Type Checking
Versus Flow Logics

- relations between static analysis
methods for cryptographic protocols

DATS5, Fall 2005.

Lars Hornbaek Jensen
Bjorn Mglgard Vester

&

Aalborg University
Department of Computer Science

Aalborg University

Department of Computer Science

TITLE:
Type Checking Versus Flow
Logics
- relations between static
analysis methods for crypto-
graphic protocols

THEME:
Distributed Systems
and Semantics

PROJECT PERIOD:
1/2/2005-12/6,/2006

PROJECT GROUP:
d622a

GROUP MEMBERS:
Lars Hornbaek Jensen

Bjorn Mglgard Vester

SUPERVISOR:
Hans Hiittel

NUMBER OF COPIES: 6
NUMBER OF PAGES: 73
CONCLUDED: 12/6-2006

SYNOPSIS:

In this project we examine the relationship be-
tween control flow analysis and type checking.
We develop a typed version of the LySA calcu-
lus using correspondence assertions, as well as an
accompanying type system. We construct an en-
coding from processes with crypto-points in LySA
to TYPED LySA, and show that they have equiv-
alent safety properties. Type inference is per-
formed on the encoded process under a series of
constraints. Lastly a new control flow analysis is
created using correspondence assertions instead
of crypto-points.

iii

This report is a result of the work done in the Dath and Dat6 semester of
the Cand.Scient study at Department of Computer Science, Aalborg Univer-
sity. This project was done in the research area of Distributed Systems and
Semantics and constitutes the complete work towards a master thesis. In
the first semester we examined the basics of a control flow analysis, chapter
1 and 2 is partly carried over from that work, and developed a first edition
of TYPED LySA with associated type system, encoding and type inference.
In the second semester we completely revised the type system based on new
ideas for the encoding which means any work on encoding and type infer-
ence is also original for this semester. Furthermore in the second semseter
a new version of control flow analysis with correspondence assertions was
developed.

We would like to thanks our supervisor hans Hiittel for supervising this
project and the many helpful comments made throughout the project.

Lars Hornbak Jensen Bjgrn Mglgard Vester

Summery

Previous studies has shown that security properties of communication
protocols can be verified using syntax-based analysis techniques. In this
thesis we focus on two of such methods and examine the relations between
them.

Control flow analysis is a technique to compute the values which a given
variable may be bound to in a dynamic setting. It is used to verify a security
property called dynamic authenticity which expresses that no encryptions
may be unexpectedly decrypted. To formalise this property, encryptions
and decryptions occuring in a process is annotated with crypto-points as
well as sets of crypto-points asserting the allowed destinations or origins of
an encryption.

Type checking is a technique to verify a different security property called
robust safety. This property is formalised by placing labeled begin and end
events. The property holds if for every end event reachable in a reduction
sequence, there is a preceding begin event with the same label. Type checking
can verify this property by annotating encryption keys with types containing
assertions about which begin events procedes the point of encryption. When
decrypting a message with the same key, we know that the assertion on the
key must hold.

In this thesis, we use the LYSA calculus to formalise communication
protocols. We develop a typed version of the LYSA calculus using begin/end
events, as well as creating an accompanying type system. We construct an
encoding from processes with crypto-points in LySA to TYPED LySA, and
show that dynamic authenticity can be expressed as a robust safety property
(but most likely not the other way around).

We then show that types in the encoded process can be inferred under a
series of constraints, such that the robust safety property can be verified.

Lastly we create a new control flow analysis to verify the robust safety
property using begin/end events. It is based on the original analysis, but
uses ideas from the type system. We show that it is possible to verify a
process which is verifiable by either the type system or, through encoding,
the original analysis.

vii

Resumé

Tidligere studier har vist at sikkerhedsegenskaber af kommunikationspro-
tekoller kan verificeres ved brug af syntaksbaserede analyseringsteknikker. I
denne afthandling fokuserer vi pa to af disse metoder, og undersgger rela-
tionen mellem dem.

Kontrol-flow-analyse er en teknik til at beregne de vaerdier som en given
variable kan blive bundet til i et dynamisk miljg. Den bliver brugt til at veri-
ficerer en sikkerhedsegenskab kaldet dynamisk autenticitet som udtrykker at
ingen krypteringer kan blive uventet dekrypteret. For at formalisere denne
egenskab bliver krypteringer og dekrypteringer, som optraeder i en proces, an-
noteret med krypto-punkter samt meengder af krypto-punkter der beskriver
de tilladte destinationer eller oprindelser af en kryptering.

Typecheck er en teknik til at verificere en anderledes sikkerhedsegen-
skab kaldet robust sikkerhed. Denne egenskab er formaliseret ved at placere
begynd- og slut-markeringer. Denne egenskab holder hvis der for hver slut-
markering der kan nas i en reduktionssekvens er en forudgdende begynd-
markering. Typecheck kan verificere denne egenskab ved at annotere krypter-
ingsnggler med typer der indeholder postulater om hvilke begynd-markeringer
der gar forud for krypteringspunktet. Ved dekryptering af en besked med
samme nggle ved vi at postulaterne pé ngglen ma holde.

I denne afthandling bruger vi LySA-kalkylen til at formalisere kommunika-
tionsprotekoller. Vi udvikler en typet udgave af LySA-kalkylen ved brug af
begynd /slut-markeringer, samt et tilhgrende typesystem. Vi konstruerer en
indkodning fra processer med krypto-punkter i LYSA til TYPED LYSA, og
viser at dynamisk autenticitet kan udtrykkes som en robust sikkerhedsegen-
skab (men sandsynligvis ikke den anden vej).

Derefter viser vi at typer i den indkodede proces kan blive udledt under
en maengde begransninger, sddan at den robuste sikkerhedsegenskab kan
verificeres.

Til sidst udvikler vi en ny kontrol-flow-analyse til at verificere den robuste
sikkerhedsegenskab ved brug af begynd /slut-markeringer. Den er baseret pa
den originale analyse, men bruger idéer fra typesystemet. Vi viser at det er
muligt at verificere en proces som er verificerbar af enten typesystemet eller,
gennem indkodning, den originale analyse.

Contents

1 Introduction
1.1 Protocols
1.2 Analysis Methods
1.3 Goalo
1.4 The Structure of the Report

2 Control Flow Analysis
21 LYSA . . .
2.2 Assertions for Origin and Destination
2.3 Operational Semantics of LySA
24 Flow Logics L oo
2.5 Modeling the Attacker
2.6 Properties of the Control Flow Analysis

3 The Type System
3.1 Assertions for Correspondences
3.2 Typesand Effects
3.3 Syntax for TYPED LySA
3.4 Typing Examples oo oo
3.5 Typing Rules
3.6 Operational Semantics
3.7 Properties of the Type System
3.7.1 Elementary Properties
3.7.2 Subject Equivalence and Subject Reduction
3.7.3 Properties of the Opponent
3.7.4 Safety and Robust Safety

4 Encoding LySA to TYPED LySa
4.1 Encoding Algorithm
4.2 Properties of the Encoding

5 Type Inference on the Encoding
5.1 Constraints
5.2 Auxiliary Relations oo oo

1x

15
15
16
16
18
19
23
24
24
30
34
35

37
38
40

Contents

5.3 Constructing the Solution to a Type Check

6 Control Flow Analysis with Correspondences

6.1 Design L
6.2 AnalysisRules
6.3 Properties of Analysis
6.4 Encodings

7 In Perspective
8 Conclusion

A CORRESPONDENCE LySA

55

...... 95
...... 57
...... 99
...... 61

63

67

69

Chapter 1

Introduction

With an ever growing communications market, the security of communica-
tions protocols become an increasingly important issue. The use of cryp-
tographic constructs alone does not guarantee the security of a protocol in
itself, and the protocols need to be verified themselves. Several techniques
for formal verification exist and can be used to examine protocols in a wide
variety of ways.

The aim of this project is to examine the relationship between two such
verification techniques, control flow analysis [BDNNOla| and type check-
ing [GJO3].

1.1 Protocols

In a computer network, communication is governed by communications pro-
tocols between one or more entities in the network.

A protocol is often described somewhat informally using protocol nar-
rations, which are simple sequences of message exchanges between different
principals, and can be interpreted as the intended trace of the ideal execu-
tion of the protocol. An example of such a narration is a version of the Wide
Mouthed Frog protocol [BAN9O] for key-exchange between two principals
with the use of a trusted server.

1. A—-S: A{B, K}k,
2. S—B: {A K}k,
3. A—B: {ml,...,mk}K

In stage 1 of the protocol, the principal A sends to the trusted server S a
message saying that it is A and that it wants to communicate with B using
key K. The server then informs B that A wishes to communicate using
the key K which leads to stage 3 where A is able to send its message to B
encrypted under key K.

2 1. Introduction

This protocol narration for the Wide Mouthed Frog protocol is not very
precise, and the security goals are left implicit. Since the narration only
specifies the message exchanges, lots of details are not captured by this in-
formal model. One example of lack of detail is when the server receives the
message in stage one: a check on the first variable in the encrypted part
needs to be done to figure out who the process A wishes to communicate
with. To be able to validate security properties we then need a more formal
model with more details. For that purpose we use process calculi. Several
calculi has been proposed over the years such as the SPI calculus [AG97| or
the APPLIED 7 calculus [AF01|. For this project we will use the LYSA cal-
culus which was developed in collaboration between University of Pisa and
Technical University of Denmark [BBD'03]. It is a variant of the polyadic
SPI calculus with pattern-matching, and differs mostly by the fact that chan-
nels are absent. The only cryptographic operations allowed are symmetric

encryptions and decryptions!.

1.2 Analysis Methods

It is difficult to analyse protocols for various reasons. One is that a precise
notion of security is not easy to model. Another is that the security prop-
erties must be guaranteed to hold in infinitely many environments, which
often leads to undecidability. Furthermore, any calculus for cryptographic
protocols which are remotely interesting are as strong as Turing machines
and therefore undecidable by model checking. The idea of a static analysis
is to offer a set of decidable methods to perform an analysis for security
properties, regardless of the actual data which flows through the protocol,
or the environment in which it operates. The undecidability issue can be
avoided by over-approximations and by “erring on the safe side”. This means
that a static analysis may fail to accept some secure protocols, but will never
accept an insecure protocol®. In other words, if there are no violations in
the static analysis, there is guaranteed not to be any violations at run-time.

Various approaches for modeling and analysing cryptographic protocols
have been proposed over the years. These include equivalence testing [AG98]
and methods based on logics of knowledge [BAN90]. In this report we will
examine approaches based on control flow analysis and type checking.

Control flow analysis aims at computing the set of values which a given
variable may be bound to in a dynamic setting. This information is then
used statically to very the behavior of the program.

Type systems annotate a protocol with types and use these as a basis for

'LySA has later been extended to address some of the shortcomings — see
LySaNS [BNN04], LySa*P [AN05], and LySa with asymmetric cryptography [BBDT04].

*We use the term slack of a method to denote the set of secure protocols which the
method cannot verify.

1.8 Goal 3

checking security properties.

1.3 Goal

In this report we look at the two mentioned verification techniques, control
flow analysis and type checking, and attempt to see if it is possible to make
a type system such that whenever the control flow analysis tells us that a
protocol is safe or unsafe, the type check will produce the same result. Fur-
thermore we combine the ideas of control flow analysis and type checking by
making a new control flow analysis using correspondence assertions instead
of cryto-point annotations.

1.4 The Structure of the Report
The rest of the report is organized in the following chapters:

Chapter 2: The calculus LYSA is presented including the verification tech-
nique control flow analysis.

Chapter 3: A typed version of LYSA is constructed, which we call TYPED
LySA , and a type system for verifying security properties in this cal-
culus is created.

Chapter 4: We construct an encoding algorithm from a process in LySa
to TYPED LySA wih preservation of security properties.

Chapter 5: Type inference is performed on an encoded process.

Chapter 6: A new control flow analysis is constructed based on correspon-
dence assertions.

Chapter 7: Here we take an overall perspective of the methods introduced
and developed in this report.

Chapter 8: In the last chapter we summarise and conclude on the work
done in the report.

Chapter 2

Control Flow Analysis

Control flow analysis is a static technique for computing safe approximations
to the set of values which may be bound to variables in a dynamic setting. It
can be applied to a variety of calculi [BDNNO01b], including the A-calculus,
CONCURRENT ML, and the m-calculus. In this chapter, we will use the LySaA
calculus on which to perform the analysis. We use the analysis specified
in [BBD'03].

2.1 LySaA

Instead of using channels, LYSA has all messages pass through the same
global medium known as the ether, which all processes have access to. To
control the intended destination of messages, they can be prefixed with
sequences of terms representing the headers. Upon receiving a message,
the principal can then check if it is intended for him through the use of
pattern-matches in inputs and decryptions. The idea behind the pattern
matches of input and decryption is that a pattern (M, ..., Mj;2jq1,...,2k)
matches a tuple (Mj,..., M) if the first j values matches up pairwise,
ie. My = Mj,...,M; = M. If that is the case, the remaining values
MJ/-H, ..., M are bound to the variables z;;1,...,z;. Encryptions are tu-
ples of terms My, ..., M} using the symmetric key My. The syntax of LySA
is as follows, where AV and X denote the set of names and variables, respec-
tively:

Basic Syntax of LySA:
I

M = terms
n name (n € N)
x variable (z € X))
{My, ..., My}, sym. encryption

6 2. Control Flow Analysis

P = processes
0 nil
(My,...,Ng).P output
(My,...,Mj;xj41,...,25).P input (with matching)
P | P parallel composition
(vn)P restriction
P replication
decrypt M as {My,..., Mj;
Tj41s.-o, ThtM, in P sym. decryption (with matching)

2.2 Assertions for Origin and Destination

To describe the authentication property, each encryption and decryption is
decorated with crypto-points, which labels the point of the cryptographic op-
eration, and a list, which specifies the allowed origins and the destinations of
the encrypted message. This allows the model to capture the security issues
which may arise in a session-based analysis. Syntactically, an encryption in
the LySA calculus is changed to the form:

{Ml, e 7Mk}§\40 [dest E]
and similarly, decryptions are changed to the form:
decrypt M as {My,..., Mj;xj41,... ,xk}ﬁ/[o[orig L] in P

In these two processes, ¢ is the crypto-point where the cryptographic
operation takes place and L is the set of crypto-point which specifies the
intended crypto-points for encryption or decryption of the message. The
set C (disjoint from the set of variable names and values) enumerates all
crypto-points.

2.3 Operational Semantics of LYSA

We define a structural equivalence of processes in the following way:

Structural Process Equivalence of LYSA, P = Q:
I 1

P=P (Struct Refl)
P=QRQ=Q=P (Struct Symm)
(P=QANQ=R)=P=R (Struct Trans)
P=Q=P|R=Q|R (Struct Par)

2.3 Operational Semantics of LySA 7

Plo=P
PlQ=Q|P

(Struct Par Zero)
(Struct Par Comm)
(P|Q)|R=P|(Q]|R) (Struct Par Assoc)
P=Q='P=Q (Struct Repl)
'IP=P|!P (Struct Repl Par)
P =@ if P and Q are a-convertible (Struct Alpha)
(vn1)(vng)P = (vng)(vny)P (Struct Res)
(Struct Res Nil)
(Struct Extrusion)

vn)0=0

(
(wn)(P Q) =P [((vn)Q) ifn¢ m(P)

As a notational convenience, we write ||-|| for a term with all annotations
removed. We also introduce a faithful membership E for matching when
annotations are ignored. More formally:

Vev iff IV ev:|V]=[V]

We define a reduction relation —% using a function RM. We consider two
variants of the semantics: one takes advantage of the annotations, and the
other one discards them:

e The reference monitor semantics, written P —gn Q, takes
RM, L0, L)y=(eLl NUel).

e The standard semantics, written P — @), takes RM to be universally
true.

The reference monitor checks that the crypto-point of the encryption
is acceptable at the decryption and the opposite, that the crypto-point of
the decryption is acceptable by the encryption. We write [z — M] for the
capture-avoiding substitution of a variable x for the term M.

Operational Semantics P —x P’:
I 1

(LySA Par) (LYSA Res)
P—r P P—r P
PlQ—-rP|Q (vn)P =g (vn)P'

(LySA Equiv)
P=Q ANQ—rQ NQ =P
P—g P

8 2. Control Flow Analysis

(LySaA 1I0)
Nz LMi]) = [M)
<M1, ce ,Mk>.P1 | (M{, ce ,M]’-;xj_H, ce ,$k).P2 —R
P1 | Pg[a}j_H — Mj+1, ey L > Mk]

(LYSA Decr)
N_o IM;]) = [M]] ARM(L, L0, L)
decrypt {Ml,...,Mk}ﬁ/[O[dest L] as {M1,... ,M]’»;
Ljt1s .- ,xk}f\,/lé [orig L] in P —g Plzjq1— Mji1,... x5 — M)

2.4 Flow Logics

The control flow analysis of a protocol written in LYSA is performed to obtain
a safe approximation of values and behaviour arising dynamically. Since the
combination of restriction and replication may introduce an infinite number
of names, we assume that for each name or variable n there is a canonical
representative |n]. This also serves to avoid ambiguity on names. Consider
the following (un-annotated) process:

P2 (v K)({M}k).(v K)(K)

Without a way to make the Ks distinct, the analysis would not know
if the key used in the encryption is the same one which is later published.
Therefore, we assume that both names K has different canonical represen-
tatives!.

Furthermore, a-renaming of bound names is disciplined such that two
names are a-convertible only when they have the same canonical name. The
function |-| is extended to handle terms: |M | is the term where all names
and variables are replaced by their canonical versions. With these abstract
names, the approximation is represented as a triple (p, %, 1) that satisfies a
set of judgements. These components define the following information:

* p:|X| — (V) : maps each canonical variable to a set of canonical
values that it may be bound to.

* k C p(V*) contains the possible message sequences which may flow on
the network.

'In earlier work on the LySA calculus, this was instrumented as an explicit annotation
on the form (vnX) for restrictions and (z”) for input variables. A marker environment
would then be used to map free names and variables to their abstract representatives.
In this report, as with most recent work on LySA, we will refrain from using a partic-
ular method of instrumenting the canonical names, as it adds an unnecessary layer of
complexity to the analysis.

2.4 Flow Logics 9

e 9 C C x C contains the possible violations of crypto-point annotations
on the form (¢,¢"), specifying that something encrypted at ¢ was un-
expectedly decrypted at ¢/, or something decrypted at ¢’ unexpectedly
originated from /.

The analysis consist of finding the least of the components (p,k,))
which satisfies a set of judgements. We use the judgements as presented
in [BBD"03]. The judgements for terms take the form:

pEM:v

and expresses that v is an acceptable estimate of the set of values that M
may evaluate to in the environment p.

Control Flow Analysis of Terms:
I

(CFA Name) (CFA Variable)
[n] €w pllz]) C v
pEN:v pEx:v

(CFA Encryption)
/\f’zop):Mi:vi/\
Vo, Vi, oo, Vi /\2?:0 Viev, = {V,.. .,Vk}lvo[dest Ll ewv
pEA{M,... ,Mk}lMO[dest L]:v

The judgements for processes take the form:

(psR) = P9

Control Flow Analysis of Processes:

(CFA Par) (CFA Res)
(pR)EPL Y N (pr) EP (k) E Py
(1) = Pr [Py (0,) = (V)P 9
(CFA Repl) (CFA Nil)
(o) = P

(p,K) E 1P 29 (psk) EO:

10 2. Control Flow Analysis

(CFA Output)
/\lep’:MiZUi/\
VWi, ... Ve AE Viev = (Wi, . Vi) ERA
(p,k) = P 0
(0.) = (M, My).P 0

(CFA Input)
/\g;lp):Mi:vi/\
V<V1,... ,Vk> ER: /\Z:1 Vi Ev, = /\éc:jJrl V; € p(LJJzJ) A
(p.K) £ P ¢
(p,/i)): (Ml,...,Mj;xj+1,...,xk).P . ¢

(CFA Decrypt)
pEM:v A (\gzop):Mi:vi/\
V{Vl,...,Vk}éo[dest Llev:N_yViEv = /\?:j+1 Vi€ p(lxi]) A
(-RM(¢, L' 0 L) = (£,0") €) A
(o) = P
(p, k) = decrypt M as {M;,...,Mj;2j41,... ,xk}%o[orig L]in P:

2.5 Modeling the Attacker

Protocols may be executed in an unsafe environment which renders them
vulnerable to attacks from other parties. The protocol P running in such an
environment is modeled by

P| P,

where P, represents an arbitrary attacker with the capabilities presented by
Dolev and Yao [DY81]:

1. Obtain any message passing through the ether.

2. Decrypt messages if he knows the key (we assume perfect cryptogra-
phy).

3. Construct new encryptions from the values he knows.
4. Send messages of values he knows.

5. Generate new values.

In this paper, we do not consider deletion attacks, where an attacker
deletes messages from the protocol without the principals noticing it. This
will normally lead to a halt of the protocol, where an error handling proce-
dure takes over in order to recover.

2.5 Modeling the Attacker 11

This arbitrary attacker is modeled by a formula FPY, which captures all
the Dolev-Yao capabilities and makes the formula as strong as any attacker.
This means that if (p, x, 1) satisfies F°Y, then (p, k, 1) = P, for all attackers
P,. To characterise the attacker, we make a set of assumptions which has

no influence on the semantics of LYSA: we say that a process P is of type
(Nt A, Agnc) whenever:

1. Tt is closed (i.e. it has no free variables).
2. All free names are in M.
3. All the arities used for sending or receiving are in N,.

4. All the arities used for encryption or decryption are in Ngpc.

The attacker cannot forge annotations as these express the intentions
of the protocol, and being able to do so would lead to failure of validation
for any protocol. However, the syntax of LYSA requires annotations and
therefore only the trivial [dest C| and [orig C|, and only the crypto-point £
(not occurring in P) are used.

Another aspect of an attacker is that we must be able to control the
use of canonical names and variables in it. For a process P executing in
parallel with the attacker, P must be examined to find the finite set N, of
all canonical names, and the finite set X, for all canonical variables. We then
construct the new canonical name n, and the new canonical variable z, such
that ne € N, and 2z, ¢ X.. Given an attacker @ of type (Nf, Ay, Agnc), the
semantically equivalent process Q is constructed as follows:

* All restrictions (vn)P are a-converted (in the classical sense) into
(vn')P, where n/ has the canonical representative 7.

* All variables x; in subprocesses (My,..., Mj;xjq1,...,2x).P and de-
crypt M as {My,...,Mj;zq1,... ,xk}ﬁ/lo [orig £] in P are a-converted
(in the classical sense) to variables z/ with the canonical representative
Ze-

The canonical variable n, then represents knowledge known from the
beginning by the attacker, while z, represents all knowledge gained.

The formula FPY is defined as the conjunction of the following five com-
ponents corresponding to the Dolev-Yao conditions mentioned in the begin-
ning of this section:

12 2. Control Flow Analysis

The Dolev-Yao Attacker:
I

(1) AkeaVVi,..., Vi) €k AEL V; € p(za)
(2) NkeAp, V{1, Vk}f/b [dest L] € p(ze) :

Vo B p(ze) = (N2 Vi € p(zs) A (FRM(L,C, L, L) = (£,0s) € ¢))
(3) Akedpnc?Vis-- s Vit AEg Vi € plze) = {VA,..., Vic}i3 [dest C] € p(z)
(4) Aeea Vi, . Vit AEL Vi€ plze) = (V1,..., Vi) €K
{ne} U [Mt] C p(z)

—~
Ut
Nz

Once the analysis has found the smallest (p,r,1) which satisfies the
protocol executed in parallel with the attacker, authentication is guaranteed
if 1 = () and the secrecy of messages is guaranteed if they do not occur in

p(ze).

2.6 Properties of the Control Flow Analysis

The following properties of the control flow analysis are proved in [BBD*03|.

Theorem 2.1 states that if an analysis (p, k, 1) is an acceptable estimate
for a process P, then that analysis is also an acceptable estimate for any
process that P may evolve into.

Theorem 2.1 (Subject Reduction). If P —x Q and (p,x) = P : 1 then
also (p, k) = Q : 1. This holds for both the standard semantics as well as the
reference monitor semantics.

Definition 2.2 (Reference Monitor).
We say that the reference monitor cannot abort a process P whenever there
exist no @, Q' such that P —* Q — Q" and P —},; Q #rm-

Theorem 2.3 tells us that the analysis correctly predicts when we do not
need the reference monitor.

Theorem 2.3 (Static Check for the Reference Monitor).
If (p, k) |= P : 0 then the reference monitor cannot abort P.

Definition 2.4 (Static Authentication).
We say that a process P guarantees static authentication if there exists (p,)
such that (p,k) = P : 0 and (p, x,0) satisfies FPY.

Definition 2.5 (Dynamic Authentication).

We say that a process P guarantees dynamic authentication with respect to
the annotations in P iff the reference monitor cannot abort P | @) regardless
of the choice of attacker Q.

2.6 Properties of the Control Flow Analysis 13

Soundness for FPY is established. This means that FPY captures the
capabilities of any attacker.

Theorem 2.6 (Soundness of the Dolev-Yao Condition). If (p, k,)
satisfies FPY of type (N}, Aw, Agnc), then (p, k) = Q : 1 for all attackers Q
Of type (/\/}7 -Am AEnc)

Theorem 2.7 establishes the connection between the Dolev-Yao condi-
tions and that of hardest attacker from [NNHO2]. It also shows that there
actually exists an attacker as strong as FPY.

Theorem 2.7 (Completeness of the Dolev-Yao Condition). There
exists an attacker Qparq of type (N, A, Agne) such that the formula (p, k) =
Qhard =V is equivalent to the formula FPY of type (N1, Asy AEne)-

The main result is then that of Theorem 2.8.

Theorem 2.8 (Authentication). If P guarantees static authentication
then P guarantees dynamic authentication.

Chapter 3

The Type System

Type systems are used to control information flow in a process. A natural
extension is to enrich types with effects and place assertions in the pro-
cess which further describe intensional aspects of the dynamic behaviour.
Abadi [Aba99] proposes the idea of checking security properties of cryp-
tographic protocols by type checking. Using this idea, Gordon and Jef-
frey [GJ04a]| developed a type and effect systems to prove correspondence’®,
which is an authentication property pioneered by Woo and Lam [WL93|. In
this system, the assertions in a process are guaranteed to hold if the process
is well-typed.

In this chapter, we will develop a type system in LYSA based on Gordon
and Jeffrey’s idea?.

3.1 Assertions for Correspondences

The correspondence property address authentication concerns by annotat-

—
”

ing sequences of message exchanges with events on the form “begin(M)” or
“end(M)”, where M is a label which typically indicates the names of the
principals involved (we use M as a possibly empty sequence ranging over
M). These events mark the progress of the protocol and are also known as
injective agreements. While they have no effect at runtime, the intention
is to guarantee that for every end(M) event, there is a distinct preceding
begin(M) event3. This assures that the authenticating principal is “talking”
to the principal it has in mind.

!Correspondences has later appeared in other forms — see [Gol03] by Gollman for an
overview.

2Gordon and Jeffrey’s type system has, among other things, been expanded with
pattern-matching [HJ04], asymmetric cryptography [GJ04b] and to handle authorization
policies [FGMO5].

3Note that this does not put a requirement of liveness on the system, so a begin(]\;f)
event does not necessarily have a succeeding end(]\;i) event.

15

16 3. The Type System

These annotations are one-to-one in the sense that there is exactly one
distinct begin(M) event for every end(M) event. To assert that this is not
violated, some form of nonces or timestamps are required. Since LYSA does
not support nonces, the conditions for a correspondence need to be relaxed
in the following way: let a one-to-many correspondence be the condition that
there exists a preceding, but not necessarily distinct, begin-event for every
end-event [GJ02]. This is also known as a non-injective agreement. To imple-
ment this, we will only consider begin-events on the form begin!(M), which
can be used to end an arbitrary number of end(M) events. For example,
consider the following correspondence sequences:

begin!(a), end(a) safe
begin!(a), end(a), end(a) safe
begin!(a), begin!(b), end(a), end(b) safe
end(a) unsafe
end(a), begin!(a) unsafe

The formal definition of safety can be found in Section 3.7 (Properties of
the Type System).

3.2 Types and Effects

In our type system, we must deal with types for cryptographic keys, plain-
texts and cipher-texts. Since any term can be used as a key, we unify the
framework for types by defining a type as a sequence of embedded types and
a set of latent effects. If we cannot trust the key, or it represent data with
can be published, we give it type Un, short for untrusted.

If the type is the annotation of a key, it has a sequence of embedded
types which specifies the type sequence it may be used to encrypt. This is
necessary since a decryption must give types to the decrypted names, which
would otherwise be unknown.

Lastly, if the type is the annotation of a key, it has a set of latent effects on
the form !begun(M). Any decryptions treat these effects as a credit towards
subsequent end-events. This is sound since we require all encryptions to treat
the effects as a debit which must be accounted for by previous begin-events.
This way, effects can be “transferred” between processes since all principals
in the protocol must agree to this. This also imply that the key must never
be obtained by an attacker, since he cannot be expected to follow these rules.

3.3 Syntax for TYPED LySA

The syntax of processes P is similar to LySA, except we introduce one-to-
many correspondence assertions, and new names are annotated with types:

3.3 Syntaz for TYPED LySA

17

Syntax of TYPED LySaA:

M =
n
x
{Mu,..., Mg},
P =
0
(My, ..., My).P
(My,...,Mj;xj41,...,21).P
P | P
(vn:T)P
P
decrypt M as {My,..., Mj;

Tj41s---, ThtM, in P
begin!(My, ..., My).P
end(Ml, e ,Mk)P

terms

name (n € N)
variable (z € X))
symmetric encryption
processes

nil

output

input

parallel composition
restriction

replication

symmetric decryption
begin-event

end-event

The syntax of types is as follows:

ISyntax of Types:
B .=
'begun(My, ..., M)
T:=
Key(zy : 11, ...,z : Ty)[B]
Un

begun-assertions

begun-many assertion

types

symmetric key (scope of z; is B)

Public data

We will use the notation £ : T

for x1 : T,...,2; : T, and 7 :

T for

x1 : Th,...,xp : Tx. In order to keep track of the types and effects of a
process, we introduce an assertion environment F, which contains the effects
of the process and the types of the free names in the process. The syntax of

environments is as follows:

18 3. The Type System

Syntax of Environments:

A= assertions
B begun assertion
n:T type assertion on name
x:T type assertion on variable
B o= environments
Ag,..., A assertions

We use the notation () for the empty environment, and the notation
FE4q, A, E5 for an environment where both F; and Es may be empty.

3.4 Typing Examples

We will consider two examples which illustrates how to specify two security
properties.

Example 3.1 (Typing an Example for Aliveness).
Consider the following (safe) process:

lI>

PA(K)
Pp(K)
Psys

(vm :T,,) begin!(A, B).({m} k)
(;x).decrypt x as {;m;}x in end(A, B)
(v K : Tk)(Pa(K) | Pp(K))

> 1>

Here, P4 and Pp share a key K which is used to send an encrypted
name m from P4 to Pg. Therefore, the process is annotated with the cor-
respondence (A, B) which must begin in P4 and ended in Pg. This insures
“aliveness” in the sense that when Pp asserts the end-event, it asserts that
P4 must have been alive at some point in the past. To verify this, we define
the following types to be used in the process:

T
Tk

Un
Key(y : T),,)['begun(A, B)]

L
AL

We annotate the type Tk of key K with the latent effect !begun(A, B)
to type check that the correspondence is indeed valid. Since K is used to
encrypt the message m of type T),, the embedded type of T is T},. Lastly,
the name m is not used as a key, so we we give it type Un. We we wanted
to insure the secrecy of m, we could give it type Key(Un)[] instead as the
type system does not allow keys to be published.

This process is safe since P cannot assert end(A, B) without P4 assert-
ing a begin!(A, B) event, as the key K is kept secret among the two.

g

3.5 Typing Rules 19

Example 3.2 (Typing an Example for Non-injective Agreements).
Correspondences can be used to verify a stronger security property than
aliveness. Consider P4 and Pp from the previous example. If we wanted not
only to specify that P4 must have been alive at some point when Pp executes
the end event, but the two principals must also “agree” on the encrypted
value sent from P4 and received at Pg, we could specify this property in the
following way:

Po(K) £ (vm:Ty,) begin!(m, A, B).({m} k)
Pp(K) £ (;z).decrypt z as {;m,}x in end(my, A, B)
Pys = (v K : Tk)(Pa(K)| Pp(K))

Since x is eventually substituted with m in the reduction sequence, Pp
can be sure that the received message does indeed originate from P4. This
is what is known as a non-injective agreement. To verify this, we define the
following types to be used in the process:

T
Tk

Un
Key(y : Tp,,)[!begun(y, A, B)]

> 1>

When type checking the encryption, the variable y will be bound to
the name m such that the latent effect !begun(m, A, B) must hold. In the
decryption, the variable y will be bound to the variable m,, and the la-
tent effect !begun(m,, A, B) is carried over to work as a credit towards the
end(my, A, B) event. This is sound as m, can only be substituted with m
because the key K is kept secret among the two.

3.5 Typing Rules

In the following we define our type system. We have four judgements in
our type system, which are inductively defined by the rules presented on the
following pages:

Judgements:
I

Et o FEisagood environment.
E+ A Assertions A are valid in E.
E+F P Process P is well-typed in E.

The domain of environments is defined using the following rules:

20 3. The Type System

Domain of Environments:

dom(0) = 0
dom(A, A) £ dom(A) U dom(A)
dom(n:T) £ {n}
dom(z: T) £ {x}
dom(!begun(Mi, ..., M) £ 0

Free names are defined using the following rules (we capture both free
names and free variables):

Free Names of Terms, Types and Processes:

fn(n) £ {n}
faa) 2 {a)
fn({Mi,..., My}r,) = fa(Mo)U---U fn(My)
fn(M :T) £ fn(M) U fn(T)
fn(Un) = 0
fa(Key(@s : Th.....an : T(B]) 2 {ﬁ;; - Ufn(Ty) U fn(B))
fn(Aq, , Ag) = fn(A Ufn(Ak)
fn('begun(My, ..., My)) = fn(Ml) “-Ufn(Mk.)
fn(o) £ 0
fn(0) = 0
fn((My, ..., M).P) = fo(M;) U---U fn(My) U fn(P)
So(Mar. Moo). P) {fn(Ml)U---Ufn(Mj)U

(fa(P) — {41, -, 74})

fn(P | P2) £ fu(P) U fn(P)
fn((vn:T)P) = I(T) U (fa(P) — {n})
fn(!P) £ fo(P)
fn(decrypt M as {My,...,M;;| , [fW(M)U fn(Mo)U---U fn(M;)U
Tjsts- o Thine in P)[{(fn(P) —{zjt1,...,2L})
fn(begin!(My, ..., My).P) = fo(My) U --- U fn(My) U fo(P)
fn(end(My, ..., Mg).P) = fn(Mp) U --- U fn(M},) U fn(P)

3.5 Typing Rules 21

An environment F is good if every name appears at most once in the
domain of F, and there is no free variables:

Good Environments:
I

(Env Begun) (Env Empty)
Ero (fn(Mp)U---U (M) C dom(E)
E,'begun(My, ..., M) o 0Fo
(Env Name)
Ero in(T)Cdom(FE) n¢dom(E)
En:TkFo

(Env Variable)
Etro in(T)Cdom(F) =z ¢ dom(F)
E,z:Tko

An encryption can be made by either a trusted or an untrusted key. When
using a trusted key, the rule (Encrypt) makes sure that all the types of terms
in the encryption matches the embedded types of the key. In addition, any
assertions in the key type is also required to hold under substitution in the
embedded assertion. When using a public key, the rule (Encrypt Un) makes
sure that everything encrypted is public. This last rule is necessary to make
an opponent well-typed, since he is not allowed by the type system to use
secret keys.

Good Assertions:
I

(And) (Id) (Empty)
E+A E+rA FElo AcE

E+A A E+ A E+-0
(Encrypt)

Ev My:Key(xy :Ty,...,xn :Tp)[B] Ev M, :Ty,...,My: Ty
E"B[leMl,...,kaMk]
Er-{My,...,Mg}m, : Un

(Encrypt Un)
E+FMy:Un,...,M;:Un
E+ {Mla-'-aMk}Mo : Un

22 3. The Type System

Processes are well-typed given the rules below. The rules for parallel
processes, restriction, replication and nil are standard. The rule (Proc Begin)
adds a begin assertion to the environment, while the rule (Proc End) states
that a matching begin assertion must be valid in the environment. The rule
for output, (Proc Output), checks that all terms are of the special type Un,
while the input rule, (Proc Input), assign Un to all binding variables. Note,
that there is no need to type the pattern-matching part of the input, since
anything on the ether has type Un.

In addition, there are four decrypt rules. The decrypt rule (Proc Decrypt)
is used for secret keys, and assigns the embedded types from the key to all the
binding variables and adds any assertions from the key to the environment
as well. For keys of type Un, the rule (Proc Decrypt Un) is used, which
assigns the special type Un to all binding variables.

Well-Typed Processes:
I

(Proc Par) (Proc Res)
EFP EFPR En:THP
EF P | Py EF (vn:T)P
(Proc Repl) (Proc Nil)
EEP -
EHIP ERO
(Proc Begin) (Proc End)
E, lbegun(My,..., M) - P E Flbegun(My,...,M;) EF P
E F begin!(M;, ..., My).P EtFend(My,...,My).P

(Proc Output)
E-M;:Un,.... My :Un FEFP
EF (M,...,M).P

(Proc Input)
E,zj;1:Un,...,z: Unk P
E+ (Ml,...,Mj;:l,‘jJrl,...,.Tk).P

(Proc Decrypt)
EFM:Un EF My:Key(z):Th,...,x) : Ty)[B]

. E7Ij+1:1}+17"')xk:Tka

Bl — My,...,2 = M, 2% = w0, .2 = ap] F P
E + decrypt M as {Mi,...,Mj;z1,...,Tptm, in P

3.6 Operational Semantics 23

(Proc Decrypt Un)
E-M:Un EFMy:Un FE,zji1:Un,...,zp: UnkE P
E +-decrypt M as {M;,...,M;;xj41,...,Tkfm, in P

3.6 Operational Semantics

We define the structural equivalence of processes similarly to LySA with the
change that restrictions are annotated with types, and a premiss is added to
LySA’s (Struct Res).

Structural Process Equivalence of LySaA, P = Q:

P=P

P=Q=Q=P

(P=QANQ=R)=P=R

P=Q=PIR=Q|R

Plo=P

PIQ=Q|P

(PlQ)|R=P|(Q|R)

P=Q=!P=lQ

P = P[P

P=@ if Pand @ are a-convertible

(vny:Th)(wng: To)P = (vng : T)(vniT1) P
if ng #ng Ang & in(Te) Ang ¢ n(Ty) (Typed Struct Res)

Typed Struct Refl)
Typed Struct Symm)
Typed Struct Trans)
Typed Struct Par)

Typed Struct Par Zero)
Typed Struct Par Comm)
Typed Struct Par Assoc)
Typed Struct Repl)
Typed Struct Repl Par)
Typed Struct Alpha)

AN AN AN N AN AN AN AN N

(vn:T)0=0 (Typed Struct Res Nil)
(vn:T)(PIQ)=P[((vn:T)Q)
if n ¢ fn(P) (Typed Struct Extrusion)

We define the reduction relation somewhat similarly to the standard se-
mantics of LYSA, except that annotations are different and rules for begin
and end events are added:

Operational Semantics P — P’;

(Typed Par) (Typed Res)
pP— P pP— P

PlQ—P'Q (vn:T)P — (vn:T)P’

24 3. The Type System

(Typed Equiv)
P=QANQ —-Q NQ' =P
P— P

(Typed I0)

<M1, NN ,Mk>.P1 | (Ml, NN 7Mj;$j+1, NN ,l‘k).PQ —
P1 | PZ[ijrl = Mj+1, ey L Mk]

(Typed Decr)

decrypt {M1,..., My}m, as {My,...,Mj;zj41,..., 25} 0, in P —
Plzji1— Mjyq, ..., 2 — My]

(Typed Begin) (Typed End)
P— P
begin!(M).P — begin!(M).P’ end(M).P — P

3.7 Properties of the Type System

In this section, we will prove the main properties of the type system. Some
of the proofs are inspired by [FGMO05].

3.7.1 Elementary Properties

Definition 3.3 (Inert Processes).
We say that a process is inert if it only consists of restrictions and begin
events. We use the notation « for inert processes.

Definition 3.4 (Generic Judgement).
We use the meta-syntax J as a notion for any right-side of a judgement, ie.

Ju=o|A|P

Definition 3.5 (Well-formed Typing Judgements).
A typing judgement FE F J is well-formed if and only if all occurrences of
binding names and variables are pairwise different and different from those
in dom(FE).

Any typing judgement E - J can be rewritten using a-conversion such
that it is well-formed. For simplicity, will assume that typing judgements
are always well-formed.

3.7 Properties of the Type System 25

Lemma 3.6 (Good Sub-Environments). If Fy, E; b o then Ey - o

Proof. Proof proceeds by induction on the derivation of 7, Fo - o. Consider
the last rule used:

Case (Env Name): If E1, E), n: Tt o, then Eq, E} I o.
Case (Env Variable): If £y, E),z : T\ ¢, then E, E, F o.

Case (Env Begun): If By, E}, begun(M) I o, then E1, B} + o.

Lemma 3.7 (Weakening).

(a) If E1,Es = J and fn(T) C dom(E1) and M ¢ dom(FE1, Es) and M €
NUX then E1,M :T,Ey - J.

(b) If E1, Es - T and fn(B) C dom(FE1), then E1, B, Es - J.
Proof. We split the proof of each point depending on J:

(a) (1) If E1,FEy F o and I(T) C dom(E;) and M ¢ dom(E;, Es) and
M eNUX then Ey, M : T, Ey F o.
By Lemma 3.6 (Good Sub-Environments) and either (Env Name) or
(Env Variable), £y, M : T F o.
Proof proceeds by induction on the depth of the derivation of E1, M :
T, Ey - o.
Suppose Ey = E5, N : U.
By hypothesis, in(U) C dom(E;, EY) and N ¢ dom(E,, EY).
Since M ¢ dom(E1, Ey) then M # N.
Therefore, fn(U) C dom(Ey,M : T,FE}) and N ¢ dom(E;, M :
T, E}).
By inductive hypothesis, E1, M : T, E5 b o.
The result then follows by either (Env Name) or (Env Variable).
Suppose instead Es = Eb, 'begun(M, ..., Mg).
Using the same procedure, the result then follows by (Env Begun).

(2) If E1,Ey + A and fn(T) C dom(FE;) and M ¢ dom(F4, E;) and
M €N UX then By, M : T, Es F A.
By Point (1), By, M : T, Es I- o.
Consider the rule used:
Case (Id): By hypothesis of rule, A € dom(Ey, E3).
Then also A € dom(E1, M : T, Es).
Case (Encrypt): Follows by induction on each premiss.
Case (Encrypt Un): Follows by induction on each premiss.

26

3. The Type System

Case (And): Follows by induction on each assertion.

Case (Empty): Follows immediately from the rule.

If E1,FE> = P and fn(7T) C dom(E;) and M ¢ dom(E;, F3) and
M e NUX then Ey,M : T, FEy - P.

Proof proceeds by induction on the depth of the derivation of Fy, Fs -
P.

Consider the rule used:

Case (Proc Nil) Follows Immediately from the rule.
Case (Proc Output): Suppose P = (My,..., My).P'.
By induction hypothesis, Fy, M : T, Ey = P'.
By hypothesis, F1, Fo = My : Un, ..., My : Un.
Then by Point (2), F1, M : T, Es = My : Un,..., My : Un.

Case (Proc Input): Suppose P = (My,..., Mj;xjq1,...,xx).P.
If M e {zji1,..., 21}, then by Definition 3.5 (Well-formed Typ-
ing Judgements), the conflicting « is assumed to be a-converted
to a name which does not occur in dom(E;, Mr, Es).

Then by applying (Env Variable) repeatedly, we get Ey, M :
T,FEy,zj41:Un,...,z5: Un ko,

By inductive hypothesis, £, M : T, Ey,xj4q1 : Un,..., 73 : Un
FP.

Case (Proc Par): Suppose P = P, | P.

By inductive hypothesis, F4,M : T,Fy + P, and E1, M :
T,Es b Ps.

Case (Proc Res): Suppose P = (vn:T)P.
If M = n, then by Definition 3.5 (Well-formed Typing Judge-
ments), n is assumed to be a-converted to a name which does
not occur in dom(E1, M : T, Es).
Then by (Env Name), Ey, M : T, Eo,n: T+ o.
By inductive hypothesis, By, M : T, Ey,n: T F P.

Case (Proc Repl): Suppose P =IP.
By inductive hypothesis, F1, M : T, E5 - P.

Case (Proc Decrypt): Suppose P = decrypt N as
{Ml, ce ,Mj;xj_H, ce 7$k}Mo in P'.
By hypothesis and point (2), we get E1, M : T, Es = N : Un.
Also by hypothesis and point (2), we get By, M : T, Es - My :
Key(yr : T, ..., yk : Ti) [B]-
If M € {zj41,...,2}, then by Definition 3.5 (Well-formed Typ-
ing Judgements), the conflicting z is assumed to be a-converted
to a name which does not occur in dom(E;, M : T, E3).
Then by applying (Env Variable) and (Env Begin) repeatedly,

3.7 Properties of the Type System 27

we get El,M : T,E27$j+1 : Tj+1,...,$}€ : Tk,é[yl — Ml,...,
By inductive hypothesis, E1,M : T, Fo,xj11 @ Tjy1,..., 2 :

—

TkaB[yl'_)M177yk'_>Mk]l_P

(b) Proofs are similar to point (a).
U

Lemma 3.8 (Substitution). If Fy,x : T,Es - J and E1y - M : T then

Proof. We split the proof depending on J:

(a) If By, : T)Ey ¢ and Ey M : T then Ey, Es[z — M] F o. Proof
proceeds by induction on the depth of the derivation of Fy,x : T, Fs - ¢.
Consider the last rule used:

Case (Env Name): Suppose E,y: U F <.
By hypothesis, E + ¢, fn(U) C dom(F) and y ¢ dom(E).
Suppose E = Ey,z : T, E}.
By inductive hypothesis, Ey, Ej[x — M| F o.
By hypothesis of the lemma, E; - M : T.
By hypothesis, fn(U) C dom(Ey,x : T, E}).
Applying the substitution, then fu(U[z — M]) C dom((E1, ES)[zx —
Since = ¢ dom(E,), we have fn(Ulz — M]) C dom(E4, B[z —
Since x # y, we have (y : U)[x — M| =y : Ulx — M].
By (Env Name), Ey, Eb[z — M|,y : Uz — M]F o.

Case (Env Variable): Similar to the Case (Env Name).

Case (Env Begun): Suppose E, begun(M) I o.
By hypothesis, E I o, fn(begin!(M) C dom(E).
Suppose E = Ey,x : T, E).
By inductive hypothesis, E1, Ej[x — M] I .
By hypothesis of the lemma, F; - M : T.
By hypothesis, fn(begin!(M)) C dom(Ey,z : T, E}).
Applying the substitution, then fn(begin!(M)[z — M]) C dom((E1,
E})lw — M)).
By (Env Begin), Ey, Ej[z — M], begin!(M)[z — M] F o.

(b) If Ey,x: T, Est A and Ey = M : T then Ey, Es[x — M|+ Alx — M].
By point (a), Eq, Es[z — M| F <.
Consider the rule used:

28 3. The Type System

Case (Id) by Type Assertion: Suppose A =1y :U.
By hypothesis, F1,2 : T,Es Foand y : U € dom(Eq,z : T, E»).
We distinguish two cases. Suppose y # x.
Then y : U € (Eq, E3).
Ify:U € Ey, then z ¢ fn(U) and y : Ulx — M| € (E1, Bz —
If y:U € Ey, then y : Ulz — M| € (Eq, Ex[z — M)).
By (Id), Ey, Es[z — M| Fy: Ulz — M].
Suppose instead y = .
By hypothesis of the lemma, F1 - M : T.
By Lemma 3.7 (Weakening), Ey, Es[x — M]F M : T.
Since y =z, then T'=U.
By substitution, (y : T')[y — M] = M : T and we conclude.

Case (Id) by Begun Assertion: Suppose Ey,z : T, E b begin!(M).
By hypothesis, !begun(M) € (Ey,z : T, E»).
Then !begun(M) € (Ey, Es).
Suppose begun(M) € E;.
Then = ¢ M so !begun(]\@ = Ibegun(M)[z — M].

Suppose instead !begun(M) € Es.

—

Then !begun(M)[z — M| € Es[z — M].

—

In both cases, we get !begun(M)[z — M| € (E1, Es[x — M]).
Case (Encrypt): Follows by induction on each premiss.
Case (Encrypt Un): Follows by induction on each premiss.
Case (And): Follows by induction on each assertion.

Case (Empty): Follows immediately from the rule.

(c) f Ey,x:T,EoF Pand Ey = M : T then Ey, Es[x — M|+ Plx — M].
By point (a), Ey, Ex[x — M| o.
Proof by induction on the depth of the derivation of Fy,z : T, Es - P
using point (b).

Lemma 3.9 (Strengthening).

(a) If Ey,x : T,Eo = T and x ¢ fn(J) U fn(Es) then Ey,Eq - J.
(b) If E1,B,Es & J and Ey - B then Ey, Ey - J.

Proof. We split the proof of each point depending on J:

(a) (1) f By, :T,ExF-oand z ¢ fn(J) U fn(Fsy) then Eq, Ey F o.
By induction on the depth of the derivation of E1,x : T, E5 F .
Consider the last rule used.

3.7 Properties of the Type System 29

3)

Case (Env Name): Suppose Ey = Eb,y: U.
By inductive hypothesis, Fy, Ej) F o.
By hypothesis, y ¢ dom(FE1,z : T, EY) and therefore y ¢ dom(E,
By hypothesis, in(U) C dom(Ey,z : T, E}).
Since, by hypothesis of the lemma, = ¢ fn(U), then fn(U) C
dom(Eq, EY).
By (Env Name), By, Eb,y: Ut o.
Case (Env Variable): Similar to the Case (Env Name).
Case (Env Begun): Suppose Ey = E}, begun!(M.
By inductive hypothesis, E1, Ef F o.
By hypothesis, fn(begun!(M)) C dom(Ey,z : T, E}).
Since, by hypothesis of the lemma, = ¢ fn(begun!(ﬂ), then
fn(begun!(M) C dom(E;, Ej).

If By,z :T,Es - Aand z ¢ In(J) U fn(Es) then Ey, Es - A.

By Point (1), By, By F .

Consider the rule used:

Case (Id) Since, by hypothesis of the lemma, = ¢ fn(A), it is the
case that A € Eq, Fs.

Case (Encrypt): Follows from induction on each premiss.

Case (Encrypt Un): Follows from induction on each premiss.

Case (And): Follows from induction on each assertion.

Case (End): Follows immediately from the rule.

If B,z :T,Ey - P and x ¢ fn(P) U fn(Esy) then Eq, Es = P. Proof

by induction on the depth of the derivation of Ey,x : T, Ey = P

using point (2).

(b) If El,B,EQ F J and E1 F B then El,EQ Foo.
Proof by induction using the fact that if 1 F B then B € FEj, which
means B is duplicated.
All rules relying on B € Ey, B, F» then holds because B € E1, Fs.

0

Lemma 3.10 (Exchange). If Eq, Es, Es, E4 = J and dom(Es) N fa(Fs3) =
0 and fn(E2) N dom(Es3) = () then Ey,E3, Es, E4 - J.

Proof. We split the proof depending on J:

(a) By induction on the depth of the derivation of E, E9, E3, E4 - ¢. Con-
sider the last rule:

Case (Env Empty): Trivial.

30 3. The Type System

Case (Env Name): Suppose E,z: T | o.
By hypothesis, £+ ¢, fn(T) C dom(F) and = ¢ dom(E).
If E = Ey, Ey, E3, B4, where Ey = E),x : T, we conclude by apply-
ing the inductive hypothesis.
If E = Ei,FEy, F3 and E3 = Ef,x : T, by inductive hypothesis,
El, Eé, E2 Fo.
By Lemma 3.6 (Good Sub-Environments), Ey, E} - .
By (Env Name), Eq, E3 F o.
By repeatedly applying Lemma 3.7 (Weakening), F1, E3, Fo F .
The case for £ = F1, Es is trivial.

Case (Env Variable): Similar to Case (Env Name).

Case (Env Begun): Similar to Case (Env Name).

(b) By induction on the depth of the derivation of Ey, E, E', E5 b A, using
point (a).

(c) By induction on the depth of the derivation of Fy, E, E’, E5 - P, using
point (b).

O

3.7.2 Subject Equivalence and Subject Reduction
Lemma 3.11 (Subject Equivalence). If E+ P and P = P’ then E - P'.

Proof. By induction on the derivation of P = P’ we show:
(a) If E+ P then E+ P’
(b) If E+ P’ then E+ P

Case (Typed Struct Refl): Suppose P = P.
Both (a) and (b) are immediate.

Case (Typed Struct Symm): Suppose P = Q).
By hypothesis, @ = P.
Both (a) and (b) follow immediately by applying the inductive hypoth-
esis (a) and (b).

Case (Typed Struct Trans): Suppose P = R.
By hypothesis, P = @ and Q = R.
Both cases follow from transitivity of implication and the inductive
hypothesis.

Case (Typed Struct Par): Suppose P | Q =P’ | Q.
By hypothesis of the lemma, P = P’.
By hypothesis of (a), E+ P | Q.

3.7 Properties of the Type System 31

By (Proc Par), EF P and E+ Q.
By inductive hypothesis, E + P’.
By (Proc Par), E+ P | Q.

The proof for (b) is symmetric.

Case (Typed Struct Par Zero): Suppose P |0 = P.
By hypothesis of (a), E+ P | 0.
By (Proc Par), E - P.
The proof for (b) is similar.

Case (Typed Struct Par Comm): Suppose P |Q =Q | P.
By hypothesis of (a), E+ P | Q.
By (Proc Par), E+ P and E+ Q.
Also by (Proc Par), EF Q | P.
The proof for (b) is symmetric.

Case (Typed Struct Par Assoc): Suppose (P | Q)| R=P | (Q|R).
By hypothesis of (a), E+ (P | Q) | R.
By (Proc Par), EF P | Q and E + R.
By (Proc Par), EF P and E - Q).
By (Proc Par), E+Q | Q.
By (Proc Par), EF (Q | Q) | R.
The proof for (b) is similar.

Case (Typed Struct Repl): Suppose |P =!P’.
By hypothesis, P = P'.
By hypothesis of (a), E F!P.
By (Proc Repl), E F!P.
By inductive hypothesis, E = P’.
By (Proc Repl), E HIP'.
The proof for (b) is symmetric.

Case (Typed Struct Repl Par): Suppose (P | Q) =P | Q.
By hypothesis of (a), EFIP | Q.
By (Proc Repl), E+ P | Q.
By (Proc Par), EF P and E+ Q.
By (Proc Repl), E F!P and E HQ.
By (Proc Par), E HIP | 1Q.
The proof for (b) is similar.

Case (Typed Struct Alpha): By Definition 3.5 (Well-formed Typing Jud-
gements), if (Typed Struct Alpha) converts a bound name to a name
which is already bound elsewhere, then by Definitiondef:well-formed-
jud (Well-formed Typing Judgements), we assume it is converted again
to a name which does not occur elsewhere.

32 3. The Type System

Case (Typed Struct Res): Suppose (vny : T1).(vng : Ta).P = (vng :
TQ).(I/ ny: Tl)P
By (Proc Res), E,ny : Ty F (vng : T3).P.
By (PI‘OC Res), E,n1 : Tl,’l?,g : TQ F P.
Since, by hypothesis, n1 # no,n1 ¢ t(7y),ne ¢ (7)), then by
Lemma 3.10 (Exchange), E,ng : To,ny : Ty - P.
By two applications of (Proc Res), E - (vng : Ts).(vny : T1).P.
The proof for (b) is symmetric.

Case (Typed Struct Res Nil): Suppose (vn:T).0 =0.
By hypothesis, E+ (vn: T)0.
By (Proc Nil), E I 0.
The proof for (b) is similar.

Case (Typed Struct Extrusion): Suppose (vn:T).(P|Q)=P | (vn:
T).Q.
By hypothesis of (a), EF (vn:T).(P| Q).
By (Proc Res), E,n:TF P | Q.
By (Proc Par), E,n:T+H Pand E;n:TFQ.
By (Proc Res), E,n: T+ Q.
Since, by hypothesis, n ¢ fn(P), then by Lemma 3.9 (Strengthening)
part (a), E + P.
By (Proc Par), EF P | (vn:T).Q.
The proof for (b) is similar, using Lemma 3.7 (Weakening) part (a)
instead of Lemma 3.9 (Strenghening).

O

Theorem 3.12 (Subject Reduction). If E+ P and P — P’ then E+ P'.

Proof. The proof proceeds by induction on the derivation of P — P’.

Case (Typed Par): Follows from (Proc Par) and the inductive hypothesis.

Case (Typed Res): Suppose (vn:T).P— (vn:T).P'.
By hypothesis, P — P’.
By hypothesis of the lemma, E+ (vn:T).P.
By inductive hypothesis, E,n : T - P’.

Case (Typed Equiv): This follows from Lemma 3.11 (Subject Equiva-
lence) and the inductive hypothesis.
Case (TYPED LySA IO): Let
P = (<M1, e ,Mk>P1) | ((Ml, N)Mj;ijrly e ,l‘k).PQ) and
P' =Py | Py[wjp1— My, ... x5 — M)

3.7 Properties of the Type System 33

and assume that £+ P and P — P’ due to (TyPED LySA 1I0). We
get
Er-P it EF(Mi,...,Mp).P1 A
EF (Ml, ce 7Mj§$j+1> e ,xk).Pg
if EFM;:Un,...,Mp:UnA
EEP A
E,zjt1:Un,...,2;: UnF P
By applying Lemma 3.8 (Substitution) repeatedly on
(E,zj41: Un,...,z; : Un F P,), we may conclude that
E + Pyzjy1 — Mjtq,...x, — My]. Using (Proc Par), we get E F
P1 | P2[$j+1 — Mj+1, R o Mk], i.e. that F + P as wanted.
Case (TYPED LySaA Decr): Let
P = (decrypt {Mi,...,Mr}m, as {Mi,..., Mj; 241, ..., %k} Mo
in P") and
P, = P”[.T]'Jrl = Mj+1, e L Mk]
and assume that £+ P and P — P’ due to (Redn Dec). The key can
be either trusted or untrusted. We treat both possibilities separately:

Subcase (Proc Decrypt) We get
ErP iff EF{M,...,Mg}n, : Un
E+F My : Key(zh : T1,...,2) : T3)[B] A
E,$j+1 : Tj+1,...,xk : Tk,§[$/1 = Ml,...,

/ / / /!
-|—>Mj,a:j+1r—>a:j+1,...,xkl—>:zk] P

J
iff EF My: Key(zh :Th,...,a : Ty)[B] A
EFM :TiA--AEF M, :TiA
E"B[leMl,...,kaMk]

. . 31!
E,$j+1 .Tj+1,...,$k .Tk,B[$1 i—>M1,...,

T

x> My, @l g Ty, ., oy e ag] B P
By applying Lemma 3.9 (Strengthening) part (b) and Lemma 3.8
(Substitution) repeatedly on E,x;i1 : Tji1,..., 2 : Ty, Bz —
Ml,...,ack = Mk] F P”, we get EF P//[J?j+1 = Mj+1,...xk =
Mjy], i.e. that E+ P’ as wanted.

Subcase (Proc Decrypt Un) We get

EFP iff EF{M,...,My}u, : Un A
E+ Mo :Un A
E,zj;1:Un,...,zp: UnF P
if EFMy:UnA---ANEFM;:UnA
E,zj;1:Un,...,zp: Unt P

34 3. The Type System

By applying Lemma 3.8 (Substitution) repeatedly on E,xji :
Un,...,z;:Unk P” weget E - P'[xjiq — M1, ... x5 — My,
i.e. that £+ P’ as wanted.

Case (Typed Begin): Follows from (Proc Begin) and the inductive hy-
pothesis.

Case (Typed End): Follows directly from (Proc End).

3.7.3 Properties of the Opponent

In TYPED LYSA, we do not consider completely arbitrary attacker processes,
but restrict ourselves to opponent processes* which satisfy the following two
conditions:

1. Opponents cannot assert events. If they could, no process would be
robustly safe because of the attacker “end(n)”.

2. Opponents cannot have have access to private names. Therefore, all
types occurring in the process must by Un.

Definition 3.13 (Formulation of Opponent).

A process P is assertion-free iff it contains no begin- or end-assertions. A
process P is untyped iff the only type occurring in P is type Un. An opponent
O is an assertion-free untyped process.

Lemma 3.14 (Opponent Typability of Terms). For any M, if fn(M) =
M then M : Un + M : Un.

Proof. By structural induction on M:

Case M = n: By Rules (Env Name) and (Env Empty), = : Un | ¢. By (Id),
z:UnkFx: Un.

Case M = x: Same as Case M = n.

Case M = {Mj,..., My} Let M; = fn(M;). By inductive hopothesis,
My :Unt My:Un,..., My :Unt My :Un. Let M = Ml, .., M,. By
Lemma 3.7 (Weakening), M + M;. By (Encrypt Un), M : Un,... M, :
Un {Ml, NN 7Mk}Mo-

O

Lemma 3.15 (Opponent Typability). Ifa process O 1is an opponent (i.e.
an assertion-free untyped process), and fn(O) C M then M : Un + O.

“This is similar to what was done in [GJ04a].

3.7 Properties of the Type System 35

Proof. By induction on the structure of O. Suppose O is an opponent, and
fn(0) C M:

Case O = 0: By (Proc Nil), (M : Un F O).

Case O = (M, ..., M;).P: By Lemma 3.14 (Opponent Typability of Terms),
M:Unt M : Un,..., M, : Un
By inductive hypothesis, M:Unt P.
By (Proc Output), M + O.

Case O = (My,...,Mj;xj41,...,x).P: Since {xj41,..., 25} & M, then
M : Un,zjy1: Un,..., 7z : Un = P by inductive hypothesis.
By (Proc Input), M : Un,zj41: Un,..., 25 : UnF O.

Case O = P, | Py: Let Ml = fn(P;) and]\22 = fn(P).
By induction hypothesis, (M; : Un & P) and (M : Un F P).
By Lemma 3.7 (Weakening) and (Proc Par), (M : Un I O).

Case O = (vn : T)P: Since n ¢ M, then (M : Un,n : T+ P) by induction
hypothesis. .
By (Proc Res), (M : Un,n: T+ P).

Case O = !P: By induction hypothesis, (M : Un + P).
By (Proc Repl), (M : Un F O).

Case O = decrypt M as {M;,...,Mj;xj41,...,%K}M, in P: Since
{Tj41,...,xx} € M, then M : Un,zj41 : Un,...,2; : Un = P by in-
ductive hypothesis.

By Lemma 3.14 (Opponent Typability of Terms) and Lemma 3.7 (Weak-
ening), M : Un + M.
By (Proc Decrypt Un), M : Un,zj11:Un,...,z;: UnF O.

3.7.4 Safety and Robust Safety

A process is safe (ie. satisfies non-injective agreement) if and only if for
every run of the process, and for every M, there is a begin-event labelled
M preceding every end-event labelled M. We formalise this in the following
definition:

Definition 3.16 (Safety and Robust Safety).

A process P has an authenticity error iff it is of the form (y.end(M).P"),
and begin!(M) € ~. (In P, the restrictions are renamed such that they bind
pairwise different names, and names different from free names.) A process
P is safe iff P —* P’ implies that P’ does not have an authenticity error. A

process P is robustly safe iff (P | O) is safe for every opponent process O.

36 3. The Type System

Theorem 3.17 (Safety). If (M : T + P) then P is safe.

Proof. Suppose that M : T - P and P —* v.end(M).P".

By Theorem 3.12 (Subject Reduction), we have M : T + .end(M).P".

By (Proc End), we have E + begun(M).

By (Id), 'begun(M) € E.

Since 7 is inert, this can only follow from applying Rule (Proc Begin) which
means begin!(M) € P'.

By Definition 3.16 (Safety and Robust Safety), P is safe. O

Theorem 3.18 (Robust Safety). If (M : Un - P), then P is robustly
safe.

Proof. Suppose (M :Unk P).

Let O be an opponent process such that fn(O) — M = M.

Let E = M : Un, M : Un.

By Lemma 3.15 (Opponent Typability), we have E I O.

By Lemma 3.7 (Weakening), £+ P.

By (Proc Par), E+ P | O.

By Theorem 3.17 (Safety), P | O is safe. O

Chapter 4

Encoding LYSA to TYPED LYSA

In this chapter we will construct an encoding from a process in LYSA to
TYPED LySA, and show that message authenticity properties using crypto-
point annotations can be formulated as non-injective agreements using cor-
respondence assertions. We will use o and d as crypto-points.

In the following we present an encoding algorithm [-] : LySA — TYPED
LySA. The encoding is performed using the following informal rules:

¢ Each crypto-point, be it an annotation of an encryption or decryption,
is represented by public names. Therefore, there is no need for them
to be restricted.

e Each encryption has a crypto-point o and a set of destinations
{dy,...,dr}. The encoded encryption must be preceded by the asser-
tions begin!(o,dy). - - - .begin!(o, d), which are placed in the beginning
of the encoded process. In addition, the crypto-point o is sent as part of
the encrypted message. That is, an encrypted message {m1,...,m,}x
at crypto-point o is changed to {m1,...,mu,0}x. To be able to use
crypto-points as names, we will extend the set of names such that

neN U C.

¢ Each encoded decryption with crypto-point d must be followed by the
single annotation end(o,d), where o is the variable representing the
crypto-point from the encoding, which is part of the encoded message
as shown in the previous point.

* Since types are required to check that the correspondences hold, each
restriction of a new name must be annotated with a type. The choice
of types does not effect the authenticity property, so the encoding
simply annotates names with type Un. In Chapter 5 (Type Inference
on the Encoding), we will introduce an algorithm which can infer types
using the information from the control flow analysis such that if the

37

38 4. Encoding LYSA to TYPED LySaA

analysis is verifiable, we can type check the encoded process given
certain constraints.

4.1 Encoding Algorithm

The encoding algorithm [-] is a two-pass implementation of the previously
introduced informal rules.

The first pass over the LYSA process uses an auxiliary relation AC(P)
(short for allowed correspondences) to capture the correspondences which
are allowed to begin (e.g. those generated from encryptions in the process).
These begin events are placed in the beginning of the process. Note that
the relation AC only uses on the information on destinations from the en-
cryptions, and ignores the origin sets on decryptions. This is to make the
presentation of the encoding easier. In the next section, we will introduce a
definition of well-formed crypto-sets that specifies when we can safely ignore
the origin sets.

The second pass uses () to perform the actual encoding. This involves
removing the annotations specific to LySA (e.g. crypto-points and ori-
gin/destination sets), annotate restrictions with types, and finally place end
events after each decryption.

Encoding Function [-]:

[P] £ begin!(01,d1). - - - .begin!(oy,dy).(P)
where AC(P) = {(01,d1), ..., (0n,dn)}

Auxiliary Relation AC(P):
[

Ac(n) £ 0
Ac(z) £ 0
AC({Mi, ..., My}, [dest D]) = (o x D) U AC(M;) U --- U AC(My)
AC(0) £ 0
AC({My, ..., M).P) & Ac(My)U---UAC(My) U Ac(P)
AC((My,y...,Mj;241,...,2k).P) = AC(P)
AC(P|Q) £ Ac(P)UAc(Q)
Ac((vn)P) & Ac(P)
Ac(!P) £ Ac(P)
Ac(decrypt M as {My,..., Mj; 5 Ac(M)U AC(P)

Tjt1s .- ,xk}ﬁ/lo [orig O] in P)

4.1 Encoding Algorithm 39

Encoding Algorithm (-):
I

(]nl) =
) 2
[dq(aiyiél;;..Mk}Mo} 2 {(M), ..., (M), 0} o)
o) =0
(M, ..., My).P) = ((M),..., (M)
(M, ..., My; 241, x).P) = (M), ..., (Mj); 211, 2p).(P)
(P1Q) = (P)](Q)
(vn)P) £ (vn:Un)(P)
P) £ 1(P)

(!
(decrypt M as {My,..., Mj;

Lj4ly--- ,xk}ﬁl\/[o
[orig {o1,...,0,}] in P)

(1>

decrypt (M) as {(Mi), ..., (M;);
Ljt1s--5 Tk y}GM()[) in end(y7 d)(]PD

Example 4.1 (Example of Process Encoding).
As an example of process encoding from LYSA to TYPED LYSA consider the
following process Pgy,:

PA(K) £ (vm)({m}3? (dest {dp}])

Pg(K) £ (;s).decrypt s as {; mS}K [orig {04}] in O

Po(K) = (;t).decrypt t as {'mt}K [orig {op}] in 0
Psys(K) = (vEK)(Pa(K)| Pp(K)|Po(K))

This process has three principals P4, P and Po. Here, P4 outputs an
encrypted message meant for Pg and Po. The principal Pg is willing to
recieve the message, however, Pc is not, it will only accept messages to
come from an unused crypto-point.

Now for the encoding of this process we need to use the auxiliary relation
on all encryptions, in this case, we only have one:

Ac({m}y [dest {dp,dc}]) = {(0a,dp), (0a,dc)}-

The encoded process is then as follows:

40 4. Encoding LYSA to TYPED LySaA

(Pa(K)) (vm : Un).({m,04}k)
(Pe(K)) = (;s).decrypt s as {;ms, 2}k in end(z,dp)
(Po(K)) = (;t).decrypt t as {;my, 2}k in end(z, d¢)
[Psys(K)] = beginl(oa,dp).(v K : Un)((Pa(K)) | (Pp(K)) | (Po(K)D)

ad
Because of the changes the encoding makes to encryptions, appending
the crypto-point, this has some consequences on pattern matching. Pat-
tern matches on encryptions in an encoded process has a dependency on
the crypto-point which is now part of the encrypted message, while pattern
matches done on encryptions in LYSA is ignoring all crypto-point annota-
tions. That is, in LYSA the two encryptions {m}¢ and {m}{ would match,
while encoded versions {m, o}y and {m, d}; would not. This could be solved
by introducing that pattern matches on encryptions would ignore the last
term, however we choose not to do that since that would make TYPED LySaA
too specialised for just this translation purpose and quite strange to use in
other cases. Instead we introduce the following constraint:

Constraint 4.2 (Pattern Matches). Only names may be used in pattern
matches.

4.2 Properties of the Encoding

For the rest of this section, we use) for a process in LYSA, and P for a
process in TYPED LySA.

Definition 4.3 (Well-formed Crypto-sets).

We say that a LYSA process has well-formed crypto-sets, if for any encryption
with crypto-point o and destination set {dy,...,dx}, it is the case that all
decryptions with crypto-point dy,...,d; has o in their origin set.

Theorem 4.4. Any process can be rewritten such that it has well-formed
crypto-sets without affecting the security property.

Proof. Let () be a process without well-formed crypto-sets. By Definition 4.3
(Well-formed Crypto-sets), not all encryptions with crypto-point o and des-
tination set {di,...,dy} satisfy the requirement that all decryptions with
crypto-point di,...,d; must have o in their origin set. By hypothesis, as-
sume a decryption with crypto-point d does not satisfy this requirement.
If @ can be reduced to a decryption of o at d, it will be the case that
RM(o0,0,d,{dy,...,dr}) = FALSE because d ¢ {di,...,dp}. We rewrite
the destination set of o such that d no longer occurs in {dj,...,d;}. Then
RM(o0,0,d,{dy,...,d;}) = FALSE because d ¢ {di,...,d;} and o ¢ O.

4.2 Properties of the Encoding 41

Therefore, RM does not change at this point in a reduction sequence by this
rewrite. Since crypto-points are unique, the rewrite does not affect RM in
any other point, and the security property is thus preserved.

This procedure is repeated until all encryptions violating the requirement
has been modified. Since there is a finite number of encryptions in @, this
is guaranteed to terminate. O

Lemma 4.5 (Substitution in Encodings).
(]QD[$1 = (]MID7 ey T (]MkD] = (]Q[:Ul —> Ml, e, T Mk“)

Proof. By induction on the structure of (Q). O
Lemma 4.6 (Equivalences in Encodings).

(a) If Q= Q' then (Q) = (Q').

(b) If (Q) = P then Q = Q', where (Q') = P.

Proof. We split the proof on each point depending on the equivalence rule.
Since all but two of the structural equivalence rules in LYSA are identical to
the ones in TYPED LySA, we will only examine those two rules:

(a) (Struct Res): Let Q = (vn1)(rn2).Q".
By the encoding, (Q) = (vnq :Un)(vnz :Un).(Q").
Let Q' = (vno)(vny).Q".
By the encoding, (Q') = (vn2 :Un)(vng :Un).(Q").
By hypothesis of the lemma, Q = Q.
Since fn(Un)= (), then ny ¢ fn(Un) A ng ¢ fm(Un) is satisfied.
Suppose the side condition ny # ny is satisfied.
The result then follows by (Typed Struct Res).
Suppose instead that n; = ns.
Then @ = Q' and by (Typed Struct Refl), (Q) = (Q’).

(Struct Extrusion): The only difference between (Struct Extrusion)
and (Typed Struct Extrusion) is the definition of free names. In
LySA , fn is defined in the same way as in LYSA, but with the
inclusion of free names from types as well. Since all restrictions
are of type Un', and all begin and end events uses crypto-points
which are not restricted, the extruded name will not be in the set
of free names in the encoding if it is not in the set of free names in
the unencoded process. The result then follows from (Typed Struct
Extrusion).

(b) (Typed Struct Res): The result follow immediately from (Struct Res).

'In Chapter 5 (Type Inference on the Encoding), we will infer types different than Un,
but these types will not include free names other than names for crypto-points.

42 4. Encoding LYSA to TYPED LySaA

(Typed Struct Extrusion): By the encoding algorithm and the def-
inition of free names, fn(P) C fn((P)). Therefore, if the side con-
dition of (Typed Struct Extrusion) on (P) is satisfied, the side
condition of (Struct Extusion) on P will be satisfied as well.

O

In the following, we put forward a way of simulating a LYSA process
in TYPED LySA and vice versa. We call these simulations for soundness
and completeness of the encoding, respectively. Any reduction in LySA
can be matched with a corresponding reduction in TYPED LySA. However,
TYPED LYSA can perform the reduction (Typed End) which does not have
a corresponding reduction in LYSA. Therefore, we will introduce a new
semantics for TYPED LySA that only differs from the regular semantics in
the fact that a decryption followed by an end event is reduced in the same
rule.

Definition 4.7 (Reductions in Encodings).

Let — ppe consist of the rules (Typed 10), (Typed Res), (Typed Equiv),
(Typed Par) as well as the new rule (Typed Decr End) defined in the fol-
lowing way:

Reductions in Encodings — gt
I

(Typed Decr End)

decrypt ({Mi,..., My, }nry as { My, ..., My; 2541, ..., 2Tk, Y}a I
end(y,V').P —gne Plzjq1— Mjq1, ... x5 — M,y — (]

Lemma 4.8 (Reductions in Encodings).
(a) If P —gne P, then P —* P’.

(b) Let P = ~.decrypt {Mi,..., My, 0} as {Mi,...,Mj;2j41,. ..,k Y},
in end(y, 0).Q". If (Q) —* P, then (Q) —},. P-

Proof. Proof proceeds by induction on the depth of the derivation. We split
the proof on each point:

(a) Case (Typed I0), (Typed Res), (Typed Equiv), (Typed Par) are imme-
diate. Case (Typed Decr End) follows by applying first (Typed Decr)
followed by (Typed End).

(b) Case (Typed 10), (Typed Res), (Typed Equiv) and (Typed Par) are
immediate. Case (Typed Begin) is not applicable as () does not produce
begin events. Case (Typed Decr) and (Typed End) must always be

4.2 Properties of the Encoding 43

applied together because of the encoding. Therefore, (Typed Decr End)
is applicable as well.

0

Lemma 4.9 (Soundness of Encoding). Let Q be a LYSA process, which
satisfies Constraint 4.2 (Pattern Matches). If Q — Q', then (Q) — gne (Q')-

Proof. Let Q and Q' be LYSA processes and assume that Q — Q’. Consider
the LySA reduction used:

Case (LYSA Par): Let Q = Q1 | Qo.
By the encoding, (Q) = (Q1) | (Qa).
Let Q' = Q1 | Qo
By the encoding, (Q') = (@) | (@2).
Assume @ — Q' by (LySA Par) because Q1 — Q).
By inductive hypothesis, (Q1) — gnc (Q})-

By (Typed Par), (Q) — Ene (Q')-

Case (LYSA Res): Let Q = (vn)Q'.
By the encoding, (Q) = (vn : Un)(Q').
Let Q' = (vn)Q".
By the encoding, (Q’') = (vn : Un)(Q").
Assume Q — Q' by (LySA Res) because Q' — Q".
By inductive hypothesis, (Q') — gne (Q")-
By (Typed Res), (Q) — gne (Q')-

Case (LYSA Equiv): This is a result of Lemma 4.6 (Equivalences in En-
codings) part (a) and the inductive hypothesis.

Case (LYSA IO): Let Q = <M1, . ,Mk>.Q1 | (M{, . ,M]/-; Tjtly--- ,xk).Qg.
By the encoding, (Q) = ((Mi),..., (Mg))-(Q1) | ((M),. ... (M);
Tjtts -5 2k)-(Q2).

Let Ql = Ql | Q2[$j+1 [d Mj+1, ey T Mk]

By the encoding, (Q') = (Q1) | (Q2[zj+1 = Mjt1, ...,z — Ml).
Assume Q — Q' by (LySA Par) because AL_, || M;]| = || M]].

By Constraint 4.2 (Pattern Matches), /\glei = M].

By Lemma 4.5 (Substitution in Encodings),

Q) = (@1) | (Q2)[zj41 = (Mjpa), ... g — (My)]-

By (Typed 10), (@) — &ne (Q')-

Case (LySaA Decr): Let Q = decrypt {M;,... ,Mk}§wo [dest L]) as
{M{,....,M;xjq1,... ,xk}%/% [orig L] in Q"
By the encoding, (Q) = decrypt {(M), ..., (M), £}(as) as

{M), - (M) 241 -5 ks Yl gy i end(y, £)-(Q7).
Let Ql = Q//[.Z‘j_H = Mj+1, ey T Mk]

44

4. Encoding LYSA to TYPED LySaA

By the encoding, (Q') = (Q"[zj+1 — Mji1,. ..,z — Mg]).
Assume Q — Q' by (LySa Decr) because AL_, || M;]| = || M.
By Constraint 4.2 (Pattern Matches), /\gleZ- = M].

By Lemma 4.5 (Substitution in Encodings),

Q) = (Q"wjrr = (Mjpa), .., 2 — (M),
By (Typed Decr End), (Q) —Egne (Q').

O

Lemma 4.10 (Completeness of Encoding). Let QQ be a LYSA process.
If (Q) —Ene P, then Q — @', where (Q') = P.

Proof. Consider the rule used:

Case (Typed Par): Let Q = Q1 | Q.

By the encoding, (Q) = (Q1) [(Q2)-

Let P = P’ | (Q2).

Assume (Q) — gne P by (Typed Par) because (Q1) —gne P’.

By inductive hypothesis, there is a @] such that Q1 — Q) and
Q1) =P

Let Q' = Q) | Qo

By (LySA Par), Q — Q.

By the encoding, (Q') = (Q}) | (Q2).

By hypothesis, (Q') = P’ | (Q2)-

Case (Typed Res): Let Q = (vn)Q".

By the encoding, (Q) = (vn : Un)(Q").

Let P = (vn: Un)P'.

Assume (Q) — gne P by (Typed Res) because (Q”) — gne P’

By inductive hypothesis, there is a Q" such that Q" — Q" and
(]Q///D — P/‘

Let Q' = (vn)Q".

By (LYSA Res), Q — Q'

By the encoding, (Q') = (vn : Un)(Q").

By hypothesis, (Q) = (vn : Un)P'.

Case (Typed Equiv): This is a result of Lemma 4.6 (Equivalences in En-

Case (Typed I0): Let Q = (My,..

codings) part (b) and the inductive hypothesis.

5 .,Mk>.Q1 ‘ (M{,...,M;-;xjurl,...,l‘k).QQ.
By the encoding, (Q) = ((Mi),...,(Mg))-(Q1) | ({M),-... (M;);
Tjt1s- 5 Tk)-(Q2).

Let P = (]Qll) | (]QZDI:IJ'+1 — (]Mj+1[), e, X (]Mk[)]

Assume (Q) —Ene P by (Typed 10).

Let Ql = Ql | Qg[aj]qu — Mj+1, ey L Mk]

By (LySa I0), Q — Q.

4.2 Properties of the Encoding 45

By the encoding, (Q') = (Q1) | (Qz[zj+1 — M1, ..., zK — Mg]).
By Lemma 4.5 (Substitution in Encodings),

Q) = (@) [(@aDlwjsr = (Mjya), -, 2 — (Mi)].

Case (Typed Decr End): Let Q = decrypt {M,... ,Mk}§wO [dest L]) as
{Mi,... ., M zjq,... ,xk}ﬁ%[orig L] in Q".
By the encoding, (Q) = decrypt {(Mi),..., (M)} as {(M),
ey (]Mkl), Ljtly--- ,xk}qM{)D in end(é, f/).(]Q”D.
Let P = (Q")[zj41 = (M), ... 2 — (Mg)].
Assume (Q) — gne P by (Typed Decr End).
Let Ql = Q//[$j+1 = Mj+1, ey T Mk]
By (LySa Decr), Q — Q.
By the encoding and Lemma 4.5 (Substitution in Encodings),

(Q) = (Q"Vzjs1 — (Mjsa), ... 2 — (M.
O

Theorem 4.11 (Security Preservation). A process Q with well-formed
crypto-sets and satisfying Constraint 4.2 (Pattern Matches) guarantees dy-
namic authenticity if and only if [Q] is safe.

Proof. We split the proof in two parts:

Case (@ does not guarantee dynamic authenticity):
Let Q' = ~.decrypt {Ml,...,Mk}fwo[dest L] as {M{,...,MJ’-;

Tjt1,. - ,xk}ﬁ}o [orig £'] in Q"""
By hypothesis, @ —* Q' and @' /grm because RM((, L' ¢/, L) =
FALSE.

By hypothesis, AJ_ || M;]| = [M]].

By Constraint 4.2 (Pattern Matches), /\Z:1Mz‘ =M.

By the encoding, [Q] = Yac-(Q)-

By repeatedly applying Lemma 4.9 (Soundness of Encoding),
Q) ~ e (.

By repeatedly applying (Typed Begin), yac.(Q) — 7. Vac-(Q)-

By Lemma 4.8 (Reductions in Encodings) part (a), Yac-(Q) —* Vac-(Q')-
By the encoding, (Q') = (y).decrypt {(Mi),..., (M), L}) as
WD, - M) g1y - - ks Y) 0 end(y, £).(Q")-

Let 0 = [zj11 — Mjqq,..., 25— Mg,y — £].

By (Typed Decr), (Typed Begin) and (Typed Res) where applicable,
e 1Q) = ae-) -end(y, €).4Q").

Since crypto-points are unique, end(y, ¢')o = end (¢, ¢’).

Because the encoding asserts end (¢, ¢’), we must examine if the encod-
ing ever produces a matching begin!(¢, ¢’) assertion.

Since + is an inert LYSA process, () only consists of restrictions.

46

4. Encoding LYSA to TYPED LySA

Since crypto-points are unique, we need only examine AC({Mi,...,
Mk}ﬁ% [dest L]) to check if (¢,¢') is contained.

By hypothesis, RM(¢, L', ¢, L) = FALSE, which means ¢ ¢ L' vV ¢’ ¢ L.
Since @ has well-formed crypto-sets, it is the case that ¢’ ¢ L.
Therefore, AC will never contain the pair (¢, ¢').

Case ([Q] is not safe): Let [Q] = Yac-(Q)-

Let P = vy.decrypt {M,..., My, C}ay as {My, ..., Mj;2j41,. .., %k, Y}y
in end(y, ¢').(Q").

Let 0 = [$j+1 = Mj+1, ey L Mk,y — E]

By hypothesis, y,c.v.end(y, ¢)o.(Q")o is an authenticity error.

End events are only produced directly following a decryption, so by
hypothesis, assume (Q) —* P.

By Lemma 4.8 (Reductions in Encodings) part (b), (Q) =%, P-

By repeatedly applying Lemma 4.10 (Completeness of Encoding),
Q —* @', where (Q') = P.

To prove that () does not guarantee dynamic authenticity, cf. Defi-
nition 2.5 (Dynamic Authentication), we will prove that the reference
monitor aborts on Q" because RM(¢, L', ¢', L) = FALSE.

By hypothesis, begin!(¢,¢') ¢ ~vac.7.

Then, Ac({My, ... ,Mk}ﬁ/lo [dest £]) will not contain the pair (¢,¢').
Therefore, £ ¢ L'V ' ¢ L, and consequently RM(¢, L', ¢, L) = FALSE.

O

Chapter 5

Type Inference on the
Encoding

Given a LYSA process annotated with crypto-points and the encoding al-
gorithm, the question arises whether or not we can match the control flow
analysis on the encoded process with a type check. That is, given a solu-
tion to a control flow analysis, does there exist a solution to the type check?
A solution to a type check in this context is an annotation of types such
that the encoded process becomes well-typed under Theorem 3.18 (Robust
Safety).

5.1 Constraints

We cannot create a solution to an arbitrary encoded process, since our type
system introduces certain issues because of the use of embedded types. This
means that we have to restrict the number of processes to which we can find
a solution, to those which satisfies the constraints introduced in this section.
The issue that gives rise to these first three constraints comes from the use of
embedded types, which imposes strict requirements on the messages which
are allowed to be encrypted under each key.

Constraint 5.1. Messages must have the same number of elements when
encrypted with the same key.

Messages violating Constraint 5.1 can in most cases be rewritten by
“padding” the message sequence with public names not used anywhere else
in the process. These names can then be caught by pattern-matching in the
decrypt-process.

Constraint 5.2. If a key K1 is used to encrypt another key Ko in place i in
the message, then key K1 must never be used to encrypt anything else than
K> in place i.

47

48 5. Type Inference on the Encoding

Since we have no notion of subtyping in the type system, we need con-
straint 5.2 to ensure that the terms which are encrypted in a given position
using the same key, are of the same type.

Constraint 5.3. If a key K is used to encrypt a key Ko either directly
or through layered encryptions, then Ko must never be used to encrypt K
directly or through layered encryptions.

To illustrate way Constraint 5.3 is needed, consider the two encryptions
{Ki}K, and {Ks}k,. If we try to type the keys, we see the problem. Typing
K, we get Key(x; : 7)[]. We cannot determine the type at the 7 spot before
we examine the type for Ky, which is then Key(z; : Key(z1 : ?)[])[] and we
see the infinite loop of embedded types.

Constraint 5.4. Only names are used as keys.

Constraint 5.4 is needed since encryptions are always of type Un, and
we cannot add latent effect to this type. Therefore, we will not be able to
“transfer” the effects from the point of encryption to the point of decryption.

Constraint 5.5. All names must be able to flow to all variables.

The final constraint has nothing to do with the embedded types, but
instead related to the core quality of control flow analysis. Namely that it
knows which values flow where. Consider the following LYSA process:

PA(K) 2 (wm)({{m}72 [dest {dx}]}[dest {dp})
Pp(K) (;s).decrypt s as {;ms}?[orig {04}]in 0
Poys(K) (v K)(Pa(K) | Pp(K))

(> >

It is clear that the “outer” encryption poses no security risk, but the inner
encryption if ever decrypted would make the process insecure. Fortunately,
in this case, it is never decrypted, so the process is safe, we know this in
CFA, but we do not have that knowledge in our type system. Whenever
something is encrypted with a key we have to assume that any decryptions
performed by this key could be decrypting any of the messages encrypted.
Therefore, if an encryption never reaches a matching decryption, we cannot
guarantee the same safety result with type checking. Because of this, we use
Constraint 5.5 to ensure that this does not happen.

Lastly the constraint from the previous chapter, 4.2, regarding that only
names may be used in pattern matches is still assumed to hold on any pro-
cesses on which the type inference is attempted. Otherwise, the encoding
will not be possible in the first place.

5.2 Auziliary Relations 49

5.2 Auxiliary Relations

Before we present the algorithm for type inference under our list of con-
straints, we need two auxiliary relations to help with the main tasks.

The relation Kepe : |[N| — o(V*) gathers what each key is used to
encrypt. We need this information to create the embedded types.

The second auxiliary relation Kgest @ |[N| — p(C) is used to gather
information to create the embedded assertions. For all keys, we gather a list
of which destinations they are used to decrypt messages at.

We use the following notation for updating a one-to-many relation:

ER flnw—rl, if n ¢ Dom(f);
flr]_{ fln— (rU f(n))], if n € Dom(f).

Since a key or message can be a variable, we use p to find what names
may be bound to it. As a convenience, assume that p(|n]) = |[n| for all
n € N. Also assume that p(|M]) = M if M is an encryption. We will
present the auxiliary relations in the form of transition relations working on
an encoded process. The transition format is Kene, Kaest, P — Kenes Kdest,
where PM ig either a term M or a process P

Creating Auxiliary Relations K., Kgesr (Given p):
I

(Rel Kenes Kgest Name) (Rel Kene, Kgest Variable)

Kenes Kaests 1 — Kene, Kdest Kenes Kdest, T — Kene, Kaest

(Rel Kene, Kgest Enc)

Kene; Kaest, My — K;nc’ ICglest e]Clegrzclﬂ ICZ;S]£7 My, — K]gncv ngst
Kene, Kaest {Ml, .- 7Mk‘}MO —
Iclgnc[vl — (U1 X o+ X V), 0 - (Tr x -+~ XU_k)],ICZeSt
where p(|My|) = {v1,...,vi} Ap(|M1]) =11 -+ p(|My])="1%

(Rel Kenes Kaest OUt)
Kenes Kaest, M1 — KL, K} KCE-L KR My, — Kk KR
encs Ndesty V11 — ezcv d]%st enc » Mdestr Mk 77 Noencr Ngest
/ /
]Cenc7lcdest?P - IC@HC’ dest

Kenc: ICdesty <M17 v 7Mk‘>'P - ’C/encv K:iest

(Rel Kenes Kdest In)
Kenc: ICdesty P — IC,enm Zlest

. ! /
]Cenwlcdesta (Ml, e ,Mj, Llyeo- ,xk)P — ’Cenm dest

50 5. Type Inference on the FEncoding

(Rel Kene, Kgest Par)

" " 7 1" / /
Kenc» ’Cdesta Pl - ’Cenm ’Cdest Icencv chesp P2 - ICenc? ICdest

/ /
Kenc: ICdesty (Pl ‘ PQ) - ’Cencv dest

(Rel Kene, Kdest Res) (Rel Kene, Kdest Repl)
ICenc» K:desta P— ’C/encv K:iest Kenc» K:desta P — ’C/encv K:iest
Kenes Kdest, (V n: Un)P - /C,enc, K&est Kenes Kdest, ' P — ’C/em;y ’Czlest
(Rel Kene, Kgest Begin) (Rel Kene, Kgest Nil)

/ /
Kenc: ICdesty P —]Cencv ICdest

=

Kenc» K:desta begin!(M)'P - IC/

enc’

/
ICdest Kenes Kdest, 0 = Kenes Kaest

(Rel Kenc: ICdest End)
’CenCa ICdesta P — IC/enc’ ’C:iest

Kene: Kaest, End(M).P — K

enc’

/
’Cdest

(Rel Kene, Kgest Decr)
" " " " / /
Kenc: ICdesty M— K dest ’Cenm dest)? P — Kencv dest

enc)

Kene, Kdest, decrypt M as {Mi,...,Mj;xq1,..., 2}, in end(xy, d).P —

/ ’ + +
]Cenw ’Cdest [Ul —d,... v d]

where p(|Mo|) = {vi,..., v}

5.3 Constructing the Solution to a Type Check

The last relation T' : N/ — T uses the information gathered by the auxiliary
relations to create types for any names introduced in a TYPED LYSA process.
While creating types for keys we can not always finish these since we need
to know the types of what will be encrypted with the key. Therefore, if
we are missing the type of a certain name n to finish the type of a key,
we add instead a placeholder H,, for that name. This placeholder is then
replaced everywhere in the relation whenever we find the actual type of n.
This update is done as follows:

fl[n—r] = g, where

I if £ =mn;
9() _{ f(z)[r/Hy,), otherwise.

The two primary rules for the type inference algorithm are Sol Res Non-
key and Sol Res Key. The first rule is for when the name is not used as

5.8 Constructing the Solution to a Type Check 51

a key which we know from relation Kg,. and simply updates this name to
be of type Un. The second rule is for when the name is used as a key and
looks at what names this key is used to encrypt at which places. Because of
Constraint 5.2 we can safely assume that everything encrypted in a spot are
of the same type. This means we just look for if we know the type of one of
the names encrypted in a certain spot. If we know it, we insert it, otherwise
we insert the placeholder. In the end we get a relation from names to their
types which we can then insert in our encoded process instead of the type
Un. We present the rules for creating I' with transition rules again and the
transition format is I', P — I' where P is an encoded LYSA process.

Construction of T' (given K¢, Kgest):
I 1

(Sol Repl) (Sol Par)
rP—T I P —T" I" P —T
IIP T T.(P|P) — T
(Sol Out) (Sol In)

rpP—T P —T

F, <M1,. .. ,Mk>P — I F, (Ml,. .. ,Mj,l‘j+1,. .. ,xk)P — I

(Sol Begin) (Sol End) (Sol Nil)
I,P—T I,P—T
T, begin!(M).P — I” T, end(M).P — T’ r0—T
(Sol Decr)
I,P—T

I', decrypt M as {Mi,...,Mj;zjq1,..., Tt in P — TV

(Sol Res Non-key)
[n] & Dom(Kene) T[[n] = Un],P - T’
I(vn:Un)P -1

52 5. Type Inference on the FEncoding

(Sol Res Key)
|n] € Dom(Kene) T|n] v Key(xy : T},..., 2k : T}, w441 : Un)[B B, P — T’

I (vn: Un)P — I
where Kgest(n) = {di,...,dy}
and B = begun(zj41,d1), ... ,lbegun(zpi1, dy)
and Kene(In])) = {(v1,1,... 01)7 (V4,15 V) }
and Vi € [1..k] : (v;; € dom(I") = T’ F(vi1)) A
((vi1 ¢ dom(T') A v;1 EN) = T’ Hy) A
((Ui,l ¢ dom(T") A Vi1 ¢ N) = Tz/ Un)

7

Definition 5.6 (Type Substitution).
Let @Q be a TYPED LYSA process, then Qr is the same process, except any
restrictions (vn : T') are changed such that T'=T'(|n]).

Conjecture 5.7 (Type Inference on the Encoding). Given a LySa
process P that conforms to Constraints 5.1 to 5.5, and has a analysis (p, K, 0),
such that (p,r) = P : 0 and (p,x,0) satisfies FPY, then 7i : Un - [P]r,
where 1 = fn([P]r).

Example 5.8 (Infering Types).
Consider the following encoded process:

(Pa(K)) = (vm:Un).({m,04}K)
(P(K)) = (;s).decrypt s as {;ms,x}x in end(x,dp)
[Psys(K)] = beginl(oa,dp).(v K : Un)((Pa(K)) | (Pp(K)))
with
;‘):
Ls] | {lm)} k)
[ms] | [m]

First step is to create the auxiliary relations K., and Kg.5:. We se that
there is only one encryption and only one key is ever used for that, so we get
the following:

Kene :

|
LK | {lm]}

5.8 Constructing the Solution to a Type Check 53

and

Kest :

K] | {dB}

We are now in a position to generate the types. As we pass the restriction
for K we have | K| € dom(K.,.) so we use the rule (Sol Res Key). We have
Kaest(|K|) = {dg} so the embedded assertion B = !begun(zs,dp). In
creating the embedded types, we have K¢, = {|m|}. For [m]| we have that
it is not in dom(I") but it is a name, that means its merely an unfinished
type so we use the placeholder H,,. Together this gives I'(| K |) = Key(z; :
H\ ;2 : Un)['begun(xz,dp)]. For the restriction of m we see that this is
never used as a key and therefore update I'(|m|) = Un and at the same time
update all occurrences of the placeholder H|,,| in any values of I' which gives
us I'(|K|) = Key(z1 : Un,x9 : Un)['begun(zz,dp)].

Using these inferred types we can then update the encoded process to:

(Pa(K))r = (vm:Un).({m,o0a}x)
(Pe(K))r = (;s).decrypt s as {;ms,x}x in end(x,dp)
[Psys(K)]r = begin!l(oa,dp).(v K : Key(x1 : Un, x5 : Un)[!begun(zs, dg)])

((Pa(K))r | (PB(K))r)

Chapter 6

Control Flow Analysis with
Correspondences

In the light of the results from the previous chapters, we propose a new
control flow analysis based on the formalisation by Nielson and Nielson et.
al., but using the ideas from Gordon and Jeffrey’s type systems. This new
method is capable of verifying the correspondence property through the use
of begin/end annotations, but is stronger in the sense that it can verify
many of the processes rejected by our type system, while still capable of
verifying the same processes which are verifiable by our type system. Even
more interesting, this new analysis method is also able to verify all processes
which can be verified by the original control flow analysis. We will refer to
this method as CFAC for Control Flow Analysis with Correspondences.

6.1 Design

In the original control flow analysis, the error component v is verbose in the
sense that it is a global component (it is the same at each step of the analysis).
In CFAC, this component is succinct (it may be different at different steps
of the analysis) such that begin events may be collected in much the same
way as in the type system.

The main idea behind this new method is to annotate encryptions found
in p and x with latent effects in much the same way as latent effects works in
our type system. One of the advantages to this approach, compared to anno-
tating the keys of encryptions as in the type system, is that we can perform
a much finer grained “transfer” of effects. When verifying an encryption, the
annotated latent effects must be included in the (local) ¢ component. When
decrypting, we know from the p component which encryptions may flow to
this point and be successfully decrypted. By examining the annotations on
these encryptions, we have information on which effects held at the time of
encryption. The maximum set of effects which we can be sure would hold

55

56 6. Control Flow Analysis with Correspondences

at this point would therefore be the intersection of all latent effects from the
annotations. As an example, consider the following protocol narration:

IProtocol Narration with Begin/End Events:
1) A : begin!(n)
A— :{n}k
— B x
B: decrypt = as {z,}x
B: end(zy,)

Since begin(n) is expected to hold at the time of encryption, we will
annotated the encryption with the latent effect !'begun(|n|) in the analysis.
This analysis (p, &, 1), where 1) = (), is defined as in the following table:

p: lz] = A{ln]} K ['begun([n])]
w: {[n]} k| ['begun([n])]

The steps needed to verify this analysis, corresponding to the steps in
the protocol narration, would be as follows:

(1) Place the effect begun(|n|) in the local 1) component.

(2) Output as regular LYSA, but annotate encryptions with the local 1
component. Since the local 1) component consists of a !begun(|n])]
effect, then verify that ({|n]} x ['begun(|[n])]) is in .

(3) Input as regular LYSA.

(4) Find the intersection of the sets of effect annotated on the terms which
may be decrypted at this point. Since only {|n|} i ['begun(|[n])] may
flow to [z], place the effect !begun(|n]) in the local 1) component.

(5) Find the set of effects which must hold at this end event. Since only |n|
may flow to |z,], verify that !begun(|n]) is in the local ¢ component.

This approach is sufficient to verify the encoding of a LYSA process Q
if the original control flow analysis is able to verify). However, it is not
able to verify processes using variables in begin events. Consider the event
begin!(x), where x is a variable bound at some earlier point. Assume the
two values n, m may flow to x. This, however, does not mean we may put
both !begun(n) and !begun(m) in the local 1) component since only one of

6.2 Analysis Rules 57

these events will take place, and not both. Therefore, we will extend the
analysis in much the same way as types were made dependent in the type
system (eg. by substitutions of variables in the set of latent effects). This
solves this problem of handling variables in begin events, at the cost of being
a bit more complex to reason about.

The approach we have chosen to handle variables in begin events is to
introduce flow-positions of the form $i, where 7 is a positive integer. It is
used in annotations to reason about a term at location ¢ in an encrypted
message sequence. Instead of just annotating encryptions with the local ¢
component, we will perform the substitution ¢,,; on v such that all variables
at position ¢ being encrypted gets substituted with $i. Consider the process

begin(z).({z} k)

Since ¢ = !begin(|x]) at the point of encryption, the annotation on the
encryptions would be 1o, = begin($1). Assuming only two names n and
m may flow to z, then we would include the two values ({n}x[/begun($1)])
and ({m}x[!begun($1)]) in k. Now consider a decryption

decrypt y as {z}k in end(z).

and assume only the earlier mentioned encryption may flow to y. By
examining the intersection of annotations, we know that !begun($1) holds.
Again we perform a substitution oy, = [$0 — [My], ..., $k — | M}]], where
M; corresponds to the variables or pattern-matches in the decryption. In
this case, 0;, = [$0 — |z]] such that we may place !begun(|z|) in the local
1) component. This procedure is more or less the same as in the type system,
where variables in dependent types are substituted for the actual values.

6.2 Analysis Rules

The syntax and semantics are similar to TYPED LySA with the removal
of type annotations. For completeness, they can be found in Appendix A
(CORRESPONDENCE LySA). The security property is defined as in TYPED
LySA; see Definition 3.16 (Safety and Robust Safety).

We extend || to work on encryptions, i.e.

HM17”‘ ’Mk}MoJ = {LMlJv) leJ}LMOJ

We will use the syntax ¢ for a set of begun assertions. To avoid ambiguity
on the judgements, we will use the symbol [as the judgements of the
CFAC. This leads to the definition of a set of modifications and additions
to the original CFA rules, which can be found on the next page. Since these
rules are a bit more complex than the one for the type system, we will explain
each one in detail.

58 6. Control Flow Analysis with Correspondences

The rule (CFAC Begin) verifies a begin event only using names, followed
by a process P. The only thing which is needed is to update the local ¥
component to include this new begun effect.

The rule (CFAC End) verifies an end event of terms (M, ..., My) fol-
lowed by a process P. There are two clauses which will conclude the validity
of an end event. Either the corresponding begun effect must be in 1, or for
each sequence of values that these terms may evaluate to, the corresponding
begun effects must be included in the local ¥ component. This allows us to
verify the process begin!(a).begin!(b) ... end(z) if only a and b may flow to
x, while still being able to verify processes using flow-positions.

The rule (CFAC Encryption) verifies that an encryption of terms
(My, ..., M) with key My may evaluate to a set of encryptions v. For
each sequence of values that the terms may evaluate to, the corresponding
encryption, annotated with the local v component under the substitution
for flow-positions, must be in v.

The rule (CFAC Decrypt) performs the actions of the original (CFA
Decrypt) rule, but also verifies that a set of begun effects ¢ may be included
with ¢ when verifying the rest of the process. This ¢/ component is the
intersection of the sets of annotations on each value that may result in a
decryption. For instance, if {Vi,...,Vi} v [¢"] may be decrypted at this
point, we require that v’ € ¢/”. As in the rule for encryption, we perform a
substitution for the use of flow-positions.

Control Flow Analysis with Correspondences of Terms:
I

(CFAC Name) (CFAC Variable)
n] €v p(lz]) Cv
(pY) En:v (p)ET:v

(CFAC Encryption)
/\fzo (ps9) E M; = v A
YWVo,Vi,..., Vi . /\?:OVZ‘ € v; = {Vl,...,vk}vo[l/}U] S
(p7¢) ’E {Mla e 7Mk}M0 v
where A\F_((M; € X = (| M;] — $i) € o).

Control Flow Analysis with Correspondences of Processes:
I 1

(CFAC Nil) (CFAC Res) (CFAC Repl)
(p,r) EP 9 (p,K) EP Y
(p,r) EO: 9 (psk) E(vn)P i1 (p,k) E 1P 9

6.3 Properties of Analysis

59

(CFAC Par)
(pr) EPL:Y A (pR) E P20
(pr)EPL| P2ivp

(CFAC Begin)
(pyk) E P:1 Ulbegun(| My],..., [My])
(p,k) E beginl(My,...,My).P: 1

(CFAC End)
(p,5) E P) A (egun(|Mi], .., | My)) € %V

(/\f:1 (P,) EM; v ANV, ... Vi /\f:OVi € v; = lbegun(V,...

Vi) €9))

(p,k) E end(My,...,My).P: 4

(CFAC Output)
Ny () E M; i oi A (poR) E Pt A
YW, .. Vi A View = (W,..., Vi) €r

(p,k) E (My,...,My).P:

(CFAC Input)
Ny (p) E Mizvp A (p,5) EP 9 A
V(Vi,....,Vk) €k N_|Vi Ev; = /\f:jHVZ- € p(lzi])
(0.7) E My, My 2y, i) P 2

(CFAC Decrypt)

(P) EM s N_g (p) E Mz vi A (p,k) EP:p U A
V{Vlw"?Vk}Vo[Q/}”] cv: /\gzovi E v = (A§:j+1 VZ € P(L%J) A ¢/ - WU)

(p,k) E decrypt M as {M,...,Mj;xj41,..., kM, in P o)
where 0 = [$0 — [Mo],..., 85 — | M;],8(+ 1) — [zjs1],..., 8k — |xk]]

6.3 Properties of Analysis

Conjecture 6.1 (CFAC Subject Reduction). If (p,x) E P: ¢ and P —

P’ then (p,k) E P : 4.

Rational. As a subject reduction result holds for the original control flow
analysis, cf. 2.1 (Subject Reduction), we expect it to hold on the modified

analysis as well.

0

The attacker needs to be reformulated since the annotations of CORRE-
SPONDENCE LYSA are different from regular LYSA. To avoid ambiguity on

the name, we will refer to the reformulated attacker as the formulae

gDY-

60 6. Control Flow Analysis with Correspondences

Definition 6.2 (Remodelling the Attacker).
The formulae GV is defined as a conjunction of the following:

L. Akea V(Va, .o, Vi) € k2 AF_LV; € p(za)

2. NeeAp V{V1, - Vb (W] € p(2e) : Vo E plze) = /\fZIVi € p(ze)
3. Nkedpne Vi, Vi t AP0 Vi € p(ze) = {Vi,. .., Vb [¥] € p(2e)
4. Neea YV, Vi i AL Vi€ p(ze) = (W1, .., Vi) €8

5. {ne} U [M] C p(z)

Conjecture 6.3 (CFAC Soundness of the Dolev-Yao Condition).

If (p, .) satisfies GPY of type (N}, Ax, Agne), then (p,r) E Q : ¢ for all
attackers Q of type (Np, A, Agnc)-

Rational. The proof for this conjecture should be identical to the one for
Theorem 2.6 (Soundness of the Dolev-Yao Condition) from the original con-
trol flow analysis. O

Conjecture 6.4 (CFAC Completeness of the Dolev-Yao Condition).
There exists an attacker Qpara of type (Ny, A, Agne) such that the formula
(p, k) E Qhara : ¥ is equivalent to the formula GPY of type (N}, Aw, Agnc)-

Rational. The proof for this conjecture should be identical to the one for
Theorem 2.7 (Completeness of the Dolev-Yao Condition) from the original
control flow analysis. O

Conjecture 6.5 (Existence of the Least Solution). There is always a
least choice of (p, k,1) for any given CORRESPONDENCE LYSA process such
that (p,k E P : ¢ and (p, k,) satisfies GPY.

Rational. Nielson, Nielson and Seidl [NNS01] have showed that the control
flow analysis as specified in Chapter 2 (Control Flow Analysis) can be cal-
culated despite the fact that the components p, x,% are interpreted over an
infinite universe. The procedure is as follows. Firstly, the succinct specifi-
cation of the analysis is transformed into a verbose specification. Secondly,
the specification is transformed to use a finite universe by encoding terms
as production rules in a tree grammar. An actual implementation has been
made using the succinct solver [NNS02]. We expect this procedure is appli-
cable to the control flow analysis with correspondences as presented in this
chapter. O

Theorem 6.6 (CFAC Safety). If there exists (p,) such that (p,k) = P :
0, then P is safel.

!This is under the assumption that Conjecture 6.1 (CFAC Subject Reduction) holds.

6.4 Encodings 61

Proof. Suppose that (p,x) E P : § and P —* y.end(M).P". By Conjec-
ture 6.1 (CFAC Subject Reduction), we have (p, k) £ ~v.end(M).P” :) where
(p, k) E end(M).P” : 4. By (CFAC End), and because M will not contain
variables at this point in the reduction, we get 'begun(|M; |,..., |My]) € 9.
Since 7 is inert, this can only be the result of verifying begin events in v. Be-
cause y precedes the end event, then by Definition 3.16 (Safety and Robust

Safety), P is safe. O

Theorem 6.7 (CFAC Robust Safety). If there exists (p,k) such that
(p,k) = P:0 and (p,s,0) satisfies GPY, then P is robustly safe?.

Proof. 1f (p, k) E P : () satisfies GPY then by Conjecture 6.3 (CFAC Sound-
ness of the Dolev-Yao Condition), it must also be the case that (p,x) E Pe : 0
for any attacker P,. By (CFAC Par), we get (p,k) E P | P, for any P,. By
Theorem 6.6 (CFAC Safety) and Definition 3.16 (Safety and Robust Safety)
P is robustly safe. O

6.4 Encodings

We define an encoding [[-]; from LYSA to CORRESPONDENCE LySA. It works
like the encoding defined in Chapter 4 (Encoding LYSA as TYPED LySA),
but does not write type annotations. We also define an encoding [-]; from
TYPED LYSA to CORRESPONDENCE LYSA. The only change the encoding
need to perform is to remove type annotations on restricted names.

Conjecture 6.8 (CFA is a Subset of CFAC). Ifp,x E Q : (), Q satisfies
Constraint 4.2 (Pattern Matches) and (p, x,0) satisfies FPY, then there is
a (p',K') such that (p', k") E[Q]: : 0 and (o', ~',0) satisfies GPY .

Rational. Since the encoding places all begin events as a prefix to the process,
there will be no need to “transfer” the effects by annotating encryptions. An
analysis (p/, k', 0) would then be defined as (p, , 0) with the replacement of
crypto-point annotations with annotations on encryptions coming from AC.

0

Conjecture 6.9 (Type Checking is a Subset of CFAC). If7i: Unt P,
then there is a (p, k) such that p,r [[P]; : 0 and (p, K,) satisfies GPY .

Rational. By Conjecture 6.5 (Existence of the Least Solution), there is a
least choice of (p,k,®) such that (p,k) E [P]: : ¢ and (p, k, %) satisfies
GPY . For the conjecture to hold, we need to prove that 1 =), which can
only be done if we knew how the three components were created. This boils
down to examining if all the effects which can be “transfered” from one point
in the process to another in the type system (using latent effects on the key

2This is under the assumption that Conjecture 6.1 (CFAC Subject Reduction) holds.

62 6. Control Flow Analysis with Correspondences

annotations) is also able to be transfered in the control flow analysis. The
rational for this is that if we can verify the typing rule E'F {M,..., My},
and E + My : Key(Z : T)[B], then we know that B holds at this point
in the process. At the same point, the control flow analysis will therefore
verify that {Mi,..., My}a,[B U B'] is in the corresponding tuple in .
When decrypting a term M with key K, all values which may flow to M
will therefore be annotated with a set of begun assertions such that B is
contained in the intersection of these assertions, and will be placed in the
local 1 component just as it is placed in £ when type checking. O

Chapter 7

In Perspective

In this report we have introduces two kinds of security properties: dynamic
authentication using crypto-points, and correspondences using begin and end
events. These properties can be verified using control flow analysis and type
checking. In this chapter, we will put these methods in perspective and give
our take on the practical feasibility of using them.

In Figure 7.1 on the next page, an illustration can be found of the relation
between the two security properties and the two methods to verify them. The
left and right rectangle in the figure represents the set of processes annotated
with crypto-points and begin/end events, respectively.

The left rectangle consists of three shapes. The processes represented
by the green shape in the top can be typed in our type system through the
encoding. It is likely that a type system could be created that operates
directly on crypto-points, but this would probably not make the method
capable of verifying additional processes than our current type system. The
turquoise shape in the middle represents processes which can be analysed
through the control flow analysis introduced in Chapter 2 (Control Flow
Analysis). This method is also capable of verifying anything which can be
type checked. The red shape in the bottom represents those processes which
cannot be verified in either of the methods.

The right rectangle also consists of the same three fills with the same
relation between each other. As we proved in Chapter 4 (Encoding LYSA as
TYPED LySA), crypto-points can be translated into begin/end events (but
most likely not the other way). We have illustrated this by letting the right
rectangle contain a copy of the left rectangle with dashed lines. The shapes
in the dashed rectangle are the same as in the left rectangle to signify that
the encoding process cannot make an unverifyable process verifyable and
vice versa.

In the following, we will present two canonical examples of secure pro-
cesses annotated with crypto-points and begin/end events, respectively, which
cannot be verified.

63

64 7. In Perspective

Annotated with
Begin/End Events:

Annotated with
Crypto-points:

Well Analysed Well Analysed

Encoding

Example 7.1

Example 7.2

Figure 7.1: World View of Verifiable Processes.

Example 7.1 (Non-verifiable Crypto-point Annotation).

This next example shows a process annotated with crypto-points, which is
not verifiable even though it guarantees dynamic authenticity. In the process,
P4 outputs an encryption with crypto-point 04 and waits for an input. The
principal Pp waits for an input to decrypt, which may only originate from
04. After a successful decryption, Pg outputs a new encryption with crypto-
point op using the same key. The key is secret so an attacker will not be
able to forge encryptions.

65

(1>

Pa(K)

Pp(K)

(1>
— — :.\ — —
8
\._/
@
o
=1
<
ko)
t+
8
&
tn
oo
3
ey
ol
o
=.
(0]
—_
o)
b
hnant
-
]

A
Psys =

We cannot find an acceptable analysis to the original control flow anal-
ysis because the analysis has no concept of linearity in possible reduction
sequences. Since both encryptions with crypto-points 04 and op may flow
on the ether (i.e. is known to an attacker), they must both be included in
the x component. The analysis rules will then believe the encryption with
crypto-point op may arrive at dp, even tough it is not possible since it is
only created later in any reduction sequence.

Let us examine why it is neither possible to type check it nor verify it in
the new control flow analysis. Encoding Py, we get:

(Pa(K)) £ (vm:Un){{m,0a}xk).
(;y).decrypt y as {;my, o0y} in end(o,,da)
(Pp(K)) = (;z).decrypt x as {;mg, 0} in
end(og,dp).(vn: Un){({n,op}K)
[Psys] = begin!(oa,da).begin!(oa,dp).begin!(op,da).
(v K - Un)((PA(K)) | (P (5)))

We cannot find a solution to the type system because we need to find a
dependent type for K on the form Key(z; : Un, z2 : Un)[!begun(zz,da),!be-
gun(zz,dp)]. The two begun effects are needed to count as a credit towards
the two end events. However, when encrypting the message in Pp, the
dependent variables in the latent effects get substituted with actual values
such that the assertions !begun(op,d4) and !begun(op,dp) must hold. As
begun(op, dp) does not hold, it is not possible to find a type for K to make
the process well-typed.

We cannot find an acceptable analysis to the new control flow analysis
basically because of the same reason the original control flow analysis fails.
The k component in the least solution is

ki {m, 0a}k[begun(oa,da), Ibegun(oa,dp), Ibegun(op,da)]
{n, op}k|[begun(oa,da), Ibegun(oa,dp), Ibegun(op,da)]

In the case of any encoded process, all begin events precedes the entire
process such that they will hold on the point of decryption. There is therefore
no need to examine the sets of latent effects at the point of decryption. When
verifying the end process, the analysis rules will find that both 04 and op may
be bound to o,. This means that both !begun(oa,dp) and 'begun(op,dp)

66 7. In Perspective

is required to hold, even though only the former holds. Therefore, the p
component cannot be empty.

Example 7.2 (Non-verifiable Correspondence Annotation).
Consider the following process:

begin!(K).(K)

(K;).end(K)
(v K)(Pa(K) | Pp(K))

S
=
> I

(1>

Psys

First of all, this process has no immediate equivalent crypto-point anno-
tation, as it does not make use of encryptions. This is way it is depicted
outside the dashed rectangle in Figure 7.1.

In this process, P4 and Pp shares a secret name K. Imagine that there
is no longer a need for it to be secret, so P4 publishes it for anyone to see.
The process is robustly safe as an attacker cannot know the name K before
it is published by P4, and before that happens, P4 has issued a begin!(K)
event.

We cannot find a solution to the type system because we need to “trans-
fer” the effect !begun(K’) from P4 to Pp. As there are no encryptions, and
hence no keys, this cannot be done. Of the same reason, it is not possible to
find an acceptable analysis with v = .

Chapter 8

Conclusion

The goal of this project was to examine the relationship between control flow
analysis and type checking. This relationship was examined by looking at
whether or not it is possible to duplicate a verification from one technique
in the other. We chose the control flow analysis and the LYSA calculus
as presented in [BBDT03], where an authentication property was specified
using crypto-point annotations. We developed a typed version of LYSA using
correspondence assertions, and constructed a type system for verifying a
correspondence property. An encoding from LYSA processes to TYPED LySa
processes was constructed, and it was proved that the encoding preserves the
safety properties of the original process. Furthermore, it was shown how to
construct a set of type definitions for an encoded process, such that it would
make the security properties verifiable in the type system if the control flow
analysis of the original LySA version had no crypto-point violations given
certain constraints on the LYSA process.

Lastly, we created a new control flow analysis based on the original analy-
sis, but utilising begin/end annotations instead of crypto-points. We showed
that this new analysis is capable of verifying any process which is verifyable
by either the type system or, through encoding, the original analysis.

67

Appendix A

CORRESPONDENCE LYSA

Syntax of CORRESPONDENCE LySA:

M = terms
n name (n € N)
x variable (z € X)
{Mi, ..., Mg}, symmetric encryption
P .= processes
0 nil
(My,...,My).P output
(M, ...,Mj;xji1,...,2).P input
P | P parallel composition
(vn)P restriction
P replication
decrypt M as {M, ..., Mj;
Tj41s---, ThtM, in P symmetric decryption
begin!(M, ..., My).P begin-event
end(My,..., My).P end-event

Structural Process Equivalence of CORRESPONDENCE LySA, P = Q:
I 1

P=r (CFAC Struct Refl)
P=Q=Q=P (CFAC Struct Symm)
(P=QANQ=R)=P=R (CFAC Struct Trans)
P=Q=P|IR=Q|R (CFAC Struct Par)
pPlo=rP (CFAC Struct Par Zero)
PlQ=Q|P (CFAC Struct Par Comm)
(P|Q)|R=P|(Q|R) (CFAC Struct Par Assoc)
(
(
(
(

P=Q='P=Q CFAC Struct Repl)
'P=P|!P CFAC Struct Repl Par)
P=Q if Pand Q are a-convertible CFAC Struct Alpha)
(vn1)(vng)P = (vng)(vny)P CFAC Struct Res)

69

70 8. Conclusion

(rn)0=0 (CFAC Struct Res Nil)
(vn)(P|Q)=P|((rn)Q) ifn¢m(P) (CFAC Struct Extrusion)

Operational Semantics of CORRESPONDENCE LySaA, P — P’:
I

(CFAC Par) (CFAC Res)
P— P P— P
PlQ =P Q)P — ()P’

(CFAC Equiv)
P=QANQ —-Q NQ' =P
P— P

(CFAC 10)
Nz IMi]] = [[M]]
<M1, NN ,Mk>.P1 | (M{, NN ,MJ/-;{L‘]'Jrl, NN ,.Tk).PQ —R
P1 | PQ[ZL‘jJrl — Mj+1, e, L Mk]

(CFAC Decr)
Nizo M) = [1M]]
decrypt {Mu, ..., My} [B] as {Mj,..., M}z 41, .., Tk far in P —
P[xj+1 = Mj+1, ey L Mk]

(CFAC Begin) (CFAC End)
P—P
begin!(M).P — begin!(M).P’ end(M).P — P

References

[Aba99|

[AFO1]

[AG97]

[AGYS]

[ANO5)

[BAN9O)

[BBD 03]

[BBD+04]

[BDNNO1a|

M. Abadi. Secrecy by typing in security protocols. Journal of
the ACM, 46(5):749-786, 1999.

M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In POPL ’01: Proceedings of the 28th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 104-115. ACM Press, 2001.

M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Fourth ACM Conference on
Computer and Communications Security, pages 36-47. ACM
Press, 1997.

M. Abadi and A. D. Gordon. A bisimulation method for
cryptographic protocols. Nordic J. of Computing,
5(4):267-303, 1998.

E. H. Andersen and C. R. Nielsen. Static validation of voting
protocols. Master’s thesis, Informatics and Mathematical
Modelling, Technical University of Denmark, DTU, 2005.

M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. ACM Trans. Comput. Syst., 8(1):18-36, 1990.

C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and
H. Nielson. Automatic validation of protocol narration. In

proceedings of 16th IEEE Computer Security Foundations
Workshop (CSFW 16), pages 126-140, 2003.

C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis
Nielson. Control flow analysis can find new flaws too. In

Proceedings of Workshop on Issues in the Theory of Security
(WITS 04), 2004.

C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Security
analysis using flow logics. In Current Trends in Theoretical

71

72

References

[BDNNO1b]

[BNN04]

[DY81]

[FGMO5|

[GJ02]

[GJO3]

[GJ04a]

[GJ04b)

[Gol03]

[HJ04]

[NNHO02|

Computer Science, pages 525-542. World Scientific Publishing
Co., Inc., 2001.

C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static
analysis for the m-calculus with application to security.
INFCTRL: Information and Computation (formerly
Information and Control), 168, 2001.

M. Buchholtz, H. Riis Nielson, and F. Nielson. A calculus for
control flow analysis of security protocols. International
Journal of Information Security, 2(3-4):145-167, 2004.

D. Dolev and A. C. Yao. On the security of public key
protocols. In Proceedings of the 22th IEEE Symposium on
Foundations of Computer Science, pages 350-357, 1981.

C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline
for authorization policies. Technical Report MSR-TR-2005-01,
Microsoft Research, 2005.

A. D. Gordon and A. S. A. Jeffrey. Typing one-to-one and
one-to-many correspondences in security protocols. In Proc.
Int. Software Security Symp., volume 2609 of Lecture Notes in
Computer Science, pages 263-282. Springer-Verlag, 2002.

A.D. Gordon and A. S. A. Jeffrey. Typing correspondence
assertions for communication protocols. Theoretical Computer
Science, 300(1-3):379-409, 2003.

A. D. Gordon and A. S. A. Jeffrey. Authenticity by typing for
security protocols. J. Computer Security, 11(4):451-519, 2004.

A. D. Gordon and A. S. A. Jeffrey. Types and effects for
asymmetric cryptographic protocols. J. Computer Security,
12(3/4):435-484, 2004.

D. Gollmann. Authentication by correspondence. In IEEE
Selected Areas in Communications, volume 21, issue 1, pages
88-95, 2003.

C. Haack and A. S. A. Jeffrey. Pattern-matching spi-calculus.
In Proc. IFIP WG 1.7 Workshop on Formal Aspects in
Security and Trust, volume 173, pages 55-70. Kluwer
Academic Press, 2004.

F. Nielson, H. Nielson, and R. Hansen. Validating firewalls
using flow logics. Theoretical Computer Science,
283(2):318-418, 2002.

REFERENCES 73

[NNSO01] F. Nielson, H. Nielson, and H. Seidl. Cryptographic analysis in
cubic time, 2001.

[NNS02] F. Nielson, H. Nielson, and H. Seidl. A succinct solver for
ALFP. Nordic Journal of Computing, 9:335-372, 2002.

[WL93] T. Y. C. Woo and S. S. Lam. A semantic model for
authentication protocols. In RSP: IEEE Computer Society

Symposium on Research in Security and Privacy, pages
178-194, 1993.

