© 00 N DA W N

10
11
12
13
14
15

Group d633a

An Al Framework for
Real-Time Strategy
Games

DAT6 REPORT
6th of June 2006

void rts_game ai()

{
cheat _a_bit_ before game starts(resources += 10000000, hugebase++);
send multiple weak and_ pointless attacks ();
act like youre actually gathering resources not cheating to get them ();
cheat some more ();
lose building to_enemy (OH_NOES);
cheat more (CHEAT INFINITE RESOURCES | CHEAT FAST BUILD);
while(still _alive () = true)
{
send multiple weak units_to defend();
}
die ();
}

Department of Computer Science
Aalborg University

Fredrik Bajersvej 7TE

DK-9220 Aalborg

DENMARK

Faculty of Engineering and Science

Aalborg University

K«

Department of Computer Science

TITLE:
An Al Framework for Real-Time
Strategy Games

PROJECT PERIOD:
Dat6,
February 1st 2006 —
June 6th 2006

PROJECT GROUP:
Group d633a

GROUP MEMBERS:
Kasper Frederiksen
Kasper G. Kristensen
Anders Lauritsen

SUPERVISOR:

Thomas Vestdam
NUMBER OF COPIES: 7
REPORT PAGES: 179
APPENDIX PAGES: 108
TOTAL PAGES: 287

SYNOPSIS:

Recently computer gamers have started to
focus more and more on the gameplay as-
pect of computer games. This has led to an
increased interest in the multiplayer aspect
of games as they present a challenge that
the AT in the single player part cannot. So
far the single player Als have been easy
to beat, because they lack dynamic capa-
bilities. This project focuses on defining
an Al framework architecture for the spe-
cific genre of Real-Time Strategy games,
which will help to develop Als with more
human-like capabilities and behaviour in
this genre. We present a framework based
on a model of how a player plays Real-
Time Strategy games. This framework is
then tested by connecting it to a Game De-
velopment Framework. We show that the
framework can be configured by both pro-
grammers and non-programmers, and that
the framework can be used to provide com-
plete AI solutions within the main stream
RTS games. Preliminary results show that
the ideas behind the framework design and
a new data structure, introduced in the
project for handling strategies, are very
promising.

Preface

This report is the result of the master thesis developed by group d633a
(E4-215) at the Department of Computer Science, Aalborg University. The
project was developed under the supervision of Thomas Vestdam.

Prior to this project, analysis and preliminary designs were carried out in
our pre-master thesis|FKLO05|. This has the consequence that the following
chapters of the report are partly based on the pre-master thesis: Introduc-
tion (Chapter 1), Motivation (Chapter 2), Human Model (Chapter 3), and
Framework Design Techniques (Chapter 5).

Readers not familiar with Real-Time Strategy games and the terminology
used in these are advised to read our introduction to this genre in Section
1.1 and consult the list of terms and expressions introduced in Appendix A.

In addition to the terms and expressions, the appendix also contains
a description and the results from the test carried out in the pre-master
thesis|[FKLO05|, a detailed description of the architecture of each module in
the framework, the questionnaire sent to the industry along with the an-
swers that were received, and important tables and models. The appendix
is separate to the report.

We would also like to thank Oddlabs, Infinite Interactive, Inhuman
Games and Fireglow Games for their response to our market analysis.

The code for the prototype implementation can be found at:
http://www.cs.aau.dk/~duck /rtsaif/

Aalborg University
June 6th 2006

Kasper Frederiksen Kasper G. Kristensen
(macross@cs.aau.dk) (gib@cs.aau.dk)

Anders Lauritsen
(duck@cs.aau.dk)

CONTENTS

Page vii of 273

Contents

Contents

1 Introduction

1.1 Real-Time Strategy Games

I Problem Area and Human Model

2 Motivation

2.1 Problem
2.1.1 Player Perspective
2.1.2 Producer Perspective

2.2 Problem Area
2.2.1 Player Perspective
2.2.2 Producer Perspective

2.3 Current Solutions
2.3.1 Player Perspective
2.3.2 Producer Perspective

24 New Solution
24.1 Player Perspective
2.4.2 Producer Perspective

2.5 Discussion

3 Human Model

3.1 Prior Knowledge
3.2 In-Game Knowledge
33 RTSTasks.
3.4 Human Model
3.5 Summary

IT Framework Design

4 Introduction

Page viii of 273 CONTENTS
4.1 Design Goalso 39

5 Design Techniques 41
5.1 Frameworks o o 41
5.1.1 Reuseof Software. 41

51.2 Al Frameworks 42

5.2 Event Based Systems L. 45
5.2.1 Framework Control 45

5.2.2 Event Based Systems in Frameworks 45

5.3 Scripting Languages 47
5.4 RTS Specific Concepts 48
54.1 Strategy Trees 48

5.4.2 Pathfinding oL 52

54.3 Tactics L 57

5.4.4 DBase Building Templates 61

545 Summary 63

6 Framework Design 65
6.1 Framework Architecture 66
6.1.1 Cognitive Architecture 66

6.1.2 Moduleso 67

6.2 Representation of Knowledge 71
6.2.1 Division of Knowledge Bases 71

6.2.2 Data Representation 73

6.3 Framework Versatility 75
6.4 Framework Control 76
6.4.1 Using the Design Techniques 7

6.4.2 Event System oL 7

6.4.3 Constructing the Architecture 7

6.4.4 Game State Interface 79

6.5 Summary 80
IIT Proof of Concept 81
7 Implementation 83
7.1 Proof of Concept 83
7.2 Implementation Specific Choices 85
7.2.1 Game Development Framework 86

722 Test Game 86

7.2.3 Scripting Language 87

7.3 Trade-offs between Usability and Performance 87
7.3.1 Scripted Parts. 0oL 88

7.3.2 Configuring the Framework 88

CONTENTS Page ix of 273

7.3.3 Scripting Limitations 89

7.4 Implementation Specific Details 89
7.4.1 GDF Communication Architecture 89
7.4.2 GDF Connection 90

7.5 TImplementation Problems 91
751 GDF 91
7.5.2 Stability oL 92
7.5.3 Pathfinder oo o 93
754 Al Framework, 93
7.5.5 Implementation Status L. 94
756 Conclusion L o 94

8 Evaluation 95
8.1 Configurabilityo 96
8.1.1 Configuration of Technology Tree 96
8.1.2 Configuration of Strategy Trees 98
8.1.3 Configuration of Framework Modules 99
8.1.4 Configuration of Als in Different RTS Genres 101
8.1.5 Configuration of Interaction with GDF 102

8.2 Versatility 105
8.2.1 Framework Versatility 105
8.2.2 Al Versatility 106

8.3 Extendibility 109
8.3.1 Methods and Module Extensions 109
8.3.2 Adding New Modules 111
8.3.3 Framework Limitations 113

8.4 Performance Testing, 113
8.4.1 Performance Test Construction 114
8.4.2 Performance Test Results 115
8.4.3 Performance Test Discussion 118
8.4.4 Scalability o o 119

8.5 Al Improvements 120
8.5.1 Prototype Implementation 120
8.5.2 Complete Implementation 124

8.6 RTS Specific Concepts 126
8.6.1 Strategy Trees 126
8.6.2 Pathfinding 128

8.7 Reflectionso 131
8.7.1 Design Reflection 131
8.7.2 Development Model Reflection 132

8.8 Summary 134

Page x of 273 CONTENTS
9 Discussion 137
9.1 Demand in Industry 137
9.1.1 Time Spent on Al Development 138

9.1.2 Developersof AT 139

9.1.3 Al Development Tools 139

9.1.4 Al Integration with GDF 140

9.1.5 Generic RTS AI Framework 140

9.1.6 Summary 141

9.2 Conformance to Industry Demands 141
9.3 RTS Game Market Analysis 142
9.4 Other Uses 143
9.5 Further Work 143
9.5.1 Complete Implementation 144

9.5.2 Al Frameworks in General 146

10 Conclusion 149
11 Resume 153
Bibliography 157
IV Appendix 167
A Terms and Expressions 169
A1l General Concepts 169
A2 Buildings 171
A3 Units.o 172
A4 Special Abilities oL 173
A5 Strategies 174

B Module Design 177
B.1 Percept Interpreter 177
B.2 Reactive Module oo 178
B.2.1 Responsibilities 178

B.2.2 Structure Overview 179

B.2.3 Update DotT 179

B.2.4 Change Building State 180

B.2.5 Change Unit State 181

B.2.6 Handle Native Al Event 182

B.3 Pattern Recognition 183
B.3.1 Respousibilities 183

B.3.2 Structure Overview 184

B.3.3 Recognise Significant Game States 184

B.3.4 Recognise Strategies 185

CONTENTS Page xi of 273

B.4

B.5

B.6

B.7

B.8

B.3.5 Recognise Tactics 186
B.3.6 Update Opponent Model 187
B.3.7 New Tactics 188
Probabilistic Reasoning 189
B.4.1 Responsibilities0 189
B.4.2 Structure Overview, 190
B.4.3 Find Potential Strategies. 190
B.4.4 Update Opponent Model 191
B.4.5 Find Potential Follow-up Strategies 191
B.4.6 Determine Important Variables 192
Strategic Planning oo 193
B.5.1 Responsibilities L. 193
B.5.2 Structure Overview 194
B.5.3 Sufficient Enemy Knowledge 194
B.54 Scouting o 195
B.5.5 Change Current Strategy 196
B.5.6 Find Counter Percentages 197
B.5.7 Find New Strategy 198
Bb58 Expandso o 198
B.59 Evaluation.o 199
B.5.10 States 200
Tactical Planning oo 204
B.6.1 Responsibilities 0L 204
B.6.2 Structure Overview 204
B.6.3 Evaluation. 205
B.6.4 Terrain Analyser 205
B.6.5 Formationo 206
B.6.6 Terrain and Unit Analyser 207
B.6.7 Unit Deployment 208
B.6.8 Support 209
B.6.9 Targeter 209
B.6.10 Path Planner, 210
Resource Manager 211
B.7.1 Responsibilities o0 211
B.7.2 Structure Overview 212
B.7.3 Determine Resource Requirements 212
B.7.4 Resource Analyser 213
B.7.5 Worker Planner 213
B.7.6 Optimise Resource Gathering 214
Base Building o oo oo 215
B.8.1 Respounsibilities 216
B.8.2 Structure Overview 216
B.8.3 Terrain and Resource Analyser 216

B.8.4 Building Manager 217

Page xii of 273 CONTENTS
B.8.5 Building Planner 0000 217

B.8.6 Repair Manager. 218

B.9 Learningo 218
B.9.1 Responsibilities 0oL 218

B.9.2 Structure Overview 219

B.9.3 Evaluate and Revise Known Strategies 220

B.9.4 Evaluate and Revise Known Tactics 221

B.9.5 Evaluate and Revise Known BBT 222

B.9.6 Learn New Strategies 223

B.9.7 Learn New Tactics 223

B.9.8 Learn New BBT 224

B.9.9 Update Enemy Knowledge 225

B.10 Action Planner 226
B.10.1 Responsibilities 226

B.10.2 Structure Overview 227

B.10.3 Unit Planner, 227

B.10.4 Research Planner 227

B.10.5 Action Scheduler 228

B.10.6 Interface GDF, 228

C Knowledge Bases 231
C.1 Prior Knowledge Bases 231
C.2 In-Game Knowledge Bases 232

D Test Model 235
D.1 Strategic Planning 235
D.2 Tactical Planning L. 236
D.3 Micromanagement 237
D.4 Resource Management 238
D.5 Base Building oo 238
D.6 Scouting 239
D.7 Learningo o 240
D.8 Cooperation L 240

E Test Table A 241
F Test Table B 243
G Game Logs 245
H Performance Log 251
I Pathfinding Tests 253

CONTENTS

Page xiii of 273

J Code Examples 257
J.1 Unit and Building Specifications 257
J.2 Known Strategies 259

K Important Figures 263

L AI Development in Industry 267
L.1 RTS Companies Contacted, 267
L.2 Mail to RTS Game Development Companies 270
L.3 Answers from RTS Game Development Companies 271

L.3.1 Oddlabs 271
L.3.2 Infinite Interactive 271
L.3.3 Inhuman Games 272
L.3.4 Fireglow Games. 273

CHAPTER 1. INTRODUCTION Page 1 of 273

Chapter 1

Introduction

Artificial Intelligence (AI) has for a long time been a discipline in com-
puter science, and has been found very useful in modern computer games.
Even though a lot of Al methods are used in the development of Als in
computer games, the Al is still far behind a lot of the other development
in the computer game industry, like the creation of more and more real-
istic graphics|[Bur04]. When playing computer games, the player wants to
be challenged, and she will not become challenged, if the Al she is playing
against is too easy to beat [SZ04|. There exist a lot of different genres of
computer games, and concerning the development of Al, Real-Time Strategy
(RTS) games are one of the more challenging [BF04b|. This is because in
RTS games there are hundreds or even thousands of units that have to be
controlled in a battle against an opponent. At the same time, there is a well-
defined and controlled environment that gives rich possibilities to perform
tests for new Al methods. RTS Als also have their application in the real
world. High-performance simulators are needed for training military person-
nel |[BF04al. One example is the SOAR project [Soa| that was developed for
simulators with the function of training pilots. The AI was responsible of
providing intelligent behaviour for enemy pilots. |[LLO1|

In the computer game industry, the production of games is under severe
time pressure, and there are demands for continued technological progress.
This time pressure in the production of games have meant that the computer
game industry has taken the concept of frameworks into use. Some compa-
nies exist solely for creating Game Development Frameworks (GDF). These
frameworks are often called game engines in the computer game industry,
which refers to the inversion of control that frameworks provide.

The game development industry have started to ask themselves, what
would happen if the Al could play like a human? |[LL0O1]. Many games have
even started to promote themselves based on the level of their Al: Black &
White (2001) |Ban|, Half-life (1998) |Hal| and Empire Earth (2001) |[EE1],
and the industry has started hiring Al researchers to help develop their

Page 2 of 273 CHAPTER 1. INTRODUCTION

games. If this development continues, the research done in the computer
game industry will overtake that of the academic world |[LLO1].

This development has, however, not gone unnoticed in the academic so-
ciety. Many researchers have also noticed that computer games present a
prime environment, in which to do human-level Al research:

Not only is the game development at the forefront of PC-based
visualisation, it is also a leading developer of applied artificial
intelligence, overall interface design, persistent worlds, network
interaction, and other building blocks needed for next-generation
models and simulations. -Ben Sawyer! [Saw02]

Games provide high variability and scalability for problem defi-
nitions, are processed in a restricted domain and the results are
generally easy to evaluate. -Alexander Nareyek? |[Nar(2]

In contrast to modelling behaviour in the real world, there are
(at least theoretically) two great advantages enjoyed by a simu-
lation/game approach: i) full control of the game universe in-
cluding full observability of the state. i1) reproducibility of exper-
wmental settings and results. -Thore Graepel, Ralf Herbrich and
Julian Gold® [GHGO04]

These are just some of the arguments that researchers have presented in
favour of using computer games for Al research. They are, however, still
met with skepticism from a large part of the academic community, because
computer games (and thereby work related to them) are still looked upon as
not being serious work. However, because of all the arguments just presented,
research in relation to computer games is still on the advance.

We propose that since the tendency for computer gamers is to seek better
gameplay, and because the focus on graphics is on the decline, the time is
ripe to integrate more advanced AT methods into computer games. It is now
possible to use a much higher percentage of the CPU time for this purpose, as
the graphics card is taking over more and more work, and because the CPU
in general is becoming fast enough to handle both areas without restricting
any functionality.

We have examined the work done in the areas of scientific research within
RTS games and Als and concluded that there is no directly related work.

'Ben Sawyer is the co-founder of Digitalmill [digb] and author of several books and
articles about interactive game development.

?Alexander Nareyek is CEO, CTO and co-founder of Digital Drama Studios [diga],
responsible for Artificial Intelligence matters within the International Game Developers
Association and chairperson of the IGDA’s Artificial Intelligence Interface Standards Com-
mittee.

3Graepel, Herbrich and Gold are all researchers at Microsoft Research [msr].

CHAPTER 1. INTRODUCTION Page 3 of 273

This report is the continued work of our pre-master thesis [FKL05], and
covers the complete design of an Al framework for RT'S games, the implemen-
tation and evaluation of a prototype of this Al framework. Our pre-master
thesis presented a human model which describes the tasks a human player is
faced with when playing an RTS game, and the relationship between these
tasks. It was discovered that RTS games could be divided into several genres,
and that each genre were focusing on different areas within their AI. This
reflected what was the most important part of the gameplay. The focuses
that were found could be translated into different parts of the human model.
This indicated that the human model could be used as a general foundation
for an Al tool, which is able to handle the things that is required to make
a human-like Al to an RTS game. Different useful AT methods that could
be used in RTS games were also found and discussed. Furthermore, these
methods were discussed in relation to the human model as well as their usage
in each of the different tasks in the human model.

This raised the interesting question of whether it is possible to make
this human model into a general Al tool, in which a developer is able to
create Als to all the identified genres of RTS games that were found in the
pre-master thesis.

First we will introduce the reader to the problem through the Motiva-
tion in Chapter 2. Next the human model on which the framework is built
is presented in Chapter 3. The design goals for the framework is introduced
in Chapter 4. Chapter 5 will present the design techniques used in the
framework and Chapter 6 presents the framework design itself. The imple-
mentation is presented in Chapter 7, followed by an evaluation in Chapter 8
and a discussion of the results in Chapter 9. Finally in Chapter 10 we will
conclude on the project.

1.1 Real-Time Strategy Games

The genre called Real-Time Strategy (RTS) games refers to a very specific
genre, and not all strategy games that takes place in a real-time environment
fall into this category. The term real-time refers to the fact that RTS games
progresses continuous rather than turn-by-turn, while strategy refers to the
fact that a player is in control of high level war planning. RTS games are
characterised by being games, where the player looks down on the map from
above, and gives orders to units and buildings on the map. Moreover, the
player is responsible for controlling resource gathering, base building, combat
and technology advancements. These are central gameplay elements of any
RTS game. The RTS genre differs from the God Game genre [god]| by not
allowing the player to interact directly with the environment. The RTS
genre was defined by the first game of this type, Dune II (1992) [dun]| seen in
Figure 1.1. The game basically consisted of the player having harvesters to

Page 4 of 273 CHAPTER 1. INTRODUCTION

Figure 1.1: Screenshot from Dune II

harvest the resource in the game, and then using these resources to build new
buildings or units. The units should then be used to attack the enemy and
thereby obtain the goal of any RTS game - to destroy the enemy. This
gameplay formula has since been followed by numerous RTS games. In
general, any RTS game consists of the following three states [rts]|:

e The player must build up her base and her forces.

e The player must attempt to locate and secure resources, to provide a
solid economy.

e The player must attack the enemy, and thereby deprive her of resources
or destroy her base infrastructure.

RTS games have since Dune II used all kinds of units, buildings and
weapons in their games, but the basic gameplay has stayed the same. Re-
cent RTS games have added extra features that makes the game stand out
from the rest and increase gameplay. Lord of the Rings: Battle for Middle-
Earth (2004) [lot] has for instance simplified resource gathering by not using
workers, but instead using buildings that automatically harvest a certain
number of resources. This does not remove resource management from the
game, as the player’s resource gathering still depends on the number of re-
source gathering buildings she has, but it does simplify it, compared to other
RTS games. Another example is Warcraft III (2002) |warb|, which added
heroes to the game and added NPC characters spread around the map. The

CHAPTER 1. INTRODUCTION Page 5 of 273

heroes could gain experience points by killing the NPCs and thereby in-
crease their strength. Other popular games within the genre of RTS games
includes Command & Conquer (1996) [com|, Starcraft (1998) [sta] and Age
of Empires (1997) [age|. For further information about the RTS genre, we
recommend the reader to read the wikipedia definition [rts] or Appendix A
for a list of terms and expressions used in the genre.

Page 7 of 273

Part 1

Problem Area and Human
Model

CHAPTER 2. MOTIVATION Page 9 of 273

Chapter 2

Motivation

The purpose of this chapter is to introduce the reader to the problem. In
order for the reader to get a good insight into the problem, it will be intro-
duced gradually, and the reader will be able to follow the progress from two
points of view: The player’s perspective (the user of computer games) and
the producer’s perspective (the software house that developed the game).
Following this, this chapter will consist of four sections:

Problem: This section will give the reader the first insight into why there
is a problem in the first place.

Problem Area: This section will get closer to specific problems and briefly
explain what cause them.

Current Solutions: This section explains what has been, and what is cur-
rently being done by both the players and the producers to handle the
problem.

New Solution: This section will outline the solution, on which this project
is based.

After reading this chapter the reader should have a thorough understand-
ing of the problem, the problem area and the idea that forms the base of
this project.

This chapter is based on a series of tests of Als’ capabilities in a number
of commercial RTS games and a number of articles. The tests were made
through our pre-master thesis [FKL05|. These can be found in Appendix
D and E.1. The articles are on the subject of computer games and Al
development: Buro et al. are doing work on using RTS games as a test-bed
for real-time research [BF04b|, Lent et al. present a number of arguments for
why computer games are ideal for Al research [LLO1|, Nareyek also works
with how games can be used for AI research [Nar(02|, and finally Sawyer
presents work on alternative applications of computer games and techniques
from computer games [Saw02] .

Page 10 of 273 CHAPTER 2. MOTIVATION

2.1 Problem

As mentioned earlier this section will introduce the reader to why there is a
problem in the first place. The context will be computer games in general
and the reader will be presented with facts partly taken from history and
partly from popular games. In this and all the following sections, the player’s
perspective will be presented first and then the producer’s perspective.

2.1.1 Player Perspective

When a player decides to play a game, it is mostly because she wants to be
entertained. The entertainment itself is the result of several factors. Among
the most important of these are gameplay, community and story telling.

Gameplay

Gameplay is the oldest of the mentioned factors. In fact the first computer
games had little more than gameplay. Pong (1972) [pon] just consisted of
two movable bars placed at each their side of the screen and a dot that moved
between the sides. As everything else has developed, so too has computer
games. Most games have for instance become more complex and graphics
have become almost real, the gameplay however still has to fulfil a few simple
rules |[SZ04]:

1. The player has to make decisions.

2. The decisions have to have consequences.

3. The game itself has to present challenges to the player.
4. There must be a real danger of losing the game.

5. If the player plays a perfect game she must win.

This means that in order to have good gameplay, games have to at least
posses these characteristics. Early games like Pong were essentially multi-
player games as one player played against another player. It is much easier
to ensure that the gameplay criteria are met, when the greatest part of the
behaviour in the environment is due to player actions. This has the direct
consequence that it is much harder to ensure good gameplay in a single player
game, as more behaviour is controlled by the game itself - the Al. Early sin-
gle player games like Pacman (1981) [pac| were relatively easy to cope with,
as the game had a few simple rules, but as games become more complex so
do the behaviours needed for an Al that will ensure a good gameplay. [SZ04|

CHAPTER 2. MOTIVATION Page 11 of 273

Multiplayer

Making an AT that ensures good gameplay is extremely hard. After the tech-
nology allowed people to link computers together in a network the players
have been playing games that supported this. Games that were not able to
present a good gameplay in single player could suddenly benefit from the
multiplayer side of the game. Some games even went as far as to neglect-
ing to implement a single player part and solely focusing on the multiplayer
part. First person shooters like Quake (1996) [quaa] and Half-Life: Counter-
Strike (2000) [cou] are designed towards a gameplay building on player ver-
sus player. The single player part in the Quake series is thus a simulation
of player versus player where the adversaries are "bots"! controlled by an
Al Most RTS games also have an extensive multiplayer part. They have,
however, not abandoned the single player part. This is mostly based on a
story line where the AI behaviour can be scripted to a degree that ensures
a relatively reasonable gameplay. The extreme is without a doubt the role
playing game genre, where the advance of the Internet has meant an almost
redefinition of the genre. Massive Multiplayer Online Role Playing Games
(MMORPG) are essentially communities of players within the game itself.
The entire gameplay, and to a certain degree the rules themselves, are defined
by the players.

In short, if the players do not find a sufficient gameplay in the single
player part of a game, they will try to find it through playing against other
players in multiplayer games. The player versus player interaction again
means that the bulk of the behaviour in the game is not controlled by an Al

Single Player

Looking closer at the RTS genre, the single player parts can mostly be clas-
sified as being one of two types: They are either based on a Sci-Fi/Fantasy
story or a historical event/civilisation. The story is told with the player
taking part in the story itself by carrying out missions with objectives that
support the story line. Supported by cut scenes, the player will experience a
limited interactive story through the game. Blizzard Entertainment [bli], for
instance, is renowned for their extremely well carried out stories that have
even resulted in a number of books based on them and a movie is also on
the way. This means that the story itself should not be underestimated.

2.1.2 Producer Perspective

The main concern of the producer is to make a satisfactory product - a
product that will be a success. To be a success the product must sell and in
order to sell it must possess a series of qualities that the player values. This

L AT controlled adversaries

Page 12 of 273 CHAPTER 2. MOTIVATION

can be everything from a good sound track to being based on a known story
or figure, but mostly it is factors like graphics and gameplay that are most
important.

Satisfactory Al

The first thing that one has to realise is that building an Al to anything
but an extremely simple game, is a complex undertaking. In light of the
development mentioned in Section 2.1.1, producers have to ask themselves
the question: How high do we prioritise single player? In fact what is a
satisfactory AI? The producer will have to consider how bad the Al can be
(in reality the worse the AI, the faster and cheaper the development) and
still entertain the player. One of the tools that have been utilised time upon
time in RTS games, is that instead of having a complex AI, a simple AT is
complemented by "unfair" advantages such as full map visibility, unlimited
resources, or superior forces. While this indeed can improve the overall
capabilities of the Al as an adversary, the cheap tricks are easily detected
and may result in the player losing the sense of contest with the Al or even
exploit it. One such exploit can be seen in Command & Conquer, where
the player, when playing against several Als, could destroy all buildings
belonging to an enemy except the resource tanks. She then had access to
unlimited resources, as she could steal it from the Al that had an unlimited
supply. Everything considered, making even a simple Al work well is very
difficult. The smallest mistake at the wrong time or place can make the Al
seem very stupid.

Lately there has been a tendency in the game development industry to try
to shift the workload from expensive programmers to cheaper game designers.
Blizzard has, for instance, game designers model maps to Warcraft 111 using
the world editor made for this purpose.

A satisfactory Al is relative to the genre and the situation to which the
AT is meant for.

Hardware Development

Moore’s law states that the number of transistors per square inch on inte-
grated circuits will roughly double every year (in reality every 18 months)
[moo|. This means that the development in hardware is progressing in a
breath taking pace. This is yet another thing that the producer will have
to keep in mind and yet another reason why a product must be developed
and released as fast as possible. There are countless examples of produc-
tions that have missed their chance. Among these is Tiberian Sun (1999)
[tib], the sequel to Command & Conquer. Not long after the release of Red
Alert (1996) |red|, screenshots surfaced from Tiberian Sun that was to be the
hottest thing in graphic development in RTS games at that time. The public,

CHAPTER 2. MOTIVATION Page 13 of 273

however, had to wait three years for the release of Tiberian Sun, at which

time the development had long overtaken the once advanced technology.
Having to take hardware and technological development as a whole in to

account makes the development of the product into a race against time.

Graphics Development

There is a different aspect to the technological development that is not cov-
ered in the last section. With the advance of computer graphics came a time,
where a game as such "just" had to look good in order to sell. That meant
that the gameplay did as such not really matter as long as everything looked
pretty.

Prioritising towards this comes at two fronts: One being the amount of
time spent on developing the various parts of the product, the other being
the amount of execution time available to the different parts of the product.
With the graphics as focus, this means that there is a very limited amount of
time available to both the development of a satisfactory Al, and the execution
of the many complex calculations, one such requires. Lately the development
has started to turn towards gameplay once more and the graphic side has
been signed a lower priority.

The producer must prioritise. She must consider what will sell the prod-
uct: Screenshots from the game or a promise of good gameplay.

Primitive Techniques

With both a limited amount of time to develop the AI, and a very limited
amount of available execution time, the developers are forced to use an array
of primitive AI techniques. Among the most common is the use of scripting
when defining behaviour. The developers will simply script a simple process
that will get the Al through the starting phase of the game, and then loop a
behaviour once it has reached a certain point. Some games try to incorporate
some traits of complex behaviour when scripting their AI. This is both good
and bad. In the game Armies of Exigo (2004) [aox| the AT will try to retreat
if outnumbered, which in itself is indeed the right thing to do. The downside
is that the AI will try to get back to its main base. If the superior enemy
army happens to stand between the retreating army and the main base it
will walk straight through this. Another example is the First Person Shooter
game F.E.A.R. (2005) [fea], in which the enemy troops will try to move out
towards the player’s position aggressively and even covering each other in
the process. However, the player is able to plant mines between the enemy
troops and herself and the AI will walk blindly into these, when they are
advancing.
Scripting an Al is done with patches and patches on patches.

Page 14 of 273 CHAPTER 2. MOTIVATION

ATs Built Late in the Process

Only tools for the AI can be made during the development of the product.
The Al itself cannot be implemented before very late in the process. This is
due to the fact that behaviour is very vulnerable to new design decisions and
an activity such as balancing cannot take place before the product practically
is done. Balancing itself is a long and thus costly process. Furthermore only
very few people can be active at a time when balancing. One can for instance
not let one designer tune the strategies and let another tune the build orders
as one is very dependent on the other. This is yet another reason why the
whole development of the Al is under an extreme time pressure.

2.2 Problem Area

In the previous section the general problem was introduced by presenting
how the capabilities of the opponent affect the gameplay and why current
ATs are not better than it is the case. In this section specific problems
concerning Al in RTS games will be introduced and their cause will briefly
be explained.

2.2.1 Player Perspective

This section will introduce some of the most common flaws that the player
encounters when playing against an Al. First the AI’s general lacks will be
discussed, then some common bad decisions will be listed and lastly some
general flaws will be introduced.

What Does the AI Lack?

In order to see what the Al lacks in general, it is necessary to look at what
we call static and dynamic behaviour.

Static Behaviour: This is when the environment or rather changes in the
environment does not affect the chosen strategy. This does not mean
that the AI only has one strategy, but rather that once it has chosen
a strategy it will follow it to the letter and nothing can change this.

Dynamic Behaviour: This is when the Al observes the environment and
takes action accordingly. It may also be able to record data and store
it over time.

Most Als in RTS games are static. Among other things this means that
once the player has found one way of defeating the AI, she can simply do
this again and again. In Starcraft, for instance, it was possible to fast tech
towards stealth units and consequently surprise the Al. In general, this just

CHAPTER 2. MOTIVATION Page 15 of 273

means that the Als, currently used, are static, but what the player really
needs to ensure a good game play are dynamic Als, as they among other
things will ensure the ability to adapt.

Common Bad Decisions

In this section a few common bad decisions Als make will be discussed:

Single Units Attack: It is common that the AT lets single units attack the
entire enemy forces or perhaps launch an attack on the enemy’s main
base. There are mainly two reasons for this. The player can in some
cases lure the Al’s units away from the main army by attacking a unit
standing at the edge of the army. The attacked unit will then follow
the unit that attacked it without the rest of the Al’s army react. The
other reason can be that the AI’s routine somehow has been disturbed.
This can for instance be in form of an attack on its base or because it
is running low on resources.

Single File Movement: When moving over large distances, all units in
the AI’s forces will move according to the shortest path from starting
point to destination, even if this means that they have to move in a
single file. If the destination, for instance, is a heavily defended base,
the army will arrive one unit at a time, and there is a risk of the base
defence being able to kill the units as they come.

Entry From the Same Point: If the pathfinder is the only factor used
to decide the direction from which to attack the enemy, the AI will
always attack an enemy base from the same point. This means that
if the player’s base has two entrances, she only has to defend the one
that is attacked while letting the other stand undefended.

All these are examples of behaviour that are unfortunate, but just as unfor-
tunately all too common in RTS games.

General Flaws

This section will present some areas common Als only can handle partly or
not at all.

Limited Amount of Strategies: The Al in Warcraft II (1995) [wara| has
three different strategies available. It can either attack by land, air or
water. It chooses strategy at the start of the game and it will follow
the strategy throughout the game. In its successor Warcraft III each
AT (one AI for each race) only has one strategy. Generally the Als do
not have a very high amount of strategies available as each strategy
more or less requires a separate script.

Page 16 of 273 CHAPTER 2. MOTIVATION

Countering: As a direct consequence of the low amount of strategies and
the fact that most Als have a static behaviour, countering them is
very easy. Once the strategy the AI has chosen has been identified, a
counter strategy can easily be picked. The AI does on the other hand
not counter as it follows a predetermined strategy.

Cooperation: There are two scenarios in which the Al has to cooperate
with someone: It can either be cooperating with another Al or with
a player. In most cases, where the Al has to cooperate with another
AT, they actually still play as they would have in a lonl game except
that they do not attack each other. This is also the case in most
games, where the player and an Al are allied. There are, however,
exceptions. In Warcraft III the AI will mark the place on the map
where it intends to attack and it will also assist if the partner is under
attack. In Empire Earth 2 (2005) [EE2] the interaction is done through
diplomacy. The two partners sign a contract, where common attack
orders are described. In both cases the cooperation is not even close to
that between two players. The lack of communication makes it difficult
to call it cooperation at all.

2.2.2 Producer Perspective

This section will emphasise and discuss some of the design decisions the
producer will have to deal with, developing an Al.

Simple Al

In some cases a simple AI will suffice. A simple AT does not have to be an
easy-to-beat Al. Some games try to have an aggressive Al so that the Al
does not have to counter, as it sets the agenda. An example of one such Al
is the one in Starcraft. The AI has an extremely optimised build order and
it attacks once it has reached a predefined amount of units. It does this a
few times in a row as it reaches higher and higher tiers of units, but when
the player starts to make a lot of expansions, the Al can no longer keep pace
and starts to fail, as it no longer has the lead.

Static is Safe

It is very difficult to make a formal representation of how to evaluate any
given situation. This, among other things, means that learning is extremely
difficult. Even if an AT had a marginally usable evaluation function, it would
be too dangerous to ship the AI while able to learn. Should the evaluation
fail even once, it could result in the total failure of the AL If the product is
static, the producer knows what she can expect from the product.

CHAPTER 2. MOTIVATION Page 17 of 273

Cheating

As already mentioned, the one widely used technique to simplify the AT while
still achieving a relatively reasonable result is to cheat. Cheating is mostly
done through: Full map visibility, unlimited resources, or free units. The
downside of cheating is that it is easy for the player to discover that the Al
is cheating, and once this is discovered, the player will not really consider
losing, for losing because the game was not played on equal terms. This
means that two of the criteria for providing gameplay have been severely
weakened (gameplay rule 3 and 4).

Fast Al

As mentioned earlier, the Al in for example Starcraft is very optimised, that
is, workers do not waste time between building etc. It is especially noticeable
in the start up phase of the game. Players cannot keep pace with this. If
the AI could keep this up throughout the game, it would have a sizeable
advantage. If restricting the Al in this field just because players cannot keep
up, the design will just have opened a huge design discussion about whether
the AI should be optimal or simulate human behaviour.

Multiple Units Controlled

A player will be able to build new buildings in her base, scout unexplored
territory, and move her army into battle at the same time. This level of
simultaneous actions requires a bit of training and more simultaneous actions
will in turn require even harder training. The AI, however, does not have
this restriction. It could if needed give new orders to every single unit it
owns. When deciding how many units the Al may give new orders at a time,
the designer must keep in mind that there is a fine line between reasonable
design decisions and what the player will consider cheating. Currently Als
do not handle this, but just give the orders that are needed.

Builder AI

Anyone who has tried to play against an Al in Age of Empires would know
that a war against a "builder AI" can take a very long time. When calling
the AT for a "builder AI" it is meant that the AI will constantly try to expand
if it has the resources. If the player finds the Al’s base and destroys it, the
battle is still far from over. The Al could already have 20 small settlements
spread all over the map. After that, the fight will never really be a fight, but
rather a long game of hide and seek. This form of behaviour is as such the
optimal way of playing - always trying to survive and hope for a comeback,
but on the other hand in most cases, it is just delaying the inevitable, with

Page 18 of 273 CHAPTER 2. MOTIVATION

the result that all players get bored. This is yet another issue where the
optimal solution and the wanted solution could be in conflict.

Unit Composition

As already mentioned earlier the Al is not able to counter when it is a static
solution. This means that given the chosen unit composition the player
should be able to find a perfect counter for what the Al has built. In order
to counter this, a widely used technique is to build a little of everything so
that every thing in turn can be countered (if only by a small force). This
does on the other hand mean that no matter what the player builds she will
have a counter to something in the AT’s army. In Warcraft 111, where support
units play an important role, this kind of mixed group is quite successful,
especially when the army grows over a certain size. An optimal solution
would of course be to let the Al find a counter to what it meets, but that
would require a dynamic Al

2.3 Current Solutions

So far the reader has been presented to a series of problems with the Al
that is apparent to the player and a number of cheap solution techniques
that have been used in games in an attempt to improve the Al. This section
will present a number of solutions that the player has found to deal with the
problems and some solutions the producer currently is using to improve the
AT’s performance.

2.3.1 Player Perspective

As already mentioned in the previous section, the player has found a way
to ensure a relatively good gameplay: Multiplayer. This section will explain
why multiplayer indeed gives a better gameplay, and it will also present some
of the facilities the players use.

Dynamic Behaviour

The reason, why multiplayer gives a better gameplay than the Als found in
the games so far, can be summed up in two words: Dynamic behaviour. A
player will learn from mistakes and generally make better decisions than the
ATs currently found in games. When a player plays against another player
it is much harder to anticipate what the opponent will do, except that it
will probably be something that will bring the player into the worst possible
situation. Multiplayer is not only about one player playing against another
player, but just as much a team playing against another team. In team
games the interaction and cooperation aspect adds to the gameplay. Having

CHAPTER 2. MOTIVATION Page 19 of 273

a static Al as partner usually gives a bad experience, while player-player
cooperation can add a completely new aspect to a game.

LAN

Local Area Network (LAN) parties are gatherings of players that meet to
play one or several different games. The number of players can vary from
a few to several hundred. The small LAN parties are usually social parties
among friends that meet to play against each other to have fun. The larger
LAN parties often feature tournaments where single players or teams of
players will compete against each other. The social aspect of LANs only add
a positive effect to the gameplay as the opponents are characterised and no
longer faceless entities.

Communities on the Internet

With the advance of the Internet, players have gotten together and founded
communities in which they play with and against each other and share ex-
periences. Indeed entire games genres like MMORPGs have been based on
this. The communities extend the gameplay from being entirely dependent
on the game itself to being heavily influenced by the players, thus making
it more dynamic in nature. Some producers have embraced this idea and
made servers available to the public. One example is battle.net that is the
portal Blizzard Entertainment is using for most of its published games that
include multiplayer facilities. The player will simply connect to battle.net
[bat| where she will be able to create and join games open for other players.
Here winning games will also result in a better placement in a server ranking
system, which in itself can present a major challenge. It is, however, not
only the producers themselves that make servers available to the players.
There are indeed also a myriad of private servers. These are everything from
commercial pay per use servers like Kali.net[kal] to servers owned by clans?.

2.3.2 Producer Perspective

This section will present the solutions the producers have chosen to the
problem.

Multiplayer Solutions

Following the development, some producers have chosen not to include the
single player part of the game at all. Instead they have focused solely on the
multiplayer part. This is mostly seen in Role Playing Games (MMORPGs)
and in First Person Shooters (FPS). Doing this they will not be entirely rid

2Groups of players united by the common interest in a game

Page 20 of 273 CHAPTER 2. MOTIVATION

of making Als to their games, but they can in turn be relatively simple as
they are not vital to the intended gameplay.

Story Telling

Other producers mostly of FPS and RTS games have chosen to focus on the
single player part as well. The simple Als are complemented by extensive
story telling. The player follows a story line and the Al can be heavily
scripted to carry out events as the story unfolds. This way the producers
can control the environment to such an extend that the Al can be scripted
to an acceptable level of gameplay. Even if the player does mind that the Al
is scripted and cheats, she will still play the single player part of the game,
if the story is good.

Good Al

Lately a few producers have started to focus on making the Al better. This
is an obvious, but difficult solution to the problem. One of the first steps
towards an acceptable Al is letting the Al play using the same rule set as
the player. In other words, the AI should not be allowed to cheat. Empire
Earth II attacks one of the most commonly areas in which the Al cheats by
actually making the AT scout instead of having the entire map visible at all
times[FKLO05]. Other games try to include advanced features like counters
(Age of Mythology (2002) [aom]|), retreating when outnumbered (Armies of
Exigo) and using templates to obtain a well designed base (Warcraft IIT).
Each feature is a step in the right direction, but there is still much to be
done, before the result is good enough to compete with the level of gameplay
found in multiplayer games.

The Ideal Solution

In order to improve the gameplay found in the single player part of a game
drastic measures must be taken. No matter how scripted an Al is, it will still
be too static to offer the player a serious challenge if playing on the same
terms. In reality it will be impossible to script an Al to such a degree that
it will be able to account for every possible situation. Instead the producer
must ask herself what the goal really is? The player is improving gameplay
by playing against other players, thus getting a dynamic opponent. Can
this idea also be applied to single player? That is, could the solution be to
simulate an actual player instead of a chain of events? In this way the Al
should be built to simulate the actual decision process that a player goes
through when playing a game. This way the gameplay should be improved
in the same way as in a multiplayer game. The Al must however still be able
to adjust the difficulty level so that it still follows the rules of gameplay.

CHAPTER 2. MOTIVATION Page 21 of 273

2.4 New Solution

This section will present the basis of the ideal solution outlined in the previ-
ous section and consequences that the solution will have on the players and
the production.

2.4.1 Player Perspective

This section will present the consequences this solution will have to the
player.

AT and Story Line

An Al that plays like a human player will have a significant impact on the
single player part of most games. It will mean that the player will constantly
be challenged as if it was a multiplayer game and on top of this, she will be
carried through a story line as it is normal for single player games. It will
also mean that the player will be able to play the same game several times
and though the story might be the same, one game will always differ from the
last (given that the AI learns from previous games). In a non-story-related
context (custom games), the player will be able to enjoy playing against an
opponent in an environment defined by herself. This could for instance be
useful when testing a new strategy or when playing offline in general.

Team Games

Another application for an advanced Al is team games. If the players are of
an uneven number an Al would be able to step in and even the teams. This
will also mean that a single player will be able to play team games offline by
applying three or more Als. When it comes to cooperation, the player must
be able to communicate with the AI. In current RTS games, communication
between player and Al has been very limited. In Warcraft III the AT will
respond to the player being attacked. If the player is attacked, the AT will
teleport to the player’s base and assist in pushing back the enemy forces and
if the player is attacking, it will rush to help in the attack. Empire Earth 2
presents one of the most advanced player-Al communication systems. The
player can access a strategy window containing an overview map in which
she can draw arrows directing friendly forces. When the orders are accepted
by the Al it will try to carry out the plan. However, in order to be able
to cooperate at the same level as a player, the cooperation interface has to
be more extensive allowing somewhat the same kind of communication as
observed between players.

Page 22 of 273 CHAPTER 2. MOTIVATION

2.4.2 Producer Perspective

In this section a number of options available to the producer will be pre-
sented.

Starting On The Al

The first thing the producer will have to decide is which approach she wants
to utilise to build the AI. The normal approaches are:

Making the AI From Scratch: The first thing that comes to mind is
to build the AI from scratch. It is, however, also the approach that
requires the most work. Not only do the developers need to figure out
a way to structure the AI, but everywhere they look there will be a
series of new problems, to which they have to design solutions. The
developers will gain experience throughout the process, which they may
put to use in a later production depending on the similarities between
the two.

Libraries: The producers may not have to write the entire Al by them-
selves. As with experience, it may be possible to reuse code from a
previous production or perhaps acquire useful libraries from a third
party. Due to the fact that they have already been in use, these tools
will be well-tested and if they are from a previous production, the ac-
tual developers may already be familiar with them. The downside using
libraries is that the developers are still forced to design a structure -
indeed the entire concept for the solution.

AI Frameworks: If the producer decides to use one of the current Al
frameworks, she is faced with the other extreme to making the AT from
the bottom. The producer will be working with a very rigid structure.
The solution will be based on a single problem solving technique, as
for instance SOAR [Soa| that is a planning system.

One of the reasons why current Als are lacking good performance may
very well be that the producer is utilising the "Making the AT From scratch"
approach. If the developers indeed have to build the Al from the scratch,
they will often end up with a solution that has to be simple in order to
meet the deadline. Using libraries usually means that the Al will have a few
advanced features while still essentially being the Al that would have been
build using the "From scratch" approach. If the producer uses one of the
current Al frameworks for the Al, the production team will have a lot more
time to do balancing and fixes as the Al development mainly will consists of
feeding the framework data so that it fits to the current game. The problem
using an Al framework is that it tries to present a general solution to all
games (like planning). That is the same thing as assuming that a player will

CHAPTER 2. MOTIVATION Page 23 of 273

be able to master all games, if she masters one game and then is told the
basic rules of the rest.

Different Genres - Different Focuses

In our pre-master thesis|FKLO05| we identified four different genres within
the RTS genre through a series of tests. Each genre is defined by the playing
style used in it. The genres are as follows:

e The Command & Conquer Genre: Command & Conquer, Red Alert,
Warzone 2100 (1999) [warc|, and Dark Reign 2 (2000) [dar].

e The Age of Empires Genre: Age of Empires and Empire Earth.
e The Starcraft Genre: Starcraft and Armies of Exigo.

e The Warcraft Genre: Warcraft II and Warcraft III.

The genres are named after the games that defined the genres. In most cases
the game was the first popular game of that particular playing style. The
test that was the basis of these definitions can be found in Appendix E.1.
In the test, the capabilities of the Al in a series of games were tested in a
variety of important tasks. When looking at these capabilities, it is possible
to see which areas are more important than others in the different genres.
This means that the producer will have to be very conscious about which
capabilities are important in the game she is developing.

2.5 Discussion

The lack of challenges in the single player AI has driven the player to seek
other means to find challenges. They have solved this problem by playing
against other players. But what would happen if the AI was capable of
playing like a human player? An advanced Al will have a serious impact on
the gameplay of both single player games as well as multiplayer games. The
combination of story telling and the challenges a dynamic AI will provide
will strengthen the single player part and a capable Al will be able to assist
in team games.

When developing one such Al the producer will have to choose between
the lack of structure in using libraries or the rigid structure of a general so-
lution framework. Current frameworks provide a general solution technique
that the producer must fit to the game and the libraries provide no struc-
ture at all [Soa|. The different playing styles in different RTS games mean
that the player or the AI have to focus on different aspects of the games
depending on for instance which genre it belongs to, the environment and
the opponent. To our knowledge there are no frameworks that are able to

Page 24 of 273 CHAPTER 2. MOTIVATION

handle this in the RTS genre and only a few libraries that handle various
sub-problems. Under all circumstances, identifying a good structure is the
first step towards a good solution. As already mentioned, the player found
satisfaction in playing against other players, as the other players are able
to handle most of the problems outlined throughout this chapter. We will
therefore use the player herself as a foundation for building Als able to meet
the challenges. This will be done by setting up an abstract model for how a
player plays. Furthermore the problems identified throughout this chapter
will also be used to set up design goals for the framework.

CHAPTER 3. HUMAN MODEL Page 25 of 273

Chapter 3

Human Model

Before trying to build a human-like Al, it is important to consider how a
human player plays RTS games. What kind of knowledge does she posses
before game start, and how is this knowledge used in the game? Which
general tasks are the human player thinking about when playing, and how
do these tasks influence each other when making decisions? The idea is not
to model the actual thinking process of a human playing RTS games as it
is very complex and will not provide a distinction of different tasks, but
rather to build a more structured human model with a focus on defining
tasks and the relationship between them. The different tasks defined and
the relationship between them is partly based on previously defined areas in
RTS research[Sch04] [CBS05] and partly on our own experience from years of
playing and from watching professional gamers play RTS games. The model
will focus on mainstream RTS games, which includes the games in the gen-
res presented in Section 2.4.2. In previous research, Brian Schwab|Sch04]
defines the areas town building, opponent modelling, resource management,
scouting and diplomacy systems as important areas, while Michael Chung
et al. [CBS05| defines the planning areas in RTS games as being micro-
management, tactical planning and strategic planning. This model will use
some of these previously defined areas. We are not claiming that the pre-
sented model is the only true model for a human playing RTS games, but
it is in our opinion a good representation on which we can base our further
work. Furthermore, it is hard to test the correctness of these kinds of mod-
els as all humans play differently and take different things into consideration
when making decisions. We claim however, that the model presented in this
chapter is a reasonable representation of how most people play RTS games.
Section 3.1 will begin by presenting the knowledge a player has before a game
starts, and then Section 3.2 will proceed to present the knowledge a player
has and maintains during a game. In Section 3.3 we will identify key tasks
that a player must solve to play at a human level, and then determine which
tasks are influenced by other tasks or knowledge bases in Section 3.4. This

Page 26 of 273 CHAPTER 3. HUMAN MODEL

will result in a human model of how a typical player plays RTS games.

3.1 Prior Knowledge

The following presents the knowledge a player has before starting a game.
Each of these areas will influence how the player will play the game.

Map Knowledge: This area represents knowledge about the map terrain,
map size, resource locations, strategic and tactical important locations
etc.

An example is in Starcraft, where the knowledge of a high ground
behind an expansion can easily decide the outcome of a game. A terran
player would be able to build bunkers, turrets and place siege tanks
on the high ground, making it virtually impossible for the opponent
to make an expansion at this spot, because of the advantage of high
ground in Starcraft.

Enemy Knowledge: Experiences against players throughout several
games will give the player an idea of how the enemy player thinks
and what kind of strategies she uses. This prevents the player from
losing to the same strategies again and again against the same oppo-
nent, as she is capable of trying new things and thereby countering
the opponent’s strategy. This of course only applies to players of equal
skill level in all areas, because knowing the opponent’s strategy will
often not be enough for novice players to beat professional players.

Knowing that an opponent has a tendency to get air units very fast,
the player would most likely try to rush her or at least prepare for this
strategy by building some defensive buildings or units able to hit air
units.

Gametype Knowledge: Depending on whether the game played is a team
game, a lonl game or an FFA (Free For All) game, the strategic con-
siderations change.

For instance, in FFA games the player needs to be much more aware of
things happening around the map that does not directly involve herself.
Building the right counter is also much more difficult as opponents can
have vastly different armies.

Known Strategies: Most players have a number of strategies they have
either invented for themselves, learned from watching other players or
found on the Internet. This area affects both the number and quality
of strategies used by the player, but also the capability of predicting
the opponent’s strategy, and knowing how to counter it.

CHAPTER 3. HUMAN MODEL Page 27 of 273

Knowing just one very effective strategy can in some games make a
player win a lot of games. In for instance Starcraft, knowing only a
fast air strategy can bring a player a lot of victories by surprising the
opponent and requires relative little micromanagement.

Known Build Orders: In all RTS games the start of the game is very im-
portant and an effective build order can prove invaluable. The build
order defines in which order to build everything such as workers, build-
ings and combat units, and also specifies what each worker should be
doing at any given time. A build order is often used in connection
with a certain strategy trying to maximise the player’s resources and
getting to a certain point in the strategy as fast as possible.

The importance of build orders can be easily seen in Starcraft, where
an effective rush or fast-air strategy depends heavily on the build order
used. These kinds of strategies requires that they are carried out as
fast as possible with the largest force possible, and build orders play a
vital part in achieving this.

Game Specific Knowledge: Depending on the game in question, a player
will have knowledge about the different units, buildings, resources and
research options available, as well as the possible actions for each par-
ticular unit and building.

Knowing the details of units, buildings, resources and research options
in a particular game is essential to playing the game at a human level.
Without this information a player would for instance not be able to
determine how to build a certain unit, because the player would need
to know the resource requirements for that unit as well as possible unit
or building dependencies for that unit.

3.2 In-Game Knowledge

While the former section focused on knowledge that a player has before a
game starts, this section will focus on the knowledge that a player has and
collects during a game. Each of the following four defined areas will have an
impact on the decisions a player makes throughout a game:

In-Game Enemy Knowledge: During a game, a player will always have
an idea of what the opponent is doing. This could both be in terms
of what strategy she is doing, but also enemy unit movements and
activities around the map.

This could for instance be the fact that the opponent has built a certain
building or that the majority of her army was spotted close to the
player’s main base. Furthermore, a player could have specific beliefs

Page 28 of 273 CHAPTER 3. HUMAN MODEL

about when and where the enemy is going to attack, based on what it
has seen from the opponent so far.

Unit and Building Information: The player will at all times know what
kind of units and buildings she has, and what they are currently doing.
This includes building queues, unit attributes, assigned actions etc.

This information is used during games to for instance withdraw
wounded units, plan what different units should be doing after their
currently assigned action etc. The player could also use this informa-
tion to obtain the position of all friendly army units and from this
dictate a specific tactic to be used in battle.

Own Strategy: This includes all strategic aspects the player may be con-
sidering. It may be that the player has a certain strategy she is working
towards, and she may have a very specific plan of what units and build-
ings should be produced to achieve this.

This area will mostly be in the form of plans for different activities like
how to build the base, when to expand, how many workers to build
etc. It contains knowledge about both the current strategic status and
what the goal for the player is, strategy-wise.

In-Game Map Knowledge: During the game, the map that is played on
may change depending on game specific details or maybe the players
will modify it somehow. This knowledge base will store all things on
the map that changes during a game.

The use of the knowledge base will vary from game to game, but almost
all RTS games features finite resource amounts and the player must
keep track of where and how many resources are left around the map.
In some games, for instance Warcraft III, the player must also keep
track of which NPCs that have been killed around the map and on
what the shops and mercenary camps have to offer.

3.3 RTS Tasks

The following describes ten RTS tasks that a player will encounter when
playing any modern RTS game.

Strategic Planning: This is the overall planner. It is the task that is
equivalent to that of a general. More specifically, the task decides what
the overall plan is for longer periods of time and is hence responsible
for long-term planning.

This can be things like deciding to attack at a certain point or creating
an army consisting of a particular list of units.

CHAPTER 3. HUMAN MODEL Page 29 of 273

Tactical Planning: The task can be considered the job of a sergeant
who takes orders from the general (Strategic Planning). This task is
mainly responsible for the tactics in battles and for keeping the tactical
overview at all times.

During battles this task includes decisions like reinforcing a flank, tak-
ing advantage of the higher ground, retreating etc. Furthermore, it for
instance takes care of keeping armies in formations during movement
to avoid single-line formations.

Micromanagement: This task is to issue orders to each individual unit
based on Tuctical Planning and Strategic Planning, and the orders are
carried out instantly.

This is everything from focus fire on enemy targets to pulling back hurt
units and using support units.

Reasoning: This task is focused on reasoning about observations of the en-
emy. It analyses all activity from the opponent and thereby determine
exactly what the opponent is doing or trying to do. The task’s basic
job is to provide solid information for the Strategic Planning task to
base its decisions on.

For instance if the player has seen an enemy worker running past her
somewhere outside the enemy base, it could mean that the enemy is
trying to build an expansion or perhaps attack the player’s base using
the offensive capabilities of defensive buildings. Another example is
if the player sees a unit production facility for air units in the enemy
base, it could be wise to produce a number of anti-air units or send
out scouts to find out how many air units the enemy already has and
then take action accordingly.

Opponent Modelling: A player must at all times keep a model of the
opponent. This includes not only what the enemy currently has in
terms of buildings, units and research upgrades, but also more abstract
beliefs about her chosen strategy and her current strategic situation.

When making decisions about what strategy or tactic to use in a game,
it is essential to have a good idea of how the opponent’s army is com-
posed and what her situation is like. In Warcraft III for instance,
the opponent model could consist of things like army composition,
technology level, income rate, upkeep estimate, resource estimates etc.
Essentially, everything that has a strategic influence should be a part
of the opponent model built during a game.

Resource Management: Resource Management also includes resource
gathering. This task includes determining, which resources are re-
quired, and optimising the gathering of these resources.

Page 30 of 273 CHAPTER 3. HUMAN MODEL

If the Strategic Planning task has decided that a number of a certain
unit is to be produced, the Resource Management task has to make
sure that this can be done as fast as possible by anticipating resource
requirements. If for instance the specific unit demands a lot of lumber
that is not in store at the moment, the resource manager may have to
reassign some workers to gathering lumber ahead of time. The resource
manager also has to figure out the optimal way to gather resources
using the least number of workers.

Base Building: As the name hints this task is responsible for building the
base. This has two aspects: Building the right buildings and placing
them correctly. To place buildings correctly the player must further-
more have some kind of plan about which buildings are soon to be
built.

Building the right buildings is closely related to the chosen strategy. It
could also be in the case that the player has more money than normal
and it would be an advantage to build another unit production facility.
Placement of buildings can be more complex. This is often a matter
of placing defensive buildings in good positions covering the base or
placing harvesting buildings near resources allowing for faster resource
gathering.

Scouting: Most modern RTS games have either one or two layers of Fog
of War. In order to support other task’s ability to make good deci-
sions, the player has to send out scouts. This also includes the task
of selecting the unit to scout with and deciding how often scouting is
necessary.

Scouts can be used to figure out what is happening in the enemy base,
discover expansions or keep track of the enemy army’s movement. The
decision about which unit to send could depend on the range of sight
and speed of the unit and also which and how many resources are lost
by choosing that particular unit to scout.

Learning: From game to game a player will constantly learn new things. It
includes new strategies, opponent models and effectiveness of certain
strategies against other kinds of strategies. The player would have to
evaluate the game played either during or after the game, and from
this infer which critical situations in the game determined the winner.

If a player plays against the same opponent a couple of times, she might
recognise a pattern in how the opponent thinks or just find a certain
way to beat her. It could be that the opponent has a tendency to rush,
in which case a strategy of moving fast up the technology tree would be
a bad idea. Also, by being able to learn strategies from the opponent,
it is possible for the player to use these strategies at a later time when

CHAPTER 3. HUMAN MODEL Page 31 of 273

confronted with the same situation that this particular strategy was
successful in handling.

Cooperation: In team games the players’ task is to work together and find
strategies, where each player complements each other in the best pos-
sible way. Furthermore, a lot of coordination is required to ensure the
right tactical decisions from each player during big battles. Coopera-
tion also includes the task of deciding if and when to share resources,
and in FFA games, the task of figuring out when to betray an ally and
when the player herself is being betrayed.

A typical cooperation scenario would be for one player to produce melee
units and the other to produce ranged units. This specialisation for
each player allows for building only certain kinds of buildings, as well
as only requiring to upgrade a certain type of weapon. Tactical coordi-
nation could be things like letting one player lurk out the enemy from
a small passage, while the other players remain hidden until suddenly
coming up from the behind of the enemy. Betrayal of an ally could be
for a player to indicate that they should both attack at a certain point,
and then just not show up leaving the betrayed ally alone against the
enemy.

3.4 Human Model

Each of the tasks mentioned above are influenced by several prior- and in-
game knowledge bases, as well as other tasks. In the following a model of how
all tasks influence each other will be presented. An illustration of the model
can be seen in Figure 3.1 or in Appendix K.1. Circles represents tasks and
arrows indicate which tasks influence each other. The small boxes attached
to each task shows which knowledge bases influence that particular task.
The numbers in each of the small boxes refer to the numbers in the large
Prior Knowledge and In-Game Knowledge boxes on the right of the figure.
Note that for illustration purposes, an observation task has been included
to indicate which tasks are influenced by observations during a game. In
the following each task’s role in the model will be explained along with a
discussion of which knowledge bases contributes to solving that particular
task:

Strategic Planning: This task relies heavily on the Reasoning task to fig-
ure out what the opponent is doing, as most games includes ways of
countering all possible strategies. When this has been determined,
the Strategic Planning task relies on several different knowledge bases
to select the best possible strategy in the given situation. The most
important prior knowledge base is naturally Known Strategies. This
knowledge base basically contains all known strategies and all counters

Page 32 of 273 CHAPTER 3. HUMAN MODEL

Opponent Modelling

Prior Knowledge

1. Map Knowledge

2. Enemy Knowledge

3. Gametype Knowledge
4

5

Reasoning

. Known Strategies
. Known Build Orders
6. Game Specific Knowledge

Strategic Planning

1,4,56, 78,9, 10

Y
Tactical Planning Base Building Resource Management In-Game Knowledge
5.7.8 9 10 7. Enemy Knowledge

8. Unit & Building Information
9. Own Strategy

10. Map Knowledge
Y

(Micromanagement)
6,7,8, 10 .
_ @

Figure 3.1: A human model for playing RTS games

to known strategies, and it is essential for this task to be solved the
right way. Besides this, the task uses knowledge from three other prior
knowledge bases:

Map Knowledge: Map Knowledge provides map specific details that
influence the choice of strategy.

Build Order Knowledge: Build Order Knowledge provides more
specific details of how to execute the beginning phase of a cer-
tain strategy.

Game Specific Knowledge: Finally, Game Specific Knowledge pro-
vides the details of the particular game in question, as strategies
varies from game to game.

The Strategic Planning task likewise takes into consideration all four
types of in-game knowledge, as these knowledge bases represents what
is currently going on in the game, and this obviously has a great effect
of what strategy to choose.

Tactical Planning: Tactical Planning is primarily influenced by the Strate-
gic Planning task. This is because the primary objective of the player’s
army is given by the Strategic Planning task, while the part of actually
carrying out the objective is left to the Tactical Planning task. To solve
this task, the player must rely heavily on Game Specific Knowledge,
which provides details about units in the game and the actions they

CHAPTER 3. HUMAN MODEL Page 33 of 273

are capable of performing. Furthermore, the player uses the four dif-
ferent in-game knowledge bases to obtain knowledge about the current
situation in the game.

Micromanagement: This task primarily relies on Tactical Planning to in-
dicate how it should carry out its task. Furthermore, it uses Game
Specific Knowledge to determine unit hitpoints, armour types, attack
types etc. which are essential knowledge for the task to be carried out
successfully. The task does not need to know the details of the player’s
strategy, but it does need to use information from the other three in-
game knowledge bases: In-game Enemy Knowledge, Unit and Building
Information, and Dynamic Map Knowledge.

Reasoning: The Reasoning task primarily uses the opponent model built
by the Opponent Modelling task. This is where everything opponent-
related is obtained from. Reasoning about this information, however,
requires that the player must use several different prior knowledge
bases:

Gametype Knowledge Gametype Knowledge influences reasoning
because an opponent’s actions should be interpreted differently
depending on the gametype.

Enemy Knowledge: This knowledge base is important because the
player will be able to recognise patterns in an opponent’s strategy,
which will often indicate moving towards another strategy.

Map Knowledge: Map Knowledge influences Reasoning because
some strategies are used very often on some maps and very seldom
on others.

Game Specific Knowledge: Finally, Game Specific Knowledge pro-
vides game details such as technology trees to help reason about
the purpose of different buildings and units.

Finally, In-game Enemy Knowledge is used to reason about the oppo-
nent’s movement around the map.

Opponent Modelling: This task must consider all observations from the
game as well as the influence from two tasks: Scouting and Reasoning.
Results of scouting missions must be used when building a model of the
opponent, and the result of reasoning about the opponent will result in
new beliefs about the opponent, which should also be reflected in the
opponent model. An opponent model should depend on the game in
question, and this is obtained from Game Specific knowledge. Besides
this, the only knowledge base used is In-Game Enemy Knowledge, from
which the player can retrieve information about the enemy used to
build the opponent model.

Page 34 of 273 CHAPTER 3. HUMAN MODEL

Resource Management: Resource Management is primarily influenced by
the Strategic Planning task. A strategy may include specific details
that this task must try to accomplish, like for instance building an
expansion or gathering a lot of a certain resource. Out of the prior
knowledge bases, the player needs Map Knowledge to determine re-
source locations and the amount of resources available in a certain
location. Furthermore, the player will need all four in-game knowledge
bases to solve this task successfully:

In-Game Map Knowledge: The player needs to know how resource
locations and amounts change during a game.

Own Strategy: The details of the player’s overall strategy will be
required to better manage resource gathering

In-Game Enemy Knowledge: The location of enemy units plays a
role when deciding where it is possible to harvest resources.

Unit and Building Information: When assigning actions to work-
ers it is essential to know where and which workers are currently
carrying out which actions.

Base Building: This task is likewise primarily influenced by Strategic Plan-
ning. The chosen strategy will have a large effect on how the base
should be constructed. Some strategies may require a very compact
base able to fend of early attacks, while others may require a lot of
anticipation in terms of having room to build the required buildings
in the right places. The task only requires two prior knowledge bases:
Map Knowledge, which is used for building placement, and Game Spe-
cific Knowledge, which are needed to decide which buildings to build.
Furthermore, a player can use all four in-game knowledge bases:

Dynamic Map Knowledge: As some games include dynamic place-
ment of resources, this knowledge base is used to keep track of this,
so that a player can take this into consideration when constructing
buildings.

Own Strategy: Because of the strategy really dictating what build-
ings to build, the player must know of this to anticipate how to
construct the base in the best possible way.

In-Game Enemy Knowledge: When constructing new buildings,
the player must be aware if any enemy units are in the area,
because buildings under construction are often very vulnerable.

Unit and Building Information: This knowledge base is used to
determine which units are to build different buildings and to de-
termine whether it has the resources to support producing from
for instance more than one barracks.

CHAPTER 3. HUMAN MODEL Page 35 of 273

Scouting: The Scouting task is influenced by two other tasks. The Op-
ponent Modelling task will result in knowledge of which attributes or
variables of the enemy that are unknown, and should be further in-
vestigated. The Strategic Planning task will on the other hand give
the player a good idea of which unknown variables may reveal the op-
ponent’s final choice of strategy. The player will need Game Specific
Knowledge to figure out exactly where to scout for different things.
Finally, the player makes use of two in-game knowledge bases: In-
game Enemy Knowledge, when figuring out where to scout, and Unit
and Building Information, when figuring out which units to send on a
scouting mission.

Learning: This task is active when a player reflects on a game being played
or a game recently played. She will think about the opponent’s strat-
egy, what kind of strategy she needs to counter it and how well this
strategy worked out. Moreover, she will think about the opponent’s
actions and keep in mind what the opponent tried to do in this game.
Specific observations about for instance the map or some tactical move
is also remembered, so that she can use this in a later game. For il-
lustration purposes this task is not connected to the other tasks in the
figure, because it would in reality influence and be able to improve all
kind of decision making during a game and hence all other tasks. The
Learning task could result in learning new information for all of the
seven prior knowledge bases except Game Specific Knowledge. 1t will
use knowledge from all of the four in-game knowledge bases as well as
the special Observation task shown in the figure.

Cooperation: For a player to carry out the Cooperation task, a lot of com-
munication with other players must be done. Players may want to
consult their allies before making any kind of decision, as all tasks in
the model could somehow influence the allied players. This means that
not only is the Cooperation task influenced by the Cooperation task of
other players, it will also be influenced by every task in the model.
Moreover, it will itself influence all tasks in the model. In the follow-
ing, each task will be described in relation to how it can influence, and
thereby also be influenced, by the Cooperation task:

Strategic Planning: Allied players should choose strategies that
complement each other well.

Tactical Planning: In battles, allied players should try to help each
other as much as possible by for instance having one player pro-
tecting the other player’s weaker units.

Micromanagement: If a player knows that her allies will heal all
units in a certain area in a few seconds, she may want to modify
her policy for withdrawing wounded units in that area.

Page 36 of 273 CHAPTER 3. HUMAN MODEL

Reasoning: Two players may come to different conclusions given the
same data, as the knowledge bases they rely on may be different,
and hence they must communicate to come to an agreement of
what the opponent is doing.

Opponent Modelling: In team games it is essential that players
share the knowledge they observe, so that the players are able
to build more accurate opponent models.

Resource Management: Players will sometimes want to share re-
sources, and sometimes it is beneficial for both players if one
player harvest the required resources and the other uses it.

Base Building: Sometimes players will find it beneficial to build
buildings in each others bases, and this of course most be co-
ordinated.

Scouting: It would make no sense for allied players to scout for the
same things, as they should rely on each other for information
about the enemy.

Learning: Often players will learn from each other when playing team
games.

3.5 Summary

This chapter has presented an idea of how humans play RTS games. We
have defined a number of prior knowledge bases, which a player is aware of
before playing, and a number of in-game knowledge bases, which a player is
aware of during a game. Then we defined ten important tasks that a player
must go through to play an RTS game at a high competitive level. This
resulted in a model of how humans play RTS games, where tasks and their
influence on each other is defined, as well as each knowledge base’s influence
on each task.

The human model presented in this section is the foundation on which
all further work is based. If all these tasks and interdependencies are present
in an AI, we hypothesise that it will be very hard to distinguish it from an
actual human player. The definition of each task and its responsibility will
furthermore make it easier to divide the Al into logical modules.

Page 37 of 273

Part 11

Framework Design

CHAPTER 4. INTRODUCTION Page 39 of 273

Chapter 4

Introduction

This part will present the design of an Al framework for RTS games. First
the design goals followed throughout the design will be presented in Section
4.1. Then a number of techniques and methods used in the design will be
discussed in Chapter 5, along with their pros and cons in developing this kind
of framework. This chapter will also present RT'S game specific concepts as
well as examples of their use in this context. The final chapter of this part
(Chapter 6) will focus on exactly how the framework is built. We will start
by discussing how to convert the human model, presented in Chapter 3, into
a suitable framework architecture (Section 6.1). Afterwards, the chosen data
representation for the framework will be introduced in Section 6.2.2, and a
discussion of how to configure and extend the framework will be presented in
Section 6.3. Not all framework details of the design will be presented in these
chapters as this will be too extensive. Other design details can be found in
the appendix and will be referenced in the appropriate sections. In the final
section of this part (Section 6.4), we will discuss how framework execution
is controlled and how it inter-operates with the GDF.

4.1 Design Goals

This section will describe the design goals of the project. In Chapter 2 several
problems were identified as being responsible for the relatively poor standard
of Als in RTS games. This section will translate these problems into design
goals that should receive special consideration when deciding on a design of
a framework aiding developers building Als for RTS games. In the following,
four different design goals will be presented, along with an explanation of
what each of them means for the design process.

Improved AI: The framework should help produce better Als than the
industry standard today. This essentially means that the framework
must provide advanced techniques and methods for creating strong Al

Page 40 of 273 CHAPTER 4. INTRODUCTION

opponents. Furthermore, they must be adaptable to games of different
genres within RTS and be able to work when developing many different
kinds of Als. This requirement also means that the framework should
attempt to provide methods for solving as many of the tasks defined
in the human model as possible.

Reduced Development Cost: For an Al framework to be usable in the
industry, it must be able to reduce the development cost of creating
Als. A way to do this is by creating a complete Al solution, so that
an RTS game developer does not need to do anything AT related other
than connect the AI solution to the GDF and configure it to work in
the game being developed. This means that the framework should be
created to handle all AT activities, which means that no AI program-
mers or developers are necessary to use the framework. Furthermore,
the framework should include all parts of the AI that do not change
from game to game, and provide standard implementations of the ar-
eas that are common in most games. In this way the AI developer
should be able to focus on game specific details and on areas that are
important for the Al in the game being developed.

Shift of Workload: In the late stages of a game project, the programmers
are often very busy getting the game to work properly, while the de-
signers have more or less already done their job. As already discussed
in Section 2.1.2; shifting the workload of Al development towards de-
signers will not only reduce development time, but also leave designers
to do what they do best - creating good gameplay. To allow for this
shift of workload, the framework must provide a easy-to-use configura-
tion system, which allows for inexperienced programmers to work on
it.

Structured Overview of the AI Development Process: The frame-
work should provide a structured overview of the different kinds of
tasks an AI must solve. This allows for focusing on only certain
parts of the AI. The human model presented in Chapter 3 allows for
this division of tasks. The clear distinction between different tasks
furthermore allows for letting different people work on different parts
at the same time, without them needing to coordinate their efforts.

These four design goals will guide the design for the rest of the report.

CHAPTER 5. DESIGN TECHNIQUES Page 41 of 273

Chapter 5

Design Techniques

To achieve the design goals outlined in Section 4.1, we have decided to make
use of several well known techniques for creating software. The first we will
describe is Frameworks, which is an important technique for re-using soft-
ware and the architecture behind it. The second we will present is Event
Based Systems, which are often used as a communication technique between
separate objects, classes or modules in games. Finally, we will discuss Script-
ing Languages, and more specifically their role in making applications more
user-friendly. These three techniques are the foundation on which the Al
framework is designed. In the following we will describe each of them in
turn, and discuss the pros and cons of using them as well as trade-offs when
choosing to use a particular technique.

5.1 Frameworks

This section will discuss why we have chosen to build an Al framework,
explain the alternative and discuss the capabilities of Al frameworks.

5.1.1 Reuse of Software

As one of our design goals is to reuse as much of the AI as possible from
one game to another, this section will discuss software reuse in games. Basi-
cally, there are two ways of reusing parts of an Al in games: Frameworks or
libraries. First, the advantages and disadvantages of both will be outlined.

There is no clear definition of frameworks that everybody in literature
agrees on, but one widely accepted definition is the following [FS97]| [Bue98|
[FSJ97| [JF8S]:

A framework is a reusable, "semi-complete” application that can
be specialised to produce custom applications.

Frameworks have been used extensively in game development, because
they provide several advantages in this area, which stem from four important

Page 42 of 273 CHAPTER 5. DESIGN TECHNIQUES

concepts that frameworks provide: Modularity, reusability, extensibility and
inversion of control [FS97|. Within AI framework development, one advan-
tage is that it ensures that the Al is completely separated from the GDF.
This means that an Al framework for RTS games will be able to reuse not
just single modules, but entire Al architectures [Joh97|. This is also the rea-
son why frameworks tend to be easy to use, because they have well-defined
hook methods, which dictate how framework instances differ from each other
[FS97]. By using this technique, the user can focus on the areas of the frame-
work that are important for the particular instance being created. Further-
more, by having the architecture in-cooperated into the framework, one can
be assured that this part is well-tested, which ensures that frameworks are
less error-prone [Lew98]. The disadvantage of using frameworks is that it is
often very difficult to change the internal mechanisms of a framework, partly
because it is very hard to understand the internal mechanisms and partly
because the framework is not built for such a modification [FCGCO02|. This
problem also reflects in that a framework built for a specific purpose is very
hard to use for other things [JFS88].

The main advantage of using a library is that it can be used to many dif-
ferent things, as the architecture behind is not included as part of the library
[SC95]. Different library components can then be combined in different ways
to achieve many different results. This flexibility is also its disadvantage as
this limits how much can be reused from one application to another [Joh97].
Compared to a framework, a library also tends to be more difficult to use and
it slows development, because the user has to create the architecture herself
[JF88]. Furthermore, it tends to be more error-prone because the user herself
is responsible for linking and using the different library components in the
right way [Bue98].

Following the design goals presented in Section 4.1, the choice between
the two for this project is relatively easy. Frameworks are able to provide
complete Al solutions, and in a manner that should be relatively easy to
use for an Al designer, as well as decrease the time it takes to develop the
Al The use of hook methods and hot spots [MLO01| furthermore allows for
a structured overview of the development process and the architecture can
allow for a clear distinction between different areas. The primary advantage
of libraries being flexible is not a requirement, as the focus of this project is
solely on RTS game Als, and we hypothesise that a general architecture can
be built to do this.

5.1.2 AI Frameworks

The idea to use frameworks for Al tools in games is not a new one [Lai01].
Most noticeable is the cognitive framework named Soar [Soa| [Lai03] [LL99].
Soar has been used to create Als in several smaller games and for creating
bots in commercial FPS games such as Quake II (1997) |quab| and Descent

CHAPTER 5. DESIGN TECHNIQUES Page 43 of 273

3 (1999) [des|. A general description of how Soar has been used to create Als
can be seen in our pre-master thesis [FKLO05]. Other AI frameworks have
been used in games, but none to the same degree as Soar. Previous research
with AI frameworks in games has primarily focused on FPS games or small
custom made games [KNYHO05| [Lai01]. No one has however, focused on
developing Als for RTS games. There are two reasons for this:

e Research with AI frameworks used in games is a relatively new area.

e RTS game companies have decided not to release source code as rapidly
as for instance FPS games and they have not provided programmers
with an advanced open Al interface to specify their own Als.

Recently, open source RT'S GDFs have begun to mature into a state
where researchers can build their own Als to existing open source games
[ORTO05] [Str]. This has opened the opportunity to further research in the
development of Als in RTS games, which have many interesting aspects that
other types of games do not, as is discussed in Chapter 1. Open source RTS
GDFs have however, still some problems in relation to AI research, which
have been identified in our pre-master thesis [FKLO05]:

Stability: Some RTS specific GDFs have simply not been stable enough to
be used for research purposes, and lacks testing of important function-
ality.

Documentation: When working with a GDF, the framework must be well-
documented for the user to be able to extract the required information.
Some frameworks simply lack this documentation.

Full Control of AI: As described in one of our design goals in Section 4.1,
the AT framework must be in complete control of all Al actions. Some
GDFs only allow for control of the high level Al actions, and has low
level AI actions, such as unit movement and tactics, handled internally
in the framework.

Not all open source GDFs lack all three identified problems, but at least
one of them. Out of the two most mature frameworks, ORTS |[ORT05] and
Stratagus [Str], ORTS has the two first problems and Stratagus has the third
problem.

Previous research within the area of AI frameworks have focused on cog-
nitive architectures [LL02|. These are frameworks developed for the purpose
of creating and understanding agents that support the same capabilities as
humans. They provide a way to define an underlying infrastructure for an
intelligent system, and are basically the same as Al frameworks with the
intention of providing a platform for emulating human behaviour. John

Page 44 of 273 CHAPTER 5. DESIGN TECHNIQUES

Laird!, and Pat Langley? have defined a number of capabilities a cognitive
architecture could be able to support [LL02|. The capabilities are listed be-
low, including their relation to RTS games. Laird and Langley hypothesise
that for an Al to show truly human behaviour, the framework should support
all of these capabilities:

Recognition and Categorisation: The capability to recognise for in-
stance strategies or tactics in a game.

Decision Making and Choice: The capability of making both strategic
and tactical decisions during a game.

Perception and Situation Assessment: The capability of being able to
perceive information and determine the importance of this information.

Prediction and Monitoring: The capability to for instance predict an op-
ponent’s future strategy and monitor important variables that may
reveal additional information about the enemy.

Problem Solving and Planning: The capability of planning the execu-
tion of a certain strategy and solving any problems encountered during
execution.

Reasoning and Belief Maintenance: The capability to reason about an
opponent’s actions and from this determine what she is most likely
doing.

Execution and Action: The capability to execute actions in the game.

Interaction and Communication: The capability to communicate with
allied players and through this agree on joint strategies.

Remembering, Reflection and Learning: The capability to remember
and reflect upon situations that have occurred during a game, and
through this learn new strategies or tactics.

The capabilities and their relation to Als in RTS games are further de-
scribed in in our pre-master thesis [FKL05|. When describing our Al frame-
work design we will return to these capabilities and discuss how our frame-
work handles each area. When describing how frameworks provide these
capabilities, one often talks about four separate areas [LL02|: The represen-
tation of knowledge, the organisation of knowledge, how the framework uses

!John Laird is a professor of computer science at University of Michigan, general chair
for the Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE)
and one of the developers behind Soar[Soal.

2Pat Langley is the director for the Institute for the Study of Learning and Expertise,
head of CSLI's Computational Learning Laboratory [CSL] and consulting professor of
symbolic systems at Stanford University.

CHAPTER 5. DESIGN TECHNIQUES Page 45 of 273

knowledge and finally how the framework supports acquisition and revision
of knowledge. These areas have been described in detail in our pre-master
thesis [FKLO05] and will be discussed further when presenting the overall
architecture of our framework in Chapter 6.

5.2 Event Based Systems

This section will present a way to control the different parts in the framework.
Each of the parts we have in the framework corresponds to the tasks in the
human model, and we will from now on refer to these tasks as modules.
There must be created some way to control what modules are executed in
what order, and a way to make each of these modules communicate with
each other. In this section we will first argue that an event based system is
the best way to control the framework, and then we will discuss why event
based systems often are used in frameworks and what the advantages are.
Afterwards we will present different ways of how an event based system could
be designed.

5.2.1 Framework Control

Controlling the execution of framework modules can be done in a number
of ways. One way is to make a procedural execution structure, which makes
every module call each others sequentially. This is, however, not dynamic, as
the developer must have complete knowledge of how the rest of the system is
working and which modules influence each other, when adding new modules.
If, on the other hand, each module can operate on its own, meaning that it
does not need any knowledge about other modules, it can be executed stand-
alone. This makes it possible for each module to be called by events by the
modules that provide the information required. This makes the module
structure much better separated. If additional modules are added at a later
point, it is as simple as assigning them to the events that they need, and
sending the events in the modules, where the data that should trigger the
module, is generated.

5.2.2 Event Based Systems in Frameworks

The use of event based systems in frameworks is far from a new idea|SG86].
Often it is used in GUI frameworks, because the code is only run when the
user interacts|SG86] [HNORSS| [CCT89| [jsw05] [Feu97|. In this case it is an
advantage that the interaction with the GUI is handled in one place, so that
each element does not have to check for interaction. However, as also stated
by Hansen et al. [HF(04], event based systems are far from restricted to this
area. Event based systems are also very common in network applications
that should only react, when data in sent to them. The different modules

Page 46 of 273 CHAPTER 5. DESIGN TECHNIQUES

in the model should not be run all the time, only in certain periods of the
game, or when certain actions have occurred in the game world. Therefore
it is advantageous to make the system event based.

In very modular systems it is an advantage to use event based systems
because each module does not necessarily need to know of any other module
in the framework, but only of the shared data registries and a central event
manager that transmits the events to the appropriate modules. To activate
each other, a module just has to send an event with the appropriate data,
and then it knows that at some point the modules that subscribes to this
type of event will be run.

The event manager is assigned the function that should be run when an
event occurs. This function will be used to trigger the module into acting
on the event, and is also known as an event handler.

In a basic event system there is a central loop that listens for events.
When an event is sent, the functions that are assigned to that kind of event
is activated. When a lot of events are sent, they might start to queue up,
making it necessary to schedule and prioritise what function to run next.
When a new event is sent, the event manager can either create a thread with
the function that should respond to the new event, or if the already running
function has higher priority, stay in the thread of the current function.

An event is basically a notification that some action has happened in
some context. Events are also often referred to as messages, which is why
event based systems also some times are referred to as message based systems
[Sch04]. An event can also be attached data, which could be the result of
the action that has happened. An event system can be interpreted as a
publisher/subscription system, where there is a producer and a consumer
respectively of events. All that is required to create such a system is that
the modules can communicate with each other. Ludger et al. |[FFMO03|
presents four communication models:

Request/Reply: In this type of communication it is the consumer that
initiate the communication, and request the data from the producer.
In this model the consumer must know the identity of the producer,
because the data is sent directly. This has the disadvantage that each
module has to know each other.

Anonymous Request/Reply: This type is the same as the normal re-
quest /reply, except that it does not need to know the identity of the
producer. The communication is handled by a global event manager.

Callback: Here it is the producer that initiates the communication, sending
it directly to the consumer. This means that it has to know the identity
of the consumer.

Event-based: This is like the callback model, except that it does not know
the identity of the consumer, because this is handled centrally. This

CHAPTER 5. DESIGN TECHNIQUES Page 47 of 273

way of cooperation in an event based system has big advantages in a
loosely coupled modular system, because the modules do not need to
know each other. Since it is the producer that knows when an action
has been carried out, it makes sense that it is the producer that starts
the communication.

As argued by Ludger et al. [FFMO03|, the event-based communication
model is the most dynamic and modular approach to handle cooperation
between modules. The separated tasks in the human model makes it possible
to use the event-based communication in the event system.

5.3 Scripting Languages

Frameworks often become large applications that can take a long time to
compile, and even small changes in the vital parts of a framework could
mean a complete recompilation of the source code. When tweaking an Al to
behave correctly according to what the designer wants, it is often only a few
values that have to be changed. These values might just as well be loaded
at load time by using a scripting language. [Daw|

Furthermore, scripting languages make it possible for novice program-
mers or game designers to take on the task of implementing the behaviour
of the Al in the game[Hue|. Scripting in games has been used in many ways.
It is used to control entire scenes in games, like a script from a movie, where
the movement of every “camera” and character are planned in the script.
Scripting can also be made more general and just make sure that certain
things happen, when the player interacts with the environment in a certain
way. This could be what would happen if a button is being pushed or more
complex interactions, making sure that a series of actions are done before
executing certain parts of the script, which is also known as game logics.

The advantage of letting other people than the programmers write the
scripts, is that the people who know how things should work in the game
are the designers and by letting the designers write the scripts themselves,
nothing will be lost or misinterpreted in the communication between imple-
mentor and designer. Also, getting the game logics on a higher level than the
rest of the native code?, helps keeping the framework code clean. With the
option of making rapid prototyping, instead of having to compile everything
all the time, the scripts can be edited at run-time[Ous98]. It is in this way
possible to test and tune the scripts much faster than having to compile and
restart the program.

There are of course also drawbacks in using a scripting language. The
code is not as fast executed as native code, because it has to be interpreted.
Some of this lost performance can be recovered by implementing the complex

3The language the GDF is written in.

Page 48 of 273 CHAPTER 5. DESIGN TECHNIQUES

and computationally heavy algorithms in native code, and just give access
to these through an interface in the framework. Scripting languages often
use dynamic types and frameworks often use static types. Because the script
code is dynamically typed, it has to be run-time type checked, which can
add a lot of processing time. The data being transferred from the framework
context to the scripting context also takes some resources. Furthermore, it
can take some development time to implement and integrate the scripting
language into the framework. When that is done, both parts have to be
maintained and updated when new features are added to the framework, the
developers will have two “systems” to maintain.

5.4 RTS Specific Concepts

In this section we will discuss four new ideas, which are specific to the RTS
genre. The first we will present is a new data structure specifically designed
to model the concept of strategies, used for learning strategies, counter meth-
ods, tricks possible on certain maps etc. We call this data structure the
strategy tree. In the second part of this section we will discuss a matter very
important for all RTS games, namely pathfinding. We will discuss the tra-
ditional way of doing this and present our own idea on how to optimise this
computational heavy calculation. In the third section we will discuss how
to represent tactics in RTS games. Here we will discuss elements important
for tactics in RTS games, and propose a way to define a tactic. Finally,
the last section will present a way to create generic base building templates,
which makes it possible for Al designers to easily define templates specifying
optimal building placement in a particular game.

5.4.1 Strategy Trees

The idea of strategy trees came into existence while attempting to discover a
method that would be both suited for learning and for representing strategies
in RTS games. A detailed discussion of why learning has not been provided
with most RT'S games can be found in our pre-master thesis [FKL05|. Pre-
vious research has primarily focused on training Als in the development
phase of a game [UGJMO05] [MSWTO05] [JG05] [dJSRO5], but not on actu-
ally learning after the training has been completed and the game has been
shipped. The latter part is one of the goals strategy trees have been designed
to achieve.

This section will start by describing a simple RTS game example, and
through this illustrate the idea behind the new data structure. Afterwards
a more general description will be presented.

Imagine a simple RT'S game with three different offensive units available:

CHAPTER 5. DESIGN TECHNIQUES Page 49 of 273

Node 3
Workers: 20
Spearman: 15
Archers: 15
Horsemen: 0
Farms 10
Node 1 Node 2 0,7 Barracks: 2
Time: 7
Workers: 4 Workers: 15
Spearman: 0 Spearman: 0
Archers: 0 1 Archers: 20
Horsemen: 0 Horsemen: 0
Farms 0 Farms 5
Barracks: 0 Barracks: 2 0,3 Node 4
Time: 0 Time: 4 Workers: 20
Spearman: 30
Archers: 0
1 Horsemen: 0O
Farms 10
Barracks: 2
Counter 1: Node 2 Time: 7.5
Workers: 15
Spearman: 0
Archers: 0
Horsemen: 15
Farms 5
Barracks: 2
Time: 3,5

Figure 5.1: Strategy Tree for the Example

Spearmen, archers, and horsemen. The countering system? is as follows:

e Spearmen counter horsemen
e Archers counter spearmen

e Horsemen counter archers

In this simple game each player will start with four workers. The workers
can harvest resources and build two types of buildings: Supply buildings
(farms) and unit production facilities (barracks). The barracks can produce
workers and the offensive units.

The idea behind strategy trees is that an RTS game usually consist of
a series of states. The first significant state is the start of the game, and
this will be the root node of the strategy tree. As illustrated in Figure 5.1,
the root node in the simple example game, Node 1, consists of the values
of all variables important to the game in question including a time stamp
indicating when the strategy was used. In this case the player has four
workers and the time stamp is 0, because it is the starting point of the
player. Significant states are determined differently from game to game.
Often a significant state is characterised as one where the player has carried
out a certain strategy and now changes to another. In the strategy tree

“RTS games typically implements a countering system. This is basically a system
dictating which units are best used against certain other types of units.

Page 50 of 273 CHAPTER 5. DESIGN TECHNIQUES

CounterLO’0 CounterLo’1 CounterZ’O’0
'\. ./‘, ‘z"‘
\ Rd Pl
N -
N 7 State, g [r-=-m-mmmm
‘\/‘ ’
State 1,0 ‘__.
State e
State 0 ‘2’1
<.
\'
'o \';
"_x Counter2’1’0

State 1,1 R

Strategy Edge
— - — = = Counter Edge

----------- Continues Strategy Edge

Figure 5.2: Strategy Tree Example

in Figure 5.1, Node 2 illustrates that the player knows only one strategy
following the starting point. This strategy consists of building 15 workers
and 20 archers as well as a number of required buildings, and the strategy
tree node dictates that the strategy can be reached 4 minutes into the game.
From this point in the game, the player knows two strategies to choose from.
One of them, Node 3, focuses on building a mixed army of spearmen and
archers, while the other, Node 4, focuses on building a massive amount of
spearmen. The numbers attached to each edge between the different nodes
represent how often a strategy should be used compared to others at a given
node, 1 being always and 0 being never. In this case, the strategy represented
by Node & is a more common strategy compared to the strategy represented
by Node 4. Furthermore, each node can have a special kind of node attached
to it as well, representing the counter strategy to the respective strategy.
In Figure 5.1, Node 2 has one counter, Counter 1: Node 2, consisting of
building a massive amount of horsemen which counters the archers from the
strategy in Node 2.

The above described how a strategy tree is built and how it represents
the possible strategies a player is aware of. The following will provide a more
general description of strategy trees and the composition of nodes. Figure
5.2 shows a more generic example of a strategy tree. Each State or Counter
node in the tree consists of the same set of attributes:

CHAPTER 5. DESIGN TECHNIQUES Page 51 of 273

Node: A node in a strategy tree consists of the number of each kind of
unit the player should have, as well as the number of various buildings
she should have. In some games, the node should also contain the
different research upgrades purchased. Furthermore, each node has a
time stamp that tells how long into the game this strategy was used
and a list of tactics used with this strategy.

Two kinds of edges exists in the strategy tree:

Strategy Edge: One kind of edge connects the node to the parent node.
Consequently, it also connects the node to its children. This kind of
edge is the one that binds the nodes together in the tree structure.
Fach edge has a probability associated. This probability describes
how probable the strategy, modelled in the child nodes, is, compared
to the strategy of the other children. This probability is based on the
frequency of observation of the different strategies. The edge can also
contain a plan for how best to make the transition from one strategy
to the next. This would save the planner work, as it does not have to
plan the best course of action unless no plan exists.

Counter Edge: The second kind of edge leads to counter nodes. This edge
also has a probability associated that is built on a combination of how
often the counter has been seen, and the success of the counter.

Strategy trees are perfect for modelling known strategies and learning
new strategies. They also present a way of modelling counters. Furthermore,
if a strategy tree is maintained for each opponent (modelling the opponent’s
strategy), this can be used as part of an opponent model. This way, a player
can properly reflect on the strategies and counters used by each player during
the course of a game. Strategy trees also have the effect that if the Al sees
the enemy army or base, it can compare this to nodes in the strategy tree
and see several things, for instance: How to counter the current strategy,
and which strategy the current strategy will most likely lead to. Referring
to the example in Figure 5.1, if the player sees that the opponent has the
units and buildings corresponding to Node 2, the player can see two things:
The optimal counter to this strategy (Counter 1: Node 2), and that there is
a 70% chance that the opponent will soon be using the strategy represented
by Node 3, and a 30% chance that the opponent will soon be using the
strategy represented by Node 4. However, the opponent could also use an
entirely new strategy that the player is not aware of. If this is the case,
the new strategy should be added to the strategy tree. This is done by
adding a new node, a Node 5, to the node where the strategy varies from the
known strategies, Node 2. At this point the probabilities from Node 2 to its
children should be re-adjusted, as it now has three children instead of just
two. This way strategy trees easily support learning new strategies observed

Page 52 of 273 CHAPTER 5. DESIGN TECHNIQUES

from the opponent. As strategy trees is one of the RTS specific ideas that
we plan to implement, we will return to them when evaluating the prototype
implementation of the framework in Chapter 8.

5.4.2 Pathfinding

The largest task usually handled by the AT is the task of finding a path from
starting point to the goal for all units in the game[BMS04]. To understand
the full implication of this task a series of facts must be taken into account.
In most RTS games all players are in control of an army consisting of a
number of units. The players or Als move their army around in order to
scout, attack and defend. Each of these units must be assigned a path from
their starting point to the point they are ordered to. This means that a
single move order issued by the player or Al can mean that a path must
be calculated for hundreds of units. The path is found from the place the
units is currently situated to a designated goal location. An example of a
typical map can be seen in Figure 5.7. Clusters form a grid of dotted lines.
In Figure 5.6 one such cluster can be seen. For this example the cluster is
made of 16*%16 cells. The path that must be found is a list of connected cells
(cells that are adjacent to the ones next to them in the list) that start at
the start location and end at the goal location. We define a low granularity
as using clusters for the abstraction and high granularity as using cells for
the abstraction. The abstraction that clusters provide will later be shown to
be useful to reduce the search space explored in the pathfinding. This list
must be found in a matter of moments to ensure fast response to the game.
Furthermore it is not enough to find just any path that will take the unit
from the starting point to the goal, the path must also be the shortest path
possible.

This means that building a pathfinder is often a balance between the
complex task of finding an optimal path from A to B and doing this in the
computationally cheapest way possible.

A*

A* is a best-first search algorithm that is very popular and has been used in
many variations in both the academic world and in the game development
industry |[BMS04]. Using a heuristic defined by the developer, it will find the
shortest path if one such exist. Mono-directional search using A* will usually
result in an exploration of the search space much like the one depicted in
Figure 5.3. Compared to the search space explored in for instance breadth-
first search the heuristic ensures a noticeable optimisation of the number
of cells explored in the search. This can be optimised even more using
bidirectional search as seen in figure 5.4. The fewer cells visited in the
search does not just mean that the amount of memory used in the search is

CHAPTER 5. DESIGN TECHNIQUES Page 53 of 273

Start Goal

Figure 5.3: Search space explored using A*

Figure 5.4: Search space explored using bidirectional A*

minimised, but it consequently also minimises the time it takes to compute
the path. Both are the main points of focus for optimisation.

Hierarchical Search

As already mentioned there are two main concerns when designing a
pathfinder: The computation time and the memory use. The two are not
independent, but are on the contrary quite closely linked. Exploring a min-
imum of cells will for instance mean a minimum of computation time. The
idea behind hierarchical search is to reduce the search space on grid-based
maps by working on multiple levels on granularity. High granularity means
a grid of cells and low granularity means a grid of groups of cells. If an
optimal path can be found on a low granularity map, cells outside this path
can be disregarded when constructing a path of a higher granularity. Botea
et al. [BMS04] present one such algorithm named HPA* (Hierarchical Path-
Finding A*). HPA* first systematically divides the map up into a grid of
clusters. It then determines entrances between the adjacent clusters, which
are obstacle-free common borders between the clusters as seen as the marked
areas in Figure 5.5. The entrances are used to build an abstract problem path
which is an optimal path from start to goal consisting of the entrances that
the optimal path will pass through. The last step is to find the actual path
between the entrances on the highest level of granularity. The actual pro-
cessing is done by first finding the abstract problem path and then doing
pathfinding on the first sub-path (the path between the first two entrances
in the abstract problem path). By restricting the high granularity pathfind-
ing to the first subproblem, the pathfinder will have the first few seconds
of a units movement ready fast so that the unit can start moving while the

Page 54 of 273 CHAPTER 5. DESIGN TECHNIQUES

.

Figure 5.5: Entrances in HPA*

pathfinder computes the rest of the path.

Hierarchical JIT Pathfinder

The pathfinder we propose share the same basic principles as the one just
presented. The low granularity grid will be maintained at the time of ex-
ploration, or if the map is already explored, at loading time. Instead of
entrances, each cluster in the low granularity grid will share four passable
nodes® with the adjacent clusters: One each at top, bottom, left and right
side (see figure 5.6). There will exist a connection between two nodes if the
cluster is passable from one node to the other (not unlike entrances). That
means that top and bottom will be connected if a unit will be able to cross
the cluster vertically. That is, the path from top to bottom must not excess
for instance 1.5 times the direct path. If any obstacle is discovered this must
be updated on the low granularity grid.

The pathfinding itself starts by determining a path from start to goal
consisting of passable nodes. The path consisting of the clusters is called the
passable path. The passable path is used to reduce the search space much
like the abstract problem path seen in HPA*. The developer will be able
to tune the length of the sub-path by defining the number of clusters this
should contain. Each sub-path can be processed like in HPA*, that is in
a Just In Time (JIT) fashion. In Figure 5.7 an example of a map can be
seen. The example is a situation where a path is found moving around a
ledge obstacle. The ledge is depicted as a broad dotted line. The trees are
also considered obstacles in this example. The grid of clusters is depicted
in thin dotted lines and lines have been drawn as edges between passable
nodes. Using the passable path seen as a dotted line between the two "X"
markings, it is possible to restrict the search space to the clusters (marked

5A passable node is a special cell that is placed at the border between two clusters of
cells

CHAPTER 5. DESIGN TECHNIQUES Page 55 of 273

0 1
012 3 456 7 8 9101112131415 0 1 2
N

o

© 0 N O U1 bW NP O

=
(@)

[N
[N

=
\S]

=
w

[EnY
N

Jany
[¢)]

o
(7]

|
[N

N

Figure 5.6: Placement of Passable nodes

in gray) found in the passable path.

Theoretical Examples

The environment used in this example is chosen to show the worst possible
scenario for A*, and the best possible scenario for the pathfinder used in
this project. The map is a flat fully visible grid of 1024*1024 cells without
obstacles, where the pathfinder must find a path from the top left corner to
the bottom right corner, that is diagonally across the map. The chosen size
for clusters is 16*16 cells and the grid of clusters is thus 64*64.

An ordinary A* will find an optimal path from start to goal but in the
process of doing so it will explore almost all the cells on the map. That
means that the A* pathfinder will examine 1024*1024 or 1048576 cells in
total. The search space can be seen at the left side of Figure 5.8.

Using the passable path for restricting the search space, the pathfinder
used in this project will only explore the nodes found in the marked path
seen at the right side of Figure 5.8. This path contains 64463 clusters of
cells making it a total of 32512 cells expanded.

As seen in the example the hierarchical pathfinder will explore up to
1/32 of the amount cells compared to an ordinary A*. This number can be
further minimised by choosing a smaller size for the clusters but this has to

Page 56 of 273 CHAPTER 5. DESIGN TECHNIQUES

EE
AN I VRN AN N N N T
,

"""" 0.
LTINS
sy Leseeky
S KKK A\)
i |

' 4
y

X
WS
=
=
XAL

B

Figure 5.7: Passable Example

Figure 5.8: Search spaces for A* and Hierarchical search

CHAPTER 5. DESIGN TECHNIQUES Page 57 of 273

be balanced with the effort of calculating the passable path.

The best possible scenario for A* and the worst possible scenario for
hierarchical search is when the start cell and the goal cell are adjacent to
each other. In this case the A* will terminate after exploring the goal state,
but the hierarchical search will first have to determine a passable path. This
means that the hierarchical search will explore four nodes instead of two
nodes (two nodes in the passable search and two nodes in the actual path
search).

In order for the hierarchical search to be better the goal cell must be in
a different cluster than the start cell. This is not a problem because most
of the movements done in RTS games will be from the AI's own base to the
enemy base or from harvesting buildings to the resources being harvested.
In both cases the path will cross several clusters.

Based on this we hypothesis that a hierarchical pathfinder will be able
to reduce both the computation time and the memory use in a dynamic
environment. The impact will most likely grow with the number of obstacles
and the length of the path. This will be tested through the prototype.

5.4.3 Tactics

This section will discuss how to represent tactics in RT'S games. Throughout
this section, a lot of RTS specific terms and expressions will be used, and
the reader is referred to Appendix A for an explanation of these. As already
discussed in Section 5.4.1, a strategy tree node can contain tactics concerning
how to execute a certain strategy. We define tactics as being the part that
defines how to control units during a battle. That is, it does not decide
where on the map to attack or evaluate whether the Al is in a losing battle.

In previous research on tactical planning, Reece et al. [RKDO00] present
the project DISAF that works with the tactical movement of individual sol-
diers in a complex environment. Among other things they present two kinds
of decompositions of the problem: A distance-detail decomposition and an
environment decomposition. Both help to reach a high abstraction level
so that a pathfinding algorithm can be implemented to handle the prob-
lem. Burgess [Bur03a] works with terrain analysis, identifying avenues of
approach, and deployment of forces which can be adjusted to react to new
information (for instance enemy sightings). Both papers are written in co-
operation with the US army. Although real-life tactical situations have some
resemblance to the tactical situations occurring in RTS games, the previ-
ous work on tactical planning is difficult to reuse when trying to develop a
method for representing tactics. This does however, not mean that some of
the ideas in these papers cannot be reused when executing tactics within a
Tactical Planner. The representation of tactics are however a different mat-
ter, and this representation must be both developer friendly and expressive
enough to deal with very advanced tactics within any RTS game genre. The

Page 58 of 273 CHAPTER 5. DESIGN TECHNIQUES

basic responsibilities of a tactic in RTS games is to define the following:

Units: The tactic must specify which unit types and how many of each are
needed to successfully carrying out the tactic.

Formations: A tactic must define how different units should position them-
selves in relation to each other and in relation to the enemy’s units. A
formation could for instance place units with a lot of hitpoints in the
front of the army, while ranged and weaker units could stand protected
behind these. The tactic should also specify whether the formation
should be kept at all times during battle, or if it should mainly be
considered a good starting position before a battle.

Focus Fire: In most games, some units will have higher attack damage on
certain kinds of units compared to others. A tactic should include rules
for which units should focus on which type of enemy units. Further-
more, the tactic should define rules for how many should focus fire on a
certain unit at a time and if enemy units withdrawn from battle should
be pursued.

Unit Preserving: Tactics should also specify when to withdraw units from
battle. This may vary for different unit types, as weak units should
probably react faster when receiving damage. Unit preserving tactics
furthermore includes the decision of where to send withdrawing units.
This could be the main base or just without of enemy range and then
back into the battle again.

Using Support: A tactic should specify how to use support units, and more
specifically the spells or abilities they have. This includes decisions
regarding who should receive buffs and debuffs as well as how area of
effect spells or abilities should be used. Furthermore, as some spells
or abilities have limited use, the tactic should define when and under
what conditions these should be used.

Using Terrain: Several games includes terrain specific advantages during
battles. This could be things such as using choke points, high ground
etc. A tactic should dictate how to take advantage of different terrain
features.

Creating a representation of tactics usable in many different RTS games
is a difficult task. The goals of this representation is as follows:

Generic: The representation should be able to represent tactics in all of the
supported RTS games.

Versatile: The representation should allow for a tactic to be easily adapted
to suit a specific game.

CHAPTER 5. DESIGN TECHNIQUES Page 59 of 273

A tactic consists of the six responsibilities mentioned earlier, and it is
logically to represent it using these distinct areas. That is, a tactic consists
of the unit types necessary, rules for how units should stand in formation,
rules for focus fire, rules for anti-focus fire, rules for using support units and
rules for using terrain advantages. The idea behind this tactic representation
is to use small building blocks of rules to composite larger and more complex
tactics. We will explain the idea of the representation through a typical
standard tactic usable in most RTS games. The tactic is called a Siege
tactic, and basically consists of having siege units attacking the enemy base,
while these are protected by a number of other units. This has the advantage
that it forces the enemy to come out of his base (thus leaving the advantage
of any base defence) and attack the player, who has placed her units in an
advantageous position to deal with this attack.

First, we will describe in general terms how each of a tactic’s responsibili-
ties could be defined for the Siege tactic. Then we will discuss an attempt to
express the tactic in a simple generic way. This will not be a full discussion
on the topic as it is much more advanced than the example presented, but
it will serve as a proof of concept that a generic representation is possible.
Finally, we will briefly discuss how this tactic could be used in different kind
of RTS games. The following presents the details of the Siege tactic:

Units: This tactic requires as a minimum two types of units. First of all,
siege units are needed to attack the enemy base from a distance, and
secondly, a group of units are needed to protect these siege units. For
simplicity, we will assume that the group of non-siege units are all
melee units.

Formations: A formation in this tactic should ensure that the siege units
are properly protected by the melee units. This means they should be
positioned between the siege units and the enemy units or base.

Focus Fire: As such, there do not need to be any focus fire rules for the
melee units as their primary focus will be to hold formation and thereby
protect the siege units. The siege units on the other hand, should
primarily focus on defensive structures in the enemy base, or buildings
important for unit production.

Unit Preserving: To avoid hit and run attacks from the enemy killing
wounded units, units should be sent back to the main base when they
have lower than 20% of the maximum health.

Using Support: For this example, we will assume that there are no support
units and that none of the other units have special spells/abilities.

Using Terrain: For simplicity, we assume that there will be no tactical
terrain considerations when using this tactic.

IS T S N R

Page 60 of 273 CHAPTER 5. DESIGN TECHNIQUES

Consider a simple approach for defining this tactic shown in Listing 5.1.
This approach assumes that the Al knows about which units are considered
siege units, melee units etc. and that it knows which buildings are defensive
structures, unit production facilities etc. Each line in the listing describes
a rule used with this tactic, and their meaning will be explained in the
following. Line 1 defines the tactic named Siege. Line 2 and line 3 defines
which units are to be used with this tactics. The numbers indicate their
group id, and as can be seen, group 1 consists of all siege units, while group
2 consists of all melee units. The Al can itself figure out exactly which
units to place in each group as it knows which are considered melee units
and which are considered siege units. These group id’s can later be used to
specify individual rules for each group. Line 4 specifies the formation these
units should be in. Units groups are listed with the first being closest to the
enemy units or buildings. This means that in this case, the melee units are
standing in the front, while the siege units are behind them. Furthermore,
one can specify the importance of units keeping the formation during battle.
In this case, the melee units should always keep formation in order to protect
the siege units, while the siege units can move around freely (the melee units
will still protect them while moving). Line 5 adds a focus fire rule for group
1, the siege units. The rule simply states a prioritised list of units on which
to fire upon first. In this simple example we have decided not to include
things like how many units should focus fire at the same building at a time,
but it could relatively easily be added at a later time. A similar rule could
be added for each group in the tactic if necessary. The two final lines, line
6 and line 7 simply dictate a unit preserving rule for both group 1 and
group 2. They state that a unit should try to run back to its own main
base if it is down to only 20% of its original hitpoints. All of this assumes
that the framework has internal operations that can handle the execution
of the different rules. However, given the information in for instance the
add__ focusfire _rule, it should be relatively easy to provide these operations.

Listing 5.1: Tactic Template
Siege = Tactic ()
Siege.add unit_group (1, siege unmits)
Siege.add unit group (2, melee units)
Siege . formation ([(2, strict), (1, loose)])

Siege.add focusfire rule (1, [defensive structures, unit production facilities])

Siege.add_ preserving rule(l, (20, main_base))
Siege.add preserving rule(2, (20, main_base))

Even this simple approach to the Siege tactic can be useful in many
different kind of RTS games. In Starcraft the tactic could be used with
marines and siege tanks, in Warcraft 111 the tactic could be used with grunts
and demolishers and in Age of Mythology the tactic could be used with
Azemen and catapults.

The approach presented in this section is in no way a fully complete

CHAPTER 5. DESIGN TECHNIQUES Page 61 of 273

representation. Further work on this must be done in order to fully represent
all kinds of tactics in RTS games. We hypothesise however, through the
example described in this section, that it is possible to create a generic
representation which will be usable to represent tactics possible in many
different RTS games. The representation will not be tested in the prototype
implementation, because of the idea not being fully developed and because
of limitations of the test game. These limitations are presented in Chapter
7.2.2.

5.4.4 Base Building Templates

In this section we will present the idea of base building templates, for deter-
mining how the layout of a base should be. To our knowledge no related
work exists dealing with this subject. What can be seen in games today is
that there is either a fixed layout that is used, which is tweaked to fit the
terrain, or the buildings is placed at random where there is room for them.
First we will present the main idea, then an example of a base layout, and
then an example of how this could be modelled in the templates.

To control the layout of the base in accordance to the strategy that
is used, we have designed what we call base building templates. These will
dictate how the base is constructed, taking into account the terrain, resources
in the area, and the strategy used. Just like with the strategy tree the future
development of the base must be expressed in the base building template tree.

On each strategy node in the strategy tree the user of the framework
must specify what kind of base buildings templates she determines is the
best for that strategy. The base building templates create the tree of how
the base could evolve, themselves. In each of the nodes a parameter specifies
what buildings that should be used for perimeter and what buildings that
should be protected.

It should furthermore be possible to create functions that specify how
to place buildings in special cases. Inside these functions a lot of different
tools must be available to the user, such as influence maps[Sch04][Del01]°,
complete information about the already placed buildings, and other map
related information such as terrain and positions of resources. The influence
maps give access to features where the developer can specify what weight
different terrain types and resources should have as well as being able to
define the propagation function, and tell how each layer in the map should
be combined.

An example of a layout of a defensive base in Warcraft 11T can be seen in
Figure 5.9. Here the buildings with high hitpoints are placed at the front,
because they work as a perimeter. The Town Hall is placed close to the
Mine, so that the distance that the workers have to go is not long, but it

A further description of influence maps are given in the pre-master thesis [FKLO5].

Page 62 of 273 CHAPTER 5. DESIGN TECHNIQUES

A\

i
ﬁfww‘w‘

Town hall

Figure 5.9: A defensive base layout in Warcraft IIT

is also placed at the perimeter, because it is a high hitpoint building. Two
towers are placed right next to the Town Hall so that they can defend the
building, but they are also centrally placed so that they can attack any units
that try to attack any other buildings in the base. The Tower buildings do
not have that may hitpoints so they are placed behind the base perimeter.
The Lumber Mill is placed close to the resource that the workers harvest
for it, and is placed behind the base barriers, because it has relatively low
hitpoints, and the workers would be vulnerable when gathering wood. The
Alter and Barracks are high hitpoint buildings, so they are used as barriers.
Farms are also used as perimeter, not because they are strong, but because
they are fast to build, cheap, and the price to hitpoint ratio makes it a cheap
barrier building.

This example of how the layout of the base could be written in base
building templates syntax is presented in Listing 5.2. The module using the
templates must be able to find the best place for the centre of the base by
using influence maps. Furthermore, it must be able, again with the use of
influence maps, to find what perimeters that does not need to be defended,
because of for instance terrain or resources that work as perimeter.

The module should find the best place to build harvesting buildings are,
and create influence maps where the placement of these affect how the rest
of the template is built. What buildings that are harvesting buildings is
not necessary to specify in the template, because this is known from the
technology tree. Line I defines the base building template named Defensive.
On Line 2 it is assigned a name, to describe what kind of base layout it is.

© 00 N DOt As W N

CHAPTER 5. DESIGN TECHNIQUES Page 63 of 273

The town hall is set to be the central building in the base on Line 3. Line
4 defines that there should only be one opening in the base. On Line § it
is specified that the building types that are added to protect buildings
should be placed within the base, behind the barriers. The add buildorder
to the template on Line 6 and 7 is used as a guide to what buildings to build
first. If none is specified, the order will be found while playing the game. A
base building template node must only contain the order of those buildings
that have been added additionally from the last node. The building types
in barrier buildings added on Line 8 will be used for constructing the
barriers. The type of defensive buildings that can actively defend the
base is added on Line 9.

Listing 5.2: Base building template node

Defensive = Base building template ()

Defensive.set _name("Single_opening_defensive_layout")

Defensive.set central building (town hall)

Defensive.set _number of openings(1)

Defensive.add protect buildings (|[town hall, lumber mill, shop, tower])

Defensive.add buildorder ([town hall, farm, farm, alter , barrack, lumber mill,
farm, tower, tower, shop])

Defensive.add barrier buildings (| barrack, alter , farm, town_ hall])

Defensive.add defensive buildings ([tower])

5.4.5 Summary

This section has presented four RT'S specific concepts specifically designed
to create Als in this genre. We presented the idea of strategy trees, as
a data structure built for representing strategies in RT'S games. Then we
discussed the issue of pathfinding, and presented an optimised way of doing
this in an RTS game environment. A preliminary design of a representation
of tactics in RT'S games were also presented, along with the idea of base
building templates, used for defining optimal building placement for the Al.
Only strategy trees and our pathfinding idea will be tested in the prototype
implementation.

CHAPTER 6. FRAMEWORK DESIGN Page 65 of 273

Chapter 6

Framework Design

This chapter will focus on the design of the AI framework. An illustration of
the overall design can be seen in Figure 6.1. The framework architecture is
built under the assumption that it is completely separated from the GDF and
that the framework is in complete control of all Al actions. This means that
the architecture must handle all Al activity. Internally in the framework, an
event system decides which modules are executed and each module in the
framework is configured through a script.

We will start by presenting the architecture of the framework, by dis-
cussing how one can transform the human model presented in Chapter 3
into a cognitive framework architecture. With each module we will present
its responsibilities, how it communicates with other modules and how it ful-
fils one or more of the framework capabilities defined in Section 5.1. After-
wards, we will present how knowledge is represented in the framework. This
includes a discussion of how knowledge may be represented in each of the
knowledge bases defined in the human model. Furthermore, we will discuss
how the different representations of knowledge dictates the organisation of
knowledge in the framework. We will then discuss where and how hot spots

GDF

Al Framework
Event System \

‘ Module ‘ ‘ Module ‘ ‘ Module ‘ """"""""""

\ \ \
‘ Script‘ ‘ Script‘ ‘ Script‘ ,,,,,,,,,,,,,,,,,,,,

Figure 6.1: Overall design of the framework

Page 66 of 273 CHAPTER 6. FRAMEWORK DESIGN

are represented, and hereby explain how we allow framework instances to
differ. Finally, the last section will present the event system controlling the
framework and explain how a scripting language is used with the framework.

We have decided not to include any cooperation features in the design,
because it would bring unwanted complexity to a design that is already more
than capable of proving whether the idea of an RTS framework is a good
idea. This means that the Cooperation task discussed in Chapter 3, will not
be considered when designing the architecture of the framework.

6.1 Framework Architecture

When designing the cognitive architecture of the framework, it is natural to
look at the human model once again. Using the human model as a starting
point, many of these tasks can be reused, some must be separated into several
modules, while others can simply be in-cooperated in other modules. We will
start by presenting these changes and then present the overall architecture
along with a description of each module. This description will include a
presentation of each module’s specific responsibility as well as a reference to
how they fulfil one or more of the framework capabilities presented in Section
5.1.

6.1.1 Cognitive Architecture

Compared to the human model in Chapter 3, several changes has been made.
First of all, the Scouting task has become a part of the Strategic Planning
task, because it is a relatively small task compared to others and because it
is so closely linked with Strategic Planning. The Micromanagement task has
been divided into two modules: Tactical Planning and a Reactive Module.
The latter being a new module to handle urgent actions such as withdrawing
units from battle because of focus fire. The reason for this division is that
micromanagement is so closely linked to tactical planning that these cannot
be handled separately. However, there are still some actions that should
be carried out instantly, which is what the Reactive Module is intended to
handle.

The two tasks Opponent Modelling and Reasoning has been divided into
two new modules that better represents what their responsibilities are: Prob-
abilistic Reasoning and Pattern Recognition. The Probabilistic Reasoning
module takes care of all calculations concerning the opponent’s strategy as
well as maintaining belief knowledge in the Opponent Model. The Pattern
Recognition module has two responsibilities: Updating the Opponent Model
with new information and recognising strategies and tactics used by the op-
ponent. Finally, two new modules have been added to ease communication
between the Al framework and the GDF. These are a Percept Interpreter
module and an Action Planner module. The Percept Interpreter module is

CHAPTER 6. FRAMEWORK DESIGN Page 67 of 273

H 1,2 3,4,6,9 10, 11
Pattern Recognition
4,8,10,11,12

Percept Interpreter
8.12,17, 19, 24,25

[1.2.3.4.5.6.811,12,13,14,17, 18,23, 24 |

Probabilistic
Reasoning
1,2,3,6,8 11, 24

Base Building

1,8,9, 12,13, 14, 16, 17, 18, 19, 20, 24, 25 |

Action Planner .. Output Actions

Resource Management
8,13, 14, 16,17, 18, 19, 21, 22
1,7,8,13,19, 20, 21, 22, 24

Percepts from
GDF

Strategic Planning

Reactive Module Tactical Planning

[10,12,13,15, 19, 23, 24, 25 |

Prior Knowledge In-Game Knowledge
1. Map Knowledge 11. Opponent Model
2. Enemy Knowledge 12. In-Game Enemy Knowledge
3. Gametype Knowledge 13. Assigned Unit Actions
4. Known Strategies 14. Assigned Building Actions
5. Known Build Orders 15. Unit States
6. Cooperative Knowledge 16. Building States
7. Resource Types 17. Current Strategy Node
8. Technology Tree 18. Goal Strategy Node
9. Base Building Templates 19. In-Game Own Knowledge
10. Tactical Knowledge 20. Building Plan
21. Unit Plan
22. Research Plan
23. Mission Knowledge
24. Dynamic Map Knowledge
25. Dynamic Obstacles

Figure 6.2: The cognitive architecture of the framework

added to handle all input from the GDF and is responsible for updating all
the appropriate knowledge bases in the Al framework. The Action Planner
on the other hand, is responsible for handling all output from the AI frame-
work to the GDF. Furthermore, it is responsible for deciding in which order
actions are to be executed and how to prioritise actions according to the
resources available.

Figure 6.2 (a larger version can be seen in Appendix K.2) shows the
cognitive architecture of our AI framework. Circles represents framework
modules and arrows represents data flow from one module to another. The
diamonds represents communication with the GDF. Each module has a small
box with numbers attached to it, which shows which knowledge bases the
module uses. The numbers correspond to the prior knowledge and in-game
knowledge tables at the bottom of the figure. Note that some of the knowl-
edge bases have not yet been introduced, as this will first happen in Section
6.2, but for easy referencing, a short description of all of them can be found
in Appendix C.

6.1.2 Modules

The following will present the responsibility of each module and relationship
with other modules:

Percept Interpreter: Percepts can take the form of simply being the game

Page 68 of 273 CHAPTER 6. FRAMEWORK DESIGN

state at each decision cycle, or a direct message sent to the AI such
as “Your base is under attack” known from many RTS games. This
module takes care of translating percepts to a form usable for Pattern
Recognition methods as well as providing the Reactive Module with the
necessary data, including information about damaged units and native
Al events. Furthermore, this module takes care of updating several
of the in-game knowledge bases: In-Game Enemy Knowledge, Current
Strategy Node, In-Game Own Knowledge, Dynamic Map Knowledge,
and Dynamic Obstacles. The module corresponds to a part of the
Perception and Situation Assessment capability presented in Section
5.1. Further details on this module can be found in Appendix B.1.

Reactive Module: As explained earlier, the Micromanagement task has
been removed and replaced by a Reactive Module. This module takes
care of all low level unit reactions and it handles all native AI' events.
The degree of reactiveness should be left to the AI designer as its
importance is game specific and likewise it should be user-specific how
to handle different native Al events. The module will monitor how
much damage units and buildings are dealt over time, and make sure
that the Unit State and Building State in-game knowledge bases are
updated. A detailed discussion of how this module is designed can be
found in Appendix B.2.

Pattern Recognition: The main responsibilities of the Pattern Recogni-
tion module have already been mentioned: Updating the Opponent
Model and recognising strategies and tactics. Updating the Oppo-
nent Model includes keeping track of enemy units disappearing into
fog of war and recognising tactics used. To recognise tactics, the user
must specify special recognising methods based on Tuctical Knowl-
edge. Recognising strategies on the other hand, can be handled by the
framework, as this is basically a matter of matching a strategy node
with the strategy tree defined in Known Strategies. This module will
furthermore during a game, keep track of a strategy tree describing
which stages the opponent’s strategy has gone through, which will be
a big help later for the Learning module, when adding new strategies
to the AD’s repertoire. According to the capabilities described in Sec-
tion 5.1, the Pattern Recognition module takes care of two capabilities:
Recognition and Categorisation and partly Prediction and Monitoring.
Details describing the design of this module can be found in Appendix
B.3.

!The native AT is the built-in reactive AT on each unit in a game. When a unit for
instance is attacked and then tries to find and attack the enemy attacking it, it is the
native Al reacting. This is often a problem in RTS games, because a player can lure parts
of an army away taking advantage of this unit’s native AL

CHAPTER 6. FRAMEWORK DESIGN Page 69 of 273

Learning: The architecture supports two types of learning: Knowledge ac-
quisition and knowledge refinement. Knowledge acquisition happens
when the Al should learn strategies, tactics or base building templates.
Adding a new strategy to strategy trees is a relatively simple opera-
tion as the data structure makes it easy to do so. Learning new tactics
or base building templates is a more complicated process, and is de-
scribed in further detail, along with the rest of the Learning module,
in Appendix B.9. The Learning module must furthermore evaluate
the success of strategies, tactics and base building templates and mod-
ify the strategy tree knowledge bases, Tuctical Knowledge and Base
Building Templates accordingly. Finally, it must keep track of differ-
ent opponents by updating their corresponding strategy tree in Enemy
Knowledge. The framework in-cooperates so-called lazy learning [LL02|
as it is most sensible to reason about the development and strategies of
a game after the game has ended. Furthermore, some learning meth-
ods take a lot of CPU time, which is unwanted during game as less
time can then be dedicated to finding the right strategies and actions.
This module takes care of the Remembering, Reflection and Learning
capability discussed in Section 5.1.

Probabilistic Reasoning: The main tasks of this module is determining
the opponent’s strategy and figuring out potential follow-up strategies.
Determining the opponent’s strategy is a matter of comparing the Op-
ponent Model with strategy nodes in the different strategy trees. Dif-
ferent optimisation methods can be used to do this as is described in
Appendix B.4. Finding follow-up strategies is a relatively simple task,
as strategy trees has direct support for this operation. Besides these
two tasks, the module must take care of updating the Opponent Model
with new belief information about the opponent’s strategy and deter-
mining important variables that may give away the opponent’s strategy
given that the module finds that there are more than one possible. The
Probabilistic Reasoning module makes use of primarily Inductive Rea-
soning by going from specific observations about the enemy to more
general beliefs about her current and upcoming strategy. This mod-
ule takes care of the Reasoning and Belief Maintenance capabilities
mentioned in Section 5.1.

Strategic Planning: The Strategic Planning module takes on the task of
choosing an overall strategy for the Al. It can do this partly by using
different knowledge bases, and partly by using the Reasoning module
to provide reliable information on which to base decisions. The module
must go through two phases: First, an overall strategy must be selected
and second, units must be assigned different tasks to properly execute
the strategy. Besides this, the module is also responsible of scouting

Page 70 of 273 CHAPTER 6. FRAMEWORK DESIGN

and planning where to expand if the strategy dictates this. A further
discussion of each of the tasks the Strategic Planning module must take
care of, can be found in Appendix B.5. The module provides means
for the Decision Making and Choice and the Perception and Situation
Assessment capabilities presented in Section 5.1.

Tactical Planning: This module is essentially responsible for all unit ac-
tions that are not directly related to a resource gathering or base
building activity. This can be further divided into two parts: Unit
movement and unit engagement. Unit movement includes pathfind-
ing and avoiding walking through enemy armies. This area will partly
be covered by the pathfinding idea mentioned in Section 5.4.2. Unit
engagement includes all micromanagement details such as focus fire,
using support units and withdrawing damaged units from battle. To
do this, the module will rely on the representation of tactics presented
in Section 5.4.3. The module is furthermore responsible for deciding
when to withdraw an army from a losing battle, for keeping armies
in formation while moving, and for making detailed terrain analysis
of the battlefield. More details on the design of the Tactical Planning
module can be found in Appendix B.6. This module handles two of
the cognitive framework capabilities presented in Section 5.1: Decision
Making and Choice and Perception and Situation Assessment.

Base Building: The Base Building module is responsible for planning base
building placement and determining building priorities. Given a strat-
egy from the Strategic Planning module containing buildings to be
built, the Base Building module must prioritise which to build first
and where to build them. The latter must consider optimal placement
of all the buildings that must be built, and must thus both include a
certain measure of anticipation as well as a terrain analysis of the area
surrounding the main base. Furthermore, the module must take action
when the Building State in-game knowledge base shows that a building
is in critical health and repairing is necessary. Details on the complete
design of this module can be found in Appendix B.8. This module pri-
marily focuses on the Problem Solving and Planning capability defined
in section 5.1

Resource Management: This module has four different responsibilities.
Given a strategy from the Strategic Planning module it must determine
resource requirements and determine a resource gathering plan that
allows for the strategy to be executed as fast as possible. One factor
in this determination is a resource analysis, which considers which
and how many resources are left at different locations. This way, the
Resource Management module will decide if an expansion is necessary.
Afterwards, the module must assign all workers to the appropriate

CHAPTER 6. FRAMEWORK DESIGN Page 71 of 273

resources. The final task of the Resource Management module is to
ensure that resource gathering happens at a optimal rate. This includes
not only optimal pathfinding, but also having an optimal number of
workers harvesting the different resources. The details of the design of
this module can be found in Appendix B.7. The module is primarily
contributing to the Problem Solving and Planning capability presented
in Section 5.1.

Action Planner: The Action Planner module is responsible for scheduling
actions and communicating the chosen actions to the GDF. Schedul-
ing of actions are important when the Al player do not have enough
resources to carry out all the wanted actions. It is this way also respon-
sible for delaying resource spending if the Al is required to carry out an
expensive action later in the game. The module is furthermore respon-
sible for producing two plans: Unit Plan and Research Plan. The Unit
Plan contains information about which units are to be built next, and
the Research Plan contains information about which research upgrades
to purchase, and when this should happen. The Action Planner is the
only module in the framework, which is allowed to output actions to
the GDF. Details on the design of this module can be found in Ap-
pendix B.10. The Action Planner handles the FEzecution and Action
capability presented in Section 5.1

6.2 Representation of Knowledge

To discuss in detail how each knowledge base should be represented in the
framework, some of the knowledge bases defined in the human model must
be divided into smaller knowledge bases. We will start by introducing the
new knowledge bases and then move on to discuss how each knowledge base
is represented. The reader is once again referred to the illustration of the
cognitive architecture of the framework in Appendix K.2 to see the role of
each knowledge base in the architecture.

6.2.1 Division of Knowledge Bases

Only one of the prior knowledge bases must be divided into smaller knowl-
edge bases and this is Game Specific Knowledge. This knowledge base is
divided into the following:

Resource Types: This knowledge base defines what kind of resources are
available in the game.

Technology Tree: This knowledge base defines game specific building de-
pendencies, unit dependencies and research dependencies, as well as

Page 72 of 273 CHAPTER 6. FRAMEWORK DESIGN

resource cost for everything in the tree. Furthermore, it includes knowl-
edge about what actions each unit or building is capable of.

Base Building Templates: Contains templates for structuring base build-
ing. These templates also contain a prioritised list of buildings to build
first for each building plan.

Tactical Knowledge: A knowledge base describing all tactics possible in a
certain game. These are essentially also present in the Known Strate-
gies knowledge base, but is here hidden within the different strategy
nodes. This knowledge base is basically for easy referencing the differ-
ent kinds of tactics.

All of the in-game knowledge bases have been divided into smaller knowl-
edge bases as well to get a clearer overview of what each of them consists
of:

In-Game Enemy Knowledge:

Opponent Model: Contains information about the current strategy
of the enemy, including a strategy tree and current node infor-
mation for the enemy. It also specifies beliefs about the number
of units and buildings the enemy has. The beliefs are only valid
if the attribute in question have not been scouted, and they are
only there to represent what the Al currently thinks the opponent
is doing. All updates includes a time stamp, which allow the Al
to give less importance to variables not updated for a long time.

In-Game Enemy Knowledge: Contains the position of each enemy
unit currently visible on the map and knowledge about where
certain units have been seen earlier (So the AI does not forget
enemy units when they enter fog of war)

Unit and Building Information:

Assigned Unit Actions: Information about each controlled unit and
the current action assigned to it.

Assigned Building Actions: Information about each controlled
building and the current action assigned to it.

Unit State: Contains a collection of all controlled units and the state
each of them are in.

Building State: Contains a collection of all controlled buildings and
the state each of them are in.
Own Strategy:

Current Strategy Node: Maintains the current strategy node for
the AI player.

CHAPTER 6. FRAMEWORK DESIGN Page 73 of 273

Goal Strategy Node: Describes the goal strategy node.

In-Game Own Knowledge: Contains the position and current sta-
tus of all friendly units and buildings.

Building Plan: Contains the current building plan for the AI’s base.

Unit Plan: Contains information about which units to build and in
what order.

Research Plan: Contains information about which research up-
grades to purchase and in what order.

Mission Knowledge: Contains information about different missions
that should be executed in accordance with the current strategy.
Each mission is noted along with the goal of the mission and the
units assigned to perform it.

In-Game Map Knowledge:

Dynamic Map Knowledge: Includes dynamic elements such as re-
source locations and amounts. Will differ a lot depending on the
game in question.

Dynamic Obstacles: Contains the position of all obstacles currently
in view that are able to move from one game tick to another.

6.2.2 Data Representation

One of the most central aspects of a cognitive architecture is the way it
represents knowledge. An architecture can choose to use a single, uniform
encoding of knowledge, because of its simplicity and elegance and because it
is easier to provide learning or reflection to only one type of data structure.
The architecture can also provide a mixture of knowledge representations,
because limiting the framework to only one type can in some cases force an
awkward or inappropriate use of the framework. However, offering several
different representations can bring unwanted complexity to the framework.
Most frameworks therefore limit themselves to only a few different types.
A common distinction between the choice of representation is whether it is
declarative or procedural [LL02]. A declarative representation of knowledge
allows manipulation by cognitive mechanisms independent of its content.
Procedural representations on the other hand, represents knowledge as a way
to accomplish some task. Another distinction is between skill knowledge and
conceptual knowledge. While skill knowledge typically describes sequences of
actions to achieve a certain goal, conceptual knowledge deals with objects
and situations rather than the actions that manipulate them [LL02].

Many of the knowledge bases in our framework use trivial data structures
and their underlying representation are not interesting, because the user will
never be required to be aware of these representations. In the following we
will emphasise the use of strategy trees and strategy tree nodes, as these are

Page 74 of 273 CHAPTER 6. FRAMEWORK DESIGN

in many ways the foundation on which several modules work on. The use of
strategy trees suggests a very organised hierarchy of knowledge, which means
that knowledge pieces reference each other and have a relation to each other
[LLO2| [FKLO5|. Strategy trees are furthermore a declarative representation
and focuses on conceptual knowledge rather than skill knowledge. We hypoth-
esise that strategy trees are a sufficient representation to represent all kind
of strategies in all kinds of RT'S games. This is not a data structure the user
of the framework will be able to change, because this would complicate the
internal methods in the framework working on strategy trees. Furthermore,
because of strategy trees being able to represent all kinds of strategies, it
provides the user with a relatively simple representation of strategies, which
also gives access to learning methods as discussed in Section 5.4.1. First, all
knowledge bases using strategy trees will be presented and their use of them
will be explained:

Known Strategies: This knowledge base is a strategy tree containing all
possible strategies available in the game in question.

Enemy Knowledge: This is a strategy tree containing all the strategies a
certain opponent has done over several played games. Furthermore,
it keeps track of how many times a certain strategy has been selected
and thereby it will be possible to detect if the opponent has specific
strategic or tactical tendencies.

Game Type Knowledge: This knowledge base contains several strategy
trees depending on the number of different game types in a certain
game. Each strategy tree contains different strategies and probabilities
based on the game type.

Map Knowledge: This knowledge base includes strategies for each map
in the game. Depending on the map, strategies and their likelihood
of success will change, and a strategy tree for each map in the game
represents this fact. The knowledge base makes it possible to learn
map specific strategies.

Three in-game knowledge bases furthermore makes use of the strategy
tree structure by using strategy tree nodes as their representation form:

Opponent Model: An opponent model consists of two things: A strategy
node representing the opponent’s current strategy node and a strategy
tree path showing the steps the opponent went through to get to the
current strategy node.

Current Strategy Node: A strategy node representing the Al player’s
own current strategy.

CHAPTER 6. FRAMEWORK DESIGN Page 75 of 273

Target Strategy Node: A strategy node representing the AT player’s goal
strategy. This will always be a strategy node from one of the strategy
trees in the other knowledge bases.

Two other knowledge bases deserve special mentioning at this point, as
their representation are not obvious:

Base Building Templates: Base building templates follow the represen-
tation presented and discussed in Section 5.4.4.

Tactical Knowledge: The representation of tactics follow the representa-
tion presented and discussed in Section 5.4.3.

These two representations both focuses on a more procedural represen-
tation compared to strategy trees. They are concerned not only with rep-
resenting a tactic or template, but also on how to execute the tactic or use
the template. Having these two additional representations in the framework,
means that the framework will have a total of three representations that the
user should be aware of. This mixture of knowledge representations is ac-
ceptable in this framework, because each representation covers very different
areas. At the same time, they can be used in connection with each other,
as a strategy tree node can contain both tactics or base building templates
used with the particular strategy.

6.3 Framework Versatility

When discussing a framework’s versatility, one often talks of hot spots vs.
frozen spots in the framework. Hot spots are the parts of the framework
that differ from one instance of the framework to another, while frozen spots
are the part of the framework that never changes from one instance to an-
other [ML01|. We have decided to provide hot spots in two forms: Through
configurable scripts for each module and through module extensions. By
providing these two methods we both allow the framework to be used by the
novice user and the advanced user. Novice users can change simple variables
in scripts for each module that change the behaviour of the Al to the most
common behaviours. Advanced users on the other hand, can extend entire
modules or just single methods, to suit the needs of the particular game or
AT in question.

Making easy configurable scripts to use for novice programmers is not
an easy task. One must consider this from the beginning of the design of
the framework, and make sure that the configurable variables allow for the
necessary tuning, as well as being adaptable enough to suit all the different
kinds of RTS games supported by the framework. Our framework will have
scripts for all prior knowledge bases to allow for simple configuration of both

Page 76 of 273 CHAPTER 6. FRAMEWORK DESIGN

the game in question, but also of what the AI should know before starting
a game. Furthermore, each module will have its own configuration script,
where module specific attributes can be set and easily configured depending
on the wanted type of Al. All configuration scripts will be defined in a
scripting language, and it will thereby require a minimum of programming
knowledge to specify different variables. Furthermore, most of the scripts will
be specified in a way such that not even knowledge of the scripting language
will be required. However, even though not much programming knowledge
is necessary, the user must still understand all variables that can be defined.
It is for instance not possible to define strategies without understanding our
representation of them through strategy trees. Easy script configuration is
important for achieving the shift of workload design goal discussed in Section
4.1.

For the advanced users, the framework should allow for changing some of
the internal details of the framework. In some cases, an RTS game can intro-
duce an unusual feature that the Al should include in its consideration when
deciding upon an action in a certain module. To support this, the frame-
work will allow for extensions of all modules and nearly all methods in each
module. The only methods not extendable will be the ones handling events,
but these will as such not contain any other functionality than calling other
extendable methods depending on the type of events. Only the event system
itself cannot be extended, but it can, however, be configured through a con-
figuration script where for instance priorities can be specified. Extensions of
modules or methods in the framework must be written in C++, because of
performance concerns. Having a module written in the scripting language
will require far too much data transfer between the scripting language and
C++, and this is too resource demanding to be used in a real-time system
[PP04]. However, it should be possible for novice users to extend modules
or methods in the scripting language in order to create prototype methods.
This will enable Al designers to experiment with different methods, before
having an experienced programmer implement the function in C++, because
of the performance concerns. Performance issues will be further discussed in
section 7.3.

6.4 Framework Control

This section will present the backbone of the framework. First it will be
presented how the design techniques have been used, then the main system
that controls all the modules will be described, and arguments are given to
why it is built in this way.

CHAPTER 6. FRAMEWORK DESIGN Page 77 of 273

6.4.1 Using the Design Techniques

While it has already been introduced how the RTS specific concepts are used
in the design in Section 6.1 and Section 6.2, this section will focus on how
to use event based systems and scripting languages.

Using events as a backbone for the activation and intercommunication
between modules makes it possible to modify the architecture and even add
more modules to the design, fairly easily, at a later point. Each module can
send events to the event manager, which then activates the modules that
have been assigned to handle that event. If later users would like to extend
the framework with additional modules, they would just have to create the
module and assign it to handle a certain event. If it is a new type of event,
this can also be added and the system and the event trigger can be added,
where the new module should be triggered.

Using the scripting language to configure each of the modules makes it
unnecessary to recompile the code each time a small configuration is done,
and makes it faster to tweak the framework for the variables that are con-
figured there. Writing the prior knowledge bases in the scripting language
furthermore makes it possible for a designer to configure these knowledge
bases. This is good, because the prior knowledge bases are the part of the
framework that have the most significant impact on the behaviour of the Al.

6.4.2 Event System

The main execution of the framework is controlled by an event manager. It
must be possible to assign modules to be run when certain events happen.
Each module must handle all the different types of events it can be sent,
so the actual handling of each event is on each module. To simplify the
event manager, it will just queue the modules that must be executed when
an event is sent. Each module has a priority that the event manager uses
to prioritise in what order the modules are executed. The event manager is
accessible to any module at any time. After sending an event to the event
manager, the event manager takes care of the rest.

The event manager must also be able to send events on its own at specified
intervals. This should work like a timer. When assigned, it must be possible
to specify at what interval the event type should be run.

6.4.3 Constructing the Architecture

Figure 6.3 shows what happens, when changing the influence in the frame-
work architecture into events that activate each module at specific conditions.

Each module can be thought of as an object, and each of them can send
events to the event manager. Further details about the event system can
be found in Section 6.4.2. Each module is activated by sending events to
it, with the exception of the Game State Interface, which is described in

Page 78 of 273 CHAPTER 6. FRAMEWORK DESIGN

Resource Management

Base Building

Timer events

Game State Interface

Probabilistic
Reasoning

Pattern Recognition

Percept Interpreter

Input Connection Output Actions

Y

Reactive ® } Tactical Planning

Figure 6.3: Event design

Section 6.4.4. The Timer events box represents the part of the event system
that can send events with a certain frequency. The diamonds represent the
interface to the GDF.

The entire framework is activated when an event is sent from the In-
put Connection to the Percept Interpreter. This event contains information
about the changes that have happened since last game tick?. A short de-
scription about what events each module can send is given below. It only
contains the modules that send events:

Percept Interpreter: The Percept Interpreter notifies the Pattern Recog-
nition module when new knowledge of the enemy is received. The
Strategic Planning module is activated when the AI player has built
new units, or one of the Al’s units have been killed. Finally, the Re-
active module module is activated if one of the Al player’s own unit’s
hitpoints have changed. The Action Planner is also activated so that
the units actions can be executed in the end of each time tick.

Reactive Module: When a reaction from the Tactical Planning module is
necessary an event is sent.

Pattern Recognition: An event is sent to the Probabilistic Reasoning
module when there are significant updates to the opponent model.

Probabilistic Reasoning: An event is sent to the Strategic Planning mod-
ule notifying that the Probabilistic Reasoning module has attempted

2A game tick is the discrete time steps that an RTS game is divided into.

CHAPTER 6. FRAMEWORK DESIGN Page 79 of 273

to reason about the opponent’s actions, and thus have new information
available.

Strategic Planning: If units have been assigned to either be used for gath-
ering resources, constructing buildings, or scouting, the Resource Man-
ager, Base Building, or Tactical Planning modules are sent an event
accordingly. Furthermore, if there are any changes to Mission Knowl-
edge, an event is sent to the Tactical Planner.

Resource Manager: When more workers are required to gather resources,
an event is sent to the Action Planner requesting this.

Base Building: When the position of a building has been determined, the
Action Planner is requested to give permission to construct the build-

ing.

Action Planner: An event is sent to Output Actions each tick, telling what
actions to do. When any unit or building action is complete, it sends
an event notifying this to either Strategic Planning, Resource Manager,
Base Building, or Tactical Planning.

Timer Events: Events are sent to the Learning module at some interval to
make it reason about the game being played regularly. The Strategic
Planning module is sent an event to make it scout after a certain
amount of time, and at some interval to make it evaluate the current
situation of the Al situation. These intervals are specified by the user.

6.4.4 Game State Interface

This module is an almost direct connection to the game state, and should
make it possible for developers using the framework to access information
that has not already been put into knowledge bases. This is data that does
not have any effect in how the Al should react, like static information about
the map or time information. In new games there are always some new
features or information that can be used in some way that this more general
framework cannot comprehend. This interface gives a chance to get game
dependent information into the framework. This module should be accessible
any time and place in the framework.
The game state interface should give access to the following things:

Game Tick: It must be possible to get the timer counter, making it possible
to know how much time has gone since the game started.

Tile Type: It must be possible to get the type of a specific tile, so it is
possible to check if a unit can walk there.

Map Size: The map size is also necessary, especially for pathfinding.

Page 80 of 273 CHAPTER 6. FRAMEWORK DESIGN

Additional Game Specific Information: Any other game specific infor-
mation that could be useful can always be added by the user in the
user extension of the Game State Interface.

6.5 Summary

This chapter presented a cognitive framework architecture based on the hu-
man model presented in Chapter 3. We defined framework modules based on
the tasks in the human model, and defined their exact responsibilities in the
framework architecture. The complete design of all these modules have not
been presented in this chapter, as it would be too extensive, and the reader
is instead referred to Appendix B for the internal design of each framework
module. In Section 6.2 we presented how knowledge in the framework is or-
ganised, and explained which knowledge bases make use of non-trivial data
structures. We then proceeded to discuss framework versatility, and more
specifically how Al developers can vary instances of the framework from each
other. The final section, Section 6.4, focused on presenting the event system
controlling the framework and also discussed how the framework is to be
connected to the GDF used.

Page 81 of 273

Part 111

Proof of Concept

CHAPTER 7. IMPLEMENTATION Page 83 of 273

Chapter 7

Implementation

This chapter will describe the prototype implementation of the Al frame-
work. We will start by describing the contents of our prototype implemen-
tation, and explain why each of the implemented features are important to
prove the merits of the framework idea. Then we will specify certain im-
plementation specific choices such as the game development framework used
and chosen programming languages. A discussion of the trade-off between
usability and performance is then presented. This discussion will focus on
which parts of the framework can be specified by designers and which parts
must be specified by programmers. Next we will present a new module,
which connects the AI framework to the GDF. Finally we will introduce the
reader to some of the problems encountered throughout the implementation.

7.1 Proof of Concept

We will through this implementation try to prove that the design goals pre-
sented in Section 5.1 will be fulfilled and that some of the key ideas in the
framework are applicable for real use. This section will discuss which ele-
ments of the framework are necessary to create a running version and which
elements are essential for proving the merits of the idea. First, the goals of
the implementation will be outlined:

Reuse: The implementation serves to show how much a generic RTS Al
framework can reuse.

AT Quality: Through the implementation, we assess how one can improve
the quality of Al with an AT framework.

Developer Friendly: The implementation is also an experiment to see how
developer friendly the framework can be made, and how much of the
development of Al can be left in the hands of inexperienced program-
mers.

Page 84 of 273 CHAPTER 7. IMPLEMENTATION

RTS Specific Concepts: Through the implementation, we will be able to
test two of the RTS specific ideas presented in Section 5.4: Strategy
trees and pathfinding.

Potential Problems: The implementation will also serve to identify poten-
tial problems in the design. The includes problems with connecting the
AT framework to several different GDFs as well as identifying potential
bottlenecks in the overall architecture of the framework. Furthermore,
the implementation will give an idea of any performance problems.

We have decided to focus on two of the ideas presented in Section 5.4:
Strategy Trees and Pathfinding. Both are extremely important elements of
the framework, and essential for the framework to work properly. Strat-
egy trees are the very foundation on which strategic decisions will be made,
and are used by four framework modules: Strategic Planning, Probabilistic
Reasoning, Pattern Recognition, and Learning. Furthermore, several of the
in-game knowledge bases rely on the structure of the strategy tree node as
well. Pathfinding is equally important as it is required to make units move,
and hence three modules require its presence: Strategic Planning, Tactical
Planning, Resource Management and Base Building. The Tactics represen-
tation presented in Section 5.4.3 will not be part of the implementation, as
this idea is not yet fully developed. Furthermore, to really focus on tactics in
an RTS game, a game with a complex unit composition would be required,
including support units, and a unit system with armour types and attack
types'. The test game, which is described in Section 7.2.2, does not sup-
port such a complex unit composition. The idea of base building templates
presented in Section 5.4.4 will not be tested in the implementation either,
because the selected test game only contains three types of buildings and
placement of buildings is hence of minimal strategic importance.

The modular design of the framework allows for a clear distinction of the
responsibility of each module, but it also means that a prototype implemen-
tation will be required to implement almost all modules for the framework to
work in even a simple RTS game. The two modules that handle communi-
cation with the GDF, the Percept Interpreter and Action Planner modules,
will be mandatory. In even simple RTS games, the Al must gather resources
(Resource Manager), it must build a base (Base Building), it must control
its army efficiently (Tactical Planning) and it must choose strategies and
send the army to the right coordinates (Strategic Planning). For the Strate-
gic Planning module to work properly however, it requires input from the
Probabilistic Reasoning module, which in turn relies on a updated opponent
model, ensured by the Pattern Recognition module. We can, however, limit
the implementation of the Pattern Recognition module to just being able to

!Having different armour types for units allows different attack types to do more or
less damage against a certain type of armour.

CHAPTER 7. IMPLEMENTATION Page 85 of 273

Module Name: Implementation

Percept Interpreter Complete implementation

Reactive Module Complete implementation

Pattern Recognition Updating of the opponent model

Learning Not implemented

Probabilistic Reasoning | Complete implementation

Strategic Planning Complete implementation, but simplified
scouting and execution of strategies

Tactical Planning Pathfinding, simplified micromanagement and
situation assessment

Base Building Simplified building placement

Resource Management | Resource gathering

Action Planner Communicating actions to GDF

Figure 7.1: Implementation details

update the opponent model. This has the consequence that all attempts to
recognise tactics or new strategies are not implemented and hence there is
no information for the Learning module to work on. The Learning module
would also be very complex in terms of developing methods for recognising
tactics and base building templates and in terms of deciding how to con-
trol learning, so that the AI will not learn the wrong things. Furthermore,
the only module that other modules do not rely on directly, is the Learning
module. We have therefore decided to not include learning as part of the
implementation. Table 7.1 presents how much of the different AT modules
will be implemented. The simplified micromanagement of the Tactical Plan-
ning module means that we have implemented simple rules for focus fire and
unit preserving, but nothing as advanced as discussed during the tactics rep-
resentation in Section 5.4.3. For a complete reference of the design details
that has been left out, the reader is referred to Appendix B. Besides the
framework modules, the event system described in Section 6.4 will also be
implemented.

7.2 Implementation Specific Choices

This section will discuss three implementation specific choices: The GDF
used to test the AT framework, the game used to test the AT and the language
selected to be the scripting language used to configure the framework.

Page 86 of 273 CHAPTER 7. IMPLEMENTATION

7.2.1 Game Development Framework

There are only two possible choices to use as GDFs [FKL05]: ORTS [ORT05]
and Stratagus [Str|. As mentioned in Section 5.1.2 there are problems in us-
ing both of them. ORTS lacks stability and documentation, while Stratagus
requires changing the internal code of the GDF to allow the AI framework
to handle low level AI actions [FKLO05|. We have chosen to use ORTS as
GDF for mainly two reasons:

e Changing the internal mechanisms of Stratagus is considered a far
greater task than accepting the documentation of ORTS. This does,
however, mean that a lot of time must be spend studying ORTS source
code to make up for the limited documentation.

e Stability of ORTS is improving and because of an upcoming Al tour-
nament [BASC05] organised by AIIDE [AII], where ORTS will be used
as underlying platform, one can expect a certain level of stability. This
tournament is open for all Al researchers and includes three different
types of games: A resource gathering game, a tank combat game and
a simplified version of a real RTS game.

7.2.2 Test Game

To test instances of the Al framework, one must select a game sufficiently
complex to show important AI capabilities. The choice of ORTS as GDF
however, limits the amount of choices available. As ORTS does not currently
include a standard game, the choice is among three different games used for
the AIIDE tournament [BASCO05|. Only one of these is a real RTS game,
which includes activities such as base building, resource management, op-
ponent modelling, tactical planning, and strategic planning. The game is,
a very simplified version of commercial RTS games, but it will be sufficient
to test the Als created with this prototype framework implementation. A
short description of game details are listed in the following:

Game Type: The game is played as a lonl game between two Al players.

Unit Types: Three different unit types are included: Workers, marines and
tanks.

Building Types: Three different building types are included: Control Cen-
ters, Barracks and Factories.

Resources: The game includes four different resource clusters randomly
placed around the map. Furthermore, a resource cluster is placed close
to both player’s starting position.

CHAPTER 7. IMPLEMENTATION Page 87 of 273

Map: The map is a 64x64 tile randomly generated map with two terrain
types: Ground and cliffs. Ground tiles are passable while cliff tiles are
not.

Objective: The objective of the game is to destroy the opponent player’s
buildings.

More details on the game specification including technology tree, possible
unit actions etc. can be found on the ORTS tournament page [Ort].

7.2.3 Scripting Language

The choice of a scripting language to use with the AI framework relies on
several different factors. The main ones being:

e The language must be easy to use to support novice programmers
and designers, while still being expressive enough to write complex
behaviour in relatively few lines of code.

e The chosen language should make it possible to do rapid prototyping
by allowing for adjustments of scripts without having to re-compile the
entire framework.

e The language should be easily embedded into framework native code.

In our pre-master thesis [FKL05| we have analysed the following lan-
guages for their ability to handle the role as scripting language for the Al
framework: Lua [Lua|, Python [Pytal, Perl [Per|, Tcl [Tcl], LISP [Lis| and
Java [Jav|.

Only two languages were able to fulfil our requirements: Lua and Python.
Comparing the two, Python has direct support for objects and it is possible
to pass entire objects from native C++ code to scripting code. This means
that the programmer does not have to work with a stack or some converter
tool only capable of passing simple types, which is the case with Lua. Because
of this, we have chosen Python as being the best suited scripting language
for the AI framework.

7.3 Trade-offs between Usability and Performance

In this section we will discuss what parts of the Al framework that should be
created in the scripting language, and which should be implemented in the
native language C++. In this discussion we will outline the advantages and
disadvantages of creating the framework to be easy to configure. Afterwards
a short description of how to configure the scripts in the framework will be
given. Finally, it will be discussed how much actually can be created and
modified with the scripting language.

S Fh TR W R

e e e
D R W N = O

Page 88 of 273 CHAPTER 7. IMPLEMENTATION

7.3.1 Scripted Parts

The framework is designed so that it should be possible even for inexpe-
rienced programmers to use the framework if it has been connected to a
specific GDF. The novice user should then be able to create very different
Als just by editing the scripts that configure the framework instances.

Being able to configure each module in the framework gives the advan-
tage that there are some variables that can be modified depending on the
connected game. In other cases it can be variables that change the behaviour
of the modules, or thresholds identifying when and how the module should
react. The only added resource use is at load time, which does not affect the
performance of the framework. If functions that are run during the game
are created in the scripting language, it has to be ensured that there is not
too big a movement of data between the scripting language and the native
language, because as stated by Phelps et al. [PP04], this part of integrating
a scripting language or any other integrated language is the most resource
demanding.

All of the prior knowledge bases are created in the scripting language.
These are game and Al dependent, and are essentially the part of the frame-
work that have the highest impact on AI behaviour. Some of the knowledge
bases are only game specific. That means that if they have been configured
to a specific game it is not necessary to change them, unless the game itself
is changed, which often happens during the final balancing of the game.

7.3.2 Configuring the Framework

The framework is configured through scripts. The script files are saved in
predefined folders, and in each of these script files a description can be found
of what it does and what each variable configures in the framework. An
example of this is the configuration of the Pattern Recognition module:

Listing 7.1: Script configuration of Pattern Recognition module

This script defines vartables for the Pattern Recognition module

— Opponent Model — #AH#

The following describes how often the AI will re—consider its

strategy . Fach unit or building will have two values defined for
it. The first wvalue indicates how much a certain attribute in the
opponent model must change before the AI should re—consider its

percentage part of the opponent model must change before the Al
should re—consider its strategy.

worker = [10, 20]
marine = [10, 15]

tank = [8, 10]
controlCenter = [12, 22]

strategy . The second wvalue describes how much a certain attribute ’s

17
18

CHAPTER 7. IMPLEMENTATION Page 89 of 273

barracks = [7, 15]
factory = [4, 11]

As can be seen in Listing 7.1, it is a very simple syntax. Variables are
simply assigned values. All the variables that can be set are listed in the
script, and the user just have to fill in the numbers. This will further be
discussed in the evaluation in Section 8.1.

To configure the technology tree that is used many places in the frame-
work, there is a directory where each type of unit and building is defined in
a separate file. The framework will dynamically load each of these files and
add each of them as an element to the technology tree.

7.3.3 Scripting Limitations

There is no doubt that even though the computers of today have become
much faster, there is still a need for optimising for performance, especially
when dealing with games. That can be seen just by looking at the require-
ments of some newer games. The buyers still demand that the graphics
become more and more realistic and that requires more and more processing
time. Even if the Al is given more processing time, it will always be better
to be able to take more things into account, so the better the performance of
the AT code, the more things can be taken into account. But with the limited
time for developing the AI as stated in Section 2.1.2, rapid prototyping is
required, and as stated by Ousterhout [Ous98| and shown numerous time
according to a lot of the cooperations using Python [Pytb|, scripting is well
suited for this purpose.

The central parts of the framework, which should make sure that the
execution speed is high should however not be implemented in a scripting
language. Even though scripts can be created to do the same things and
some tweaking could make them faster, the execution speed that the scripting
language can perform at, would simply not be enough.

7.4 Implementation Specific Details

This section will introduce a number of implementation specific details.

7.4.1 GDF Communication Architecture

The GDF communication architecture has an impact on how to integrate
the AI into the GDF. The ORTS GDF uses a server/client architecture,
where traditional games often use peer-to-peer communication|[BF05]. This
can be seen in Figure 7.2. The server/client architecture in ORTS makes
it possible to hide information from each of the clients, so that it is not
possible to cheat with full map knowledge|Bur02|. In the ORTS architecture
each of the Als in the game are connected to the server like any other client

Page 90 of 273 CHAPTER 7. IMPLEMENTATION

Server

Client Client Client
Client Client Client ‘ ‘ ‘

A B

Figure 7.2: Server/client(A) and peer-to-peer(B) architecture

program|BF04a|. In the peer-to-peer architecture all Als is run on each client
to save bandwidth, but this takes up a lot more processing on each client.

In ORTS, each client sends its actions to the server every eighth of a
second, and the server will then respond with the new updates in the game
universe[UB06|. Because the AI has to send its actions to the server, and
because the reaction time of the opponent is important, the framework has
to be to some extend real-time.

7.4.2 GDF Connection

In the implementation we have decided to make the sub-module Interface
GDF (described in Appendix B.10.6), from the Action Planner, into a sepa-
rate module called Connection module. This will make a cleaner separation
of the Al framework and the GDF. Furthermore the Input Connection and
the Output Actions part described in Section 6.4, are also combined into this
module.

The implementation of the Connection module that connects the Al
framework with the GDF is one of the larger tasks that have to be imple-
mented by experienced programmers. This module should get the percepts
from the GDF, and input these into the AI framework. When the actions
have been found by the AI framework, this module should then translate
these into actions that can be understood by the GDF. The Connection in-
terface must be implemented, and this contains two functions: read() and
write().

When creating the read() function, the data that should be passed on to
the Percept Interpreter must be extracted from the GDF. In the implemen-
tation that connects to the ORTS framework, this part reads, with the use
of the client interface, the data that is transmitted from the ORTS server.
The ORTS framework has an example of how to connect to the server, and
this is used as a guideline for the implementation. The user must also im-
plement the Percept Interpreter, which updates and maintains some of the
in-game knowledge bases. The task of implementing this module requires
some knowledge of how the knowledge bases are constructed.

The write() function gets a list of AI actions as input. It is then the

CHAPTER 7. IMPLEMENTATION Page 91 of 273

responsibility of this function to take each of these actions and do what
is equivalent in the GDF. Each type of Al action must be handled. Even
though the AI framework should make sure that a certain action is possible
to do, it might happen that something has not been taken into consideration,
like trying to attack a unit that is already dead. Therefore, we have added
a knowledge base where return values from the GDF can be stored. These
return values are identified by the unit or building that should perform the
action. The return values are then used in the AI framework to tell that the
action was not possible, and it should try to find another action.

7.5 Implementation Problems

The following section will introduce the reader to the problems that were
encountered during the development of the prototype of the framework. The
problems concerning the GDF were mostly expected but the extend to which
they affected the implementation was not. The first section will go through
the expected problems with using the ORTS GDF and also describe how the
unexpected side effects affected the implementation. The next section will
describe some of the problems encountered when connecting the prototype
to the ORTS GDF and finally the last section will present the current status
of the prototype implementation.

7.5.1 GDF

This section will introduce some of the experiences we have made throughout
the implementation concerning using ORTS as GDF'. This section will mainly
focus on the three problems identified in Section 5.1.2:

e Documentation
e Stability

e Full Control of AI

To summarise we discovered that ORTS lacked documentation and sta-
bility, but allowed full control over the AI. Stratagus that was the other
candidate for GDF did have a limited documentation and because it has
been used by developers for a couple of years, it is relatively well tested.
Stratagus did, however, not allow full control of the AI. Through an analysis
in the pre-master thesis [FKL05|, we estimated that ORTS would be the
GDF that was best suited.

Unfortunately the implementation has revealed a number of problems
that we will now present and discuss. These problem have ultimately meant
that precious time has been spent on tasks that could otherwise have been
avoided.

Page 92 of 273 CHAPTER 7. IMPLEMENTATION

Documentation

This section will emphasise the problems we have found that are related to
the documentation, or rather the lack of this.

Presentation of the Environment: ORTS has until recently not in-
cluded any information at all on the characteristics of the environment.
Basic knowledge such as map size, map topology and cell movement
cost have not been available to the users of the framework through any
kind of documentation. The only way to gain any knowledge in this
area is through hard study of the GDF source code. Even if any answer
was found we could in most cases not be completely certain that this
really was the right answer.

Reference Manual: The interface of all framework modules is available
through a Doxygen documentation [dox]. This is as such an elegant
solution for this type of problem, however, the documentation in the
Doxygen has been added gradually through the development. This has
the consequence that we had to guess how various modules worked and
infer input on a number of functions through use of these in the sample
Al provided by default in the GDF.

Tutorials: The use of tutorials is a well-known technique to introduce new
users to a framework. If tutorials had been available modules and con-
nections could have been made more smoothly and the general learning
curve for learning to use the framework could have been lowered con-
siderably.

Limited Example Code: As already mentioned earlier, ORTS includes
a sample Al in which many basic tasks are introduced. In order to be
effective, however, this example code must be more extensive than it is
the case. The sample Al essentially only moves randomly around and
attacks an enemy when it gets within range. Areas such as mining, base
building are not handled at all. Coupled with tutorials a broad scaled
array of sample code can be a powerful tool, but a limited amount of
sample code can raise as many questions as it answers.

7.5.2 Stability

The ORTS development deadline has been a concern from the very beginning
of this project. Originally ORTS was meant to be in such a state that Als
could be integrated into it at the start of 2006. This deadline has been
delayed a number of times till the interface definition was finally locked in
late February. This has meant that the implementation of the framework in
this project has been done in parallel to development on the ORTS GDF.

CHAPTER 7. IMPLEMENTATION Page 93 of 273

This has had the consequence that numerous times there have been compile
errors in the ORTS code that had to be corrected before it could be used.

The GDF itself is not very developer friendly. The server will crash if it
receives any invalid input. In general very few errors are handled.

7.5.3 Pathfinder

One of the key elements that have suffered from lack of documentation is
the pathfinder. In order to even be able to start the implementation specific
design of a pathfinder the developer must know things like map width, map
height, which terrain types there are, movement cost of different terrain
types, the map topology in general and how to extract unit and obstacle
positions. All these factors and more had to be found through intensive
study of source code of the GDF’s internal modules. The development was
not made easier by the fact that very little information exist about the
"Blueprint" language in which game configurations are defined. This has
had the consequence that it has been impossible to set up a "sandbox"
environment in which to test and develop the pathfinder. Instead one of the
predefined games had to be used. These games feature random generated
maps that vary from game to game. This complicated development as data
such as unit and obstacle positions cannot be transfered from test to test.
Indeed the size of the game itself complicates matters. Instead of for instance
working in a 32*32 cell environment in which a path can be easily verified,
the games work in a 1024*1024 cell environment that severely complicates
verification.

7.5.4 Al Framework

This section will summarise some of the problems that were encountered
during the implementation of the AI framework.

There were mainly problems with the interaction with the ORTS GDF
when having to make units perform certain actions, because this was not
documented anywhere. The sample AT that came along with the GDF was
the only thing that could give an idea about how to make units perform ac-
tions, and the only actions that was performed in this example code was the
move action. Every other type of interaction with the GDF were more or less
trial and error. Currently there are the following problems with the inter-
action with the ORTS GDF: Constructing buildings, harvesting resources,
and attacking other units. The method of making a unit perform any of
these actions is by activating the corresponding script function on the unit
object. The problem is currently that when parsing the assumed parame-
ters, the ORTS server crashes. The assumption about what parameters that
is passed to the object is based on reading the script code. We have basi-
cally not been able to figure out what parameters should be passed to these

Page 94 of 273 CHAPTER 7. IMPLEMENTATION

functions, as there are no examples of how to do this, and it has not been
possible to extract this information from the ORTS code. This has only left
a trial and error approach, which has not been successful and hence these
actions have not been implemented.

7.5.5 Implementation Status

This section is presented to give the reader an overview of the status of
the prototype implementation, before we in Chapter 8 will evaluate it. At
this point, all the features mentioned in Table 7.1 have been implemented.
However, as discussed throughout this section, we have experienced numer-
ous problems with interacting with the GDF. This has resulted in that we
are not able to properly execute the actions we want. Furthermore, the
JIT part of our pathfinding idea presented in Section 5.4.2 has not been
included, because it has been an idea in continues development throughout
the project and would require extra design consideration before being ap-
plicable in the implementation. This does not affect the overall test of the
pathfinder. However, for an actual use in a framework the JIT technique
will have a significant impact as the response time will be severely reduced
[BMS04| and the computation will be distributed over several game ticks.

7.5.6 Conclusion

All in all we must conclude that ORTS is simply not yet mature enough for
the intended purpose. In fact to our knowledge there are currently no RTS
GDF that lives up to the requirements presented in Section 5.1.2. An Al
framework such as the one built in this project would indeed have been easier
to realise if ORTS for example had another couple of years to mature.

CHAPTER 8. EVALUATION Page 95 of 273

Chapter 8

Evaluation

In this chapter we will evaluate the implementation presented in Chapter
7. Throughout this discussion, we will identify strengths and weaknesses of
the framework, and point out areas that require further research. The first
part of this chapter will be divided into six sections, each covering an area
important to be evaluated in order to determine the success of a possible
full implementation of our framework. Combined, these areas will serve as
success criteria for evaluating an Al framework for game development. The
following shortly explains the focus of each section:

Configurable: The first area stems from the design goal in Section 4.1,
which states that the framework must be able to shift the workload of
AT development from programmers to Al designers. This section will
primarily deal with subjects concerning the usability of the framework
for inexperienced programmers. More specifically, we will evaluate how
easy it is to configure knowledge bases and framework modules as well
as discuss how to connect the Al framework to different GDFs.

Versatility: This area discuss an area of extreme importance for frame-
works in general, namely its versatility [FS97]. We will in this section
evaluate the different ways of varying instances of the framework from
each other. This will be done by taking a closer look at how prior
knowledge bases and module configuration can be specified to create
different types of Al’s for the different genres of RTS games defined in
Section 2.4.2.

Extendibility: A third area which frameworks rely on is their extendibil-
ity [FS97]. As some games require special kinds of features, the Al
framework should be relatively easily extended to deal with this. This
section will describe how to extend the framework by example, and
then discuss this method of adding new features to the framework.

Performance Testing: The fourth area will focus on performance testing

Page 96 of 273 CHAPTER 8. EVALUATION

and scalability, as this is important in real-time systems. This section
will present performance tests on the prototype implementation, which
will determine possible bottlenecks in the design. Furthermore, these
tests will determine how much performance is used on the prototype
implementation and discuss whether a fully implemented Al framework
is a realistic possibility performance-wise.

AT Improvements: This area will focus on the Al improvements the frame-
work is able to provide, which was also one of the design goals described
in Section 4.1. This section will outline areas that the prototype im-
plementation handles, which most commercial RT'S games do not.

RTS Specific Concepts: The sixth and final area will focus on an evalua-
tion of the RTS specific concepts presented in Section 5.4. This section
will evaluate the two RT'S specific ideas we have chosen to implement
in the prototype of the framework: Strategy trees and pathfinding.

Following this, we will reflect upon the transition from design to imple-
mentation and discuss the development model used throughout this project.
Finally, this chapter will end with a section that summarises important de-
tails discovered through the evaluation, and discusses potential problems and
areas that require further work.

8.1 Configurability

This section will present a number of ways to vary framework instances from
each other through configurable Python files. Appendix B presents the de-
sign of each module, including a specification of what can be configured on
each of them. First, we will show how to specify units and buildings, and
thereby build a technology tree, for the game in question. Then we will
show how strategies are specified, and more specifically, how the user builds
a strategy tree for the AI. Furthermore, as each module can be configured
as well, we will pick an example module and show which and how different
variables can be configured. Following each example on how to configure a
certain part of the framework, we will briefly discuss advantages and dis-
advantages in this way of configuring the framework. Afterwards, we will
shortly describe what the focus of Al developers should be, depending on
the RTS genre the Al is being made for. Finally, the section will explain
how the Al framework and the GDF are connected to each other and discuss
problems in this approach, as well as potential solutions.

8.1.1 Configuration of Technology Tree

Four different things must normally be specified for a technology tree: Unit
types, building types, research types and the dependencies between these.

© 0 N O U s W

e e e
s W N = O

CHAPTER 8. EVALUATION Page 97 of 273

For our prototype implementation, we can ignore research types as this is
not a part of the game used with this implementation. A technology tree
in the framework is specified by a unit or building specification including
any preconditions there might be to this unit or building. For this prototype
implementation there are a Python file for each unit or building specification.
An example of this can be seen in Listing 8.1, which defines a marine type.
The attributes defined for this unit are all specific to the test game used with
the prototype implementation.

Listing 8.1: Specification of a marine type

name = "marine"
type = "Unit"
preconditions = ["barrack"]

hitpoints = 100

attack _max = 50

attack _min = 30

ground _attack range = 8
movement _speed = 3
sight range = 6

actions = ["move", "attack", "stop"]
minerals = 100
built by = "barrack"

build _time = 100
supply cost =1

The code defines several standard attributes for a unit type. Further-
more, it defines the type of actions available for this unit and its place in the
technology tree through the preconditions variable. The framework should
attempt to include all standard attributes for units and buildings, such as
the ones in Listing 8.1, but sometimes a game will require more than these.
To add new attributes, a developer must do two things. First, the attribute
must be added as an attribute of the particular unit or building type in the
framework. This is not a difficult task, and can be done by simply copying
how other attributes have already been created. Secondly, the developer
must specify exactly how to use this new variable. If for instance the user
have included an armor type attribute, which defines how much damage a
unit takes from different kind of units, the Tactical Planning module should
be modified to use this information in battle. Extensions such as these are
discussed in further detail in Section 8.3. Depending on the new attribute
added, the developer may want to extend several modules and methods to
achieve the desired effect, and hence the complexity of such an extension
varies. There is no way for inexperienced programmers to add such new
attributes without the help of C++ programmers. Furthermore, the pro-
grammers implementing the feature must have detailed knowledge of the
internal architecture of the framework. This must be provided through the
framework documentation.

© 0o N O ot s W N -

e e el
DUt W N = O

Page 98 of 273 CHAPTER 8. EVALUATION

Documentation is a critical issue when building frameworks [FHLS97].
Several methods for providing good documentation with frameworks have
been presented in literature and it has been identified as an essential factor
in how well users are able to reuse software [BKMO00]. One method is to
divide software documentation into two broad categories: User documenta-
tion and internal documentation [Jst99]. Here, user documentation refers to
reference documentation and introduction material such as tutorials, guide-
lines, cookbooks etc. Internal documentation on the other hand, refers to
all kinds of documentation that a user may need to maintain and further
develop the software. The framework described in this project should in-
clude both kind of documentation, as it must be used by both users of the
framework and developers wanting to extend the framework.

As can be seen in Listing 8.1, although the code is written in Python,
it does not really look like code. All units and buildings are specified in
this manner, and the specification of all of these for the game used with our
implementation can be found in Appendix J.1. Basically, everyone could
easily create new unit or building types by just looking at previous examples
of this. No programmers need to be involved in this process.

8.1.2 Configuration of Strategy Trees

Strategy trees are built in a way similar to the technology tree in the previous
section. Fach strategy node is defined separately with a unique name and
information about parent strategies and counter strategies. The user must
specify one strategy as the starting point strategy, which is used as the root
of the tree. In this particular game, the user starts with 6 workers and 1
control center. The code in listing 8.2 defines a fast tech strategy (explained
in Appendix A.5) for this particular game.

Listing 8.2: Example of a strategy tree node defined for a fast tech strategy
fast tech = {

"name" : "Fast_tech",
"precondition" : "Starting_Point",
"follow up strategies" : ["Mass_tanks"],
"counters" : ["Fast_expand"],
"percentage use" : 30,

"time" : 500,

"purpose" : "step",

"expansions" : 0,

"controlCenter" : 1,

"barracks" : 1,

"factory" : 1,

"worker" : 8,

"marine" : 0,

"tank" : 5

}

CHAPTER 8. EVALUATION Page 99 of 273

The code defines all the attributes for strategy tree nodes discussed
in Section 5.4.1. Furthermore, a strategy tree with all strategies can
be built through the variables precondition (parents in the tree), fol-
low up _strategies (children in the tree) and counters (counter nodes). The
percentage_use variable indicates how often this strategy should be used
compared to other strategies at the same level in the tree. Finally, the pur-
pose variable indicates what the Al should do when reaching this particular
state. It can basically either be step, indicating that this strategy is only a
stepping stone towards following strategies, or attack, indicating that the Al
should attack at this point in the strategy. The entire definition of strategies
and the strategy tree, the Known Strategies knowledge base, can be found
in Appendix J.7.

It is possible to change or add attributes for strategy tree nodes, but C+-+
programming knowledge is required. For this brief example, assume that the
developer wants to change the purpose attribute to contain a defend option.
To do this, the developer must first define internally in the framework that
this attribute can be a defend type. Afterwards, the framework must be told
how to use this new type. In this case, it must be used when the AT reaches
the state dictated by a strategy tree node having the purpose attribute set to
defend. Checking the purpose attribute is already done within the Strategic
Planning module in the Evaluation sub-module described in Appendix B.5.9,
and the defend option can easily be added here. Defining what should be
done when reaching this state, can be done in two ways: Either the developer
uses functions already defined within the Strategic Planning module or she
defines entirely new functions that dictate the behaviour of the defend type.
Both ways require detailed knowledge of C+-+ and the internal parts of the
framework. This must be obtained through the framework’s documentation
as also discussed in the previous section.

The code in Listing 8.2 is relatively easy for even non-programmers to
write. Even though each strategy is actually a Python dictionary, the user
does not need to be aware of this. With just a single example and an ex-
planation of each attribute in the strategy node, an Al designer can easily
define strategies for the game. The disadvantage of this approach is that the
designer herself needs to keep track of strategy names, follow-up strategies,
parents nodes etc. While this is manageable in simple games with a small
strategy tree, it becomes very hard to keep track of when designing large
and complex strategy trees. To overcome problems such as these, one possi-
bility would be to let the designer, design strategy trees in a graphical user
interface, where strategies and their relation to each other are more obvious.

8.1.3 Configuration of Framework Modules

For each framework module, there is a corresponding Python configuration
file. In these, all game or AI specific variables can be set. As an example,

© 0 N e U oA W N

R N N A T e e e e o e
LS I N X R N A T S =)

Page 100 of 273 CHAPTER 8. EVALUATION

consider a sub-part of the script used to configure the Probabilistic Reasoning
module in Listing 8.3.

Listing 8.3: Configuration script for the Probabilistic Reasoning module

This script defines variables for the Probabilistic Reasoning module

The following describes the strategic importance of different attributes
in a game. Values must be between 0 and 1, with 1 being the mazimum

strategic importance and 0 being mo strategic importance at all.
controlCenter = 0.2

barracks = 0.2

factory = 0.2

worker = 0.5

marine = 1

tank = 1

Mazimum node deviation: The following wvariable describes how to compare
two strategy tree mnodes. It defines the percentage deviation that an

attribute in the two nodes may deviate from each other and still be

considered equal.

max_deviation percentage of total = 10

Determination of important variables. How much should variables in
possible strategies deviate before being considered important to
determine the final choice of strategy.

importance_buildings = 30
importance units = 20

As with the scripts mentioned in the previous sections, the only thing
the user needs to do is to define variables. To ease understanding of the
scripts, each script includes comments on exactly what each variable means.
However, it is still very hard for new users of the framework to understand
some of the variables in the scripts without understanding the architecture
of the module, which the script configures. The code in Listing 8.3 is for
instance much easier to understand when the user has read the internal
design of the module presented in Appendix B.4. The only way to solve this
problem is through the documentation of the framework, which has already
been discussed in Section 8.1.1.

A developer may want to add new variables to the module configuration
script. As an example, consider that a developer wants to add a aggressive-
ness variable to the configuration script for the Strategic Planning module.
This variable should define how aggressive the Al should be, and how willing
it should be to choose an aggressive strategy. Two steps must be completed
to add this new variable. First, the constructor of the Strategic Planning
module must be modified to extract the new variable from the Python script.
Listing 8.4 shows an extract of the constructor where this happens. This step

_ W N

CHAPTER 8. EVALUATION Page 101 of 273

includes creating a private aggressiveness variable on the Strategic Planning
module class.

Listing 8.4: Extracting a variable from the Strategic Planning configuration script

Python interpreterx py interpreter = Python interpreter::instance();
py_interpreter—>run_file("ortsai/module conf/strategicplanner.py");
object ns — py_ interpreter —>get mnamespace ();

aggressiveness = extract<int >(ns[("aggressiveness")]);

The second step will be to dictate where the variable is to be used. In
this case, it will probably be in the sub-module of the Strategic Planning
module, which deals with selecting a new strategy: The Find New Strategy
sub-module described in Appendix B.5.7. Exactly how to extend methods in
the framework is discussed further in Section 8.3. Both steps require C+-+
programming knowledge, and can hence not be done by AI designers alone.

8.1.4 Configuration of Als in Different RTS Genres

This section will discuss how the framework can be configured to create Als
in the four different RTS genres presented in Section 2.4.2. We will present
each genre in turn, and discuss what typically will be the focus when building
Als for that particular genre:

The Command & Conquer Genre: An Al in this genre should typically
have less emphasis on the reasoning part of the framework, as counters
only have little effect in these kind of games. The main focus is secur-
ing enough resources to mass units, while at the same time stopping
the opponent from doing the same. The Resource Management and
Tactical Planning modules are the primary modules for achieving this.
The configuration of strategy trees should focus on the strategies in
the tree rather than the counter nodes in the tree.

The Age of Empires Genre: This genre focuses on resource management
with resources spread all around the map, and games tend to be a
battle of control of these resources, hence making the Resource Man-
agement module essential. Furthermore, games in the genre often fo-
cuses on counters as well, making both the Probabilistic Reasoning and
Strategic Planning modules very important to configure to perform the
best possible way in the game in question. Strategy trees should be
created with emphasis on both strategies and counters. Units have
relatively few hitpoints, which makes micromanagement difficult, and
hence the developer can put less work into configuring the Tactical
Planning module. However, this module must still take care of things
like formations, unit deployment, use of support etc., which are also
important for Als in this genre.

D ot s W N =

Page 102 of 273 CHAPTER 8. EVALUATION

The Starcraft Genre: The key areas in this genre are areas like strategic
variation, build orders and good placement of defensive structures.
This effectively means that the Strategic Planning and Base Building
modules are of great importance in these kind of games. Games in this
genre will also benefit greatly from adding new states to the States
sub-module of the Strategic Planning module presented in Appendix
B.5.10. This is because there is so much emphasis on the execution of
strategies in this genre.

The Warcraft Genre: This genre is characterised by having relatively
high hitpoint units and buildings, which means that micromanage-
ment and hence the Tactical Planning module has much more effect
than in the other genres. The newer games of this genre also include a
focus on counters, and because of this, both the configuration of strat-
egy trees and the Strategic Planning module should be the focus of the
developer.

Section 8.3.3 will discuss how the framework can be adapted to work
with games that do not exactly follow the definition of RTS games presented
in Section 1.1.

8.1.5 Configuration of Interaction with GDF

Configuring the Connection modules interface between the GDF and the Al
framework is one of the larger tasks, and it is difficult to implement because
it requires extensive knowledge of both the Al framework and the GDF. This
evaluation will only consider connecting the framework with the ORTS GDF,
as it has not been possible to test other GDFs, because of the problems with
open source GDFs described in Section 5.1.2.

In Listing 8.5, the part of the Connection module that handles the read-
ing from the ORTS GDF is shown. This excerpt checks for updates in the
game state, as can be seen on Line 4. If anything is received, a container
object is created on Line 5, a pointer to the game state is inserted on Line
7, and then on Line 8, a pointer to the changes that have happened in this
game tick is inserted. Then the module will send an event telling that the
game state has been updated, as seen on Line 11 and 12. This event contains
a pointer to the container class where the data is stored, which the Percept
Interpreter requires.

Listing 8.5: Read function from connection module

void Orts_conmnection::read () {
// looks for server messages
// if one or more arrived , send event
if (gsm—>recv_view ()) {
Game_changex data = new Game_change ();

10
11
12
13
14
15

© 0 N D Ut s W W

e e
w N = O

CHAPTER 8. EVALUATION Page 103 of 273

data—>game = game;
data—>changes = changes;

if (data—>game){

Al eventx event = mew AI event (AI event::UPDATE GAME STATE, data);

Event manager::instance()—>send_event(event);

}

Most of the complexity is not here in the read function, but is instead
in the percept interpreter that transfers the data from the game state into
framework knowledge bases. The read() function only makes sure that the
data is accessible. Depending on the framework, this is a fairly straightfor-
ward task. In ORTS, the AT opponents act as separate clients, which means
that if a client is already implemented, this code can be reused in the read()
function for getting the necessary data.

In Listing 8.6, an excerpt of the user implemented Percept Interpreter is
seen. This user implemented module is the largest and most time consuming
task to implement for developers, the complex parts are hidden in the four
functions called in this excerpt(line 9-12). It requires knowledge about the
framework and the GDF, because it is here where all the data received from
the GDF is translated into something that the framework can handle. Each
of the knowledge bases that contain data that can change from game tick to
game tick is updated here. However, when this rather large task of imple-
menting has been done for the GDF, then it does not have to be changed
anymore, unless new attributes are added to the game.

Listing 8.6: User implemented Percept Interpreter

void User percept interpreter::user run(AI eventx event) {

Orts_connection :: Game changex data —=
(Orts _connection :: Game changex)event—>get data ();
this—>current game state = data—>game;
this—>changes = data—>changes;
this—id = ((Gamex)current game state)—>get client player ();

add _new _objects();

update changed objects();
remove _dead objects();
remove _vanished objects ();

The function presented in Listing 8.6 takes the event that was sent from
the Connection module, and extracts the data from it. The pointer it con-
tains is first casted to the type that is in the event, as shown on Line 3 and 4.
Then each of the pointers contained in this class is assigned to pointers in the
local class. Afterwards four functions are called, each taking the data out of
the newly assigned pointers and updating different knowledge bases. These

© 00 N O ot s W N

NN N NN N N R R e e e e e
S TR XN R O © N O WA W N~ O

Page 104 of 273 CHAPTER 8. EVALUATION

functions are the complex part of the Percept Interpreter that translate the
data from the GDF into knowledge in the knowledge bases

Listing 8.7 presents an excerpt of the write() function in the Connec-
tion module. This function is one of the largest tasks for the developers to
implement, because it has to wrap all of the actions that are generated in
the framework, into something that the GDF can understand. The write()
function is given a list of actions, and all these actions should then be carried
out in the game environment.

Listing 8.7: ORTS connection module
void Orts_connection:: write (AI action::listtypex actions) {

for (AT action::listtype ::const_ iterator it=actions—>begin();it!=actions—>end();it++){

GameObj* obj = id_obj map—>id_to_obj [(x it)—>id |;
if (obj && ! obj—is _dead ()){
switch ((% it)—>type) {
// more cases
case AI action ::ATTACK:
// WARNING starting new Sscope

{

AttackAI_actionx action = static_cast<AttackAI_actions>(x it);

Vector<sint4 > args;

args.push back (action—>enemy);

rv—>returnvalue [action —id]| =
obj—>component ("weapon")—>set action("attack" 6 args);

}

break;

// ... more cases

default:

cerr << "Invalid_action_give_to_Orts_connection" << endl;

}
}
}
delete actions;
gsm—>send actions ();
}

As can be seen in the code examples listed above, all the code is in
C++, and this sets some boundaries for how developer friendly it is to im-
plement. Furthermore, the programmer implementing this should have at
least some understanding and knowledge of the structure and architecture
of both frameworks, in order to translate data from one to the other in a
reasonable way. The actions that are received as input to the write function
are encapsulated in a data structure that the user also has to know, but this
structure is very simple, and can be used as shown in Listing 8.7. This ex-
ample is an excerpt that only handles the attack action, but all other actions
should be handled as seen in this function. The list containing the AI actions
can be iterated through like any other Standard Template Library[SL94] list.
The most primitive action, from which all others are derived, contains a type
enumerator, and an object id. The type enumerator can be used to assure

CHAPTER 8. EVALUATION Page 105 of 273

the type of the class, and then a downward cast can be made safely, so the
more specific data in the class can be accessed. As shown in the example,
the AttackAI action contains the ID of the unit that should be attacked.
This ID is in the enemy variable, as seen on Line 13. With this information,
the action can be performed in the GDF, like the attack action set on the
object show on Line 14 and 15. Then on Line 24, the action list is deleted
to clean up, and on Line 25, the GDF is asked to send the actions. In ORTS
this means that the actions just assigned are sent to the server.

To improve usability for the Connection module a graphical user inter-
face could be created to assist the creation of the module. This would most
of all be similar to an Integrated Development Environment, because the
only way to connect the two frameworks will be by creating a custom wrap-
per interface. However, the graphical user interface can only assist as an
understanding aid of what has to be created, like having auto completion,
checklists and descriptions of knowledge bases and their content. For in-
stance for the Percept Interpreter, the developer could be aided by giving a
checklist of the knowledge bases that have to be updated, also containing
descriptions of the knowledge bases.

8.2 Versatility

This section will deal with two issues of versatility: Framework versatility
and Al versatility. First, we will discuss the versatility of the framework
by discussing if the prototype implementation has proven that it is possible
to build an AI framework that is independent of the GDF to which it is
connected. Secondly, we will discuss different ways of varying framework
instances from each other and evaluate whether it is possible to create all
kinds of AI for RTS games using the framework.

8.2.1 Framework Versatility

One of the goals of the framework was to make it independent of the game
development framework. This would allow the Al framework to be con-
nected to any GDF. The prototype implementation of the framework has
only been connected to one GDF: ORTS. This means that the framework
has as such not been tested in this area. However, one can make some general
observations about the versatility of the framework based on the prototype
implementation. The prototype implementation has successfully separated
Al code and game development framework code by keeping all ORTS spe-
cific details out of all modules but two: The Percept Interpreter and the
Connection module described in Section 7.4.2. All other framework modules
are independent of the GDF. These two GDF specific modules must solve
specific tasks, which the rest of the Al framework relies on. The Connection
module must control the direct communication with the GDF as described

Page 106 of 273 CHAPTER 8. EVALUATION

in Section 7.4.2, and the Percept Interpreter must extract the information
required for different knowledge bases, as defined in Appendix B.1.

The two modules, Connection and Percept Interpreter, contain 259 and
607 lines of C++ code respectively, in the implementation connecting the
AT framework to the ORTS GDF and the code is not complex. Coding
these modules requires the developer to have extensive knowledge of how the
GDF operates and how the game state is accessed, to obtain the necessary
information. However, as the programmers developing the Al are typically
also involved in the game creation process, it is safe to assume that they also
have knowledge of the GDF being used.

There are two requirements that a GDF must fulfil to be used with this
AT framework:

1. The GDF must support giving full control of all Al actions to the Al
framework.

2. The GDF must support retrieving the necessary data, described in
Appendix B.1, for the AI framework to update in-game knowledge
bases.

It is our understanding that the first requirement is fulfilled by most
GDFs, but this cannot be studied, as most game development companies
will not share information about their GDF. However, it would from a de-
sign perspective, not make any sense to have the two too closely linked. The
second requirement should be fulfilled by most GDFs as well. The informa-
tion required by the AI framework is essential for creating strong Als and
without a way to extract this from the GDF, it would not be possible to cre-
ate the AL It is unlikely that a GDF does not support operations required
for creating Als.

8.2.2 Al Versatility

There are two ways of varying framework instances from each other in the
prototype implementation of the framework: Through the strategies that
an Al knows, and through the configuration of different AT modules. This
section will illustrate both ways of creating different kind of Als and discuss
whether this is sufficient to represent any kind of Al a designer may want to
create. In the full implementation of the framework, the user would be able to
also change Al behaviour through both tactics and base building templates,
which were discussed in Section 5.4.3 and Section 5.4.4 respectively.

Strategy Trees

An AT built using this framework will never follow strategies not present in its
strategy tree. This way, an Al designer has complete control over what the

CHAPTER 8. EVALUATION Page 107 of 273

AT will try to do during a game. If only one strategy is present in the strategy
tree, the Al will only do this strategy. If only one counter is present for a
certain strategy, the Al designer will know for sure that this is the strategy
the AT will choose when faced with a certain strategy from the opponent. By
letting strategy trees define the AT’s strategic knowledge, we enable the Al
designer to create Als with very specialised behaviour. The above is however,
only the case when there is no learning included in the framework. According
to our definition of what a strategy should contain (Appendix A.1), strategy
trees allow a designer to customise an Al to perform any strategy.

To illustrate how to use strategy trees to define different kind of Als,
consider Figure 8.1 and Figure 8.2. Both figures show a strategy tree for an
AT in the game used for the prototype implementation. Figure 8.1 shows a
strategy with three possible starting strategies, and a follow-up strategy for
each starting strategy. For simplicity, no counter nodes are shown on this
figure. Figure 8.2 shows a strategy tree for an AI containing only one of the
starting strategies shown in Figure 8.1. The AI shown in Figure 8.1 will be
able to choose between three strategies, and as seen on the edges, it must
choose the upper branch 50% of the times. The AI shown in Figure 8.2 on
the other hand, will always do the same strategy. By defining strategy trees
this way, an Al designer can control the possibilities an Al will have during
a game, and thus create exactly the kind of Al wanted for a particular game
or situation. The addition of tactics and base building templates to strategy
tree nodes in the complete implementation of the framework, will further
increase the possibilities an Al designer will have to customise the Al

Module Configuration

In terms of module configuration, each module typically provides three dif-
ferent types of configuration:

Game Specific Variables: These variables allow framework instances to
be designed to suit a specific game. This is for instance definitions of
which units should be considered workers, which buildings should be
considered farms etc.

Al Balancing Variables: These variables are as such also game specific
variables, but deals more specifically with the AT of a particular game.
They help balance internal Al calculations by defining balancing vari-
ables. This could for instance be the variables in Listing 8.3 on line 24
and line 25, which define the strategic importance of different types of
units/buildings in the game.

Al Behaviour Variables: These variables define different behaviour at-
tributes for an Al instance of the framework. Behaviour attributes
are variables that define how an Al should reason and react to things

Page 108 of 273 CHAPTER 8. EVALUATION

Node 2 Node 5
Workers: 12 Workers: 18
Marines: 0 Marines: 30
Tanks: 0 1 Tanks: 0
ControlCenter: 2 ControlCenter: 2
Barracks 0 Barracks 2
Factory: 0 Factory: 0
Time: 500 Time: 1500
Purpose: Step Purpose: Attack
0.5
Node 1 Node 3 Node 6
Workers: 6 Workers: 8 Workers: 10
Marines: 0 Marines: 10 Marines: 15
Tanks: 0 0.3 Tanks: 0 1 Tanks: 10
ControlCenter: 1 ControlCenter: 1 ControlCenter: 1
Barracks 0 Barracks 1 Barracks 1
Factory: 0 Factory: 0 Factory: 1
Time: 0 Time: 0 Time: 1500
Purpose: Step Purpose: Attack Purpose: Attack
0.2
Node 4 Node 7
Workers: 8 Workers: 12
Marines: 0 Marines: 0
Tanks: 3 1 Tanks: 20
ControlCenter: 1 ControlCenter: 1
Barracks 1 Barracks 0
Factory: 1 Factory: 2
Time: 500 Time: 1500
Purpose: Step Purpose: Attack
Figure 8.1: Strategy tree for an Al in the test game
Node 1 Node 2 Node 3
Workers: 6 Workers: 8 Workers: 10
Marines: 0 Marines: 10 Marines: 15
Tanks: 0 1 Tanks: 0 1 Tanks: 10
ControlCenter: 1 ControlCenter: 1 ControlCenter: 1
Barracks 0 Barracks 1 Barracks 1
Factory: 0 Factory: 0 Factory: 1
Time: 0 Time: 0 Time: 1500
Purpose: Step Purpose: Attack Purpose: Attack

Figure 8.2: Specialised strategy tree for an Al in the test game

1
2
3

CHAPTER 8. EVALUATION Page 109 of 273

seen in the environment. This could for instance be the variable in
Listing 8.3 on line 18, which defines when two strategy nodes should
be considered the same. Depending on the variable, the AT will take
more possible opponent strategies into consideration and change its
behaviour accordingly.

Combined, these three types of variables allow for adapting the frame-
work to any kind of game and any kind of Al. By having all game specific
variables in scripts outside of the framework, the internal code of the frame-
work is kept generic and independent of the game in question. Furthermore,
the advantage of having these variables defined in scripts is that a user can
change them without having to re-compile the entire framework. As dis-
cussed in Section 8.1.3, developers can add their own configuration variables
to further customise the AL

8.3 Extendibility

This section will give an example of how to extend a framework module, and
then discuss and evaluate the method of doing this. Afterwards, we will give
an example of how entirely new modules can be added to the framework and
in the last section we will discuss different framework limitations.

8.3.1 Methods and Module Extensions

As explained in Section 6.3, the framework allows all modules to be extended.
A user can choose to simply extend a single method in a module or to extend
the entire module, including all its extendible methods. For this example we
will only extend a single method, as this will be enough to provide the reader
with the basic idea.

Imagine that an Al developer comes up with a new idea for how scout-
ing should be carried out in a certain game. The basic scouting provided
with the framework may have turned out to be insufficient for the game in
question. In other words, the Al developer wants to replace the scouting
method in the framework with a new method. This requires an extension of
the Strategic Planning module, where scouting is handled. Consider a sub-
set of the functions available in this module in Listing 8.8. These functions
represent just some of the respounsibilities of the Strategic Planning module
which can be extended, and these are explained in detail in Appendix B.5.
These extendible methods are often referred to as hook methods in framework
literature [MLOL1].

Listing 8.8: Sub-set of the extendible functions in the Strategic Planning module

virtual bool sufficient knowledge ();
virtual void determine scouting mission ();
virtual bool change strategy ();

o N O o A

ot W N

© 0 N U oA W N

=
o

Page 110 of 273 CHAPTER 8. EVALUATION

virtual void find counter percentages();
virtual void find new _strategy ();
virtual void determine expansions();
virtual void evaluate situation ();
virtual void execute state();

In this case the user may want to change both when scouting is nec-
essary (the sufficient knowledge() function), and how scouting is actually
performed (the determine scouting mission() function). Two things must
be done to achieve this: Extending the module and informing the event
manager to use this extended module. Extending the module is a relatively
simple task, and is shown in Listing 8.9. The module will then use the new
extended methods when these are present, and otherwise use the default
methods the Strategic Planning module provides. The user does not need to
worry about when to call the different functions, as this is handled internally
in the framework.

Listing 8.9: Extension of the Strategic Planning module

class Extended strategic planner : public Strategic Planner {
public:

bool sufficient knowledge () { 1

void determine scouting mission() { ... };

s

Following this, the event manager must be informed to use the new Fz-
tended Strategic Planning module instead. The place where the Strategic
Planning module is assigned to the event manager, it must be changed to
use the Extended Strategic Planning module instead. An excerpt is shown
in Listing 8.10. Shown on line 1, the Eztended Strategic Planning module is
assigned to the sp variable instead of the normal Strategic Planning mod-
ule. The pointer can still be of the derived class, because they have the
same interface. The argument given to the constructor are the priority of
the module along with the required knowledge bases. Then on line 4 the
module is given a meaningful name, and the module is assigned to the events
it should handle as normal. Line 1 and line 4 are the only lines needed to be
changed to inform the event manager to use the Eztended Strategic Planning
module.

Listing 8.10: Assignment of events to the Extended Strategic Planning module

Strategic planner* sp = new Extended strategic planner (4, gtk, mk, ek, csn,
om, tsn, ks, kbo, ck, dmk, igek, mik, aua, igok);

sp—name = "Extended_strategic_planner";

sp, AI event::PRR_TRIGGER_SP);
sp, AI_ event::START STRATEGY);
sp, Al event::AUA NEWUNIIS);
sp, AI event::AUA DEADUNITS);
sp, AI event::SP MOVE END);

event _mng—>assign _module to_ event type
event__mng—>assign_module_to_event_type
event _mng—>assign_module_to_event_type
event _mng—>assign _module to_ event type
event__mng—>assign_module_to_event_type

Py

W N

CHAPTER 8. EVALUATION Page 111 of 273

event mng—>assign _module to event type (sp, AI event::RETREAT);

All framework modules can be extended this way. As explained in this
section, extending modules and methods are relatively easy. One will need
C++ programming knowledge to actually implement the extended methods,
but the programmer can do this without knowledge of how other methods
in the module works. We have identified two problems with this approach:

1. The user must know the architecture of the framework fairly well to
know which methods to change to obtain a certain effect, and the user
must likewise know which knowledge bases provide the different types
of knowledge, and how to access them.

2. The framework restricts the user in the way the internal architecture
of a module is designed. If the user wants to change the internal
architecture of the module, she must basically implement the entire
module from scratch, and personally make sure that all events are
properly handled, and sent from the module.

These are typical problems when dealing with frameworks [FS97]
[MBF99] and there are no way around them. Frameworks will include the
architecture behind the solution, and the benefit of this increased code reuse
is greater than the cost, as most Als built using the framework will not
require changing the internal architecture of any modules. Furthermore, it
is unrealistic to expect to be able to extend methods in a module without
understanding the basic architecture of that module.

8.3.2 Adding New Modules

Although this architecture is built to deal with all games included in the RTS
genres defined in Section 2.4.2, some games may contain special features
that users of the framework want to add a new module to handle. The
following will describe how to do this, and what developers must take into
consideration when modifying the framework in this way. The first step will
be to create the new module, which is derived from the Module interface,
with the appropriate knowledge bases, assign it a name, and then assign the
event types that the module should handle. This is shown in Listing 8.11.

Listing 8.11: Creating a new module in the framework

New_ module module = new New_module(/* Priority and Knowledge bases x/);

module—name = "New_Module_Name" ;

event mng—>assign _module to event type (module, AI event::TYPE 1);

event mng—>assign module to_ event type (module, AI event::TYPE 2);
Afterwards, the actual module must be created. It must implement the

module interface that includes a run() function, which must handle all the

different event types this module can be sent. Listing 8.12 shows how this is

done.

Page 112 of 273 CHAPTER 8. EVALUATION

Listing 8.12: Mandatory run function in the new module

void module::run (Al eventx event)

{

switch (event—>type) {
case Al event::TYPE 1:
// Handle event
break;
case Al event::TYPE 2:
// Handle event
break;
default:
cerr << "Module_failed_to_handle_event" << endl;
}

All that is left now is to add the functionality required to handle the

different event types. However, adding a new module does nothing if it is
never sent any events. This means that developers must also identify when
events are to be sent, and add this to existing modules and methods in the
framework. All modules that are to send events to the new module must be
extended as explained in Section 8.3.1.

Now that the module is created and events are sent to it, the developer

must consider how the module should affect other modules in the framework.
There are basically two ways of doing this:

Through Knowledge Bases: By modifying shared in-game knowledge

bases, the new module can change the foundation on which other mod-
ules work on, and through this, influence their behaviour. This must
be done with great care, as in-game knowledge bases are often shared
between several modules, and changing them may cause unexpected
consequences. The developer must have extensive knowledge of the
internal parts of the framework to make such modifications safely.

Through Events: The developer can also choose to create new events sent

from the new module, which existing modules must handle. This is an
approach that requires more work, but is safer as no unexpected side
effects can occur. The new event types must be added to the event
manager and each module receiving a new event type must be ex-
tended. However, the developer is left in more direct control of exactly
how to handle different things from the new module. It still requires
some knowledge of the internal framework, but less than influencing
other modules through knowledge bases.

Which of the two methods the developer should choose, depends on the

type of influence the new module should have on other modules and on
the developers’ understanding of the internal parts of the framework. No
matter which method is chosen, adding new modules to the framework is

CHAPTER 8. EVALUATION Page 113 of 273

the most difficult way to extend the framework. We hypothesise that if
the framework is used for the intended games, the RTS genres defined in
Section 2.4.2, developers will seldom find themselves in a situation where
it is necessary to extend the framework this way. However, should special
circumstances arise, it is possible to do, provided the developer understands
the internal mechanisms of the framework.

8.3.3 Framework Limitations

The AT framework is built to handle the games falling into the category of
RTS games explained in Section 1.1. However, many newer RTS games have
introduced special features that make it deviate a little from traditional
RTS games. The methods presented in this section have explained how
developers can extend the framework in various ways to cope with these new
requirements.

As an example, consider The Lord of the Rings: Battle for Middle-Earth
which is widely considered an RTS game. However, this game differs from
traditional RT'S games by the way it handles resource gathering. Instead of
having workers running to and from resources spread around the map, this
game relies on one universal resource that the player acquires by building
farms and slaughterhouses in predefined positions on the map. In fact, all
buildings must be built at predefined locations. These two features have
significant impact on how an Al should play the game. All internal opera-
tions within the Base Building and Resource Management modules in the
Al framework would basically be useless and unable to cope with these kind
of changes. For the Al framework to be useful in this game, both of these
modules must be extended and completely re-implemented to suit the spe-
cific demands of the game. At this point, developers must seriously consider
whether the benefits provided in other Al areas by the framework is enough
to justify modifying the framework to such an extend.

In general, when several framework modules must be completely changed,
developers must consider the trade-offs between the benefits of using the
framework compared to the learning curve required to be able to modify the
framework. If basic structures such as strategy trees and tactics cannot be
used in the game in question, it is probably not an advantage to use the
framework. The benefits of using frameworks in general, disappear when
users have to change too much of the internal architecture.

8.4 Performance Testing

This section will show how the performance of the framework is measured,
to test if the Al framework meets the real-time performance constraint, pre-
sented in Section 7.4.1. First a description of how the tests are created will
be presented, and following this, the result of the tests. Then a discussion

Page 114 of 273 CHAPTER 8. EVALUATION

of the results will be given, and finally a discussion of how the framework
scales in a complete implementation is presented.

8.4.1 Performance Test Construction

To test the performance of the framework and framework modules, code is
added to the event manager, which tells how much time is spent in each
module, and after a complete game tick. The numbers that the time test
can give will represent; The actual time that is spent in the module, the
time the operating system has spent on behalf of the application, and the
complete time that is spent. Because the operating system will change be-
tween processes while the program is executed, the most realistic result will
be the complete time spent, because the operating system will always do
this when running a game. Only the most necessary programs will be run
on the machine while the test is performed to minimise the factor of other
programs taking processing time. This means that only the ORTS server
and two instances of the prototype are run.
The following four tests will be performed:

Game Tick Performance: After each game tick the time used is recorded.
This will show if the framework is fast enough to be executed the
number of times each second that is required by the GDF. In ORTS
this is eight times per second, which means that the framework will
have 0.125 seconds to execute each game tick. When the framework
is not performing any actions, this should be considerably less, in the
area of 0.02 seconds. No processing time should be used, because
no decisions or actions are made. If the framework uses too much
processing time, there would not be enough processing time for the
actual game. A graph can be drawn comparing processing time over
game ticks. This will show if there is an increase in processing further
into the game.

Module Performance: This test will show which modules use the most
processing time. After each module is run, the time passed is recorded.
An average of each module is then made. This is presented in a list,
showing each of the modules and their average use of processing time
per game tick. This test can also be used in the actual use of the
framework, as an indicator of what modules could be optimised to get
better performance.

Module Game Tick Performance: This is a combination of the two pre-
vious tests, where each module’s processing time over game ticks is
plotted in a graph. This shows what modules are used in different
parts of the game. Some modules are used more in the start of the
game, while others are used more during battle. This test can give an

CHAPTER 8. EVALUATION Page 115 of 273

idea whether a module like for example the Tactical Planning module
is fast enough, when the AI comes into a large battle against an enemy.
There are no time requirements to the specific modules, just as long as
the total time of all modules in a game tick is less then 0.125 seconds.

Pathfinding Percentage: Pathfinding is the most time consuming part of
an Al so a test is performed to see how much of the total time in the
Al that is spent in the pathfinder. This is done by recording how much
time is spent inside the pathfinder and comparing this with the total
AT framework processing time. This is done over several game ticks,
so it is possible to get a meaningful and general result.

The test is performed on an Intel®Pentium@®III Mobile 800MHz, run-
ning Linux 2.6.16 and the code for the framework is compiled with g4+
4.0.3.

8.4.2 Performance Test Results

The result of each of the four tests can be seen in the this section. The tests
are performed with the use of a timer that can tell how many hundredth of a
second that have passed since the program was started. The time spend in a
function is then found by subtracting the time before and after this function
is called. This does however mean that the precision of the measurement
is limited to a hundredth of a second. The values in the graphs and tables
below are therefore all measured in hundredth of a second that functions use
of processing time.

During testing it was discovered that the pathfinder implementation had
performance problems. This is most likely because of the implementation of
the algorithm, so in the first three performance tests, a simplified version of
the pathfinder is used. It is simplified in the way that it moves on larger
cells instead of on unit coordinates, and does not take obstacles into account.
This means that it is possible for units to walk into each other and get stuck.
This simplification was necessary to be fast enough to respond the ORTS
server within a reasonable time, otherwise it would not perform any actions.

Game Tick Performance Test

Figure 8.4.2 presents the first 77 game ticks. It can be seen that there is used
a lot of processing time in the first game tick. This makes sense because this
is where a lot of the data that is sent from the ORTS server is inserted into
the knowledge bases. Furthermore a lot of decisions are made, for instance
what strategy to follow. The second peak at the graph is at the third game
tick. This is the first time that the pathfinder is used, because the workers
are assigned to gather resources, and a path is found for each of them. After
this nothing happens until the scouts have to find a path, at game tick 31.

Page 116 of 273 CHAPTER 8. EVALUATION

3B b

ol o b

20F b

processtime 1o5°s

0 10 20 30 40 50 60 70 80
game ticks

Figure 8.3: Game tick performance test

In general it is observed that the processing of each game tick takes around
0.07 or 0.08 seconds, when nothing of importance is happening. Considering
that there does not happen anything, and the framework still uses 0.07 or
0.08 seconds there is something that has to be optimised. The framework
has to be a lot faster to be usable in a real game.

Module Performance Test

Table 8.4.2 presents the result of the individual module performance test,
and are the average of 20 games run for 960 game ticks, meaning two min-
utes. There is an uncertainty of this test, because of the already mentioned
millisecond limitation. This part is even worse here, because after each mod-
ule is run its millisecond count is recorded, and the next time this module
is run, the count from this is just added to the first value. This means that
if a module runs for less then a millisecond at each run then it will never be
recorded as being run. This was the case for some of the modules. However,
in average the time was barely one, so this is the number recorded.

This table shows that too much time is used in the Tactical Planner,
and that there have to used some time to optimise what is being done in
this module. To get more detailed information about what takes all the
processing time in this module can be done by using a profiler like the one
used in this project, the GNU gprof profiler|gpr|. Here it was seen that it was
the pathfinder that used all the processing time, even though the pathfinder
has been simplified. This might mean that the pathfinder is called too many
times, and should be distributed out over some more game ticks. The Percept
Interpreter uses 0.53 seconds, which is reasonable enough, considering it is

CHAPTER 8. EVALUATION Page 117 of 273

Module name: Processing time: %

Action Planner 51 1.00%
Base Building 1 0.02%
GDF Connection 18 0.35%
Percept Interpreter 53 1.04%
Probabilistic Reasoning 1 0.02%
Reactive Module 1 0.02%
Resource Manager 7 0.14%
Strategic Planner 1 0.02%
Tactical Planner 4944 97.38%

Figure 8.4: Module performance test

over two minutes, because it takes all the percepts from the GDF and puts
it into knowledge bases. The Action Planner uses almost as much as the
Percept Interpreter, which would make sense because it is also run at every
game tick, collecting all the actions and sending them along to the GDF
Connection module.

Module game tick performance

An extract of a complete performance test log can be found in Appendix
H.1. This has not been plotted to a graph, because it is too difficult to
illustrate. In the log some of the first game ticks are presented. Here it is
possible to see what was also identified earlier, that the Percept Interpreter
uses a lot of processing time to get all the information first given from the
ORTS server. The second game tick is fairly standard, the only module
that uses processing time is in Tactical Planning because it is using the
pathfinder. In the third game tick we can see that the Resource Manager
is more active. This is because this is where it identifies what resources it
should go and harvest. After this the only module that uses any processing
time is the Tactical Planning. Then in game tick 32 something is happening
again. This is where scouting is started, so the Strategic Planning makes the
Tactical Planning send out a scout. This makes the Tactical Planning uses
a bit more processing time.

It is identified through this test that there is something that has to be
done in the Tactical Planning, because it always uses a lot of processing time,
even when it is not supposed too.

Pathfinding Performance Test

As already mentioned it was discovered that the pathfinder was not fast
enough to be used in the first three performance tests, which meant that

Page 118 of 273 CHAPTER 8. EVALUATION

a simplified version was used. In this test the complete implementation of
the pathfinder will be tested. We know that it is not fast enough, so the
performance of the pathfinder compared to the rest of the framework will
not be considered, as the results at this point would be meaningless.

In the test of the pathfinder, a unit is made to find a path to a position
that are five clusters away, meaning 80 cells. This sort of movement should
be no problem for a pathfinder. The calculation of the passable path takes
less than 0.01 seconds, and the calculation of the path takes 0.96 seconds.
Considering that there are only 0.125 seconds of processing time available
at each game tick, this is not fast enough. If the JIT functionality is imple-
mented the calculation of the path will be distributed over more game ticks.
This would mean that there would no longer be such significant peaks as
seen in Figure 8.4.2.

8.4.3 Performance Test Discussion

The performance test is not representative for what would happen in a com-
plete Al framework, but it gives an idea if it is possible to create a framework
that is fast enough to meet the time requirements. The modules and fea-
tures that have been completed, which are presented in Section 7.1, have
been tested to perform within the time constraints, with the exception of
the pathfinder and the Tactical Planning module. Because the pathfinder is
too slow to be executed in one game tick it has to be optimised, it has to
be possible get at least a small path within one game tick. Furthermore to
minimise the use of the pathfinder, it could be made to pathfind for groups
of units, instead of doing it for each individual unit. The Tactical Planning
module has to be optimised so that it does not use so much processing time
at every game tick.

The event manager that controls all the modules have not been tested
for performance, because the number of events that are sent within a game
tick will never be large, so a stress test of how many events it can handle
would be meaningless. To distribute the execution of modules even more,
the event manager could be modified so that it does not only consider what
game tick it is in, but also how much time there have been used. Then it
takes its current module execution list and save it for the next game tick,
and sends the actions that have already been found. This distribution of
the processing time will make sure that more processing time can be used in
each module, but the AI would be slower to react.

The test setups that have been presented here could be used, along with
the complete Al framework, to identify some of the same problems that have
been identified in these tests. A GUI can be created to automatically create
these tests. This would then present the graphs and tables that would help
the developers with the identification of bottlenecks.

CHAPTER 8. EVALUATION Page 119 of 273

8.4.4 Scalability

Scalability is important if the framework is to be used in a real game. In
a real game there are a lot more units, tactics, and strategies than in the
simplified game used for the performance test of this prototype. The ques-
tion is whether the framework in a complete implementation can cope with
the complexity of a real game, and if the framework data representation is
efficient enough to be useful. In a real game there can of course be a lot
more units than has been the case in this test scenario. This is in most
cases not a problem, because the only parts that should be dependent of
how many units there are in the framework is where units are deleted when
they are dead and where they are added when they are constructed. The
only place, where the number of units is an issue, is pathfinding. This could
be handled by, instead of pathfinding for each individual unit, pathfinding
for a group at a time. The event system will not have any issues with the
increased complexity. This will only start to be a problem if more modules
are added, because the number of events sent around in the framework, is
not dependent on the number of units, only on the number of instructions
that each module have to inform each other about. This can of course be
dependent on the number of units that have to perform actions at a given
time, but this could be handled with some optimisations. When dealing
with performance the data representation is very important, because this is
often what can tell if an application has potential to scale to a larger solu-
tion [CLR90|. The framework uses three types of non-trivial data structures
as presented in Section 5.4: Strategy trees, tactics representation, and base
building templates.

The strategy trees have no problem with scalability, because even if the
tree becomes very large, it is for the most times only the nodes that are in
the closest relation (meaning its parents and children) with the node that
is currently being worked with that is considered. Each of the strategy tree
nodes contains references to the children and the parent, which makes it
possible to get the nodes in the closest relation in constant time. When
searching for what strategy the enemy is using, it is no longer possible to
access the data in constant time, as the tree has to be traversed from the root
node. This is most likely not that big of a performance problem, because
the worst case scenario is that it has to search from the root to the top of
the tree. This will only be a problem if the degree of the internal nodes of
the tree are low and the tree thus deeper than wide. The worst case scenario
have complexity O(n) and best case is O(log(n)), depending on how the tree
is defined.

The tactics that are relevant for a certain strategy are listed in each
strategy tree node, in a limited sized list. This means that even if there exist
a large amount of different tactics in a game, there are limits to how many
are accessible at one time, because only the tactics in the strategy tree node

Page 120 of 273 CHAPTER 8. EVALUATION

are considered. This way the complexity is in the hands of the designer,
when she choose the amount of tactics in a certain strategy.

The base building templates are organised in a tree as explained in Sec-
tion 5.4.4, and in the strategy tree nodes there are references to what base
building templates that fits the strategy best. This means that the base
building template tree nodes are accessible in constant time, even if the base
building template tree grows extremely large. This is because there are di-
rect links to the nodes used, and because when the tree is used it is only the
closest relatives that are accessed.

Based on the above reasoning, we hypothesise that there should not be to
many problems with the scalability of the framework. Even if the framework
knowledge bases become huge, which would be the case for a real game,
the representation of knowledge in trees is effective because it is only the
relatives that have to be accessed. Furthermore, the only cases where any of
the trees have to be searched is when looking for the enemy’s strategy, and
this search is not performed on each game tick. The issue of pathfinding can
be solved with a change. When moving large number of units, the units will
move in a group and only one pathfinding will be done for the entire group.

8.5 Al Improvements

This section will discuss how the framework improves the quality of Al in
RTS games. We will use the test model described in Appendix D to test the
prototype implementation. This model was also used to test existing Als in
games. The results can be seen in Appendix E. The test results are shown
in Appendix F, which also shows the previous test on Als for comparison, as
well as what we hypothesise that a complete implementation will be able to
handle. Areas only partially marked in the test table indicate features that
are present in the prototype of the Al framework, but have not yet been
testing with a GDF. Note that we will not consider the Cooperation tests with
the complete implementation as this is not part of the design presented in
this report. We will first present how the prototype implementation handles
the different tasks marked in the test table, and afterwards discuss how a
complete implementation will be able to handle the remaining areas.

8.5.1 Prototype Implementation

The prototype was created to be able to handle 11 of the test scenarios in
the test model. However, because of the implementation problems discussed
in Section 7.5, it has only been possible to successfully test six of these
areas. To overcome implementation problems, the test game was simplified
in a few areas compared to the game described in Section 7.2.2. We have
removed cliffs, dynamic obstacles and manually placed different units on the
map to better test different scenarios. Compared to the test we made on

CHAPTER 8. EVALUATION Page 121 of 273

Strategy Chosen: | Number of times | Percentage
Fast Tech 7 23.33%
Fast Expand 8 26.66%
Marines 15 50%

Figure 8.5: Chosen start strategies

the commercial RTS games, being able to handle 11 of the test scenarios
is a good result considering this is just a prototype of the framework. The
best Al among the commercial RTS games was able to handle 17 scenarios.
This is, however, including all the Cooperation areas, which we have not
included in the design of our framework. We will begin by demonstrating
how the six areas fully marked are able to handle their corresponding test
scenario. These areas will among other things, demonstrate how strategy
trees allow for strategic variation and counters during a game. Furthermore,
it will show how relative simple scouting can make an important difference
for Als in RTS games. Throughout the test, the strategy tree used by the Al
is the one shown in Appendix K.3. For illustration purposes, counter nodes
are not depicted, but just noted as an attribute of each strategy tree node.
The six areas and test results are discussed below:

Using Counters: The prototype implementation handles counters by util-
ising two framework modules and strategy trees. The strategy trees for
the test game define counters to each strategy the Al knows. During
a game, the Probabilistic Reasoning module will attempt to discover
which strategy the opponent is using, by reasoning about the Opponent
Model. Because of the Probabilistic Reasoning module, the Strategic
Planning module is aware of which strategy the opponent is most likely
using, and can then look it up in the strategy tree and find its direct
counter strategy. Given the strategy tree, everything else is handled
internally in the framework.

This area was tested through the game logs shown in Appendix G.
These logs are extracts of complete logs with only necessary informa-
tion included. As an example, the log in Listing G.1 shows how the
AT sees the opponent in game tick 61. At this point, it cannot see
anything else than what the Al started with, and the only potential
strategy that matches what it sees, is the Fast Ezpand strategy which
is the only strategy it knows only consisting of worker units. As the
counter to the Fast Expand strategy is the Marines strategy, this is
the strategy chosen. At game tick 89, additional information is dis-
covered. The list of potential strategies shows how much the current
opponent model differs from each of the potential strategies’ corre-
sponding strategy tree node. Here, the Mized strategy seems most

Page 122 of 273 CHAPTER 8. EVALUATION

likely and it is therefore the Mass Tanks strategy that has the greatest
chance of countering the enemy. Note that in these examples, we have
out-commented the code that determines how much a counter may de-
viate from the current state of the AI before being applicable. This
means that the Al would not necessarily follow the proposed counter
strategy. However, these examples demonstrates how the Al is capable
of recognising the enemy’s strategy and selecting the right counter for
it, based on knowledge from the strategy tree.

Strategic Variation in one Game: As a direct consequence of the Al be-
ing able to use counters, it is also capable of changing its strategy
during a game.

Strategic Variation Game to Game: Because of strategy trees’ ability
to represent several options at any given state in the game, the Al
will choose its strategy based on probabilities given for each possible
strategy. Given the strategy tree used for the Al the AI should choose
a Marines strategy 50% of the time, a Fast Tech strategy 30% and a
Fast Ezpand strategy 20% of the time.

This area was tested by letting the Al play the same map 30 times in a
row, and then observing which strategies it decided to use. The results
can be seen in Table 8.5.1. The results show the Marines strategy
being picked 50% percent of the time as expected, and the other two
around 25%. This shows how the AI varies it strategic choice from
game to game.

Does It Scout At All: A timer ensures that the Strategic Planning mod-
ule sends a scout in the beginning of the game and then afterwards with
regular intervals. In the full implementation, the Strategic Planning
module should base its decision to scout on whether it had sufficient
information about the enemy.

Scouting is demonstrated in all game logs in Chapter G. In game tick
31, the timer ensures that a scout is sent, and when the scout finds the
enemy base, this is reflected in the opponent model.

Using The Acquired Information: The Probabilistic Reasoning module
uses the information obtained from scouting, which is in the Opponent
Model, to reason about the opponent’s choice of strategy.

As already discussed in regards to the AI’s ability to counter the op-
ponent’s strategy, the AI uses information gained from scouting to
determine the opponent’s potential strategies.

Sensible Unit Used for Scouting: In the prototype implementation, the
user dictates which units to use for scouting and the Strategic Planning
module chooses an appropriate unit of this type to scout.

CHAPTER 8. EVALUATION Page 123 of 273

As seen in game tick 31 in all game logs in Chapter G, the Al always
chooses a worker to scout. This is dictated by the module configuration
script for the Strategic Planning module.

One important conclusion can be drawn from the Al improvements the
prototype implementation of the framework provides. The internal frame-
work representation of strategies, strategy trees, enable Al designers to easily
create Als that both counter and use information about the enemy to predict
her strategy. There is only one example of an Al in a commercial RTS game
being able to do this, which is Age of Mythology.

Five other areas have also been implemented in the prototype implemen-
tation, but as explained earlier, we have not been able to test them because of
the problems discussed in Section 7.5. The five areas are listed below, along
with an explanation of how they are handled in the design of the framework
and prototype specific details.

Measure Own Str. vs Enemy Str.: The AI will compare its strength to
the enemy in two sub-modules: The FEwaluation sub-module in the
Strategic Planning module described in Appendix B.5.9 and in the
Evaluation sub-module in the Tactical Planning module described in
Appendix B.6.3. In the Strategic Planning module the evaluation de-
cides if the AI should engage the enemy or not, and in the Tactical
Planning module the evaluation decides if the Al should retreat from
a battle.

Saving Hurt Units: The sub-module Unit Deployment in the Tactical
Planning module described in Appendix B.6.7, takes care of saving
hurt units. As there is no healing in the game, units are simply with-
drawn from the front line, and then returned to battle. In the pro-
totype implementation, the functionality is explicitly defined into the
sub-module, but in the complete implementation, this functionality
should stem from the tactics the AT designers have designed before the
game.

Focus Fire: The sub-module Targeter in the Tactical Planning module de-
scribed in Appendix B.6.9, take care of focus firing. This functionality
is also explicitly defined in the module, and should be replaced by
tactics defined by the AI designer in the complete implementation.

Spending Available Resources: The sub-module Unit Planner in the
Action Planning module described in Appendix B.10.3 will make sure
that resources are constantly spent. If the goal strategy node is already
reached in terms of the number of units wanted, the module will simply
keep producing the units in the goal strategy node, while maintaining
the percentage unit distribution of the node.

Page 124 of 273 CHAPTER 8. EVALUATION

Scouting Enemy: After the first scouting, where the AT finds the location
of the enemy base, the Strategic Planning module will make sure that
the regular scouts will always scout the enemy base.

8.5.2 Complete Implementation

This section will discuss why we hypothesise that the complete implemen-
tation of the framework can handle all the areas marked in the table in
Appendix F. The design of the framework has been focused on being able to
solve all of the tests in the test model. The focus of the test model is to test
different areas of the human model, and this evaluation thus assumes that
the human model is correct and the fulfilment of the human model is the goal
for the AI. We will go through each of the areas not already handled by the
prototype implementation, as these are also handled in the complete imple-
mentation. For each we will present how we expect the area to be handled,
and refer to the part of the design that handles that particular area.

Exploiting Weak Spots: The States sub-module of the Strategic Planning
module described in B.5.10 handles this area. The user will be required
to specify what defines strong and weak points.

Reasonable Expansions: Because of strategy trees, the Al will always ex-
pand at the right times, that is, at the time where the strategy dictates
it. Furthermore, the Fzpands sub-module of the Strategic Planning
module described in Appendix B.5.8, ensures that the expansion is
placed at a sensible spot.

Using Map: The tactics representation discussed in Section 5.4.3, includes
rules for how to use the map terrain to the AI’s advantage. Further-
more, the Evaluation sub-module in the Tactical Planning module dis-
cussed in Appendix B.6.3 will react upon a potentially bad battle po-
sition and act accordingly.

Good Buildorder: The prior knowledge base Known Build Orders should
contain optimal build orders for achieving certain strategies in the
fastest possible way. Using these, will enable the Al to successfully
handle this test.

Using Formations: The tactics representation presented in Section 5.4.3
includes rules for formations, and the sub-module Formations in the
Tactical Planning module described in Appendix B.6.5 will use these
to deploy formations when moving during the game.

Map Considered When Moving: Handling this, is primarily a task for
the Path Planner sub-module in the Tactical Planning module de-
scribed in Appendix B.6.10. This module will use the pathfinding
method presented in Section 5.4.2.

CHAPTER 8. EVALUATION Page 125 of 273

Using Tactical manoeuvres: The tactics representation discussed in Sec-
tion 5.4.3 will define rules for making tactical manoeuvres. The Tacti-
cal Planning module must use these rules to actually execute the tactic
in battle.

Staying in Control of Units: This test primarily deals with the native
AT on each unit. To handle this area, we have designed a Handle
Native Al Event sub-module specifically suited for this in the Reactive
Module. This sub-module is described in further detail in Appendix
B.2.6.

Counter Focus: By using the tactics representation discussed in Section
5.4.3, a user will be able to define rules for which units should focus on
which enemy units. The Targeter sub-module in the Tactical Planning
module described in Appendix B.6.9 will take care of executing the
rules defined by the user.

Using Support: The tactics representation presented in Section 5.4.3 also
defines rules for using support units and their spells/abilities. The
Support sub-module in the Tactical Planning module described in Ap-
pendix B.6.8 is responsible for acting upon the rules defined in a tactic.

Predicting Resource Needs: The Determine Resource Requirements
sub-module in the Resource Management module described in Ap-
pendix B.7.3 is responsible for predicting resource needs. It will use
the plans for units, buildings and future research produced by other
modules to make its prediction. By predicting resource needs, it can
assign more workers to gather a certain resource before it should be
used.

Flexible Resource Gathering: As a consequence of the Al’s ability to
predict resource needs, it will also use this knowledge to determine how
many workers should be assigned to harvest each kind of resource. This
all happens in the Worker Planner sub-module within the Resource
Management module described in Appendix B.7.5.

Good Placement of Def. Buildings: A user of the framework has the
ability to define how to place buildings in the base through the base
building templates described in Section 5.4.4. The execution of base
building templates is handled by the Building Manager sub-module in
the Base Building module described in Appendix B.8.4.

Good Placement of Hrv. Buildings: The placement of harvesting
buildings is also handled by the Building Manager sub-module of the
Base Building module, which works on base building templates.

Page 126 of 273 CHAPTER 8. EVALUATION

Sensible Base: The user is responsible for defining how buildings should
be placed through base building templates, and the Building Manager
sub-module is responsible for actually placing these buildings.

Scouting Map: The Scouting sub-module of the Strategic Planning module
described in Appendix B.5.4, is responsible for the Al scouting the map
in sensible places.

Scouting at Sensible Times: To scout at sensible times, the Al relies on
the Sufficient Enemy Knowledge sub-module in the Strategic Planning
module described in Appendix B.5.3. This sub-module will base its
decisions of whether enough is known about the enemy, on information
from the Probabilistic Reasoning module.

Learning: Learning is handled by the Learning module described in Ap-
pendix B.9. While learning new strategies is handled by the methods
described in Section 5.4.1, learning new tactics and base building tem-
plates still needs some work.

Although not tested, the complete design of the framework should be
able to handle all of the areas included in the test model.

8.6 RTS Specific Concepts

This section will discuss the two RTS specific ideas implemented in the pro-
totype of the implementation: Strategy trees and pathfinding. For each, we
will evaluate the success of the idea of the implementation in the prototype,
and discuss the effect it would have in a complete implementation of the
framework.

8.6.1 Strategy Trees

Strategy trees have been the foundation on which the Probabilistic Reasoning
module and partly the Strategic Planning module have worked on in the
prototype implementation. In both cases, the data structure and the ideas
presented throughout the discussion of strategy trees in Section 5.4.1, have
shown to work as intended, as discussed throughout this chapter. Section 8.1
showed how strategy trees could easily be specified, Section 8.2 showed how
strategy trees could easily be configured to achieve different kind of Als, and
Section 8.5 showed how strategy trees have successfully helped in creating
improvements in the AIl. The game logs in Listing G.3 and Listing G.4 in
the appendix furthermore demonstrate how the Al is able to follow a given
strategy by building the required units. The following will list some of the
most interesting advantages of using strategy trees:

CHAPTER 8. EVALUATION Page 127 of 273

Developer Friendly: The representation is straightforward and defines
strategies and the relation between them in a simple manner, espe-
cially if depicted in a graphical user interface.

Versatile: Through strategy trees, an Al developer can create any kind of
AT she wants, by simply adapting the strategic knowledge of the Al

Built-in Operations: The data structure has through its representation
natural support for finding counter strategies and follow-up strategies.

The only weakness of strategy trees in the prototype implementation,
as mentioned in Section 8.1.2, is the lack of a graphical user interface. This
would help provide a much needed overview when building large and complex
strategy trees. There are also areas where the use of strategy trees can be
improved compared to the prototype implementation. The following lists
three areas which require further work:

Learning: One of the reasons for using strategy trees was the ability to
easily add new strategies to a tree, and this way learn new strategies.
Although adding the strategy itself is easy (as discussed in Section
5.4.1), learning new strategies includes other problems that must be
solved as well. Two of them are the tasks of recognising that a new
strategy is being used, and recognising new important game states.

Tactics and Base Building Templates: In a complete implementation
of the framework, strategy tree nodes should contain both tactics and
base building templates. These should support executing the strat-
egy described by the node. A few key tasks regarding tactics require
some further work however. First of all, the representation of tactics
must be fully developed, and then a method to recognise these tactics
must be composed. Secondly, a method making it possible to dictate
when a certain tactic should be used during the execution of some
strategy needs to be developed. This would also make it possible to
dictate which tactics to use depending on the situation in the game,
for instance whether the Al is attacking or defending.

Search Optimisation: When working with small strategy trees, like the
ones for the game in this prototype implementation, the search through
the strategy tree when finding matching nodes does not really matter.
However, in more complex games, the strategy trees will consist of far
more nodes, and when searching through this, optimised techniques
should be used. There are many possibilities to guide a search for a
matching node in a strategy tree. One way is to build a strategy tree
for the opponent during a game, and this way guide the search in the
tree, by only looking at nodes that are possible for the opponent to
reach, given the strategy tree built for her. Another way could be

Page 128 of 273 CHAPTER 8. EVALUATION

1200 T T T T

"path_plotl" -
1000 .

< J 0

Q 00 - -
o ~U) *r 1

™
DY ol |
9 o |7 |

0 | | | | |

0 200 400 600 800 1000 1200
Map Path found

Figure 8.6: Path found in pathfinding test

to use the time variable on the strategy tree nodes, and only consider
nodes that are within a certain time frame depending on the time since
the game started. Finally, an optimised order of which attributes of
strategy nodes are tested first for being close or equal to an attribute
in another strategy node, could also result in a faster search.

8.6.2 Pathfinding

This section will first evaluate the pathfinder based on how well it finds
the correct path (an optimal path) and how well it reduces the search space.
Finally we will present some solutions to how the pathfinder can be improved.

Correctness

In order to verify that the pathfinder finds an optimal path we have tested
it by making it find a path across a map with randomly placed obstacles.
The pathfinder will start at the left side of the map and travel towards the
right side. A test result can be seen in Figure 8.6 and additional test results
in Appendix I. The tests show that the pathfinder indeed finds a reasonable
path. We can furthermore conclude that the path is the optimal because
of the algorithms used. A* will always find the optimal path [RN03|. The
passable path that is responsible for restricting the search space is build upon
A*. This means that the optimal path must be present within this restricted
search space. Afterwards the optimal path itself is found within the passable
path by using A*.

By basing both the passable path and the path itself on A* we conclude
that the pathfinder always finds the optimal path.

CHAPTER 8. EVALUATION Page 129 of 273

1200 T T T
"astar_search_plot"

1000

800 - .

600 [~ N

400 N

200 - N

0 | | | | |
0 200 400 600 800 1000 1200

Figure 8.7: Search space explored by A*

Search Space

The test, to verify that the hierarchical JIT pathfinder reduces the search
space, was carried out in the same type of environment as the previous test.
Figure 8.7 shows the search space explored by A* and the search space
explored by the our pathfinder can be seen in Figure 8.8, when finding a
path from the left side of the map to the right side of the map. A* explores
52289 cells, while our pathfinder explores 17152 cells. The search space can
be further minimised by making the clusters contain a smaller amount of
cells, but this will consequently mean a higher computation time to find the
passable path. This means that finding the optimal solution is a balance
between minimising the search space and the computation cost involved in
doing so. The total length of the path and the amount and size of the
obstacles on the map are also important factors that must be taken into
account.

Page 130 of 273 CHAPTER 8. EVALUATION

1200 T T T
"own_search plot"

1000

800 - N

600 [~ N

400 - N

200 - N

0 | | | | |
0 200 400 600 800 1000 1200

Figure 8.8: Search space explored by hierarchical JIT pathfinder

CHAPTER 8. EVALUATION Page 131 of 273

Improvements

We have identified two areas that must be improved in order for the
pathfinder to get a reasonable performance. First the pathfinder must be
run in a JIT fashion as was intended with the design. Second the data
structure used in open' must be significantly reduced.

By simplifying the pathfinding to not include the JIT design means a
trade-off between execution cost and development cost. A JIT pathfinder
does not only affect the Path Planner in the Tactical Planning but also the
Action Planner. Including such a functionality means some functionality
must be shifted from the Path Planner to the Action Planner, which in
itself is a small redesign of the framework.

Test have revealed that too much time is spent in the pathfinder main-
taining open. Further investigation has shown that it specifically is the sheer
size of the open elements that is the problem. Each element contains the
path that currently has been travelled in order to reach the node in question.
This is a list of coordinates unique to every single node in open. This list
can be avoided and thus the total size of the open elements severely reduced
by using back tracing.

8.7 Reflections

The following will reflect upon two things: The design presented in Part II
and the development method of basing an Al framework on a model of how
humans plays.

8.7.1 Design Reflection

The design of the framework presented in Part II and the design of each
individual module presented in Appendix B have proven to be a big help
throughout the implementation. We have been able to easily translate frame-
work modules into C++ classes and sub-modules into functions. The design
clearly separates different functionality into smaller manageable functions
and furthermore clearly defines how the different functions work in relation
to each other and the internal module architecture. Also, through the overall
architecture of the framework, it has been easy to get an overview of where
different knowledge bases have to be used.

In the prototype implementation, several small changes have been made
compared to the design. As Section 7.1 explains, although the prototype
implementation has had a focus on some areas compared to others, the im-
plementation would still need to implement all modules except the Learning
module. This means that some of the modules in the prototype imple-
mentation has not strictly followed the design, and only focused on making

'An important queue used in A*

Page 132 of 273 CHAPTER 8. EVALUATION

a minimum implementation. This includes modules such as the Resource
Management and Base Building modules. However, this has not affected
the idea of the design of these modules.

The prototype implementation has also revealed some ideas for changing
a few design details. One change induced by the prototype implementation
is regarding how the Action Planner module is influenced by the Strate-
gic Planning, Tactical Planning, Resource Management and Base Building
modules. In the original design, the Action Planner was influenced by these
modules by sending events. This has been changed to letting the Action
Planner module be influenced by these modules through the shared in-game
knowledge base Assigned Unit Action. The reason for this change is that
with the original design, the Action Planner would be flooded with events
of proposed unit actions. It is a much better choice to let modules change
in the knowledge base, and then have the Action Planner iterate over the
units in the knowledge base, when communicating actions to the GDF. This
change is also reflected in the design of the Action Planner module described
in Appendix B.10. Other issues of the implementation have concerned things
like the exact data to send with events, the data structure used for differ-
ent variables and knowledge bases, and how to construct developer friendly
Python scripts. These were left as implementation details when designing
the framework.

One of the concerns discussed throughout the chapter has also been the
issue of providing solid documentation for the framework. As a start, the
internal design of modules described in Appendix B provides both users and
developers with a basic understanding of how things work in the framework.
It specifies how framework instances can be varied from each other, and it
defines the responsibilities of different sub-modules. The design is however,
mostly suited for users of the framework that wish to extend or modify
the framework in some way. Regular users will have more use of a user
manual, which specifies exactly how each module and knowledge base can
be configured to achieve different things. The more advanced users of the
framework would be able to use the design explained in the Appendix, but
would also benefit from tutorials on how to change the internal architecture
of the framework.

8.7.2 Development Model Reflection

Using the human model as a basis for the framework does not mean that the
framework can be used to all roles of an Al in RTS games. If for instance
the RTS game is a simple game with only a few units and no countering
system there is no need to bring up such an advanced solution as intended
with this framework. The configuration will probably take longer than a
simple scripting of the AI. Even in normal RTS games, the Al cannot be
used for all aspects of the single player games. The human model will enable

CHAPTER 8. EVALUATION Page 133 of 273

the AT to play like a human player in for instance a custom game, where
the AT and the player will play against each other, but it will be less suited
for campaigns, where the actions of the AI will be dictated by a story. One
such example is the undead campaign in Warcraft I1I: Frozen Throne|warb]|,
where the player will have to guide a hero through a dungeon filled with
units controlled by the AI. These units have to act according to a story line,
which is not covered by the human model. Luckily this is only a small part
of the campaign and in some of the other parts, where the map dictates a
playing style more like the one usually used in custom games, the Al is still
well suited.

Handling cut scenes or scripted events in general can be done by adding
an event module. This module must enable game designers to take direct
control over anything in the GDF in order to get the wanted result. This is
not normal human behaviour and is thus not covered by the human model.
Consequently this module must be kept separate to the rest of the framework
to maintain the correct abstraction. The module must also be kept separate
from the rest of the framework, because it must have access to more than is
allowed for the Al presented in our solution. While the event module is run,
the rest of the framework must be stopped and then started again when the
cut scene or event is over.

Furthermore the human model itself is based on our experience with the
games shared with the experience of communities that are playing the games.
The study of how a human player plays is a study of behaviour, psychology
etc. that is not a part of traditional computer science. A more thorough
study could probably enhance the model and lead to a better abstraction.

The current human model only models the tasks the human player solves
when playing RTS games. When looking at the general areas of responsibil-
ities the different modules have, it becomes apparent that the model might
be generalised to model how a human player plays games in general. Some
modules may have to be merged into more general areas and others have to
be renamed in order to reflect the more general area of responsibility, but
the model as such will remain the same. We will illustrate this through an
example: When playing a FPS game like Quake, the player will basically
go through the same process as modelled in the human model. She will
still have to make an opponent model and compare this to what she know
about the map, when deciding on a strategy. When meeting the opponent,
she will have to use some tactics in order to engage in the right way, and
if the enemy for instance throws a grenade after her, she will have to re-
act instinctively. Resource management includes which weapons should be
used, at which times, and which routes she must run in order to pick up var-
ious items before the opponent. Further work will probably reveal a human
model that is structurally close to the one presented for RTS game, and able
to model all game genres.

Page 134 of 273 CHAPTER 8. EVALUATION

8.8 Summary

The first section of this chapter discussed how the framework could be con-
figured to suit different demands from the developer. We demonstrated how
Al designers were able to define technology trees, units, buildings and strate-
gies, and how it is possible to vary Al behaviour through framework module
configuration scripts in a simple manner. To further assist developers, we
identified documentation and the inclusion of GUIs as possibilities for future
work. However, if a developer wants to add new variables or new features,
she will be required to extend modules and methods and this requires C+-+
programming knowledge. As most games, even within the RTS genres de-
fined in Section 2.4.2, include some kind of special feature, the AI developer
will often be required to extend the framework in order to support this.
We hypothesise that the work required to do this will be minimum, as the
framework already includes the most common attributes and features.

The test of the versatility of the framework was divided into two areas:
Framework versatility and Al versatility. We concluded that framework ver-
satility was difficult to evaluate, because the prototype implementation have
only been connected to one GDF. However, the framework and GDF has
been successfully separated, and the code required to connect the two is not
very complex. In regards to Al versatility, we evaluated the two ways that
developers can vary framework instances from each other: Through strategy
trees and through module configuration. We verified that strategy trees can
be specified to create any kind of strategic behaviour and that developers
through module configurations are able to specify both game and Al specific
variables that influence the Al’s behaviour during a game. Both of these can
be configured without having to re-compile the framework every time to see
the effect, which helps provide easy balancing of variables and strategies.

Section 8.3 demonstrated how developers are able to extend modules and
methods in the framework, as well as adding entirely new modules to the
framework. Although it should be possible for designers to create prototype
method extensions in Python, the task of extending the framework should
mostly be left in the hands of C++ programmers, because of performance
concerns. We concluded that modules and methods are quite easily extended
with relatively little effort, but that adding entirely new modules is a more
complicated task. It is possible to add new modules, but the developer must
have extensive knowledge of the internal parts of the framework in order
to ensure that no unexpected side effects occur. Once again, the issue of
providing thorough documentation was found to be very important.

Our performance test in Section 8.4 showed that our prototype imple-
mentation suffers from performance problems. However, we have identified
the problem as being the Tactical Planning module and more specifically our
implementation of the pathfinding method described in Section 5.4.2. All
other modules seems to be running at a reasonable performance. However,

CHAPTER 8. EVALUATION Page 135 of 273

this does not say much as many of the modules are simplified versions or
they are not called the appropriate number of times, because of the lack of
effective pathfinding. The tests performed in this section have furthermore
identified another important element to have included with the framework.
As developers may also add and change modules, they will need a profiler to
determine potential performance problems in their implementation.

In order to evaluate the AT improvements provided by both the prototype
implementation and the complete implementation, we discussed their Al
capabilities in relation to the test model described in Appendix D, which
was also used to test commercial RTS games. This allowed us to compare
our results with the current AI standard in the industry. We concluded that
even the prototype implementation is able to handle areas not handled in
many commercial RTS games today, such as counters, strategic variation
and scouting. Furthermore, we discussed how each of the areas in the test
model was handled by different framework sub-modules in the design of the
framework, and hence also handled in a complete implementation.

The two RTS specific concepts used in the prototype implementation
were evaluated in Section 8.6. Strategy trees have shown to be very useful
in solving several of the scenarios in the test model, including making the
AT able to use counters and strategic variation. They provide a developer
friendly and versatile approach to defining strategies, and allow for several
built-in operations useful in the internal parts of the framework. In a com-
plete implementation, strategy tree nodes should come with both tactics
and base building templates attached, and it should be used in the Learning
module to learn new strategies. The pathfinder was shown to find the correct
path and it also explored a smaller search space, as was expected.

CHAPTER 9. DISCUSSION Page 137 of 273

Chapter 9

Discussion

This chapter will discuss if an Al framework for RTS games will be useful in
the game development industry and present possible future work within this
type of Al framework. To clarify the role of Al frameworks in the Al devel-
opment of RTS games, we have contacted a number of game development
companies to hear their views on the topic. A total list of the companies
contacted can be found in Appendix L.1. The answers from these companies
will be the topic of Section 9.1. In the end of this section, a number of
industry demands for an Al framework will have been defined, and Section
9.2 will focus on discussing how the AI framework presented in this project,
conforms to these requirements. Following this in Section 9.3, we will make
a brief market analysis of RTS games and RTS game development compa-
nies, to get a clearer overview of the prospect of an Al framework for RTS
games being used in the industry. This has not been presented earlier in the
report, because it has been an enquiry done in parallel with the project. The
enquiry was as such only done to establish whether the proposed Al frame-
work would have any use in the industry. In section 9.4 other potential uses
of the framework outside of game development industry will be presented.
Finally in Section 9.5, we will discuss future work within the framework, and
present the features that we believe will be the most challenging to design
and implement.

9.1 Demand in Industry

This section will discuss the potential role of an RTS Al framework in the
industry. To gain better insight into how AI development for RTS games
is handled in the game development industry, we have contacted several
RTS game development companies. These were sent a number of questions
regarding Al development and the idea of a generic RTS Al framework, which
can be seen in Appendix L.2. 4 out of 40 RTS game development companies
responded and this section is based on their answers. There can be several

Page 138 of 273 CHAPTER 9. DISCUSSION

reasons for why only four companies have responded to our enquiry:

e As most companies do not have a direct e-mail address used to contact
the development team, we have been forced to use general information
e-mail addresses to contact companies. This may have meant that
some of our enquiries never reached developers who were qualified to
answer our questions.

e One company responded that they simply did not have enough time
to answer our enquiry at the given time. This may have been the case
with other companies too.

e Finally, some of our questions are aimed at areas which companies may
consider secret, and therefore do not wish to reveal to people outside
the company.

The companies who answered our enquiry are: Oddlabs [Odd|, Infinite
Interactive |Inf], Inhuman Games [inh| and Fireglow Games |[fir]. The fol-
lowing will list these companies, along with the games they have developed:

Oddlabs: Tribal Trouble (2004) |Tri|.

Infinite Interactive: Warlords Battlecry II (2002) |wbia|, Warlords Bat-
tlecry III (2004) [wbib| and Seven Kingdoms Conquest (in production)
[sev].

Inhuman Games: Trash (2005) [tra].
Fireglow Games: Sudden Strike 3: Arms for Victory (2006) [sud].

Although these four companies are only representing about 10% of the
total number of RTS game companies, which have produced RTS games
within the last five years (shown in Appendix L.1), their answers should serve
as an indication of different issues regarding Al development. Especially the
developers from Infinite Interactive, who have produced several very popular
RTS titles will be able to provide concrete answers of how Al development
for RTS games is handled in the industry. We will divide this section into
four different parts, each discussing an important element in AT development,
and a final part discussing the merits of the idea of an RTS Al framework.
The original answers to the questions asked in Appendix L.2 can be found
in Appendix L.3.

9.1.1 Time Spent on AI Development

In general, the time spent on Al development varies from company to com-
pany. For games which were not under extreme time pressure, the devel-
opment time seems to range from about 2000 to 5000 man hours. These
numbers are rough estimates:

CHAPTER 9. DISCUSSION Page 139 of 273

It’s difficult to make a precise estimation, because vagueness of
frames of which part of the game engine is Al and which is not.
- Max Dolmar, Fireglow Games

Max Dolmar also states that one of the most time consuming task of
developing Al in RTS games is the issue of pathfinding.

9.1.2 Developers of Al

Als in RTS games are primarily created by programmers with the help of
the designers. Designers are in charge of the very high level part of the
Al including balancing, while programmers take care of the rest. There is
however, a tendency to move towards having more of the Al that can be
scripted by Al designers:

Programmers tend to do most of the Al development. Increas-
mgly game designers with scripting ability are developing Al
Game designers tend to only control very high level aspects of
Al - Mark Currie, Inhuman Games

Developers of Warlords Battlecry are for instance increasing their use of
the scripting language Lua to get the designers more involved in the process
of building the AL

9.1.3 Al Development Tools

Two out of the four game development companies do not use any Al tools
at all, and develops every Al for a new game from scratch. The developers
of Warlords Battlecry uses a library built in-house as the foundation for the
Al

We have our own movement/pathing libraries on which every-
thing is built. Everything apart from the movement and pathing
18 created from scratch on every game. - Steve Fawkner, Infinite
Interactive

The only company that uses an Al framework for development of the Al
is the developers of Sudden Strike. They have built their own Al framework
and uses this in connection with a third-party script system to create Als for
their games. Furthermore, it seems that the game development companies
involved in making more than just one title, are better at using Al tools to
reuse code from the Al in one game, to the Al in another game.

Page 140 of 273 CHAPTER 9. DISCUSSION

9.1.4 AI Integration with GDF

The separation of Al code from the GDF seems to vary greatly. Some com-
panies have them completely separated, while others have them closely con-
nected. It seems however, that companies with more than one shipped title,
focus more on separating the two. The developers behind Warlords Battlecry
keeps the two completely separated, but do include different functionality in
the GDF for the Al to use:

They are kept completely separate. However, various functions of
the engine have been added to help with Al such as line-of-sight
calculations. - Steve Fawkner, Infinite Interactive

The AT framework used by the development team creating Sudden Strike
has some modules that are totally independent of the GDF, while others are
closely linked to the game and gameplay.

9.1.5 Generic RTS AI Framework

In general, all four companies are quite positive of the idea of a generic RTS
Al framework. However, they all indicated that there have to be substantial
advantages in using the framework, and that the framework has to deliver
a number of advanced features especially important to Als in RTS games.
Otherwise, it would simply be too big a task to use and understand third-
party software. The following lists a number of features that an Al framework
for RTS games should contain facilities for, to be successful in saving Al
developers a lot of time:

e Movement and Pathfinding

e Formations

e Influence Maps (e.g. for detection of danger)

e Threat Assessment

e Actions/Orders

e A State Machine of Actions of Individual Actors

e Grouping Mechanisms

e A Method for Tracking and Remembering Enemies
e Building and Production Hierarchies

e Resource Usage and Needs

e Managing and Prioritising Objectives

CHAPTER 9. DISCUSSION Page 141 of 273

e Scripting System

Furthermore, the framework should be relatively easily connected to any
kind of GDF. If an AI framework contained the above mentioned features,
it would probably be used in the industry, as long as the quality was good
and the prize affordable. One company, the developers of Trash, even went
as far as guessing a possible prize on the product:

If your Al is the great, I think it could be sold. It would have to be
extremely good and easy to integrate into any RTS game engine.
If this was the case, perhaps you could charge $100k USD for it—if
sold to big AAA studios'. - Mark Currie, Inhuman Games

9.1.6 Summary

Only two of the four game development companies reuse their Al code, and
one on them did this through very general Al libraries. The only company
using an Al framework was the developers of Sudden Strike, but the scope
of this is unknown. None of the companies take advantage of reuse to a
degree comparable to the AI framework described in this project. Three
of the companies have begun to focus on having designers more involved in
the process of creating the AI, and they are using scripting languages to do
this. There is a general consensus among the four companies that an RTS Al
framework will be a good idea provided it lives up to a number of demands,
making it possible to save a lot of time during development.

9.2 Conformance to Industry Demands

Section 9.1.5 listed a number of features an Al framework for RTS should
support to save a lot of time during Al development. The complete design
of our AT framework handles all of these areas. In the following we will list
the framework modules that are involved in handling the different demands.

Strategic Planning: Threat assessments, grouping mechanisms and man-
aging and prioritising objectives.

Tactical Planning: Movement and pathfinding, formations, influence
maps, threat assessments, and managing and prioritising objectives.

Base Building: Building and production hierarchies.
Resource Management: Resource usage and needs.

Action Planner: Action/orders, and managing and prioritising objectives.

'AAA game development companies basically refers to companies producing large and
expensive titles, which include a lot of PR/marketing.

Page 142 of 273 CHAPTER 9. DISCUSSION

Year: | RTS Games Published:
2002 20
2003 15
2004 27
2005 19
2006 20

Figure 9.1: RTS games published the last 5 years

Besides the demands handled by framework modules, some of the in-
game knowledge bases also take care of a few of the demands. Assigned
Unit Action and Assigned Building Action keeps track of which state the
different units and buildings are in and In-Game Enemy Knowledge keeps
track of enemy units and remember where they were last seen. Besides this,
the framework as a whole, offers a scripting system, where all modules and
knowledge bases can be configured. To summarise, our framework is designed
to provide facilities for all the features listed in Section 9.1.5.

9.3 RTS Game Market Analysis

It is difficult to make an estimate of how many RTS games are produced
every year, as there are no official records of this. Furthermore, the term
Real-Time Strategy game is used to describe many different kinds of games
and not only the ones being the focus of this project. Some would for instance
characterise Tetris (1986) [tet| as being both a real-time and strategy game,
and hence an RTS game. In this section we will only consider the RTS games
that come into the category described in Section 1.1. We will use the popular
game site Gamespot [gam]| to identify published RTS games. Gamespot has
records of any commercial RTS game relevant to this project. The number
of RTS games published within the last five years can be seen in Table 9.3.
The number includes both expansion packs and gold editions, as these often
upgrade the AI compared to the original game. Furthermore, the number
for 2006 is partially based on expected RTS game releases.

As Table 9.3 indicates, about 20 RTS games are released every year.
Within the last five years, the production of these games have been handled
by about 40 different RTS game development companies. It is difficult to
estimate how many of these companies would have to buy the Al framework
for it to be a worthwhile business. This depends on development cost, the
prize of the framework and on the interest shown from game development
companies. However, there are many potential buyers and if our answers
from game development companies serve as any kind of indication, there may
be up to 75% who would be able to benefit a lot from using the framework.

CHAPTER 9. DISCUSSION Page 143 of 273

Furthermore, as many of the companies develop more than one title, the
benefits of using the framework increase even more. The framework can be
used on several titles, and this way increase code reuse. However, as observed
in Section 9.1.3, it seems that game development companies involved in
making more than one RTS game, often have their own AI tools to increase
reuse and reduce development time.

9.4 Other Uses

The framework can also be used in other cases, where it is not the main Al
development tool for an RTS game. One possibility is to use the framework
for AI research. By providing a very modular framework, which includes
standard implementations for each module, an Al researcher will be able to
focus on a special area, probably a module, while letting all other modules
be handled by the standard implementation. This provides new options for
researchers wanting to focus on a certain aspect of AI. RTS games provide
a platform for researching many fundamental aspects of Al [BurO3b]:

e Decision Making under Uncertainty

e Adversarial Real-Time Planning

Reasoning

Opponent Modelling

e Learning

Resource Management

Collaboration

Normally, researchers will have to build a test environment to use when
testing their ideas, which is a time consuming task and not interesting from
an Al research perspective. Using RTS games as a test environment com-
bined with an Al framework, provides optimal conditions for AI researchers.
They can focus on specialised areas, for instance learning, while leaving ev-
erything else to the framework and test their ideas in a complex environment.

9.5 Further Work

This section will discuss possible further work that can be done following the
prototype implementation in this project. We will start by discussing what
is needed to create a full implementation of the framework. Following that,
we will discuss how the work done in this project can influence the creation
of Al frameworks for other game types.

Page 144 of 273 CHAPTER 9. DISCUSSION

9.5.1 Complete Implementation

A complete implementation of the framework presented in this project will
first and foremost require that all the remaining features presented in the
design in Chapter 6 are implemented. A couple of areas require further work
before being applicable in the framework. These are listed below:

Tactics: First, the concept of how to represent tactics presented in Section
5.4.3 must be expanded to deal with several other tactical issues such as
using terrain, using support units and figuring out how to counter the
opponent’s tactics. Secondly, the framework must include methods for
properly executing the different tactics defined by the user, through the
rules defined in the tactics representation. Finally, work must be done
in trying to develop a generic method for recognising tactics in all kinds
of RTS games. This method should be based on the representation of
tactics.

Cooperation: In this project we chose to disregard all cooperation features
in the framework. This would not be an option in a full implementa-
tion, as cooperation has an important role in most RTS games. In the
human model in Chapter 3, we defined cooperation as being a task
influencing all other tasks and as being itself influenced by all other
tasks. Translating this to the framework architecture, it would prob-
ably be a form of global module, dictating orders to other modules.
More work has to be done in this area to ensure proper cooperation
between both allied Als and allied human players.

Graphical User Interface: Section 8.1 and Section 8.1.5 presented the
idea that a GUI would be a big help in ensuring a developer friendly
framework. This idea should be further developed, and developer
friendly methods for the user to define strategy trees, technology tree,
unit types etc. must be defined.

Documentation: The documentation for the prototype implementation is
limited to the framework design descriptions in Appendix B and con-
figuration examples in Python files along with comments on what each
configuration variable means. However, frameworks are in general large
and complex pieces of software and quite difficult to understand, and
therefore proper documentation is required [FHLS97|. A lot of research
has been done on documenting frameworks [BKMO00]. Normally, one
divides documentation of frameworks into three separate areas [Joh92|:

e The purpose of the framework.
e How to use the framework.

e The detailed design of the framework.

CHAPTER 9. DISCUSSION Page 145 of 273

Work must be done in ensuring the right choice of documentation for
a framework of this type, which includes the three areas mentioned
above.

With all ideas fully developed, we can take a closer look at the features
which were not implemented in the prototype implementation. In the fol-
lowing we will list some of the most interesting missing features, and present
some of the challenges of a complete implementation.

Learning: The design of the Learning module is specified in Appendix
B.9. Methods for learning new strategies have already been discussed
throughout the discussion of strategy trees in Section 5.4.1. The
biggest challenges when implementing the module will be to devise
a method for learning new tactics and base building templates. Fur-
thermore, a method is needed to properly revise strategies, tactics and
base building templates.

Base Building Templates: The framework will have to use the ideas pre-
sented in Section 5.4.4. This includes letting users define their own
templates, and defining internal methods in the framework that are
able to use any given template. Work must also be done on how to
build a few generic templates, which will work in any RTS game. These
would serve as a standard way of handling base building.

Building Planner: This sub-module is part of the Base Building mod-
ule, and is basically responsible for planning which buildings to build
and when. It must given a strategy and base building template, plan
where and what to build, taking the technology tree and the resources
available into consideration. Further details of this sub-module can be
found in Appendix B.8.5.

Unit Planner: This sub-module is part of the Action Planner and its re-
sponsibilities are similar to that of the Building Planner. It must con-
sider all the same things, but here the module must create a plan for
when and what units are to be built. The sub-module is discussed in
further detail in Appendix B.10.3.

Research Planner: The Action Planner also contains this sub-module,
which is responsible for deciding when and what research is to be pur-
chased. Work must be done in developing generic methods able to deal
with all the different kinds of research options available in different RTS
games.

Action Scheduling: While Building Planner, Unit Planner and Research
Planner all focus on each their area, the Action Planner must decide
which of the suggested actions from each sub-module are to be executed

Page 146 of 273 CHAPTER 9. DISCUSSION

first. The challenge of creating this sub-module is to devise a sensible
way for developers to specify rules for how the module should prioritise
the different actions. This sub-module is discussed in further detail in
Appendix B.10.5.

Advanced Scouting: The prototype implementation has a very simple
form of scouting. The complete implementation must both include
features for scouting the right attributes of the enemy and for scouting
the right places. The execution of scouting is as such not difficult, the
task when creating this sub-module will be to let a developer define
precise rules for when and what to scout. A further discussion of this
can be found in Appendix B.5.4.

Advanced Execution of Strategies: While the prototype implementa-
tion has a very simplified execution of strategies, the complete im-
plementation must feature the States sub-module explained in Section
B.5.10. However, this method must be tested in terms of its ability
to handle very specialised situations and a method for developers to
easily define the execution of strategies must be devised.

Advanced Situation Assessment: Appendix B.5.9 presented a simple
generic way of evaluating a situation. However, as also explained in
that section, evaluating a situation is game specific, and a way for a
developer to define how to do this will be necessary in most games.
Work must be done in attempting to devise a way to do this without
the developer being required to have knowledge of C+-+ programming.

In general, further work must be done in testing different aspects of the
framework. The prototype implementation has only been connected to one
GDF, and to really test the versatility of the framework, it must be tested
with other GDFs as well. Furthermore, the GDF used for the prototype
implementation is primarily used to create games in one of the RTS genres
defined in Section 2.4.2. This means that the framework has not yet been
tested in regards to its ability to create Als for all the different genres.
However, as discussed in the evaluation in Chapter 8, this should not be a
problem.

9.5.2 AI Frameworks in General

This project also has uses outside the domain of AI frameworks in RTS
games. We have through the project demonstrated how it is possible to
reuse large parts of the Al for a specific game genre. We hypothesise that
this is possible for more genres than just RTS games. This report can serve
as a guideline of how to construct a framework specifically suited for one
type of game. This includes building a human model of how a human will

CHAPTER 9. DISCUSSION Page 147 of 273

play the game as well as using this to create a framework architecture. This
development model is discussed in more detail in Section 8.7.2. Further-
more, a number of examples have been described, of how to create special
data structures particularly useful for both representing and learning domain
specific knowledge in the game type being focused on.

CHAPTER 10. CONCLUSION Page 149 of 273

Chapter 10

Conclusion

In this chapter we will conclude on the project and present the primary
contributions made to academia and game development, described through-
out this report. This project has presented the design of an Al framework
for RTS games. We have based this work on our pre-master thesis [FKLO05],
which defined a model of how humans plays RTS games and suggested a pre-
liminary design. This report presented a revised human model in Chapter
3, which defined the tasks an RTS game consists of and how these influence
each other. We used this model as a starting point when we designed the
framework architecture.

Throughout the report we have presented a number of design techniques
used when designing the framework. We have demonstrated how these tech-
niques can be used to enhance AI development in the game development
industry as well as demonstrated a new area of application for these tech-
niques for the academic world. Some of the known design techniques used
include frameworks, scripting languages and event systems, but we also pre-
sented four new concepts specifically suited to create Als in RTS games.
These four techniques provides the foundation for the Al framework. In Sec-
tion 5.4.1 we presented the idea of strategy trees, which is a data structure
specifically suited to represent strategies in RTS games. Following this, we
focused on pathfinding, which is an important element of any RTS game,
and we presented a new method of doing this, optimised for working in an
RTS game environment. The third RTS specific technique introduced was
the notion of a representation of tactics. We presented a general approach to
how this can be done in a way that Al designers can specify tactics specifi-
cally suited to the game they are working with. Finally, the fourth technique
focused on what we chose to call base building templates. These were cre-
ated to allow AI designers to specify how an Al should construct its base
in a particular game using a certain strategy. Strategy trees, tactics and
base building templates have all contributed to Al development within the
RTS genre, by presenting new ways of representing Al specific data. They

Page 150 of 273 CHAPTER 10. CONCLUSION

allow a developer friendly and generic representation, which can be reused in
different RTS game genres. Furthermore, they allow developers to compose
new kinds of strategies, tactics and base building templates, by combining
small building blocks consisting of rules or strategies. Our pathfinding idea
has not only shown a new way for Al developers to optimise pathfinding in
their games by reducing the explored search space and distributing compu-
tations over several game ticks, but also contributed to the general academic
research within this area, which has many applications outside RTS games.

The design of the Al framework was presented in Chapter 6, and followed
the design goals outlined in Section 4.1. These included improving the Al
reducing development cost, creating a workload shift from programmers to
designers and creating a structured overview of the development process of
creating Als for RTS games. The fulfilment of these design goals through
our Al framework has contributed to the game development industry by
presenting and implementing a design capable of achieving these goals. By
using the human model defined in Chapter 3 as a foundation and by drawing
upon knowledge of framework capabilities and characteristics, we created a
cognitive architecture for the framework, described in Section 6.1. As for
the non-trivial knowledge representation in the framework, we used the RTS
specific concepts defined in Section 5.4: Strategy trees, tactics and base
building templates. The detailed design in Appendix B furthermore specified
sub-modules in each framework module, defining their responsibilities and
proposed hot spots. Finally, in Section 6.3 we presented how a user should
be able to vary framework instances from each other and in Section 6.4 we
presented an event system designed to control our Al framework. The design
of the framework has contributed to academia by combining three well-known
design techniques in a new area of application in order to maximise reuse,
secure a user friendly framework and create a clear separation of framework
modules.

As a proof of concept, a prototype implementation of the framework was
implemented and connected to the ORTS GDF. This GDF included a sim-
ple RTS game, which had all the necessary features required to test different
Al capabilities. In order to allow inexperienced programmers to use the
framework, we used the scripting language Python to configure framework
modules and knowledge bases. The evaluation of the prototype implemen-
tation was presented in Chapter 8 and discussed six framework evaluation
areas: Configurability, Versatility, Extendibility, Performance testing, Al im-
provements and test of RTS Specific Concepts. We concluded that an Al
designer is able to configure strategies, technology trees and modules with-
out much effort. However, if new attributes or features in a game are to be
included, experienced C-++ programmers must extend modules or methods
in the framework. As long as the required Al for the game does not de-
viate too much from the internal framework architecture, this can be done
without any problems. We hypothesise that this is the case with most RTS

CHAPTER 10. CONCLUSION Page 151 of 273

games within the four genres mentioned in Section 2.4.2. Our performance
test revealed one major performance problem in the implementation of our
pathfinding idea. However, we have identified the problem and presented
a solution to overcome it in Section 8.6.2. The test of the AI created with
the prototype implementation was presented in Section 8.5, and showed that
the AT is able to both scout and vary its strategy by using counters. The
ability to counter and vary its strategies is a direct consequence of using
strategy trees as the representation of strategies in the framework. The pro-
totype implementation has contributed to the game development industry
by demonstrating to what degree an Al designer can develop Als and how
strategy trees in particular simplifies creating Als with capabilities beyond
those of current commercial RTS game Als.

In Chapter 9, we presented a discussion of the potential use of the Al
framework in the game development industry. We contacted several RTS
game development companies, and set up demands that the framework had
to fulfil to be useful in the industry. We then demonstrated how each of these
demands set by the industry were fulfilled by our framework architecture.
Furthermore, we analysed the market for an Al framework for RTS games,
and concluded that there are many potential buyers and if our enquiry served
as any kind of indication, most companies would be able to benefit from the
use of our Al framework.

There are many possibilities for future work based on this project. The
logical entailment following the prototype implementation would be to imple-
ment a complete implementation. This will require work in several different
areas as also presented in Section 9.5. First of all, this report has contributed
by identifying key areas which requires further work before they can be used
in an actual implementation. This is the case with the tactics representation
presented in Section 5.4.3 and the Cooperation task in the human model,
which were not initially included in the design of the framework. Further-
more, throughout the evaluation in Chapter 8, two issues were found to be
very important when users are to use the framework: Documentation and
Graphical User Interfaces. Documentation is required for both designers and
programmers to use the framework efficiently and this must be added for a
complete implementation to be of any use. GUIs must be added to aid Al
designers in designing strategy trees, technology tree, unit types etc. and
for assisting programmers in creating modules. Both the documentation of
frameworks and the creation of a developer friendly interface for the frame-
work, are interesting areas from an academic research perspective. Finally,
there are also still work to be done in regards to the Learning module. Learn-
ing strategies is well-defined through strategy trees, but work must be done
on how to learn tactics and base building templates. Machine learning is as
such a well-known discipline within machine intelligence research, however,
the techniques described in our solution presents not only a new method of
doing so, but also a new area of application.

Page 152 of 273 CHAPTER 10. CONCLUSION

The work done in this project may be used in other areas than developing
complete Al solutions. One area may be within Al research. As stated in
Section 9.4, our framework provides an opportunity for Al researchers to
focus their attention on a certain area of RTS AI. RTS games are interesting
for AT researchers, because they contain a number of interesting Al problems
in well-defined environments, and our framework allows researchers to easily
focus on one of them. This way we contribute to academia by providing a
research platform for Al development.

The development method used in this project may also be used in fu-
ture work. We hypothesise that the method of creating a human model for
a certain game type, and then transforming this to a cognitive framework
architecture is applicable in other game genres than the RTS genre. Further
work may be done in both academia and within game development on de-
veloping a general human model, suitable to describe a human player in all
kinds of game genres. Furthermore, a thorough study of the human model
could probably enhance the model and lead to a better abstraction.

CHAPTER 11. RESUME Page 153 of 273

Chapter 11

Resume

It is a widely acknowledged fact that the Als found in computer games are
of a poor quality. Consequently this means that the gameplay that relies
on the Als also suffers. Players have found the answer to this problem by
seeking challenges in playing against other players. Producers of Real-Time
Strategy games have attempted to improve the quality of Al by allowing it
to cheat, creating general and static solutions or by focusing on scripting the
Al to perform a certain strategy as fast as possible. Neither of these methods
have brought the Al to a standard, where it can resemble that of a human
player. In order to enhance the gameplay in the game parts that rely on the
performance of the Al, it will have to play with near human capabilities. We
approach this problem by building a human model of how a human player
plays and use this as a basis for a general framework for building Als to
Real-Time Strategy games. The preliminary work that served as a base for
the model and the design of the framework was carried out in our pre-master
thesis [FKLO5|.

Throughout the report we have presented a number of design techniques
used when designing the framework. We have demonstrated how these tech-
niques can be used to enhance Al development in the game development
industry as well as demonstrated a new area of application for these tech-
niques for the academic world. Some of the known design techniques used
include frameworks, scripting languages and event systems, but we also pre-
sented four new concepts specifically suited to create Als in RTS games.
These four techniques provides the foundation for the AI framework. First
we presented the idea of strategy trees, which is a data structure specifically
suited to represent strategies in RTS games. Following this, we focused on
pathfinding, which is an important element of any RTS game, and we pre-
sented a new method of doing this, optimised for working in an RTS game
environment. The third RTS specific technique introduced was the notion
of a representation of tactics. We presented a general approach to how this
can be done in a way that Al designers can specify tactics specifically suited

Page 154 of 273 CHAPTER 11. RESUME

to the game they are working with. Finally, the fourth technique focused on
what we chose to call base building templates. These were created to allow Al
designers to specify how an AT should construct its base in a particular game
using a certain strategy. Strategy trees, tactics and base building templates
have all contributed to Al development within the RTS genre, by presenting
new ways of representing Al specific data. They allow a developer friendly
and generic representation, which can be reused in different RTS game gen-
res. Furthermore, they allow developers to compose new kinds of strategies,
tactics and base building templates, by combining small building blocks con-
sisting of rules or strategies. Our pathfinding idea has not only shown a new
way for AI developers to optimise pathfinding in their games, but also con-
tributed to the general academic research within this area, which has many
applications outside RTS games.

The design of the Al framework followed four design goals: Improving the
Al reducing development cost, creating a workload shift from programmers
to designers and creating a structured overview of the development process
of creating Als for RTS games. The fulfilment of these design goals through
our Al framework has contributed to the game development industry by
presenting and implementing a design capable of achieving these goals. By
using the human model as a foundation and by drawing upon knowledge of
framework capabilities and characteristics, we created a cognitive architec-
ture for the framework. As for the non-trivial knowledge representation in
the framework, we used the RTS specific concepts mentioned earlier: Strat-
egy trees, tactics and base building templates. Finally, we presented an event
system designed to control our Al framework, and we presented how a user
should be able to vary framework instances from each other. The design of
the framework has contributed to academia by combining three well-known
design techniques in a new area of application in order to maximise reuse,
secure a user friendly framework and create a clear separation of framework
modules.

As a proof of concept, a prototype implementation of the framework was
implemented and connected to the ORTS game development framework.
This game development framework included a simple RTS game, which had
all the necessary features required to test different AT capabilities. In or-
der to allow inexperienced programmers to use the framework, we used the
scripting language Python to configure framework modules and knowledge
bases. We then evaluated the prototype implementation in relation to six im-
portant areas: Configurability, Versatility, Extendibility, Performance test-
ing, Al improvements and test of RTS Specific Concepts. Our performance
test revealed one major performance problem in the implementation of our
pathfinding idea. However, we have identified the problem and presented a
solution to overcome it. The test of the Al created with the prototype im-
plementation showed that the Al is able to both scout and vary its strategy
by using counters. The ability to counter and vary its strategies is a di-

CHAPTER 11. RESUME Page 155 of 273

rect consequence of using strategy trees as the representation of strategies in
the framework. The prototype implementation has contributed to the game
development industry by demonstrating to what degree an Al designer can
develop Als and how strategy trees in particular simplifies creating Als with
capabilities beyond those of current commercial RTS game Als.

We also presented a discussion of the potential use of the Al framework
in the game development industry. We contacted several RTS game devel-
opment companies, and set up demands that the framework had to fulfil to
be useful in the industry. We then demonstrated how each of these demands
were fulfilled by our framework architecture. Furthermore, we analysed the
market for an Al framework for RTS games, and concluded that there are
many potential buyers and if our enquiry served as any kind of indication,
most companies would be able to benefit from the use of our Al framework.
We then presented a number of possible areas for future work. This included
creating a complete implementation of the framework as well as further de-
veloping some of the ideas presented throughout this report. Furthermore,
we hypothesised that the technique of building an AI framework architecture
based on a human model is applicable in other domains than the RTS game
genre.

BIBLIOGRAPHY Page 157 of 273

Bibliography

[age]

| AL

[aom)|

[a0x]

[Ban]|

[BASCO5]

[bat]

[BF04al

[BFO4b|

[BFO5]

[BKMO0]

Age of Empires.
http://www.ageofempires.com/.

Artificial Intelligence and Interactive Digital Entertainment.
http://www.aiide.org/.

Age of Mythology.
http://www.microsoft.com/games/ageofmythology /.

Armies of Exigo.
http://www.aox.ea.com/.

Black & White.
http://www.lionhead.com/.

Michael Buro, David W. Aha, Nathan Sturtevant, and Vincent
Corruble.
Complex Video Game Al Competitions at AIIDE’2006. 2005.

Battle.net Homepage.
http://www.battle.net /.

Michael Buro and Timothy Furtak.

RTS Games and Real-Time AI Research. Behavior Representa-
tion in Modeling and Simulation Conference (BRIMS), 2004. In
Proceedings.

Michael Buro and Timothy Furtak.
RTS Games as Test-Bed for Real-Time Research. Be-

haviour Representation in Modeling and Simulation Conference
(BRIMS), 2004.

Michael Buro and Timothy Furtak.
On the Development of a Free RT'S Game Engine. 2005.

Greg Butler, Rudolf K. Keller, and Hafedh Mili.
A Framework for Framework Documentation. ACM Comput.
Surv., 32(1es):15, 2000.

Page 158 of 273 BIBLIOGRAPHY

[bli]

[BMS04]

[Bue9s|

[Bur(2]

[Bur03al

[Bur03b|

[Bur04]

[CBSO05]

[CCTSY]

[CLR90]

[com]

[cou]

[CSL]

Blizzard Entertainment.
http://www.blizzard.com/.

Adi Botea, Martin Muller, and Jonathan Schaeffer.
Near Optimal Hierarchical Path-Finding. Journal of Game De-
velopment, 2004.

Jesus Cerquides Bueno.
KDCOM: A Knowledge Discovery Component Framework. Mas-
ter’s thesis, Campus, UAB, Barcelona, Spain, 1998.

Michael Buro.
ORTS - A Hack-Free RTS Game Toolkit. October 2002.

René Burgess.

Realistic Evaluation of Terrain by Intelligent Natural Agents.
Master’s thesis, Campus UAB, Barcelona, Spain, September
2003.

Michael Buro.
Real-Time Strategy Games: A New AI Research Challenge.
2003.

Michael Buro.
Call for AI Research in RTS Games. AAAI-04 Al in Games
Workshop, 2004. San Jose.

Michael Chung, Michael Buro, and Jonahthan Schaeffer.
Monte Carlo Planning in RTS Games. 2005.

N. V. Carlsen, N. J. Christensen, and H. A. Tucker.
An Event Language for Building User Interface Frameworks. In
UIST °89: Proceedings of the 2nd annual ACM SIGGRAPH

symposium on User interface software and technology, pages
133-139, New York, NY, USA, 1989. ACM Press.

Thomas H. Cormen, E. Leiserson, Charles, and Ronald L.
Rivest.
Introduction to Algorithms. MIT Press, 1990. COR th 01:1 1.Ex.

Command & Conquer.
http://westwood.ea.com/.

Half-Life: Counter-Strike.
http://www.counter-strike.net /.

CSLI's Computational Learning Laboratory Homepage.
http://cll.stanford.edu/.

BIBLIOGRAPHY Page 159 of 273

[dar] Dark Reign.
http://www.auran.com/games/darkreign /default.htm/.

[Daw]| Bruce Dawson. GDC 2002: Game Scripting in Python.
http://www.gamasutra.com /features/20020821 /dawson_ pfv.htm.

[Del01] Mark Deloura.
Game Programming Gems 2.
Charles River Media, 2001.

[des] Descent 3.
http://www.descent3.com/.

[diga] Digital Drama Studios.
http://www.digitaldramastudios.com/.

[digb] Digitalmill.
http://www.dmill.com/.

|[dJSRO5] Steven de Jong, Pieter Spronck, and Nico Roos.
Requirements for Resource Management Game Al. International
Joint Conferences on Artificial Intelligence, 2005. Workshop on
Reasoning, Representation, and Learning in Computer Games.

[dox] Doxygen.
http://www.stack.nl/ dimitri/doxygen/.

[dun] Dune II.
http://duneii.com/.

[EE1] Empire Earth.
http://www.empireearth.com/.

|EE2] Empire Earth 2.
http://www.empireearth2.com/.

[FCGCO02| Carlos J. Fernandez-Conde and Pedro A. Gonzalez-Calero.
Domain Analysis of Object-Oriented Frameworks in FrameDoc.
In SEKE °02: Proceedings of the 14th international conference

on Software engineering and knowledge engineering, pages 27—
33, New York, NY, USA, 2002. ACM Press.

[feal F.E.AR.
http://www.whatisfear.com/.

|[Feu97| Alan R. Feuer.
MFC Programming.
Addison Wesley Professional, 1997.

Page 160 of 273 BIBLIOGRAPHY

[FFMO03]

[FHLS97|

[fir]

[FKLO5)

[FS97]

[FSJ97|

|gam)]

|GHGO4]

[god]

[gpr]

[Hal]

[HF04]

Ludger Fiege, Felix Freiling, and Gero Muehl.
Modular Event-Based Systems. Knowledge Engineering Review,
17(4), 2003.

Gary Froehlich, H. James Hoover, Ling Liu, and Paul Sorenson.
Hooking into Object-Oriented Application Frameworks. In ICSE
"97: Proceedings of the 19th international conference on Software
engineering, pages 491-501, New York, NY, USA, 1997. ACM
Press.

Fireglow Games.
http://www fireglowgames.com/.

Kasper Frederiksen, Kasper Kristensen, and Anders Lauritsen.
Towards an Al Framework for RT'S Games. Pre-master thesis,
December 2005.

Mohammed Fayad and Douglas Schmidt.
Object Oriented Application Framework. Communications of
the ACM, 40(10), 1997.

Mohammed E. Fayed, Douglas C. Schmidt, and Ralph E. John-
son.

Object-Oriented Application Frameworks: Problems & Perspec-
tives. Wiley, NY, 1997.

Gamespot.
http://www.gamespot.com/.

Thore Graepel, Ralf Herbrich, and Julian Gold.
Learn to Fight. International Conference on Computer Games:
Artificial Intelligence, Design and Education, 2004.

God Games Definition.
http://en.wikipedia.org/wiki/God _game.

GNU gprof.
http://www.gnu.org/software /binutils/manual /gprof-
2.9.1/html mono/gprof.html.

Half-Life.
http://www.valvesoftware.com/.

Stuart Hansen and Timothy Fossum.

Events Not Equal To GUIs. In SIGCSFE ’0/: Proceedings of the
35th SIGCSE technical symposium on Computer science educa-
tion, pages 378-381, New York, NY, USA, 2004. ACM Press.

BIBLIOGRAPHY Page 161 of 273

[HNORSS]

[Hue]

[Inf]

[inh]

[Jav]

[JFsS]

[JGO05)

[Joh92]

[Joh97]

[jsw05]

[kall

[KNYHO05]

Tor Hauge, Inger Nordgard, Dan Oscarsson, and Georg Raeder.
Event-Driven User Interfaces Based on Quasi-Parallelism. In
UIST ’88: Proceedings of the 1st annual ACM SIGGRAPH sym-
posium on User Interface Software, pages 66-76, New York, NY,
USA, 1988. ACM Press.

Robert Huebner.
Adding Languages to Game Engines".
http://www.gamasutra.com/features/19971003 /huebner 01.htm.

Infinite Interactive.
http://www.infinite-interactive.com/.

Inhuman Games.
http://inhumangames.com/.

Java.
http://www.java.sun.com/.

Ralph E. Johnson and Brian Foote.
Designing Reusable Classes. Journal of Object-Oriented Pro-
grammiang, 1(2):22-35, 1988.

Joshua Jones and Ashok Goel.

Knowledge Organization and Structional Credit Assigment. In-
ternational Joint Conferences on Artificial Intelligence, 2005.
Workshop on Reasoning, Representation, and Learning in Com-
puter Garmes.

Ralph E. Johnson.
Documenting Frameworks using Patterns. In OOPSLA ’92:
conference proceedings on Object-oriented programmaing systems,
languages, and applications, pages 63-76, New York, NY, USA,
1992. ACM Press.

Ralph E. Johnson.
Frameworks = (Components + Patterns). Communications of

the ACM, 40(10), 1997.

Creating a GUI with JFC/Swing.
http://java.sun.com/docs/books/tutorial /uiswing/, 2005.

Kali.net.
http://kali.net.

Bharat Kondeti, Maheswar Nallacharu, Michael Youngblood,
and Lawrence Holder.
Interfacing the D’Artagnan Cognitive Architecture to the Urban

Page 162 of 273 BIBLIOGRAPHY

[Lai01]

|Lai03]

[Lew98]

[Lis]

[LL99|

[LLO1]

[LL02|

[lot]

[Lua]

[MBF99]

[MLO1]

[moo

[msr|

Terror First-Person Shooter Game. pages 55—60. International
Joint Conferences on Artificial Intelligence, 2005. Workshop on
Reasoning, Representation, and Learning in Computer Games.

John E. Laird.
Using a Computer Game to Develop Advanced Al. Computer,
34(7):70-75, 2001.

John E. Laird. The Soar 8 Tutorial.
http://sitemaker.umich.edu/soar/, 2003.

Scott M. Lewandowski.

Frameworks for Component-Based Client/Server Computing,
1998. S.M. Lewandowski, Frameworks for Component-Based
Client/Server Computing, ACM Computing Surveys, Vol. 30,
No. 1, Mar. 1998.

Lisp.
http://www.clisp.org/.

Michael van Lent and John Laird.
Developing an Artificial Intelligence Engine. pages 577-588, San
Jose, CA, March 1999. Game Developers Conference.

Michael van Lent and John Laird.
Human-Level Al’s Killer Application. AAAI, 2001.

Pat Langley and John E. Laird.
Cognitive Architectures: Research Issues and Challenges. 2002.

Lord of the Rings: Battle for Middle-Earth.
http://lotr.ea.com/.

Lua.
http://www.lua.org/.

Michael Mattsson, Jan Bosch, and Mohamed E. Fayad.
Framework Integration Problems, Causes, Solutions. Commun.
ACM, 42(10):80-87, 1999.

Marcus Eduardo Markievicz and Carlos J.P. Lucena.
Object Oriented Framework Development. Crossroads, ACM
Press, 7(4):3-9, 2001.

Moore’s Law.
http://www.webopedia.com/TERM /M /Moores Law.html.

Microsoft Research.
http:/ /research.microsoft.com/.

BIBLIOGRAPHY

Page 163 of 273

[MSWTO05] Richard Maclin, Jude Shavlik, Trevor Walker, and Lisa Torrey.
Knowledge-Based Support-Vector Regression for Reinforcement
Learning. International Joint Conferences on Artificial Intel-
ligence, 2005. Workshop on Reasoning, Representation, and

[Nar02]

[0dd]

[Ort]

[ORTO05]

[Ous98]

[pac]

|Per]

[pon]

[PP04]

[Pytal

[Pytb]

[quaal

[quab

Learning in Computer Games.

Alexander Nareyek.

Intelligent Agents for Computer Games. Computers and Games,

2002.

Oddlabs.
http://www.oddlabs.com/.

Orts Game Specification.

http://www.cs.ualberta.ca/ “mburo/orts/AIIDE06 /game3.

ORTS Homepage.

http://www.cs.ualberta.ca/ “mburo/orts/orts.html, 2005.

John K. Ousterhout.

Scripting: Higher-Level Programming for the 21st Century.

Computer, 31(3):23-30, 1998.

Pac-man.
http://en.wikipedia.org/wiki/Pacman.

Perl.
http://www.perl.com/.

Pong.
http://en.wikipedia.org/wiki/PONG.

Andrew M. Phelps and David M. Parks.

Fun and Games: Multi-Language Development.

1(10):46-56, 2004.

Python.
http://www.python.org/.

Python Success Stories.
http://www.python.org/about /success/.

Quake.
http://www.idsoftware.com /games/quake/quake/.

Quake II.
http://www.idsoftware.com/games/quake/quake2/.

Queue,

Page 164 of 273 BIBLIOGRAPHY

[red]

[RKDOO]

[RNO3]

[rts]

[Saw02]

[SC95]

[Sch04]

[sev]

[SGS6]

[SL94]

[Soal

[sta]

[Str]

[sud]

Red Alert.
http://www.ea.com/official /cc/firstdecade /us/index.jsp/.

Douglas A. Reece, Matt Kraus, and Paul Dumanoir.

Tactical Movement Planning for Individual Combatants. 9th
Conference on Computer Generated Forces and Behavioral Rep-
resentation, 2000. In Proceedings.

Stuart Russell and Peter Norvig.
Artificial Intelligence A Modern Approach.
Prentice Hall, 2003.

Definition of RTS Games.
http://en.wikipedia.org/wiki/Real-time _strategy.

Ben Sawyer.

Serious Games: Improving Public Policy through Game-based
Learning and Simulation. Woodrow Wilson International Center
for Scholars, 2002. Technical Report.

Douglas C. Schmidt and James O. Coplien.
Pattern Languages of Program Design.
Addison-Wesley, 1995.

Brian Schwab.
Al Game Engine Programming.

Charles River Media, 2004.

Seven Kingdoms Conquest.
http://www.enlight.com/7kc/.

Robert W. Scheifler and Jim Gettys.
The X Window System. ACM Trans. Graph., 5(2):79-109, 1986.

Alexander A. Stepanov and Meng Lee.
The Standard Template Library. Technical Report X3J16/94-
0095, WG21/N0482, 1994.

Soar Homepage.
http://sitemaker.umich.edu/soar.

Starcraft.
http://www.blizzard.com /starcraft /.

Stratagus Homepage.
http://www.stratagus.sourgeforge.net/.

Sudden Strike 3: Arms for Victory.
http://www.suddenstrike.com/.

BIBLIOGRAPHY Page 165 of 273

[S704]

[Tcl]

[tet]

[tib]

[tra]

[Tri]

[UB06|

[UGJIMO5]

[wara]

[warb|

[warc|

[whial

[whib]

[Dst99]

Katie Salen and Eric Zimmerman.
Rules of Play.
The MIT Press, 2004.

Tcl.
http://www.tcl.dk/.

Tetris.
http://en.wikipedia.org/wiki/Tetris.

Command & Conquer: Tiberian Sun.
http://www.ea.com/official /cc/firstdecade/us/tiberiansun.jsp.

Trash.
http://inhumangames.com/.

Tribal Trouble.
http://tribaltrouble.com/.

Tapani Utriainen and Michael Buro.

ORTS Competition: Getting Started.

http:/ /www.cs.ualberta.ca/ " mburo/orts/AIIDE06/getting _started.pdf,
May 19 2006.

Patric Ulam, Ashok Goel, Joshua Jones, and William Murdock.
Using Model-Based Reflection to Guide Reinforcement Learn-
ing. International Joint Conferences on Artificial Intelligence,
2005. Workshop on Reasoning, Representation, and Learning in
Computer Garmes.

Warcraft II.
http://www.blizzard.com/war2bne/.

Warcraft I11.
http://www.blizzard.com/war3/.

Warzone 2100.
http://en.wikipedia.org/wiki/Warzone 2100/.

Warlords Battlecry II.
http://www.infinite-interactive.com/wbc2/.

Warlords Battlecry III.
http://www.infinite-interactive.com/whc3/.

Kasper Osterbye.
Minimalist Documentation of Frameworks, 1999.

Page 167 of 273

Part IV

Appendix

APPENDIX A. TERMS AND EXPRESSIONS Page 169 of 273

Appendix A

Terms and Expressions

The purpose of this section is to introduce a number of terms and expressions
that will be used throughout the report. The terms have been sorted into five
areas: General concepts, buildings, units, special abilities, and strategies.

A.1 General Concepts

Strategy: A strategy in an RTS game can be considered as a number of
general guidelines for how the player is going to play the game. This
includes the number of different units and buildings to build as well
as which research upgrades to purchase. It may also include specific
tactics dictating how to carry out a certain part of the strategy. Finally,
a strategy may also contain information about strong and weak points
during the course of the game using the strategy. A strategy can often
be considered of one of the types mentioned in Section A.5.

Tactic: A tactic consists of rules dictating how units should be controlled
during a battle. The includes rules for formations, focus fire, unit
preserving, how to use support units (including spells/abilities) and
how to use the terrain on the map.

Technology Tree: Most RTS games have a certain order in which the dif-
ferent buildings and units can be build. For instance, a certain building
may not be build, before another building has been build or a certain
technology has been researched. This building, unit and research de-
pendency is called the technology tree. The technology tree can be
divided into a few major levels (in the tree depth), where any further
advancement is depending on a single upgrade or research. These lev-
els are called the technology levels or tiers. In Age of Empires these
tiers are the different ages advanced through an upgrade at the town
center, and for most factions in the Craft series' these are the three

!The Warcraft and Starcraft series

Page 170 of 273 APPENDIX A. TERMS AND EXPRESSIONS

tiers advanced through the upgrade of the main building.

Build Order: At the start of most RTS games the player will start out with
her main building and a few workers. In order to build any other units
than workers, she will have to build unit production facilities, support
buildings, and perhaps some other buildings, depending on which unit
she wants to get. The order, in which she builds (may it be units or
buildings), is called the build order. An optimal build order is one in
which the goal is reached as fast as possible with the least amount of
waste (time or resources).

Fog of War: At the heart of any RTS game is the fact that the player does
not know what the opponent is doing. The idea is that you should only
know what is happening in proximity of your buildings and within the
sight of your units. The rest of the map is unknown. This concept is
called Fog of War. Fog of War comes in two layers: Territory that is
still unexplored and territory that is known, but not in sight.

Faction: Since the beginning of RTS games there has always been different
factions, houses, races etc. In the single player campaigns these factions
usually fight an epic war for the domination of the world or universe.
Mostly these factions are unique though still with some similarities
to the other factions in the game. In the Age of Empires genre the
difference is mostly that one faction may have some units available
that the other factions do not, while in the Craft series this difference
is a little more pronounce. Starcraft is the first game with three totally
different races. Protoss, Terran and the Zerg are so widely different
that each demands a different play style.

Resource Node: Resource nodes are found in many different sizes and
shapes depending on the game in question. The nodes in the Age
of Empires genre are spread all over the map. The player may for in-
stance gather wood from the forests, she may hunt wild game for food
and mine various minerals from gold, stone or iron quarries. In War-
craft only two different resources are available, being gold and lumber.
Lumber can be harvested from the forests and gold mined at the few
gold mines. Starcraft is a bit different, because in this game the re-
sources are found in clusters. This means that the minerals that are
the main resource in this game are all found at a few spots on the map,
but with several nodes close to each other. Mostly there will also be a
gas vein at these sites. On many of the maps in the Craft series, the
player will find either a gold mine, or a cluster of minerals and a gas
vein close to her starting spot. This site is called the natural expansion
site.

APPENDIX A. TERMS AND EXPRESSIONS Page 171 of 273

Attack Move: This is a command that dictates that the unit(s) should
move to the location indicated by the cursor and attack any enemy
object on the way.

Choke Point: A choke point is a narrow spot in the terrain, or perhaps
between buildings in a base. The danger of moving through choke
points is that only few units can move through at a time and if the
enemy is waiting on the other side, she will only have to fight those
few units at the time.

High Ground: When a battle is fought from high ground, it simply means
that the player is at a elevated position on the map compared to the
enemy. This often results in a certain advantage for the player, as
the enemy will often deal less damage, because of fighting uphill. The
advantage varies from game to game.

Upkeep: Upkeep usually describes a fee the player will have to pay in order
to maintain her army. In Warcraft III upkeep is more like a penalty
on the amount of gold harvested (not unlike a tax). If the player has
more than a certain amount of units she will receive a penalty on the
amount of resources received every time a worker brings in a sack of

gold.

Focus Fire: Focus fire is a concept of extreme importance in most RTS
games. It is simply a matter of having a number of units focusing their
attack on a single enemy unit until this unit is killed. This is a lot
better than having units firing at enemy units at random. Although
the damage dealt is the same, it is a lot better to face five enemy units
at full health than ten enemy units at 50% health, because the ten
units would deal twice as much damage as the five units.

Hitpoints Hitpoints are a number of points units and buildings have de-
scribing their current state of health. When taking damage the number
of hitpoints will decrease and when repaired or healed it will increase.
The number of hitpoints can in most cases not exceed a certain max-
imum defined for each type of unit or building. If the number of hit-
points reach 0 the unit or building will be destroyed.

A.2 Buildings

Main Building: This building is usually at the root of the technology tree.
In most games the player will start with a main building and a few
workers only. She will be able to produce more workers at the main
building and bring gathered resources to the main building in order
to add them to her resource pool. As previously mentioned, the main

Page 172 of 273 APPENDIX A. TERMS AND EXPRESSIONS

building is also mostly the building, in which the player gains access to
the next technology level. If lost the player will be unable to build any
building or unit that required the achieved technology level. However,
any building or technology that was built or researched before the main
building was lost, is kept.

Unit Production Facility: The main building is as such a unit produc-
tion facility but when this term is used throughout the rest of the
report, it refers to buildings that may produce offensive or support
units, basically anything else than workers.

Research Facility: In most RTS games the player will have access to one
or several research facilities. These buildings have the soul purpose of
upgrading units or make new technology available. They usually are
not of much use after the technology or upgrades have been researched,
unless they are an active part of the technology tree, meaning that this
building has to be present in order to gain access to some units or other
buildings.

Supply Structure: In many games the player has to provide some kind of
control or food in order to support her army. Mostly this is done by
building supply or something equivalent. In Warcraft III for instance
the farms will allow units worth eight support points to be build (four
footmen or eight workers).

Defensive Building: In all the games analysed the player has been able
to build some kind of defensive building that will attack any enemy
object. In most cases these defensive buildings are in the form of a
tower. The soviet army in Red Alert has the tesla coils, Protoss from
Starcraft has the photon cannon etc.

Expansion: In order to increase her income the player may decide to start
gathering resources from several different resource nodes. In Warcraft,
for instance, this would mean that the player would gather gold from
several gold mines. To prevent the workers from walking all the way
from the new mine (potentially a long distance away from the base),
she builds a new main building close to the new gold mine. She may
also add a few defensive buildings to protect this from harm. This is
called an expansion.

A.3 Units

Melee: This unit is the close combat unit. It has a very limited range of
its attack. In most cases it will have to stand right next to its target.
Melee units are generally a bit hardier than other units, as they will

APPENDIX A. TERMS AND EXPRESSIONS Page 173 of 273

have to get into the hottest spots of a battle. They may even just
be used as a meat shield for the ranged and supporting units. Melee
units with a special high amount of hitpoints are often referred to at
"Tanker’ units.

Ranged: Ranged units tend to be a bit more frail than the melee units. In
combination with melee units the player is able to deal more damage,
than had she had melee units only (there is only enough space for a
limited amount of melee units at the front-lines of the battle). In most
cases the ranged units are also one of the only units able to attack air
units.

Support: Support units are mostly specialised units that have some abilities
that either strengthens the player’s army or weakens the enemy’s army.
They may also have some limited ranged or melee attack, but it is not
their primary function.

Siege: The player may be able to build units that act as artillery. These
units have a slow rate of fire, but exceptional damage and range. Fur-
thermore, they also tend to deal damage with an Area of Effect. In
most cases these units are a bit fragile, but as they have superior
range the player may protect them behind her army. In Warcraft, for
instance, siege units also receive a bonus when attacking buildings.

Worker: In most games the worker is the most vital unit. This unit either
builds various buildings, harvests resources or both.

Air: Flying units are available in most games. They are generally quite fast
but fragile.

Hero: Early RTS games introduced the concept of a hero unit in the single
player campaigns. Usually the story was build on the adventures of
this hero unit, which had exceptional powers and got even better as
the story progressed (but so too did the enemy). Warcraft III, for
instance, has taken this concept to the next step and integrated the
hero concept fully into the game. This means that the player and the
AT are able to hire one or more heroes in any game.

Summoned: In some games support units, or perhaps a hero unit, may
be able to summon creatures. These creatures will then serve the
summoner, often for a limited period of time.

A.4 Special Abilities

Area of Effect: Spells come in many different sizes and shapes. In Age of
Empires, the prophets are able to cast a spell that starts an earthquake,

Page 174 of 273 APPENDIX A. TERMS AND EXPRESSIONS

which affects an area on the map and damages all buildings in the area.
This is called an Area of Effect spell or just AoE spell.

Buff: A buff is a positive spell that is cast on a friendly unit. In Warcraft
an example of this could be the bloodlust spell that raises the attack
speed of the affected unit.

Debuff: Contrary to the buff, the debuff is a negative spell cast on a un-
friendly unit. In Starcraft this could be the optic flare spell that lowers
the range of vision of any unfriendly unit.

A.5 Strategies

Scouting: In order to find out what the enemy is up to the player will have
to send a unit to the area she wants to know about. This is called to
scout the area. She might have to do this frequently throughout the
game, as this knowledge may give her an advantage over her enemy.

Rush: The player may decide to try to surprise the enemy by attacking very
early in the game. She can do this by building an early unit production
facility and make a lot of cheap attack units. This is called to rush the
enemy.

Tower: The defensive building introduced in the previous sections do not
necessarily have to be used defensively. Offensive towers can be built
just outside the enemy base, or perhaps even within the base, if she is
busy elsewhere. This is risky as the towers are defenceless while being
built, and as they are buildings they cannot be moved, if the enemy
starts applying siege units.

Fast Tech: The opposite of rush is to fast tech (short for quickly climbing
the technology tree). By skipping all the basic units, the player may
try to climb the technology tree as fast as possible in order to reach
some better units. This will leave her weak, while she is teching, but
if successful, she will be a lot stronger than the enemy, if she "wasted"
resources on the weaker basic units.

Mass: To mass is trying to kill the enemy by brute force. If the player has
a better income, she may try to swarm over the enemy by building a
lot of unit production facilities, and pump out units.

Harass: The player may decide to send out units to the enemy base or
perhaps her expansion with the purpose of slowing down the resource
gathering; kill off unprotected buildings and otherwise do harm, while
the enemy army is away. By doing this hit and run tactic, the player

APPENDIX A. TERMS AND EXPRESSIONS Page 175 of 273

can slow down the enemy production and force the enemy to pay at-
tention to the harassment. This leaves herself free to pursue other
matters.

APPENDIX B. MODULE DESIGN Page 177 of 273

Appendix B

Module Design

The following chapter will present a detailed design of modules in the frame-
work. Each module will be presented in turn. The design description will
start out by showing the internal structure of the module. Then the re-
sponsibilities of the module will be listed. Finally each sub-module will be
presented in the same fashion.

B.1 Percept Interpreter

This module extracts information from the game state, and updates inter-
nal knowledge bases in the framework. It must be implemented by the Al
designer to obtain the following information:

Reactive Module: Current hitpoints for all units and buildings.
Reactive Module: Native Al events.

In-Game Own Knowledge: Own unit and building positions and impor-
tant attributes for these.

Game State Interface: Map terrain information.

Current Strategy Node: Units, buildings, research, expansions, re-
sources, and current position in tech tree.

In-Game Enemy Knowledge: Enemy unit and building positions as well
as important attributes for these. Furthermore, last known position of
vanished units are noted here.

Dynamic Map Knowledge: Resource locations and amounts. (Al de-
signer specifies game or map specific objects)

Assigned Unit Action: All friendly units and their currently assigned ac-
tion.

Page 178 of 273 APPENDIX B. MODULE DESIGN

Update
DoTT

& ——— |pamageove

Change Tactical Planning Time Table
Unit State
Percept
Interpreter Unit State

Change
Building State

Building State
Handle Native
Al Event

Figure B.1: Strategy Tree for the Example

Base Building

B.2 Reactive Module

The purpose of the Reactive Module is to monitor and react on high DPS

or change of building/unit states as well as handling native Al events.

structure of this module can be seen in Figure B.1

B.2.1 Responsibilities

Monitor DPS: Units and buildings that are damaged will be
added to the Damage Quver Time Table so that their con-
dition and the damage they receive over time can be moni-
tored

High DPS warning: When a unit or a building is exposed
to a DPS exceeding a certain predefined value, the module
that has to handle it must be advised and action must be
taken

Change Building and Unit states: The amount of hit-
points the various buildings and units have define their
state. If the amount of hit point change so that the build-
ing or unit changes its state it might mean that the unit or
building should be handled differently than previously

Handle Native AI: In order to override the built-in native Al
and replace it with better decisions all native Al events must
be handed to the Tactical Planning.

The

APPENDIX B. MODULE DESIGN Page 179 of 273

B.2.2 Structure Overview

To meet the specifications of this module the structure has as such been
split into three parts: One dealing with updating the Damage Over Time
Table (Update DotT), another monitoring building and unit states and
DPS(Change Building State and Change Unit State), and finally the third
part handling the native Al events(Handle Native AI event). The modules
do not interact but rather handle each their sub-task.

B.2.3 Update DotT

This module will work on the Damage over time Table (DotT). Whenever a
unit or a building owned by the AI changes its amount of hitpoints, it will
be monitored by the Damage over time Table.

In games like Starcraft and Age of Empires it does not really pay to try
to remove units from the line of fire as the units have a relatively low amount
of hitpoints. This means that this module could altogether be ignored. In
other games like Warcraft the units have a higher amount of hitpoints and it
is possible to heal these so in this case it makes a lot more sense to preserve
them.

Responsibilities

Update Damage Over Time Table: FEach unit that re-
cently has had a change in its amount of hitpoints will have
a list in the Damage over time Table. If no such exists,
the list will have to be added. This module will record the
current amount of hitpoints of each unit in the table at a
predefined interval.

Damage Over Time Table Maintenance: When a list has
not changed for a while - the unit has not changed its
amount of hit points for a while, the list for this unit must
be removed from the table.

Hot Spots

Update Interval: The user of the framework will have to de-
fine how often the amount of hitpoints should be updated

List Spaces: The lists in the Damage over time Table are
FIFO lists of a user defined size. The size will have to fit
with the update interval and the amount of time that DPS
will be monitored.

Standby Time: The user will also have to define how long a
list should be maintained if the hit point value does not
change.

Page 180 of 273 APPENDIX B. MODULE DESIGN

Standard Implementation

All operations on the table will be handled by default in the framework, as
will the maintenance of the table.

B.2.4 Change Building State

Change Building State is responsible for monitoring the building state of all
buildings. Given a rule set the Change Building State will for each building
check which category the current amount of hit point is in. If the new
amount of hitpoints means that the building will change into a different
state it will notify the Base Building module and set the right state in the
in game knowledge base: Building State. Furthermore this module will also
calculate the DPS done to each building when these are getting damaged.
It does this by adding the collected data and divide it by the number of
data multiplied with the period of time the data was collected. To get an
idea as to how serious this damage is, the resulting number could be divided
by the maximum number of hitpoints the building has. This will yield the
percentage of building health lost per second.

Most games feature the possibility to repair buildings, the way it is done,
however, varies from game to game. In Command and Conquer the repair is
done by the player - it is an ability that she can activate on buildings. This
means that buildings are repairing at a constant speed whereas buildings
that are repaired by workers as seen in Warcraft and Age of Empires are
repaired by a speed defined by the number of workers repairing it.

Responsibilities

Change Building State: If a building has a change of hit
points that means the building will change state, this mod-
ule must set the right state in the Building State knowledge
base and notify the Base Building module.

Calculate Damage Per Second: Given the lists in the Dam-
age over time Table the module will have to calculate the
damage the monitored buildings have received per second
during the monitored time.

Issue Damage Per Second Warning: When the calculated
damage per second exceeds a certain amount the Base
Building module must be warned.

Hot spots

Building State Rule Set: This rule set will define the inter-
vals of the different states.

APPENDIX B. MODULE DESIGN Page 181 of 273

Standard Implementation

The standard implementation will handle all the responsibilities of the mod-
ule by default.

B.2.5 Change Unit State

Essentially this module has the same responsibility as the Change Building
State module but unlike that module this will monitor the unit state and
DPS done to units. In some games this module should be empty as the units
are not worth saving or unit health is less important that the management
of resources and production.

As mentioned earlier units in different games have different ’'values’. In
Starcraft they will in most cases be sacrificed in order to get the job done
while it is imperative to preserve units in Warcraft. Furthermore the unit’s
role also plays an important part in defining when a unit should be removed
from the line of fire. "Tanker’ units will have to be at a relatively low amount
of hitpoints while support units in most cases have to be removed as soon
as they are dealt damage.

Responsibilities

Change Unit State: A change in hitpoints that means that
the unit will enter a different state must be handled by
setting the right state in the Unit State module and notify
Tactical Planning so that the new unit state can be taken
into account.

Calculate Damage Per Second: Given the lists in the Dam-
age over time Table the module will have to calculate the
damage the monitored buildings have received per second
during the monitored time.

Issue Damage Per Second Warning: If the calculated
damage per second exceeds a certain amount the Tactical
Planning has to be notified.
Hot Spots
Unit State Rule Set: This rule set will also define the inter-
vals of the different states.
Standard Implementation

This module will be implemented by default.

Page 182 of 273 APPENDIX B. MODULE DESIGN

B.2.6 Handle Native AI Event

Every time a unit that is not currently controlled by either the Resource
Management module, the Base Building module or the Tactical Planning
module is done an action upon, a normal game would handle this by some
reactive action. This is, for instance, the case when a human player attacks
an AT controlled unit that is standing alone. In most cases this enemy unit
would follow and attack the human controlled unit even though it means to
engage the entire enemy army. This and many other unfortunate events can
be handled by simply passing the information to the Tactical Planning so
that a well-considered action can be ordered. In order to do this the Handle
Native AI Event module will have to receive all such events and the reactive
part of the Al will have to be disabled. The event will have to contain the
type of event and the unit/building in question.

In many games it is an unfortunate fact that the player can lure parts of
the enemy army away from the rest by shooting on one of the enemy units
and run away. The enemy unit that has been hit will then run after the one
that shot it and perhaps pull part of the enemy army with it. In order to
avoid this all reactive decisions must be disabled and handled by the proper
modules.

Responsibilities

Override Native AI: All events that previously were handled
by native Al will now be sent to the Handle Native Al event
module.

Redirect Native Al events: Depending on the type of the na-
tive Al event it will be redirected to either Base Building or
Tactical Planning.

Hot Spots

Event Groups: The user of the framework will have to de-
fine which buildings and units that will potentially receive
Native AT events.

Standard Implementation

The only event the standard implementation will handle is the "under at-
tack" warning. This warning will cause the module to warn Tactical Planning
or Base Building depending on whether it is a unit or building that is under
attack.

APPENDIX B. MODULE DESIGN Page 183 of 273

Tactical Knowledge Recognise
Tactics
In-Game
Enemy
Knowledge Update
Opponent
Model
Opponent Recognise Significant
Model Game States
Recognise
Strategies

Known Strategies

Learning

Percept Interpreter New Tactics

Figure B.2: The internal architecture of the Pattern Recognition module

B.3 Pattern Recognition

This module is responsible for recognising different strategies and tactics
used by the enemy, and for keeping track of an enemy’s strategic decisions
throughout a game. The internal architecture of this module can be seen
on Figure B.2. Circles represents sub-modules and boxes represents other
modules or knowledge bases. Arrows indicate how they influence each other.

B.3.1 Responsibilities

Recognise Tactics: The module is responsible for recognising
tactics used by the opponent during the game.

Recognise Strategies: Based on enemy unit and building com-
position, as well as enemy unit movement and tactics used,
the module is responsible for recognising strategies.

Update Opponent Model: During the game, the opponent’s
unit and building composition will change as well as several
other strategic important variables and it is the responsibil-
ity of this module to keep track of these and thereby keep
an updated opponent model at all times.

Monitor Strategic Choices of Opponent: The opponent
will make several crucial strategic choices during a game,

Page 184 of 273 APPENDIX B. MODULE DESIGN

which will influence the strategic possibilities open to her
at a later stage in the game. This module will be required
to keep track of these decisions.

B.3.2 Structure Overview

This module is divided into sub-modules based on the four different areas
of responsibility defined above. The functionality can basically be divided
into two parts: One branch for handling updating the Opponent Model and
one for providing the Learning module with the necessary information used
to learn new things. Updating the Opponent Model consists of two steps.
First, the module will attempt to recognise tactics used by the opponent
and this will be used when actually updating the Opponent Model with the
information currently known about the enemy including the number of differ-
ent units, buildings and research upgrades. The second part of the module
ensures that all strategic choices made by the opponent during the game
can be monitored. This is ensured by a module that recognises significant
game states, to determine when the opponent makes a significant switch in
strategy, which should be reflected in a strategy tree built for each opponent
during the game. This strategy tree is considered a part of the Opponent
model, and can be used to both, more clearly determine the opponent’s strat-
egy, and for easier determining when the opponent is doing a strategy the
AT have not seen before. In the latter case, the Learning module can take
advantage of the strategy tree built, and easily add it to the strategy tree
representing all strategies currently known by the AI. The last sub-module
is a module that ensures the possibility of adding game specific recognising
methods.

B.3.3 Recognise Significant Game States

This module is responsible for recognising important game states in the
opponent’s strategy. With this information it will be possible to build a
strategy tree during the game for the opponent’s strategy, which in turn will
make it possible to learn the opponent’s strategy. When a new significant
game state has occurred, which means the strategy tree for the opponent has
been updated, the module that recognises strategies should be activated to
determine if this is a new strategy or not.

Important game states are game specific and this module will therefore
be very dependent of hooks. In a game like Warcraft I1I for instance, the first
significant game state is when the player has created her hero and is ready
to either attack the NPCs placed around the map or harass the enemy. In
Starcraft on the other hand, the first significant game state can vary greatly
from being an extremely fast attack on the enemy to expanding maybe two
times before engaging the enemy.

APPENDIX B. MODULE DESIGN Page 185 of 273

Responsibilities

Recognise Significant Game State: Any significant game
state occurring during the game must be recognised so that
the opponent’s strategy tree can be updated.

Hot Spots

Classification of Significant States: The user of the frame-
work would in most cases be required to classify when a
significant game state has occurred, so that a proper strat-
egy tree for the enemy can be built, which allows for learning
new strategies in a sensible way.

Standard Implementation

It may be possible to make a game independent algorithm, which for in-
stance classifies important states as when the Al’s army is either attacking
or being under attack, but it would in most games not be enough to really
classify a game’s significant states. The problem with just using a standard
implementation is that the strategy trees built for a game using only the
standard implementation, will often not provide a very accurate picture of
a particular strategy and this will reflect negatively in several other frame-
work modules. However, a standard implementation should be provided for
at least demonstrating how to specify significant states.

B.3.4 Recognise Strategies

This module is responsible for recognising the opponent’s strategy in the
strategy tree from Known Strategies, and if it is unknown, inform the Learn-
1ng module about this. This is an operation on strategy trees and since these
do not vary from game to game, this module can be left unspecified by the
user of the framework.

Although strategies do vary from game to game, the methods for recog-
nising strategies in strategy trees do not. Strategy trees are created specifi-
cally to deal with each particular game, and contain all possible information
related to a strategy in that game. A strategy in a strategy tree is defined as
a number of strategic important elements (like expansions, research etc.) as
well as unit and building compositions, and hence it does not matter whether
the game is Starcraft or Age of Empires.

Responsibilities

Recognise Strategies: The module must recognise the strat-
egy the opponent has been doing throughout the game and
determine whether it has seen this kind of strategy before.

Page 186 of 273 APPENDIX B. MODULE DESIGN

Hot Spots

This module has no hot spots as everything is handled by operations on
strategy trees.

Standard Implementation

Everything in this module is handled by the framework.

B.3.5 Recognise Tactics

The purpose of this module is to recognise tactics used by the opponent
during the game. This knowledge is both used to update the Opponent Model
with the current tactics being used and the opponent game tree, which will
allow for the game tree to note at which point in the current strategy different
tactics have been used.

The methods used to recognise tactics should in most cases be hook
methods, because all game allow for very different types of tactics, and it is
furthermore very different how much effect a certain tactic has from game
to game. In Warcraft I1I for instance, a tactic could be to harass the enemy
base with some units while levelling the AI’s hero by attacking NPC’s at the
same time. This is a unique tactic for that particular game and it would
make no sense in most other games.

Responsibilities

Recognise Tactics: The module must be able to recognise tac-
tics used at any point during the game, and inform the
Update Opponent Model sub-module about its results.

Hot Spots

Recognise Tactics Methods: The user of the framework must
specify how the Al is to recognise a certain tactic used by
the opponent.

Standard Implementation

Some tactics can be used in several different RTS games. An example could
be the tactic of splitting up the army and attacking several resource gathering
locations hold by the enemy at once and then kill workers there. Tactics like
that are viable in almost any RTS game. Recognising the tactic should in
theory be easy regardless of the game, and should be provided as a standard
implementation. This is, however, only the case with tactics included with
the framework. New game specific tactics must have recognising methods
provided along with them for this module to work to its full potential.

APPENDIX B. MODULE DESIGN Page 187 of 273

B.3.6 Update Opponent Model

This module is responsible for controlling all updates of the Opponent Model.
The reason this cannot be done directly, is because the Al cannot just add
every unit it sees to the Opponent Model. Fnemy units may disappear into
fog of war and return again the next second and it is the task of this module
to control that the same units are not added once again to the unit count
of a particular unit type. Furthermore, as the Opponent Model must always
reflect the current situation, the module must control when attributes expire
in the Opponent Model and also notify other modules when a seemingly
significant change has occurred.

When an attribute of the Opponent model should be considered out-
dated, depends of both the game and attribute in question. If the opponent
for instance have used an air harass tactic earlier in the game, at what point
should the AI realise that this is not what the opponent is trying to do any-
more? Another factor that is game specific is determining when a significant
change has happened in the Opponent Model. This of course also depends on
the attribute in question. If the number of expansions attribute is changed,
it would probably be a significant change, while an update consisting of the
observation that the enemy now has five footmen instead of just four, would
not.

Responsibilities

Update Attributes in Opponent Model: The module must
keep an eye on all attributes of the Opponent Model and
ensure that all new observations are properly reflected in
the model. This includes keeping track of units seen earlier,
which have left the vision of the AI player and then re-
entered.

Check Expiring Attributes: Because of the need for an up-
dated Opponent Model at all times, the module must ensure
that all attributes reflects the current situation. This means
removing or reducing belief in attributes that has not been
confirmed for a long period of time.

Check for Significant Updates: The module must after up-
dating the Opponent Model check if the update is significant
enough to be able to change the current belief of what the
opponent is doing. If this is the case, it must activate the
Probabilistic Reasoning module.

Hot Spots

Expiration Limits: The user of the framework should specify
when attributes becomes outdated and how the belief of a

Page 188 of 273 APPENDIX B. MODULE DESIGN

certain attribute deteriorates over time.

Method for Determining Significant Updates: A method
for determining when a significant update to the Opponent
Model has been made is required to make sure the Prob-
abilistic Reasoning module is activated at the appropriate
times.

Standard Implementation

The standard implementation will have a predefined expiration date on at-
tributes and a percentage change in attributes that will activate a signal that
a significant change has occurred.

B.3.7 New Tactics

This module is basically just one hook module, which allow an Al designer
to specify how the AI should recognise new tactics that should be learned
by the the AI. Tt will process the data received from the Percept Interpreter
module, and based on this information, decide whether the opponent has
tried a new tactic not seen before.

In Warcraft I1I for instance, the undead race has a unit, the ghoul, which
is intended to be both a harvesting unit and a light melee unit. In early
versions, this caused a very special tactic to arise. When the ghouls were
targeting trees, they had the ability to walk through other units (to avoid
pathfinding problems in the base). This made it possible for the ghouls to
walk right through the enemy army if they targeted a tree behind the army,
which in turn made it possible to get behind the army and easily surround
for instance a ranged enemy hero. This module is used to learn new and
game specific tactics like the example tactic described here.

Responsibilities
Recognise new Tactics: The module must recognise new tac-
tics used by the opponent.
Hot Spots
Methods for Recognising Tactics: The user must specify
how the Al is to recognise new game specific tactics.

Standard Implementation

There is no standard implementation of this module, but it can be left un-
specified, which results in the AI’s inability to learn new tactics. It does

APPENDIX B. MODULE DESIGN Page 189 of 273

Find Potential Updat; odppl""e"t
Map Knowledge ‘ Strategies ode|
Game Type Knowledge ‘4 \ Strategic Planning
Enemy Knowledge A Find Potential *’

Follow-up Strategies Determine Important
Variables

Figure B.3: The internal architecture of the Probabilistic Reasoning module

Dynamic Map
Knowledge

Opponent Model

however, not limit the Al’s capability to combine old tactics in new strate-
gies.

B.4 Probabilistic Reasoning

This module will determine the most likely strategy used by the enemy, and
determine what kind of strategies this could lead to in the future. Further-
more, it will specify what variables are important to watch, when determin-
ing the opponent’s final choice of strategy. The internal architecture of the
module can be seen in Figure B.3. Circles are internal sub-modules, boxes
represent other modules or knowledge bases and arrows indicate how they
influence each other. The following will describe the overall responsibility of
this module and explain each sub-module in detail.

B.4.1 Responsibilities

Determine Most Likely Strategy: The module must, based
on the current Opponent Model, determine the most likely
strategy being done by the opponent.

Determine Most Likely Follow-up Strategy: Depending
on the most likely strategies found, the module must
determine the most likely follow-up strategies.

Determine Important Variables: Given a number of possi-
ble follow-up strategies, the module must determine impor-
tant variables that will indicate the final choice among the
possible strategies.

Update Opponent Model with new Beliefs: When a new
most likely strategy has been found, the Opponent Model
must be updated with new beliefs about attributes not cur-
rently known from the result of an observation.

Page 190 of 273 APPENDIX B. MODULE DESIGN

B.4.2 Structure Overview

This module is divided into sub-modules based on the four different areas
of responsibility defined above. The first thing the module has to do is de-
termine the most likely strategy used by the opponent based on the current
Opponent Model. This is basically a search through a strategy tree to find
a matching node compared to the Opponent Model. Afterwards, two things
must be done: The Opponent Model must be updated with new beliefs and
potential follow-up strategies must be determined. For each follow-up strat-
egy found, the probability for each must be calculated. Finally, important
variables that determines the opponent’s final choice of strategy must be
found, so that appropriate scouting can be done.

B.4.3 Find Potential Strategies

This module is responsible for finding all potential strategies being done by
the opponent based on the observations made about her so far and then find
the probabilities for each possible strategy being used. The basic idea behind
this module is to search through three strategy trees: Game Type Knowledge,
Map Knowledge and Enemy Knowledge. Each provides a different aspect of
the possible strategies the opponent may be doing.

The search through strategy trees do not vary from game to game, but
the criteria for matching a node in the strategy tree to the Opponent Model
do. From game to game, it changes how much two nodes in a strategy
tree have to be different to represent different strategies and the strategic
importance of certain attributes may also change.

Responsibilities

Find Potential Strategies: The module must find all poten-
tial strategies given the current Opponent Model.

Calculate Probabilities: Depending on the strategies found,
the module must find the probability of each of them being
the one currently used by the opponent.

Hot Spots

Maximum Node Deviation: The user of the framework must
specify how much two strategy nodes should differ to be con-
sidered two different strategies. This includes defining the
strategic importance of different attributes of the Opponent
Model.

APPENDIX B. MODULE DESIGN Page 191 of 273

Standard Implementation

As a default implementation, the framework will provide a percentage match
that must be fulfilled for two nodes to be considered the same.

B.4.4 Update Opponent Model

This module is responsible for updating the Opponent Model with new belief
knowledge based on what kind of strategy the Al believes the opponent is
currently doing. All attributes in the Opponent Model that are not currently
based on real observations should be updated with what the Al currently
believes about the opponent.

The reason that this process is defined as a sub-module in this architec-
ture is that this allows for an AI designer to decide when an observation
should be replaced by a belief. This could for instance be when an observa-
tion is several minutes old, and the attribute is known to change frequently.
This varies from game to game.

Responsibilities

Update Opponent Model: The module must update the Op-
ponent Model with new beliefs based on the most likely
strategy used by the opponent.

Hot Spots

Updating Beliefs: The user of the framework must specify how
to update the Opponent Model with beliefs.

Standard Implementation

The standard implementation should provide a simple approach to updating
beliefs in the Opponent Model, replacing only those attributes who have never
been observed.

B.4.5 Find Potential Follow-up Strategies

This module looks at all possible strategies being done by the opponent, and
finds all potential follow-up strategies along with percentages of their likeli-
hood of being used. The strategy tree has direct support for this operation,
by simply looking further in the tree from each potential strategy node.
How many follow-up strategies to consider should be based on the partic-
ular game in question. It depends a lot on the strategy tree in question and
how each particular game’s strategies are reflected in the strategy nodes.

Page 192 of 273 APPENDIX B. MODULE DESIGN

Responsibilities

Find Potential Follow-up Strategies: Given a number of
possible current strategies, the module must determine the
most likely follow-up strategies.

Hot Spots

Considered Follow-up Strategies: The user of the frame-
work should be able to specify how far ahead in time the Al
should look to find potential follow-up strategies.

Standard Implementation

By default, the search through strategy trees should look a predefined num-
ber of nodes ahead when considering potential follow-up strategies.

B.4.6 Determine Important Variables

The responsibility of this module is to determine the currently unknown
variables that are essential for choosing among the most likely strategies the
opponent is doing. The module will consider only the most likely strategies,
and determine variables that are differing and essential for the opponent’s
choice among them. This will later help the Strategic Planning module to
scout the right things, which are more likely to reveal the opponent’s final
choice of strategy.

This module should be independent of the game in question, because
finding the variables that differ in the potential follow-up strategies have
nothing to do with the actual game being played.

Responsibilities

Determine Important Variables: The module must specify
the variables that should be investigated further, because
of them being important in regards to the opponent’s final
choice of strategy.

Hot Spots
There are no hot spots in this module, as it is all handled by the framework

independent of the game in question.

Standard Implementation

N/A

APPENDIX B. MODULE DESIGN Page 193 of 273

|Known5[rateq\es| |Enemy Knnw\edgel | Known Bu\\dOrdersl Cufmf;‘t;t:tew
nowledge

Figure B.4: Internal architecture of the Strategic Planning module

B.5 Strategic Planning

This module will handle all strategic decisions. This includes determining
when the AT has enough information to choose a good strategy and of course
actually choosing a strategy. The choice of strategy should depend heavily
on what counters the opponent’s strategy, but also the current state of the
Al The module is furthermore also responsible for decisions about exactly
where the ADl’s army should be and if it should split up etc. The internal
architecture of the module can be seen in Figure B.4. Circles in the fig-
ure represents internal sub-modules and boxes represents other modules or
knowledge bases. The following will first discuss the overall responsibilities
of the Strategic Planning module, and then present each of the sub-modules
in the internal architecture along with a discussion of how the sub-module
is to complete its task.

B.5.1 Responsibilities

Determine if the AT posses Sufficient Knowledge: The
module must determine whether the Al has enough knowl-
edge about the enemy to choose a good strategy that
counters the enemy.

Determine Scouting Missions: If there is insufficient enemy
knowledge or if all data in the Opponent Model is outdated,
the module must assign one or more units a scouting mis-
sion, telling it exactly where to go and what to scout for.

Find New Strategy: The module must determine if there is a
need for a new strategy, and if so, find the best possible
strategy suiting the current situation.

Page 194 of 273 APPENDIX B. MODULE DESIGN

Execute Strategy: Finally, the module is responsible for dic-
tating where on the map all army units should be during
the execution of the chosen strategy.

B.5.2 Structure Overview

This module consists of several distinct parts. When the module is activated
by a significant update to the Opponent Model or by a timer, the first thing
that is done is checking whether there is sufficient enemy knowledge to decide
on a good strategy. If there is not, the Scouting sub-module is activated and
one or more units are put on a scouting mission. Either way, it must be
decided whether or not to change strategy. This is done by determining if
the foundation on which the last strategy was decided has changed. If it
has changed, two things are done. First, probabilities for different strategies
countering the opponent’s strategy is calculated, and partly based on this, a
new strategy is selected. The new strategy is represented as a strategy node
and hence this is not enough to determine the actions taking by the AI’s
units. For this, an Fwvaluation sub-module determines the current situation
of the AI, and places it in an appropriate state. This state will divide units
into groups and give orders dependent on the current situation of the Al

B.5.3 Sufficient Enemy Knowledge

This module is responsible for determining whether the Al has enough infor-
mation to decide upon a good strategy. This can be determined by looking
at the Opponent Model, and at what the AI designer has defined as be-
ing enough information. In some cases the framework could override the
hook specified by the AI designer, if for instance a certain attribute is vital
for knowing which strategy the opponent is going for, and hence should be
scouted. If there is insufficient information, the Scouting sub-module is acti-
vated and provided with one or more variables that are to be scouted. This
module will always trigger the Change Current Strategy sub-module, as even
though enough information is not present, the AI must still pick a strategy
according to its best guess of what the opponent is doing.

Defining what qualifies as being enough information is game specific. All
attributes may have very different importance in relation to countering the
opponent’s strategy. In Warcraft III for instance, it is a huge factor what
kind of buildings the opponent has in tier two and tier three, while this
is far less important in games like Command & Conquer. In Command &
Conquer it is far more important what kind of units the enemy has and how
many, compared to Warcraft III where the technology branch pursued by
the enemy is far more important for recognising her strategy.

APPENDIX B. MODULE DESIGN Page 195 of 273

Responsibilities

Sufficient Information: The module must decide whether the
Al has enough information about the enemy to choose a
good strategy.

Hot Spots

Enough Information Criteria: The user of the framework
must specify when the AI has enough information, and
thereby basically decide scouting frequency.

Standard Implementation

The standard implementation will assume that all attributes of the Opponent
Model are equally important. This means that the standard implementation
can simply keep a predefined percentage of how much an attribute may
deviate from the most likely strategies found before a scouting mission should
be determined. Furthermore, the framework can specify a time limit that
basically decides the scouting frequency of an attribute.

B.5.4 Scouting

This module is respounsible for selecting a unit to scout and determining
what specifically that unit is to scout. Selecting what to scout should be a
decision based on the input from the Probabilistic Reasoning module, which
determines the currently most interesting unknown variables. How to obtain
this information can in part be specified by the framework (buildings are in
the enemy base, units are near the enemy army etc.), while in special cases
the AT designer should decide how to obtain it.

In some games or strategies, the player may want to scout for very spe-
cific things. In Starcraft for instance, one may want to have a Zerg Overlord
patrolling between a Terran’s main base and an island to be able to scout if
the enemy decides to fly a Control Center to the island to create an expan-
sion. Gaining this information in time would make it possible to attack the
Control Center before it gets to its expansion site.

Responsibilities

Selecting Scouting Unit: This module must select the best
unit(s) to scout with depending on the scouting mission.

Determine Scouting Target: Depending on what the Al
wants to know more about, the module must determine
where to find this information and then scout to obtain it.

Page 196 of 273 APPENDIX B. MODULE DESIGN

Hot Spots

Unit Scouting Ability: The user of the framework should se-
lect which units in a particular game should be preferred as
scouting units.

Scouting Locations: The user of the framework should define
where to find certain information.

Standard Implementation

The standard implementation could choose either the fastest or cheapest
unit to scout, and always send the scout towards the enemy base, unless it
has a good idea of where the enemy army is, and is scouting for some unit
attribute. If it is looking for expansions, it could simply start scouting the
nearest expansion possibility (compared to the enemy main base) and then
work through all expansion possibilities in that order. When playing on a
randomly generated map, the Al must also be able to scout the map and
not just the enemy. To scout the map, the standard implementation could
use influence maps to determine unexplored areas of the map.

B.5.5 Change Current Strategy

This module is responsible for deciding whether a change in strategy should
be considered. The AI should basically only consider changing its strategy
if it has some new information, which can lead to a new and better strategy.
This means that the primary task of this module is to test whether the
information, which were used in choosing the last strategy, has changed in
such a degree that a new strategy should be considered. If this is the case, the
Find Counter Percentages sub-module is activated, and if not, the Strategic
Planning module goes straight to the Evaluation sub-module explained later.

It is very game specific how often a strategy should be re-considered.
In general, games with strong counters will require players to change their
strategy very often, because so much depends on information about the en-
emy army. This means that games in the Craft series will require changing
strategy often when the opponent model changes, while in games like Com-
mand & Conquer, the AI will be able to keep her current strategy more
often, because counters have less effect.

Responsibilities

Consider New Strategy: The module must determine
whether the foundation that the last strategy was built
upon has changed and through this, decide whether a new
strategy should be considered.

APPENDIX B. MODULE DESIGN Page 197 of 273

Hot Spots

Significant Changes: The user of the framework should be al-
lowed to specify how much of a change (compared to last
time a strategy was selected) is necessary for the Al to re-
consider its strategy.

Standard Implementation

A standard implementation could simply reconsider its strategy every time
the Probabilistic Reasoning module changes what it considers to be the most
likely strategy done by the opponent.

B.5.6 Find Counter Percentages

The purpose of this module is first to find all possible counters to the pos-
sible strategies found in the Probabilistic Reasoning module, and then to
find the probability for each counter being an effective counter to what the
opponent could be doing. Each strategy done by the opponent may have
several counters and each counter may have a different percentage attached
it, representing how often this counter should be used compared to the oth-
ers. First a joint probability between the probability of the strategy being
used, and the probability of the counter being used should be computed.
Then it should be examined if any of the counters are practical the same,
and if thats the case, these percentages should be computed into another
joint probability for each counter being successful. The result would be a
probability for each distinct counter, the highest dictating the counter which
is most likely to counter the enemy’s strategy. This entire process should be
done for both current and follow-up strategies.

All of this is handled by strategy trees or operations on them and is hence
not game specific.

Responsibilities
Find Counter Percentages: This module is responsible for
finding the percentage chance of a strategy countering the
opponent’s strategy.

Hot Spots
N/A

Standard Implementation

N/A

Page 198 of 273 APPENDIX B. MODULE DESIGN

B.5.7 Find New Strategy

This module is responsible for selecting the target strategy for the other
framework modules to try and accomplish. It uses the counters and their
percentage chance of countering produced by the Find Counter Percentages
module and the Current Strategy Node to help make its decision. The mod-
ule must make a trade-off between choosing the best possible counter and
choosing a strategy that is not too far away from the current strategy node.
In some cases (often the beginning of the game), the AI will to a certain
degree ignore the counters and focus only on its own strategy. As an extra
element, the strategic decision could also depend on knowledge of what the
AT’s allies are doing or whether it has a strong build order for a certain
strategy.

The implementation of this module depends heavily on the game in ques-
tion. Basically, the more counter oriented the game is, the more the Al
should be willing to deviate from its current strategy. This means that in
games like Warcraft 111, the Al should often completely change its strategy,
while in games like Command & Conquer, the Al should often not deviate
too much from the original strategy.

Responsibilities

Find New Strategy: This module is responsible for finding a
new strategy based on the information provided by the
Probabilistic Reasoning module.

Hot Spots

Choice of Strategy: The user of the framework should specify
how the AI should make the trade-off between countering
the enemy and not changing strategy completely every time
new information is received.

Standard Implementation

One fairly general mechanism for choosing the strategy could be imple-
mented, but in most cases it would be so game specific that it is better
left to the AI designer. A general approach could for instance be to let the
AT counter as much as possible, but never let it deviate more than 50% from
the current strategy.

B.5.8 Expands

It is the responsibility of the Expands module to test if the Al needs to
take action before expanding to a certain location. This module is necessary

APPENDIX B. MODULE DESIGN Page 199 of 273

for two reasons: Some RTS games place NPC characters around the map
(often guarding expansions) and other times the enemy may be occupying a
resource location. If either of these are the case, the Al needs to take action
before an expansion is possible. This will often be in the form of an attack
at the units or buildings occupying the resource location.

In Warcraft III, all gold mines are occupied by NPC units, and these
must be removed before the Al can expand at a certain position. In a game
like Starcraft however, there are no NPCs at all, but it is very common for
players to leave a single unit at different expansion sites to simply remove
the opportunity of the opponent to expand without the player noticing. This
also results in the requirement of attacking this unit before an expansion is
possible.

Responsibilities

Check Possible Expansions: This module must analyse ex-
pansion sites and determine if the Al’s army need to take
action before an expansion is possible. Furthermore, it must
determine the army strength required to attack the enemy
units at the expansion.

Hot Spots

Protected Expansions: As mentioned earlier, some games
have expansions protected by units by default, and the user
of the framework should define whether this is the case.

Army Comparison: The user of the framework must define
how the AT is to compare two different armies to each other,
which makes it possible to determine the army required to
attack a certain expansion point.

Standard Implementation

As default, the framework will assume that all expansions are left unguarded,
as is the case in most games. When trying to determine a sufficient army
force, the AT can use a very simplified system of trying to have more or fewer
but better units than the opponent.

B.5.9 Evaluation

This module is responsible for evaluating the current strategic situation for
the AI. At this point the target strategy node has been decided, which the
Base Building, Resource Management and Action Planner modules uses to
follow the strategy. However, a strategy node does not say anything about
where the army should be going and where it should be attacking. This is

Page 200 of 273 APPENDIX B. MODULE DESIGN

where the Fvaluation sub-module comes in. Given the AT’s army and the
current game situation, this module evaluates in what state the AI should
be in. It must take into account things such as army sizes, technology trees,
income rates etc. Depending on the state, units will be dispatched in order
to best accomplish the overall strategy.

When to switch from one state to another is very game specific. Imagine
the situation where both armies are at each others base attacking the main
building. In Warcraft III, players would have the option of using a town
portal to get home and defend their base, while in Starcraft, and in most
other games, the player would have to walk home. This would often result in
that a Warcraft III player would switch to a defend state, while a Starcraft
player would keep itself in an attack state. This of course always depends
on the actual situation.

Responsibilities

Evaluate Current Situation: The module must evaluate the
current situation, and place the Al in one of the available
states.

Hot Spots

Evaluate Situation: The user of the framework must specify
how the Al is to evaluate the situation, and which situations
corresponds to which states.

Standard Implementation

As will be explained in the following section, the framework will by default
include three states to choose among: Attack, Defend and Harass. A stan-
dard implementation could implement an evaluation method, which chooses
between these three states in a relatively simple manner. The AI should be
attacking if its army is larger than the opponent, it should defend if any
important buildings are under attack and it should harass if it has chosen
a strategy, which entail having a small number of units compared to the
enemy in the beginning phase of the strategy. In the latter case, harassing
the enemy would buy the AI time to successfully either tech to the wanted
units or get an expansion up and running.

B.5.10 States

This module is responsible for executing whatever that state dictates the Al
to do. Three game independent states will be provided with the standard
implementation, but with the possibility of adding more depending on the
game. The three standard states will be explained in the following.

APPENDIX B. MODULE DESIGN Page 201 of 273

Attack

The attack state must determine where to attack, and decide if it is necessary
to split the army into several groups and thereby try to accomplish more than
one objective at once. It basically goes through the steps specified below:

Find Possible Attack Positions: Analyses the map and the enemy to de-
termine possible locations to attack. This could for instance be the
enemy main base, an enemy expansion or the current position of the
enemy army. The army strength needed to complete a successful attack
is specified along with some form of desirability value of each attack
target. How to calculate these values should be specified by the Al
designer by hook methods.

Analyse Map Situation: Adjusts desirability values according to the cur-
rent map situation. This includes analysing the position of all armies
on the map, including the AI’s own army. If for instance the attack
desirability of two different locations are close to the same, but the
AT’s army is closer to one compared to the other, it should of course
attack the closest target.

Coordinate Attacks: Depending on whether the AI’'s army is strong
enough to carry out multiple attack orders, the army should be split up
in a sensible way. It is game specific when it is reasonable to split up
the army, and should hence be primarily specified as a hook. Splitting
up the army could also be because the Al wants to perform some game
specific tactic.

Assign Actions: The last task is to specify target map positions for each
group and notify the Tactical Planning of this. It should also be con-
sidered here whether the army is already gathered, or if this has to be
done before moving on to the attack location.

Defend

This state should describe the state where the Al is under pressure, prob-
ably outnumbered, and should simply try to protect itself until it reaches
a stronger state. This could be for instance when the AT is teching, and
is attacked by the enemy. Then it should only fight in its main base using
base defence as well as terrain and position advantage (high ground, small
passages etc.). The following will describe the reasoning the AI must go
through to decide how to handle itself in this state.

Evaluate Situation: First of all, the Al must determine whether it is under
an attack or not. The answer determines how the AI should handle
defending itself.

Page 202 of 273 APPENDIX B. MODULE DESIGN

Possible Attack Analysis: If the Al is not under attack, it must analyse
the map to determine where the opponent is most likely to attack.
This includes analysing its own weakest points, as well as trying to
determine if the opponent knows about these. After determining this,
it must send the order to move to the most likely attacked location,
and ensure that the Al is in a good position for the potential enemy
attack.

Defend Analysis: If the Al is under attack, it must determine whether the
location, building or units are valuable enough to try and defend and
if this is even possible (the ATl may be far away from the position being
attacked). It should also take into consideration whether it can even
reach the position being attacked before everything is destroyed.

Position Analysis: If the location is valuable enough to be defended, the
AT must move into position. This means analysing the right way to ap-
proach the enemy and to decide whether it must gather its army before
moving in. In some games the decision can be even more complex, like
for instance in Warcraft III, where it is possible to town portal back
to the base to defend. In that case the AI must decide the position to
town portal, which will bring the Al into an optimal battle situation.

Harass

This is the state, where the Al knows the opponent is trying to accomplish
some strategy, and for whatever reason, wants to slow it down in doing so.
Harassing could consist of a number of different things, like killing workers,
destroying buildings that are being built, or harassing the main army of the
enemy so that it cannot perform whatever it should be doing. When the Al
decides how to harass, it must go through the following tasks.

Find Possible Targets: First all kinds of possible targets for harassing
must be discovered. Harassment targets do not vary much from game
to game, but the degree of how effective a certain harassment tactic is
does. Possible harassment targets includes:

e Enemy workers

Weak units (hit and run attacks on for instance support units)

Hurt units (units at critical health)

Buildings that are under construction

Important buildings for the opponent’s strategy

Harvesting buildings (including main buildings)

APPENDIX B. MODULE DESIGN Page 203 of 273

Analyse found targets: After finding the different possible targets, the
Al must examine each of them and determine how many and what
kind of units are needed to successfully attack each different target.
In some cases the degree of what determines a successful attack must
also be evaluated (for instance how many workers should a harassment
kill before it can be considered successful?). Finally, it must determine
which of the possible targets will harm the enemy the most compared
to the cost of executing the harassment. How to evaluate the different
missions will in most cases be a game specific task.

Assign Units: Finally, the AT must determine which of the harassment
targets are to be executed and which units are grouped together to
execute a particular mission. Units not picked for any harassment
mission must also be sent to some specified location (often the main
base). All group specifications and target positions is then sent to the
Tactical Planning module, which takes care of the actual execution of
each harassment mission.

Responsibilities

Assign Groups and Unit orders: The module must, de-
pending on the state, divide the army into groups and assign
them an order to go to a position on the map. The actual
execution of how to get there and what to do when they get
there, is handled by the Tactical Planning module.

Hot Spots

States: In some games the three default states will not be
enough and this is why the user of the framework should be
allowed to add extra states depending on the game. This
could be things like a Creeping state, a Push state etc.

Configure Standard States: Even though the framework pro-
vides three standard states that covers all kinds of RTS
games, the user of the framework must configure these mod-
ules to suit the game in question best possible.

Standard Implementation

The standard implementation will in this case be the three default states
provided with the framework and a standard configuration of these.

Page 204 of 273 APPENDIX B. MODULE DESIGN

Unit Type
Unit State Action
Map Action

\ Terrain and Unit Deployment

Unit Ana\yser

Targeter
‘ Terrain
- Analyser Path Planner

Action Planner

Dynamic Assigned Unit

Current
Strategy Node

="\ \

Enemy
Knowledge

Strategic Planning
Reactive Module

Figure B.5: The internal architecture of the Tactical Planning module

B.6 Tactical Planning

This module will handle all unit actions that is not directly associated with
Resource Management or Base Building. The internal architecture of the
module can be seen in Figure B.5. Circles are internal sub-modules, boxes
represent other modules or knowledge bases and arrows indicate how they
influence each other.

B.6.1 Responsibilities

Unit Actions: This module will carry out all unit actions that
are not resource or base building activities.

B.6.2 Structure Overview

This module consists of two parts: Unit movement and unit engagement.
These two parts have two sub-modules in common: The Ewvaluation module
and the Path Planner. Any action must first pass through the Ewvaluation
module before being carried out. This module will among other things decide
whether the AD’s forces are strong enough to engage in combat or if they
should turn and flee. The Path Planner is not just a normal pathfinder
but also takes other factors into account such as flow. The movement part
first analyses the known terrain, then it finds a suitable formation for the
units that are to move according to the collected terrain information. The
engagement part first analyses terrain, units and buildings in the combat
area. This information is then passed on to the Unit Deployment module
that will find a suitable formation for the units available. It will also decide
which units are assigned attacking roles and which are assigned supporting
roles. These are then passed on to the Support module and the Targeter.

APPENDIX B. MODULE DESIGN Page 205 of 273

B.6.3 Evaluation

Evaluation is the first module within the Tactical Planning that is activated.
The FEwvaluation module will first determine whether the Tactical Planning
was triggered due to a movement order, a change in unit state or an engage-
ment order. Movement orders will be passed on to the Terrain Analyser and
so will a change in unit state trigger if this means that the unit in question
will have to be withdrawn from battle. If this is not the case change in unit
state events will be passed on to the Terrain and Unit Analyser. This is
also the case with any engagement order if the Fvaluation module decides
that the battle is worth engaging. The Ewvaluation itself will be based on the
amount of units, unit strength, strategy and position.

Different games require different ways of evaluating a situation. In Star-
craft for instance a situation where a player is outnumbered does not neces-
sarily mean that the player should retreat but perhaps rather kamikaze and
do as much damage as possible before the army is beaten. In Warcraft the
situation is quite different as units are more ’valuable’ and should be saved
as often as possible.

Responsibilities
Reroute Orders: All orders must be checked and decided
whether they are movement orders or engagement orders.

Situation Evaluation: When facing the enemy this module
must decide whether to fight or to flee.

Hot Spots

Evaluation Method: The user of the framework must define
an evaluation method that analyses a given situation and
decides whether or not to engage.

Standard Implementation

The standard implementation will compare the damage output and the total
amount of hitpoints of the two armies and base its decision on this.

B.6.4 Terrain Analyser

This module will look at the terrain over which a unit or a group of units
will move. Essentially it will transform this part of the map into an influence
map that takes every little facet into account. This is everything from height
variations in the terrain, to resource clusters and NPC units. This will
result in a multilevel influence map that the Formation module can place

Page 206 of 273 APPENDIX B. MODULE DESIGN

the desired formation on and the Path Planner can move the unit/units
through.

In Warcraft the map is so simple that there are no elevations or objects
that units can hide behind. This means that no matter where the units
stand they will receive full damage from ranged attacks. In Starcraft units
standing above other units will receive a damage reduction when fired upon.
This is just one of the different aspects the terrain analyser will have to
handle from game to game.

Responsibilities

Translate Area Information: The product of this module is
a spatial representation of the area that the unit/units must
move through. This spatial representation must include
all known information of any value to the task of moving
through the area.

Hot Spots

Handling Area Types: The user must define all types of ar-
eas that must be accounted for in the analysis.

Standard Implementation

The standard implementation will only handle areas in which the units can
move and areas in which they cannot.

B.6.5 Formation

The Formation module is responsible for ordering units in a predefined for-
mation. It also has to account for critical areas in the terrain or rather
the influence map that is received from the Terrain Analyser. This means
that the Formation module may have to reorder the formation at the critical
points such as choke points. All this can be done by first identifying the
critical points and afterwards plan the formations that will be used between
critical points and in the points themselves.

In Command and Conquer the formation used is not really that impor-
tant. The only formation detail that is used is mostly keeping artillery at
the back of the army. In Age of Empires, however, the formation is crucial.
Tanker units can keep the enemy at bay while the lighter armoured units
can deal a lot of damage.

Responsibilities

Identify Critical Spots: The module must be able to identify
critical spots - spots that are potentially dangerous.

APPENDIX B. MODULE DESIGN Page 207 of 273

Draw Formation: Given the situation a suitable formation
must the found.

Hot Spots

Identify Critical Spots: The user must define a method to
identify critical spots. This heavily depends on the terrain
and general map structure and is thus game specific.

Formations: Formations vary from game to game given the
different units available in the games and their use. There-
fore the user must define a set of formations and their use.

Standard Implementation

A few simple formations based on amount of hitpoints and armour will be
implemented by default.

B.6.6 Terrain and Unit Analyser

This module will not only do the same tasks as its counterpart the Terrain
Analyser but it will also take units and buildings into account. Furthermore
it will also be able to work with believes of the whereabout and number of
unseen enemy units if such exist. The product of this module is a multi-
layered influence map that takes all this into account.

In some games towers for instance are more of a nuisance than a real
threat. The damage output of a tower cannot be used as the only factor to
be taken into account when analysing the threat of a tower from game to
game. A weak tower in Command and Conquer can be ignored while a weak
tower in Warcraft 11l may have a side effect such as mana drain or a slowing
effect that can have a serious impact on the outcome of a battle.

Responsibilities

Translate Area And Unit Information: All relevant infor-
mation available must be translated into a usable spatial
representation.

Hot Spots

Handling Terrain and Unit Types: The analysis that is
handled by default will only be able to handle simple cases
and in order to get good results the user will have to define
rule sets through the tactics for all terrains, units and map
specific objects.

Page 208 of 273 APPENDIX B. MODULE DESIGN

Standard Implementation

In addition to the functionality found in the Terrain Analyser the standard
implementation of this module will also account for units and buildings. It
will look at damage output, amount of hitpoints and amount of armour.

B.6.7 Unit Deployment

Based on the information passed on by the Terrain and Unit Analyser as well
as a number of knowledge bases this module will decide upon the position
and assignments of friendly units during an engagement. Basically it does
the same as the Formation module but takes the concept a step further by
passing units on to the Support module and the Targeter module depending
which assignment they have. The formation itself will be handled by a
combination of the default unit behaviour and the strategy specific behaviour
defined by the tactics in the current strategy node. Influence maps seems
the obvious tool to handle much of this work.

As mentioned in the Formation module Command and Conquer does not
require much consideration when dealing with positioning. In Warcraft II1
however light armoured units will die several times as fast as the heavily
armoured units if attacked. As a lot of units can only attack in close combat
the heavily armoured units will have to be between the enemy and the light
armoured units.

Responsibilities

Unit Positioning: When engaging, tanking units will have to
be placed at the front facing the enemy and lighter units in
a secure distance from enemy units. Additionally support
units have to either be well distributed among friendly units
or within range of the target enemy units.

Unit Task Assignment: Units have to be assigned a task: to
support or to attack. This has to fit with the deployment.

Hot Spots

Unit Deployment Plans: Given a strategy and the tactics
defined for this strategy, the available units, the terrain
and other map specific information the user has to define a
method that deploys and assigns actions the best possible
way.

APPENDIX B. MODULE DESIGN Page 209 of 273

Standard Implementation

By default the heavily armoured/high hit point units will be placed closer
to the enemy than lighter armoured/low hit point units.

B.6.8 Support

The Support module is responsible for selecting the best skills and targets for
the skills for all the units passed on to it. Depending on the chosen strategy
support unit will be assigned different skills to use on different targets. This
will be determined by the tactics stated in the current strategy node. If
no such rules exist default behaviour will be assigned. The influence maps
needed for this module depend on the available support skills.

Age of Empires has a fewer means of support available than games like
Starcraft and Warcraft. Support in Age of Empires is much less important.
In Starcraft the good use of support will be able to win almost any situation.

Responsibilities

Assign Support Actions: This module must assign the best
possible actions to all available support units given the avail-
able information.

Hot Spots

Support Action Rule Set: The user must define a rule set
that dictates how different support units should react in
various situations. The tactics in strategy nodes can over-
ride this behaviour if a different behaviour is required in a
specific strategy.

Standard Implementation

The standard implementation will distribute support according to the rule
set defined in Unit Type Action.

B.6.9 Targeter

All the units passed on to the Targeter module will be assigned an enemy unit
to attack. The Targeter will have to take counter focus, focusing strategically
important unit and maximising damage (no excessive) into account. In order
to do this the Targeter will have to know which unit counters which unit and
use this information to assign targets. The Targeter will also have to consider
which target are important to the success of the current strategy.

Contrary to many of the other games Warcraft I1I features a series of dif-
ferent armour types and attack types. Different armour types have bonuses

Page 210 of 273 APPENDIX B. MODULE DESIGN

and penalties when hit by different attack types. This means that in this
case the targeter will have to take armour type - attack type match-ups into
account when assigning targets, contrary to just focus firing.

Responsibilities

Assign Targets: The Targeter must assign targets to all avail-
able units in such a way that important enemy units are
eliminated, the damage is maximised, and the current strat-
egy is not compromised.

Hot spots

Target Priority Rule Set: A target priority rule set must be
defined through tactics that lists all units and buildings pri-
oritised in the order they should be targeted.

Counter Table: The user also has to define a table that de-
scribes the counter relations in the game.

Standard Implementation

By default the Targeter will only take the amount of hitpoints and the
amount of armour into consideration when assigning targets.

B.6.10 Path Planner

The Path Planner is an advanced version of a normal path finder. The Path
Planner has to find the fastest path (not necessarily the shortest) given a
formation, flow, varying unit speed etc. and on top of this it will have to
pass assigned unit actions on to the Assigned Unit Action knowledge base.

Responsibilities

Plan Best Path: Given formation, flow, and unit speed, find
the best path for each unit that has to be handled.

Reroute Actions: For all units that pass through the Tacti-
cal Planning module, reroute their assigned actions to the
Assigned Unit Action module.

Hot Spots
Hot Spot: N/A

APPENDIX B. MODULE DESIGN Page 211 of 273

Optimise Resourc
Gathering Action Planner
Dynamic Map
Research Plan DEte'm‘_ne Resource Reso Worker
Requirements Analyser Planner

'

Build Plan
Technology Tree | Strategic Planning

Im

Assigned Unit
Action

| Map Knowledge

Resource Type

Figure B.6: Internal architecture of the Resource Manager

Standard Implementation

The entire Path Planner will be implemented by default and will act on the
information produced by the Terrain Analyser and the Terrain and Unit
Analyser.

B.7 Resource Manager

This module should make sure that there are resources enough for building
units and buildings. The module is run when there have been assigned work-
ers to it, which makes these workers start gathering resources. The type of
resources gathered should fit the things that have to be constructed to follow
the strategy. When there is a change in the strategy or if there is a short-
age of resources, this module should be activated again. The module should
however anticipate the best it can, what resources that will be required. It
should also be run with some frequency to check that it is gathering resources
in the most optimal way, and that there are no harvesters standing around
not gathering, and if there is not enough workers, request that more workers
are built.

The Resource Manager module’s architecture can be seen in Figure B.6.
Rectangles represent knowledge bases or other modules and circles are the
sub-modules. The following present the responsibility of the Resource Man-
ager module, and present each of the sub-modules, and discuss how the
sub-modules complete their tasks.

B.7.1 Responsibilities

Determine Resource Requirements: The module most de-
termine what resources that are necessary to reach the tar-
get strategy.

Page 212 of 273 APPENDIX B. MODULE DESIGN

Analysing Resources: The module must find the best places
to harvest resources.

Planning Worker Tasks: The module makes the worker go
out and harvest resources, and come back and deposit them.

Optimise Gathering of Resources: Finally this module
makes sure to optimise the gathering of resources.

B.7.2 Structure Overview

The module consist of four sub-modules. When a change have happened
to the strategy, the new resource requirements are found by running the
Determine Resource Requirements module. Then it is analysed where the
best place to gather resources are. After this the Planning Workers Tasks
module will make sure that the workers that have been assigned to the
module are sent to gather those resources. When the workers have reached
their goal this module will make the workers gather the resource and make
sure that it gets back to the depot, and redo this cycle. Once in a while the
Optimise Gathering of Resources module is run, to make sure that resource
gathering is optimised.

B.7.3 Determine Resource Requirements

This sub-module figures out the anticipated resource needs, according to the
Build Plan, Unit Plan and Research Plan. These plans contain the list of
what is going to be built or researched within the next short time span.
These plans are constructed from the Target Strategy Node, so indirectly the
resources requirements are determined from this. Depending on what kind
of resource these plans might require the most, the harvesting/production
of this resource will be increased. Using the Build/Unit/Research Plan it
can also account for what resources will be required in the near future. The
Strategic Planning can tell this module to find a place to put an expansion.
This is told to the Resource Analyser, which will make sure that it finds a
spot to expand on.

Responsibilities

Resource needs: The module must determines what resources
are required, to construct all the things that are in the Build,
Unit, and Research Plan.

Hot Spots
N/A

APPENDIX B. MODULE DESIGN Page 213 of 273

Standard Implementation

The standard implementation will try and determine where the best place
to harvest each of the resource types found in the knowledge base Resource
Types. If there is not enough resources to fulfil what should be built according
to the plans, an expansion is requested to be constructed.

B.7.4 Resource Analyser

This module analyses where to harvest resources, making sure that the work-
ers do not go to far to get them. When a decision has been made to create
an expansion, this is the module that should find the best area to place this,
according to where there are resources.

Responsibilities

Best Resource Positions: The module has to find the best
places to harvest all the types of resources that are required.

Best Place to Expand: Also the module should find the best
position to place an expansion, according to its knowledge
about the resources on the map.

Hot Spots
N/A

Standard Implementation

The standard implementation will assign the workers to go to the nearest
available resource of the type that needs to be gathered. In the case that
there is already assigned the maximum amount of workers to gather from that
resource, the second nearest will be found, and so forth until an available
resource is found. If non is found, it will be assigned to gather another
resource type. When requested to find an expansion, the closest grouping or
position of resources outside the current base and expansions is found.

B.7.5 Worker Planner

This sub-module assigns workers to harvesting jobs, by looking if there is
any workers that is not doing anything. If there are no available workers
it should consider if some workers should be reassigned to new tasks. To
consider this, the distance from where the workers are to where they are
required and the type of job in question, should be considered. This module
also makes sure to re-assign workers when they have completed parts of a
harvesting task, like moving from the resource back to the depot or dumping

Page 214 of 273 APPENDIX B. MODULE DESIGN

the resources into the depot. This behaviour of walking back and forth is
controlled by a simple state machine.

Responsibilities

Harvest Resources: The module must issue the commands to
move the workers to the resources they should harvest. The
module then makes the workers harvest the resources. After
this the module moves the workers back to the resource
depot, and deposit the resources.

Hot Spots
N/A

Standard Implementation

The standard implementation will make sure that the workers are moved
from the depository and to the resource, and when either is reached the
worker will dump or harvest accordingly. If there is a change in the distri-
bution of what resources that are required, the module will consider if some
workers should be assigned to gather a different type of resource.

B.7.6 Optimise Resource Gathering

This module makes sure that there are not assigned too many workers to
harvest from the same resource, because this will be inefficient, and will just
create a queue of workers, that are not able to do anything. But if there
is too few, this module will make sure that there will be constructed more
workers. When these workers are built, the next time the Resource Manger
is run, these workers will automatically be assigned to gather resources.

Responsibilities

Optimal Use of Resources: The module makes sure that if
there are not enough workers assigned on the same resource,
more workers will be constructed.

Hot Spots

Number of workers at same resources at same time:
There can usually be a certain number of workers harvest-
ing from the same resource at the same time. This number
is used to calibrate the number of workers that should be
assigned to a certain resource.

APPENDIX B. MODULE DESIGN Page 215 of 273

Base Building Target Strategy Node
Map Knowledge Templates

| Dynamic Map Knowledge Terrain and
Resource Building
Analyser Manager

Building Type Action

In Game Enemy Knowledge

‘.’ Assigned Unit Action
Manager
Building State

Unit Type Action J Building ,
Planner
—— N
Technology Tree

Strategic Planning

Build Plan

Figure B.7: Internal architecture of the Base Building module

Standard Implementation

The standard implementation will look at the resources harvested from, and
identify if there is room for more workers to harvest from this resource. If
there is a demand for this resource type it will make sure that more workers
will be constructed to harvest from this resource.

B.8 Base Building

This module creates the structure of the base, including placement, and
repairing of buildings. When the game starts this module should be triggered
to create a starting plan of how to build up the base. If the strategy changes
this modules should also be triggered to figure out what additional buildings
that might be required. Later when a building is complete, this module
should check if there are any additional buildings that should be built. If a
request comes from the Strategic Planning about creating an expansion, this
should be taken into consideration when planning what buildings to create.

The architecture of the Base Building module can be seen in Figure B.7.
Circles are the sub-modules and the rectangles represents knowledge bases
or other modules. The following will present the responsibility of the Base
Building module, and present each of the sub-modules, and discuss how the
sub-modules complete their tasks.

Page 216 of 273 APPENDIX B. MODULE DESIGN

B.8.1 Responsibilities

Analyse Terrain and Resources: Responsible for analysing
the environment for the most suitable positioning of build-
ing types.

Building Placement: Uses what have been analysed from the
environment and what is best for the strategy and from this
find the best building placement.

Planning and Prioritising Buildings: Some buildings are
more important to build than others when following cer-
tain strategies. This should be planned, and the current
resource amounts should also be taken into consideration.

Repair of Buildings: When buildings are damaged, there is
assigned worker units to repair these buildings.

B.8.2 Structure Overview

This module is divided into sub-modules that can handle each of the sub-
tasks necessary to create and maintain a base. It is made general in the way
that the user should define what kind of criteria should be met, and the best
base layout according to the strategy. The analysis of the map that is created
in the Terrain and Resource Analyser is used in combination with the base
building templates in the Building Manager module, to find what position
each building should have. Some buildings have higher priority than others,
and some can only be built if other buildings have been built in advance.

B.8.3 Terrain and Resource Analyser

This sub-module should provide analyses of the terrain for optimal defensive
positions of buildings, and find the best resource gathering locations. This
is done by creating influence maps.

Responsibilities
Areas of Interest: The module must find the areas of interest,
like for instance locations with many resources.

Hot Spots

Define Analyser: When looking for the different things in the
terrain. The user should define how to analyse for the ter-
rain resources and such.

APPENDIX B. MODULE DESIGN Page 217 of 273

Standard Implementation

This is very specific from game to game, but there will be an example of how
to use influence maps to analyse a map. This part is so specific to the game
type, what resources there is, and how the terrain is created so no standard
implementation is possible.

B.8.4 Building Manager

This sub-module figures out what the best placement of the buildings is
according to terrain, resources, and the current strategy. This module is
used when there have been strategic changes, or there have been an attack
from the enemy, and parts of the base have to be rebuilt. If a lot of resources
have been harvested and through this, changed the defensive structure of the
base, or there have become room for more buildings, this module should also
react, so that the defence of the base can stay intact, or better placement of
buildings can be found.

Responsibilities

Position: The module must in accordance to the base building
templates and the analysis of the terrain find the best place
to place buildings.

Hot Spots

Base Building Templates: Base building templates are used
to define the layout of the base, and through that indirectly
dictate the position of buildings.

Standard Implementation

The standard implementation uses the analysis and combines this with the
base buildings template and the target strategy, to decide where to place each
building. The use of different influence maps can dictate optimal placement
of the different types of buildings.

B.8.5 Building Planner

This module sends a request to the Action Planner about the construction
of a building, which will make sure that there are resources available for
the construction. When the request is authorised, a worker is moved to
where the building should be placed. Then the worker is assigned the action
of constructing the building. A request from the Strategic Planning about
creating an expansion can be received. This event contains an area where

Page 218 of 273 APPENDIX B. MODULE DESIGN

the expansion should be placed and an estimated time before this area is
cleared for enemy troops so that construction can begin.

Responsibilities

Control Workers: The module makes sure that each worker
is moved to the position where the building is to be con-
structed.

Expansion Construction: The module sends a work to the
area where an expansion should be built, so that the worker
is there, when it is estimated that the area is cleared.

Hot Spots
N/A

B.8.6 Repair Manager

The Repair Manager handles situations where some buildings are or have
been under attack. Then it should make sure that some workers will be
assigned to repair these buildings. If there are enemies near the buildings, it
should be considered whether to let the workers repair the building.

Responsibilities

Move Unit to Building: The module moves the worker to the
damaged building.

Repair Buildings: When a worker is right next to a damaged
building, it should start repair that building.
Hot Spots
N/A

B.9 Learning

Learning is responsible for evaluating and updating those prior knowledge
bases that can be updated. The internal structure of the Learning module
can be seen in Figure B.8.

B.9.1 Responsibilities

Evaluate and Revise Known Strategies, Tactics and Base Building Templates (BBT):
There is no guaranty that a strategy, tactic or a base build-
ing template is perfect from the start. In order to be able

APPENDIX B. MODULE DESIGN Page 219 of 273

Update Enemy Enemy Knowledge
Knowledge
Opponent Model
Learn New Known Strategies
Current Strategy Strategies/Tactics
Node
Timer Evaluate/Revise Known Map Knowledge
Strategies/Tactics

Pattern Recognition

Learn New Game Type

Base Building
Templates

Target Strategy Base Tuilding
Node Templates

Revise Old

Base Building
Templates

Figure B.8: The internal architecture of the Learning module

to improve these the AI must constantly be able to evaluate
their success and be able to revise them to get a better
result.

Learn New Strategies, Tactics and BBT: Playing against
different opponents or perhaps even the same opponent will
make the Al face new strategies, tactics and base building
templates. In order to evolve and improve the Al, it has
to learn these new things both to be able to recognise the
same patterns in a later game and to be able to use them
itself.

Update Enemy Knowledge Base: From time to time the
prior knowledge base have to be updated with new infor-
mation. The learning module is responsible for updating
the Enemy Knowledge base.

B.9.2 Structure Overview

The overall structure of this module consists of three parts: Evaluate and re-
vise, learn and update knowledge base. Both the evaluate and revise as well
as the learn parts furthermore consist of three parts. One for: Strategies,
tactics, and base building templates. The general structure of the evalu-
ate and revise known strategies and evaluate and revise known tactics is
identical, which means only one will be explained in detail.

Page 220 of 273 APPENDIX B. MODULE DESIGN

B.9.3 Evaluate and Revise Known Strategies

This module is to look back on the strategies that the Al has used and see
if there are anything that can be changed or optimised to make the strategy
more efficient. In order to do this three functions are needed: One function
to evaluate whether the strategy did good or bad, another function to find
the key factor that made the strategy good or bad and finally a function
that updates the strategy to either focus more on the key factor or correct
the mistake. The first function will have to have some memory of two or
more game states while using the strategy among which the initial state and
the end state should be represented. Using these states it should be able to
evaluate whether the Al is in a better situation after using the strategy or
not. It should of course take other factors into account. The enemy could
have made mistakes and the AI may not have enough information about the
enemy to draw a good conclusion. The second function will have to have a
log of all decisions made throughout the strategy in order to identify what
made the difference. To be able to do this it will also need some way of
linking effects to the decisions that caused them. Finally the third function
will have to find the rule, controlling the decision that was identified in all
the affected strategy nodes and correct it so that it now corresponds to the
conclusion of the evaluation.

The factors that need to be considered when evaluating a strategy vary
from game to game. In Command and Conquer the factors are more a
question of optimisations and in Warcraft it is all about countering the enemy
and making decisions, that is, anticipating the enemy’s actions and engage
in combat at favourable times.

Responsibilities

Evaluate Known Strategies: In order to be able to improve
strategies the Al must decide whether or not a strategy is
working as it should.

Revise Known Strategies: If a strategy is found not to be
working perfectly the AT must identify which factors can be
changed or improved.

Hot Spots

Evaluation Method: This method has to decide whether or
not the current strategy is working as it should. This is done
by looking at the progress made since applying the strategy.

Identify Key Factors: After deciding whether the strategy
was effective or not the key factors for this outcome have

APPENDIX B. MODULE DESIGN Page 221 of 273

to be identified so that they can either be enhanced or cor-
rected. If the strategy worked flawlessly then nothing should
be changed.

Find Improvements: After the key factors have been identi-
fied bad effects have to be corrected and good effects ex-
ploited.

Standard Implementation

By default this module will look at the present situation and the situation
at last evaluation. The evaluation will simply be based on the AI’s own con-
dition change and the enemy’s condition change from the previous situation
to the present situation.

B.9.4 Evaluate and Revise Known Tactics

Like the previous module this module will also look back and see if anything
can be changed or optimised, but this time it is the tactics that are in focus.
Basically the three functions needed are more or less the same.

Also here the there are different important factors all depending on the
game. In Command and Conquer the positioning of the various units is not
as important as in Age of Empires, also the general use of support varies.
Some games are almost without support while in other games it is most
important.

Responsibilities
Evaluate Known Tactics: Evaluate whether a tactic worked
as was intended.

Revise Known Tactics: If the tactic can be improved in any
way, do so.

Hot Spots

Evaluation Method: This method has to evaluate whether
the tactic had the intended effect or not.

Identify Key Factors: Knowing the outcome this method
has to identify the key factors that lead to this.

Find Improvements: Finally improvements have to be
found. This can be anything from an alternative deploy-
ment to a different unit utilisation.

Page 222 of 273 APPENDIX B. MODULE DESIGN

Standard Implementation

This module will basically use the same method of evaluating a tactic as was
used in the strategy evaluation.

B.9.5 Evaluate and Revise Known BBT

This module will have to deal with finding strong and weak points in the
BBT using information gathered from games. The result will be templates
better suited to deal with a certain map or strategy.

Both the evaluation and the revision of BBT are different from game to
game. In some games only the defensive buildings like towers and walls are
of any importance, but in most other games the placement of all buildings
is important.

Responsibilities

Evaluate Known BBT: Once in a while the AI will have to
look at its BBT and see if anything can be improved. The
cause for this can be anything from a bad outcome of a
battle in the AD’s base in which a different base structure
might have made the outcome different to optimisation in
resource gathering.

Revise Known BBT: If the result of the evaluation is that
something has to be improved, the areas that can be im-
proved must be identified and alternatives found.

Hot Spots

Evaluation Method: Given the outcome of a battle or re-
source gathering optimisation, does the currently used BBT
need to be improved?

Identify Key Factors: Identify the factors that were respon-
sible for the outcome.

Find Improvements: In case of a bad outcome, steps must
be taken towards a new BBT. This can either mean a new
build order or a different building placement.

Standard Implementation

The standard implementation will re-evaluate: The positioning of harvest
related buildings if resource gathering needs to be improved, build orders
compared to the used strategy, and the positioning of defensive structures
based on battles in the base.

APPENDIX B. MODULE DESIGN Page 223 of 273

B.9.6 Learn New Strategies

By observing the enemy or an ally the AI may gather enough information
to model a complete strategy node for the player. If the Al does not know
this strategy already it will add it to the strategy tree in Map Knowledge,
Enemy Knowledge, Game Type knowledge and Known Strategies.

The task of learning new strategies does as such not vary from game to
game. The strategy nodes themselves do however. The nodes have to be
able to model a complete state of a game and in order to do so all units,
buildings, upgrades and other map related information must be accounted
for.

Responsibilities

Fitness: The first step in learning a new strategy is in fact to
recognise that it is a new strategy. The fitness function will
try to match the seen strategy to known strategies in the
Known Strategies knowledge base. If the strategy deviates
from all known strategies by more than a certain value, it
will considered a new strategy.

Record New Strategy: When the strategy is identified as a
new strategy the a strategy node has to be filled with all
known information about it and inserted into Map Knowl-
edge, Enemy Knowledge, Game Type knowledge and Known
Strategies.

Hot Spots

Fitness Function: The user must define a function to handle
the fitness problem mentioned above.

Standard Implementation

The standard implementation of this module will simply insert a strategy
node based on the knowledge found in the In-Game Enemy Knowledge base
if this deviates more than a certain threshold from any known strategy.

B.9.7 Learn New Tactics

The AT can likewise see new tactics be used combined with known or new
strategies. When it sees a new tactic, it will have to add this to the strategy
node. That is, add the set of rules that describe how this is carried out.
The idea behind the Learn New Tactics module is as such not game spe-
cific but different games have different rules and different actions available.

Page 224 of 273 APPENDIX B. MODULE DESIGN

This means that the tactics themselves and the rules that they consist of
have to be defined from game to game as well as the work done on these.

Responsibilities

Fitness: The module will first have to find the strategy node
that is currently used in the strategy tree. If this node does
not contain the tactic, the tactic is indeed a new tactic and
should be added.

Record New Tactic: The set of new rules representing the
tactic must be added to the strategy node. If this means a
substitution of the old tactic a new strategy node must be
made and the tactic inserted in this.

Hot Spots

Insert New Tactic: The new set of rules have to be defined
and inserted so that it can be inserted into the right strategy
node. The rules are game specific so the user is responsible
for all work done upon these.

Fitness Function: The user must define a function to handle
the fitness problem mentioned above.

Standard Implementation

The standard implementation will simply try to imitate the observed actions.
It will identify actions done by the involved units and base the rules on these.

B.9.8 Learn New BBT

When scouting an enemy base or seeing how allies build their bases this
module must compare the base design to its templates and decide whether
or not the seen design is a good one. If it is indeed a good design it must
record the design as a template and assign the needed numbers(build order,
etc.).

Not only the buildings themselves are different in different games, but
also the rules defining how and where they can be built vary. In Warcraft
I buildings could only be built next to roads, in Command and Conquer
buildings have to be built close to other buildings unless it is a command
centre, and in Age of Empires and Warcraft II and Warcraft 111 buildings
can be built anywhere that is free of obstacles.

APPENDIX B. MODULE DESIGN Page 225 of 273

Responsibilities

Fitness: Like the other learning modules this module also first
has to identify the BBT as a new BBT. This is done by
searching for the BBT among all the known BBTs. The
deviation threshold may vary from game to game.

Create New BBT: When a new BBT has been identified it
must be added to the BBT knowledge base.

Hot Spots

Fitness Function: The user must define a function to handle
the fitness problem mentioned above.

Standard Implementation

This module will identify important spots such as the location of resources
and entrances to the base and record the placement of other buildings relative
to these.

B.9.9 Update Enemy Knowledge

This module will simply add information to Enemy Knowledge updating
Enemy Knowledge with information gathered from the game.

When playing any game it is always useful to know how the enemy has
played previously. The strategies are modelled by strategy nodes and the
strategy trees will model strategy dependencies and frequencies. The only
game specific task is to fill out new strategy nodes.

Responsibilities

Update Enemy Knowledge: The soul purpose of this mod-
ule is to update the prior knowledge base: Enemy Knowl-
edge.

Hot Spots

Create New Strategy Node: As already mentioned the cre-
ation of the strategy node will have to be defined by the
user of the framework.

Standard Implementation

The strategy node will be added to the knowledge base. If the strategy
node is already present in the strategy tree the edges leading to it will be
incremented by 1.

Page 226 of 273 APPENDIX B. MODULE DESIGN

Current Strategy
Node

Technology Tree

Building State

Building Type Action

Strategic Planmng
Target Strategy
Node
Base Building

Resource Management
Tactical Planning

Figure B.9: Internal architecture of the Action Planner

Act\on Schedu\er

B.10 Action Planner

This module takes care of the final operations necessary to interact with the
GDF. It makes sure that units are being build, and that technology is being
researched. It schedules the operations that is most critical to be performed
first, and then send these operations to the GDF.

The internal architecture of the module can be seen in Figure B.9. Cir-
cles in the figure represents internal sub-modules and boxes represents other
modules or knowledge bases. The following will first discuss the overall re-
sponsibilities of the Action Planner module, and then present each of the
sub-modules in the internal architecture along with a discussion of how the
sub-module is to complete its task.

B.10.1 Responsibilities

Unit Production: The module is responsible for creating all
units, and figure out which have the highest priority.

Research: The module prioritises the research required to fulfil
the strategy.

Schedule all Actions: The module takes all actions and plans
the execution of these according to priority and current re-
sources available.

Using the GDF: The module interfaces with the GDF so the
actions that is created in the framework can be mapped to
one or more actions in the GDF.

APPENDIX B. MODULE DESIGN Page 227 of 273

B.10.2 Structure Overview

Each of the sub-modules are responsible for different tasks. The module is
created so that it reads proposed actions of the other module in the Assigned
Unit Actions and Assigned Building Actions knowledge bases, and ends up
with a list of instructions that calls the GDF, in the way the user has defined.

B.10.3 Unit Planner

The Unit Planning sub-module should make sure that there are enough
workers, to gather resources and build buildings. It should also make sure
the fighting units that fit the current strategy is created, and the right type
of scouting units is produced. These units are put into the Unit Plan that
contains the list of units that should be created. They are then passed on to
the action scheduler that figure out when it is possible to start production
of the units.

Responsibilities

Unit construction: The module must figure out what units
should be constructed in accordance to the strategy.

Hot Spots

Prioritisation of unit types: The type of units that have the
highest priority should be defined.

Standard Implementation

The implementation of this module will take the unit types in the target
strategy and try and construct the units, so that the distribution of each
unit type is always the same as in the strategy.

B.10.4 Research Planner

This module should make sure that the Technology Tree is researched in the
way that best fits the strategic plan. It will create a Research Plan. This plan
contains a list of the things that should be researched, and in what order.
Each time it is possible the next thing that should be researched is sent to
the action scheduler, which will start this research when it has resources and
time available for this.

Responsibilities

Research technology: The module must figure out what tech-
nology to research in accordance with the strategy.

Page 228 of 273 APPENDIX B. MODULE DESIGN

Hot Spots
N/A

Standard Implementation

The standard implementation will take the target strategy, and with the use
of the technology tree figure out how to get to the technology level that is
required to follow the strategy.

B.10.5 Action Scheduler

This module should schedule all operations, making sure that the most ur-
gent ones are done first. Because of simulating a human, it should not be
possible to do an unlimited amount of operations in one game tick. It should
also take into consideration what resources are available, and what is going
on at the moment, if the Al is in a battle, it should prioritise after this.
Each unit action that is placed in the Assigned Unit Action knowledge base
is performed.

Responsibilities

Prioritise Construction: There are limited resources, and the
module must figure out which constructions have the highest
priority, and should be constructed first.

Prioritise Actions: If a unit is requested to do more than one
action at the same time, it should figure out what action
have the highest priority.

Hot Spots

Prioritising scheme: Depending on how the game is, there is
used different prioritising schemes, to tell what construc-
tions and actions have the highest priority, in accordance
with all known knowledge.

Standard Implementation

A simple prioritising scheme will be implemented as default.

B.10.6 Interface GDF

This interface should make sure that the operations scheduled will be mapped
to operations that can be done in the GDF.

APPENDIX B. MODULE DESIGN Page 229 of 273

Responsibilities

Interaction with GDF: The module should make sure that
the actions are performed in the GDF.

Hot Spots

Actions: The entire module is a hot spot, because depending
on how actions are done in the GDF it should be performed
in different ways.

Standard Implementation

There is no standard implementation because this module is completely GDF
dependent, so there can be no standard implementation of this. There is only
defined an interface that this module should implement, and this interface
takes a list of actions as input.

APPENDIX C. KNOWLEDGE BASES Page 231 of 273

Appendix C

Knowledge Bases

This chapter presents all knowledge bases within the framework.

C.1 Prior Knowledge Bases

Map Knowledge: This area represents knowledge about the map terrain,
map size, resource locations, strategic and tactical important locations
etc.

Enemy Knowledge: Experiences against players throughout several
games will give the player an idea of how the enemy player thinks
and what kind of strategies she uses. This prevents the player from
losing to the same strategies again and again, against the same oppo-
nent, as she is capable of trying new things and thereby countering
the opponent’s strategy. This of course only applies to players of equal
skill level in all areas, because knowing the opponent’s strategy will
often not be enough for novice players to beat professional players.

Gametype Knowledge: Depending on whether the game played is a team
game, a lonl game or an FFA (Free For All) game, the strategic con-
siderations change.

Known Strategies: Most players have a number of strategies they have
either invented for themselves, learned from watching other players or
found on the Internet. This area affects both the number and quality
of strategies used by the player, but also the capability of predicting
the opponent’s strategy, and knowing how to counter it.

Known Build Orders: In all RTS games the start of the game is very im-
portant and an effective build order can prove invaluable. The build
order defines in which order to build everything such as workers, build-
ings and combat units and also specifies what each worker should be
doing at any given time. A build order is often used in connection

Page 232 of 273 APPENDIX C. KNOWLEDGE BASES

with a certain strategy trying to maximise the player’s resources and
getting to a certain point in the strategy as fast as possible.

Resource Types: This knowledge base defines what kind of resources are
available in the game.

Technology Tree: This knowledge base defines game specific building de-
pendencies, unit dependencies and research dependencies as well as
resource cost for everything in the tree. Furthermore, it includes knowl-
edge about what actions each unit or building is capable of.

Base Building Templates: Contains templates for structuring base build-
ing. These templates also contains a prioritised list of buildings to build
first for each building plan.

Tactical Knowledge: A knowledge base describing all tactics possible in a
certain game. These are essentially also present in the Known Strate-
gies knowledge base, but is here hidden within the different strategy
nodes. This knowledge base is basically for easy referencing the differ-
ent kinds of tactics.

C.2 In-Game Knowledge Bases

Opponent Model: Contains information about the current strategy of the
enemy, including a strategy tree and current node information for the
enemy. It also specifies beliefs about attributes that have not been
scouted, which are there only to represent what the Al currently thinks
the opponent is doing. All updates includes a time stamp, which allow
the Al to give less importance to variables not updated for a long time.

In-Game Enemy Knowledge: Contains the position of each enemy unit
currently visible on the map and knowledge about where certain units
have been seen earlier (So the AT do not forget enemy units when they
enter fog of war)

Assigned Unit Actions: Information about each controlled unit and the
current action assigned to it.

Assigned Building Actions: Information about each controlled building
and the current action assigned to it.

Unit State: Contains a collection of all controlled units and the state each
of them are in.

Building State: Contains a collection of all controlled buildings and the
state each of them are in.

APPENDIX C. KNOWLEDGE BASES Page 233 of 273

Current Strategy Node: Maintains the current strategy node for the Al
player.

Goal Strategy Node: Describes the goal strategy node.

In-Game Own Knowledge: Contains the position and current status of
all friendly units and buildings.

Building Plan: Contains the current building plan for the AI’s base.

Unit Plan: Contains information about which units to build and in what
order.

Research Plan: Contains information about which research upgrades to
purchase and in what order.

Mission Knowledge: Contains information about different missions that
should be executed in accordance with the current strategy. Each mis-
sion is noted along with the goal of the mission and the units assigned
to perform it.

Dynamic Map Knowledge: Includes dynamic elements such as resource
locations and amounts. Will differ a lot depending on the game in
question.

Dynamic Obstacles: Contains the position of all obstacles currently in
view that are able to move from one game tick to another.

APPENDIX D. TEST MODEL Page 235 of 273

Appendix D

Test Model

Based on the human model described in Chapter 3 several different areas
have been found that is handled by the human player. To test the Al’s
capabilities in each of these areas several features have been found that
together describe how well or how bad the AI handle the same areas. A
table showing an overview of the Als in all the games tested can be found in
Appendix E.1. A mark in one of the squares means that the A, in the game
referred to, is capable of handling the described situation. If several different
questions are proposed a mark means that the majority of the questions are
reasonably handled and the main question satisfactory dealt with.

Below each area is listed along with the chosen situations, each situation
described for clarification of the purpose of the situation, and the way this
is tested.

D.1 Strategic Planning

Using Counters: If the enemy has chosen a specific strategy most games
offer a counter to this specific strategy. Any human player would try
to counter the strategy as soon as she discovered what was going on.
Is the Al capable of this? This can be tested rather easily. The tester
just chooses an extreme strategy that is a strategy that will resolve in
victory if not countered, but on the other hand countered rather easily
if measures are taken towards this.

Exploiting Weak Spots: Upon scouting an enemy base a human player
would immediately identify a weak spot, if any exists. She will then
use this information when attacking. The AI can be tested for this
capability by identifying the most likely spot to be attacked by the
Al This spot is then fortified with a lot of defensive buildings while
leaving a different less likely spot to be attacked defenceless.

Strategic Variation in one Game: Does the Al vary its strategy

Page 236 of 273 APPENDIX D. TEST MODEL

throughout a single game? If, for instance, the Al has chosen a strat-
egy at game start and this strategy fails, will it then try to change its
strategy, perhaps even towards countering the enemy strategy? This
is tested by simply noting the strategy that the Al is using at the start
of the game. If the AT does not change the strategy (unit combination,
point of attack, etc.) even when losing, it is incapable of this.

Strategic Variation Game to Game: Does the Al change its strategy
from game to game? A human player would change her strategy from
game to game especially when playing against the same opponent. By
doing this, she is less likely to let her opponent know what she is up
to. The Al is tested by simply playing a series of games and observing
which strategy the AI chooses.

Reasonable Expansions: This question actually covers two questions: Is
the Al able to choose a good time for expanding? And does it choose a
good spot for expanding. The first question is hard to test, because it
is based upon the chosen strategy and general game experience. Here
it is up to the tester to judge how well this is done. The other question
is a bit simpler to test. There are several criteria for a good expansion
site: Is it close to the main base? Is it well hidden? Is the harvesting
building close to the resources? Is the expansion well-placed in relation
to the enemy?

Using Map: Being able to use the map can put the Al in favourable po-
sitions when fighting, prevent it from falling into ambushes at bad
locations, and even open the possibility for using map specific strate-
gies. This can be tested by trying to lure the AI into an ambush in a
choke point, using high ground against it, and also observe, whether it
is trying to do the same to the tester.

Good Build Order: A good build order is crucial, especially in the early
stages of the game. This can be tested by observing the Al throughout
the first 3-5 minutes and see how well it manages buildings, workers
and resources compared to the chosen strategy.

D.2 Tactical Planning

Using Formations: Using formations can prevent the wrong units from
being exposed to damage and it generally means that the units end
up in the position that they were designed for when entering a battle.
This can be tested by observing how the AI moves its army. This is
especially the case when entering a battle, or just if the army consists
of different units of varying movement speed.

APPENDIX D. TEST MODEL Page 237 of 273

Map Considered when Moving: How does the AT handle choke points,
exiting transports and other map specific situations?Is it just pushing
the army through the hole as fast as possible, letting the first units walk
on ahead of the rest of the army or is it keeping the army gathered?
Is the AI avoiding goose walk? This is tested by observing the Al in
such a situation.

Using Tactical Manoeuvres: Does the Al use tactical manoeuvres? A
tactical manoeuvre can be anything from trying to flank the enemy to
get through the lines and attack the light armoured units at the back,
to lure the enemy into a bad location. The possibilities of tactical
manoeuvres vary from game to game.

Measure Own Str. vs Enemy Str.: How well does the Al measure its
own strength compared to the strength of the enemy? This can be
seen when the Al attacks with an inferior army. What does it do when
it sees the enemy army? Does it attack anyway or retreat to pick up
more units?

Staying in Control of Units: An unattended army can easily be divided
by attacking one of the units at the perimeter of the army and run away.
In most cases the Al in each unit will make the attacked units and the
immediate surrounding units to follow the attacked. The attacker is
thus able to split up an army and deal with each portion separately.
How well is the Al at dealing with this?

D.3 Micromanagement

Saving Hurt Units: If the game features healing (either creature regener-
ation or by support) it is in most cases an advantage to save as many
units as possible throughout a battle. As soon as a unit is severely
hurt, it should either be removed from the battle field or at least from
the line of fire. This is easily observed in any battle.

Focus Fire: The counter to saving the hurt units is to focus all (or at least
a lot of) fire on a single unit in turn so that the opponent has not got
time to remove it from the battlefield. The idea is also that for every
single unit, you can kill, there is one less unit dealing damage to your
army. This is also easily observed in a battle.

Counter Focus: Some games feature unit to unit counters. That means
that given some unit type A there exists a unit type B that is designed
to deal with unit type A. During a battle, how well is the AI to ma-
noeuvre the units of type B, so that they are faced with units of the
type A?

Page 238 of 273 APPENDIX D. TEST MODEL

Using Support: The correct use of support units can mean the difference
between failure or victory. How well is the AI to decide, which units
should receive the support, and when to use support at all (given that
the use is limited by for instance mana). This is harder to observe in a
battle as it can be rather subtle, but it can easily be seen, if the tester
is either in an observing position or is able to review replays.

D.4 Resource Management

Predicting Resource Needs: By predicting the resource needs, the Al is
able to minimise the time it takes to reach a certain technology level,
or the production of a certain number of a specific unit. This can be
tested by observing the resource usage of the AI. Does it stock up the
resources needed to carry out the strategy, or does it end up waiting
for the required resources?

Spending Available Resources: How well is the AT at spending the avail-
able resources? There is no point in expanding if the extra resources
are not spent, or at least taken into account, when evaluating the strat-
egy. This is tested by looking at the Al’s resource amount throughout
the game. Is it spending the resources? Does it upgrade units? Does
it produce enough units?

Flexible Resource Gathering: Some strategies require one branch of re-
sources, and very little or none of another branch of resources. If such
a strategy is chosen by the AI, it would be stupid to gather all kinds
of resources, instead of just the one that is needed. How well is the Al
at this, and does it change the resource gathering strategy at all, when
a different overall strategy is chosen?

D.5 Base Building

Good Placement of Def. Buildings: A bad placement of defensive
buildings can mean that they are hardly worth anything at all. A
good placement, however, can mean that the base is almost impreg-
nable. The use of defensive buildings is varying a lot from game to
game so it is up to the tester to judge, how well the AI is placing
these.

Good Placement of Hrv. Buildings: A good placement of a harvesting
building can mean the speed up of harvesting by several orders of
magnitude compared to a bad placement. Harvesting buildings should
be placed as close to the resource as possible.

APPENDIX D. TEST MODEL Page 239 of 273

Sensible Base: How good is the overall building placement in the base?
Building placement strategies are also very game specific, so once again
it is up to the tester to judge. The tester should however take into
account: How well the base is defended against drops, direct attack
and ultimate weapons (Nuclear missiles, Area of effect spells, and the
like).

D.6 Scouting

Does It Scout At All: This question covers the entire area as if the an-
swer to this question is negative, the following questions will all be
negative. Does the AI scout at all? The alternative to scouting is
cheating by having the entire map available. This is rather easy to
test. Does the AI use scouts, or does it move around like it knows
what is happening on the entire map? This is best seen by either
observing the Al or reviewing a replay.

Scouting Map: How well is the Al at scouting the map? Does it scout
possible expansion sites for enemy expansions? Does it scout different
starting locations for the enemy base? Etc.

Scouting Enemy: Does the Al scout the enemy? By scouting well the Al
will be able to know exactly what the enemy is up to and take measures
to counter this.

Scouting at Sensible Times: Is the Al scouting at sensible times? This
is game specific, but the tester should note how many times the Al
scouts the enemy, whether the interval is reasonable, and if the time,
it scouts, is well-chosen compared to the time, it will be able to see
which branch of the technology tree, the enemy has chosen.

Using the Acquired Information: Does the AI use the acquired infor-
mation to adjust its strategy or is it just for show? This is easily
tested by choosing an extreme strategy and make sure that the AT sees
this. If it counters this is obviously the case.

Sensible Unit Used for Scouting: Choosing the right unit for scouting is
also important, as the unit is in danger of being caught when scouting.
Choosing the right unit will minimise the cost of the sacrifice. This
can be done in several different ways. One way is to send a low cost
unit and the other is to send a unit that is unlikely to be caught. How
well is the AT doing this?

Page 240 of 273 APPENDIX D. TEST MODEL

D.7 Learning

Learning: This should be tested in two ways. The first way is to play
against the Al in one game. Does the Al seem to learn new strategies
throughout the game by either observing what the tester does or by
reasoning? The other is to observe the AI throughout several games.
Does the Al seems to learn from game to game, that is learning from
past experience.

D.8 Cooperation

AI-ATI Cooperative Strategy: When two Als are allied, how well are they
at choosing a shared strategy, and do they do this at all? This is tested
by simply observing the Als’ strategy in a couple of games.

Cooperating: Do the Als cooperate? Are they coordinating attacks and
defence? This can also be seen by observing a couple of games.

Resource Sharing: How well are the Als at resource sharing, and do they
do it at all? This is best tested by observing the resource amount of
both Als throughout the game. The tester could for instance take out
all the workers belonging to one of the Als to force a situation, where
resource sharing would be obvious.

Human-AI Communication Available: Is it possible for the human
player to communicate with the AI?

AI-Human Communication Available: Is it possible for the Al to com-
municate with the player?

Helping if Human Attacks: Does the Al join forces with the human
player, when the human player decides to attack the enemy?

Helping if Human is Attacked: Does the Al come to help if the human
player is attacked?

Handling Temporary Alliances(FFA): How well is the Al at handling
temporary alliances like the ones encountered in Free For All games?

APPENDIX E. TEST TABLE A Page 241 of 273

Appendix E

Test Table A

Page 242 of 273 APPENDIX E. TEST TABLE A

gﬁ ™ S
JEEIEINEINE
S BRIEIE] S E|E
<| 2|87 2188 |8]E¢E
AEIEEIE IR
Zla|E|l<|&d|a|l<|B|E
Strategic Planning
Using Counters X
Exploiting Weak Spots
Strategic Variation in one Game X | X
Strategic Variation Game to Game X[X[X]|X|X
Reasonable Expansions X | X X
Using Map
Good Buildorder X | X [X|X X
Tactical Planner
Using Formations X | X | X X X
Map Considered when Moving
Using Tactical Manoeuvres X
Measure Own Str. vs Enemy Str. XX |X
Staying in Control of Units X X
Micromanagement
Saving Hurt Units X X
Focus Fire X X
Counter Focus
Using Support X[X |[X]|X X
Resource Management
Predicting Resource Needs
Spending Available Resources X[X | X]|X|[X
Flexible Resource Gathering
Base Building
Good Placement of Def. Buildings X | X X
Good Placement of Hrv. Buildings X | XX
Sensible Base X | X X
Scouting
Does It Scout At All X [X
Scouting Map X | X
Scouting Enemy X | X
Scouting at Sensible Times
Using the Acquired Information X
Sensible Unit Used for Scouting X | X
Learning
Learning
Cooperation
AI-AT Cooperative Strategy
Cooperating X X X
Resource Sharing
Human-AI Communication Available X
Al-Human Communication Available X
Helping if Human Attacks X
Helping if Human is Attacked X
Handling Temporary Alliances

Table E.1: Test Table A

APPENDIX F. TEST TABLE B Page 243 of 273

Appendix F

Test Table B

Page 244 of 273

APPENDIX F. TEST TABLE B

Red Alert

Dark Reign 2
Warzone 2100
Age of Mythology
Empire Earth 2
Starcraft

Armies of Exigo
Warcraft 1T
Warcraft IIT

Prototype Implementation

Complete Implementation

Strategic Planning

Using Counters

>

Exploiting Weak Spots

Strategic Variation in one Game

Strategic Variation Game to Game

ik

Reasonable Expansions

sikslks

sikslks
b
>~
>~

Using Map

Good Buildorder

Slisiisiksiksikalks

Tactical Planner

Using Formations

Map Counsidered when Moving

Using Tactical Manoeuvres

Measure Own Str. vs Enemy Str.

Staying in Control of Units

| | AL A A

Micromanagement

Saving Hurt Units

Focus Fire

Counter Focus

Using Support

SlisiisiEs

Resource Management

Predicting Resource Needs

Spending Available Resources

Flexible Resource Gathering

slisiis

Base Building

Good Placement of Def. Buildings

Good Placement of Hrv. Buildings

Sensible Base

b |

Scouting

Does It Scout At All

Scouting Map

Scouting Enemy

sikslks
siksiks

Scouting at Sensible Times

Using the Acquired Information

Sensible Unit Used for Scouting

siisiisiisislls!

Learning

Learning

>~

Cooperation

AI-AT Cooperative Strategy

Cooperating

Resource Sharing

Human-AI Communication Available

AI-Human Communication Available

Helping if Human Attacks

Helping if Human is Attacked

silsiks

Handling Temporary Alliances

Table F.1: Test Table B

© 00 N D ot s W W

e e e e e
N o s W N = O

APPENDIX G. GAME LOGS Page 245 of 273

Appendix G

Game Logs

The following will list five game log examples, demonstrating what the Al
is doing and reasoning about during a game. All game logs will include the
AT’s choice of strategy, when it is scouts and what unit it chooses, and rea-
soning about the opponent’s strategy. The AI uses the strategy tree shown
in Figure K.3 in all the examples. When new information is discovered about
the enemy, the opponent model is printed, as well as the reasoning about the
opponent’s strategy done in the Probabilistic Reasonoing module. The "Po-
tential Strategies" output indicates which strategies the Al currently thinks
the opponent is doing, and the number after each potential strategy indicates
a deviation factor compared to the actual strategy tree node. Following this,
the Strategic Planning module prints the potential counter strategies, and a
number indicating how likely it is that the strategy is going to counter the
opponent’s strategy. Game log G.1 and G.2 furthermore includes when the
AT has built a unit, to show how the AT is capable of following the currently
selected strategy.

Listing G.1: Al game log 1
[Game Tick: 1]

Chosen start strategy: Fast tech
[Game Tick: 2]

[Game Tick: 31|

Scouting Mission Started:

Unit type selected for scouting: worker
[Game Tick: 32|

[Game Tick: 61]

Opponent model:

— Name: marine — 0 — Percentage: 0

— Name: tank — 0 — Percentage: 0

— Name: worker — 6 — Percentage: 100

— Name: barracks — 0 — Percentage: 0

— Name: controlCenter — 0 — Percentage: 0
— Name: factory — 0 — Percentage: 0

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

© 0 N O o A W N

R S I R R R S T e el
N N T S T " TS N N S SO U R R R <)

25

Page 246 of 273 APPENDIX G. GAME LOGS

Potential Strategies:

— Fast expand — 0

Counter strategy: Marines — Ability to counter strategy: 100
Chosen Counter Strategy: Marines

[Game Tick: 62]

[Game Tick: 89]

Opponent model:

— Name: marine — 2 — Percentage: 18.1818

— Name: tank — 3 — Percentage: 27.2727

— Name: worker — 6 — Percentage: 54.5455

— Name: barracks 0 — Percentage: 0

— Name: controlCenter — 1 — Percentage: 50

— Name: factory — 1 — Percentage: 50

Potential Strategies:

— Fast expand — 7.75

— Fast tech — 7.1

— Mixed — 6.75

Counter strategy: Fast expand — Ability to counter strategy: 92.9
Counter strategy: Marines — Ability to counter strategy: 92.25
Counter strategy: Mass tanks — Ability to counter strategy: 93.25
Chosen Counter Strategy: Mass tanks

[Game Tick: 90]

Listing G.2: Al game log 2
[Game Tick: 1]
Chosen start strategy: Marines
[Game Tick: 2]

[Game Tick: 31]

Scouting Mission Started:

Unit type selected for scouting: worker
[Game Tick: 32]

[Game Tick: 167]

Opponent model:

— Name: marine — 2 — Percentage: 22.2222
— Name: tank — 1 — Percentage: 11.1111
— Name: worker — 6 — Percentage: 66.6667

— Name: barracks — 0 — Percentage: 0
— Name: controlCenter — 0 — Percentage: 0
— Name: factory — 0 — Percentage: 0

Potential Strategies:

— Fast expand — 8.25

Counter strategy: Marines — Ability to counter strategy: 91.75
Chosen Counter Strategy: Marines

[Game Tick: 168]

[Game Tick: 184]

Opponent model:

— Name: marine — 5 — Percentage: 41.6667
— Name: tank — 1 — Percentage: 8.33333

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

© 00 N D ot s W W

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

APPENDIX G. GAME LOGS Page 247 of 273

— Name:
— Name:
— Name:
— Name:

worker — 6 — Percentage: 50
barracks — 0 — Percentage: 0
controlCenter — 1 — Percentage: 50
factory — 1 — Percentage: 50

Potential Strategi
— Fast expand — 8.25
— Marines — 7.25

— Mass marines — 9
— Mixed — 7.41667

Counter
Counter
Counter
Counter

strategy:
strategy:
strategy:
strategy:

es :

Fast tech — Ability to counter strategy: 92.75
Marines — Ability to counter strategy: 91.25
Mass tanks — Ability to counter strategy: 92.5833
Mixed — Ability to counter strategy: 91

Chosen Counter Strategy: Fast tech

[Game Tick:

[Game Tick:

Chosen start

[Game Tick:

[Game Tick:

185]

1]

Listing G.3: Al game log 3

strategy: Marines

2]

31]

Scouting Mission Started:
Unit type selected for scouting: worker

[Game Tick:

[Game Tick:
Unit Built:
[Game Tick:

[Game Tick:
Unit Built:
[Game Tick:

[Game Tick:
Unit Built:
[Game Tick:

[Game Tick:
Unit Built:
[Game Tick:

[Game Tick:
Unit Built:
[Game Tick:

[Game Tick:
Unit Built:
[Game Tick:

[Game Tick:
Unit Built:

32]

56]
worker
57]

64]
marine

65]

112]
worker
113]

128]
marine

129]

192]
marine

193]

256]
marine

257]

320]

marine

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

Page 248 of 273 APPENDIX G. GAME LOGS

[Game Tick: 321]

[Game Tick: 346]
Opponent model:

Name: marine — 3 — Percentage: 30
— Name: tank — 1 — Percentage: 10
— Name: worker — 6 — Percentage: 60
— Name: barracks — 0 — Percentage: 0
— Name: controlCenter — 0 — Percentage: 0
— Name: factory — 0 — Percentage: 0

Potential Strategies:

— Fast expand — 7.33333

— Marines — 9.41667

— Mass marines — 7.36667

— Mixed — 9.91667

Counter strategy: Fast tech — Ability to counter strategy: 90.5833
Counter strategy: Marines — Ability to counter strategy: 92.6667
Counter strategy: Mass tanks — Ability to counter strategy: 90.0833
Counter strategy: Mixed — Ability to counter strategy: 92.6333
Chosen Counter Strategy: Marines

[Game Tick: 347]

[Game Tick: 358]

Opponent model:

— Name: marine — 8 — Percentage: 38.0952

— Name: tank — 7 — Percentage: 33.3333

— Name: worker — 6 — Percentage: 28.5714

— Name: barracks — 0 — Percentage: 0

— Name: controlCenter — 1 — Percentage: 50

— Name: factory — 1 — Percentage: 50

Potential Strategies:

— Fast expand — 7.33333

— Fast tech — 9.86667

— Marines — 9.65

— Mass marines — 9.96667

— Mixed — 3.5

Counter strategy: Fast expand — Ability to counter strategy: 90.1333
Counter strategy: Fast tech — Ability to counter strategy: 90.35
Counter strategy: Marines — Ability to counter strategy: 92.6667
Counter strategy: Mass tanks — Ability to counter strategy: 96.5
Counter strategy: Mixed — Ability to counter strategy: 90.0333
Chosen Counter Strategy: Mass tanks

[Game Tick: 359]

[Game Tick: 414]
Unit Built: worker
[Game Tick: 415]

[Game Tick: 470]
Unit Built: worker
[Game Tick: 471]

[Game Tick: 486]
Unit Built: tank

90
91
92
93
94
95
96
97
98
99

© 0o N D Ut s W W

AOA W W W W W W W W W W NN N KN NN N N K R R e e e e
= O © 0 9 & O A DK E O © XN O O A RN~ O © KON oA W N = O

APPENDIX G. GAME LOGS

Page 249 of 273

[Game Tick: 487]
[Game Tick: 614]
Unit Built: tank
[Game Tick: 615]
[Game Tick: 742]
Unit Built: tank
[Game Tick: 743]
Listing G.4: Al game log 4
[Game Tick: 1]
Chosen start strategy: Fast tech
[Game Tick: 2]
[Game Tick: 31|
Scouting Mission Started:
Unit type selected for scouting: worker
[Game Tick: 32]
[Game Tick: 56:]
Unit Built: worker
[Game Tick: 57:]
[Game Tick: 112:]
Unit Built: worker
[Game Tick: 113:]
[Game Tick: 128:]
Unit Built: tank
[Game Tick: 129:]
[Game Tick: 256]
Unit Built: tank
[Game Tick: 257]
[Game Tick: 384
Unit Built: tank
[Game Tick: 385]
[Game Tick: 392]

Opponent model:

— Name: marine — 0 — Percentage: 0

— Name: tank — 1 — Percentage: 14.2857

— Name: worker — 6 — Percentage: 85.7143
— Name: barracks — 0 — Percentage: 0

— Name: controlCenter — 0 — Percentage: 0
— Name: factory — 0 — Percentage: 0
Potential Strategies:

— Fast expand — 2.56667
— Fast tech — 8.8

Counter strategy: Fast expand — Ability to counter

strategy: 91.2

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

© 0 N O O s W N

N R e e e e
N N N < S L I CR = <)

Page 250 of 273 APPENDIX G. GAME LOGS

Counter strategy: Marines — Ability to counter strategy: 97.4333
Chosen Counter Strategy: Marines
[Game Tick: 393]

[Game Tick: 400]

Opponent model:

— Name: marine — 2 — Percentage: 16.6667
— Name: tank — 4 — Percentage: 33.3333

— Name: worker — 6 — Percentage: 50
— Name: barracks — 0 — Percentage: 0
— Name: controlCenter — 1 — Percentage: 100
— Name: factory — 0 — Percentage: 0

Potential Strategies:

— Fast expand — 6.05

— Fast tech — 5.85

— Mass tanks — 9.36667

— Mixed — 7.51667

Counter strategy: Fast expand — Ability to counter strategy: 94.15
Counter strategy: Marines — Ability to counter strategy: 93.95

Counter strategy: Mass marines — Ability to counter strategy: 90.6333
Counter strategy: Mass tanks — Ability to counter strategy: 92.4833

Chosen Counter Strategy: Fast expand
[Game Tick: 401]

Listing G.5: Al game log 5
[Game Tick: 1]
Chosen start strategy: Marines
[Game Tick: 2]

[Game Tick: 31]

Scouting Mission Started:

Unit type selected for scouting: worker
[Game Tick: 32]

[Game Tick: 367]
Opponent model:

— Name: marine — 2 — Percentage: 50

— Name: tank — 0 — Percentage: 0

— Name: worker — 2 — Percentage: 50

— Name: barracks — 0 — Percentage: 0

— Name: controlCenter — 0 — Percentage: 0
— Name: factory — 0 — Percentage: 0

Potential Strategies:

— Fast expand — 9.16667

— Marines — 4.25

— Mass marines — 2.2

Counter strategy: Fast tech — Ability to counter strategy: 95.75
Counter strategy: Marines — Ability to counter strategy: 90.8333
Counter strategy: Mixed — Ability to counter strategy: 97.8
Chosen Counter Strategy: Mixed

[Game Tick: 368]

© 00 N DTt As W N

W oW W W oW W W N NN NN N NN N N R e e e e e e e e
S R D R R O ©® KON O oA WN O © KON oA W N = O

APPENDIX H. PERFORMANCE LOG Page 251 of 273

Appendix H

Performance Log

Listing H.1: Module game tick performance log

Game tick: 1

Action planner 0

Base building 0

GDF connection 0
Percept interpreter 42
Reactive module 0
Resource manager 0
Strategic planner 0
Tactical planner 15

Game tick: 2

Action planner 1
Base building 0

GDF connection 0
Percept interpreter 0
Reactive module 0
Resource manager 0
Tactical planner 14

Game tick: 3

Action planner 0

GDF connection 0
Percept interpreter 0
Reactive module 0
Resource manager 11
Tactical planner 14

Game tick: 4

Action planner 0

GDF connection 0
Percept interpreter 0
Reactive module 0
Tactical planner 14

38
39
40
41
42
43

45
46
47
48
49
50
51
52

54
55
56
57
58
59

Page 252 of 273

APPENDIX H. PERFORMANCE LOG

Game tick: 31
Action planner 0
GDF connection 0
Percept interpreter
Reactive module 0
Tactical planner 14

Game tick: 32

Action planner 0
GDF connection 0
Percept interpreter
Reactive module 0
Resource manager 0
Strategic planner 0
Tactical planner 28

Game tick: 33
Action planner 0
GDF connection 0
Percept interpreter
Reactive module 0
Tactical planner 14

APPENDIX I. PATHFINDING TESTS Page 253 of 273

Appendix 1

Pathfinding Tests

Page 254 of 273 APPENDIX I. PATHFINDING TESTS

1200 T T

“path_plot1"
1000 [~ 1

< 0

D |
0 O 600 1

™
DAY ,
O o 200 - b

0 I I I I I
0 200 400 600 800 1000 1200

Map Path found

Figure I.1: Path found in pathfinding test

1200

T T
“path_plot2"
1000 [~ 1
S D
800 N
< 600 - e
o —

O . O
400 N
0
Eﬂ RO |
0 1 1 1 1 1
0 200 400 600 800 1000 1200

Figure 1.2: Path found in pathfinding test

1200 T T
"path_plot3"

O - 1000 - .
B |

3

O
17 |
I 1 |

0 200 400 600 800 1000 1200

Figure 1.3: Path found in pathfinding test

APPENDIX I. PATHFINDING TESTS Page 255 of 273

1200

paﬁ | plot4" ‘

0
o 800 -
WP &

0 g o b | 1
O 400 - -
ﬁ 2 200 -

O Il Il Il Il Il
0 0 200 400 600 800 1000 1200

Figure 1.4: Path found in pathfinding test

© 00 N D Ut W W

e e e
D s W N = O

© 00 N DO As W N

e e
B W N = O

APPENDIX J. CODE EXAMPLES Page 257 of 273

Appendix J

Code Examples

J.1 Unit and Building Specifications

Listing J.1: Specification of a worker type

name = "worker"

type = "Unit"

preconditions = ["controlCenter"|]

hitpoints = 60

attack_max = 5

attack _min = 2

ground attack range = 4

movement_speed = 3

sight _range = 5

actions = ["move", "attack", "stop", "mine", "return_ resources",
"build _controlCenter", "build barracks", "build factory"]

minerals = 75

gas = 0

built _by = "controlCenter"

build _time = 75

supply cost = 0

Listing J.2: Specification of a marine type

name — "marine"
type = "Unit"
preconditions = ["barrack"]

hitpoints = 100

attack _max = 50

attack min = 30

ground _attack range = 8
movement_speed = 3
sight _range = 6

actions = ["move", "attack", "stop"]
minerals = 100
built by = "barrack"

build _time = 100
supply cost =1

© 0 N O U s W N

e e e
oo W N = O

© 0 N O U s W N =

e e
Bw N = O

© 0 N U oA W W e

e e
N =]

Page 258 of 273 APPENDIX J. CODE EXAMPLES

Listing J.3: Specification of a tank type

name — "tank"

type = "Unit"

preconditions = ["factory"|]
hitpoints = 500

attack _max = 10

attack_min = 5

ground _attack range = 6

movement speed = 2
sight _range = 7

actions = ["move", "attack", "stop"|
minerals = 400

gas = 0

built _by = "factory"

build _time = 0
supply cost = 2

Listing J.4: Specification of a command center type

name = "controlCenter"
type = "Building"
preconditions = []

hitpoints = 5000
attack_max = 0
attack_min = 0

ground _attack range = 0
movement speed = 2
sight range = 4

actions = ["train_ worker", "stop"]
minerals = 600

gas = 0

built by = "worker"

build_time = 300

Listing J.5: Specification of a barracks type

name = "barracks"

type = "Building"

preconditions = ["controlCenter"]
hitpoints = 1000

attack_max = 0

attack_min = 0

ground attack range = 0

movement _speed = 0

sight range = 4

actions = ["train marine", "stop"]
minerals = 400

gas = 0

built by = "worker"

build _time = 200

Listing J.6: Specification of a factory type

name = "factory"

© 00 N D oA W W

e e
B W N = O

© 00 N DOt As W N

W oW W W oW W oW N NN NN N NN N N R e e e e e e e e
LR N B = T T T~ S S N R X R R = R R R T I CI S =Y

APPENDIX J. CODE EXAMPLES

Page 259 of 273

type = "Building"

preconditions = ["controlCenter", "barracks"]
hitpoints = 1400

attack_max = 0

attack min = 0

ground _attack range = 0

movement_speed = 0

sight range = 4

actions = ["build tank", "stop"]
minerals = 400

gas = 0

built by = "worker"

build _time = 200

J.2 Known Strategies

Listing J.7: Code for defining strategies in the Known Strategies knowledge base

starting point = {

"name" : "Starting_point",

"precondition" : ""|

"follow up _strategies" : ["Fast_expand", "Marines",
"Fast_tech"],

"counters" : [],

"percentage use" : 100,

"time" : 0,

"purpose" : "step",

"expansions" : 0,

"controlCenter" : 1,

"barracks" : 0,

"factory" : 0,

"worker" : 6,

"marine" : 0,

"tank" : 0

}

fast _expand = {

"name" : "Fast_expand",
"precondition" : "Starting_point",
"follow up_strategies" : ["Mass_marines"]|,
"counters" : ["Marine_Rush"],
"percentage use" : 30,

"time" : 500,

"purpose" : "step",

"expansions" : 1,

"controlCenter" : 2,

"barracks" : 0,

"factory" : O,

"worker" : 12,

"marine" : 0,

"tank" : 0

}

mass_marines = {

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

Page 260 of 273 APPENDIX J. CODE EXAMPLES

"name" : "Mass_marines",
"precondition" : "Fast_expand",
"follow up _strategies" : [],
"counters" : ["Mixed"],
"percentage use" : 100,
"time" : 1000,

"purpose" : "attack",
"expansions" : 1,
"controlCenter" : 2,
"barracks" : 0,

"factory" : 0,

"worker" : 18,

"marine" : 30,

"tank" : 0

}

marines = {

"name" : "Marines",
"precondition" : "Starting_point",
"follow up strategies" : ["Mixed"],
"counters" : ["Fast_tech"],
"percentage use" : 40,

"time" : 500,

"purpose" : "attack",

"expansions" : 0,

"controlCenter" : 1,

"barracks" : 1,

"factory" : 0,

"worker" : 8,

"marine" : 10,

"tank" : 0

}

mixed = {

"name" : "Mixed",
"precondition" : "Marines",
"follow up strategies" : [],
"counters" : ["Mass_tanks"],
"percentage use" : 100,
"time" : 1000,

"expansions" : 0,

"purpose" : "attack",
"controlCenter" : 1,
"barracks" : 1,

"factory" : 1,

"worker" : 10,

"marine" : 15,

"tank" : 10

}

fast _tech = {

"name" : "Fast_tech",

"precondition" : "Starting_Point",
"follow up _ strategies" : ["Mass_tanks"],

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

APPENDIX J. CODE EXAMPLES

Page 261 of 273

"counters" : ["Fast_expand"],
"percentage use" : 30,
"time" : 500,
"purpose" : "step",
"expansions" : 0,
"controlCenter" : 1,
"barracks" : 1,
"factory" : 1,
"worker" : 8,
"marine" : 0,

"tank" : 5

}

mass_tanks = {

"name" : "Mass_tanks",
"precondition" : "Fast_tech",
"follow up _ strategies" : [],
"counters" : ["Mass_marines"]|,
"percentage use" : 100,
"time" : 1000,

"purpose" : "attack",
"expansions" : 0,
"controlCenter" : 1,
"barracks" : 1,

"factory" : 2,

"worker" : 12,

"marine" : 0,

"tank" : 20

}

strategies = [starting point, fast expand, marines, fast tech,

mass_marines, mixed, mass_ tanks]|

APPENDIX K. IMPORTANT FIGURES Page 263 of 273

Appendix K

Important Figures

APPENDIX K. IMPORTANT FIGURES

Page 264 of 273

0T '6 '8 'L

uolyesadoo)

abpamouy dep ‘0T

ABajelis umQ ‘6

uoljeuwlojul buipjing 3 1uUN '8 —
abpajmouy Awaug ‘7 0T 68 L1 0T'6'8'L'9'T
abpajmou)] swen-uj

Juswabeuely 931n0say Bbuip|ing aseg

abpa|mouy dij10ads swen -
SJ9pPJO plINg umouy| -
sa1bajelys umouy -
abpamouy adAjpwen) -
abpamouy Awsug -
abpamouy deyy -
abpajmou)| Jolid

_oH "6'8°'L'9'S YT

buluue|d d1ba3ei1s

A NM < n O

L9'€'T'T

Ssuol3entasqoQ Buljj@po Jusuoddp Buluoseay

0T '8°L'9

JuswabeuewoidIp

0T '6'8°L'9

Bbuluueld |eanoder

A human model for playing RTS games

Figure K.1

Page 265 of 273

IMPORTANT FIGURES

APPENDIX K.

$9|2e35qQ dIWeuAq "gz
abpajmouy dep diweuAq ‘vz
9bpa|mouy UoISSIN €T
ueld yaJeasay ‘zz
ueld 3un "12
ue|d bulp|ing ‘02 abpa|mouy |ed1deL ‘0T
abpa|mouy UMQ sweD-u| ‘6T saje|dwal bulp|ing aseq ‘6
9poN Abajesis |eoo QT 934l Abojouydal '8
9poN AbBajesis Juaun) /1 sadAl @2unosay "/
sa3e1s buip|ing ‘91 abpajmouy aazesadoo) ‘9
s93e3s HuN ST SIBPJIO PlING UMOU *G
suol1dy buip|ing paubissy ‘v1 sa|bajelis umouy ‘t
SUO0I1DY U paubissy ‘€T abpajmouy adAlawen ¢
abpajmouy Awaug swen-u| ‘Z1 abpajmouy Awaug 'z
|apo Juauoddo 'TT abpajmouy dep T
abpajmou) sawen-u| abpajmou) J0lid

ST 'PT'€T '6T ‘ST ‘€T ‘2T ‘0T

3INPON DAIDERY

Bujuueld o138l

_— v 'zz ‘Tz '0z 61 e '8 'L T | vzezerirvierertigos ezt ——————
2T 'TT'6T ‘8T ‘LT ‘9T ‘YT '€T '8 ST 'vT'6T ‘LT 'TT '8
juswabeuely 9d1n0say 409
suol3dy Indino Jauue|d uoidy Bujuueld c1693e13s J9324dJ93u] 3dad4ad woJy sydaduad
ST 'vT ‘0T '6T ‘8T LT ‘9T ‘PT'€ET 'ZT '6 '8 'T $Z'11'8'9'€'2'T ZI'IT'0T '8 'V
bujuoseay
Buip|ing aseq ’
snsigeqold uo3luboday uialied

IT'0T'6'9'v'€'C'T

Buluiea

The cognitive framework architecture

Figure K.2

Page 266 of 273 APPENDIX K. IMPORTANT FIGURES

Node 2 Node 5
Name: Fast Expand Name: Mass Marines
Counter: Marines Counter: Mixed
Workers: 12 Workers: 18
Marines: 0 1 Marines: 30
Tanks: 0 Tanks: 0
ControlCenter: 2 ControlCenter: 2
Barracks 0 Barracks 2
Factory: 0 Factory: 0
Time: 500 Time: 1500
Purpose: Step Purpose: Attack
0.2
Node 1 Node 3 Node 6
X) Name: Marines Name: Mixed
Name: Starting Point Counter: Fast Tech Counter: Mass Tanks
Workers: 6 Workers: 8 Workers: 10
Marines: 0 0.5 |Marines: 10 1 Marines: 15
Tanks: 0 Tanks: 0 Tanks: 10
ControlCenter: 1 ControlCenter: 1 ControlCenter: 1
Barracks 0 Barracks 1 Barracks 1
Féctory: 0 Factory: 0 Factory: 1
Time: 0 Time: 0 Time: 1500
Purpose: Step Purpose: Attack Purpose: Attack
0.3
Node 4 Node 7
Name: Fast Tech Name: Mass Tanks
Counter: Fast Expand Counter: Mass Marines
Workers: 8 Workers: 12
Marines: 0 1 Marines: 0
Tanks: 3 Tanks: 20
ControlCenter: 1 ControlCenter: 1
Barracks 1 Barracks 0
Factory: 1 Factory: 2
Time: 500 Time: 1500
Purpose: Step Purpose: Attack

Figure K.3: The strategy tree used for testing the Al

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 267 of 273

Appendix L

Al Development in Industry

L.1 RTS Companies Contacted

The following will list the companies we have attempted to contact, along
with the RTS games they have developed:

Digital Realily: War Front: Turning Point
(http://www.digitalreality.hu/ - info@digitalreality.hu)

Stormregion: Codename: Panzers Phase One + Rush for Berlin
(http://www.stormregion.com/ - info@stormregion.com)

Big Huge Games: Rise of Nations
(http://www.bighugegames.com/ - info@bighugegames.com)

Relic: Homeworld 142
(http://www.relic.com/ - amy.farris@vugames.com)

Battlefront: Histway: Les Grognards
(http://www.battlefront.com/ - support@battlefront.com)

Mad Doc Software: Empire Earh T + II
(http://www.maddocsoftware.com/ - sotoole@maddocsoftware.com)

Inhuman Games: Trash
(http://www.inhumangames.com/ - info@inhumangames.com)

G2games: Alliance: Future Combat
(http://www.g2games.com/ - http://www.g2games.com /corporate.shtml)

Creative Assembly: Total War series
(http://www.creative-assembly.co.uk/ - info@creative-assembly.co.uk)

Evolution Vault: Galactic Dream
(http://www.evolutionvault.net/ - contact@evolutionvault.net)

Page 268 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRY

Reality Pump: Earth 2160
(http://www.realitypump.pl/ - office@realitypump.pl)

Ensemble Studios: Age of Empires series
(http://www.ensemblestudios.com/
- webmaster@ensemblestudios.com)

Haemimont Games: Rising Kingdoms
(http://www.haemimontgames.com/ - info@haemimontgames.com)

Pyro Studios: Imperial Glory
(http://www.pyrostudios.com/ - pyrostudios@pyrostudios.com)

Cat Daddy Games: American Civil War: Gettysburg + Medievel Con-
quest
(http://www.catdaddygames.com/ - catdaddy@catdaddy.com)

GSC Game World: Cossacks
(http://www.gsc-game.com/ - anton@gsc-game.kiev.ua)

Enemy Technology: I of the Enemy
(http://www.enemytechnology.com/ - info@enemytechnology.com)

K-D Lab: Maelstrom
(http://www.kdlab.com/eng/ - contacts@kdlab.com)

Magictech: Takedo 142
(http://www.ezgame.com/ - magictect@ezgame.com)

Oddlabs: Tribal Trouble
(http://www.oddlabs.com/ - mail@oddlabs.com)

Black Hole Entertainment: Armies of Exigo
(http://www.blackholegames.com/ - info@blackholegames.com)

Fireglow Games: Sudden Strike
(http://www fireglowgames.com/ - contact@fireglowgames.com)

Related Design: Castle Strike
(http://www.related-designs.de/ - info@related-designs.de)

Timegate Studios: Kohan
(http://www.timegate.com/ - inf-05@Qtimegate.com)

Massive Entertainment: Ground Control I + II
(http://www.massive.se/ - info@massive.se)

Primal Software: Besiger
(http://www.primal-soft.com/en/ - info@primal-soft.com)

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 269 of 273

Infinite Interactive: Warlords Battlecry 3 + 4
(http://www.infinite-interactive.com/
- contact@infinite-interactive.com)

Independent Arts: Against Rome
(http://www.independent-arts-software.de/
- info@independent-arts-software.de)

Legend Studios: War Times
(http://www.lsgames.com/ - info@lsgames.com)

Lesta Studio: WWI: The Great War
(http://www.lesta.ru/ - serg@lesta.ru)

THQ: Supreme Commander + Warhammer: Dawn of Way
(http://www.thg-games.com/ - info.thq.com /support/generalsupport.asp)

CDV Software: Hidden Stroke + Cossacks 2: Napoleon Wars
(http://www.cdv.de/ - mail@cdv.de)

Strategy First: Nexagon: Deathmatch
(http://www.strategyfirst.com/ - info@strategyfirst.com)

Blizzard Entertainment: Starcraft and Warcraft series
(http://www.blizzard.com/ - support@blizzard.com)

The Bitmap Brothers: World War II: Frontline
(http://www.bitmap-brothers.co.uk/
- contact@bitmap-brothers.co.uk)

Rival Interactive: Real War: Roque States
(http://www.real-war.com/ - Jim.Omer@Rivallnteractive.com)

Zuxxex: World War 1I: Panzer Claws
(http://www.zuxxez.com/ - info@zuxxez.com)

Pandemic Studios: Army Men
(http://www.pandemicstudios.com/ - info@pandemicstudios.com)

Object Software: Dragon Throne: Battle of Red Cliffs
(http://eng.objectgames.com/ - info@objectsw.com)

Electronic Arts LA: Command & Conquer Series
(http://westwood.ea.com/ - info@ea.com)

Page 270 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRY

L.2 Mail to RTS Game Development Companies

Hi

In relation to our master-thesis developed at the department of computer
science, Aalborg University we would like your help in answering a few ques-
tions concerning development of Al in the game industry. If this request
was sent to the wrong department, please forward it to a person who can
help us. We are writing this to your company, because you have a history of
developing RTS games, which is the focus of our master-thesis.

We are currently developing an Al framework for RTS games based on
the decision process of a human player. Knowing that different RTS games
have different focus in game style, the modular design allows the developer
to focus on the areas that are important for that particular genre. Less
important modules can be left handled by standard implementations in the
framework. We believe that using this framework for AI development will
have the following effects:

e Structured overview of the Al development process.

Significantly improve the Al.

Reduced development cost.

Reduced development time.

Workload shifted towards game designers instead of programmers.

We hope that you will take a few minutes to answer the following ques-
tions. Please indicate how you base your answers/estimates - e.g. on your
own experience or on the current practice in your company/development
team.

1. How much time would you estimate is currently used on developing Al
in RTS games - e.g. how many man-hours are used?

2. Who develops the AI? Is it programmers or game designers?
3. Is the AI created from scratch or are Al libraries used?

4. How connected are the game engine and the AI? Is it completely sep-
arated or closely integrated in the engine?

5. Do you think that our idea/product of an generic RTS AI framework
could be of use in the industry? Why/why not?

Your answers will be used to get insight into the process and use of tools
in Al development.

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 271 of 273

L.3 Answers from RTS Game Development Com-
panies

All answers corresponds to the questions in Appendix L.2.

L.3.1 Oddlabs

Answers from Oddslabs were in danish:

1. Jeg ved ikke s& meget om andre spils A, men ADl’en til TT er en meget
simpel state-machine der pa yderst naiv vis tager stilling fra tur til tur.
Den har ikke taget meget mere end 3 uger at lave.

2. Den er udviklet af en programmgr.
3. Helt fra bunden.
4. ATlen er meget steerk bundet til TT.

5. Jeg kan godt se potentiale i at have et generisk RT'S Al framework, men
jeg er ikke sikker pa det vil virke i praksis. Det skal virkelig veere let
at ga til, og give nogle meget store fordele i form af kompliceret logik
og lign., hvis man skal bruge tid pa at integrere et tredjeparts system
ind i sit spil, frem for selv at bygge noget ind, som er skraedersyet til
situationen. I vores tilfeelde havde det maske vaeret smart da vi var
naet til et punkt i udviklingen hvor vi matte "ngjes" med en primitiv
Al fordi der ikke var tid til at gd i dybden med udviklingen. Til
gengald tvivler jeg pa vi kunne have gjort det lige sa hurtigt hvis vi
skulle seette os ind i et generisk system der samtidig skulle bankes ind
i den struktur vi havde i spillet.

Med andre ord, sa kan jeg nok ikke sige om det er en god ide for jeg
har set produktet.

L.3.2 Infinite Interactive

1. About 12 man-months in all of our RTS games so far.

2. Programmers develop an Al framework, based on a movement/pathing
system. Then they work WITH the game designers to build and refine
an AI. As we use more and more scripting (LUA is our language of
choice), more and more Al is being by our designers rather than the
programiners.

3. We have our own movement/pathing libraries on which everything is
built. Everything apart from the movement and pathing is created
from scratch on every game.

Page 272 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRY

4. They are kept completely seperate. However, various functions of the
engine have been added to help with Al such as line-of-sight calcula-
tions.

5. Possible, but difficult to apply to *every* RTS game, because of the
variations on design in each game. But I think that a limited framework
would be useful, as long as all of the items were quite independent and
quite easily extended: Some of the areas we break our AT’s down into
are:

o Movement

e Pathing

e Formations

e Influence maps (e.g. for detection of danger)

e Threat assessment

e Actions/orders

e A state machine of actions of individual actors
e Grouping mechanisms

e A method for tracking and remembering enemies
e Building and production hierarchies

e Resource usage and needs

e Managing and prioritizing objectives

If an Al framework consisted of base classes for dealing with things
like this, then it would indeed save time.

L.3.3 Inhuman Games

First off I would define classify Al into two groups: low level and high level.
Low level AT mostly includes pathfinding, target selection, and misc actions
(spell casting, loading/unloading resources, etc). High level Al includes de-
ciding what to build and where to send your forces.

1. At least two man years. About half the time for low-level Al, and
another half for high-level stuff.

The hardest part of the low-level Al is probably pathfinding. Pathfind-
ing itself can take a long time to develop, especially if you are trying
to make good pathfinding that scales well.

2. Programmers tend to do most of the AI development. Increasingly
game designers with scripting ability are developing Al. Game design-
ers tend to only control very high level aspects of Al

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 273 of 273

3. I believe they are usually created from stratch.

4. This probably varies greatly between projects. In the RTS, Trash, the
high level AI and pathfinding are well seperated. Target selection is
not seperated as well as it could be.

5. If your AT is the great, I think it could be sold. It would have to be
extremely good and easy to integrate into any RTS game engine. If
this was the case, perhaps you could charge $100k USD for it—if sold
to big AAA studios.

L.3.4 Fireglow Games

1. It’s difficult to make a precise estimation, because vagueness of frames
of which part of the game engine is Al and which is not. About 5000
man-hours.

2. Both programmers and designers do, and even if consider a Virtual
Machine to be not a part of the Al engine, there’s a plenty of work
done by programmers.

3. Partially our AI engine is based on the third-party Virtual Ma-
chine/Script System, but most part is written in-house.

4. Our Al engine consists of several modules, some of them are external,
and some are closely tied with the game and gameplay.

5. As always, it would have some use. How much? It depens on the
framefork’s quality and its price. If the framework will contain neces-
sary functions (most demanded are probably pathfinding and scripting
language with virtual machine), and it is affordable, it will be used by
developes.

