k pivots, each with m rings, that
are grouped into g groups per pivot, gives mk cells di-
vided into gk clusters and thereby having (m/g)k cell
per cluster. This includes the cells not mapped to by
any region in the vector space S (see Observation 4.2).
Since the cells are constructed from the pivot rings, and
clustering is based solely on the rings, the property of
having at most one cluster overlapping a cell is satisfied.
The cluster of a subspace not containing any objects is
purged from the result.

An example could be an M-Grid with two pivots with
two rings each and a division of the rings by two – i.e.,
k = 2, m = 2 and g = 2. This gives a pseudo-grid with
mk = 4 cells, with the Space-dividing clustering algo-
rithm divides into gk = 4 clusters having (m/g)k = 1
cells per cluster. This is shown in Figure 4.9.

p1 p2
1,1

2,1

1,2

2,2

2,2

a)

p2p1
c1

c2

c3

c4

c4

b)
Figure 4.9: a) Pseudo-grid with two pivots each with

two rings.
b) Applying the Space-dividing clustering
algorithm gives four clusters where no two
clusters overlap the same cell.
Only overlapping pivot rings are shown.

Average Linkage Algorithm
The Average Linkage clustering algorithm is of type Hi-
erarchical Agglomerative that is a bottom-up approach
combining small clusters to larger ones. Initially the al-
gorithm creates a cluster for every cell in the pseudo-
grid, where each cluster contains the object(s) in the cell
covered. Hereafter the two closest clusters – measured
by the distance between their centroids – are merged into
a new cluster containing all objects from the original
clusters and with a recalculated common centroid.

This process is continued until the specified number
of clusters has been reached. The algorithm maintains

the necessary full coverage property since it starts by
using non-overlapping clusters (one per cell) which are
then combined, so every cell is overlapped by exactly
one logical cluster. The actual cluster is formed by the
objects covered by the logical one.

Average Linkage Algorithm with Quality Threshold
This algorithm adds a quality threshold to the clustering
merging step of the Average Linkage Algorithm. This
means that two clusters are only merged if the sum of
their objects is below a specified threshold τALA. If S is
the set of objects, AvgSize the average size of the objects
in S, MetaSize the size needed for storing metadata and
BlockSize the block-size of the file system, the threshold
is set to:

τALA =
BlockSize−MetaSize

2 ·AvgSize
(4.27)

This way we ensure that no cluster exceeds a block-
size. It makes sense to use as much of a block as possi-
ble, since the difference in cost between reading only a
part of a block and reading the entire block is negligible.
Furthermore, increasing the number of clusters, allow us
to more effectively prune clusters when performing kNN
queries. This optimization is handled in Section 4.13.3.

4.11 Block Handling
In this section we describe how the block handling is
performed in order to reduce I/O. This handling is im-
plemented in the class BlockHandler which handles all
issues related to I/O with the underlying file-system.
The BlockHandler addresses how the clusters are stored
and retrieved, making it possible to potentially avoid re-
trieving all objects in the cluster.

In the following description we use the term block and
cluster interchangeably, since a block is the on-disk rep-
resentation of a cluster with additional metadata (needed
for deserialization) associated.

4.11.1 The Physical Layout Within Clusters
In order to potentially stop a sequential scan of the ob-
jects in a cluster during a similarity query, the objects
needs to be stored in a particular order. The approach
used is sorting the objects by increasing distance to a
pivot p, which does not add any additional space over-
head [20].

Choosing the most suitable pivot has already been de-
fined in Equation 4.24, the only difference being that the
set of objects S used to evaluate the efficiency being re-
stricted to o ∈ cluster. Intuitively, the definition ensures
that a pivot is chosen such that the distance between the
objects is maximized according to the chosen pivot. This
means that given an arbitrary range query, we can better

30



discriminate the objects and thereby prune candidates.
In addition to that, the retrieval of objects from the clus-
ter can be stopped immediately after the first object has
been pruned by the pivot sorted according to, using The-
orem 4.2. However, this sequential scan of the objects
within the cluster can only be stopped if the scan hap-
pens in ascending order wrt. the distance to the query
object o′.

4.11.2 Block Placement
The layout within the clusters determines the pruning
power when the clusters are investigated. This will give
an increase in performance. However, more efficiency
can be achieved by giving more consideration to how
the clusters are stored on the disk. Placing nearby clus-
ters sequentially on disk, makes it possible to read all the
clusters at once. This means clusters that are likely to be
investigated in the same query can be read with only one
random seek to the start of the first cluster on disk.

In Figure 4.2, it can be seen that storing the clusters
cl1 and cl2 together will likely lead to more sequential
reads. The reason is that Range queries intersecting cl1
will likely also intersect cl2. Nonetheless, this likelihood
depends on the placement of the query object o′ in the
vector space. Therefore, we need to use a query inde-
pendent criterion for determining which clusters to store
physically close on disk.

An approach that can be used, is space filling
curves [26]. This allows us to order close-by objects in a
n dimensional space linearly, such that close-by objects
are placed together in the sequence. By changing the
cluster placement algorithm it is possible to implement
this behavior, which can easily be done.

4.11.3 Accessing the Clusters
When performing a Transition query, we need to access
a possibly large amount of clusters. In order to mini-
mize the random movement of the HDD arm when it-
erating the clusters, the implemented BlockHandler re-
orders the given set of clusters in order to produce a se-
quential schedule. It has been shown that reading a set
of disk pages sequentially can be up to 12 times faster
than reading the same set of disk pages randomly [27].

This traversal is different from the one originally pre-
sented for Range queries [2], where the clusters are tra-
versed according to the distance to the query object. We
do not use this approach since all clusters necessarily
have to be processed to guarantee correctness. This is
due to the assumption that all clusters intersecting our
query region may contain candidate objects. Therefore,
by reordering according to physical layout, we reduce
random I/O.

4.11.4 Cluster Cache
Since the similarity queries Trans and kNN may both
incrementally expand the query range in order to satisfy
the query, it may be desirable to maintain the last fetched
blocks in memory. Therefore an LRU buffer is used to
cache the blocks read from the disk. Since XXL already
provides such functionally, the BlockHandler has been
implemented to pipe the results through the LRU buffer,
and the benefits of an LRU strategy is achieved without
much work.

4.12 Modification Operators
The M-Grid is not designed for large modifications after
the initial construction of the index structure. In order to
achieve a good run-time performance, the M-Grid has
been designed for bulk loading. This does not, however,
imply that it is all static, since it does support insertion
and deletion under some performance degradation.

The reason for the degradation is that insertion and
deletion affect the choice of the pivots, cluster centroids
and the constructed pseudo-grid. If many new objects
are inserted/deleted, the initial conditions for how the
pivots, clusters centroids and the pseudo-grid were cho-
sen may change. We will elaborate on in this the follow-
ing sections.
4.12.1 Insertion
In order to add a new object o, the correct cluster cluster
has to be found. This is done by finding the cell that con-
tains the given object cell = Fcell(o) and from here find
the closest cluster = Fclosest(cell). By using the cell, the
cluster can be found efficiently (in constant time) via the
CCArray. Now the task is simply to insert the object o in
the cluster found, and setting the corresponding Boolean
entry repr = tt in the CCArray because the cell now is
non empty. This procedure introduces a few problems
that are not addressed originally [2]. These are as fol-
lows:

1. The physical block containing the cluster may not
have enough space allocated.

2. The cluster needs to be readjusted since the cen-
troid may have changed.

Not Enough Space (Issue 1) In order to address the
first issue, we provide the ability to allocate additional
space when the initial cluster is written to disk. The ad-
ditional space can either be a constant or a percentage
of the size of the cluster. This option is only sufficient
as long as the amount of new objects to be inserted at
run-time is known a priori. This is practically impos-
sible when considering expanding music communities
similar to Pandora [28].
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Therefore, another approach has to be presented,
which addresses the problem of when a block becomes
full. The implemented BlockHandler transparently han-
dles this issue, by moving the (over-sized) block to a
new location on the disk when the block is written.

Readjusting the Cluster (Issue 2) The insertion of a
new object o introduces a new problem since the “bal-
ance” of the cluster may have changed. Therefore a new
centroid has to be chosen within the cluster, which will
affect the CCArray, where all the cells have to be up-
dated. This update not only effect the cells pointing to
the changed cluster, but possibly also other clusters since
the new centroid may have moved the cluster closer to
some other cells. Therefore, the entire CCArray needs
to be scanned and updated appropriately according to
the procedure described in Section 4.5.6. It is not suffi-
ciently to only examine the adjacent cells to the cluster
where the new object o has been placed. The reason is
that we can not identify the cells that has the possibility
to point to the updated cluster. Therefore, all cells have
to be processed. We have not focused on how to effi-
ciently identify which cells need only be checked when
adding a new object o.

4.12.2 Deletion

In order to delete an existing object o, the correct cell
and cluster has to be to found, similarly to the approach
presented in the previous section. If o ∈ S then it is per
construction of the M-Grid required to be in the cluster
pointed to by the cell in which it lies. Therefore, only
that single cluster has to be investigated. Only a sub-
set of the cluster needs to be read to verify whether the
cluster contains the object o because we can use the
fact that the cluster is sorted by the distance to some
pivot p (see Section 4.11.1). We can use the dist =
∂ m

(

Fmetric(o),Fmetric(p)
)

as a stopping condition when
iterating through objects in the cluster. In other words,
if the current investigated object o′ has a dist ′ > dist, we
can stop. If the object o is found, we can simply delete
it and check whether the cluster is empty. Now the same
problem and solution as described in the previous sec-
tion applies (Issue 2).

If the number of objects in the cluster reaches zero af-
ter the deletion, the CCArray needs adjustments so that
cells pointing to the cluster are reset so that repr = ff .
This ensures that even though entries in the CCArray
contain cells that intersects the changed cluster, they are
not visited when performing Range/Transition queries
(since repr = ff ).

4.13 Optimizations
This section considers the different optimizations done
to the original M-Grid to improve its efficiency. The sec-
tion is divided into four parts where the first describes
the Distance Matrix. Its purpose is to cache the dis-
tance computations and thereby avoid redundant compu-
tations. The second part describes the Cell Index Han-
dling that allows us to perform a look-up in the CCAr-
ray in constant time. The third part concerns how the
kNN operator can be optimized. Finally, the last part
describes how the clusters are converted to raw bytes
that can be stored disk.
4.13.1 Distance Matrix
The process of constructing the M-Grid requires that
several inter-object distances are computed. If a set of
objects of size n needs to be indexed, we will in worst
case need to perform n2 calculations – due to the cal-
culations needed during pivot selection and clustering.
Since the modules presented in Section 4.8 work inde-
pendently, they may repeat the step of calculating some
of the distances.

In order to avoid this, we provide the Distance Matrix,
which encapsulates the calculation of all the distances.
This single module handles all the distances using dy-
namic programming and we hereby avoid redundant cal-
culations. The Distance Matrix is built incrementally as
results become available during the whole initialization
process of the M-Grid.

The modules using the Distance Matrix are PivotSe-
lector, and ClusterHandler. Furthermore Distance Ma-
trix supports sorting the distances in descending or-
der, simplifying the process of constructing the pseudo-
grid.
4.13.2 Cell Index Handling
In order to answer all similarity queries, the first step is
always to map the given query object q into the cell =
Fcell(q) that contains the object. After the cell has been
determined it is necessary to find the closest cluster. In
order to determine the closest cluster in constant time, a
perfect minimal hashing function [29] is provided. This
function is able to map a cell into a unique index in the
range [0,mk) where m denotes the number of rings and
k the number of pivots. The used function is as follows:

F idx
〈c1,...,ck〉

(G) =
k

∑
i=1

(

(ci −1) ·mi−1) (4.28)

4.13.3 Cluster Iteration
The implementation of the kNN operator can be done in
an efficient manner, provided that information regard-
ing the inter-cluster distances are available. If this is
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the case, it is possible to investigate each cluster’ in the
candidate list of clusters within the range r as specified
in Section 4.6.3 in ascending order specified by the dis-
tance ∂

(

o′,Fcentroid(cluster)
)

, where o′ is the query ob-
ject. The optimization achieved by this is that it is likely
that not all clusters have to processed, since each pro-
cessed cluster may tighten the range radius r and thereby
prune some cluster. Since the centroids are the represen-
tatives of each cluster (see Equation 4.9), the described
scenario is likely to occur.

This is illustrated in Figure 4.13.3 where k = 4 and
using the query object o′. The initial lookup of the
query object o′ yields a cell pointing to the nearest clus-
ter cl1. The kth nearest object in this cluster is o3 with
the distance r3 from the query object. This distance r3
is used as an initial query range, which returns the clus-
ters 〈cl3,cl2〉, since they are pointed to by the cells in-
tersected by the query range r3. The order, of how the
list of clusters is examined, has an impact on the runtime
performance of the query execution.

o'

o1o2

o3

o5

o4

o7

o6

o11

o10

o9

cl3

cl2

cl1

o8

Figure 4.10: Performing a kNN query with o′

and k = 4. This yields the result
〈o′,o1,o2,o6〉.

Traversing the list 〈cl3,cl2〉 in this order will still yield
the same radius r3 after investigating cluster c3, since o3
is still the kth nearest object. Finally the cluster c2 is
examined and the algorithm terminates, because there
are no more clusters to investigate. This gives the result
〈o′,o1,o2,o6〉.

If we however had traversed the list of clusters in the
order 〈c2,c3〉, this would have resulted in a tightened
radius of r6 due to object o6, which would allow us to

prune the cluster c3 since it outside the tightened radius
r6. This indicates that the performance is affected by the
order of how the clusters are examined. However, the
correctness of the result is not affected, since the result
in both cases is 〈o′,o1,o2,o6〉.
4.13.4 Converters
The XXL framework provides converters for many typ-
ical data structures that is used in order to serialize the
data in the M-Grid in a well-defined manner to the disk.
Since new classes have been introduced to form the M-
Grid, converters for these have been implemented.

We follow the guidelines of XXL and do not rely on
Java’s own serialization mechanism. Serializations are
fixed at compile time and only allow a single serialize
method for each class. Instead, by extending the Con-
verter interface from XXL, it is possible to construct
converters that are able to implement different conver-
sion strategies. The strategies can be changed at run-
time. This is relevant because in XXL the majority of
the converters are simple, since attributes of a class are
merely (de)serialized in a fixed order.

We, on the other hand, give another option that in-
tegrates the aspect of providing space vs. computation
trade-offs. If some attributes of a class can be calculated
through some computation (i.e., decompression, etc.), it
can be desirable to be able to trade computation for stor-
age. The motivation for this stems from the fact that
we work with large feature vectors (many sample values
and dimensions).
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Chapter 5

Case Studies

5.1 Overview
In this chapter we will introduce two case studies. The
first case study (Section 5.2) is a proof-of-concept web
player that combine all the features that the core sys-
tem offers to a client application. The second case study
(Section 5.3) is an example of, how a real-world Internet
based music shop can implement some of the features
from the core system, into their already running system.

5.2 Case Study: Web Player
The Internet is becoming a larger part of our life every
day and nearly every new electric device can be con-
nected to it – including devices for playing music.

In this case study we look at an implementation of a
web-based music player that supports and exploits all
the features in the middleware. We will go through the
setup, design and usage of the system.

5.2.1 The System Setup
To make the player available to as many potential users
as possible, it was chosen to implement it as a normal
web-page. This way users can access it from every
Internet-connected computer (even some devices like
mobile phones and PDAs) via an Internet browser. In
our implementation of the WebPlayer the focus has how-
ever only been on supporting playback from browsers on
normal PCs. The player should be seen as a proof-of-
concept implementation to show all the features of the
middleware and at the same time be a test-bed for the
system.

The setup can be divided into five parts - client, web
server (with player), middleware server, music file stor-
age, and database server. Figure 5.1 shows the setup of
all of its modules. In most cases it would be more feasi-
ble to have most of the modules of the server side on the

same physical server. However, since all communica-
tion between the different server modules is via network
(XQL, JDBC, HTTP), there is no problem splitting it up
as shown in the figure.

User

Mobile user

webserver

Middleware
    Server

    Music
File Storage

Database
   server

Client side Server side

HTTP

HTTP 

HTTP

XQL SQL

Figure 5.1: Overview of how the setup of the WebPlayer
service could be. The entire server-side
could be on the same machine or spread out
on several different machines.

The communication between the client and the web
server is normal HTTP requests done by the browser.
From the web server and to the middleware a TCP
socket is opened and our XQL is used for the commu-
nication. When the user selects a music piece to listen
to, the actual music file is fetched from the file storage
server via HTTP requests. The middleware server uses a
DBMS server as back-end for metadata and and feature
data. The communication to this server is done through
JDBC as described in Section 2.2.3.
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The WebPlayer itself is implemented using popular
web technologies such as:

◦ PHP on the server-side.
◦ XHTML 1.1 and CSS2 for the design.
◦ Asynchronous Javascript And XML (AJAX) for

the client-side to server-side communication.
◦ Flash for the music playback.

The Graphical User Interface (GUI) of the WebPlayer
makes heavily use of AJAX for communication with the
web server. This makes the WebPlayer appear more like
a normal application and less like a web page. It also
implies that the web page holding the player does not
have to reload when new commands (e.g., a range query)
are sent and it can therefore continue to play the music
while work is done in the background. When answers
to requests are received, they will appear on the page
asynchronously of when they were sent. There is how-
ever implemented a request buffer that controls that one
request from a client will not be overruled by another
request from the client.

5.2.2 Features
The WebPlayer supports most of the main features of the
middleware system and present it to the users in a user
friendly manner. Among the main features are:

◦ Display of random playlist.
◦ Playback of music with display of metadata.
◦ Possibility to select which features to use in

queries.
◦ Range and kNN queries.
◦ Evolving and sized Transition requests.
◦ Look-up of artists and titles.
◦ Fully customizable layout.

To make the WebPlayer more suited for testing of the
middleware, almost every part has been made config-
urable through a configuration window. Among the con-
figurations are:

◦ Size of k in kNN.
◦ Range (percentage).
◦ Option for sorting and refining Range results.
◦ Transition evolution min/max and size.
◦ The feature types to use and how to weight each

of them.

Figure 5.2: First view of the WebPlayer.
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5.2.3 Usage
Since the WebPlayer exposes some features to the user,
which he would normally not expect (like feature/dis-
tance function selection), we now go through the basic
usage of the WebPlayer.

To use the WebPlayer, the user needs to point a web
browser (tested with MS Internet Explorer and Mozilla
Firefox) to the URL where the WebPlayer is installed.
Figure 5.2 shows a screen-shot of the WebPlayer as it
looks when the user first sees it.

On the left is the main menu. This gives access to:

◦ The Player.
◦ The configuration window (described later).
◦ Help window.
◦ Statistics window (described later).
◦ About page.

Right in the middle of the page, is placed two of the
key components of the WebPlayer. The upper part is
the actual WebPlayer area that shows the metadata for
the song currently playing. It also contains the flash
component that handles the playback. Underneath the

player area is links for transition generation and ran-
dom playlist fetching. Below this, the user will find the
playlist which is the primary working area when using
the player. Initially the playlist is empty, but a click
on the “load songs with random playlist” will fill the
playlist with random songs.

In the playlist the user will find information about
artist and song title. Besides this, every song has links to
do a range query, a kNN query or delete the song from
the list.

If the user selects to perform one of the queries, then a
new song list area shows up underneath the playlist. As
soon as the server has found the matching result for the
query, this song list will get populated with the songs in
the result. The song list will show artist name, song ti-
tle and how much the song deviate from the query song.
The deviation is shown as a percentage where 0% is per-
fect match (the query song itself), and 100% is the song
in the database being most different from the query song.
Figure 5.3 shows the WebPlayer after the playlist is pop-
ulated, a range query has been performed and the result
has been returned.

Figure 5.3: The main part of the WebPlayer with a populated playlist and result of a range query.
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Configuration of the WebPlayer
All configuration of the WebPlayer can be handled by
the user via the configuration window (see Figure 5.4).
When the user saves the configuration changes, it is
saved in the current browser session and also in a cookie
on the user’s computer. This way the settings will also
be the same the next time the user opens the browser and
loads the player. However not all configurations can be
saved over time.

Figure 5.4: Every WebPlayer setting can be configured
via the configuration window.

At the bottom of the configuration window, the user
can select which feature/distance function pairs to use
(implies which index to use on the server-side). The list
in which the user chooses this is dynamic and can be
changed on the server side over time – hence the fea-
tures available one day do not have to be the same the
next day. For this reason the user has to set this setting
every time the WebPlayer is reloaded in the browser.

Each of the feature/distance function pairs can be
weighted so that the result from one index has more im-
pact on the final result than the result from another. The
weight is given by a number between 0 and 1 and will
get normalized on the server-side. All the settings in the
configuration window reflects the actual contents of the
server – e.g., the max size of the playlist is the actual
number of songs in the database.

Some of the settings are percentages going between
0% and 100%. These percentages actually gives you a
range between 0% deviation and the longest distance be-
tween any two songs in the system.

Construction of a Transition
A transition is another way of constructing a playlist. In
a transition the goal is to get a smooth transition between
the songs in the playlist.

In the WebPlayer you can construct two types of tran-
sitions – Evolving Transition and Sized Transition (see
Sections 4.6.6 and 4.6.7). The user can select a start
song and an end song. This is done by typing in the
artist name (the input field proposes names as you type)
and when an artist is selected, the user can select a song
among the songs this artist has made. Finally, the user
can select the type of transition to use and then wait for
the transition to be constructed. Figure 5.5 shows an on-
going construction of a transition where the first song is
selected and the WebPlayer is proposing artist names for
the second song.

Figure 5.5: The construction of a Transition is ongoing
in the transition window.

It is not always possible to construct a transition that
satisfies the configuration set by the user. In such cases
the user will not get a transition but rather a message
giving some tips on how to get the transition to give a
result. The user then have to change the configuration
and try again.

Statistics and Settings
A special window has been added such that the user of
the WebPlayer can get further information about each
feature/distance function pair. The information is pri-
marily statistics, but also the main settings used when
initializing the index for that feature/distance function
pair. Figure 5.6 shows how such a statistic for a single
feature could look like.
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Figure 5.6: A closeup of the statistics and setting for a
single function/distance function pair.

If one of the links below each of the statistics blocks
saying “Show full cluster stats” is pressed, then another
window will show up with further debug information
about that specific index. This debug information con-
tains data about how and where the objects are placed in
the clusters. This gives an idea of how well the clus-
tering has been performed. The data in the statistics
window is updated every time the window is opened,
but only values that change over time will be updated.
The settings will only change if they are changed on the
server-side and the server-side system is restarted.

5.2.4 Evaluation
When using the WebPlayer, the user has a good opportu-
nity to evaluate the features of the middleware. The fea-
tures of the player works as supposed with the original
design of the middleware, which shows that the design is
well implemented. As a user wanting to test the results
of using different audio music features, the player gives
great opportunity to investigate this. There is however
some issues to consider.

The first one is that if the user selects several audio
music features to use in the queries, then the system is
starting to become slow (due to extra calculations). Be-
cause of this we recommend that the user does not use
more that 2-3 audio music features at the same time with
a maximum of 50 dimensions in total.

Another case is the rendering of the result of a query.
Even though the middleware server responds quite fast,
then the rendering of a long playlist in a browser can be
a slow process (2+ seconds). This can make the system
seem less responsive when the middleware actually has
returned its result. To give the user an idea of the actual

query time spend in the middleware, this time is shown
under the playlist.

A final case is that a plug-in or flash element is needed
to do the actual playback of the music. This however
tends to give compatibility issues when moving between
browser brands.

5.3 Case Study: On-line Music Shop
In this second case study we will look at a more real-
world example. MusicMatcher is an on-line Webshop
we have created for the purpose of showing how our
core system can be implemented in an already running
Webshop.

The main idea behind the MusicMatcher Webshop is
to sell audio music by the track and not by album as
it normally is. Similar shops have arrived on the Inter-
net throughout the last couple of years (e.g., iTunes and
Amazon), but what makes MusicMatcher different from
them, is that it actually looks at the audio music con-
tents (features) itself, when it recommends similar songs
to the shop user. In most of the on-line shops provid-
ing such similarity recommendations today, this is done
using statistical information about what the other users
buying the same piece of audio music has bought.

Figure 5.7 shows a part of the Webshop as it could
look in a browser. This is just the top of the Webshop,
that shows the main navigation panel, some information
to the customers, the quick-search and the top of the
genre selector. To the right the top-part of the top-10
list is shown.
5.3.1 The System Setup
The setup for the music shop is the same as shown in
Figure 5.1, but would in a real-word setup also have a
system for payment transactions. The entire implemen-
tation surrounding the actual buying of the music is how-
ever beyond the scope of this project and therefor not
implemented in this case study. Only the main function-
ality which has importance in relation to the middleware
is implemented.
5.3.2 Features
The MusicMatcher web shop combines the strength of
both the metadata and the feature data of the music.
The metadata is used to group the music into categories
(genre, artist, album, year) which normally makes it easy
to find things when you know what you are looking for
– e.g., finding the song “U2 - One” is just going into the
Rock genre, finding the artist ”U2” and then select the
title ”One”.
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Figure 5.7: A top view of the MusicMatcher Webshop as seen when the user first enters the page.

Figure 5.8 shows a close-up of the part of the Web-
shop where the user can select a genre to get an artist
list. In the bottom of the figure is shown the result of the
user selecting the genre ”rock”.

Figure 5.8: A close-up of the area of the shop where the
user can find music grouped by genre, and
below that, by the artists in a specific genre.

Alternatively the visitor can use the quick-search (see
Figure 5.9) to find an artist or song by the name or the ti-
tle. Whenever the shop visitor has found a song he likes,
then the use of feature data is engaged. Now the visitor
is given the possibility to find songs similar to the one
the visitor knows. This way the visitor gets exposed to
music it is likely he will find interesting and most likely
buys more.

Figure 5.9: A close-up of the quick-search in action.
Notice the auto-completion that proposes
possible song titles.
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Figure 5.10: A close-up of the result of a similarity query. The list gives fast access to do further similarity querying
or buying the track.

It is the shop-owner that selects which music fea-
ture(s) the system should use to find the similar songs
and which similarity query to use to get the result. Fig-
ure 5.10 shows a result list of a similar query.

As the figure shows, the Webshop gives the user an
easy overview of the found songs (ordered by similar-
ity deviation). The first song is the song the visitor used
in the query. From here on the visitor can easily listen
to the songs, and buy it if he likes it. If he did not get
enough music yet, then he can do even further similarity
queries for any of the songs in the list.
The visitor can actually construct a playlist with a
smooth transition between songs by simply doing a sim-
ilarity query for a song he likes. Hereafter the visitor
takes the best match (second song) in the result list and
adds this to the playlist and then do a similarity query

for this song. The visitor keeps doing this until he has
enough songs in his playlist. In this case the playlist
would of cause be the contents of the shopping basket.

5.3.3 Evaluation
The Webshop case story is meant as a proof-of-use im-
plementation and is not meant as a complete system. It
does however show off the potential of using the mid-
dleware in a real-world system like a music shop – and
thereby show that our system is not only usable for tests.
With a setup like this where similarity queries (in this
case kNN) are show to the user when he requests it, the
speed of the system seems fairly fast. An indication that
shows that the system is working is however needed in
order to get the user to wait without browsing on in other
directions.
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Chapter 6

Evaluation

6.1 Overview
In this chapter we will go through a structured evalua-
tion of the middleware implementation. In Section 6.2
we will provide an overview of the test setup. In Sec-
tion 6.3 we evaluate how our addition of the Distance
Matrix to the M-Grid optimizes the system, and in Sec-
tion 6.4 we evaluate different pivot selection algorithms.
The next thing we test is the different distance functions.
This is done in Section 6.5. Section 6.6 we describe the
test of some the clustering algorithms implemented, and
in Section 6.7 the effect of the cluster cache is evaluated.

6.2 The Setup
With our flexible middleware at hand (especially the M-
Grid), an interesting question is: How does different im-
plementations of the modules impact the performance?.
An example could be how much difference it makes
to use one clustering algorithm instead of another one.
We differentiate between two impact points – “Initial-
ization” where, e.g., the index structure is constructed
and “Run-time” where the system accepts and processes
queries from clients.

6.2.1 Default setup
The way the tests are performed, is by keeping all but
one parameter fixed and evaluating the effect of this dy-
namic parameter. All tests are performed on a setup con-
sisting of 942 songs (mixed MP3 files), where number
of songs is denoted n. One feature (“AudioSpectrumEn-
velopeType” defined in the MPEG-7 standard) having
10 dimensions is used. If nothing else is mentioned, the
following setup is default:

◦ Manhattan as distance function.
◦ Average Linkage with Quality Threshold as clus-

tering algorithm.

◦ Full Pivot Selector as the pivot selection algo-
rithm.

◦ Block Handler with cluster caching enabled.

6.2.2 Test Configuration
The computer used for the tests had the following con-
figuration:

◦ CPU: Intel Xeon 2.8GHz
◦ RAM: (limited by Java’s -Xmx parameter)

– RAM: 2GB for bulk loading the indices
– RAM: 1GB for servicing queries

◦ OS: Red Hat Enterprise Linux WS release 4
◦ Java: Sun Java version 1.4.2_08-b03

6.2.3 Test Query Properties
When performing queries we set out to retrieve around
1% of the total database size. In this case this amounted
to k = 10. All the times shown in the tables are in sec-
onds and are for 100 random queries run in succession.
In order to make the tests repeatable and fair, we ensure
that the random functionality in all tests are seeded with
the same value.

6.2.4 Abbreviations Used
During the remaining parts of this chapter the following
abbreviations may be used:

◦ Init time or just init is used for initialization time.
◦ RT is used for run-time.
◦ Clustering algorithms:

– KM: K-Means
– SP: Space-Dividing
– ALQT: Average Linkage with Quality

Threshold
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6.3 Distance Matrix
The Distance Matrix has been introduced in order to re-
duce the number of redundant computations. The M-
Grid presented in Figure 4.6 shows that the different
components are separated and have no knowledge of the
existence of the other components. This separation leads
to a more clean design [30].

Table 6.1 shows that, by using the Distance Matrix,
we avoided a large number of distance calculations. The
clustering algorithms have, as the table shows, different
needs in terms of the number of distance computations
needed. The Distance Matrix is in all cases an extremely
good optimization.

The column Actual contains the number of unique cal-
culations between pairs of objects actually performed.
When a distance between two objects has been calcu-
lated, it can be reused afterwards. This is expressed in
the Avoided column that describes how many percent of
the needed calculations that were reused, without having
to calculate the distance.

Clustering algo. Needed Actual Avoided
KM 351976 307882 12,7%
SD 300426 151240 49,7%

ALQT 89282 45097 49,5%
Table 6.1: Evaluation results which shows how many

unique computations were performed and
needed. Also shown is the percentage of the
computations that were avoided.

Results will later show that the ALQT is the most run-
time efficient, so here we will briefly describe, how the
algorithm makes use of the Distance Matrix. The algo-
rithm uses a bottom-up approach, where smaller clusters
are merged into larger ones until the number of clusters
has been reached. Furthermore the quality threshold de-
termines the maximum allowable number of objects in a
merged cluster.

During each iteration of the algorithm the two closest
clusters are determined. Having h clusters to investigate
this gives h2 distance calculations to perform. When the
Distance Matrix is used, the only unknown distances in
each step are the distances between all clusters and the
cluster merged in the previous iteration. This reduces
the number of distance calculations to h.

When merging two clusters cl1 and cl2 having m1 and
m2 objects respectively, a centroid for the new cluster
is to be calculated. Without the Distance Matrix this
implies performing all calculations between all objects,
which gives (m1 +m2)

2 calculations. Using the Distance
Matrix this is reduced to m1 ·m2, since the inter-object
distances in cl1 and cl2 are already known.

6.4 Pivot Selectors
The performance of the M-Grid is based on how the
pivot points are placed and hereby how the pseudo-grid
is created. Due to this, the method for selecting the pivot
points is very important – hence it is made changeable.
In our evaluation we have tested the two ways of find-
ing pivots mentioned in Section 4.9.2 (Random and Full
Candidate set).

Table 6.2 shows the results (init and RT) of our evalu-
ation of the two pivot selector implementations Random
and Full. In the case of the Random Pivot Selector the
tests were conducted with a candidate set of size 10%.
This means that the Random Pivot Selector performs
only 10% of the calculations performed by the Full Pivot
Selector. This can also be seen from the init time that is
about 90% less for the Random Pivot Selector.

Candidate set Init RT
Full 14059 391

Random 1289 504
Table 6.2: Evaluation results when changing the pivot

selector algorithm.

What can also be seen is a large difference in the run-
times for the two pivot selectors, where the Full Pivot
Selector performs better. Therefore another test is con-
ducted, that uses other sizes of the candidate set, to re-
veal, when the Random Pivot Selector begins to either
be as slow as the Full Pivot Selector or when it starts
to have impact on the run-time tests. Table 6.3 shows
the resulting timings for the Random Pivot Selector with
10%-90% candidate sets (with intervals of 10%):

Size Init RT
10% 1289 504
20% 2281 449
30% 3622 492
40% 4392 423
50% 4830 415
60% 5388 402
70% 6273 393
80% 7132 392
90% 8492 392

Table 6.3: Evaluation result for the Random Pivot Se-
lector with different candidate set sizes.

These numbers are depicted in Figure 6.1. The figure
shows that there is a linear dependency between the init
and run-time. The run-time increases as the init time
decreases.
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Figure 6.1: Evaluation results showing both init and
run-time performance when increasing the
candidate set.

6.5 Distance Functions
One of the main problems to consider when testing dis-
tance functions is to choose a function that is able to
implement the notion of similarity. Other things to con-
sider are, e.g., the precision of the distances (do we work
with 0 or a hundred decimals), the number of calcula-
tions needed for one distance result, etc.

In our evaluation we have primarily focused on the
metric distance functions Euclidean and Manhattan that
both maintain the metric property defined in Section 4.3.
This is because M-Grid is designed for metric functions,
and investigating non-metric distance functions in M-
Grid would be a complete project of its own. In Table
6.4, the timings for the two algorithms are shown:

Function Init RT
Euclidean 11059 410

Manhattan 9070 386
Table 6.4: Evaluation results of distance functions.

As the timings in the table clearly show, the Man-
hattan distance function is the fastest one both in run-
time and initialization. This is primarily due to the fact
that it only uses simple operations like minus and plus,
whereas Euclidean also uses multiplication and square

root. Our findings confirm what has been presented in
earlier experiments [31].

6.6 Clustering Algorithms
The clustering algorithm dictates how the objects are or-
dered on the disk and which objects to recalculate during
a query, hence these ought to have some impact on the
run-time performance.

We have implemented and investigated four different
clustering algorithms and seen how they affect the sys-
tem, and how well they actually cluster the objects. Ta-
ble 6.5 shows the result of our evaluation of the four
different clustering algorithms.

We have strived to place the same amount of objects
in each cluster as we query for (1% of n) plus an addi-
tional 25%. This has been chosen in order to reduce the
number of clusters to visit.

Furthermore our studies have shown that around 5%
of the total number of objects n are placed far away from
the others in groups ranging from 1–3 objects. This
leads to the formation of clusters, where roughly 25%
of the total number of clusters are small. The remain-
ing 95% of the objects are partitioned into the remaining
75% of the clusters. Using the number of objects in each
cluster that we strive for, we define the total number of
clusters:

noC =

⌈

n ·95%
n ·1% ·125% ·

100%
75%

⌉

= 102 (6.1)

This leads to a configuration of the algorithms being
as follows:

◦ Common configuration
– Number of clusters: noC = 102

◦ ALQT

– Max. number of objects in each cluster:
noO = dn ·1% ·125%e= 12

◦ K-Means
– Number of iterations: noI = 8

Algorithm Init RT Pruned Computations Sum
KM 14084 488 7690 50237 57927
SD 9853 634 12848 55044 67892

ALQT 11233 389 6904 48475 55379
Table 6.5: Evaluation results when changing the clustering algorithm.
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The results of our evaluation are shown in Table 6.5. If
we look at the init time (of the clustering process only),
it is clear that the SpaceDividing algorithm is the fastest
one. If we weigh this result against the others, then it is
easy to see that the SpaceDividing algorithm is also the
least optimal one when considering the run-time perfor-
mance.

The columns Pruned and Computations indicate the
number of objects that were pruned due to Theorem 4.1,
and the actual distance computations performed on ob-
jects not pruned respectively. These numbers explain the
reason behind the performance of ALQT. We see that the
sum of Pruned and Computations (the Sum column) has
the smallest value for ALQT. This value equals the num-
ber of objects retrieved from disk, which indicates that
the clustering performed by ALQT is better.

This can mainly be attributed to the threshold param-
eter it uses to set the maximum number of objects per
cluster. This ensures that no large clusters are created.

The maximum number of objects to store in a cluster
is a trade-off between I/O and recalculation. Avoiding
large clusters is good, since we have to do recalcula-
tion of every object in the cluster if we do a query that

just reaches one of the objects. The other way around
we wish to avoid too much I/O. Our studies have shown
that smaller but well-spread clusters is optimal.

6.7 Block Handler
The only optimization in the Block Handler is the Clus-
ter Cache. We test the M-Grid to see how good an op-
timization it actually is to have the Cluster Cache in the
Block Handler turned on. Table 6.6 shows the timings
with the Cluster Cache turned on and off.

Cluster Cache RT Disk I/O
ON 387203 440

OFF 398334 839
Table 6.6: Evaluation results with enabled/disabled

Cluster Cache.

The results indicate that the Cluster Cache provides a
speed boost to the queries by reducing the number of ac-
cesses to the disk in half. However, this reduction only
introduces a small run-time performance increase. We
attribute this is to efficient disk caching by the operating
system.

46



Chapter 7

Summary and Future Work

7.1 Summary
We have, throughout this paper, introduced, designed,
and discussed the implementation of a framework for
enabling similarity queries on audio music in database
systems. Focus has be put on the flexibility of the sys-
tem, and different implementations of the parts are con-
sidered.

In Chapter 2 we described the modular architecture of
the system and gave a detailed description of each mod-
ule. Problems with the JPOX component was discovered
and an alternative solution was proposed.

Chapter 3 dived deeper into the aspects of performing
similarity queries, on high-dimensional data, across sev-
eral audio music features at the same time. A solution
was proposed that we believe gives reasonable results
in kNN and Range queries. Applying the solution to
Transition queries was however disregarded since it was
identified as not being clear for the user how to use it.

In Chapter 4 we focused on the M-Grid index struc-
ture and gave a formal description of its functionality.
We discussed the implementation and how we optimized
the index structure from how it was originally designed.
Furthermore we added support for Transitions queries
on the M-Grid.

To show that our system implementation works as de-
scribed, we introduced two case studies in Chapter 5.
One case study was a showcase of all the features of the
system and was implemented as an on-line music player.
The second study was an on-line music shop that shows
that it is possible to use the system in a real-world setup.
We believe that the case studies gives a good overall
idea of how the system will perform and how it could
be used.

An evaluation of the system, and M-Grid in particu-
lar, is given in Chapter 6. The evaluation went system-
atically through the systems changeable parts by chang-

ing only one of them at a time and keeping the rest in
a default setup. The results show that using the Av-
erage Linkage with Quality Threshold clustering algo-
rithm, Full Pivot Selector and Manhattan distance func-
tion was the optimal setup with the implemented parts.
Even more optimal setup could maybe be found with al-
ternative implementations of the parts, but this is left for
the users of the system to explore in the future.

We believe that our overall goal of implementing and
testing a framework for constructing similarity query en-
abled database systems has been fulfilled. The system
works as described and gives, in our opinion, a good
foundation for further studies in relation to audio music
databases and similarity queries.

7.2 Future Work
In the following we propose some areas of interest for
future work.

Insertion and Deletion
Much of our work has been focused on the construction
of the M-Grid and processing of the similarity queries.
Insertion and deletion was only mentioned briefly in
Section 4.12, and future work should address the rela-
tively static nature of the M-Grid. We have shown that
the M-Grid can handle many insertions/deletions as long
as they are distributed in the vector space. Bulk inser-
tion of many similar objects poses a problem, since they
most possibly would be placed within the same cluster.
Future research should investigate whether it is possible
to:

◦ change pivot points at run-time effectively.
◦ detect when the performance starts deteriorating

after bulk insertions/deletions.
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System Adaptable
Another area where more research can be done, is to
make the framework adapt according to the Underlying
disk setup – e.g., a linear scan of a cluster may act dif-
ferently if the disk(s):

◦ are put in a RAID setup.
◦ are uses by a different file-system.
◦ have a different disk-layout (e.g., blocks, sectors).
◦ use a different addressing method (e.g., CHS,

LBA).

Multi-Feature Queries
In our study we have discovered that a fast index alone is
not enough to get a reasonable speed when doing queries
across multiple features – and in our case across multi-
ple indices. The vast amount of I/O and calculations
needed to compute precise results are too many to pro-
cess within the time-limit of what a normal user would
like to wait.

There are several different approaches to deal with this
problem. One could be to loosen how precise the result
is (according to the formal definition). Since the users
opinion about the result is very subjective, the perfect
result for one user could be the wrong result for another
– hence it could be argued that the precision does not
matter that much in the end, within a reasonable margin.
Another approach is to restrict the queries the user could
perform. If the user could e.g., only do simple queries
like: Give me a song similar to song X

In that case most of the results could be pre-computed
and only information about nearest neighbor of each
song should be stored. Maybe it should not even nec-
essarily be the nearest neighbor, but just a near neigh-
bor, leading to even less calculations performed. Future
work can be to research how imprecise a result can be,
without the user perceive it as wrong.

User Tests
An interesting research area could be to look at how
users would work with, e.g., the WebPlayer. Work-flow
could be logged and investigated to see how the aver-
age user uses the new similarity queries available. This
could lead to discovery of whether the user would actu-
ally prefer one query type over another, if one feature is
more used than others and what that makes a user choose
music as he does. If the user does not like the result of
a similarity query, possibilities are that other users will
not like the result either. If the users can tell the system
that a result is less good, then the system can use this to
make the next result for the same query better.

Collaborative Filtering
A final area where more research could be focused is on
collaborative filtering in connection with content-based
similarity queries using feature data. One possibility
could be to use the collaborative filtering to fine-tune
the weights that are used with the features. If the user
does not like a result it is likely that other users per-
forming the same query does not like it either.However,
if the user could tell the system that he did not like the
result, then the system could use this to weight the fea-
tures in future queries. Future work can be to research
how to incorporate the collaborative filtering concept in
the already existing system.
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Appendix A

Suite Overview

A.1 Overview
In this appendix, we describe some of the tools imple-
mented in connection with this project. All the men-
tioned tools play an active role in the test and evaluation
of the middleware and are therefore considered part of
the final system. The functionality of each tool is de-
scribed briefly, and special technologies used are men-
tioned. Along with the coverage of the tools throughout
this appendix, we also show figures that places each tool
in the work-flow.

A.2 The MPEG-7 Audio Encoder
To get a well-defined set of features to test our middle-
ware with, we have chosen to use features defined in the
MPEG-7 standard [15]. In order to generate these fea-
tures we needed a tool that extracts the features from
audio music files and encode them into the MPEG-7
format, which is based on XML. Such a tool already
existed. The “MPEG Audio Encoder” [33] is a simple
Java-based tool that supports extraction of a subset of
the features defined in MPEG-7 from audio music files
in the WAV format.

The MPEG-7 Audio Encoder used in our system is the
original version that has been modified in the followed
areas:

◦ Added support for the MP3 file format.
◦ Added support for GZip compressed output

– *.mp7.gz files.
◦ Minor optimizations for speed.

The MPEG-7 Audio Encoder takes an XML-based
configuration file (defined by the original version of the
tool) and an audio music file as input, and returns a GZip
compressed, XML-based MPEG-7 file containing all the
extracted features.

The MPEG-7 Audio Encoder is the first step in the
Dataset Encoding in the work flow (See Figure A.1).

A.3 The MPEG-7 Audio Parser
The MPEG-7 Audio Parser is our own tool. It reads
the mp7 files generated by the MPEG-7 Audio Encoder.
The tool is based on XML Beans [34] and is designed
as a library to be used in other tools. XML Beans is
used to create a mapping between instances of an XML
schema and the corresponding Java object tree. The
XML schema used in the tool, is the part of the MPEG-
7 specification that handles audio description using fea-
tures.

The tool parses a GZip compressed mp7 file into an
FSS object holding data for multiple features of a single
song.

The MPEG-7 Audio Parser is the second part of the
work-flow in the Dataset Encoding (See Figure A.1).

A.4 The Dataset Encoder
In order to encode large amounts of music data (MP3
files) into something we can use in our system, we have
created the Dataset Encoder. An overview of how the
Dataset Encoder is used is shown in Figure A.1.

The Dataset Encoder takes a directory (with possible
sub-directories) as input and traverses the top-level di-
rectory for MP3 files, which are encoded into a Dataset
stored on disk. After that, the Dataset Encoder calls it-
self recursively on the sub-directories. The output when
done is a Dataset file for the input directory and each of
the nested sub-directories having MP3 files. This output
structure has been chosen because audio music files of-
ten are categorized in directories (e.g., one directory for
each album).

The Dataset Encoder uses the MPEG-7 Audio En-
coder and MPEG-7 Audio Parser to get object trees rep-
resenting the feature data of the input songs.
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Figure A.1: The Dataset Encoder uses the MPEG-7 Audio Encoder and the MPEG-7 Audio Parser to encode a set
of audio music files (MP3/WAV) into a number of Datasets stored on disk.

The temporary compressed mp7 files are preserved,
since the encoding of those is a time-consuming task.
If, for some reason, the encoding is interrupted, all mp7
files already encoded are still there. These mp7 files are
reused and parsed directly.

The song metadata is retrieved by either reading the
ID3 tag information from the MP3 file itself, or by pars-
ing it from a file having the same name as the song file,
but with a .txt file extension.

When both metadata and feature data for a song has
been parsed, a Dataobject is created. Having done this
with every song in a directory, the Dataobjects are col-
lected in a Dataset, which is stored on the disk using the
XXL converters mentioned in Section 4.13.4.

A.5 The Dataset Merger
The Dataset Merger is a simple tool working on the out-
put from the Dataset Encoder. In the same manner, it re-
cursively traverses the input directory and possible sub-
directories for input Dataset files. All the files found are
deserialized using the XXL converters, that were used in
the Dataset Encoder.

The schema for both the metadata and FSS part of
the Datasets are then compared. All Datasets having
schemes equal to the first one investigated are merged
into a new Dataset holding all objects. The last step is
serialization of the new Dataset, which is stored on the
disk. The converters are again used for this.

A.6 The Database Creator
This tool is a key component in the overall system, since
it is responsible for bulk loading data into the underlying
RDBMS and creation of the index structures.

Database
Creator

Serialized
Dataset files

Configuration

M-Grid
files

RDBMS

Figure A.2: The Database Creator bulk loads the infor-
mation in a number of Dataset files into an
RDBMS, and constructs index structures
(M-Grids) using a configuration file.

All steps performed by the Database Creator are
highly configurable using an XML-based configuration
file, which is described in Appendix B. In addition the
configuration also a set of Dataset files to be bulk loaded
is input to the tool. An overview of the input to and out-
put from the Database Creator is shown in Figure A.2.
A more detailed view of the workings of the Database
Creator is shown in Figure A.3.
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Figure A.3: Inside the Database Creator, the Dataobjects from the input Datasets are filtered using streams. During
this, the data is bulk loaded into the RDBMS. After filtering, the Dataobjects are distributed to the M-
Grid Builders that handle initialization of the M-Grids. The state information is stored in the M-Grid
files shown.

The set of Dataset files are turned into a continuous
stream of Dataobjects to be treated one at the time. The
Dataobjects in the stream are filtered using different
stream filters. A stream filter is a class satisfying two
things: Its constructor takes at least an input stream as
input, and it provides a nextObject() method that returns
the next object in the stream after applying the filter. The
following stream filters have been implemented:

◦ Feature filter removes unused features from the
FSS part of the Dataobjects.

◦ Min. sample value filter passes only Dataobjects
having a minimum amount of sample values in the
FSS part.

◦ Max. sample value filter cuts off sample values
after the specified maximum number of sample
values.

◦ Sample value averager averages every given k
number of sample values in order to reduce the
amount of feature data.

◦ ID Assigner assigns a unique ID to every Dataob-
ject passing the filter – all Dataobjects are pre-
served.

◦ JDO Inserter inserts the Dataobjects in the
RDBMS using bulk insertion. In this process the
Dataobjects are also assigned unique IDs speci-
fied by the JDO implementation (JPOX).

Implementing new filters is straightforward, and the
possibilities are almost unlimited.

The next step is to create the index structures using
what is left of the Dataobjects not removed by the fil-
ters. All index structures (M-Grids) defined in the con-
figuration must have feature data from all Dataobjects,
but necessarily for the same feature. Therefore, we have
created a demultiplexer class that distributes the Dataob-
jects in the input stream to a number of input streams –
one for each index structure to be created.

The class handling the initialization process of the
M-Grid, the M-Grid Builder, requires a list of feature
data (feature sequences). The distributed input streams
are converted into lists using stream-to-list wrappers
called feature sequence list wrappers. Each such wrap-
per stores the Dataobjects in the stream on disk and pro-
vides both list iterations and retrieval by index number
afterwards. For efficiency, an attached LRU buffer holds
the Dataobjects most used in memory.

The output from the Database Creator is an updated
RDBMS containing the Dataobjects from the Dataset
files, and a number of files needed for the M-Grid in-
dex structures to start up.
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A.7 The Query Server (Middleware)
The Query server is what makes the parts in the middle-
ware a complete system. It is the main process of the
system, and it handles all communication with the client
applications. The Query Server is described in more de-
tail in Chapter 2. An overview of the input to and output
from the Query Server is shown in Figure A.4.

Query 
Server

Configuration

M-Grid files
RDBMS

Client
application

Figure A.4: The Query Server uses all the information
generated by the other tools. The configu-
ration is used for connecting to the RDBMS
and for loading the M-Grid index struc-
tures.

The configuration used in the Database Creator is
reused here, since the Query Server needs most of the
same information used in the Database Creator. The
Query Server connects to the underlying RDBMS using
the information provided in the configuration. Further-
more, it loads all index structures using the names of the
M-Grid files.

A.8 The WebPlayer
The WebPlayer is meant as an alternative to a normal
GUI player that uses our system as back-end. In addi-
tion being a music player, is it also meant as a showcase
for the features that the system exposes to client systems.
A description of the features of the WebPlayer and the
setup in which it is uses can be found in Section 5.2.
The WebPlayer can be seen as the Client Application in
Figure A.4.
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Appendix B

The Configuration File

The entire middleware, no matter if it is constructing the indices or is running as a Query Server, is configured by
a central configuration file. The configuration file is based on XML and formatted in an easy-to-understand format.
Every single setting can be configured in the configuration file, and is easy to adapt to new settings if, e.g., alternative
index implementations needs alternative settings.

The use of the configuration file can be split into two parts. The settings used by the Query Server, and the settings
used by the DB Creator.

The following is an example of the part of the configuration file used by the Query Server:

<dbconfig>
< !−− Index s t r u c t u r e s −−>
< indexconfig>

< !−− 1 s t MGrid −−>
<index>

<type>MGrid< / type>
< s e t t i n g s f i l e>data / mgrid1 . s e t t i n g s < / s e t t i n g s f i l e>
< i ndex f i l e>data / mgrid1< / i ndex f i l e>
<useclustercache > t rue < / useclustercache >
<usedistancematrix> t rue < / usedistancematrix>
<pivots>4< / pivots >
<rings>10< / rings>
< feature >AudioSpectrumEnvelopeType< / feature >
<distfunc>Manhattan< / distfunc>
<clustering >

<type>ALAQT< / type>
<clusters >102< / clusters >
< i t e ra t ions>4< / i t e ra t ions>

< / clustering >
<pivotselect ion >

<type> F u l l P i v o t S e l e c t o r< / type>
<pivotsamples>4< / pivotsamples>
<percentsamples>10< / percentsamples>

< / pivotselect ion >
< / index>
< !−− More MGrids −−>
<index> . . . < / index>

< / indexconfig>
< !−− Query Server port −−>
<port>45555< / port>
< !−− Data Mapper connect ion −−>
<dsctype>JDBC< / dsctype>

< / dbconfig>
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The Database Creator uses the same configuration for the indices (indexconfig tag), and besides that it uses the
following settings:

<dbconfig>
< !−− I npu t Datasets −−>
<datasetconfig >

<dataset>
<ds f i l e >rock .mp7 . ds< / ds f i l e >

< / dataset>
<dataset>

<ds f i l e > s o f t .mp7 . ds< / ds f i l e >
< / dataset>
<dataset>

<ds f i l e > e l e c t r o n i c .mp7 . ds< / ds f i l e >
< / dataset>

< / datasetconfig >
< !−− F i l t e r t r ee −−>
< f i l t e r t r e e c lass= " j d o i n s e r t e r ">

< !−− JDO I n s e r t e r f i l t e r −−>
< jdoconfig>jdo . p rope r t i es < / jdoconfig>
<maxbatchsize>10000000< / maxbatchsize>
< !−− Feature f i l t e r −−>
< input c lass= " f e a t u r e f i l t e r ">

< features>
< feature >

<name>AudioSpectrumEnvelopeType< /name>
< / feature >

< / features>
< !−− Max . sample values f i l t e r −−>
< input c lass= " maxsampleva lue f i l t e r ">

<keepcount>600< / keepcount>
< !−− Min . sample values f i l t e r −−>
< input c lass=" m insamp leva lue f i l t e r ">

<mincount>600< / mincount>
< / input>

< / input>
< / input>

< / f i l t e r t r e e >
< / dbconfig>
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Appendix C

Known Issues

C.1 Timeout in Webplayer/Webshop
Both of the case study implementations uses PHP as the
server-side programming language. In PHP there is a
default timeout for execution of the scripts and this is
normally 30 seconds. The timeout can be set in the con-
figuration of PHP, and can in some setups be changed
during run-time – this is however not the common setup.

This basically means that if a query takes longer than
the specified max execution time, then the script will
stop executing.

This is handled in in the case studies by simply giv-
ing a “no result found” reply if the timeout is reached –
hence the user things that the query did not have a result.

C.2 Configuration Parsing
If the user inputs an incorrect tag/setting in the config-
uration file, then main middleware wont start. It does
however handle this by trowing a descriptive error mes-
sage telling where the error in the configuration file the
error might be. This makes the issue seem like it is not
an issue but rather a feature of the system.
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