
Group d633a
An AI Framework forReal-Time StrategyGamesDAT6 REPORT6th of June 20061 void rts_game_ai ()2 {3 heat_a_bit_before_game_starts (r e s ou r e s += 10000000 , hugebase++);4 send_multiple_weak_and_pointless_attaks () ;5 at_like_youre_atually_gathering_resoures_not_heating_to_get_them () ;6 heat_some_more () ;7 lose_building_to_enemy (OH_NOES) ;8 heat_more (CHEAT_INFINITE_RESOURCES | CHEAT_FAST_BUILD) ;910 while (s t i l l _ a l i v e () == true)11 {12 send_multiple_weak_units_to_defend () ;13 }14 d i e () ;15 }Department of Computer SieneAalborg UniversityFredrik Bajersvej 7EDK�9220 AalborgDENMARK

Faulty of Engineering and SieneAalborg UniversityDepartment of Computer SieneTITLE:An AI Framework for Real-TimeStrategy GamesPROJECT PERIOD:Dat6,February 1st 2006 �June 6th 2006PROJECT GROUP:Group d633aGROUP MEMBERS:Kasper FrederiksenKasper G. KristensenAnders LauritsenSUPERVISOR:Thomas VestdamNUMBER OF COPIES: 7REPORT PAGES: 179APPENDIX PAGES: 108TOTAL PAGES: 287

SYNOPSIS:Reently omputer gamers have started tofous more and more on the gameplay as-pet of omputer games. This has led to aninreased interest in the multiplayer aspetof games as they present a hallenge thatthe AI in the single player part annot. Sofar the single player AIs have been easyto beat, beause they lak dynami apa-bilities. This projet fouses on de�ningan AI framework arhiteture for the spe-i� genre of Real-Time Strategy games,whih will help to develop AIs with morehuman-like apabilities and behaviour inthis genre. We present a framework basedon a model of how a player plays Real-Time Strategy games. This framework isthen tested by onneting it to a Game De-velopment Framework. We show that theframework an be on�gured by both pro-grammers and non-programmers, and thatthe framework an be used to provide om-plete AI solutions within the main streamRTS games. Preliminary results show thatthe ideas behind the framework design anda new data struture, introdued in theprojet for handling strategies, are verypromising.

vPrefaeThis report is the result of the master thesis developed by group d633a(E4-215) at the Department of Computer Siene, Aalborg University. Theprojet was developed under the supervision of Thomas Vestdam.Prior to this projet, analysis and preliminary designs were arried out inour pre-master thesis[FKL05℄. This has the onsequene that the followinghapters of the report are partly based on the pre-master thesis: Introdu-tion (Chapter 1), Motivation (Chapter 2), Human Model (Chapter 3), andFramework Design Tehniques (Chapter 5).Readers not familiar with Real-Time Strategy games and the terminologyused in these are advised to read our introdution to this genre in Setion1.1 and onsult the list of terms and expressions introdued in Appendix A.In addition to the terms and expressions, the appendix also ontainsa desription and the results from the test arried out in the pre-masterthesis[FKL05℄, a detailed desription of the arhiteture of eah module inthe framework, the questionnaire sent to the industry along with the an-swers that were reeived, and important tables and models. The appendixis separate to the report.We would also like to thank Oddlabs, In�nite Interative, InhumanGames and Fireglow Games for their response to our market analysis.The ode for the prototype implementation an be found at:http://www.s.aau.dk/�duk/rtsaif/
Aalborg UniversityJune 6th 2006

Kasper Frederiksen(maross�s.aau.dk) Kasper G. Kristensen(gib�s.aau.dk)Anders Lauritsen(duk�s.aau.dk)

CONTENTS Page vii of 273
Contents
Contents vii1 Introdution 11.1 Real-Time Strategy Games 3I Problem Area and Human Model 72 Motivation 92.1 Problem . 102.1.1 Player Perspetive . 102.1.2 Produer Perspetive 112.2 Problem Area . 142.2.1 Player Perspetive . 142.2.2 Produer Perspetive 162.3 Current Solutions . 182.3.1 Player Perspetive . 182.3.2 Produer Perspetive 192.4 New Solution . 212.4.1 Player Perspetive . 212.4.2 Produer Perspetive 222.5 Disussion . 233 Human Model 253.1 Prior Knowledge . 263.2 In-Game Knowledge . 273.3 RTS Tasks . 283.4 Human Model . 313.5 Summary . 36II Framework Design 374 Introdution 39

Page viii of 273 CONTENTS4.1 Design Goals . 395 Design Tehniques 415.1 Frameworks . 415.1.1 Reuse of Software . 415.1.2 AI Frameworks . 425.2 Event Based Systems . 455.2.1 Framework Control . 455.2.2 Event Based Systems in Frameworks 455.3 Sripting Languages . 475.4 RTS Spei� Conepts . 485.4.1 Strategy Trees . 485.4.2 Path�nding . 525.4.3 Tatis . 575.4.4 Base Building Templates 615.4.5 Summary . 636 Framework Design 656.1 Framework Arhiteture . 666.1.1 Cognitive Arhiteture 666.1.2 Modules . 676.2 Representation of Knowledge 716.2.1 Division of Knowledge Bases 716.2.2 Data Representation 736.3 Framework Versatility . 756.4 Framework Control . 766.4.1 Using the Design Tehniques 776.4.2 Event System . 776.4.3 Construting the Arhiteture 776.4.4 Game State Interfae 796.5 Summary . 80III Proof of Conept 817 Implementation 837.1 Proof of Conept . 837.2 Implementation Spei� Choies 857.2.1 Game Development Framework 867.2.2 Test Game . 867.2.3 Sripting Language . 877.3 Trade-o�s between Usability and Performane 877.3.1 Sripted Parts . 887.3.2 Con�guring the Framework 88

CONTENTS Page ix of 2737.3.3 Sripting Limitations 897.4 Implementation Spei� Details 897.4.1 GDF Communiation Arhiteture 897.4.2 GDF Connetion . 907.5 Implementation Problems . 917.5.1 GDF . 917.5.2 Stability . 927.5.3 Path�nder . 937.5.4 AI Framework . 937.5.5 Implementation Status 947.5.6 Conlusion . 948 Evaluation 958.1 Con�gurability . 968.1.1 Con�guration of Tehnology Tree 968.1.2 Con�guration of Strategy Trees 988.1.3 Con�guration of Framework Modules 998.1.4 Con�guration of AIs in Di�erent RTS Genres 1018.1.5 Con�guration of Interation with GDF 1028.2 Versatility . 1058.2.1 Framework Versatility 1058.2.2 AI Versatility . 1068.3 Extendibility . 1098.3.1 Methods and Module Extensions 1098.3.2 Adding New Modules 1118.3.3 Framework Limitations 1138.4 Performane Testing . 1138.4.1 Performane Test Constrution 1148.4.2 Performane Test Results 1158.4.3 Performane Test Disussion 1188.4.4 Salability . 1198.5 AI Improvements . 1208.5.1 Prototype Implementation 1208.5.2 Complete Implementation 1248.6 RTS Spei� Conepts . 1268.6.1 Strategy Trees . 1268.6.2 Path�nding . 1288.7 Re�etions . 1318.7.1 Design Re�etion . 1318.7.2 Development Model Re�etion 1328.8 Summary . 134

Page x of 273 CONTENTS9 Disussion 1379.1 Demand in Industry . 1379.1.1 Time Spent on AI Development 1389.1.2 Developers of AI . 1399.1.3 AI Development Tools 1399.1.4 AI Integration with GDF 1409.1.5 Generi RTS AI Framework 1409.1.6 Summary . 1419.2 Conformane to Industry Demands 1419.3 RTS Game Market Analysis 1429.4 Other Uses . 1439.5 Further Work . 1439.5.1 Complete Implementation 1449.5.2 AI Frameworks in General 14610 Conlusion 14911 Resume 153Bibliography 157IV Appendix 167A Terms and Expressions 169A.1 General Conepts . 169A.2 Buildings . 171A.3 Units . 172A.4 Speial Abilities . 173A.5 Strategies . 174B Module Design 177B.1 Perept Interpreter . 177B.2 Reative Module . 178B.2.1 Responsibilities . 178B.2.2 Struture Overview . 179B.2.3 Update DotT . 179B.2.4 Change Building State 180B.2.5 Change Unit State . 181B.2.6 Handle Native AI Event 182B.3 Pattern Reognition . 183B.3.1 Responsibilities . 183B.3.2 Struture Overview . 184B.3.3 Reognise Signi�ant Game States 184B.3.4 Reognise Strategies 185

CONTENTS Page xi of 273B.3.5 Reognise Tatis . 186B.3.6 Update Opponent Model 187B.3.7 New Tatis . 188B.4 Probabilisti Reasoning . 189B.4.1 Responsibilities . 189B.4.2 Struture Overview . 190B.4.3 Find Potential Strategies 190B.4.4 Update Opponent Model 191B.4.5 Find Potential Follow-up Strategies 191B.4.6 Determine Important Variables 192B.5 Strategi Planning . 193B.5.1 Responsibilities . 193B.5.2 Struture Overview . 194B.5.3 Su�ient Enemy Knowledge 194B.5.4 Souting . 195B.5.5 Change Current Strategy 196B.5.6 Find Counter Perentages 197B.5.7 Find New Strategy . 198B.5.8 Expands . 198B.5.9 Evaluation . 199B.5.10 States . 200B.6 Tatial Planning . 204B.6.1 Responsibilities . 204B.6.2 Struture Overview . 204B.6.3 Evaluation . 205B.6.4 Terrain Analyser . 205B.6.5 Formation . 206B.6.6 Terrain and Unit Analyser 207B.6.7 Unit Deployment . 208B.6.8 Support . 209B.6.9 Targeter . 209B.6.10 Path Planner . 210B.7 Resoure Manager . 211B.7.1 Responsibilities . 211B.7.2 Struture Overview . 212B.7.3 Determine Resoure Requirements 212B.7.4 Resoure Analyser . 213B.7.5 Worker Planner . 213B.7.6 Optimise Resoure Gathering 214B.8 Base Building . 215B.8.1 Responsibilities . 216B.8.2 Struture Overview . 216B.8.3 Terrain and Resoure Analyser 216B.8.4 Building Manager . 217

Page xii of 273 CONTENTSB.8.5 Building Planner . 217B.8.6 Repair Manager . 218B.9 Learning . 218B.9.1 Responsibilities . 218B.9.2 Struture Overview . 219B.9.3 Evaluate and Revise Known Strategies 220B.9.4 Evaluate and Revise Known Tatis 221B.9.5 Evaluate and Revise Known BBT 222B.9.6 Learn New Strategies 223B.9.7 Learn New Tatis . 223B.9.8 Learn New BBT . 224B.9.9 Update Enemy Knowledge 225B.10 Ation Planner . 226B.10.1 Responsibilities . 226B.10.2 Struture Overview . 227B.10.3 Unit Planner . 227B.10.4 Researh Planner . 227B.10.5 Ation Sheduler . 228B.10.6 Interfae GDF . 228C Knowledge Bases 231C.1 Prior Knowledge Bases . 231C.2 In-Game Knowledge Bases . 232D Test Model 235D.1 Strategi Planning . 235D.2 Tatial Planning . 236D.3 Miromanagement . 237D.4 Resoure Management . 238D.5 Base Building . 238D.6 Souting . 239D.7 Learning . 240D.8 Cooperation . 240E Test Table A 241F Test Table B 243G Game Logs 245H Performane Log 251I Path�nding Tests 253

CONTENTS Page xiii of 273J Code Examples 257J.1 Unit and Building Spei�ations 257J.2 Known Strategies . 259K Important Figures 263L AI Development in Industry 267L.1 RTS Companies Contated 267L.2 Mail to RTS Game Development Companies 270L.3 Answers from RTS Game Development Companies 271L.3.1 Oddlabs . 271L.3.2 In�nite Interative . 271L.3.3 Inhuman Games . 272L.3.4 Fireglow Games . 273

CHAPTER 1. INTRODUCTION Page 1 of 273
Chapter 1IntrodutionArti�ial Intelligene (AI) has for a long time been a disipline in om-puter siene, and has been found very useful in modern omputer games.Even though a lot of AI methods are used in the development of AIs inomputer games, the AI is still far behind a lot of the other developmentin the omputer game industry, like the reation of more and more real-isti graphis[Bur04℄. When playing omputer games, the player wants tobe hallenged, and she will not beome hallenged, if the AI she is playingagainst is too easy to beat [SZ04℄. There exist a lot of di�erent genres ofomputer games, and onerning the development of AI, Real-Time Strategy(RTS) games are one of the more hallenging [BF04b℄. This is beause inRTS games there are hundreds or even thousands of units that have to beontrolled in a battle against an opponent. At the same time, there is a well-de�ned and ontrolled environment that gives rih possibilities to performtests for new AI methods. RTS AIs also have their appliation in the realworld. High-performane simulators are needed for training military person-nel [BF04a℄. One example is the SOAR projet [Soa℄ that was developed forsimulators with the funtion of training pilots. The AI was responsible ofproviding intelligent behaviour for enemy pilots. [LL01℄In the omputer game industry, the prodution of games is under severetime pressure, and there are demands for ontinued tehnologial progress.This time pressure in the prodution of games have meant that the omputergame industry has taken the onept of frameworks into use. Some ompa-nies exist solely for reating Game Development Frameworks (GDF). Theseframeworks are often alled game engines in the omputer game industry,whih refers to the inversion of ontrol that frameworks provide.The game development industry have started to ask themselves, whatwould happen if the AI ould play like a human? [LL01℄. Many games haveeven started to promote themselves based on the level of their AI: Blak &White (2001) [Ban℄, Half-life (1998) [Hal℄ and Empire Earth (2001) [EE1℄,and the industry has started hiring AI researhers to help develop their

Page 2 of 273 CHAPTER 1. INTRODUCTIONgames. If this development ontinues, the researh done in the omputergame industry will overtake that of the aademi world [LL01℄.This development has, however, not gone unnotied in the aademi so-iety. Many researhers have also notied that omputer games present aprime environment, in whih to do human-level AI researh:Not only is the game development at the forefront of PC-basedvisualisation, it is also a leading developer of applied arti�ialintelligene, overall interfae design, persistent worlds, networkinteration, and other building bloks needed for next-generationmodels and simulations. -Ben Sawyer1 [Saw02℄Games provide high variability and salability for problem de�-nitions, are proessed in a restrited domain and the results aregenerally easy to evaluate. -Alexander Nareyek2 [Nar02℄In ontrast to modelling behaviour in the real world, there are(at least theoretially) two great advantages enjoyed by a simu-lation/game approah: i) full ontrol of the game universe in-luding full observability of the state. ii) reproduibility of exper-imental settings and results. -Thore Graepel, Ralf Herbrih andJulian Gold3 [GHG04℄These are just some of the arguments that researhers have presented infavour of using omputer games for AI researh. They are, however, stillmet with skeptiism from a large part of the aademi ommunity, beauseomputer games (and thereby work related to them) are still looked upon asnot being serious work. However, beause of all the arguments just presented,researh in relation to omputer games is still on the advane.We propose that sine the tendeny for omputer gamers is to seek bettergameplay, and beause the fous on graphis is on the deline, the time isripe to integrate more advaned AI methods into omputer games. It is nowpossible to use a muh higher perentage of the CPU time for this purpose, asthe graphis ard is taking over more and more work, and beause the CPUin general is beoming fast enough to handle both areas without restritingany funtionality.We have examined the work done in the areas of sienti� researh withinRTS games and AIs and onluded that there is no diretly related work.1Ben Sawyer is the o-founder of Digitalmill [digb℄ and author of several books andartiles about interative game development.2Alexander Nareyek is CEO, CTO and o-founder of Digital Drama Studios [diga℄,responsible for Arti�ial Intelligene matters within the International Game DevelopersAssoiation and hairperson of the IGDA's Arti�ial Intelligene Interfae Standards Com-mittee.3Graepel, Herbrih and Gold are all researhers at Mirosoft Researh [msr℄.

CHAPTER 1. INTRODUCTION Page 3 of 273This report is the ontinued work of our pre-master thesis [FKL05℄, andovers the omplete design of an AI framework for RTS games, the implemen-tation and evaluation of a prototype of this AI framework. Our pre-masterthesis presented a human model whih desribes the tasks a human player isfaed with when playing an RTS game, and the relationship between thesetasks. It was disovered that RTS games ould be divided into several genres,and that eah genre were fousing on di�erent areas within their AI. Thisre�eted what was the most important part of the gameplay. The fousesthat were found ould be translated into di�erent parts of the human model.This indiated that the human model ould be used as a general foundationfor an AI tool, whih is able to handle the things that is required to makea human-like AI to an RTS game. Di�erent useful AI methods that ouldbe used in RTS games were also found and disussed. Furthermore, thesemethods were disussed in relation to the human model as well as their usagein eah of the di�erent tasks in the human model.This raised the interesting question of whether it is possible to makethis human model into a general AI tool, in whih a developer is able toreate AIs to all the identi�ed genres of RTS games that were found in thepre-master thesis.First we will introdue the reader to the problem through the Motiva-tion in Chapter 2. Next the human model on whih the framework is builtis presented in Chapter 3. The design goals for the framework is introduedin Chapter 4. Chapter 5 will present the design tehniques used in theframework and Chapter 6 presents the framework design itself. The imple-mentation is presented in Chapter 7, followed by an evaluation in Chapter 8and a disussion of the results in Chapter 9. Finally in Chapter 10 we willonlude on the projet.1.1 Real-Time Strategy GamesThe genre alled Real-Time Strategy (RTS) games refers to a very spei�genre, and not all strategy games that takes plae in a real-time environmentfall into this ategory. The term real-time refers to the fat that RTS gamesprogresses ontinuous rather than turn-by-turn, while strategy refers to thefat that a player is in ontrol of high level war planning. RTS games areharaterised by being games, where the player looks down on the map fromabove, and gives orders to units and buildings on the map. Moreover, theplayer is responsible for ontrolling resoure gathering, base building, ombatand tehnology advanements. These are entral gameplay elements of anyRTS game. The RTS genre di�ers from the God Game genre [god℄ by notallowing the player to interat diretly with the environment. The RTSgenre was de�ned by the �rst game of this type, Dune II (1992) [dun℄ seen inFigure 1.1. The game basially onsisted of the player having harvesters to

Page 4 of 273 CHAPTER 1. INTRODUCTION

Figure 1.1: Sreenshot from Dune IIharvest the resoure in the game, and then using these resoures to build newbuildings or units. The units should then be used to attak the enemy andthereby obtain the goal of any RTS game - to destroy the enemy. Thisgameplay formula has sine been followed by numerous RTS games. Ingeneral, any RTS game onsists of the following three states [rts℄:
• The player must build up her base and her fores.
• The player must attempt to loate and seure resoures, to provide asolid eonomy.
• The player must attak the enemy, and thereby deprive her of resouresor destroy her base infrastruture.RTS games have sine Dune II used all kinds of units, buildings andweapons in their games, but the basi gameplay has stayed the same. Re-ent RTS games have added extra features that makes the game stand outfrom the rest and inrease gameplay. Lord of the Rings: Battle for Middle-Earth (2004) [lot℄ has for instane simpli�ed resoure gathering by not usingworkers, but instead using buildings that automatially harvest a ertainnumber of resoures. This does not remove resoure management from thegame, as the player's resoure gathering still depends on the number of re-soure gathering buildings she has, but it does simplify it, ompared to otherRTS games. Another example is Warraft III (2002) [warb℄, whih addedheroes to the game and added NPC haraters spread around the map. The

CHAPTER 1. INTRODUCTION Page 5 of 273heroes ould gain experiene points by killing the NPCs and thereby in-rease their strength. Other popular games within the genre of RTS gamesinludes Command & Conquer (1996) [om℄, Starraft (1998) [sta℄ and Ageof Empires (1997) [age℄. For further information about the RTS genre, wereommend the reader to read the wikipedia de�nition [rts℄ or Appendix Afor a list of terms and expressions used in the genre.

Page 7 of 273

Part IProblem Area and HumanModel

CHAPTER 2. MOTIVATION Page 9 of 273
Chapter 2MotivationThe purpose of this hapter is to introdue the reader to the problem. Inorder for the reader to get a good insight into the problem, it will be intro-dued gradually, and the reader will be able to follow the progress from twopoints of view: The player's perspetive (the user of omputer games) andthe produer's perspetive (the software house that developed the game).Following this, this hapter will onsist of four setions:Problem: This setion will give the reader the �rst insight into why thereis a problem in the �rst plae.Problem Area: This setion will get loser to spei� problems and brie�yexplain what ause them.Current Solutions: This setion explains what has been, and what is ur-rently being done by both the players and the produers to handle theproblem.New Solution: This setion will outline the solution, on whih this projetis based.After reading this hapter the reader should have a thorough understand-ing of the problem, the problem area and the idea that forms the base ofthis projet.This hapter is based on a series of tests of AIs' apabilities in a numberof ommerial RTS games and a number of artiles. The tests were madethrough our pre-master thesis [FKL05℄. These an be found in AppendixD and E.1. The artiles are on the subjet of omputer games and AIdevelopment: Buro et al. are doing work on using RTS games as a test-bedfor real-time researh [BF04b℄, Lent et al. present a number of arguments forwhy omputer games are ideal for AI researh [LL01℄, Nareyek also workswith how games an be used for AI researh [Nar02℄, and �nally Sawyerpresents work on alternative appliations of omputer games and tehniquesfrom omputer games [Saw02℄ .

Page 10 of 273 CHAPTER 2. MOTIVATION2.1 ProblemAs mentioned earlier this setion will introdue the reader to why there is aproblem in the �rst plae. The ontext will be omputer games in generaland the reader will be presented with fats partly taken from history andpartly from popular games. In this and all the following setions, the player'sperspetive will be presented �rst and then the produer's perspetive.2.1.1 Player PerspetiveWhen a player deides to play a game, it is mostly beause she wants to beentertained. The entertainment itself is the result of several fators. Amongthe most important of these are gameplay, ommunity and story telling.GameplayGameplay is the oldest of the mentioned fators. In fat the �rst omputergames had little more than gameplay. Pong (1972) [pon℄ just onsisted oftwo movable bars plaed at eah their side of the sreen and a dot that movedbetween the sides. As everything else has developed, so too has omputergames. Most games have for instane beome more omplex and graphishave beome almost real, the gameplay however still has to ful�l a few simplerules [SZ04℄:1. The player has to make deisions.2. The deisions have to have onsequenes.3. The game itself has to present hallenges to the player.4. There must be a real danger of losing the game.5. If the player plays a perfet game she must win.This means that in order to have good gameplay, games have to at leastposses these harateristis. Early games like Pong were essentially multi-player games as one player played against another player. It is muh easierto ensure that the gameplay riteria are met, when the greatest part of thebehaviour in the environment is due to player ations. This has the diretonsequene that it is muh harder to ensure good gameplay in a single playergame, as more behaviour is ontrolled by the game itself - the AI. Early sin-gle player games like Paman (1981) [pa℄ were relatively easy to ope with,as the game had a few simple rules, but as games beome more omplex sodo the behaviours needed for an AI that will ensure a good gameplay. [SZ04℄

CHAPTER 2. MOTIVATION Page 11 of 273MultiplayerMaking an AI that ensures good gameplay is extremely hard. After the teh-nology allowed people to link omputers together in a network the playershave been playing games that supported this. Games that were not able topresent a good gameplay in single player ould suddenly bene�t from themultiplayer side of the game. Some games even went as far as to neglet-ing to implement a single player part and solely fousing on the multiplayerpart. First person shooters like Quake (1996) [quaa℄ and Half-Life: Counter-Strike (2000) [ou℄ are designed towards a gameplay building on player ver-sus player. The single player part in the Quake series is thus a simulationof player versus player where the adversaries are "bots"1 ontrolled by anAI. Most RTS games also have an extensive multiplayer part. They have,however, not abandoned the single player part. This is mostly based on astory line where the AI behaviour an be sripted to a degree that ensuresa relatively reasonable gameplay. The extreme is without a doubt the roleplaying game genre, where the advane of the Internet has meant an almostrede�nition of the genre. Massive Multiplayer Online Role Playing Games(MMORPG) are essentially ommunities of players within the game itself.The entire gameplay, and to a ertain degree the rules themselves, are de�nedby the players.In short, if the players do not �nd a su�ient gameplay in the singleplayer part of a game, they will try to �nd it through playing against otherplayers in multiplayer games. The player versus player interation againmeans that the bulk of the behaviour in the game is not ontrolled by an AI.Single PlayerLooking loser at the RTS genre, the single player parts an mostly be las-si�ed as being one of two types: They are either based on a Si-Fi/Fantasystory or a historial event/ivilisation. The story is told with the playertaking part in the story itself by arrying out missions with objetives thatsupport the story line. Supported by ut senes, the player will experiene alimited interative story through the game. Blizzard Entertainment [bli℄, forinstane, is renowned for their extremely well arried out stories that haveeven resulted in a number of books based on them and a movie is also onthe way. This means that the story itself should not be underestimated.2.1.2 Produer PerspetiveThe main onern of the produer is to make a satisfatory produt - aprodut that will be a suess. To be a suess the produt must sell and inorder to sell it must possess a series of qualities that the player values. This1AI ontrolled adversaries

Page 12 of 273 CHAPTER 2. MOTIVATIONan be everything from a good sound trak to being based on a known storyor �gure, but mostly it is fators like graphis and gameplay that are mostimportant.Satisfatory AIThe �rst thing that one has to realise is that building an AI to anythingbut an extremely simple game, is a omplex undertaking. In light of thedevelopment mentioned in Setion 2.1.1, produers have to ask themselvesthe question: How high do we prioritise single player? In fat what is asatisfatory AI? The produer will have to onsider how bad the AI an be(in reality the worse the AI, the faster and heaper the development) andstill entertain the player. One of the tools that have been utilised time upontime in RTS games, is that instead of having a omplex AI, a simple AI isomplemented by "unfair" advantages suh as full map visibility, unlimitedresoures, or superior fores. While this indeed an improve the overallapabilities of the AI as an adversary, the heap triks are easily detetedand may result in the player losing the sense of ontest with the AI, or evenexploit it. One suh exploit an be seen in Command & Conquer, wherethe player, when playing against several AIs, ould destroy all buildingsbelonging to an enemy exept the resoure tanks. She then had aess tounlimited resoures, as she ould steal it from the AI that had an unlimitedsupply. Everything onsidered, making even a simple AI work well is verydi�ult. The smallest mistake at the wrong time or plae an make the AIseem very stupid.Lately there has been a tendeny in the game development industry to tryto shift the workload from expensive programmers to heaper game designers.Blizzard has, for instane, game designers model maps to Warraft III usingthe world editor made for this purpose.A satisfatory AI is relative to the genre and the situation to whih theAI is meant for.Hardware DevelopmentMoore's law states that the number of transistors per square inh on inte-grated iruits will roughly double every year (in reality every 18 months)[moo℄. This means that the development in hardware is progressing in abreath taking pae. This is yet another thing that the produer will haveto keep in mind and yet another reason why a produt must be developedand released as fast as possible. There are ountless examples of produ-tions that have missed their hane. Among these is Tiberian Sun (1999)[tib℄, the sequel to Command & Conquer. Not long after the release of RedAlert (1996) [red℄, sreenshots surfaed from Tiberian Sun that was to be thehottest thing in graphi development in RTS games at that time. The publi,

CHAPTER 2. MOTIVATION Page 13 of 273however, had to wait three years for the release of Tiberian Sun, at whihtime the development had long overtaken the one advaned tehnology.Having to take hardware and tehnologial development as a whole in toaount makes the development of the produt into a rae against time.Graphis DevelopmentThere is a di�erent aspet to the tehnologial development that is not ov-ered in the last setion. With the advane of omputer graphis ame a time,where a game as suh "just" had to look good in order to sell. That meantthat the gameplay did as suh not really matter as long as everything lookedpretty.Prioritising towards this omes at two fronts: One being the amount oftime spent on developing the various parts of the produt, the other beingthe amount of exeution time available to the di�erent parts of the produt.With the graphis as fous, this means that there is a very limited amount oftime available to both the development of a satisfatory AI, and the exeutionof the many omplex alulations, one suh requires. Lately the developmenthas started to turn towards gameplay one more and the graphi side hasbeen signed a lower priority.The produer must prioritise. She must onsider what will sell the prod-ut: Sreenshots from the game or a promise of good gameplay.Primitive TehniquesWith both a limited amount of time to develop the AI, and a very limitedamount of available exeution time, the developers are fored to use an arrayof primitive AI tehniques. Among the most ommon is the use of sriptingwhen de�ning behaviour. The developers will simply sript a simple proessthat will get the AI through the starting phase of the game, and then loop abehaviour one it has reahed a ertain point. Some games try to inorporatesome traits of omplex behaviour when sripting their AI. This is both goodand bad. In the game Armies of Exigo (2004) [aox℄ the AI will try to retreatif outnumbered, whih in itself is indeed the right thing to do. The downsideis that the AI will try to get bak to its main base. If the superior enemyarmy happens to stand between the retreating army and the main base itwill walk straight through this. Another example is the First Person Shootergame F.E.A.R. (2005) [fea℄, in whih the enemy troops will try to move outtowards the player's position aggressively and even overing eah other inthe proess. However, the player is able to plant mines between the enemytroops and herself and the AI will walk blindly into these, when they areadvaning.Sripting an AI is done with pathes and pathes on pathes.

Page 14 of 273 CHAPTER 2. MOTIVATIONAIs Built Late in the ProessOnly tools for the AI an be made during the development of the produt.The AI itself annot be implemented before very late in the proess. This isdue to the fat that behaviour is very vulnerable to new design deisions andan ativity suh as balaning annot take plae before the produt pratiallyis done. Balaning itself is a long and thus ostly proess. Furthermore onlyvery few people an be ative at a time when balaning. One an for instanenot let one designer tune the strategies and let another tune the build ordersas one is very dependent on the other. This is yet another reason why thewhole development of the AI is under an extreme time pressure.2.2 Problem AreaIn the previous setion the general problem was introdued by presentinghow the apabilities of the opponent a�et the gameplay and why urrentAIs are not better than it is the ase. In this setion spei� problemsonerning AI in RTS games will be introdued and their ause will brie�ybe explained.2.2.1 Player PerspetiveThis setion will introdue some of the most ommon �aws that the playerenounters when playing against an AI. First the AI's general laks will bedisussed, then some ommon bad deisions will be listed and lastly somegeneral �aws will be introdued.What Does the AI Lak?In order to see what the AI laks in general, it is neessary to look at whatwe all stati and dynami behaviour.Stati Behaviour: This is when the environment or rather hanges in theenvironment does not a�et the hosen strategy. This does not meanthat the AI only has one strategy, but rather that one it has hosena strategy it will follow it to the letter and nothing an hange this.Dynami Behaviour: This is when the AI observes the environment andtakes ation aordingly. It may also be able to reord data and storeit over time.Most AIs in RTS games are stati. Among other things this means thatone the player has found one way of defeating the AI, she an simply dothis again and again. In Starraft, for instane, it was possible to fast tehtowards stealth units and onsequently surprise the AI. In general, this just

CHAPTER 2. MOTIVATION Page 15 of 273means that the AIs, urrently used, are stati, but what the player reallyneeds to ensure a good game play are dynami AIs, as they among otherthings will ensure the ability to adapt.Common Bad DeisionsIn this setion a few ommon bad deisions AIs make will be disussed:Single Units Attak: It is ommon that the AI lets single units attak theentire enemy fores or perhaps launh an attak on the enemy's mainbase. There are mainly two reasons for this. The player an in someases lure the AI's units away from the main army by attaking a unitstanding at the edge of the army. The attaked unit will then followthe unit that attaked it without the rest of the AI's army reat. Theother reason an be that the AI's routine somehow has been disturbed.This an for instane be in form of an attak on its base or beause itis running low on resoures.Single File Movement: When moving over large distanes, all units inthe AI's fores will move aording to the shortest path from startingpoint to destination, even if this means that they have to move in asingle �le. If the destination, for instane, is a heavily defended base,the army will arrive one unit at a time, and there is a risk of the basedefene being able to kill the units as they ome.Entry From the Same Point: If the path�nder is the only fator usedto deide the diretion from whih to attak the enemy, the AI willalways attak an enemy base from the same point. This means thatif the player's base has two entranes, she only has to defend the onethat is attaked while letting the other stand undefended.All these are examples of behaviour that are unfortunate, but just as unfor-tunately all too ommon in RTS games.General FlawsThis setion will present some areas ommon AIs only an handle partly ornot at all.Limited Amount of Strategies: The AI in Warraft II (1995) [wara℄ hasthree di�erent strategies available. It an either attak by land, air orwater. It hooses strategy at the start of the game and it will followthe strategy throughout the game. In its suessor Warraft III eahAI (one AI for eah rae) only has one strategy. Generally the AIs donot have a very high amount of strategies available as eah strategymore or less requires a separate sript.

Page 16 of 273 CHAPTER 2. MOTIVATIONCountering: As a diret onsequene of the low amount of strategies andthe fat that most AIs have a stati behaviour, ountering them isvery easy. One the strategy the AI has hosen has been identi�ed, aounter strategy an easily be piked. The AI does on the other handnot ounter as it follows a predetermined strategy.Cooperation: There are two senarios in whih the AI has to ooperatewith someone: It an either be ooperating with another AI or witha player. In most ases, where the AI has to ooperate with anotherAI, they atually still play as they would have in a 1on1 game exeptthat they do not attak eah other. This is also the ase in mostgames, where the player and an AI are allied. There are, however,exeptions. In Warraft III the AI will mark the plae on the mapwhere it intends to attak and it will also assist if the partner is underattak. In Empire Earth 2 (2005) [EE2℄ the interation is done throughdiplomay. The two partners sign a ontrat, where ommon attakorders are desribed. In both ases the ooperation is not even lose tothat between two players. The lak of ommuniation makes it di�ultto all it ooperation at all.2.2.2 Produer PerspetiveThis setion will emphasise and disuss some of the design deisions theproduer will have to deal with, developing an AI.Simple AIIn some ases a simple AI will su�e. A simple AI does not have to be aneasy-to-beat AI. Some games try to have an aggressive AI so that the AIdoes not have to ounter, as it sets the agenda. An example of one suh AIis the one in Starraft. The AI has an extremely optimised build order andit attaks one it has reahed a prede�ned amount of units. It does this afew times in a row as it reahes higher and higher tiers of units, but whenthe player starts to make a lot of expansions, the AI an no longer keep paeand starts to fail, as it no longer has the lead.Stati is SafeIt is very di�ult to make a formal representation of how to evaluate anygiven situation. This, among other things, means that learning is extremelydi�ult. Even if an AI had a marginally usable evaluation funtion, it wouldbe too dangerous to ship the AI while able to learn. Should the evaluationfail even one, it ould result in the total failure of the AI. If the produt isstati, the produer knows what she an expet from the produt.

CHAPTER 2. MOTIVATION Page 17 of 273CheatingAs already mentioned, the one widely used tehnique to simplify the AI whilestill ahieving a relatively reasonable result is to heat. Cheating is mostlydone through: Full map visibility, unlimited resoures, or free units. Thedownside of heating is that it is easy for the player to disover that the AIis heating, and one this is disovered, the player will not really onsiderlosing, for losing beause the game was not played on equal terms. Thismeans that two of the riteria for providing gameplay have been severelyweakened (gameplay rule 3 and 4).Fast AIAs mentioned earlier, the AI in for example Starraft is very optimised, thatis, workers do not waste time between building et. It is espeially notieablein the start up phase of the game. Players annot keep pae with this. Ifthe AI ould keep this up throughout the game, it would have a sizeableadvantage. If restriting the AI in this �eld just beause players annot keepup, the design will just have opened a huge design disussion about whetherthe AI should be optimal or simulate human behaviour.Multiple Units ControlledA player will be able to build new buildings in her base, sout unexploredterritory, and move her army into battle at the same time. This level ofsimultaneous ations requires a bit of training and more simultaneous ationswill in turn require even harder training. The AI, however, does not havethis restrition. It ould if needed give new orders to every single unit itowns. When deiding how many units the AI may give new orders at a time,the designer must keep in mind that there is a �ne line between reasonabledesign deisions and what the player will onsider heating. Currently AIsdo not handle this, but just give the orders that are needed.Builder AIAnyone who has tried to play against an AI in Age of Empires would knowthat a war against a "builder AI" an take a very long time. When allingthe AI for a "builder AI" it is meant that the AI will onstantly try to expandif it has the resoures. If the player �nds the AI's base and destroys it, thebattle is still far from over. The AI ould already have 20 small settlementsspread all over the map. After that, the �ght will never really be a �ght, butrather a long game of hide and seek. This form of behaviour is as suh theoptimal way of playing - always trying to survive and hope for a omebak,but on the other hand in most ases, it is just delaying the inevitable, with

Page 18 of 273 CHAPTER 2. MOTIVATIONthe result that all players get bored. This is yet another issue where theoptimal solution and the wanted solution ould be in on�it.Unit CompositionAs already mentioned earlier the AI is not able to ounter when it is a statisolution. This means that given the hosen unit omposition the playershould be able to �nd a perfet ounter for what the AI has built. In orderto ounter this, a widely used tehnique is to build a little of everything sothat every thing in turn an be ountered (if only by a small fore). Thisdoes on the other hand mean that no matter what the player builds she willhave a ounter to something in the AI's army. In Warraft III, where supportunits play an important role, this kind of mixed group is quite suessful,espeially when the army grows over a ertain size. An optimal solutionwould of ourse be to let the AI �nd a ounter to what it meets, but thatwould require a dynami AI.2.3 Current SolutionsSo far the reader has been presented to a series of problems with the AIthat is apparent to the player and a number of heap solution tehniquesthat have been used in games in an attempt to improve the AI. This setionwill present a number of solutions that the player has found to deal with theproblems and some solutions the produer urrently is using to improve theAI's performane.2.3.1 Player PerspetiveAs already mentioned in the previous setion, the player has found a wayto ensure a relatively good gameplay: Multiplayer. This setion will explainwhy multiplayer indeed gives a better gameplay, and it will also present someof the failities the players use.Dynami BehaviourThe reason, why multiplayer gives a better gameplay than the AIs found inthe games so far, an be summed up in two words: Dynami behaviour. Aplayer will learn from mistakes and generally make better deisions than theAIs urrently found in games. When a player plays against another playerit is muh harder to antiipate what the opponent will do, exept that itwill probably be something that will bring the player into the worst possiblesituation. Multiplayer is not only about one player playing against anotherplayer, but just as muh a team playing against another team. In teamgames the interation and ooperation aspet adds to the gameplay. Having

CHAPTER 2. MOTIVATION Page 19 of 273a stati AI as partner usually gives a bad experiene, while player-playerooperation an add a ompletely new aspet to a game.LANLoal Area Network (LAN) parties are gatherings of players that meet toplay one or several di�erent games. The number of players an vary froma few to several hundred. The small LAN parties are usually soial partiesamong friends that meet to play against eah other to have fun. The largerLAN parties often feature tournaments where single players or teams ofplayers will ompete against eah other. The soial aspet of LANs only adda positive e�et to the gameplay as the opponents are haraterised and nolonger faeless entities.Communities on the InternetWith the advane of the Internet, players have gotten together and foundedommunities in whih they play with and against eah other and share ex-perienes. Indeed entire games genres like MMORPGs have been based onthis. The ommunities extend the gameplay from being entirely dependenton the game itself to being heavily in�uened by the players, thus makingit more dynami in nature. Some produers have embraed this idea andmade servers available to the publi. One example is battle.net that is theportal Blizzard Entertainment is using for most of its published games thatinlude multiplayer failities. The player will simply onnet to battle.net[bat℄ where she will be able to reate and join games open for other players.Here winning games will also result in a better plaement in a server rankingsystem, whih in itself an present a major hallenge. It is, however, notonly the produers themselves that make servers available to the players.There are indeed also a myriad of private servers. These are everything fromommerial pay per use servers like Kali.net[kal℄ to servers owned by lans2.2.3.2 Produer PerspetiveThis setion will present the solutions the produers have hosen to theproblem.Multiplayer SolutionsFollowing the development, some produers have hosen not to inlude thesingle player part of the game at all. Instead they have foused solely on themultiplayer part. This is mostly seen in Role Playing Games (MMORPGs)and in First Person Shooters (FPS). Doing this they will not be entirely rid2Groups of players united by the ommon interest in a game

Page 20 of 273 CHAPTER 2. MOTIVATIONof making AIs to their games, but they an in turn be relatively simple asthey are not vital to the intended gameplay.Story TellingOther produers mostly of FPS and RTS games have hosen to fous on thesingle player part as well. The simple AIs are omplemented by extensivestory telling. The player follows a story line and the AI an be heavilysripted to arry out events as the story unfolds. This way the produersan ontrol the environment to suh an extend that the AI an be sriptedto an aeptable level of gameplay. Even if the player does mind that the AIis sripted and heats, she will still play the single player part of the game,if the story is good.Good AILately a few produers have started to fous on making the AI better. Thisis an obvious, but di�ult solution to the problem. One of the �rst stepstowards an aeptable AI is letting the AI play using the same rule set asthe player. In other words, the AI should not be allowed to heat. EmpireEarth II attaks one of the most ommonly areas in whih the AI heats byatually making the AI sout instead of having the entire map visible at alltimes[FKL05℄. Other games try to inlude advaned features like ounters(Age of Mythology (2002) [aom℄), retreating when outnumbered (Armies ofExigo) and using templates to obtain a well designed base (Warraft III).Eah feature is a step in the right diretion, but there is still muh to bedone, before the result is good enough to ompete with the level of gameplayfound in multiplayer games.The Ideal SolutionIn order to improve the gameplay found in the single player part of a gamedrasti measures must be taken. No matter how sripted an AI is, it will stillbe too stati to o�er the player a serious hallenge if playing on the sameterms. In reality it will be impossible to sript an AI to suh a degree thatit will be able to aount for every possible situation. Instead the produermust ask herself what the goal really is? The player is improving gameplayby playing against other players, thus getting a dynami opponent. Canthis idea also be applied to single player? That is, ould the solution be tosimulate an atual player instead of a hain of events? In this way the AIshould be built to simulate the atual deision proess that a player goesthrough when playing a game. This way the gameplay should be improvedin the same way as in a multiplayer game. The AI must however still be ableto adjust the di�ulty level so that it still follows the rules of gameplay.

CHAPTER 2. MOTIVATION Page 21 of 2732.4 New SolutionThis setion will present the basis of the ideal solution outlined in the previ-ous setion and onsequenes that the solution will have on the players andthe prodution.2.4.1 Player PerspetiveThis setion will present the onsequenes this solution will have to theplayer.AI and Story LineAn AI that plays like a human player will have a signi�ant impat on thesingle player part of most games. It will mean that the player will onstantlybe hallenged as if it was a multiplayer game and on top of this, she will bearried through a story line as it is normal for single player games. It willalso mean that the player will be able to play the same game several timesand though the story might be the same, one game will always di�er from thelast (given that the AI learns from previous games). In a non-story-relatedontext (ustom games), the player will be able to enjoy playing against anopponent in an environment de�ned by herself. This ould for instane beuseful when testing a new strategy or when playing o�ine in general.Team GamesAnother appliation for an advaned AI is team games. If the players are ofan uneven number an AI would be able to step in and even the teams. Thiswill also mean that a single player will be able to play team games o�ine byapplying three or more AIs. When it omes to ooperation, the player mustbe able to ommuniate with the AI. In urrent RTS games, ommuniationbetween player and AI has been very limited. In Warraft III the AI willrespond to the player being attaked. If the player is attaked, the AI willteleport to the player's base and assist in pushing bak the enemy fores andif the player is attaking, it will rush to help in the attak. Empire Earth 2presents one of the most advaned player-AI ommuniation systems. Theplayer an aess a strategy window ontaining an overview map in whihshe an draw arrows direting friendly fores. When the orders are aeptedby the AI, it will try to arry out the plan. However, in order to be ableto ooperate at the same level as a player, the ooperation interfae has tobe more extensive allowing somewhat the same kind of ommuniation asobserved between players.

Page 22 of 273 CHAPTER 2. MOTIVATION2.4.2 Produer PerspetiveIn this setion a number of options available to the produer will be pre-sented.Starting On The AIThe �rst thing the produer will have to deide is whih approah she wantsto utilise to build the AI. The normal approahes are:Making the AI From Srath: The �rst thing that omes to mind isto build the AI from srath. It is, however, also the approah thatrequires the most work. Not only do the developers need to �gure outa way to struture the AI, but everywhere they look there will be aseries of new problems, to whih they have to design solutions. Thedevelopers will gain experiene throughout the proess, whih they mayput to use in a later prodution depending on the similarities betweenthe two.Libraries: The produers may not have to write the entire AI by them-selves. As with experiene, it may be possible to reuse ode from aprevious prodution or perhaps aquire useful libraries from a thirdparty. Due to the fat that they have already been in use, these toolswill be well-tested and if they are from a previous prodution, the a-tual developers may already be familiar with them. The downside usinglibraries is that the developers are still fored to design a struture -indeed the entire onept for the solution.AI Frameworks: If the produer deides to use one of the urrent AIframeworks, she is faed with the other extreme to making the AI fromthe bottom. The produer will be working with a very rigid struture.The solution will be based on a single problem solving tehnique, asfor instane SOAR [Soa℄ that is a planning system.One of the reasons why urrent AIs are laking good performane mayvery well be that the produer is utilising the "Making the AI From srath"approah. If the developers indeed have to build the AI from the srath,they will often end up with a solution that has to be simple in order tomeet the deadline. Using libraries usually means that the AI will have a fewadvaned features while still essentially being the AI that would have beenbuild using the "From srath" approah. If the produer uses one of theurrent AI frameworks for the AI, the prodution team will have a lot moretime to do balaning and �xes as the AI development mainly will onsists offeeding the framework data so that it �ts to the urrent game. The problemusing an AI framework is that it tries to present a general solution to allgames (like planning). That is the same thing as assuming that a player will

CHAPTER 2. MOTIVATION Page 23 of 273be able to master all games, if she masters one game and then is told thebasi rules of the rest.Di�erent Genres - Di�erent FousesIn our pre-master thesis[FKL05℄ we identi�ed four di�erent genres withinthe RTS genre through a series of tests. Eah genre is de�ned by the playingstyle used in it. The genres are as follows:
• The Command & Conquer Genre: Command & Conquer, Red Alert,Warzone 2100 (1999) [war℄, and Dark Reign 2 (2000) [dar℄.
• The Age of Empires Genre: Age of Empires and Empire Earth.
• The Starraft Genre: Starraft and Armies of Exigo.
• The Warraft Genre: Warraft II and Warraft III.The genres are named after the games that de�ned the genres. In most asesthe game was the �rst popular game of that partiular playing style. Thetest that was the basis of these de�nitions an be found in Appendix E.1.In the test, the apabilities of the AI in a series of games were tested in avariety of important tasks. When looking at these apabilities, it is possibleto see whih areas are more important than others in the di�erent genres.This means that the produer will have to be very onsious about whihapabilities are important in the game she is developing.2.5 DisussionThe lak of hallenges in the single player AI has driven the player to seekother means to �nd hallenges. They have solved this problem by playingagainst other players. But what would happen if the AI was apable ofplaying like a human player? An advaned AI will have a serious impat onthe gameplay of both single player games as well as multiplayer games. Theombination of story telling and the hallenges a dynami AI will providewill strengthen the single player part and a apable AI will be able to assistin team games.When developing one suh AI, the produer will have to hoose betweenthe lak of struture in using libraries or the rigid struture of a general so-lution framework. Current frameworks provide a general solution tehniquethat the produer must �t to the game and the libraries provide no stru-ture at all [Soa℄. The di�erent playing styles in di�erent RTS games meanthat the player or the AI have to fous on di�erent aspets of the gamesdepending on for instane whih genre it belongs to, the environment andthe opponent. To our knowledge there are no frameworks that are able to

Page 24 of 273 CHAPTER 2. MOTIVATIONhandle this in the RTS genre and only a few libraries that handle varioussub-problems. Under all irumstanes, identifying a good struture is the�rst step towards a good solution. As already mentioned, the player foundsatisfation in playing against other players, as the other players are ableto handle most of the problems outlined throughout this hapter. We willtherefore use the player herself as a foundation for building AIs able to meetthe hallenges. This will be done by setting up an abstrat model for how aplayer plays. Furthermore the problems identi�ed throughout this hapterwill also be used to set up design goals for the framework.

CHAPTER 3. HUMAN MODEL Page 25 of 273
Chapter 3Human ModelBefore trying to build a human-like AI, it is important to onsider how ahuman player plays RTS games. What kind of knowledge does she possesbefore game start, and how is this knowledge used in the game? Whihgeneral tasks are the human player thinking about when playing, and howdo these tasks in�uene eah other when making deisions? The idea is notto model the atual thinking proess of a human playing RTS games as itis very omplex and will not provide a distintion of di�erent tasks, butrather to build a more strutured human model with a fous on de�ningtasks and the relationship between them. The di�erent tasks de�ned andthe relationship between them is partly based on previously de�ned areas inRTS researh[Sh04℄ [CBS05℄ and partly on our own experiene from years ofplaying and from wathing professional gamers play RTS games. The modelwill fous on mainstream RTS games, whih inludes the games in the gen-res presented in Setion 2.4.2. In previous researh, Brian Shwab[Sh04℄de�nes the areas town building, opponent modelling, resoure management,souting and diplomay systems as important areas, while Mihael Chunget al. [CBS05℄ de�nes the planning areas in RTS games as being miro-management, tatial planning and strategi planning. This model will usesome of these previously de�ned areas. We are not laiming that the pre-sented model is the only true model for a human playing RTS games, butit is in our opinion a good representation on whih we an base our furtherwork. Furthermore, it is hard to test the orretness of these kinds of mod-els as all humans play di�erently and take di�erent things into onsiderationwhen making deisions. We laim however, that the model presented in thishapter is a reasonable representation of how most people play RTS games.Setion 3.1 will begin by presenting the knowledge a player has before a gamestarts, and then Setion 3.2 will proeed to present the knowledge a playerhas and maintains during a game. In Setion 3.3 we will identify key tasksthat a player must solve to play at a human level, and then determine whihtasks are in�uened by other tasks or knowledge bases in Setion 3.4. This

Page 26 of 273 CHAPTER 3. HUMAN MODELwill result in a human model of how a typial player plays RTS games.3.1 Prior KnowledgeThe following presents the knowledge a player has before starting a game.Eah of these areas will in�uene how the player will play the game.Map Knowledge: This area represents knowledge about the map terrain,map size, resoure loations, strategi and tatial important loationset.An example is in Starraft, where the knowledge of a high groundbehind an expansion an easily deide the outome of a game. A terranplayer would be able to build bunkers, turrets and plae siege tankson the high ground, making it virtually impossible for the opponentto make an expansion at this spot, beause of the advantage of highground in Starraft.Enemy Knowledge: Experienes against players throughout severalgames will give the player an idea of how the enemy player thinksand what kind of strategies she uses. This prevents the player fromlosing to the same strategies again and again against the same oppo-nent, as she is apable of trying new things and thereby ounteringthe opponent's strategy. This of ourse only applies to players of equalskill level in all areas, beause knowing the opponent's strategy willoften not be enough for novie players to beat professional players.Knowing that an opponent has a tendeny to get air units very fast,the player would most likely try to rush her or at least prepare for thisstrategy by building some defensive buildings or units able to hit airunits.Gametype Knowledge: Depending on whether the game played is a teamgame, a 1on1 game or an FFA (Free For All) game, the strategi on-siderations hange.For instane, in FFA games the player needs to be muh more aware ofthings happening around the map that does not diretly involve herself.Building the right ounter is also muh more di�ult as opponents anhave vastly di�erent armies.Known Strategies: Most players have a number of strategies they haveeither invented for themselves, learned from wathing other players orfound on the Internet. This area a�ets both the number and qualityof strategies used by the player, but also the apability of preditingthe opponent's strategy, and knowing how to ounter it.

CHAPTER 3. HUMAN MODEL Page 27 of 273Knowing just one very e�etive strategy an in some games make aplayer win a lot of games. In for instane Starraft, knowing only afast air strategy an bring a player a lot of vitories by surprising theopponent and requires relative little miromanagement.Known Build Orders: In all RTS games the start of the game is very im-portant and an e�etive build order an prove invaluable. The buildorder de�nes in whih order to build everything suh as workers, build-ings and ombat units, and also spei�es what eah worker should bedoing at any given time. A build order is often used in onnetionwith a ertain strategy trying to maximise the player's resoures andgetting to a ertain point in the strategy as fast as possible.The importane of build orders an be easily seen in Starraft, wherean e�etive rush or fast-air strategy depends heavily on the build orderused. These kinds of strategies requires that they are arried out asfast as possible with the largest fore possible, and build orders play avital part in ahieving this.Game Spei� Knowledge: Depending on the game in question, a playerwill have knowledge about the di�erent units, buildings, resoures andresearh options available, as well as the possible ations for eah par-tiular unit and building.Knowing the details of units, buildings, resoures and researh optionsin a partiular game is essential to playing the game at a human level.Without this information a player would for instane not be able todetermine how to build a ertain unit, beause the player would needto know the resoure requirements for that unit as well as possible unitor building dependenies for that unit.3.2 In-Game KnowledgeWhile the former setion foused on knowledge that a player has before agame starts, this setion will fous on the knowledge that a player has andollets during a game. Eah of the following four de�ned areas will have animpat on the deisions a player makes throughout a game:In-Game Enemy Knowledge: During a game, a player will always havean idea of what the opponent is doing. This ould both be in termsof what strategy she is doing, but also enemy unit movements andativities around the map.This ould for instane be the fat that the opponent has built a ertainbuilding or that the majority of her army was spotted lose to theplayer's main base. Furthermore, a player ould have spei� beliefs

Page 28 of 273 CHAPTER 3. HUMAN MODELabout when and where the enemy is going to attak, based on what ithas seen from the opponent so far.Unit and Building Information: The player will at all times know whatkind of units and buildings she has, and what they are urrently doing.This inludes building queues, unit attributes, assigned ations et.This information is used during games to for instane withdrawwounded units, plan what di�erent units should be doing after theirurrently assigned ation et. The player ould also use this informa-tion to obtain the position of all friendly army units and from thisditate a spei� tati to be used in battle.Own Strategy: This inludes all strategi aspets the player may be on-sidering. It may be that the player has a ertain strategy she is workingtowards, and she may have a very spei� plan of what units and build-ings should be produed to ahieve this.This area will mostly be in the form of plans for di�erent ativities likehow to build the base, when to expand, how many workers to buildet. It ontains knowledge about both the urrent strategi status andwhat the goal for the player is, strategy-wise.In-Game Map Knowledge: During the game, the map that is played onmay hange depending on game spei� details or maybe the playerswill modify it somehow. This knowledge base will store all things onthe map that hanges during a game.The use of the knowledge base will vary from game to game, but almostall RTS games features �nite resoure amounts and the player mustkeep trak of where and how many resoures are left around the map.In some games, for instane Warraft III, the player must also keeptrak of whih NPCs that have been killed around the map and onwhat the shops and merenary amps have to o�er.3.3 RTS TasksThe following desribes ten RTS tasks that a player will enounter whenplaying any modern RTS game.Strategi Planning: This is the overall planner. It is the task that isequivalent to that of a general. More spei�ally, the task deides whatthe overall plan is for longer periods of time and is hene responsiblefor long-term planning.This an be things like deiding to attak at a ertain point or reatingan army onsisting of a partiular list of units.

CHAPTER 3. HUMAN MODEL Page 29 of 273Tatial Planning: The task an be onsidered the job of a sergeantwho takes orders from the general (Strategi Planning). This task ismainly responsible for the tatis in battles and for keeping the tatialoverview at all times.During battles this task inludes deisions like reinforing a �ank, tak-ing advantage of the higher ground, retreating et. Furthermore, it forinstane takes are of keeping armies in formations during movementto avoid single-line formations.Miromanagement: This task is to issue orders to eah individual unitbased on Tatial Planning and Strategi Planning, and the orders arearried out instantly.This is everything from fous �re on enemy targets to pulling bak hurtunits and using support units.Reasoning: This task is foused on reasoning about observations of the en-emy. It analyses all ativity from the opponent and thereby determineexatly what the opponent is doing or trying to do. The task's basijob is to provide solid information for the Strategi Planning task tobase its deisions on.For instane if the player has seen an enemy worker running past hersomewhere outside the enemy base, it ould mean that the enemy istrying to build an expansion or perhaps attak the player's base usingthe o�ensive apabilities of defensive buildings. Another example isif the player sees a unit prodution faility for air units in the enemybase, it ould be wise to produe a number of anti-air units or sendout souts to �nd out how many air units the enemy already has andthen take ation aordingly.Opponent Modelling: A player must at all times keep a model of theopponent. This inludes not only what the enemy urrently has interms of buildings, units and researh upgrades, but also more abstratbeliefs about her hosen strategy and her urrent strategi situation.When making deisions about what strategy or tati to use in a game,it is essential to have a good idea of how the opponent's army is om-posed and what her situation is like. In Warraft III for instane,the opponent model ould onsist of things like army omposition,tehnology level, inome rate, upkeep estimate, resoure estimates et.Essentially, everything that has a strategi in�uene should be a partof the opponent model built during a game.Resoure Management: Resoure Management also inludes resouregathering. This task inludes determining, whih resoures are re-quired, and optimising the gathering of these resoures.

Page 30 of 273 CHAPTER 3. HUMAN MODELIf the Strategi Planning task has deided that a number of a ertainunit is to be produed, the Resoure Management task has to makesure that this an be done as fast as possible by antiipating resourerequirements. If for instane the spei� unit demands a lot of lumberthat is not in store at the moment, the resoure manager may have toreassign some workers to gathering lumber ahead of time. The resouremanager also has to �gure out the optimal way to gather resouresusing the least number of workers.Base Building: As the name hints this task is responsible for building thebase. This has two aspets: Building the right buildings and plaingthem orretly. To plae buildings orretly the player must further-more have some kind of plan about whih buildings are soon to bebuilt.Building the right buildings is losely related to the hosen strategy. Itould also be in the ase that the player has more money than normaland it would be an advantage to build another unit prodution faility.Plaement of buildings an be more omplex. This is often a matterof plaing defensive buildings in good positions overing the base orplaing harvesting buildings near resoures allowing for faster resouregathering.Souting: Most modern RTS games have either one or two layers of Fogof War. In order to support other task's ability to make good dei-sions, the player has to send out souts. This also inludes the taskof seleting the unit to sout with and deiding how often souting isneessary.Souts an be used to �gure out what is happening in the enemy base,disover expansions or keep trak of the enemy army's movement. Thedeision about whih unit to send ould depend on the range of sightand speed of the unit and also whih and how many resoures are lostby hoosing that partiular unit to sout.Learning: From game to game a player will onstantly learn new things. Itinludes new strategies, opponent models and e�etiveness of ertainstrategies against other kinds of strategies. The player would have toevaluate the game played either during or after the game, and fromthis infer whih ritial situations in the game determined the winner.If a player plays against the same opponent a ouple of times, she mightreognise a pattern in how the opponent thinks or just �nd a ertainway to beat her. It ould be that the opponent has a tendeny to rush,in whih ase a strategy of moving fast up the tehnology tree would bea bad idea. Also, by being able to learn strategies from the opponent,it is possible for the player to use these strategies at a later time when

CHAPTER 3. HUMAN MODEL Page 31 of 273onfronted with the same situation that this partiular strategy wassuessful in handling.Cooperation: In team games the players' task is to work together and �ndstrategies, where eah player omplements eah other in the best pos-sible way. Furthermore, a lot of oordination is required to ensure theright tatial deisions from eah player during big battles. Coopera-tion also inludes the task of deiding if and when to share resoures,and in FFA games, the task of �guring out when to betray an ally andwhen the player herself is being betrayed.A typial ooperation senario would be for one player to produe meleeunits and the other to produe ranged units. This speialisation foreah player allows for building only ertain kinds of buildings, as wellas only requiring to upgrade a ertain type of weapon. Tatial oordi-nation ould be things like letting one player lurk out the enemy froma small passage, while the other players remain hidden until suddenlyoming up from the behind of the enemy. Betrayal of an ally ould befor a player to indiate that they should both attak at a ertain point,and then just not show up leaving the betrayed ally alone against theenemy.3.4 Human ModelEah of the tasks mentioned above are in�uened by several prior- and in-game knowledge bases, as well as other tasks. In the following a model of howall tasks in�uene eah other will be presented. An illustration of the modelan be seen in Figure 3.1 or in Appendix K.1. Cirles represents tasks andarrows indiate whih tasks in�uene eah other. The small boxes attahedto eah task shows whih knowledge bases in�uene that partiular task.The numbers in eah of the small boxes refer to the numbers in the largePrior Knowledge and In-Game Knowledge boxes on the right of the �gure.Note that for illustration purposes, an observation task has been inludedto indiate whih tasks are in�uened by observations during a game. Inthe following eah task's role in the model will be explained along with adisussion of whih knowledge bases ontributes to solving that partiulartask:Strategi Planning: This task relies heavily on the Reasoning task to �g-ure out what the opponent is doing, as most games inludes ways ofountering all possible strategies. When this has been determined,the Strategi Planning task relies on several di�erent knowledge basesto selet the best possible strategy in the given situation. The mostimportant prior knowledge base is naturally Known Strategies. Thisknowledge base basially ontains all known strategies and all ounters

Page 32 of 273 CHAPTER 3. HUMAN MODEL

Figure 3.1: A human model for playing RTS gamesto known strategies, and it is essential for this task to be solved theright way. Besides this, the task uses knowledge from three other priorknowledge bases:Map Knowledge: Map Knowledge provides map spei� details thatin�uene the hoie of strategy.Build Order Knowledge: Build Order Knowledge provides morespei� details of how to exeute the beginning phase of a er-tain strategy.Game Spei� Knowledge: Finally, Game Spei� Knowledge pro-vides the details of the partiular game in question, as strategiesvaries from game to game.The Strategi Planning task likewise takes into onsideration all fourtypes of in-game knowledge, as these knowledge bases represents whatis urrently going on in the game, and this obviously has a great e�etof what strategy to hoose.Tatial Planning: Tatial Planning is primarily in�uened by the Strate-gi Planning task. This is beause the primary objetive of the player'sarmy is given by the Strategi Planning task, while the part of atuallyarrying out the objetive is left to the Tatial Planning task. To solvethis task, the player must rely heavily on Game Spei� Knowledge,whih provides details about units in the game and the ations they

CHAPTER 3. HUMAN MODEL Page 33 of 273are apable of performing. Furthermore, the player uses the four dif-ferent in-game knowledge bases to obtain knowledge about the urrentsituation in the game.Miromanagement: This task primarily relies on Tatial Planning to in-diate how it should arry out its task. Furthermore, it uses GameSpei� Knowledge to determine unit hitpoints, armour types, attaktypes et. whih are essential knowledge for the task to be arried outsuessfully. The task does not need to know the details of the player'sstrategy, but it does need to use information from the other three in-game knowledge bases: In-game Enemy Knowledge, Unit and BuildingInformation, and Dynami Map Knowledge.Reasoning: The Reasoning task primarily uses the opponent model builtby the Opponent Modelling task. This is where everything opponent-related is obtained from. Reasoning about this information, however,requires that the player must use several di�erent prior knowledgebases:Gametype Knowledge Gametype Knowledge in�uenes reasoningbeause an opponent's ations should be interpreted di�erentlydepending on the gametype.Enemy Knowledge: This knowledge base is important beause theplayer will be able to reognise patterns in an opponent's strategy,whih will often indiate moving towards another strategy.Map Knowledge: Map Knowledge in�uenes Reasoning beausesome strategies are used very often on some maps and very seldomon others.Game Spei� Knowledge: Finally, Game Spei� Knowledge pro-vides game details suh as tehnology trees to help reason aboutthe purpose of di�erent buildings and units.Finally, In-game Enemy Knowledge is used to reason about the oppo-nent's movement around the map.Opponent Modelling: This task must onsider all observations from thegame as well as the in�uene from two tasks: Souting and Reasoning.Results of souting missions must be used when building a model of theopponent, and the result of reasoning about the opponent will result innew beliefs about the opponent, whih should also be re�eted in theopponent model. An opponent model should depend on the game inquestion, and this is obtained from Game Spei� knowledge. Besidesthis, the only knowledge base used is In-Game Enemy Knowledge, fromwhih the player an retrieve information about the enemy used tobuild the opponent model.

Page 34 of 273 CHAPTER 3. HUMAN MODELResoure Management: Resoure Management is primarily in�uened bythe Strategi Planning task. A strategy may inlude spei� detailsthat this task must try to aomplish, like for instane building anexpansion or gathering a lot of a ertain resoure. Out of the priorknowledge bases, the player needs Map Knowledge to determine re-soure loations and the amount of resoures available in a ertainloation. Furthermore, the player will need all four in-game knowledgebases to solve this task suessfully:In-Game Map Knowledge: The player needs to know how resoureloations and amounts hange during a game.Own Strategy: The details of the player's overall strategy will berequired to better manage resoure gatheringIn-Game Enemy Knowledge: The loation of enemy units plays arole when deiding where it is possible to harvest resoures.Unit and Building Information: When assigning ations to work-ers it is essential to know where and whih workers are urrentlyarrying out whih ations.Base Building: This task is likewise primarily in�uened by Strategi Plan-ning. The hosen strategy will have a large e�et on how the baseshould be onstruted. Some strategies may require a very ompatbase able to fend of early attaks, while others may require a lot ofantiipation in terms of having room to build the required buildingsin the right plaes. The task only requires two prior knowledge bases:Map Knowledge, whih is used for building plaement, and Game Spe-i� Knowledge, whih are needed to deide whih buildings to build.Furthermore, a player an use all four in-game knowledge bases:Dynami Map Knowledge: As some games inlude dynami plae-ment of resoures, this knowledge base is used to keep trak of this,so that a player an take this into onsideration when onstrutingbuildings.Own Strategy: Beause of the strategy really ditating what build-ings to build, the player must know of this to antiipate how toonstrut the base in the best possible way.In-Game Enemy Knowledge: When onstruting new buildings,the player must be aware if any enemy units are in the area,beause buildings under onstrution are often very vulnerable.Unit and Building Information: This knowledge base is used todetermine whih units are to build di�erent buildings and to de-termine whether it has the resoures to support produing fromfor instane more than one barraks.

CHAPTER 3. HUMAN MODEL Page 35 of 273Souting: The Souting task is in�uened by two other tasks. The Op-ponent Modelling task will result in knowledge of whih attributes orvariables of the enemy that are unknown, and should be further in-vestigated. The Strategi Planning task will on the other hand givethe player a good idea of whih unknown variables may reveal the op-ponent's �nal hoie of strategy. The player will need Game Spei�Knowledge to �gure out exatly where to sout for di�erent things.Finally, the player makes use of two in-game knowledge bases: In-game Enemy Knowledge, when �guring out where to sout, and Unitand Building Information, when �guring out whih units to send on asouting mission.Learning: This task is ative when a player re�ets on a game being playedor a game reently played. She will think about the opponent's strat-egy, what kind of strategy she needs to ounter it and how well thisstrategy worked out. Moreover, she will think about the opponent'sations and keep in mind what the opponent tried to do in this game.Spei� observations about for instane the map or some tatial moveis also remembered, so that she an use this in a later game. For il-lustration purposes this task is not onneted to the other tasks in the�gure, beause it would in reality in�uene and be able to improve allkind of deision making during a game and hene all other tasks. TheLearning task ould result in learning new information for all of theseven prior knowledge bases exept Game Spei� Knowledge. It willuse knowledge from all of the four in-game knowledge bases as well asthe speial Observation task shown in the �gure.Cooperation: For a player to arry out the Cooperation task, a lot of om-muniation with other players must be done. Players may want toonsult their allies before making any kind of deision, as all tasks inthe model ould somehow in�uene the allied players. This means thatnot only is the Cooperation task in�uened by the Cooperation task ofother players, it will also be in�uened by every task in the model.Moreover, it will itself in�uene all tasks in the model. In the follow-ing, eah task will be desribed in relation to how it an in�uene, andthereby also be in�uened, by the Cooperation task:Strategi Planning: Allied players should hoose strategies thatomplement eah other well.Tatial Planning: In battles, allied players should try to help eahother as muh as possible by for instane having one player pro-teting the other player's weaker units.Miromanagement: If a player knows that her allies will heal allunits in a ertain area in a few seonds, she may want to modifyher poliy for withdrawing wounded units in that area.

Page 36 of 273 CHAPTER 3. HUMAN MODELReasoning: Two players may ome to di�erent onlusions given thesame data, as the knowledge bases they rely on may be di�erent,and hene they must ommuniate to ome to an agreement ofwhat the opponent is doing.Opponent Modelling: In team games it is essential that playersshare the knowledge they observe, so that the players are ableto build more aurate opponent models.Resoure Management: Players will sometimes want to share re-soures, and sometimes it is bene�ial for both players if oneplayer harvest the required resoures and the other uses it.Base Building: Sometimes players will �nd it bene�ial to buildbuildings in eah others bases, and this of ourse most be o-ordinated.Souting: It would make no sense for allied players to sout for thesame things, as they should rely on eah other for informationabout the enemy.Learning: Often players will learn from eah other when playing teamgames.3.5 SummaryThis hapter has presented an idea of how humans play RTS games. Wehave de�ned a number of prior knowledge bases, whih a player is aware ofbefore playing, and a number of in-game knowledge bases, whih a player isaware of during a game. Then we de�ned ten important tasks that a playermust go through to play an RTS game at a high ompetitive level. Thisresulted in a model of how humans play RTS games, where tasks and theirin�uene on eah other is de�ned, as well as eah knowledge base's in�ueneon eah task.The human model presented in this setion is the foundation on whihall further work is based. If all these tasks and interdependenies are presentin an AI, we hypothesise that it will be very hard to distinguish it from anatual human player. The de�nition of eah task and its responsibility willfurthermore make it easier to divide the AI into logial modules.

Page 37 of 273

Part IIFramework Design

CHAPTER 4. INTRODUCTION Page 39 of 273
Chapter 4IntrodutionThis part will present the design of an AI framework for RTS games. Firstthe design goals followed throughout the design will be presented in Setion4.1. Then a number of tehniques and methods used in the design will bedisussed in Chapter 5, along with their pros and ons in developing this kindof framework. This hapter will also present RTS game spei� onepts aswell as examples of their use in this ontext. The �nal hapter of this part(Chapter 6) will fous on exatly how the framework is built. We will startby disussing how to onvert the human model, presented in Chapter 3, intoa suitable framework arhiteture (Setion 6.1). Afterwards, the hosen datarepresentation for the framework will be introdued in Setion 6.2.2, and adisussion of how to on�gure and extend the framework will be presented inSetion 6.3. Not all framework details of the design will be presented in thesehapters as this will be too extensive. Other design details an be found inthe appendix and will be referened in the appropriate setions. In the �nalsetion of this part (Setion 6.4), we will disuss how framework exeutionis ontrolled and how it inter-operates with the GDF.4.1 Design GoalsThis setion will desribe the design goals of the projet. In Chapter 2 severalproblems were identi�ed as being responsible for the relatively poor standardof AIs in RTS games. This setion will translate these problems into designgoals that should reeive speial onsideration when deiding on a design ofa framework aiding developers building AIs for RTS games. In the following,four di�erent design goals will be presented, along with an explanation ofwhat eah of them means for the design proess.Improved AI: The framework should help produe better AIs than theindustry standard today. This essentially means that the frameworkmust provide advaned tehniques and methods for reating strong AI

Page 40 of 273 CHAPTER 4. INTRODUCTIONopponents. Furthermore, they must be adaptable to games of di�erentgenres within RTS and be able to work when developing many di�erentkinds of AIs. This requirement also means that the framework shouldattempt to provide methods for solving as many of the tasks de�nedin the human model as possible.Redued Development Cost: For an AI framework to be usable in theindustry, it must be able to redue the development ost of reatingAIs. A way to do this is by reating a omplete AI solution, so thatan RTS game developer does not need to do anything AI related otherthan onnet the AI solution to the GDF and on�gure it to work inthe game being developed. This means that the framework should bereated to handle all AI ativities, whih means that no AI program-mers or developers are neessary to use the framework. Furthermore,the framework should inlude all parts of the AI that do not hangefrom game to game, and provide standard implementations of the ar-eas that are ommon in most games. In this way the AI developershould be able to fous on game spei� details and on areas that areimportant for the AI in the game being developed.Shift of Workload: In the late stages of a game projet, the programmersare often very busy getting the game to work properly, while the de-signers have more or less already done their job. As already disussedin Setion 2.1.2, shifting the workload of AI development towards de-signers will not only redue development time, but also leave designersto do what they do best - reating good gameplay. To allow for thisshift of workload, the framework must provide a easy-to-use on�gura-tion system, whih allows for inexperiened programmers to work onit.Strutured Overview of the AI Development Proess: The frame-work should provide a strutured overview of the di�erent kinds oftasks an AI must solve. This allows for fousing on only ertainparts of the AI. The human model presented in Chapter 3 allows forthis division of tasks. The lear distintion between di�erent tasksfurthermore allows for letting di�erent people work on di�erent partsat the same time, without them needing to oordinate their e�orts.These four design goals will guide the design for the rest of the report.

CHAPTER 5. DESIGN TECHNIQUES Page 41 of 273
Chapter 5Design TehniquesTo ahieve the design goals outlined in Setion 4.1, we have deided to makeuse of several well known tehniques for reating software. The �rst we willdesribe is Frameworks, whih is an important tehnique for re-using soft-ware and the arhiteture behind it. The seond we will present is EventBased Systems, whih are often used as a ommuniation tehnique betweenseparate objets, lasses or modules in games. Finally, we will disuss Sript-ing Languages, and more spei�ally their role in making appliations moreuser-friendly. These three tehniques are the foundation on whih the AIframework is designed. In the following we will desribe eah of them inturn, and disuss the pros and ons of using them as well as trade-o�s whenhoosing to use a partiular tehnique.5.1 FrameworksThis setion will disuss why we have hosen to build an AI framework,explain the alternative and disuss the apabilities of AI frameworks.5.1.1 Reuse of SoftwareAs one of our design goals is to reuse as muh of the AI as possible fromone game to another, this setion will disuss software reuse in games. Basi-ally, there are two ways of reusing parts of an AI in games: Frameworks orlibraries. First, the advantages and disadvantages of both will be outlined.There is no lear de�nition of frameworks that everybody in literatureagrees on, but one widely aepted de�nition is the following [FS97℄ [Bue98℄[FSJ97℄ [JF88℄:A framework is a reusable, "semi-omplete" appliation that anbe speialised to produe ustom appliations.Frameworks have been used extensively in game development, beausethey provide several advantages in this area, whih stem from four important

Page 42 of 273 CHAPTER 5. DESIGN TECHNIQUESonepts that frameworks provide: Modularity, reusability, extensibility andinversion of ontrol [FS97℄. Within AI framework development, one advan-tage is that it ensures that the AI is ompletely separated from the GDF.This means that an AI framework for RTS games will be able to reuse notjust single modules, but entire AI arhitetures [Joh97℄. This is also the rea-son why frameworks tend to be easy to use, beause they have well-de�nedhook methods, whih ditate how framework instanes di�er from eah other[FS97℄. By using this tehnique, the user an fous on the areas of the frame-work that are important for the partiular instane being reated. Further-more, by having the arhiteture in-ooperated into the framework, one anbe assured that this part is well-tested, whih ensures that frameworks areless error-prone [Lew98℄. The disadvantage of using frameworks is that it isoften very di�ult to hange the internal mehanisms of a framework, partlybeause it is very hard to understand the internal mehanisms and partlybeause the framework is not built for suh a modi�ation [FCGC02℄. Thisproblem also re�ets in that a framework built for a spei� purpose is veryhard to use for other things [JF88℄.The main advantage of using a library is that it an be used to many dif-ferent things, as the arhiteture behind is not inluded as part of the library[SC95℄. Di�erent library omponents an then be ombined in di�erent waysto ahieve many di�erent results. This �exibility is also its disadvantage asthis limits how muh an be reused from one appliation to another [Joh97℄.Compared to a framework, a library also tends to be more di�ult to use andit slows development, beause the user has to reate the arhiteture herself[JF88℄. Furthermore, it tends to be more error-prone beause the user herselfis responsible for linking and using the di�erent library omponents in theright way [Bue98℄.Following the design goals presented in Setion 4.1, the hoie betweenthe two for this projet is relatively easy. Frameworks are able to provideomplete AI solutions, and in a manner that should be relatively easy touse for an AI designer, as well as derease the time it takes to develop theAI. The use of hook methods and hot spots [ML01℄ furthermore allows fora strutured overview of the development proess and the arhiteture anallow for a lear distintion between di�erent areas. The primary advantageof libraries being �exible is not a requirement, as the fous of this projet issolely on RTS game AIs, and we hypothesise that a general arhiteture anbe built to do this.5.1.2 AI FrameworksThe idea to use frameworks for AI tools in games is not a new one [Lai01℄.Most notieable is the ognitive framework named Soar [Soa℄ [Lai03℄ [LL99℄.Soar has been used to reate AIs in several smaller games and for reatingbots in ommerial FPS games suh as Quake II (1997) [quab℄ and Desent

CHAPTER 5. DESIGN TECHNIQUES Page 43 of 2733 (1999) [des℄. A general desription of how Soar has been used to reate AIsan be seen in our pre-master thesis [FKL05℄. Other AI frameworks havebeen used in games, but none to the same degree as Soar. Previous researhwith AI frameworks in games has primarily foused on FPS games or smallustom made games [KNYH05℄ [Lai01℄. No one has however, foused ondeveloping AIs for RTS games. There are two reasons for this:
• Researh with AI frameworks used in games is a relatively new area.
• RTS game ompanies have deided not to release soure ode as rapidlyas for instane FPS games and they have not provided programmerswith an advaned open AI interfae to speify their own AIs.Reently, open soure RTS GDFs have begun to mature into a statewhere researhers an build their own AIs to existing open soure games[ORT05℄ [Str℄. This has opened the opportunity to further researh in thedevelopment of AIs in RTS games, whih have many interesting aspets thatother types of games do not, as is disussed in Chapter 1. Open soure RTSGDFs have however, still some problems in relation to AI researh, whihhave been identi�ed in our pre-master thesis [FKL05℄:Stability: Some RTS spei� GDFs have simply not been stable enough tobe used for researh purposes, and laks testing of important funtion-ality.Doumentation: When working with a GDF, the framework must be well-doumented for the user to be able to extrat the required information.Some frameworks simply lak this doumentation.Full Control of AI: As desribed in one of our design goals in Setion 4.1,the AI framework must be in omplete ontrol of all AI ations. SomeGDFs only allow for ontrol of the high level AI ations, and has lowlevel AI ations, suh as unit movement and tatis, handled internallyin the framework.Not all open soure GDFs lak all three identi�ed problems, but at leastone of them. Out of the two most mature frameworks, ORTS [ORT05℄ andStratagus [Str℄, ORTS has the two �rst problems and Stratagus has the thirdproblem.Previous researh within the area of AI frameworks have foused on og-nitive arhitetures [LL02℄. These are frameworks developed for the purposeof reating and understanding agents that support the same apabilities ashumans. They provide a way to de�ne an underlying infrastruture for anintelligent system, and are basially the same as AI frameworks with theintention of providing a platform for emulating human behaviour. John

Page 44 of 273 CHAPTER 5. DESIGN TECHNIQUESLaird1, and Pat Langley2 have de�ned a number of apabilities a ognitivearhiteture ould be able to support [LL02℄. The apabilities are listed be-low, inluding their relation to RTS games. Laird and Langley hypothesisethat for an AI to show truly human behaviour, the framework should supportall of these apabilities:Reognition and Categorisation: The apability to reognise for in-stane strategies or tatis in a game.Deision Making and Choie: The apability of making both strategiand tatial deisions during a game.Pereption and Situation Assessment: The apability of being able topereive information and determine the importane of this information.Predition and Monitoring: The apability to for instane predit an op-ponent's future strategy and monitor important variables that mayreveal additional information about the enemy.Problem Solving and Planning: The apability of planning the exeu-tion of a ertain strategy and solving any problems enountered duringexeution.Reasoning and Belief Maintenane: The apability to reason about anopponent's ations and from this determine what she is most likelydoing.Exeution and Ation: The apability to exeute ations in the game.Interation and Communiation: The apability to ommuniate withallied players and through this agree on joint strategies.Remembering, Re�etion and Learning: The apability to rememberand re�et upon situations that have ourred during a game, andthrough this learn new strategies or tatis.The apabilities and their relation to AIs in RTS games are further de-sribed in in our pre-master thesis [FKL05℄. When desribing our AI frame-work design we will return to these apabilities and disuss how our frame-work handles eah area. When desribing how frameworks provide theseapabilities, one often talks about four separate areas [LL02℄: The represen-tation of knowledge, the organisation of knowledge, how the framework uses1John Laird is a professor of omputer siene at University of Mihigan, general hairfor the Arti�ial Intelligene and Interative Digital Entertainment Conferene (AIIDE)and one of the developers behind Soar[Soa℄.2Pat Langley is the diretor for the Institute for the Study of Learning and Expertise,head of CSLI's Computational Learning Laboratory [CSL℄ and onsulting professor ofsymboli systems at Stanford University.

CHAPTER 5. DESIGN TECHNIQUES Page 45 of 273knowledge and �nally how the framework supports aquisition and revisionof knowledge. These areas have been desribed in detail in our pre-masterthesis [FKL05℄ and will be disussed further when presenting the overallarhiteture of our framework in Chapter 6.5.2 Event Based SystemsThis setion will present a way to ontrol the di�erent parts in the framework.Eah of the parts we have in the framework orresponds to the tasks in thehuman model, and we will from now on refer to these tasks as modules.There must be reated some way to ontrol what modules are exeuted inwhat order, and a way to make eah of these modules ommuniate witheah other. In this setion we will �rst argue that an event based system isthe best way to ontrol the framework, and then we will disuss why eventbased systems often are used in frameworks and what the advantages are.Afterwards we will present di�erent ways of how an event based system ouldbe designed.5.2.1 Framework ControlControlling the exeution of framework modules an be done in a numberof ways. One way is to make a proedural exeution struture, whih makesevery module all eah others sequentially. This is, however, not dynami, asthe developer must have omplete knowledge of how the rest of the system isworking and whih modules in�uene eah other, when adding new modules.If, on the other hand, eah module an operate on its own, meaning that itdoes not need any knowledge about other modules, it an be exeuted stand-alone. This makes it possible for eah module to be alled by events by themodules that provide the information required. This makes the modulestruture muh better separated. If additional modules are added at a laterpoint, it is as simple as assigning them to the events that they need, andsending the events in the modules, where the data that should trigger themodule, is generated.5.2.2 Event Based Systems in FrameworksThe use of event based systems in frameworks is far from a new idea[SG86℄.Often it is used in GUI frameworks, beause the ode is only run when theuser interats[SG86℄ [HNOR88℄ [CCT89℄ [jsw05℄ [Feu97℄. In this ase it is anadvantage that the interation with the GUI is handled in one plae, so thateah element does not have to hek for interation. However, as also statedby Hansen et al. [HF04℄, event based systems are far from restrited to thisarea. Event based systems are also very ommon in network appliationsthat should only reat, when data in sent to them. The di�erent modules

Page 46 of 273 CHAPTER 5. DESIGN TECHNIQUESin the model should not be run all the time, only in ertain periods of thegame, or when ertain ations have ourred in the game world. Thereforeit is advantageous to make the system event based.In very modular systems it is an advantage to use event based systemsbeause eah module does not neessarily need to know of any other modulein the framework, but only of the shared data registries and a entral eventmanager that transmits the events to the appropriate modules. To ativateeah other, a module just has to send an event with the appropriate data,and then it knows that at some point the modules that subsribes to thistype of event will be run.The event manager is assigned the funtion that should be run when anevent ours. This funtion will be used to trigger the module into atingon the event, and is also known as an event handler.In a basi event system there is a entral loop that listens for events.When an event is sent, the funtions that are assigned to that kind of eventis ativated. When a lot of events are sent, they might start to queue up,making it neessary to shedule and prioritise what funtion to run next.When a new event is sent, the event manager an either reate a thread withthe funtion that should respond to the new event, or if the already runningfuntion has higher priority, stay in the thread of the urrent funtion.An event is basially a noti�ation that some ation has happened insome ontext. Events are also often referred to as messages, whih is whyevent based systems also some times are referred to as message based systems[Sh04℄. An event an also be attahed data, whih ould be the result ofthe ation that has happened. An event system an be interpreted as apublisher/subsription system, where there is a produer and a onsumerrespetively of events. All that is required to reate suh a system is thatthe modules an ommuniate with eah other. Ludger et al. [FFM03℄presents four ommuniation models:Request/Reply: In this type of ommuniation it is the onsumer thatinitiate the ommuniation, and request the data from the produer.In this model the onsumer must know the identity of the produer,beause the data is sent diretly. This has the disadvantage that eahmodule has to know eah other.Anonymous Request/Reply: This type is the same as the normal re-quest/reply, exept that it does not need to know the identity of theproduer. The ommuniation is handled by a global event manager.Callbak: Here it is the produer that initiates the ommuniation, sendingit diretly to the onsumer. This means that it has to know the identityof the onsumer.Event-based: This is like the allbak model, exept that it does not knowthe identity of the onsumer, beause this is handled entrally. This

CHAPTER 5. DESIGN TECHNIQUES Page 47 of 273way of ooperation in an event based system has big advantages in aloosely oupled modular system, beause the modules do not need toknow eah other. Sine it is the produer that knows when an ationhas been arried out, it makes sense that it is the produer that startsthe ommuniation.As argued by Ludger et al. [FFM03℄, the event-based ommuniationmodel is the most dynami and modular approah to handle ooperationbetween modules. The separated tasks in the human model makes it possibleto use the event-based ommuniation in the event system.5.3 Sripting LanguagesFrameworks often beome large appliations that an take a long time toompile, and even small hanges in the vital parts of a framework ouldmean a omplete reompilation of the soure ode. When tweaking an AI tobehave orretly aording to what the designer wants, it is often only a fewvalues that have to be hanged. These values might just as well be loadedat load time by using a sripting language. [Daw℄Furthermore, sripting languages make it possible for novie program-mers or game designers to take on the task of implementing the behaviourof the AI in the game[Hue℄. Sripting in games has been used in many ways.It is used to ontrol entire senes in games, like a sript from a movie, wherethe movement of every �amera� and harater are planned in the sript.Sripting an also be made more general and just make sure that ertainthings happen, when the player interats with the environment in a ertainway. This ould be what would happen if a button is being pushed or moreomplex interations, making sure that a series of ations are done beforeexeuting ertain parts of the sript, whih is also known as game logis.The advantage of letting other people than the programmers write thesripts, is that the people who know how things should work in the gameare the designers and by letting the designers write the sripts themselves,nothing will be lost or misinterpreted in the ommuniation between imple-mentor and designer. Also, getting the game logis on a higher level than therest of the native ode3, helps keeping the framework ode lean. With theoption of making rapid prototyping, instead of having to ompile everythingall the time, the sripts an be edited at run-time[Ous98℄. It is in this waypossible to test and tune the sripts muh faster than having to ompile andrestart the program.There are of ourse also drawbaks in using a sripting language. Theode is not as fast exeuted as native ode, beause it has to be interpreted.Some of this lost performane an be reovered by implementing the omplex3The language the GDF is written in.

Page 48 of 273 CHAPTER 5. DESIGN TECHNIQUESand omputationally heavy algorithms in native ode, and just give aessto these through an interfae in the framework. Sripting languages oftenuse dynami types and frameworks often use stati types. Beause the sriptode is dynamially typed, it has to be run-time type heked, whih anadd a lot of proessing time. The data being transferred from the frameworkontext to the sripting ontext also takes some resoures. Furthermore, itan take some development time to implement and integrate the sriptinglanguage into the framework. When that is done, both parts have to bemaintained and updated when new features are added to the framework, thedevelopers will have two �systems� to maintain.5.4 RTS Spei� ConeptsIn this setion we will disuss four new ideas, whih are spei� to the RTSgenre. The �rst we will present is a new data struture spei�ally designedto model the onept of strategies, used for learning strategies, ounter meth-ods, triks possible on ertain maps et. We all this data struture thestrategy tree. In the seond part of this setion we will disuss a matter veryimportant for all RTS games, namely path�nding. We will disuss the tra-ditional way of doing this and present our own idea on how to optimise thisomputational heavy alulation. In the third setion we will disuss howto represent tatis in RTS games. Here we will disuss elements importantfor tatis in RTS games, and propose a way to de�ne a tati. Finally,the last setion will present a way to reate generi base building templates,whih makes it possible for AI designers to easily de�ne templates speifyingoptimal building plaement in a partiular game.5.4.1 Strategy TreesThe idea of strategy trees ame into existene while attempting to disover amethod that would be both suited for learning and for representing strategiesin RTS games. A detailed disussion of why learning has not been providedwith most RTS games an be found in our pre-master thesis [FKL05℄. Pre-vious researh has primarily foused on training AIs in the developmentphase of a game [UGJM05℄ [MSWT05℄ [JG05℄ [dJSR05℄, but not on atu-ally learning after the training has been ompleted and the game has beenshipped. The latter part is one of the goals strategy trees have been designedto ahieve.This setion will start by desribing a simple RTS game example, andthrough this illustrate the idea behind the new data struture. Afterwardsa more general desription will be presented.Imagine a simple RTS game with three di�erent o�ensive units available:

CHAPTER 5. DESIGN TECHNIQUES Page 49 of 273

Figure 5.1: Strategy Tree for the ExampleSpearmen, arhers, and horsemen. The ountering system4 is as follows:
• Spearmen ounter horsemen
• Arhers ounter spearmen
• Horsemen ounter arhersIn this simple game eah player will start with four workers. The workersan harvest resoures and build two types of buildings: Supply buildings(farms) and unit prodution failities (barraks). The barraks an produeworkers and the o�ensive units.The idea behind strategy trees is that an RTS game usually onsist ofa series of states. The �rst signi�ant state is the start of the game, andthis will be the root node of the strategy tree. As illustrated in Figure 5.1,the root node in the simple example game, Node 1, onsists of the valuesof all variables important to the game in question inluding a time stampindiating when the strategy was used. In this ase the player has fourworkers and the time stamp is 0, beause it is the starting point of theplayer. Signi�ant states are determined di�erently from game to game.Often a signi�ant state is haraterised as one where the player has arriedout a ertain strategy and now hanges to another. In the strategy tree4RTS games typially implements a ountering system. This is basially a systemditating whih units are best used against ertain other types of units.

Page 50 of 273 CHAPTER 5. DESIGN TECHNIQUES

Figure 5.2: Strategy Tree Examplein Figure 5.1, Node 2 illustrates that the player knows only one strategyfollowing the starting point. This strategy onsists of building 15 workersand 20 arhers as well as a number of required buildings, and the strategytree node ditates that the strategy an be reahed 4 minutes into the game.From this point in the game, the player knows two strategies to hoose from.One of them, Node 3, fouses on building a mixed army of spearmen andarhers, while the other, Node 4, fouses on building a massive amount ofspearmen. The numbers attahed to eah edge between the di�erent nodesrepresent how often a strategy should be used ompared to others at a givennode, 1 being always and 0 being never. In this ase, the strategy representedby Node 3 is a more ommon strategy ompared to the strategy representedby Node 4. Furthermore, eah node an have a speial kind of node attahedto it as well, representing the ounter strategy to the respetive strategy.In Figure 5.1, Node 2 has one ounter, Counter 1: Node 2, onsisting ofbuilding a massive amount of horsemen whih ounters the arhers from thestrategy in Node 2.The above desribed how a strategy tree is built and how it representsthe possible strategies a player is aware of. The following will provide a moregeneral desription of strategy trees and the omposition of nodes. Figure5.2 shows a more generi example of a strategy tree. Eah State or Counternode in the tree onsists of the same set of attributes:

CHAPTER 5. DESIGN TECHNIQUES Page 51 of 273Node: A node in a strategy tree onsists of the number of eah kind ofunit the player should have, as well as the number of various buildingsshe should have. In some games, the node should also ontain thedi�erent researh upgrades purhased. Furthermore, eah node has atime stamp that tells how long into the game this strategy was usedand a list of tatis used with this strategy.Two kinds of edges exists in the strategy tree:Strategy Edge: One kind of edge onnets the node to the parent node.Consequently, it also onnets the node to its hildren. This kind ofedge is the one that binds the nodes together in the tree struture.Eah edge has a probability assoiated. This probability desribeshow probable the strategy, modelled in the hild nodes, is, omparedto the strategy of the other hildren. This probability is based on thefrequeny of observation of the di�erent strategies. The edge an alsoontain a plan for how best to make the transition from one strategyto the next. This would save the planner work, as it does not have toplan the best ourse of ation unless no plan exists.Counter Edge: The seond kind of edge leads to ounter nodes. This edgealso has a probability assoiated that is built on a ombination of howoften the ounter has been seen, and the suess of the ounter.Strategy trees are perfet for modelling known strategies and learningnew strategies. They also present a way of modelling ounters. Furthermore,if a strategy tree is maintained for eah opponent (modelling the opponent'sstrategy), this an be used as part of an opponent model. This way, a playeran properly re�et on the strategies and ounters used by eah player duringthe ourse of a game. Strategy trees also have the e�et that if the AI seesthe enemy army or base, it an ompare this to nodes in the strategy treeand see several things, for instane: How to ounter the urrent strategy,and whih strategy the urrent strategy will most likely lead to. Referringto the example in Figure 5.1, if the player sees that the opponent has theunits and buildings orresponding to Node 2, the player an see two things:The optimal ounter to this strategy (Counter 1: Node 2), and that there isa 70% hane that the opponent will soon be using the strategy representedby Node 3, and a 30% hane that the opponent will soon be using thestrategy represented by Node 4. However, the opponent ould also use anentirely new strategy that the player is not aware of. If this is the ase,the new strategy should be added to the strategy tree. This is done byadding a new node, a Node 5, to the node where the strategy varies from theknown strategies, Node 2. At this point the probabilities from Node 2 to itshildren should be re-adjusted, as it now has three hildren instead of justtwo. This way strategy trees easily support learning new strategies observed

Page 52 of 273 CHAPTER 5. DESIGN TECHNIQUESfrom the opponent. As strategy trees is one of the RTS spei� ideas thatwe plan to implement, we will return to them when evaluating the prototypeimplementation of the framework in Chapter 8.5.4.2 Path�ndingThe largest task usually handled by the AI is the task of �nding a path fromstarting point to the goal for all units in the game[BMS04℄. To understandthe full impliation of this task a series of fats must be taken into aount.In most RTS games all players are in ontrol of an army onsisting of anumber of units. The players or AIs move their army around in order tosout, attak and defend. Eah of these units must be assigned a path fromtheir starting point to the point they are ordered to. This means that asingle move order issued by the player or AI an mean that a path mustbe alulated for hundreds of units. The path is found from the plae theunits is urrently situated to a designated goal loation. An example of atypial map an be seen in Figure 5.7. Clusters form a grid of dotted lines.In Figure 5.6 one suh luster an be seen. For this example the luster ismade of 16*16 ells. The path that must be found is a list of onneted ells(ells that are adjaent to the ones next to them in the list) that start atthe start loation and end at the goal loation. We de�ne a low granularityas using lusters for the abstration and high granularity as using ells forthe abstration. The abstration that lusters provide will later be shown tobe useful to redue the searh spae explored in the path�nding. This listmust be found in a matter of moments to ensure fast response to the game.Furthermore it is not enough to �nd just any path that will take the unitfrom the starting point to the goal, the path must also be the shortest pathpossible.This means that building a path�nder is often a balane between theomplex task of �nding an optimal path from A to B and doing this in theomputationally heapest way possible.A*A* is a best-�rst searh algorithm that is very popular and has been used inmany variations in both the aademi world and in the game developmentindustry [BMS04℄. Using a heuristi de�ned by the developer, it will �nd theshortest path if one suh exist. Mono-diretional searh using A* will usuallyresult in an exploration of the searh spae muh like the one depited inFigure 5.3. Compared to the searh spae explored in for instane breadth-�rst searh the heuristi ensures a notieable optimisation of the numberof ells explored in the searh. This an be optimised even more usingbidiretional searh as seen in �gure 5.4. The fewer ells visited in thesearh does not just mean that the amount of memory used in the searh is

CHAPTER 5. DESIGN TECHNIQUES Page 53 of 273
GoalStart

Figure 5.3: Searh spae explored using A*
GoalStartFigure 5.4: Searh spae explored using bidiretional A*minimised, but it onsequently also minimises the time it takes to omputethe path. Both are the main points of fous for optimisation.Hierarhial SearhAs already mentioned there are two main onerns when designing apath�nder: The omputation time and the memory use. The two are notindependent, but are on the ontrary quite losely linked. Exploring a min-imum of ells will for instane mean a minimum of omputation time. Theidea behind hierarhial searh is to redue the searh spae on grid-basedmaps by working on multiple levels on granularity. High granularity meansa grid of ells and low granularity means a grid of groups of ells. If anoptimal path an be found on a low granularity map, ells outside this pathan be disregarded when onstruting a path of a higher granularity. Boteaet al. [BMS04℄ present one suh algorithm named HPA* (Hierarhial Path-Finding A*). HPA* �rst systematially divides the map up into a grid oflusters. It then determines entranes between the adjaent lusters, whihare obstale-free ommon borders between the lusters as seen as the markedareas in Figure 5.5. The entranes are used to build an abstrat problem pathwhih is an optimal path from start to goal onsisting of the entranes thatthe optimal path will pass through. The last step is to �nd the atual pathbetween the entranes on the highest level of granularity. The atual pro-essing is done by �rst �nding the abstrat problem path and then doingpath�nding on the �rst sub-path (the path between the �rst two entranesin the abstrat problem path). By restriting the high granularity path�nd-ing to the �rst subproblem, the path�nder will have the �rst few seondsof a units movement ready fast so that the unit an start moving while the

Page 54 of 273 CHAPTER 5. DESIGN TECHNIQUES

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

Figure 5.5: Entranes in HPA*path�nder omputes the rest of the path.Hierarhial JIT Path�nderThe path�nder we propose share the same basi priniples as the one justpresented. The low granularity grid will be maintained at the time of ex-ploration, or if the map is already explored, at loading time. Instead ofentranes, eah luster in the low granularity grid will share four passablenodes5 with the adjaent lusters: One eah at top, bottom, left and rightside (see �gure 5.6). There will exist a onnetion between two nodes if theluster is passable from one node to the other (not unlike entranes). Thatmeans that top and bottom will be onneted if a unit will be able to rossthe luster vertially. That is, the path from top to bottom must not exessfor instane 1.5 times the diret path. If any obstale is disovered this mustbe updated on the low granularity grid.The path�nding itself starts by determining a path from start to goalonsisting of passable nodes. The path onsisting of the lusters is alled thepassable path. The passable path is used to redue the searh spae muhlike the abstrat problem path seen in HPA*. The developer will be ableto tune the length of the sub-path by de�ning the number of lusters thisshould ontain. Eah sub-path an be proessed like in HPA*, that is ina Just In Time (JIT) fashion. In Figure 5.7 an example of a map an beseen. The example is a situation where a path is found moving around aledge obstale. The ledge is depited as a broad dotted line. The trees arealso onsidered obstales in this example. The grid of lusters is depitedin thin dotted lines and lines have been drawn as edges between passablenodes. Using the passable path seen as a dotted line between the two "X"markings, it is possible to restrit the searh spae to the lusters (marked5A passable node is a speial ell that is plaed at the border between two lusters ofells

CHAPTER 5. DESIGN TECHNIQUES Page 55 of 273
W E

14

15

13

12

11

10

9

8

6

7

5

4
3

2

0

1

2 3 4 5 6 9 12 130 1 7 8 14 151110
1

1

0

0

1

2

0 1 2

N

S

0

Figure 5.6: Plaement of Passable nodesin gray) found in the passable path.Theoretial ExamplesThe environment used in this example is hosen to show the worst possiblesenario for A*, and the best possible senario for the path�nder used inthis projet. The map is a �at fully visible grid of 1024*1024 ells withoutobstales, where the path�nder must �nd a path from the top left orner tothe bottom right orner, that is diagonally aross the map. The hosen sizefor lusters is 16*16 ells and the grid of lusters is thus 64*64.An ordinary A* will �nd an optimal path from start to goal but in theproess of doing so it will explore almost all the ells on the map. Thatmeans that the A* path�nder will examine 1024*1024 or 1048576 ells intotal. The searh spae an be seen at the left side of Figure 5.8.Using the passable path for restriting the searh spae, the path�nderused in this projet will only explore the nodes found in the marked pathseen at the right side of Figure 5.8. This path ontains 64+63 lusters ofells making it a total of 32512 ells expanded.As seen in the example the hierarhial path�nder will explore up to
1/32 of the amount ells ompared to an ordinary A*. This number an befurther minimised by hoosing a smaller size for the lusters but this has to

Page 56 of 273 CHAPTER 5. DESIGN TECHNIQUES

Figure 5.7: Passable Example

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Figure 5.8: Searh spaes for A* and Hierarhial searh

CHAPTER 5. DESIGN TECHNIQUES Page 57 of 273be balaned with the e�ort of alulating the passable path.The best possible senario for A* and the worst possible senario forhierarhial searh is when the start ell and the goal ell are adjaent toeah other. In this ase the A* will terminate after exploring the goal state,but the hierarhial searh will �rst have to determine a passable path. Thismeans that the hierarhial searh will explore four nodes instead of twonodes (two nodes in the passable searh and two nodes in the atual pathsearh).In order for the hierarhial searh to be better the goal ell must be ina di�erent luster than the start ell. This is not a problem beause mostof the movements done in RTS games will be from the AI's own base to theenemy base or from harvesting buildings to the resoures being harvested.In both ases the path will ross several lusters.Based on this we hypothesis that a hierarhial path�nder will be ableto redue both the omputation time and the memory use in a dynamienvironment. The impat will most likely grow with the number of obstalesand the length of the path. This will be tested through the prototype.5.4.3 TatisThis setion will disuss how to represent tatis in RTS games. Throughoutthis setion, a lot of RTS spei� terms and expressions will be used, andthe reader is referred to Appendix A for an explanation of these. As alreadydisussed in Setion 5.4.1, a strategy tree node an ontain tatis onerninghow to exeute a ertain strategy. We de�ne tatis as being the part thatde�nes how to ontrol units during a battle. That is, it does not deidewhere on the map to attak or evaluate whether the AI is in a losing battle.In previous researh on tatial planning, Reee et al. [RKD00℄ presentthe projet DISAF that works with the tatial movement of individual sol-diers in a omplex environment. Among other things they present two kindsof deompositions of the problem: A distane-detail deomposition and anenvironment deomposition. Both help to reah a high abstration levelso that a path�nding algorithm an be implemented to handle the prob-lem. Burgess [Bur03a℄ works with terrain analysis, identifying avenues ofapproah, and deployment of fores whih an be adjusted to reat to newinformation (for instane enemy sightings). Both papers are written in o-operation with the US army. Although real-life tatial situations have someresemblane to the tatial situations ourring in RTS games, the previ-ous work on tatial planning is di�ult to reuse when trying to develop amethod for representing tatis. This does however, not mean that some ofthe ideas in these papers annot be reused when exeuting tatis within aTatial Planner. The representation of tatis are however a di�erent mat-ter, and this representation must be both developer friendly and expressiveenough to deal with very advaned tatis within any RTS game genre. The

Page 58 of 273 CHAPTER 5. DESIGN TECHNIQUESbasi responsibilities of a tati in RTS games is to de�ne the following:Units: The tati must speify whih unit types and how many of eah areneeded to suessfully arrying out the tati.Formations: A tati must de�ne how di�erent units should position them-selves in relation to eah other and in relation to the enemy's units. Aformation ould for instane plae units with a lot of hitpoints in thefront of the army, while ranged and weaker units ould stand protetedbehind these. The tati should also speify whether the formationshould be kept at all times during battle, or if it should mainly beonsidered a good starting position before a battle.Fous Fire: In most games, some units will have higher attak damage onertain kinds of units ompared to others. A tati should inlude rulesfor whih units should fous on whih type of enemy units. Further-more, the tati should de�ne rules for how many should fous �re on aertain unit at a time and if enemy units withdrawn from battle shouldbe pursued.Unit Preserving: Tatis should also speify when to withdraw units frombattle. This may vary for di�erent unit types, as weak units shouldprobably reat faster when reeiving damage. Unit preserving tatisfurthermore inludes the deision of where to send withdrawing units.This ould be the main base or just without of enemy range and thenbak into the battle again.Using Support: A tati should speify how to use support units, and morespei�ally the spells or abilities they have. This inludes deisionsregarding who should reeive bu�s and debu�s as well as how area ofe�et spells or abilities should be used. Furthermore, as some spellsor abilities have limited use, the tati should de�ne when and underwhat onditions these should be used.Using Terrain: Several games inludes terrain spei� advantages duringbattles. This ould be things suh as using hoke points, high groundet. A tati should ditate how to take advantage of di�erent terrainfeatures.Creating a representation of tatis usable in many di�erent RTS gamesis a di�ult task. The goals of this representation is as follows:Generi: The representation should be able to represent tatis in all of thesupported RTS games.Versatile: The representation should allow for a tati to be easily adaptedto suit a spei� game.

CHAPTER 5. DESIGN TECHNIQUES Page 59 of 273A tati onsists of the six responsibilities mentioned earlier, and it islogially to represent it using these distint areas. That is, a tati onsistsof the unit types neessary, rules for how units should stand in formation,rules for fous �re, rules for anti-fous �re, rules for using support units andrules for using terrain advantages. The idea behind this tati representationis to use small building bloks of rules to omposite larger and more omplextatis. We will explain the idea of the representation through a typialstandard tati usable in most RTS games. The tati is alled a Siegetati, and basially onsists of having siege units attaking the enemy base,while these are proteted by a number of other units. This has the advantagethat it fores the enemy to ome out of his base (thus leaving the advantageof any base defene) and attak the player, who has plaed her units in anadvantageous position to deal with this attak.First, we will desribe in general terms how eah of a tati's responsibili-ties ould be de�ned for the Siege tati. Then we will disuss an attempt toexpress the tati in a simple generi way. This will not be a full disussionon the topi as it is muh more advaned than the example presented, butit will serve as a proof of onept that a generi representation is possible.Finally, we will brie�y disuss how this tati ould be used in di�erent kindof RTS games. The following presents the details of the Siege tati:Units: This tati requires as a minimum two types of units. First of all,siege units are needed to attak the enemy base from a distane, andseondly, a group of units are needed to protet these siege units. Forsimpliity, we will assume that the group of non-siege units are allmelee units.Formations: A formation in this tati should ensure that the siege unitsare properly proteted by the melee units. This means they should bepositioned between the siege units and the enemy units or base.Fous Fire: As suh, there do not need to be any fous �re rules for themelee units as their primary fous will be to hold formation and therebyprotet the siege units. The siege units on the other hand, shouldprimarily fous on defensive strutures in the enemy base, or buildingsimportant for unit prodution.Unit Preserving: To avoid hit and run attaks from the enemy killingwounded units, units should be sent bak to the main base when theyhave lower than 20% of the maximum health.Using Support: For this example, we will assume that there are no supportunits and that none of the other units have speial spells/abilities.Using Terrain: For simpliity, we assume that there will be no tatialterrain onsiderations when using this tati.

Page 60 of 273 CHAPTER 5. DESIGN TECHNIQUESConsider a simple approah for de�ning this tati shown in Listing 5.1.This approah assumes that the AI knows about whih units are onsideredsiege units, melee units et. and that it knows whih buildings are defensivestrutures, unit prodution failities et. Eah line in the listing desribesa rule used with this tati, and their meaning will be explained in thefollowing. Line 1 de�nes the tati named Siege. Line 2 and line 3 de�neswhih units are to be used with this tatis. The numbers indiate theirgroup id, and as an be seen, group 1 onsists of all siege units, while group2 onsists of all melee units. The AI an itself �gure out exatly whihunits to plae in eah group as it knows whih are onsidered melee unitsand whih are onsidered siege units. These group id's an later be used tospeify individual rules for eah group. Line 4 spei�es the formation theseunits should be in. Units groups are listed with the �rst being losest to theenemy units or buildings. This means that in this ase, the melee units arestanding in the front, while the siege units are behind them. Furthermore,one an speify the importane of units keeping the formation during battle.In this ase, the melee units should always keep formation in order to protetthe siege units, while the siege units an move around freely (the melee unitswill still protet them while moving). Line 5 adds a fous �re rule for group1, the siege units. The rule simply states a prioritised list of units on whihto �re upon �rst. In this simple example we have deided not to inludethings like how many units should fous �re at the same building at a time,but it ould relatively easily be added at a later time. A similar rule ouldbe added for eah group in the tati if neessary. The two �nal lines, line6 and line 7 simply ditate a unit preserving rule for both group 1 andgroup 2. They state that a unit should try to run bak to its own mainbase if it is down to only 20% of its original hitpoints. All of this assumesthat the framework has internal operations that an handle the exeutionof the di�erent rules. However, given the information in for instane theadd_fous�re_rule, it should be relatively easy to provide these operations.Listing 5.1: Tati Template1 S i ege = Tat i ()2 S i ege . add_unit_group (1 , s i ege_un i t s)3 S i ege . add_unit_group (2 , melee_units)4 S i ege . format ion ([(2 , s t r i t) , (1 , l o o s e) ℄)5 S i ege . add_fous f i r e_ru le (1 , [d e f en s iv e_st ru tur e s , un i t_p r odu t i on_ f a i l i t i e s ℄)6 S i ege . add_preserving_rule (1 , (20 , main_base))7 S i ege . add_preserving_rule (2 , (20 , main_base))Even this simple approah to the Siege tati an be useful in manydi�erent kind of RTS games. In Starraft the tati ould be used withmarines and siege tanks, inWarraft III the tati ould be used with gruntsand demolishers and in Age of Mythology the tati ould be used withAxemen and atapults.The approah presented in this setion is in no way a fully omplete

CHAPTER 5. DESIGN TECHNIQUES Page 61 of 273representation. Further work on this must be done in order to fully representall kinds of tatis in RTS games. We hypothesise however, through theexample desribed in this setion, that it is possible to reate a generirepresentation whih will be usable to represent tatis possible in manydi�erent RTS games. The representation will not be tested in the prototypeimplementation, beause of the idea not being fully developed and beauseof limitations of the test game. These limitations are presented in Chapter7.2.2.5.4.4 Base Building TemplatesIn this setion we will present the idea of base building templates, for deter-mining how the layout of a base should be. To our knowledge no relatedwork exists dealing with this subjet. What an be seen in games today isthat there is either a �xed layout that is used, whih is tweaked to �t theterrain, or the buildings is plaed at random where there is room for them.First we will present the main idea, then an example of a base layout, andthen an example of how this ould be modelled in the templates.To ontrol the layout of the base in aordane to the strategy thatis used, we have designed what we all base building templates. These willditate how the base is onstruted, taking into aount the terrain, resouresin the area, and the strategy used. Just like with the strategy tree the futuredevelopment of the base must be expressed in the base building template tree.On eah strategy node in the strategy tree the user of the frameworkmust speify what kind of base buildings templates she determines is thebest for that strategy. The base building templates reate the tree of howthe base ould evolve, themselves. In eah of the nodes a parameter spei�eswhat buildings that should be used for perimeter and what buildings thatshould be proteted.It should furthermore be possible to reate funtions that speify howto plae buildings in speial ases. Inside these funtions a lot of di�erenttools must be available to the user, suh as in�uene maps[Sh04℄[Del01℄6,omplete information about the already plaed buildings, and other maprelated information suh as terrain and positions of resoures. The in�uenemaps give aess to features where the developer an speify what weightdi�erent terrain types and resoures should have as well as being able tode�ne the propagation funtion, and tell how eah layer in the map shouldbe ombined.An example of a layout of a defensive base in Warraft III an be seen inFigure 5.9. Here the buildings with high hitpoints are plaed at the front,beause they work as a perimeter. The Town Hall is plaed lose to theMine, so that the distane that the workers have to go is not long, but it6A further desription of in�uene maps are given in the pre-master thesis [FKL05℄.

Page 62 of 273 CHAPTER 5. DESIGN TECHNIQUES
Lumber mill

Tower

Farm FarmFarm

Shop

Town hall

Mine

Tower

Alter
Barrack

Figure 5.9: A defensive base layout in Warraft IIIis also plaed at the perimeter, beause it is a high hitpoint building. Twotowers are plaed right next to the Town Hall so that they an defend thebuilding, but they are also entrally plaed so that they an attak any unitsthat try to attak any other buildings in the base. The Tower buildings donot have that may hitpoints so they are plaed behind the base perimeter.The Lumber Mill is plaed lose to the resoure that the workers harvestfor it, and is plaed behind the base barriers, beause it has relatively lowhitpoints, and the workers would be vulnerable when gathering wood. TheAlter and Barraks are high hitpoint buildings, so they are used as barriers.Farms are also used as perimeter, not beause they are strong, but beausethey are fast to build, heap, and the prie to hitpoint ratio makes it a heapbarrier building.This example of how the layout of the base ould be written in basebuilding templates syntax is presented in Listing 5.2. The module using thetemplates must be able to �nd the best plae for the entre of the base byusing in�uene maps. Furthermore, it must be able, again with the use ofin�uene maps, to �nd what perimeters that does not need to be defended,beause of for instane terrain or resoures that work as perimeter.The module should �nd the best plae to build harvesting buildings are,and reate in�uene maps where the plaement of these a�et how the restof the template is built. What buildings that are harvesting buildings isnot neessary to speify in the template, beause this is known from thetehnology tree. Line 1 de�nes the base building template named Defensive.On Line 2 it is assigned a name, to desribe what kind of base layout it is.

CHAPTER 5. DESIGN TECHNIQUES Page 63 of 273The town hall is set to be the entral building in the base on Line 3. Line4 de�nes that there should only be one opening in the base. On Line 5 itis spei�ed that the building types that are added to protet buildingsshould be plaed within the base, behind the barriers. The add buildorderto the template on Line 6 and 7 is used as a guide to what buildings to build�rst. If none is spei�ed, the order will be found while playing the game. Abase building template node must only ontain the order of those buildingsthat have been added additionally from the last node. The building typesin barrier buildings added on Line 8 will be used for onstruting thebarriers. The type of defensive buildings that an atively defend thebase is added on Line 9.Listing 5.2: Base building template node1 Defens ive = Base_building_template ()2 Defens ive . set_name (" S ing l e opening de f en s i v e layout ")3 Defens ive . s e t_ent ra l_bu i ld ing (town_hall)4 Defens ive . set_number_of_openings (1)5 Defens ive . add_protet_bui ldings ([town_hall , lumber_mill , shop , tower ℄)6 Defens ive . add_buildorder ([town_hall , farm , farm , a l t e r , barrak , lumber_mill ,7 farm , tower , tower , shop ℄)8 Defens ive . add_barr ier_bui ld ings ([barrak , a l t e r , farm , town_hall ℄)9 Defens ive . add_defens ive_bui ld ings ([tower ℄)5.4.5 SummaryThis setion has presented four RTS spei� onepts spei�ally designedto reate AIs in this genre. We presented the idea of strategy trees, asa data struture built for representing strategies in RTS games. Then wedisussed the issue of path�nding, and presented an optimised way of doingthis in an RTS game environment. A preliminary design of a representationof tatis in RTS games were also presented, along with the idea of basebuilding templates, used for de�ning optimal building plaement for the AI.Only strategy trees and our path�nding idea will be tested in the prototypeimplementation.

CHAPTER 6. FRAMEWORK DESIGN Page 65 of 273
Chapter 6Framework DesignThis hapter will fous on the design of the AI framework. An illustration ofthe overall design an be seen in Figure 6.1. The framework arhiteture isbuilt under the assumption that it is ompletely separated from the GDF andthat the framework is in omplete ontrol of all AI ations. This means thatthe arhiteture must handle all AI ativity. Internally in the framework, anevent system deides whih modules are exeuted and eah module in theframework is on�gured through a sript.We will start by presenting the arhiteture of the framework, by dis-ussing how one an transform the human model presented in Chapter 3into a ognitive framework arhiteture. With eah module we will presentits responsibilities, how it ommuniates with other modules and how it ful-�ls one or more of the framework apabilities de�ned in Setion 5.1. After-wards, we will present how knowledge is represented in the framework. Thisinludes a disussion of how knowledge may be represented in eah of theknowledge bases de�ned in the human model. Furthermore, we will disusshow the di�erent representations of knowledge ditates the organisation ofknowledge in the framework. We will then disuss where and how hot spots

GDF

Module

Script

Module

Script

Module

Script

Module

Script

Event System
AI Framework

Figure 6.1: Overall design of the framework

Page 66 of 273 CHAPTER 6. FRAMEWORK DESIGNare represented, and hereby explain how we allow framework instanes todi�er. Finally, the last setion will present the event system ontrolling theframework and explain how a sripting language is used with the framework.We have deided not to inlude any ooperation features in the design,beause it would bring unwanted omplexity to a design that is already morethan apable of proving whether the idea of an RTS framework is a goodidea. This means that the Cooperation task disussed in Chapter 3, will notbe onsidered when designing the arhiteture of the framework.6.1 Framework ArhitetureWhen designing the ognitive arhiteture of the framework, it is natural tolook at the human model one again. Using the human model as a startingpoint, many of these tasks an be reused, some must be separated into severalmodules, while others an simply be in-ooperated in other modules. We willstart by presenting these hanges and then present the overall arhiteturealong with a desription of eah module. This desription will inlude apresentation of eah module's spei� responsibility as well as a referene tohow they ful�l one or more of the framework apabilities presented in Setion5.1.6.1.1 Cognitive ArhitetureCompared to the human model in Chapter 3, several hanges has been made.First of all, the Souting task has beome a part of the Strategi Planningtask, beause it is a relatively small task ompared to others and beause itis so losely linked with Strategi Planning. The Miromanagement task hasbeen divided into two modules: Tatial Planning and a Reative Module.The latter being a new module to handle urgent ations suh as withdrawingunits from battle beause of fous �re. The reason for this division is thatmiromanagement is so losely linked to tatial planning that these annotbe handled separately. However, there are still some ations that shouldbe arried out instantly, whih is what the Reative Module is intended tohandle.The two tasks Opponent Modelling and Reasoning has been divided intotwo new modules that better represents what their responsibilities are: Prob-abilisti Reasoning and Pattern Reognition. The Probabilisti Reasoningmodule takes are of all alulations onerning the opponent's strategy aswell as maintaining belief knowledge in the Opponent Model. The PatternReognition module has two responsibilities: Updating the Opponent Modelwith new information and reognising strategies and tatis used by the op-ponent. Finally, two new modules have been added to ease ommuniationbetween the AI framework and the GDF. These are a Perept Interpretermodule and an Ation Planner module. The Perept Interpreter module is

CHAPTER 6. FRAMEWORK DESIGN Page 67 of 273

Figure 6.2: The ognitive arhiteture of the frameworkadded to handle all input from the GDF and is responsible for updating allthe appropriate knowledge bases in the AI framework. The Ation Planneron the other hand, is responsible for handling all output from the AI frame-work to the GDF. Furthermore, it is responsible for deiding in whih orderations are to be exeuted and how to prioritise ations aording to theresoures available.Figure 6.2 (a larger version an be seen in Appendix K.2) shows theognitive arhiteture of our AI framework. Cirles represents frameworkmodules and arrows represents data �ow from one module to another. Thediamonds represents ommuniation with the GDF. Eah module has a smallbox with numbers attahed to it, whih shows whih knowledge bases themodule uses. The numbers orrespond to the prior knowledge and in-gameknowledge tables at the bottom of the �gure. Note that some of the knowl-edge bases have not yet been introdued, as this will �rst happen in Setion6.2, but for easy referening, a short desription of all of them an be foundin Appendix C.6.1.2 ModulesThe following will present the responsibility of eah module and relationshipwith other modules:Perept Interpreter: Perepts an take the form of simply being the game

Page 68 of 273 CHAPTER 6. FRAMEWORK DESIGNstate at eah deision yle, or a diret message sent to the AI suhas �Your base is under attak� known from many RTS games. Thismodule takes are of translating perepts to a form usable for PatternReognition methods as well as providing the Reative Module with theneessary data, inluding information about damaged units and nativeAI events. Furthermore, this module takes are of updating severalof the in-game knowledge bases: In-Game Enemy Knowledge, CurrentStrategy Node, In-Game Own Knowledge, Dynami Map Knowledge,and Dynami Obstales. The module orresponds to a part of thePereption and Situation Assessment apability presented in Setion5.1. Further details on this module an be found in Appendix B.1.Reative Module: As explained earlier, the Miromanagement task hasbeen removed and replaed by a Reative Module. This module takesare of all low level unit reations and it handles all native AI1 events.The degree of reativeness should be left to the AI designer as itsimportane is game spei� and likewise it should be user-spei� howto handle di�erent native AI events. The module will monitor howmuh damage units and buildings are dealt over time, and make surethat the Unit State and Building State in-game knowledge bases areupdated. A detailed disussion of how this module is designed an befound in Appendix B.2.Pattern Reognition: The main responsibilities of the Pattern Reogni-tion module have already been mentioned: Updating the OpponentModel and reognising strategies and tatis. Updating the Oppo-nent Model inludes keeping trak of enemy units disappearing intofog of war and reognising tatis used. To reognise tatis, the usermust speify speial reognising methods based on Tatial Knowl-edge. Reognising strategies on the other hand, an be handled by theframework, as this is basially a matter of mathing a strategy nodewith the strategy tree de�ned in Known Strategies. This module willfurthermore during a game, keep trak of a strategy tree desribingwhih stages the opponent's strategy has gone through, whih will bea big help later for the Learning module, when adding new strategiesto the AI's repertoire. Aording to the apabilities desribed in Se-tion 5.1, the Pattern Reognition module takes are of two apabilities:Reognition and Categorisation and partly Predition and Monitoring.Details desribing the design of this module an be found in AppendixB.3.1The native AI is the built-in reative AI on eah unit in a game. When a unit forinstane is attaked and then tries to �nd and attak the enemy attaking it, it is thenative AI reating. This is often a problem in RTS games, beause a player an lure partsof an army away taking advantage of this unit's native AI.

CHAPTER 6. FRAMEWORK DESIGN Page 69 of 273Learning: The arhiteture supports two types of learning: Knowledge a-quisition and knowledge re�nement. Knowledge aquisition happenswhen the AI should learn strategies, tatis or base building templates.Adding a new strategy to strategy trees is a relatively simple opera-tion as the data struture makes it easy to do so. Learning new tatisor base building templates is a more ompliated proess, and is de-sribed in further detail, along with the rest of the Learning module,in Appendix B.9. The Learning module must furthermore evaluatethe suess of strategies, tatis and base building templates and mod-ify the strategy tree knowledge bases, Tatial Knowledge and BaseBuilding Templates aordingly. Finally, it must keep trak of di�er-ent opponents by updating their orresponding strategy tree in EnemyKnowledge. The framework in-ooperates so-alled lazy learning [LL02℄as it is most sensible to reason about the development and strategies ofa game after the game has ended. Furthermore, some learning meth-ods take a lot of CPU time, whih is unwanted during game as lesstime an then be dediated to �nding the right strategies and ations.This module takes are of the Remembering, Re�etion and Learningapability disussed in Setion 5.1.Probabilisti Reasoning: The main tasks of this module is determiningthe opponent's strategy and �guring out potential follow-up strategies.Determining the opponent's strategy is a matter of omparing the Op-ponent Model with strategy nodes in the di�erent strategy trees. Dif-ferent optimisation methods an be used to do this as is desribed inAppendix B.4. Finding follow-up strategies is a relatively simple task,as strategy trees has diret support for this operation. Besides thesetwo tasks, the module must take are of updating the Opponent Modelwith new belief information about the opponent's strategy and deter-mining important variables that may give away the opponent's strategygiven that the module �nds that there are more than one possible. TheProbabilisti Reasoning module makes use of primarily Indutive Rea-soning by going from spei� observations about the enemy to moregeneral beliefs about her urrent and upoming strategy. This mod-ule takes are of the Reasoning and Belief Maintenane apabilitiesmentioned in Setion 5.1.Strategi Planning: The Strategi Planning module takes on the task ofhoosing an overall strategy for the AI. It an do this partly by usingdi�erent knowledge bases, and partly by using the Reasoning moduleto provide reliable information on whih to base deisions. The modulemust go through two phases: First, an overall strategy must be seletedand seond, units must be assigned di�erent tasks to properly exeutethe strategy. Besides this, the module is also responsible of souting

Page 70 of 273 CHAPTER 6. FRAMEWORK DESIGNand planning where to expand if the strategy ditates this. A furtherdisussion of eah of the tasks the Strategi Planning module must takeare of, an be found in Appendix B.5. The module provides meansfor the Deision Making and Choie and the Pereption and SituationAssessment apabilities presented in Setion 5.1.Tatial Planning: This module is essentially responsible for all unit a-tions that are not diretly related to a resoure gathering or basebuilding ativity. This an be further divided into two parts: Unitmovement and unit engagement. Unit movement inludes path�nd-ing and avoiding walking through enemy armies. This area will partlybe overed by the path�nding idea mentioned in Setion 5.4.2. Unitengagement inludes all miromanagement details suh as fous �re,using support units and withdrawing damaged units from battle. Todo this, the module will rely on the representation of tatis presentedin Setion 5.4.3. The module is furthermore responsible for deidingwhen to withdraw an army from a losing battle, for keeping armiesin formation while moving, and for making detailed terrain analysisof the battle�eld. More details on the design of the Tatial Planningmodule an be found in Appendix B.6. This module handles two ofthe ognitive framework apabilities presented in Setion 5.1: DeisionMaking and Choie and Pereption and Situation Assessment.Base Building: The Base Building module is responsible for planning basebuilding plaement and determining building priorities. Given a strat-egy from the Strategi Planning module ontaining buildings to bebuilt, the Base Building module must prioritise whih to build �rstand where to build them. The latter must onsider optimal plaementof all the buildings that must be built, and must thus both inlude aertain measure of antiipation as well as a terrain analysis of the areasurrounding the main base. Furthermore, the module must take ationwhen the Building State in-game knowledge base shows that a buildingis in ritial health and repairing is neessary. Details on the ompletedesign of this module an be found in Appendix B.8. This module pri-marily fouses on the Problem Solving and Planning apability de�nedin setion 5.1Resoure Management: This module has four di�erent responsibilities.Given a strategy from the Strategi Planning module it must determineresoure requirements and determine a resoure gathering plan thatallows for the strategy to be exeuted as fast as possible. One fatorin this determination is a resoure analysis, whih onsiders whihand how many resoures are left at di�erent loations. This way, theResoure Management module will deide if an expansion is neessary.Afterwards, the module must assign all workers to the appropriate

CHAPTER 6. FRAMEWORK DESIGN Page 71 of 273resoures. The �nal task of the Resoure Management module is toensure that resoure gathering happens at a optimal rate. This inludesnot only optimal path�nding, but also having an optimal number ofworkers harvesting the di�erent resoures. The details of the design ofthis module an be found in Appendix B.7. The module is primarilyontributing to the Problem Solving and Planning apability presentedin Setion 5.1.Ation Planner: The Ation Planner module is responsible for shedulingations and ommuniating the hosen ations to the GDF. Shedul-ing of ations are important when the AI player do not have enoughresoures to arry out all the wanted ations. It is this way also respon-sible for delaying resoure spending if the AI is required to arry out anexpensive ation later in the game. The module is furthermore respon-sible for produing two plans: Unit Plan and Researh Plan. The UnitPlan ontains information about whih units are to be built next, andthe Researh Plan ontains information about whih researh upgradesto purhase, and when this should happen. The Ation Planner is theonly module in the framework, whih is allowed to output ations tothe GDF. Details on the design of this module an be found in Ap-pendix B.10. The Ation Planner handles the Exeution and Ationapability presented in Setion 5.16.2 Representation of KnowledgeTo disuss in detail how eah knowledge base should be represented in theframework, some of the knowledge bases de�ned in the human model mustbe divided into smaller knowledge bases. We will start by introduing thenew knowledge bases and then move on to disuss how eah knowledge baseis represented. The reader is one again referred to the illustration of theognitive arhiteture of the framework in Appendix K.2 to see the role ofeah knowledge base in the arhiteture.6.2.1 Division of Knowledge BasesOnly one of the prior knowledge bases must be divided into smaller knowl-edge bases and this is Game Spei� Knowledge. This knowledge base isdivided into the following:Resoure Types: This knowledge base de�nes what kind of resoures areavailable in the game.Tehnology Tree: This knowledge base de�nes game spei� building de-pendenies, unit dependenies and researh dependenies, as well as

Page 72 of 273 CHAPTER 6. FRAMEWORK DESIGNresoure ost for everything in the tree. Furthermore, it inludes knowl-edge about what ations eah unit or building is apable of.Base Building Templates: Contains templates for struturing base build-ing. These templates also ontain a prioritised list of buildings to build�rst for eah building plan.Tatial Knowledge: A knowledge base desribing all tatis possible in aertain game. These are essentially also present in the Known Strate-gies knowledge base, but is here hidden within the di�erent strategynodes. This knowledge base is basially for easy referening the di�er-ent kinds of tatis.All of the in-game knowledge bases have been divided into smaller knowl-edge bases as well to get a learer overview of what eah of them onsistsof:In-Game Enemy Knowledge:Opponent Model: Contains information about the urrent strategyof the enemy, inluding a strategy tree and urrent node infor-mation for the enemy. It also spei�es beliefs about the numberof units and buildings the enemy has. The beliefs are only validif the attribute in question have not been souted, and they areonly there to represent what the AI urrently thinks the opponentis doing. All updates inludes a time stamp, whih allow the AIto give less importane to variables not updated for a long time.In-Game Enemy Knowledge: Contains the position of eah enemyunit urrently visible on the map and knowledge about whereertain units have been seen earlier (So the AI does not forgetenemy units when they enter fog of war)Unit and Building Information:Assigned Unit Ations: Information about eah ontrolled unit andthe urrent ation assigned to it.Assigned Building Ations: Information about eah ontrolledbuilding and the urrent ation assigned to it.Unit State: Contains a olletion of all ontrolled units and the stateeah of them are in.Building State: Contains a olletion of all ontrolled buildings andthe state eah of them are in.Own Strategy:Current Strategy Node: Maintains the urrent strategy node forthe AI player.

CHAPTER 6. FRAMEWORK DESIGN Page 73 of 273Goal Strategy Node: Desribes the goal strategy node.In-Game Own Knowledge: Contains the position and urrent sta-tus of all friendly units and buildings.Building Plan: Contains the urrent building plan for the AI's base.Unit Plan: Contains information about whih units to build and inwhat order.Researh Plan: Contains information about whih researh up-grades to purhase and in what order.Mission Knowledge: Contains information about di�erent missionsthat should be exeuted in aordane with the urrent strategy.Eah mission is noted along with the goal of the mission and theunits assigned to perform it.In-Game Map Knowledge:Dynami Map Knowledge: Inludes dynami elements suh as re-soure loations and amounts. Will di�er a lot depending on thegame in question.Dynami Obstales: Contains the position of all obstales urrentlyin view that are able to move from one game tik to another.6.2.2 Data RepresentationOne of the most entral aspets of a ognitive arhiteture is the way itrepresents knowledge. An arhiteture an hoose to use a single, uniformenoding of knowledge, beause of its simpliity and elegane and beause itis easier to provide learning or re�etion to only one type of data struture.The arhiteture an also provide a mixture of knowledge representations,beause limiting the framework to only one type an in some ases fore anawkward or inappropriate use of the framework. However, o�ering severaldi�erent representations an bring unwanted omplexity to the framework.Most frameworks therefore limit themselves to only a few di�erent types.A ommon distintion between the hoie of representation is whether it isdelarative or proedural [LL02℄. A delarative representation of knowledgeallows manipulation by ognitive mehanisms independent of its ontent.Proedural representations on the other hand, represents knowledge as a wayto aomplish some task. Another distintion is between skill knowledge andoneptual knowledge. While skill knowledge typially desribes sequenes ofations to ahieve a ertain goal, oneptual knowledge deals with objetsand situations rather than the ations that manipulate them [LL02℄.Many of the knowledge bases in our framework use trivial data struturesand their underlying representation are not interesting, beause the user willnever be required to be aware of these representations. In the following wewill emphasise the use of strategy trees and strategy tree nodes, as these are

Page 74 of 273 CHAPTER 6. FRAMEWORK DESIGNin many ways the foundation on whih several modules work on. The use ofstrategy trees suggests a very organised hierarhy of knowledge, whih meansthat knowledge piees referene eah other and have a relation to eah other[LL02℄ [FKL05℄. Strategy trees are furthermore a delarative representationand fouses on oneptual knowledge rather than skill knowledge. We hypoth-esise that strategy trees are a su�ient representation to represent all kindof strategies in all kinds of RTS games. This is not a data struture the userof the framework will be able to hange, beause this would ompliate theinternal methods in the framework working on strategy trees. Furthermore,beause of strategy trees being able to represent all kinds of strategies, itprovides the user with a relatively simple representation of strategies, whihalso gives aess to learning methods as disussed in Setion 5.4.1. First, allknowledge bases using strategy trees will be presented and their use of themwill be explained:Known Strategies: This knowledge base is a strategy tree ontaining allpossible strategies available in the game in question.Enemy Knowledge: This is a strategy tree ontaining all the strategies aertain opponent has done over several played games. Furthermore,it keeps trak of how many times a ertain strategy has been seletedand thereby it will be possible to detet if the opponent has spei�strategi or tatial tendenies.Game Type Knowledge: This knowledge base ontains several strategytrees depending on the number of di�erent game types in a ertaingame. Eah strategy tree ontains di�erent strategies and probabilitiesbased on the game type.Map Knowledge: This knowledge base inludes strategies for eah mapin the game. Depending on the map, strategies and their likelihoodof suess will hange, and a strategy tree for eah map in the gamerepresents this fat. The knowledge base makes it possible to learnmap spei� strategies.Three in-game knowledge bases furthermore makes use of the strategytree struture by using strategy tree nodes as their representation form:Opponent Model: An opponent model onsists of two things: A strategynode representing the opponent's urrent strategy node and a strategytree path showing the steps the opponent went through to get to theurrent strategy node.Current Strategy Node: A strategy node representing the AI player'sown urrent strategy.

CHAPTER 6. FRAMEWORK DESIGN Page 75 of 273Target Strategy Node: A strategy node representing the AI player's goalstrategy. This will always be a strategy node from one of the strategytrees in the other knowledge bases.Two other knowledge bases deserve speial mentioning at this point, astheir representation are not obvious:Base Building Templates: Base building templates follow the represen-tation presented and disussed in Setion 5.4.4.Tatial Knowledge: The representation of tatis follow the representa-tion presented and disussed in Setion 5.4.3.These two representations both fouses on a more proedural represen-tation ompared to strategy trees. They are onerned not only with rep-resenting a tati or template, but also on how to exeute the tati or usethe template. Having these two additional representations in the framework,means that the framework will have a total of three representations that theuser should be aware of. This mixture of knowledge representations is a-eptable in this framework, beause eah representation overs very di�erentareas. At the same time, they an be used in onnetion with eah other,as a strategy tree node an ontain both tatis or base building templatesused with the partiular strategy.6.3 Framework VersatilityWhen disussing a framework's versatility, one often talks of hot spots vs.frozen spots in the framework. Hot spots are the parts of the frameworkthat di�er from one instane of the framework to another, while frozen spotsare the part of the framework that never hanges from one instane to an-other [ML01℄. We have deided to provide hot spots in two forms: Throughon�gurable sripts for eah module and through module extensions. Byproviding these two methods we both allow the framework to be used by thenovie user and the advaned user. Novie users an hange simple variablesin sripts for eah module that hange the behaviour of the AI to the mostommon behaviours. Advaned users on the other hand, an extend entiremodules or just single methods, to suit the needs of the partiular game orAI in question.Making easy on�gurable sripts to use for novie programmers is notan easy task. One must onsider this from the beginning of the design ofthe framework, and make sure that the on�gurable variables allow for theneessary tuning, as well as being adaptable enough to suit all the di�erentkinds of RTS games supported by the framework. Our framework will havesripts for all prior knowledge bases to allow for simple on�guration of both

Page 76 of 273 CHAPTER 6. FRAMEWORK DESIGNthe game in question, but also of what the AI should know before startinga game. Furthermore, eah module will have its own on�guration sript,where module spei� attributes an be set and easily on�gured dependingon the wanted type of AI. All on�guration sripts will be de�ned in asripting language, and it will thereby require a minimum of programmingknowledge to speify di�erent variables. Furthermore, most of the sripts willbe spei�ed in a way suh that not even knowledge of the sripting languagewill be required. However, even though not muh programming knowledgeis neessary, the user must still understand all variables that an be de�ned.It is for instane not possible to de�ne strategies without understanding ourrepresentation of them through strategy trees. Easy sript on�guration isimportant for ahieving the shift of workload design goal disussed in Setion4.1.For the advaned users, the framework should allow for hanging some ofthe internal details of the framework. In some ases, an RTS game an intro-due an unusual feature that the AI should inlude in its onsideration whendeiding upon an ation in a ertain module. To support this, the frame-work will allow for extensions of all modules and nearly all methods in eahmodule. The only methods not extendable will be the ones handling events,but these will as suh not ontain any other funtionality than alling otherextendable methods depending on the type of events. Only the event systemitself annot be extended, but it an, however, be on�gured through a on-�guration sript where for instane priorities an be spei�ed. Extensions ofmodules or methods in the framework must be written in C++, beause ofperformane onerns. Having a module written in the sripting languagewill require far too muh data transfer between the sripting language andC++, and this is too resoure demanding to be used in a real-time system[PP04℄. However, it should be possible for novie users to extend modulesor methods in the sripting language in order to reate prototype methods.This will enable AI designers to experiment with di�erent methods, beforehaving an experiened programmer implement the funtion in C++, beauseof the performane onerns. Performane issues will be further disussed insetion 7.3.6.4 Framework ControlThis setion will present the bakbone of the framework. First it will bepresented how the design tehniques have been used, then the main systemthat ontrols all the modules will be desribed, and arguments are given towhy it is built in this way.

CHAPTER 6. FRAMEWORK DESIGN Page 77 of 2736.4.1 Using the Design TehniquesWhile it has already been introdued how the RTS spei� onepts are usedin the design in Setion 6.1 and Setion 6.2, this setion will fous on howto use event based systems and sripting languages.Using events as a bakbone for the ativation and interommuniationbetween modules makes it possible to modify the arhiteture and even addmore modules to the design, fairly easily, at a later point. Eah module ansend events to the event manager, whih then ativates the modules thathave been assigned to handle that event. If later users would like to extendthe framework with additional modules, they would just have to reate themodule and assign it to handle a ertain event. If it is a new type of event,this an also be added and the system and the event trigger an be added,where the new module should be triggered.Using the sripting language to on�gure eah of the modules makes itunneessary to reompile the ode eah time a small on�guration is done,and makes it faster to tweak the framework for the variables that are on-�gured there. Writing the prior knowledge bases in the sripting languagefurthermore makes it possible for a designer to on�gure these knowledgebases. This is good, beause the prior knowledge bases are the part of theframework that have the most signi�ant impat on the behaviour of the AI.6.4.2 Event SystemThe main exeution of the framework is ontrolled by an event manager. Itmust be possible to assign modules to be run when ertain events happen.Eah module must handle all the di�erent types of events it an be sent,so the atual handling of eah event is on eah module. To simplify theevent manager, it will just queue the modules that must be exeuted whenan event is sent. Eah module has a priority that the event manager usesto prioritise in what order the modules are exeuted. The event manager isaessible to any module at any time. After sending an event to the eventmanager, the event manager takes are of the rest.The event manager must also be able to send events on its own at spei�edintervals. This should work like a timer. When assigned, it must be possibleto speify at what interval the event type should be run.6.4.3 Construting the ArhitetureFigure 6.3 shows what happens, when hanging the in�uene in the frame-work arhiteture into events that ativate eah module at spei� onditions.Eah module an be thought of as an objet, and eah of them an sendevents to the event manager. Further details about the event system anbe found in Setion 6.4.2. Eah module is ativated by sending events toit, with the exeption of the Game State Interfae, whih is desribed in

Page 78 of 273 CHAPTER 6. FRAMEWORK DESIGN

Figure 6.3: Event designSetion 6.4.4. The Timer events box represents the part of the event systemthat an send events with a ertain frequeny. The diamonds represent theinterfae to the GDF.The entire framework is ativated when an event is sent from the In-put Connetion to the Perept Interpreter. This event ontains informationabout the hanges that have happened sine last game tik2. A short de-sription about what events eah module an send is given below. It onlyontains the modules that send events:Perept Interpreter : The Perept Interpreter noti�es the Pattern Reog-nition module when new knowledge of the enemy is reeived. TheStrategi Planning module is ativated when the AI player has builtnew units, or one of the AI's units have been killed. Finally, the Re-ative module module is ativated if one of the AI player's own unit'shitpoints have hanged. The Ation Planner is also ativated so thatthe units ations an be exeuted in the end of eah time tik.Reative Module: When a reation from the Tatial Planning module isneessary an event is sent.Pattern Reognition: An event is sent to the Probabilisti Reasoningmodule when there are signi�ant updates to the opponent model.Probabilisti Reasoning : An event is sent to the Strategi Planning mod-ule notifying that the Probabilisti Reasoning module has attempted2A game tik is the disrete time steps that an RTS game is divided into.

CHAPTER 6. FRAMEWORK DESIGN Page 79 of 273to reason about the opponent's ations, and thus have new informationavailable.Strategi Planning : If units have been assigned to either be used for gath-ering resoures, onstruting buildings, or souting, the Resoure Man-ager, Base Building, or Tatial Planning modules are sent an eventaordingly. Furthermore, if there are any hanges to Mission Knowl-edge, an event is sent to the Tatial Planner.Resoure Manager : When more workers are required to gather resoures,an event is sent to the Ation Planner requesting this.Base Building : When the position of a building has been determined, theAtion Planner is requested to give permission to onstrut the build-ing.Ation Planner : An event is sent to Output Ations eah tik, telling whatations to do. When any unit or building ation is omplete, it sendsan event notifying this to either Strategi Planning, Resoure Manager,Base Building, or Tatial Planning.Timer Events: Events are sent to the Learning module at some interval tomake it reason about the game being played regularly. The StrategiPlanning module is sent an event to make it sout after a ertainamount of time, and at some interval to make it evaluate the urrentsituation of the AI situation. These intervals are spei�ed by the user.6.4.4 Game State InterfaeThis module is an almost diret onnetion to the game state, and shouldmake it possible for developers using the framework to aess informationthat has not already been put into knowledge bases. This is data that doesnot have any e�et in how the AI should reat, like stati information aboutthe map or time information. In new games there are always some newfeatures or information that an be used in some way that this more generalframework annot omprehend. This interfae gives a hane to get gamedependent information into the framework. This module should be aessibleany time and plae in the framework.The game state interfae should give aess to the following things:Game Tik: It must be possible to get the timer ounter, making it possibleto know how muh time has gone sine the game started.Tile Type: It must be possible to get the type of a spei� tile, so it ispossible to hek if a unit an walk there.Map Size: The map size is also neessary, espeially for path�nding.

Page 80 of 273 CHAPTER 6. FRAMEWORK DESIGNAdditional Game Spei� Information: Any other game spei� infor-mation that ould be useful an always be added by the user in theuser extension of the Game State Interfae.6.5 SummaryThis hapter presented a ognitive framework arhiteture based on the hu-man model presented in Chapter 3. We de�ned framework modules based onthe tasks in the human model, and de�ned their exat responsibilities in theframework arhiteture. The omplete design of all these modules have notbeen presented in this hapter, as it would be too extensive, and the readeris instead referred to Appendix B for the internal design of eah frameworkmodule. In Setion 6.2 we presented how knowledge in the framework is or-ganised, and explained whih knowledge bases make use of non-trivial datastrutures. We then proeeded to disuss framework versatility, and morespei�ally how AI developers an vary instanes of the framework from eahother. The �nal setion, Setion 6.4, foused on presenting the event systemontrolling the framework and also disussed how the framework is to beonneted to the GDF used.

Page 81 of 273

Part IIIProof of Conept

CHAPTER 7. IMPLEMENTATION Page 83 of 273
Chapter 7ImplementationThis hapter will desribe the prototype implementation of the AI frame-work. We will start by desribing the ontents of our prototype implemen-tation, and explain why eah of the implemented features are important toprove the merits of the framework idea. Then we will speify ertain im-plementation spei� hoies suh as the game development framework usedand hosen programming languages. A disussion of the trade-o� betweenusability and performane is then presented. This disussion will fous onwhih parts of the framework an be spei�ed by designers and whih partsmust be spei�ed by programmers. Next we will present a new module,whih onnets the AI framework to the GDF. Finally we will introdue thereader to some of the problems enountered throughout the implementation.7.1 Proof of ConeptWe will through this implementation try to prove that the design goals pre-sented in Setion 5.1 will be ful�lled and that some of the key ideas in theframework are appliable for real use. This setion will disuss whih ele-ments of the framework are neessary to reate a running version and whihelements are essential for proving the merits of the idea. First, the goals ofthe implementation will be outlined:Reuse: The implementation serves to show how muh a generi RTS AIframework an reuse.AI Quality: Through the implementation, we assess how one an improvethe quality of AI with an AI framework.Developer Friendly: The implementation is also an experiment to see howdeveloper friendly the framework an be made, and how muh of thedevelopment of AI an be left in the hands of inexperiened program-mers.

Page 84 of 273 CHAPTER 7. IMPLEMENTATIONRTS Spei� Conepts: Through the implementation, we will be able totest two of the RTS spei� ideas presented in Setion 5.4: Strategytrees and path�nding.Potential Problems: The implementation will also serve to identify poten-tial problems in the design. The inludes problems with onneting theAI framework to several di�erent GDFs as well as identifying potentialbottleneks in the overall arhiteture of the framework. Furthermore,the implementation will give an idea of any performane problems.We have deided to fous on two of the ideas presented in Setion 5.4:Strategy Trees and Path�nding. Both are extremely important elements ofthe framework, and essential for the framework to work properly. Strat-egy trees are the very foundation on whih strategi deisions will be made,and are used by four framework modules: Strategi Planning, ProbabilistiReasoning, Pattern Reognition, and Learning. Furthermore, several of thein-game knowledge bases rely on the struture of the strategy tree node aswell. Path�nding is equally important as it is required to make units move,and hene three modules require its presene: Strategi Planning, TatialPlanning, Resoure Management and Base Building. The Tatis represen-tation presented in Setion 5.4.3 will not be part of the implementation, asthis idea is not yet fully developed. Furthermore, to really fous on tatis inan RTS game, a game with a omplex unit omposition would be required,inluding support units, and a unit system with armour types and attaktypes1. The test game, whih is desribed in Setion 7.2.2, does not sup-port suh a omplex unit omposition. The idea of base building templatespresented in Setion 5.4.4 will not be tested in the implementation either,beause the seleted test game only ontains three types of buildings andplaement of buildings is hene of minimal strategi importane.The modular design of the framework allows for a lear distintion of theresponsibility of eah module, but it also means that a prototype implemen-tation will be required to implement almost all modules for the framework towork in even a simple RTS game. The two modules that handle ommuni-ation with the GDF, the Perept Interpreter and Ation Planner modules,will be mandatory. In even simple RTS games, the AI must gather resoures(Resoure Manager), it must build a base (Base Building), it must ontrolits army e�iently (Tatial Planning) and it must hoose strategies andsend the army to the right oordinates (Strategi Planning). For the Strate-gi Planning module to work properly however, it requires input from theProbabilisti Reasoning module, whih in turn relies on a updated opponentmodel, ensured by the Pattern Reognition module. We an, however, limitthe implementation of the Pattern Reognition module to just being able to1Having di�erent armour types for units allows di�erent attak types to do more orless damage against a ertain type of armour.

CHAPTER 7. IMPLEMENTATION Page 85 of 273Module Name: ImplementationPerept Interpreter Complete implementationReative Module Complete implementationPattern Reognition Updating of the opponent modelLearning Not implementedProbabilisti Reasoning Complete implementationStrategi Planning Complete implementation, but simpli�edsouting and exeution of strategiesTatial Planning Path�nding, simpli�ed miromanagement andsituation assessmentBase Building Simpli�ed building plaementResoure Management Resoure gatheringAtion Planner Communiating ations to GDFFigure 7.1: Implementation detailsupdate the opponent model. This has the onsequene that all attempts toreognise tatis or new strategies are not implemented and hene there isno information for the Learning module to work on. The Learning modulewould also be very omplex in terms of developing methods for reognisingtatis and base building templates and in terms of deiding how to on-trol learning, so that the AI will not learn the wrong things. Furthermore,the only module that other modules do not rely on diretly, is the Learningmodule. We have therefore deided to not inlude learning as part of theimplementation. Table 7.1 presents how muh of the di�erent AI moduleswill be implemented. The simpli�ed miromanagement of the Tatial Plan-ning module means that we have implemented simple rules for fous �re andunit preserving, but nothing as advaned as disussed during the tatis rep-resentation in Setion 5.4.3. For a omplete referene of the design detailsthat has been left out, the reader is referred to Appendix B. Besides theframework modules, the event system desribed in Setion 6.4 will also beimplemented.7.2 Implementation Spei� ChoiesThis setion will disuss three implementation spei� hoies: The GDFused to test the AI framework, the game used to test the AI and the languageseleted to be the sripting language used to on�gure the framework.

Page 86 of 273 CHAPTER 7. IMPLEMENTATION7.2.1 Game Development FrameworkThere are only two possible hoies to use as GDFs [FKL05℄: ORTS [ORT05℄and Stratagus [Str℄. As mentioned in Setion 5.1.2 there are problems in us-ing both of them. ORTS laks stability and doumentation, while Stratagusrequires hanging the internal ode of the GDF to allow the AI frameworkto handle low level AI ations [FKL05℄. We have hosen to use ORTS asGDF for mainly two reasons:
• Changing the internal mehanisms of Stratagus is onsidered a fargreater task than aepting the doumentation of ORTS. This does,however, mean that a lot of time must be spend studying ORTS soureode to make up for the limited doumentation.
• Stability of ORTS is improving and beause of an upoming AI tour-nament [BASC05℄ organised by AIIDE [AII℄, where ORTS will be usedas underlying platform, one an expet a ertain level of stability. Thistournament is open for all AI researhers and inludes three di�erenttypes of games: A resoure gathering game, a tank ombat game anda simpli�ed version of a real RTS game.7.2.2 Test GameTo test instanes of the AI framework, one must selet a game su�ientlyomplex to show important AI apabilities. The hoie of ORTS as GDFhowever, limits the amount of hoies available. As ORTS does not urrentlyinlude a standard game, the hoie is among three di�erent games used forthe AIIDE tournament [BASC05℄. Only one of these is a real RTS game,whih inludes ativities suh as base building, resoure management, op-ponent modelling, tatial planning, and strategi planning. The game is,a very simpli�ed version of ommerial RTS games, but it will be su�ientto test the AIs reated with this prototype framework implementation. Ashort desription of game details are listed in the following:Game Type: The game is played as a 1on1 game between two AI players.Unit Types: Three di�erent unit types are inluded: Workers, marines andtanks.Building Types: Three di�erent building types are inluded: Control Cen-ters, Barraks and Fatories.Resoures: The game inludes four di�erent resoure lusters randomlyplaed around the map. Furthermore, a resoure luster is plaed loseto both player's starting position.

CHAPTER 7. IMPLEMENTATION Page 87 of 273Map: The map is a 64x64 tile randomly generated map with two terraintypes: Ground and li�s. Ground tiles are passable while li� tiles arenot.Objetive: The objetive of the game is to destroy the opponent player'sbuildings.More details on the game spei�ation inluding tehnology tree, possibleunit ations et. an be found on the ORTS tournament page [Ort℄.7.2.3 Sripting LanguageThe hoie of a sripting language to use with the AI framework relies onseveral di�erent fators. The main ones being:
• The language must be easy to use to support novie programmersand designers, while still being expressive enough to write omplexbehaviour in relatively few lines of ode.
• The hosen language should make it possible to do rapid prototypingby allowing for adjustments of sripts without having to re-ompile theentire framework.
• The language should be easily embedded into framework native ode.In our pre-master thesis [FKL05℄ we have analysed the following lan-guages for their ability to handle the role as sripting language for the AIframework: Lua [Lua℄, Python [Pyta℄, Perl [Per℄, Tl [Tl℄, LISP [Lis℄ andJava [Jav℄.Only two languages were able to ful�l our requirements: Lua and Python.Comparing the two, Python has diret support for objets and it is possibleto pass entire objets from native C++ ode to sripting ode. This meansthat the programmer does not have to work with a stak or some onvertertool only apable of passing simple types, whih is the ase with Lua. Beauseof this, we have hosen Python as being the best suited sripting languagefor the AI framework.7.3 Trade-o�s between Usability and PerformaneIn this setion we will disuss what parts of the AI framework that should bereated in the sripting language, and whih should be implemented in thenative language C++. In this disussion we will outline the advantages anddisadvantages of reating the framework to be easy to on�gure. Afterwardsa short desription of how to on�gure the sripts in the framework will begiven. Finally, it will be disussed how muh atually an be reated andmodi�ed with the sripting language.

Page 88 of 273 CHAPTER 7. IMPLEMENTATION7.3.1 Sripted PartsThe framework is designed so that it should be possible even for inexpe-riened programmers to use the framework if it has been onneted to aspei� GDF. The novie user should then be able to reate very di�erentAIs just by editing the sripts that on�gure the framework instanes.Being able to on�gure eah module in the framework gives the advan-tage that there are some variables that an be modi�ed depending on theonneted game. In other ases it an be variables that hange the behaviourof the modules, or thresholds identifying when and how the module shouldreat. The only added resoure use is at load time, whih does not a�et theperformane of the framework. If funtions that are run during the gameare reated in the sripting language, it has to be ensured that there is nottoo big a movement of data between the sripting language and the nativelanguage, beause as stated by Phelps et al. [PP04℄, this part of integratinga sripting language or any other integrated language is the most resouredemanding.All of the prior knowledge bases are reated in the sripting language.These are game and AI dependent, and are essentially the part of the frame-work that have the highest impat on AI behaviour. Some of the knowledgebases are only game spei�. That means that if they have been on�guredto a spei� game it is not neessary to hange them, unless the game itselfis hanged, whih often happens during the �nal balaning of the game.7.3.2 Con�guring the FrameworkThe framework is on�gured through sripts. The sript �les are saved inprede�ned folders, and in eah of these sript �les a desription an be foundof what it does and what eah variable on�gures in the framework. Anexample of this is the on�guration of the Pattern Reognition module:Listing 7.1: Sript on�guration of Pattern Reognition module1 # This s r i p t d e f i n e s v a r i a b l e s f o r the Pattern Reogni t ion module23 ### − Opponent Model − ###45 # The f o l l ow i n g d e s r i b e s how o f t en the AI w i l l re−ons ider i t s6 # s t r a t e g y . Eah un i t or b u i l d i n g w i l l have two va l u e s de f ined f o r7 # i t . The f i r s t va lue i n d i a t e s how muh a e r t a i n a t t r i b u t e in the8 # opponent model must hange b e f o r e the AI shou ld re−ons ider i t s9 # s t r a t e g y . The seond va lue d e s r i b e s how muh a e r t a i n a t t r i b u t e ' s10 # perentage par t o f the opponent model must hange b e f o r e the AI11 # shou ld re−ons ider i t s s t r a t e g y .1213 worker = [10 , 20 ℄14 marine = [10 , 15 ℄15 tank = [8 , 10 ℄16 ont ro lCente r = [12 , 22 ℄

CHAPTER 7. IMPLEMENTATION Page 89 of 27317 barraks = [7 , 15 ℄18 f a t o ry = [4 , 11 ℄As an be seen in Listing 7.1, it is a very simple syntax. Variables aresimply assigned values. All the variables that an be set are listed in thesript, and the user just have to �ll in the numbers. This will further bedisussed in the evaluation in Setion 8.1.To on�gure the tehnology tree that is used many plaes in the frame-work, there is a diretory where eah type of unit and building is de�ned ina separate �le. The framework will dynamially load eah of these �les andadd eah of them as an element to the tehnology tree.7.3.3 Sripting LimitationsThere is no doubt that even though the omputers of today have beomemuh faster, there is still a need for optimising for performane, espeiallywhen dealing with games. That an be seen just by looking at the require-ments of some newer games. The buyers still demand that the graphisbeome more and more realisti and that requires more and more proessingtime. Even if the AI is given more proessing time, it will always be betterto be able to take more things into aount, so the better the performane ofthe AI ode, the more things an be taken into aount. But with the limitedtime for developing the AI as stated in Setion 2.1.2, rapid prototyping isrequired, and as stated by Ousterhout [Ous98℄ and shown numerous timeaording to a lot of the ooperations using Python [Pytb℄, sripting is wellsuited for this purpose.The entral parts of the framework, whih should make sure that theexeution speed is high should however not be implemented in a sriptinglanguage. Even though sripts an be reated to do the same things andsome tweaking ould make them faster, the exeution speed that the sriptinglanguage an perform at, would simply not be enough.7.4 Implementation Spei� DetailsThis setion will introdue a number of implementation spei� details.7.4.1 GDF Communiation ArhitetureThe GDF ommuniation arhiteture has an impat on how to integratethe AI into the GDF. The ORTS GDF uses a server/lient arhiteture,where traditional games often use peer-to-peer ommuniation[BF05℄. Thisan be seen in Figure 7.2. The server/lient arhiteture in ORTS makesit possible to hide information from eah of the lients, so that it is notpossible to heat with full map knowledge[Bur02℄. In the ORTS arhitetureeah of the AIs in the game are onneted to the server like any other lient

Page 90 of 273 CHAPTER 7. IMPLEMENTATION
Client Client

Server

Client

Client Client Client

BAFigure 7.2: Server/lient(A) and peer-to-peer(B) arhitetureprogram[BF04a℄. In the peer-to-peer arhiteture all AIs is run on eah lientto save bandwidth, but this takes up a lot more proessing on eah lient.In ORTS, eah lient sends its ations to the server every eighth of aseond, and the server will then respond with the new updates in the gameuniverse[UB06℄. Beause the AI has to send its ations to the server, andbeause the reation time of the opponent is important, the framework hasto be to some extend real-time.7.4.2 GDF ConnetionIn the implementation we have deided to make the sub-module InterfaeGDF (desribed in Appendix B.10.6), from the Ation Planner, into a sepa-rate module alled Connetion module. This will make a leaner separationof the AI framework and the GDF. Furthermore the Input Connetion andthe Output Ations part desribed in Setion 6.4, are also ombined into thismodule.The implementation of the Connetion module that onnets the AIframework with the GDF is one of the larger tasks that have to be imple-mented by experiened programmers. This module should get the pereptsfrom the GDF, and input these into the AI framework. When the ationshave been found by the AI framework, this module should then translatethese into ations that an be understood by the GDF. The Connetion in-terfae must be implemented, and this ontains two funtions: read() andwrite().When reating the read() funtion, the data that should be passed on tothe Perept Interpreter must be extrated from the GDF. In the implemen-tation that onnets to the ORTS framework, this part reads, with the useof the lient interfae, the data that is transmitted from the ORTS server.The ORTS framework has an example of how to onnet to the server, andthis is used as a guideline for the implementation. The user must also im-plement the Perept Interpreter, whih updates and maintains some of thein-game knowledge bases. The task of implementing this module requiressome knowledge of how the knowledge bases are onstruted.The write() funtion gets a list of AI ations as input. It is then the

CHAPTER 7. IMPLEMENTATION Page 91 of 273responsibility of this funtion to take eah of these ations and do whatis equivalent in the GDF. Eah type of AI ation must be handled. Eventhough the AI framework should make sure that a ertain ation is possibleto do, it might happen that something has not been taken into onsideration,like trying to attak a unit that is already dead. Therefore, we have addeda knowledge base where return values from the GDF an be stored. Thesereturn values are identi�ed by the unit or building that should perform theation. The return values are then used in the AI framework to tell that theation was not possible, and it should try to �nd another ation.7.5 Implementation ProblemsThe following setion will introdue the reader to the problems that wereenountered during the development of the prototype of the framework. Theproblems onerning the GDF were mostly expeted but the extend to whihthey a�eted the implementation was not. The �rst setion will go throughthe expeted problems with using the ORTS GDF and also desribe how theunexpeted side e�ets a�eted the implementation. The next setion willdesribe some of the problems enountered when onneting the prototypeto the ORTS GDF and �nally the last setion will present the urrent statusof the prototype implementation.7.5.1 GDFThis setion will introdue some of the experienes we have made throughoutthe implementation onerning using ORTS as GDF. This setion will mainlyfous on the three problems identi�ed in Setion 5.1.2:
• Doumentation
• Stability
• Full Control of AITo summarise we disovered that ORTS laked doumentation and sta-bility, but allowed full ontrol over the AI. Stratagus that was the otherandidate for GDF did have a limited doumentation and beause it hasbeen used by developers for a ouple of years, it is relatively well tested.Stratagus did, however, not allow full ontrol of the AI. Through an analysisin the pre-master thesis [FKL05℄, we estimated that ORTS would be theGDF that was best suited.Unfortunately the implementation has revealed a number of problemsthat we will now present and disuss. These problem have ultimately meantthat preious time has been spent on tasks that ould otherwise have beenavoided.

Page 92 of 273 CHAPTER 7. IMPLEMENTATIONDoumentationThis setion will emphasise the problems we have found that are related tothe doumentation, or rather the lak of this.Presentation of the Environment: ORTS has until reently not in-luded any information at all on the harateristis of the environment.Basi knowledge suh as map size, map topology and ell movementost have not been available to the users of the framework through anykind of doumentation. The only way to gain any knowledge in thisarea is through hard study of the GDF soure ode. Even if any answerwas found we ould in most ases not be ompletely ertain that thisreally was the right answer.Referene Manual: The interfae of all framework modules is availablethrough a Doxygen doumentation [dox℄. This is as suh an elegantsolution for this type of problem, however, the doumentation in theDoxygen has been added gradually through the development. This hasthe onsequene that we had to guess how various modules worked andinfer input on a number of funtions through use of these in the sampleAI, provided by default in the GDF.Tutorials: The use of tutorials is a well-known tehnique to introdue newusers to a framework. If tutorials had been available modules and on-netions ould have been made more smoothly and the general learningurve for learning to use the framework ould have been lowered on-siderably.Limited Example Code: As already mentioned earlier, ORTS inludesa sample AI in whih many basi tasks are introdued. In order to bee�etive, however, this example ode must be more extensive than it isthe ase. The sample AI essentially only moves randomly around andattaks an enemy when it gets within range. Areas suh as mining, basebuilding are not handled at all. Coupled with tutorials a broad saledarray of sample ode an be a powerful tool, but a limited amount ofsample ode an raise as many questions as it answers.7.5.2 StabilityThe ORTS development deadline has been a onern from the very beginningof this projet. Originally ORTS was meant to be in suh a state that AIsould be integrated into it at the start of 2006. This deadline has beendelayed a number of times till the interfae de�nition was �nally loked inlate February. This has meant that the implementation of the framework inthis projet has been done in parallel to development on the ORTS GDF.

CHAPTER 7. IMPLEMENTATION Page 93 of 273This has had the onsequene that numerous times there have been ompileerrors in the ORTS ode that had to be orreted before it ould be used.The GDF itself is not very developer friendly. The server will rash if itreeives any invalid input. In general very few errors are handled.7.5.3 Path�nderOne of the key elements that have su�ered from lak of doumentation isthe path�nder. In order to even be able to start the implementation spei�design of a path�nder the developer must know things like map width, mapheight, whih terrain types there are, movement ost of di�erent terraintypes, the map topology in general and how to extrat unit and obstalepositions. All these fators and more had to be found through intensivestudy of soure ode of the GDF's internal modules. The development wasnot made easier by the fat that very little information exist about the"Blueprint" language in whih game on�gurations are de�ned. This hashad the onsequene that it has been impossible to set up a "sandbox"environment in whih to test and develop the path�nder. Instead one of theprede�ned games had to be used. These games feature random generatedmaps that vary from game to game. This ompliated development as datasuh as unit and obstale positions annot be transfered from test to test.Indeed the size of the game itself ompliates matters. Instead of for instaneworking in a 32*32 ell environment in whih a path an be easily veri�ed,the games work in a 1024*1024 ell environment that severely ompliatesveri�ation.7.5.4 AI FrameworkThis setion will summarise some of the problems that were enounteredduring the implementation of the AI framework.There were mainly problems with the interation with the ORTS GDFwhen having to make units perform ertain ations, beause this was notdoumented anywhere. The sample AI that ame along with the GDF wasthe only thing that ould give an idea about how to make units perform a-tions, and the only ations that was performed in this example ode was themove ation. Every other type of interation with the GDF were more or lesstrial and error. Currently there are the following problems with the inter-ation with the ORTS GDF: Construting buildings, harvesting resoures,and attaking other units. The method of making a unit perform any ofthese ations is by ativating the orresponding sript funtion on the unitobjet. The problem is urrently that when parsing the assumed parame-ters, the ORTS server rashes. The assumption about what parameters thatis passed to the objet is based on reading the sript ode. We have basi-ally not been able to �gure out what parameters should be passed to these

Page 94 of 273 CHAPTER 7. IMPLEMENTATIONfuntions, as there are no examples of how to do this, and it has not beenpossible to extrat this information from the ORTS ode. This has only lefta trial and error approah, whih has not been suessful and hene theseations have not been implemented.7.5.5 Implementation StatusThis setion is presented to give the reader an overview of the status ofthe prototype implementation, before we in Chapter 8 will evaluate it. Atthis point, all the features mentioned in Table 7.1 have been implemented.However, as disussed throughout this setion, we have experiened numer-ous problems with interating with the GDF. This has resulted in that weare not able to properly exeute the ations we want. Furthermore, theJIT part of our path�nding idea presented in Setion 5.4.2 has not beeninluded, beause it has been an idea in ontinues development throughoutthe projet and would require extra design onsideration before being ap-pliable in the implementation. This does not a�et the overall test of thepath�nder. However, for an atual use in a framework the JIT tehniquewill have a signi�ant impat as the response time will be severely redued[BMS04℄ and the omputation will be distributed over several game tiks.7.5.6 ConlusionAll in all we must onlude that ORTS is simply not yet mature enough forthe intended purpose. In fat to our knowledge there are urrently no RTSGDF that lives up to the requirements presented in Setion 5.1.2. An AIframework suh as the one built in this projet would indeed have been easierto realise if ORTS for example had another ouple of years to mature.

CHAPTER 8. EVALUATION Page 95 of 273
Chapter 8EvaluationIn this hapter we will evaluate the implementation presented in Chapter7. Throughout this disussion, we will identify strengths and weaknesses ofthe framework, and point out areas that require further researh. The �rstpart of this hapter will be divided into six setions, eah overing an areaimportant to be evaluated in order to determine the suess of a possiblefull implementation of our framework. Combined, these areas will serve assuess riteria for evaluating an AI framework for game development. Thefollowing shortly explains the fous of eah setion:Con�gurable: The �rst area stems from the design goal in Setion 4.1,whih states that the framework must be able to shift the workload ofAI development from programmers to AI designers. This setion willprimarily deal with subjets onerning the usability of the frameworkfor inexperiened programmers. More spei�ally, we will evaluate howeasy it is to on�gure knowledge bases and framework modules as wellas disuss how to onnet the AI framework to di�erent GDFs.Versatility: This area disuss an area of extreme importane for frame-works in general, namely its versatility [FS97℄. We will in this setionevaluate the di�erent ways of varying instanes of the framework fromeah other. This will be done by taking a loser look at how priorknowledge bases and module on�guration an be spei�ed to reatedi�erent types of AI's for the di�erent genres of RTS games de�ned inSetion 2.4.2.Extendibility: A third area whih frameworks rely on is their extendibil-ity [FS97℄. As some games require speial kinds of features, the AIframework should be relatively easily extended to deal with this. Thissetion will desribe how to extend the framework by example, andthen disuss this method of adding new features to the framework.Performane Testing: The fourth area will fous on performane testing

Page 96 of 273 CHAPTER 8. EVALUATIONand salability, as this is important in real-time systems. This setionwill present performane tests on the prototype implementation, whihwill determine possible bottleneks in the design. Furthermore, thesetests will determine how muh performane is used on the prototypeimplementation and disuss whether a fully implemented AI frameworkis a realisti possibility performane-wise.AI Improvements: This area will fous on the AI improvements the frame-work is able to provide, whih was also one of the design goals desribedin Setion 4.1. This setion will outline areas that the prototype im-plementation handles, whih most ommerial RTS games do not.RTS Spei� Conepts: The sixth and �nal area will fous on an evalua-tion of the RTS spei� onepts presented in Setion 5.4. This setionwill evaluate the two RTS spei� ideas we have hosen to implementin the prototype of the framework: Strategy trees and path�nding.Following this, we will re�et upon the transition from design to imple-mentation and disuss the development model used throughout this projet.Finally, this hapter will end with a setion that summarises important de-tails disovered through the evaluation, and disusses potential problems andareas that require further work.8.1 Con�gurabilityThis setion will present a number of ways to vary framework instanes fromeah other through on�gurable Python �les. Appendix B presents the de-sign of eah module, inluding a spei�ation of what an be on�gured oneah of them. First, we will show how to speify units and buildings, andthereby build a tehnology tree, for the game in question. Then we willshow how strategies are spei�ed, and more spei�ally, how the user buildsa strategy tree for the AI. Furthermore, as eah module an be on�guredas well, we will pik an example module and show whih and how di�erentvariables an be on�gured. Following eah example on how to on�gure aertain part of the framework, we will brie�y disuss advantages and dis-advantages in this way of on�guring the framework. Afterwards, we willshortly desribe what the fous of AI developers should be, depending onthe RTS genre the AI is being made for. Finally, the setion will explainhow the AI framework and the GDF are onneted to eah other and disussproblems in this approah, as well as potential solutions.8.1.1 Con�guration of Tehnology TreeFour di�erent things must normally be spei�ed for a tehnology tree: Unittypes, building types, researh types and the dependenies between these.

CHAPTER 8. EVALUATION Page 97 of 273For our prototype implementation, we an ignore researh types as this isnot a part of the game used with this implementation. A tehnology treein the framework is spei�ed by a unit or building spei�ation inludingany preonditions there might be to this unit or building. For this prototypeimplementation there are a Python �le for eah unit or building spei�ation.An example of this an be seen in Listing 8.1, whih de�nes a marine type.The attributes de�ned for this unit are all spei� to the test game used withthe prototype implementation.Listing 8.1: Spei�ation of a marine type1 name = "marine"2 type = "Unit"3 pr e ond i t i on s = [" barrak " ℄4 h i t p o i n t s = 1005 attak_max = 506 attak_min = 307 ground_attak_range = 88 movement_speed = 39 s ight_range = 610 a t i on s = ["move" , " attak " , " stop " ℄11 minera l s = 10012 built_by = "barrak "13 build_time = 10014 supply_ost = 1The ode de�nes several standard attributes for a unit type. Further-more, it de�nes the type of ations available for this unit and its plae in thetehnology tree through the preonditions variable. The framework shouldattempt to inlude all standard attributes for units and buildings, suh asthe ones in Listing 8.1, but sometimes a game will require more than these.To add new attributes, a developer must do two things. First, the attributemust be added as an attribute of the partiular unit or building type in theframework. This is not a di�ult task, and an be done by simply opyinghow other attributes have already been reated. Seondly, the developermust speify exatly how to use this new variable. If for instane the userhave inluded an armor type attribute, whih de�nes how muh damage aunit takes from di�erent kind of units, the Tatial Planning module shouldbe modi�ed to use this information in battle. Extensions suh as these aredisussed in further detail in Setion 8.3. Depending on the new attributeadded, the developer may want to extend several modules and methods toahieve the desired e�et, and hene the omplexity of suh an extensionvaries. There is no way for inexperiened programmers to add suh newattributes without the help of C++ programmers. Furthermore, the pro-grammers implementing the feature must have detailed knowledge of theinternal arhiteture of the framework. This must be provided through theframework doumentation.

Page 98 of 273 CHAPTER 8. EVALUATIONDoumentation is a ritial issue when building frameworks [FHLS97℄.Several methods for providing good doumentation with frameworks havebeen presented in literature and it has been identi�ed as an essential fatorin how well users are able to reuse software [BKM00℄. One method is todivide software doumentation into two broad ategories: User doumenta-tion and internal doumentation [Øst99℄. Here, user doumentation refers toreferene doumentation and introdution material suh as tutorials, guide-lines, ookbooks et. Internal doumentation on the other hand, refers toall kinds of doumentation that a user may need to maintain and furtherdevelop the software. The framework desribed in this projet should in-lude both kind of doumentation, as it must be used by both users of theframework and developers wanting to extend the framework.As an be seen in Listing 8.1, although the ode is written in Python,it does not really look like ode. All units and buildings are spei�ed inthis manner, and the spei�ation of all of these for the game used with ourimplementation an be found in Appendix J.1. Basially, everyone ouldeasily reate new unit or building types by just looking at previous examplesof this. No programmers need to be involved in this proess.8.1.2 Con�guration of Strategy TreesStrategy trees are built in a way similar to the tehnology tree in the previoussetion. Eah strategy node is de�ned separately with a unique name andinformation about parent strategies and ounter strategies. The user mustspeify one strategy as the starting_point strategy, whih is used as the rootof the tree. In this partiular game, the user starts with 6 workers and 1ontrol enter. The ode in listing 8.2 de�nes a fast teh strategy (explainedin Appendix A.5) for this partiular game.Listing 8.2: Example of a strategy tree node de�ned for a fast teh strategy1 f a s t_teh = {2 "name" : "Fast teh " ,3 " pre ond i t i on " : " S ta r t i ng Point " ,4 " fo l l ow_up_strateg i e s " : ["Mass tanks " ℄ ,5 " ounter s " : ["Fast expand" ℄ ,6 " perentage_use " : 30 ,7 " time" : 500 ,8 "purpose " : " s tep " ,9 " expans ions " : 0 ,10 " ont ro lCente r " : 1 ,11 " barraks " : 1 ,12 " f a t o ry " : 1 ,13 "worker " : 8 ,14 "marine" : 0 ,15 " tank" : 516 }

CHAPTER 8. EVALUATION Page 99 of 273The ode de�nes all the attributes for strategy tree nodes disussedin Setion 5.4.1. Furthermore, a strategy tree with all strategies anbe built through the variables preondition (parents in the tree), fol-low_up_strategies (hildren in the tree) and ounters (ounter nodes). Theperentage_use variable indiates how often this strategy should be usedompared to other strategies at the same level in the tree. Finally, the pur-pose variable indiates what the AI should do when reahing this partiularstate. It an basially either be step, indiating that this strategy is only astepping stone towards following strategies, or attak, indiating that the AIshould attak at this point in the strategy. The entire de�nition of strategiesand the strategy tree, the Known Strategies knowledge base, an be foundin Appendix J.7.It is possible to hange or add attributes for strategy tree nodes, but C++programming knowledge is required. For this brief example, assume that thedeveloper wants to hange the purpose attribute to ontain a defend option.To do this, the developer must �rst de�ne internally in the framework thatthis attribute an be a defend type. Afterwards, the framework must be toldhow to use this new type. In this ase, it must be used when the AI reahesthe state ditated by a strategy tree node having the purpose attribute set todefend. Cheking the purpose attribute is already done within the StrategiPlanning module in the Evaluation sub-module desribed in Appendix B.5.9,and the defend option an easily be added here. De�ning what should bedone when reahing this state, an be done in two ways: Either the developeruses funtions already de�ned within the Strategi Planning module or shede�nes entirely new funtions that ditate the behaviour of the defend type.Both ways require detailed knowledge of C++ and the internal parts of theframework. This must be obtained through the framework's doumentationas also disussed in the previous setion.The ode in Listing 8.2 is relatively easy for even non-programmers towrite. Even though eah strategy is atually a Python ditionary, the userdoes not need to be aware of this. With just a single example and an ex-planation of eah attribute in the strategy node, an AI designer an easilyde�ne strategies for the game. The disadvantage of this approah is that thedesigner herself needs to keep trak of strategy names, follow-up strategies,parents nodes et. While this is manageable in simple games with a smallstrategy tree, it beomes very hard to keep trak of when designing largeand omplex strategy trees. To overome problems suh as these, one possi-bility would be to let the designer, design strategy trees in a graphial userinterfae, where strategies and their relation to eah other are more obvious.8.1.3 Con�guration of Framework ModulesFor eah framework module, there is a orresponding Python on�guration�le. In these, all game or AI spei� variables an be set. As an example,

Page 100 of 273 CHAPTER 8. EVALUATIONonsider a sub-part of the sript used to on�gure the Probabilisti Reasoningmodule in Listing 8.3.Listing 8.3: Con�guration sript for the Probabilisti Reasoning module1 # This s r i p t d e f i n e s v a r i a b l e s f o r the P r o b a b i l i s t i Reasoning module23 # The f o l l ow i n g d e s r i b e s the s t r a t e g i importane o f d i f f e r e n t a t t r i b u t e s4 # in a game . Values must be between 0 and 1 , wi th 1 be ing the maximum5 # s t r a t e g i importane and 0 be ing no s t r a t e g i importane at a l l .67 ont ro lCente r = 0 .28 barraks = 0 .29 f a t o ry = 0 .210 worker = 0 .511 marine = 112 tank = 11314 # Maximum node d e v i a t i on : The f o l l ow i n g v a r i a b l e d e s r i b e s how to ompare15 # two s t r a t e g y t r e e nodes . I t d e f i n e s the perentage d e v i a t i on t ha t an16 # a t t r i b u t e in the two nodes may de v i a t e from eah o ther and s t i l l be17 # ons idered equa l .1819 max_deviation_perentage_of_total = 102021 # Determination o f important v a r i a b l e s . How muh shou ld v a r i a b l e s in22 # po s s i b l e s t r a t e g i e s d e v i a t e b e f o r e be ing ons idered important to23 # determine the f i n a l ho ie o f s t r a t e g y .2425 importane_bui ld ings = 3026 importane_units = 20As with the sripts mentioned in the previous setions, the only thingthe user needs to do is to de�ne variables. To ease understanding of thesripts, eah sript inludes omments on exatly what eah variable means.However, it is still very hard for new users of the framework to understandsome of the variables in the sripts without understanding the arhitetureof the module, whih the sript on�gures. The ode in Listing 8.3 is forinstane muh easier to understand when the user has read the internaldesign of the module presented in Appendix B.4. The only way to solve thisproblem is through the doumentation of the framework, whih has alreadybeen disussed in Setion 8.1.1.A developer may want to add new variables to the module on�gurationsript. As an example, onsider that a developer wants to add a aggressive-ness variable to the on�guration sript for the Strategi Planning module.This variable should de�ne how aggressive the AI should be, and how willingit should be to hoose an aggressive strategy. Two steps must be ompletedto add this new variable. First, the onstrutor of the Strategi Planningmodule must be modi�ed to extrat the new variable from the Python sript.Listing 8.4 shows an extrat of the onstrutor where this happens. This step

CHAPTER 8. EVALUATION Page 101 of 273inludes reating a private aggressiveness variable on the Strategi Planningmodule lass.Listing 8.4: Extrating a variable from the Strategi Planning on�guration sript1 Python_interpreter ∗ py_interprete r = Python_interpreter : : i n s t an e () ;2 py_interpreter−>run_f i l e (" o r t s a i /module_onf/ s t r a t e g i p l a nn e r . py") ;3 ob j e t ns = py_interpreter−>get_namespae () ;4 a g g r e s s i v en e s s = extrat<int >(ns [(" a g g r e s s i v en e s s ") ℄) ;The seond step will be to ditate where the variable is to be used. Inthis ase, it will probably be in the sub-module of the Strategi Planningmodule, whih deals with seleting a new strategy: The Find New Strategysub-module desribed in Appendix B.5.7. Exatly how to extend methods inthe framework is disussed further in Setion 8.3. Both steps require C++programming knowledge, and an hene not be done by AI designers alone.8.1.4 Con�guration of AIs in Di�erent RTS GenresThis setion will disuss how the framework an be on�gured to reate AIsin the four di�erent RTS genres presented in Setion 2.4.2. We will presenteah genre in turn, and disuss what typially will be the fous when buildingAIs for that partiular genre:The Command & Conquer Genre: An AI in this genre should typiallyhave less emphasis on the reasoning part of the framework, as ountersonly have little e�et in these kind of games. The main fous is seur-ing enough resoures to mass units, while at the same time stoppingthe opponent from doing the same. The Resoure Management andTatial Planning modules are the primary modules for ahieving this.The on�guration of strategy trees should fous on the strategies inthe tree rather than the ounter nodes in the tree.The Age of Empires Genre: This genre fouses on resoure managementwith resoures spread all around the map, and games tend to be abattle of ontrol of these resoures, hene making the Resoure Man-agement module essential. Furthermore, games in the genre often fo-uses on ounters as well, making both the Probabilisti Reasoning andStrategi Planning modules very important to on�gure to perform thebest possible way in the game in question. Strategy trees should bereated with emphasis on both strategies and ounters. Units haverelatively few hitpoints, whih makes miromanagement di�ult, andhene the developer an put less work into on�guring the TatialPlanning module. However, this module must still take are of thingslike formations, unit deployment, use of support et., whih are alsoimportant for AIs in this genre.

Page 102 of 273 CHAPTER 8. EVALUATIONThe Starraft Genre: The key areas in this genre are areas like strategivariation, build orders and good plaement of defensive strutures.This e�etively means that the Strategi Planning and Base Buildingmodules are of great importane in these kind of games. Games in thisgenre will also bene�t greatly from adding new states to the Statessub-module of the Strategi Planning module presented in AppendixB.5.10. This is beause there is so muh emphasis on the exeution ofstrategies in this genre.The Warraft Genre: This genre is haraterised by having relativelyhigh hitpoint units and buildings, whih means that miromanage-ment and hene the Tatial Planning module has muh more e�etthan in the other genres. The newer games of this genre also inlude afous on ounters, and beause of this, both the on�guration of strat-egy trees and the Strategi Planning module should be the fous of thedeveloper.Setion 8.3.3 will disuss how the framework an be adapted to workwith games that do not exatly follow the de�nition of RTS games presentedin Setion 1.1.8.1.5 Con�guration of Interation with GDFCon�guring the Connetion modules interfae between the GDF and the AIframework is one of the larger tasks, and it is di�ult to implement beauseit requires extensive knowledge of both the AI framework and the GDF. Thisevaluation will only onsider onneting the framework with the ORTS GDF,as it has not been possible to test other GDFs, beause of the problems withopen soure GDFs desribed in Setion 5.1.2.In Listing 8.5, the part of the Connetion module that handles the read-ing from the ORTS GDF is shown. This exerpt heks for updates in thegame state, as an be seen on Line 4. If anything is reeived, a ontainerobjet is reated on Line 5, a pointer to the game state is inserted on Line7, and then on Line 8, a pointer to the hanges that have happened in thisgame tik is inserted. Then the module will send an event telling that thegame state has been updated, as seen on Line 11 and 12. This event ontainsa pointer to the ontainer lass where the data is stored, whih the PereptInterpreter requires.Listing 8.5: Read funtion from onnetion module1 void Orts_onnetion : : read () {2 // l oo k s f o r s e r v e r messages3 // i f one or more arr ived , send event4 i f (gsm−>rev_view ()) {5 Game_hange∗ data = new Game_hange () ;6

CHAPTER 8. EVALUATION Page 103 of 2737 data−>game = game ;8 data−>hanges = hanges ;910 i f (data−>game){11 AI_event∗ event = new AI_event (AI_event : :UPDATE_GAME_STATE, data) ;12 Event_manager : : i n s t an e ()−>send_event (event) ;13 }14 }15 } Most of the omplexity is not here in the read funtion, but is insteadin the perept interpreter that transfers the data from the game state intoframework knowledge bases. The read() funtion only makes sure that thedata is aessible. Depending on the framework, this is a fairly straightfor-ward task. In ORTS, the AI opponents at as separate lients, whih meansthat if a lient is already implemented, this ode an be reused in the read()funtion for getting the neessary data.In Listing 8.6, an exerpt of the user implemented Perept Interpreter isseen. This user implemented module is the largest and most time onsumingtask to implement for developers, the omplex parts are hidden in the fourfuntions alled in this exerpt(line 9-12). It requires knowledge about theframework and the GDF, beause it is here where all the data reeived fromthe GDF is translated into something that the framework an handle. Eahof the knowledge bases that ontain data that an hange from game tik togame tik is updated here. However, when this rather large task of imple-menting has been done for the GDF, then it does not have to be hangedanymore, unless new attributes are added to the game.Listing 8.6: User implemented Perept Interpreter1 void User_perept_interpreter : : user_run (AI_event∗ event) {23 Orts_onnetion : : Game_hange∗ data =4 (Orts_onnetion : : Game_hange∗) event−>get_data () ;5 this−>urrent_game_state = data−>game ;6 this−>hanges = data−>hanges ;7 this−>id = ((Game∗) urrent_game_state)−>get_ l i ent_player () ;89 add_new_objets () ;10 update_hanged_objets () ;11 remove_dead_objets () ;12 remove_vanished_objets () ;13 } The funtion presented in Listing 8.6 takes the event that was sent fromthe Connetion module, and extrats the data from it. The pointer it on-tains is �rst asted to the type that is in the event, as shown on Line 3 and 4.Then eah of the pointers ontained in this lass is assigned to pointers in theloal lass. Afterwards four funtions are alled, eah taking the data out ofthe newly assigned pointers and updating di�erent knowledge bases. These

Page 104 of 273 CHAPTER 8. EVALUATIONfuntions are the omplex part of the Perept Interpreter that translate thedata from the GDF into knowledge in the knowledge basesListing 8.7 presents an exerpt of the write() funtion in the Conne-tion module. This funtion is one of the largest tasks for the developers toimplement, beause it has to wrap all of the ations that are generated inthe framework, into something that the GDF an understand. The write()funtion is given a list of ations, and all these ations should then be arriedout in the game environment.Listing 8.7: ORTS onnetion module1 void Orts_onnetion : : wr i t e (AI_ation : : l i s t t y p e ∗ a t i on s) {2 for (AI_ation : : l i s t t y p e : : on s t_ i t e r a to r i t=at ions−>begin () ; i t != at ions−>end () ; i t++){3 GameObj∗ obj = id_obj_map−>id_to_obj [(∗ i t)−>id ℄ ;4 i f (obj && ! obj−>is_dead ()){5 swith ((∗ i t)−>type) {6 // more ases7 ase AI_ation : :ATTACK:8 // WARNING s t a r t i n g new sope9 {10 AttakAI_ation∗ a t i on = stati_ast<AttakAI_ation∗>(∗ i t) ;1112 Vetor<s int4> args ;13 args . push_bak (at ion−>enemy) ;14 rv−>returnva lue [at ion−>id ℄ =15 obj−>omponent ("weapon")−>set_at ion (" attak " , args) ;16 }17 break ;18 // . . . more ases19 default :20 e r r << " Inva l i d a t i on g ive to Orts_onnetion" << endl ;21 }22 }23 }24 delete a t i on s ;25 gsm−>send_ations () ;26 } As an be seen in the ode examples listed above, all the ode is inC++, and this sets some boundaries for how developer friendly it is to im-plement. Furthermore, the programmer implementing this should have atleast some understanding and knowledge of the struture and arhitetureof both frameworks, in order to translate data from one to the other in areasonable way. The ations that are reeived as input to the write funtionare enapsulated in a data struture that the user also has to know, but thisstruture is very simple, and an be used as shown in Listing 8.7. This ex-ample is an exerpt that only handles the attak ation, but all other ationsshould be handled as seen in this funtion. The list ontaining the AI ationsan be iterated through like any other Standard Template Library [SL94℄ list.The most primitive ation, from whih all others are derived, ontains a typeenumerator, and an objet id. The type enumerator an be used to assure

CHAPTER 8. EVALUATION Page 105 of 273the type of the lass, and then a downward ast an be made safely, so themore spei� data in the lass an be aessed. As shown in the example,the AttakAI_ation ontains the ID of the unit that should be attaked.This ID is in the enemy variable, as seen on Line 13. With this information,the ation an be performed in the GDF, like the attak ation set on theobjet show on Line 14 and 15. Then on Line 24, the ation list is deletedto lean up, and on Line 25, the GDF is asked to send the ations. In ORTSthis means that the ations just assigned are sent to the server.To improve usability for the Connetion module a graphial user inter-fae ould be reated to assist the reation of the module. This would mostof all be similar to an Integrated Development Environment, beause theonly way to onnet the two frameworks will be by reating a ustom wrap-per interfae. However, the graphial user interfae an only assist as anunderstanding aid of what has to be reated, like having auto ompletion,heklists and desriptions of knowledge bases and their ontent. For in-stane for the Perept Interpreter, the developer ould be aided by giving aheklist of the knowledge bases that have to be updated, also ontainingdesriptions of the knowledge bases.8.2 VersatilityThis setion will deal with two issues of versatility: Framework versatilityand AI versatility. First, we will disuss the versatility of the frameworkby disussing if the prototype implementation has proven that it is possibleto build an AI framework that is independent of the GDF to whih it isonneted. Seondly, we will disuss di�erent ways of varying frameworkinstanes from eah other and evaluate whether it is possible to reate allkinds of AI for RTS games using the framework.8.2.1 Framework VersatilityOne of the goals of the framework was to make it independent of the gamedevelopment framework. This would allow the AI framework to be on-neted to any GDF. The prototype implementation of the framework hasonly been onneted to one GDF: ORTS. This means that the frameworkhas as suh not been tested in this area. However, one an make some generalobservations about the versatility of the framework based on the prototypeimplementation. The prototype implementation has suessfully separatedAI ode and game development framework ode by keeping all ORTS spe-i� details out of all modules but two: The Perept Interpreter and theConnetion module desribed in Setion 7.4.2. All other framework modulesare independent of the GDF. These two GDF spei� modules must solvespei� tasks, whih the rest of the AI framework relies on. The Connetionmodule must ontrol the diret ommuniation with the GDF as desribed

Page 106 of 273 CHAPTER 8. EVALUATIONin Setion 7.4.2, and the Perept Interpreter must extrat the informationrequired for di�erent knowledge bases, as de�ned in Appendix B.1.The two modules, Connetion and Perept Interpreter, ontain 259 and607 lines of C++ ode respetively, in the implementation onneting theAI framework to the ORTS GDF and the ode is not omplex. Codingthese modules requires the developer to have extensive knowledge of how theGDF operates and how the game state is aessed, to obtain the neessaryinformation. However, as the programmers developing the AI are typiallyalso involved in the game reation proess, it is safe to assume that they alsohave knowledge of the GDF being used.There are two requirements that a GDF must ful�l to be used with thisAI framework:1. The GDF must support giving full ontrol of all AI ations to the AIframework.2. The GDF must support retrieving the neessary data, desribed inAppendix B.1, for the AI framework to update in-game knowledgebases.It is our understanding that the �rst requirement is ful�lled by mostGDFs, but this annot be studied, as most game development ompanieswill not share information about their GDF. However, it would from a de-sign perspetive, not make any sense to have the two too losely linked. Theseond requirement should be ful�lled by most GDFs as well. The informa-tion required by the AI framework is essential for reating strong AIs andwithout a way to extrat this from the GDF, it would not be possible to re-ate the AI. It is unlikely that a GDF does not support operations requiredfor reating AIs.8.2.2 AI VersatilityThere are two ways of varying framework instanes from eah other in theprototype implementation of the framework: Through the strategies thatan AI knows, and through the on�guration of di�erent AI modules. Thissetion will illustrate both ways of reating di�erent kind of AIs and disusswhether this is su�ient to represent any kind of AI a designer may want toreate. In the full implementation of the framework, the user would be able toalso hange AI behaviour through both tatis and base building templates,whih were disussed in Setion 5.4.3 and Setion 5.4.4 respetively.Strategy TreesAn AI built using this framework will never follow strategies not present in itsstrategy tree. This way, an AI designer has omplete ontrol over what the

CHAPTER 8. EVALUATION Page 107 of 273AI will try to do during a game. If only one strategy is present in the strategytree, the AI will only do this strategy. If only one ounter is present for aertain strategy, the AI designer will know for sure that this is the strategythe AI will hoose when faed with a ertain strategy from the opponent. Byletting strategy trees de�ne the AI's strategi knowledge, we enable the AIdesigner to reate AIs with very speialised behaviour. The above is however,only the ase when there is no learning inluded in the framework. Aordingto our de�nition of what a strategy should ontain (Appendix A.1), strategytrees allow a designer to ustomise an AI to perform any strategy.To illustrate how to use strategy trees to de�ne di�erent kind of AIs,onsider Figure 8.1 and Figure 8.2. Both �gures show a strategy tree for anAI in the game used for the prototype implementation. Figure 8.1 shows astrategy with three possible starting strategies, and a follow-up strategy foreah starting strategy. For simpliity, no ounter nodes are shown on this�gure. Figure 8.2 shows a strategy tree for an AI ontaining only one of thestarting strategies shown in Figure 8.1. The AI shown in Figure 8.1 will beable to hoose between three strategies, and as seen on the edges, it musthoose the upper branh 50% of the times. The AI shown in Figure 8.2 onthe other hand, will always do the same strategy. By de�ning strategy treesthis way, an AI designer an ontrol the possibilities an AI will have duringa game, and thus reate exatly the kind of AI wanted for a partiular gameor situation. The addition of tatis and base building templates to strategytree nodes in the omplete implementation of the framework, will furtherinrease the possibilities an AI designer will have to ustomise the AI.Module Con�gurationIn terms of module on�guration, eah module typially provides three dif-ferent types of on�guration:Game Spei� Variables: These variables allow framework instanes tobe designed to suit a spei� game. This is for instane de�nitions ofwhih units should be onsidered workers, whih buildings should beonsidered farms et.AI Balaning Variables: These variables are as suh also game spei�variables, but deals more spei�ally with the AI of a partiular game.They help balane internal AI alulations by de�ning balaning vari-ables. This ould for instane be the variables in Listing 8.3 on line 24and line 25, whih de�ne the strategi importane of di�erent types ofunits/buildings in the game.AI Behaviour Variables: These variables de�ne di�erent behaviour at-tributes for an AI instane of the framework. Behaviour attributesare variables that de�ne how an AI should reason and reat to things

Page 108 of 273 CHAPTER 8. EVALUATION

Figure 8.1: Strategy tree for an AI in the test game

Figure 8.2: Speialised strategy tree for an AI in the test game

CHAPTER 8. EVALUATION Page 109 of 273seen in the environment. This ould for instane be the variable inListing 8.3 on line 18, whih de�nes when two strategy nodes shouldbe onsidered the same. Depending on the variable, the AI will takemore possible opponent strategies into onsideration and hange itsbehaviour aordingly.Combined, these three types of variables allow for adapting the frame-work to any kind of game and any kind of AI. By having all game spei�variables in sripts outside of the framework, the internal ode of the frame-work is kept generi and independent of the game in question. Furthermore,the advantage of having these variables de�ned in sripts is that a user anhange them without having to re-ompile the entire framework. As dis-ussed in Setion 8.1.3, developers an add their own on�guration variablesto further ustomise the AI.8.3 ExtendibilityThis setion will give an example of how to extend a framework module, andthen disuss and evaluate the method of doing this. Afterwards, we will givean example of how entirely new modules an be added to the framework andin the last setion we will disuss di�erent framework limitations.8.3.1 Methods and Module ExtensionsAs explained in Setion 6.3, the framework allows all modules to be extended.A user an hoose to simply extend a single method in a module or to extendthe entire module, inluding all its extendible methods. For this example wewill only extend a single method, as this will be enough to provide the readerwith the basi idea.Imagine that an AI developer omes up with a new idea for how sout-ing should be arried out in a ertain game. The basi souting providedwith the framework may have turned out to be insu�ient for the game inquestion. In other words, the AI developer wants to replae the soutingmethod in the framework with a new method. This requires an extension ofthe Strategi Planning module, where souting is handled. Consider a sub-set of the funtions available in this module in Listing 8.8. These funtionsrepresent just some of the responsibilities of the Strategi Planning modulewhih an be extended, and these are explained in detail in Appendix B.5.These extendible methods are often referred to as hook methods in frameworkliterature [ML01℄.Listing 8.8: Sub-set of the extendible funtions in the Strategi Planning module1 virtual bool su f f i i en t_knowledge () ;2 virtual void determine_souting_miss ion () ;3 virtual bool hange_strategy () ;

Page 110 of 273 CHAPTER 8. EVALUATION4 virtual void f ind_ounter_perentages () ;5 virtual void f ind_new_strategy () ;6 virtual void determine_expansions () ;7 virtual void eva lua t e_s i tua t i on () ;8 virtual void exeute_state () ;In this ase the user may want to hange both when souting is ne-essary (the su�ient_knowledge() funtion), and how souting is atuallyperformed (the determine_souting_mission() funtion). Two things mustbe done to ahieve this: Extending the module and informing the eventmanager to use this extended module. Extending the module is a relativelysimple task, and is shown in Listing 8.9. The module will then use the newextended methods when these are present, and otherwise use the defaultmethods the Strategi Planning module provides. The user does not need toworry about when to all the di�erent funtions, as this is handled internallyin the framework.Listing 8.9: Extension of the Strategi Planning module1 lass Extended_strategi_planner : publi Strateg i_Planner {2 publi :3 bool su f f i i en t_knowledge () { . . . } ;4 void determine_souting_miss ion () { . . . } ;5 } ; Following this, the event manager must be informed to use the new Ex-tended Strategi Planning module instead. The plae where the StrategiPlanning module is assigned to the event manager, it must be hanged touse the Extended Strategi Planning module instead. An exerpt is shownin Listing 8.10. Shown on line 1, the Extended Strategi Planning module isassigned to the sp variable instead of the normal Strategi Planning mod-ule. The pointer an still be of the derived lass, beause they have thesame interfae. The argument given to the onstrutor are the priority ofthe module along with the required knowledge bases. Then on line 4 themodule is given a meaningful name, and the module is assigned to the eventsit should handle as normal. Line 1 and line 4 are the only lines needed to behanged to inform the event manager to use the Extended Strategi Planningmodule.Listing 8.10: Assignment of events to the Extended Strategi Planning module1 Strateg i _planner ∗ sp = new Extended_strategi_planner (4 , gtk , mk, ek , sn ,2 om, tsn , ks , kbo , k , dmk, igek , mik , aua , igok) ;34 sp−>name = "Extended s t r a t e g i planner " ;56 event_mng−>assign_module_to_event_type (sp , AI_event : :PRR_TRIGGER_SP) ;7 event_mng−>assign_module_to_event_type (sp , AI_event : :START_STRATEGY) ;8 event_mng−>assign_module_to_event_type (sp , AI_event : :AUA_NEWUNITS) ;9 event_mng−>assign_module_to_event_type (sp , AI_event : :AUA_DEADUNITS) ;10 event_mng−>assign_module_to_event_type (sp , AI_event : :SP_MOVE_END) ;

CHAPTER 8. EVALUATION Page 111 of 27311 event_mng−>assign_module_to_event_type (sp , AI_event : :RETREAT) ;All framework modules an be extended this way. As explained in thissetion, extending modules and methods are relatively easy. One will needC++ programming knowledge to atually implement the extended methods,but the programmer an do this without knowledge of how other methodsin the module works. We have identi�ed two problems with this approah:1. The user must know the arhiteture of the framework fairly well toknow whih methods to hange to obtain a ertain e�et, and the usermust likewise know whih knowledge bases provide the di�erent typesof knowledge, and how to aess them.2. The framework restrits the user in the way the internal arhitetureof a module is designed. If the user wants to hange the internalarhiteture of the module, she must basially implement the entiremodule from srath, and personally make sure that all events areproperly handled, and sent from the module.These are typial problems when dealing with frameworks [FS97℄[MBF99℄ and there are no way around them. Frameworks will inlude thearhiteture behind the solution, and the bene�t of this inreased ode reuseis greater than the ost, as most AIs built using the framework will notrequire hanging the internal arhiteture of any modules. Furthermore, itis unrealisti to expet to be able to extend methods in a module withoutunderstanding the basi arhiteture of that module.8.3.2 Adding New ModulesAlthough this arhiteture is built to deal with all games inluded in the RTSgenres de�ned in Setion 2.4.2, some games may ontain speial featuresthat users of the framework want to add a new module to handle. Thefollowing will desribe how to do this, and what developers must take intoonsideration when modifying the framework in this way. The �rst step willbe to reate the new module, whih is derived from the Module interfae,with the appropriate knowledge bases, assign it a name, and then assign theevent types that the module should handle. This is shown in Listing 8.11.Listing 8.11: Creating a new module in the framework1 New_module module = new New_module(/∗ Pr i o r i t y and Knowledge bases ∗/) ;2 module−>name = "New Module Name" ;3 event_mng−>assign_module_to_event_type (module , AI_event : :TYPE_1) ;4 event_mng−>assign_module_to_event_type (module , AI_event : :TYPE_2) ;Afterwards, the atual module must be reated. It must implement themodule interfae that inludes a run() funtion, whih must handle all thedi�erent event types this module an be sent. Listing 8.12 shows how this isdone.

Page 112 of 273 CHAPTER 8. EVALUATIONListing 8.12: Mandatory run funtion in the new module1 void module : : run (AI_event∗ event)2 {3 swith (event−>type) {4 ase AI_event : :TYPE_1:5 // Handle event6 break ;7 ase AI_event : :TYPE_2:8 // Handle event9 break ;10 default :11 e r r << "Module f a i l e d to handle event " << endl ;12 }13 } All that is left now is to add the funtionality required to handle thedi�erent event types. However, adding a new module does nothing if it isnever sent any events. This means that developers must also identify whenevents are to be sent, and add this to existing modules and methods in theframework. All modules that are to send events to the new module must beextended as explained in Setion 8.3.1.Now that the module is reated and events are sent to it, the developermust onsider how the module should a�et other modules in the framework.There are basially two ways of doing this:Through Knowledge Bases: By modifying shared in-game knowledgebases, the new module an hange the foundation on whih other mod-ules work on, and through this, in�uene their behaviour. This mustbe done with great are, as in-game knowledge bases are often sharedbetween several modules, and hanging them may ause unexpetedonsequenes. The developer must have extensive knowledge of theinternal parts of the framework to make suh modi�ations safely.Through Events: The developer an also hoose to reate new events sentfrom the new module, whih existing modules must handle. This is anapproah that requires more work, but is safer as no unexpeted sidee�ets an our. The new event types must be added to the eventmanager and eah module reeiving a new event type must be ex-tended. However, the developer is left in more diret ontrol of exatlyhow to handle di�erent things from the new module. It still requiressome knowledge of the internal framework, but less than in�ueningother modules through knowledge bases.Whih of the two methods the developer should hoose, depends on thetype of in�uene the new module should have on other modules and onthe developers' understanding of the internal parts of the framework. Nomatter whih method is hosen, adding new modules to the framework is

CHAPTER 8. EVALUATION Page 113 of 273the most di�ult way to extend the framework. We hypothesise that ifthe framework is used for the intended games, the RTS genres de�ned inSetion 2.4.2, developers will seldom �nd themselves in a situation whereit is neessary to extend the framework this way. However, should speialirumstanes arise, it is possible to do, provided the developer understandsthe internal mehanisms of the framework.8.3.3 Framework LimitationsThe AI framework is built to handle the games falling into the ategory ofRTS games explained in Setion 1.1. However, many newer RTS games haveintrodued speial features that make it deviate a little from traditionalRTS games. The methods presented in this setion have explained howdevelopers an extend the framework in various ways to ope with these newrequirements.As an example, onsider The Lord of the Rings: Battle for Middle-Earthwhih is widely onsidered an RTS game. However, this game di�ers fromtraditional RTS games by the way it handles resoure gathering. Instead ofhaving workers running to and from resoures spread around the map, thisgame relies on one universal resoure that the player aquires by buildingfarms and slaughterhouses in prede�ned positions on the map. In fat, allbuildings must be built at prede�ned loations. These two features havesigni�ant impat on how an AI should play the game. All internal opera-tions within the Base Building and Resoure Management modules in theAI framework would basially be useless and unable to ope with these kindof hanges. For the AI framework to be useful in this game, both of thesemodules must be extended and ompletely re-implemented to suit the spe-i� demands of the game. At this point, developers must seriously onsiderwhether the bene�ts provided in other AI areas by the framework is enoughto justify modifying the framework to suh an extend.In general, when several framework modules must be ompletely hanged,developers must onsider the trade-o�s between the bene�ts of using theframework ompared to the learning urve required to be able to modify theframework. If basi strutures suh as strategy trees and tatis annot beused in the game in question, it is probably not an advantage to use theframework. The bene�ts of using frameworks in general, disappear whenusers have to hange too muh of the internal arhiteture.8.4 Performane TestingThis setion will show how the performane of the framework is measured,to test if the AI framework meets the real-time performane onstraint, pre-sented in Setion 7.4.1. First a desription of how the tests are reated willbe presented, and following this, the result of the tests. Then a disussion

Page 114 of 273 CHAPTER 8. EVALUATIONof the results will be given, and �nally a disussion of how the frameworksales in a omplete implementation is presented.8.4.1 Performane Test ConstrutionTo test the performane of the framework and framework modules, ode isadded to the event manager, whih tells how muh time is spent in eahmodule, and after a omplete game tik. The numbers that the time testan give will represent; The atual time that is spent in the module, thetime the operating system has spent on behalf of the appliation, and theomplete time that is spent. Beause the operating system will hange be-tween proesses while the program is exeuted, the most realisti result willbe the omplete time spent, beause the operating system will always dothis when running a game. Only the most neessary programs will be runon the mahine while the test is performed to minimise the fator of otherprograms taking proessing time. This means that only the ORTS serverand two instanes of the prototype are run.The following four tests will be performed:Game Tik Performane: After eah game tik the time used is reorded.This will show if the framework is fast enough to be exeuted thenumber of times eah seond that is required by the GDF. In ORTSthis is eight times per seond, whih means that the framework willhave 0.125 seonds to exeute eah game tik. When the frameworkis not performing any ations, this should be onsiderably less, in thearea of 0.02 seonds. No proessing time should be used, beauseno deisions or ations are made. If the framework uses too muhproessing time, there would not be enough proessing time for theatual game. A graph an be drawn omparing proessing time overgame tiks. This will show if there is an inrease in proessing furtherinto the game.Module Performane: This test will show whih modules use the mostproessing time. After eah module is run, the time passed is reorded.An average of eah module is then made. This is presented in a list,showing eah of the modules and their average use of proessing timeper game tik. This test an also be used in the atual use of theframework, as an indiator of what modules ould be optimised to getbetter performane.Module Game Tik Performane: This is a ombination of the two pre-vious tests, where eah module's proessing time over game tiks isplotted in a graph. This shows what modules are used in di�erentparts of the game. Some modules are used more in the start of thegame, while others are used more during battle. This test an give an

CHAPTER 8. EVALUATION Page 115 of 273idea whether a module like for example the Tatial Planning moduleis fast enough, when the AI omes into a large battle against an enemy.There are no time requirements to the spei� modules, just as long asthe total time of all modules in a game tik is less then 0.125 seonds.Path�nding Perentage: Path�nding is the most time onsuming part ofan AI, so a test is performed to see how muh of the total time in theAI that is spent in the path�nder. This is done by reording how muhtime is spent inside the path�nder and omparing this with the totalAI framework proessing time. This is done over several game tiks,so it is possible to get a meaningful and general result.The test is performed on an Intel r©Pentium r©III Mobile 800MHz, run-ning Linux 2.6.16 and the ode for the framework is ompiled with g++4.0.3.8.4.2 Performane Test ResultsThe result of eah of the four tests an be seen in the this setion. The testsare performed with the use of a timer that an tell how many hundredth of aseond that have passed sine the program was started. The time spend in afuntion is then found by subtrating the time before and after this funtionis alled. This does however mean that the preision of the measurementis limited to a hundredth of a seond. The values in the graphs and tablesbelow are therefore all measured in hundredth of a seond that funtions useof proessing time.During testing it was disovered that the path�nder implementation hadperformane problems. This is most likely beause of the implementation ofthe algorithm, so in the �rst three performane tests, a simpli�ed version ofthe path�nder is used. It is simpli�ed in the way that it moves on largerells instead of on unit oordinates, and does not take obstales into aount.This means that it is possible for units to walk into eah other and get stuk.This simpli�ation was neessary to be fast enough to respond the ORTSserver within a reasonable time, otherwise it would not perform any ations.Game Tik Performane TestFigure 8.4.2 presents the �rst 77 game tiks. It an be seen that there is useda lot of proessing time in the �rst game tik. This makes sense beause thisis where a lot of the data that is sent from the ORTS server is inserted intothe knowledge bases. Furthermore a lot of deisions are made, for instanewhat strategy to follow. The seond peak at the graph is at the third gametik. This is the �rst time that the path�nder is used, beause the workersare assigned to gather resoures, and a path is found for eah of them. Afterthis nothing happens until the souts have to �nd a path, at game tik 31.

Page 116 of 273 CHAPTER 8. EVALUATION
10

01
s

game ticks

pr
oc

es
st

im
e

 0

 5

 10

 15

 20

 25

 35

 40

 45

 0 10 20 30 40 50 60 70 80

 30

Figure 8.3: Game tik performane testIn general it is observed that the proessing of eah game tik takes around0.07 or 0.08 seonds, when nothing of importane is happening. Consideringthat there does not happen anything, and the framework still uses 0.07 or0.08 seonds there is something that has to be optimised. The frameworkhas to be a lot faster to be usable in a real game.Module Performane TestTable 8.4.2 presents the result of the individual module performane test,and are the average of 20 games run for 960 game tiks, meaning two min-utes. There is an unertainty of this test, beause of the already mentionedmilliseond limitation. This part is even worse here, beause after eah mod-ule is run its milliseond ount is reorded, and the next time this moduleis run, the ount from this is just added to the �rst value. This means thatif a module runs for less then a milliseond at eah run then it will never bereorded as being run. This was the ase for some of the modules. However,in average the time was barely one, so this is the number reorded.This table shows that too muh time is used in the Tatial Planner,and that there have to used some time to optimise what is being done inthis module. To get more detailed information about what takes all theproessing time in this module an be done by using a pro�ler like the oneused in this projet, the GNU gprof pro�ler[gpr℄. Here it was seen that it wasthe path�nder that used all the proessing time, even though the path�nderhas been simpli�ed. This might mean that the path�nder is alled too manytimes, and should be distributed out over some more game tiks. The PereptInterpreter uses 0.53 seonds, whih is reasonable enough, onsidering it is

CHAPTER 8. EVALUATION Page 117 of 273Module name: Proessing time: %Ation Planner 51 1.00%Base Building 1 0.02%GDF Connetion 18 0.35%Perept Interpreter 53 1.04%Probabilisti Reasoning 1 0.02%Reative Module 1 0.02%Resoure Manager 7 0.14%Strategi Planner 1 0.02%Tatial Planner 4944 97.38%Figure 8.4: Module performane testover two minutes, beause it takes all the perepts from the GDF and putsit into knowledge bases. The Ation Planner uses almost as muh as thePerept Interpreter, whih would make sense beause it is also run at everygame tik, olleting all the ations and sending them along to the GDFConnetion module.Module game tik performaneAn extrat of a omplete performane test log an be found in AppendixH.1. This has not been plotted to a graph, beause it is too di�ult toillustrate. In the log some of the �rst game tiks are presented. Here it ispossible to see what was also identi�ed earlier, that the Perept Interpreteruses a lot of proessing time to get all the information �rst given from theORTS server. The seond game tik is fairly standard, the only modulethat uses proessing time is in Tatial Planning beause it is using thepath�nder. In the third game tik we an see that the Resoure Manageris more ative. This is beause this is where it identi�es what resoures itshould go and harvest. After this the only module that uses any proessingtime is the Tatial Planning. Then in game tik 32 something is happeningagain. This is where souting is started, so the Strategi Planning makes theTatial Planning send out a sout. This makes the Tatial Planning usesa bit more proessing time.It is identi�ed through this test that there is something that has to bedone in the Tatial Planning, beause it always uses a lot of proessing time,even when it is not supposed too.Path�nding Performane TestAs already mentioned it was disovered that the path�nder was not fastenough to be used in the �rst three performane tests, whih meant that

Page 118 of 273 CHAPTER 8. EVALUATIONa simpli�ed version was used. In this test the omplete implementation ofthe path�nder will be tested. We know that it is not fast enough, so theperformane of the path�nder ompared to the rest of the framework willnot be onsidered, as the results at this point would be meaningless.In the test of the path�nder, a unit is made to �nd a path to a positionthat are �ve lusters away, meaning 80 ells. This sort of movement shouldbe no problem for a path�nder. The alulation of the passable path takesless than 0.01 seonds, and the alulation of the path takes 0.96 seonds.Considering that there are only 0.125 seonds of proessing time availableat eah game tik, this is not fast enough. If the JIT funtionality is imple-mented the alulation of the path will be distributed over more game tiks.This would mean that there would no longer be suh signi�ant peaks asseen in Figure 8.4.2.8.4.3 Performane Test DisussionThe performane test is not representative for what would happen in a om-plete AI framework, but it gives an idea if it is possible to reate a frameworkthat is fast enough to meet the time requirements. The modules and fea-tures that have been ompleted, whih are presented in Setion 7.1, havebeen tested to perform within the time onstraints, with the exeption ofthe path�nder and the Tatial Planning module. Beause the path�nder istoo slow to be exeuted in one game tik it has to be optimised, it has tobe possible get at least a small path within one game tik. Furthermore tominimise the use of the path�nder, it ould be made to path�nd for groupsof units, instead of doing it for eah individual unit. The Tatial Planningmodule has to be optimised so that it does not use so muh proessing timeat every game tik.The event manager that ontrols all the modules have not been testedfor performane, beause the number of events that are sent within a gametik will never be large, so a stress test of how many events it an handlewould be meaningless. To distribute the exeution of modules even more,the event manager ould be modi�ed so that it does not only onsider whatgame tik it is in, but also how muh time there have been used. Then ittakes its urrent module exeution list and save it for the next game tik,and sends the ations that have already been found. This distribution ofthe proessing time will make sure that more proessing time an be used ineah module, but the AI would be slower to reat.The test setups that have been presented here ould be used, along withthe omplete AI framework, to identify some of the same problems that havebeen identi�ed in these tests. A GUI an be reated to automatially reatethese tests. This would then present the graphs and tables that would helpthe developers with the identi�ation of bottleneks.

CHAPTER 8. EVALUATION Page 119 of 2738.4.4 SalabilitySalability is important if the framework is to be used in a real game. Ina real game there are a lot more units, tatis, and strategies than in thesimpli�ed game used for the performane test of this prototype. The ques-tion is whether the framework in a omplete implementation an ope withthe omplexity of a real game, and if the framework data representation ise�ient enough to be useful. In a real game there an of ourse be a lotmore units than has been the ase in this test senario. This is in mostases not a problem, beause the only parts that should be dependent ofhow many units there are in the framework is where units are deleted whenthey are dead and where they are added when they are onstruted. Theonly plae, where the number of units is an issue, is path�nding. This ouldbe handled by, instead of path�nding for eah individual unit, path�ndingfor a group at a time. The event system will not have any issues with theinreased omplexity. This will only start to be a problem if more modulesare added, beause the number of events sent around in the framework, isnot dependent on the number of units, only on the number of instrutionsthat eah module have to inform eah other about. This an of ourse bedependent on the number of units that have to perform ations at a giventime, but this ould be handled with some optimisations. When dealingwith performane the data representation is very important, beause this isoften what an tell if an appliation has potential to sale to a larger solu-tion [CLR90℄. The framework uses three types of non-trivial data struturesas presented in Setion 5.4: Strategy trees, tatis representation, and basebuilding templates.The strategy trees have no problem with salability, beause even if thetree beomes very large, it is for the most times only the nodes that are inthe losest relation (meaning its parents and hildren) with the node thatis urrently being worked with that is onsidered. Eah of the strategy treenodes ontains referenes to the hildren and the parent, whih makes itpossible to get the nodes in the losest relation in onstant time. Whensearhing for what strategy the enemy is using, it is no longer possible toaess the data in onstant time, as the tree has to be traversed from the rootnode. This is most likely not that big of a performane problem, beausethe worst ase senario is that it has to searh from the root to the top ofthe tree. This will only be a problem if the degree of the internal nodes ofthe tree are low and the tree thus deeper than wide. The worst ase senariohave omplexity O(n) and best ase is O(log(n)), depending on how the treeis de�ned.The tatis that are relevant for a ertain strategy are listed in eahstrategy tree node, in a limited sized list. This means that even if there exista large amount of di�erent tatis in a game, there are limits to how manyare aessible at one time, beause only the tatis in the strategy tree node

Page 120 of 273 CHAPTER 8. EVALUATIONare onsidered. This way the omplexity is in the hands of the designer,when she hoose the amount of tatis in a ertain strategy.The base building templates are organised in a tree as explained in Se-tion 5.4.4, and in the strategy tree nodes there are referenes to what basebuilding templates that �ts the strategy best. This means that the basebuilding template tree nodes are aessible in onstant time, even if the basebuilding template tree grows extremely large. This is beause there are di-ret links to the nodes used, and beause when the tree is used it is only thelosest relatives that are aessed.Based on the above reasoning, we hypothesise that there should not be tomany problems with the salability of the framework. Even if the frameworkknowledge bases beome huge, whih would be the ase for a real game,the representation of knowledge in trees is e�etive beause it is only therelatives that have to be aessed. Furthermore, the only ases where any ofthe trees have to be searhed is when looking for the enemy's strategy, andthis searh is not performed on eah game tik. The issue of path�nding anbe solved with a hange. When moving large number of units, the units willmove in a group and only one path�nding will be done for the entire group.8.5 AI ImprovementsThis setion will disuss how the framework improves the quality of AI inRTS games. We will use the test model desribed in Appendix D to test theprototype implementation. This model was also used to test existing AIs ingames. The results an be seen in Appendix E. The test results are shownin Appendix F, whih also shows the previous test on AIs for omparison, aswell as what we hypothesise that a omplete implementation will be able tohandle. Areas only partially marked in the test table indiate features thatare present in the prototype of the AI framework, but have not yet beentesting with a GDF. Note that we will not onsider the Cooperation tests withthe omplete implementation as this is not part of the design presented inthis report. We will �rst present how the prototype implementation handlesthe di�erent tasks marked in the test table, and afterwards disuss how aomplete implementation will be able to handle the remaining areas.8.5.1 Prototype ImplementationThe prototype was reated to be able to handle 11 of the test senarios inthe test model. However, beause of the implementation problems disussedin Setion 7.5, it has only been possible to suessfully test six of theseareas. To overome implementation problems, the test game was simpli�edin a few areas ompared to the game desribed in Setion 7.2.2. We haveremoved li�s, dynami obstales and manually plaed di�erent units on themap to better test di�erent senarios. Compared to the test we made on

CHAPTER 8. EVALUATION Page 121 of 273Strategy Chosen: Number of times PerentageFast Teh 7 23.33%Fast Expand 8 26.66%Marines 15 50%Figure 8.5: Chosen start strategiesthe ommerial RTS games, being able to handle 11 of the test senariosis a good result onsidering this is just a prototype of the framework. Thebest AI among the ommerial RTS games was able to handle 17 senarios.This is, however, inluding all the Cooperation areas, whih we have notinluded in the design of our framework. We will begin by demonstratinghow the six areas fully marked are able to handle their orresponding testsenario. These areas will among other things, demonstrate how strategytrees allow for strategi variation and ounters during a game. Furthermore,it will show how relative simple souting an make an important di�erenefor AIs in RTS games. Throughout the test, the strategy tree used by the AIis the one shown in Appendix K.3. For illustration purposes, ounter nodesare not depited, but just noted as an attribute of eah strategy tree node.The six areas and test results are disussed below:Using Counters: The prototype implementation handles ounters by util-ising two framework modules and strategy trees. The strategy trees forthe test game de�ne ounters to eah strategy the AI knows. Duringa game, the Probabilisti Reasoning module will attempt to disoverwhih strategy the opponent is using, by reasoning about the OpponentModel. Beause of the Probabilisti Reasoning module, the StrategiPlanning module is aware of whih strategy the opponent is most likelyusing, and an then look it up in the strategy tree and �nd its diretounter strategy. Given the strategy tree, everything else is handledinternally in the framework.This area was tested through the game logs shown in Appendix G.These logs are extrats of omplete logs with only neessary informa-tion inluded. As an example, the log in Listing G.1 shows how theAI sees the opponent in game tik 61. At this point, it annot seeanything else than what the AI started with, and the only potentialstrategy that mathes what it sees, is the Fast Expand strategy whihis the only strategy it knows only onsisting of worker units. As theounter to the Fast Expand strategy is the Marines strategy, this isthe strategy hosen. At game tik 89, additional information is dis-overed. The list of potential strategies shows how muh the urrentopponent model di�ers from eah of the potential strategies' orre-sponding strategy tree node. Here, the Mixed strategy seems most

Page 122 of 273 CHAPTER 8. EVALUATIONlikely and it is therefore the Mass Tanks strategy that has the greatesthane of ountering the enemy. Note that in these examples, we haveout-ommented the ode that determines how muh a ounter may de-viate from the urrent state of the AI before being appliable. Thismeans that the AI would not neessarily follow the proposed ounterstrategy. However, these examples demonstrates how the AI is apableof reognising the enemy's strategy and seleting the right ounter forit, based on knowledge from the strategy tree.Strategi Variation in one Game: As a diret onsequene of the AI be-ing able to use ounters, it is also apable of hanging its strategyduring a game.Strategi Variation Game to Game: Beause of strategy trees' abilityto represent several options at any given state in the game, the AIwill hoose its strategy based on probabilities given for eah possiblestrategy. Given the strategy tree used for the AI, the AI should hoosea Marines strategy 50% of the time, a Fast Teh strategy 30% and aFast Expand strategy 20% of the time.This area was tested by letting the AI play the same map 30 times in arow, and then observing whih strategies it deided to use. The resultsan be seen in Table 8.5.1. The results show the Marines strategybeing piked 50% perent of the time as expeted, and the other twoaround 25%. This shows how the AI varies it strategi hoie fromgame to game.Does It Sout At All: A timer ensures that the Strategi Planning mod-ule sends a sout in the beginning of the game and then afterwards withregular intervals. In the full implementation, the Strategi Planningmodule should base its deision to sout on whether it had su�ientinformation about the enemy.Souting is demonstrated in all game logs in Chapter G. In game tik31, the timer ensures that a sout is sent, and when the sout �nds theenemy base, this is re�eted in the opponent model.Using The Aquired Information: The Probabilisti Reasoning moduleuses the information obtained from souting, whih is in the OpponentModel, to reason about the opponent's hoie of strategy.As already disussed in regards to the AI's ability to ounter the op-ponent's strategy, the AI uses information gained from souting todetermine the opponent's potential strategies.Sensible Unit Used for Souting: In the prototype implementation, theuser ditates whih units to use for souting and the Strategi Planningmodule hooses an appropriate unit of this type to sout.

CHAPTER 8. EVALUATION Page 123 of 273As seen in game tik 31 in all game logs in Chapter G, the AI alwayshooses a worker to sout. This is ditated by the module on�gurationsript for the Strategi Planning module.One important onlusion an be drawn from the AI improvements theprototype implementation of the framework provides. The internal frame-work representation of strategies, strategy trees, enable AI designers to easilyreate AIs that both ounter and use information about the enemy to predither strategy. There is only one example of an AI in a ommerial RTS gamebeing able to do this, whih is Age of Mythology.Five other areas have also been implemented in the prototype implemen-tation, but as explained earlier, we have not been able to test them beause ofthe problems disussed in Setion 7.5. The �ve areas are listed below, alongwith an explanation of how they are handled in the design of the frameworkand prototype spei� details.Measure Own Str. vs Enemy Str.: The AI will ompare its strength tothe enemy in two sub-modules: The Evaluation sub-module in theStrategi Planning module desribed in Appendix B.5.9 and in theEvaluation sub-module in the Tatial Planning module desribed inAppendix B.6.3. In the Strategi Planning module the evaluation de-ides if the AI should engage the enemy or not, and in the TatialPlanning module the evaluation deides if the AI should retreat froma battle.Saving Hurt Units: The sub-module Unit Deployment in the TatialPlanning module desribed in Appendix B.6.7, takes are of savinghurt units. As there is no healing in the game, units are simply with-drawn from the front line, and then returned to battle. In the pro-totype implementation, the funtionality is expliitly de�ned into thesub-module, but in the omplete implementation, this funtionalityshould stem from the tatis the AI designers have designed before thegame.Fous Fire: The sub-module Targeter in the Tatial Planning module de-sribed in Appendix B.6.9, take are of fous �ring. This funtionalityis also expliitly de�ned in the module, and should be replaed bytatis de�ned by the AI designer in the omplete implementation.Spending Available Resoures: The sub-module Unit Planner in theAtion Planning module desribed in Appendix B.10.3 will make surethat resoures are onstantly spent. If the goal strategy node is alreadyreahed in terms of the number of units wanted, the module will simplykeep produing the units in the goal strategy node, while maintainingthe perentage unit distribution of the node.

Page 124 of 273 CHAPTER 8. EVALUATIONSouting Enemy: After the �rst souting, where the AI �nds the loationof the enemy base, the Strategi Planning module will make sure thatthe regular souts will always sout the enemy base.8.5.2 Complete ImplementationThis setion will disuss why we hypothesise that the omplete implemen-tation of the framework an handle all the areas marked in the table inAppendix F. The design of the framework has been foused on being able tosolve all of the tests in the test model. The fous of the test model is to testdi�erent areas of the human model, and this evaluation thus assumes thatthe human model is orret and the ful�lment of the human model is the goalfor the AI. We will go through eah of the areas not already handled by theprototype implementation, as these are also handled in the omplete imple-mentation. For eah we will present how we expet the area to be handled,and refer to the part of the design that handles that partiular area.Exploiting Weak Spots: The States sub-module of the Strategi Planningmodule desribed in B.5.10 handles this area. The user will be requiredto speify what de�nes strong and weak points.Reasonable Expansions: Beause of strategy trees, the AI will always ex-pand at the right times, that is, at the time where the strategy ditatesit. Furthermore, the Expands sub-module of the Strategi Planningmodule desribed in Appendix B.5.8, ensures that the expansion isplaed at a sensible spot.Using Map: The tatis representation disussed in Setion 5.4.3, inludesrules for how to use the map terrain to the AI's advantage. Further-more, the Evaluation sub-module in the Tatial Planning module dis-ussed in Appendix B.6.3 will reat upon a potentially bad battle po-sition and at aordingly.Good Buildorder: The prior knowledge base Known Build Orders shouldontain optimal build orders for ahieving ertain strategies in thefastest possible way. Using these, will enable the AI to suessfullyhandle this test.Using Formations: The tatis representation presented in Setion 5.4.3inludes rules for formations, and the sub-module Formations in theTatial Planning module desribed in Appendix B.6.5 will use theseto deploy formations when moving during the game.Map Considered When Moving: Handling this, is primarily a task forthe Path Planner sub-module in the Tatial Planning module de-sribed in Appendix B.6.10. This module will use the path�ndingmethod presented in Setion 5.4.2.

CHAPTER 8. EVALUATION Page 125 of 273Using Tatial manoeuvres: The tatis representation disussed in Se-tion 5.4.3 will de�ne rules for making tatial manoeuvres. The Tati-al Planning module must use these rules to atually exeute the tatiin battle.Staying in Control of Units: This test primarily deals with the nativeAI on eah unit. To handle this area, we have designed a HandleNative AI Event sub-module spei�ally suited for this in the ReativeModule. This sub-module is desribed in further detail in AppendixB.2.6.Counter Fous: By using the tatis representation disussed in Setion5.4.3, a user will be able to de�ne rules for whih units should fous onwhih enemy units. The Targeter sub-module in the Tatial Planningmodule desribed in Appendix B.6.9 will take are of exeuting therules de�ned by the user.Using Support: The tatis representation presented in Setion 5.4.3 alsode�nes rules for using support units and their spells/abilities. TheSupport sub-module in the Tatial Planning module desribed in Ap-pendix B.6.8 is responsible for ating upon the rules de�ned in a tati.Prediting Resoure Needs: The Determine Resoure Requirementssub-module in the Resoure Management module desribed in Ap-pendix B.7.3 is responsible for prediting resoure needs. It will usethe plans for units, buildings and future researh produed by othermodules to make its predition. By prediting resoure needs, it anassign more workers to gather a ertain resoure before it should beused.Flexible Resoure Gathering: As a onsequene of the AI's ability topredit resoure needs, it will also use this knowledge to determine howmany workers should be assigned to harvest eah kind of resoure. Thisall happens in the Worker Planner sub-module within the ResoureManagement module desribed in Appendix B.7.5.Good Plaement of Def. Buildings: A user of the framework has theability to de�ne how to plae buildings in the base through the basebuilding templates desribed in Setion 5.4.4. The exeution of basebuilding templates is handled by the Building Manager sub-module inthe Base Building module desribed in Appendix B.8.4.Good Plaement of Hrv. Buildings: The plaement of harvestingbuildings is also handled by the Building Manager sub-module of theBase Building module, whih works on base building templates.

Page 126 of 273 CHAPTER 8. EVALUATIONSensible Base: The user is responsible for de�ning how buildings shouldbe plaed through base building templates, and the Building Managersub-module is responsible for atually plaing these buildings.Souting Map: The Souting sub-module of the Strategi Planning moduledesribed in Appendix B.5.4, is responsible for the AI souting the mapin sensible plaes.Souting at Sensible Times: To sout at sensible times, the AI relies onthe Su�ient Enemy Knowledge sub-module in the Strategi Planningmodule desribed in Appendix B.5.3. This sub-module will base itsdeisions of whether enough is known about the enemy, on informationfrom the Probabilisti Reasoning module.Learning: Learning is handled by the Learning module desribed in Ap-pendix B.9. While learning new strategies is handled by the methodsdesribed in Setion 5.4.1, learning new tatis and base building tem-plates still needs some work.Although not tested, the omplete design of the framework should beable to handle all of the areas inluded in the test model.8.6 RTS Spei� ConeptsThis setion will disuss the two RTS spei� ideas implemented in the pro-totype of the implementation: Strategy trees and path�nding. For eah, wewill evaluate the suess of the idea of the implementation in the prototype,and disuss the e�et it would have in a omplete implementation of theframework.8.6.1 Strategy TreesStrategy trees have been the foundation on whih the Probabilisti Reasoningmodule and partly the Strategi Planning module have worked on in theprototype implementation. In both ases, the data struture and the ideaspresented throughout the disussion of strategy trees in Setion 5.4.1, haveshown to work as intended, as disussed throughout this hapter. Setion 8.1showed how strategy trees ould easily be spei�ed, Setion 8.2 showed howstrategy trees ould easily be on�gured to ahieve di�erent kind of AIs, andSetion 8.5 showed how strategy trees have suessfully helped in reatingimprovements in the AI. The game logs in Listing G.3 and Listing G.4 inthe appendix furthermore demonstrate how the AI is able to follow a givenstrategy by building the required units. The following will list some of themost interesting advantages of using strategy trees:

CHAPTER 8. EVALUATION Page 127 of 273Developer Friendly: The representation is straightforward and de�nesstrategies and the relation between them in a simple manner, espe-ially if depited in a graphial user interfae.Versatile: Through strategy trees, an AI developer an reate any kind ofAI she wants, by simply adapting the strategi knowledge of the AI.Built-in Operations: The data struture has through its representationnatural support for �nding ounter strategies and follow-up strategies.The only weakness of strategy trees in the prototype implementation,as mentioned in Setion 8.1.2, is the lak of a graphial user interfae. Thiswould help provide a muh needed overview when building large and omplexstrategy trees. There are also areas where the use of strategy trees an beimproved ompared to the prototype implementation. The following liststhree areas whih require further work:Learning: One of the reasons for using strategy trees was the ability toeasily add new strategies to a tree, and this way learn new strategies.Although adding the strategy itself is easy (as disussed in Setion5.4.1), learning new strategies inludes other problems that must besolved as well. Two of them are the tasks of reognising that a newstrategy is being used, and reognising new important game states.Tatis and Base Building Templates: In a omplete implementationof the framework, strategy tree nodes should ontain both tatis andbase building templates. These should support exeuting the strat-egy desribed by the node. A few key tasks regarding tatis requiresome further work however. First of all, the representation of tatismust be fully developed, and then a method to reognise these tatismust be omposed. Seondly, a method making it possible to ditatewhen a ertain tati should be used during the exeution of somestrategy needs to be developed. This would also make it possible toditate whih tatis to use depending on the situation in the game,for instane whether the AI is attaking or defending.Searh Optimisation: When working with small strategy trees, like theones for the game in this prototype implementation, the searh throughthe strategy tree when �nding mathing nodes does not really matter.However, in more omplex games, the strategy trees will onsist of farmore nodes, and when searhing through this, optimised tehniquesshould be used. There are many possibilities to guide a searh for amathing node in a strategy tree. One way is to build a strategy treefor the opponent during a game, and this way guide the searh in thetree, by only looking at nodes that are possible for the opponent toreah, given the strategy tree built for her. Another way ould be

Page 128 of 273 CHAPTER 8. EVALUATION

Path foundMap

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot1"

Figure 8.6: Path found in path�nding testto use the time variable on the strategy tree nodes, and only onsidernodes that are within a ertain time frame depending on the time sinethe game started. Finally, an optimised order of whih attributes ofstrategy nodes are tested �rst for being lose or equal to an attributein another strategy node, ould also result in a faster searh.8.6.2 Path�ndingThis setion will �rst evaluate the path�nder based on how well it �ndsthe orret path (an optimal path) and how well it redues the searh spae.Finally we will present some solutions to how the path�nder an be improved.CorretnessIn order to verify that the path�nder �nds an optimal path we have testedit by making it �nd a path aross a map with randomly plaed obstales.The path�nder will start at the left side of the map and travel towards theright side. A test result an be seen in Figure 8.6 and additional test resultsin Appendix I. The tests show that the path�nder indeed �nds a reasonablepath. We an furthermore onlude that the path is the optimal beauseof the algorithms used. A* will always �nd the optimal path [RN03℄. Thepassable path that is responsible for restriting the searh spae is build uponA*. This means that the optimal path must be present within this restritedsearh spae. Afterwards the optimal path itself is found within the passablepath by using A*.By basing both the passable path and the path itself on A* we onludethat the path�nder always �nds the optimal path.

CHAPTER 8. EVALUATION Page 129 of 273

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"astar_search_plot"

Figure 8.7: Searh spae explored by A*Searh SpaeThe test, to verify that the hierarhial JIT path�nder redues the searhspae, was arried out in the same type of environment as the previous test.Figure 8.7 shows the searh spae explored by A*, and the searh spaeexplored by the our path�nder an be seen in Figure 8.8, when �nding apath from the left side of the map to the right side of the map. A* explores52289 ells, while our path�nder explores 17152 ells. The searh spae anbe further minimised by making the lusters ontain a smaller amount ofells, but this will onsequently mean a higher omputation time to �nd thepassable path. This means that �nding the optimal solution is a balanebetween minimising the searh spae and the omputation ost involved indoing so. The total length of the path and the amount and size of theobstales on the map are also important fators that must be taken intoaount.

Page 130 of 273 CHAPTER 8. EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"own_search_plot"

Figure 8.8: Searh spae explored by hierarhial JIT path�nder

CHAPTER 8. EVALUATION Page 131 of 273ImprovementsWe have identi�ed two areas that must be improved in order for thepath�nder to get a reasonable performane. First the path�nder must berun in a JIT fashion as was intended with the design. Seond the datastruture used in open1 must be signi�antly redued.By simplifying the path�nding to not inlude the JIT design means atrade-o� between exeution ost and development ost. A JIT path�nderdoes not only a�et the Path Planner in the Tatial Planning but also theAtion Planner. Inluding suh a funtionality means some funtionalitymust be shifted from the Path Planner to the Ation Planner, whih initself is a small redesign of the framework.Test have revealed that too muh time is spent in the path�nder main-taining open. Further investigation has shown that it spei�ally is the sheersize of the open elements that is the problem. Eah element ontains thepath that urrently has been travelled in order to reah the node in question.This is a list of oordinates unique to every single node in open. This listan be avoided and thus the total size of the open elements severely reduedby using bak traing.8.7 Re�etionsThe following will re�et upon two things: The design presented in Part IIand the development method of basing an AI framework on a model of howhumans plays.8.7.1 Design Re�etionThe design of the framework presented in Part II and the design of eahindividual module presented in Appendix B have proven to be a big helpthroughout the implementation. We have been able to easily translate frame-work modules into C++ lasses and sub-modules into funtions. The designlearly separates di�erent funtionality into smaller manageable funtionsand furthermore learly de�nes how the di�erent funtions work in relationto eah other and the internal module arhiteture. Also, through the overallarhiteture of the framework, it has been easy to get an overview of wheredi�erent knowledge bases have to be used.In the prototype implementation, several small hanges have been madeompared to the design. As Setion 7.1 explains, although the prototypeimplementation has had a fous on some areas ompared to others, the im-plementation would still need to implement all modules exept the Learningmodule. This means that some of the modules in the prototype imple-mentation has not stritly followed the design, and only foused on making1An important queue used in A*

Page 132 of 273 CHAPTER 8. EVALUATIONa minimum implementation. This inludes modules suh as the ResoureManagement and Base Building modules. However, this has not a�etedthe idea of the design of these modules.The prototype implementation has also revealed some ideas for hanginga few design details. One hange indued by the prototype implementationis regarding how the Ation Planner module is in�uened by the Strate-gi Planning, Tatial Planning, Resoure Management and Base Buildingmodules. In the original design, the Ation Planner was in�uened by thesemodules by sending events. This has been hanged to letting the AtionPlanner module be in�uened by these modules through the shared in-gameknowledge base Assigned Unit Ation. The reason for this hange is thatwith the original design, the Ation Planner would be �ooded with eventsof proposed unit ations. It is a muh better hoie to let modules hangein the knowledge base, and then have the Ation Planner iterate over theunits in the knowledge base, when ommuniating ations to the GDF. Thishange is also re�eted in the design of the Ation Planner module desribedin Appendix B.10. Other issues of the implementation have onerned thingslike the exat data to send with events, the data struture used for di�er-ent variables and knowledge bases, and how to onstrut developer friendlyPython sripts. These were left as implementation details when designingthe framework.One of the onerns disussed throughout the hapter has also been theissue of providing solid doumentation for the framework. As a start, theinternal design of modules desribed in Appendix B provides both users anddevelopers with a basi understanding of how things work in the framework.It spei�es how framework instanes an be varied from eah other, and itde�nes the responsibilities of di�erent sub-modules. The design is however,mostly suited for users of the framework that wish to extend or modifythe framework in some way. Regular users will have more use of a usermanual, whih spei�es exatly how eah module and knowledge base anbe on�gured to ahieve di�erent things. The more advaned users of theframework would be able to use the design explained in the Appendix, butwould also bene�t from tutorials on how to hange the internal arhitetureof the framework.8.7.2 Development Model Re�etionUsing the human model as a basis for the framework does not mean that theframework an be used to all roles of an AI in RTS games. If for instanethe RTS game is a simple game with only a few units and no ounteringsystem there is no need to bring up suh an advaned solution as intendedwith this framework. The on�guration will probably take longer than asimple sripting of the AI. Even in normal RTS games, the AI annot beused for all aspets of the single player games. The human model will enable

CHAPTER 8. EVALUATION Page 133 of 273the AI to play like a human player in for instane a ustom game, wherethe AI and the player will play against eah other, but it will be less suitedfor ampaigns, where the ations of the AI will be ditated by a story. Onesuh example is the undead ampaign in Warraft III: Frozen Throne[warb℄,where the player will have to guide a hero through a dungeon �lled withunits ontrolled by the AI. These units have to at aording to a story line,whih is not overed by the human model. Lukily this is only a small partof the ampaign and in some of the other parts, where the map ditates aplaying style more like the one usually used in ustom games, the AI is stillwell suited.Handling ut senes or sripted events in general an be done by addingan event module. This module must enable game designers to take diretontrol over anything in the GDF in order to get the wanted result. This isnot normal human behaviour and is thus not overed by the human model.Consequently this module must be kept separate to the rest of the frameworkto maintain the orret abstration. The module must also be kept separatefrom the rest of the framework, beause it must have aess to more than isallowed for the AI presented in our solution. While the event module is run,the rest of the framework must be stopped and then started again when theut sene or event is over.Furthermore the human model itself is based on our experiene with thegames shared with the experiene of ommunities that are playing the games.The study of how a human player plays is a study of behaviour, psyhologyet. that is not a part of traditional omputer siene. A more thoroughstudy ould probably enhane the model and lead to a better abstration.The urrent human model only models the tasks the human player solveswhen playing RTS games. When looking at the general areas of responsibil-ities the di�erent modules have, it beomes apparent that the model mightbe generalised to model how a human player plays games in general. Somemodules may have to be merged into more general areas and others have tobe renamed in order to re�et the more general area of responsibility, butthe model as suh will remain the same. We will illustrate this through anexample: When playing a FPS game like Quake, the player will basiallygo through the same proess as modelled in the human model. She willstill have to make an opponent model and ompare this to what she knowabout the map, when deiding on a strategy. When meeting the opponent,she will have to use some tatis in order to engage in the right way, andif the enemy for instane throws a grenade after her, she will have to re-at instintively. Resoure management inludes whih weapons should beused, at whih times, and whih routes she must run in order to pik up var-ious items before the opponent. Further work will probably reveal a humanmodel that is struturally lose to the one presented for RTS game, and ableto model all game genres.

Page 134 of 273 CHAPTER 8. EVALUATION8.8 SummaryThe �rst setion of this hapter disussed how the framework ould be on-�gured to suit di�erent demands from the developer. We demonstrated howAI designers were able to de�ne tehnology trees, units, buildings and strate-gies, and how it is possible to vary AI behaviour through framework moduleon�guration sripts in a simple manner. To further assist developers, weidenti�ed doumentation and the inlusion of GUIs as possibilities for futurework. However, if a developer wants to add new variables or new features,she will be required to extend modules and methods and this requires C++programming knowledge. As most games, even within the RTS genres de-�ned in Setion 2.4.2, inlude some kind of speial feature, the AI developerwill often be required to extend the framework in order to support this.We hypothesise that the work required to do this will be minimum, as theframework already inludes the most ommon attributes and features.The test of the versatility of the framework was divided into two areas:Framework versatility and AI versatility. We onluded that framework ver-satility was di�ult to evaluate, beause the prototype implementation haveonly been onneted to one GDF. However, the framework and GDF hasbeen suessfully separated, and the ode required to onnet the two is notvery omplex. In regards to AI versatility, we evaluated the two ways thatdevelopers an vary framework instanes from eah other: Through strategytrees and through module on�guration. We veri�ed that strategy trees anbe spei�ed to reate any kind of strategi behaviour and that developersthrough module on�gurations are able to speify both game and AI spei�variables that in�uene the AI's behaviour during a game. Both of these anbe on�gured without having to re-ompile the framework every time to seethe e�et, whih helps provide easy balaning of variables and strategies.Setion 8.3 demonstrated how developers are able to extend modules andmethods in the framework, as well as adding entirely new modules to theframework. Although it should be possible for designers to reate prototypemethod extensions in Python, the task of extending the framework shouldmostly be left in the hands of C++ programmers, beause of performaneonerns. We onluded that modules and methods are quite easily extendedwith relatively little e�ort, but that adding entirely new modules is a moreompliated task. It is possible to add new modules, but the developer musthave extensive knowledge of the internal parts of the framework in orderto ensure that no unexpeted side e�ets our. One again, the issue ofproviding thorough doumentation was found to be very important.Our performane test in Setion 8.4 showed that our prototype imple-mentation su�ers from performane problems. However, we have identi�edthe problem as being the Tatial Planning module and more spei�ally ourimplementation of the path�nding method desribed in Setion 5.4.2. Allother modules seems to be running at a reasonable performane. However,

CHAPTER 8. EVALUATION Page 135 of 273this does not say muh as many of the modules are simpli�ed versions orthey are not alled the appropriate number of times, beause of the lak ofe�etive path�nding. The tests performed in this setion have furthermoreidenti�ed another important element to have inluded with the framework.As developers may also add and hange modules, they will need a pro�ler todetermine potential performane problems in their implementation.In order to evaluate the AI improvements provided by both the prototypeimplementation and the omplete implementation, we disussed their AIapabilities in relation to the test model desribed in Appendix D, whihwas also used to test ommerial RTS games. This allowed us to ompareour results with the urrent AI standard in the industry. We onluded thateven the prototype implementation is able to handle areas not handled inmany ommerial RTS games today, suh as ounters, strategi variationand souting. Furthermore, we disussed how eah of the areas in the testmodel was handled by di�erent framework sub-modules in the design of theframework, and hene also handled in a omplete implementation.The two RTS spei� onepts used in the prototype implementationwere evaluated in Setion 8.6. Strategy trees have shown to be very usefulin solving several of the senarios in the test model, inluding making theAI able to use ounters and strategi variation. They provide a developerfriendly and versatile approah to de�ning strategies, and allow for severalbuilt-in operations useful in the internal parts of the framework. In a om-plete implementation, strategy tree nodes should ome with both tatisand base building templates attahed, and it should be used in the Learningmodule to learn new strategies. The path�nder was shown to �nd the orretpath and it also explored a smaller searh spae, as was expeted.

CHAPTER 9. DISCUSSION Page 137 of 273
Chapter 9DisussionThis hapter will disuss if an AI framework for RTS games will be useful inthe game development industry and present possible future work within thistype of AI framework. To larify the role of AI frameworks in the AI devel-opment of RTS games, we have ontated a number of game developmentompanies to hear their views on the topi. A total list of the ompaniesontated an be found in Appendix L.1. The answers from these ompanieswill be the topi of Setion 9.1. In the end of this setion, a number ofindustry demands for an AI framework will have been de�ned, and Setion9.2 will fous on disussing how the AI framework presented in this projet,onforms to these requirements. Following this in Setion 9.3, we will makea brief market analysis of RTS games and RTS game development ompa-nies, to get a learer overview of the prospet of an AI framework for RTSgames being used in the industry. This has not been presented earlier in thereport, beause it has been an enquiry done in parallel with the projet. Theenquiry was as suh only done to establish whether the proposed AI frame-work would have any use in the industry. In setion 9.4 other potential usesof the framework outside of game development industry will be presented.Finally in Setion 9.5, we will disuss future work within the framework, andpresent the features that we believe will be the most hallenging to designand implement.9.1 Demand in IndustryThis setion will disuss the potential role of an RTS AI framework in theindustry. To gain better insight into how AI development for RTS gamesis handled in the game development industry, we have ontated severalRTS game development ompanies. These were sent a number of questionsregarding AI development and the idea of a generi RTS AI framework, whihan be seen in Appendix L.2. 4 out of 40 RTS game development ompaniesresponded and this setion is based on their answers. There an be several

Page 138 of 273 CHAPTER 9. DISCUSSIONreasons for why only four ompanies have responded to our enquiry:
• As most ompanies do not have a diret e-mail address used to ontatthe development team, we have been fored to use general informatione-mail addresses to ontat ompanies. This may have meant thatsome of our enquiries never reahed developers who were quali�ed toanswer our questions.
• One ompany responded that they simply did not have enough timeto answer our enquiry at the given time. This may have been the asewith other ompanies too.
• Finally, some of our questions are aimed at areas whih ompanies mayonsider seret, and therefore do not wish to reveal to people outsidethe ompany.The ompanies who answered our enquiry are: Oddlabs [Odd℄, In�niteInterative [Inf℄, Inhuman Games [inh℄ and Fireglow Games [�r℄. The fol-lowing will list these ompanies, along with the games they have developed:Oddlabs: Tribal Trouble (2004) [Tri℄.In�nite Interative: Warlords Battlery II (2002) [wbia℄, Warlords Bat-tlery III (2004) [wbib℄ and Seven Kingdoms Conquest (in prodution)[sev℄.Inhuman Games: Trash (2005) [tra℄.Fireglow Games: Sudden Strike 3: Arms for Vitory (2006) [sud℄.Although these four ompanies are only representing about 10% of thetotal number of RTS game ompanies, whih have produed RTS gameswithin the last �ve years (shown in Appendix L.1), their answers should serveas an indiation of di�erent issues regarding AI development. Espeially thedevelopers from In�nite Interative, who have produed several very popularRTS titles will be able to provide onrete answers of how AI developmentfor RTS games is handled in the industry. We will divide this setion intofour di�erent parts, eah disussing an important element in AI development,and a �nal part disussing the merits of the idea of an RTS AI framework.The original answers to the questions asked in Appendix L.2 an be foundin Appendix L.3.9.1.1 Time Spent on AI DevelopmentIn general, the time spent on AI development varies from ompany to om-pany. For games whih were not under extreme time pressure, the devel-opment time seems to range from about 2000 to 5000 man hours. Thesenumbers are rough estimates:

CHAPTER 9. DISCUSSION Page 139 of 273It's di�ult to make a preise estimation, beause vagueness offrames of whih part of the game engine is AI and whih is not.- Max Dolmar, Fireglow GamesMax Dolmar also states that one of the most time onsuming task ofdeveloping AI in RTS games is the issue of path�nding.9.1.2 Developers of AIAIs in RTS games are primarily reated by programmers with the help ofthe designers. Designers are in harge of the very high level part of theAI, inluding balaning, while programmers take are of the rest. There ishowever, a tendeny to move towards having more of the AI that an besripted by AI designers:Programmers tend to do most of the AI development. Inreas-ingly game designers with sripting ability are developing AI.Game designers tend to only ontrol very high level aspets ofAI. - Mark Currie, Inhuman GamesDevelopers of Warlords Battlery are for instane inreasing their use ofthe sripting language Lua to get the designers more involved in the proessof building the AI.9.1.3 AI Development ToolsTwo out of the four game development ompanies do not use any AI toolsat all, and develops every AI for a new game from srath. The developersof Warlords Battlery uses a library built in-house as the foundation for theAI: We have our own movement/pathing libraries on whih every-thing is built. Everything apart from the movement and pathingis reated from srath on every game. - Steve Fawkner, In�niteInterativeThe only ompany that uses an AI framework for development of the AIis the developers of Sudden Strike. They have built their own AI frameworkand uses this in onnetion with a third-party sript system to reate AIs fortheir games. Furthermore, it seems that the game development ompaniesinvolved in making more than just one title, are better at using AI tools toreuse ode from the AI in one game, to the AI in another game.

Page 140 of 273 CHAPTER 9. DISCUSSION9.1.4 AI Integration with GDFThe separation of AI ode from the GDF seems to vary greatly. Some om-panies have them ompletely separated, while others have them losely on-neted. It seems however, that ompanies with more than one shipped title,fous more on separating the two. The developers behind Warlords Battlerykeeps the two ompletely separated, but do inlude di�erent funtionality inthe GDF for the AI to use:They are kept ompletely separate. However, various funtions ofthe engine have been added to help with AI, suh as line-of-sightalulations. - Steve Fawkner, In�nite InterativeThe AI framework used by the development team reating Sudden Strikehas some modules that are totally independent of the GDF, while others arelosely linked to the game and gameplay.9.1.5 Generi RTS AI FrameworkIn general, all four ompanies are quite positive of the idea of a generi RTSAI framework. However, they all indiated that there have to be substantialadvantages in using the framework, and that the framework has to delivera number of advaned features espeially important to AIs in RTS games.Otherwise, it would simply be too big a task to use and understand third-party software. The following lists a number of features that an AI frameworkfor RTS games should ontain failities for, to be suessful in saving AIdevelopers a lot of time:
• Movement and Path�nding
• Formations
• In�uene Maps (e.g. for detetion of danger)
• Threat Assessment
• Ations/Orders
• A State Mahine of Ations of Individual Ators
• Grouping Mehanisms
• A Method for Traking and Remembering Enemies
• Building and Prodution Hierarhies
• Resoure Usage and Needs
• Managing and Prioritising Objetives

CHAPTER 9. DISCUSSION Page 141 of 273
• Sripting SystemFurthermore, the framework should be relatively easily onneted to anykind of GDF. If an AI framework ontained the above mentioned features,it would probably be used in the industry, as long as the quality was goodand the prize a�ordable. One ompany, the developers of Trash, even wentas far as guessing a possible prize on the produt:If your AI is the great, I think it ould be sold. It would have to beextremely good and easy to integrate into any RTS game engine.If this was the ase, perhaps you ould harge $100k USD for it�ifsold to big AAA studios1. - Mark Currie, Inhuman Games9.1.6 SummaryOnly two of the four game development ompanies reuse their AI ode, andone on them did this through very general AI libraries. The only ompanyusing an AI framework was the developers of Sudden Strike, but the sopeof this is unknown. None of the ompanies take advantage of reuse to adegree omparable to the AI framework desribed in this projet. Threeof the ompanies have begun to fous on having designers more involved inthe proess of reating the AI, and they are using sripting languages to dothis. There is a general onsensus among the four ompanies that an RTS AIframework will be a good idea provided it lives up to a number of demands,making it possible to save a lot of time during development.9.2 Conformane to Industry DemandsSetion 9.1.5 listed a number of features an AI framework for RTS shouldsupport to save a lot of time during AI development. The omplete designof our AI framework handles all of these areas. In the following we will listthe framework modules that are involved in handling the di�erent demands.Strategi Planning: Threat assessments, grouping mehanisms and man-aging and prioritising objetives.Tatial Planning: Movement and path�nding, formations, in�uenemaps, threat assessments, and managing and prioritising objetives.Base Building: Building and prodution hierarhies.Resoure Management: Resoure usage and needs.Ation Planner: Ation/orders, and managing and prioritising objetives.1AAA game development ompanies basially refers to ompanies produing large andexpensive titles, whih inlude a lot of PR/marketing.

Page 142 of 273 CHAPTER 9. DISCUSSIONYear: RTS Games Published:2002 202003 152004 272005 192006 20Figure 9.1: RTS games published the last 5 yearsBesides the demands handled by framework modules, some of the in-game knowledge bases also take are of a few of the demands. AssignedUnit Ation and Assigned Building Ation keeps trak of whih state thedi�erent units and buildings are in and In-Game Enemy Knowledge keepstrak of enemy units and remember where they were last seen. Besides this,the framework as a whole, o�ers a sripting system, where all modules andknowledge bases an be on�gured. To summarise, our framework is designedto provide failities for all the features listed in Setion 9.1.5.9.3 RTS Game Market AnalysisIt is di�ult to make an estimate of how many RTS games are produedevery year, as there are no o�ial reords of this. Furthermore, the termReal-Time Strategy game is used to desribe many di�erent kinds of gamesand not only the ones being the fous of this projet. Some would for instaneharaterise Tetris (1986) [tet℄ as being both a real-time and strategy game,and hene an RTS game. In this setion we will only onsider the RTS gamesthat ome into the ategory desribed in Setion 1.1. We will use the populargame site Gamespot [gam℄ to identify published RTS games. Gamespot hasreords of any ommerial RTS game relevant to this projet. The numberof RTS games published within the last �ve years an be seen in Table 9.3.The number inludes both expansion paks and gold editions, as these oftenupgrade the AI ompared to the original game. Furthermore, the numberfor 2006 is partially based on expeted RTS game releases.As Table 9.3 indiates, about 20 RTS games are released every year.Within the last �ve years, the prodution of these games have been handledby about 40 di�erent RTS game development ompanies. It is di�ult toestimate how many of these ompanies would have to buy the AI frameworkfor it to be a worthwhile business. This depends on development ost, theprize of the framework and on the interest shown from game developmentompanies. However, there are many potential buyers and if our answersfrom game development ompanies serve as any kind of indiation, there maybe up to 75% who would be able to bene�t a lot from using the framework.

CHAPTER 9. DISCUSSION Page 143 of 273Furthermore, as many of the ompanies develop more than one title, thebene�ts of using the framework inrease even more. The framework an beused on several titles, and this way inrease ode reuse. However, as observedin Setion 9.1.3, it seems that game development ompanies involved inmaking more than one RTS game, often have their own AI tools to inreasereuse and redue development time.9.4 Other UsesThe framework an also be used in other ases, where it is not the main AIdevelopment tool for an RTS game. One possibility is to use the frameworkfor AI researh. By providing a very modular framework, whih inludesstandard implementations for eah module, an AI researher will be able tofous on a speial area, probably a module, while letting all other modulesbe handled by the standard implementation. This provides new options forresearhers wanting to fous on a ertain aspet of AI. RTS games providea platform for researhing many fundamental aspets of AI [Bur03b℄:
• Deision Making under Unertainty
• Adversarial Real-Time Planning
• Reasoning
• Opponent Modelling
• Learning
• Resoure Management
• CollaborationNormally, researhers will have to build a test environment to use whentesting their ideas, whih is a time onsuming task and not interesting froman AI researh perspetive. Using RTS games as a test environment om-bined with an AI framework, provides optimal onditions for AI researhers.They an fous on speialised areas, for instane learning, while leaving ev-erything else to the framework and test their ideas in a omplex environment.9.5 Further WorkThis setion will disuss possible further work that an be done following theprototype implementation in this projet. We will start by disussing whatis needed to reate a full implementation of the framework. Following that,we will disuss how the work done in this projet an in�uene the reationof AI frameworks for other game types.

Page 144 of 273 CHAPTER 9. DISCUSSION9.5.1 Complete ImplementationA omplete implementation of the framework presented in this projet will�rst and foremost require that all the remaining features presented in thedesign in Chapter 6 are implemented. A ouple of areas require further workbefore being appliable in the framework. These are listed below:Tatis: First, the onept of how to represent tatis presented in Setion5.4.3 must be expanded to deal with several other tatial issues suh asusing terrain, using support units and �guring out how to ounter theopponent's tatis. Seondly, the framework must inlude methods forproperly exeuting the di�erent tatis de�ned by the user, through therules de�ned in the tatis representation. Finally, work must be donein trying to develop a generi method for reognising tatis in all kindsof RTS games. This method should be based on the representation oftatis.Cooperation: In this projet we hose to disregard all ooperation featuresin the framework. This would not be an option in a full implementa-tion, as ooperation has an important role in most RTS games. In thehuman model in Chapter 3, we de�ned ooperation as being a taskin�uening all other tasks and as being itself in�uened by all othertasks. Translating this to the framework arhiteture, it would prob-ably be a form of global module, ditating orders to other modules.More work has to be done in this area to ensure proper ooperationbetween both allied AIs and allied human players.Graphial User Interfae: Setion 8.1 and Setion 8.1.5 presented theidea that a GUI would be a big help in ensuring a developer friendlyframework. This idea should be further developed, and developerfriendly methods for the user to de�ne strategy trees, tehnology tree,unit types et. must be de�ned.Doumentation: The doumentation for the prototype implementation islimited to the framework design desriptions in Appendix B and on-�guration examples in Python �les along with omments on what eahon�guration variable means. However, frameworks are in general largeand omplex piees of software and quite di�ult to understand, andtherefore proper doumentation is required [FHLS97℄. A lot of researhhas been done on doumenting frameworks [BKM00℄. Normally, onedivides doumentation of frameworks into three separate areas [Joh92℄:
• The purpose of the framework.
• How to use the framework.
• The detailed design of the framework.

CHAPTER 9. DISCUSSION Page 145 of 273Work must be done in ensuring the right hoie of doumentation fora framework of this type, whih inludes the three areas mentionedabove.With all ideas fully developed, we an take a loser look at the featureswhih were not implemented in the prototype implementation. In the fol-lowing we will list some of the most interesting missing features, and presentsome of the hallenges of a omplete implementation.Learning: The design of the Learning module is spei�ed in AppendixB.9. Methods for learning new strategies have already been disussedthroughout the disussion of strategy trees in Setion 5.4.1. Thebiggest hallenges when implementing the module will be to devisea method for learning new tatis and base building templates. Fur-thermore, a method is needed to properly revise strategies, tatis andbase building templates.Base Building Templates: The framework will have to use the ideas pre-sented in Setion 5.4.4. This inludes letting users de�ne their owntemplates, and de�ning internal methods in the framework that areable to use any given template. Work must also be done on how tobuild a few generi templates, whih will work in any RTS game. Thesewould serve as a standard way of handling base building.Building Planner: This sub-module is part of the Base Building mod-ule, and is basially responsible for planning whih buildings to buildand when. It must given a strategy and base building template, planwhere and what to build, taking the tehnology tree and the resouresavailable into onsideration. Further details of this sub-module an befound in Appendix B.8.5.Unit Planner: This sub-module is part of the Ation Planner and its re-sponsibilities are similar to that of the Building Planner. It must on-sider all the same things, but here the module must reate a plan forwhen and what units are to be built. The sub-module is disussed infurther detail in Appendix B.10.3.Researh Planner: The Ation Planner also ontains this sub-module,whih is responsible for deiding when and what researh is to be pur-hased. Work must be done in developing generi methods able to dealwith all the di�erent kinds of researh options available in di�erent RTSgames.Ation Sheduling: While Building Planner, Unit Planner and ResearhPlanner all fous on eah their area, the Ation Planner must deidewhih of the suggested ations from eah sub-module are to be exeuted

Page 146 of 273 CHAPTER 9. DISCUSSION�rst. The hallenge of reating this sub-module is to devise a sensibleway for developers to speify rules for how the module should prioritisethe di�erent ations. This sub-module is disussed in further detail inAppendix B.10.5.Advaned Souting: The prototype implementation has a very simpleform of souting. The omplete implementation must both inludefeatures for souting the right attributes of the enemy and for soutingthe right plaes. The exeution of souting is as suh not di�ult, thetask when reating this sub-module will be to let a developer de�nepreise rules for when and what to sout. A further disussion of thisan be found in Appendix B.5.4.Advaned Exeution of Strategies: While the prototype implementa-tion has a very simpli�ed exeution of strategies, the omplete im-plementation must feature the States sub-module explained in SetionB.5.10. However, this method must be tested in terms of its abilityto handle very speialised situations and a method for developers toeasily de�ne the exeution of strategies must be devised.Advaned Situation Assessment: Appendix B.5.9 presented a simplegeneri way of evaluating a situation. However, as also explained inthat setion, evaluating a situation is game spei�, and a way for adeveloper to de�ne how to do this will be neessary in most games.Work must be done in attempting to devise a way to do this withoutthe developer being required to have knowledge of C++ programming.In general, further work must be done in testing di�erent aspets of theframework. The prototype implementation has only been onneted to oneGDF, and to really test the versatility of the framework, it must be testedwith other GDFs as well. Furthermore, the GDF used for the prototypeimplementation is primarily used to reate games in one of the RTS genresde�ned in Setion 2.4.2. This means that the framework has not yet beentested in regards to its ability to reate AIs for all the di�erent genres.However, as disussed in the evaluation in Chapter 8, this should not be aproblem.9.5.2 AI Frameworks in GeneralThis projet also has uses outside the domain of AI frameworks in RTSgames. We have through the projet demonstrated how it is possible toreuse large parts of the AI for a spei� game genre. We hypothesise thatthis is possible for more genres than just RTS games. This report an serveas a guideline of how to onstrut a framework spei�ally suited for onetype of game. This inludes building a human model of how a human will

CHAPTER 9. DISCUSSION Page 147 of 273play the game as well as using this to reate a framework arhiteture. Thisdevelopment model is disussed in more detail in Setion 8.7.2. Further-more, a number of examples have been desribed, of how to reate speialdata strutures partiularly useful for both representing and learning domainspei� knowledge in the game type being foused on.

CHAPTER 10. CONCLUSION Page 149 of 273
Chapter 10ConlusionIn this hapter we will onlude on the projet and present the primaryontributions made to aademia and game development, desribed through-out this report. This projet has presented the design of an AI frameworkfor RTS games. We have based this work on our pre-master thesis [FKL05℄,whih de�ned a model of how humans plays RTS games and suggested a pre-liminary design. This report presented a revised human model in Chapter3, whih de�ned the tasks an RTS game onsists of and how these in�ueneeah other. We used this model as a starting point when we designed theframework arhiteture.Throughout the report we have presented a number of design tehniquesused when designing the framework. We have demonstrated how these teh-niques an be used to enhane AI development in the game developmentindustry as well as demonstrated a new area of appliation for these teh-niques for the aademi world. Some of the known design tehniques usedinlude frameworks, sripting languages and event systems, but we also pre-sented four new onepts spei�ally suited to reate AIs in RTS games.These four tehniques provides the foundation for the AI framework. In Se-tion 5.4.1 we presented the idea of strategy trees, whih is a data struturespei�ally suited to represent strategies in RTS games. Following this, wefoused on path�nding, whih is an important element of any RTS game,and we presented a new method of doing this, optimised for working in anRTS game environment. The third RTS spei� tehnique introdued wasthe notion of a representation of tatis. We presented a general approah tohow this an be done in a way that AI designers an speify tatis spei�-ally suited to the game they are working with. Finally, the fourth tehniquefoused on what we hose to all base building templates. These were re-ated to allow AI designers to speify how an AI should onstrut its basein a partiular game using a ertain strategy. Strategy trees, tatis andbase building templates have all ontributed to AI development within theRTS genre, by presenting new ways of representing AI spei� data. They

Page 150 of 273 CHAPTER 10. CONCLUSIONallow a developer friendly and generi representation, whih an be reused indi�erent RTS game genres. Furthermore, they allow developers to omposenew kinds of strategies, tatis and base building templates, by ombiningsmall building bloks onsisting of rules or strategies. Our path�nding ideahas not only shown a new way for AI developers to optimise path�nding intheir games by reduing the explored searh spae and distributing ompu-tations over several game tiks, but also ontributed to the general aademiresearh within this area, whih has many appliations outside RTS games.The design of the AI framework was presented in Chapter 6, and followedthe design goals outlined in Setion 4.1. These inluded improving the AI,reduing development ost, reating a workload shift from programmers todesigners and reating a strutured overview of the development proess ofreating AIs for RTS games. The ful�lment of these design goals throughour AI framework has ontributed to the game development industry bypresenting and implementing a design apable of ahieving these goals. Byusing the human model de�ned in Chapter 3 as a foundation and by drawingupon knowledge of framework apabilities and harateristis, we reated aognitive arhiteture for the framework, desribed in Setion 6.1. As forthe non-trivial knowledge representation in the framework, we used the RTSspei� onepts de�ned in Setion 5.4: Strategy trees, tatis and basebuilding templates. The detailed design in Appendix B furthermore spei�edsub-modules in eah framework module, de�ning their responsibilities andproposed hot spots. Finally, in Setion 6.3 we presented how a user shouldbe able to vary framework instanes from eah other and in Setion 6.4 wepresented an event system designed to ontrol our AI framework. The designof the framework has ontributed to aademia by ombining three well-knowndesign tehniques in a new area of appliation in order to maximise reuse,seure a user friendly framework and reate a lear separation of frameworkmodules.As a proof of onept, a prototype implementation of the framework wasimplemented and onneted to the ORTS GDF. This GDF inluded a sim-ple RTS game, whih had all the neessary features required to test di�erentAI apabilities. In order to allow inexperiened programmers to use theframework, we used the sripting language Python to on�gure frameworkmodules and knowledge bases. The evaluation of the prototype implemen-tation was presented in Chapter 8 and disussed six framework evaluationareas: Con�gurability, Versatility, Extendibility, Performane testing, AI im-provements and test of RTS Spei� Conepts. We onluded that an AIdesigner is able to on�gure strategies, tehnology trees and modules with-out muh e�ort. However, if new attributes or features in a game are to beinluded, experiened C++ programmers must extend modules or methodsin the framework. As long as the required AI for the game does not de-viate too muh from the internal framework arhiteture, this an be donewithout any problems. We hypothesise that this is the ase with most RTS

CHAPTER 10. CONCLUSION Page 151 of 273games within the four genres mentioned in Setion 2.4.2. Our performanetest revealed one major performane problem in the implementation of ourpath�nding idea. However, we have identi�ed the problem and presenteda solution to overome it in Setion 8.6.2. The test of the AI reated withthe prototype implementation was presented in Setion 8.5, and showed thatthe AI is able to both sout and vary its strategy by using ounters. Theability to ounter and vary its strategies is a diret onsequene of usingstrategy trees as the representation of strategies in the framework. The pro-totype implementation has ontributed to the game development industryby demonstrating to what degree an AI designer an develop AIs and howstrategy trees in partiular simpli�es reating AIs with apabilities beyondthose of urrent ommerial RTS game AIs.In Chapter 9, we presented a disussion of the potential use of the AIframework in the game development industry. We ontated several RTSgame development ompanies, and set up demands that the framework hadto ful�l to be useful in the industry. We then demonstrated how eah of thesedemands set by the industry were ful�lled by our framework arhiteture.Furthermore, we analysed the market for an AI framework for RTS games,and onluded that there are many potential buyers and if our enquiry servedas any kind of indiation, most ompanies would be able to bene�t from theuse of our AI framework.There are many possibilities for future work based on this projet. Thelogial entailment following the prototype implementation would be to imple-ment a omplete implementation. This will require work in several di�erentareas as also presented in Setion 9.5. First of all, this report has ontributedby identifying key areas whih requires further work before they an be usedin an atual implementation. This is the ase with the tatis representationpresented in Setion 5.4.3 and the Cooperation task in the human model,whih were not initially inluded in the design of the framework. Further-more, throughout the evaluation in Chapter 8, two issues were found to bevery important when users are to use the framework: Doumentation andGraphial User Interfaes. Doumentation is required for both designers andprogrammers to use the framework e�iently and this must be added for aomplete implementation to be of any use. GUIs must be added to aid AIdesigners in designing strategy trees, tehnology tree, unit types et. andfor assisting programmers in reating modules. Both the doumentation offrameworks and the reation of a developer friendly interfae for the frame-work, are interesting areas from an aademi researh perspetive. Finally,there are also still work to be done in regards to the Learning module. Learn-ing strategies is well-de�ned through strategy trees, but work must be doneon how to learn tatis and base building templates. Mahine learning is assuh a well-known disipline within mahine intelligene researh, however,the tehniques desribed in our solution presents not only a new method ofdoing so, but also a new area of appliation.

Page 152 of 273 CHAPTER 10. CONCLUSIONThe work done in this projet may be used in other areas than developingomplete AI solutions. One area may be within AI researh. As stated inSetion 9.4, our framework provides an opportunity for AI researhers tofous their attention on a ertain area of RTS AI. RTS games are interestingfor AI researhers, beause they ontain a number of interesting AI problemsin well-de�ned environments, and our framework allows researhers to easilyfous on one of them. This way we ontribute to aademia by providing aresearh platform for AI development.The development method used in this projet may also be used in fu-ture work. We hypothesise that the method of reating a human model fora ertain game type, and then transforming this to a ognitive frameworkarhiteture is appliable in other game genres than the RTS genre. Furtherwork may be done in both aademia and within game development on de-veloping a general human model, suitable to desribe a human player in allkinds of game genres. Furthermore, a thorough study of the human modelould probably enhane the model and lead to a better abstration.

CHAPTER 11. RESUME Page 153 of 273
Chapter 11ResumeIt is a widely aknowledged fat that the AIs found in omputer games areof a poor quality. Consequently this means that the gameplay that relieson the AIs also su�ers. Players have found the answer to this problem byseeking hallenges in playing against other players. Produers of Real-TimeStrategy games have attempted to improve the quality of AI by allowing itto heat, reating general and stati solutions or by fousing on sripting theAI to perform a ertain strategy as fast as possible. Neither of these methodshave brought the AI to a standard, where it an resemble that of a humanplayer. In order to enhane the gameplay in the game parts that rely on theperformane of the AI, it will have to play with near human apabilities. Weapproah this problem by building a human model of how a human playerplays and use this as a basis for a general framework for building AIs toReal-Time Strategy games. The preliminary work that served as a base forthe model and the design of the framework was arried out in our pre-masterthesis [FKL05℄.Throughout the report we have presented a number of design tehniquesused when designing the framework. We have demonstrated how these teh-niques an be used to enhane AI development in the game developmentindustry as well as demonstrated a new area of appliation for these teh-niques for the aademi world. Some of the known design tehniques usedinlude frameworks, sripting languages and event systems, but we also pre-sented four new onepts spei�ally suited to reate AIs in RTS games.These four tehniques provides the foundation for the AI framework. Firstwe presented the idea of strategy trees, whih is a data struture spei�allysuited to represent strategies in RTS games. Following this, we foused onpath�nding, whih is an important element of any RTS game, and we pre-sented a new method of doing this, optimised for working in an RTS gameenvironment. The third RTS spei� tehnique introdued was the notionof a representation of tatis. We presented a general approah to how thisan be done in a way that AI designers an speify tatis spei�ally suited

Page 154 of 273 CHAPTER 11. RESUMEto the game they are working with. Finally, the fourth tehnique foused onwhat we hose to all base building templates. These were reated to allow AIdesigners to speify how an AI should onstrut its base in a partiular gameusing a ertain strategy. Strategy trees, tatis and base building templateshave all ontributed to AI development within the RTS genre, by presentingnew ways of representing AI spei� data. They allow a developer friendlyand generi representation, whih an be reused in di�erent RTS game gen-res. Furthermore, they allow developers to ompose new kinds of strategies,tatis and base building templates, by ombining small building bloks on-sisting of rules or strategies. Our path�nding idea has not only shown a newway for AI developers to optimise path�nding in their games, but also on-tributed to the general aademi researh within this area, whih has manyappliations outside RTS games.The design of the AI framework followed four design goals: Improving theAI, reduing development ost, reating a workload shift from programmersto designers and reating a strutured overview of the development proessof reating AIs for RTS games. The ful�lment of these design goals throughour AI framework has ontributed to the game development industry bypresenting and implementing a design apable of ahieving these goals. Byusing the human model as a foundation and by drawing upon knowledge offramework apabilities and harateristis, we reated a ognitive arhite-ture for the framework. As for the non-trivial knowledge representation inthe framework, we used the RTS spei� onepts mentioned earlier: Strat-egy trees, tatis and base building templates. Finally, we presented an eventsystem designed to ontrol our AI framework, and we presented how a usershould be able to vary framework instanes from eah other. The design ofthe framework has ontributed to aademia by ombining three well-knowndesign tehniques in a new area of appliation in order to maximise reuse,seure a user friendly framework and reate a lear separation of frameworkmodules.As a proof of onept, a prototype implementation of the framework wasimplemented and onneted to the ORTS game development framework.This game development framework inluded a simple RTS game, whih hadall the neessary features required to test di�erent AI apabilities. In or-der to allow inexperiened programmers to use the framework, we used thesripting language Python to on�gure framework modules and knowledgebases. We then evaluated the prototype implementation in relation to six im-portant areas: Con�gurability, Versatility, Extendibility, Performane test-ing, AI improvements and test of RTS Spei� Conepts. Our performanetest revealed one major performane problem in the implementation of ourpath�nding idea. However, we have identi�ed the problem and presented asolution to overome it. The test of the AI reated with the prototype im-plementation showed that the AI is able to both sout and vary its strategyby using ounters. The ability to ounter and vary its strategies is a di-

CHAPTER 11. RESUME Page 155 of 273ret onsequene of using strategy trees as the representation of strategies inthe framework. The prototype implementation has ontributed to the gamedevelopment industry by demonstrating to what degree an AI designer andevelop AIs and how strategy trees in partiular simpli�es reating AIs withapabilities beyond those of urrent ommerial RTS game AIs.We also presented a disussion of the potential use of the AI frameworkin the game development industry. We ontated several RTS game devel-opment ompanies, and set up demands that the framework had to ful�l tobe useful in the industry. We then demonstrated how eah of these demandswere ful�lled by our framework arhiteture. Furthermore, we analysed themarket for an AI framework for RTS games, and onluded that there aremany potential buyers and if our enquiry served as any kind of indiation,most ompanies would be able to bene�t from the use of our AI framework.We then presented a number of possible areas for future work. This inludedreating a omplete implementation of the framework as well as further de-veloping some of the ideas presented throughout this report. Furthermore,we hypothesised that the tehnique of building an AI framework arhiteturebased on a human model is appliable in other domains than the RTS gamegenre.

BIBLIOGRAPHY Page 157 of 273
Bibliography[age℄ Age of Empires.http://www.ageofempires.om/.[AII℄ Arti�ial Intelligene and Interative Digital Entertainment.http://www.aiide.org/.[aom℄ Age of Mythology.http://www.mirosoft.om/games/ageofmythology/.[aox℄ Armies of Exigo.http://www.aox.ea.om/.[Ban℄ Blak & White.http://www.lionhead.om/.[BASC05℄ Mihael Buro, David W. Aha, Nathan Sturtevant, and VinentCorruble.Complex Video Game AI Competitions at AIIDE'2006. 2005.[bat℄ Battle.net Homepage.http://www.battle.net/.[BF04a℄ Mihael Buro and Timothy Furtak.RTS Games and Real-Time AI Researh. Behavior Representa-tion in Modeling and Simulation Conferene (BRIMS), 2004. InProeedings.[BF04b℄ Mihael Buro and Timothy Furtak.RTS Games as Test-Bed for Real-Time Researh. Be-haviour Representation in Modeling and Simulation Conferene(BRIMS), 2004.[BF05℄ Mihael Buro and Timothy Furtak.On the Development of a Free RTS Game Engine. 2005.[BKM00℄ Greg Butler, Rudolf K. Keller, and Hafedh Mili.A Framework for Framework Doumentation. ACM Comput.Surv., 32(1es):15, 2000.

Page 158 of 273 BIBLIOGRAPHY[bli℄ Blizzard Entertainment.http://www.blizzard.om/.[BMS04℄ Adi Botea, Martin Muller, and Jonathan Shae�er.Near Optimal Hierarhial Path-Finding. Journal of Game De-velopment, 2004.[Bue98℄ Jesús Cerquides Bueno.KDCOM: A Knowledge Disovery Component Framework. Mas-ter's thesis, Campus, UAB, Barelona, Spain, 1998.[Bur02℄ Mihael Buro.ORTS - A Hak-Free RTS Game Toolkit. Otober 2002.[Bur03a℄ René Burgess.Realisti Evaluation of Terrain by Intelligent Natural Agents.Master's thesis, Campus UAB, Barelona, Spain, September2003.[Bur03b℄ Mihael Buro.Real-Time Strategy Games: A New AI Researh Challenge.2003.[Bur04℄ Mihael Buro.Call for AI Researh in RTS Games. AAAI-04 AI in GamesWorkshop, 2004. San Jose.[CBS05℄ Mihael Chung, Mihael Buro, and Jonahthan Shae�er.Monte Carlo Planning in RTS Games. 2005.[CCT89℄ N. V. Carlsen, N. J. Christensen, and H. A. Tuker.An Event Language for Building User Interfae Frameworks. InUIST '89: Proeedings of the 2nd annual ACM SIGGRAPHsymposium on User interfae software and tehnology, pages133�139, New York, NY, USA, 1989. ACM Press.[CLR90℄ Thomas H. Cormen, E. Leiserson, Charles, and Ronald L.Rivest.Introdution to Algorithms. MIT Press, 1990. COR th 01:1 1.Ex.[om℄ Command & Conquer.http://westwood.ea.om/.[ou℄ Half-Life: Counter-Strike.http://www.ounter-strike.net/.[CSL℄ CSLI's Computational Learning Laboratory Homepage.http://ll.stanford.edu/.

BIBLIOGRAPHY Page 159 of 273[dar℄ Dark Reign.http://www.auran.om/games/darkreign/default.htm/.[Daw℄ Brue Dawson. GDC 2002: Game Sripting in Python.http://www.gamasutra.om/features/20020821/dawson_pfv.htm.[Del01℄ Mark Deloura.Game Programming Gems 2.Charles River Media, 2001.[des℄ Desent 3.http://www.desent3.om/.[diga℄ Digital Drama Studios.http://www.digitaldramastudios.om/.[digb℄ Digitalmill.http://www.dmill.om/.[dJSR05℄ Steven de Jong, Pieter Spronk, and Nio Roos.Requirements for Resoure Management Game AI. InternationalJoint Conferenes on Arti�ial Intelligene, 2005. Workshop onReasoning, Representation, and Learning in Computer Games.[dox℄ Doxygen.http://www.stak.nl/ dimitri/doxygen/.[dun℄ Dune II.http://duneii.om/.[EE1℄ Empire Earth.http://www.empireearth.om/.[EE2℄ Empire Earth 2.http://www.empireearth2.om/.[FCGC02℄ Carlos J. Fernandez-Conde and Pedro A. Gonzalez-Calero.Domain Analysis of Objet-Oriented Frameworks in FrameDo.In SEKE '02: Proeedings of the 14th international onfereneon Software engineering and knowledge engineering, pages 27�33, New York, NY, USA, 2002. ACM Press.[fea℄ F.E.A.R.http://www.whatisfear.om/.[Feu97℄ Alan R. Feuer.MFC Programming.Addison Wesley Professional, 1997.

Page 160 of 273 BIBLIOGRAPHY[FFM03℄ Ludger Fiege, Felix Freiling, and Gero Muehl.Modular Event-Based Systems. Knowledge Engineering Review,17(4), 2003.[FHLS97℄ Gary Froehlih, H. James Hoover, Ling Liu, and Paul Sorenson.Hooking into Objet-Oriented Appliation Frameworks. In ICSE'97: Proeedings of the 19th international onferene on Softwareengineering, pages 491�501, New York, NY, USA, 1997. ACMPress.[�r℄ Fireglow Games.http://www.�reglowgames.om/.[FKL05℄ Kasper Frederiksen, Kasper Kristensen, and Anders Lauritsen.Towards an AI Framework for RTS Games. Pre-master thesis,Deember 2005.[FS97℄ Mohammed Fayad and Douglas Shmidt.Objet Oriented Appliation Framework. Communiations ofthe ACM, 40(10), 1997.[FSJ97℄ Mohammed E. Fayed, Douglas C. Shmidt, and Ralph E. John-son.Objet-Oriented Appliation Frameworks: Problems & Perspe-tives. Wiley, NY, 1997.[gam℄ Gamespot.http://www.gamespot.om/.[GHG04℄ Thore Graepel, Ralf Herbrih, and Julian Gold.Learn to Fight. International Conferene on Computer Games:Arti�ial Intelligene, Design and Eduation, 2004.[god℄ God Games De�nition.http://en.wikipedia.org/wiki/God_game.[gpr℄ GNU gprof.http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html.[Hal℄ Half-Life.http://www.valvesoftware.om/.[HF04℄ Stuart Hansen and Timothy Fossum.Events Not Equal To GUIs. In SIGCSE '04: Proeedings of the35th SIGCSE tehnial symposium on Computer siene edua-tion, pages 378�381, New York, NY, USA, 2004. ACM Press.

BIBLIOGRAPHY Page 161 of 273[HNOR88℄ Tor Hauge, Inger Nordgard, Dan Osarsson, and Georg Raeder.Event-Driven User Interfaes Based on Quasi-Parallelism. InUIST '88: Proeedings of the 1st annual ACM SIGGRAPH sym-posium on User Interfae Software, pages 66�76, New York, NY,USA, 1988. ACM Press.[Hue℄ Robert Huebner.Adding Languages to Game Engines".http://www.gamasutra.om/features/19971003/huebner_01.htm.[Inf℄ In�nite Interative.http://www.in�nite-interative.om/.[inh℄ Inhuman Games.http://inhumangames.om/.[Jav℄ Java.http://www.java.sun.om/.[JF88℄ Ralph E. Johnson and Brian Foote.Designing Reusable Classes. Journal of Objet-Oriented Pro-gramming, 1(2):22�35, 1988.[JG05℄ Joshua Jones and Ashok Goel.Knowledge Organization and Strutional Credit Assigment. In-ternational Joint Conferenes on Arti�ial Intelligene, 2005.Workshop on Reasoning, Representation, and Learning in Com-puter Games.[Joh92℄ Ralph E. Johnson.Doumenting Frameworks using Patterns. In OOPSLA '92:onferene proeedings on Objet-oriented programming systems,languages, and appliations, pages 63�76, New York, NY, USA,1992. ACM Press.[Joh97℄ Ralph E. Johnson.Frameworks = (Components + Patterns). Communiations ofthe ACM, 40(10), 1997.[jsw05℄ Creating a GUI with JFC/Swing.http://java.sun.om/dos/books/tutorial/uiswing/, 2005.[kal℄ Kali.net.http://kali.net.[KNYH05℄ Bharat Kondeti, Maheswar Nallaharu, Mihael Youngblood,and Lawrene Holder.Interfaing the D'Artagnan Cognitive Arhiteture to the Urban

Page 162 of 273 BIBLIOGRAPHYTerror First-Person Shooter Game. pages 55�60. InternationalJoint Conferenes on Arti�ial Intelligene, 2005. Workshop onReasoning, Representation, and Learning in Computer Games.[Lai01℄ John E. Laird.Using a Computer Game to Develop Advaned AI. Computer,34(7):70�75, 2001.[Lai03℄ John E. Laird. The Soar 8 Tutorial.http://sitemaker.umih.edu/soar/, 2003.[Lew98℄ Sott M. Lewandowski.Frameworks for Component-Based Client/Server Computing,1998. S.M. Lewandowski, Frameworks for Component-BasedClient/Server Computing, ACM Computing Surveys, Vol. 30,No. 1, Mar. 1998.[Lis℄ Lisp.http://www.lisp.org/.[LL99℄ Mihael van Lent and John Laird.Developing an Arti�ial Intelligene Engine. pages 577�588, SanJose, CA, Marh 1999. Game Developers Conferene.[LL01℄ Mihael van Lent and John Laird.Human-Level AI's Killer Appliation. AAAI, 2001.[LL02℄ Pat Langley and John E. Laird.Cognitive Arhitetures: Researh Issues and Challenges. 2002.[lot℄ Lord of the Rings: Battle for Middle-Earth.http://lotr.ea.om/.[Lua℄ Lua.http://www.lua.org/.[MBF99℄ Mihael Mattsson, Jan Bosh, and Mohamed E. Fayad.Framework Integration Problems, Causes, Solutions. Commun.ACM, 42(10):80�87, 1999.[ML01℄ Marus Eduardo Markieviz and Carlos J.P. Luena.Objet Oriented Framework Development. Crossroads, ACMPress, 7(4):3�9, 2001.[moo℄ Moore's Law.http://www.webopedia.om/TERM/M/Moores_Law.html.[msr℄ Mirosoft Researh.http://researh.mirosoft.om/.

BIBLIOGRAPHY Page 163 of 273[MSWT05℄ Rihard Malin, Jude Shavlik, Trevor Walker, and Lisa Torrey.Knowledge-Based Support-Vetor Regression for ReinforementLearning. International Joint Conferenes on Arti�ial Intel-ligene, 2005. Workshop on Reasoning, Representation, andLearning in Computer Games.[Nar02℄ Alexander Nareyek.Intelligent Agents for Computer Games. Computers and Games,2002.[Odd℄ Oddlabs.http://www.oddlabs.om/.[Ort℄ Orts Game Spei�ation.http://www.s.ualberta.a/�mburo/orts/AIIDE06/game3.[ORT05℄ ORTS Homepage.http://www.s.ualberta.a/�mburo/orts/orts.html, 2005.[Ous98℄ John K. Ousterhout.Sripting: Higher-Level Programming for the 21st Century.Computer, 31(3):23�30, 1998.[pa℄ Pa-man.http://en.wikipedia.org/wiki/Paman.[Per℄ Perl.http://www.perl.om/.[pon℄ Pong.http://en.wikipedia.org/wiki/PONG.[PP04℄ Andrew M. Phelps and David M. Parks.Fun and Games: Multi-Language Development. Queue,1(10):46�56, 2004.[Pyta℄ Python.http://www.python.org/.[Pytb℄ Python Suess Stories.http://www.python.org/about/suess/.[quaa℄ Quake.http://www.idsoftware.om/games/quake/quake/.[quab℄ Quake II.http://www.idsoftware.om/games/quake/quake2/.

Page 164 of 273 BIBLIOGRAPHY[red℄ Red Alert.http://www.ea.om/o�ial//�rstdeade/us/index.jsp/.[RKD00℄ Douglas A. Reee, Matt Kraus, and Paul Dumanoir.Tatial Movement Planning for Individual Combatants. 9thConferene on Computer Generated Fores and Behavioral Rep-resentation, 2000. In Proeedings.[RN03℄ Stuart Russell and Peter Norvig.Arti�ial Intelligene A Modern Approah.Prentie Hall, 2003.[rts℄ De�nition of RTS Games.http://en.wikipedia.org/wiki/Real-time_strategy.[Saw02℄ Ben Sawyer.Serious Games: Improving Publi Poliy through Game-basedLearning and Simulation. Woodrow Wilson International Centerfor Sholars, 2002. Tehnial Report.[SC95℄ Douglas C. Shmidt and James O. Coplien.Pattern Languages of Program Design.Addison-Wesley, 1995.[Sh04℄ Brian Shwab.AI Game Engine Programming.Charles River Media, 2004.[sev℄ Seven Kingdoms Conquest.http://www.enlight.om/7k/.[SG86℄ Robert W. Shei�er and Jim Gettys.The X Window System. ACM Trans. Graph., 5(2):79�109, 1986.[SL94℄ Alexander A. Stepanov and Meng Lee.The Standard Template Library. Tehnial Report X3J16/94-0095, WG21/N0482, 1994.[Soa℄ Soar Homepage.http://sitemaker.umih.edu/soar.[sta℄ Starraft.http://www.blizzard.om/starraft/.[Str℄ Stratagus Homepage.http://www.stratagus.sourgeforge.net/.[sud℄ Sudden Strike 3: Arms for Vitory.http://www.suddenstrike.om/.

BIBLIOGRAPHY Page 165 of 273[SZ04℄ Katie Salen and Eri Zimmerman.Rules of Play.The MIT Press, 2004.[Tl℄ Tl.http://www.tl.dk/.[tet℄ Tetris.http://en.wikipedia.org/wiki/Tetris.[tib℄ Command & Conquer: Tiberian Sun.http://www.ea.om/o�ial//�rstdeade/us/tiberiansun.jsp.[tra℄ Trash.http://inhumangames.om/.[Tri℄ Tribal Trouble.http://tribaltrouble.om/.[UB06℄ Tapani Utriainen and Mihael Buro.ORTS Competition: Getting Started.http://www.s.ualberta.a/�mburo/orts/AIIDE06/getting_started.pdf,May 19 2006.[UGJM05℄ Patri Ulam, Ashok Goel, Joshua Jones, and William Murdok.Using Model-Based Re�etion to Guide Reinforement Learn-ing. International Joint Conferenes on Arti�ial Intelligene,2005. Workshop on Reasoning, Representation, and Learning inComputer Games.[wara℄ Warraft II.http://www.blizzard.om/war2bne/.[warb℄ Warraft III.http://www.blizzard.om/war3/.[war℄ Warzone 2100.http://en.wikipedia.org/wiki/Warzone_2100/.[wbia℄ Warlords Battlery II.http://www.in�nite-interative.om/wb2/.[wbib℄ Warlords Battlery III.http://www.in�nite-interative.om/wb3/.[Øst99℄ Kasper Østerbye.Minimalist Doumentation of Frameworks, 1999.

Page 167 of 273

Part IVAppendix

APPENDIX A. TERMS AND EXPRESSIONS Page 169 of 273
Appendix ATerms and ExpressionsThe purpose of this setion is to introdue a number of terms and expressionsthat will be used throughout the report. The terms have been sorted into �veareas: General onepts, buildings, units, speial abilities, and strategies.A.1 General ConeptsStrategy: A strategy in an RTS game an be onsidered as a number ofgeneral guidelines for how the player is going to play the game. Thisinludes the number of di�erent units and buildings to build as wellas whih researh upgrades to purhase. It may also inlude spei�tatis ditating how to arry out a ertain part of the strategy. Finally,a strategy may also ontain information about strong and weak pointsduring the ourse of the game using the strategy. A strategy an oftenbe onsidered of one of the types mentioned in Setion A.5.Tati: A tati onsists of rules ditating how units should be ontrolledduring a battle. The inludes rules for formations, fous �re, unitpreserving, how to use support units (inluding spells/abilities) andhow to use the terrain on the map.Tehnology Tree: Most RTS games have a ertain order in whih the dif-ferent buildings and units an be build. For instane, a ertain buildingmay not be build, before another building has been build or a ertaintehnology has been researhed. This building, unit and researh de-pendeny is alled the tehnology tree. The tehnology tree an bedivided into a few major levels (in the tree depth), where any furtheradvanement is depending on a single upgrade or researh. These lev-els are alled the tehnology levels or tiers. In Age of Empires thesetiers are the di�erent ages advaned through an upgrade at the townenter, and for most fations in the Craft series1 these are the three1The Warraft and Starraft series

Page 170 of 273 APPENDIX A. TERMS AND EXPRESSIONStiers advaned through the upgrade of the main building.Build Order: At the start of most RTS games the player will start out withher main building and a few workers. In order to build any other unitsthan workers, she will have to build unit prodution failities, supportbuildings, and perhaps some other buildings, depending on whih unitshe wants to get. The order, in whih she builds (may it be units orbuildings), is alled the build order. An optimal build order is one inwhih the goal is reahed as fast as possible with the least amount ofwaste (time or resoures).Fog of War: At the heart of any RTS game is the fat that the player doesnot know what the opponent is doing. The idea is that you should onlyknow what is happening in proximity of your buildings and within thesight of your units. The rest of the map is unknown. This onept isalled Fog of War. Fog of War omes in two layers: Territory that isstill unexplored and territory that is known, but not in sight.Fation: Sine the beginning of RTS games there has always been di�erentfations, houses, raes et. In the single player ampaigns these fationsusually �ght an epi war for the domination of the world or universe.Mostly these fations are unique though still with some similaritiesto the other fations in the game. In the Age of Empires genre thedi�erene is mostly that one fation may have some units availablethat the other fations do not, while in the Craft series this di�ereneis a little more pronoune. Starraft is the �rst game with three totallydi�erent raes. Protoss, Terran and the Zerg are so widely di�erentthat eah demands a di�erent play style.Resoure Node: Resoure nodes are found in many di�erent sizes andshapes depending on the game in question. The nodes in the Ageof Empires genre are spread all over the map. The player may for in-stane gather wood from the forests, she may hunt wild game for foodand mine various minerals from gold, stone or iron quarries. In War-raft only two di�erent resoures are available, being gold and lumber.Lumber an be harvested from the forests and gold mined at the fewgold mines. Starraft is a bit di�erent, beause in this game the re-soures are found in lusters. This means that the minerals that arethe main resoure in this game are all found at a few spots on the map,but with several nodes lose to eah other. Mostly there will also be agas vein at these sites. On many of the maps in the Craft series, theplayer will �nd either a gold mine, or a luster of minerals and a gasvein lose to her starting spot. This site is alled the natural expansionsite.

APPENDIX A. TERMS AND EXPRESSIONS Page 171 of 273Attak Move: This is a ommand that ditates that the unit(s) shouldmove to the loation indiated by the ursor and attak any enemyobjet on the way.Choke Point: A hoke point is a narrow spot in the terrain, or perhapsbetween buildings in a base. The danger of moving through hokepoints is that only few units an move through at a time and if theenemy is waiting on the other side, she will only have to �ght thosefew units at the time.High Ground: When a battle is fought from high ground, it simply meansthat the player is at a elevated position on the map ompared to theenemy. This often results in a ertain advantage for the player, asthe enemy will often deal less damage, beause of �ghting uphill. Theadvantage varies from game to game.Upkeep: Upkeep usually desribes a fee the player will have to pay in orderto maintain her army. In Warraft III upkeep is more like a penaltyon the amount of gold harvested (not unlike a tax). If the player hasmore than a ertain amount of units she will reeive a penalty on theamount of resoures reeived every time a worker brings in a sak ofgold.Fous Fire: Fous �re is a onept of extreme importane in most RTSgames. It is simply a matter of having a number of units fousing theirattak on a single enemy unit until this unit is killed. This is a lotbetter than having units �ring at enemy units at random. Althoughthe damage dealt is the same, it is a lot better to fae �ve enemy unitsat full health than ten enemy units at 50% health, beause the tenunits would deal twie as muh damage as the �ve units.Hitpoints Hitpoints are a number of points units and buildings have de-sribing their urrent state of health. When taking damage the numberof hitpoints will derease and when repaired or healed it will inrease.The number of hitpoints an in most ases not exeed a ertain max-imum de�ned for eah type of unit or building. If the number of hit-points reah 0 the unit or building will be destroyed.A.2 BuildingsMain Building: This building is usually at the root of the tehnology tree.In most games the player will start with a main building and a fewworkers only. She will be able to produe more workers at the mainbuilding and bring gathered resoures to the main building in orderto add them to her resoure pool. As previously mentioned, the main

Page 172 of 273 APPENDIX A. TERMS AND EXPRESSIONSbuilding is also mostly the building, in whih the player gains aess tothe next tehnology level. If lost the player will be unable to build anybuilding or unit that required the ahieved tehnology level. However,any building or tehnology that was built or researhed before the mainbuilding was lost, is kept.Unit Prodution Faility: The main building is as suh a unit produ-tion faility but when this term is used throughout the rest of thereport, it refers to buildings that may produe o�ensive or supportunits, basially anything else than workers.Researh Faility: In most RTS games the player will have aess to oneor several researh failities. These buildings have the soul purpose ofupgrading units or make new tehnology available. They usually arenot of muh use after the tehnology or upgrades have been researhed,unless they are an ative part of the tehnology tree, meaning that thisbuilding has to be present in order to gain aess to some units or otherbuildings.Supply Struture: In many games the player has to provide some kind ofontrol or food in order to support her army. Mostly this is done bybuilding supply or something equivalent. In Warraft III for instanethe farms will allow units worth eight support points to be build (fourfootmen or eight workers).Defensive Building: In all the games analysed the player has been ableto build some kind of defensive building that will attak any enemyobjet. In most ases these defensive buildings are in the form of atower. The soviet army in Red Alert has the tesla oils, Protoss fromStarraft has the photon annon et.Expansion: In order to inrease her inome the player may deide to startgathering resoures from several di�erent resoure nodes. In Warraft,for instane, this would mean that the player would gather gold fromseveral gold mines. To prevent the workers from walking all the wayfrom the new mine (potentially a long distane away from the base),she builds a new main building lose to the new gold mine. She mayalso add a few defensive buildings to protet this from harm. This isalled an expansion.A.3 UnitsMelee: This unit is the lose ombat unit. It has a very limited range ofits attak. In most ases it will have to stand right next to its target.Melee units are generally a bit hardier than other units, as they will

APPENDIX A. TERMS AND EXPRESSIONS Page 173 of 273have to get into the hottest spots of a battle. They may even justbe used as a meat shield for the ranged and supporting units. Meleeunits with a speial high amount of hitpoints are often referred to at'Tanker' units.Ranged: Ranged units tend to be a bit more frail than the melee units. Inombination with melee units the player is able to deal more damage,than had she had melee units only (there is only enough spae for alimited amount of melee units at the front-lines of the battle). In mostases the ranged units are also one of the only units able to attak airunits.Support: Support units are mostly speialised units that have some abilitiesthat either strengthens the player's army or weakens the enemy's army.They may also have some limited ranged or melee attak, but it is nottheir primary funtion.Siege: The player may be able to build units that at as artillery. Theseunits have a slow rate of �re, but exeptional damage and range. Fur-thermore, they also tend to deal damage with an Area of E�et. Inmost ases these units are a bit fragile, but as they have superiorrange the player may protet them behind her army. In Warraft, forinstane, siege units also reeive a bonus when attaking buildings.Worker: In most games the worker is the most vital unit. This unit eitherbuilds various buildings, harvests resoures or both.Air: Flying units are available in most games. They are generally quite fastbut fragile.Hero: Early RTS games introdued the onept of a hero unit in the singleplayer ampaigns. Usually the story was build on the adventures ofthis hero unit, whih had exeptional powers and got even better asthe story progressed (but so too did the enemy). Warraft III, forinstane, has taken this onept to the next step and integrated thehero onept fully into the game. This means that the player and theAI are able to hire one or more heroes in any game.Summoned: In some games support units, or perhaps a hero unit, maybe able to summon reatures. These reatures will then serve thesummoner, often for a limited period of time.A.4 Speial AbilitiesArea of E�et: Spells ome in many di�erent sizes and shapes. In Age ofEmpires, the prophets are able to ast a spell that starts an earthquake,

Page 174 of 273 APPENDIX A. TERMS AND EXPRESSIONSwhih a�ets an area on the map and damages all buildings in the area.This is alled an Area of E�et spell or just AoE spell.Bu�: A bu� is a positive spell that is ast on a friendly unit. In Warraftan example of this ould be the bloodlust spell that raises the attakspeed of the a�eted unit.Debu�: Contrary to the bu�, the debu� is a negative spell ast on a un-friendly unit. In Starraft this ould be the opti �are spell that lowersthe range of vision of any unfriendly unit.A.5 StrategiesSouting: In order to �nd out what the enemy is up to the player will haveto send a unit to the area she wants to know about. This is alled tosout the area. She might have to do this frequently throughout thegame, as this knowledge may give her an advantage over her enemy.Rush: The player may deide to try to surprise the enemy by attaking veryearly in the game. She an do this by building an early unit produtionfaility and make a lot of heap attak units. This is alled to rush theenemy.Tower: The defensive building introdued in the previous setions do notneessarily have to be used defensively. O�ensive towers an be builtjust outside the enemy base, or perhaps even within the base, if she isbusy elsewhere. This is risky as the towers are defeneless while beingbuilt, and as they are buildings they annot be moved, if the enemystarts applying siege units.Fast Teh: The opposite of rush is to fast teh (short for quikly limbingthe tehnology tree). By skipping all the basi units, the player maytry to limb the tehnology tree as fast as possible in order to reahsome better units. This will leave her weak, while she is tehing, butif suessful, she will be a lot stronger than the enemy, if she "wasted"resoures on the weaker basi units.Mass: To mass is trying to kill the enemy by brute fore. If the player hasa better inome, she may try to swarm over the enemy by building alot of unit prodution failities, and pump out units.Harass: The player may deide to send out units to the enemy base orperhaps her expansion with the purpose of slowing down the resouregathering, kill o� unproteted buildings and otherwise do harm, whilethe enemy army is away. By doing this hit and run tati, the player

APPENDIX A. TERMS AND EXPRESSIONS Page 175 of 273an slow down the enemy prodution and fore the enemy to pay at-tention to the harassment. This leaves herself free to pursue othermatters.

APPENDIX B. MODULE DESIGN Page 177 of 273
Appendix BModule DesignThe following hapter will present a detailed design of modules in the frame-work. Eah module will be presented in turn. The design desription willstart out by showing the internal struture of the module. Then the re-sponsibilities of the module will be listed. Finally eah sub-module will bepresented in the same fashion.B.1 Perept InterpreterThis module extrats information from the game state, and updates inter-nal knowledge bases in the framework. It must be implemented by the AIdesigner to obtain the following information:Reative Module: Current hitpoints for all units and buildings.Reative Module: Native AI events.In-Game Own Knowledge: Own unit and building positions and impor-tant attributes for these.Game State Interfae: Map terrain information.Current Strategy Node: Units, buildings, researh, expansions, re-soures, and urrent position in teh tree.In-Game Enemy Knowledge: Enemy unit and building positions as wellas important attributes for these. Furthermore, last known position ofvanished units are noted here.Dynami Map Knowledge: Resoure loations and amounts. (AI de-signer spei�es game or map spei� objets)Assigned Unit Ation: All friendly units and their urrently assigned a-tion.

Page 178 of 273 APPENDIX B. MODULE DESIGN

Figure B.1: Strategy Tree for the ExampleB.2 Reative ModuleThe purpose of the Reative Module is to monitor and reat on high DPSor hange of building/unit states as well as handling native AI events. Thestruture of this module an be seen in Figure B.1B.2.1 ResponsibilitiesMonitor DPS: Units and buildings that are damaged will beadded to the Damage Over Time Table so that their on-dition and the damage they reeive over time an be moni-toredHigh DPS warning: When a unit or a building is exposedto a DPS exeeding a ertain prede�ned value, the modulethat has to handle it must be advised and ation must betakenChange Building and Unit states: The amount of hit-points the various buildings and units have de�ne theirstate. If the amount of hit point hange so that the build-ing or unit hanges its state it might mean that the unit orbuilding should be handled di�erently than previouslyHandle Native AI: In order to override the built-in native AIand replae it with better deisions all native AI events mustbe handed to the Tatial Planning.

APPENDIX B. MODULE DESIGN Page 179 of 273B.2.2 Struture OverviewTo meet the spei�ations of this module the struture has as suh beensplit into three parts: One dealing with updating the Damage Over TimeTable (Update DotT), another monitoring building and unit states andDPS(Change Building State and Change Unit State), and �nally the thirdpart handling the native AI events(Handle Native AI event). The modulesdo not interat but rather handle eah their sub-task.B.2.3 Update DotTThis module will work on the Damage over time Table (DotT). Whenever aunit or a building owned by the AI hanges its amount of hitpoints, it willbe monitored by the Damage over time Table.In games like Starraft and Age of Empires it does not really pay to tryto remove units from the line of �re as the units have a relatively low amountof hitpoints. This means that this module ould altogether be ignored. Inother games like Warraft the units have a higher amount of hitpoints and itis possible to heal these so in this ase it makes a lot more sense to preservethem.ResponsibilitiesUpdate Damage Over Time Table: Eah unit that re-ently has had a hange in its amount of hitpoints will havea list in the Damage over time Table. If no suh exists,the list will have to be added. This module will reord theurrent amount of hitpoints of eah unit in the table at aprede�ned interval.Damage Over Time Table Maintenane: When a list hasnot hanged for a while - the unit has not hanged itsamount of hit points for a while, the list for this unit mustbe removed from the table.Hot SpotsUpdate Interval: The user of the framework will have to de-�ne how often the amount of hitpoints should be updatedList Spaes: The lists in the Damage over time Table areFIFO lists of a user de�ned size. The size will have to �twith the update interval and the amount of time that DPSwill be monitored.Standby Time: The user will also have to de�ne how long alist should be maintained if the hit point value does nothange.

Page 180 of 273 APPENDIX B. MODULE DESIGNStandard ImplementationAll operations on the table will be handled by default in the framework, aswill the maintenane of the table.B.2.4 Change Building StateChange Building State is responsible for monitoring the building state of allbuildings. Given a rule set the Change Building State will for eah buildinghek whih ategory the urrent amount of hit point is in. If the newamount of hitpoints means that the building will hange into a di�erentstate it will notify the Base Building module and set the right state in thein game knowledge base: Building State. Furthermore this module will alsoalulate the DPS done to eah building when these are getting damaged.It does this by adding the olleted data and divide it by the number ofdata multiplied with the period of time the data was olleted. To get anidea as to how serious this damage is, the resulting number ould be dividedby the maximum number of hitpoints the building has. This will yield theperentage of building health lost per seond.Most games feature the possibility to repair buildings, the way it is done,however, varies from game to game. In Command and Conquer the repair isdone by the player - it is an ability that she an ativate on buildings. Thismeans that buildings are repairing at a onstant speed whereas buildingsthat are repaired by workers as seen in Warraft and Age of Empires arerepaired by a speed de�ned by the number of workers repairing it.ResponsibilitiesChange Building State: If a building has a hange of hitpoints that means the building will hange state, this mod-ule must set the right state in the Building State knowledgebase and notify the Base Building module.Calulate Damage Per Seond: Given the lists in the Dam-age over time Table the module will have to alulate thedamage the monitored buildings have reeived per seondduring the monitored time.Issue Damage Per Seond Warning: When the alulateddamage per seond exeeds a ertain amount the BaseBuilding module must be warned.Hot spotsBuilding State Rule Set: This rule set will de�ne the inter-vals of the di�erent states.

APPENDIX B. MODULE DESIGN Page 181 of 273Standard ImplementationThe standard implementation will handle all the responsibilities of the mod-ule by default.B.2.5 Change Unit StateEssentially this module has the same responsibility as the Change BuildingState module but unlike that module this will monitor the unit state andDPS done to units. In some games this module should be empty as the unitsare not worth saving or unit health is less important that the managementof resoures and prodution.As mentioned earlier units in di�erent games have di�erent 'values'. InStarraft they will in most ases be sari�ed in order to get the job donewhile it is imperative to preserve units in Warraft. Furthermore the unit'srole also plays an important part in de�ning when a unit should be removedfrom the line of �re. 'Tanker' units will have to be at a relatively low amountof hitpoints while support units in most ases have to be removed as soonas they are dealt damage.ResponsibilitiesChange Unit State: A hange in hitpoints that means thatthe unit will enter a di�erent state must be handled bysetting the right state in the Unit State module and notifyTatial Planning so that the new unit state an be takeninto aount.Calulate Damage Per Seond: Given the lists in the Dam-age over time Table the module will have to alulate thedamage the monitored buildings have reeived per seondduring the monitored time.Issue Damage Per Seond Warning: If the alulateddamage per seond exeeds a ertain amount the TatialPlanning has to be noti�ed.Hot SpotsUnit State Rule Set: This rule set will also de�ne the inter-vals of the di�erent states.Standard ImplementationThis module will be implemented by default.

Page 182 of 273 APPENDIX B. MODULE DESIGNB.2.6 Handle Native AI EventEvery time a unit that is not urrently ontrolled by either the ResoureManagement module, the Base Building module or the Tatial Planningmodule is done an ation upon, a normal game would handle this by somereative ation. This is, for instane, the ase when a human player attaksan AI ontrolled unit that is standing alone. In most ases this enemy unitwould follow and attak the human ontrolled unit even though it means toengage the entire enemy army. This and many other unfortunate events anbe handled by simply passing the information to the Tatial Planning sothat a well-onsidered ation an be ordered. In order to do this the HandleNative AI Event module will have to reeive all suh events and the reativepart of the AI will have to be disabled. The event will have to ontain thetype of event and the unit/building in question.In many games it is an unfortunate fat that the player an lure parts ofthe enemy army away from the rest by shooting on one of the enemy unitsand run away. The enemy unit that has been hit will then run after the onethat shot it and perhaps pull part of the enemy army with it. In order toavoid this all reative deisions must be disabled and handled by the propermodules.ResponsibilitiesOverride Native AI: All events that previously were handledby native AI will now be sent to the Handle Native AI eventmodule.Rediret Native AI events: Depending on the type of the na-tive AI event it will be redireted to either Base Building orTatial Planning.Hot SpotsEvent Groups: The user of the framework will have to de-�ne whih buildings and units that will potentially reeiveNative AI events.Standard ImplementationThe only event the standard implementation will handle is the "under at-tak" warning. This warning will ause the module to warn Tatial Planningor Base Building depending on whether it is a unit or building that is underattak.

APPENDIX B. MODULE DESIGN Page 183 of 273

Figure B.2: The internal arhiteture of the Pattern Reognition moduleB.3 Pattern ReognitionThis module is responsible for reognising di�erent strategies and tatisused by the enemy, and for keeping trak of an enemy's strategi deisionsthroughout a game. The internal arhiteture of this module an be seenon Figure B.2. Cirles represents sub-modules and boxes represents othermodules or knowledge bases. Arrows indiate how they in�uene eah other.B.3.1 ResponsibilitiesReognise Tatis: The module is responsible for reognisingtatis used by the opponent during the game.Reognise Strategies: Based on enemy unit and building om-position, as well as enemy unit movement and tatis used,the module is responsible for reognising strategies.Update Opponent Model: During the game, the opponent'sunit and building omposition will hange as well as severalother strategi important variables and it is the responsibil-ity of this module to keep trak of these and thereby keepan updated opponent model at all times.Monitor Strategi Choies of Opponent: The opponentwill make several ruial strategi hoies during a game,

Page 184 of 273 APPENDIX B. MODULE DESIGNwhih will in�uene the strategi possibilities open to herat a later stage in the game. This module will be requiredto keep trak of these deisions.B.3.2 Struture OverviewThis module is divided into sub-modules based on the four di�erent areasof responsibility de�ned above. The funtionality an basially be dividedinto two parts: One branh for handling updating the Opponent Model andone for providing the Learning module with the neessary information usedto learn new things. Updating the Opponent Model onsists of two steps.First, the module will attempt to reognise tatis used by the opponentand this will be used when atually updating the Opponent Model with theinformation urrently known about the enemy inluding the number of di�er-ent units, buildings and researh upgrades. The seond part of the moduleensures that all strategi hoies made by the opponent during the gamean be monitored. This is ensured by a module that reognises signi�antgame states, to determine when the opponent makes a signi�ant swith instrategy, whih should be re�eted in a strategy tree built for eah opponentduring the game. This strategy tree is onsidered a part of the Opponentmodel, and an be used to both, more learly determine the opponent's strat-egy, and for easier determining when the opponent is doing a strategy theAI have not seen before. In the latter ase, the Learning module an takeadvantage of the strategy tree built, and easily add it to the strategy treerepresenting all strategies urrently known by the AI. The last sub-moduleis a module that ensures the possibility of adding game spei� reognisingmethods.B.3.3 Reognise Signi�ant Game StatesThis module is responsible for reognising important game states in theopponent's strategy. With this information it will be possible to build astrategy tree during the game for the opponent's strategy, whih in turn willmake it possible to learn the opponent's strategy. When a new signi�antgame state has ourred, whih means the strategy tree for the opponent hasbeen updated, the module that reognises strategies should be ativated todetermine if this is a new strategy or not.Important game states are game spei� and this module will thereforebe very dependent of hooks. In a game like Warraft III for instane, the �rstsigni�ant game state is when the player has reated her hero and is readyto either attak the NPCs plaed around the map or harass the enemy. InStarraft on the other hand, the �rst signi�ant game state an vary greatlyfrom being an extremely fast attak on the enemy to expanding maybe twotimes before engaging the enemy.

APPENDIX B. MODULE DESIGN Page 185 of 273ResponsibilitiesReognise Signi�ant Game State: Any signi�ant gamestate ourring during the game must be reognised so thatthe opponent's strategy tree an be updated.Hot SpotsClassi�ation of Signi�ant States: The user of the frame-work would in most ases be required to lassify when asigni�ant game state has ourred, so that a proper strat-egy tree for the enemy an be built, whih allows for learningnew strategies in a sensible way.Standard ImplementationIt may be possible to make a game independent algorithm, whih for in-stane lassi�es important states as when the AI's army is either attakingor being under attak, but it would in most games not be enough to reallylassify a game's signi�ant states. The problem with just using a standardimplementation is that the strategy trees built for a game using only thestandard implementation, will often not provide a very aurate piture ofa partiular strategy and this will re�et negatively in several other frame-work modules. However, a standard implementation should be provided forat least demonstrating how to speify signi�ant states.B.3.4 Reognise StrategiesThis module is responsible for reognising the opponent's strategy in thestrategy tree from Known Strategies, and if it is unknown, inform the Learn-ing module about this. This is an operation on strategy trees and sine thesedo not vary from game to game, this module an be left unspei�ed by theuser of the framework.Although strategies do vary from game to game, the methods for reog-nising strategies in strategy trees do not. Strategy trees are reated spei�-ally to deal with eah partiular game, and ontain all possible informationrelated to a strategy in that game. A strategy in a strategy tree is de�ned asa number of strategi important elements (like expansions, researh et.) aswell as unit and building ompositions, and hene it does not matter whetherthe game is Starraft or Age of Empires.ResponsibilitiesReognise Strategies: The module must reognise the strat-egy the opponent has been doing throughout the game anddetermine whether it has seen this kind of strategy before.

Page 186 of 273 APPENDIX B. MODULE DESIGNHot SpotsThis module has no hot spots as everything is handled by operations onstrategy trees.Standard ImplementationEverything in this module is handled by the framework.B.3.5 Reognise TatisThe purpose of this module is to reognise tatis used by the opponentduring the game. This knowledge is both used to update the Opponent Modelwith the urrent tatis being used and the opponent game tree, whih willallow for the game tree to note at whih point in the urrent strategy di�erenttatis have been used.The methods used to reognise tatis should in most ases be hookmethods, beause all game allow for very di�erent types of tatis, and it isfurthermore very di�erent how muh e�et a ertain tati has from gameto game. In Warraft III for instane, a tati ould be to harass the enemybase with some units while levelling the AI's hero by attaking NPC's at thesame time. This is a unique tati for that partiular game and it wouldmake no sense in most other games.ResponsibilitiesReognise Tatis: The module must be able to reognise ta-tis used at any point during the game, and inform theUpdate Opponent Model sub-module about its results.Hot SpotsReognise Tatis Methods: The user of the framework mustspeify how the AI is to reognise a ertain tati used bythe opponent.Standard ImplementationSome tatis an be used in several di�erent RTS games. An example ouldbe the tati of splitting up the army and attaking several resoure gatheringloations hold by the enemy at one and then kill workers there. Tatis likethat are viable in almost any RTS game. Reognising the tati should intheory be easy regardless of the game, and should be provided as a standardimplementation. This is, however, only the ase with tatis inluded withthe framework. New game spei� tatis must have reognising methodsprovided along with them for this module to work to its full potential.

APPENDIX B. MODULE DESIGN Page 187 of 273B.3.6 Update Opponent ModelThis module is responsible for ontrolling all updates of the Opponent Model.The reason this annot be done diretly, is beause the AI annot just addevery unit it sees to the Opponent Model. Enemy units may disappear intofog of war and return again the next seond and it is the task of this moduleto ontrol that the same units are not added one again to the unit ountof a partiular unit type. Furthermore, as the Opponent Model must alwaysre�et the urrent situation, the module must ontrol when attributes expirein the Opponent Model and also notify other modules when a seeminglysigni�ant hange has ourred.When an attribute of the Opponent model should be onsidered out-dated, depends of both the game and attribute in question. If the opponentfor instane have used an air harass tati earlier in the game, at what pointshould the AI realise that this is not what the opponent is trying to do any-more? Another fator that is game spei� is determining when a signi�anthange has happened in the Opponent Model. This of ourse also depends onthe attribute in question. If the number of expansions attribute is hanged,it would probably be a signi�ant hange, while an update onsisting of theobservation that the enemy now has �ve footmen instead of just four, wouldnot.ResponsibilitiesUpdate Attributes in Opponent Model: The module mustkeep an eye on all attributes of the Opponent Model andensure that all new observations are properly re�eted inthe model. This inludes keeping trak of units seen earlier,whih have left the vision of the AI player and then re-entered.Chek Expiring Attributes: Beause of the need for an up-dated Opponent Model at all times, the module must ensurethat all attributes re�ets the urrent situation. This meansremoving or reduing belief in attributes that has not beenon�rmed for a long period of time.Chek for Signi�ant Updates: The module must after up-dating the Opponent Model hek if the update is signi�antenough to be able to hange the urrent belief of what theopponent is doing. If this is the ase, it must ativate theProbabilisti Reasoning module.Hot SpotsExpiration Limits: The user of the framework should speifywhen attributes beomes outdated and how the belief of a

Page 188 of 273 APPENDIX B. MODULE DESIGNertain attribute deteriorates over time.Method for Determining Signi�ant Updates: A methodfor determining when a signi�ant update to the OpponentModel has been made is required to make sure the Prob-abilisti Reasoning module is ativated at the appropriatetimes.Standard ImplementationThe standard implementation will have a prede�ned expiration date on at-tributes and a perentage hange in attributes that will ativate a signal thata signi�ant hange has ourred.B.3.7 New TatisThis module is basially just one hook module, whih allow an AI designerto speify how the AI should reognise new tatis that should be learnedby the the AI. It will proess the data reeived from the Perept Interpretermodule, and based on this information, deide whether the opponent hastried a new tati not seen before.In Warraft III for instane, the undead rae has a unit, the ghoul, whihis intended to be both a harvesting unit and a light melee unit. In earlyversions, this aused a very speial tati to arise. When the ghouls weretargeting trees, they had the ability to walk through other units (to avoidpath�nding problems in the base). This made it possible for the ghouls towalk right through the enemy army if they targeted a tree behind the army,whih in turn made it possible to get behind the army and easily surroundfor instane a ranged enemy hero. This module is used to learn new andgame spei� tatis like the example tati desribed here.ResponsibilitiesReognise new Tatis: The module must reognise new ta-tis used by the opponent.Hot SpotsMethods for Reognising Tatis: The user must speifyhow the AI is to reognise new game spei� tatis.Standard ImplementationThere is no standard implementation of this module, but it an be left un-spei�ed, whih results in the AI's inability to learn new tatis. It does

APPENDIX B. MODULE DESIGN Page 189 of 273
Figure B.3: The internal arhiteture of the Probabilisti Reasoning modulehowever, not limit the AI's apability to ombine old tatis in new strate-gies.B.4 Probabilisti ReasoningThis module will determine the most likely strategy used by the enemy, anddetermine what kind of strategies this ould lead to in the future. Further-more, it will speify what variables are important to wath, when determin-ing the opponent's �nal hoie of strategy. The internal arhiteture of themodule an be seen in Figure B.3. Cirles are internal sub-modules, boxesrepresent other modules or knowledge bases and arrows indiate how theyin�uene eah other. The following will desribe the overall responsibility ofthis module and explain eah sub-module in detail.B.4.1 ResponsibilitiesDetermine Most Likely Strategy: The module must, basedon the urrent Opponent Model, determine the most likelystrategy being done by the opponent.Determine Most Likely Follow-up Strategy: Dependingon the most likely strategies found, the module mustdetermine the most likely follow-up strategies.Determine Important Variables: Given a number of possi-ble follow-up strategies, the module must determine impor-tant variables that will indiate the �nal hoie among thepossible strategies.Update Opponent Model with new Beliefs: When a newmost likely strategy has been found, the Opponent Modelmust be updated with new beliefs about attributes not ur-rently known from the result of an observation.

Page 190 of 273 APPENDIX B. MODULE DESIGNB.4.2 Struture OverviewThis module is divided into sub-modules based on the four di�erent areasof responsibility de�ned above. The �rst thing the module has to do is de-termine the most likely strategy used by the opponent based on the urrentOpponent Model. This is basially a searh through a strategy tree to �nda mathing node ompared to the Opponent Model. Afterwards, two thingsmust be done: The Opponent Model must be updated with new beliefs andpotential follow-up strategies must be determined. For eah follow-up strat-egy found, the probability for eah must be alulated. Finally, importantvariables that determines the opponent's �nal hoie of strategy must befound, so that appropriate souting an be done.B.4.3 Find Potential StrategiesThis module is responsible for �nding all potential strategies being done bythe opponent based on the observations made about her so far and then �ndthe probabilities for eah possible strategy being used. The basi idea behindthis module is to searh through three strategy trees: Game Type Knowledge,Map Knowledge and Enemy Knowledge. Eah provides a di�erent aspet ofthe possible strategies the opponent may be doing.The searh through strategy trees do not vary from game to game, butthe riteria for mathing a node in the strategy tree to the Opponent Modeldo. From game to game, it hanges how muh two nodes in a strategytree have to be di�erent to represent di�erent strategies and the strategiimportane of ertain attributes may also hange.ResponsibilitiesFind Potential Strategies: The module must �nd all poten-tial strategies given the urrent Opponent Model.Calulate Probabilities: Depending on the strategies found,the module must �nd the probability of eah of them beingthe one urrently used by the opponent.Hot SpotsMaximum Node Deviation: The user of the framework mustspeify how muh two strategy nodes should di�er to be on-sidered two di�erent strategies. This inludes de�ning thestrategi importane of di�erent attributes of the OpponentModel.

APPENDIX B. MODULE DESIGN Page 191 of 273Standard ImplementationAs a default implementation, the framework will provide a perentage maththat must be ful�lled for two nodes to be onsidered the same.B.4.4 Update Opponent ModelThis module is responsible for updating the Opponent Model with new beliefknowledge based on what kind of strategy the AI believes the opponent isurrently doing. All attributes in the Opponent Model that are not urrentlybased on real observations should be updated with what the AI urrentlybelieves about the opponent.The reason that this proess is de�ned as a sub-module in this arhite-ture is that this allows for an AI designer to deide when an observationshould be replaed by a belief. This ould for instane be when an observa-tion is several minutes old, and the attribute is known to hange frequently.This varies from game to game.ResponsibilitiesUpdate Opponent Model: The module must update the Op-ponent Model with new beliefs based on the most likelystrategy used by the opponent.Hot SpotsUpdating Beliefs: The user of the framework must speify howto update the Opponent Model with beliefs.Standard ImplementationThe standard implementation should provide a simple approah to updatingbeliefs in the Opponent Model, replaing only those attributes who have neverbeen observed.B.4.5 Find Potential Follow-up StrategiesThis module looks at all possible strategies being done by the opponent, and�nds all potential follow-up strategies along with perentages of their likeli-hood of being used. The strategy tree has diret support for this operation,by simply looking further in the tree from eah potential strategy node.How many follow-up strategies to onsider should be based on the parti-ular game in question. It depends a lot on the strategy tree in question andhow eah partiular game's strategies are re�eted in the strategy nodes.

Page 192 of 273 APPENDIX B. MODULE DESIGNResponsibilitiesFind Potential Follow-up Strategies: Given a number ofpossible urrent strategies, the module must determine themost likely follow-up strategies.Hot SpotsConsidered Follow-up Strategies: The user of the frame-work should be able to speify how far ahead in time the AIshould look to �nd potential follow-up strategies.Standard ImplementationBy default, the searh through strategy trees should look a prede�ned num-ber of nodes ahead when onsidering potential follow-up strategies.B.4.6 Determine Important VariablesThe responsibility of this module is to determine the urrently unknownvariables that are essential for hoosing among the most likely strategies theopponent is doing. The module will onsider only the most likely strategies,and determine variables that are di�ering and essential for the opponent'shoie among them. This will later help the Strategi Planning module tosout the right things, whih are more likely to reveal the opponent's �nalhoie of strategy.This module should be independent of the game in question, beause�nding the variables that di�er in the potential follow-up strategies havenothing to do with the atual game being played.ResponsibilitiesDetermine Important Variables: The module must speifythe variables that should be investigated further, beauseof them being important in regards to the opponent's �nalhoie of strategy.Hot SpotsThere are no hot spots in this module, as it is all handled by the frameworkindependent of the game in question.Standard ImplementationN/A

APPENDIX B. MODULE DESIGN Page 193 of 273

Figure B.4: Internal arhiteture of the Strategi Planning moduleB.5 Strategi PlanningThis module will handle all strategi deisions. This inludes determiningwhen the AI has enough information to hoose a good strategy and of ourseatually hoosing a strategy. The hoie of strategy should depend heavilyon what ounters the opponent's strategy, but also the urrent state of theAI. The module is furthermore also responsible for deisions about exatlywhere the AI's army should be and if it should split up et. The internalarhiteture of the module an be seen in Figure B.4. Cirles in the �g-ure represents internal sub-modules and boxes represents other modules orknowledge bases. The following will �rst disuss the overall responsibilitiesof the Strategi Planning module, and then present eah of the sub-modulesin the internal arhiteture along with a disussion of how the sub-moduleis to omplete its task.B.5.1 ResponsibilitiesDetermine if the AI posses Su�ient Knowledge: Themodule must determine whether the AI has enough knowl-edge about the enemy to hoose a good strategy thatounters the enemy.Determine Souting Missions: If there is insu�ient enemyknowledge or if all data in the Opponent Model is outdated,the module must assign one or more units a souting mis-sion, telling it exatly where to go and what to sout for.Find New Strategy: The module must determine if there is aneed for a new strategy, and if so, �nd the best possiblestrategy suiting the urrent situation.

Page 194 of 273 APPENDIX B. MODULE DESIGNExeute Strategy: Finally, the module is responsible for di-tating where on the map all army units should be duringthe exeution of the hosen strategy.B.5.2 Struture OverviewThis module onsists of several distint parts. When the module is ativatedby a signi�ant update to the Opponent Model or by a timer, the �rst thingthat is done is heking whether there is su�ient enemy knowledge to deideon a good strategy. If there is not, the Souting sub-module is ativated andone or more units are put on a souting mission. Either way, it must bedeided whether or not to hange strategy. This is done by determining ifthe foundation on whih the last strategy was deided has hanged. If ithas hanged, two things are done. First, probabilities for di�erent strategiesountering the opponent's strategy is alulated, and partly based on this, anew strategy is seleted. The new strategy is represented as a strategy nodeand hene this is not enough to determine the ations taking by the AI'sunits. For this, an Evaluation sub-module determines the urrent situationof the AI, and plaes it in an appropriate state. This state will divide unitsinto groups and give orders dependent on the urrent situation of the AI.B.5.3 Su�ient Enemy KnowledgeThis module is responsible for determining whether the AI has enough infor-mation to deide upon a good strategy. This an be determined by lookingat the Opponent Model, and at what the AI designer has de�ned as be-ing enough information. In some ases the framework ould override thehook spei�ed by the AI designer, if for instane a ertain attribute is vitalfor knowing whih strategy the opponent is going for, and hene should besouted. If there is insu�ient information, the Souting sub-module is ati-vated and provided with one or more variables that are to be souted. Thismodule will always trigger the Change Current Strategy sub-module, as eventhough enough information is not present, the AI must still pik a strategyaording to its best guess of what the opponent is doing.De�ning what quali�es as being enough information is game spei�. Allattributes may have very di�erent importane in relation to ountering theopponent's strategy. In Warraft III for instane, it is a huge fator whatkind of buildings the opponent has in tier two and tier three, while thisis far less important in games like Command & Conquer. In Command &Conquer it is far more important what kind of units the enemy has and howmany, ompared to Warraft III where the tehnology branh pursued bythe enemy is far more important for reognising her strategy.

APPENDIX B. MODULE DESIGN Page 195 of 273ResponsibilitiesSu�ient Information: The module must deide whether theAI has enough information about the enemy to hoose agood strategy.Hot SpotsEnough Information Criteria: The user of the frameworkmust speify when the AI has enough information, andthereby basially deide souting frequeny.Standard ImplementationThe standard implementation will assume that all attributes of the OpponentModel are equally important. This means that the standard implementationan simply keep a prede�ned perentage of how muh an attribute maydeviate from the most likely strategies found before a souting mission shouldbe determined. Furthermore, the framework an speify a time limit thatbasially deides the souting frequeny of an attribute.B.5.4 SoutingThis module is responsible for seleting a unit to sout and determiningwhat spei�ally that unit is to sout. Seleting what to sout should be adeision based on the input from the Probabilisti Reasoning module, whihdetermines the urrently most interesting unknown variables. How to obtainthis information an in part be spei�ed by the framework (buildings are inthe enemy base, units are near the enemy army et.), while in speial asesthe AI designer should deide how to obtain it.In some games or strategies, the player may want to sout for very spe-i� things. In Starraft for instane, one may want to have a Zerg Overlordpatrolling between a Terran's main base and an island to be able to sout ifthe enemy deides to �y a Control Center to the island to reate an expan-sion. Gaining this information in time would make it possible to attak theControl Center before it gets to its expansion site.ResponsibilitiesSeleting Souting Unit: This module must selet the bestunit(s) to sout with depending on the souting mission.Determine Souting Target: Depending on what the AIwants to know more about, the module must determinewhere to �nd this information and then sout to obtain it.

Page 196 of 273 APPENDIX B. MODULE DESIGNHot SpotsUnit Souting Ability: The user of the framework should se-let whih units in a partiular game should be preferred assouting units.Souting Loations: The user of the framework should de�newhere to �nd ertain information.Standard ImplementationThe standard implementation ould hoose either the fastest or heapestunit to sout, and always send the sout towards the enemy base, unless ithas a good idea of where the enemy army is, and is souting for some unitattribute. If it is looking for expansions, it ould simply start souting thenearest expansion possibility (ompared to the enemy main base) and thenwork through all expansion possibilities in that order. When playing on arandomly generated map, the AI must also be able to sout the map andnot just the enemy. To sout the map, the standard implementation oulduse in�uene maps to determine unexplored areas of the map.B.5.5 Change Current StrategyThis module is responsible for deiding whether a hange in strategy shouldbe onsidered. The AI should basially only onsider hanging its strategyif it has some new information, whih an lead to a new and better strategy.This means that the primary task of this module is to test whether theinformation, whih were used in hoosing the last strategy, has hanged insuh a degree that a new strategy should be onsidered. If this is the ase, theFind Counter Perentages sub-module is ativated, and if not, the StrategiPlanning module goes straight to the Evaluation sub-module explained later.It is very game spei� how often a strategy should be re-onsidered.In general, games with strong ounters will require players to hange theirstrategy very often, beause so muh depends on information about the en-emy army. This means that games in the Craft series will require hangingstrategy often when the opponent model hanges, while in games like Com-mand & Conquer, the AI will be able to keep her urrent strategy moreoften, beause ounters have less e�et.ResponsibilitiesConsider New Strategy: The module must determinewhether the foundation that the last strategy was builtupon has hanged and through this, deide whether a newstrategy should be onsidered.

APPENDIX B. MODULE DESIGN Page 197 of 273Hot SpotsSigni�ant Changes: The user of the framework should be al-lowed to speify how muh of a hange (ompared to lasttime a strategy was seleted) is neessary for the AI to re-onsider its strategy.Standard ImplementationA standard implementation ould simply reonsider its strategy every timethe Probabilisti Reasoning module hanges what it onsiders to be the mostlikely strategy done by the opponent.B.5.6 Find Counter PerentagesThe purpose of this module is �rst to �nd all possible ounters to the pos-sible strategies found in the Probabilisti Reasoning module, and then to�nd the probability for eah ounter being an e�etive ounter to what theopponent ould be doing. Eah strategy done by the opponent may haveseveral ounters and eah ounter may have a di�erent perentage attahedit, representing how often this ounter should be used ompared to the oth-ers. First a joint probability between the probability of the strategy beingused, and the probability of the ounter being used should be omputed.Then it should be examined if any of the ounters are pratial the same,and if thats the ase, these perentages should be omputed into anotherjoint probability for eah ounter being suessful. The result would be aprobability for eah distint ounter, the highest ditating the ounter whihis most likely to ounter the enemy's strategy. This entire proess should bedone for both urrent and follow-up strategies.All of this is handled by strategy trees or operations on them and is henenot game spei�.ResponsibilitiesFind Counter Perentages: This module is responsible for�nding the perentage hane of a strategy ountering theopponent's strategy.Hot SpotsN/AStandard ImplementationN/A

Page 198 of 273 APPENDIX B. MODULE DESIGNB.5.7 Find New StrategyThis module is responsible for seleting the target strategy for the otherframework modules to try and aomplish. It uses the ounters and theirperentage hane of ountering produed by the Find Counter Perentagesmodule and the Current Strategy Node to help make its deision. The mod-ule must make a trade-o� between hoosing the best possible ounter andhoosing a strategy that is not too far away from the urrent strategy node.In some ases (often the beginning of the game), the AI will to a ertaindegree ignore the ounters and fous only on its own strategy. As an extraelement, the strategi deision ould also depend on knowledge of what theAI's allies are doing or whether it has a strong build order for a ertainstrategy.The implementation of this module depends heavily on the game in ques-tion. Basially, the more ounter oriented the game is, the more the AIshould be willing to deviate from its urrent strategy. This means that ingames like Warraft III, the AI should often ompletely hange its strategy,while in games like Command & Conquer, the AI should often not deviatetoo muh from the original strategy.ResponsibilitiesFind New Strategy: This module is responsible for �nding anew strategy based on the information provided by theProbabilisti Reasoning module.Hot SpotsChoie of Strategy: The user of the framework should speifyhow the AI should make the trade-o� between ounteringthe enemy and not hanging strategy ompletely every timenew information is reeived.Standard ImplementationOne fairly general mehanism for hoosing the strategy ould be imple-mented, but in most ases it would be so game spei� that it is betterleft to the AI designer. A general approah ould for instane be to let theAI ounter as muh as possible, but never let it deviate more than 50% fromthe urrent strategy.B.5.8 ExpandsIt is the responsibility of the Expands module to test if the AI needs totake ation before expanding to a ertain loation. This module is neessary

APPENDIX B. MODULE DESIGN Page 199 of 273for two reasons: Some RTS games plae NPC haraters around the map(often guarding expansions) and other times the enemy may be oupying aresoure loation. If either of these are the ase, the AI needs to take ationbefore an expansion is possible. This will often be in the form of an attakat the units or buildings oupying the resoure loation.In Warraft III, all gold mines are oupied by NPC units, and thesemust be removed before the AI an expand at a ertain position. In a gamelike Starraft however, there are no NPCs at all, but it is very ommon forplayers to leave a single unit at di�erent expansion sites to simply removethe opportunity of the opponent to expand without the player notiing. Thisalso results in the requirement of attaking this unit before an expansion ispossible.ResponsibilitiesChek Possible Expansions: This module must analyse ex-pansion sites and determine if the AI's army need to takeation before an expansion is possible. Furthermore, it mustdetermine the army strength required to attak the enemyunits at the expansion.Hot SpotsProteted Expansions: As mentioned earlier, some gameshave expansions proteted by units by default, and the userof the framework should de�ne whether this is the ase.Army Comparison: The user of the framework must de�nehow the AI is to ompare two di�erent armies to eah other,whih makes it possible to determine the army required toattak a ertain expansion point.Standard ImplementationAs default, the framework will assume that all expansions are left unguarded,as is the ase in most games. When trying to determine a su�ient armyfore, the AI an use a very simpli�ed system of trying to have more or fewerbut better units than the opponent.B.5.9 EvaluationThis module is responsible for evaluating the urrent strategi situation forthe AI. At this point the target strategy node has been deided, whih theBase Building, Resoure Management and Ation Planner modules uses tofollow the strategy. However, a strategy node does not say anything aboutwhere the army should be going and where it should be attaking. This is

Page 200 of 273 APPENDIX B. MODULE DESIGNwhere the Evaluation sub-module omes in. Given the AI's army and theurrent game situation, this module evaluates in what state the AI shouldbe in. It must take into aount things suh as army sizes, tehnology trees,inome rates et. Depending on the state, units will be dispathed in orderto best aomplish the overall strategy.When to swith from one state to another is very game spei�. Imaginethe situation where both armies are at eah others base attaking the mainbuilding. In Warraft III, players would have the option of using a townportal to get home and defend their base, while in Starraft, and in mostother games, the player would have to walk home. This would often result inthat a Warraft III player would swith to a defend state, while a Starraftplayer would keep itself in an attak state. This of ourse always dependson the atual situation.ResponsibilitiesEvaluate Current Situation: The module must evaluate theurrent situation, and plae the AI in one of the availablestates.Hot SpotsEvaluate Situation: The user of the framework must speifyhow the AI is to evaluate the situation, and whih situationsorresponds to whih states.Standard ImplementationAs will be explained in the following setion, the framework will by defaultinlude three states to hoose among: Attak, Defend and Harass. A stan-dard implementation ould implement an evaluation method, whih hoosesbetween these three states in a relatively simple manner. The AI should beattaking if its army is larger than the opponent, it should defend if anyimportant buildings are under attak and it should harass if it has hosena strategy, whih entail having a small number of units ompared to theenemy in the beginning phase of the strategy. In the latter ase, harassingthe enemy would buy the AI time to suessfully either teh to the wantedunits or get an expansion up and running.B.5.10 StatesThis module is responsible for exeuting whatever that state ditates the AIto do. Three game independent states will be provided with the standardimplementation, but with the possibility of adding more depending on thegame. The three standard states will be explained in the following.

APPENDIX B. MODULE DESIGN Page 201 of 273AttakThe attak state must determine where to attak, and deide if it is neessaryto split the army into several groups and thereby try to aomplish more thanone objetive at one. It basially goes through the steps spei�ed below:Find Possible Attak Positions: Analyses the map and the enemy to de-termine possible loations to attak. This ould for instane be theenemy main base, an enemy expansion or the urrent position of theenemy army. The army strength needed to omplete a suessful attakis spei�ed along with some form of desirability value of eah attaktarget. How to alulate these values should be spei�ed by the AIdesigner by hook methods.Analyse Map Situation: Adjusts desirability values aording to the ur-rent map situation. This inludes analysing the position of all armieson the map, inluding the AI's own army. If for instane the attakdesirability of two di�erent loations are lose to the same, but theAI's army is loser to one ompared to the other, it should of ourseattak the losest target.Coordinate Attaks: Depending on whether the AI's army is strongenough to arry out multiple attak orders, the army should be split upin a sensible way. It is game spei� when it is reasonable to split upthe army, and should hene be primarily spei�ed as a hook. Splittingup the army ould also be beause the AI wants to perform some gamespei� tati.Assign Ations: The last task is to speify target map positions for eahgroup and notify the Tatial Planning of this. It should also be on-sidered here whether the army is already gathered, or if this has to bedone before moving on to the attak loation.DefendThis state should desribe the state where the AI is under pressure, prob-ably outnumbered, and should simply try to protet itself until it reahesa stronger state. This ould be for instane when the AI is tehing, andis attaked by the enemy. Then it should only �ght in its main base usingbase defene as well as terrain and position advantage (high ground, smallpassages et.). The following will desribe the reasoning the AI must gothrough to deide how to handle itself in this state.Evaluate Situation: First of all, the AI must determine whether it is underan attak or not. The answer determines how the AI should handledefending itself.

Page 202 of 273 APPENDIX B. MODULE DESIGNPossible Attak Analysis: If the AI is not under attak, it must analysethe map to determine where the opponent is most likely to attak.This inludes analysing its own weakest points, as well as trying todetermine if the opponent knows about these. After determining this,it must send the order to move to the most likely attaked loation,and ensure that the AI is in a good position for the potential enemyattak.Defend Analysis: If the AI is under attak, it must determine whether theloation, building or units are valuable enough to try and defend andif this is even possible (the AI may be far away from the position beingattaked). It should also take into onsideration whether it an evenreah the position being attaked before everything is destroyed.Position Analysis: If the loation is valuable enough to be defended, theAI must move into position. This means analysing the right way to ap-proah the enemy and to deide whether it must gather its army beforemoving in. In some games the deision an be even more omplex, likefor instane in Warraft III, where it is possible to town portal bakto the base to defend. In that ase the AI must deide the position totown portal, whih will bring the AI into an optimal battle situation.HarassThis is the state, where the AI knows the opponent is trying to aomplishsome strategy, and for whatever reason, wants to slow it down in doing so.Harassing ould onsist of a number of di�erent things, like killing workers,destroying buildings that are being built, or harassing the main army of theenemy so that it annot perform whatever it should be doing. When the AIdeides how to harass, it must go through the following tasks.Find Possible Targets: First all kinds of possible targets for harassingmust be disovered. Harassment targets do not vary muh from gameto game, but the degree of how e�etive a ertain harassment tati isdoes. Possible harassment targets inludes:
• Enemy workers
• Weak units (hit and run attaks on for instane support units)
• Hurt units (units at ritial health)
• Buildings that are under onstrution
• Important buildings for the opponent's strategy
• Harvesting buildings (inluding main buildings)

APPENDIX B. MODULE DESIGN Page 203 of 273Analyse found targets: After �nding the di�erent possible targets, theAI must examine eah of them and determine how many and whatkind of units are needed to suessfully attak eah di�erent target.In some ases the degree of what determines a suessful attak mustalso be evaluated (for instane how many workers should a harassmentkill before it an be onsidered suessful?). Finally, it must determinewhih of the possible targets will harm the enemy the most omparedto the ost of exeuting the harassment. How to evaluate the di�erentmissions will in most ases be a game spei� task.Assign Units: Finally, the AI must determine whih of the harassmenttargets are to be exeuted and whih units are grouped together toexeute a partiular mission. Units not piked for any harassmentmission must also be sent to some spei�ed loation (often the mainbase). All group spei�ations and target positions is then sent to theTatial Planning module, whih takes are of the atual exeution ofeah harassment mission.ResponsibilitiesAssign Groups and Unit orders: The module must, de-pending on the state, divide the army into groups and assignthem an order to go to a position on the map. The atualexeution of how to get there and what to do when they getthere, is handled by the Tatial Planning module.Hot SpotsStates: In some games the three default states will not beenough and this is why the user of the framework should beallowed to add extra states depending on the game. Thisould be things like a Creeping state, a Push state et.Con�gure Standard States: Even though the framework pro-vides three standard states that overs all kinds of RTSgames, the user of the framework must on�gure these mod-ules to suit the game in question best possible.Standard ImplementationThe standard implementation will in this ase be the three default statesprovided with the framework and a standard on�guration of these.

Page 204 of 273 APPENDIX B. MODULE DESIGN

Figure B.5: The internal arhiteture of the Tatial Planning moduleB.6 Tatial PlanningThis module will handle all unit ations that is not diretly assoiated withResoure Management or Base Building. The internal arhiteture of themodule an be seen in Figure B.5. Cirles are internal sub-modules, boxesrepresent other modules or knowledge bases and arrows indiate how theyin�uene eah other.B.6.1 ResponsibilitiesUnit Ations: This module will arry out all unit ations thatare not resoure or base building ativities.B.6.2 Struture OverviewThis module onsists of two parts: Unit movement and unit engagement.These two parts have two sub-modules in ommon: The Evaluation moduleand the Path Planner. Any ation must �rst pass through the Evaluationmodule before being arried out. This module will among other things deidewhether the AI's fores are strong enough to engage in ombat or if theyshould turn and �ee. The Path Planner is not just a normal path�nderbut also takes other fators into aount suh as �ow. The movement part�rst analyses the known terrain, then it �nds a suitable formation for theunits that are to move aording to the olleted terrain information. Theengagement part �rst analyses terrain, units and buildings in the ombatarea. This information is then passed on to the Unit Deployment modulethat will �nd a suitable formation for the units available. It will also deidewhih units are assigned attaking roles and whih are assigned supportingroles. These are then passed on to the Support module and the Targeter.

APPENDIX B. MODULE DESIGN Page 205 of 273B.6.3 EvaluationEvaluation is the �rst module within the Tatial Planning that is ativated.The Evaluation module will �rst determine whether the Tatial Planningwas triggered due to a movement order, a hange in unit state or an engage-ment order. Movement orders will be passed on to the Terrain Analyser andso will a hange in unit state trigger if this means that the unit in questionwill have to be withdrawn from battle. If this is not the ase hange in unitstate events will be passed on to the Terrain and Unit Analyser. This isalso the ase with any engagement order if the Evaluation module deidesthat the battle is worth engaging. The Evaluation itself will be based on theamount of units, unit strength, strategy and position.Di�erent games require di�erent ways of evaluating a situation. In Star-raft for instane a situation where a player is outnumbered does not nees-sarily mean that the player should retreat but perhaps rather kamikaze anddo as muh damage as possible before the army is beaten. In Warraft thesituation is quite di�erent as units are more 'valuable' and should be savedas often as possible.ResponsibilitiesReroute Orders: All orders must be heked and deidedwhether they are movement orders or engagement orders.Situation Evaluation: When faing the enemy this modulemust deide whether to �ght or to �ee.Hot SpotsEvaluation Method: The user of the framework must de�nean evaluation method that analyses a given situation anddeides whether or not to engage.Standard ImplementationThe standard implementation will ompare the damage output and the totalamount of hitpoints of the two armies and base its deision on this.B.6.4 Terrain AnalyserThis module will look at the terrain over whih a unit or a group of unitswill move. Essentially it will transform this part of the map into an in�uenemap that takes every little faet into aount. This is everything from heightvariations in the terrain, to resoure lusters and NPC units. This willresult in a multilevel in�uene map that the Formation module an plae

Page 206 of 273 APPENDIX B. MODULE DESIGNthe desired formation on and the Path Planner an move the unit/unitsthrough.In Warraft the map is so simple that there are no elevations or objetsthat units an hide behind. This means that no matter where the unitsstand they will reeive full damage from ranged attaks. In Starraft unitsstanding above other units will reeive a damage redution when �red upon.This is just one of the di�erent aspets the terrain analyser will have tohandle from game to game.ResponsibilitiesTranslate Area Information: The produt of this module isa spatial representation of the area that the unit/units mustmove through. This spatial representation must inludeall known information of any value to the task of movingthrough the area.Hot SpotsHandling Area Types: The user must de�ne all types of ar-eas that must be aounted for in the analysis.Standard ImplementationThe standard implementation will only handle areas in whih the units anmove and areas in whih they annot.B.6.5 FormationThe Formation module is responsible for ordering units in a prede�ned for-mation. It also has to aount for ritial areas in the terrain or ratherthe in�uene map that is reeived from the Terrain Analyser. This meansthat the Formation module may have to reorder the formation at the ritialpoints suh as hoke points. All this an be done by �rst identifying theritial points and afterwards plan the formations that will be used betweenritial points and in the points themselves.In Command and Conquer the formation used is not really that impor-tant. The only formation detail that is used is mostly keeping artillery atthe bak of the army. In Age of Empires, however, the formation is ruial.Tanker units an keep the enemy at bay while the lighter armoured unitsan deal a lot of damage.ResponsibilitiesIdentify Critial Spots: The module must be able to identifyritial spots - spots that are potentially dangerous.

APPENDIX B. MODULE DESIGN Page 207 of 273Draw Formation: Given the situation a suitable formationmust the found.Hot SpotsIdentify Critial Spots: The user must de�ne a method toidentify ritial spots. This heavily depends on the terrainand general map struture and is thus game spei�.Formations: Formations vary from game to game given thedi�erent units available in the games and their use. There-fore the user must de�ne a set of formations and their use.Standard ImplementationA few simple formations based on amount of hitpoints and armour will beimplemented by default.B.6.6 Terrain and Unit AnalyserThis module will not only do the same tasks as its ounterpart the TerrainAnalyser but it will also take units and buildings into aount. Furthermoreit will also be able to work with believes of the whereabout and number ofunseen enemy units if suh exist. The produt of this module is a multi-layered in�uene map that takes all this into aount.In some games towers for instane are more of a nuisane than a realthreat. The damage output of a tower annot be used as the only fator tobe taken into aount when analysing the threat of a tower from game togame. A weak tower in Command and Conquer an be ignored while a weaktower in Warraft III may have a side e�et suh as mana drain or a slowinge�et that an have a serious impat on the outome of a battle.ResponsibilitiesTranslate Area And Unit Information: All relevant infor-mation available must be translated into a usable spatialrepresentation.Hot SpotsHandling Terrain and Unit Types: The analysis that ishandled by default will only be able to handle simple asesand in order to get good results the user will have to de�nerule sets through the tatis for all terrains, units and mapspei� objets.

Page 208 of 273 APPENDIX B. MODULE DESIGNStandard ImplementationIn addition to the funtionality found in the Terrain Analyser the standardimplementation of this module will also aount for units and buildings. Itwill look at damage output, amount of hitpoints and amount of armour.B.6.7 Unit DeploymentBased on the information passed on by the Terrain and Unit Analyser as wellas a number of knowledge bases this module will deide upon the positionand assignments of friendly units during an engagement. Basially it doesthe same as the Formation module but takes the onept a step further bypassing units on to the Support module and the Targeter module dependingwhih assignment they have. The formation itself will be handled by aombination of the default unit behaviour and the strategy spei� behaviourde�ned by the tatis in the urrent strategy node. In�uene maps seemsthe obvious tool to handle muh of this work.As mentioned in the Formation module Command and Conquer does notrequire muh onsideration when dealing with positioning. In Warraft IIIhowever light armoured units will die several times as fast as the heavilyarmoured units if attaked. As a lot of units an only attak in lose ombatthe heavily armoured units will have to be between the enemy and the lightarmoured units.ResponsibilitiesUnit Positioning: When engaging, tanking units will have tobe plaed at the front faing the enemy and lighter units ina seure distane from enemy units. Additionally supportunits have to either be well distributed among friendly unitsor within range of the target enemy units.Unit Task Assignment: Units have to be assigned a task: tosupport or to attak. This has to �t with the deployment.Hot SpotsUnit Deployment Plans: Given a strategy and the tatisde�ned for this strategy, the available units, the terrainand other map spei� information the user has to de�ne amethod that deploys and assigns ations the best possibleway.

APPENDIX B. MODULE DESIGN Page 209 of 273Standard ImplementationBy default the heavily armoured/high hit point units will be plaed loserto the enemy than lighter armoured/low hit point units.B.6.8 SupportThe Support module is responsible for seleting the best skills and targets forthe skills for all the units passed on to it. Depending on the hosen strategysupport unit will be assigned di�erent skills to use on di�erent targets. Thiswill be determined by the tatis stated in the urrent strategy node. Ifno suh rules exist default behaviour will be assigned. The in�uene mapsneeded for this module depend on the available support skills.Age of Empires has a fewer means of support available than games likeStarraft and Warraft. Support in Age of Empires is muh less important.In Starraft the good use of support will be able to win almost any situation.ResponsibilitiesAssign Support Ations: This module must assign the bestpossible ations to all available support units given the avail-able information.Hot SpotsSupport Ation Rule Set: The user must de�ne a rule setthat ditates how di�erent support units should reat invarious situations. The tatis in strategy nodes an over-ride this behaviour if a di�erent behaviour is required in aspei� strategy.Standard ImplementationThe standard implementation will distribute support aording to the ruleset de�ned in Unit Type Ation.B.6.9 TargeterAll the units passed on to the Targeter module will be assigned an enemy unitto attak. The Targeter will have to take ounter fous, fousing strategiallyimportant unit and maximising damage (no exessive) into aount. In orderto do this the Targeter will have to know whih unit ounters whih unit anduse this information to assign targets. The Targeter will also have to onsiderwhih target are important to the suess of the urrent strategy.Contrary to many of the other games Warraft III features a series of dif-ferent armour types and attak types. Di�erent armour types have bonuses

Page 210 of 273 APPENDIX B. MODULE DESIGNand penalties when hit by di�erent attak types. This means that in thisase the targeter will have to take armour type - attak type math-ups intoaount when assigning targets, ontrary to just fous �ring.ResponsibilitiesAssign Targets: The Targeter must assign targets to all avail-able units in suh a way that important enemy units areeliminated, the damage is maximised, and the urrent strat-egy is not ompromised.Hot spotsTarget Priority Rule Set: A target priority rule set must bede�ned through tatis that lists all units and buildings pri-oritised in the order they should be targeted.Counter Table: The user also has to de�ne a table that de-sribes the ounter relations in the game.Standard ImplementationBy default the Targeter will only take the amount of hitpoints and theamount of armour into onsideration when assigning targets.B.6.10 Path PlannerThe Path Planner is an advaned version of a normal path �nder. The PathPlanner has to �nd the fastest path (not neessarily the shortest) given aformation, �ow, varying unit speed et. and on top of this it will have topass assigned unit ations on to the Assigned Unit Ation knowledge base.ResponsibilitiesPlan Best Path: Given formation, �ow, and unit speed, �ndthe best path for eah unit that has to be handled.Reroute Ations: For all units that pass through the Tati-al Planning module, reroute their assigned ations to theAssigned Unit Ation module.Hot SpotsHot Spot: N/A

APPENDIX B. MODULE DESIGN Page 211 of 273

Figure B.6: Internal arhiteture of the Resoure ManagerStandard ImplementationThe entire Path Planner will be implemented by default and will at on theinformation produed by the Terrain Analyser and the Terrain and UnitAnalyser.B.7 Resoure ManagerThis module should make sure that there are resoures enough for buildingunits and buildings. The module is run when there have been assigned work-ers to it, whih makes these workers start gathering resoures. The type ofresoures gathered should �t the things that have to be onstruted to followthe strategy. When there is a hange in the strategy or if there is a short-age of resoures, this module should be ativated again. The module shouldhowever antiipate the best it an, what resoures that will be required. Itshould also be run with some frequeny to hek that it is gathering resouresin the most optimal way, and that there are no harvesters standing aroundnot gathering, and if there is not enough workers, request that more workersare built.The Resoure Manager module's arhiteture an be seen in Figure B.6.Retangles represent knowledge bases or other modules and irles are thesub-modules. The following present the responsibility of the Resoure Man-ager module, and present eah of the sub-modules, and disuss how thesub-modules omplete their tasks.B.7.1 ResponsibilitiesDetermine Resoure Requirements: The module most de-termine what resoures that are neessary to reah the tar-get strategy.

Page 212 of 273 APPENDIX B. MODULE DESIGNAnalysing Resoures: The module must �nd the best plaesto harvest resoures.Planning Worker Tasks: The module makes the worker goout and harvest resoures, and ome bak and deposit them.Optimise Gathering of Resoures: Finally this modulemakes sure to optimise the gathering of resoures.B.7.2 Struture OverviewThe module onsist of four sub-modules. When a hange have happenedto the strategy, the new resoure requirements are found by running theDetermine Resoure Requirements module. Then it is analysed where thebest plae to gather resoures are. After this the Planning Workers Tasksmodule will make sure that the workers that have been assigned to themodule are sent to gather those resoures. When the workers have reahedtheir goal this module will make the workers gather the resoure and makesure that it gets bak to the depot, and redo this yle. One in a while theOptimise Gathering of Resoures module is run, to make sure that resouregathering is optimised.B.7.3 Determine Resoure RequirementsThis sub-module �gures out the antiipated resoure needs, aording to theBuild Plan, Unit Plan and Researh Plan. These plans ontain the list ofwhat is going to be built or researhed within the next short time span.These plans are onstruted from the Target Strategy Node, so indiretly theresoures requirements are determined from this. Depending on what kindof resoure these plans might require the most, the harvesting/produtionof this resoure will be inreased. Using the Build/Unit/Researh Plan itan also aount for what resoures will be required in the near future. TheStrategi Planning an tell this module to �nd a plae to put an expansion.This is told to the Resoure Analyser, whih will make sure that it �nds aspot to expand on.ResponsibilitiesResoure needs: The module must determines what resouresare required, to onstrut all the things that are in the Build,Unit, and Researh Plan.Hot SpotsN/A

APPENDIX B. MODULE DESIGN Page 213 of 273Standard ImplementationThe standard implementation will try and determine where the best plaeto harvest eah of the resoure types found in the knowledge base ResoureTypes. If there is not enough resoures to ful�l what should be built aordingto the plans, an expansion is requested to be onstruted.B.7.4 Resoure AnalyserThis module analyses where to harvest resoures, making sure that the work-ers do not go to far to get them. When a deision has been made to reatean expansion, this is the module that should �nd the best area to plae this,aording to where there are resoures.ResponsibilitiesBest Resoure Positions: The module has to �nd the bestplaes to harvest all the types of resoures that are required.Best Plae to Expand: Also the module should �nd the bestposition to plae an expansion, aording to its knowledgeabout the resoures on the map.Hot SpotsN/AStandard ImplementationThe standard implementation will assign the workers to go to the nearestavailable resoure of the type that needs to be gathered. In the ase thatthere is already assigned the maximum amount of workers to gather from thatresoure, the seond nearest will be found, and so forth until an availableresoure is found. If non is found, it will be assigned to gather anotherresoure type. When requested to �nd an expansion, the losest grouping orposition of resoures outside the urrent base and expansions is found.B.7.5 Worker PlannerThis sub-module assigns workers to harvesting jobs, by looking if there isany workers that is not doing anything. If there are no available workersit should onsider if some workers should be reassigned to new tasks. Toonsider this, the distane from where the workers are to where they arerequired and the type of job in question, should be onsidered. This modulealso makes sure to re-assign workers when they have ompleted parts of aharvesting task, like moving from the resoure bak to the depot or dumping

Page 214 of 273 APPENDIX B. MODULE DESIGNthe resoures into the depot. This behaviour of walking bak and forth isontrolled by a simple state mahine.ResponsibilitiesHarvest Resoures: The module must issue the ommands tomove the workers to the resoures they should harvest. Themodule then makes the workers harvest the resoures. Afterthis the module moves the workers bak to the resouredepot, and deposit the resoures.Hot SpotsN/AStandard ImplementationThe standard implementation will make sure that the workers are movedfrom the depository and to the resoure, and when either is reahed theworker will dump or harvest aordingly. If there is a hange in the distri-bution of what resoures that are required, the module will onsider if someworkers should be assigned to gather a di�erent type of resoure.B.7.6 Optimise Resoure GatheringThis module makes sure that there are not assigned too many workers toharvest from the same resoure, beause this will be ine�ient, and will justreate a queue of workers, that are not able to do anything. But if thereis too few, this module will make sure that there will be onstruted moreworkers. When these workers are built, the next time the Resoure Mangeris run, these workers will automatially be assigned to gather resoures.ResponsibilitiesOptimal Use of Resoures: The module makes sure that ifthere are not enough workers assigned on the same resoure,more workers will be onstruted.Hot SpotsNumber of workers at same resoures at same time:There an usually be a ertain number of workers harvest-ing from the same resoure at the same time. This numberis used to alibrate the number of workers that should beassigned to a ertain resoure.

APPENDIX B. MODULE DESIGN Page 215 of 273

Figure B.7: Internal arhiteture of the Base Building moduleStandard ImplementationThe standard implementation will look at the resoures harvested from, andidentify if there is room for more workers to harvest from this resoure. Ifthere is a demand for this resoure type it will make sure that more workerswill be onstruted to harvest from this resoure.B.8 Base BuildingThis module reates the struture of the base, inluding plaement, andrepairing of buildings. When the game starts this module should be triggeredto reate a starting plan of how to build up the base. If the strategy hangesthis modules should also be triggered to �gure out what additional buildingsthat might be required. Later when a building is omplete, this moduleshould hek if there are any additional buildings that should be built. If arequest omes from the Strategi Planning about reating an expansion, thisshould be taken into onsideration when planning what buildings to reate.The arhiteture of the Base Building module an be seen in Figure B.7.Cirles are the sub-modules and the retangles represents knowledge basesor other modules. The following will present the responsibility of the BaseBuilding module, and present eah of the sub-modules, and disuss how thesub-modules omplete their tasks.

Page 216 of 273 APPENDIX B. MODULE DESIGNB.8.1 ResponsibilitiesAnalyse Terrain and Resoures: Responsible for analysingthe environment for the most suitable positioning of build-ing types.Building Plaement: Uses what have been analysed from theenvironment and what is best for the strategy and from this�nd the best building plaement.Planning and Prioritising Buildings: Some buildings aremore important to build than others when following er-tain strategies. This should be planned, and the urrentresoure amounts should also be taken into onsideration.Repair of Buildings: When buildings are damaged, there isassigned worker units to repair these buildings.B.8.2 Struture OverviewThis module is divided into sub-modules that an handle eah of the sub-tasks neessary to reate and maintain a base. It is made general in the waythat the user should de�ne what kind of riteria should be met, and the bestbase layout aording to the strategy. The analysis of the map that is reatedin the Terrain and Resoure Analyser is used in ombination with the basebuilding templates in the Building Manager module, to �nd what positioneah building should have. Some buildings have higher priority than others,and some an only be built if other buildings have been built in advane.B.8.3 Terrain and Resoure AnalyserThis sub-module should provide analyses of the terrain for optimal defensivepositions of buildings, and �nd the best resoure gathering loations. Thisis done by reating in�uene maps.ResponsibilitiesAreas of Interest: The module must �nd the areas of interest,like for instane loations with many resoures.Hot SpotsDe�ne Analyser: When looking for the di�erent things in theterrain. The user should de�ne how to analyse for the ter-rain resoures and suh.

APPENDIX B. MODULE DESIGN Page 217 of 273Standard ImplementationThis is very spei� from game to game, but there will be an example of howto use in�uene maps to analyse a map. This part is so spei� to the gametype, what resoures there is, and how the terrain is reated so no standardimplementation is possible.B.8.4 Building ManagerThis sub-module �gures out what the best plaement of the buildings isaording to terrain, resoures, and the urrent strategy. This module isused when there have been strategi hanges, or there have been an attakfrom the enemy, and parts of the base have to be rebuilt. If a lot of resoureshave been harvested and through this, hanged the defensive struture of thebase, or there have beome room for more buildings, this module should alsoreat, so that the defene of the base an stay intat, or better plaement ofbuildings an be found.ResponsibilitiesPosition: The module must in aordane to the base buildingtemplates and the analysis of the terrain �nd the best plaeto plae buildings.Hot SpotsBase Building Templates: Base building templates are usedto de�ne the layout of the base, and through that indiretlyditate the position of buildings.Standard ImplementationThe standard implementation uses the analysis and ombines this with thebase buildings template and the target strategy, to deide where to plae eahbuilding. The use of di�erent in�uene maps an ditate optimal plaementof the di�erent types of buildings.B.8.5 Building PlannerThis module sends a request to the Ation Planner about the onstrutionof a building, whih will make sure that there are resoures available forthe onstrution. When the request is authorised, a worker is moved towhere the building should be plaed. Then the worker is assigned the ationof onstruting the building. A request from the Strategi Planning aboutreating an expansion an be reeived. This event ontains an area where

Page 218 of 273 APPENDIX B. MODULE DESIGNthe expansion should be plaed and an estimated time before this area isleared for enemy troops so that onstrution an begin.ResponsibilitiesControl Workers: The module makes sure that eah workeris moved to the position where the building is to be on-struted.Expansion Constrution: The module sends a work to thearea where an expansion should be built, so that the workeris there, when it is estimated that the area is leared.Hot SpotsN/AB.8.6 Repair ManagerThe Repair Manager handles situations where some buildings are or havebeen under attak. Then it should make sure that some workers will beassigned to repair these buildings. If there are enemies near the buildings, itshould be onsidered whether to let the workers repair the building.ResponsibilitiesMove Unit to Building: The module moves the worker to thedamaged building.Repair Buildings: When a worker is right next to a damagedbuilding, it should start repair that building.Hot SpotsN/AB.9 LearningLearning is responsible for evaluating and updating those prior knowledgebases that an be updated. The internal struture of the Learning modulean be seen in Figure B.8.B.9.1 ResponsibilitiesEvaluate and Revise Known Strategies, Tatis and Base Building Templates (BBT):There is no guaranty that a strategy, tati or a base build-ing template is perfet from the start. In order to be able

APPENDIX B. MODULE DESIGN Page 219 of 273

Figure B.8: The internal arhiteture of the Learning moduleto improve these the AI must onstantly be able to evaluatetheir suess and be able to revise them to get a betterresult.Learn New Strategies, Tatis and BBT: Playing againstdi�erent opponents or perhaps even the same opponent willmake the AI fae new strategies, tatis and base buildingtemplates. In order to evolve and improve the AI, it hasto learn these new things both to be able to reognise thesame patterns in a later game and to be able to use themitself.Update Enemy Knowledge Base: From time to time theprior knowledge base have to be updated with new infor-mation. The learning module is responsible for updatingthe Enemy Knowledge base.B.9.2 Struture OverviewThe overall struture of this module onsists of three parts: Evaluate and re-vise, learn and update knowledge base. Both the evaluate and revise as wellas the learn parts furthermore onsist of three parts. One for: Strategies,tatis, and base building templates. The general struture of the evalu-ate and revise known strategies and evaluate and revise known tatis isidential, whih means only one will be explained in detail.

Page 220 of 273 APPENDIX B. MODULE DESIGNB.9.3 Evaluate and Revise Known StrategiesThis module is to look bak on the strategies that the AI has used and seeif there are anything that an be hanged or optimised to make the strategymore e�ient. In order to do this three funtions are needed: One funtionto evaluate whether the strategy did good or bad, another funtion to �ndthe key fator that made the strategy good or bad and �nally a funtionthat updates the strategy to either fous more on the key fator or orretthe mistake. The �rst funtion will have to have some memory of two ormore game states while using the strategy among whih the initial state andthe end state should be represented. Using these states it should be able toevaluate whether the AI is in a better situation after using the strategy ornot. It should of ourse take other fators into aount. The enemy ouldhave made mistakes and the AI may not have enough information about theenemy to draw a good onlusion. The seond funtion will have to have alog of all deisions made throughout the strategy in order to identify whatmade the di�erene. To be able to do this it will also need some way oflinking e�ets to the deisions that aused them. Finally the third funtionwill have to �nd the rule, ontrolling the deision that was identi�ed in allthe a�eted strategy nodes and orret it so that it now orresponds to theonlusion of the evaluation.The fators that need to be onsidered when evaluating a strategy varyfrom game to game. In Command and Conquer the fators are more aquestion of optimisations and in Warraft it is all about ountering the enemyand making deisions, that is, antiipating the enemy's ations and engagein ombat at favourable times.ResponsibilitiesEvaluate Known Strategies: In order to be able to improvestrategies the AI must deide whether or not a strategy isworking as it should.Revise Known Strategies: If a strategy is found not to beworking perfetly the AI must identify whih fators an behanged or improved.Hot SpotsEvaluation Method: This method has to deide whether ornot the urrent strategy is working as it should. This is doneby looking at the progress made sine applying the strategy.Identify Key Fators: After deiding whether the strategywas e�etive or not the key fators for this outome have

APPENDIX B. MODULE DESIGN Page 221 of 273to be identi�ed so that they an either be enhaned or or-reted. If the strategy worked �awlessly then nothing shouldbe hanged.Find Improvements: After the key fators have been identi-�ed bad e�ets have to be orreted and good e�ets ex-ploited.Standard ImplementationBy default this module will look at the present situation and the situationat last evaluation. The evaluation will simply be based on the AI's own on-dition hange and the enemy's ondition hange from the previous situationto the present situation.B.9.4 Evaluate and Revise Known TatisLike the previous module this module will also look bak and see if anythingan be hanged or optimised, but this time it is the tatis that are in fous.Basially the three funtions needed are more or less the same.Also here the there are di�erent important fators all depending on thegame. In Command and Conquer the positioning of the various units is notas important as in Age of Empires, also the general use of support varies.Some games are almost without support while in other games it is mostimportant.ResponsibilitiesEvaluate Known Tatis: Evaluate whether a tati workedas was intended.Revise Known Tatis: If the tati an be improved in anyway, do so.Hot SpotsEvaluation Method: This method has to evaluate whetherthe tati had the intended e�et or not.Identify Key Fators: Knowing the outome this methodhas to identify the key fators that lead to this.Find Improvements: Finally improvements have to befound. This an be anything from an alternative deploy-ment to a di�erent unit utilisation.

Page 222 of 273 APPENDIX B. MODULE DESIGNStandard ImplementationThis module will basially use the same method of evaluating a tati as wasused in the strategy evaluation.B.9.5 Evaluate and Revise Known BBTThis module will have to deal with �nding strong and weak points in theBBT using information gathered from games. The result will be templatesbetter suited to deal with a ertain map or strategy.Both the evaluation and the revision of BBT are di�erent from game togame. In some games only the defensive buildings like towers and walls areof any importane, but in most other games the plaement of all buildingsis important.ResponsibilitiesEvaluate Known BBT: One in a while the AI will have tolook at its BBT and see if anything an be improved. Theause for this an be anything from a bad outome of abattle in the AI's base in whih a di�erent base struturemight have made the outome di�erent to optimisation inresoure gathering.Revise Known BBT: If the result of the evaluation is thatsomething has to be improved, the areas that an be im-proved must be identi�ed and alternatives found.Hot SpotsEvaluation Method: Given the outome of a battle or re-soure gathering optimisation, does the urrently used BBTneed to be improved?Identify Key Fators: Identify the fators that were respon-sible for the outome.Find Improvements: In ase of a bad outome, steps mustbe taken towards a new BBT. This an either mean a newbuild order or a di�erent building plaement.Standard ImplementationThe standard implementation will re-evaluate: The positioning of harvestrelated buildings if resoure gathering needs to be improved, build ordersompared to the used strategy, and the positioning of defensive struturesbased on battles in the base.

APPENDIX B. MODULE DESIGN Page 223 of 273B.9.6 Learn New StrategiesBy observing the enemy or an ally the AI may gather enough informationto model a omplete strategy node for the player. If the AI does not knowthis strategy already it will add it to the strategy tree in Map Knowledge,Enemy Knowledge, Game Type knowledge and Known Strategies.The task of learning new strategies does as suh not vary from game togame. The strategy nodes themselves do however. The nodes have to beable to model a omplete state of a game and in order to do so all units,buildings, upgrades and other map related information must be aountedfor.ResponsibilitiesFitness: The �rst step in learning a new strategy is in fat toreognise that it is a new strategy. The �tness funtion willtry to math the seen strategy to known strategies in theKnown Strategies knowledge base. If the strategy deviatesfrom all known strategies by more than a ertain value, itwill onsidered a new strategy.Reord New Strategy: When the strategy is identi�ed as anew strategy the a strategy node has to be �lled with allknown information about it and inserted into Map Knowl-edge, Enemy Knowledge, Game Type knowledge and KnownStrategies.Hot SpotsFitness Funtion: The user must de�ne a funtion to handlethe �tness problem mentioned above.Standard ImplementationThe standard implementation of this module will simply insert a strategynode based on the knowledge found in the In-Game Enemy Knowledge baseif this deviates more than a ertain threshold from any known strategy.B.9.7 Learn New TatisThe AI an likewise see new tatis be used ombined with known or newstrategies. When it sees a new tati, it will have to add this to the strategynode. That is, add the set of rules that desribe how this is arried out.The idea behind the Learn New Tatis module is as suh not game spe-i� but di�erent games have di�erent rules and di�erent ations available.

Page 224 of 273 APPENDIX B. MODULE DESIGNThis means that the tatis themselves and the rules that they onsist ofhave to be de�ned from game to game as well as the work done on these.ResponsibilitiesFitness: The module will �rst have to �nd the strategy nodethat is urrently used in the strategy tree. If this node doesnot ontain the tati, the tati is indeed a new tati andshould be added.Reord New Tati: The set of new rules representing thetati must be added to the strategy node. If this means asubstitution of the old tati a new strategy node must bemade and the tati inserted in this.Hot SpotsInsert New Tati: The new set of rules have to be de�nedand inserted so that it an be inserted into the right strategynode. The rules are game spei� so the user is responsiblefor all work done upon these.Fitness Funtion: The user must de�ne a funtion to handlethe �tness problem mentioned above.Standard ImplementationThe standard implementation will simply try to imitate the observed ations.It will identify ations done by the involved units and base the rules on these.B.9.8 Learn New BBTWhen souting an enemy base or seeing how allies build their bases thismodule must ompare the base design to its templates and deide whetheror not the seen design is a good one. If it is indeed a good design it mustreord the design as a template and assign the needed numbers(build order,et.).Not only the buildings themselves are di�erent in di�erent games, butalso the rules de�ning how and where they an be built vary. In WarraftI buildings ould only be built next to roads, in Command and Conquerbuildings have to be built lose to other buildings unless it is a ommandentre, and in Age of Empires and Warraft II and Warraft III buildingsan be built anywhere that is free of obstales.

APPENDIX B. MODULE DESIGN Page 225 of 273ResponsibilitiesFitness: Like the other learning modules this module also �rsthas to identify the BBT as a new BBT. This is done bysearhing for the BBT among all the known BBTs. Thedeviation threshold may vary from game to game.Create New BBT: When a new BBT has been identi�ed itmust be added to the BBT knowledge base.Hot SpotsFitness Funtion: The user must de�ne a funtion to handlethe �tness problem mentioned above.Standard ImplementationThis module will identify important spots suh as the loation of resouresand entranes to the base and reord the plaement of other buildings relativeto these.B.9.9 Update Enemy KnowledgeThis module will simply add information to Enemy Knowledge updatingEnemy Knowledge with information gathered from the game.When playing any game it is always useful to know how the enemy hasplayed previously. The strategies are modelled by strategy nodes and thestrategy trees will model strategy dependenies and frequenies. The onlygame spei� task is to �ll out new strategy nodes.ResponsibilitiesUpdate Enemy Knowledge: The soul purpose of this mod-ule is to update the prior knowledge base: Enemy Knowl-edge.Hot SpotsCreate New Strategy Node: As already mentioned the re-ation of the strategy node will have to be de�ned by theuser of the framework.Standard ImplementationThe strategy node will be added to the knowledge base. If the strategynode is already present in the strategy tree the edges leading to it will beinremented by 1.

Page 226 of 273 APPENDIX B. MODULE DESIGN

Figure B.9: Internal arhiteture of the Ation PlannerB.10 Ation PlannerThis module takes are of the �nal operations neessary to interat with theGDF. It makes sure that units are being build, and that tehnology is beingresearhed. It shedules the operations that is most ritial to be performed�rst, and then send these operations to the GDF.The internal arhiteture of the module an be seen in Figure B.9. Cir-les in the �gure represents internal sub-modules and boxes represents othermodules or knowledge bases. The following will �rst disuss the overall re-sponsibilities of the Ation Planner module, and then present eah of thesub-modules in the internal arhiteture along with a disussion of how thesub-module is to omplete its task.B.10.1 ResponsibilitiesUnit Prodution: The module is responsible for reating allunits, and �gure out whih have the highest priority.Researh: The module prioritises the researh required to ful�lthe strategy.Shedule all Ations: The module takes all ations and plansthe exeution of these aording to priority and urrent re-soures available.Using the GDF: The module interfaes with the GDF so theations that is reated in the framework an be mapped toone or more ations in the GDF.

APPENDIX B. MODULE DESIGN Page 227 of 273B.10.2 Struture OverviewEah of the sub-modules are responsible for di�erent tasks. The module isreated so that it reads proposed ations of the other module in the AssignedUnit Ations and Assigned Building Ations knowledge bases, and ends upwith a list of instrutions that alls the GDF, in the way the user has de�ned.B.10.3 Unit PlannerThe Unit Planning sub-module should make sure that there are enoughworkers, to gather resoures and build buildings. It should also make surethe �ghting units that �t the urrent strategy is reated, and the right typeof souting units is produed. These units are put into the Unit Plan thatontains the list of units that should be reated. They are then passed on tothe ation sheduler that �gure out when it is possible to start produtionof the units.ResponsibilitiesUnit onstrution: The module must �gure out what unitsshould be onstruted in aordane to the strategy.Hot SpotsPrioritisation of unit types: The type of units that have thehighest priority should be de�ned.Standard ImplementationThe implementation of this module will take the unit types in the targetstrategy and try and onstrut the units, so that the distribution of eahunit type is always the same as in the strategy.B.10.4 Researh PlannerThis module should make sure that the Tehnology Tree is researhed in theway that best �ts the strategi plan. It will reate a Researh Plan. This planontains a list of the things that should be researhed, and in what order.Eah time it is possible the next thing that should be researhed is sent tothe ation sheduler, whih will start this researh when it has resoures andtime available for this.ResponsibilitiesResearh tehnology: The module must �gure out what teh-nology to researh in aordane with the strategy.

Page 228 of 273 APPENDIX B. MODULE DESIGNHot SpotsN/AStandard ImplementationThe standard implementation will take the target strategy, and with the useof the tehnology tree �gure out how to get to the tehnology level that isrequired to follow the strategy.B.10.5 Ation ShedulerThis module should shedule all operations, making sure that the most ur-gent ones are done �rst. Beause of simulating a human, it should not bepossible to do an unlimited amount of operations in one game tik. It shouldalso take into onsideration what resoures are available, and what is goingon at the moment, if the AI is in a battle, it should prioritise after this.Eah unit ation that is plaed in the Assigned Unit Ation knowledge baseis performed.ResponsibilitiesPrioritise Constrution: There are limited resoures, and themodule must �gure out whih onstrutions have the highestpriority, and should be onstruted �rst.Prioritise Ations: If a unit is requested to do more than oneation at the same time, it should �gure out what ationhave the highest priority.Hot SpotsPrioritising sheme: Depending on how the game is, there isused di�erent prioritising shemes, to tell what onstru-tions and ations have the highest priority, in aordanewith all known knowledge.Standard ImplementationA simple prioritising sheme will be implemented as default.B.10.6 Interfae GDFThis interfae should make sure that the operations sheduled will be mappedto operations that an be done in the GDF.

APPENDIX B. MODULE DESIGN Page 229 of 273ResponsibilitiesInteration with GDF: The module should make sure thatthe ations are performed in the GDF.Hot SpotsAtions: The entire module is a hot spot, beause dependingon how ations are done in the GDF it should be performedin di�erent ways.Standard ImplementationThere is no standard implementation beause this module is ompletely GDFdependent, so there an be no standard implementation of this. There is onlyde�ned an interfae that this module should implement, and this interfaetakes a list of ations as input.

APPENDIX C. KNOWLEDGE BASES Page 231 of 273
Appendix CKnowledge BasesThis hapter presents all knowledge bases within the framework.C.1 Prior Knowledge BasesMap Knowledge: This area represents knowledge about the map terrain,map size, resoure loations, strategi and tatial important loationset.Enemy Knowledge: Experienes against players throughout severalgames will give the player an idea of how the enemy player thinksand what kind of strategies she uses. This prevents the player fromlosing to the same strategies again and again, against the same oppo-nent, as she is apable of trying new things and thereby ounteringthe opponent's strategy. This of ourse only applies to players of equalskill level in all areas, beause knowing the opponent's strategy willoften not be enough for novie players to beat professional players.Gametype Knowledge: Depending on whether the game played is a teamgame, a 1on1 game or an FFA (Free For All) game, the strategi on-siderations hange.Known Strategies: Most players have a number of strategies they haveeither invented for themselves, learned from wathing other players orfound on the Internet. This area a�ets both the number and qualityof strategies used by the player, but also the apability of preditingthe opponent's strategy, and knowing how to ounter it.Known Build Orders: In all RTS games the start of the game is very im-portant and an e�etive build order an prove invaluable. The buildorder de�nes in whih order to build everything suh as workers, build-ings and ombat units and also spei�es what eah worker should bedoing at any given time. A build order is often used in onnetion

Page 232 of 273 APPENDIX C. KNOWLEDGE BASESwith a ertain strategy trying to maximise the player's resoures andgetting to a ertain point in the strategy as fast as possible.Resoure Types: This knowledge base de�nes what kind of resoures areavailable in the game.Tehnology Tree: This knowledge base de�nes game spei� building de-pendenies, unit dependenies and researh dependenies as well asresoure ost for everything in the tree. Furthermore, it inludes knowl-edge about what ations eah unit or building is apable of.Base Building Templates: Contains templates for struturing base build-ing. These templates also ontains a prioritised list of buildings to build�rst for eah building plan.Tatial Knowledge: A knowledge base desribing all tatis possible in aertain game. These are essentially also present in the Known Strate-gies knowledge base, but is here hidden within the di�erent strategynodes. This knowledge base is basially for easy referening the di�er-ent kinds of tatis.C.2 In-Game Knowledge BasesOpponent Model: Contains information about the urrent strategy of theenemy, inluding a strategy tree and urrent node information for theenemy. It also spei�es beliefs about attributes that have not beensouted, whih are there only to represent what the AI urrently thinksthe opponent is doing. All updates inludes a time stamp, whih allowthe AI to give less importane to variables not updated for a long time.In-Game Enemy Knowledge: Contains the position of eah enemy uniturrently visible on the map and knowledge about where ertain unitshave been seen earlier (So the AI do not forget enemy units when theyenter fog of war)Assigned Unit Ations: Information about eah ontrolled unit and theurrent ation assigned to it.Assigned Building Ations: Information about eah ontrolled buildingand the urrent ation assigned to it.Unit State: Contains a olletion of all ontrolled units and the state eahof them are in.Building State: Contains a olletion of all ontrolled buildings and thestate eah of them are in.

APPENDIX C. KNOWLEDGE BASES Page 233 of 273Current Strategy Node: Maintains the urrent strategy node for the AIplayer.Goal Strategy Node: Desribes the goal strategy node.In-Game Own Knowledge: Contains the position and urrent status ofall friendly units and buildings.Building Plan: Contains the urrent building plan for the AI's base.Unit Plan: Contains information about whih units to build and in whatorder.Researh Plan: Contains information about whih researh upgrades topurhase and in what order.Mission Knowledge: Contains information about di�erent missions thatshould be exeuted in aordane with the urrent strategy. Eah mis-sion is noted along with the goal of the mission and the units assignedto perform it.Dynami Map Knowledge: Inludes dynami elements suh as resoureloations and amounts. Will di�er a lot depending on the game inquestion.Dynami Obstales: Contains the position of all obstales urrently inview that are able to move from one game tik to another.

APPENDIX D. TEST MODEL Page 235 of 273
Appendix DTest ModelBased on the human model desribed in Chapter 3 several di�erent areashave been found that is handled by the human player. To test the AI'sapabilities in eah of these areas several features have been found thattogether desribe how well or how bad the AI handle the same areas. Atable showing an overview of the AIs in all the games tested an be found inAppendix E.1. A mark in one of the squares means that the AI, in the gamereferred to, is apable of handling the desribed situation. If several di�erentquestions are proposed a mark means that the majority of the questions arereasonably handled and the main question satisfatory dealt with.Below eah area is listed along with the hosen situations, eah situationdesribed for lari�ation of the purpose of the situation, and the way thisis tested.D.1 Strategi PlanningUsing Counters: If the enemy has hosen a spei� strategy most gameso�er a ounter to this spei� strategy. Any human player would tryto ounter the strategy as soon as she disovered what was going on.Is the AI apable of this? This an be tested rather easily. The testerjust hooses an extreme strategy that is a strategy that will resolve invitory if not ountered, but on the other hand ountered rather easilyif measures are taken towards this.Exploiting Weak Spots: Upon souting an enemy base a human playerwould immediately identify a weak spot, if any exists. She will thenuse this information when attaking. The AI an be tested for thisapability by identifying the most likely spot to be attaked by theAI. This spot is then forti�ed with a lot of defensive buildings whileleaving a di�erent less likely spot to be attaked defeneless.Strategi Variation in one Game: Does the AI vary its strategy

Page 236 of 273 APPENDIX D. TEST MODELthroughout a single game? If, for instane, the AI has hosen a strat-egy at game start and this strategy fails, will it then try to hange itsstrategy, perhaps even towards ountering the enemy strategy? Thisis tested by simply noting the strategy that the AI is using at the startof the game. If the AI does not hange the strategy (unit ombination,point of attak, et.) even when losing, it is inapable of this.Strategi Variation Game to Game: Does the AI hange its strategyfrom game to game? A human player would hange her strategy fromgame to game espeially when playing against the same opponent. Bydoing this, she is less likely to let her opponent know what she is upto. The AI is tested by simply playing a series of games and observingwhih strategy the AI hooses.Reasonable Expansions: This question atually overs two questions: Isthe AI able to hoose a good time for expanding? And does it hoose agood spot for expanding. The �rst question is hard to test, beause itis based upon the hosen strategy and general game experiene. Hereit is up to the tester to judge how well this is done. The other questionis a bit simpler to test. There are several riteria for a good expansionsite: Is it lose to the main base? Is it well hidden? Is the harvestingbuilding lose to the resoures? Is the expansion well-plaed in relationto the enemy?Using Map: Being able to use the map an put the AI in favourable po-sitions when �ghting, prevent it from falling into ambushes at badloations, and even open the possibility for using map spei� strate-gies. This an be tested by trying to lure the AI into an ambush in ahoke point, using high ground against it, and also observe, whether itis trying to do the same to the tester.Good Build Order: A good build order is ruial, espeially in the earlystages of the game. This an be tested by observing the AI throughoutthe �rst 3-5 minutes and see how well it manages buildings, workersand resoures ompared to the hosen strategy.D.2 Tatial PlanningUsing Formations: Using formations an prevent the wrong units frombeing exposed to damage and it generally means that the units endup in the position that they were designed for when entering a battle.This an be tested by observing how the AI moves its army. This isespeially the ase when entering a battle, or just if the army onsistsof di�erent units of varying movement speed.

APPENDIX D. TEST MODEL Page 237 of 273Map Considered when Moving: How does the AI handle hoke points,exiting transports and other map spei� situations?Is it just pushingthe army through the hole as fast as possible, letting the �rst units walkon ahead of the rest of the army or is it keeping the army gathered?Is the AI avoiding goose walk? This is tested by observing the AI insuh a situation.Using Tatial Manoeuvres: Does the AI use tatial manoeuvres? Atatial manoeuvre an be anything from trying to �ank the enemy toget through the lines and attak the light armoured units at the bak,to lure the enemy into a bad loation. The possibilities of tatialmanoeuvres vary from game to game.Measure Own Str. vs Enemy Str.: How well does the AI measure itsown strength ompared to the strength of the enemy? This an beseen when the AI attaks with an inferior army. What does it do whenit sees the enemy army? Does it attak anyway or retreat to pik upmore units?Staying in Control of Units: An unattended army an easily be dividedby attaking one of the units at the perimeter of the army and run away.In most ases the AI in eah unit will make the attaked units and theimmediate surrounding units to follow the attaked. The attaker isthus able to split up an army and deal with eah portion separately.How well is the AI at dealing with this?D.3 MiromanagementSaving Hurt Units: If the game features healing (either reature regener-ation or by support) it is in most ases an advantage to save as manyunits as possible throughout a battle. As soon as a unit is severelyhurt, it should either be removed from the battle �eld or at least fromthe line of �re. This is easily observed in any battle.Fous Fire: The ounter to saving the hurt units is to fous all (or at leasta lot of) �re on a single unit in turn so that the opponent has not gottime to remove it from the battle�eld. The idea is also that for everysingle unit, you an kill, there is one less unit dealing damage to yourarmy. This is also easily observed in a battle.Counter Fous: Some games feature unit to unit ounters. That meansthat given some unit type A there exists a unit type B that is designedto deal with unit type A. During a battle, how well is the AI to ma-noeuvre the units of type B, so that they are faed with units of thetype A?

Page 238 of 273 APPENDIX D. TEST MODELUsing Support: The orret use of support units an mean the di�erenebetween failure or vitory. How well is the AI to deide, whih unitsshould reeive the support, and when to use support at all (given thatthe use is limited by for instane mana). This is harder to observe in abattle as it an be rather subtle, but it an easily be seen, if the testeris either in an observing position or is able to review replays.D.4 Resoure ManagementPrediting Resoure Needs: By prediting the resoure needs, the AI isable to minimise the time it takes to reah a ertain tehnology level,or the prodution of a ertain number of a spei� unit. This an betested by observing the resoure usage of the AI. Does it stok up theresoures needed to arry out the strategy, or does it end up waitingfor the required resoures?Spending Available Resoures: How well is the AI at spending the avail-able resoures? There is no point in expanding if the extra resouresare not spent, or at least taken into aount, when evaluating the strat-egy. This is tested by looking at the AI's resoure amount throughoutthe game. Is it spending the resoures? Does it upgrade units? Doesit produe enough units?Flexible Resoure Gathering: Some strategies require one branh of re-soures, and very little or none of another branh of resoures. If suha strategy is hosen by the AI, it would be stupid to gather all kindsof resoures, instead of just the one that is needed. How well is the AIat this, and does it hange the resoure gathering strategy at all, whena di�erent overall strategy is hosen?D.5 Base BuildingGood Plaement of Def. Buildings: A bad plaement of defensivebuildings an mean that they are hardly worth anything at all. Agood plaement, however, an mean that the base is almost impreg-nable. The use of defensive buildings is varying a lot from game togame so it is up to the tester to judge, how well the AI is plaingthese.Good Plaement of Hrv. Buildings: A good plaement of a harvestingbuilding an mean the speed up of harvesting by several orders ofmagnitude ompared to a bad plaement. Harvesting buildings shouldbe plaed as lose to the resoure as possible.

APPENDIX D. TEST MODEL Page 239 of 273Sensible Base: How good is the overall building plaement in the base?Building plaement strategies are also very game spei�, so one againit is up to the tester to judge. The tester should however take intoaount: How well the base is defended against drops, diret attakand ultimate weapons (Nulear missiles, Area of e�et spells, and thelike).D.6 SoutingDoes It Sout At All: This question overs the entire area as if the an-swer to this question is negative, the following questions will all benegative. Does the AI sout at all? The alternative to souting isheating by having the entire map available. This is rather easy totest. Does the AI use souts, or does it move around like it knowswhat is happening on the entire map? This is best seen by eitherobserving the AI or reviewing a replay.Souting Map: How well is the AI at souting the map? Does it soutpossible expansion sites for enemy expansions? Does it sout di�erentstarting loations for the enemy base? Et.Souting Enemy: Does the AI sout the enemy? By souting well the AIwill be able to know exatly what the enemy is up to and take measuresto ounter this.Souting at Sensible Times: Is the AI souting at sensible times? Thisis game spei�, but the tester should note how many times the AIsouts the enemy, whether the interval is reasonable, and if the time,it souts, is well-hosen ompared to the time, it will be able to seewhih branh of the tehnology tree, the enemy has hosen.Using the Aquired Information: Does the AI use the aquired infor-mation to adjust its strategy or is it just for show? This is easilytested by hoosing an extreme strategy and make sure that the AI seesthis. If it ounters this is obviously the ase.Sensible Unit Used for Souting: Choosing the right unit for souting isalso important, as the unit is in danger of being aught when souting.Choosing the right unit will minimise the ost of the sari�e. Thisan be done in several di�erent ways. One way is to send a low ostunit and the other is to send a unit that is unlikely to be aught. Howwell is the AI doing this?

Page 240 of 273 APPENDIX D. TEST MODELD.7 LearningLearning: This should be tested in two ways. The �rst way is to playagainst the AI in one game. Does the AI seem to learn new strategiesthroughout the game by either observing what the tester does or byreasoning? The other is to observe the AI throughout several games.Does the AI seems to learn from game to game, that is learning frompast experiene.D.8 CooperationAI-AI Cooperative Strategy: When two AIs are allied, how well are theyat hoosing a shared strategy, and do they do this at all? This is testedby simply observing the AIs' strategy in a ouple of games.Cooperating: Do the AIs ooperate? Are they oordinating attaks anddefene? This an also be seen by observing a ouple of games.Resoure Sharing: How well are the AIs at resoure sharing, and do theydo it at all? This is best tested by observing the resoure amount ofboth AIs throughout the game. The tester ould for instane take outall the workers belonging to one of the AIs to fore a situation, whereresoure sharing would be obvious.Human-AI Communiation Available: Is it possible for the humanplayer to ommuniate with the AI?AI-Human Communiation Available: Is it possible for the AI to om-muniate with the player?Helping if Human Attaks: Does the AI join fores with the humanplayer, when the human player deides to attak the enemy?Helping if Human is Attaked: Does the AI ome to help if the humanplayer is attaked?Handling Temporary Allianes(FFA): How well is the AI at handlingtemporary allianes like the ones enountered in Free For All games?

APPENDIX E. TEST TABLE A Page 241 of 273
Appendix ETest Table A

Page 242 of 273 APPENDIX E. TEST TABLE A
RedAlert DarkReign2 Warzone2100 AgeofMytho

logy
EmpireEarth
2

Starraft ArmiesofExi
go

WarraftII WarraftIIIStrategi PlanningUsing Counters XExploiting Weak SpotsStrategi Variation in one Game X XStrategi Variation Game to Game X X X X XReasonable Expansions X X XUsing MapGood Buildorder X X X X XTatial PlannerUsing Formations X X X X XMap Considered when MovingUsing Tatial Manoeuvres XMeasure Own Str. vs Enemy Str. X X XStaying in Control of Units X XMiromanagementSaving Hurt Units X XFous Fire X XCounter FousUsing Support X X X X XResoure ManagementPrediting Resoure NeedsSpending Available Resoures X X X X XFlexible Resoure GatheringBase BuildingGood Plaement of Def. Buildings X X XGood Plaement of Hrv. Buildings X X XSensible Base X X XSoutingDoes It Sout At All X XSouting Map X XSouting Enemy X XSouting at Sensible TimesUsing the Aquired Information XSensible Unit Used for Souting X XLearningLearningCooperationAI-AI Cooperative StrategyCooperating X X XResoure SharingHuman-AI Communiation Available XAI-Human Communiation Available XHelping if Human Attaks XHelping if Human is Attaked XHandling Temporary AllianesTable E.1: Test Table A

APPENDIX F. TEST TABLE B Page 243 of 273
Appendix FTest Table B

Page 244 of 273 APPENDIX F. TEST TABLE B
RedAlert DarkReign2 Warzone2100 AgeofMytho

logy
EmpireEarth
2

Starraft ArmiesofExi
go

WarraftII WarraftIII PrototypeImp
lementation

CompleteImp
lementation

Strategi PlanningUsing Counters X X XExploiting Weak Spots XStrategi Variation in one Game X X X XStrategi Variation Game to Game X X X X X X XReasonable Expansions X X X XUsing Map XGood Buildorder X X X X X XTatial PlannerUsing Formations X X X X X XMap Considered when Moving XUsing Tatial Manoeuvres X XMeasure Own Str. vs Enemy Str. X X X / XStaying in Control of Units X X XMiromanagementSaving Hurt Units X X / XFous Fire X X / XCounter Fous XUsing Support X X X X X XResoure ManagementPrediting Resoure Needs XSpending Available Resoures X X X X X / XFlexible Resoure Gathering XBase BuildingGood Plaement of Def. Buildings X X X XGood Plaement of Hrv. Buildings X X X XSensible Base X X X XSoutingDoes It Sout At All X X X XSouting Map X X XSouting Enemy X X / XSouting at Sensible Times XUsing the Aquired Information X X XSensible Unit Used for Souting X X X XLearningLearning XCooperationAI-AI Cooperative StrategyCooperating X X XResoure SharingHuman-AI Communiation Available XAI-Human Communiation Available XHelping if Human Attaks XHelping if Human is Attaked XHandling Temporary AllianesTable F.1: Test Table B

APPENDIX G. GAME LOGS Page 245 of 273
Appendix GGame LogsThe following will list �ve game log examples, demonstrating what the AIis doing and reasoning about during a game. All game logs will inlude theAI's hoie of strategy, when it is souts and what unit it hooses, and rea-soning about the opponent's strategy. The AI uses the strategy tree shownin Figure K.3 in all the examples. When new information is disovered aboutthe enemy, the opponent model is printed, as well as the reasoning about theopponent's strategy done in the Probabilisti Reasonoing module. The "Po-tential Strategies" output indiates whih strategies the AI urrently thinksthe opponent is doing, and the number after eah potential strategy indiatesa deviation fator ompared to the atual strategy tree node. Following this,the Strategi Planning module prints the potential ounter strategies, and anumber indiating how likely it is that the strategy is going to ounter theopponent's strategy. Game log G.1 and G.2 furthermore inludes when theAI has built a unit, to show how the AI is apable of following the urrentlyseleted strategy. Listing G.1: AI game log 11 [Game Tik : 1 ℄2 Chosen s t a r t s t r a t e gy : Fast teh3 [Game Tik : 2 ℄4 . . .5 [Game Tik : 31 ℄6 Sout ing Miss ion Started :7 Unit type s e l e t e d f o r s out ing : worker8 [Game Tik : 32 ℄9 . . .10 [Game Tik : 61 ℄11 Opponent model :12 − Name: marine − 0 − Perentage : 013 − Name: tank − 0 − Perentage : 014 − Name: worker − 6 − Perentage : 10015 − Name: barraks − 0 − Perentage : 016 − Name: ont ro lCente r − 0 − Perentage : 017 − Name: f a t o ry − 0 − Perentage : 0

Page 246 of 273 APPENDIX G. GAME LOGS18 Poten t i a l S t r a t e g i e s :19 − Fast expand − 020 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 10021 Chosen Counter Strategy : Marines22 [Game Tik : 62 ℄23 . . .24 [Game Tik : 89 ℄25 Opponent model :26 − Name: marine − 2 − Perentage : 18 .181827 − Name: tank − 3 − Perentage : 27 .272728 − Name: worker − 6 − Perentage : 54 .545529 − Name: barraks − 0 − Perentage : 030 − Name: ont ro lCente r − 1 − Perentage : 5031 − Name: f a t o ry − 1 − Perentage : 5032 Poten t i a l S t r a t e g i e s :33 − Fast expand − 7 .7534 − Fast teh − 7 .135 − Mixed − 6 .7536 Counter s t r a t e gy : Fast expand − Ab i l i t y to ounter s t r a t e gy : 92 .937 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 92 .2538 Counter s t r a t e gy : Mass tanks − Ab i l i t y to ounter s t r a t e gy : 93 .2539 Chosen Counter Strategy : Mass tanks40 [Game Tik : 90 ℄41 . . . Listing G.2: AI game log 21 [Game Tik : 1 ℄2 Chosen s t a r t s t r a t e gy : Marines3 [Game Tik : 2 ℄4 . . .5 [Game Tik : 31 ℄6 Sout ing Miss ion Started :7 Unit type s e l e t e d f o r s out ing : worker8 [Game Tik : 32 ℄9 . . .10 [Game Tik : 167 ℄11 Opponent model :12 − Name: marine − 2 − Perentage : 22 .222213 − Name: tank − 1 − Perentage : 11 .111114 − Name: worker − 6 − Perentage : 66 .666715 − Name: barraks − 0 − Perentage : 016 − Name: ont ro lCente r − 0 − Perentage : 017 − Name: f a t o ry − 0 − Perentage : 018 Poten t i a l S t r a t e g i e s :19 − Fast expand − 8 .2520 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 91 .7521 Chosen Counter Strategy : Marines22 [Game Tik : 168 ℄23 . . .24 [Game Tik : 184 ℄25 Opponent model :26 − Name: marine − 5 − Perentage : 41 .666727 − Name: tank − 1 − Perentage : 8 .33333

APPENDIX G. GAME LOGS Page 247 of 27328 − Name: worker − 6 − Perentage : 5029 − Name: barraks − 0 − Perentage : 030 − Name: ont ro lCente r − 1 − Perentage : 5031 − Name: f a t o ry − 1 − Perentage : 5032 Poten t i a l S t r a t e g i e s :33 − Fast expand − 8 .2534 − Marines − 7 .2535 − Mass marines − 936 − Mixed − 7 .4166737 Counter s t r a t e gy : Fast teh − Ab i l i t y to ounter s t r a t e gy : 92 .7538 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 91 .2539 Counter s t r a t e gy : Mass tanks − Ab i l i t y to ounter s t r a t e gy : 92 .583340 Counter s t r a t e gy : Mixed − Ab i l i t y to ounter s t r a t e gy : 9141 Chosen Counter Strategy : Fast teh42 [Game Tik : 185 ℄43 . . . Listing G.3: AI game log 31 [Game Tik : 1 ℄2 Chosen s t a r t s t r a t e gy : Marines3 [Game Tik : 2 ℄4 . . .5 [Game Tik : 31 ℄6 Sout ing Miss ion Started :7 Unit type s e l e t e d f o r s out ing : worker8 [Game Tik : 32 ℄9 . . .10 [Game Tik : 56 ℄11 Unit Bu i l t : worker12 [Game Tik : 57 ℄13 . . .14 [Game Tik : 64 ℄15 Unit Bu i l t : marine16 [Game Tik : 65 ℄17 . . .18 [Game Tik : 112 ℄19 Unit Bu i l t : worker20 [Game Tik : 113 ℄21 . . .22 [Game Tik : 128 ℄23 Unit Bu i l t : marine24 [Game Tik : 129 ℄25 . . .26 [Game Tik : 192 ℄27 Unit Bu i l t : marine28 [Game Tik : 193 ℄29 . . .30 [Game Tik : 256 ℄31 Unit Bu i l t : marine32 [Game Tik : 257 ℄33 . . .34 [Game Tik : 320 ℄35 Unit Bu i l t : marine

Page 248 of 273 APPENDIX G. GAME LOGS36 [Game Tik : 321 ℄37 . . .38 [Game Tik : 346 ℄39 Opponent model :40 − Name: marine − 3 − Perentage : 3041 − Name: tank − 1 − Perentage : 1042 − Name: worker − 6 − Perentage : 6043 − Name: barraks − 0 − Perentage : 044 − Name: ont ro lCente r − 0 − Perentage : 045 − Name: f a t o ry − 0 − Perentage : 046 Poten t i a l S t r a t e g i e s :47 − Fast expand − 7 .3333348 − Marines − 9 .4166749 − Mass marines − 7 .3666750 − Mixed − 9 .9166751 Counter s t r a t e gy : Fast teh − Ab i l i t y to ounter s t r a t e gy : 90 .583352 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 92 .666753 Counter s t r a t e gy : Mass tanks − Ab i l i t y to ounter s t r a t e gy : 90 .083354 Counter s t r a t e gy : Mixed − Ab i l i t y to ounter s t r a t e gy : 92 .633355 Chosen Counter Strategy : Marines56 [Game Tik : 347 ℄57 . . .58 [Game Tik : 358 ℄59 Opponent model :60 − Name: marine − 8 − Perentage : 38 .095261 − Name: tank − 7 − Perentage : 33 .333362 − Name: worker − 6 − Perentage : 28 .571463 − Name: barraks − 0 − Perentage : 064 − Name: ont ro lCente r − 1 − Perentage : 5065 − Name: f a t o ry − 1 − Perentage : 5066 Poten t i a l S t r a t e g i e s :67 − Fast expand − 7 .3333368 − Fast teh − 9 .8666769 − Marines − 9 .6570 − Mass marines − 9 .9666771 − Mixed − 3 .572 Counter s t r a t e gy : Fast expand − Ab i l i t y to ounter s t r a t e gy : 90 .133373 Counter s t r a t e gy : Fast teh − Ab i l i t y to ounter s t r a t e gy : 90 .3574 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 92 .666775 Counter s t r a t e gy : Mass tanks − Ab i l i t y to ounter s t r a t e gy : 96 .576 Counter s t r a t e gy : Mixed − Ab i l i t y to ounter s t r a t e gy : 90 .033377 Chosen Counter Strategy : Mass tanks78 [Game Tik : 359 ℄79 . . .80 [Game Tik : 414 ℄81 Unit Bu i l t : worker82 [Game Tik : 415 ℄83 . . .84 [Game Tik : 470 ℄85 Unit Bu i l t : worker86 [Game Tik : 471 ℄87 . . .88 [Game Tik : 486 ℄89 Unit Bu i l t : tank

APPENDIX G. GAME LOGS Page 249 of 27390 [Game Tik : 487 ℄91 . . .92 [Game Tik : 614 ℄93 Unit Bu i l t : tank94 [Game Tik : 615 ℄95 . . .96 [Game Tik : 742 ℄97 Unit Bu i l t : tank98 [Game Tik : 743 ℄99 . . . Listing G.4: AI game log 41 [Game Tik : 1 ℄2 Chosen s t a r t s t r a t e gy : Fast teh3 [Game Tik : 2 ℄4 . . .5 [Game Tik : 31 ℄6 Sout ing Miss ion Started :7 Unit type s e l e t e d f o r s out ing : worker8 [Game Tik : 32 ℄9 . . .10 [Game Tik : 5 6 : ℄11 Unit Bu i l t : worker12 [Game Tik : 5 7 : ℄13 . . .14 [Game Tik : 1 1 2 : ℄15 Unit Bu i l t : worker16 [Game Tik : 1 1 3 : ℄17 . . .18 [Game Tik : 1 2 8 : ℄19 Unit Bu i l t : tank20 [Game Tik : 1 2 9 : ℄21 . . .22 [Game Tik : 256 ℄23 Unit Bu i l t : tank24 [Game Tik : 257 ℄25 . . .26 [Game Tik : 384 ℄27 Unit Bu i l t : tank28 [Game Tik : 385 ℄29 . . .30 [Game Tik : 392 ℄31 Opponent model :32 − Name: marine − 0 − Perentage : 033 − Name: tank − 1 − Perentage : 14 .285734 − Name: worker − 6 − Perentage : 85 .714335 − Name: barraks − 0 − Perentage : 036 − Name: ont ro lCente r − 0 − Perentage : 037 − Name: f a t o ry − 0 − Perentage : 038 Poten t i a l S t r a t e g i e s :39 − Fast expand − 2 .5666740 − Fast teh − 8 .841 Counter s t r a t e gy : Fast expand − Ab i l i t y to ounter s t r a t e gy : 91 .2

Page 250 of 273 APPENDIX G. GAME LOGS42 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 97 .433343 Chosen Counter Strategy : Marines44 [Game Tik : 393 ℄45 . . .46 [Game Tik : 400 ℄47 Opponent model :48 − Name: marine − 2 − Perentage : 16 .666749 − Name: tank − 4 − Perentage : 33 .333350 − Name: worker − 6 − Perentage : 5051 − Name: barraks − 0 − Perentage : 052 − Name: ont ro lCente r − 1 − Perentage : 10053 − Name: f a t o ry − 0 − Perentage : 054 Poten t i a l S t r a t e g i e s :55 − Fast expand − 6 .0556 − Fast teh − 5 .8557 − Mass tanks − 9 .3666758 − Mixed − 7 .5166759 Counter s t r a t e gy : Fast expand − Ab i l i t y to ounter s t r a t e gy : 94 .1560 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 93 .9561 Counter s t r a t e gy : Mass marines − Ab i l i t y to ounter s t r a t e gy : 90 .633362 Counter s t r a t e gy : Mass tanks − Ab i l i t y to ounter s t r a t e gy : 92 .483363 Chosen Counter Strategy : Fast expand64 [Game Tik : 401 ℄65 . . . Listing G.5: AI game log 51 [Game Tik : 1 ℄2 Chosen s t a r t s t r a t e gy : Marines3 [Game Tik : 2 ℄4 . . .5 [Game Tik : 31 ℄6 Sout ing Miss ion Started :7 Unit type s e l e t e d f o r s out ing : worker8 [Game Tik : 32 ℄9 . . .10 [Game Tik : 367 ℄11 Opponent model :12 − Name: marine − 2 − Perentage : 5013 − Name: tank − 0 − Perentage : 014 − Name: worker − 2 − Perentage : 5015 − Name: barraks − 0 − Perentage : 016 − Name: ont ro lCente r − 0 − Perentage : 017 − Name: f a t o ry − 0 − Perentage : 018 Poten t i a l S t r a t e g i e s :19 − Fast expand − 9 .1666720 − Marines − 4 .2521 − Mass marines − 2 .222 Counter s t r a t e gy : Fast teh − Ab i l i t y to ounter s t r a t e gy : 95 .7523 Counter s t r a t e gy : Marines − Ab i l i t y to ounter s t r a t e gy : 90 .833324 Counter s t r a t e gy : Mixed − Ab i l i t y to ounter s t r a t e gy : 97 .825 Chosen Counter Strategy : Mixed26 [Game Tik : 368 ℄27 . . .

APPENDIX H. PERFORMANCE LOG Page 251 of 273
Appendix HPerformane Log

Listing H.1: Module game tik performane log1 Game t i k : 12 Ation planner 03 Base bu i l d i ng 04 GDF onnet ion 05 Perept i n t e r p r e t e r 426 Reat ive module 07 Resoure manager 08 S t r a t e g i p lanner 09 Ta t i a l p lanner 151011 Game t i k : 212 Ation planner 113 Base bu i l d i ng 014 GDF onnet ion 015 Perept i n t e r p r e t e r 016 Reat ive module 017 Resoure manager 018 Ta t i a l p lanner 141920 Game t i k : 321 Ation planner 022 GDF onnet ion 023 Perept i n t e r p r e t e r 024 Reat ive module 025 Resoure manager 1126 Ta t i a l p lanner 142728 Game t i k : 429 Ation planner 030 GDF onnet ion 031 Perept i n t e r p r e t e r 032 Reat ive module 033 Ta t i a l p lanner 143435 . . .36

Page 252 of 273 APPENDIX H. PERFORMANCE LOG37 Game t i k : 3138 Ation planner 039 GDF onnet ion 040 Perept i n t e r p r e t e r 041 Reat ive module 042 Ta t i a l p lanner 144344 Game t i k : 3245 Ation planner 046 GDF onnet ion 047 Perept i n t e r p r e t e r 048 Reat ive module 049 Resoure manager 050 S t r a t e g i p lanner 051 Ta t i a l p lanner 285253 Game t i k : 3354 Ation planner 055 GDF onnet ion 056 Perept i n t e r p r e t e r 057 Reat ive module 058 Ta t i a l p lanner 1459 . . .

APPENDIX I. PATHFINDING TESTS Page 253 of 273
Appendix IPath�nding Tests

Page 254 of 273 APPENDIX I. PATHFINDING TESTS

Path foundMap

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot1"

Figure I.1: Path found in path�nding test

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot2"

Figure I.2: Path found in path�nding test

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot3"

Figure I.3: Path found in path�nding test

APPENDIX I. PATHFINDING TESTS Page 255 of 273

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot4"

Figure I.4: Path found in path�nding test

APPENDIX J. CODE EXAMPLES Page 257 of 273
Appendix JCode ExamplesJ.1 Unit and Building Spei�ationsListing J.1: Spei�ation of a worker type1 name = "worker "2 type = "Unit"3 pr e ond i t i on s = [" ont ro lCente r " ℄4 h i t p o i n t s = 605 attak_max = 56 attak_min = 27 ground_attak_range = 48 movement_speed = 39 s ight_range = 510 a t i on s = ["move" , " attak " , " stop " , "mine" , " re turn_resoure s " ,11 " bui ld_ontro lCenter " , " bui ld_barraks " , " bu i ld_fatory " ℄12 minera l s = 7513 gas = 014 built_by = " ont ro lCente r "15 build_time = 7516 supply_ost = 0Listing J.2: Spei�ation of a marine type1 name = "marine"2 type = "Unit"3 pr e ond i t i on s = [" barrak " ℄4 h i t p o i n t s = 1005 attak_max = 506 attak_min = 307 ground_attak_range = 88 movement_speed = 39 s ight_range = 610 a t i on s = ["move" , " attak " , " stop " ℄11 minera l s = 10012 built_by = "barrak "13 build_time = 10014 supply_ost = 1

Page 258 of 273 APPENDIX J. CODE EXAMPLESListing J.3: Spei�ation of a tank type1 name = "tank"2 type = "Unit"3 pr e ond i t i on s = [" f a t o ry " ℄4 h i t p o i n t s = 5005 attak_max = 106 attak_min = 57 ground_attak_range = 68 movement_speed = 29 s ight_range = 710 a t i on s = ["move" , " attak " , " stop " ℄11 minera l s = 40012 gas = 013 built_by = " f a t o ry "14 build_time = 015 supply_ost = 2Listing J.4: Spei�ation of a ommand enter type1 name = " ont ro lCente r "2 type = "Bui ld ing "3 pr e ond i t i on s = [℄4 h i t p o i n t s = 50005 attak_max = 06 attak_min = 07 ground_attak_range = 08 movement_speed = 29 s ight_range = 410 a t i on s = [" train_worker " , " stop " ℄11 minera l s = 60012 gas = 013 built_by = "worker "14 build_time = 300Listing J.5: Spei�ation of a barraks type1 name = " barraks "2 type = "Bui ld ing "3 pr e ond i t i on s = [" ont ro lCente r " ℄4 h i t p o i n t s = 10005 attak_max = 06 attak_min = 07 ground_attak_range = 08 movement_speed = 09 s ight_range = 410 a t i on s = [" train_marine" , " stop " ℄11 minera l s = 40012 gas = 013 built_by = "worker "14 build_time = 200Listing J.6: Spei�ation of a fatory type1 name = " f a t o ry "

APPENDIX J. CODE EXAMPLES Page 259 of 2732 type = "Bui ld ing "3 pr e ond i t i on s = [" ont ro lCente r " , " barraks " ℄4 h i t p o i n t s = 14005 attak_max = 06 attak_min = 07 ground_attak_range = 08 movement_speed = 09 s ight_range = 410 a t i on s = ["build_tank" , " stop " ℄11 minera l s = 40012 gas = 013 built_by = "worker "14 build_time = 200J.2 Known StrategiesListing J.7: Code for de�ning strategies in the Known Strategies knowledge base1 s ta r t ing_po int = {2 "name" : " S ta r t i ng po int " ,3 " pre ond i t i on " : "" ,4 " fo l l ow_up_strateg i e s " : ["Fast expand" , "Marines " ,5 "Fast teh " ℄ ,6 " ounter s " : [℄ ,7 " perentage_use " : 100 ,8 " time" : 0 ,9 "purpose " : " s tep " ,10 " expans ions " : 0 ,11 " ont ro lCente r " : 1 ,12 " barraks " : 0 ,13 " f a t o ry " : 0 ,14 "worker " : 6 ,15 "marine" : 0 ,16 " tank" : 017 }1819 fast_expand = {20 "name" : "Fast expand" ,21 " pre ond i t i on " : " S ta r t i ng po int " ,22 " fo l l ow_up_strateg i e s " : ["Mass marines " ℄ ,23 " ounter s " : ["Marine Rush" ℄ ,24 " perentage_use " : 30 ,25 " time" : 500 ,26 "purpose " : " s tep " ,27 " expans ions " : 1 ,28 " ont ro lCente r " : 2 ,29 " barraks " : 0 ,30 " f a t o ry " : 0 ,31 "worker " : 12 ,32 "marine" : 0 ,33 " tank" : 034 }3536 mass_marines = {

Page 260 of 273 APPENDIX J. CODE EXAMPLES37 "name" : "Mass marines " ,38 " pre ond i t i on " : "Fast expand" ,39 " fo l l ow_up_strateg i e s " : [℄ ,40 " ounter s " : ["Mixed" ℄ ,41 " perentage_use " : 100 ,42 " time" : 1000 ,43 "purpose " : " attak " ,44 " expans ions " : 1 ,45 " ont ro lCente r " : 2 ,46 " barraks " : 0 ,47 " f a t o ry " : 0 ,48 "worker " : 18 ,49 "marine" : 30 ,50 " tank" : 051 }5253 marines = {54 "name" : "Marines " ,55 " pre ond i t i on " : " S ta r t i ng po int " ,56 " fo l l ow_up_strateg i e s " : ["Mixed" ℄ ,57 " ounter s " : ["Fast teh " ℄ ,58 " perentage_use " : 40 ,59 " time" : 500 ,60 "purpose " : " attak " ,61 " expans ions " : 0 ,62 " ont ro lCente r " : 1 ,63 " barraks " : 1 ,64 " f a t o ry " : 0 ,65 "worker " : 8 ,66 "marine" : 10 ,67 " tank" : 068 }6970 mixed = {71 "name" : "Mixed" ,72 " pre ond i t i on " : "Marines " ,73 " fo l l ow_up_strateg i e s " : [℄ ,74 " ounter s " : ["Mass tanks " ℄ ,75 " perentage_use " : 100 ,76 " time" : 1000 ,77 " expans ions " : 0 ,78 "purpose " : " attak " ,79 " ont ro lCente r " : 1 ,80 " barraks " : 1 ,81 " f a t o ry " : 1 ,82 "worker " : 10 ,83 "marine" : 15 ,84 " tank" : 1085 }8687 f a s t_teh = {88 "name" : "Fast teh " ,89 " pre ond i t i on " : " S ta r t i ng Point " ,90 " fo l l ow_up_strateg i e s " : ["Mass tanks " ℄ ,

APPENDIX J. CODE EXAMPLES Page 261 of 27391 " ounter s " : ["Fast expand" ℄ ,92 " perentage_use " : 30 ,93 " time" : 500 ,94 "purpose " : " s tep " ,95 " expans ions " : 0 ,96 " ont ro lCente r " : 1 ,97 " barraks " : 1 ,98 " f a t o ry " : 1 ,99 "worker " : 8 ,100 "marine" : 0 ,101 " tank" : 5102 }103104 mass_tanks = {105 "name" : "Mass tanks " ,106 " pre ond i t i on " : "Fast teh " ,107 " fo l l ow_up_strateg i e s " : [℄ ,108 " ounter s " : ["Mass marines " ℄ ,109 " perentage_use " : 100 ,110 " time" : 1000 ,111 "purpose " : " attak " ,112 " expans ions " : 0 ,113 " ont ro lCente r " : 1 ,114 " barraks " : 1 ,115 " f a t o ry " : 2 ,116 "worker " : 12 ,117 "marine" : 0 ,118 " tank" : 20119 }120121 s t r a t e g i e s = [s tar t ing_point , fast_expand , marines , fast_teh ,122 mass_marines , mixed , mass_tanks ℄

APPENDIX K. IMPORTANT FIGURES Page 263 of 273
Appendix KImportant Figures

Page 264 of 273 APPENDIX K. IMPORTANT FIGURES

Figure K.1: A human model for playing RTS games

APPENDIX K. IMPORTANT FIGURES Page 265 of 273

Figure K.2: The ognitive framework arhiteture

Page 266 of 273 APPENDIX K. IMPORTANT FIGURES

Figure K.3: The strategy tree used for testing the AI

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 267 of 273
Appendix LAI Development in IndustryL.1 RTS Companies ContatedThe following will list the ompanies we have attempted to ontat, alongwith the RTS games they have developed:Digital Realily: War Front: Turning Point(http://www.digitalreality.hu/ - info�digitalreality.hu)Stormregion: Codename: Panzers Phase One + Rush for Berlin(http://www.stormregion.om/ - info�stormregion.om)Big Huge Games: Rise of Nations(http://www.bighugegames.om/ - info�bighugegames.om)Reli: Homeworld 1+2(http://www.reli.om/ - amy.farris�vugames.om)Battlefront: Histway: Les Grognards(http://www.battlefront.om/ - support�battlefront.om)Mad Do Software: Empire Earh I + II(http://www.maddosoftware.om/ - sotoole�maddosoftware.om)Inhuman Games: Trash(http://www.inhumangames.om/ - info�inhumangames.om)G2games: Alliane: Future Combat(http://www.g2games.om/ - http://www.g2games.om/orporate.shtml)Creative Assembly: Total War series(http://www.reative-assembly.o.uk/ - info�reative-assembly.o.uk)Evolution Vault: Galati Dream(http://www.evolutionvault.net/ - ontat�evolutionvault.net)

Page 268 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRYReality Pump: Earth 2160(http://www.realitypump.pl/ - o�e�realitypump.pl)Ensemble Studios: Age of Empires series(http://www.ensemblestudios.om/- webmaster�ensemblestudios.om)Haemimont Games: Rising Kingdoms(http://www.haemimontgames.om/ - info�haemimontgames.om)Pyro Studios: Imperial Glory(http://www.pyrostudios.om/ - pyrostudios�pyrostudios.om)Cat Daddy Games: Amerian Civil War: Gettysburg + Medievel Con-quest(http://www.atdaddygames.om/ - atdaddy�atdaddy.om)GSC Game World: Cossaks(http://www.gs-game.om/ - anton�gs-game.kiev.ua)Enemy Tehnology: I of the Enemy(http://www.enemytehnology.om/ - info�enemytehnology.om)K-D Lab: Maelstrom(http://www.kdlab.om/eng/ - ontats�kdlab.om)Magiteh: Takedo 1+2(http://www.ezgame.om/ - magitet�ezgame.om)Oddlabs: Tribal Trouble(http://www.oddlabs.om/ - mail�oddlabs.om)Blak Hole Entertainment: Armies of Exigo(http://www.blakholegames.om/ - info�blakholegames.om)Fireglow Games: Sudden Strike(http://www.�reglowgames.om/ - ontat��reglowgames.om)Related Design: Castle Strike(http://www.related-designs.de/ - info�related-designs.de)Timegate Studios: Kohan(http://www.timegate.om/ - inf-05�timegate.om)Massive Entertainment: Ground Control I + II(http://www.massive.se/ - info�massive.se)Primal Software: Besiger(http://www.primal-soft.om/en/ - info�primal-soft.om)

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 269 of 273In�nite Interative: Warlords Battlery 3 + 4(http://www.in�nite-interative.om/- ontat�in�nite-interative.om)Independent Arts: Against Rome(http://www.independent-arts-software.de/- info�independent-arts-software.de)Legend Studios: War Times(http://www.lsgames.om/ - info�lsgames.om)Lesta Studio: WWI: The Great War(http://www.lesta.ru/ - serg�lesta.ru)THQ: Supreme Commander + Warhammer: Dawn of Way(http://www.thq-games.om/ - info.thq.om/support/generalsupport.asp)CDV Software: Hidden Stroke + Cossaks 2: Napoleon Wars(http://www.dv.de/ - mail�dv.de)Strategy First: Nexagon: Deathmath(http://www.strategy�rst.om/ - info�strategy�rst.om)Blizzard Entertainment: Starraft and Warraft series(http://www.blizzard.om/ - support�blizzard.om)The Bitmap Brothers: World War II: Frontline(http://www.bitmap-brothers.o.uk/- ontat�bitmap-brothers.o.uk)Rival Interative: Real War: Roque States(http://www.real-war.om/ - Jim.Omer�RivalInterative.om)Zuxxex: World War II: Panzer Claws(http://www.zuxxez.om/ - info�zuxxez.om)Pandemi Studios: Army Men(http://www.pandemistudios.om/ - info�pandemistudios.om)Objet Software: Dragon Throne: Battle of Red Cli�s(http://eng.objetgames.om/ - info�objetsw.om)Eletroni Arts LA: Command & Conquer Series(http://westwood.ea.om/ - info�ea.om)

Page 270 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRYL.2 Mail to RTS Game Development CompaniesHi In relation to our master-thesis developed at the department of omputersiene, Aalborg University we would like your help in answering a few ques-tions onerning development of AI in the game industry. If this requestwas sent to the wrong department, please forward it to a person who anhelp us. We are writing this to your ompany, beause you have a history ofdeveloping RTS games, whih is the fous of our master-thesis.We are urrently developing an AI framework for RTS games based onthe deision proess of a human player. Knowing that di�erent RTS gameshave di�erent fous in game style, the modular design allows the developerto fous on the areas that are important for that partiular genre. Lessimportant modules an be left handled by standard implementations in theframework. We believe that using this framework for AI development willhave the following e�ets:
• Strutured overview of the AI development proess.
• Signi�antly improve the AI.
• Redued development ost.
• Redued development time.
• Workload shifted towards game designers instead of programmers.We hope that you will take a few minutes to answer the following ques-tions. Please indiate how you base your answers/estimates - e.g. on yourown experiene or on the urrent pratie in your ompany/developmentteam.1. How muh time would you estimate is urrently used on developing AIin RTS games - e.g. how many man-hours are used?2. Who develops the AI? Is it programmers or game designers?3. Is the AI reated from srath or are AI libraries used?4. How onneted are the game engine and the AI? Is it ompletely sep-arated or losely integrated in the engine?5. Do you think that our idea/produt of an generi RTS AI frameworkould be of use in the industry? Why/why not?Your answers will be used to get insight into the proess and use of toolsin AI development.

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 271 of 273L.3 Answers from RTS Game Development Com-paniesAll answers orresponds to the questions in Appendix L.2.L.3.1 OddlabsAnswers from Oddslabs were in danish:1. Jeg ved ikke så meget om andre spils AI, men AI'en til TT er en megetsimpel state-mahine der på yderst naiv vis tager stilling fra tur til tur.Den har ikke taget meget mere end 3 uger at lave.2. Den er udviklet af en programmør.3. Helt fra bunden.4. AI'en er meget stærk bundet til TT.5. Jeg kan godt se potentiale i at have et generisk RTS AI framework, menjeg er ikke sikker på det vil virke i praksis. Det skal virkelig være letat gå til, og give nogle meget store fordele i form af komplieret logikog lign., hvis man skal bruge tid på at integrere et tredjeparts systemind i sit spil, frem for selv at bygge noget ind, som er skrædersyet tilsituationen. I vores tilfælde havde det måske været smart da vi varnået til et punkt i udviklingen hvor vi måtte "nøjes" med en primitivAI, fordi der ikke var tid til at gå i dybden med udviklingen. Tilgengæld tvivler jeg på vi kunne have gjort det lige så hurtigt hvis viskulle sætte os ind i et generisk system der samtidig skulle bankes indi den struktur vi havde i spillet.Med andre ord, så kan jeg nok ikke sige om det er en god ide før jeghar set produktet.L.3.2 In�nite Interative1. About 12 man-months in all of our RTS games so far.2. Programmers develop an AI framework, based on a movement/pathingsystem. Then they work WITH the game designers to build and re�nean AI. As we use more and more sripting (LUA is our language ofhoie), more and more AI is being by our designers rather than theprogrammers.3. We have our own movement/pathing libraries on whih everything isbuilt. Everything apart from the movement and pathing is reatedfrom srath on every game.

Page 272 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRY4. They are kept ompletely seperate. However, various funtions of theengine have been added to help with AI, suh as line-of-sight alula-tions.5. Possible, but di�ult to apply to *every* RTS game, beause of thevariations on design in eah game. But I think that a limited frameworkwould be useful, as long as all of the items were quite independent andquite easily extended: Some of the areas we break our AI's down intoare:
• Movement
• Pathing
• Formations
• In�uene maps (e.g. for detetion of danger)
• Threat assessment
• Ations/orders
• A state mahine of ations of individual ators
• Grouping mehanisms
• A method for traking and remembering enemies
• Building and prodution hierarhies
• Resoure usage and needs
• Managing and prioritizing objetivesIf an AI framework onsisted of base lasses for dealing with thingslike this, then it would indeed save time.L.3.3 Inhuman GamesFirst o� I would de�ne lassify AI into two groups: low level and high level.Low level AI mostly inludes path�nding, target seletion, and mis ations(spell asting, loading/unloading resoures, et). High level AI inludes de-iding what to build and where to send your fores.1. At least two man years. About half the time for low-level AI, andanother half for high-level stu�.The hardest part of the low-level AI is probably path�nding. Path�nd-ing itself an take a long time to develop, espeially if you are tryingto make good path�nding that sales well.2. Programmers tend to do most of the AI development. Inreasinglygame designers with sripting ability are developing AI. Game design-ers tend to only ontrol very high level aspets of AI.

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 273 of 2733. I believe they are usually reated from strath.4. This probably varies greatly between projets. In the RTS, Trash, thehigh level AI and path�nding are well seperated. Target seletion isnot seperated as well as it ould be.5. If your AI is the great, I think it ould be sold. It would have to beextremely good and easy to integrate into any RTS game engine. Ifthis was the ase, perhaps you ould harge $100k USD for it�if soldto big AAA studios.L.3.4 Fireglow Games1. It's di�ult to make a preise estimation, beause vagueness of framesof whih part of the game engine is AI and whih is not. About 5000man-hours.2. Both programmers and designers do, and even if onsider a VirtualMahine to be not a part of the AI engine, there's a plenty of workdone by programmers.3. Partially our AI engine is based on the third-party Virtual Ma-hine/Sript System, but most part is written in-house.4. Our AI engine onsists of several modules, some of them are external,and some are losely tied with the game and gameplay.5. As always, it would have some use. How muh? It depens on theframefork's quality and its prie. If the framework will ontain nees-sary funtions (most demanded are probably path�nding and sriptinglanguage with virtual mahine), and it is a�ordable, it will be used bydevelopes.

