
Group d633a
An AI Framework forReal-Time StrategyGamesDAT6 REPORT6th of June 20061 void rts_game_ai ()2 {3
heat_a_bit_before_game_starts (r e s ou r
 e s += 10000000 , hugebase++);4 send_multiple_weak_and_pointless_atta
ks () ;5 a
t_like_youre_a
tually_gathering_resour
es_not_
heating_to_get_them () ;6
heat_some_more () ;7 lose_building_to_enemy (OH_NOES) ;8
heat_more (CHEAT_INFINITE_RESOURCES | CHEAT_FAST_BUILD) ;910 while (s t i l l _ a l i v e () == true)11 {12 send_multiple_weak_units_to_defend () ;13 }14 d i e () ;15 }Department of Computer S
ien
eAalborg UniversityFredrik Bajersvej 7EDK�9220 AalborgDENMARK

Fa
ulty of Engineering and S
ien
eAalborg UniversityDepartment of Computer S
ien
eTITLE:An AI Framework for Real-TimeStrategy GamesPROJECT PERIOD:Dat6,February 1st 2006 �June 6th 2006PROJECT GROUP:Group d633aGROUP MEMBERS:Kasper FrederiksenKasper G. KristensenAnders LauritsenSUPERVISOR:Thomas VestdamNUMBER OF COPIES: 7REPORT PAGES: 179APPENDIX PAGES: 108TOTAL PAGES: 287

SYNOPSIS:Re
ently
omputer gamers have started tofo
us more and more on the gameplay as-pe
t of
omputer games. This has led to anin
reased interest in the multiplayer aspe
tof games as they present a
hallenge thatthe AI in the single player part
annot. Sofar the single player AIs have been easyto beat, be
ause they la
k dynami

apa-bilities. This proje
t fo
uses on de�ningan AI framework ar
hite
ture for the spe-
i�
 genre of Real-Time Strategy games,whi
h will help to develop AIs with morehuman-like
apabilities and behaviour inthis genre. We present a framework basedon a model of how a player plays Real-Time Strategy games. This framework isthen tested by
onne
ting it to a Game De-velopment Framework. We show that theframework
an be
on�gured by both pro-grammers and non-programmers, and thatthe framework
an be used to provide
om-plete AI solutions within the main streamRTS games. Preliminary results show thatthe ideas behind the framework design anda new data stru
ture, introdu
ed in theproje
t for handling strategies, are verypromising.

vPrefa
eThis report is the result of the master thesis developed by group d633a(E4-215) at the Department of Computer S
ien
e, Aalborg University. Theproje
t was developed under the supervision of Thomas Vestdam.Prior to this proje
t, analysis and preliminary designs were
arried out inour pre-master thesis[FKL05℄. This has the
onsequen
e that the following
hapters of the report are partly based on the pre-master thesis: Introdu
-tion (Chapter 1), Motivation (Chapter 2), Human Model (Chapter 3), andFramework Design Te
hniques (Chapter 5).Readers not familiar with Real-Time Strategy games and the terminologyused in these are advised to read our introdu
tion to this genre in Se
tion1.1 and
onsult the list of terms and expressions introdu
ed in Appendix A.In addition to the terms and expressions, the appendix also
ontainsa des
ription and the results from the test
arried out in the pre-masterthesis[FKL05℄, a detailed des
ription of the ar
hite
ture of ea
h module inthe framework, the questionnaire sent to the industry along with the an-swers that were re
eived, and important tables and models. The appendixis separate to the report.We would also like to thank Oddlabs, In�nite Intera
tive, InhumanGames and Fireglow Games for their response to our market analysis.The
ode for the prototype implementation
an be found at:http://www.
s.aau.dk/�du
k/rtsaif/
Aalborg UniversityJune 6th 2006

Kasper Frederiksen(ma
ross�
s.aau.dk) Kasper G. Kristensen(gib�
s.aau.dk)Anders Lauritsen(du
k�
s.aau.dk)

CONTENTS Page vii of 273
Contents
Contents vii1 Introdu
tion 11.1 Real-Time Strategy Games 3I Problem Area and Human Model 72 Motivation 92.1 Problem . 102.1.1 Player Perspe
tive . 102.1.2 Produ
er Perspe
tive 112.2 Problem Area . 142.2.1 Player Perspe
tive . 142.2.2 Produ
er Perspe
tive 162.3 Current Solutions . 182.3.1 Player Perspe
tive . 182.3.2 Produ
er Perspe
tive 192.4 New Solution . 212.4.1 Player Perspe
tive . 212.4.2 Produ
er Perspe
tive 222.5 Dis
ussion . 233 Human Model 253.1 Prior Knowledge . 263.2 In-Game Knowledge . 273.3 RTS Tasks . 283.4 Human Model . 313.5 Summary . 36II Framework Design 374 Introdu
tion 39

Page viii of 273 CONTENTS4.1 Design Goals . 395 Design Te
hniques 415.1 Frameworks . 415.1.1 Reuse of Software . 415.1.2 AI Frameworks . 425.2 Event Based Systems . 455.2.1 Framework Control . 455.2.2 Event Based Systems in Frameworks 455.3 S
ripting Languages . 475.4 RTS Spe
i�
 Con
epts . 485.4.1 Strategy Trees . 485.4.2 Path�nding . 525.4.3 Ta
ti
s . 575.4.4 Base Building Templates 615.4.5 Summary . 636 Framework Design 656.1 Framework Ar
hite
ture . 666.1.1 Cognitive Ar
hite
ture 666.1.2 Modules . 676.2 Representation of Knowledge 716.2.1 Division of Knowledge Bases 716.2.2 Data Representation 736.3 Framework Versatility . 756.4 Framework Control . 766.4.1 Using the Design Te
hniques 776.4.2 Event System . 776.4.3 Constru
ting the Ar
hite
ture 776.4.4 Game State Interfa
e 796.5 Summary . 80III Proof of Con
ept 817 Implementation 837.1 Proof of Con
ept . 837.2 Implementation Spe
i�
 Choi
es 857.2.1 Game Development Framework 867.2.2 Test Game . 867.2.3 S
ripting Language . 877.3 Trade-o�s between Usability and Performan
e 877.3.1 S
ripted Parts . 887.3.2 Con�guring the Framework 88

CONTENTS Page ix of 2737.3.3 S
ripting Limitations 897.4 Implementation Spe
i�
 Details 897.4.1 GDF Communi
ation Ar
hite
ture 897.4.2 GDF Conne
tion . 907.5 Implementation Problems . 917.5.1 GDF . 917.5.2 Stability . 927.5.3 Path�nder . 937.5.4 AI Framework . 937.5.5 Implementation Status 947.5.6 Con
lusion . 948 Evaluation 958.1 Con�gurability . 968.1.1 Con�guration of Te
hnology Tree 968.1.2 Con�guration of Strategy Trees 988.1.3 Con�guration of Framework Modules 998.1.4 Con�guration of AIs in Di�erent RTS Genres 1018.1.5 Con�guration of Intera
tion with GDF 1028.2 Versatility . 1058.2.1 Framework Versatility 1058.2.2 AI Versatility . 1068.3 Extendibility . 1098.3.1 Methods and Module Extensions 1098.3.2 Adding New Modules 1118.3.3 Framework Limitations 1138.4 Performan
e Testing . 1138.4.1 Performan
e Test Constru
tion 1148.4.2 Performan
e Test Results 1158.4.3 Performan
e Test Dis
ussion 1188.4.4 S
alability . 1198.5 AI Improvements . 1208.5.1 Prototype Implementation 1208.5.2 Complete Implementation 1248.6 RTS Spe
i�
 Con
epts . 1268.6.1 Strategy Trees . 1268.6.2 Path�nding . 1288.7 Re�e
tions . 1318.7.1 Design Re�e
tion . 1318.7.2 Development Model Re�e
tion 1328.8 Summary . 134

Page x of 273 CONTENTS9 Dis
ussion 1379.1 Demand in Industry . 1379.1.1 Time Spent on AI Development 1389.1.2 Developers of AI . 1399.1.3 AI Development Tools 1399.1.4 AI Integration with GDF 1409.1.5 Generi
 RTS AI Framework 1409.1.6 Summary . 1419.2 Conforman
e to Industry Demands 1419.3 RTS Game Market Analysis 1429.4 Other Uses . 1439.5 Further Work . 1439.5.1 Complete Implementation 1449.5.2 AI Frameworks in General 14610 Con
lusion 14911 Resume 153Bibliography 157IV Appendix 167A Terms and Expressions 169A.1 General Con
epts . 169A.2 Buildings . 171A.3 Units . 172A.4 Spe
ial Abilities . 173A.5 Strategies . 174B Module Design 177B.1 Per
ept Interpreter . 177B.2 Rea
tive Module . 178B.2.1 Responsibilities . 178B.2.2 Stru
ture Overview . 179B.2.3 Update DotT . 179B.2.4 Change Building State 180B.2.5 Change Unit State . 181B.2.6 Handle Native AI Event 182B.3 Pattern Re
ognition . 183B.3.1 Responsibilities . 183B.3.2 Stru
ture Overview . 184B.3.3 Re
ognise Signi�
ant Game States 184B.3.4 Re
ognise Strategies 185

CONTENTS Page xi of 273B.3.5 Re
ognise Ta
ti
s . 186B.3.6 Update Opponent Model 187B.3.7 New Ta
ti
s . 188B.4 Probabilisti
 Reasoning . 189B.4.1 Responsibilities . 189B.4.2 Stru
ture Overview . 190B.4.3 Find Potential Strategies 190B.4.4 Update Opponent Model 191B.4.5 Find Potential Follow-up Strategies 191B.4.6 Determine Important Variables 192B.5 Strategi
 Planning . 193B.5.1 Responsibilities . 193B.5.2 Stru
ture Overview . 194B.5.3 Su�
ient Enemy Knowledge 194B.5.4 S
outing . 195B.5.5 Change Current Strategy 196B.5.6 Find Counter Per
entages 197B.5.7 Find New Strategy . 198B.5.8 Expands . 198B.5.9 Evaluation . 199B.5.10 States . 200B.6 Ta
ti
al Planning . 204B.6.1 Responsibilities . 204B.6.2 Stru
ture Overview . 204B.6.3 Evaluation . 205B.6.4 Terrain Analyser . 205B.6.5 Formation . 206B.6.6 Terrain and Unit Analyser 207B.6.7 Unit Deployment . 208B.6.8 Support . 209B.6.9 Targeter . 209B.6.10 Path Planner . 210B.7 Resour
e Manager . 211B.7.1 Responsibilities . 211B.7.2 Stru
ture Overview . 212B.7.3 Determine Resour
e Requirements 212B.7.4 Resour
e Analyser . 213B.7.5 Worker Planner . 213B.7.6 Optimise Resour
e Gathering 214B.8 Base Building . 215B.8.1 Responsibilities . 216B.8.2 Stru
ture Overview . 216B.8.3 Terrain and Resour
e Analyser 216B.8.4 Building Manager . 217

Page xii of 273 CONTENTSB.8.5 Building Planner . 217B.8.6 Repair Manager . 218B.9 Learning . 218B.9.1 Responsibilities . 218B.9.2 Stru
ture Overview . 219B.9.3 Evaluate and Revise Known Strategies 220B.9.4 Evaluate and Revise Known Ta
ti
s 221B.9.5 Evaluate and Revise Known BBT 222B.9.6 Learn New Strategies 223B.9.7 Learn New Ta
ti
s . 223B.9.8 Learn New BBT . 224B.9.9 Update Enemy Knowledge 225B.10 A
tion Planner . 226B.10.1 Responsibilities . 226B.10.2 Stru
ture Overview . 227B.10.3 Unit Planner . 227B.10.4 Resear
h Planner . 227B.10.5 A
tion S
heduler . 228B.10.6 Interfa
e GDF . 228C Knowledge Bases 231C.1 Prior Knowledge Bases . 231C.2 In-Game Knowledge Bases . 232D Test Model 235D.1 Strategi
 Planning . 235D.2 Ta
ti
al Planning . 236D.3 Mi
romanagement . 237D.4 Resour
e Management . 238D.5 Base Building . 238D.6 S
outing . 239D.7 Learning . 240D.8 Cooperation . 240E Test Table A 241F Test Table B 243G Game Logs 245H Performan
e Log 251I Path�nding Tests 253

CONTENTS Page xiii of 273J Code Examples 257J.1 Unit and Building Spe
i�
ations 257J.2 Known Strategies . 259K Important Figures 263L AI Development in Industry 267L.1 RTS Companies Conta
ted 267L.2 Mail to RTS Game Development Companies 270L.3 Answers from RTS Game Development Companies 271L.3.1 Oddlabs . 271L.3.2 In�nite Intera
tive . 271L.3.3 Inhuman Games . 272L.3.4 Fireglow Games . 273

CHAPTER 1. INTRODUCTION Page 1 of 273
Chapter 1Introdu
tionArti�
ial Intelligen
e (AI) has for a long time been a dis
ipline in
om-puter s
ien
e, and has been found very useful in modern
omputer games.Even though a lot of AI methods are used in the development of AIs in
omputer games, the AI is still far behind a lot of the other developmentin the
omputer game industry, like the
reation of more and more real-isti
 graphi
s[Bur04℄. When playing
omputer games, the player wants tobe
hallenged, and she will not be
ome
hallenged, if the AI she is playingagainst is too easy to beat [SZ04℄. There exist a lot of di�erent genres of
omputer games, and
on
erning the development of AI, Real-Time Strategy(RTS) games are one of the more
hallenging [BF04b℄. This is be
ause inRTS games there are hundreds or even thousands of units that have to be
ontrolled in a battle against an opponent. At the same time, there is a well-de�ned and
ontrolled environment that gives ri
h possibilities to performtests for new AI methods. RTS AIs also have their appli
ation in the realworld. High-performan
e simulators are needed for training military person-nel [BF04a℄. One example is the SOAR proje
t [Soa℄ that was developed forsimulators with the fun
tion of training pilots. The AI was responsible ofproviding intelligent behaviour for enemy pilots. [LL01℄In the
omputer game industry, the produ
tion of games is under severetime pressure, and there are demands for
ontinued te
hnologi
al progress.This time pressure in the produ
tion of games have meant that the
omputergame industry has taken the
on
ept of frameworks into use. Some
ompa-nies exist solely for
reating Game Development Frameworks (GDF). Theseframeworks are often
alled game engines in the
omputer game industry,whi
h refers to the inversion of
ontrol that frameworks provide.The game development industry have started to ask themselves, whatwould happen if the AI
ould play like a human? [LL01℄. Many games haveeven started to promote themselves based on the level of their AI: Bla
k &White (2001) [Ban℄, Half-life (1998) [Hal℄ and Empire Earth (2001) [EE1℄,and the industry has started hiring AI resear
hers to help develop their

Page 2 of 273 CHAPTER 1. INTRODUCTIONgames. If this development
ontinues, the resear
h done in the
omputergame industry will overtake that of the a
ademi
 world [LL01℄.This development has, however, not gone unnoti
ed in the a
ademi
 so-
iety. Many resear
hers have also noti
ed that
omputer games present aprime environment, in whi
h to do human-level AI resear
h:Not only is the game development at the forefront of PC-basedvisualisation, it is also a leading developer of applied arti�
ialintelligen
e, overall interfa
e design, persistent worlds, networkintera
tion, and other building blo
ks needed for next-generationmodels and simulations. -Ben Sawyer1 [Saw02℄Games provide high variability and s
alability for problem de�-nitions, are pro
essed in a restri
ted domain and the results aregenerally easy to evaluate. -Alexander Nareyek2 [Nar02℄In
ontrast to modelling behaviour in the real world, there are(at least theoreti
ally) two great advantages enjoyed by a simu-lation/game approa
h: i) full
ontrol of the game universe in-
luding full observability of the state. ii) reprodu
ibility of exper-imental settings and results. -Thore Graepel, Ralf Herbri
h andJulian Gold3 [GHG04℄These are just some of the arguments that resear
hers have presented infavour of using
omputer games for AI resear
h. They are, however, stillmet with skepti
ism from a large part of the a
ademi

ommunity, be
ause
omputer games (and thereby work related to them) are still looked upon asnot being serious work. However, be
ause of all the arguments just presented,resear
h in relation to
omputer games is still on the advan
e.We propose that sin
e the tenden
y for
omputer gamers is to seek bettergameplay, and be
ause the fo
us on graphi
s is on the de
line, the time isripe to integrate more advan
ed AI methods into
omputer games. It is nowpossible to use a mu
h higher per
entage of the CPU time for this purpose, asthe graphi
s
ard is taking over more and more work, and be
ause the CPUin general is be
oming fast enough to handle both areas without restri
tingany fun
tionality.We have examined the work done in the areas of s
ienti�
 resear
h withinRTS games and AIs and
on
luded that there is no dire
tly related work.1Ben Sawyer is the
o-founder of Digitalmill [digb℄ and author of several books andarti
les about intera
tive game development.2Alexander Nareyek is CEO, CTO and
o-founder of Digital Drama Studios [diga℄,responsible for Arti�
ial Intelligen
e matters within the International Game DevelopersAsso
iation and
hairperson of the IGDA's Arti�
ial Intelligen
e Interfa
e Standards Com-mittee.3Graepel, Herbri
h and Gold are all resear
hers at Mi
rosoft Resear
h [msr℄.

CHAPTER 1. INTRODUCTION Page 3 of 273This report is the
ontinued work of our pre-master thesis [FKL05℄, and
overs the
omplete design of an AI framework for RTS games, the implemen-tation and evaluation of a prototype of this AI framework. Our pre-masterthesis presented a human model whi
h des
ribes the tasks a human player isfa
ed with when playing an RTS game, and the relationship between thesetasks. It was dis
overed that RTS games
ould be divided into several genres,and that ea
h genre were fo
using on di�erent areas within their AI. Thisre�e
ted what was the most important part of the gameplay. The fo
usesthat were found
ould be translated into di�erent parts of the human model.This indi
ated that the human model
ould be used as a general foundationfor an AI tool, whi
h is able to handle the things that is required to makea human-like AI to an RTS game. Di�erent useful AI methods that
ouldbe used in RTS games were also found and dis
ussed. Furthermore, thesemethods were dis
ussed in relation to the human model as well as their usagein ea
h of the di�erent tasks in the human model.This raised the interesting question of whether it is possible to makethis human model into a general AI tool, in whi
h a developer is able to
reate AIs to all the identi�ed genres of RTS games that were found in thepre-master thesis.First we will introdu
e the reader to the problem through the Motiva-tion in Chapter 2. Next the human model on whi
h the framework is builtis presented in Chapter 3. The design goals for the framework is introdu
edin Chapter 4. Chapter 5 will present the design te
hniques used in theframework and Chapter 6 presents the framework design itself. The imple-mentation is presented in Chapter 7, followed by an evaluation in Chapter 8and a dis
ussion of the results in Chapter 9. Finally in Chapter 10 we will
on
lude on the proje
t.1.1 Real-Time Strategy GamesThe genre
alled Real-Time Strategy (RTS) games refers to a very spe
i�
genre, and not all strategy games that takes pla
e in a real-time environmentfall into this
ategory. The term real-time refers to the fa
t that RTS gamesprogresses
ontinuous rather than turn-by-turn, while strategy refers to thefa
t that a player is in
ontrol of high level war planning. RTS games are
hara
terised by being games, where the player looks down on the map fromabove, and gives orders to units and buildings on the map. Moreover, theplayer is responsible for
ontrolling resour
e gathering, base building,
ombatand te
hnology advan
ements. These are
entral gameplay elements of anyRTS game. The RTS genre di�ers from the God Game genre [god℄ by notallowing the player to intera
t dire
tly with the environment. The RTSgenre was de�ned by the �rst game of this type, Dune II (1992) [dun℄ seen inFigure 1.1. The game basi
ally
onsisted of the player having harvesters to

Page 4 of 273 CHAPTER 1. INTRODUCTION

Figure 1.1: S
reenshot from Dune IIharvest the resour
e in the game, and then using these resour
es to build newbuildings or units. The units should then be used to atta
k the enemy andthereby obtain the goal of any RTS game - to destroy the enemy. Thisgameplay formula has sin
e been followed by numerous RTS games. Ingeneral, any RTS game
onsists of the following three states [rts℄:
• The player must build up her base and her for
es.
• The player must attempt to lo
ate and se
ure resour
es, to provide asolid e
onomy.
• The player must atta
k the enemy, and thereby deprive her of resour
esor destroy her base infrastru
ture.RTS games have sin
e Dune II used all kinds of units, buildings andweapons in their games, but the basi
 gameplay has stayed the same. Re-
ent RTS games have added extra features that makes the game stand outfrom the rest and in
rease gameplay. Lord of the Rings: Battle for Middle-Earth (2004) [lot℄ has for instan
e simpli�ed resour
e gathering by not usingworkers, but instead using buildings that automati
ally harvest a
ertainnumber of resour
es. This does not remove resour
e management from thegame, as the player's resour
e gathering still depends on the number of re-sour
e gathering buildings she has, but it does simplify it,
ompared to otherRTS games. Another example is War
raft III (2002) [warb℄, whi
h addedheroes to the game and added NPC
hara
ters spread around the map. The

CHAPTER 1. INTRODUCTION Page 5 of 273heroes
ould gain experien
e points by killing the NPCs and thereby in-
rease their strength. Other popular games within the genre of RTS gamesin
ludes Command & Conquer (1996) [
om℄, Star
raft (1998) [sta℄ and Ageof Empires (1997) [age℄. For further information about the RTS genre, were
ommend the reader to read the wikipedia de�nition [rts℄ or Appendix Afor a list of terms and expressions used in the genre.

Page 7 of 273

Part IProblem Area and HumanModel

CHAPTER 2. MOTIVATION Page 9 of 273
Chapter 2MotivationThe purpose of this
hapter is to introdu
e the reader to the problem. Inorder for the reader to get a good insight into the problem, it will be intro-du
ed gradually, and the reader will be able to follow the progress from twopoints of view: The player's perspe
tive (the user of
omputer games) andthe produ
er's perspe
tive (the software house that developed the game).Following this, this
hapter will
onsist of four se
tions:Problem: This se
tion will give the reader the �rst insight into why thereis a problem in the �rst pla
e.Problem Area: This se
tion will get
loser to spe
i�
 problems and brie�yexplain what
ause them.Current Solutions: This se
tion explains what has been, and what is
ur-rently being done by both the players and the produ
ers to handle theproblem.New Solution: This se
tion will outline the solution, on whi
h this proje
tis based.After reading this
hapter the reader should have a thorough understand-ing of the problem, the problem area and the idea that forms the base ofthis proje
t.This
hapter is based on a series of tests of AIs'
apabilities in a numberof
ommer
ial RTS games and a number of arti
les. The tests were madethrough our pre-master thesis [FKL05℄. These
an be found in AppendixD and E.1. The arti
les are on the subje
t of
omputer games and AIdevelopment: Buro et al. are doing work on using RTS games as a test-bedfor real-time resear
h [BF04b℄, Lent et al. present a number of arguments forwhy
omputer games are ideal for AI resear
h [LL01℄, Nareyek also workswith how games
an be used for AI resear
h [Nar02℄, and �nally Sawyerpresents work on alternative appli
ations of
omputer games and te
hniquesfrom
omputer games [Saw02℄ .

Page 10 of 273 CHAPTER 2. MOTIVATION2.1 ProblemAs mentioned earlier this se
tion will introdu
e the reader to why there is aproblem in the �rst pla
e. The
ontext will be
omputer games in generaland the reader will be presented with fa
ts partly taken from history andpartly from popular games. In this and all the following se
tions, the player'sperspe
tive will be presented �rst and then the produ
er's perspe
tive.2.1.1 Player Perspe
tiveWhen a player de
ides to play a game, it is mostly be
ause she wants to beentertained. The entertainment itself is the result of several fa
tors. Amongthe most important of these are gameplay,
ommunity and story telling.GameplayGameplay is the oldest of the mentioned fa
tors. In fa
t the �rst
omputergames had little more than gameplay. Pong (1972) [pon℄ just
onsisted oftwo movable bars pla
ed at ea
h their side of the s
reen and a dot that movedbetween the sides. As everything else has developed, so too has
omputergames. Most games have for instan
e be
ome more
omplex and graphi
shave be
ome almost real, the gameplay however still has to ful�l a few simplerules [SZ04℄:1. The player has to make de
isions.2. The de
isions have to have
onsequen
es.3. The game itself has to present
hallenges to the player.4. There must be a real danger of losing the game.5. If the player plays a perfe
t game she must win.This means that in order to have good gameplay, games have to at leastposses these
hara
teristi
s. Early games like Pong were essentially multi-player games as one player played against another player. It is mu
h easierto ensure that the gameplay
riteria are met, when the greatest part of thebehaviour in the environment is due to player a
tions. This has the dire
t
onsequen
e that it is mu
h harder to ensure good gameplay in a single playergame, as more behaviour is
ontrolled by the game itself - the AI. Early sin-gle player games like Pa
man (1981) [pa
℄ were relatively easy to
ope with,as the game had a few simple rules, but as games be
ome more
omplex sodo the behaviours needed for an AI that will ensure a good gameplay. [SZ04℄

CHAPTER 2. MOTIVATION Page 11 of 273MultiplayerMaking an AI that ensures good gameplay is extremely hard. After the te
h-nology allowed people to link
omputers together in a network the playershave been playing games that supported this. Games that were not able topresent a good gameplay in single player
ould suddenly bene�t from themultiplayer side of the game. Some games even went as far as to negle
t-ing to implement a single player part and solely fo
using on the multiplayerpart. First person shooters like Quake (1996) [quaa℄ and Half-Life: Counter-Strike (2000) [
ou℄ are designed towards a gameplay building on player ver-sus player. The single player part in the Quake series is thus a simulationof player versus player where the adversaries are "bots"1
ontrolled by anAI. Most RTS games also have an extensive multiplayer part. They have,however, not abandoned the single player part. This is mostly based on astory line where the AI behaviour
an be s
ripted to a degree that ensuresa relatively reasonable gameplay. The extreme is without a doubt the roleplaying game genre, where the advan
e of the Internet has meant an almostrede�nition of the genre. Massive Multiplayer Online Role Playing Games(MMORPG) are essentially
ommunities of players within the game itself.The entire gameplay, and to a
ertain degree the rules themselves, are de�nedby the players.In short, if the players do not �nd a su�
ient gameplay in the singleplayer part of a game, they will try to �nd it through playing against otherplayers in multiplayer games. The player versus player intera
tion againmeans that the bulk of the behaviour in the game is not
ontrolled by an AI.Single PlayerLooking
loser at the RTS genre, the single player parts
an mostly be
las-si�ed as being one of two types: They are either based on a S
i-Fi/Fantasystory or a histori
al event/
ivilisation. The story is told with the playertaking part in the story itself by
arrying out missions with obje
tives thatsupport the story line. Supported by
ut s
enes, the player will experien
e alimited intera
tive story through the game. Blizzard Entertainment [bli℄, forinstan
e, is renowned for their extremely well
arried out stories that haveeven resulted in a number of books based on them and a movie is also onthe way. This means that the story itself should not be underestimated.2.1.2 Produ
er Perspe
tiveThe main
on
ern of the produ
er is to make a satisfa
tory produ
t - aprodu
t that will be a su

ess. To be a su

ess the produ
t must sell and inorder to sell it must possess a series of qualities that the player values. This1AI
ontrolled adversaries

Page 12 of 273 CHAPTER 2. MOTIVATION
an be everything from a good sound tra
k to being based on a known storyor �gure, but mostly it is fa
tors like graphi
s and gameplay that are mostimportant.Satisfa
tory AIThe �rst thing that one has to realise is that building an AI to anythingbut an extremely simple game, is a
omplex undertaking. In light of thedevelopment mentioned in Se
tion 2.1.1, produ
ers have to ask themselvesthe question: How high do we prioritise single player? In fa
t what is asatisfa
tory AI? The produ
er will have to
onsider how bad the AI
an be(in reality the worse the AI, the faster and
heaper the development) andstill entertain the player. One of the tools that have been utilised time upontime in RTS games, is that instead of having a
omplex AI, a simple AI is
omplemented by "unfair" advantages su
h as full map visibility, unlimitedresour
es, or superior for
es. While this indeed
an improve the overall
apabilities of the AI as an adversary, the
heap tri
ks are easily dete
tedand may result in the player losing the sense of
ontest with the AI, or evenexploit it. One su
h exploit
an be seen in Command & Conquer, wherethe player, when playing against several AIs,
ould destroy all buildingsbelonging to an enemy ex
ept the resour
e tanks. She then had a

ess tounlimited resour
es, as she
ould steal it from the AI that had an unlimitedsupply. Everything
onsidered, making even a simple AI work well is verydi�
ult. The smallest mistake at the wrong time or pla
e
an make the AIseem very stupid.Lately there has been a tenden
y in the game development industry to tryto shift the workload from expensive programmers to
heaper game designers.Blizzard has, for instan
e, game designers model maps to War
raft III usingthe world editor made for this purpose.A satisfa
tory AI is relative to the genre and the situation to whi
h theAI is meant for.Hardware DevelopmentMoore's law states that the number of transistors per square in
h on inte-grated
ir
uits will roughly double every year (in reality every 18 months)[moo℄. This means that the development in hardware is progressing in abreath taking pa
e. This is yet another thing that the produ
er will haveto keep in mind and yet another reason why a produ
t must be developedand released as fast as possible. There are
ountless examples of produ
-tions that have missed their
han
e. Among these is Tiberian Sun (1999)[tib℄, the sequel to Command & Conquer. Not long after the release of RedAlert (1996) [red℄, s
reenshots surfa
ed from Tiberian Sun that was to be thehottest thing in graphi
 development in RTS games at that time. The publi
,

CHAPTER 2. MOTIVATION Page 13 of 273however, had to wait three years for the release of Tiberian Sun, at whi
htime the development had long overtaken the on
e advan
ed te
hnology.Having to take hardware and te
hnologi
al development as a whole in toa

ount makes the development of the produ
t into a ra
e against time.Graphi
s DevelopmentThere is a di�erent aspe
t to the te
hnologi
al development that is not
ov-ered in the last se
tion. With the advan
e of
omputer graphi
s
ame a time,where a game as su
h "just" had to look good in order to sell. That meantthat the gameplay did as su
h not really matter as long as everything lookedpretty.Prioritising towards this
omes at two fronts: One being the amount oftime spent on developing the various parts of the produ
t, the other beingthe amount of exe
ution time available to the di�erent parts of the produ
t.With the graphi
s as fo
us, this means that there is a very limited amount oftime available to both the development of a satisfa
tory AI, and the exe
utionof the many
omplex
al
ulations, one su
h requires. Lately the developmenthas started to turn towards gameplay on
e more and the graphi
 side hasbeen signed a lower priority.The produ
er must prioritise. She must
onsider what will sell the prod-u
t: S
reenshots from the game or a promise of good gameplay.Primitive Te
hniquesWith both a limited amount of time to develop the AI, and a very limitedamount of available exe
ution time, the developers are for
ed to use an arrayof primitive AI te
hniques. Among the most
ommon is the use of s
riptingwhen de�ning behaviour. The developers will simply s
ript a simple pro
essthat will get the AI through the starting phase of the game, and then loop abehaviour on
e it has rea
hed a
ertain point. Some games try to in
orporatesome traits of
omplex behaviour when s
ripting their AI. This is both goodand bad. In the game Armies of Exigo (2004) [aox℄ the AI will try to retreatif outnumbered, whi
h in itself is indeed the right thing to do. The downsideis that the AI will try to get ba
k to its main base. If the superior enemyarmy happens to stand between the retreating army and the main base itwill walk straight through this. Another example is the First Person Shootergame F.E.A.R. (2005) [fea℄, in whi
h the enemy troops will try to move outtowards the player's position aggressively and even
overing ea
h other inthe pro
ess. However, the player is able to plant mines between the enemytroops and herself and the AI will walk blindly into these, when they areadvan
ing.S
ripting an AI is done with pat
hes and pat
hes on pat
hes.

Page 14 of 273 CHAPTER 2. MOTIVATIONAIs Built Late in the Pro
essOnly tools for the AI
an be made during the development of the produ
t.The AI itself
annot be implemented before very late in the pro
ess. This isdue to the fa
t that behaviour is very vulnerable to new design de
isions andan a
tivity su
h as balan
ing
annot take pla
e before the produ
t pra
ti
allyis done. Balan
ing itself is a long and thus
ostly pro
ess. Furthermore onlyvery few people
an be a
tive at a time when balan
ing. One
an for instan
enot let one designer tune the strategies and let another tune the build ordersas one is very dependent on the other. This is yet another reason why thewhole development of the AI is under an extreme time pressure.2.2 Problem AreaIn the previous se
tion the general problem was introdu
ed by presentinghow the
apabilities of the opponent a�e
t the gameplay and why
urrentAIs are not better than it is the
ase. In this se
tion spe
i�
 problems
on
erning AI in RTS games will be introdu
ed and their
ause will brie�ybe explained.2.2.1 Player Perspe
tiveThis se
tion will introdu
e some of the most
ommon �aws that the playeren
ounters when playing against an AI. First the AI's general la
ks will bedis
ussed, then some
ommon bad de
isions will be listed and lastly somegeneral �aws will be introdu
ed.What Does the AI La
k?In order to see what the AI la
ks in general, it is ne
essary to look at whatwe
all stati
 and dynami
 behaviour.Stati
 Behaviour: This is when the environment or rather
hanges in theenvironment does not a�e
t the
hosen strategy. This does not meanthat the AI only has one strategy, but rather that on
e it has
hosena strategy it will follow it to the letter and nothing
an
hange this.Dynami
 Behaviour: This is when the AI observes the environment andtakes a
tion a

ordingly. It may also be able to re
ord data and storeit over time.Most AIs in RTS games are stati
. Among other things this means thaton
e the player has found one way of defeating the AI, she
an simply dothis again and again. In Star
raft, for instan
e, it was possible to fast te
htowards stealth units and
onsequently surprise the AI. In general, this just

CHAPTER 2. MOTIVATION Page 15 of 273means that the AIs,
urrently used, are stati
, but what the player reallyneeds to ensure a good game play are dynami
 AIs, as they among otherthings will ensure the ability to adapt.Common Bad De
isionsIn this se
tion a few
ommon bad de
isions AIs make will be dis
ussed:Single Units Atta
k: It is
ommon that the AI lets single units atta
k theentire enemy for
es or perhaps laun
h an atta
k on the enemy's mainbase. There are mainly two reasons for this. The player
an in some
ases lure the AI's units away from the main army by atta
king a unitstanding at the edge of the army. The atta
ked unit will then followthe unit that atta
ked it without the rest of the AI's army rea
t. Theother reason
an be that the AI's routine somehow has been disturbed.This
an for instan
e be in form of an atta
k on its base or be
ause itis running low on resour
es.Single File Movement: When moving over large distan
es, all units inthe AI's for
es will move a

ording to the shortest path from startingpoint to destination, even if this means that they have to move in asingle �le. If the destination, for instan
e, is a heavily defended base,the army will arrive one unit at a time, and there is a risk of the basedefen
e being able to kill the units as they
ome.Entry From the Same Point: If the path�nder is the only fa
tor usedto de
ide the dire
tion from whi
h to atta
k the enemy, the AI willalways atta
k an enemy base from the same point. This means thatif the player's base has two entran
es, she only has to defend the onethat is atta
ked while letting the other stand undefended.All these are examples of behaviour that are unfortunate, but just as unfor-tunately all too
ommon in RTS games.General FlawsThis se
tion will present some areas
ommon AIs only
an handle partly ornot at all.Limited Amount of Strategies: The AI in War
raft II (1995) [wara℄ hasthree di�erent strategies available. It
an either atta
k by land, air orwater. It
hooses strategy at the start of the game and it will followthe strategy throughout the game. In its su

essor War
raft III ea
hAI (one AI for ea
h ra
e) only has one strategy. Generally the AIs donot have a very high amount of strategies available as ea
h strategymore or less requires a separate s
ript.

Page 16 of 273 CHAPTER 2. MOTIVATIONCountering: As a dire
t
onsequen
e of the low amount of strategies andthe fa
t that most AIs have a stati
 behaviour,
ountering them isvery easy. On
e the strategy the AI has
hosen has been identi�ed, a
ounter strategy
an easily be pi
ked. The AI does on the other handnot
ounter as it follows a predetermined strategy.Cooperation: There are two s
enarios in whi
h the AI has to
ooperatewith someone: It
an either be
ooperating with another AI or witha player. In most
ases, where the AI has to
ooperate with anotherAI, they a
tually still play as they would have in a 1on1 game ex
eptthat they do not atta
k ea
h other. This is also the
ase in mostgames, where the player and an AI are allied. There are, however,ex
eptions. In War
raft III the AI will mark the pla
e on the mapwhere it intends to atta
k and it will also assist if the partner is underatta
k. In Empire Earth 2 (2005) [EE2℄ the intera
tion is done throughdiploma
y. The two partners sign a
ontra
t, where
ommon atta
korders are des
ribed. In both
ases the
ooperation is not even
lose tothat between two players. The la
k of
ommuni
ation makes it di�
ultto
all it
ooperation at all.2.2.2 Produ
er Perspe
tiveThis se
tion will emphasise and dis
uss some of the design de
isions theprodu
er will have to deal with, developing an AI.Simple AIIn some
ases a simple AI will su�
e. A simple AI does not have to be aneasy-to-beat AI. Some games try to have an aggressive AI so that the AIdoes not have to
ounter, as it sets the agenda. An example of one su
h AIis the one in Star
raft. The AI has an extremely optimised build order andit atta
ks on
e it has rea
hed a prede�ned amount of units. It does this afew times in a row as it rea
hes higher and higher tiers of units, but whenthe player starts to make a lot of expansions, the AI
an no longer keep pa
eand starts to fail, as it no longer has the lead.Stati
 is SafeIt is very di�
ult to make a formal representation of how to evaluate anygiven situation. This, among other things, means that learning is extremelydi�
ult. Even if an AI had a marginally usable evaluation fun
tion, it wouldbe too dangerous to ship the AI while able to learn. Should the evaluationfail even on
e, it
ould result in the total failure of the AI. If the produ
t isstati
, the produ
er knows what she
an expe
t from the produ
t.

CHAPTER 2. MOTIVATION Page 17 of 273CheatingAs already mentioned, the one widely used te
hnique to simplify the AI whilestill a
hieving a relatively reasonable result is to
heat. Cheating is mostlydone through: Full map visibility, unlimited resour
es, or free units. Thedownside of
heating is that it is easy for the player to dis
over that the AIis
heating, and on
e this is dis
overed, the player will not really
onsiderlosing, for losing be
ause the game was not played on equal terms. Thismeans that two of the
riteria for providing gameplay have been severelyweakened (gameplay rule 3 and 4).Fast AIAs mentioned earlier, the AI in for example Star
raft is very optimised, thatis, workers do not waste time between building et
. It is espe
ially noti
eablein the start up phase of the game. Players
annot keep pa
e with this. Ifthe AI
ould keep this up throughout the game, it would have a sizeableadvantage. If restri
ting the AI in this �eld just be
ause players
annot keepup, the design will just have opened a huge design dis
ussion about whetherthe AI should be optimal or simulate human behaviour.Multiple Units ControlledA player will be able to build new buildings in her base, s
out unexploredterritory, and move her army into battle at the same time. This level ofsimultaneous a
tions requires a bit of training and more simultaneous a
tionswill in turn require even harder training. The AI, however, does not havethis restri
tion. It
ould if needed give new orders to every single unit itowns. When de
iding how many units the AI may give new orders at a time,the designer must keep in mind that there is a �ne line between reasonabledesign de
isions and what the player will
onsider
heating. Currently AIsdo not handle this, but just give the orders that are needed.Builder AIAnyone who has tried to play against an AI in Age of Empires would knowthat a war against a "builder AI"
an take a very long time. When
allingthe AI for a "builder AI" it is meant that the AI will
onstantly try to expandif it has the resour
es. If the player �nds the AI's base and destroys it, thebattle is still far from over. The AI
ould already have 20 small settlementsspread all over the map. After that, the �ght will never really be a �ght, butrather a long game of hide and seek. This form of behaviour is as su
h theoptimal way of playing - always trying to survive and hope for a
omeba
k,but on the other hand in most
ases, it is just delaying the inevitable, with

Page 18 of 273 CHAPTER 2. MOTIVATIONthe result that all players get bored. This is yet another issue where theoptimal solution and the wanted solution
ould be in
on�i
t.Unit CompositionAs already mentioned earlier the AI is not able to
ounter when it is a stati
solution. This means that given the
hosen unit
omposition the playershould be able to �nd a perfe
t
ounter for what the AI has built. In orderto
ounter this, a widely used te
hnique is to build a little of everything sothat every thing in turn
an be
ountered (if only by a small for
e). Thisdoes on the other hand mean that no matter what the player builds she willhave a
ounter to something in the AI's army. In War
raft III, where supportunits play an important role, this kind of mixed group is quite su

essful,espe
ially when the army grows over a
ertain size. An optimal solutionwould of
ourse be to let the AI �nd a
ounter to what it meets, but thatwould require a dynami
 AI.2.3 Current SolutionsSo far the reader has been presented to a series of problems with the AIthat is apparent to the player and a number of
heap solution te
hniquesthat have been used in games in an attempt to improve the AI. This se
tionwill present a number of solutions that the player has found to deal with theproblems and some solutions the produ
er
urrently is using to improve theAI's performan
e.2.3.1 Player Perspe
tiveAs already mentioned in the previous se
tion, the player has found a wayto ensure a relatively good gameplay: Multiplayer. This se
tion will explainwhy multiplayer indeed gives a better gameplay, and it will also present someof the fa
ilities the players use.Dynami
 BehaviourThe reason, why multiplayer gives a better gameplay than the AIs found inthe games so far,
an be summed up in two words: Dynami
 behaviour. Aplayer will learn from mistakes and generally make better de
isions than theAIs
urrently found in games. When a player plays against another playerit is mu
h harder to anti
ipate what the opponent will do, ex
ept that itwill probably be something that will bring the player into the worst possiblesituation. Multiplayer is not only about one player playing against anotherplayer, but just as mu
h a team playing against another team. In teamgames the intera
tion and
ooperation aspe
t adds to the gameplay. Having

CHAPTER 2. MOTIVATION Page 19 of 273a stati
 AI as partner usually gives a bad experien
e, while player-player
ooperation
an add a
ompletely new aspe
t to a game.LANLo
al Area Network (LAN) parties are gatherings of players that meet toplay one or several di�erent games. The number of players
an vary froma few to several hundred. The small LAN parties are usually so
ial partiesamong friends that meet to play against ea
h other to have fun. The largerLAN parties often feature tournaments where single players or teams ofplayers will
ompete against ea
h other. The so
ial aspe
t of LANs only adda positive e�e
t to the gameplay as the opponents are
hara
terised and nolonger fa
eless entities.Communities on the InternetWith the advan
e of the Internet, players have gotten together and founded
ommunities in whi
h they play with and against ea
h other and share ex-perien
es. Indeed entire games genres like MMORPGs have been based onthis. The
ommunities extend the gameplay from being entirely dependenton the game itself to being heavily in�uen
ed by the players, thus makingit more dynami
 in nature. Some produ
ers have embra
ed this idea andmade servers available to the publi
. One example is battle.net that is theportal Blizzard Entertainment is using for most of its published games thatin
lude multiplayer fa
ilities. The player will simply
onne
t to battle.net[bat℄ where she will be able to
reate and join games open for other players.Here winning games will also result in a better pla
ement in a server rankingsystem, whi
h in itself
an present a major
hallenge. It is, however, notonly the produ
ers themselves that make servers available to the players.There are indeed also a myriad of private servers. These are everything from
ommer
ial pay per use servers like Kali.net[kal℄ to servers owned by
lans2.2.3.2 Produ
er Perspe
tiveThis se
tion will present the solutions the produ
ers have
hosen to theproblem.Multiplayer SolutionsFollowing the development, some produ
ers have
hosen not to in
lude thesingle player part of the game at all. Instead they have fo
used solely on themultiplayer part. This is mostly seen in Role Playing Games (MMORPGs)and in First Person Shooters (FPS). Doing this they will not be entirely rid2Groups of players united by the
ommon interest in a game

Page 20 of 273 CHAPTER 2. MOTIVATIONof making AIs to their games, but they
an in turn be relatively simple asthey are not vital to the intended gameplay.Story TellingOther produ
ers mostly of FPS and RTS games have
hosen to fo
us on thesingle player part as well. The simple AIs are
omplemented by extensivestory telling. The player follows a story line and the AI
an be heavilys
ripted to
arry out events as the story unfolds. This way the produ
ers
an
ontrol the environment to su
h an extend that the AI
an be s
riptedto an a

eptable level of gameplay. Even if the player does mind that the AIis s
ripted and
heats, she will still play the single player part of the game,if the story is good.Good AILately a few produ
ers have started to fo
us on making the AI better. Thisis an obvious, but di�
ult solution to the problem. One of the �rst stepstowards an a

eptable AI is letting the AI play using the same rule set asthe player. In other words, the AI should not be allowed to
heat. EmpireEarth II atta
ks one of the most
ommonly areas in whi
h the AI
heats bya
tually making the AI s
out instead of having the entire map visible at alltimes[FKL05℄. Other games try to in
lude advan
ed features like
ounters(Age of Mythology (2002) [aom℄), retreating when outnumbered (Armies ofExigo) and using templates to obtain a well designed base (War
raft III).Ea
h feature is a step in the right dire
tion, but there is still mu
h to bedone, before the result is good enough to
ompete with the level of gameplayfound in multiplayer games.The Ideal SolutionIn order to improve the gameplay found in the single player part of a gamedrasti
 measures must be taken. No matter how s
ripted an AI is, it will stillbe too stati
 to o�er the player a serious
hallenge if playing on the sameterms. In reality it will be impossible to s
ript an AI to su
h a degree thatit will be able to a

ount for every possible situation. Instead the produ
ermust ask herself what the goal really is? The player is improving gameplayby playing against other players, thus getting a dynami
 opponent. Canthis idea also be applied to single player? That is,
ould the solution be tosimulate an a
tual player instead of a
hain of events? In this way the AIshould be built to simulate the a
tual de
ision pro
ess that a player goesthrough when playing a game. This way the gameplay should be improvedin the same way as in a multiplayer game. The AI must however still be ableto adjust the di�
ulty level so that it still follows the rules of gameplay.

CHAPTER 2. MOTIVATION Page 21 of 2732.4 New SolutionThis se
tion will present the basis of the ideal solution outlined in the previ-ous se
tion and
onsequen
es that the solution will have on the players andthe produ
tion.2.4.1 Player Perspe
tiveThis se
tion will present the
onsequen
es this solution will have to theplayer.AI and Story LineAn AI that plays like a human player will have a signi�
ant impa
t on thesingle player part of most games. It will mean that the player will
onstantlybe
hallenged as if it was a multiplayer game and on top of this, she will be
arried through a story line as it is normal for single player games. It willalso mean that the player will be able to play the same game several timesand though the story might be the same, one game will always di�er from thelast (given that the AI learns from previous games). In a non-story-related
ontext (
ustom games), the player will be able to enjoy playing against anopponent in an environment de�ned by herself. This
ould for instan
e beuseful when testing a new strategy or when playing o�ine in general.Team GamesAnother appli
ation for an advan
ed AI is team games. If the players are ofan uneven number an AI would be able to step in and even the teams. Thiswill also mean that a single player will be able to play team games o�ine byapplying three or more AIs. When it
omes to
ooperation, the player mustbe able to
ommuni
ate with the AI. In
urrent RTS games,
ommuni
ationbetween player and AI has been very limited. In War
raft III the AI willrespond to the player being atta
ked. If the player is atta
ked, the AI willteleport to the player's base and assist in pushing ba
k the enemy for
es andif the player is atta
king, it will rush to help in the atta
k. Empire Earth 2presents one of the most advan
ed player-AI
ommuni
ation systems. Theplayer
an a

ess a strategy window
ontaining an overview map in whi
hshe
an draw arrows dire
ting friendly for
es. When the orders are a

eptedby the AI, it will try to
arry out the plan. However, in order to be ableto
ooperate at the same level as a player, the
ooperation interfa
e has tobe more extensive allowing somewhat the same kind of
ommuni
ation asobserved between players.

Page 22 of 273 CHAPTER 2. MOTIVATION2.4.2 Produ
er Perspe
tiveIn this se
tion a number of options available to the produ
er will be pre-sented.Starting On The AIThe �rst thing the produ
er will have to de
ide is whi
h approa
h she wantsto utilise to build the AI. The normal approa
hes are:Making the AI From S
rat
h: The �rst thing that
omes to mind isto build the AI from s
rat
h. It is, however, also the approa
h thatrequires the most work. Not only do the developers need to �gure outa way to stru
ture the AI, but everywhere they look there will be aseries of new problems, to whi
h they have to design solutions. Thedevelopers will gain experien
e throughout the pro
ess, whi
h they mayput to use in a later produ
tion depending on the similarities betweenthe two.Libraries: The produ
ers may not have to write the entire AI by them-selves. As with experien
e, it may be possible to reuse
ode from aprevious produ
tion or perhaps a
quire useful libraries from a thirdparty. Due to the fa
t that they have already been in use, these toolswill be well-tested and if they are from a previous produ
tion, the a
-tual developers may already be familiar with them. The downside usinglibraries is that the developers are still for
ed to design a stru
ture -indeed the entire
on
ept for the solution.AI Frameworks: If the produ
er de
ides to use one of the
urrent AIframeworks, she is fa
ed with the other extreme to making the AI fromthe bottom. The produ
er will be working with a very rigid stru
ture.The solution will be based on a single problem solving te
hnique, asfor instan
e SOAR [Soa℄ that is a planning system.One of the reasons why
urrent AIs are la
king good performan
e mayvery well be that the produ
er is utilising the "Making the AI From s
rat
h"approa
h. If the developers indeed have to build the AI from the s
rat
h,they will often end up with a solution that has to be simple in order tomeet the deadline. Using libraries usually means that the AI will have a fewadvan
ed features while still essentially being the AI that would have beenbuild using the "From s
rat
h" approa
h. If the produ
er uses one of the
urrent AI frameworks for the AI, the produ
tion team will have a lot moretime to do balan
ing and �xes as the AI development mainly will
onsists offeeding the framework data so that it �ts to the
urrent game. The problemusing an AI framework is that it tries to present a general solution to allgames (like planning). That is the same thing as assuming that a player will

CHAPTER 2. MOTIVATION Page 23 of 273be able to master all games, if she masters one game and then is told thebasi
 rules of the rest.Di�erent Genres - Di�erent Fo
usesIn our pre-master thesis[FKL05℄ we identi�ed four di�erent genres withinthe RTS genre through a series of tests. Ea
h genre is de�ned by the playingstyle used in it. The genres are as follows:
• The Command & Conquer Genre: Command & Conquer, Red Alert,Warzone 2100 (1999) [war
℄, and Dark Reign 2 (2000) [dar℄.
• The Age of Empires Genre: Age of Empires and Empire Earth.
• The Star
raft Genre: Star
raft and Armies of Exigo.
• The War
raft Genre: War
raft II and War
raft III.The genres are named after the games that de�ned the genres. In most
asesthe game was the �rst popular game of that parti
ular playing style. Thetest that was the basis of these de�nitions
an be found in Appendix E.1.In the test, the
apabilities of the AI in a series of games were tested in avariety of important tasks. When looking at these
apabilities, it is possibleto see whi
h areas are more important than others in the di�erent genres.This means that the produ
er will have to be very
ons
ious about whi
h
apabilities are important in the game she is developing.2.5 Dis
ussionThe la
k of
hallenges in the single player AI has driven the player to seekother means to �nd
hallenges. They have solved this problem by playingagainst other players. But what would happen if the AI was
apable ofplaying like a human player? An advan
ed AI will have a serious impa
t onthe gameplay of both single player games as well as multiplayer games. The
ombination of story telling and the
hallenges a dynami
 AI will providewill strengthen the single player part and a
apable AI will be able to assistin team games.When developing one su
h AI, the produ
er will have to
hoose betweenthe la
k of stru
ture in using libraries or the rigid stru
ture of a general so-lution framework. Current frameworks provide a general solution te
hniquethat the produ
er must �t to the game and the libraries provide no stru
-ture at all [Soa℄. The di�erent playing styles in di�erent RTS games meanthat the player or the AI have to fo
us on di�erent aspe
ts of the gamesdepending on for instan
e whi
h genre it belongs to, the environment andthe opponent. To our knowledge there are no frameworks that are able to

Page 24 of 273 CHAPTER 2. MOTIVATIONhandle this in the RTS genre and only a few libraries that handle varioussub-problems. Under all
ir
umstan
es, identifying a good stru
ture is the�rst step towards a good solution. As already mentioned, the player foundsatisfa
tion in playing against other players, as the other players are ableto handle most of the problems outlined throughout this
hapter. We willtherefore use the player herself as a foundation for building AIs able to meetthe
hallenges. This will be done by setting up an abstra
t model for how aplayer plays. Furthermore the problems identi�ed throughout this
hapterwill also be used to set up design goals for the framework.

CHAPTER 3. HUMAN MODEL Page 25 of 273
Chapter 3Human ModelBefore trying to build a human-like AI, it is important to
onsider how ahuman player plays RTS games. What kind of knowledge does she possesbefore game start, and how is this knowledge used in the game? Whi
hgeneral tasks are the human player thinking about when playing, and howdo these tasks in�uen
e ea
h other when making de
isions? The idea is notto model the a
tual thinking pro
ess of a human playing RTS games as itis very
omplex and will not provide a distin
tion of di�erent tasks, butrather to build a more stru
tured human model with a fo
us on de�ningtasks and the relationship between them. The di�erent tasks de�ned andthe relationship between them is partly based on previously de�ned areas inRTS resear
h[S
h04℄ [CBS05℄ and partly on our own experien
e from years ofplaying and from wat
hing professional gamers play RTS games. The modelwill fo
us on mainstream RTS games, whi
h in
ludes the games in the gen-res presented in Se
tion 2.4.2. In previous resear
h, Brian S
hwab[S
h04℄de�nes the areas town building, opponent modelling, resour
e management,s
outing and diploma
y systems as important areas, while Mi
hael Chunget al. [CBS05℄ de�nes the planning areas in RTS games as being mi
ro-management, ta
ti
al planning and strategi
 planning. This model will usesome of these previously de�ned areas. We are not
laiming that the pre-sented model is the only true model for a human playing RTS games, butit is in our opinion a good representation on whi
h we
an base our furtherwork. Furthermore, it is hard to test the
orre
tness of these kinds of mod-els as all humans play di�erently and take di�erent things into
onsiderationwhen making de
isions. We
laim however, that the model presented in this
hapter is a reasonable representation of how most people play RTS games.Se
tion 3.1 will begin by presenting the knowledge a player has before a gamestarts, and then Se
tion 3.2 will pro
eed to present the knowledge a playerhas and maintains during a game. In Se
tion 3.3 we will identify key tasksthat a player must solve to play at a human level, and then determine whi
htasks are in�uen
ed by other tasks or knowledge bases in Se
tion 3.4. This

Page 26 of 273 CHAPTER 3. HUMAN MODELwill result in a human model of how a typi
al player plays RTS games.3.1 Prior KnowledgeThe following presents the knowledge a player has before starting a game.Ea
h of these areas will in�uen
e how the player will play the game.Map Knowledge: This area represents knowledge about the map terrain,map size, resour
e lo
ations, strategi
 and ta
ti
al important lo
ationset
.An example is in Star
raft, where the knowledge of a high groundbehind an expansion
an easily de
ide the out
ome of a game. A terranplayer would be able to build bunkers, turrets and pla
e siege tankson the high ground, making it virtually impossible for the opponentto make an expansion at this spot, be
ause of the advantage of highground in Star
raft.Enemy Knowledge: Experien
es against players throughout severalgames will give the player an idea of how the enemy player thinksand what kind of strategies she uses. This prevents the player fromlosing to the same strategies again and again against the same oppo-nent, as she is
apable of trying new things and thereby
ounteringthe opponent's strategy. This of
ourse only applies to players of equalskill level in all areas, be
ause knowing the opponent's strategy willoften not be enough for novi
e players to beat professional players.Knowing that an opponent has a tenden
y to get air units very fast,the player would most likely try to rush her or at least prepare for thisstrategy by building some defensive buildings or units able to hit airunits.Gametype Knowledge: Depending on whether the game played is a teamgame, a 1on1 game or an FFA (Free For All) game, the strategi

on-siderations
hange.For instan
e, in FFA games the player needs to be mu
h more aware ofthings happening around the map that does not dire
tly involve herself.Building the right
ounter is also mu
h more di�
ult as opponents
anhave vastly di�erent armies.Known Strategies: Most players have a number of strategies they haveeither invented for themselves, learned from wat
hing other players orfound on the Internet. This area a�e
ts both the number and qualityof strategies used by the player, but also the
apability of predi
tingthe opponent's strategy, and knowing how to
ounter it.

CHAPTER 3. HUMAN MODEL Page 27 of 273Knowing just one very e�e
tive strategy
an in some games make aplayer win a lot of games. In for instan
e Star
raft, knowing only afast air strategy
an bring a player a lot of vi
tories by surprising theopponent and requires relative little mi
romanagement.Known Build Orders: In all RTS games the start of the game is very im-portant and an e�e
tive build order
an prove invaluable. The buildorder de�nes in whi
h order to build everything su
h as workers, build-ings and
ombat units, and also spe
i�es what ea
h worker should bedoing at any given time. A build order is often used in
onne
tionwith a
ertain strategy trying to maximise the player's resour
es andgetting to a
ertain point in the strategy as fast as possible.The importan
e of build orders
an be easily seen in Star
raft, wherean e�e
tive rush or fast-air strategy depends heavily on the build orderused. These kinds of strategies requires that they are
arried out asfast as possible with the largest for
e possible, and build orders play avital part in a
hieving this.Game Spe
i�
 Knowledge: Depending on the game in question, a playerwill have knowledge about the di�erent units, buildings, resour
es andresear
h options available, as well as the possible a
tions for ea
h par-ti
ular unit and building.Knowing the details of units, buildings, resour
es and resear
h optionsin a parti
ular game is essential to playing the game at a human level.Without this information a player would for instan
e not be able todetermine how to build a
ertain unit, be
ause the player would needto know the resour
e requirements for that unit as well as possible unitor building dependen
ies for that unit.3.2 In-Game KnowledgeWhile the former se
tion fo
used on knowledge that a player has before agame starts, this se
tion will fo
us on the knowledge that a player has and
olle
ts during a game. Ea
h of the following four de�ned areas will have animpa
t on the de
isions a player makes throughout a game:In-Game Enemy Knowledge: During a game, a player will always havean idea of what the opponent is doing. This
ould both be in termsof what strategy she is doing, but also enemy unit movements anda
tivities around the map.This
ould for instan
e be the fa
t that the opponent has built a
ertainbuilding or that the majority of her army was spotted
lose to theplayer's main base. Furthermore, a player
ould have spe
i�
 beliefs

Page 28 of 273 CHAPTER 3. HUMAN MODELabout when and where the enemy is going to atta
k, based on what ithas seen from the opponent so far.Unit and Building Information: The player will at all times know whatkind of units and buildings she has, and what they are
urrently doing.This in
ludes building queues, unit attributes, assigned a
tions et
.This information is used during games to for instan
e withdrawwounded units, plan what di�erent units should be doing after their
urrently assigned a
tion et
. The player
ould also use this informa-tion to obtain the position of all friendly army units and from thisdi
tate a spe
i�
 ta
ti
 to be used in battle.Own Strategy: This in
ludes all strategi
 aspe
ts the player may be
on-sidering. It may be that the player has a
ertain strategy she is workingtowards, and she may have a very spe
i�
 plan of what units and build-ings should be produ
ed to a
hieve this.This area will mostly be in the form of plans for di�erent a
tivities likehow to build the base, when to expand, how many workers to buildet
. It
ontains knowledge about both the
urrent strategi
 status andwhat the goal for the player is, strategy-wise.In-Game Map Knowledge: During the game, the map that is played onmay
hange depending on game spe
i�
 details or maybe the playerswill modify it somehow. This knowledge base will store all things onthe map that
hanges during a game.The use of the knowledge base will vary from game to game, but almostall RTS games features �nite resour
e amounts and the player mustkeep tra
k of where and how many resour
es are left around the map.In some games, for instan
e War
raft III, the player must also keeptra
k of whi
h NPCs that have been killed around the map and onwhat the shops and mer
enary
amps have to o�er.3.3 RTS TasksThe following des
ribes ten RTS tasks that a player will en
ounter whenplaying any modern RTS game.Strategi
 Planning: This is the overall planner. It is the task that isequivalent to that of a general. More spe
i�
ally, the task de
ides whatthe overall plan is for longer periods of time and is hen
e responsiblefor long-term planning.This
an be things like de
iding to atta
k at a
ertain point or
reatingan army
onsisting of a parti
ular list of units.

CHAPTER 3. HUMAN MODEL Page 29 of 273Ta
ti
al Planning: The task
an be
onsidered the job of a sergeantwho takes orders from the general (Strategi
 Planning). This task ismainly responsible for the ta
ti
s in battles and for keeping the ta
ti
aloverview at all times.During battles this task in
ludes de
isions like reinfor
ing a �ank, tak-ing advantage of the higher ground, retreating et
. Furthermore, it forinstan
e takes
are of keeping armies in formations during movementto avoid single-line formations.Mi
romanagement: This task is to issue orders to ea
h individual unitbased on Ta
ti
al Planning and Strategi
 Planning, and the orders are
arried out instantly.This is everything from fo
us �re on enemy targets to pulling ba
k hurtunits and using support units.Reasoning: This task is fo
used on reasoning about observations of the en-emy. It analyses all a
tivity from the opponent and thereby determineexa
tly what the opponent is doing or trying to do. The task's basi
job is to provide solid information for the Strategi
 Planning task tobase its de
isions on.For instan
e if the player has seen an enemy worker running past hersomewhere outside the enemy base, it
ould mean that the enemy istrying to build an expansion or perhaps atta
k the player's base usingthe o�ensive
apabilities of defensive buildings. Another example isif the player sees a unit produ
tion fa
ility for air units in the enemybase, it
ould be wise to produ
e a number of anti-air units or sendout s
outs to �nd out how many air units the enemy already has andthen take a
tion a

ordingly.Opponent Modelling: A player must at all times keep a model of theopponent. This in
ludes not only what the enemy
urrently has interms of buildings, units and resear
h upgrades, but also more abstra
tbeliefs about her
hosen strategy and her
urrent strategi
 situation.When making de
isions about what strategy or ta
ti
 to use in a game,it is essential to have a good idea of how the opponent's army is
om-posed and what her situation is like. In War
raft III for instan
e,the opponent model
ould
onsist of things like army
omposition,te
hnology level, in
ome rate, upkeep estimate, resour
e estimates et
.Essentially, everything that has a strategi
 in�uen
e should be a partof the opponent model built during a game.Resour
e Management: Resour
e Management also in
ludes resour
egathering. This task in
ludes determining, whi
h resour
es are re-quired, and optimising the gathering of these resour
es.

Page 30 of 273 CHAPTER 3. HUMAN MODELIf the Strategi
 Planning task has de
ided that a number of a
ertainunit is to be produ
ed, the Resour
e Management task has to makesure that this
an be done as fast as possible by anti
ipating resour
erequirements. If for instan
e the spe
i�
 unit demands a lot of lumberthat is not in store at the moment, the resour
e manager may have toreassign some workers to gathering lumber ahead of time. The resour
emanager also has to �gure out the optimal way to gather resour
esusing the least number of workers.Base Building: As the name hints this task is responsible for building thebase. This has two aspe
ts: Building the right buildings and pla
ingthem
orre
tly. To pla
e buildings
orre
tly the player must further-more have some kind of plan about whi
h buildings are soon to bebuilt.Building the right buildings is
losely related to the
hosen strategy. It
ould also be in the
ase that the player has more money than normaland it would be an advantage to build another unit produ
tion fa
ility.Pla
ement of buildings
an be more
omplex. This is often a matterof pla
ing defensive buildings in good positions
overing the base orpla
ing harvesting buildings near resour
es allowing for faster resour
egathering.S
outing: Most modern RTS games have either one or two layers of Fogof War. In order to support other task's ability to make good de
i-sions, the player has to send out s
outs. This also in
ludes the taskof sele
ting the unit to s
out with and de
iding how often s
outing isne
essary.S
outs
an be used to �gure out what is happening in the enemy base,dis
over expansions or keep tra
k of the enemy army's movement. Thede
ision about whi
h unit to send
ould depend on the range of sightand speed of the unit and also whi
h and how many resour
es are lostby
hoosing that parti
ular unit to s
out.Learning: From game to game a player will
onstantly learn new things. Itin
ludes new strategies, opponent models and e�e
tiveness of
ertainstrategies against other kinds of strategies. The player would have toevaluate the game played either during or after the game, and fromthis infer whi
h
riti
al situations in the game determined the winner.If a player plays against the same opponent a
ouple of times, she mightre
ognise a pattern in how the opponent thinks or just �nd a
ertainway to beat her. It
ould be that the opponent has a tenden
y to rush,in whi
h
ase a strategy of moving fast up the te
hnology tree would bea bad idea. Also, by being able to learn strategies from the opponent,it is possible for the player to use these strategies at a later time when

CHAPTER 3. HUMAN MODEL Page 31 of 273
onfronted with the same situation that this parti
ular strategy wassu

essful in handling.Cooperation: In team games the players' task is to work together and �ndstrategies, where ea
h player
omplements ea
h other in the best pos-sible way. Furthermore, a lot of
oordination is required to ensure theright ta
ti
al de
isions from ea
h player during big battles. Coopera-tion also in
ludes the task of de
iding if and when to share resour
es,and in FFA games, the task of �guring out when to betray an ally andwhen the player herself is being betrayed.A typi
al
ooperation s
enario would be for one player to produ
e meleeunits and the other to produ
e ranged units. This spe
ialisation forea
h player allows for building only
ertain kinds of buildings, as wellas only requiring to upgrade a
ertain type of weapon. Ta
ti
al
oordi-nation
ould be things like letting one player lurk out the enemy froma small passage, while the other players remain hidden until suddenly
oming up from the behind of the enemy. Betrayal of an ally
ould befor a player to indi
ate that they should both atta
k at a
ertain point,and then just not show up leaving the betrayed ally alone against theenemy.3.4 Human ModelEa
h of the tasks mentioned above are in�uen
ed by several prior- and in-game knowledge bases, as well as other tasks. In the following a model of howall tasks in�uen
e ea
h other will be presented. An illustration of the model
an be seen in Figure 3.1 or in Appendix K.1. Cir
les represents tasks andarrows indi
ate whi
h tasks in�uen
e ea
h other. The small boxes atta
hedto ea
h task shows whi
h knowledge bases in�uen
e that parti
ular task.The numbers in ea
h of the small boxes refer to the numbers in the largePrior Knowledge and In-Game Knowledge boxes on the right of the �gure.Note that for illustration purposes, an observation task has been in
ludedto indi
ate whi
h tasks are in�uen
ed by observations during a game. Inthe following ea
h task's role in the model will be explained along with adis
ussion of whi
h knowledge bases
ontributes to solving that parti
ulartask:Strategi
 Planning: This task relies heavily on the Reasoning task to �g-ure out what the opponent is doing, as most games in
ludes ways of
ountering all possible strategies. When this has been determined,the Strategi
 Planning task relies on several di�erent knowledge basesto sele
t the best possible strategy in the given situation. The mostimportant prior knowledge base is naturally Known Strategies. Thisknowledge base basi
ally
ontains all known strategies and all
ounters

Page 32 of 273 CHAPTER 3. HUMAN MODEL

Figure 3.1: A human model for playing RTS gamesto known strategies, and it is essential for this task to be solved theright way. Besides this, the task uses knowledge from three other priorknowledge bases:Map Knowledge: Map Knowledge provides map spe
i�
 details thatin�uen
e the
hoi
e of strategy.Build Order Knowledge: Build Order Knowledge provides morespe
i�
 details of how to exe
ute the beginning phase of a
er-tain strategy.Game Spe
i�
 Knowledge: Finally, Game Spe
i�
 Knowledge pro-vides the details of the parti
ular game in question, as strategiesvaries from game to game.The Strategi
 Planning task likewise takes into
onsideration all fourtypes of in-game knowledge, as these knowledge bases represents whatis
urrently going on in the game, and this obviously has a great e�e
tof what strategy to
hoose.Ta
ti
al Planning: Ta
ti
al Planning is primarily in�uen
ed by the Strate-gi
 Planning task. This is be
ause the primary obje
tive of the player'sarmy is given by the Strategi
 Planning task, while the part of a
tually
arrying out the obje
tive is left to the Ta
ti
al Planning task. To solvethis task, the player must rely heavily on Game Spe
i�
 Knowledge,whi
h provides details about units in the game and the a
tions they

CHAPTER 3. HUMAN MODEL Page 33 of 273are
apable of performing. Furthermore, the player uses the four dif-ferent in-game knowledge bases to obtain knowledge about the
urrentsituation in the game.Mi
romanagement: This task primarily relies on Ta
ti
al Planning to in-di
ate how it should
arry out its task. Furthermore, it uses GameSpe
i�
 Knowledge to determine unit hitpoints, armour types, atta
ktypes et
. whi
h are essential knowledge for the task to be
arried outsu

essfully. The task does not need to know the details of the player'sstrategy, but it does need to use information from the other three in-game knowledge bases: In-game Enemy Knowledge, Unit and BuildingInformation, and Dynami
 Map Knowledge.Reasoning: The Reasoning task primarily uses the opponent model builtby the Opponent Modelling task. This is where everything opponent-related is obtained from. Reasoning about this information, however,requires that the player must use several di�erent prior knowledgebases:Gametype Knowledge Gametype Knowledge in�uen
es reasoningbe
ause an opponent's a
tions should be interpreted di�erentlydepending on the gametype.Enemy Knowledge: This knowledge base is important be
ause theplayer will be able to re
ognise patterns in an opponent's strategy,whi
h will often indi
ate moving towards another strategy.Map Knowledge: Map Knowledge in�uen
es Reasoning be
ausesome strategies are used very often on some maps and very seldomon others.Game Spe
i�
 Knowledge: Finally, Game Spe
i�
 Knowledge pro-vides game details su
h as te
hnology trees to help reason aboutthe purpose of di�erent buildings and units.Finally, In-game Enemy Knowledge is used to reason about the oppo-nent's movement around the map.Opponent Modelling: This task must
onsider all observations from thegame as well as the in�uen
e from two tasks: S
outing and Reasoning.Results of s
outing missions must be used when building a model of theopponent, and the result of reasoning about the opponent will result innew beliefs about the opponent, whi
h should also be re�e
ted in theopponent model. An opponent model should depend on the game inquestion, and this is obtained from Game Spe
i�
 knowledge. Besidesthis, the only knowledge base used is In-Game Enemy Knowledge, fromwhi
h the player
an retrieve information about the enemy used tobuild the opponent model.

Page 34 of 273 CHAPTER 3. HUMAN MODELResour
e Management: Resour
e Management is primarily in�uen
ed bythe Strategi
 Planning task. A strategy may in
lude spe
i�
 detailsthat this task must try to a

omplish, like for instan
e building anexpansion or gathering a lot of a
ertain resour
e. Out of the priorknowledge bases, the player needs Map Knowledge to determine re-sour
e lo
ations and the amount of resour
es available in a
ertainlo
ation. Furthermore, the player will need all four in-game knowledgebases to solve this task su

essfully:In-Game Map Knowledge: The player needs to know how resour
elo
ations and amounts
hange during a game.Own Strategy: The details of the player's overall strategy will berequired to better manage resour
e gatheringIn-Game Enemy Knowledge: The lo
ation of enemy units plays arole when de
iding where it is possible to harvest resour
es.Unit and Building Information: When assigning a
tions to work-ers it is essential to know where and whi
h workers are
urrently
arrying out whi
h a
tions.Base Building: This task is likewise primarily in�uen
ed by Strategi
 Plan-ning. The
hosen strategy will have a large e�e
t on how the baseshould be
onstru
ted. Some strategies may require a very
ompa
tbase able to fend of early atta
ks, while others may require a lot ofanti
ipation in terms of having room to build the required buildingsin the right pla
es. The task only requires two prior knowledge bases:Map Knowledge, whi
h is used for building pla
ement, and Game Spe-
i�
 Knowledge, whi
h are needed to de
ide whi
h buildings to build.Furthermore, a player
an use all four in-game knowledge bases:Dynami
 Map Knowledge: As some games in
lude dynami
 pla
e-ment of resour
es, this knowledge base is used to keep tra
k of this,so that a player
an take this into
onsideration when
onstru
tingbuildings.Own Strategy: Be
ause of the strategy really di
tating what build-ings to build, the player must know of this to anti
ipate how to
onstru
t the base in the best possible way.In-Game Enemy Knowledge: When
onstru
ting new buildings,the player must be aware if any enemy units are in the area,be
ause buildings under
onstru
tion are often very vulnerable.Unit and Building Information: This knowledge base is used todetermine whi
h units are to build di�erent buildings and to de-termine whether it has the resour
es to support produ
ing fromfor instan
e more than one barra
ks.

CHAPTER 3. HUMAN MODEL Page 35 of 273S
outing: The S
outing task is in�uen
ed by two other tasks. The Op-ponent Modelling task will result in knowledge of whi
h attributes orvariables of the enemy that are unknown, and should be further in-vestigated. The Strategi
 Planning task will on the other hand givethe player a good idea of whi
h unknown variables may reveal the op-ponent's �nal
hoi
e of strategy. The player will need Game Spe
i�
Knowledge to �gure out exa
tly where to s
out for di�erent things.Finally, the player makes use of two in-game knowledge bases: In-game Enemy Knowledge, when �guring out where to s
out, and Unitand Building Information, when �guring out whi
h units to send on as
outing mission.Learning: This task is a
tive when a player re�e
ts on a game being playedor a game re
ently played. She will think about the opponent's strat-egy, what kind of strategy she needs to
ounter it and how well thisstrategy worked out. Moreover, she will think about the opponent'sa
tions and keep in mind what the opponent tried to do in this game.Spe
i�
 observations about for instan
e the map or some ta
ti
al moveis also remembered, so that she
an use this in a later game. For il-lustration purposes this task is not
onne
ted to the other tasks in the�gure, be
ause it would in reality in�uen
e and be able to improve allkind of de
ision making during a game and hen
e all other tasks. TheLearning task
ould result in learning new information for all of theseven prior knowledge bases ex
ept Game Spe
i�
 Knowledge. It willuse knowledge from all of the four in-game knowledge bases as well asthe spe
ial Observation task shown in the �gure.Cooperation: For a player to
arry out the Cooperation task, a lot of
om-muni
ation with other players must be done. Players may want to
onsult their allies before making any kind of de
ision, as all tasks inthe model
ould somehow in�uen
e the allied players. This means thatnot only is the Cooperation task in�uen
ed by the Cooperation task ofother players, it will also be in�uen
ed by every task in the model.Moreover, it will itself in�uen
e all tasks in the model. In the follow-ing, ea
h task will be des
ribed in relation to how it
an in�uen
e, andthereby also be in�uen
ed, by the Cooperation task:Strategi
 Planning: Allied players should
hoose strategies that
omplement ea
h other well.Ta
ti
al Planning: In battles, allied players should try to help ea
hother as mu
h as possible by for instan
e having one player pro-te
ting the other player's weaker units.Mi
romanagement: If a player knows that her allies will heal allunits in a
ertain area in a few se
onds, she may want to modifyher poli
y for withdrawing wounded units in that area.

Page 36 of 273 CHAPTER 3. HUMAN MODELReasoning: Two players may
ome to di�erent
on
lusions given thesame data, as the knowledge bases they rely on may be di�erent,and hen
e they must
ommuni
ate to
ome to an agreement ofwhat the opponent is doing.Opponent Modelling: In team games it is essential that playersshare the knowledge they observe, so that the players are ableto build more a

urate opponent models.Resour
e Management: Players will sometimes want to share re-sour
es, and sometimes it is bene�
ial for both players if oneplayer harvest the required resour
es and the other uses it.Base Building: Sometimes players will �nd it bene�
ial to buildbuildings in ea
h others bases, and this of
ourse most be
o-ordinated.S
outing: It would make no sense for allied players to s
out for thesame things, as they should rely on ea
h other for informationabout the enemy.Learning: Often players will learn from ea
h other when playing teamgames.3.5 SummaryThis
hapter has presented an idea of how humans play RTS games. Wehave de�ned a number of prior knowledge bases, whi
h a player is aware ofbefore playing, and a number of in-game knowledge bases, whi
h a player isaware of during a game. Then we de�ned ten important tasks that a playermust go through to play an RTS game at a high
ompetitive level. Thisresulted in a model of how humans play RTS games, where tasks and theirin�uen
e on ea
h other is de�ned, as well as ea
h knowledge base's in�uen
eon ea
h task.The human model presented in this se
tion is the foundation on whi
hall further work is based. If all these tasks and interdependen
ies are presentin an AI, we hypothesise that it will be very hard to distinguish it from ana
tual human player. The de�nition of ea
h task and its responsibility willfurthermore make it easier to divide the AI into logi
al modules.

Page 37 of 273

Part IIFramework Design

CHAPTER 4. INTRODUCTION Page 39 of 273
Chapter 4Introdu
tionThis part will present the design of an AI framework for RTS games. Firstthe design goals followed throughout the design will be presented in Se
tion4.1. Then a number of te
hniques and methods used in the design will bedis
ussed in Chapter 5, along with their pros and
ons in developing this kindof framework. This
hapter will also present RTS game spe
i�

on
epts aswell as examples of their use in this
ontext. The �nal
hapter of this part(Chapter 6) will fo
us on exa
tly how the framework is built. We will startby dis
ussing how to
onvert the human model, presented in Chapter 3, intoa suitable framework ar
hite
ture (Se
tion 6.1). Afterwards, the
hosen datarepresentation for the framework will be introdu
ed in Se
tion 6.2.2, and adis
ussion of how to
on�gure and extend the framework will be presented inSe
tion 6.3. Not all framework details of the design will be presented in these
hapters as this will be too extensive. Other design details
an be found inthe appendix and will be referen
ed in the appropriate se
tions. In the �nalse
tion of this part (Se
tion 6.4), we will dis
uss how framework exe
utionis
ontrolled and how it inter-operates with the GDF.4.1 Design GoalsThis se
tion will des
ribe the design goals of the proje
t. In Chapter 2 severalproblems were identi�ed as being responsible for the relatively poor standardof AIs in RTS games. This se
tion will translate these problems into designgoals that should re
eive spe
ial
onsideration when de
iding on a design ofa framework aiding developers building AIs for RTS games. In the following,four di�erent design goals will be presented, along with an explanation ofwhat ea
h of them means for the design pro
ess.Improved AI: The framework should help produ
e better AIs than theindustry standard today. This essentially means that the frameworkmust provide advan
ed te
hniques and methods for
reating strong AI

Page 40 of 273 CHAPTER 4. INTRODUCTIONopponents. Furthermore, they must be adaptable to games of di�erentgenres within RTS and be able to work when developing many di�erentkinds of AIs. This requirement also means that the framework shouldattempt to provide methods for solving as many of the tasks de�nedin the human model as possible.Redu
ed Development Cost: For an AI framework to be usable in theindustry, it must be able to redu
e the development
ost of
reatingAIs. A way to do this is by
reating a
omplete AI solution, so thatan RTS game developer does not need to do anything AI related otherthan
onne
t the AI solution to the GDF and
on�gure it to work inthe game being developed. This means that the framework should be
reated to handle all AI a
tivities, whi
h means that no AI program-mers or developers are ne
essary to use the framework. Furthermore,the framework should in
lude all parts of the AI that do not
hangefrom game to game, and provide standard implementations of the ar-eas that are
ommon in most games. In this way the AI developershould be able to fo
us on game spe
i�
 details and on areas that areimportant for the AI in the game being developed.Shift of Workload: In the late stages of a game proje
t, the programmersare often very busy getting the game to work properly, while the de-signers have more or less already done their job. As already dis
ussedin Se
tion 2.1.2, shifting the workload of AI development towards de-signers will not only redu
e development time, but also leave designersto do what they do best -
reating good gameplay. To allow for thisshift of workload, the framework must provide a easy-to-use
on�gura-tion system, whi
h allows for inexperien
ed programmers to work onit.Stru
tured Overview of the AI Development Pro
ess: The frame-work should provide a stru
tured overview of the di�erent kinds oftasks an AI must solve. This allows for fo
using on only
ertainparts of the AI. The human model presented in Chapter 3 allows forthis division of tasks. The
lear distin
tion between di�erent tasksfurthermore allows for letting di�erent people work on di�erent partsat the same time, without them needing to
oordinate their e�orts.These four design goals will guide the design for the rest of the report.

CHAPTER 5. DESIGN TECHNIQUES Page 41 of 273
Chapter 5Design Te
hniquesTo a
hieve the design goals outlined in Se
tion 4.1, we have de
ided to makeuse of several well known te
hniques for
reating software. The �rst we willdes
ribe is Frameworks, whi
h is an important te
hnique for re-using soft-ware and the ar
hite
ture behind it. The se
ond we will present is EventBased Systems, whi
h are often used as a
ommuni
ation te
hnique betweenseparate obje
ts,
lasses or modules in games. Finally, we will dis
uss S
ript-ing Languages, and more spe
i�
ally their role in making appli
ations moreuser-friendly. These three te
hniques are the foundation on whi
h the AIframework is designed. In the following we will des
ribe ea
h of them inturn, and dis
uss the pros and
ons of using them as well as trade-o�s when
hoosing to use a parti
ular te
hnique.5.1 FrameworksThis se
tion will dis
uss why we have
hosen to build an AI framework,explain the alternative and dis
uss the
apabilities of AI frameworks.5.1.1 Reuse of SoftwareAs one of our design goals is to reuse as mu
h of the AI as possible fromone game to another, this se
tion will dis
uss software reuse in games. Basi-
ally, there are two ways of reusing parts of an AI in games: Frameworks orlibraries. First, the advantages and disadvantages of both will be outlined.There is no
lear de�nition of frameworks that everybody in literatureagrees on, but one widely a

epted de�nition is the following [FS97℄ [Bue98℄[FSJ97℄ [JF88℄:A framework is a reusable, "semi-
omplete" appli
ation that
anbe spe
ialised to produ
e
ustom appli
ations.Frameworks have been used extensively in game development, be
ausethey provide several advantages in this area, whi
h stem from four important

Page 42 of 273 CHAPTER 5. DESIGN TECHNIQUES
on
epts that frameworks provide: Modularity, reusability, extensibility andinversion of
ontrol [FS97℄. Within AI framework development, one advan-tage is that it ensures that the AI is
ompletely separated from the GDF.This means that an AI framework for RTS games will be able to reuse notjust single modules, but entire AI ar
hite
tures [Joh97℄. This is also the rea-son why frameworks tend to be easy to use, be
ause they have well-de�nedhook methods, whi
h di
tate how framework instan
es di�er from ea
h other[FS97℄. By using this te
hnique, the user
an fo
us on the areas of the frame-work that are important for the parti
ular instan
e being
reated. Further-more, by having the ar
hite
ture in-
ooperated into the framework, one
anbe assured that this part is well-tested, whi
h ensures that frameworks areless error-prone [Lew98℄. The disadvantage of using frameworks is that it isoften very di�
ult to
hange the internal me
hanisms of a framework, partlybe
ause it is very hard to understand the internal me
hanisms and partlybe
ause the framework is not built for su
h a modi�
ation [FCGC02℄. Thisproblem also re�e
ts in that a framework built for a spe
i�
 purpose is veryhard to use for other things [JF88℄.The main advantage of using a library is that it
an be used to many dif-ferent things, as the ar
hite
ture behind is not in
luded as part of the library[SC95℄. Di�erent library
omponents
an then be
ombined in di�erent waysto a
hieve many di�erent results. This �exibility is also its disadvantage asthis limits how mu
h
an be reused from one appli
ation to another [Joh97℄.Compared to a framework, a library also tends to be more di�
ult to use andit slows development, be
ause the user has to
reate the ar
hite
ture herself[JF88℄. Furthermore, it tends to be more error-prone be
ause the user herselfis responsible for linking and using the di�erent library
omponents in theright way [Bue98℄.Following the design goals presented in Se
tion 4.1, the
hoi
e betweenthe two for this proje
t is relatively easy. Frameworks are able to provide
omplete AI solutions, and in a manner that should be relatively easy touse for an AI designer, as well as de
rease the time it takes to develop theAI. The use of hook methods and hot spots [ML01℄ furthermore allows fora stru
tured overview of the development pro
ess and the ar
hite
ture
anallow for a
lear distin
tion between di�erent areas. The primary advantageof libraries being �exible is not a requirement, as the fo
us of this proje
t issolely on RTS game AIs, and we hypothesise that a general ar
hite
ture
anbe built to do this.5.1.2 AI FrameworksThe idea to use frameworks for AI tools in games is not a new one [Lai01℄.Most noti
eable is the
ognitive framework named Soar [Soa℄ [Lai03℄ [LL99℄.Soar has been used to
reate AIs in several smaller games and for
reatingbots in
ommer
ial FPS games su
h as Quake II (1997) [quab℄ and Des
ent

CHAPTER 5. DESIGN TECHNIQUES Page 43 of 2733 (1999) [des℄. A general des
ription of how Soar has been used to
reate AIs
an be seen in our pre-master thesis [FKL05℄. Other AI frameworks havebeen used in games, but none to the same degree as Soar. Previous resear
hwith AI frameworks in games has primarily fo
used on FPS games or small
ustom made games [KNYH05℄ [Lai01℄. No one has however, fo
used ondeveloping AIs for RTS games. There are two reasons for this:
• Resear
h with AI frameworks used in games is a relatively new area.
• RTS game
ompanies have de
ided not to release sour
e
ode as rapidlyas for instan
e FPS games and they have not provided programmerswith an advan
ed open AI interfa
e to spe
ify their own AIs.Re
ently, open sour
e RTS GDFs have begun to mature into a statewhere resear
hers
an build their own AIs to existing open sour
e games[ORT05℄ [Str℄. This has opened the opportunity to further resear
h in thedevelopment of AIs in RTS games, whi
h have many interesting aspe
ts thatother types of games do not, as is dis
ussed in Chapter 1. Open sour
e RTSGDFs have however, still some problems in relation to AI resear
h, whi
hhave been identi�ed in our pre-master thesis [FKL05℄:Stability: Some RTS spe
i�
 GDFs have simply not been stable enough tobe used for resear
h purposes, and la
ks testing of important fun
tion-ality.Do
umentation: When working with a GDF, the framework must be well-do
umented for the user to be able to extra
t the required information.Some frameworks simply la
k this do
umentation.Full Control of AI: As des
ribed in one of our design goals in Se
tion 4.1,the AI framework must be in
omplete
ontrol of all AI a
tions. SomeGDFs only allow for
ontrol of the high level AI a
tions, and has lowlevel AI a
tions, su
h as unit movement and ta
ti
s, handled internallyin the framework.Not all open sour
e GDFs la
k all three identi�ed problems, but at leastone of them. Out of the two most mature frameworks, ORTS [ORT05℄ andStratagus [Str℄, ORTS has the two �rst problems and Stratagus has the thirdproblem.Previous resear
h within the area of AI frameworks have fo
used on
og-nitive ar
hite
tures [LL02℄. These are frameworks developed for the purposeof
reating and understanding agents that support the same
apabilities ashumans. They provide a way to de�ne an underlying infrastru
ture for anintelligent system, and are basi
ally the same as AI frameworks with theintention of providing a platform for emulating human behaviour. John

Page 44 of 273 CHAPTER 5. DESIGN TECHNIQUESLaird1, and Pat Langley2 have de�ned a number of
apabilities a
ognitivear
hite
ture
ould be able to support [LL02℄. The
apabilities are listed be-low, in
luding their relation to RTS games. Laird and Langley hypothesisethat for an AI to show truly human behaviour, the framework should supportall of these
apabilities:Re
ognition and Categorisation: The
apability to re
ognise for in-stan
e strategies or ta
ti
s in a game.De
ision Making and Choi
e: The
apability of making both strategi
and ta
ti
al de
isions during a game.Per
eption and Situation Assessment: The
apability of being able toper
eive information and determine the importan
e of this information.Predi
tion and Monitoring: The
apability to for instan
e predi
t an op-ponent's future strategy and monitor important variables that mayreveal additional information about the enemy.Problem Solving and Planning: The
apability of planning the exe
u-tion of a
ertain strategy and solving any problems en
ountered duringexe
ution.Reasoning and Belief Maintenan
e: The
apability to reason about anopponent's a
tions and from this determine what she is most likelydoing.Exe
ution and A
tion: The
apability to exe
ute a
tions in the game.Intera
tion and Communi
ation: The
apability to
ommuni
ate withallied players and through this agree on joint strategies.Remembering, Re�e
tion and Learning: The
apability to rememberand re�e
t upon situations that have o

urred during a game, andthrough this learn new strategies or ta
ti
s.The
apabilities and their relation to AIs in RTS games are further de-s
ribed in in our pre-master thesis [FKL05℄. When des
ribing our AI frame-work design we will return to these
apabilities and dis
uss how our frame-work handles ea
h area. When des
ribing how frameworks provide these
apabilities, one often talks about four separate areas [LL02℄: The represen-tation of knowledge, the organisation of knowledge, how the framework uses1John Laird is a professor of
omputer s
ien
e at University of Mi
higan, general
hairfor the Arti�
ial Intelligen
e and Intera
tive Digital Entertainment Conferen
e (AIIDE)and one of the developers behind Soar[Soa℄.2Pat Langley is the dire
tor for the Institute for the Study of Learning and Expertise,head of CSLI's Computational Learning Laboratory [CSL℄ and
onsulting professor ofsymboli
 systems at Stanford University.

CHAPTER 5. DESIGN TECHNIQUES Page 45 of 273knowledge and �nally how the framework supports a
quisition and revisionof knowledge. These areas have been des
ribed in detail in our pre-masterthesis [FKL05℄ and will be dis
ussed further when presenting the overallar
hite
ture of our framework in Chapter 6.5.2 Event Based SystemsThis se
tion will present a way to
ontrol the di�erent parts in the framework.Ea
h of the parts we have in the framework
orresponds to the tasks in thehuman model, and we will from now on refer to these tasks as modules.There must be
reated some way to
ontrol what modules are exe
uted inwhat order, and a way to make ea
h of these modules
ommuni
ate withea
h other. In this se
tion we will �rst argue that an event based system isthe best way to
ontrol the framework, and then we will dis
uss why eventbased systems often are used in frameworks and what the advantages are.Afterwards we will present di�erent ways of how an event based system
ouldbe designed.5.2.1 Framework ControlControlling the exe
ution of framework modules
an be done in a numberof ways. One way is to make a pro
edural exe
ution stru
ture, whi
h makesevery module
all ea
h others sequentially. This is, however, not dynami
, asthe developer must have
omplete knowledge of how the rest of the system isworking and whi
h modules in�uen
e ea
h other, when adding new modules.If, on the other hand, ea
h module
an operate on its own, meaning that itdoes not need any knowledge about other modules, it
an be exe
uted stand-alone. This makes it possible for ea
h module to be
alled by events by themodules that provide the information required. This makes the modulestru
ture mu
h better separated. If additional modules are added at a laterpoint, it is as simple as assigning them to the events that they need, andsending the events in the modules, where the data that should trigger themodule, is generated.5.2.2 Event Based Systems in FrameworksThe use of event based systems in frameworks is far from a new idea[SG86℄.Often it is used in GUI frameworks, be
ause the
ode is only run when theuser intera
ts[SG86℄ [HNOR88℄ [CCT89℄ [jsw05℄ [Feu97℄. In this
ase it is anadvantage that the intera
tion with the GUI is handled in one pla
e, so thatea
h element does not have to
he
k for intera
tion. However, as also statedby Hansen et al. [HF04℄, event based systems are far from restri
ted to thisarea. Event based systems are also very
ommon in network appli
ationsthat should only rea
t, when data in sent to them. The di�erent modules

Page 46 of 273 CHAPTER 5. DESIGN TECHNIQUESin the model should not be run all the time, only in
ertain periods of thegame, or when
ertain a
tions have o

urred in the game world. Thereforeit is advantageous to make the system event based.In very modular systems it is an advantage to use event based systemsbe
ause ea
h module does not ne
essarily need to know of any other modulein the framework, but only of the shared data registries and a
entral eventmanager that transmits the events to the appropriate modules. To a
tivateea
h other, a module just has to send an event with the appropriate data,and then it knows that at some point the modules that subs
ribes to thistype of event will be run.The event manager is assigned the fun
tion that should be run when anevent o

urs. This fun
tion will be used to trigger the module into a
tingon the event, and is also known as an event handler.In a basi
 event system there is a
entral loop that listens for events.When an event is sent, the fun
tions that are assigned to that kind of eventis a
tivated. When a lot of events are sent, they might start to queue up,making it ne
essary to s
hedule and prioritise what fun
tion to run next.When a new event is sent, the event manager
an either
reate a thread withthe fun
tion that should respond to the new event, or if the already runningfun
tion has higher priority, stay in the thread of the
urrent fun
tion.An event is basi
ally a noti�
ation that some a
tion has happened insome
ontext. Events are also often referred to as messages, whi
h is whyevent based systems also some times are referred to as message based systems[S
h04℄. An event
an also be atta
hed data, whi
h
ould be the result ofthe a
tion that has happened. An event system
an be interpreted as apublisher/subs
ription system, where there is a produ
er and a
onsumerrespe
tively of events. All that is required to
reate su
h a system is thatthe modules
an
ommuni
ate with ea
h other. Ludger et al. [FFM03℄presents four
ommuni
ation models:Request/Reply: In this type of
ommuni
ation it is the
onsumer thatinitiate the
ommuni
ation, and request the data from the produ
er.In this model the
onsumer must know the identity of the produ
er,be
ause the data is sent dire
tly. This has the disadvantage that ea
hmodule has to know ea
h other.Anonymous Request/Reply: This type is the same as the normal re-quest/reply, ex
ept that it does not need to know the identity of theprodu
er. The
ommuni
ation is handled by a global event manager.Callba
k: Here it is the produ
er that initiates the
ommuni
ation, sendingit dire
tly to the
onsumer. This means that it has to know the identityof the
onsumer.Event-based: This is like the
allba
k model, ex
ept that it does not knowthe identity of the
onsumer, be
ause this is handled
entrally. This

CHAPTER 5. DESIGN TECHNIQUES Page 47 of 273way of
ooperation in an event based system has big advantages in aloosely
oupled modular system, be
ause the modules do not need toknow ea
h other. Sin
e it is the produ
er that knows when an a
tionhas been
arried out, it makes sense that it is the produ
er that startsthe
ommuni
ation.As argued by Ludger et al. [FFM03℄, the event-based
ommuni
ationmodel is the most dynami
 and modular approa
h to handle
ooperationbetween modules. The separated tasks in the human model makes it possibleto use the event-based
ommuni
ation in the event system.5.3 S
ripting LanguagesFrameworks often be
ome large appli
ations that
an take a long time to
ompile, and even small
hanges in the vital parts of a framework
ouldmean a
omplete re
ompilation of the sour
e
ode. When tweaking an AI tobehave
orre
tly a

ording to what the designer wants, it is often only a fewvalues that have to be
hanged. These values might just as well be loadedat load time by using a s
ripting language. [Daw℄Furthermore, s
ripting languages make it possible for novi
e program-mers or game designers to take on the task of implementing the behaviourof the AI in the game[Hue℄. S
ripting in games has been used in many ways.It is used to
ontrol entire s
enes in games, like a s
ript from a movie, wherethe movement of every �
amera� and
hara
ter are planned in the s
ript.S
ripting
an also be made more general and just make sure that
ertainthings happen, when the player intera
ts with the environment in a
ertainway. This
ould be what would happen if a button is being pushed or more
omplex intera
tions, making sure that a series of a
tions are done beforeexe
uting
ertain parts of the s
ript, whi
h is also known as game logi
s.The advantage of letting other people than the programmers write thes
ripts, is that the people who know how things should work in the gameare the designers and by letting the designers write the s
ripts themselves,nothing will be lost or misinterpreted in the
ommuni
ation between imple-mentor and designer. Also, getting the game logi
s on a higher level than therest of the native
ode3, helps keeping the framework
ode
lean. With theoption of making rapid prototyping, instead of having to
ompile everythingall the time, the s
ripts
an be edited at run-time[Ous98℄. It is in this waypossible to test and tune the s
ripts mu
h faster than having to
ompile andrestart the program.There are of
ourse also drawba
ks in using a s
ripting language. The
ode is not as fast exe
uted as native
ode, be
ause it has to be interpreted.Some of this lost performan
e
an be re
overed by implementing the
omplex3The language the GDF is written in.

Page 48 of 273 CHAPTER 5. DESIGN TECHNIQUESand
omputationally heavy algorithms in native
ode, and just give a

essto these through an interfa
e in the framework. S
ripting languages oftenuse dynami
 types and frameworks often use stati
 types. Be
ause the s
ript
ode is dynami
ally typed, it has to be run-time type
he
ked, whi
h
anadd a lot of pro
essing time. The data being transferred from the framework
ontext to the s
ripting
ontext also takes some resour
es. Furthermore, it
an take some development time to implement and integrate the s
riptinglanguage into the framework. When that is done, both parts have to bemaintained and updated when new features are added to the framework, thedevelopers will have two �systems� to maintain.5.4 RTS Spe
i�
 Con
eptsIn this se
tion we will dis
uss four new ideas, whi
h are spe
i�
 to the RTSgenre. The �rst we will present is a new data stru
ture spe
i�
ally designedto model the
on
ept of strategies, used for learning strategies,
ounter meth-ods, tri
ks possible on
ertain maps et
. We
all this data stru
ture thestrategy tree. In the se
ond part of this se
tion we will dis
uss a matter veryimportant for all RTS games, namely path�nding. We will dis
uss the tra-ditional way of doing this and present our own idea on how to optimise this
omputational heavy
al
ulation. In the third se
tion we will dis
uss howto represent ta
ti
s in RTS games. Here we will dis
uss elements importantfor ta
ti
s in RTS games, and propose a way to de�ne a ta
ti
. Finally,the last se
tion will present a way to
reate generi
 base building templates,whi
h makes it possible for AI designers to easily de�ne templates spe
ifyingoptimal building pla
ement in a parti
ular game.5.4.1 Strategy TreesThe idea of strategy trees
ame into existen
e while attempting to dis
over amethod that would be both suited for learning and for representing strategiesin RTS games. A detailed dis
ussion of why learning has not been providedwith most RTS games
an be found in our pre-master thesis [FKL05℄. Pre-vious resear
h has primarily fo
used on training AIs in the developmentphase of a game [UGJM05℄ [MSWT05℄ [JG05℄ [dJSR05℄, but not on a
tu-ally learning after the training has been
ompleted and the game has beenshipped. The latter part is one of the goals strategy trees have been designedto a
hieve.This se
tion will start by des
ribing a simple RTS game example, andthrough this illustrate the idea behind the new data stru
ture. Afterwardsa more general des
ription will be presented.Imagine a simple RTS game with three di�erent o�ensive units available:

CHAPTER 5. DESIGN TECHNIQUES Page 49 of 273

Figure 5.1: Strategy Tree for the ExampleSpearmen, ar
hers, and horsemen. The
ountering system4 is as follows:
• Spearmen
ounter horsemen
• Ar
hers
ounter spearmen
• Horsemen
ounter ar
hersIn this simple game ea
h player will start with four workers. The workers
an harvest resour
es and build two types of buildings: Supply buildings(farms) and unit produ
tion fa
ilities (barra
ks). The barra
ks
an produ
eworkers and the o�ensive units.The idea behind strategy trees is that an RTS game usually
onsist ofa series of states. The �rst signi�
ant state is the start of the game, andthis will be the root node of the strategy tree. As illustrated in Figure 5.1,the root node in the simple example game, Node 1,
onsists of the valuesof all variables important to the game in question in
luding a time stampindi
ating when the strategy was used. In this
ase the player has fourworkers and the time stamp is 0, be
ause it is the starting point of theplayer. Signi�
ant states are determined di�erently from game to game.Often a signi�
ant state is
hara
terised as one where the player has
arriedout a
ertain strategy and now
hanges to another. In the strategy tree4RTS games typi
ally implements a
ountering system. This is basi
ally a systemdi
tating whi
h units are best used against
ertain other types of units.

Page 50 of 273 CHAPTER 5. DESIGN TECHNIQUES

Figure 5.2: Strategy Tree Examplein Figure 5.1, Node 2 illustrates that the player knows only one strategyfollowing the starting point. This strategy
onsists of building 15 workersand 20 ar
hers as well as a number of required buildings, and the strategytree node di
tates that the strategy
an be rea
hed 4 minutes into the game.From this point in the game, the player knows two strategies to
hoose from.One of them, Node 3, fo
uses on building a mixed army of spearmen andar
hers, while the other, Node 4, fo
uses on building a massive amount ofspearmen. The numbers atta
hed to ea
h edge between the di�erent nodesrepresent how often a strategy should be used
ompared to others at a givennode, 1 being always and 0 being never. In this
ase, the strategy representedby Node 3 is a more
ommon strategy
ompared to the strategy representedby Node 4. Furthermore, ea
h node
an have a spe
ial kind of node atta
hedto it as well, representing the
ounter strategy to the respe
tive strategy.In Figure 5.1, Node 2 has one
ounter, Counter 1: Node 2,
onsisting ofbuilding a massive amount of horsemen whi
h
ounters the ar
hers from thestrategy in Node 2.The above des
ribed how a strategy tree is built and how it representsthe possible strategies a player is aware of. The following will provide a moregeneral des
ription of strategy trees and the
omposition of nodes. Figure5.2 shows a more generi
 example of a strategy tree. Ea
h State or Counternode in the tree
onsists of the same set of attributes:

CHAPTER 5. DESIGN TECHNIQUES Page 51 of 273Node: A node in a strategy tree
onsists of the number of ea
h kind ofunit the player should have, as well as the number of various buildingsshe should have. In some games, the node should also
ontain thedi�erent resear
h upgrades pur
hased. Furthermore, ea
h node has atime stamp that tells how long into the game this strategy was usedand a list of ta
ti
s used with this strategy.Two kinds of edges exists in the strategy tree:Strategy Edge: One kind of edge
onne
ts the node to the parent node.Consequently, it also
onne
ts the node to its
hildren. This kind ofedge is the one that binds the nodes together in the tree stru
ture.Ea
h edge has a probability asso
iated. This probability des
ribeshow probable the strategy, modelled in the
hild nodes, is,
omparedto the strategy of the other
hildren. This probability is based on thefrequen
y of observation of the di�erent strategies. The edge
an also
ontain a plan for how best to make the transition from one strategyto the next. This would save the planner work, as it does not have toplan the best
ourse of a
tion unless no plan exists.Counter Edge: The se
ond kind of edge leads to
ounter nodes. This edgealso has a probability asso
iated that is built on a
ombination of howoften the
ounter has been seen, and the su

ess of the
ounter.Strategy trees are perfe
t for modelling known strategies and learningnew strategies. They also present a way of modelling
ounters. Furthermore,if a strategy tree is maintained for ea
h opponent (modelling the opponent'sstrategy), this
an be used as part of an opponent model. This way, a player
an properly re�e
t on the strategies and
ounters used by ea
h player duringthe
ourse of a game. Strategy trees also have the e�e
t that if the AI seesthe enemy army or base, it
an
ompare this to nodes in the strategy treeand see several things, for instan
e: How to
ounter the
urrent strategy,and whi
h strategy the
urrent strategy will most likely lead to. Referringto the example in Figure 5.1, if the player sees that the opponent has theunits and buildings
orresponding to Node 2, the player
an see two things:The optimal
ounter to this strategy (Counter 1: Node 2), and that there isa 70%
han
e that the opponent will soon be using the strategy representedby Node 3, and a 30%
han
e that the opponent will soon be using thestrategy represented by Node 4. However, the opponent
ould also use anentirely new strategy that the player is not aware of. If this is the
ase,the new strategy should be added to the strategy tree. This is done byadding a new node, a Node 5, to the node where the strategy varies from theknown strategies, Node 2. At this point the probabilities from Node 2 to its
hildren should be re-adjusted, as it now has three
hildren instead of justtwo. This way strategy trees easily support learning new strategies observed

Page 52 of 273 CHAPTER 5. DESIGN TECHNIQUESfrom the opponent. As strategy trees is one of the RTS spe
i�
 ideas thatwe plan to implement, we will return to them when evaluating the prototypeimplementation of the framework in Chapter 8.5.4.2 Path�ndingThe largest task usually handled by the AI is the task of �nding a path fromstarting point to the goal for all units in the game[BMS04℄. To understandthe full impli
ation of this task a series of fa
ts must be taken into a

ount.In most RTS games all players are in
ontrol of an army
onsisting of anumber of units. The players or AIs move their army around in order tos
out, atta
k and defend. Ea
h of these units must be assigned a path fromtheir starting point to the point they are ordered to. This means that asingle move order issued by the player or AI
an mean that a path mustbe
al
ulated for hundreds of units. The path is found from the pla
e theunits is
urrently situated to a designated goal lo
ation. An example of atypi
al map
an be seen in Figure 5.7. Clusters form a grid of dotted lines.In Figure 5.6 one su
h
luster
an be seen. For this example the
luster ismade of 16*16
ells. The path that must be found is a list of
onne
ted
ells(
ells that are adja
ent to the ones next to them in the list) that start atthe start lo
ation and end at the goal lo
ation. We de�ne a low granularityas using
lusters for the abstra
tion and high granularity as using
ells forthe abstra
tion. The abstra
tion that
lusters provide will later be shown tobe useful to redu
e the sear
h spa
e explored in the path�nding. This listmust be found in a matter of moments to ensure fast response to the game.Furthermore it is not enough to �nd just any path that will take the unitfrom the starting point to the goal, the path must also be the shortest pathpossible.This means that building a path�nder is often a balan
e between the
omplex task of �nding an optimal path from A to B and doing this in the
omputationally
heapest way possible.A*A* is a best-�rst sear
h algorithm that is very popular and has been used inmany variations in both the a
ademi
 world and in the game developmentindustry [BMS04℄. Using a heuristi
 de�ned by the developer, it will �nd theshortest path if one su
h exist. Mono-dire
tional sear
h using A* will usuallyresult in an exploration of the sear
h spa
e mu
h like the one depi
ted inFigure 5.3. Compared to the sear
h spa
e explored in for instan
e breadth-�rst sear
h the heuristi
 ensures a noti
eable optimisation of the numberof
ells explored in the sear
h. This
an be optimised even more usingbidire
tional sear
h as seen in �gure 5.4. The fewer
ells visited in thesear
h does not just mean that the amount of memory used in the sear
h is

CHAPTER 5. DESIGN TECHNIQUES Page 53 of 273
GoalStart

Figure 5.3: Sear
h spa
e explored using A*
GoalStartFigure 5.4: Sear
h spa
e explored using bidire
tional A*minimised, but it
onsequently also minimises the time it takes to
omputethe path. Both are the main points of fo
us for optimisation.Hierar
hi
al Sear
hAs already mentioned there are two main
on
erns when designing apath�nder: The
omputation time and the memory use. The two are notindependent, but are on the
ontrary quite
losely linked. Exploring a min-imum of
ells will for instan
e mean a minimum of
omputation time. Theidea behind hierar
hi
al sear
h is to redu
e the sear
h spa
e on grid-basedmaps by working on multiple levels on granularity. High granularity meansa grid of
ells and low granularity means a grid of groups of
ells. If anoptimal path
an be found on a low granularity map,
ells outside this path
an be disregarded when
onstru
ting a path of a higher granularity. Boteaet al. [BMS04℄ present one su
h algorithm named HPA* (Hierar
hi
al Path-Finding A*). HPA* �rst systemati
ally divides the map up into a grid of
lusters. It then determines entran
es between the adja
ent
lusters, whi
hare obsta
le-free
ommon borders between the
lusters as seen as the markedareas in Figure 5.5. The entran
es are used to build an abstra
t problem pathwhi
h is an optimal path from start to goal
onsisting of the entran
es thatthe optimal path will pass through. The last step is to �nd the a
tual pathbetween the entran
es on the highest level of granularity. The a
tual pro-
essing is done by �rst �nding the abstra
t problem path and then doingpath�nding on the �rst sub-path (the path between the �rst two entran
esin the abstra
t problem path). By restri
ting the high granularity path�nd-ing to the �rst subproblem, the path�nder will have the �rst few se
ondsof a units movement ready fast so that the unit
an start moving while the

Page 54 of 273 CHAPTER 5. DESIGN TECHNIQUES

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

Figure 5.5: Entran
es in HPA*path�nder
omputes the rest of the path.Hierar
hi
al JIT Path�nderThe path�nder we propose share the same basi
 prin
iples as the one justpresented. The low granularity grid will be maintained at the time of ex-ploration, or if the map is already explored, at loading time. Instead ofentran
es, ea
h
luster in the low granularity grid will share four passablenodes5 with the adja
ent
lusters: One ea
h at top, bottom, left and rightside (see �gure 5.6). There will exist a
onne
tion between two nodes if the
luster is passable from one node to the other (not unlike entran
es). Thatmeans that top and bottom will be
onne
ted if a unit will be able to
rossthe
luster verti
ally. That is, the path from top to bottom must not ex
essfor instan
e 1.5 times the dire
t path. If any obsta
le is dis
overed this mustbe updated on the low granularity grid.The path�nding itself starts by determining a path from start to goal
onsisting of passable nodes. The path
onsisting of the
lusters is
alled thepassable path. The passable path is used to redu
e the sear
h spa
e mu
hlike the abstra
t problem path seen in HPA*. The developer will be ableto tune the length of the sub-path by de�ning the number of
lusters thisshould
ontain. Ea
h sub-path
an be pro
essed like in HPA*, that is ina Just In Time (JIT) fashion. In Figure 5.7 an example of a map
an beseen. The example is a situation where a path is found moving around aledge obsta
le. The ledge is depi
ted as a broad dotted line. The trees arealso
onsidered obsta
les in this example. The grid of
lusters is depi
tedin thin dotted lines and lines have been drawn as edges between passablenodes. Using the passable path seen as a dotted line between the two "X"markings, it is possible to restri
t the sear
h spa
e to the
lusters (marked5A passable node is a spe
ial
ell that is pla
ed at the border between two
lusters of
ells

CHAPTER 5. DESIGN TECHNIQUES Page 55 of 273
W E

14

15

13

12

11

10

9

8

6

7

5

4
3

2

0

1

2 3 4 5 6 9 12 130 1 7 8 14 151110
1

1

0

0

1

2

0 1 2

N

S

0

Figure 5.6: Pla
ement of Passable nodesin gray) found in the passable path.Theoreti
al ExamplesThe environment used in this example is
hosen to show the worst possibles
enario for A*, and the best possible s
enario for the path�nder used inthis proje
t. The map is a �at fully visible grid of 1024*1024
ells withoutobsta
les, where the path�nder must �nd a path from the top left
orner tothe bottom right
orner, that is diagonally a
ross the map. The
hosen sizefor
lusters is 16*16
ells and the grid of
lusters is thus 64*64.An ordinary A* will �nd an optimal path from start to goal but in thepro
ess of doing so it will explore almost all the
ells on the map. Thatmeans that the A* path�nder will examine 1024*1024 or 1048576
ells intotal. The sear
h spa
e
an be seen at the left side of Figure 5.8.Using the passable path for restri
ting the sear
h spa
e, the path�nderused in this proje
t will only explore the nodes found in the marked pathseen at the right side of Figure 5.8. This path
ontains 64+63
lusters of
ells making it a total of 32512
ells expanded.As seen in the example the hierar
hi
al path�nder will explore up to
1/32 of the amount
ells
ompared to an ordinary A*. This number
an befurther minimised by
hoosing a smaller size for the
lusters but this has to

Page 56 of 273 CHAPTER 5. DESIGN TECHNIQUES

Figure 5.7: Passable Example

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Figure 5.8: Sear
h spa
es for A* and Hierar
hi
al sear
h

CHAPTER 5. DESIGN TECHNIQUES Page 57 of 273be balan
ed with the e�ort of
al
ulating the passable path.The best possible s
enario for A* and the worst possible s
enario forhierar
hi
al sear
h is when the start
ell and the goal
ell are adja
ent toea
h other. In this
ase the A* will terminate after exploring the goal state,but the hierar
hi
al sear
h will �rst have to determine a passable path. Thismeans that the hierar
hi
al sear
h will explore four nodes instead of twonodes (two nodes in the passable sear
h and two nodes in the a
tual pathsear
h).In order for the hierar
hi
al sear
h to be better the goal
ell must be ina di�erent
luster than the start
ell. This is not a problem be
ause mostof the movements done in RTS games will be from the AI's own base to theenemy base or from harvesting buildings to the resour
es being harvested.In both
ases the path will
ross several
lusters.Based on this we hypothesis that a hierar
hi
al path�nder will be ableto redu
e both the
omputation time and the memory use in a dynami
environment. The impa
t will most likely grow with the number of obsta
lesand the length of the path. This will be tested through the prototype.5.4.3 Ta
ti
sThis se
tion will dis
uss how to represent ta
ti
s in RTS games. Throughoutthis se
tion, a lot of RTS spe
i�
 terms and expressions will be used, andthe reader is referred to Appendix A for an explanation of these. As alreadydis
ussed in Se
tion 5.4.1, a strategy tree node
an
ontain ta
ti
s
on
erninghow to exe
ute a
ertain strategy. We de�ne ta
ti
s as being the part thatde�nes how to
ontrol units during a battle. That is, it does not de
idewhere on the map to atta
k or evaluate whether the AI is in a losing battle.In previous resear
h on ta
ti
al planning, Ree
e et al. [RKD00℄ presentthe proje
t DISAF that works with the ta
ti
al movement of individual sol-diers in a
omplex environment. Among other things they present two kindsof de
ompositions of the problem: A distan
e-detail de
omposition and anenvironment de
omposition. Both help to rea
h a high abstra
tion levelso that a path�nding algorithm
an be implemented to handle the prob-lem. Burgess [Bur03a℄ works with terrain analysis, identifying avenues ofapproa
h, and deployment of for
es whi
h
an be adjusted to rea
t to newinformation (for instan
e enemy sightings). Both papers are written in
o-operation with the US army. Although real-life ta
ti
al situations have someresemblan
e to the ta
ti
al situations o

urring in RTS games, the previ-ous work on ta
ti
al planning is di�
ult to reuse when trying to develop amethod for representing ta
ti
s. This does however, not mean that some ofthe ideas in these papers
annot be reused when exe
uting ta
ti
s within aTa
ti
al Planner. The representation of ta
ti
s are however a di�erent mat-ter, and this representation must be both developer friendly and expressiveenough to deal with very advan
ed ta
ti
s within any RTS game genre. The

Page 58 of 273 CHAPTER 5. DESIGN TECHNIQUESbasi
 responsibilities of a ta
ti
 in RTS games is to de�ne the following:Units: The ta
ti
 must spe
ify whi
h unit types and how many of ea
h areneeded to su

essfully
arrying out the ta
ti
.Formations: A ta
ti
 must de�ne how di�erent units should position them-selves in relation to ea
h other and in relation to the enemy's units. Aformation
ould for instan
e pla
e units with a lot of hitpoints in thefront of the army, while ranged and weaker units
ould stand prote
tedbehind these. The ta
ti
 should also spe
ify whether the formationshould be kept at all times during battle, or if it should mainly be
onsidered a good starting position before a battle.Fo
us Fire: In most games, some units will have higher atta
k damage on
ertain kinds of units
ompared to others. A ta
ti
 should in
lude rulesfor whi
h units should fo
us on whi
h type of enemy units. Further-more, the ta
ti
 should de�ne rules for how many should fo
us �re on a
ertain unit at a time and if enemy units withdrawn from battle shouldbe pursued.Unit Preserving: Ta
ti
s should also spe
ify when to withdraw units frombattle. This may vary for di�erent unit types, as weak units shouldprobably rea
t faster when re
eiving damage. Unit preserving ta
ti
sfurthermore in
ludes the de
ision of where to send withdrawing units.This
ould be the main base or just without of enemy range and thenba
k into the battle again.Using Support: A ta
ti
 should spe
ify how to use support units, and morespe
i�
ally the spells or abilities they have. This in
ludes de
isionsregarding who should re
eive bu�s and debu�s as well as how area ofe�e
t spells or abilities should be used. Furthermore, as some spellsor abilities have limited use, the ta
ti
 should de�ne when and underwhat
onditions these should be used.Using Terrain: Several games in
ludes terrain spe
i�
 advantages duringbattles. This
ould be things su
h as using
hoke points, high groundet
. A ta
ti
 should di
tate how to take advantage of di�erent terrainfeatures.Creating a representation of ta
ti
s usable in many di�erent RTS gamesis a di�
ult task. The goals of this representation is as follows:Generi
: The representation should be able to represent ta
ti
s in all of thesupported RTS games.Versatile: The representation should allow for a ta
ti
 to be easily adaptedto suit a spe
i�
 game.

CHAPTER 5. DESIGN TECHNIQUES Page 59 of 273A ta
ti

onsists of the six responsibilities mentioned earlier, and it islogi
ally to represent it using these distin
t areas. That is, a ta
ti

onsistsof the unit types ne
essary, rules for how units should stand in formation,rules for fo
us �re, rules for anti-fo
us �re, rules for using support units andrules for using terrain advantages. The idea behind this ta
ti
 representationis to use small building blo
ks of rules to
omposite larger and more
omplexta
ti
s. We will explain the idea of the representation through a typi
alstandard ta
ti
 usable in most RTS games. The ta
ti
 is
alled a Siegeta
ti
, and basi
ally
onsists of having siege units atta
king the enemy base,while these are prote
ted by a number of other units. This has the advantagethat it for
es the enemy to
ome out of his base (thus leaving the advantageof any base defen
e) and atta
k the player, who has pla
ed her units in anadvantageous position to deal with this atta
k.First, we will des
ribe in general terms how ea
h of a ta
ti
's responsibili-ties
ould be de�ned for the Siege ta
ti
. Then we will dis
uss an attempt toexpress the ta
ti
 in a simple generi
 way. This will not be a full dis
ussionon the topi
 as it is mu
h more advan
ed than the example presented, butit will serve as a proof of
on
ept that a generi
 representation is possible.Finally, we will brie�y dis
uss how this ta
ti

ould be used in di�erent kindof RTS games. The following presents the details of the Siege ta
ti
:Units: This ta
ti
 requires as a minimum two types of units. First of all,siege units are needed to atta
k the enemy base from a distan
e, andse
ondly, a group of units are needed to prote
t these siege units. Forsimpli
ity, we will assume that the group of non-siege units are allmelee units.Formations: A formation in this ta
ti
 should ensure that the siege unitsare properly prote
ted by the melee units. This means they should bepositioned between the siege units and the enemy units or base.Fo
us Fire: As su
h, there do not need to be any fo
us �re rules for themelee units as their primary fo
us will be to hold formation and therebyprote
t the siege units. The siege units on the other hand, shouldprimarily fo
us on defensive stru
tures in the enemy base, or buildingsimportant for unit produ
tion.Unit Preserving: To avoid hit and run atta
ks from the enemy killingwounded units, units should be sent ba
k to the main base when theyhave lower than 20% of the maximum health.Using Support: For this example, we will assume that there are no supportunits and that none of the other units have spe
ial spells/abilities.Using Terrain: For simpli
ity, we assume that there will be no ta
ti
alterrain
onsiderations when using this ta
ti
.

Page 60 of 273 CHAPTER 5. DESIGN TECHNIQUESConsider a simple approa
h for de�ning this ta
ti
 shown in Listing 5.1.This approa
h assumes that the AI knows about whi
h units are
onsideredsiege units, melee units et
. and that it knows whi
h buildings are defensivestru
tures, unit produ
tion fa
ilities et
. Ea
h line in the listing des
ribesa rule used with this ta
ti
, and their meaning will be explained in thefollowing. Line 1 de�nes the ta
ti
 named Siege. Line 2 and line 3 de�neswhi
h units are to be used with this ta
ti
s. The numbers indi
ate theirgroup id, and as
an be seen, group 1
onsists of all siege units, while group2
onsists of all melee units. The AI
an itself �gure out exa
tly whi
hunits to pla
e in ea
h group as it knows whi
h are
onsidered melee unitsand whi
h are
onsidered siege units. These group id's
an later be used tospe
ify individual rules for ea
h group. Line 4 spe
i�es the formation theseunits should be in. Units groups are listed with the �rst being
losest to theenemy units or buildings. This means that in this
ase, the melee units arestanding in the front, while the siege units are behind them. Furthermore,one
an spe
ify the importan
e of units keeping the formation during battle.In this
ase, the melee units should always keep formation in order to prote
tthe siege units, while the siege units
an move around freely (the melee unitswill still prote
t them while moving). Line 5 adds a fo
us �re rule for group1, the siege units. The rule simply states a prioritised list of units on whi
hto �re upon �rst. In this simple example we have de
ided not to in
ludethings like how many units should fo
us �re at the same building at a time,but it
ould relatively easily be added at a later time. A similar rule
ouldbe added for ea
h group in the ta
ti
 if ne
essary. The two �nal lines, line6 and line 7 simply di
tate a unit preserving rule for both group 1 andgroup 2. They state that a unit should try to run ba
k to its own mainbase if it is down to only 20% of its original hitpoints. All of this assumesthat the framework has internal operations that
an handle the exe
utionof the di�erent rules. However, given the information in for instan
e theadd_fo
us�re_rule, it should be relatively easy to provide these operations.Listing 5.1: Ta
ti
 Template1 S i ege = Ta
t i
 ()2 S i ege . add_unit_group (1 , s i ege_un i t s)3 S i ege . add_unit_group (2 , melee_units)4 S i ege . format ion ([(2 , s t r i
 t) , (1 , l o o s e) ℄)5 S i ege . add_fo
us f i r e_ru le (1 , [d e f en s iv e_st ru
 tur e s , un i t_p r odu
 t i on_ f a
 i l i t i e s ℄)6 S i ege . add_preserving_rule (1 , (20 , main_base))7 S i ege . add_preserving_rule (2 , (20 , main_base))Even this simple approa
h to the Siege ta
ti

an be useful in manydi�erent kind of RTS games. In Star
raft the ta
ti

ould be used withmarines and siege tanks, inWar
raft III the ta
ti

ould be used with gruntsand demolishers and in Age of Mythology the ta
ti

ould be used withAxemen and
atapults.The approa
h presented in this se
tion is in no way a fully
omplete

CHAPTER 5. DESIGN TECHNIQUES Page 61 of 273representation. Further work on this must be done in order to fully representall kinds of ta
ti
s in RTS games. We hypothesise however, through theexample des
ribed in this se
tion, that it is possible to
reate a generi
representation whi
h will be usable to represent ta
ti
s possible in manydi�erent RTS games. The representation will not be tested in the prototypeimplementation, be
ause of the idea not being fully developed and be
auseof limitations of the test game. These limitations are presented in Chapter7.2.2.5.4.4 Base Building TemplatesIn this se
tion we will present the idea of base building templates, for deter-mining how the layout of a base should be. To our knowledge no relatedwork exists dealing with this subje
t. What
an be seen in games today isthat there is either a �xed layout that is used, whi
h is tweaked to �t theterrain, or the buildings is pla
ed at random where there is room for them.First we will present the main idea, then an example of a base layout, andthen an example of how this
ould be modelled in the templates.To
ontrol the layout of the base in a

ordan
e to the strategy thatis used, we have designed what we
all base building templates. These willdi
tate how the base is
onstru
ted, taking into a

ount the terrain, resour
esin the area, and the strategy used. Just like with the strategy tree the futuredevelopment of the base must be expressed in the base building template tree.On ea
h strategy node in the strategy tree the user of the frameworkmust spe
ify what kind of base buildings templates she determines is thebest for that strategy. The base building templates
reate the tree of howthe base
ould evolve, themselves. In ea
h of the nodes a parameter spe
i�eswhat buildings that should be used for perimeter and what buildings thatshould be prote
ted.It should furthermore be possible to
reate fun
tions that spe
ify howto pla
e buildings in spe
ial
ases. Inside these fun
tions a lot of di�erenttools must be available to the user, su
h as in�uen
e maps[S
h04℄[Del01℄6,
omplete information about the already pla
ed buildings, and other maprelated information su
h as terrain and positions of resour
es. The in�uen
emaps give a

ess to features where the developer
an spe
ify what weightdi�erent terrain types and resour
es should have as well as being able tode�ne the propagation fun
tion, and tell how ea
h layer in the map shouldbe
ombined.An example of a layout of a defensive base in War
raft III
an be seen inFigure 5.9. Here the buildings with high hitpoints are pla
ed at the front,be
ause they work as a perimeter. The Town Hall is pla
ed
lose to theMine, so that the distan
e that the workers have to go is not long, but it6A further des
ription of in�uen
e maps are given in the pre-master thesis [FKL05℄.

Page 62 of 273 CHAPTER 5. DESIGN TECHNIQUES
Lumber mill

Tower

Farm FarmFarm

Shop

Town hall

Mine

Tower

Alter
Barrack

Figure 5.9: A defensive base layout in War
raft IIIis also pla
ed at the perimeter, be
ause it is a high hitpoint building. Twotowers are pla
ed right next to the Town Hall so that they
an defend thebuilding, but they are also
entrally pla
ed so that they
an atta
k any unitsthat try to atta
k any other buildings in the base. The Tower buildings donot have that may hitpoints so they are pla
ed behind the base perimeter.The Lumber Mill is pla
ed
lose to the resour
e that the workers harvestfor it, and is pla
ed behind the base barriers, be
ause it has relatively lowhitpoints, and the workers would be vulnerable when gathering wood. TheAlter and Barra
ks are high hitpoint buildings, so they are used as barriers.Farms are also used as perimeter, not be
ause they are strong, but be
ausethey are fast to build,
heap, and the pri
e to hitpoint ratio makes it a
heapbarrier building.This example of how the layout of the base
ould be written in basebuilding templates syntax is presented in Listing 5.2. The module using thetemplates must be able to �nd the best pla
e for the
entre of the base byusing in�uen
e maps. Furthermore, it must be able, again with the use ofin�uen
e maps, to �nd what perimeters that does not need to be defended,be
ause of for instan
e terrain or resour
es that work as perimeter.The module should �nd the best pla
e to build harvesting buildings are,and
reate in�uen
e maps where the pla
ement of these a�e
t how the restof the template is built. What buildings that are harvesting buildings isnot ne
essary to spe
ify in the template, be
ause this is known from thete
hnology tree. Line 1 de�nes the base building template named Defensive.On Line 2 it is assigned a name, to des
ribe what kind of base layout it is.

CHAPTER 5. DESIGN TECHNIQUES Page 63 of 273The town hall is set to be the
entral building in the base on Line 3. Line4 de�nes that there should only be one opening in the base. On Line 5 itis spe
i�ed that the building types that are added to prote
t buildingsshould be pla
ed within the base, behind the barriers. The add buildorderto the template on Line 6 and 7 is used as a guide to what buildings to build�rst. If none is spe
i�ed, the order will be found while playing the game. Abase building template node must only
ontain the order of those buildingsthat have been added additionally from the last node. The building typesin barrier buildings added on Line 8 will be used for
onstru
ting thebarriers. The type of defensive buildings that
an a
tively defend thebase is added on Line 9.Listing 5.2: Base building template node1 Defens ive = Base_building_template ()2 Defens ive . set_name (" S ing l e opening de f en s i v e layout ")3 Defens ive . s e t_
ent ra l_bu i ld ing (town_hall)4 Defens ive . set_number_of_openings (1)5 Defens ive . add_prote
t_bui ldings ([town_hall , lumber_mill , shop , tower ℄)6 Defens ive . add_buildorder ([town_hall , farm , farm , a l t e r , barra
k , lumber_mill ,7 farm , tower , tower , shop ℄)8 Defens ive . add_barr ier_bui ld ings ([barra
k , a l t e r , farm , town_hall ℄)9 Defens ive . add_defens ive_bui ld ings ([tower ℄)5.4.5 SummaryThis se
tion has presented four RTS spe
i�

on
epts spe
i�
ally designedto
reate AIs in this genre. We presented the idea of strategy trees, asa data stru
ture built for representing strategies in RTS games. Then wedis
ussed the issue of path�nding, and presented an optimised way of doingthis in an RTS game environment. A preliminary design of a representationof ta
ti
s in RTS games were also presented, along with the idea of basebuilding templates, used for de�ning optimal building pla
ement for the AI.Only strategy trees and our path�nding idea will be tested in the prototypeimplementation.

CHAPTER 6. FRAMEWORK DESIGN Page 65 of 273
Chapter 6Framework DesignThis
hapter will fo
us on the design of the AI framework. An illustration ofthe overall design
an be seen in Figure 6.1. The framework ar
hite
ture isbuilt under the assumption that it is
ompletely separated from the GDF andthat the framework is in
omplete
ontrol of all AI a
tions. This means thatthe ar
hite
ture must handle all AI a
tivity. Internally in the framework, anevent system de
ides whi
h modules are exe
uted and ea
h module in theframework is
on�gured through a s
ript.We will start by presenting the ar
hite
ture of the framework, by dis-
ussing how one
an transform the human model presented in Chapter 3into a
ognitive framework ar
hite
ture. With ea
h module we will presentits responsibilities, how it
ommuni
ates with other modules and how it ful-�ls one or more of the framework
apabilities de�ned in Se
tion 5.1. After-wards, we will present how knowledge is represented in the framework. Thisin
ludes a dis
ussion of how knowledge may be represented in ea
h of theknowledge bases de�ned in the human model. Furthermore, we will dis
usshow the di�erent representations of knowledge di
tates the organisation ofknowledge in the framework. We will then dis
uss where and how hot spots

GDF

Module

Script

Module

Script

Module

Script

Module

Script

Event System
AI Framework

Figure 6.1: Overall design of the framework

Page 66 of 273 CHAPTER 6. FRAMEWORK DESIGNare represented, and hereby explain how we allow framework instan
es todi�er. Finally, the last se
tion will present the event system
ontrolling theframework and explain how a s
ripting language is used with the framework.We have de
ided not to in
lude any
ooperation features in the design,be
ause it would bring unwanted
omplexity to a design that is already morethan
apable of proving whether the idea of an RTS framework is a goodidea. This means that the Cooperation task dis
ussed in Chapter 3, will notbe
onsidered when designing the ar
hite
ture of the framework.6.1 Framework Ar
hite
tureWhen designing the
ognitive ar
hite
ture of the framework, it is natural tolook at the human model on
e again. Using the human model as a startingpoint, many of these tasks
an be reused, some must be separated into severalmodules, while others
an simply be in-
ooperated in other modules. We willstart by presenting these
hanges and then present the overall ar
hite
turealong with a des
ription of ea
h module. This des
ription will in
lude apresentation of ea
h module's spe
i�
 responsibility as well as a referen
e tohow they ful�l one or more of the framework
apabilities presented in Se
tion5.1.6.1.1 Cognitive Ar
hite
tureCompared to the human model in Chapter 3, several
hanges has been made.First of all, the S
outing task has be
ome a part of the Strategi
 Planningtask, be
ause it is a relatively small task
ompared to others and be
ause itis so
losely linked with Strategi
 Planning. The Mi
romanagement task hasbeen divided into two modules: Ta
ti
al Planning and a Rea
tive Module.The latter being a new module to handle urgent a
tions su
h as withdrawingunits from battle be
ause of fo
us �re. The reason for this division is thatmi
romanagement is so
losely linked to ta
ti
al planning that these
annotbe handled separately. However, there are still some a
tions that shouldbe
arried out instantly, whi
h is what the Rea
tive Module is intended tohandle.The two tasks Opponent Modelling and Reasoning has been divided intotwo new modules that better represents what their responsibilities are: Prob-abilisti
 Reasoning and Pattern Re
ognition. The Probabilisti
 Reasoningmodule takes
are of all
al
ulations
on
erning the opponent's strategy aswell as maintaining belief knowledge in the Opponent Model. The PatternRe
ognition module has two responsibilities: Updating the Opponent Modelwith new information and re
ognising strategies and ta
ti
s used by the op-ponent. Finally, two new modules have been added to ease
ommuni
ationbetween the AI framework and the GDF. These are a Per
ept Interpretermodule and an A
tion Planner module. The Per
ept Interpreter module is

CHAPTER 6. FRAMEWORK DESIGN Page 67 of 273

Figure 6.2: The
ognitive ar
hite
ture of the frameworkadded to handle all input from the GDF and is responsible for updating allthe appropriate knowledge bases in the AI framework. The A
tion Planneron the other hand, is responsible for handling all output from the AI frame-work to the GDF. Furthermore, it is responsible for de
iding in whi
h ordera
tions are to be exe
uted and how to prioritise a
tions a

ording to theresour
es available.Figure 6.2 (a larger version
an be seen in Appendix K.2) shows the
ognitive ar
hite
ture of our AI framework. Cir
les represents frameworkmodules and arrows represents data �ow from one module to another. Thediamonds represents
ommuni
ation with the GDF. Ea
h module has a smallbox with numbers atta
hed to it, whi
h shows whi
h knowledge bases themodule uses. The numbers
orrespond to the prior knowledge and in-gameknowledge tables at the bottom of the �gure. Note that some of the knowl-edge bases have not yet been introdu
ed, as this will �rst happen in Se
tion6.2, but for easy referen
ing, a short des
ription of all of them
an be foundin Appendix C.6.1.2 ModulesThe following will present the responsibility of ea
h module and relationshipwith other modules:Per
ept Interpreter: Per
epts
an take the form of simply being the game

Page 68 of 273 CHAPTER 6. FRAMEWORK DESIGNstate at ea
h de
ision
y
le, or a dire
t message sent to the AI su
has �Your base is under atta
k� known from many RTS games. Thismodule takes
are of translating per
epts to a form usable for PatternRe
ognition methods as well as providing the Rea
tive Module with thene
essary data, in
luding information about damaged units and nativeAI events. Furthermore, this module takes
are of updating severalof the in-game knowledge bases: In-Game Enemy Knowledge, CurrentStrategy Node, In-Game Own Knowledge, Dynami
 Map Knowledge,and Dynami
 Obsta
les. The module
orresponds to a part of thePer
eption and Situation Assessment
apability presented in Se
tion5.1. Further details on this module
an be found in Appendix B.1.Rea
tive Module: As explained earlier, the Mi
romanagement task hasbeen removed and repla
ed by a Rea
tive Module. This module takes
are of all low level unit rea
tions and it handles all native AI1 events.The degree of rea
tiveness should be left to the AI designer as itsimportan
e is game spe
i�
 and likewise it should be user-spe
i�
 howto handle di�erent native AI events. The module will monitor howmu
h damage units and buildings are dealt over time, and make surethat the Unit State and Building State in-game knowledge bases areupdated. A detailed dis
ussion of how this module is designed
an befound in Appendix B.2.Pattern Re
ognition: The main responsibilities of the Pattern Re
ogni-tion module have already been mentioned: Updating the OpponentModel and re
ognising strategies and ta
ti
s. Updating the Oppo-nent Model in
ludes keeping tra
k of enemy units disappearing intofog of war and re
ognising ta
ti
s used. To re
ognise ta
ti
s, the usermust spe
ify spe
ial re
ognising methods based on Ta
ti
al Knowl-edge. Re
ognising strategies on the other hand,
an be handled by theframework, as this is basi
ally a matter of mat
hing a strategy nodewith the strategy tree de�ned in Known Strategies. This module willfurthermore during a game, keep tra
k of a strategy tree des
ribingwhi
h stages the opponent's strategy has gone through, whi
h will bea big help later for the Learning module, when adding new strategiesto the AI's repertoire. A

ording to the
apabilities des
ribed in Se
-tion 5.1, the Pattern Re
ognition module takes
are of two
apabilities:Re
ognition and Categorisation and partly Predi
tion and Monitoring.Details des
ribing the design of this module
an be found in AppendixB.3.1The native AI is the built-in rea
tive AI on ea
h unit in a game. When a unit forinstan
e is atta
ked and then tries to �nd and atta
k the enemy atta
king it, it is thenative AI rea
ting. This is often a problem in RTS games, be
ause a player
an lure partsof an army away taking advantage of this unit's native AI.

CHAPTER 6. FRAMEWORK DESIGN Page 69 of 273Learning: The ar
hite
ture supports two types of learning: Knowledge a
-quisition and knowledge re�nement. Knowledge a
quisition happenswhen the AI should learn strategies, ta
ti
s or base building templates.Adding a new strategy to strategy trees is a relatively simple opera-tion as the data stru
ture makes it easy to do so. Learning new ta
ti
sor base building templates is a more
ompli
ated pro
ess, and is de-s
ribed in further detail, along with the rest of the Learning module,in Appendix B.9. The Learning module must furthermore evaluatethe su

ess of strategies, ta
ti
s and base building templates and mod-ify the strategy tree knowledge bases, Ta
ti
al Knowledge and BaseBuilding Templates a

ordingly. Finally, it must keep tra
k of di�er-ent opponents by updating their
orresponding strategy tree in EnemyKnowledge. The framework in-
ooperates so-
alled lazy learning [LL02℄as it is most sensible to reason about the development and strategies ofa game after the game has ended. Furthermore, some learning meth-ods take a lot of CPU time, whi
h is unwanted during game as lesstime
an then be dedi
ated to �nding the right strategies and a
tions.This module takes
are of the Remembering, Re�e
tion and Learning
apability dis
ussed in Se
tion 5.1.Probabilisti
 Reasoning: The main tasks of this module is determiningthe opponent's strategy and �guring out potential follow-up strategies.Determining the opponent's strategy is a matter of
omparing the Op-ponent Model with strategy nodes in the di�erent strategy trees. Dif-ferent optimisation methods
an be used to do this as is des
ribed inAppendix B.4. Finding follow-up strategies is a relatively simple task,as strategy trees has dire
t support for this operation. Besides thesetwo tasks, the module must take
are of updating the Opponent Modelwith new belief information about the opponent's strategy and deter-mining important variables that may give away the opponent's strategygiven that the module �nds that there are more than one possible. TheProbabilisti
 Reasoning module makes use of primarily Indu
tive Rea-soning by going from spe
i�
 observations about the enemy to moregeneral beliefs about her
urrent and up
oming strategy. This mod-ule takes
are of the Reasoning and Belief Maintenan
e
apabilitiesmentioned in Se
tion 5.1.Strategi
 Planning: The Strategi
 Planning module takes on the task of
hoosing an overall strategy for the AI. It
an do this partly by usingdi�erent knowledge bases, and partly by using the Reasoning moduleto provide reliable information on whi
h to base de
isions. The modulemust go through two phases: First, an overall strategy must be sele
tedand se
ond, units must be assigned di�erent tasks to properly exe
utethe strategy. Besides this, the module is also responsible of s
outing

Page 70 of 273 CHAPTER 6. FRAMEWORK DESIGNand planning where to expand if the strategy di
tates this. A furtherdis
ussion of ea
h of the tasks the Strategi
 Planning module must take
are of,
an be found in Appendix B.5. The module provides meansfor the De
ision Making and Choi
e and the Per
eption and SituationAssessment
apabilities presented in Se
tion 5.1.Ta
ti
al Planning: This module is essentially responsible for all unit a
-tions that are not dire
tly related to a resour
e gathering or basebuilding a
tivity. This
an be further divided into two parts: Unitmovement and unit engagement. Unit movement in
ludes path�nd-ing and avoiding walking through enemy armies. This area will partlybe
overed by the path�nding idea mentioned in Se
tion 5.4.2. Unitengagement in
ludes all mi
romanagement details su
h as fo
us �re,using support units and withdrawing damaged units from battle. Todo this, the module will rely on the representation of ta
ti
s presentedin Se
tion 5.4.3. The module is furthermore responsible for de
idingwhen to withdraw an army from a losing battle, for keeping armiesin formation while moving, and for making detailed terrain analysisof the battle�eld. More details on the design of the Ta
ti
al Planningmodule
an be found in Appendix B.6. This module handles two ofthe
ognitive framework
apabilities presented in Se
tion 5.1: De
isionMaking and Choi
e and Per
eption and Situation Assessment.Base Building: The Base Building module is responsible for planning basebuilding pla
ement and determining building priorities. Given a strat-egy from the Strategi
 Planning module
ontaining buildings to bebuilt, the Base Building module must prioritise whi
h to build �rstand where to build them. The latter must
onsider optimal pla
ementof all the buildings that must be built, and must thus both in
lude a
ertain measure of anti
ipation as well as a terrain analysis of the areasurrounding the main base. Furthermore, the module must take a
tionwhen the Building State in-game knowledge base shows that a buildingis in
riti
al health and repairing is ne
essary. Details on the
ompletedesign of this module
an be found in Appendix B.8. This module pri-marily fo
uses on the Problem Solving and Planning
apability de�nedin se
tion 5.1Resour
e Management: This module has four di�erent responsibilities.Given a strategy from the Strategi
 Planning module it must determineresour
e requirements and determine a resour
e gathering plan thatallows for the strategy to be exe
uted as fast as possible. One fa
torin this determination is a resour
e analysis, whi
h
onsiders whi
hand how many resour
es are left at di�erent lo
ations. This way, theResour
e Management module will de
ide if an expansion is ne
essary.Afterwards, the module must assign all workers to the appropriate

CHAPTER 6. FRAMEWORK DESIGN Page 71 of 273resour
es. The �nal task of the Resour
e Management module is toensure that resour
e gathering happens at a optimal rate. This in
ludesnot only optimal path�nding, but also having an optimal number ofworkers harvesting the di�erent resour
es. The details of the design ofthis module
an be found in Appendix B.7. The module is primarily
ontributing to the Problem Solving and Planning
apability presentedin Se
tion 5.1.A
tion Planner: The A
tion Planner module is responsible for s
hedulinga
tions and
ommuni
ating the
hosen a
tions to the GDF. S
hedul-ing of a
tions are important when the AI player do not have enoughresour
es to
arry out all the wanted a
tions. It is this way also respon-sible for delaying resour
e spending if the AI is required to
arry out anexpensive a
tion later in the game. The module is furthermore respon-sible for produ
ing two plans: Unit Plan and Resear
h Plan. The UnitPlan
ontains information about whi
h units are to be built next, andthe Resear
h Plan
ontains information about whi
h resear
h upgradesto pur
hase, and when this should happen. The A
tion Planner is theonly module in the framework, whi
h is allowed to output a
tions tothe GDF. Details on the design of this module
an be found in Ap-pendix B.10. The A
tion Planner handles the Exe
ution and A
tion
apability presented in Se
tion 5.16.2 Representation of KnowledgeTo dis
uss in detail how ea
h knowledge base should be represented in theframework, some of the knowledge bases de�ned in the human model mustbe divided into smaller knowledge bases. We will start by introdu
ing thenew knowledge bases and then move on to dis
uss how ea
h knowledge baseis represented. The reader is on
e again referred to the illustration of the
ognitive ar
hite
ture of the framework in Appendix K.2 to see the role ofea
h knowledge base in the ar
hite
ture.6.2.1 Division of Knowledge BasesOnly one of the prior knowledge bases must be divided into smaller knowl-edge bases and this is Game Spe
i�
 Knowledge. This knowledge base isdivided into the following:Resour
e Types: This knowledge base de�nes what kind of resour
es areavailable in the game.Te
hnology Tree: This knowledge base de�nes game spe
i�
 building de-penden
ies, unit dependen
ies and resear
h dependen
ies, as well as

Page 72 of 273 CHAPTER 6. FRAMEWORK DESIGNresour
e
ost for everything in the tree. Furthermore, it in
ludes knowl-edge about what a
tions ea
h unit or building is
apable of.Base Building Templates: Contains templates for stru
turing base build-ing. These templates also
ontain a prioritised list of buildings to build�rst for ea
h building plan.Ta
ti
al Knowledge: A knowledge base des
ribing all ta
ti
s possible in a
ertain game. These are essentially also present in the Known Strate-gies knowledge base, but is here hidden within the di�erent strategynodes. This knowledge base is basi
ally for easy referen
ing the di�er-ent kinds of ta
ti
s.All of the in-game knowledge bases have been divided into smaller knowl-edge bases as well to get a
learer overview of what ea
h of them
onsistsof:In-Game Enemy Knowledge:Opponent Model: Contains information about the
urrent strategyof the enemy, in
luding a strategy tree and
urrent node infor-mation for the enemy. It also spe
i�es beliefs about the numberof units and buildings the enemy has. The beliefs are only validif the attribute in question have not been s
outed, and they areonly there to represent what the AI
urrently thinks the opponentis doing. All updates in
ludes a time stamp, whi
h allow the AIto give less importan
e to variables not updated for a long time.In-Game Enemy Knowledge: Contains the position of ea
h enemyunit
urrently visible on the map and knowledge about where
ertain units have been seen earlier (So the AI does not forgetenemy units when they enter fog of war)Unit and Building Information:Assigned Unit A
tions: Information about ea
h
ontrolled unit andthe
urrent a
tion assigned to it.Assigned Building A
tions: Information about ea
h
ontrolledbuilding and the
urrent a
tion assigned to it.Unit State: Contains a
olle
tion of all
ontrolled units and the stateea
h of them are in.Building State: Contains a
olle
tion of all
ontrolled buildings andthe state ea
h of them are in.Own Strategy:Current Strategy Node: Maintains the
urrent strategy node forthe AI player.

CHAPTER 6. FRAMEWORK DESIGN Page 73 of 273Goal Strategy Node: Des
ribes the goal strategy node.In-Game Own Knowledge: Contains the position and
urrent sta-tus of all friendly units and buildings.Building Plan: Contains the
urrent building plan for the AI's base.Unit Plan: Contains information about whi
h units to build and inwhat order.Resear
h Plan: Contains information about whi
h resear
h up-grades to pur
hase and in what order.Mission Knowledge: Contains information about di�erent missionsthat should be exe
uted in a

ordan
e with the
urrent strategy.Ea
h mission is noted along with the goal of the mission and theunits assigned to perform it.In-Game Map Knowledge:Dynami
 Map Knowledge: In
ludes dynami
 elements su
h as re-sour
e lo
ations and amounts. Will di�er a lot depending on thegame in question.Dynami
 Obsta
les: Contains the position of all obsta
les
urrentlyin view that are able to move from one game ti
k to another.6.2.2 Data RepresentationOne of the most
entral aspe
ts of a
ognitive ar
hite
ture is the way itrepresents knowledge. An ar
hite
ture
an
hoose to use a single, uniformen
oding of knowledge, be
ause of its simpli
ity and elegan
e and be
ause itis easier to provide learning or re�e
tion to only one type of data stru
ture.The ar
hite
ture
an also provide a mixture of knowledge representations,be
ause limiting the framework to only one type
an in some
ases for
e anawkward or inappropriate use of the framework. However, o�ering severaldi�erent representations
an bring unwanted
omplexity to the framework.Most frameworks therefore limit themselves to only a few di�erent types.A
ommon distin
tion between the
hoi
e of representation is whether it isde
larative or pro
edural [LL02℄. A de
larative representation of knowledgeallows manipulation by
ognitive me
hanisms independent of its
ontent.Pro
edural representations on the other hand, represents knowledge as a wayto a

omplish some task. Another distin
tion is between skill knowledge and
on
eptual knowledge. While skill knowledge typi
ally des
ribes sequen
es ofa
tions to a
hieve a
ertain goal,
on
eptual knowledge deals with obje
tsand situations rather than the a
tions that manipulate them [LL02℄.Many of the knowledge bases in our framework use trivial data stru
turesand their underlying representation are not interesting, be
ause the user willnever be required to be aware of these representations. In the following wewill emphasise the use of strategy trees and strategy tree nodes, as these are

Page 74 of 273 CHAPTER 6. FRAMEWORK DESIGNin many ways the foundation on whi
h several modules work on. The use ofstrategy trees suggests a very organised hierar
hy of knowledge, whi
h meansthat knowledge pie
es referen
e ea
h other and have a relation to ea
h other[LL02℄ [FKL05℄. Strategy trees are furthermore a de
larative representationand fo
uses on
on
eptual knowledge rather than skill knowledge. We hypoth-esise that strategy trees are a su�
ient representation to represent all kindof strategies in all kinds of RTS games. This is not a data stru
ture the userof the framework will be able to
hange, be
ause this would
ompli
ate theinternal methods in the framework working on strategy trees. Furthermore,be
ause of strategy trees being able to represent all kinds of strategies, itprovides the user with a relatively simple representation of strategies, whi
halso gives a

ess to learning methods as dis
ussed in Se
tion 5.4.1. First, allknowledge bases using strategy trees will be presented and their use of themwill be explained:Known Strategies: This knowledge base is a strategy tree
ontaining allpossible strategies available in the game in question.Enemy Knowledge: This is a strategy tree
ontaining all the strategies a
ertain opponent has done over several played games. Furthermore,it keeps tra
k of how many times a
ertain strategy has been sele
tedand thereby it will be possible to dete
t if the opponent has spe
i�
strategi
 or ta
ti
al tenden
ies.Game Type Knowledge: This knowledge base
ontains several strategytrees depending on the number of di�erent game types in a
ertaingame. Ea
h strategy tree
ontains di�erent strategies and probabilitiesbased on the game type.Map Knowledge: This knowledge base in
ludes strategies for ea
h mapin the game. Depending on the map, strategies and their likelihoodof su

ess will
hange, and a strategy tree for ea
h map in the gamerepresents this fa
t. The knowledge base makes it possible to learnmap spe
i�
 strategies.Three in-game knowledge bases furthermore makes use of the strategytree stru
ture by using strategy tree nodes as their representation form:Opponent Model: An opponent model
onsists of two things: A strategynode representing the opponent's
urrent strategy node and a strategytree path showing the steps the opponent went through to get to the
urrent strategy node.Current Strategy Node: A strategy node representing the AI player'sown
urrent strategy.

CHAPTER 6. FRAMEWORK DESIGN Page 75 of 273Target Strategy Node: A strategy node representing the AI player's goalstrategy. This will always be a strategy node from one of the strategytrees in the other knowledge bases.Two other knowledge bases deserve spe
ial mentioning at this point, astheir representation are not obvious:Base Building Templates: Base building templates follow the represen-tation presented and dis
ussed in Se
tion 5.4.4.Ta
ti
al Knowledge: The representation of ta
ti
s follow the representa-tion presented and dis
ussed in Se
tion 5.4.3.These two representations both fo
uses on a more pro
edural represen-tation
ompared to strategy trees. They are
on
erned not only with rep-resenting a ta
ti
 or template, but also on how to exe
ute the ta
ti
 or usethe template. Having these two additional representations in the framework,means that the framework will have a total of three representations that theuser should be aware of. This mixture of knowledge representations is a
-
eptable in this framework, be
ause ea
h representation
overs very di�erentareas. At the same time, they
an be used in
onne
tion with ea
h other,as a strategy tree node
an
ontain both ta
ti
s or base building templatesused with the parti
ular strategy.6.3 Framework VersatilityWhen dis
ussing a framework's versatility, one often talks of hot spots vs.frozen spots in the framework. Hot spots are the parts of the frameworkthat di�er from one instan
e of the framework to another, while frozen spotsare the part of the framework that never
hanges from one instan
e to an-other [ML01℄. We have de
ided to provide hot spots in two forms: Through
on�gurable s
ripts for ea
h module and through module extensions. Byproviding these two methods we both allow the framework to be used by thenovi
e user and the advan
ed user. Novi
e users
an
hange simple variablesin s
ripts for ea
h module that
hange the behaviour of the AI to the most
ommon behaviours. Advan
ed users on the other hand,
an extend entiremodules or just single methods, to suit the needs of the parti
ular game orAI in question.Making easy
on�gurable s
ripts to use for novi
e programmers is notan easy task. One must
onsider this from the beginning of the design ofthe framework, and make sure that the
on�gurable variables allow for thene
essary tuning, as well as being adaptable enough to suit all the di�erentkinds of RTS games supported by the framework. Our framework will haves
ripts for all prior knowledge bases to allow for simple
on�guration of both

Page 76 of 273 CHAPTER 6. FRAMEWORK DESIGNthe game in question, but also of what the AI should know before startinga game. Furthermore, ea
h module will have its own
on�guration s
ript,where module spe
i�
 attributes
an be set and easily
on�gured dependingon the wanted type of AI. All
on�guration s
ripts will be de�ned in as
ripting language, and it will thereby require a minimum of programmingknowledge to spe
ify di�erent variables. Furthermore, most of the s
ripts willbe spe
i�ed in a way su
h that not even knowledge of the s
ripting languagewill be required. However, even though not mu
h programming knowledgeis ne
essary, the user must still understand all variables that
an be de�ned.It is for instan
e not possible to de�ne strategies without understanding ourrepresentation of them through strategy trees. Easy s
ript
on�guration isimportant for a
hieving the shift of workload design goal dis
ussed in Se
tion4.1.For the advan
ed users, the framework should allow for
hanging some ofthe internal details of the framework. In some
ases, an RTS game
an intro-du
e an unusual feature that the AI should in
lude in its
onsideration whende
iding upon an a
tion in a
ertain module. To support this, the frame-work will allow for extensions of all modules and nearly all methods in ea
hmodule. The only methods not extendable will be the ones handling events,but these will as su
h not
ontain any other fun
tionality than
alling otherextendable methods depending on the type of events. Only the event systemitself
annot be extended, but it
an, however, be
on�gured through a
on-�guration s
ript where for instan
e priorities
an be spe
i�ed. Extensions ofmodules or methods in the framework must be written in C++, be
ause ofperforman
e
on
erns. Having a module written in the s
ripting languagewill require far too mu
h data transfer between the s
ripting language andC++, and this is too resour
e demanding to be used in a real-time system[PP04℄. However, it should be possible for novi
e users to extend modulesor methods in the s
ripting language in order to
reate prototype methods.This will enable AI designers to experiment with di�erent methods, beforehaving an experien
ed programmer implement the fun
tion in C++, be
auseof the performan
e
on
erns. Performan
e issues will be further dis
ussed inse
tion 7.3.6.4 Framework ControlThis se
tion will present the ba
kbone of the framework. First it will bepresented how the design te
hniques have been used, then the main systemthat
ontrols all the modules will be des
ribed, and arguments are given towhy it is built in this way.

CHAPTER 6. FRAMEWORK DESIGN Page 77 of 2736.4.1 Using the Design Te
hniquesWhile it has already been introdu
ed how the RTS spe
i�

on
epts are usedin the design in Se
tion 6.1 and Se
tion 6.2, this se
tion will fo
us on howto use event based systems and s
ripting languages.Using events as a ba
kbone for the a
tivation and inter
ommuni
ationbetween modules makes it possible to modify the ar
hite
ture and even addmore modules to the design, fairly easily, at a later point. Ea
h module
ansend events to the event manager, whi
h then a
tivates the modules thathave been assigned to handle that event. If later users would like to extendthe framework with additional modules, they would just have to
reate themodule and assign it to handle a
ertain event. If it is a new type of event,this
an also be added and the system and the event trigger
an be added,where the new module should be triggered.Using the s
ripting language to
on�gure ea
h of the modules makes itunne
essary to re
ompile the
ode ea
h time a small
on�guration is done,and makes it faster to tweak the framework for the variables that are
on-�gured there. Writing the prior knowledge bases in the s
ripting languagefurthermore makes it possible for a designer to
on�gure these knowledgebases. This is good, be
ause the prior knowledge bases are the part of theframework that have the most signi�
ant impa
t on the behaviour of the AI.6.4.2 Event SystemThe main exe
ution of the framework is
ontrolled by an event manager. Itmust be possible to assign modules to be run when
ertain events happen.Ea
h module must handle all the di�erent types of events it
an be sent,so the a
tual handling of ea
h event is on ea
h module. To simplify theevent manager, it will just queue the modules that must be exe
uted whenan event is sent. Ea
h module has a priority that the event manager usesto prioritise in what order the modules are exe
uted. The event manager isa

essible to any module at any time. After sending an event to the eventmanager, the event manager takes
are of the rest.The event manager must also be able to send events on its own at spe
i�edintervals. This should work like a timer. When assigned, it must be possibleto spe
ify at what interval the event type should be run.6.4.3 Constru
ting the Ar
hite
tureFigure 6.3 shows what happens, when
hanging the in�uen
e in the frame-work ar
hite
ture into events that a
tivate ea
h module at spe
i�

onditions.Ea
h module
an be thought of as an obje
t, and ea
h of them
an sendevents to the event manager. Further details about the event system
anbe found in Se
tion 6.4.2. Ea
h module is a
tivated by sending events toit, with the ex
eption of the Game State Interfa
e, whi
h is des
ribed in

Page 78 of 273 CHAPTER 6. FRAMEWORK DESIGN

Figure 6.3: Event designSe
tion 6.4.4. The Timer events box represents the part of the event systemthat
an send events with a
ertain frequen
y. The diamonds represent theinterfa
e to the GDF.The entire framework is a
tivated when an event is sent from the In-put Conne
tion to the Per
ept Interpreter. This event
ontains informationabout the
hanges that have happened sin
e last game ti
k2. A short de-s
ription about what events ea
h module
an send is given below. It only
ontains the modules that send events:Per
ept Interpreter : The Per
ept Interpreter noti�es the Pattern Re
og-nition module when new knowledge of the enemy is re
eived. TheStrategi
 Planning module is a
tivated when the AI player has builtnew units, or one of the AI's units have been killed. Finally, the Re-a
tive module module is a
tivated if one of the AI player's own unit'shitpoints have
hanged. The A
tion Planner is also a
tivated so thatthe units a
tions
an be exe
uted in the end of ea
h time ti
k.Rea
tive Module: When a rea
tion from the Ta
ti
al Planning module isne
essary an event is sent.Pattern Re
ognition: An event is sent to the Probabilisti
 Reasoningmodule when there are signi�
ant updates to the opponent model.Probabilisti
 Reasoning : An event is sent to the Strategi
 Planning mod-ule notifying that the Probabilisti
 Reasoning module has attempted2A game ti
k is the dis
rete time steps that an RTS game is divided into.

CHAPTER 6. FRAMEWORK DESIGN Page 79 of 273to reason about the opponent's a
tions, and thus have new informationavailable.Strategi
 Planning : If units have been assigned to either be used for gath-ering resour
es,
onstru
ting buildings, or s
outing, the Resour
e Man-ager, Base Building, or Ta
ti
al Planning modules are sent an eventa

ordingly. Furthermore, if there are any
hanges to Mission Knowl-edge, an event is sent to the Ta
ti
al Planner.Resour
e Manager : When more workers are required to gather resour
es,an event is sent to the A
tion Planner requesting this.Base Building : When the position of a building has been determined, theA
tion Planner is requested to give permission to
onstru
t the build-ing.A
tion Planner : An event is sent to Output A
tions ea
h ti
k, telling whata
tions to do. When any unit or building a
tion is
omplete, it sendsan event notifying this to either Strategi
 Planning, Resour
e Manager,Base Building, or Ta
ti
al Planning.Timer Events: Events are sent to the Learning module at some interval tomake it reason about the game being played regularly. The Strategi
Planning module is sent an event to make it s
out after a
ertainamount of time, and at some interval to make it evaluate the
urrentsituation of the AI situation. These intervals are spe
i�ed by the user.6.4.4 Game State Interfa
eThis module is an almost dire
t
onne
tion to the game state, and shouldmake it possible for developers using the framework to a

ess informationthat has not already been put into knowledge bases. This is data that doesnot have any e�e
t in how the AI should rea
t, like stati
 information aboutthe map or time information. In new games there are always some newfeatures or information that
an be used in some way that this more generalframework
annot
omprehend. This interfa
e gives a
han
e to get gamedependent information into the framework. This module should be a

essibleany time and pla
e in the framework.The game state interfa
e should give a

ess to the following things:Game Ti
k: It must be possible to get the timer
ounter, making it possibleto know how mu
h time has gone sin
e the game started.Tile Type: It must be possible to get the type of a spe
i�
 tile, so it ispossible to
he
k if a unit
an walk there.Map Size: The map size is also ne
essary, espe
ially for path�nding.

Page 80 of 273 CHAPTER 6. FRAMEWORK DESIGNAdditional Game Spe
i�
 Information: Any other game spe
i�
 infor-mation that
ould be useful
an always be added by the user in theuser extension of the Game State Interfa
e.6.5 SummaryThis
hapter presented a
ognitive framework ar
hite
ture based on the hu-man model presented in Chapter 3. We de�ned framework modules based onthe tasks in the human model, and de�ned their exa
t responsibilities in theframework ar
hite
ture. The
omplete design of all these modules have notbeen presented in this
hapter, as it would be too extensive, and the readeris instead referred to Appendix B for the internal design of ea
h frameworkmodule. In Se
tion 6.2 we presented how knowledge in the framework is or-ganised, and explained whi
h knowledge bases make use of non-trivial datastru
tures. We then pro
eeded to dis
uss framework versatility, and morespe
i�
ally how AI developers
an vary instan
es of the framework from ea
hother. The �nal se
tion, Se
tion 6.4, fo
used on presenting the event system
ontrolling the framework and also dis
ussed how the framework is to be
onne
ted to the GDF used.

Page 81 of 273

Part IIIProof of Con
ept

CHAPTER 7. IMPLEMENTATION Page 83 of 273
Chapter 7ImplementationThis
hapter will des
ribe the prototype implementation of the AI frame-work. We will start by des
ribing the
ontents of our prototype implemen-tation, and explain why ea
h of the implemented features are important toprove the merits of the framework idea. Then we will spe
ify
ertain im-plementation spe
i�

hoi
es su
h as the game development framework usedand
hosen programming languages. A dis
ussion of the trade-o� betweenusability and performan
e is then presented. This dis
ussion will fo
us onwhi
h parts of the framework
an be spe
i�ed by designers and whi
h partsmust be spe
i�ed by programmers. Next we will present a new module,whi
h
onne
ts the AI framework to the GDF. Finally we will introdu
e thereader to some of the problems en
ountered throughout the implementation.7.1 Proof of Con
eptWe will through this implementation try to prove that the design goals pre-sented in Se
tion 5.1 will be ful�lled and that some of the key ideas in theframework are appli
able for real use. This se
tion will dis
uss whi
h ele-ments of the framework are ne
essary to
reate a running version and whi
helements are essential for proving the merits of the idea. First, the goals ofthe implementation will be outlined:Reuse: The implementation serves to show how mu
h a generi
 RTS AIframework
an reuse.AI Quality: Through the implementation, we assess how one
an improvethe quality of AI with an AI framework.Developer Friendly: The implementation is also an experiment to see howdeveloper friendly the framework
an be made, and how mu
h of thedevelopment of AI
an be left in the hands of inexperien
ed program-mers.

Page 84 of 273 CHAPTER 7. IMPLEMENTATIONRTS Spe
i�
 Con
epts: Through the implementation, we will be able totest two of the RTS spe
i�
 ideas presented in Se
tion 5.4: Strategytrees and path�nding.Potential Problems: The implementation will also serve to identify poten-tial problems in the design. The in
ludes problems with
onne
ting theAI framework to several di�erent GDFs as well as identifying potentialbottlene
ks in the overall ar
hite
ture of the framework. Furthermore,the implementation will give an idea of any performan
e problems.We have de
ided to fo
us on two of the ideas presented in Se
tion 5.4:Strategy Trees and Path�nding. Both are extremely important elements ofthe framework, and essential for the framework to work properly. Strat-egy trees are the very foundation on whi
h strategi
 de
isions will be made,and are used by four framework modules: Strategi
 Planning, Probabilisti
Reasoning, Pattern Re
ognition, and Learning. Furthermore, several of thein-game knowledge bases rely on the stru
ture of the strategy tree node aswell. Path�nding is equally important as it is required to make units move,and hen
e three modules require its presen
e: Strategi
 Planning, Ta
ti
alPlanning, Resour
e Management and Base Building. The Ta
ti
s represen-tation presented in Se
tion 5.4.3 will not be part of the implementation, asthis idea is not yet fully developed. Furthermore, to really fo
us on ta
ti
s inan RTS game, a game with a
omplex unit
omposition would be required,in
luding support units, and a unit system with armour types and atta
ktypes1. The test game, whi
h is des
ribed in Se
tion 7.2.2, does not sup-port su
h a
omplex unit
omposition. The idea of base building templatespresented in Se
tion 5.4.4 will not be tested in the implementation either,be
ause the sele
ted test game only
ontains three types of buildings andpla
ement of buildings is hen
e of minimal strategi
 importan
e.The modular design of the framework allows for a
lear distin
tion of theresponsibility of ea
h module, but it also means that a prototype implemen-tation will be required to implement almost all modules for the framework towork in even a simple RTS game. The two modules that handle
ommuni-
ation with the GDF, the Per
ept Interpreter and A
tion Planner modules,will be mandatory. In even simple RTS games, the AI must gather resour
es(Resour
e Manager), it must build a base (Base Building), it must
ontrolits army e�
iently (Ta
ti
al Planning) and it must
hoose strategies andsend the army to the right
oordinates (Strategi
 Planning). For the Strate-gi
 Planning module to work properly however, it requires input from theProbabilisti
 Reasoning module, whi
h in turn relies on a updated opponentmodel, ensured by the Pattern Re
ognition module. We
an, however, limitthe implementation of the Pattern Re
ognition module to just being able to1Having di�erent armour types for units allows di�erent atta
k types to do more orless damage against a
ertain type of armour.

CHAPTER 7. IMPLEMENTATION Page 85 of 273Module Name: ImplementationPer
ept Interpreter Complete implementationRea
tive Module Complete implementationPattern Re
ognition Updating of the opponent modelLearning Not implementedProbabilisti
 Reasoning Complete implementationStrategi
 Planning Complete implementation, but simpli�eds
outing and exe
ution of strategiesTa
ti
al Planning Path�nding, simpli�ed mi
romanagement andsituation assessmentBase Building Simpli�ed building pla
ementResour
e Management Resour
e gatheringA
tion Planner Communi
ating a
tions to GDFFigure 7.1: Implementation detailsupdate the opponent model. This has the
onsequen
e that all attempts tore
ognise ta
ti
s or new strategies are not implemented and hen
e there isno information for the Learning module to work on. The Learning modulewould also be very
omplex in terms of developing methods for re
ognisingta
ti
s and base building templates and in terms of de
iding how to
on-trol learning, so that the AI will not learn the wrong things. Furthermore,the only module that other modules do not rely on dire
tly, is the Learningmodule. We have therefore de
ided to not in
lude learning as part of theimplementation. Table 7.1 presents how mu
h of the di�erent AI moduleswill be implemented. The simpli�ed mi
romanagement of the Ta
ti
al Plan-ning module means that we have implemented simple rules for fo
us �re andunit preserving, but nothing as advan
ed as dis
ussed during the ta
ti
s rep-resentation in Se
tion 5.4.3. For a
omplete referen
e of the design detailsthat has been left out, the reader is referred to Appendix B. Besides theframework modules, the event system des
ribed in Se
tion 6.4 will also beimplemented.7.2 Implementation Spe
i�
 Choi
esThis se
tion will dis
uss three implementation spe
i�

hoi
es: The GDFused to test the AI framework, the game used to test the AI and the languagesele
ted to be the s
ripting language used to
on�gure the framework.

Page 86 of 273 CHAPTER 7. IMPLEMENTATION7.2.1 Game Development FrameworkThere are only two possible
hoi
es to use as GDFs [FKL05℄: ORTS [ORT05℄and Stratagus [Str℄. As mentioned in Se
tion 5.1.2 there are problems in us-ing both of them. ORTS la
ks stability and do
umentation, while Stratagusrequires
hanging the internal
ode of the GDF to allow the AI frameworkto handle low level AI a
tions [FKL05℄. We have
hosen to use ORTS asGDF for mainly two reasons:
• Changing the internal me
hanisms of Stratagus is
onsidered a fargreater task than a

epting the do
umentation of ORTS. This does,however, mean that a lot of time must be spend studying ORTS sour
e
ode to make up for the limited do
umentation.
• Stability of ORTS is improving and be
ause of an up
oming AI tour-nament [BASC05℄ organised by AIIDE [AII℄, where ORTS will be usedas underlying platform, one
an expe
t a
ertain level of stability. Thistournament is open for all AI resear
hers and in
ludes three di�erenttypes of games: A resour
e gathering game, a tank
ombat game anda simpli�ed version of a real RTS game.7.2.2 Test GameTo test instan
es of the AI framework, one must sele
t a game su�
iently
omplex to show important AI
apabilities. The
hoi
e of ORTS as GDFhowever, limits the amount of
hoi
es available. As ORTS does not
urrentlyin
lude a standard game, the
hoi
e is among three di�erent games used forthe AIIDE tournament [BASC05℄. Only one of these is a real RTS game,whi
h in
ludes a
tivities su
h as base building, resour
e management, op-ponent modelling, ta
ti
al planning, and strategi
 planning. The game is,a very simpli�ed version of
ommer
ial RTS games, but it will be su�
ientto test the AIs
reated with this prototype framework implementation. Ashort des
ription of game details are listed in the following:Game Type: The game is played as a 1on1 game between two AI players.Unit Types: Three di�erent unit types are in
luded: Workers, marines andtanks.Building Types: Three di�erent building types are in
luded: Control Cen-ters, Barra
ks and Fa
tories.Resour
es: The game in
ludes four di�erent resour
e
lusters randomlypla
ed around the map. Furthermore, a resour
e
luster is pla
ed
loseto both player's starting position.

CHAPTER 7. IMPLEMENTATION Page 87 of 273Map: The map is a 64x64 tile randomly generated map with two terraintypes: Ground and
li�s. Ground tiles are passable while
li� tiles arenot.Obje
tive: The obje
tive of the game is to destroy the opponent player'sbuildings.More details on the game spe
i�
ation in
luding te
hnology tree, possibleunit a
tions et
.
an be found on the ORTS tournament page [Ort℄.7.2.3 S
ripting LanguageThe
hoi
e of a s
ripting language to use with the AI framework relies onseveral di�erent fa
tors. The main ones being:
• The language must be easy to use to support novi
e programmersand designers, while still being expressive enough to write
omplexbehaviour in relatively few lines of
ode.
• The
hosen language should make it possible to do rapid prototypingby allowing for adjustments of s
ripts without having to re-
ompile theentire framework.
• The language should be easily embedded into framework native
ode.In our pre-master thesis [FKL05℄ we have analysed the following lan-guages for their ability to handle the role as s
ripting language for the AIframework: Lua [Lua℄, Python [Pyta℄, Perl [Per℄, T
l [T
l℄, LISP [Lis℄ andJava [Jav℄.Only two languages were able to ful�l our requirements: Lua and Python.Comparing the two, Python has dire
t support for obje
ts and it is possibleto pass entire obje
ts from native C++
ode to s
ripting
ode. This meansthat the programmer does not have to work with a sta
k or some
onvertertool only
apable of passing simple types, whi
h is the
ase with Lua. Be
auseof this, we have
hosen Python as being the best suited s
ripting languagefor the AI framework.7.3 Trade-o�s between Usability and Performan
eIn this se
tion we will dis
uss what parts of the AI framework that should be
reated in the s
ripting language, and whi
h should be implemented in thenative language C++. In this dis
ussion we will outline the advantages anddisadvantages of
reating the framework to be easy to
on�gure. Afterwardsa short des
ription of how to
on�gure the s
ripts in the framework will begiven. Finally, it will be dis
ussed how mu
h a
tually
an be
reated andmodi�ed with the s
ripting language.

Page 88 of 273 CHAPTER 7. IMPLEMENTATION7.3.1 S
ripted PartsThe framework is designed so that it should be possible even for inexpe-rien
ed programmers to use the framework if it has been
onne
ted to aspe
i�
 GDF. The novi
e user should then be able to
reate very di�erentAIs just by editing the s
ripts that
on�gure the framework instan
es.Being able to
on�gure ea
h module in the framework gives the advan-tage that there are some variables that
an be modi�ed depending on the
onne
ted game. In other
ases it
an be variables that
hange the behaviourof the modules, or thresholds identifying when and how the module shouldrea
t. The only added resour
e use is at load time, whi
h does not a�e
t theperforman
e of the framework. If fun
tions that are run during the gameare
reated in the s
ripting language, it has to be ensured that there is nottoo big a movement of data between the s
ripting language and the nativelanguage, be
ause as stated by Phelps et al. [PP04℄, this part of integratinga s
ripting language or any other integrated language is the most resour
edemanding.All of the prior knowledge bases are
reated in the s
ripting language.These are game and AI dependent, and are essentially the part of the frame-work that have the highest impa
t on AI behaviour. Some of the knowledgebases are only game spe
i�
. That means that if they have been
on�guredto a spe
i�
 game it is not ne
essary to
hange them, unless the game itselfis
hanged, whi
h often happens during the �nal balan
ing of the game.7.3.2 Con�guring the FrameworkThe framework is
on�gured through s
ripts. The s
ript �les are saved inprede�ned folders, and in ea
h of these s
ript �les a des
ription
an be foundof what it does and what ea
h variable
on�gures in the framework. Anexample of this is the
on�guration of the Pattern Re
ognition module:Listing 7.1: S
ript
on�guration of Pattern Re
ognition module1 # This s
 r i p t d e f i n e s v a r i a b l e s f o r the Pattern Re
ogni t ion module23 ### − Opponent Model − ###45 # The f o l l ow i n g d e s
 r i b e s how o f t en the AI w i l l re−
ons ider i t s6 # s t r a t e g y . Ea
h un i t or b u i l d i n g w i l l have two va l u e s de f ined f o r7 # i t . The f i r s t va lue i n d i
 a t e s how mu
h a
 e r t a i n a t t r i b u t e in the8 # opponent model must
hange b e f o r e the AI shou ld re−
ons ider i t s9 # s t r a t e g y . The se
ond va lue d e s
 r i b e s how mu
h a
 e r t a i n a t t r i b u t e ' s10 # per
entage par t o f the opponent model must
hange b e f o r e the AI11 # shou ld re−
ons ider i t s s t r a t e g y .1213 worker = [10 , 20 ℄14 marine = [10 , 15 ℄15 tank = [8 , 10 ℄16
ont ro lCente r = [12 , 22 ℄

CHAPTER 7. IMPLEMENTATION Page 89 of 27317 barra
ks = [7 , 15 ℄18 f a
 t o ry = [4 , 11 ℄As
an be seen in Listing 7.1, it is a very simple syntax. Variables aresimply assigned values. All the variables that
an be set are listed in thes
ript, and the user just have to �ll in the numbers. This will further bedis
ussed in the evaluation in Se
tion 8.1.To
on�gure the te
hnology tree that is used many pla
es in the frame-work, there is a dire
tory where ea
h type of unit and building is de�ned ina separate �le. The framework will dynami
ally load ea
h of these �les andadd ea
h of them as an element to the te
hnology tree.7.3.3 S
ripting LimitationsThere is no doubt that even though the
omputers of today have be
omemu
h faster, there is still a need for optimising for performan
e, espe
iallywhen dealing with games. That
an be seen just by looking at the require-ments of some newer games. The buyers still demand that the graphi
sbe
ome more and more realisti
 and that requires more and more pro
essingtime. Even if the AI is given more pro
essing time, it will always be betterto be able to take more things into a

ount, so the better the performan
e ofthe AI
ode, the more things
an be taken into a

ount. But with the limitedtime for developing the AI as stated in Se
tion 2.1.2, rapid prototyping isrequired, and as stated by Ousterhout [Ous98℄ and shown numerous timea

ording to a lot of the
ooperations using Python [Pytb℄, s
ripting is wellsuited for this purpose.The
entral parts of the framework, whi
h should make sure that theexe
ution speed is high should however not be implemented in a s
riptinglanguage. Even though s
ripts
an be
reated to do the same things andsome tweaking
ould make them faster, the exe
ution speed that the s
riptinglanguage
an perform at, would simply not be enough.7.4 Implementation Spe
i�
 DetailsThis se
tion will introdu
e a number of implementation spe
i�
 details.7.4.1 GDF Communi
ation Ar
hite
tureThe GDF
ommuni
ation ar
hite
ture has an impa
t on how to integratethe AI into the GDF. The ORTS GDF uses a server/
lient ar
hite
ture,where traditional games often use peer-to-peer
ommuni
ation[BF05℄. This
an be seen in Figure 7.2. The server/
lient ar
hite
ture in ORTS makesit possible to hide information from ea
h of the
lients, so that it is notpossible to
heat with full map knowledge[Bur02℄. In the ORTS ar
hite
tureea
h of the AIs in the game are
onne
ted to the server like any other
lient

Page 90 of 273 CHAPTER 7. IMPLEMENTATION
Client Client

Server

Client

Client Client Client

BAFigure 7.2: Server/
lient(A) and peer-to-peer(B) ar
hite
tureprogram[BF04a℄. In the peer-to-peer ar
hite
ture all AIs is run on ea
h
lientto save bandwidth, but this takes up a lot more pro
essing on ea
h
lient.In ORTS, ea
h
lient sends its a
tions to the server every eighth of ase
ond, and the server will then respond with the new updates in the gameuniverse[UB06℄. Be
ause the AI has to send its a
tions to the server, andbe
ause the rea
tion time of the opponent is important, the framework hasto be to some extend real-time.7.4.2 GDF Conne
tionIn the implementation we have de
ided to make the sub-module Interfa
eGDF (des
ribed in Appendix B.10.6), from the A
tion Planner, into a sepa-rate module
alled Conne
tion module. This will make a
leaner separationof the AI framework and the GDF. Furthermore the Input Conne
tion andthe Output A
tions part des
ribed in Se
tion 6.4, are also
ombined into thismodule.The implementation of the Conne
tion module that
onne
ts the AIframework with the GDF is one of the larger tasks that have to be imple-mented by experien
ed programmers. This module should get the per
eptsfrom the GDF, and input these into the AI framework. When the a
tionshave been found by the AI framework, this module should then translatethese into a
tions that
an be understood by the GDF. The Conne
tion in-terfa
e must be implemented, and this
ontains two fun
tions: read() andwrite().When
reating the read() fun
tion, the data that should be passed on tothe Per
ept Interpreter must be extra
ted from the GDF. In the implemen-tation that
onne
ts to the ORTS framework, this part reads, with the useof the
lient interfa
e, the data that is transmitted from the ORTS server.The ORTS framework has an example of how to
onne
t to the server, andthis is used as a guideline for the implementation. The user must also im-plement the Per
ept Interpreter, whi
h updates and maintains some of thein-game knowledge bases. The task of implementing this module requiressome knowledge of how the knowledge bases are
onstru
ted.The write() fun
tion gets a list of AI a
tions as input. It is then the

CHAPTER 7. IMPLEMENTATION Page 91 of 273responsibility of this fun
tion to take ea
h of these a
tions and do whatis equivalent in the GDF. Ea
h type of AI a
tion must be handled. Eventhough the AI framework should make sure that a
ertain a
tion is possibleto do, it might happen that something has not been taken into
onsideration,like trying to atta
k a unit that is already dead. Therefore, we have addeda knowledge base where return values from the GDF
an be stored. Thesereturn values are identi�ed by the unit or building that should perform thea
tion. The return values are then used in the AI framework to tell that thea
tion was not possible, and it should try to �nd another a
tion.7.5 Implementation ProblemsThe following se
tion will introdu
e the reader to the problems that wereen
ountered during the development of the prototype of the framework. Theproblems
on
erning the GDF were mostly expe
ted but the extend to whi
hthey a�e
ted the implementation was not. The �rst se
tion will go throughthe expe
ted problems with using the ORTS GDF and also des
ribe how theunexpe
ted side e�e
ts a�e
ted the implementation. The next se
tion willdes
ribe some of the problems en
ountered when
onne
ting the prototypeto the ORTS GDF and �nally the last se
tion will present the
urrent statusof the prototype implementation.7.5.1 GDFThis se
tion will introdu
e some of the experien
es we have made throughoutthe implementation
on
erning using ORTS as GDF. This se
tion will mainlyfo
us on the three problems identi�ed in Se
tion 5.1.2:
• Do
umentation
• Stability
• Full Control of AITo summarise we dis
overed that ORTS la
ked do
umentation and sta-bility, but allowed full
ontrol over the AI. Stratagus that was the other
andidate for GDF did have a limited do
umentation and be
ause it hasbeen used by developers for a
ouple of years, it is relatively well tested.Stratagus did, however, not allow full
ontrol of the AI. Through an analysisin the pre-master thesis [FKL05℄, we estimated that ORTS would be theGDF that was best suited.Unfortunately the implementation has revealed a number of problemsthat we will now present and dis
uss. These problem have ultimately meantthat pre
ious time has been spent on tasks that
ould otherwise have beenavoided.

Page 92 of 273 CHAPTER 7. IMPLEMENTATIONDo
umentationThis se
tion will emphasise the problems we have found that are related tothe do
umentation, or rather the la
k of this.Presentation of the Environment: ORTS has until re
ently not in-
luded any information at all on the
hara
teristi
s of the environment.Basi
 knowledge su
h as map size, map topology and
ell movement
ost have not been available to the users of the framework through anykind of do
umentation. The only way to gain any knowledge in thisarea is through hard study of the GDF sour
e
ode. Even if any answerwas found we
ould in most
ases not be
ompletely
ertain that thisreally was the right answer.Referen
e Manual: The interfa
e of all framework modules is availablethrough a Doxygen do
umentation [dox℄. This is as su
h an elegantsolution for this type of problem, however, the do
umentation in theDoxygen has been added gradually through the development. This hasthe
onsequen
e that we had to guess how various modules worked andinfer input on a number of fun
tions through use of these in the sampleAI, provided by default in the GDF.Tutorials: The use of tutorials is a well-known te
hnique to introdu
e newusers to a framework. If tutorials had been available modules and
on-ne
tions
ould have been made more smoothly and the general learning
urve for learning to use the framework
ould have been lowered
on-siderably.Limited Example Code: As already mentioned earlier, ORTS in
ludesa sample AI in whi
h many basi
 tasks are introdu
ed. In order to bee�e
tive, however, this example
ode must be more extensive than it isthe
ase. The sample AI essentially only moves randomly around andatta
ks an enemy when it gets within range. Areas su
h as mining, basebuilding are not handled at all. Coupled with tutorials a broad s
aledarray of sample
ode
an be a powerful tool, but a limited amount ofsample
ode
an raise as many questions as it answers.7.5.2 StabilityThe ORTS development deadline has been a
on
ern from the very beginningof this proje
t. Originally ORTS was meant to be in su
h a state that AIs
ould be integrated into it at the start of 2006. This deadline has beendelayed a number of times till the interfa
e de�nition was �nally lo
ked inlate February. This has meant that the implementation of the framework inthis proje
t has been done in parallel to development on the ORTS GDF.

CHAPTER 7. IMPLEMENTATION Page 93 of 273This has had the
onsequen
e that numerous times there have been
ompileerrors in the ORTS
ode that had to be
orre
ted before it
ould be used.The GDF itself is not very developer friendly. The server will
rash if itre
eives any invalid input. In general very few errors are handled.7.5.3 Path�nderOne of the key elements that have su�ered from la
k of do
umentation isthe path�nder. In order to even be able to start the implementation spe
i�
design of a path�nder the developer must know things like map width, mapheight, whi
h terrain types there are, movement
ost of di�erent terraintypes, the map topology in general and how to extra
t unit and obsta
lepositions. All these fa
tors and more had to be found through intensivestudy of sour
e
ode of the GDF's internal modules. The development wasnot made easier by the fa
t that very little information exist about the"Blueprint" language in whi
h game
on�gurations are de�ned. This hashad the
onsequen
e that it has been impossible to set up a "sandbox"environment in whi
h to test and develop the path�nder. Instead one of theprede�ned games had to be used. These games feature random generatedmaps that vary from game to game. This
ompli
ated development as datasu
h as unit and obsta
le positions
annot be transfered from test to test.Indeed the size of the game itself
ompli
ates matters. Instead of for instan
eworking in a 32*32
ell environment in whi
h a path
an be easily veri�ed,the games work in a 1024*1024
ell environment that severely
ompli
atesveri�
ation.7.5.4 AI FrameworkThis se
tion will summarise some of the problems that were en
ounteredduring the implementation of the AI framework.There were mainly problems with the intera
tion with the ORTS GDFwhen having to make units perform
ertain a
tions, be
ause this was notdo
umented anywhere. The sample AI that
ame along with the GDF wasthe only thing that
ould give an idea about how to make units perform a
-tions, and the only a
tions that was performed in this example
ode was themove a
tion. Every other type of intera
tion with the GDF were more or lesstrial and error. Currently there are the following problems with the inter-a
tion with the ORTS GDF: Constru
ting buildings, harvesting resour
es,and atta
king other units. The method of making a unit perform any ofthese a
tions is by a
tivating the
orresponding s
ript fun
tion on the unitobje
t. The problem is
urrently that when parsing the assumed parame-ters, the ORTS server
rashes. The assumption about what parameters thatis passed to the obje
t is based on reading the s
ript
ode. We have basi-
ally not been able to �gure out what parameters should be passed to these

Page 94 of 273 CHAPTER 7. IMPLEMENTATIONfun
tions, as there are no examples of how to do this, and it has not beenpossible to extra
t this information from the ORTS
ode. This has only lefta trial and error approa
h, whi
h has not been su

essful and hen
e thesea
tions have not been implemented.7.5.5 Implementation StatusThis se
tion is presented to give the reader an overview of the status ofthe prototype implementation, before we in Chapter 8 will evaluate it. Atthis point, all the features mentioned in Table 7.1 have been implemented.However, as dis
ussed throughout this se
tion, we have experien
ed numer-ous problems with intera
ting with the GDF. This has resulted in that weare not able to properly exe
ute the a
tions we want. Furthermore, theJIT part of our path�nding idea presented in Se
tion 5.4.2 has not beenin
luded, be
ause it has been an idea in
ontinues development throughoutthe proje
t and would require extra design
onsideration before being ap-pli
able in the implementation. This does not a�e
t the overall test of thepath�nder. However, for an a
tual use in a framework the JIT te
hniquewill have a signi�
ant impa
t as the response time will be severely redu
ed[BMS04℄ and the
omputation will be distributed over several game ti
ks.7.5.6 Con
lusionAll in all we must
on
lude that ORTS is simply not yet mature enough forthe intended purpose. In fa
t to our knowledge there are
urrently no RTSGDF that lives up to the requirements presented in Se
tion 5.1.2. An AIframework su
h as the one built in this proje
t would indeed have been easierto realise if ORTS for example had another
ouple of years to mature.

CHAPTER 8. EVALUATION Page 95 of 273
Chapter 8EvaluationIn this
hapter we will evaluate the implementation presented in Chapter7. Throughout this dis
ussion, we will identify strengths and weaknesses ofthe framework, and point out areas that require further resear
h. The �rstpart of this
hapter will be divided into six se
tions, ea
h
overing an areaimportant to be evaluated in order to determine the su

ess of a possiblefull implementation of our framework. Combined, these areas will serve assu

ess
riteria for evaluating an AI framework for game development. Thefollowing shortly explains the fo
us of ea
h se
tion:Con�gurable: The �rst area stems from the design goal in Se
tion 4.1,whi
h states that the framework must be able to shift the workload ofAI development from programmers to AI designers. This se
tion willprimarily deal with subje
ts
on
erning the usability of the frameworkfor inexperien
ed programmers. More spe
i�
ally, we will evaluate howeasy it is to
on�gure knowledge bases and framework modules as wellas dis
uss how to
onne
t the AI framework to di�erent GDFs.Versatility: This area dis
uss an area of extreme importan
e for frame-works in general, namely its versatility [FS97℄. We will in this se
tionevaluate the di�erent ways of varying instan
es of the framework fromea
h other. This will be done by taking a
loser look at how priorknowledge bases and module
on�guration
an be spe
i�ed to
reatedi�erent types of AI's for the di�erent genres of RTS games de�ned inSe
tion 2.4.2.Extendibility: A third area whi
h frameworks rely on is their extendibil-ity [FS97℄. As some games require spe
ial kinds of features, the AIframework should be relatively easily extended to deal with this. Thisse
tion will des
ribe how to extend the framework by example, andthen dis
uss this method of adding new features to the framework.Performan
e Testing: The fourth area will fo
us on performan
e testing

Page 96 of 273 CHAPTER 8. EVALUATIONand s
alability, as this is important in real-time systems. This se
tionwill present performan
e tests on the prototype implementation, whi
hwill determine possible bottlene
ks in the design. Furthermore, thesetests will determine how mu
h performan
e is used on the prototypeimplementation and dis
uss whether a fully implemented AI frameworkis a realisti
 possibility performan
e-wise.AI Improvements: This area will fo
us on the AI improvements the frame-work is able to provide, whi
h was also one of the design goals des
ribedin Se
tion 4.1. This se
tion will outline areas that the prototype im-plementation handles, whi
h most
ommer
ial RTS games do not.RTS Spe
i�
 Con
epts: The sixth and �nal area will fo
us on an evalua-tion of the RTS spe
i�

on
epts presented in Se
tion 5.4. This se
tionwill evaluate the two RTS spe
i�
 ideas we have
hosen to implementin the prototype of the framework: Strategy trees and path�nding.Following this, we will re�e
t upon the transition from design to imple-mentation and dis
uss the development model used throughout this proje
t.Finally, this
hapter will end with a se
tion that summarises important de-tails dis
overed through the evaluation, and dis
usses potential problems andareas that require further work.8.1 Con�gurabilityThis se
tion will present a number of ways to vary framework instan
es fromea
h other through
on�gurable Python �les. Appendix B presents the de-sign of ea
h module, in
luding a spe
i�
ation of what
an be
on�gured onea
h of them. First, we will show how to spe
ify units and buildings, andthereby build a te
hnology tree, for the game in question. Then we willshow how strategies are spe
i�ed, and more spe
i�
ally, how the user buildsa strategy tree for the AI. Furthermore, as ea
h module
an be
on�guredas well, we will pi
k an example module and show whi
h and how di�erentvariables
an be
on�gured. Following ea
h example on how to
on�gure a
ertain part of the framework, we will brie�y dis
uss advantages and dis-advantages in this way of
on�guring the framework. Afterwards, we willshortly des
ribe what the fo
us of AI developers should be, depending onthe RTS genre the AI is being made for. Finally, the se
tion will explainhow the AI framework and the GDF are
onne
ted to ea
h other and dis
ussproblems in this approa
h, as well as potential solutions.8.1.1 Con�guration of Te
hnology TreeFour di�erent things must normally be spe
i�ed for a te
hnology tree: Unittypes, building types, resear
h types and the dependen
ies between these.

CHAPTER 8. EVALUATION Page 97 of 273For our prototype implementation, we
an ignore resear
h types as this isnot a part of the game used with this implementation. A te
hnology treein the framework is spe
i�ed by a unit or building spe
i�
ation in
ludingany pre
onditions there might be to this unit or building. For this prototypeimplementation there are a Python �le for ea
h unit or building spe
i�
ation.An example of this
an be seen in Listing 8.1, whi
h de�nes a marine type.The attributes de�ned for this unit are all spe
i�
 to the test game used withthe prototype implementation.Listing 8.1: Spe
i�
ation of a marine type1 name = "marine"2 type = "Unit"3 pr e
ond i t i on s = [" barra
k " ℄4 h i t p o i n t s = 1005 atta
k_max = 506 atta
k_min = 307 ground_atta
k_range = 88 movement_speed = 39 s ight_range = 610 a
 t i on s = ["move" , " atta
k " , " stop " ℄11 minera l s = 10012 built_by = "barra
k "13 build_time = 10014 supply_
ost = 1The
ode de�nes several standard attributes for a unit type. Further-more, it de�nes the type of a
tions available for this unit and its pla
e in thete
hnology tree through the pre
onditions variable. The framework shouldattempt to in
lude all standard attributes for units and buildings, su
h asthe ones in Listing 8.1, but sometimes a game will require more than these.To add new attributes, a developer must do two things. First, the attributemust be added as an attribute of the parti
ular unit or building type in theframework. This is not a di�
ult task, and
an be done by simply
opyinghow other attributes have already been
reated. Se
ondly, the developermust spe
ify exa
tly how to use this new variable. If for instan
e the userhave in
luded an armor type attribute, whi
h de�nes how mu
h damage aunit takes from di�erent kind of units, the Ta
ti
al Planning module shouldbe modi�ed to use this information in battle. Extensions su
h as these aredis
ussed in further detail in Se
tion 8.3. Depending on the new attributeadded, the developer may want to extend several modules and methods toa
hieve the desired e�e
t, and hen
e the
omplexity of su
h an extensionvaries. There is no way for inexperien
ed programmers to add su
h newattributes without the help of C++ programmers. Furthermore, the pro-grammers implementing the feature must have detailed knowledge of theinternal ar
hite
ture of the framework. This must be provided through theframework do
umentation.

Page 98 of 273 CHAPTER 8. EVALUATIONDo
umentation is a
riti
al issue when building frameworks [FHLS97℄.Several methods for providing good do
umentation with frameworks havebeen presented in literature and it has been identi�ed as an essential fa
torin how well users are able to reuse software [BKM00℄. One method is todivide software do
umentation into two broad
ategories: User do
umenta-tion and internal do
umentation [Øst99℄. Here, user do
umentation refers toreferen
e do
umentation and introdu
tion material su
h as tutorials, guide-lines,
ookbooks et
. Internal do
umentation on the other hand, refers toall kinds of do
umentation that a user may need to maintain and furtherdevelop the software. The framework des
ribed in this proje
t should in-
lude both kind of do
umentation, as it must be used by both users of theframework and developers wanting to extend the framework.As
an be seen in Listing 8.1, although the
ode is written in Python,it does not really look like
ode. All units and buildings are spe
i�ed inthis manner, and the spe
i�
ation of all of these for the game used with ourimplementation
an be found in Appendix J.1. Basi
ally, everyone
ouldeasily
reate new unit or building types by just looking at previous examplesof this. No programmers need to be involved in this pro
ess.8.1.2 Con�guration of Strategy TreesStrategy trees are built in a way similar to the te
hnology tree in the previousse
tion. Ea
h strategy node is de�ned separately with a unique name andinformation about parent strategies and
ounter strategies. The user mustspe
ify one strategy as the starting_point strategy, whi
h is used as the rootof the tree. In this parti
ular game, the user starts with 6 workers and 1
ontrol
enter. The
ode in listing 8.2 de�nes a fast te
h strategy (explainedin Appendix A.5) for this parti
ular game.Listing 8.2: Example of a strategy tree node de�ned for a fast te
h strategy1 f a s t_te
h = {2 "name" : "Fast te
h " ,3 " pre
ond i t i on " : " S ta r t i ng Point " ,4 " fo l l ow_up_strateg i e s " : ["Mass tanks " ℄ ,5 "
ounter s " : ["Fast expand" ℄ ,6 " per
entage_use " : 30 ,7 " time" : 500 ,8 "purpose " : " s tep " ,9 " expans ions " : 0 ,10 "
ont ro lCente r " : 1 ,11 " barra
ks " : 1 ,12 " f a
 t o ry " : 1 ,13 "worker " : 8 ,14 "marine" : 0 ,15 " tank" : 516 }

CHAPTER 8. EVALUATION Page 99 of 273The
ode de�nes all the attributes for strategy tree nodes dis
ussedin Se
tion 5.4.1. Furthermore, a strategy tree with all strategies
anbe built through the variables pre
ondition (parents in the tree), fol-low_up_strategies (
hildren in the tree) and
ounters (
ounter nodes). Theper
entage_use variable indi
ates how often this strategy should be used
ompared to other strategies at the same level in the tree. Finally, the pur-pose variable indi
ates what the AI should do when rea
hing this parti
ularstate. It
an basi
ally either be step, indi
ating that this strategy is only astepping stone towards following strategies, or atta
k, indi
ating that the AIshould atta
k at this point in the strategy. The entire de�nition of strategiesand the strategy tree, the Known Strategies knowledge base,
an be foundin Appendix J.7.It is possible to
hange or add attributes for strategy tree nodes, but C++programming knowledge is required. For this brief example, assume that thedeveloper wants to
hange the purpose attribute to
ontain a defend option.To do this, the developer must �rst de�ne internally in the framework thatthis attribute
an be a defend type. Afterwards, the framework must be toldhow to use this new type. In this
ase, it must be used when the AI rea
hesthe state di
tated by a strategy tree node having the purpose attribute set todefend. Che
king the purpose attribute is already done within the Strategi
Planning module in the Evaluation sub-module des
ribed in Appendix B.5.9,and the defend option
an easily be added here. De�ning what should bedone when rea
hing this state,
an be done in two ways: Either the developeruses fun
tions already de�ned within the Strategi
 Planning module or shede�nes entirely new fun
tions that di
tate the behaviour of the defend type.Both ways require detailed knowledge of C++ and the internal parts of theframework. This must be obtained through the framework's do
umentationas also dis
ussed in the previous se
tion.The
ode in Listing 8.2 is relatively easy for even non-programmers towrite. Even though ea
h strategy is a
tually a Python di
tionary, the userdoes not need to be aware of this. With just a single example and an ex-planation of ea
h attribute in the strategy node, an AI designer
an easilyde�ne strategies for the game. The disadvantage of this approa
h is that thedesigner herself needs to keep tra
k of strategy names, follow-up strategies,parents nodes et
. While this is manageable in simple games with a smallstrategy tree, it be
omes very hard to keep tra
k of when designing largeand
omplex strategy trees. To over
ome problems su
h as these, one possi-bility would be to let the designer, design strategy trees in a graphi
al userinterfa
e, where strategies and their relation to ea
h other are more obvious.8.1.3 Con�guration of Framework ModulesFor ea
h framework module, there is a
orresponding Python
on�guration�le. In these, all game or AI spe
i�
 variables
an be set. As an example,

Page 100 of 273 CHAPTER 8. EVALUATION
onsider a sub-part of the s
ript used to
on�gure the Probabilisti
 Reasoningmodule in Listing 8.3.Listing 8.3: Con�guration s
ript for the Probabilisti
 Reasoning module1 # This s
 r i p t d e f i n e s v a r i a b l e s f o r the P r o b a b i l i s t i
 Reasoning module23 # The f o l l ow i n g d e s
 r i b e s the s t r a t e g i
 importan
e o f d i f f e r e n t a t t r i b u t e s4 # in a game . Values must be between 0 and 1 , wi th 1 be ing the maximum5 # s t r a t e g i
 importan
e and 0 be ing no s t r a t e g i
 importan
e at a l l .67
ont ro lCente r = 0 .28 barra
ks = 0 .29 f a
 t o ry = 0 .210 worker = 0 .511 marine = 112 tank = 11314 # Maximum node d e v i a t i on : The f o l l ow i n g v a r i a b l e d e s
 r i b e s how to
ompare15 # two s t r a t e g y t r e e nodes . I t d e f i n e s the per
entage d e v i a t i on t ha t an16 # a t t r i b u t e in the two nodes may de v i a t e from ea
h o ther and s t i l l be17 #
ons idered equa l .1819 max_deviation_per
entage_of_total = 102021 # Determination o f important v a r i a b l e s . How mu
h shou ld v a r i a b l e s in22 # po s s i b l e s t r a t e g i e s d e v i a t e b e f o r e be ing
ons idered important to23 # determine the f i n a l
ho i
e o f s t r a t e g y .2425 importan
e_bui ld ings = 3026 importan
e_units = 20As with the s
ripts mentioned in the previous se
tions, the only thingthe user needs to do is to de�ne variables. To ease understanding of thes
ripts, ea
h s
ript in
ludes
omments on exa
tly what ea
h variable means.However, it is still very hard for new users of the framework to understandsome of the variables in the s
ripts without understanding the ar
hite
tureof the module, whi
h the s
ript
on�gures. The
ode in Listing 8.3 is forinstan
e mu
h easier to understand when the user has read the internaldesign of the module presented in Appendix B.4. The only way to solve thisproblem is through the do
umentation of the framework, whi
h has alreadybeen dis
ussed in Se
tion 8.1.1.A developer may want to add new variables to the module
on�gurations
ript. As an example,
onsider that a developer wants to add a aggressive-ness variable to the
on�guration s
ript for the Strategi
 Planning module.This variable should de�ne how aggressive the AI should be, and how willingit should be to
hoose an aggressive strategy. Two steps must be
ompletedto add this new variable. First, the
onstru
tor of the Strategi
 Planningmodule must be modi�ed to extra
t the new variable from the Python s
ript.Listing 8.4 shows an extra
t of the
onstru
tor where this happens. This step

CHAPTER 8. EVALUATION Page 101 of 273in
ludes
reating a private aggressiveness variable on the Strategi
 Planningmodule
lass.Listing 8.4: Extra
ting a variable from the Strategi
 Planning
on�guration s
ript1 Python_interpreter ∗ py_interprete r = Python_interpreter : : i n s t an
 e () ;2 py_interpreter−>run_f i l e (" o r t s a i /module_
onf/ s t r a t e g i
 p l a nn e r . py") ;3 ob j e
 t ns = py_interpreter−>get_namespa
e () ;4 a g g r e s s i v en e s s = extra
t<int >(ns [(" a g g r e s s i v en e s s ") ℄) ;The se
ond step will be to di
tate where the variable is to be used. Inthis
ase, it will probably be in the sub-module of the Strategi
 Planningmodule, whi
h deals with sele
ting a new strategy: The Find New Strategysub-module des
ribed in Appendix B.5.7. Exa
tly how to extend methods inthe framework is dis
ussed further in Se
tion 8.3. Both steps require C++programming knowledge, and
an hen
e not be done by AI designers alone.8.1.4 Con�guration of AIs in Di�erent RTS GenresThis se
tion will dis
uss how the framework
an be
on�gured to
reate AIsin the four di�erent RTS genres presented in Se
tion 2.4.2. We will presentea
h genre in turn, and dis
uss what typi
ally will be the fo
us when buildingAIs for that parti
ular genre:The Command & Conquer Genre: An AI in this genre should typi
allyhave less emphasis on the reasoning part of the framework, as
ountersonly have little e�e
t in these kind of games. The main fo
us is se
ur-ing enough resour
es to mass units, while at the same time stoppingthe opponent from doing the same. The Resour
e Management andTa
ti
al Planning modules are the primary modules for a
hieving this.The
on�guration of strategy trees should fo
us on the strategies inthe tree rather than the
ounter nodes in the tree.The Age of Empires Genre: This genre fo
uses on resour
e managementwith resour
es spread all around the map, and games tend to be abattle of
ontrol of these resour
es, hen
e making the Resour
e Man-agement module essential. Furthermore, games in the genre often fo-
uses on
ounters as well, making both the Probabilisti
 Reasoning andStrategi
 Planning modules very important to
on�gure to perform thebest possible way in the game in question. Strategy trees should be
reated with emphasis on both strategies and
ounters. Units haverelatively few hitpoints, whi
h makes mi
romanagement di�
ult, andhen
e the developer
an put less work into
on�guring the Ta
ti
alPlanning module. However, this module must still take
are of thingslike formations, unit deployment, use of support et
., whi
h are alsoimportant for AIs in this genre.

Page 102 of 273 CHAPTER 8. EVALUATIONThe Star
raft Genre: The key areas in this genre are areas like strategi
variation, build orders and good pla
ement of defensive stru
tures.This e�e
tively means that the Strategi
 Planning and Base Buildingmodules are of great importan
e in these kind of games. Games in thisgenre will also bene�t greatly from adding new states to the Statessub-module of the Strategi
 Planning module presented in AppendixB.5.10. This is be
ause there is so mu
h emphasis on the exe
ution ofstrategies in this genre.The War
raft Genre: This genre is
hara
terised by having relativelyhigh hitpoint units and buildings, whi
h means that mi
romanage-ment and hen
e the Ta
ti
al Planning module has mu
h more e�e
tthan in the other genres. The newer games of this genre also in
lude afo
us on
ounters, and be
ause of this, both the
on�guration of strat-egy trees and the Strategi
 Planning module should be the fo
us of thedeveloper.Se
tion 8.3.3 will dis
uss how the framework
an be adapted to workwith games that do not exa
tly follow the de�nition of RTS games presentedin Se
tion 1.1.8.1.5 Con�guration of Intera
tion with GDFCon�guring the Conne
tion modules interfa
e between the GDF and the AIframework is one of the larger tasks, and it is di�
ult to implement be
auseit requires extensive knowledge of both the AI framework and the GDF. Thisevaluation will only
onsider
onne
ting the framework with the ORTS GDF,as it has not been possible to test other GDFs, be
ause of the problems withopen sour
e GDFs des
ribed in Se
tion 5.1.2.In Listing 8.5, the part of the Conne
tion module that handles the read-ing from the ORTS GDF is shown. This ex
erpt
he
ks for updates in thegame state, as
an be seen on Line 4. If anything is re
eived, a
ontainerobje
t is
reated on Line 5, a pointer to the game state is inserted on Line7, and then on Line 8, a pointer to the
hanges that have happened in thisgame ti
k is inserted. Then the module will send an event telling that thegame state has been updated, as seen on Line 11 and 12. This event
ontainsa pointer to the
ontainer
lass where the data is stored, whi
h the Per
eptInterpreter requires.Listing 8.5: Read fun
tion from
onne
tion module1 void Orts_
onne
tion : : read () {2 // l oo k s f o r s e r v e r messages3 // i f one or more arr ived , send event4 i f (gsm−>re
v_view ()) {5 Game_
hange∗ data = new Game_
hange () ;6

CHAPTER 8. EVALUATION Page 103 of 2737 data−>game = game ;8 data−>
hanges =
hanges ;910 i f (data−>game){11 AI_event∗ event = new AI_event (AI_event : :UPDATE_GAME_STATE, data) ;12 Event_manager : : i n s t an
 e ()−>send_event (event) ;13 }14 }15 } Most of the
omplexity is not here in the read fun
tion, but is insteadin the per
ept interpreter that transfers the data from the game state intoframework knowledge bases. The read() fun
tion only makes sure that thedata is a

essible. Depending on the framework, this is a fairly straightfor-ward task. In ORTS, the AI opponents a
t as separate
lients, whi
h meansthat if a
lient is already implemented, this
ode
an be reused in the read()fun
tion for getting the ne
essary data.In Listing 8.6, an ex
erpt of the user implemented Per
ept Interpreter isseen. This user implemented module is the largest and most time
onsumingtask to implement for developers, the
omplex parts are hidden in the fourfun
tions
alled in this ex
erpt(line 9-12). It requires knowledge about theframework and the GDF, be
ause it is here where all the data re
eived fromthe GDF is translated into something that the framework
an handle. Ea
hof the knowledge bases that
ontain data that
an
hange from game ti
k togame ti
k is updated here. However, when this rather large task of imple-menting has been done for the GDF, then it does not have to be
hangedanymore, unless new attributes are added to the game.Listing 8.6: User implemented Per
ept Interpreter1 void User_per
ept_interpreter : : user_run (AI_event∗ event) {23 Orts_
onne
tion : : Game_
hange∗ data =4 (Orts_
onne
tion : : Game_
hange∗) event−>get_data () ;5 this−>
urrent_game_state = data−>game ;6 this−>
hanges = data−>
hanges ;7 this−>id = ((Game∗)
urrent_game_state)−>get_
 l i ent_player () ;89 add_new_obje
ts () ;10 update_
hanged_obje
ts () ;11 remove_dead_obje
ts () ;12 remove_vanished_obje
ts () ;13 } The fun
tion presented in Listing 8.6 takes the event that was sent fromthe Conne
tion module, and extra
ts the data from it. The pointer it
on-tains is �rst
asted to the type that is in the event, as shown on Line 3 and 4.Then ea
h of the pointers
ontained in this
lass is assigned to pointers in thelo
al
lass. Afterwards four fun
tions are
alled, ea
h taking the data out ofthe newly assigned pointers and updating di�erent knowledge bases. These

Page 104 of 273 CHAPTER 8. EVALUATIONfun
tions are the
omplex part of the Per
ept Interpreter that translate thedata from the GDF into knowledge in the knowledge basesListing 8.7 presents an ex
erpt of the write() fun
tion in the Conne
-tion module. This fun
tion is one of the largest tasks for the developers toimplement, be
ause it has to wrap all of the a
tions that are generated inthe framework, into something that the GDF
an understand. The write()fun
tion is given a list of a
tions, and all these a
tions should then be
arriedout in the game environment.Listing 8.7: ORTS
onne
tion module1 void Orts_
onne
tion : : wr i t e (AI_a
tion : : l i s t t y p e ∗ a
 t i on s) {2 for (AI_a
tion : : l i s t t y p e : :
 on s t_ i t e r a to r i t=a
t ions−>begin () ; i t != a
t ions−>end () ; i t++){3 GameObj∗ obj = id_obj_map−>id_to_obj [(∗ i t)−>id ℄ ;4 i f (obj && ! obj−>is_dead ()){5 swit
h ((∗ i t)−>type) {6 // more
ases7
ase AI_a
tion : :ATTACK:8 // WARNING s t a r t i n g new s
ope9 {10 Atta
kAI_a
tion∗ a
 t i on = stati
_
ast<Atta
kAI_a
tion∗>(∗ i t) ;1112 Ve
tor<s int4> args ;13 args . push_ba
k (a
t ion−>enemy) ;14 rv−>returnva lue [a
t ion−>id ℄ =15 obj−>
omponent ("weapon")−>set_a
t ion (" atta
k " , args) ;16 }17 break ;18 // . . . more
ases19 default :20
 e r r << " Inva l i d a
 t i on g ive to Orts_
onne
tion" << endl ;21 }22 }23 }24 delete a
 t i on s ;25 gsm−>send_a
tions () ;26 } As
an be seen in the
ode examples listed above, all the
ode is inC++, and this sets some boundaries for how developer friendly it is to im-plement. Furthermore, the programmer implementing this should have atleast some understanding and knowledge of the stru
ture and ar
hite
tureof both frameworks, in order to translate data from one to the other in areasonable way. The a
tions that are re
eived as input to the write fun
tionare en
apsulated in a data stru
ture that the user also has to know, but thisstru
ture is very simple, and
an be used as shown in Listing 8.7. This ex-ample is an ex
erpt that only handles the atta
k a
tion, but all other a
tionsshould be handled as seen in this fun
tion. The list
ontaining the AI a
tions
an be iterated through like any other Standard Template Library [SL94℄ list.The most primitive a
tion, from whi
h all others are derived,
ontains a typeenumerator, and an obje
t id. The type enumerator
an be used to assure

CHAPTER 8. EVALUATION Page 105 of 273the type of the
lass, and then a downward
ast
an be made safely, so themore spe
i�
 data in the
lass
an be a

essed. As shown in the example,the Atta
kAI_a
tion
ontains the ID of the unit that should be atta
ked.This ID is in the enemy variable, as seen on Line 13. With this information,the a
tion
an be performed in the GDF, like the atta
k a
tion set on theobje
t show on Line 14 and 15. Then on Line 24, the a
tion list is deletedto
lean up, and on Line 25, the GDF is asked to send the a
tions. In ORTSthis means that the a
tions just assigned are sent to the server.To improve usability for the Conne
tion module a graphi
al user inter-fa
e
ould be
reated to assist the
reation of the module. This would mostof all be similar to an Integrated Development Environment, be
ause theonly way to
onne
t the two frameworks will be by
reating a
ustom wrap-per interfa
e. However, the graphi
al user interfa
e
an only assist as anunderstanding aid of what has to be
reated, like having auto
ompletion,
he
klists and des
riptions of knowledge bases and their
ontent. For in-stan
e for the Per
ept Interpreter, the developer
ould be aided by giving a
he
klist of the knowledge bases that have to be updated, also
ontainingdes
riptions of the knowledge bases.8.2 VersatilityThis se
tion will deal with two issues of versatility: Framework versatilityand AI versatility. First, we will dis
uss the versatility of the frameworkby dis
ussing if the prototype implementation has proven that it is possibleto build an AI framework that is independent of the GDF to whi
h it is
onne
ted. Se
ondly, we will dis
uss di�erent ways of varying frameworkinstan
es from ea
h other and evaluate whether it is possible to
reate allkinds of AI for RTS games using the framework.8.2.1 Framework VersatilityOne of the goals of the framework was to make it independent of the gamedevelopment framework. This would allow the AI framework to be
on-ne
ted to any GDF. The prototype implementation of the framework hasonly been
onne
ted to one GDF: ORTS. This means that the frameworkhas as su
h not been tested in this area. However, one
an make some generalobservations about the versatility of the framework based on the prototypeimplementation. The prototype implementation has su

essfully separatedAI
ode and game development framework
ode by keeping all ORTS spe-
i�
 details out of all modules but two: The Per
ept Interpreter and theConne
tion module des
ribed in Se
tion 7.4.2. All other framework modulesare independent of the GDF. These two GDF spe
i�
 modules must solvespe
i�
 tasks, whi
h the rest of the AI framework relies on. The Conne
tionmodule must
ontrol the dire
t
ommuni
ation with the GDF as des
ribed

Page 106 of 273 CHAPTER 8. EVALUATIONin Se
tion 7.4.2, and the Per
ept Interpreter must extra
t the informationrequired for di�erent knowledge bases, as de�ned in Appendix B.1.The two modules, Conne
tion and Per
ept Interpreter,
ontain 259 and607 lines of C++
ode respe
tively, in the implementation
onne
ting theAI framework to the ORTS GDF and the
ode is not
omplex. Codingthese modules requires the developer to have extensive knowledge of how theGDF operates and how the game state is a

essed, to obtain the ne
essaryinformation. However, as the programmers developing the AI are typi
allyalso involved in the game
reation pro
ess, it is safe to assume that they alsohave knowledge of the GDF being used.There are two requirements that a GDF must ful�l to be used with thisAI framework:1. The GDF must support giving full
ontrol of all AI a
tions to the AIframework.2. The GDF must support retrieving the ne
essary data, des
ribed inAppendix B.1, for the AI framework to update in-game knowledgebases.It is our understanding that the �rst requirement is ful�lled by mostGDFs, but this
annot be studied, as most game development
ompanieswill not share information about their GDF. However, it would from a de-sign perspe
tive, not make any sense to have the two too
losely linked. These
ond requirement should be ful�lled by most GDFs as well. The informa-tion required by the AI framework is essential for
reating strong AIs andwithout a way to extra
t this from the GDF, it would not be possible to
re-ate the AI. It is unlikely that a GDF does not support operations requiredfor
reating AIs.8.2.2 AI VersatilityThere are two ways of varying framework instan
es from ea
h other in theprototype implementation of the framework: Through the strategies thatan AI knows, and through the
on�guration of di�erent AI modules. Thisse
tion will illustrate both ways of
reating di�erent kind of AIs and dis
usswhether this is su�
ient to represent any kind of AI a designer may want to
reate. In the full implementation of the framework, the user would be able toalso
hange AI behaviour through both ta
ti
s and base building templates,whi
h were dis
ussed in Se
tion 5.4.3 and Se
tion 5.4.4 respe
tively.Strategy TreesAn AI built using this framework will never follow strategies not present in itsstrategy tree. This way, an AI designer has
omplete
ontrol over what the

CHAPTER 8. EVALUATION Page 107 of 273AI will try to do during a game. If only one strategy is present in the strategytree, the AI will only do this strategy. If only one
ounter is present for a
ertain strategy, the AI designer will know for sure that this is the strategythe AI will
hoose when fa
ed with a
ertain strategy from the opponent. Byletting strategy trees de�ne the AI's strategi
 knowledge, we enable the AIdesigner to
reate AIs with very spe
ialised behaviour. The above is however,only the
ase when there is no learning in
luded in the framework. A

ordingto our de�nition of what a strategy should
ontain (Appendix A.1), strategytrees allow a designer to
ustomise an AI to perform any strategy.To illustrate how to use strategy trees to de�ne di�erent kind of AIs,
onsider Figure 8.1 and Figure 8.2. Both �gures show a strategy tree for anAI in the game used for the prototype implementation. Figure 8.1 shows astrategy with three possible starting strategies, and a follow-up strategy forea
h starting strategy. For simpli
ity, no
ounter nodes are shown on this�gure. Figure 8.2 shows a strategy tree for an AI
ontaining only one of thestarting strategies shown in Figure 8.1. The AI shown in Figure 8.1 will beable to
hoose between three strategies, and as seen on the edges, it must
hoose the upper bran
h 50% of the times. The AI shown in Figure 8.2 onthe other hand, will always do the same strategy. By de�ning strategy treesthis way, an AI designer
an
ontrol the possibilities an AI will have duringa game, and thus
reate exa
tly the kind of AI wanted for a parti
ular gameor situation. The addition of ta
ti
s and base building templates to strategytree nodes in the
omplete implementation of the framework, will furtherin
rease the possibilities an AI designer will have to
ustomise the AI.Module Con�gurationIn terms of module
on�guration, ea
h module typi
ally provides three dif-ferent types of
on�guration:Game Spe
i�
 Variables: These variables allow framework instan
es tobe designed to suit a spe
i�
 game. This is for instan
e de�nitions ofwhi
h units should be
onsidered workers, whi
h buildings should be
onsidered farms et
.AI Balan
ing Variables: These variables are as su
h also game spe
i�
variables, but deals more spe
i�
ally with the AI of a parti
ular game.They help balan
e internal AI
al
ulations by de�ning balan
ing vari-ables. This
ould for instan
e be the variables in Listing 8.3 on line 24and line 25, whi
h de�ne the strategi
 importan
e of di�erent types ofunits/buildings in the game.AI Behaviour Variables: These variables de�ne di�erent behaviour at-tributes for an AI instan
e of the framework. Behaviour attributesare variables that de�ne how an AI should reason and rea
t to things

Page 108 of 273 CHAPTER 8. EVALUATION

Figure 8.1: Strategy tree for an AI in the test game

Figure 8.2: Spe
ialised strategy tree for an AI in the test game

CHAPTER 8. EVALUATION Page 109 of 273seen in the environment. This
ould for instan
e be the variable inListing 8.3 on line 18, whi
h de�nes when two strategy nodes shouldbe
onsidered the same. Depending on the variable, the AI will takemore possible opponent strategies into
onsideration and
hange itsbehaviour a

ordingly.Combined, these three types of variables allow for adapting the frame-work to any kind of game and any kind of AI. By having all game spe
i�
variables in s
ripts outside of the framework, the internal
ode of the frame-work is kept generi
 and independent of the game in question. Furthermore,the advantage of having these variables de�ned in s
ripts is that a user
an
hange them without having to re-
ompile the entire framework. As dis-
ussed in Se
tion 8.1.3, developers
an add their own
on�guration variablesto further
ustomise the AI.8.3 ExtendibilityThis se
tion will give an example of how to extend a framework module, andthen dis
uss and evaluate the method of doing this. Afterwards, we will givean example of how entirely new modules
an be added to the framework andin the last se
tion we will dis
uss di�erent framework limitations.8.3.1 Methods and Module ExtensionsAs explained in Se
tion 6.3, the framework allows all modules to be extended.A user
an
hoose to simply extend a single method in a module or to extendthe entire module, in
luding all its extendible methods. For this example wewill only extend a single method, as this will be enough to provide the readerwith the basi
 idea.Imagine that an AI developer
omes up with a new idea for how s
out-ing should be
arried out in a
ertain game. The basi
 s
outing providedwith the framework may have turned out to be insu�
ient for the game inquestion. In other words, the AI developer wants to repla
e the s
outingmethod in the framework with a new method. This requires an extension ofthe Strategi
 Planning module, where s
outing is handled. Consider a sub-set of the fun
tions available in this module in Listing 8.8. These fun
tionsrepresent just some of the responsibilities of the Strategi
 Planning modulewhi
h
an be extended, and these are explained in detail in Appendix B.5.These extendible methods are often referred to as hook methods in frameworkliterature [ML01℄.Listing 8.8: Sub-set of the extendible fun
tions in the Strategi
 Planning module1 virtual bool su f f i
 i en t_knowledge () ;2 virtual void determine_s
outing_miss ion () ;3 virtual bool
hange_strategy () ;

Page 110 of 273 CHAPTER 8. EVALUATION4 virtual void f ind_
ounter_per
entages () ;5 virtual void f ind_new_strategy () ;6 virtual void determine_expansions () ;7 virtual void eva lua t e_s i tua t i on () ;8 virtual void exe
ute_state () ;In this
ase the user may want to
hange both when s
outing is ne
-essary (the su�
ient_knowledge() fun
tion), and how s
outing is a
tuallyperformed (the determine_s
outing_mission() fun
tion). Two things mustbe done to a
hieve this: Extending the module and informing the eventmanager to use this extended module. Extending the module is a relativelysimple task, and is shown in Listing 8.9. The module will then use the newextended methods when these are present, and otherwise use the defaultmethods the Strategi
 Planning module provides. The user does not need toworry about when to
all the di�erent fun
tions, as this is handled internallyin the framework.Listing 8.9: Extension of the Strategi
 Planning module1
lass Extended_strategi
_planner : publi
 Strateg i
_Planner {2 publi
 :3 bool su f f i
 i en t_knowledge () { . . . } ;4 void determine_s
outing_miss ion () { . . . } ;5 } ; Following this, the event manager must be informed to use the new Ex-tended Strategi
 Planning module instead. The pla
e where the Strategi
Planning module is assigned to the event manager, it must be
hanged touse the Extended Strategi
 Planning module instead. An ex
erpt is shownin Listing 8.10. Shown on line 1, the Extended Strategi
 Planning module isassigned to the sp variable instead of the normal Strategi
 Planning mod-ule. The pointer
an still be of the derived
lass, be
ause they have thesame interfa
e. The argument given to the
onstru
tor are the priority ofthe module along with the required knowledge bases. Then on line 4 themodule is given a meaningful name, and the module is assigned to the eventsit should handle as normal. Line 1 and line 4 are the only lines needed to be
hanged to inform the event manager to use the Extended Strategi
 Planningmodule.Listing 8.10: Assignment of events to the Extended Strategi
 Planning module1 Strateg i
_planner ∗ sp = new Extended_strategi
_planner (4 , gtk , mk, ek ,
sn ,2 om, tsn , ks , kbo ,
k , dmk, igek , mik , aua , igok) ;34 sp−>name = "Extended s t r a t e g i
 planner " ;56 event_mng−>assign_module_to_event_type (sp , AI_event : :PRR_TRIGGER_SP) ;7 event_mng−>assign_module_to_event_type (sp , AI_event : :START_STRATEGY) ;8 event_mng−>assign_module_to_event_type (sp , AI_event : :AUA_NEWUNITS) ;9 event_mng−>assign_module_to_event_type (sp , AI_event : :AUA_DEADUNITS) ;10 event_mng−>assign_module_to_event_type (sp , AI_event : :SP_MOVE_END) ;

CHAPTER 8. EVALUATION Page 111 of 27311 event_mng−>assign_module_to_event_type (sp , AI_event : :RETREAT) ;All framework modules
an be extended this way. As explained in thisse
tion, extending modules and methods are relatively easy. One will needC++ programming knowledge to a
tually implement the extended methods,but the programmer
an do this without knowledge of how other methodsin the module works. We have identi�ed two problems with this approa
h:1. The user must know the ar
hite
ture of the framework fairly well toknow whi
h methods to
hange to obtain a
ertain e�e
t, and the usermust likewise know whi
h knowledge bases provide the di�erent typesof knowledge, and how to a

ess them.2. The framework restri
ts the user in the way the internal ar
hite
tureof a module is designed. If the user wants to
hange the internalar
hite
ture of the module, she must basi
ally implement the entiremodule from s
rat
h, and personally make sure that all events areproperly handled, and sent from the module.These are typi
al problems when dealing with frameworks [FS97℄[MBF99℄ and there are no way around them. Frameworks will in
lude thear
hite
ture behind the solution, and the bene�t of this in
reased
ode reuseis greater than the
ost, as most AIs built using the framework will notrequire
hanging the internal ar
hite
ture of any modules. Furthermore, itis unrealisti
 to expe
t to be able to extend methods in a module withoutunderstanding the basi
 ar
hite
ture of that module.8.3.2 Adding New ModulesAlthough this ar
hite
ture is built to deal with all games in
luded in the RTSgenres de�ned in Se
tion 2.4.2, some games may
ontain spe
ial featuresthat users of the framework want to add a new module to handle. Thefollowing will des
ribe how to do this, and what developers must take into
onsideration when modifying the framework in this way. The �rst step willbe to
reate the new module, whi
h is derived from the Module interfa
e,with the appropriate knowledge bases, assign it a name, and then assign theevent types that the module should handle. This is shown in Listing 8.11.Listing 8.11: Creating a new module in the framework1 New_module module = new New_module(/∗ Pr i o r i t y and Knowledge bases ∗/) ;2 module−>name = "New Module Name" ;3 event_mng−>assign_module_to_event_type (module , AI_event : :TYPE_1) ;4 event_mng−>assign_module_to_event_type (module , AI_event : :TYPE_2) ;Afterwards, the a
tual module must be
reated. It must implement themodule interfa
e that in
ludes a run() fun
tion, whi
h must handle all thedi�erent event types this module
an be sent. Listing 8.12 shows how this isdone.

Page 112 of 273 CHAPTER 8. EVALUATIONListing 8.12: Mandatory run fun
tion in the new module1 void module : : run (AI_event∗ event)2 {3 swit
h (event−>type) {4
ase AI_event : :TYPE_1:5 // Handle event6 break ;7
ase AI_event : :TYPE_2:8 // Handle event9 break ;10 default :11
 e r r << "Module f a i l e d to handle event " << endl ;12 }13 } All that is left now is to add the fun
tionality required to handle thedi�erent event types. However, adding a new module does nothing if it isnever sent any events. This means that developers must also identify whenevents are to be sent, and add this to existing modules and methods in theframework. All modules that are to send events to the new module must beextended as explained in Se
tion 8.3.1.Now that the module is
reated and events are sent to it, the developermust
onsider how the module should a�e
t other modules in the framework.There are basi
ally two ways of doing this:Through Knowledge Bases: By modifying shared in-game knowledgebases, the new module
an
hange the foundation on whi
h other mod-ules work on, and through this, in�uen
e their behaviour. This mustbe done with great
are, as in-game knowledge bases are often sharedbetween several modules, and
hanging them may
ause unexpe
ted
onsequen
es. The developer must have extensive knowledge of theinternal parts of the framework to make su
h modi�
ations safely.Through Events: The developer
an also
hoose to
reate new events sentfrom the new module, whi
h existing modules must handle. This is anapproa
h that requires more work, but is safer as no unexpe
ted sidee�e
ts
an o

ur. The new event types must be added to the eventmanager and ea
h module re
eiving a new event type must be ex-tended. However, the developer is left in more dire
t
ontrol of exa
tlyhow to handle di�erent things from the new module. It still requiressome knowledge of the internal framework, but less than in�uen
ingother modules through knowledge bases.Whi
h of the two methods the developer should
hoose, depends on thetype of in�uen
e the new module should have on other modules and onthe developers' understanding of the internal parts of the framework. Nomatter whi
h method is
hosen, adding new modules to the framework is

CHAPTER 8. EVALUATION Page 113 of 273the most di�
ult way to extend the framework. We hypothesise that ifthe framework is used for the intended games, the RTS genres de�ned inSe
tion 2.4.2, developers will seldom �nd themselves in a situation whereit is ne
essary to extend the framework this way. However, should spe
ial
ir
umstan
es arise, it is possible to do, provided the developer understandsthe internal me
hanisms of the framework.8.3.3 Framework LimitationsThe AI framework is built to handle the games falling into the
ategory ofRTS games explained in Se
tion 1.1. However, many newer RTS games haveintrodu
ed spe
ial features that make it deviate a little from traditionalRTS games. The methods presented in this se
tion have explained howdevelopers
an extend the framework in various ways to
ope with these newrequirements.As an example,
onsider The Lord of the Rings: Battle for Middle-Earthwhi
h is widely
onsidered an RTS game. However, this game di�ers fromtraditional RTS games by the way it handles resour
e gathering. Instead ofhaving workers running to and from resour
es spread around the map, thisgame relies on one universal resour
e that the player a
quires by buildingfarms and slaughterhouses in prede�ned positions on the map. In fa
t, allbuildings must be built at prede�ned lo
ations. These two features havesigni�
ant impa
t on how an AI should play the game. All internal opera-tions within the Base Building and Resour
e Management modules in theAI framework would basi
ally be useless and unable to
ope with these kindof
hanges. For the AI framework to be useful in this game, both of thesemodules must be extended and
ompletely re-implemented to suit the spe-
i�
 demands of the game. At this point, developers must seriously
onsiderwhether the bene�ts provided in other AI areas by the framework is enoughto justify modifying the framework to su
h an extend.In general, when several framework modules must be
ompletely
hanged,developers must
onsider the trade-o�s between the bene�ts of using theframework
ompared to the learning
urve required to be able to modify theframework. If basi
 stru
tures su
h as strategy trees and ta
ti
s
annot beused in the game in question, it is probably not an advantage to use theframework. The bene�ts of using frameworks in general, disappear whenusers have to
hange too mu
h of the internal ar
hite
ture.8.4 Performan
e TestingThis se
tion will show how the performan
e of the framework is measured,to test if the AI framework meets the real-time performan
e
onstraint, pre-sented in Se
tion 7.4.1. First a des
ription of how the tests are
reated willbe presented, and following this, the result of the tests. Then a dis
ussion

Page 114 of 273 CHAPTER 8. EVALUATIONof the results will be given, and �nally a dis
ussion of how the frameworks
ales in a
omplete implementation is presented.8.4.1 Performan
e Test Constru
tionTo test the performan
e of the framework and framework modules,
ode isadded to the event manager, whi
h tells how mu
h time is spent in ea
hmodule, and after a
omplete game ti
k. The numbers that the time test
an give will represent; The a
tual time that is spent in the module, thetime the operating system has spent on behalf of the appli
ation, and the
omplete time that is spent. Be
ause the operating system will
hange be-tween pro
esses while the program is exe
uted, the most realisti
 result willbe the
omplete time spent, be
ause the operating system will always dothis when running a game. Only the most ne
essary programs will be runon the ma
hine while the test is performed to minimise the fa
tor of otherprograms taking pro
essing time. This means that only the ORTS serverand two instan
es of the prototype are run.The following four tests will be performed:Game Ti
k Performan
e: After ea
h game ti
k the time used is re
orded.This will show if the framework is fast enough to be exe
uted thenumber of times ea
h se
ond that is required by the GDF. In ORTSthis is eight times per se
ond, whi
h means that the framework willhave 0.125 se
onds to exe
ute ea
h game ti
k. When the frameworkis not performing any a
tions, this should be
onsiderably less, in thearea of 0.02 se
onds. No pro
essing time should be used, be
auseno de
isions or a
tions are made. If the framework uses too mu
hpro
essing time, there would not be enough pro
essing time for thea
tual game. A graph
an be drawn
omparing pro
essing time overgame ti
ks. This will show if there is an in
rease in pro
essing furtherinto the game.Module Performan
e: This test will show whi
h modules use the mostpro
essing time. After ea
h module is run, the time passed is re
orded.An average of ea
h module is then made. This is presented in a list,showing ea
h of the modules and their average use of pro
essing timeper game ti
k. This test
an also be used in the a
tual use of theframework, as an indi
ator of what modules
ould be optimised to getbetter performan
e.Module Game Ti
k Performan
e: This is a
ombination of the two pre-vious tests, where ea
h module's pro
essing time over game ti
ks isplotted in a graph. This shows what modules are used in di�erentparts of the game. Some modules are used more in the start of thegame, while others are used more during battle. This test
an give an

CHAPTER 8. EVALUATION Page 115 of 273idea whether a module like for example the Ta
ti
al Planning moduleis fast enough, when the AI
omes into a large battle against an enemy.There are no time requirements to the spe
i�
 modules, just as long asthe total time of all modules in a game ti
k is less then 0.125 se
onds.Path�nding Per
entage: Path�nding is the most time
onsuming part ofan AI, so a test is performed to see how mu
h of the total time in theAI that is spent in the path�nder. This is done by re
ording how mu
htime is spent inside the path�nder and
omparing this with the totalAI framework pro
essing time. This is done over several game ti
ks,so it is possible to get a meaningful and general result.The test is performed on an Intel r©Pentium r©III Mobile 800MHz, run-ning Linux 2.6.16 and the
ode for the framework is
ompiled with g++4.0.3.8.4.2 Performan
e Test ResultsThe result of ea
h of the four tests
an be seen in the this se
tion. The testsare performed with the use of a timer that
an tell how many hundredth of ase
ond that have passed sin
e the program was started. The time spend in afun
tion is then found by subtra
ting the time before and after this fun
tionis
alled. This does however mean that the pre
ision of the measurementis limited to a hundredth of a se
ond. The values in the graphs and tablesbelow are therefore all measured in hundredth of a se
ond that fun
tions useof pro
essing time.During testing it was dis
overed that the path�nder implementation hadperforman
e problems. This is most likely be
ause of the implementation ofthe algorithm, so in the �rst three performan
e tests, a simpli�ed version ofthe path�nder is used. It is simpli�ed in the way that it moves on larger
ells instead of on unit
oordinates, and does not take obsta
les into a

ount.This means that it is possible for units to walk into ea
h other and get stu
k.This simpli�
ation was ne
essary to be fast enough to respond the ORTSserver within a reasonable time, otherwise it would not perform any a
tions.Game Ti
k Performan
e TestFigure 8.4.2 presents the �rst 77 game ti
ks. It
an be seen that there is useda lot of pro
essing time in the �rst game ti
k. This makes sense be
ause thisis where a lot of the data that is sent from the ORTS server is inserted intothe knowledge bases. Furthermore a lot of de
isions are made, for instan
ewhat strategy to follow. The se
ond peak at the graph is at the third gameti
k. This is the �rst time that the path�nder is used, be
ause the workersare assigned to gather resour
es, and a path is found for ea
h of them. Afterthis nothing happens until the s
outs have to �nd a path, at game ti
k 31.

Page 116 of 273 CHAPTER 8. EVALUATION
10

01
s

game ticks

pr
oc

es
st

im
e

 0

 5

 10

 15

 20

 25

 35

 40

 45

 0 10 20 30 40 50 60 70 80

 30

Figure 8.3: Game ti
k performan
e testIn general it is observed that the pro
essing of ea
h game ti
k takes around0.07 or 0.08 se
onds, when nothing of importan
e is happening. Consideringthat there does not happen anything, and the framework still uses 0.07 or0.08 se
onds there is something that has to be optimised. The frameworkhas to be a lot faster to be usable in a real game.Module Performan
e TestTable 8.4.2 presents the result of the individual module performan
e test,and are the average of 20 games run for 960 game ti
ks, meaning two min-utes. There is an un
ertainty of this test, be
ause of the already mentionedmillise
ond limitation. This part is even worse here, be
ause after ea
h mod-ule is run its millise
ond
ount is re
orded, and the next time this moduleis run, the
ount from this is just added to the �rst value. This means thatif a module runs for less then a millise
ond at ea
h run then it will never bere
orded as being run. This was the
ase for some of the modules. However,in average the time was barely one, so this is the number re
orded.This table shows that too mu
h time is used in the Ta
ti
al Planner,and that there have to used some time to optimise what is being done inthis module. To get more detailed information about what takes all thepro
essing time in this module
an be done by using a pro�ler like the oneused in this proje
t, the GNU gprof pro�ler[gpr℄. Here it was seen that it wasthe path�nder that used all the pro
essing time, even though the path�nderhas been simpli�ed. This might mean that the path�nder is
alled too manytimes, and should be distributed out over some more game ti
ks. The Per
eptInterpreter uses 0.53 se
onds, whi
h is reasonable enough,
onsidering it is

CHAPTER 8. EVALUATION Page 117 of 273Module name: Pro
essing time: %A
tion Planner 51 1.00%Base Building 1 0.02%GDF Conne
tion 18 0.35%Per
ept Interpreter 53 1.04%Probabilisti
 Reasoning 1 0.02%Rea
tive Module 1 0.02%Resour
e Manager 7 0.14%Strategi
 Planner 1 0.02%Ta
ti
al Planner 4944 97.38%Figure 8.4: Module performan
e testover two minutes, be
ause it takes all the per
epts from the GDF and putsit into knowledge bases. The A
tion Planner uses almost as mu
h as thePer
ept Interpreter, whi
h would make sense be
ause it is also run at everygame ti
k,
olle
ting all the a
tions and sending them along to the GDFConne
tion module.Module game ti
k performan
eAn extra
t of a
omplete performan
e test log
an be found in AppendixH.1. This has not been plotted to a graph, be
ause it is too di�
ult toillustrate. In the log some of the �rst game ti
ks are presented. Here it ispossible to see what was also identi�ed earlier, that the Per
ept Interpreteruses a lot of pro
essing time to get all the information �rst given from theORTS server. The se
ond game ti
k is fairly standard, the only modulethat uses pro
essing time is in Ta
ti
al Planning be
ause it is using thepath�nder. In the third game ti
k we
an see that the Resour
e Manageris more a
tive. This is be
ause this is where it identi�es what resour
es itshould go and harvest. After this the only module that uses any pro
essingtime is the Ta
ti
al Planning. Then in game ti
k 32 something is happeningagain. This is where s
outing is started, so the Strategi
 Planning makes theTa
ti
al Planning send out a s
out. This makes the Ta
ti
al Planning usesa bit more pro
essing time.It is identi�ed through this test that there is something that has to bedone in the Ta
ti
al Planning, be
ause it always uses a lot of pro
essing time,even when it is not supposed too.Path�nding Performan
e TestAs already mentioned it was dis
overed that the path�nder was not fastenough to be used in the �rst three performan
e tests, whi
h meant that

Page 118 of 273 CHAPTER 8. EVALUATIONa simpli�ed version was used. In this test the
omplete implementation ofthe path�nder will be tested. We know that it is not fast enough, so theperforman
e of the path�nder
ompared to the rest of the framework willnot be
onsidered, as the results at this point would be meaningless.In the test of the path�nder, a unit is made to �nd a path to a positionthat are �ve
lusters away, meaning 80
ells. This sort of movement shouldbe no problem for a path�nder. The
al
ulation of the passable path takesless than 0.01 se
onds, and the
al
ulation of the path takes 0.96 se
onds.Considering that there are only 0.125 se
onds of pro
essing time availableat ea
h game ti
k, this is not fast enough. If the JIT fun
tionality is imple-mented the
al
ulation of the path will be distributed over more game ti
ks.This would mean that there would no longer be su
h signi�
ant peaks asseen in Figure 8.4.2.8.4.3 Performan
e Test Dis
ussionThe performan
e test is not representative for what would happen in a
om-plete AI framework, but it gives an idea if it is possible to
reate a frameworkthat is fast enough to meet the time requirements. The modules and fea-tures that have been
ompleted, whi
h are presented in Se
tion 7.1, havebeen tested to perform within the time
onstraints, with the ex
eption ofthe path�nder and the Ta
ti
al Planning module. Be
ause the path�nder istoo slow to be exe
uted in one game ti
k it has to be optimised, it has tobe possible get at least a small path within one game ti
k. Furthermore tominimise the use of the path�nder, it
ould be made to path�nd for groupsof units, instead of doing it for ea
h individual unit. The Ta
ti
al Planningmodule has to be optimised so that it does not use so mu
h pro
essing timeat every game ti
k.The event manager that
ontrols all the modules have not been testedfor performan
e, be
ause the number of events that are sent within a gameti
k will never be large, so a stress test of how many events it
an handlewould be meaningless. To distribute the exe
ution of modules even more,the event manager
ould be modi�ed so that it does not only
onsider whatgame ti
k it is in, but also how mu
h time there have been used. Then ittakes its
urrent module exe
ution list and save it for the next game ti
k,and sends the a
tions that have already been found. This distribution ofthe pro
essing time will make sure that more pro
essing time
an be used inea
h module, but the AI would be slower to rea
t.The test setups that have been presented here
ould be used, along withthe
omplete AI framework, to identify some of the same problems that havebeen identi�ed in these tests. A GUI
an be
reated to automati
ally
reatethese tests. This would then present the graphs and tables that would helpthe developers with the identi�
ation of bottlene
ks.

CHAPTER 8. EVALUATION Page 119 of 2738.4.4 S
alabilityS
alability is important if the framework is to be used in a real game. Ina real game there are a lot more units, ta
ti
s, and strategies than in thesimpli�ed game used for the performan
e test of this prototype. The ques-tion is whether the framework in a
omplete implementation
an
ope withthe
omplexity of a real game, and if the framework data representation ise�
ient enough to be useful. In a real game there
an of
ourse be a lotmore units than has been the
ase in this test s
enario. This is in most
ases not a problem, be
ause the only parts that should be dependent ofhow many units there are in the framework is where units are deleted whenthey are dead and where they are added when they are
onstru
ted. Theonly pla
e, where the number of units is an issue, is path�nding. This
ouldbe handled by, instead of path�nding for ea
h individual unit, path�ndingfor a group at a time. The event system will not have any issues with thein
reased
omplexity. This will only start to be a problem if more modulesare added, be
ause the number of events sent around in the framework, isnot dependent on the number of units, only on the number of instru
tionsthat ea
h module have to inform ea
h other about. This
an of
ourse bedependent on the number of units that have to perform a
tions at a giventime, but this
ould be handled with some optimisations. When dealingwith performan
e the data representation is very important, be
ause this isoften what
an tell if an appli
ation has potential to s
ale to a larger solu-tion [CLR90℄. The framework uses three types of non-trivial data stru
turesas presented in Se
tion 5.4: Strategy trees, ta
ti
s representation, and basebuilding templates.The strategy trees have no problem with s
alability, be
ause even if thetree be
omes very large, it is for the most times only the nodes that are inthe
losest relation (meaning its parents and
hildren) with the node thatis
urrently being worked with that is
onsidered. Ea
h of the strategy treenodes
ontains referen
es to the
hildren and the parent, whi
h makes itpossible to get the nodes in the
losest relation in
onstant time. Whensear
hing for what strategy the enemy is using, it is no longer possible toa

ess the data in
onstant time, as the tree has to be traversed from the rootnode. This is most likely not that big of a performan
e problem, be
ausethe worst
ase s
enario is that it has to sear
h from the root to the top ofthe tree. This will only be a problem if the degree of the internal nodes ofthe tree are low and the tree thus deeper than wide. The worst
ase s
enariohave
omplexity O(n) and best
ase is O(log(n)), depending on how the treeis de�ned.The ta
ti
s that are relevant for a
ertain strategy are listed in ea
hstrategy tree node, in a limited sized list. This means that even if there exista large amount of di�erent ta
ti
s in a game, there are limits to how manyare a

essible at one time, be
ause only the ta
ti
s in the strategy tree node

Page 120 of 273 CHAPTER 8. EVALUATIONare
onsidered. This way the
omplexity is in the hands of the designer,when she
hoose the amount of ta
ti
s in a
ertain strategy.The base building templates are organised in a tree as explained in Se
-tion 5.4.4, and in the strategy tree nodes there are referen
es to what basebuilding templates that �ts the strategy best. This means that the basebuilding template tree nodes are a

essible in
onstant time, even if the basebuilding template tree grows extremely large. This is be
ause there are di-re
t links to the nodes used, and be
ause when the tree is used it is only the
losest relatives that are a

essed.Based on the above reasoning, we hypothesise that there should not be tomany problems with the s
alability of the framework. Even if the frameworkknowledge bases be
ome huge, whi
h would be the
ase for a real game,the representation of knowledge in trees is e�e
tive be
ause it is only therelatives that have to be a

essed. Furthermore, the only
ases where any ofthe trees have to be sear
hed is when looking for the enemy's strategy, andthis sear
h is not performed on ea
h game ti
k. The issue of path�nding
anbe solved with a
hange. When moving large number of units, the units willmove in a group and only one path�nding will be done for the entire group.8.5 AI ImprovementsThis se
tion will dis
uss how the framework improves the quality of AI inRTS games. We will use the test model des
ribed in Appendix D to test theprototype implementation. This model was also used to test existing AIs ingames. The results
an be seen in Appendix E. The test results are shownin Appendix F, whi
h also shows the previous test on AIs for
omparison, aswell as what we hypothesise that a
omplete implementation will be able tohandle. Areas only partially marked in the test table indi
ate features thatare present in the prototype of the AI framework, but have not yet beentesting with a GDF. Note that we will not
onsider the Cooperation tests withthe
omplete implementation as this is not part of the design presented inthis report. We will �rst present how the prototype implementation handlesthe di�erent tasks marked in the test table, and afterwards dis
uss how a
omplete implementation will be able to handle the remaining areas.8.5.1 Prototype ImplementationThe prototype was
reated to be able to handle 11 of the test s
enarios inthe test model. However, be
ause of the implementation problems dis
ussedin Se
tion 7.5, it has only been possible to su

essfully test six of theseareas. To over
ome implementation problems, the test game was simpli�edin a few areas
ompared to the game des
ribed in Se
tion 7.2.2. We haveremoved
li�s, dynami
 obsta
les and manually pla
ed di�erent units on themap to better test di�erent s
enarios. Compared to the test we made on

CHAPTER 8. EVALUATION Page 121 of 273Strategy Chosen: Number of times Per
entageFast Te
h 7 23.33%Fast Expand 8 26.66%Marines 15 50%Figure 8.5: Chosen start strategiesthe
ommer
ial RTS games, being able to handle 11 of the test s
enariosis a good result
onsidering this is just a prototype of the framework. Thebest AI among the
ommer
ial RTS games was able to handle 17 s
enarios.This is, however, in
luding all the Cooperation areas, whi
h we have notin
luded in the design of our framework. We will begin by demonstratinghow the six areas fully marked are able to handle their
orresponding tests
enario. These areas will among other things, demonstrate how strategytrees allow for strategi
 variation and
ounters during a game. Furthermore,it will show how relative simple s
outing
an make an important di�eren
efor AIs in RTS games. Throughout the test, the strategy tree used by the AIis the one shown in Appendix K.3. For illustration purposes,
ounter nodesare not depi
ted, but just noted as an attribute of ea
h strategy tree node.The six areas and test results are dis
ussed below:Using Counters: The prototype implementation handles
ounters by util-ising two framework modules and strategy trees. The strategy trees forthe test game de�ne
ounters to ea
h strategy the AI knows. Duringa game, the Probabilisti
 Reasoning module will attempt to dis
overwhi
h strategy the opponent is using, by reasoning about the OpponentModel. Be
ause of the Probabilisti
 Reasoning module, the Strategi
Planning module is aware of whi
h strategy the opponent is most likelyusing, and
an then look it up in the strategy tree and �nd its dire
t
ounter strategy. Given the strategy tree, everything else is handledinternally in the framework.This area was tested through the game logs shown in Appendix G.These logs are extra
ts of
omplete logs with only ne
essary informa-tion in
luded. As an example, the log in Listing G.1 shows how theAI sees the opponent in game ti
k 61. At this point, it
annot seeanything else than what the AI started with, and the only potentialstrategy that mat
hes what it sees, is the Fast Expand strategy whi
his the only strategy it knows only
onsisting of worker units. As the
ounter to the Fast Expand strategy is the Marines strategy, this isthe strategy
hosen. At game ti
k 89, additional information is dis-
overed. The list of potential strategies shows how mu
h the
urrentopponent model di�ers from ea
h of the potential strategies'
orre-sponding strategy tree node. Here, the Mixed strategy seems most

Page 122 of 273 CHAPTER 8. EVALUATIONlikely and it is therefore the Mass Tanks strategy that has the greatest
han
e of
ountering the enemy. Note that in these examples, we haveout-
ommented the
ode that determines how mu
h a
ounter may de-viate from the
urrent state of the AI before being appli
able. Thismeans that the AI would not ne
essarily follow the proposed
ounterstrategy. However, these examples demonstrates how the AI is
apableof re
ognising the enemy's strategy and sele
ting the right
ounter forit, based on knowledge from the strategy tree.Strategi
 Variation in one Game: As a dire
t
onsequen
e of the AI be-ing able to use
ounters, it is also
apable of
hanging its strategyduring a game.Strategi
 Variation Game to Game: Be
ause of strategy trees' abilityto represent several options at any given state in the game, the AIwill
hoose its strategy based on probabilities given for ea
h possiblestrategy. Given the strategy tree used for the AI, the AI should
hoosea Marines strategy 50% of the time, a Fast Te
h strategy 30% and aFast Expand strategy 20% of the time.This area was tested by letting the AI play the same map 30 times in arow, and then observing whi
h strategies it de
ided to use. The results
an be seen in Table 8.5.1. The results show the Marines strategybeing pi
ked 50% per
ent of the time as expe
ted, and the other twoaround 25%. This shows how the AI varies it strategi

hoi
e fromgame to game.Does It S
out At All: A timer ensures that the Strategi
 Planning mod-ule sends a s
out in the beginning of the game and then afterwards withregular intervals. In the full implementation, the Strategi
 Planningmodule should base its de
ision to s
out on whether it had su�
ientinformation about the enemy.S
outing is demonstrated in all game logs in Chapter G. In game ti
k31, the timer ensures that a s
out is sent, and when the s
out �nds theenemy base, this is re�e
ted in the opponent model.Using The A
quired Information: The Probabilisti
 Reasoning moduleuses the information obtained from s
outing, whi
h is in the OpponentModel, to reason about the opponent's
hoi
e of strategy.As already dis
ussed in regards to the AI's ability to
ounter the op-ponent's strategy, the AI uses information gained from s
outing todetermine the opponent's potential strategies.Sensible Unit Used for S
outing: In the prototype implementation, theuser di
tates whi
h units to use for s
outing and the Strategi
 Planningmodule
hooses an appropriate unit of this type to s
out.

CHAPTER 8. EVALUATION Page 123 of 273As seen in game ti
k 31 in all game logs in Chapter G, the AI always
hooses a worker to s
out. This is di
tated by the module
on�gurations
ript for the Strategi
 Planning module.One important
on
lusion
an be drawn from the AI improvements theprototype implementation of the framework provides. The internal frame-work representation of strategies, strategy trees, enable AI designers to easily
reate AIs that both
ounter and use information about the enemy to predi
ther strategy. There is only one example of an AI in a
ommer
ial RTS gamebeing able to do this, whi
h is Age of Mythology.Five other areas have also been implemented in the prototype implemen-tation, but as explained earlier, we have not been able to test them be
ause ofthe problems dis
ussed in Se
tion 7.5. The �ve areas are listed below, alongwith an explanation of how they are handled in the design of the frameworkand prototype spe
i�
 details.Measure Own Str. vs Enemy Str.: The AI will
ompare its strength tothe enemy in two sub-modules: The Evaluation sub-module in theStrategi
 Planning module des
ribed in Appendix B.5.9 and in theEvaluation sub-module in the Ta
ti
al Planning module des
ribed inAppendix B.6.3. In the Strategi
 Planning module the evaluation de-
ides if the AI should engage the enemy or not, and in the Ta
ti
alPlanning module the evaluation de
ides if the AI should retreat froma battle.Saving Hurt Units: The sub-module Unit Deployment in the Ta
ti
alPlanning module des
ribed in Appendix B.6.7, takes
are of savinghurt units. As there is no healing in the game, units are simply with-drawn from the front line, and then returned to battle. In the pro-totype implementation, the fun
tionality is expli
itly de�ned into thesub-module, but in the
omplete implementation, this fun
tionalityshould stem from the ta
ti
s the AI designers have designed before thegame.Fo
us Fire: The sub-module Targeter in the Ta
ti
al Planning module de-s
ribed in Appendix B.6.9, take
are of fo
us �ring. This fun
tionalityis also expli
itly de�ned in the module, and should be repla
ed byta
ti
s de�ned by the AI designer in the
omplete implementation.Spending Available Resour
es: The sub-module Unit Planner in theA
tion Planning module des
ribed in Appendix B.10.3 will make surethat resour
es are
onstantly spent. If the goal strategy node is alreadyrea
hed in terms of the number of units wanted, the module will simplykeep produ
ing the units in the goal strategy node, while maintainingthe per
entage unit distribution of the node.

Page 124 of 273 CHAPTER 8. EVALUATIONS
outing Enemy: After the �rst s
outing, where the AI �nds the lo
ationof the enemy base, the Strategi
 Planning module will make sure thatthe regular s
outs will always s
out the enemy base.8.5.2 Complete ImplementationThis se
tion will dis
uss why we hypothesise that the
omplete implemen-tation of the framework
an handle all the areas marked in the table inAppendix F. The design of the framework has been fo
used on being able tosolve all of the tests in the test model. The fo
us of the test model is to testdi�erent areas of the human model, and this evaluation thus assumes thatthe human model is
orre
t and the ful�lment of the human model is the goalfor the AI. We will go through ea
h of the areas not already handled by theprototype implementation, as these are also handled in the
omplete imple-mentation. For ea
h we will present how we expe
t the area to be handled,and refer to the part of the design that handles that parti
ular area.Exploiting Weak Spots: The States sub-module of the Strategi
 Planningmodule des
ribed in B.5.10 handles this area. The user will be requiredto spe
ify what de�nes strong and weak points.Reasonable Expansions: Be
ause of strategy trees, the AI will always ex-pand at the right times, that is, at the time where the strategy di
tatesit. Furthermore, the Expands sub-module of the Strategi
 Planningmodule des
ribed in Appendix B.5.8, ensures that the expansion ispla
ed at a sensible spot.Using Map: The ta
ti
s representation dis
ussed in Se
tion 5.4.3, in
ludesrules for how to use the map terrain to the AI's advantage. Further-more, the Evaluation sub-module in the Ta
ti
al Planning module dis-
ussed in Appendix B.6.3 will rea
t upon a potentially bad battle po-sition and a
t a

ordingly.Good Buildorder: The prior knowledge base Known Build Orders should
ontain optimal build orders for a
hieving
ertain strategies in thefastest possible way. Using these, will enable the AI to su

essfullyhandle this test.Using Formations: The ta
ti
s representation presented in Se
tion 5.4.3in
ludes rules for formations, and the sub-module Formations in theTa
ti
al Planning module des
ribed in Appendix B.6.5 will use theseto deploy formations when moving during the game.Map Considered When Moving: Handling this, is primarily a task forthe Path Planner sub-module in the Ta
ti
al Planning module de-s
ribed in Appendix B.6.10. This module will use the path�ndingmethod presented in Se
tion 5.4.2.

CHAPTER 8. EVALUATION Page 125 of 273Using Ta
ti
al manoeuvres: The ta
ti
s representation dis
ussed in Se
-tion 5.4.3 will de�ne rules for making ta
ti
al manoeuvres. The Ta
ti-
al Planning module must use these rules to a
tually exe
ute the ta
ti
in battle.Staying in Control of Units: This test primarily deals with the nativeAI on ea
h unit. To handle this area, we have designed a HandleNative AI Event sub-module spe
i�
ally suited for this in the Rea
tiveModule. This sub-module is des
ribed in further detail in AppendixB.2.6.Counter Fo
us: By using the ta
ti
s representation dis
ussed in Se
tion5.4.3, a user will be able to de�ne rules for whi
h units should fo
us onwhi
h enemy units. The Targeter sub-module in the Ta
ti
al Planningmodule des
ribed in Appendix B.6.9 will take
are of exe
uting therules de�ned by the user.Using Support: The ta
ti
s representation presented in Se
tion 5.4.3 alsode�nes rules for using support units and their spells/abilities. TheSupport sub-module in the Ta
ti
al Planning module des
ribed in Ap-pendix B.6.8 is responsible for a
ting upon the rules de�ned in a ta
ti
.Predi
ting Resour
e Needs: The Determine Resour
e Requirementssub-module in the Resour
e Management module des
ribed in Ap-pendix B.7.3 is responsible for predi
ting resour
e needs. It will usethe plans for units, buildings and future resear
h produ
ed by othermodules to make its predi
tion. By predi
ting resour
e needs, it
anassign more workers to gather a
ertain resour
e before it should beused.Flexible Resour
e Gathering: As a
onsequen
e of the AI's ability topredi
t resour
e needs, it will also use this knowledge to determine howmany workers should be assigned to harvest ea
h kind of resour
e. Thisall happens in the Worker Planner sub-module within the Resour
eManagement module des
ribed in Appendix B.7.5.Good Pla
ement of Def. Buildings: A user of the framework has theability to de�ne how to pla
e buildings in the base through the basebuilding templates des
ribed in Se
tion 5.4.4. The exe
ution of basebuilding templates is handled by the Building Manager sub-module inthe Base Building module des
ribed in Appendix B.8.4.Good Pla
ement of Hrv. Buildings: The pla
ement of harvestingbuildings is also handled by the Building Manager sub-module of theBase Building module, whi
h works on base building templates.

Page 126 of 273 CHAPTER 8. EVALUATIONSensible Base: The user is responsible for de�ning how buildings shouldbe pla
ed through base building templates, and the Building Managersub-module is responsible for a
tually pla
ing these buildings.S
outing Map: The S
outing sub-module of the Strategi
 Planning moduledes
ribed in Appendix B.5.4, is responsible for the AI s
outing the mapin sensible pla
es.S
outing at Sensible Times: To s
out at sensible times, the AI relies onthe Su�
ient Enemy Knowledge sub-module in the Strategi
 Planningmodule des
ribed in Appendix B.5.3. This sub-module will base itsde
isions of whether enough is known about the enemy, on informationfrom the Probabilisti
 Reasoning module.Learning: Learning is handled by the Learning module des
ribed in Ap-pendix B.9. While learning new strategies is handled by the methodsdes
ribed in Se
tion 5.4.1, learning new ta
ti
s and base building tem-plates still needs some work.Although not tested, the
omplete design of the framework should beable to handle all of the areas in
luded in the test model.8.6 RTS Spe
i�
 Con
eptsThis se
tion will dis
uss the two RTS spe
i�
 ideas implemented in the pro-totype of the implementation: Strategy trees and path�nding. For ea
h, wewill evaluate the su

ess of the idea of the implementation in the prototype,and dis
uss the e�e
t it would have in a
omplete implementation of theframework.8.6.1 Strategy TreesStrategy trees have been the foundation on whi
h the Probabilisti
 Reasoningmodule and partly the Strategi
 Planning module have worked on in theprototype implementation. In both
ases, the data stru
ture and the ideaspresented throughout the dis
ussion of strategy trees in Se
tion 5.4.1, haveshown to work as intended, as dis
ussed throughout this
hapter. Se
tion 8.1showed how strategy trees
ould easily be spe
i�ed, Se
tion 8.2 showed howstrategy trees
ould easily be
on�gured to a
hieve di�erent kind of AIs, andSe
tion 8.5 showed how strategy trees have su

essfully helped in
reatingimprovements in the AI. The game logs in Listing G.3 and Listing G.4 inthe appendix furthermore demonstrate how the AI is able to follow a givenstrategy by building the required units. The following will list some of themost interesting advantages of using strategy trees:

CHAPTER 8. EVALUATION Page 127 of 273Developer Friendly: The representation is straightforward and de�nesstrategies and the relation between them in a simple manner, espe-
ially if depi
ted in a graphi
al user interfa
e.Versatile: Through strategy trees, an AI developer
an
reate any kind ofAI she wants, by simply adapting the strategi
 knowledge of the AI.Built-in Operations: The data stru
ture has through its representationnatural support for �nding
ounter strategies and follow-up strategies.The only weakness of strategy trees in the prototype implementation,as mentioned in Se
tion 8.1.2, is the la
k of a graphi
al user interfa
e. Thiswould help provide a mu
h needed overview when building large and
omplexstrategy trees. There are also areas where the use of strategy trees
an beimproved
ompared to the prototype implementation. The following liststhree areas whi
h require further work:Learning: One of the reasons for using strategy trees was the ability toeasily add new strategies to a tree, and this way learn new strategies.Although adding the strategy itself is easy (as dis
ussed in Se
tion5.4.1), learning new strategies in
ludes other problems that must besolved as well. Two of them are the tasks of re
ognising that a newstrategy is being used, and re
ognising new important game states.Ta
ti
s and Base Building Templates: In a
omplete implementationof the framework, strategy tree nodes should
ontain both ta
ti
s andbase building templates. These should support exe
uting the strat-egy des
ribed by the node. A few key tasks regarding ta
ti
s requiresome further work however. First of all, the representation of ta
ti
smust be fully developed, and then a method to re
ognise these ta
ti
smust be
omposed. Se
ondly, a method making it possible to di
tatewhen a
ertain ta
ti
 should be used during the exe
ution of somestrategy needs to be developed. This would also make it possible todi
tate whi
h ta
ti
s to use depending on the situation in the game,for instan
e whether the AI is atta
king or defending.Sear
h Optimisation: When working with small strategy trees, like theones for the game in this prototype implementation, the sear
h throughthe strategy tree when �nding mat
hing nodes does not really matter.However, in more
omplex games, the strategy trees will
onsist of farmore nodes, and when sear
hing through this, optimised te
hniquesshould be used. There are many possibilities to guide a sear
h for amat
hing node in a strategy tree. One way is to build a strategy treefor the opponent during a game, and this way guide the sear
h in thetree, by only looking at nodes that are possible for the opponent torea
h, given the strategy tree built for her. Another way
ould be

Page 128 of 273 CHAPTER 8. EVALUATION

Path foundMap

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot1"

Figure 8.6: Path found in path�nding testto use the time variable on the strategy tree nodes, and only
onsidernodes that are within a
ertain time frame depending on the time sin
ethe game started. Finally, an optimised order of whi
h attributes ofstrategy nodes are tested �rst for being
lose or equal to an attributein another strategy node,
ould also result in a faster sear
h.8.6.2 Path�ndingThis se
tion will �rst evaluate the path�nder based on how well it �ndsthe
orre
t path (an optimal path) and how well it redu
es the sear
h spa
e.Finally we will present some solutions to how the path�nder
an be improved.Corre
tnessIn order to verify that the path�nder �nds an optimal path we have testedit by making it �nd a path a
ross a map with randomly pla
ed obsta
les.The path�nder will start at the left side of the map and travel towards theright side. A test result
an be seen in Figure 8.6 and additional test resultsin Appendix I. The tests show that the path�nder indeed �nds a reasonablepath. We
an furthermore
on
lude that the path is the optimal be
auseof the algorithms used. A* will always �nd the optimal path [RN03℄. Thepassable path that is responsible for restri
ting the sear
h spa
e is build uponA*. This means that the optimal path must be present within this restri
tedsear
h spa
e. Afterwards the optimal path itself is found within the passablepath by using A*.By basing both the passable path and the path itself on A* we
on
ludethat the path�nder always �nds the optimal path.

CHAPTER 8. EVALUATION Page 129 of 273

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"astar_search_plot"

Figure 8.7: Sear
h spa
e explored by A*Sear
h Spa
eThe test, to verify that the hierar
hi
al JIT path�nder redu
es the sear
hspa
e, was
arried out in the same type of environment as the previous test.Figure 8.7 shows the sear
h spa
e explored by A*, and the sear
h spa
eexplored by the our path�nder
an be seen in Figure 8.8, when �nding apath from the left side of the map to the right side of the map. A* explores52289
ells, while our path�nder explores 17152
ells. The sear
h spa
e
anbe further minimised by making the
lusters
ontain a smaller amount of
ells, but this will
onsequently mean a higher
omputation time to �nd thepassable path. This means that �nding the optimal solution is a balan
ebetween minimising the sear
h spa
e and the
omputation
ost involved indoing so. The total length of the path and the amount and size of theobsta
les on the map are also important fa
tors that must be taken intoa

ount.

Page 130 of 273 CHAPTER 8. EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"own_search_plot"

Figure 8.8: Sear
h spa
e explored by hierar
hi
al JIT path�nder

CHAPTER 8. EVALUATION Page 131 of 273ImprovementsWe have identi�ed two areas that must be improved in order for thepath�nder to get a reasonable performan
e. First the path�nder must berun in a JIT fashion as was intended with the design. Se
ond the datastru
ture used in open1 must be signi�
antly redu
ed.By simplifying the path�nding to not in
lude the JIT design means atrade-o� between exe
ution
ost and development
ost. A JIT path�nderdoes not only a�e
t the Path Planner in the Ta
ti
al Planning but also theA
tion Planner. In
luding su
h a fun
tionality means some fun
tionalitymust be shifted from the Path Planner to the A
tion Planner, whi
h initself is a small redesign of the framework.Test have revealed that too mu
h time is spent in the path�nder main-taining open. Further investigation has shown that it spe
i�
ally is the sheersize of the open elements that is the problem. Ea
h element
ontains thepath that
urrently has been travelled in order to rea
h the node in question.This is a list of
oordinates unique to every single node in open. This list
an be avoided and thus the total size of the open elements severely redu
edby using ba
k tra
ing.8.7 Re�e
tionsThe following will re�e
t upon two things: The design presented in Part IIand the development method of basing an AI framework on a model of howhumans plays.8.7.1 Design Re�e
tionThe design of the framework presented in Part II and the design of ea
hindividual module presented in Appendix B have proven to be a big helpthroughout the implementation. We have been able to easily translate frame-work modules into C++
lasses and sub-modules into fun
tions. The design
learly separates di�erent fun
tionality into smaller manageable fun
tionsand furthermore
learly de�nes how the di�erent fun
tions work in relationto ea
h other and the internal module ar
hite
ture. Also, through the overallar
hite
ture of the framework, it has been easy to get an overview of wheredi�erent knowledge bases have to be used.In the prototype implementation, several small
hanges have been made
ompared to the design. As Se
tion 7.1 explains, although the prototypeimplementation has had a fo
us on some areas
ompared to others, the im-plementation would still need to implement all modules ex
ept the Learningmodule. This means that some of the modules in the prototype imple-mentation has not stri
tly followed the design, and only fo
used on making1An important queue used in A*

Page 132 of 273 CHAPTER 8. EVALUATIONa minimum implementation. This in
ludes modules su
h as the Resour
eManagement and Base Building modules. However, this has not a�e
tedthe idea of the design of these modules.The prototype implementation has also revealed some ideas for
hanginga few design details. One
hange indu
ed by the prototype implementationis regarding how the A
tion Planner module is in�uen
ed by the Strate-gi
 Planning, Ta
ti
al Planning, Resour
e Management and Base Buildingmodules. In the original design, the A
tion Planner was in�uen
ed by thesemodules by sending events. This has been
hanged to letting the A
tionPlanner module be in�uen
ed by these modules through the shared in-gameknowledge base Assigned Unit A
tion. The reason for this
hange is thatwith the original design, the A
tion Planner would be �ooded with eventsof proposed unit a
tions. It is a mu
h better
hoi
e to let modules
hangein the knowledge base, and then have the A
tion Planner iterate over theunits in the knowledge base, when
ommuni
ating a
tions to the GDF. This
hange is also re�e
ted in the design of the A
tion Planner module des
ribedin Appendix B.10. Other issues of the implementation have
on
erned thingslike the exa
t data to send with events, the data stru
ture used for di�er-ent variables and knowledge bases, and how to
onstru
t developer friendlyPython s
ripts. These were left as implementation details when designingthe framework.One of the
on
erns dis
ussed throughout the
hapter has also been theissue of providing solid do
umentation for the framework. As a start, theinternal design of modules des
ribed in Appendix B provides both users anddevelopers with a basi
 understanding of how things work in the framework.It spe
i�es how framework instan
es
an be varied from ea
h other, and itde�nes the responsibilities of di�erent sub-modules. The design is however,mostly suited for users of the framework that wish to extend or modifythe framework in some way. Regular users will have more use of a usermanual, whi
h spe
i�es exa
tly how ea
h module and knowledge base
anbe
on�gured to a
hieve di�erent things. The more advan
ed users of theframework would be able to use the design explained in the Appendix, butwould also bene�t from tutorials on how to
hange the internal ar
hite
tureof the framework.8.7.2 Development Model Re�e
tionUsing the human model as a basis for the framework does not mean that theframework
an be used to all roles of an AI in RTS games. If for instan
ethe RTS game is a simple game with only a few units and no
ounteringsystem there is no need to bring up su
h an advan
ed solution as intendedwith this framework. The
on�guration will probably take longer than asimple s
ripting of the AI. Even in normal RTS games, the AI
annot beused for all aspe
ts of the single player games. The human model will enable

CHAPTER 8. EVALUATION Page 133 of 273the AI to play like a human player in for instan
e a
ustom game, wherethe AI and the player will play against ea
h other, but it will be less suitedfor
ampaigns, where the a
tions of the AI will be di
tated by a story. Onesu
h example is the undead
ampaign in War
raft III: Frozen Throne[warb℄,where the player will have to guide a hero through a dungeon �lled withunits
ontrolled by the AI. These units have to a
t a

ording to a story line,whi
h is not
overed by the human model. Lu
kily this is only a small partof the
ampaign and in some of the other parts, where the map di
tates aplaying style more like the one usually used in
ustom games, the AI is stillwell suited.Handling
ut s
enes or s
ripted events in general
an be done by addingan event module. This module must enable game designers to take dire
t
ontrol over anything in the GDF in order to get the wanted result. This isnot normal human behaviour and is thus not
overed by the human model.Consequently this module must be kept separate to the rest of the frameworkto maintain the
orre
t abstra
tion. The module must also be kept separatefrom the rest of the framework, be
ause it must have a

ess to more than isallowed for the AI presented in our solution. While the event module is run,the rest of the framework must be stopped and then started again when the
ut s
ene or event is over.Furthermore the human model itself is based on our experien
e with thegames shared with the experien
e of
ommunities that are playing the games.The study of how a human player plays is a study of behaviour, psy
hologyet
. that is not a part of traditional
omputer s
ien
e. A more thoroughstudy
ould probably enhan
e the model and lead to a better abstra
tion.The
urrent human model only models the tasks the human player solveswhen playing RTS games. When looking at the general areas of responsibil-ities the di�erent modules have, it be
omes apparent that the model mightbe generalised to model how a human player plays games in general. Somemodules may have to be merged into more general areas and others have tobe renamed in order to re�e
t the more general area of responsibility, butthe model as su
h will remain the same. We will illustrate this through anexample: When playing a FPS game like Quake, the player will basi
allygo through the same pro
ess as modelled in the human model. She willstill have to make an opponent model and
ompare this to what she knowabout the map, when de
iding on a strategy. When meeting the opponent,she will have to use some ta
ti
s in order to engage in the right way, andif the enemy for instan
e throws a grenade after her, she will have to re-a
t instin
tively. Resour
e management in
ludes whi
h weapons should beused, at whi
h times, and whi
h routes she must run in order to pi
k up var-ious items before the opponent. Further work will probably reveal a humanmodel that is stru
turally
lose to the one presented for RTS game, and ableto model all game genres.

Page 134 of 273 CHAPTER 8. EVALUATION8.8 SummaryThe �rst se
tion of this
hapter dis
ussed how the framework
ould be
on-�gured to suit di�erent demands from the developer. We demonstrated howAI designers were able to de�ne te
hnology trees, units, buildings and strate-gies, and how it is possible to vary AI behaviour through framework module
on�guration s
ripts in a simple manner. To further assist developers, weidenti�ed do
umentation and the in
lusion of GUIs as possibilities for futurework. However, if a developer wants to add new variables or new features,she will be required to extend modules and methods and this requires C++programming knowledge. As most games, even within the RTS genres de-�ned in Se
tion 2.4.2, in
lude some kind of spe
ial feature, the AI developerwill often be required to extend the framework in order to support this.We hypothesise that the work required to do this will be minimum, as theframework already in
ludes the most
ommon attributes and features.The test of the versatility of the framework was divided into two areas:Framework versatility and AI versatility. We
on
luded that framework ver-satility was di�
ult to evaluate, be
ause the prototype implementation haveonly been
onne
ted to one GDF. However, the framework and GDF hasbeen su

essfully separated, and the
ode required to
onne
t the two is notvery
omplex. In regards to AI versatility, we evaluated the two ways thatdevelopers
an vary framework instan
es from ea
h other: Through strategytrees and through module
on�guration. We veri�ed that strategy trees
anbe spe
i�ed to
reate any kind of strategi
 behaviour and that developersthrough module
on�gurations are able to spe
ify both game and AI spe
i�
variables that in�uen
e the AI's behaviour during a game. Both of these
anbe
on�gured without having to re-
ompile the framework every time to seethe e�e
t, whi
h helps provide easy balan
ing of variables and strategies.Se
tion 8.3 demonstrated how developers are able to extend modules andmethods in the framework, as well as adding entirely new modules to theframework. Although it should be possible for designers to
reate prototypemethod extensions in Python, the task of extending the framework shouldmostly be left in the hands of C++ programmers, be
ause of performan
e
on
erns. We
on
luded that modules and methods are quite easily extendedwith relatively little e�ort, but that adding entirely new modules is a more
ompli
ated task. It is possible to add new modules, but the developer musthave extensive knowledge of the internal parts of the framework in orderto ensure that no unexpe
ted side e�e
ts o

ur. On
e again, the issue ofproviding thorough do
umentation was found to be very important.Our performan
e test in Se
tion 8.4 showed that our prototype imple-mentation su�ers from performan
e problems. However, we have identi�edthe problem as being the Ta
ti
al Planning module and more spe
i�
ally ourimplementation of the path�nding method des
ribed in Se
tion 5.4.2. Allother modules seems to be running at a reasonable performan
e. However,

CHAPTER 8. EVALUATION Page 135 of 273this does not say mu
h as many of the modules are simpli�ed versions orthey are not
alled the appropriate number of times, be
ause of the la
k ofe�e
tive path�nding. The tests performed in this se
tion have furthermoreidenti�ed another important element to have in
luded with the framework.As developers may also add and
hange modules, they will need a pro�ler todetermine potential performan
e problems in their implementation.In order to evaluate the AI improvements provided by both the prototypeimplementation and the
omplete implementation, we dis
ussed their AI
apabilities in relation to the test model des
ribed in Appendix D, whi
hwas also used to test
ommer
ial RTS games. This allowed us to
ompareour results with the
urrent AI standard in the industry. We
on
luded thateven the prototype implementation is able to handle areas not handled inmany
ommer
ial RTS games today, su
h as
ounters, strategi
 variationand s
outing. Furthermore, we dis
ussed how ea
h of the areas in the testmodel was handled by di�erent framework sub-modules in the design of theframework, and hen
e also handled in a
omplete implementation.The two RTS spe
i�

on
epts used in the prototype implementationwere evaluated in Se
tion 8.6. Strategy trees have shown to be very usefulin solving several of the s
enarios in the test model, in
luding making theAI able to use
ounters and strategi
 variation. They provide a developerfriendly and versatile approa
h to de�ning strategies, and allow for severalbuilt-in operations useful in the internal parts of the framework. In a
om-plete implementation, strategy tree nodes should
ome with both ta
ti
sand base building templates atta
hed, and it should be used in the Learningmodule to learn new strategies. The path�nder was shown to �nd the
orre
tpath and it also explored a smaller sear
h spa
e, as was expe
ted.

CHAPTER 9. DISCUSSION Page 137 of 273
Chapter 9Dis
ussionThis
hapter will dis
uss if an AI framework for RTS games will be useful inthe game development industry and present possible future work within thistype of AI framework. To
larify the role of AI frameworks in the AI devel-opment of RTS games, we have
onta
ted a number of game development
ompanies to hear their views on the topi
. A total list of the
ompanies
onta
ted
an be found in Appendix L.1. The answers from these
ompanieswill be the topi
 of Se
tion 9.1. In the end of this se
tion, a number ofindustry demands for an AI framework will have been de�ned, and Se
tion9.2 will fo
us on dis
ussing how the AI framework presented in this proje
t,
onforms to these requirements. Following this in Se
tion 9.3, we will makea brief market analysis of RTS games and RTS game development
ompa-nies, to get a
learer overview of the prospe
t of an AI framework for RTSgames being used in the industry. This has not been presented earlier in thereport, be
ause it has been an enquiry done in parallel with the proje
t. Theenquiry was as su
h only done to establish whether the proposed AI frame-work would have any use in the industry. In se
tion 9.4 other potential usesof the framework outside of game development industry will be presented.Finally in Se
tion 9.5, we will dis
uss future work within the framework, andpresent the features that we believe will be the most
hallenging to designand implement.9.1 Demand in IndustryThis se
tion will dis
uss the potential role of an RTS AI framework in theindustry. To gain better insight into how AI development for RTS gamesis handled in the game development industry, we have
onta
ted severalRTS game development
ompanies. These were sent a number of questionsregarding AI development and the idea of a generi
 RTS AI framework, whi
h
an be seen in Appendix L.2. 4 out of 40 RTS game development
ompaniesresponded and this se
tion is based on their answers. There
an be several

Page 138 of 273 CHAPTER 9. DISCUSSIONreasons for why only four
ompanies have responded to our enquiry:
• As most
ompanies do not have a dire
t e-mail address used to
onta
tthe development team, we have been for
ed to use general informatione-mail addresses to
onta
t
ompanies. This may have meant thatsome of our enquiries never rea
hed developers who were quali�ed toanswer our questions.
• One
ompany responded that they simply did not have enough timeto answer our enquiry at the given time. This may have been the
asewith other
ompanies too.
• Finally, some of our questions are aimed at areas whi
h
ompanies may
onsider se
ret, and therefore do not wish to reveal to people outsidethe
ompany.The
ompanies who answered our enquiry are: Oddlabs [Odd℄, In�niteIntera
tive [Inf℄, Inhuman Games [inh℄ and Fireglow Games [�r℄. The fol-lowing will list these
ompanies, along with the games they have developed:Oddlabs: Tribal Trouble (2004) [Tri℄.In�nite Intera
tive: Warlords Battle
ry II (2002) [wbia℄, Warlords Bat-tle
ry III (2004) [wbib℄ and Seven Kingdoms Conquest (in produ
tion)[sev℄.Inhuman Games: Trash (2005) [tra℄.Fireglow Games: Sudden Strike 3: Arms for Vi
tory (2006) [sud℄.Although these four
ompanies are only representing about 10% of thetotal number of RTS game
ompanies, whi
h have produ
ed RTS gameswithin the last �ve years (shown in Appendix L.1), their answers should serveas an indi
ation of di�erent issues regarding AI development. Espe
ially thedevelopers from In�nite Intera
tive, who have produ
ed several very popularRTS titles will be able to provide
on
rete answers of how AI developmentfor RTS games is handled in the industry. We will divide this se
tion intofour di�erent parts, ea
h dis
ussing an important element in AI development,and a �nal part dis
ussing the merits of the idea of an RTS AI framework.The original answers to the questions asked in Appendix L.2
an be foundin Appendix L.3.9.1.1 Time Spent on AI DevelopmentIn general, the time spent on AI development varies from
ompany to
om-pany. For games whi
h were not under extreme time pressure, the devel-opment time seems to range from about 2000 to 5000 man hours. Thesenumbers are rough estimates:

CHAPTER 9. DISCUSSION Page 139 of 273It's di�
ult to make a pre
ise estimation, be
ause vagueness offrames of whi
h part of the game engine is AI and whi
h is not.- Max Dolmar, Fireglow GamesMax Dolmar also states that one of the most time
onsuming task ofdeveloping AI in RTS games is the issue of path�nding.9.1.2 Developers of AIAIs in RTS games are primarily
reated by programmers with the help ofthe designers. Designers are in
harge of the very high level part of theAI, in
luding balan
ing, while programmers take
are of the rest. There ishowever, a tenden
y to move towards having more of the AI that
an bes
ripted by AI designers:Programmers tend to do most of the AI development. In
reas-ingly game designers with s
ripting ability are developing AI.Game designers tend to only
ontrol very high level aspe
ts ofAI. - Mark Currie, Inhuman GamesDevelopers of Warlords Battle
ry are for instan
e in
reasing their use ofthe s
ripting language Lua to get the designers more involved in the pro
essof building the AI.9.1.3 AI Development ToolsTwo out of the four game development
ompanies do not use any AI toolsat all, and develops every AI for a new game from s
rat
h. The developersof Warlords Battle
ry uses a library built in-house as the foundation for theAI: We have our own movement/pathing libraries on whi
h every-thing is built. Everything apart from the movement and pathingis
reated from s
rat
h on every game. - Steve Fawkner, In�niteIntera
tiveThe only
ompany that uses an AI framework for development of the AIis the developers of Sudden Strike. They have built their own AI frameworkand uses this in
onne
tion with a third-party s
ript system to
reate AIs fortheir games. Furthermore, it seems that the game development
ompaniesinvolved in making more than just one title, are better at using AI tools toreuse
ode from the AI in one game, to the AI in another game.

Page 140 of 273 CHAPTER 9. DISCUSSION9.1.4 AI Integration with GDFThe separation of AI
ode from the GDF seems to vary greatly. Some
om-panies have them
ompletely separated, while others have them
losely
on-ne
ted. It seems however, that
ompanies with more than one shipped title,fo
us more on separating the two. The developers behind Warlords Battle
rykeeps the two
ompletely separated, but do in
lude di�erent fun
tionality inthe GDF for the AI to use:They are kept
ompletely separate. However, various fun
tions ofthe engine have been added to help with AI, su
h as line-of-sight
al
ulations. - Steve Fawkner, In�nite Intera
tiveThe AI framework used by the development team
reating Sudden Strikehas some modules that are totally independent of the GDF, while others are
losely linked to the game and gameplay.9.1.5 Generi
 RTS AI FrameworkIn general, all four
ompanies are quite positive of the idea of a generi
 RTSAI framework. However, they all indi
ated that there have to be substantialadvantages in using the framework, and that the framework has to delivera number of advan
ed features espe
ially important to AIs in RTS games.Otherwise, it would simply be too big a task to use and understand third-party software. The following lists a number of features that an AI frameworkfor RTS games should
ontain fa
ilities for, to be su

essful in saving AIdevelopers a lot of time:
• Movement and Path�nding
• Formations
• In�uen
e Maps (e.g. for dete
tion of danger)
• Threat Assessment
• A
tions/Orders
• A State Ma
hine of A
tions of Individual A
tors
• Grouping Me
hanisms
• A Method for Tra
king and Remembering Enemies
• Building and Produ
tion Hierar
hies
• Resour
e Usage and Needs
• Managing and Prioritising Obje
tives

CHAPTER 9. DISCUSSION Page 141 of 273
• S
ripting SystemFurthermore, the framework should be relatively easily
onne
ted to anykind of GDF. If an AI framework
ontained the above mentioned features,it would probably be used in the industry, as long as the quality was goodand the prize a�ordable. One
ompany, the developers of Trash, even wentas far as guessing a possible prize on the produ
t:If your AI is the great, I think it
ould be sold. It would have to beextremely good and easy to integrate into any RTS game engine.If this was the
ase, perhaps you
ould
harge $100k USD for it�ifsold to big AAA studios1. - Mark Currie, Inhuman Games9.1.6 SummaryOnly two of the four game development
ompanies reuse their AI
ode, andone on them did this through very general AI libraries. The only
ompanyusing an AI framework was the developers of Sudden Strike, but the s
opeof this is unknown. None of the
ompanies take advantage of reuse to adegree
omparable to the AI framework des
ribed in this proje
t. Threeof the
ompanies have begun to fo
us on having designers more involved inthe pro
ess of
reating the AI, and they are using s
ripting languages to dothis. There is a general
onsensus among the four
ompanies that an RTS AIframework will be a good idea provided it lives up to a number of demands,making it possible to save a lot of time during development.9.2 Conforman
e to Industry DemandsSe
tion 9.1.5 listed a number of features an AI framework for RTS shouldsupport to save a lot of time during AI development. The
omplete designof our AI framework handles all of these areas. In the following we will listthe framework modules that are involved in handling the di�erent demands.Strategi
 Planning: Threat assessments, grouping me
hanisms and man-aging and prioritising obje
tives.Ta
ti
al Planning: Movement and path�nding, formations, in�uen
emaps, threat assessments, and managing and prioritising obje
tives.Base Building: Building and produ
tion hierar
hies.Resour
e Management: Resour
e usage and needs.A
tion Planner: A
tion/orders, and managing and prioritising obje
tives.1AAA game development
ompanies basi
ally refers to
ompanies produ
ing large andexpensive titles, whi
h in
lude a lot of PR/marketing.

Page 142 of 273 CHAPTER 9. DISCUSSIONYear: RTS Games Published:2002 202003 152004 272005 192006 20Figure 9.1: RTS games published the last 5 yearsBesides the demands handled by framework modules, some of the in-game knowledge bases also take
are of a few of the demands. AssignedUnit A
tion and Assigned Building A
tion keeps tra
k of whi
h state thedi�erent units and buildings are in and In-Game Enemy Knowledge keepstra
k of enemy units and remember where they were last seen. Besides this,the framework as a whole, o�ers a s
ripting system, where all modules andknowledge bases
an be
on�gured. To summarise, our framework is designedto provide fa
ilities for all the features listed in Se
tion 9.1.5.9.3 RTS Game Market AnalysisIt is di�
ult to make an estimate of how many RTS games are produ
edevery year, as there are no o�
ial re
ords of this. Furthermore, the termReal-Time Strategy game is used to des
ribe many di�erent kinds of gamesand not only the ones being the fo
us of this proje
t. Some would for instan
e
hara
terise Tetris (1986) [tet℄ as being both a real-time and strategy game,and hen
e an RTS game. In this se
tion we will only
onsider the RTS gamesthat
ome into the
ategory des
ribed in Se
tion 1.1. We will use the populargame site Gamespot [gam℄ to identify published RTS games. Gamespot hasre
ords of any
ommer
ial RTS game relevant to this proje
t. The numberof RTS games published within the last �ve years
an be seen in Table 9.3.The number in
ludes both expansion pa
ks and gold editions, as these oftenupgrade the AI
ompared to the original game. Furthermore, the numberfor 2006 is partially based on expe
ted RTS game releases.As Table 9.3 indi
ates, about 20 RTS games are released every year.Within the last �ve years, the produ
tion of these games have been handledby about 40 di�erent RTS game development
ompanies. It is di�
ult toestimate how many of these
ompanies would have to buy the AI frameworkfor it to be a worthwhile business. This depends on development
ost, theprize of the framework and on the interest shown from game development
ompanies. However, there are many potential buyers and if our answersfrom game development
ompanies serve as any kind of indi
ation, there maybe up to 75% who would be able to bene�t a lot from using the framework.

CHAPTER 9. DISCUSSION Page 143 of 273Furthermore, as many of the
ompanies develop more than one title, thebene�ts of using the framework in
rease even more. The framework
an beused on several titles, and this way in
rease
ode reuse. However, as observedin Se
tion 9.1.3, it seems that game development
ompanies involved inmaking more than one RTS game, often have their own AI tools to in
reasereuse and redu
e development time.9.4 Other UsesThe framework
an also be used in other
ases, where it is not the main AIdevelopment tool for an RTS game. One possibility is to use the frameworkfor AI resear
h. By providing a very modular framework, whi
h in
ludesstandard implementations for ea
h module, an AI resear
her will be able tofo
us on a spe
ial area, probably a module, while letting all other modulesbe handled by the standard implementation. This provides new options forresear
hers wanting to fo
us on a
ertain aspe
t of AI. RTS games providea platform for resear
hing many fundamental aspe
ts of AI [Bur03b℄:
• De
ision Making under Un
ertainty
• Adversarial Real-Time Planning
• Reasoning
• Opponent Modelling
• Learning
• Resour
e Management
• CollaborationNormally, resear
hers will have to build a test environment to use whentesting their ideas, whi
h is a time
onsuming task and not interesting froman AI resear
h perspe
tive. Using RTS games as a test environment
om-bined with an AI framework, provides optimal
onditions for AI resear
hers.They
an fo
us on spe
ialised areas, for instan
e learning, while leaving ev-erything else to the framework and test their ideas in a
omplex environment.9.5 Further WorkThis se
tion will dis
uss possible further work that
an be done following theprototype implementation in this proje
t. We will start by dis
ussing whatis needed to
reate a full implementation of the framework. Following that,we will dis
uss how the work done in this proje
t
an in�uen
e the
reationof AI frameworks for other game types.

Page 144 of 273 CHAPTER 9. DISCUSSION9.5.1 Complete ImplementationA
omplete implementation of the framework presented in this proje
t will�rst and foremost require that all the remaining features presented in thedesign in Chapter 6 are implemented. A
ouple of areas require further workbefore being appli
able in the framework. These are listed below:Ta
ti
s: First, the
on
ept of how to represent ta
ti
s presented in Se
tion5.4.3 must be expanded to deal with several other ta
ti
al issues su
h asusing terrain, using support units and �guring out how to
ounter theopponent's ta
ti
s. Se
ondly, the framework must in
lude methods forproperly exe
uting the di�erent ta
ti
s de�ned by the user, through therules de�ned in the ta
ti
s representation. Finally, work must be donein trying to develop a generi
 method for re
ognising ta
ti
s in all kindsof RTS games. This method should be based on the representation ofta
ti
s.Cooperation: In this proje
t we
hose to disregard all
ooperation featuresin the framework. This would not be an option in a full implementa-tion, as
ooperation has an important role in most RTS games. In thehuman model in Chapter 3, we de�ned
ooperation as being a taskin�uen
ing all other tasks and as being itself in�uen
ed by all othertasks. Translating this to the framework ar
hite
ture, it would prob-ably be a form of global module, di
tating orders to other modules.More work has to be done in this area to ensure proper
ooperationbetween both allied AIs and allied human players.Graphi
al User Interfa
e: Se
tion 8.1 and Se
tion 8.1.5 presented theidea that a GUI would be a big help in ensuring a developer friendlyframework. This idea should be further developed, and developerfriendly methods for the user to de�ne strategy trees, te
hnology tree,unit types et
. must be de�ned.Do
umentation: The do
umentation for the prototype implementation islimited to the framework design des
riptions in Appendix B and
on-�guration examples in Python �les along with
omments on what ea
h
on�guration variable means. However, frameworks are in general largeand
omplex pie
es of software and quite di�
ult to understand, andtherefore proper do
umentation is required [FHLS97℄. A lot of resear
hhas been done on do
umenting frameworks [BKM00℄. Normally, onedivides do
umentation of frameworks into three separate areas [Joh92℄:
• The purpose of the framework.
• How to use the framework.
• The detailed design of the framework.

CHAPTER 9. DISCUSSION Page 145 of 273Work must be done in ensuring the right
hoi
e of do
umentation fora framework of this type, whi
h in
ludes the three areas mentionedabove.With all ideas fully developed, we
an take a
loser look at the featureswhi
h were not implemented in the prototype implementation. In the fol-lowing we will list some of the most interesting missing features, and presentsome of the
hallenges of a
omplete implementation.Learning: The design of the Learning module is spe
i�ed in AppendixB.9. Methods for learning new strategies have already been dis
ussedthroughout the dis
ussion of strategy trees in Se
tion 5.4.1. Thebiggest
hallenges when implementing the module will be to devisea method for learning new ta
ti
s and base building templates. Fur-thermore, a method is needed to properly revise strategies, ta
ti
s andbase building templates.Base Building Templates: The framework will have to use the ideas pre-sented in Se
tion 5.4.4. This in
ludes letting users de�ne their owntemplates, and de�ning internal methods in the framework that areable to use any given template. Work must also be done on how tobuild a few generi
 templates, whi
h will work in any RTS game. Thesewould serve as a standard way of handling base building.Building Planner: This sub-module is part of the Base Building mod-ule, and is basi
ally responsible for planning whi
h buildings to buildand when. It must given a strategy and base building template, planwhere and what to build, taking the te
hnology tree and the resour
esavailable into
onsideration. Further details of this sub-module
an befound in Appendix B.8.5.Unit Planner: This sub-module is part of the A
tion Planner and its re-sponsibilities are similar to that of the Building Planner. It must
on-sider all the same things, but here the module must
reate a plan forwhen and what units are to be built. The sub-module is dis
ussed infurther detail in Appendix B.10.3.Resear
h Planner: The A
tion Planner also
ontains this sub-module,whi
h is responsible for de
iding when and what resear
h is to be pur-
hased. Work must be done in developing generi
 methods able to dealwith all the di�erent kinds of resear
h options available in di�erent RTSgames.A
tion S
heduling: While Building Planner, Unit Planner and Resear
hPlanner all fo
us on ea
h their area, the A
tion Planner must de
idewhi
h of the suggested a
tions from ea
h sub-module are to be exe
uted

Page 146 of 273 CHAPTER 9. DISCUSSION�rst. The
hallenge of
reating this sub-module is to devise a sensibleway for developers to spe
ify rules for how the module should prioritisethe di�erent a
tions. This sub-module is dis
ussed in further detail inAppendix B.10.5.Advan
ed S
outing: The prototype implementation has a very simpleform of s
outing. The
omplete implementation must both in
ludefeatures for s
outing the right attributes of the enemy and for s
outingthe right pla
es. The exe
ution of s
outing is as su
h not di�
ult, thetask when
reating this sub-module will be to let a developer de�nepre
ise rules for when and what to s
out. A further dis
ussion of this
an be found in Appendix B.5.4.Advan
ed Exe
ution of Strategies: While the prototype implementa-tion has a very simpli�ed exe
ution of strategies, the
omplete im-plementation must feature the States sub-module explained in Se
tionB.5.10. However, this method must be tested in terms of its abilityto handle very spe
ialised situations and a method for developers toeasily de�ne the exe
ution of strategies must be devised.Advan
ed Situation Assessment: Appendix B.5.9 presented a simplegeneri
 way of evaluating a situation. However, as also explained inthat se
tion, evaluating a situation is game spe
i�
, and a way for adeveloper to de�ne how to do this will be ne
essary in most games.Work must be done in attempting to devise a way to do this withoutthe developer being required to have knowledge of C++ programming.In general, further work must be done in testing di�erent aspe
ts of theframework. The prototype implementation has only been
onne
ted to oneGDF, and to really test the versatility of the framework, it must be testedwith other GDFs as well. Furthermore, the GDF used for the prototypeimplementation is primarily used to
reate games in one of the RTS genresde�ned in Se
tion 2.4.2. This means that the framework has not yet beentested in regards to its ability to
reate AIs for all the di�erent genres.However, as dis
ussed in the evaluation in Chapter 8, this should not be aproblem.9.5.2 AI Frameworks in GeneralThis proje
t also has uses outside the domain of AI frameworks in RTSgames. We have through the proje
t demonstrated how it is possible toreuse large parts of the AI for a spe
i�
 game genre. We hypothesise thatthis is possible for more genres than just RTS games. This report
an serveas a guideline of how to
onstru
t a framework spe
i�
ally suited for onetype of game. This in
ludes building a human model of how a human will

CHAPTER 9. DISCUSSION Page 147 of 273play the game as well as using this to
reate a framework ar
hite
ture. Thisdevelopment model is dis
ussed in more detail in Se
tion 8.7.2. Further-more, a number of examples have been des
ribed, of how to
reate spe
ialdata stru
tures parti
ularly useful for both representing and learning domainspe
i�
 knowledge in the game type being fo
used on.

CHAPTER 10. CONCLUSION Page 149 of 273
Chapter 10Con
lusionIn this
hapter we will
on
lude on the proje
t and present the primary
ontributions made to a
ademia and game development, des
ribed through-out this report. This proje
t has presented the design of an AI frameworkfor RTS games. We have based this work on our pre-master thesis [FKL05℄,whi
h de�ned a model of how humans plays RTS games and suggested a pre-liminary design. This report presented a revised human model in Chapter3, whi
h de�ned the tasks an RTS game
onsists of and how these in�uen
eea
h other. We used this model as a starting point when we designed theframework ar
hite
ture.Throughout the report we have presented a number of design te
hniquesused when designing the framework. We have demonstrated how these te
h-niques
an be used to enhan
e AI development in the game developmentindustry as well as demonstrated a new area of appli
ation for these te
h-niques for the a
ademi
 world. Some of the known design te
hniques usedin
lude frameworks, s
ripting languages and event systems, but we also pre-sented four new
on
epts spe
i�
ally suited to
reate AIs in RTS games.These four te
hniques provides the foundation for the AI framework. In Se
-tion 5.4.1 we presented the idea of strategy trees, whi
h is a data stru
turespe
i�
ally suited to represent strategies in RTS games. Following this, wefo
used on path�nding, whi
h is an important element of any RTS game,and we presented a new method of doing this, optimised for working in anRTS game environment. The third RTS spe
i�
 te
hnique introdu
ed wasthe notion of a representation of ta
ti
s. We presented a general approa
h tohow this
an be done in a way that AI designers
an spe
ify ta
ti
s spe
i�-
ally suited to the game they are working with. Finally, the fourth te
hniquefo
used on what we
hose to
all base building templates. These were
re-ated to allow AI designers to spe
ify how an AI should
onstru
t its basein a parti
ular game using a
ertain strategy. Strategy trees, ta
ti
s andbase building templates have all
ontributed to AI development within theRTS genre, by presenting new ways of representing AI spe
i�
 data. They

Page 150 of 273 CHAPTER 10. CONCLUSIONallow a developer friendly and generi
 representation, whi
h
an be reused indi�erent RTS game genres. Furthermore, they allow developers to
omposenew kinds of strategies, ta
ti
s and base building templates, by
ombiningsmall building blo
ks
onsisting of rules or strategies. Our path�nding ideahas not only shown a new way for AI developers to optimise path�nding intheir games by redu
ing the explored sear
h spa
e and distributing
ompu-tations over several game ti
ks, but also
ontributed to the general a
ademi
resear
h within this area, whi
h has many appli
ations outside RTS games.The design of the AI framework was presented in Chapter 6, and followedthe design goals outlined in Se
tion 4.1. These in
luded improving the AI,redu
ing development
ost,
reating a workload shift from programmers todesigners and
reating a stru
tured overview of the development pro
ess of
reating AIs for RTS games. The ful�lment of these design goals throughour AI framework has
ontributed to the game development industry bypresenting and implementing a design
apable of a
hieving these goals. Byusing the human model de�ned in Chapter 3 as a foundation and by drawingupon knowledge of framework
apabilities and
hara
teristi
s, we
reated a
ognitive ar
hite
ture for the framework, des
ribed in Se
tion 6.1. As forthe non-trivial knowledge representation in the framework, we used the RTSspe
i�

on
epts de�ned in Se
tion 5.4: Strategy trees, ta
ti
s and basebuilding templates. The detailed design in Appendix B furthermore spe
i�edsub-modules in ea
h framework module, de�ning their responsibilities andproposed hot spots. Finally, in Se
tion 6.3 we presented how a user shouldbe able to vary framework instan
es from ea
h other and in Se
tion 6.4 wepresented an event system designed to
ontrol our AI framework. The designof the framework has
ontributed to a
ademia by
ombining three well-knowndesign te
hniques in a new area of appli
ation in order to maximise reuse,se
ure a user friendly framework and
reate a
lear separation of frameworkmodules.As a proof of
on
ept, a prototype implementation of the framework wasimplemented and
onne
ted to the ORTS GDF. This GDF in
luded a sim-ple RTS game, whi
h had all the ne
essary features required to test di�erentAI
apabilities. In order to allow inexperien
ed programmers to use theframework, we used the s
ripting language Python to
on�gure frameworkmodules and knowledge bases. The evaluation of the prototype implemen-tation was presented in Chapter 8 and dis
ussed six framework evaluationareas: Con�gurability, Versatility, Extendibility, Performan
e testing, AI im-provements and test of RTS Spe
i�
 Con
epts. We
on
luded that an AIdesigner is able to
on�gure strategies, te
hnology trees and modules with-out mu
h e�ort. However, if new attributes or features in a game are to bein
luded, experien
ed C++ programmers must extend modules or methodsin the framework. As long as the required AI for the game does not de-viate too mu
h from the internal framework ar
hite
ture, this
an be donewithout any problems. We hypothesise that this is the
ase with most RTS

CHAPTER 10. CONCLUSION Page 151 of 273games within the four genres mentioned in Se
tion 2.4.2. Our performan
etest revealed one major performan
e problem in the implementation of ourpath�nding idea. However, we have identi�ed the problem and presenteda solution to over
ome it in Se
tion 8.6.2. The test of the AI
reated withthe prototype implementation was presented in Se
tion 8.5, and showed thatthe AI is able to both s
out and vary its strategy by using
ounters. Theability to
ounter and vary its strategies is a dire
t
onsequen
e of usingstrategy trees as the representation of strategies in the framework. The pro-totype implementation has
ontributed to the game development industryby demonstrating to what degree an AI designer
an develop AIs and howstrategy trees in parti
ular simpli�es
reating AIs with
apabilities beyondthose of
urrent
ommer
ial RTS game AIs.In Chapter 9, we presented a dis
ussion of the potential use of the AIframework in the game development industry. We
onta
ted several RTSgame development
ompanies, and set up demands that the framework hadto ful�l to be useful in the industry. We then demonstrated how ea
h of thesedemands set by the industry were ful�lled by our framework ar
hite
ture.Furthermore, we analysed the market for an AI framework for RTS games,and
on
luded that there are many potential buyers and if our enquiry servedas any kind of indi
ation, most
ompanies would be able to bene�t from theuse of our AI framework.There are many possibilities for future work based on this proje
t. Thelogi
al entailment following the prototype implementation would be to imple-ment a
omplete implementation. This will require work in several di�erentareas as also presented in Se
tion 9.5. First of all, this report has
ontributedby identifying key areas whi
h requires further work before they
an be usedin an a
tual implementation. This is the
ase with the ta
ti
s representationpresented in Se
tion 5.4.3 and the Cooperation task in the human model,whi
h were not initially in
luded in the design of the framework. Further-more, throughout the evaluation in Chapter 8, two issues were found to bevery important when users are to use the framework: Do
umentation andGraphi
al User Interfa
es. Do
umentation is required for both designers andprogrammers to use the framework e�
iently and this must be added for a
omplete implementation to be of any use. GUIs must be added to aid AIdesigners in designing strategy trees, te
hnology tree, unit types et
. andfor assisting programmers in
reating modules. Both the do
umentation offrameworks and the
reation of a developer friendly interfa
e for the frame-work, are interesting areas from an a
ademi
 resear
h perspe
tive. Finally,there are also still work to be done in regards to the Learning module. Learn-ing strategies is well-de�ned through strategy trees, but work must be doneon how to learn ta
ti
s and base building templates. Ma
hine learning is assu
h a well-known dis
ipline within ma
hine intelligen
e resear
h, however,the te
hniques des
ribed in our solution presents not only a new method ofdoing so, but also a new area of appli
ation.

Page 152 of 273 CHAPTER 10. CONCLUSIONThe work done in this proje
t may be used in other areas than developing
omplete AI solutions. One area may be within AI resear
h. As stated inSe
tion 9.4, our framework provides an opportunity for AI resear
hers tofo
us their attention on a
ertain area of RTS AI. RTS games are interestingfor AI resear
hers, be
ause they
ontain a number of interesting AI problemsin well-de�ned environments, and our framework allows resear
hers to easilyfo
us on one of them. This way we
ontribute to a
ademia by providing aresear
h platform for AI development.The development method used in this proje
t may also be used in fu-ture work. We hypothesise that the method of
reating a human model fora
ertain game type, and then transforming this to a
ognitive frameworkar
hite
ture is appli
able in other game genres than the RTS genre. Furtherwork may be done in both a
ademia and within game development on de-veloping a general human model, suitable to des
ribe a human player in allkinds of game genres. Furthermore, a thorough study of the human model
ould probably enhan
e the model and lead to a better abstra
tion.

CHAPTER 11. RESUME Page 153 of 273
Chapter 11ResumeIt is a widely a
knowledged fa
t that the AIs found in
omputer games areof a poor quality. Consequently this means that the gameplay that relieson the AIs also su�ers. Players have found the answer to this problem byseeking
hallenges in playing against other players. Produ
ers of Real-TimeStrategy games have attempted to improve the quality of AI by allowing itto
heat,
reating general and stati
 solutions or by fo
using on s
ripting theAI to perform a
ertain strategy as fast as possible. Neither of these methodshave brought the AI to a standard, where it
an resemble that of a humanplayer. In order to enhan
e the gameplay in the game parts that rely on theperforman
e of the AI, it will have to play with near human
apabilities. Weapproa
h this problem by building a human model of how a human playerplays and use this as a basis for a general framework for building AIs toReal-Time Strategy games. The preliminary work that served as a base forthe model and the design of the framework was
arried out in our pre-masterthesis [FKL05℄.Throughout the report we have presented a number of design te
hniquesused when designing the framework. We have demonstrated how these te
h-niques
an be used to enhan
e AI development in the game developmentindustry as well as demonstrated a new area of appli
ation for these te
h-niques for the a
ademi
 world. Some of the known design te
hniques usedin
lude frameworks, s
ripting languages and event systems, but we also pre-sented four new
on
epts spe
i�
ally suited to
reate AIs in RTS games.These four te
hniques provides the foundation for the AI framework. Firstwe presented the idea of strategy trees, whi
h is a data stru
ture spe
i�
allysuited to represent strategies in RTS games. Following this, we fo
used onpath�nding, whi
h is an important element of any RTS game, and we pre-sented a new method of doing this, optimised for working in an RTS gameenvironment. The third RTS spe
i�
 te
hnique introdu
ed was the notionof a representation of ta
ti
s. We presented a general approa
h to how this
an be done in a way that AI designers
an spe
ify ta
ti
s spe
i�
ally suited

Page 154 of 273 CHAPTER 11. RESUMEto the game they are working with. Finally, the fourth te
hnique fo
used onwhat we
hose to
all base building templates. These were
reated to allow AIdesigners to spe
ify how an AI should
onstru
t its base in a parti
ular gameusing a
ertain strategy. Strategy trees, ta
ti
s and base building templateshave all
ontributed to AI development within the RTS genre, by presentingnew ways of representing AI spe
i�
 data. They allow a developer friendlyand generi
 representation, whi
h
an be reused in di�erent RTS game gen-res. Furthermore, they allow developers to
ompose new kinds of strategies,ta
ti
s and base building templates, by
ombining small building blo
ks
on-sisting of rules or strategies. Our path�nding idea has not only shown a newway for AI developers to optimise path�nding in their games, but also
on-tributed to the general a
ademi
 resear
h within this area, whi
h has manyappli
ations outside RTS games.The design of the AI framework followed four design goals: Improving theAI, redu
ing development
ost,
reating a workload shift from programmersto designers and
reating a stru
tured overview of the development pro
essof
reating AIs for RTS games. The ful�lment of these design goals throughour AI framework has
ontributed to the game development industry bypresenting and implementing a design
apable of a
hieving these goals. Byusing the human model as a foundation and by drawing upon knowledge offramework
apabilities and
hara
teristi
s, we
reated a
ognitive ar
hite
-ture for the framework. As for the non-trivial knowledge representation inthe framework, we used the RTS spe
i�

on
epts mentioned earlier: Strat-egy trees, ta
ti
s and base building templates. Finally, we presented an eventsystem designed to
ontrol our AI framework, and we presented how a usershould be able to vary framework instan
es from ea
h other. The design ofthe framework has
ontributed to a
ademia by
ombining three well-knowndesign te
hniques in a new area of appli
ation in order to maximise reuse,se
ure a user friendly framework and
reate a
lear separation of frameworkmodules.As a proof of
on
ept, a prototype implementation of the framework wasimplemented and
onne
ted to the ORTS game development framework.This game development framework in
luded a simple RTS game, whi
h hadall the ne
essary features required to test di�erent AI
apabilities. In or-der to allow inexperien
ed programmers to use the framework, we used thes
ripting language Python to
on�gure framework modules and knowledgebases. We then evaluated the prototype implementation in relation to six im-portant areas: Con�gurability, Versatility, Extendibility, Performan
e test-ing, AI improvements and test of RTS Spe
i�
 Con
epts. Our performan
etest revealed one major performan
e problem in the implementation of ourpath�nding idea. However, we have identi�ed the problem and presented asolution to over
ome it. The test of the AI
reated with the prototype im-plementation showed that the AI is able to both s
out and vary its strategyby using
ounters. The ability to
ounter and vary its strategies is a di-

CHAPTER 11. RESUME Page 155 of 273re
t
onsequen
e of using strategy trees as the representation of strategies inthe framework. The prototype implementation has
ontributed to the gamedevelopment industry by demonstrating to what degree an AI designer
andevelop AIs and how strategy trees in parti
ular simpli�es
reating AIs with
apabilities beyond those of
urrent
ommer
ial RTS game AIs.We also presented a dis
ussion of the potential use of the AI frameworkin the game development industry. We
onta
ted several RTS game devel-opment
ompanies, and set up demands that the framework had to ful�l tobe useful in the industry. We then demonstrated how ea
h of these demandswere ful�lled by our framework ar
hite
ture. Furthermore, we analysed themarket for an AI framework for RTS games, and
on
luded that there aremany potential buyers and if our enquiry served as any kind of indi
ation,most
ompanies would be able to bene�t from the use of our AI framework.We then presented a number of possible areas for future work. This in
luded
reating a
omplete implementation of the framework as well as further de-veloping some of the ideas presented throughout this report. Furthermore,we hypothesised that the te
hnique of building an AI framework ar
hite
turebased on a human model is appli
able in other domains than the RTS gamegenre.

BIBLIOGRAPHY Page 157 of 273
Bibliography[age℄ Age of Empires.http://www.ageofempires.
om/.[AII℄ Arti�
ial Intelligen
e and Intera
tive Digital Entertainment.http://www.aiide.org/.[aom℄ Age of Mythology.http://www.mi
rosoft.
om/games/ageofmythology/.[aox℄ Armies of Exigo.http://www.aox.ea.
om/.[Ban℄ Bla
k & White.http://www.lionhead.
om/.[BASC05℄ Mi
hael Buro, David W. Aha, Nathan Sturtevant, and Vin
entCorruble.Complex Video Game AI Competitions at AIIDE'2006. 2005.[bat℄ Battle.net Homepage.http://www.battle.net/.[BF04a℄ Mi
hael Buro and Timothy Furtak.RTS Games and Real-Time AI Resear
h. Behavior Representa-tion in Modeling and Simulation Conferen
e (BRIMS), 2004. InPro
eedings.[BF04b℄ Mi
hael Buro and Timothy Furtak.RTS Games as Test-Bed for Real-Time Resear
h. Be-haviour Representation in Modeling and Simulation Conferen
e(BRIMS), 2004.[BF05℄ Mi
hael Buro and Timothy Furtak.On the Development of a Free RTS Game Engine. 2005.[BKM00℄ Greg Butler, Rudolf K. Keller, and Hafedh Mili.A Framework for Framework Do
umentation. ACM Comput.Surv., 32(1es):15, 2000.

Page 158 of 273 BIBLIOGRAPHY[bli℄ Blizzard Entertainment.http://www.blizzard.
om/.[BMS04℄ Adi Botea, Martin Muller, and Jonathan S
hae�er.Near Optimal Hierar
hi
al Path-Finding. Journal of Game De-velopment, 2004.[Bue98℄ Jesús Cerquides Bueno.KDCOM: A Knowledge Dis
overy Component Framework. Mas-ter's thesis, Campus, UAB, Bar
elona, Spain, 1998.[Bur02℄ Mi
hael Buro.ORTS - A Ha
k-Free RTS Game Toolkit. O
tober 2002.[Bur03a℄ René Burgess.Realisti
 Evaluation of Terrain by Intelligent Natural Agents.Master's thesis, Campus UAB, Bar
elona, Spain, September2003.[Bur03b℄ Mi
hael Buro.Real-Time Strategy Games: A New AI Resear
h Challenge.2003.[Bur04℄ Mi
hael Buro.Call for AI Resear
h in RTS Games. AAAI-04 AI in GamesWorkshop, 2004. San Jose.[CBS05℄ Mi
hael Chung, Mi
hael Buro, and Jonahthan S
hae�er.Monte Carlo Planning in RTS Games. 2005.[CCT89℄ N. V. Carlsen, N. J. Christensen, and H. A. Tu
ker.An Event Language for Building User Interfa
e Frameworks. InUIST '89: Pro
eedings of the 2nd annual ACM SIGGRAPHsymposium on User interfa
e software and te
hnology, pages133�139, New York, NY, USA, 1989. ACM Press.[CLR90℄ Thomas H. Cormen, E. Leiserson, Charles, and Ronald L.Rivest.Introdu
tion to Algorithms. MIT Press, 1990. COR th 01:1 1.Ex.[
om℄ Command & Conquer.http://westwood.ea.
om/.[
ou℄ Half-Life: Counter-Strike.http://www.
ounter-strike.net/.[CSL℄ CSLI's Computational Learning Laboratory Homepage.http://
ll.stanford.edu/.

BIBLIOGRAPHY Page 159 of 273[dar℄ Dark Reign.http://www.auran.
om/games/darkreign/default.htm/.[Daw℄ Bru
e Dawson. GDC 2002: Game S
ripting in Python.http://www.gamasutra.
om/features/20020821/dawson_pfv.htm.[Del01℄ Mark Deloura.Game Programming Gems 2.Charles River Media, 2001.[des℄ Des
ent 3.http://www.des
ent3.
om/.[diga℄ Digital Drama Studios.http://www.digitaldramastudios.
om/.[digb℄ Digitalmill.http://www.dmill.
om/.[dJSR05℄ Steven de Jong, Pieter Spron
k, and Ni
o Roos.Requirements for Resour
e Management Game AI. InternationalJoint Conferen
es on Arti�
ial Intelligen
e, 2005. Workshop onReasoning, Representation, and Learning in Computer Games.[dox℄ Doxygen.http://www.sta
k.nl/ dimitri/doxygen/.[dun℄ Dune II.http://duneii.
om/.[EE1℄ Empire Earth.http://www.empireearth.
om/.[EE2℄ Empire Earth 2.http://www.empireearth2.
om/.[FCGC02℄ Carlos J. Fernandez-Conde and Pedro A. Gonzalez-Calero.Domain Analysis of Obje
t-Oriented Frameworks in FrameDo
.In SEKE '02: Pro
eedings of the 14th international
onferen
eon Software engineering and knowledge engineering, pages 27�33, New York, NY, USA, 2002. ACM Press.[fea℄ F.E.A.R.http://www.whatisfear.
om/.[Feu97℄ Alan R. Feuer.MFC Programming.Addison Wesley Professional, 1997.

Page 160 of 273 BIBLIOGRAPHY[FFM03℄ Ludger Fiege, Felix Freiling, and Gero Muehl.Modular Event-Based Systems. Knowledge Engineering Review,17(4), 2003.[FHLS97℄ Gary Froehli
h, H. James Hoover, Ling Liu, and Paul Sorenson.Hooking into Obje
t-Oriented Appli
ation Frameworks. In ICSE'97: Pro
eedings of the 19th international
onferen
e on Softwareengineering, pages 491�501, New York, NY, USA, 1997. ACMPress.[�r℄ Fireglow Games.http://www.�reglowgames.
om/.[FKL05℄ Kasper Frederiksen, Kasper Kristensen, and Anders Lauritsen.Towards an AI Framework for RTS Games. Pre-master thesis,De
ember 2005.[FS97℄ Mohammed Fayad and Douglas S
hmidt.Obje
t Oriented Appli
ation Framework. Communi
ations ofthe ACM, 40(10), 1997.[FSJ97℄ Mohammed E. Fayed, Douglas C. S
hmidt, and Ralph E. John-son.Obje
t-Oriented Appli
ation Frameworks: Problems & Perspe
-tives. Wiley, NY, 1997.[gam℄ Gamespot.http://www.gamespot.
om/.[GHG04℄ Thore Graepel, Ralf Herbri
h, and Julian Gold.Learn to Fight. International Conferen
e on Computer Games:Arti�
ial Intelligen
e, Design and Edu
ation, 2004.[god℄ God Games De�nition.http://en.wikipedia.org/wiki/God_game.[gpr℄ GNU gprof.http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html.[Hal℄ Half-Life.http://www.valvesoftware.
om/.[HF04℄ Stuart Hansen and Timothy Fossum.Events Not Equal To GUIs. In SIGCSE '04: Pro
eedings of the35th SIGCSE te
hni
al symposium on Computer s
ien
e edu
a-tion, pages 378�381, New York, NY, USA, 2004. ACM Press.

BIBLIOGRAPHY Page 161 of 273[HNOR88℄ Tor Hauge, Inger Nordgard, Dan Os
arsson, and Georg Raeder.Event-Driven User Interfa
es Based on Quasi-Parallelism. InUIST '88: Pro
eedings of the 1st annual ACM SIGGRAPH sym-posium on User Interfa
e Software, pages 66�76, New York, NY,USA, 1988. ACM Press.[Hue℄ Robert Huebner.Adding Languages to Game Engines".http://www.gamasutra.
om/features/19971003/huebner_01.htm.[Inf℄ In�nite Intera
tive.http://www.in�nite-intera
tive.
om/.[inh℄ Inhuman Games.http://inhumangames.
om/.[Jav℄ Java.http://www.java.sun.
om/.[JF88℄ Ralph E. Johnson and Brian Foote.Designing Reusable Classes. Journal of Obje
t-Oriented Pro-gramming, 1(2):22�35, 1988.[JG05℄ Joshua Jones and Ashok Goel.Knowledge Organization and Stru
tional Credit Assigment. In-ternational Joint Conferen
es on Arti�
ial Intelligen
e, 2005.Workshop on Reasoning, Representation, and Learning in Com-puter Games.[Joh92℄ Ralph E. Johnson.Do
umenting Frameworks using Patterns. In OOPSLA '92:
onferen
e pro
eedings on Obje
t-oriented programming systems,languages, and appli
ations, pages 63�76, New York, NY, USA,1992. ACM Press.[Joh97℄ Ralph E. Johnson.Frameworks = (Components + Patterns). Communi
ations ofthe ACM, 40(10), 1997.[jsw05℄ Creating a GUI with JFC/Swing.http://java.sun.
om/do
s/books/tutorial/uiswing/, 2005.[kal℄ Kali.net.http://kali.net.[KNYH05℄ Bharat Kondeti, Maheswar Nalla
haru, Mi
hael Youngblood,and Lawren
e Holder.Interfa
ing the D'Artagnan Cognitive Ar
hite
ture to the Urban

Page 162 of 273 BIBLIOGRAPHYTerror First-Person Shooter Game. pages 55�60. InternationalJoint Conferen
es on Arti�
ial Intelligen
e, 2005. Workshop onReasoning, Representation, and Learning in Computer Games.[Lai01℄ John E. Laird.Using a Computer Game to Develop Advan
ed AI. Computer,34(7):70�75, 2001.[Lai03℄ John E. Laird. The Soar 8 Tutorial.http://sitemaker.umi
h.edu/soar/, 2003.[Lew98℄ S
ott M. Lewandowski.Frameworks for Component-Based Client/Server Computing,1998. S.M. Lewandowski, Frameworks for Component-BasedClient/Server Computing, ACM Computing Surveys, Vol. 30,No. 1, Mar. 1998.[Lis℄ Lisp.http://www.
lisp.org/.[LL99℄ Mi
hael van Lent and John Laird.Developing an Arti�
ial Intelligen
e Engine. pages 577�588, SanJose, CA, Mar
h 1999. Game Developers Conferen
e.[LL01℄ Mi
hael van Lent and John Laird.Human-Level AI's Killer Appli
ation. AAAI, 2001.[LL02℄ Pat Langley and John E. Laird.Cognitive Ar
hite
tures: Resear
h Issues and Challenges. 2002.[lot℄ Lord of the Rings: Battle for Middle-Earth.http://lotr.ea.
om/.[Lua℄ Lua.http://www.lua.org/.[MBF99℄ Mi
hael Mattsson, Jan Bos
h, and Mohamed E. Fayad.Framework Integration Problems, Causes, Solutions. Commun.ACM, 42(10):80�87, 1999.[ML01℄ Mar
us Eduardo Markievi
z and Carlos J.P. Lu
ena.Obje
t Oriented Framework Development. Crossroads, ACMPress, 7(4):3�9, 2001.[moo℄ Moore's Law.http://www.webopedia.
om/TERM/M/Moores_Law.html.[msr℄ Mi
rosoft Resear
h.http://resear
h.mi
rosoft.
om/.

BIBLIOGRAPHY Page 163 of 273[MSWT05℄ Ri
hard Ma
lin, Jude Shavlik, Trevor Walker, and Lisa Torrey.Knowledge-Based Support-Ve
tor Regression for Reinfor
ementLearning. International Joint Conferen
es on Arti�
ial Intel-ligen
e, 2005. Workshop on Reasoning, Representation, andLearning in Computer Games.[Nar02℄ Alexander Nareyek.Intelligent Agents for Computer Games. Computers and Games,2002.[Odd℄ Oddlabs.http://www.oddlabs.
om/.[Ort℄ Orts Game Spe
i�
ation.http://www.
s.ualberta.
a/�mburo/orts/AIIDE06/game3.[ORT05℄ ORTS Homepage.http://www.
s.ualberta.
a/�mburo/orts/orts.html, 2005.[Ous98℄ John K. Ousterhout.S
ripting: Higher-Level Programming for the 21st Century.Computer, 31(3):23�30, 1998.[pa
℄ Pa
-man.http://en.wikipedia.org/wiki/Pa
man.[Per℄ Perl.http://www.perl.
om/.[pon℄ Pong.http://en.wikipedia.org/wiki/PONG.[PP04℄ Andrew M. Phelps and David M. Parks.Fun and Games: Multi-Language Development. Queue,1(10):46�56, 2004.[Pyta℄ Python.http://www.python.org/.[Pytb℄ Python Su

ess Stories.http://www.python.org/about/su

ess/.[quaa℄ Quake.http://www.idsoftware.
om/games/quake/quake/.[quab℄ Quake II.http://www.idsoftware.
om/games/quake/quake2/.

Page 164 of 273 BIBLIOGRAPHY[red℄ Red Alert.http://www.ea.
om/o�
ial/

/�rstde
ade/us/index.jsp/.[RKD00℄ Douglas A. Ree
e, Matt Kraus, and Paul Dumanoir.Ta
ti
al Movement Planning for Individual Combatants. 9thConferen
e on Computer Generated For
es and Behavioral Rep-resentation, 2000. In Pro
eedings.[RN03℄ Stuart Russell and Peter Norvig.Arti�
ial Intelligen
e A Modern Approa
h.Prenti
e Hall, 2003.[rts℄ De�nition of RTS Games.http://en.wikipedia.org/wiki/Real-time_strategy.[Saw02℄ Ben Sawyer.Serious Games: Improving Publi
 Poli
y through Game-basedLearning and Simulation. Woodrow Wilson International Centerfor S
holars, 2002. Te
hni
al Report.[SC95℄ Douglas C. S
hmidt and James O. Coplien.Pattern Languages of Program Design.Addison-Wesley, 1995.[S
h04℄ Brian S
hwab.AI Game Engine Programming.Charles River Media, 2004.[sev℄ Seven Kingdoms Conquest.http://www.enlight.
om/7k
/.[SG86℄ Robert W. S
hei�er and Jim Gettys.The X Window System. ACM Trans. Graph., 5(2):79�109, 1986.[SL94℄ Alexander A. Stepanov and Meng Lee.The Standard Template Library. Te
hni
al Report X3J16/94-0095, WG21/N0482, 1994.[Soa℄ Soar Homepage.http://sitemaker.umi
h.edu/soar.[sta℄ Star
raft.http://www.blizzard.
om/star
raft/.[Str℄ Stratagus Homepage.http://www.stratagus.sourgeforge.net/.[sud℄ Sudden Strike 3: Arms for Vi
tory.http://www.suddenstrike.
om/.

BIBLIOGRAPHY Page 165 of 273[SZ04℄ Katie Salen and Eri
 Zimmerman.Rules of Play.The MIT Press, 2004.[T
l℄ T
l.http://www.t
l.dk/.[tet℄ Tetris.http://en.wikipedia.org/wiki/Tetris.[tib℄ Command & Conquer: Tiberian Sun.http://www.ea.
om/o�
ial/

/�rstde
ade/us/tiberiansun.jsp.[tra℄ Trash.http://inhumangames.
om/.[Tri℄ Tribal Trouble.http://tribaltrouble.
om/.[UB06℄ Tapani Utriainen and Mi
hael Buro.ORTS Competition: Getting Started.http://www.
s.ualberta.
a/�mburo/orts/AIIDE06/getting_started.pdf,May 19 2006.[UGJM05℄ Patri
 Ulam, Ashok Goel, Joshua Jones, and William Murdo
k.Using Model-Based Re�e
tion to Guide Reinfor
ement Learn-ing. International Joint Conferen
es on Arti�
ial Intelligen
e,2005. Workshop on Reasoning, Representation, and Learning inComputer Games.[wara℄ War
raft II.http://www.blizzard.
om/war2bne/.[warb℄ War
raft III.http://www.blizzard.
om/war3/.[war
℄ Warzone 2100.http://en.wikipedia.org/wiki/Warzone_2100/.[wbia℄ Warlords Battle
ry II.http://www.in�nite-intera
tive.
om/wb
2/.[wbib℄ Warlords Battle
ry III.http://www.in�nite-intera
tive.
om/wb
3/.[Øst99℄ Kasper Østerbye.Minimalist Do
umentation of Frameworks, 1999.

Page 167 of 273

Part IVAppendix

APPENDIX A. TERMS AND EXPRESSIONS Page 169 of 273
Appendix ATerms and ExpressionsThe purpose of this se
tion is to introdu
e a number of terms and expressionsthat will be used throughout the report. The terms have been sorted into �veareas: General
on
epts, buildings, units, spe
ial abilities, and strategies.A.1 General Con
eptsStrategy: A strategy in an RTS game
an be
onsidered as a number ofgeneral guidelines for how the player is going to play the game. Thisin
ludes the number of di�erent units and buildings to build as wellas whi
h resear
h upgrades to pur
hase. It may also in
lude spe
i�
ta
ti
s di
tating how to
arry out a
ertain part of the strategy. Finally,a strategy may also
ontain information about strong and weak pointsduring the
ourse of the game using the strategy. A strategy
an oftenbe
onsidered of one of the types mentioned in Se
tion A.5.Ta
ti
: A ta
ti

onsists of rules di
tating how units should be
ontrolledduring a battle. The in
ludes rules for formations, fo
us �re, unitpreserving, how to use support units (in
luding spells/abilities) andhow to use the terrain on the map.Te
hnology Tree: Most RTS games have a
ertain order in whi
h the dif-ferent buildings and units
an be build. For instan
e, a
ertain buildingmay not be build, before another building has been build or a
ertainte
hnology has been resear
hed. This building, unit and resear
h de-penden
y is
alled the te
hnology tree. The te
hnology tree
an bedivided into a few major levels (in the tree depth), where any furtheradvan
ement is depending on a single upgrade or resear
h. These lev-els are
alled the te
hnology levels or tiers. In Age of Empires thesetiers are the di�erent ages advan
ed through an upgrade at the town
enter, and for most fa
tions in the Craft series1 these are the three1The War
raft and Star
raft series

Page 170 of 273 APPENDIX A. TERMS AND EXPRESSIONStiers advan
ed through the upgrade of the main building.Build Order: At the start of most RTS games the player will start out withher main building and a few workers. In order to build any other unitsthan workers, she will have to build unit produ
tion fa
ilities, supportbuildings, and perhaps some other buildings, depending on whi
h unitshe wants to get. The order, in whi
h she builds (may it be units orbuildings), is
alled the build order. An optimal build order is one inwhi
h the goal is rea
hed as fast as possible with the least amount ofwaste (time or resour
es).Fog of War: At the heart of any RTS game is the fa
t that the player doesnot know what the opponent is doing. The idea is that you should onlyknow what is happening in proximity of your buildings and within thesight of your units. The rest of the map is unknown. This
on
ept is
alled Fog of War. Fog of War
omes in two layers: Territory that isstill unexplored and territory that is known, but not in sight.Fa
tion: Sin
e the beginning of RTS games there has always been di�erentfa
tions, houses, ra
es et
. In the single player
ampaigns these fa
tionsusually �ght an epi
 war for the domination of the world or universe.Mostly these fa
tions are unique though still with some similaritiesto the other fa
tions in the game. In the Age of Empires genre thedi�eren
e is mostly that one fa
tion may have some units availablethat the other fa
tions do not, while in the Craft series this di�eren
eis a little more pronoun
e. Star
raft is the �rst game with three totallydi�erent ra
es. Protoss, Terran and the Zerg are so widely di�erentthat ea
h demands a di�erent play style.Resour
e Node: Resour
e nodes are found in many di�erent sizes andshapes depending on the game in question. The nodes in the Ageof Empires genre are spread all over the map. The player may for in-stan
e gather wood from the forests, she may hunt wild game for foodand mine various minerals from gold, stone or iron quarries. In War-
raft only two di�erent resour
es are available, being gold and lumber.Lumber
an be harvested from the forests and gold mined at the fewgold mines. Star
raft is a bit di�erent, be
ause in this game the re-sour
es are found in
lusters. This means that the minerals that arethe main resour
e in this game are all found at a few spots on the map,but with several nodes
lose to ea
h other. Mostly there will also be agas vein at these sites. On many of the maps in the Craft series, theplayer will �nd either a gold mine, or a
luster of minerals and a gasvein
lose to her starting spot. This site is
alled the natural expansionsite.

APPENDIX A. TERMS AND EXPRESSIONS Page 171 of 273Atta
k Move: This is a
ommand that di
tates that the unit(s) shouldmove to the lo
ation indi
ated by the
ursor and atta
k any enemyobje
t on the way.Choke Point: A
hoke point is a narrow spot in the terrain, or perhapsbetween buildings in a base. The danger of moving through
hokepoints is that only few units
an move through at a time and if theenemy is waiting on the other side, she will only have to �ght thosefew units at the time.High Ground: When a battle is fought from high ground, it simply meansthat the player is at a elevated position on the map
ompared to theenemy. This often results in a
ertain advantage for the player, asthe enemy will often deal less damage, be
ause of �ghting uphill. Theadvantage varies from game to game.Upkeep: Upkeep usually des
ribes a fee the player will have to pay in orderto maintain her army. In War
raft III upkeep is more like a penaltyon the amount of gold harvested (not unlike a tax). If the player hasmore than a
ertain amount of units she will re
eive a penalty on theamount of resour
es re
eived every time a worker brings in a sa
k ofgold.Fo
us Fire: Fo
us �re is a
on
ept of extreme importan
e in most RTSgames. It is simply a matter of having a number of units fo
using theiratta
k on a single enemy unit until this unit is killed. This is a lotbetter than having units �ring at enemy units at random. Althoughthe damage dealt is the same, it is a lot better to fa
e �ve enemy unitsat full health than ten enemy units at 50% health, be
ause the tenunits would deal twi
e as mu
h damage as the �ve units.Hitpoints Hitpoints are a number of points units and buildings have de-s
ribing their
urrent state of health. When taking damage the numberof hitpoints will de
rease and when repaired or healed it will in
rease.The number of hitpoints
an in most
ases not ex
eed a
ertain max-imum de�ned for ea
h type of unit or building. If the number of hit-points rea
h 0 the unit or building will be destroyed.A.2 BuildingsMain Building: This building is usually at the root of the te
hnology tree.In most games the player will start with a main building and a fewworkers only. She will be able to produ
e more workers at the mainbuilding and bring gathered resour
es to the main building in orderto add them to her resour
e pool. As previously mentioned, the main

Page 172 of 273 APPENDIX A. TERMS AND EXPRESSIONSbuilding is also mostly the building, in whi
h the player gains a

ess tothe next te
hnology level. If lost the player will be unable to build anybuilding or unit that required the a
hieved te
hnology level. However,any building or te
hnology that was built or resear
hed before the mainbuilding was lost, is kept.Unit Produ
tion Fa
ility: The main building is as su
h a unit produ
-tion fa
ility but when this term is used throughout the rest of thereport, it refers to buildings that may produ
e o�ensive or supportunits, basi
ally anything else than workers.Resear
h Fa
ility: In most RTS games the player will have a

ess to oneor several resear
h fa
ilities. These buildings have the soul purpose ofupgrading units or make new te
hnology available. They usually arenot of mu
h use after the te
hnology or upgrades have been resear
hed,unless they are an a
tive part of the te
hnology tree, meaning that thisbuilding has to be present in order to gain a

ess to some units or otherbuildings.Supply Stru
ture: In many games the player has to provide some kind of
ontrol or food in order to support her army. Mostly this is done bybuilding supply or something equivalent. In War
raft III for instan
ethe farms will allow units worth eight support points to be build (fourfootmen or eight workers).Defensive Building: In all the games analysed the player has been ableto build some kind of defensive building that will atta
k any enemyobje
t. In most
ases these defensive buildings are in the form of atower. The soviet army in Red Alert has the tesla
oils, Protoss fromStar
raft has the photon
annon et
.Expansion: In order to in
rease her in
ome the player may de
ide to startgathering resour
es from several di�erent resour
e nodes. In War
raft,for instan
e, this would mean that the player would gather gold fromseveral gold mines. To prevent the workers from walking all the wayfrom the new mine (potentially a long distan
e away from the base),she builds a new main building
lose to the new gold mine. She mayalso add a few defensive buildings to prote
t this from harm. This is
alled an expansion.A.3 UnitsMelee: This unit is the
lose
ombat unit. It has a very limited range ofits atta
k. In most
ases it will have to stand right next to its target.Melee units are generally a bit hardier than other units, as they will

APPENDIX A. TERMS AND EXPRESSIONS Page 173 of 273have to get into the hottest spots of a battle. They may even justbe used as a meat shield for the ranged and supporting units. Meleeunits with a spe
ial high amount of hitpoints are often referred to at'Tanker' units.Ranged: Ranged units tend to be a bit more frail than the melee units. In
ombination with melee units the player is able to deal more damage,than had she had melee units only (there is only enough spa
e for alimited amount of melee units at the front-lines of the battle). In most
ases the ranged units are also one of the only units able to atta
k airunits.Support: Support units are mostly spe
ialised units that have some abilitiesthat either strengthens the player's army or weakens the enemy's army.They may also have some limited ranged or melee atta
k, but it is nottheir primary fun
tion.Siege: The player may be able to build units that a
t as artillery. Theseunits have a slow rate of �re, but ex
eptional damage and range. Fur-thermore, they also tend to deal damage with an Area of E�e
t. Inmost
ases these units are a bit fragile, but as they have superiorrange the player may prote
t them behind her army. In War
raft, forinstan
e, siege units also re
eive a bonus when atta
king buildings.Worker: In most games the worker is the most vital unit. This unit eitherbuilds various buildings, harvests resour
es or both.Air: Flying units are available in most games. They are generally quite fastbut fragile.Hero: Early RTS games introdu
ed the
on
ept of a hero unit in the singleplayer
ampaigns. Usually the story was build on the adventures ofthis hero unit, whi
h had ex
eptional powers and got even better asthe story progressed (but so too did the enemy). War
raft III, forinstan
e, has taken this
on
ept to the next step and integrated thehero
on
ept fully into the game. This means that the player and theAI are able to hire one or more heroes in any game.Summoned: In some games support units, or perhaps a hero unit, maybe able to summon
reatures. These
reatures will then serve thesummoner, often for a limited period of time.A.4 Spe
ial AbilitiesArea of E�e
t: Spells
ome in many di�erent sizes and shapes. In Age ofEmpires, the prophets are able to
ast a spell that starts an earthquake,

Page 174 of 273 APPENDIX A. TERMS AND EXPRESSIONSwhi
h a�e
ts an area on the map and damages all buildings in the area.This is
alled an Area of E�e
t spell or just AoE spell.Bu�: A bu� is a positive spell that is
ast on a friendly unit. In War
raftan example of this
ould be the bloodlust spell that raises the atta
kspeed of the a�e
ted unit.Debu�: Contrary to the bu�, the debu� is a negative spell
ast on a un-friendly unit. In Star
raft this
ould be the opti
 �are spell that lowersthe range of vision of any unfriendly unit.A.5 StrategiesS
outing: In order to �nd out what the enemy is up to the player will haveto send a unit to the area she wants to know about. This is
alled tos
out the area. She might have to do this frequently throughout thegame, as this knowledge may give her an advantage over her enemy.Rush: The player may de
ide to try to surprise the enemy by atta
king veryearly in the game. She
an do this by building an early unit produ
tionfa
ility and make a lot of
heap atta
k units. This is
alled to rush theenemy.Tower: The defensive building introdu
ed in the previous se
tions do notne
essarily have to be used defensively. O�ensive towers
an be builtjust outside the enemy base, or perhaps even within the base, if she isbusy elsewhere. This is risky as the towers are defen
eless while beingbuilt, and as they are buildings they
annot be moved, if the enemystarts applying siege units.Fast Te
h: The opposite of rush is to fast te
h (short for qui
kly
limbingthe te
hnology tree). By skipping all the basi
 units, the player maytry to
limb the te
hnology tree as fast as possible in order to rea
hsome better units. This will leave her weak, while she is te
hing, butif su

essful, she will be a lot stronger than the enemy, if she "wasted"resour
es on the weaker basi
 units.Mass: To mass is trying to kill the enemy by brute for
e. If the player hasa better in
ome, she may try to swarm over the enemy by building alot of unit produ
tion fa
ilities, and pump out units.Harass: The player may de
ide to send out units to the enemy base orperhaps her expansion with the purpose of slowing down the resour
egathering, kill o� unprote
ted buildings and otherwise do harm, whilethe enemy army is away. By doing this hit and run ta
ti
, the player

APPENDIX A. TERMS AND EXPRESSIONS Page 175 of 273
an slow down the enemy produ
tion and for
e the enemy to pay at-tention to the harassment. This leaves herself free to pursue othermatters.

APPENDIX B. MODULE DESIGN Page 177 of 273
Appendix BModule DesignThe following
hapter will present a detailed design of modules in the frame-work. Ea
h module will be presented in turn. The design des
ription willstart out by showing the internal stru
ture of the module. Then the re-sponsibilities of the module will be listed. Finally ea
h sub-module will bepresented in the same fashion.B.1 Per
ept InterpreterThis module extra
ts information from the game state, and updates inter-nal knowledge bases in the framework. It must be implemented by the AIdesigner to obtain the following information:Rea
tive Module: Current hitpoints for all units and buildings.Rea
tive Module: Native AI events.In-Game Own Knowledge: Own unit and building positions and impor-tant attributes for these.Game State Interfa
e: Map terrain information.Current Strategy Node: Units, buildings, resear
h, expansions, re-sour
es, and
urrent position in te
h tree.In-Game Enemy Knowledge: Enemy unit and building positions as wellas important attributes for these. Furthermore, last known position ofvanished units are noted here.Dynami
 Map Knowledge: Resour
e lo
ations and amounts. (AI de-signer spe
i�es game or map spe
i�
 obje
ts)Assigned Unit A
tion: All friendly units and their
urrently assigned a
-tion.

Page 178 of 273 APPENDIX B. MODULE DESIGN

Figure B.1: Strategy Tree for the ExampleB.2 Rea
tive ModuleThe purpose of the Rea
tive Module is to monitor and rea
t on high DPSor
hange of building/unit states as well as handling native AI events. Thestru
ture of this module
an be seen in Figure B.1B.2.1 ResponsibilitiesMonitor DPS: Units and buildings that are damaged will beadded to the Damage Over Time Table so that their
on-dition and the damage they re
eive over time
an be moni-toredHigh DPS warning: When a unit or a building is exposedto a DPS ex
eeding a
ertain prede�ned value, the modulethat has to handle it must be advised and a
tion must betakenChange Building and Unit states: The amount of hit-points the various buildings and units have de�ne theirstate. If the amount of hit point
hange so that the build-ing or unit
hanges its state it might mean that the unit orbuilding should be handled di�erently than previouslyHandle Native AI: In order to override the built-in native AIand repla
e it with better de
isions all native AI events mustbe handed to the Ta
ti
al Planning.

APPENDIX B. MODULE DESIGN Page 179 of 273B.2.2 Stru
ture OverviewTo meet the spe
i�
ations of this module the stru
ture has as su
h beensplit into three parts: One dealing with updating the Damage Over TimeTable (Update DotT), another monitoring building and unit states andDPS(Change Building State and Change Unit State), and �nally the thirdpart handling the native AI events(Handle Native AI event). The modulesdo not intera
t but rather handle ea
h their sub-task.B.2.3 Update DotTThis module will work on the Damage over time Table (DotT). Whenever aunit or a building owned by the AI
hanges its amount of hitpoints, it willbe monitored by the Damage over time Table.In games like Star
raft and Age of Empires it does not really pay to tryto remove units from the line of �re as the units have a relatively low amountof hitpoints. This means that this module
ould altogether be ignored. Inother games like War
raft the units have a higher amount of hitpoints and itis possible to heal these so in this
ase it makes a lot more sense to preservethem.ResponsibilitiesUpdate Damage Over Time Table: Ea
h unit that re-
ently has had a
hange in its amount of hitpoints will havea list in the Damage over time Table. If no su
h exists,the list will have to be added. This module will re
ord the
urrent amount of hitpoints of ea
h unit in the table at aprede�ned interval.Damage Over Time Table Maintenan
e: When a list hasnot
hanged for a while - the unit has not
hanged itsamount of hit points for a while, the list for this unit mustbe removed from the table.Hot SpotsUpdate Interval: The user of the framework will have to de-�ne how often the amount of hitpoints should be updatedList Spa
es: The lists in the Damage over time Table areFIFO lists of a user de�ned size. The size will have to �twith the update interval and the amount of time that DPSwill be monitored.Standby Time: The user will also have to de�ne how long alist should be maintained if the hit point value does not
hange.

Page 180 of 273 APPENDIX B. MODULE DESIGNStandard ImplementationAll operations on the table will be handled by default in the framework, aswill the maintenan
e of the table.B.2.4 Change Building StateChange Building State is responsible for monitoring the building state of allbuildings. Given a rule set the Change Building State will for ea
h building
he
k whi
h
ategory the
urrent amount of hit point is in. If the newamount of hitpoints means that the building will
hange into a di�erentstate it will notify the Base Building module and set the right state in thein game knowledge base: Building State. Furthermore this module will also
al
ulate the DPS done to ea
h building when these are getting damaged.It does this by adding the
olle
ted data and divide it by the number ofdata multiplied with the period of time the data was
olle
ted. To get anidea as to how serious this damage is, the resulting number
ould be dividedby the maximum number of hitpoints the building has. This will yield theper
entage of building health lost per se
ond.Most games feature the possibility to repair buildings, the way it is done,however, varies from game to game. In Command and Conquer the repair isdone by the player - it is an ability that she
an a
tivate on buildings. Thismeans that buildings are repairing at a
onstant speed whereas buildingsthat are repaired by workers as seen in War
raft and Age of Empires arerepaired by a speed de�ned by the number of workers repairing it.ResponsibilitiesChange Building State: If a building has a
hange of hitpoints that means the building will
hange state, this mod-ule must set the right state in the Building State knowledgebase and notify the Base Building module.Cal
ulate Damage Per Se
ond: Given the lists in the Dam-age over time Table the module will have to
al
ulate thedamage the monitored buildings have re
eived per se
ondduring the monitored time.Issue Damage Per Se
ond Warning: When the
al
ulateddamage per se
ond ex
eeds a
ertain amount the BaseBuilding module must be warned.Hot spotsBuilding State Rule Set: This rule set will de�ne the inter-vals of the di�erent states.

APPENDIX B. MODULE DESIGN Page 181 of 273Standard ImplementationThe standard implementation will handle all the responsibilities of the mod-ule by default.B.2.5 Change Unit StateEssentially this module has the same responsibility as the Change BuildingState module but unlike that module this will monitor the unit state andDPS done to units. In some games this module should be empty as the unitsare not worth saving or unit health is less important that the managementof resour
es and produ
tion.As mentioned earlier units in di�erent games have di�erent 'values'. InStar
raft they will in most
ases be sa
ri�
ed in order to get the job donewhile it is imperative to preserve units in War
raft. Furthermore the unit'srole also plays an important part in de�ning when a unit should be removedfrom the line of �re. 'Tanker' units will have to be at a relatively low amountof hitpoints while support units in most
ases have to be removed as soonas they are dealt damage.ResponsibilitiesChange Unit State: A
hange in hitpoints that means thatthe unit will enter a di�erent state must be handled bysetting the right state in the Unit State module and notifyTa
ti
al Planning so that the new unit state
an be takeninto a

ount.Cal
ulate Damage Per Se
ond: Given the lists in the Dam-age over time Table the module will have to
al
ulate thedamage the monitored buildings have re
eived per se
ondduring the monitored time.Issue Damage Per Se
ond Warning: If the
al
ulateddamage per se
ond ex
eeds a
ertain amount the Ta
ti
alPlanning has to be noti�ed.Hot SpotsUnit State Rule Set: This rule set will also de�ne the inter-vals of the di�erent states.Standard ImplementationThis module will be implemented by default.

Page 182 of 273 APPENDIX B. MODULE DESIGNB.2.6 Handle Native AI EventEvery time a unit that is not
urrently
ontrolled by either the Resour
eManagement module, the Base Building module or the Ta
ti
al Planningmodule is done an a
tion upon, a normal game would handle this by somerea
tive a
tion. This is, for instan
e, the
ase when a human player atta
ksan AI
ontrolled unit that is standing alone. In most
ases this enemy unitwould follow and atta
k the human
ontrolled unit even though it means toengage the entire enemy army. This and many other unfortunate events
anbe handled by simply passing the information to the Ta
ti
al Planning sothat a well-
onsidered a
tion
an be ordered. In order to do this the HandleNative AI Event module will have to re
eive all su
h events and the rea
tivepart of the AI will have to be disabled. The event will have to
ontain thetype of event and the unit/building in question.In many games it is an unfortunate fa
t that the player
an lure parts ofthe enemy army away from the rest by shooting on one of the enemy unitsand run away. The enemy unit that has been hit will then run after the onethat shot it and perhaps pull part of the enemy army with it. In order toavoid this all rea
tive de
isions must be disabled and handled by the propermodules.ResponsibilitiesOverride Native AI: All events that previously were handledby native AI will now be sent to the Handle Native AI eventmodule.Redire
t Native AI events: Depending on the type of the na-tive AI event it will be redire
ted to either Base Building orTa
ti
al Planning.Hot SpotsEvent Groups: The user of the framework will have to de-�ne whi
h buildings and units that will potentially re
eiveNative AI events.Standard ImplementationThe only event the standard implementation will handle is the "under at-ta
k" warning. This warning will
ause the module to warn Ta
ti
al Planningor Base Building depending on whether it is a unit or building that is underatta
k.

APPENDIX B. MODULE DESIGN Page 183 of 273

Figure B.2: The internal ar
hite
ture of the Pattern Re
ognition moduleB.3 Pattern Re
ognitionThis module is responsible for re
ognising di�erent strategies and ta
ti
sused by the enemy, and for keeping tra
k of an enemy's strategi
 de
isionsthroughout a game. The internal ar
hite
ture of this module
an be seenon Figure B.2. Cir
les represents sub-modules and boxes represents othermodules or knowledge bases. Arrows indi
ate how they in�uen
e ea
h other.B.3.1 ResponsibilitiesRe
ognise Ta
ti
s: The module is responsible for re
ognisingta
ti
s used by the opponent during the game.Re
ognise Strategies: Based on enemy unit and building
om-position, as well as enemy unit movement and ta
ti
s used,the module is responsible for re
ognising strategies.Update Opponent Model: During the game, the opponent'sunit and building
omposition will
hange as well as severalother strategi
 important variables and it is the responsibil-ity of this module to keep tra
k of these and thereby keepan updated opponent model at all times.Monitor Strategi
 Choi
es of Opponent: The opponentwill make several
ru
ial strategi

hoi
es during a game,

Page 184 of 273 APPENDIX B. MODULE DESIGNwhi
h will in�uen
e the strategi
 possibilities open to herat a later stage in the game. This module will be requiredto keep tra
k of these de
isions.B.3.2 Stru
ture OverviewThis module is divided into sub-modules based on the four di�erent areasof responsibility de�ned above. The fun
tionality
an basi
ally be dividedinto two parts: One bran
h for handling updating the Opponent Model andone for providing the Learning module with the ne
essary information usedto learn new things. Updating the Opponent Model
onsists of two steps.First, the module will attempt to re
ognise ta
ti
s used by the opponentand this will be used when a
tually updating the Opponent Model with theinformation
urrently known about the enemy in
luding the number of di�er-ent units, buildings and resear
h upgrades. The se
ond part of the moduleensures that all strategi

hoi
es made by the opponent during the game
an be monitored. This is ensured by a module that re
ognises signi�
antgame states, to determine when the opponent makes a signi�
ant swit
h instrategy, whi
h should be re�e
ted in a strategy tree built for ea
h opponentduring the game. This strategy tree is
onsidered a part of the Opponentmodel, and
an be used to both, more
learly determine the opponent's strat-egy, and for easier determining when the opponent is doing a strategy theAI have not seen before. In the latter
ase, the Learning module
an takeadvantage of the strategy tree built, and easily add it to the strategy treerepresenting all strategies
urrently known by the AI. The last sub-moduleis a module that ensures the possibility of adding game spe
i�
 re
ognisingmethods.B.3.3 Re
ognise Signi�
ant Game StatesThis module is responsible for re
ognising important game states in theopponent's strategy. With this information it will be possible to build astrategy tree during the game for the opponent's strategy, whi
h in turn willmake it possible to learn the opponent's strategy. When a new signi�
antgame state has o

urred, whi
h means the strategy tree for the opponent hasbeen updated, the module that re
ognises strategies should be a
tivated todetermine if this is a new strategy or not.Important game states are game spe
i�
 and this module will thereforebe very dependent of hooks. In a game like War
raft III for instan
e, the �rstsigni�
ant game state is when the player has
reated her hero and is readyto either atta
k the NPCs pla
ed around the map or harass the enemy. InStar
raft on the other hand, the �rst signi�
ant game state
an vary greatlyfrom being an extremely fast atta
k on the enemy to expanding maybe twotimes before engaging the enemy.

APPENDIX B. MODULE DESIGN Page 185 of 273ResponsibilitiesRe
ognise Signi�
ant Game State: Any signi�
ant gamestate o

urring during the game must be re
ognised so thatthe opponent's strategy tree
an be updated.Hot SpotsClassi�
ation of Signi�
ant States: The user of the frame-work would in most
ases be required to
lassify when asigni�
ant game state has o

urred, so that a proper strat-egy tree for the enemy
an be built, whi
h allows for learningnew strategies in a sensible way.Standard ImplementationIt may be possible to make a game independent algorithm, whi
h for in-stan
e
lassi�es important states as when the AI's army is either atta
kingor being under atta
k, but it would in most games not be enough to really
lassify a game's signi�
ant states. The problem with just using a standardimplementation is that the strategy trees built for a game using only thestandard implementation, will often not provide a very a

urate pi
ture ofa parti
ular strategy and this will re�e
t negatively in several other frame-work modules. However, a standard implementation should be provided forat least demonstrating how to spe
ify signi�
ant states.B.3.4 Re
ognise StrategiesThis module is responsible for re
ognising the opponent's strategy in thestrategy tree from Known Strategies, and if it is unknown, inform the Learn-ing module about this. This is an operation on strategy trees and sin
e thesedo not vary from game to game, this module
an be left unspe
i�ed by theuser of the framework.Although strategies do vary from game to game, the methods for re
og-nising strategies in strategy trees do not. Strategy trees are
reated spe
i�-
ally to deal with ea
h parti
ular game, and
ontain all possible informationrelated to a strategy in that game. A strategy in a strategy tree is de�ned asa number of strategi
 important elements (like expansions, resear
h et
.) aswell as unit and building
ompositions, and hen
e it does not matter whetherthe game is Star
raft or Age of Empires.ResponsibilitiesRe
ognise Strategies: The module must re
ognise the strat-egy the opponent has been doing throughout the game anddetermine whether it has seen this kind of strategy before.

Page 186 of 273 APPENDIX B. MODULE DESIGNHot SpotsThis module has no hot spots as everything is handled by operations onstrategy trees.Standard ImplementationEverything in this module is handled by the framework.B.3.5 Re
ognise Ta
ti
sThe purpose of this module is to re
ognise ta
ti
s used by the opponentduring the game. This knowledge is both used to update the Opponent Modelwith the
urrent ta
ti
s being used and the opponent game tree, whi
h willallow for the game tree to note at whi
h point in the
urrent strategy di�erentta
ti
s have been used.The methods used to re
ognise ta
ti
s should in most
ases be hookmethods, be
ause all game allow for very di�erent types of ta
ti
s, and it isfurthermore very di�erent how mu
h e�e
t a
ertain ta
ti
 has from gameto game. In War
raft III for instan
e, a ta
ti

ould be to harass the enemybase with some units while levelling the AI's hero by atta
king NPC's at thesame time. This is a unique ta
ti
 for that parti
ular game and it wouldmake no sense in most other games.ResponsibilitiesRe
ognise Ta
ti
s: The module must be able to re
ognise ta
-ti
s used at any point during the game, and inform theUpdate Opponent Model sub-module about its results.Hot SpotsRe
ognise Ta
ti
s Methods: The user of the framework mustspe
ify how the AI is to re
ognise a
ertain ta
ti
 used bythe opponent.Standard ImplementationSome ta
ti
s
an be used in several di�erent RTS games. An example
ouldbe the ta
ti
 of splitting up the army and atta
king several resour
e gatheringlo
ations hold by the enemy at on
e and then kill workers there. Ta
ti
s likethat are viable in almost any RTS game. Re
ognising the ta
ti
 should intheory be easy regardless of the game, and should be provided as a standardimplementation. This is, however, only the
ase with ta
ti
s in
luded withthe framework. New game spe
i�
 ta
ti
s must have re
ognising methodsprovided along with them for this module to work to its full potential.

APPENDIX B. MODULE DESIGN Page 187 of 273B.3.6 Update Opponent ModelThis module is responsible for
ontrolling all updates of the Opponent Model.The reason this
annot be done dire
tly, is be
ause the AI
annot just addevery unit it sees to the Opponent Model. Enemy units may disappear intofog of war and return again the next se
ond and it is the task of this moduleto
ontrol that the same units are not added on
e again to the unit
ountof a parti
ular unit type. Furthermore, as the Opponent Model must alwaysre�e
t the
urrent situation, the module must
ontrol when attributes expirein the Opponent Model and also notify other modules when a seeminglysigni�
ant
hange has o

urred.When an attribute of the Opponent model should be
onsidered out-dated, depends of both the game and attribute in question. If the opponentfor instan
e have used an air harass ta
ti
 earlier in the game, at what pointshould the AI realise that this is not what the opponent is trying to do any-more? Another fa
tor that is game spe
i�
 is determining when a signi�
ant
hange has happened in the Opponent Model. This of
ourse also depends onthe attribute in question. If the number of expansions attribute is
hanged,it would probably be a signi�
ant
hange, while an update
onsisting of theobservation that the enemy now has �ve footmen instead of just four, wouldnot.ResponsibilitiesUpdate Attributes in Opponent Model: The module mustkeep an eye on all attributes of the Opponent Model andensure that all new observations are properly re�e
ted inthe model. This in
ludes keeping tra
k of units seen earlier,whi
h have left the vision of the AI player and then re-entered.Che
k Expiring Attributes: Be
ause of the need for an up-dated Opponent Model at all times, the module must ensurethat all attributes re�e
ts the
urrent situation. This meansremoving or redu
ing belief in attributes that has not been
on�rmed for a long period of time.Che
k for Signi�
ant Updates: The module must after up-dating the Opponent Model
he
k if the update is signi�
antenough to be able to
hange the
urrent belief of what theopponent is doing. If this is the
ase, it must a
tivate theProbabilisti
 Reasoning module.Hot SpotsExpiration Limits: The user of the framework should spe
ifywhen attributes be
omes outdated and how the belief of a

Page 188 of 273 APPENDIX B. MODULE DESIGN
ertain attribute deteriorates over time.Method for Determining Signi�
ant Updates: A methodfor determining when a signi�
ant update to the OpponentModel has been made is required to make sure the Prob-abilisti
 Reasoning module is a
tivated at the appropriatetimes.Standard ImplementationThe standard implementation will have a prede�ned expiration date on at-tributes and a per
entage
hange in attributes that will a
tivate a signal thata signi�
ant
hange has o

urred.B.3.7 New Ta
ti
sThis module is basi
ally just one hook module, whi
h allow an AI designerto spe
ify how the AI should re
ognise new ta
ti
s that should be learnedby the the AI. It will pro
ess the data re
eived from the Per
ept Interpretermodule, and based on this information, de
ide whether the opponent hastried a new ta
ti
 not seen before.In War
raft III for instan
e, the undead ra
e has a unit, the ghoul, whi
his intended to be both a harvesting unit and a light melee unit. In earlyversions, this
aused a very spe
ial ta
ti
 to arise. When the ghouls weretargeting trees, they had the ability to walk through other units (to avoidpath�nding problems in the base). This made it possible for the ghouls towalk right through the enemy army if they targeted a tree behind the army,whi
h in turn made it possible to get behind the army and easily surroundfor instan
e a ranged enemy hero. This module is used to learn new andgame spe
i�
 ta
ti
s like the example ta
ti
 des
ribed here.ResponsibilitiesRe
ognise new Ta
ti
s: The module must re
ognise new ta
-ti
s used by the opponent.Hot SpotsMethods for Re
ognising Ta
ti
s: The user must spe
ifyhow the AI is to re
ognise new game spe
i�
 ta
ti
s.Standard ImplementationThere is no standard implementation of this module, but it
an be left un-spe
i�ed, whi
h results in the AI's inability to learn new ta
ti
s. It does

APPENDIX B. MODULE DESIGN Page 189 of 273
Figure B.3: The internal ar
hite
ture of the Probabilisti
 Reasoning modulehowever, not limit the AI's
apability to
ombine old ta
ti
s in new strate-gies.B.4 Probabilisti
 ReasoningThis module will determine the most likely strategy used by the enemy, anddetermine what kind of strategies this
ould lead to in the future. Further-more, it will spe
ify what variables are important to wat
h, when determin-ing the opponent's �nal
hoi
e of strategy. The internal ar
hite
ture of themodule
an be seen in Figure B.3. Cir
les are internal sub-modules, boxesrepresent other modules or knowledge bases and arrows indi
ate how theyin�uen
e ea
h other. The following will des
ribe the overall responsibility ofthis module and explain ea
h sub-module in detail.B.4.1 ResponsibilitiesDetermine Most Likely Strategy: The module must, basedon the
urrent Opponent Model, determine the most likelystrategy being done by the opponent.Determine Most Likely Follow-up Strategy: Dependingon the most likely strategies found, the module mustdetermine the most likely follow-up strategies.Determine Important Variables: Given a number of possi-ble follow-up strategies, the module must determine impor-tant variables that will indi
ate the �nal
hoi
e among thepossible strategies.Update Opponent Model with new Beliefs: When a newmost likely strategy has been found, the Opponent Modelmust be updated with new beliefs about attributes not
ur-rently known from the result of an observation.

Page 190 of 273 APPENDIX B. MODULE DESIGNB.4.2 Stru
ture OverviewThis module is divided into sub-modules based on the four di�erent areasof responsibility de�ned above. The �rst thing the module has to do is de-termine the most likely strategy used by the opponent based on the
urrentOpponent Model. This is basi
ally a sear
h through a strategy tree to �nda mat
hing node
ompared to the Opponent Model. Afterwards, two thingsmust be done: The Opponent Model must be updated with new beliefs andpotential follow-up strategies must be determined. For ea
h follow-up strat-egy found, the probability for ea
h must be
al
ulated. Finally, importantvariables that determines the opponent's �nal
hoi
e of strategy must befound, so that appropriate s
outing
an be done.B.4.3 Find Potential StrategiesThis module is responsible for �nding all potential strategies being done bythe opponent based on the observations made about her so far and then �ndthe probabilities for ea
h possible strategy being used. The basi
 idea behindthis module is to sear
h through three strategy trees: Game Type Knowledge,Map Knowledge and Enemy Knowledge. Ea
h provides a di�erent aspe
t ofthe possible strategies the opponent may be doing.The sear
h through strategy trees do not vary from game to game, butthe
riteria for mat
hing a node in the strategy tree to the Opponent Modeldo. From game to game, it
hanges how mu
h two nodes in a strategytree have to be di�erent to represent di�erent strategies and the strategi
importan
e of
ertain attributes may also
hange.ResponsibilitiesFind Potential Strategies: The module must �nd all poten-tial strategies given the
urrent Opponent Model.Cal
ulate Probabilities: Depending on the strategies found,the module must �nd the probability of ea
h of them beingthe one
urrently used by the opponent.Hot SpotsMaximum Node Deviation: The user of the framework mustspe
ify how mu
h two strategy nodes should di�er to be
on-sidered two di�erent strategies. This in
ludes de�ning thestrategi
 importan
e of di�erent attributes of the OpponentModel.

APPENDIX B. MODULE DESIGN Page 191 of 273Standard ImplementationAs a default implementation, the framework will provide a per
entage mat
hthat must be ful�lled for two nodes to be
onsidered the same.B.4.4 Update Opponent ModelThis module is responsible for updating the Opponent Model with new beliefknowledge based on what kind of strategy the AI believes the opponent is
urrently doing. All attributes in the Opponent Model that are not
urrentlybased on real observations should be updated with what the AI
urrentlybelieves about the opponent.The reason that this pro
ess is de�ned as a sub-module in this ar
hite
-ture is that this allows for an AI designer to de
ide when an observationshould be repla
ed by a belief. This
ould for instan
e be when an observa-tion is several minutes old, and the attribute is known to
hange frequently.This varies from game to game.ResponsibilitiesUpdate Opponent Model: The module must update the Op-ponent Model with new beliefs based on the most likelystrategy used by the opponent.Hot SpotsUpdating Beliefs: The user of the framework must spe
ify howto update the Opponent Model with beliefs.Standard ImplementationThe standard implementation should provide a simple approa
h to updatingbeliefs in the Opponent Model, repla
ing only those attributes who have neverbeen observed.B.4.5 Find Potential Follow-up StrategiesThis module looks at all possible strategies being done by the opponent, and�nds all potential follow-up strategies along with per
entages of their likeli-hood of being used. The strategy tree has dire
t support for this operation,by simply looking further in the tree from ea
h potential strategy node.How many follow-up strategies to
onsider should be based on the parti
-ular game in question. It depends a lot on the strategy tree in question andhow ea
h parti
ular game's strategies are re�e
ted in the strategy nodes.

Page 192 of 273 APPENDIX B. MODULE DESIGNResponsibilitiesFind Potential Follow-up Strategies: Given a number ofpossible
urrent strategies, the module must determine themost likely follow-up strategies.Hot SpotsConsidered Follow-up Strategies: The user of the frame-work should be able to spe
ify how far ahead in time the AIshould look to �nd potential follow-up strategies.Standard ImplementationBy default, the sear
h through strategy trees should look a prede�ned num-ber of nodes ahead when
onsidering potential follow-up strategies.B.4.6 Determine Important VariablesThe responsibility of this module is to determine the
urrently unknownvariables that are essential for
hoosing among the most likely strategies theopponent is doing. The module will
onsider only the most likely strategies,and determine variables that are di�ering and essential for the opponent's
hoi
e among them. This will later help the Strategi
 Planning module tos
out the right things, whi
h are more likely to reveal the opponent's �nal
hoi
e of strategy.This module should be independent of the game in question, be
ause�nding the variables that di�er in the potential follow-up strategies havenothing to do with the a
tual game being played.ResponsibilitiesDetermine Important Variables: The module must spe
ifythe variables that should be investigated further, be
auseof them being important in regards to the opponent's �nal
hoi
e of strategy.Hot SpotsThere are no hot spots in this module, as it is all handled by the frameworkindependent of the game in question.Standard ImplementationN/A

APPENDIX B. MODULE DESIGN Page 193 of 273

Figure B.4: Internal ar
hite
ture of the Strategi
 Planning moduleB.5 Strategi
 PlanningThis module will handle all strategi
 de
isions. This in
ludes determiningwhen the AI has enough information to
hoose a good strategy and of
oursea
tually
hoosing a strategy. The
hoi
e of strategy should depend heavilyon what
ounters the opponent's strategy, but also the
urrent state of theAI. The module is furthermore also responsible for de
isions about exa
tlywhere the AI's army should be and if it should split up et
. The internalar
hite
ture of the module
an be seen in Figure B.4. Cir
les in the �g-ure represents internal sub-modules and boxes represents other modules orknowledge bases. The following will �rst dis
uss the overall responsibilitiesof the Strategi
 Planning module, and then present ea
h of the sub-modulesin the internal ar
hite
ture along with a dis
ussion of how the sub-moduleis to
omplete its task.B.5.1 ResponsibilitiesDetermine if the AI posses Su�
ient Knowledge: Themodule must determine whether the AI has enough knowl-edge about the enemy to
hoose a good strategy that
ounters the enemy.Determine S
outing Missions: If there is insu�
ient enemyknowledge or if all data in the Opponent Model is outdated,the module must assign one or more units a s
outing mis-sion, telling it exa
tly where to go and what to s
out for.Find New Strategy: The module must determine if there is aneed for a new strategy, and if so, �nd the best possiblestrategy suiting the
urrent situation.

Page 194 of 273 APPENDIX B. MODULE DESIGNExe
ute Strategy: Finally, the module is responsible for di
-tating where on the map all army units should be duringthe exe
ution of the
hosen strategy.B.5.2 Stru
ture OverviewThis module
onsists of several distin
t parts. When the module is a
tivatedby a signi�
ant update to the Opponent Model or by a timer, the �rst thingthat is done is
he
king whether there is su�
ient enemy knowledge to de
ideon a good strategy. If there is not, the S
outing sub-module is a
tivated andone or more units are put on a s
outing mission. Either way, it must bede
ided whether or not to
hange strategy. This is done by determining ifthe foundation on whi
h the last strategy was de
ided has
hanged. If ithas
hanged, two things are done. First, probabilities for di�erent strategies
ountering the opponent's strategy is
al
ulated, and partly based on this, anew strategy is sele
ted. The new strategy is represented as a strategy nodeand hen
e this is not enough to determine the a
tions taking by the AI'sunits. For this, an Evaluation sub-module determines the
urrent situationof the AI, and pla
es it in an appropriate state. This state will divide unitsinto groups and give orders dependent on the
urrent situation of the AI.B.5.3 Su�
ient Enemy KnowledgeThis module is responsible for determining whether the AI has enough infor-mation to de
ide upon a good strategy. This
an be determined by lookingat the Opponent Model, and at what the AI designer has de�ned as be-ing enough information. In some
ases the framework
ould override thehook spe
i�ed by the AI designer, if for instan
e a
ertain attribute is vitalfor knowing whi
h strategy the opponent is going for, and hen
e should bes
outed. If there is insu�
ient information, the S
outing sub-module is a
ti-vated and provided with one or more variables that are to be s
outed. Thismodule will always trigger the Change Current Strategy sub-module, as eventhough enough information is not present, the AI must still pi
k a strategya

ording to its best guess of what the opponent is doing.De�ning what quali�es as being enough information is game spe
i�
. Allattributes may have very di�erent importan
e in relation to
ountering theopponent's strategy. In War
raft III for instan
e, it is a huge fa
tor whatkind of buildings the opponent has in tier two and tier three, while thisis far less important in games like Command & Conquer. In Command &Conquer it is far more important what kind of units the enemy has and howmany,
ompared to War
raft III where the te
hnology bran
h pursued bythe enemy is far more important for re
ognising her strategy.

APPENDIX B. MODULE DESIGN Page 195 of 273ResponsibilitiesSu�
ient Information: The module must de
ide whether theAI has enough information about the enemy to
hoose agood strategy.Hot SpotsEnough Information Criteria: The user of the frameworkmust spe
ify when the AI has enough information, andthereby basi
ally de
ide s
outing frequen
y.Standard ImplementationThe standard implementation will assume that all attributes of the OpponentModel are equally important. This means that the standard implementation
an simply keep a prede�ned per
entage of how mu
h an attribute maydeviate from the most likely strategies found before a s
outing mission shouldbe determined. Furthermore, the framework
an spe
ify a time limit thatbasi
ally de
ides the s
outing frequen
y of an attribute.B.5.4 S
outingThis module is responsible for sele
ting a unit to s
out and determiningwhat spe
i�
ally that unit is to s
out. Sele
ting what to s
out should be ade
ision based on the input from the Probabilisti
 Reasoning module, whi
hdetermines the
urrently most interesting unknown variables. How to obtainthis information
an in part be spe
i�ed by the framework (buildings are inthe enemy base, units are near the enemy army et
.), while in spe
ial
asesthe AI designer should de
ide how to obtain it.In some games or strategies, the player may want to s
out for very spe-
i�
 things. In Star
raft for instan
e, one may want to have a Zerg Overlordpatrolling between a Terran's main base and an island to be able to s
out ifthe enemy de
ides to �y a Control Center to the island to
reate an expan-sion. Gaining this information in time would make it possible to atta
k theControl Center before it gets to its expansion site.ResponsibilitiesSele
ting S
outing Unit: This module must sele
t the bestunit(s) to s
out with depending on the s
outing mission.Determine S
outing Target: Depending on what the AIwants to know more about, the module must determinewhere to �nd this information and then s
out to obtain it.

Page 196 of 273 APPENDIX B. MODULE DESIGNHot SpotsUnit S
outing Ability: The user of the framework should se-le
t whi
h units in a parti
ular game should be preferred ass
outing units.S
outing Lo
ations: The user of the framework should de�newhere to �nd
ertain information.Standard ImplementationThe standard implementation
ould
hoose either the fastest or
heapestunit to s
out, and always send the s
out towards the enemy base, unless ithas a good idea of where the enemy army is, and is s
outing for some unitattribute. If it is looking for expansions, it
ould simply start s
outing thenearest expansion possibility (
ompared to the enemy main base) and thenwork through all expansion possibilities in that order. When playing on arandomly generated map, the AI must also be able to s
out the map andnot just the enemy. To s
out the map, the standard implementation
oulduse in�uen
e maps to determine unexplored areas of the map.B.5.5 Change Current StrategyThis module is responsible for de
iding whether a
hange in strategy shouldbe
onsidered. The AI should basi
ally only
onsider
hanging its strategyif it has some new information, whi
h
an lead to a new and better strategy.This means that the primary task of this module is to test whether theinformation, whi
h were used in
hoosing the last strategy, has
hanged insu
h a degree that a new strategy should be
onsidered. If this is the
ase, theFind Counter Per
entages sub-module is a
tivated, and if not, the Strategi
Planning module goes straight to the Evaluation sub-module explained later.It is very game spe
i�
 how often a strategy should be re-
onsidered.In general, games with strong
ounters will require players to
hange theirstrategy very often, be
ause so mu
h depends on information about the en-emy army. This means that games in the Craft series will require
hangingstrategy often when the opponent model
hanges, while in games like Com-mand & Conquer, the AI will be able to keep her
urrent strategy moreoften, be
ause
ounters have less e�e
t.ResponsibilitiesConsider New Strategy: The module must determinewhether the foundation that the last strategy was builtupon has
hanged and through this, de
ide whether a newstrategy should be
onsidered.

APPENDIX B. MODULE DESIGN Page 197 of 273Hot SpotsSigni�
ant Changes: The user of the framework should be al-lowed to spe
ify how mu
h of a
hange (
ompared to lasttime a strategy was sele
ted) is ne
essary for the AI to re-
onsider its strategy.Standard ImplementationA standard implementation
ould simply re
onsider its strategy every timethe Probabilisti
 Reasoning module
hanges what it
onsiders to be the mostlikely strategy done by the opponent.B.5.6 Find Counter Per
entagesThe purpose of this module is �rst to �nd all possible
ounters to the pos-sible strategies found in the Probabilisti
 Reasoning module, and then to�nd the probability for ea
h
ounter being an e�e
tive
ounter to what theopponent
ould be doing. Ea
h strategy done by the opponent may haveseveral
ounters and ea
h
ounter may have a di�erent per
entage atta
hedit, representing how often this
ounter should be used
ompared to the oth-ers. First a joint probability between the probability of the strategy beingused, and the probability of the
ounter being used should be
omputed.Then it should be examined if any of the
ounters are pra
ti
al the same,and if thats the
ase, these per
entages should be
omputed into anotherjoint probability for ea
h
ounter being su

essful. The result would be aprobability for ea
h distin
t
ounter, the highest di
tating the
ounter whi
his most likely to
ounter the enemy's strategy. This entire pro
ess should bedone for both
urrent and follow-up strategies.All of this is handled by strategy trees or operations on them and is hen
enot game spe
i�
.ResponsibilitiesFind Counter Per
entages: This module is responsible for�nding the per
entage
han
e of a strategy
ountering theopponent's strategy.Hot SpotsN/AStandard ImplementationN/A

Page 198 of 273 APPENDIX B. MODULE DESIGNB.5.7 Find New StrategyThis module is responsible for sele
ting the target strategy for the otherframework modules to try and a

omplish. It uses the
ounters and theirper
entage
han
e of
ountering produ
ed by the Find Counter Per
entagesmodule and the Current Strategy Node to help make its de
ision. The mod-ule must make a trade-o� between
hoosing the best possible
ounter and
hoosing a strategy that is not too far away from the
urrent strategy node.In some
ases (often the beginning of the game), the AI will to a
ertaindegree ignore the
ounters and fo
us only on its own strategy. As an extraelement, the strategi
 de
ision
ould also depend on knowledge of what theAI's allies are doing or whether it has a strong build order for a
ertainstrategy.The implementation of this module depends heavily on the game in ques-tion. Basi
ally, the more
ounter oriented the game is, the more the AIshould be willing to deviate from its
urrent strategy. This means that ingames like War
raft III, the AI should often
ompletely
hange its strategy,while in games like Command & Conquer, the AI should often not deviatetoo mu
h from the original strategy.ResponsibilitiesFind New Strategy: This module is responsible for �nding anew strategy based on the information provided by theProbabilisti
 Reasoning module.Hot SpotsChoi
e of Strategy: The user of the framework should spe
ifyhow the AI should make the trade-o� between
ounteringthe enemy and not
hanging strategy
ompletely every timenew information is re
eived.Standard ImplementationOne fairly general me
hanism for
hoosing the strategy
ould be imple-mented, but in most
ases it would be so game spe
i�
 that it is betterleft to the AI designer. A general approa
h
ould for instan
e be to let theAI
ounter as mu
h as possible, but never let it deviate more than 50% fromthe
urrent strategy.B.5.8 ExpandsIt is the responsibility of the Expands module to test if the AI needs totake a
tion before expanding to a
ertain lo
ation. This module is ne
essary

APPENDIX B. MODULE DESIGN Page 199 of 273for two reasons: Some RTS games pla
e NPC
hara
ters around the map(often guarding expansions) and other times the enemy may be o

upying aresour
e lo
ation. If either of these are the
ase, the AI needs to take a
tionbefore an expansion is possible. This will often be in the form of an atta
kat the units or buildings o

upying the resour
e lo
ation.In War
raft III, all gold mines are o

upied by NPC units, and thesemust be removed before the AI
an expand at a
ertain position. In a gamelike Star
raft however, there are no NPCs at all, but it is very
ommon forplayers to leave a single unit at di�erent expansion sites to simply removethe opportunity of the opponent to expand without the player noti
ing. Thisalso results in the requirement of atta
king this unit before an expansion ispossible.ResponsibilitiesChe
k Possible Expansions: This module must analyse ex-pansion sites and determine if the AI's army need to takea
tion before an expansion is possible. Furthermore, it mustdetermine the army strength required to atta
k the enemyunits at the expansion.Hot SpotsProte
ted Expansions: As mentioned earlier, some gameshave expansions prote
ted by units by default, and the userof the framework should de�ne whether this is the
ase.Army Comparison: The user of the framework must de�nehow the AI is to
ompare two di�erent armies to ea
h other,whi
h makes it possible to determine the army required toatta
k a
ertain expansion point.Standard ImplementationAs default, the framework will assume that all expansions are left unguarded,as is the
ase in most games. When trying to determine a su�
ient armyfor
e, the AI
an use a very simpli�ed system of trying to have more or fewerbut better units than the opponent.B.5.9 EvaluationThis module is responsible for evaluating the
urrent strategi
 situation forthe AI. At this point the target strategy node has been de
ided, whi
h theBase Building, Resour
e Management and A
tion Planner modules uses tofollow the strategy. However, a strategy node does not say anything aboutwhere the army should be going and where it should be atta
king. This is

Page 200 of 273 APPENDIX B. MODULE DESIGNwhere the Evaluation sub-module
omes in. Given the AI's army and the
urrent game situation, this module evaluates in what state the AI shouldbe in. It must take into a

ount things su
h as army sizes, te
hnology trees,in
ome rates et
. Depending on the state, units will be dispat
hed in orderto best a

omplish the overall strategy.When to swit
h from one state to another is very game spe
i�
. Imaginethe situation where both armies are at ea
h others base atta
king the mainbuilding. In War
raft III, players would have the option of using a townportal to get home and defend their base, while in Star
raft, and in mostother games, the player would have to walk home. This would often result inthat a War
raft III player would swit
h to a defend state, while a Star
raftplayer would keep itself in an atta
k state. This of
ourse always dependson the a
tual situation.ResponsibilitiesEvaluate Current Situation: The module must evaluate the
urrent situation, and pla
e the AI in one of the availablestates.Hot SpotsEvaluate Situation: The user of the framework must spe
ifyhow the AI is to evaluate the situation, and whi
h situations
orresponds to whi
h states.Standard ImplementationAs will be explained in the following se
tion, the framework will by defaultin
lude three states to
hoose among: Atta
k, Defend and Harass. A stan-dard implementation
ould implement an evaluation method, whi
h
hoosesbetween these three states in a relatively simple manner. The AI should beatta
king if its army is larger than the opponent, it should defend if anyimportant buildings are under atta
k and it should harass if it has
hosena strategy, whi
h entail having a small number of units
ompared to theenemy in the beginning phase of the strategy. In the latter
ase, harassingthe enemy would buy the AI time to su

essfully either te
h to the wantedunits or get an expansion up and running.B.5.10 StatesThis module is responsible for exe
uting whatever that state di
tates the AIto do. Three game independent states will be provided with the standardimplementation, but with the possibility of adding more depending on thegame. The three standard states will be explained in the following.

APPENDIX B. MODULE DESIGN Page 201 of 273Atta
kThe atta
k state must determine where to atta
k, and de
ide if it is ne
essaryto split the army into several groups and thereby try to a

omplish more thanone obje
tive at on
e. It basi
ally goes through the steps spe
i�ed below:Find Possible Atta
k Positions: Analyses the map and the enemy to de-termine possible lo
ations to atta
k. This
ould for instan
e be theenemy main base, an enemy expansion or the
urrent position of theenemy army. The army strength needed to
omplete a su

essful atta
kis spe
i�ed along with some form of desirability value of ea
h atta
ktarget. How to
al
ulate these values should be spe
i�ed by the AIdesigner by hook methods.Analyse Map Situation: Adjusts desirability values a

ording to the
ur-rent map situation. This in
ludes analysing the position of all armieson the map, in
luding the AI's own army. If for instan
e the atta
kdesirability of two di�erent lo
ations are
lose to the same, but theAI's army is
loser to one
ompared to the other, it should of
ourseatta
k the
losest target.Coordinate Atta
ks: Depending on whether the AI's army is strongenough to
arry out multiple atta
k orders, the army should be split upin a sensible way. It is game spe
i�
 when it is reasonable to split upthe army, and should hen
e be primarily spe
i�ed as a hook. Splittingup the army
ould also be be
ause the AI wants to perform some gamespe
i�
 ta
ti
.Assign A
tions: The last task is to spe
ify target map positions for ea
hgroup and notify the Ta
ti
al Planning of this. It should also be
on-sidered here whether the army is already gathered, or if this has to bedone before moving on to the atta
k lo
ation.DefendThis state should des
ribe the state where the AI is under pressure, prob-ably outnumbered, and should simply try to prote
t itself until it rea
hesa stronger state. This
ould be for instan
e when the AI is te
hing, andis atta
ked by the enemy. Then it should only �ght in its main base usingbase defen
e as well as terrain and position advantage (high ground, smallpassages et
.). The following will des
ribe the reasoning the AI must gothrough to de
ide how to handle itself in this state.Evaluate Situation: First of all, the AI must determine whether it is underan atta
k or not. The answer determines how the AI should handledefending itself.

Page 202 of 273 APPENDIX B. MODULE DESIGNPossible Atta
k Analysis: If the AI is not under atta
k, it must analysethe map to determine where the opponent is most likely to atta
k.This in
ludes analysing its own weakest points, as well as trying todetermine if the opponent knows about these. After determining this,it must send the order to move to the most likely atta
ked lo
ation,and ensure that the AI is in a good position for the potential enemyatta
k.Defend Analysis: If the AI is under atta
k, it must determine whether thelo
ation, building or units are valuable enough to try and defend andif this is even possible (the AI may be far away from the position beingatta
ked). It should also take into
onsideration whether it
an evenrea
h the position being atta
ked before everything is destroyed.Position Analysis: If the lo
ation is valuable enough to be defended, theAI must move into position. This means analysing the right way to ap-proa
h the enemy and to de
ide whether it must gather its army beforemoving in. In some games the de
ision
an be even more
omplex, likefor instan
e in War
raft III, where it is possible to town portal ba
kto the base to defend. In that
ase the AI must de
ide the position totown portal, whi
h will bring the AI into an optimal battle situation.HarassThis is the state, where the AI knows the opponent is trying to a

omplishsome strategy, and for whatever reason, wants to slow it down in doing so.Harassing
ould
onsist of a number of di�erent things, like killing workers,destroying buildings that are being built, or harassing the main army of theenemy so that it
annot perform whatever it should be doing. When the AIde
ides how to harass, it must go through the following tasks.Find Possible Targets: First all kinds of possible targets for harassingmust be dis
overed. Harassment targets do not vary mu
h from gameto game, but the degree of how e�e
tive a
ertain harassment ta
ti
 isdoes. Possible harassment targets in
ludes:
• Enemy workers
• Weak units (hit and run atta
ks on for instan
e support units)
• Hurt units (units at
riti
al health)
• Buildings that are under
onstru
tion
• Important buildings for the opponent's strategy
• Harvesting buildings (in
luding main buildings)

APPENDIX B. MODULE DESIGN Page 203 of 273Analyse found targets: After �nding the di�erent possible targets, theAI must examine ea
h of them and determine how many and whatkind of units are needed to su

essfully atta
k ea
h di�erent target.In some
ases the degree of what determines a su

essful atta
k mustalso be evaluated (for instan
e how many workers should a harassmentkill before it
an be
onsidered su

essful?). Finally, it must determinewhi
h of the possible targets will harm the enemy the most
omparedto the
ost of exe
uting the harassment. How to evaluate the di�erentmissions will in most
ases be a game spe
i�
 task.Assign Units: Finally, the AI must determine whi
h of the harassmenttargets are to be exe
uted and whi
h units are grouped together toexe
ute a parti
ular mission. Units not pi
ked for any harassmentmission must also be sent to some spe
i�ed lo
ation (often the mainbase). All group spe
i�
ations and target positions is then sent to theTa
ti
al Planning module, whi
h takes
are of the a
tual exe
ution ofea
h harassment mission.ResponsibilitiesAssign Groups and Unit orders: The module must, de-pending on the state, divide the army into groups and assignthem an order to go to a position on the map. The a
tualexe
ution of how to get there and what to do when they getthere, is handled by the Ta
ti
al Planning module.Hot SpotsStates: In some games the three default states will not beenough and this is why the user of the framework should beallowed to add extra states depending on the game. This
ould be things like a Creeping state, a Push state et
.Con�gure Standard States: Even though the framework pro-vides three standard states that
overs all kinds of RTSgames, the user of the framework must
on�gure these mod-ules to suit the game in question best possible.Standard ImplementationThe standard implementation will in this
ase be the three default statesprovided with the framework and a standard
on�guration of these.

Page 204 of 273 APPENDIX B. MODULE DESIGN

Figure B.5: The internal ar
hite
ture of the Ta
ti
al Planning moduleB.6 Ta
ti
al PlanningThis module will handle all unit a
tions that is not dire
tly asso
iated withResour
e Management or Base Building. The internal ar
hite
ture of themodule
an be seen in Figure B.5. Cir
les are internal sub-modules, boxesrepresent other modules or knowledge bases and arrows indi
ate how theyin�uen
e ea
h other.B.6.1 ResponsibilitiesUnit A
tions: This module will
arry out all unit a
tions thatare not resour
e or base building a
tivities.B.6.2 Stru
ture OverviewThis module
onsists of two parts: Unit movement and unit engagement.These two parts have two sub-modules in
ommon: The Evaluation moduleand the Path Planner. Any a
tion must �rst pass through the Evaluationmodule before being
arried out. This module will among other things de
idewhether the AI's for
es are strong enough to engage in
ombat or if theyshould turn and �ee. The Path Planner is not just a normal path�nderbut also takes other fa
tors into a

ount su
h as �ow. The movement part�rst analyses the known terrain, then it �nds a suitable formation for theunits that are to move a

ording to the
olle
ted terrain information. Theengagement part �rst analyses terrain, units and buildings in the
ombatarea. This information is then passed on to the Unit Deployment modulethat will �nd a suitable formation for the units available. It will also de
idewhi
h units are assigned atta
king roles and whi
h are assigned supportingroles. These are then passed on to the Support module and the Targeter.

APPENDIX B. MODULE DESIGN Page 205 of 273B.6.3 EvaluationEvaluation is the �rst module within the Ta
ti
al Planning that is a
tivated.The Evaluation module will �rst determine whether the Ta
ti
al Planningwas triggered due to a movement order, a
hange in unit state or an engage-ment order. Movement orders will be passed on to the Terrain Analyser andso will a
hange in unit state trigger if this means that the unit in questionwill have to be withdrawn from battle. If this is not the
ase
hange in unitstate events will be passed on to the Terrain and Unit Analyser. This isalso the
ase with any engagement order if the Evaluation module de
idesthat the battle is worth engaging. The Evaluation itself will be based on theamount of units, unit strength, strategy and position.Di�erent games require di�erent ways of evaluating a situation. In Star-
raft for instan
e a situation where a player is outnumbered does not ne
es-sarily mean that the player should retreat but perhaps rather kamikaze anddo as mu
h damage as possible before the army is beaten. In War
raft thesituation is quite di�erent as units are more 'valuable' and should be savedas often as possible.ResponsibilitiesReroute Orders: All orders must be
he
ked and de
idedwhether they are movement orders or engagement orders.Situation Evaluation: When fa
ing the enemy this modulemust de
ide whether to �ght or to �ee.Hot SpotsEvaluation Method: The user of the framework must de�nean evaluation method that analyses a given situation andde
ides whether or not to engage.Standard ImplementationThe standard implementation will
ompare the damage output and the totalamount of hitpoints of the two armies and base its de
ision on this.B.6.4 Terrain AnalyserThis module will look at the terrain over whi
h a unit or a group of unitswill move. Essentially it will transform this part of the map into an in�uen
emap that takes every little fa
et into a

ount. This is everything from heightvariations in the terrain, to resour
e
lusters and NPC units. This willresult in a multilevel in�uen
e map that the Formation module
an pla
e

Page 206 of 273 APPENDIX B. MODULE DESIGNthe desired formation on and the Path Planner
an move the unit/unitsthrough.In War
raft the map is so simple that there are no elevations or obje
tsthat units
an hide behind. This means that no matter where the unitsstand they will re
eive full damage from ranged atta
ks. In Star
raft unitsstanding above other units will re
eive a damage redu
tion when �red upon.This is just one of the di�erent aspe
ts the terrain analyser will have tohandle from game to game.ResponsibilitiesTranslate Area Information: The produ
t of this module isa spatial representation of the area that the unit/units mustmove through. This spatial representation must in
ludeall known information of any value to the task of movingthrough the area.Hot SpotsHandling Area Types: The user must de�ne all types of ar-eas that must be a

ounted for in the analysis.Standard ImplementationThe standard implementation will only handle areas in whi
h the units
anmove and areas in whi
h they
annot.B.6.5 FormationThe Formation module is responsible for ordering units in a prede�ned for-mation. It also has to a

ount for
riti
al areas in the terrain or ratherthe in�uen
e map that is re
eived from the Terrain Analyser. This meansthat the Formation module may have to reorder the formation at the
riti
alpoints su
h as
hoke points. All this
an be done by �rst identifying the
riti
al points and afterwards plan the formations that will be used between
riti
al points and in the points themselves.In Command and Conquer the formation used is not really that impor-tant. The only formation detail that is used is mostly keeping artillery atthe ba
k of the army. In Age of Empires, however, the formation is
ru
ial.Tanker units
an keep the enemy at bay while the lighter armoured units
an deal a lot of damage.ResponsibilitiesIdentify Criti
al Spots: The module must be able to identify
riti
al spots - spots that are potentially dangerous.

APPENDIX B. MODULE DESIGN Page 207 of 273Draw Formation: Given the situation a suitable formationmust the found.Hot SpotsIdentify Criti
al Spots: The user must de�ne a method toidentify
riti
al spots. This heavily depends on the terrainand general map stru
ture and is thus game spe
i�
.Formations: Formations vary from game to game given thedi�erent units available in the games and their use. There-fore the user must de�ne a set of formations and their use.Standard ImplementationA few simple formations based on amount of hitpoints and armour will beimplemented by default.B.6.6 Terrain and Unit AnalyserThis module will not only do the same tasks as its
ounterpart the TerrainAnalyser but it will also take units and buildings into a

ount. Furthermoreit will also be able to work with believes of the whereabout and number ofunseen enemy units if su
h exist. The produ
t of this module is a multi-layered in�uen
e map that takes all this into a

ount.In some games towers for instan
e are more of a nuisan
e than a realthreat. The damage output of a tower
annot be used as the only fa
tor tobe taken into a

ount when analysing the threat of a tower from game togame. A weak tower in Command and Conquer
an be ignored while a weaktower in War
raft III may have a side e�e
t su
h as mana drain or a slowinge�e
t that
an have a serious impa
t on the out
ome of a battle.ResponsibilitiesTranslate Area And Unit Information: All relevant infor-mation available must be translated into a usable spatialrepresentation.Hot SpotsHandling Terrain and Unit Types: The analysis that ishandled by default will only be able to handle simple
asesand in order to get good results the user will have to de�nerule sets through the ta
ti
s for all terrains, units and mapspe
i�
 obje
ts.

Page 208 of 273 APPENDIX B. MODULE DESIGNStandard ImplementationIn addition to the fun
tionality found in the Terrain Analyser the standardimplementation of this module will also a

ount for units and buildings. Itwill look at damage output, amount of hitpoints and amount of armour.B.6.7 Unit DeploymentBased on the information passed on by the Terrain and Unit Analyser as wellas a number of knowledge bases this module will de
ide upon the positionand assignments of friendly units during an engagement. Basi
ally it doesthe same as the Formation module but takes the
on
ept a step further bypassing units on to the Support module and the Targeter module dependingwhi
h assignment they have. The formation itself will be handled by a
ombination of the default unit behaviour and the strategy spe
i�
 behaviourde�ned by the ta
ti
s in the
urrent strategy node. In�uen
e maps seemsthe obvious tool to handle mu
h of this work.As mentioned in the Formation module Command and Conquer does notrequire mu
h
onsideration when dealing with positioning. In War
raft IIIhowever light armoured units will die several times as fast as the heavilyarmoured units if atta
ked. As a lot of units
an only atta
k in
lose
ombatthe heavily armoured units will have to be between the enemy and the lightarmoured units.ResponsibilitiesUnit Positioning: When engaging, tanking units will have tobe pla
ed at the front fa
ing the enemy and lighter units ina se
ure distan
e from enemy units. Additionally supportunits have to either be well distributed among friendly unitsor within range of the target enemy units.Unit Task Assignment: Units have to be assigned a task: tosupport or to atta
k. This has to �t with the deployment.Hot SpotsUnit Deployment Plans: Given a strategy and the ta
ti
sde�ned for this strategy, the available units, the terrainand other map spe
i�
 information the user has to de�ne amethod that deploys and assigns a
tions the best possibleway.

APPENDIX B. MODULE DESIGN Page 209 of 273Standard ImplementationBy default the heavily armoured/high hit point units will be pla
ed
loserto the enemy than lighter armoured/low hit point units.B.6.8 SupportThe Support module is responsible for sele
ting the best skills and targets forthe skills for all the units passed on to it. Depending on the
hosen strategysupport unit will be assigned di�erent skills to use on di�erent targets. Thiswill be determined by the ta
ti
s stated in the
urrent strategy node. Ifno su
h rules exist default behaviour will be assigned. The in�uen
e mapsneeded for this module depend on the available support skills.Age of Empires has a fewer means of support available than games likeStar
raft and War
raft. Support in Age of Empires is mu
h less important.In Star
raft the good use of support will be able to win almost any situation.ResponsibilitiesAssign Support A
tions: This module must assign the bestpossible a
tions to all available support units given the avail-able information.Hot SpotsSupport A
tion Rule Set: The user must de�ne a rule setthat di
tates how di�erent support units should rea
t invarious situations. The ta
ti
s in strategy nodes
an over-ride this behaviour if a di�erent behaviour is required in aspe
i�
 strategy.Standard ImplementationThe standard implementation will distribute support a

ording to the ruleset de�ned in Unit Type A
tion.B.6.9 TargeterAll the units passed on to the Targeter module will be assigned an enemy unitto atta
k. The Targeter will have to take
ounter fo
us, fo
using strategi
allyimportant unit and maximising damage (no ex
essive) into a

ount. In orderto do this the Targeter will have to know whi
h unit
ounters whi
h unit anduse this information to assign targets. The Targeter will also have to
onsiderwhi
h target are important to the su

ess of the
urrent strategy.Contrary to many of the other games War
raft III features a series of dif-ferent armour types and atta
k types. Di�erent armour types have bonuses

Page 210 of 273 APPENDIX B. MODULE DESIGNand penalties when hit by di�erent atta
k types. This means that in this
ase the targeter will have to take armour type - atta
k type mat
h-ups intoa

ount when assigning targets,
ontrary to just fo
us �ring.ResponsibilitiesAssign Targets: The Targeter must assign targets to all avail-able units in su
h a way that important enemy units areeliminated, the damage is maximised, and the
urrent strat-egy is not
ompromised.Hot spotsTarget Priority Rule Set: A target priority rule set must bede�ned through ta
ti
s that lists all units and buildings pri-oritised in the order they should be targeted.Counter Table: The user also has to de�ne a table that de-s
ribes the
ounter relations in the game.Standard ImplementationBy default the Targeter will only take the amount of hitpoints and theamount of armour into
onsideration when assigning targets.B.6.10 Path PlannerThe Path Planner is an advan
ed version of a normal path �nder. The PathPlanner has to �nd the fastest path (not ne
essarily the shortest) given aformation, �ow, varying unit speed et
. and on top of this it will have topass assigned unit a
tions on to the Assigned Unit A
tion knowledge base.ResponsibilitiesPlan Best Path: Given formation, �ow, and unit speed, �ndthe best path for ea
h unit that has to be handled.Reroute A
tions: For all units that pass through the Ta
ti-
al Planning module, reroute their assigned a
tions to theAssigned Unit A
tion module.Hot SpotsHot Spot: N/A

APPENDIX B. MODULE DESIGN Page 211 of 273

Figure B.6: Internal ar
hite
ture of the Resour
e ManagerStandard ImplementationThe entire Path Planner will be implemented by default and will a
t on theinformation produ
ed by the Terrain Analyser and the Terrain and UnitAnalyser.B.7 Resour
e ManagerThis module should make sure that there are resour
es enough for buildingunits and buildings. The module is run when there have been assigned work-ers to it, whi
h makes these workers start gathering resour
es. The type ofresour
es gathered should �t the things that have to be
onstru
ted to followthe strategy. When there is a
hange in the strategy or if there is a short-age of resour
es, this module should be a
tivated again. The module shouldhowever anti
ipate the best it
an, what resour
es that will be required. Itshould also be run with some frequen
y to
he
k that it is gathering resour
esin the most optimal way, and that there are no harvesters standing aroundnot gathering, and if there is not enough workers, request that more workersare built.The Resour
e Manager module's ar
hite
ture
an be seen in Figure B.6.Re
tangles represent knowledge bases or other modules and
ir
les are thesub-modules. The following present the responsibility of the Resour
e Man-ager module, and present ea
h of the sub-modules, and dis
uss how thesub-modules
omplete their tasks.B.7.1 ResponsibilitiesDetermine Resour
e Requirements: The module most de-termine what resour
es that are ne
essary to rea
h the tar-get strategy.

Page 212 of 273 APPENDIX B. MODULE DESIGNAnalysing Resour
es: The module must �nd the best pla
esto harvest resour
es.Planning Worker Tasks: The module makes the worker goout and harvest resour
es, and
ome ba
k and deposit them.Optimise Gathering of Resour
es: Finally this modulemakes sure to optimise the gathering of resour
es.B.7.2 Stru
ture OverviewThe module
onsist of four sub-modules. When a
hange have happenedto the strategy, the new resour
e requirements are found by running theDetermine Resour
e Requirements module. Then it is analysed where thebest pla
e to gather resour
es are. After this the Planning Workers Tasksmodule will make sure that the workers that have been assigned to themodule are sent to gather those resour
es. When the workers have rea
hedtheir goal this module will make the workers gather the resour
e and makesure that it gets ba
k to the depot, and redo this
y
le. On
e in a while theOptimise Gathering of Resour
es module is run, to make sure that resour
egathering is optimised.B.7.3 Determine Resour
e RequirementsThis sub-module �gures out the anti
ipated resour
e needs, a

ording to theBuild Plan, Unit Plan and Resear
h Plan. These plans
ontain the list ofwhat is going to be built or resear
hed within the next short time span.These plans are
onstru
ted from the Target Strategy Node, so indire
tly theresour
es requirements are determined from this. Depending on what kindof resour
e these plans might require the most, the harvesting/produ
tionof this resour
e will be in
reased. Using the Build/Unit/Resear
h Plan it
an also a

ount for what resour
es will be required in the near future. TheStrategi
 Planning
an tell this module to �nd a pla
e to put an expansion.This is told to the Resour
e Analyser, whi
h will make sure that it �nds aspot to expand on.ResponsibilitiesResour
e needs: The module must determines what resour
esare required, to
onstru
t all the things that are in the Build,Unit, and Resear
h Plan.Hot SpotsN/A

APPENDIX B. MODULE DESIGN Page 213 of 273Standard ImplementationThe standard implementation will try and determine where the best pla
eto harvest ea
h of the resour
e types found in the knowledge base Resour
eTypes. If there is not enough resour
es to ful�l what should be built a

ordingto the plans, an expansion is requested to be
onstru
ted.B.7.4 Resour
e AnalyserThis module analyses where to harvest resour
es, making sure that the work-ers do not go to far to get them. When a de
ision has been made to
reatean expansion, this is the module that should �nd the best area to pla
e this,a

ording to where there are resour
es.ResponsibilitiesBest Resour
e Positions: The module has to �nd the bestpla
es to harvest all the types of resour
es that are required.Best Pla
e to Expand: Also the module should �nd the bestposition to pla
e an expansion, a

ording to its knowledgeabout the resour
es on the map.Hot SpotsN/AStandard ImplementationThe standard implementation will assign the workers to go to the nearestavailable resour
e of the type that needs to be gathered. In the
ase thatthere is already assigned the maximum amount of workers to gather from thatresour
e, the se
ond nearest will be found, and so forth until an availableresour
e is found. If non is found, it will be assigned to gather anotherresour
e type. When requested to �nd an expansion, the
losest grouping orposition of resour
es outside the
urrent base and expansions is found.B.7.5 Worker PlannerThis sub-module assigns workers to harvesting jobs, by looking if there isany workers that is not doing anything. If there are no available workersit should
onsider if some workers should be reassigned to new tasks. To
onsider this, the distan
e from where the workers are to where they arerequired and the type of job in question, should be
onsidered. This modulealso makes sure to re-assign workers when they have
ompleted parts of aharvesting task, like moving from the resour
e ba
k to the depot or dumping

Page 214 of 273 APPENDIX B. MODULE DESIGNthe resour
es into the depot. This behaviour of walking ba
k and forth is
ontrolled by a simple state ma
hine.ResponsibilitiesHarvest Resour
es: The module must issue the
ommands tomove the workers to the resour
es they should harvest. Themodule then makes the workers harvest the resour
es. Afterthis the module moves the workers ba
k to the resour
edepot, and deposit the resour
es.Hot SpotsN/AStandard ImplementationThe standard implementation will make sure that the workers are movedfrom the depository and to the resour
e, and when either is rea
hed theworker will dump or harvest a

ordingly. If there is a
hange in the distri-bution of what resour
es that are required, the module will
onsider if someworkers should be assigned to gather a di�erent type of resour
e.B.7.6 Optimise Resour
e GatheringThis module makes sure that there are not assigned too many workers toharvest from the same resour
e, be
ause this will be ine�
ient, and will just
reate a queue of workers, that are not able to do anything. But if thereis too few, this module will make sure that there will be
onstru
ted moreworkers. When these workers are built, the next time the Resour
e Mangeris run, these workers will automati
ally be assigned to gather resour
es.ResponsibilitiesOptimal Use of Resour
es: The module makes sure that ifthere are not enough workers assigned on the same resour
e,more workers will be
onstru
ted.Hot SpotsNumber of workers at same resour
es at same time:There
an usually be a
ertain number of workers harvest-ing from the same resour
e at the same time. This numberis used to
alibrate the number of workers that should beassigned to a
ertain resour
e.

APPENDIX B. MODULE DESIGN Page 215 of 273

Figure B.7: Internal ar
hite
ture of the Base Building moduleStandard ImplementationThe standard implementation will look at the resour
es harvested from, andidentify if there is room for more workers to harvest from this resour
e. Ifthere is a demand for this resour
e type it will make sure that more workerswill be
onstru
ted to harvest from this resour
e.B.8 Base BuildingThis module
reates the stru
ture of the base, in
luding pla
ement, andrepairing of buildings. When the game starts this module should be triggeredto
reate a starting plan of how to build up the base. If the strategy
hangesthis modules should also be triggered to �gure out what additional buildingsthat might be required. Later when a building is
omplete, this moduleshould
he
k if there are any additional buildings that should be built. If arequest
omes from the Strategi
 Planning about
reating an expansion, thisshould be taken into
onsideration when planning what buildings to
reate.The ar
hite
ture of the Base Building module
an be seen in Figure B.7.Cir
les are the sub-modules and the re
tangles represents knowledge basesor other modules. The following will present the responsibility of the BaseBuilding module, and present ea
h of the sub-modules, and dis
uss how thesub-modules
omplete their tasks.

Page 216 of 273 APPENDIX B. MODULE DESIGNB.8.1 ResponsibilitiesAnalyse Terrain and Resour
es: Responsible for analysingthe environment for the most suitable positioning of build-ing types.Building Pla
ement: Uses what have been analysed from theenvironment and what is best for the strategy and from this�nd the best building pla
ement.Planning and Prioritising Buildings: Some buildings aremore important to build than others when following
er-tain strategies. This should be planned, and the
urrentresour
e amounts should also be taken into
onsideration.Repair of Buildings: When buildings are damaged, there isassigned worker units to repair these buildings.B.8.2 Stru
ture OverviewThis module is divided into sub-modules that
an handle ea
h of the sub-tasks ne
essary to
reate and maintain a base. It is made general in the waythat the user should de�ne what kind of
riteria should be met, and the bestbase layout a

ording to the strategy. The analysis of the map that is
reatedin the Terrain and Resour
e Analyser is used in
ombination with the basebuilding templates in the Building Manager module, to �nd what positionea
h building should have. Some buildings have higher priority than others,and some
an only be built if other buildings have been built in advan
e.B.8.3 Terrain and Resour
e AnalyserThis sub-module should provide analyses of the terrain for optimal defensivepositions of buildings, and �nd the best resour
e gathering lo
ations. Thisis done by
reating in�uen
e maps.ResponsibilitiesAreas of Interest: The module must �nd the areas of interest,like for instan
e lo
ations with many resour
es.Hot SpotsDe�ne Analyser: When looking for the di�erent things in theterrain. The user should de�ne how to analyse for the ter-rain resour
es and su
h.

APPENDIX B. MODULE DESIGN Page 217 of 273Standard ImplementationThis is very spe
i�
 from game to game, but there will be an example of howto use in�uen
e maps to analyse a map. This part is so spe
i�
 to the gametype, what resour
es there is, and how the terrain is
reated so no standardimplementation is possible.B.8.4 Building ManagerThis sub-module �gures out what the best pla
ement of the buildings isa

ording to terrain, resour
es, and the
urrent strategy. This module isused when there have been strategi

hanges, or there have been an atta
kfrom the enemy, and parts of the base have to be rebuilt. If a lot of resour
eshave been harvested and through this,
hanged the defensive stru
ture of thebase, or there have be
ome room for more buildings, this module should alsorea
t, so that the defen
e of the base
an stay inta
t, or better pla
ement ofbuildings
an be found.ResponsibilitiesPosition: The module must in a

ordan
e to the base buildingtemplates and the analysis of the terrain �nd the best pla
eto pla
e buildings.Hot SpotsBase Building Templates: Base building templates are usedto de�ne the layout of the base, and through that indire
tlydi
tate the position of buildings.Standard ImplementationThe standard implementation uses the analysis and
ombines this with thebase buildings template and the target strategy, to de
ide where to pla
e ea
hbuilding. The use of di�erent in�uen
e maps
an di
tate optimal pla
ementof the di�erent types of buildings.B.8.5 Building PlannerThis module sends a request to the A
tion Planner about the
onstru
tionof a building, whi
h will make sure that there are resour
es available forthe
onstru
tion. When the request is authorised, a worker is moved towhere the building should be pla
ed. Then the worker is assigned the a
tionof
onstru
ting the building. A request from the Strategi
 Planning about
reating an expansion
an be re
eived. This event
ontains an area where

Page 218 of 273 APPENDIX B. MODULE DESIGNthe expansion should be pla
ed and an estimated time before this area is
leared for enemy troops so that
onstru
tion
an begin.ResponsibilitiesControl Workers: The module makes sure that ea
h workeris moved to the position where the building is to be
on-stru
ted.Expansion Constru
tion: The module sends a work to thearea where an expansion should be built, so that the workeris there, when it is estimated that the area is
leared.Hot SpotsN/AB.8.6 Repair ManagerThe Repair Manager handles situations where some buildings are or havebeen under atta
k. Then it should make sure that some workers will beassigned to repair these buildings. If there are enemies near the buildings, itshould be
onsidered whether to let the workers repair the building.ResponsibilitiesMove Unit to Building: The module moves the worker to thedamaged building.Repair Buildings: When a worker is right next to a damagedbuilding, it should start repair that building.Hot SpotsN/AB.9 LearningLearning is responsible for evaluating and updating those prior knowledgebases that
an be updated. The internal stru
ture of the Learning module
an be seen in Figure B.8.B.9.1 ResponsibilitiesEvaluate and Revise Known Strategies, Ta
ti
s and Base Building Templates (BBT):There is no guaranty that a strategy, ta
ti
 or a base build-ing template is perfe
t from the start. In order to be able

APPENDIX B. MODULE DESIGN Page 219 of 273

Figure B.8: The internal ar
hite
ture of the Learning moduleto improve these the AI must
onstantly be able to evaluatetheir su

ess and be able to revise them to get a betterresult.Learn New Strategies, Ta
ti
s and BBT: Playing againstdi�erent opponents or perhaps even the same opponent willmake the AI fa
e new strategies, ta
ti
s and base buildingtemplates. In order to evolve and improve the AI, it hasto learn these new things both to be able to re
ognise thesame patterns in a later game and to be able to use themitself.Update Enemy Knowledge Base: From time to time theprior knowledge base have to be updated with new infor-mation. The learning module is responsible for updatingthe Enemy Knowledge base.B.9.2 Stru
ture OverviewThe overall stru
ture of this module
onsists of three parts: Evaluate and re-vise, learn and update knowledge base. Both the evaluate and revise as wellas the learn parts furthermore
onsist of three parts. One for: Strategies,ta
ti
s, and base building templates. The general stru
ture of the evalu-ate and revise known strategies and evaluate and revise known ta
ti
s isidenti
al, whi
h means only one will be explained in detail.

Page 220 of 273 APPENDIX B. MODULE DESIGNB.9.3 Evaluate and Revise Known StrategiesThis module is to look ba
k on the strategies that the AI has used and seeif there are anything that
an be
hanged or optimised to make the strategymore e�
ient. In order to do this three fun
tions are needed: One fun
tionto evaluate whether the strategy did good or bad, another fun
tion to �ndthe key fa
tor that made the strategy good or bad and �nally a fun
tionthat updates the strategy to either fo
us more on the key fa
tor or
orre
tthe mistake. The �rst fun
tion will have to have some memory of two ormore game states while using the strategy among whi
h the initial state andthe end state should be represented. Using these states it should be able toevaluate whether the AI is in a better situation after using the strategy ornot. It should of
ourse take other fa
tors into a

ount. The enemy
ouldhave made mistakes and the AI may not have enough information about theenemy to draw a good
on
lusion. The se
ond fun
tion will have to have alog of all de
isions made throughout the strategy in order to identify whatmade the di�eren
e. To be able to do this it will also need some way oflinking e�e
ts to the de
isions that
aused them. Finally the third fun
tionwill have to �nd the rule,
ontrolling the de
ision that was identi�ed in allthe a�e
ted strategy nodes and
orre
t it so that it now
orresponds to the
on
lusion of the evaluation.The fa
tors that need to be
onsidered when evaluating a strategy varyfrom game to game. In Command and Conquer the fa
tors are more aquestion of optimisations and in War
raft it is all about
ountering the enemyand making de
isions, that is, anti
ipating the enemy's a
tions and engagein
ombat at favourable times.ResponsibilitiesEvaluate Known Strategies: In order to be able to improvestrategies the AI must de
ide whether or not a strategy isworking as it should.Revise Known Strategies: If a strategy is found not to beworking perfe
tly the AI must identify whi
h fa
tors
an be
hanged or improved.Hot SpotsEvaluation Method: This method has to de
ide whether ornot the
urrent strategy is working as it should. This is doneby looking at the progress made sin
e applying the strategy.Identify Key Fa
tors: After de
iding whether the strategywas e�e
tive or not the key fa
tors for this out
ome have

APPENDIX B. MODULE DESIGN Page 221 of 273to be identi�ed so that they
an either be enhan
ed or
or-re
ted. If the strategy worked �awlessly then nothing shouldbe
hanged.Find Improvements: After the key fa
tors have been identi-�ed bad e�e
ts have to be
orre
ted and good e�e
ts ex-ploited.Standard ImplementationBy default this module will look at the present situation and the situationat last evaluation. The evaluation will simply be based on the AI's own
on-dition
hange and the enemy's
ondition
hange from the previous situationto the present situation.B.9.4 Evaluate and Revise Known Ta
ti
sLike the previous module this module will also look ba
k and see if anything
an be
hanged or optimised, but this time it is the ta
ti
s that are in fo
us.Basi
ally the three fun
tions needed are more or less the same.Also here the there are di�erent important fa
tors all depending on thegame. In Command and Conquer the positioning of the various units is notas important as in Age of Empires, also the general use of support varies.Some games are almost without support while in other games it is mostimportant.ResponsibilitiesEvaluate Known Ta
ti
s: Evaluate whether a ta
ti
 workedas was intended.Revise Known Ta
ti
s: If the ta
ti

an be improved in anyway, do so.Hot SpotsEvaluation Method: This method has to evaluate whetherthe ta
ti
 had the intended e�e
t or not.Identify Key Fa
tors: Knowing the out
ome this methodhas to identify the key fa
tors that lead to this.Find Improvements: Finally improvements have to befound. This
an be anything from an alternative deploy-ment to a di�erent unit utilisation.

Page 222 of 273 APPENDIX B. MODULE DESIGNStandard ImplementationThis module will basi
ally use the same method of evaluating a ta
ti
 as wasused in the strategy evaluation.B.9.5 Evaluate and Revise Known BBTThis module will have to deal with �nding strong and weak points in theBBT using information gathered from games. The result will be templatesbetter suited to deal with a
ertain map or strategy.Both the evaluation and the revision of BBT are di�erent from game togame. In some games only the defensive buildings like towers and walls areof any importan
e, but in most other games the pla
ement of all buildingsis important.ResponsibilitiesEvaluate Known BBT: On
e in a while the AI will have tolook at its BBT and see if anything
an be improved. The
ause for this
an be anything from a bad out
ome of abattle in the AI's base in whi
h a di�erent base stru
turemight have made the out
ome di�erent to optimisation inresour
e gathering.Revise Known BBT: If the result of the evaluation is thatsomething has to be improved, the areas that
an be im-proved must be identi�ed and alternatives found.Hot SpotsEvaluation Method: Given the out
ome of a battle or re-sour
e gathering optimisation, does the
urrently used BBTneed to be improved?Identify Key Fa
tors: Identify the fa
tors that were respon-sible for the out
ome.Find Improvements: In
ase of a bad out
ome, steps mustbe taken towards a new BBT. This
an either mean a newbuild order or a di�erent building pla
ement.Standard ImplementationThe standard implementation will re-evaluate: The positioning of harvestrelated buildings if resour
e gathering needs to be improved, build orders
ompared to the used strategy, and the positioning of defensive stru
turesbased on battles in the base.

APPENDIX B. MODULE DESIGN Page 223 of 273B.9.6 Learn New StrategiesBy observing the enemy or an ally the AI may gather enough informationto model a
omplete strategy node for the player. If the AI does not knowthis strategy already it will add it to the strategy tree in Map Knowledge,Enemy Knowledge, Game Type knowledge and Known Strategies.The task of learning new strategies does as su
h not vary from game togame. The strategy nodes themselves do however. The nodes have to beable to model a
omplete state of a game and in order to do so all units,buildings, upgrades and other map related information must be a

ountedfor.ResponsibilitiesFitness: The �rst step in learning a new strategy is in fa
t tore
ognise that it is a new strategy. The �tness fun
tion willtry to mat
h the seen strategy to known strategies in theKnown Strategies knowledge base. If the strategy deviatesfrom all known strategies by more than a
ertain value, itwill
onsidered a new strategy.Re
ord New Strategy: When the strategy is identi�ed as anew strategy the a strategy node has to be �lled with allknown information about it and inserted into Map Knowl-edge, Enemy Knowledge, Game Type knowledge and KnownStrategies.Hot SpotsFitness Fun
tion: The user must de�ne a fun
tion to handlethe �tness problem mentioned above.Standard ImplementationThe standard implementation of this module will simply insert a strategynode based on the knowledge found in the In-Game Enemy Knowledge baseif this deviates more than a
ertain threshold from any known strategy.B.9.7 Learn New Ta
ti
sThe AI
an likewise see new ta
ti
s be used
ombined with known or newstrategies. When it sees a new ta
ti
, it will have to add this to the strategynode. That is, add the set of rules that des
ribe how this is
arried out.The idea behind the Learn New Ta
ti
s module is as su
h not game spe-
i�
 but di�erent games have di�erent rules and di�erent a
tions available.

Page 224 of 273 APPENDIX B. MODULE DESIGNThis means that the ta
ti
s themselves and the rules that they
onsist ofhave to be de�ned from game to game as well as the work done on these.ResponsibilitiesFitness: The module will �rst have to �nd the strategy nodethat is
urrently used in the strategy tree. If this node doesnot
ontain the ta
ti
, the ta
ti
 is indeed a new ta
ti
 andshould be added.Re
ord New Ta
ti
: The set of new rules representing theta
ti
 must be added to the strategy node. If this means asubstitution of the old ta
ti
 a new strategy node must bemade and the ta
ti
 inserted in this.Hot SpotsInsert New Ta
ti
: The new set of rules have to be de�nedand inserted so that it
an be inserted into the right strategynode. The rules are game spe
i�
 so the user is responsiblefor all work done upon these.Fitness Fun
tion: The user must de�ne a fun
tion to handlethe �tness problem mentioned above.Standard ImplementationThe standard implementation will simply try to imitate the observed a
tions.It will identify a
tions done by the involved units and base the rules on these.B.9.8 Learn New BBTWhen s
outing an enemy base or seeing how allies build their bases thismodule must
ompare the base design to its templates and de
ide whetheror not the seen design is a good one. If it is indeed a good design it mustre
ord the design as a template and assign the needed numbers(build order,et
.).Not only the buildings themselves are di�erent in di�erent games, butalso the rules de�ning how and where they
an be built vary. In War
raftI buildings
ould only be built next to roads, in Command and Conquerbuildings have to be built
lose to other buildings unless it is a
ommand
entre, and in Age of Empires and War
raft II and War
raft III buildings
an be built anywhere that is free of obsta
les.

APPENDIX B. MODULE DESIGN Page 225 of 273ResponsibilitiesFitness: Like the other learning modules this module also �rsthas to identify the BBT as a new BBT. This is done bysear
hing for the BBT among all the known BBTs. Thedeviation threshold may vary from game to game.Create New BBT: When a new BBT has been identi�ed itmust be added to the BBT knowledge base.Hot SpotsFitness Fun
tion: The user must de�ne a fun
tion to handlethe �tness problem mentioned above.Standard ImplementationThis module will identify important spots su
h as the lo
ation of resour
esand entran
es to the base and re
ord the pla
ement of other buildings relativeto these.B.9.9 Update Enemy KnowledgeThis module will simply add information to Enemy Knowledge updatingEnemy Knowledge with information gathered from the game.When playing any game it is always useful to know how the enemy hasplayed previously. The strategies are modelled by strategy nodes and thestrategy trees will model strategy dependen
ies and frequen
ies. The onlygame spe
i�
 task is to �ll out new strategy nodes.ResponsibilitiesUpdate Enemy Knowledge: The soul purpose of this mod-ule is to update the prior knowledge base: Enemy Knowl-edge.Hot SpotsCreate New Strategy Node: As already mentioned the
re-ation of the strategy node will have to be de�ned by theuser of the framework.Standard ImplementationThe strategy node will be added to the knowledge base. If the strategynode is already present in the strategy tree the edges leading to it will bein
remented by 1.

Page 226 of 273 APPENDIX B. MODULE DESIGN

Figure B.9: Internal ar
hite
ture of the A
tion PlannerB.10 A
tion PlannerThis module takes
are of the �nal operations ne
essary to intera
t with theGDF. It makes sure that units are being build, and that te
hnology is beingresear
hed. It s
hedules the operations that is most
riti
al to be performed�rst, and then send these operations to the GDF.The internal ar
hite
ture of the module
an be seen in Figure B.9. Cir-
les in the �gure represents internal sub-modules and boxes represents othermodules or knowledge bases. The following will �rst dis
uss the overall re-sponsibilities of the A
tion Planner module, and then present ea
h of thesub-modules in the internal ar
hite
ture along with a dis
ussion of how thesub-module is to
omplete its task.B.10.1 ResponsibilitiesUnit Produ
tion: The module is responsible for
reating allunits, and �gure out whi
h have the highest priority.Resear
h: The module prioritises the resear
h required to ful�lthe strategy.S
hedule all A
tions: The module takes all a
tions and plansthe exe
ution of these a

ording to priority and
urrent re-sour
es available.Using the GDF: The module interfa
es with the GDF so thea
tions that is
reated in the framework
an be mapped toone or more a
tions in the GDF.

APPENDIX B. MODULE DESIGN Page 227 of 273B.10.2 Stru
ture OverviewEa
h of the sub-modules are responsible for di�erent tasks. The module is
reated so that it reads proposed a
tions of the other module in the AssignedUnit A
tions and Assigned Building A
tions knowledge bases, and ends upwith a list of instru
tions that
alls the GDF, in the way the user has de�ned.B.10.3 Unit PlannerThe Unit Planning sub-module should make sure that there are enoughworkers, to gather resour
es and build buildings. It should also make surethe �ghting units that �t the
urrent strategy is
reated, and the right typeof s
outing units is produ
ed. These units are put into the Unit Plan that
ontains the list of units that should be
reated. They are then passed on tothe a
tion s
heduler that �gure out when it is possible to start produ
tionof the units.ResponsibilitiesUnit
onstru
tion: The module must �gure out what unitsshould be
onstru
ted in a

ordan
e to the strategy.Hot SpotsPrioritisation of unit types: The type of units that have thehighest priority should be de�ned.Standard ImplementationThe implementation of this module will take the unit types in the targetstrategy and try and
onstru
t the units, so that the distribution of ea
hunit type is always the same as in the strategy.B.10.4 Resear
h PlannerThis module should make sure that the Te
hnology Tree is resear
hed in theway that best �ts the strategi
 plan. It will
reate a Resear
h Plan. This plan
ontains a list of the things that should be resear
hed, and in what order.Ea
h time it is possible the next thing that should be resear
hed is sent tothe a
tion s
heduler, whi
h will start this resear
h when it has resour
es andtime available for this.ResponsibilitiesResear
h te
hnology: The module must �gure out what te
h-nology to resear
h in a

ordan
e with the strategy.

Page 228 of 273 APPENDIX B. MODULE DESIGNHot SpotsN/AStandard ImplementationThe standard implementation will take the target strategy, and with the useof the te
hnology tree �gure out how to get to the te
hnology level that isrequired to follow the strategy.B.10.5 A
tion S
hedulerThis module should s
hedule all operations, making sure that the most ur-gent ones are done �rst. Be
ause of simulating a human, it should not bepossible to do an unlimited amount of operations in one game ti
k. It shouldalso take into
onsideration what resour
es are available, and what is goingon at the moment, if the AI is in a battle, it should prioritise after this.Ea
h unit a
tion that is pla
ed in the Assigned Unit A
tion knowledge baseis performed.ResponsibilitiesPrioritise Constru
tion: There are limited resour
es, and themodule must �gure out whi
h
onstru
tions have the highestpriority, and should be
onstru
ted �rst.Prioritise A
tions: If a unit is requested to do more than onea
tion at the same time, it should �gure out what a
tionhave the highest priority.Hot SpotsPrioritising s
heme: Depending on how the game is, there isused di�erent prioritising s
hemes, to tell what
onstru
-tions and a
tions have the highest priority, in a

ordan
ewith all known knowledge.Standard ImplementationA simple prioritising s
heme will be implemented as default.B.10.6 Interfa
e GDFThis interfa
e should make sure that the operations s
heduled will be mappedto operations that
an be done in the GDF.

APPENDIX B. MODULE DESIGN Page 229 of 273ResponsibilitiesIntera
tion with GDF: The module should make sure thatthe a
tions are performed in the GDF.Hot SpotsA
tions: The entire module is a hot spot, be
ause dependingon how a
tions are done in the GDF it should be performedin di�erent ways.Standard ImplementationThere is no standard implementation be
ause this module is
ompletely GDFdependent, so there
an be no standard implementation of this. There is onlyde�ned an interfa
e that this module should implement, and this interfa
etakes a list of a
tions as input.

APPENDIX C. KNOWLEDGE BASES Page 231 of 273
Appendix CKnowledge BasesThis
hapter presents all knowledge bases within the framework.C.1 Prior Knowledge BasesMap Knowledge: This area represents knowledge about the map terrain,map size, resour
e lo
ations, strategi
 and ta
ti
al important lo
ationset
.Enemy Knowledge: Experien
es against players throughout severalgames will give the player an idea of how the enemy player thinksand what kind of strategies she uses. This prevents the player fromlosing to the same strategies again and again, against the same oppo-nent, as she is
apable of trying new things and thereby
ounteringthe opponent's strategy. This of
ourse only applies to players of equalskill level in all areas, be
ause knowing the opponent's strategy willoften not be enough for novi
e players to beat professional players.Gametype Knowledge: Depending on whether the game played is a teamgame, a 1on1 game or an FFA (Free For All) game, the strategi

on-siderations
hange.Known Strategies: Most players have a number of strategies they haveeither invented for themselves, learned from wat
hing other players orfound on the Internet. This area a�e
ts both the number and qualityof strategies used by the player, but also the
apability of predi
tingthe opponent's strategy, and knowing how to
ounter it.Known Build Orders: In all RTS games the start of the game is very im-portant and an e�e
tive build order
an prove invaluable. The buildorder de�nes in whi
h order to build everything su
h as workers, build-ings and
ombat units and also spe
i�es what ea
h worker should bedoing at any given time. A build order is often used in
onne
tion

Page 232 of 273 APPENDIX C. KNOWLEDGE BASESwith a
ertain strategy trying to maximise the player's resour
es andgetting to a
ertain point in the strategy as fast as possible.Resour
e Types: This knowledge base de�nes what kind of resour
es areavailable in the game.Te
hnology Tree: This knowledge base de�nes game spe
i�
 building de-penden
ies, unit dependen
ies and resear
h dependen
ies as well asresour
e
ost for everything in the tree. Furthermore, it in
ludes knowl-edge about what a
tions ea
h unit or building is
apable of.Base Building Templates: Contains templates for stru
turing base build-ing. These templates also
ontains a prioritised list of buildings to build�rst for ea
h building plan.Ta
ti
al Knowledge: A knowledge base des
ribing all ta
ti
s possible in a
ertain game. These are essentially also present in the Known Strate-gies knowledge base, but is here hidden within the di�erent strategynodes. This knowledge base is basi
ally for easy referen
ing the di�er-ent kinds of ta
ti
s.C.2 In-Game Knowledge BasesOpponent Model: Contains information about the
urrent strategy of theenemy, in
luding a strategy tree and
urrent node information for theenemy. It also spe
i�es beliefs about attributes that have not beens
outed, whi
h are there only to represent what the AI
urrently thinksthe opponent is doing. All updates in
ludes a time stamp, whi
h allowthe AI to give less importan
e to variables not updated for a long time.In-Game Enemy Knowledge: Contains the position of ea
h enemy unit
urrently visible on the map and knowledge about where
ertain unitshave been seen earlier (So the AI do not forget enemy units when theyenter fog of war)Assigned Unit A
tions: Information about ea
h
ontrolled unit and the
urrent a
tion assigned to it.Assigned Building A
tions: Information about ea
h
ontrolled buildingand the
urrent a
tion assigned to it.Unit State: Contains a
olle
tion of all
ontrolled units and the state ea
hof them are in.Building State: Contains a
olle
tion of all
ontrolled buildings and thestate ea
h of them are in.

APPENDIX C. KNOWLEDGE BASES Page 233 of 273Current Strategy Node: Maintains the
urrent strategy node for the AIplayer.Goal Strategy Node: Des
ribes the goal strategy node.In-Game Own Knowledge: Contains the position and
urrent status ofall friendly units and buildings.Building Plan: Contains the
urrent building plan for the AI's base.Unit Plan: Contains information about whi
h units to build and in whatorder.Resear
h Plan: Contains information about whi
h resear
h upgrades topur
hase and in what order.Mission Knowledge: Contains information about di�erent missions thatshould be exe
uted in a

ordan
e with the
urrent strategy. Ea
h mis-sion is noted along with the goal of the mission and the units assignedto perform it.Dynami
 Map Knowledge: In
ludes dynami
 elements su
h as resour
elo
ations and amounts. Will di�er a lot depending on the game inquestion.Dynami
 Obsta
les: Contains the position of all obsta
les
urrently inview that are able to move from one game ti
k to another.

APPENDIX D. TEST MODEL Page 235 of 273
Appendix DTest ModelBased on the human model des
ribed in Chapter 3 several di�erent areashave been found that is handled by the human player. To test the AI's
apabilities in ea
h of these areas several features have been found thattogether des
ribe how well or how bad the AI handle the same areas. Atable showing an overview of the AIs in all the games tested
an be found inAppendix E.1. A mark in one of the squares means that the AI, in the gamereferred to, is
apable of handling the des
ribed situation. If several di�erentquestions are proposed a mark means that the majority of the questions arereasonably handled and the main question satisfa
tory dealt with.Below ea
h area is listed along with the
hosen situations, ea
h situationdes
ribed for
lari�
ation of the purpose of the situation, and the way thisis tested.D.1 Strategi
 PlanningUsing Counters: If the enemy has
hosen a spe
i�
 strategy most gameso�er a
ounter to this spe
i�
 strategy. Any human player would tryto
ounter the strategy as soon as she dis
overed what was going on.Is the AI
apable of this? This
an be tested rather easily. The testerjust
hooses an extreme strategy that is a strategy that will resolve invi
tory if not
ountered, but on the other hand
ountered rather easilyif measures are taken towards this.Exploiting Weak Spots: Upon s
outing an enemy base a human playerwould immediately identify a weak spot, if any exists. She will thenuse this information when atta
king. The AI
an be tested for this
apability by identifying the most likely spot to be atta
ked by theAI. This spot is then forti�ed with a lot of defensive buildings whileleaving a di�erent less likely spot to be atta
ked defen
eless.Strategi
 Variation in one Game: Does the AI vary its strategy

Page 236 of 273 APPENDIX D. TEST MODELthroughout a single game? If, for instan
e, the AI has
hosen a strat-egy at game start and this strategy fails, will it then try to
hange itsstrategy, perhaps even towards
ountering the enemy strategy? Thisis tested by simply noting the strategy that the AI is using at the startof the game. If the AI does not
hange the strategy (unit
ombination,point of atta
k, et
.) even when losing, it is in
apable of this.Strategi
 Variation Game to Game: Does the AI
hange its strategyfrom game to game? A human player would
hange her strategy fromgame to game espe
ially when playing against the same opponent. Bydoing this, she is less likely to let her opponent know what she is upto. The AI is tested by simply playing a series of games and observingwhi
h strategy the AI
hooses.Reasonable Expansions: This question a
tually
overs two questions: Isthe AI able to
hoose a good time for expanding? And does it
hoose agood spot for expanding. The �rst question is hard to test, be
ause itis based upon the
hosen strategy and general game experien
e. Hereit is up to the tester to judge how well this is done. The other questionis a bit simpler to test. There are several
riteria for a good expansionsite: Is it
lose to the main base? Is it well hidden? Is the harvestingbuilding
lose to the resour
es? Is the expansion well-pla
ed in relationto the enemy?Using Map: Being able to use the map
an put the AI in favourable po-sitions when �ghting, prevent it from falling into ambushes at badlo
ations, and even open the possibility for using map spe
i�
 strate-gies. This
an be tested by trying to lure the AI into an ambush in a
hoke point, using high ground against it, and also observe, whether itis trying to do the same to the tester.Good Build Order: A good build order is
ru
ial, espe
ially in the earlystages of the game. This
an be tested by observing the AI throughoutthe �rst 3-5 minutes and see how well it manages buildings, workersand resour
es
ompared to the
hosen strategy.D.2 Ta
ti
al PlanningUsing Formations: Using formations
an prevent the wrong units frombeing exposed to damage and it generally means that the units endup in the position that they were designed for when entering a battle.This
an be tested by observing how the AI moves its army. This isespe
ially the
ase when entering a battle, or just if the army
onsistsof di�erent units of varying movement speed.

APPENDIX D. TEST MODEL Page 237 of 273Map Considered when Moving: How does the AI handle
hoke points,exiting transports and other map spe
i�
 situations?Is it just pushingthe army through the hole as fast as possible, letting the �rst units walkon ahead of the rest of the army or is it keeping the army gathered?Is the AI avoiding goose walk? This is tested by observing the AI insu
h a situation.Using Ta
ti
al Manoeuvres: Does the AI use ta
ti
al manoeuvres? Ata
ti
al manoeuvre
an be anything from trying to �ank the enemy toget through the lines and atta
k the light armoured units at the ba
k,to lure the enemy into a bad lo
ation. The possibilities of ta
ti
almanoeuvres vary from game to game.Measure Own Str. vs Enemy Str.: How well does the AI measure itsown strength
ompared to the strength of the enemy? This
an beseen when the AI atta
ks with an inferior army. What does it do whenit sees the enemy army? Does it atta
k anyway or retreat to pi
k upmore units?Staying in Control of Units: An unattended army
an easily be dividedby atta
king one of the units at the perimeter of the army and run away.In most
ases the AI in ea
h unit will make the atta
ked units and theimmediate surrounding units to follow the atta
ked. The atta
ker isthus able to split up an army and deal with ea
h portion separately.How well is the AI at dealing with this?D.3 Mi
romanagementSaving Hurt Units: If the game features healing (either
reature regener-ation or by support) it is in most
ases an advantage to save as manyunits as possible throughout a battle. As soon as a unit is severelyhurt, it should either be removed from the battle �eld or at least fromthe line of �re. This is easily observed in any battle.Fo
us Fire: The
ounter to saving the hurt units is to fo
us all (or at leasta lot of) �re on a single unit in turn so that the opponent has not gottime to remove it from the battle�eld. The idea is also that for everysingle unit, you
an kill, there is one less unit dealing damage to yourarmy. This is also easily observed in a battle.Counter Fo
us: Some games feature unit to unit
ounters. That meansthat given some unit type A there exists a unit type B that is designedto deal with unit type A. During a battle, how well is the AI to ma-noeuvre the units of type B, so that they are fa
ed with units of thetype A?

Page 238 of 273 APPENDIX D. TEST MODELUsing Support: The
orre
t use of support units
an mean the di�eren
ebetween failure or vi
tory. How well is the AI to de
ide, whi
h unitsshould re
eive the support, and when to use support at all (given thatthe use is limited by for instan
e mana). This is harder to observe in abattle as it
an be rather subtle, but it
an easily be seen, if the testeris either in an observing position or is able to review replays.D.4 Resour
e ManagementPredi
ting Resour
e Needs: By predi
ting the resour
e needs, the AI isable to minimise the time it takes to rea
h a
ertain te
hnology level,or the produ
tion of a
ertain number of a spe
i�
 unit. This
an betested by observing the resour
e usage of the AI. Does it sto
k up theresour
es needed to
arry out the strategy, or does it end up waitingfor the required resour
es?Spending Available Resour
es: How well is the AI at spending the avail-able resour
es? There is no point in expanding if the extra resour
esare not spent, or at least taken into a

ount, when evaluating the strat-egy. This is tested by looking at the AI's resour
e amount throughoutthe game. Is it spending the resour
es? Does it upgrade units? Doesit produ
e enough units?Flexible Resour
e Gathering: Some strategies require one bran
h of re-sour
es, and very little or none of another bran
h of resour
es. If su
ha strategy is
hosen by the AI, it would be stupid to gather all kindsof resour
es, instead of just the one that is needed. How well is the AIat this, and does it
hange the resour
e gathering strategy at all, whena di�erent overall strategy is
hosen?D.5 Base BuildingGood Pla
ement of Def. Buildings: A bad pla
ement of defensivebuildings
an mean that they are hardly worth anything at all. Agood pla
ement, however,
an mean that the base is almost impreg-nable. The use of defensive buildings is varying a lot from game togame so it is up to the tester to judge, how well the AI is pla
ingthese.Good Pla
ement of Hrv. Buildings: A good pla
ement of a harvestingbuilding
an mean the speed up of harvesting by several orders ofmagnitude
ompared to a bad pla
ement. Harvesting buildings shouldbe pla
ed as
lose to the resour
e as possible.

APPENDIX D. TEST MODEL Page 239 of 273Sensible Base: How good is the overall building pla
ement in the base?Building pla
ement strategies are also very game spe
i�
, so on
e againit is up to the tester to judge. The tester should however take intoa

ount: How well the base is defended against drops, dire
t atta
kand ultimate weapons (Nu
lear missiles, Area of e�e
t spells, and thelike).D.6 S
outingDoes It S
out At All: This question
overs the entire area as if the an-swer to this question is negative, the following questions will all benegative. Does the AI s
out at all? The alternative to s
outing is
heating by having the entire map available. This is rather easy totest. Does the AI use s
outs, or does it move around like it knowswhat is happening on the entire map? This is best seen by eitherobserving the AI or reviewing a replay.S
outing Map: How well is the AI at s
outing the map? Does it s
outpossible expansion sites for enemy expansions? Does it s
out di�erentstarting lo
ations for the enemy base? Et
.S
outing Enemy: Does the AI s
out the enemy? By s
outing well the AIwill be able to know exa
tly what the enemy is up to and take measuresto
ounter this.S
outing at Sensible Times: Is the AI s
outing at sensible times? Thisis game spe
i�
, but the tester should note how many times the AIs
outs the enemy, whether the interval is reasonable, and if the time,it s
outs, is well-
hosen
ompared to the time, it will be able to seewhi
h bran
h of the te
hnology tree, the enemy has
hosen.Using the A
quired Information: Does the AI use the a
quired infor-mation to adjust its strategy or is it just for show? This is easilytested by
hoosing an extreme strategy and make sure that the AI seesthis. If it
ounters this is obviously the
ase.Sensible Unit Used for S
outing: Choosing the right unit for s
outing isalso important, as the unit is in danger of being
aught when s
outing.Choosing the right unit will minimise the
ost of the sa
ri�
e. This
an be done in several di�erent ways. One way is to send a low
ostunit and the other is to send a unit that is unlikely to be
aught. Howwell is the AI doing this?

Page 240 of 273 APPENDIX D. TEST MODELD.7 LearningLearning: This should be tested in two ways. The �rst way is to playagainst the AI in one game. Does the AI seem to learn new strategiesthroughout the game by either observing what the tester does or byreasoning? The other is to observe the AI throughout several games.Does the AI seems to learn from game to game, that is learning frompast experien
e.D.8 CooperationAI-AI Cooperative Strategy: When two AIs are allied, how well are theyat
hoosing a shared strategy, and do they do this at all? This is testedby simply observing the AIs' strategy in a
ouple of games.Cooperating: Do the AIs
ooperate? Are they
oordinating atta
ks anddefen
e? This
an also be seen by observing a
ouple of games.Resour
e Sharing: How well are the AIs at resour
e sharing, and do theydo it at all? This is best tested by observing the resour
e amount ofboth AIs throughout the game. The tester
ould for instan
e take outall the workers belonging to one of the AIs to for
e a situation, whereresour
e sharing would be obvious.Human-AI Communi
ation Available: Is it possible for the humanplayer to
ommuni
ate with the AI?AI-Human Communi
ation Available: Is it possible for the AI to
om-muni
ate with the player?Helping if Human Atta
ks: Does the AI join for
es with the humanplayer, when the human player de
ides to atta
k the enemy?Helping if Human is Atta
ked: Does the AI
ome to help if the humanplayer is atta
ked?Handling Temporary Allian
es(FFA): How well is the AI at handlingtemporary allian
es like the ones en
ountered in Free For All games?

APPENDIX E. TEST TABLE A Page 241 of 273
Appendix ETest Table A

Page 242 of 273 APPENDIX E. TEST TABLE A
RedAlert DarkReign2 Warzone2100 AgeofMytho

logy
EmpireEarth
2

Star
raft ArmiesofExi
go

War
raftII War
raftIIIStrategi
 PlanningUsing Counters XExploiting Weak SpotsStrategi
 Variation in one Game X XStrategi
 Variation Game to Game X X X X XReasonable Expansions X X XUsing MapGood Buildorder X X X X XTa
ti
al PlannerUsing Formations X X X X XMap Considered when MovingUsing Ta
ti
al Manoeuvres XMeasure Own Str. vs Enemy Str. X X XStaying in Control of Units X XMi
romanagementSaving Hurt Units X XFo
us Fire X XCounter Fo
usUsing Support X X X X XResour
e ManagementPredi
ting Resour
e NeedsSpending Available Resour
es X X X X XFlexible Resour
e GatheringBase BuildingGood Pla
ement of Def. Buildings X X XGood Pla
ement of Hrv. Buildings X X XSensible Base X X XS
outingDoes It S
out At All X XS
outing Map X XS
outing Enemy X XS
outing at Sensible TimesUsing the A
quired Information XSensible Unit Used for S
outing X XLearningLearningCooperationAI-AI Cooperative StrategyCooperating X X XResour
e SharingHuman-AI Communi
ation Available XAI-Human Communi
ation Available XHelping if Human Atta
ks XHelping if Human is Atta
ked XHandling Temporary Allian
esTable E.1: Test Table A

APPENDIX F. TEST TABLE B Page 243 of 273
Appendix FTest Table B

Page 244 of 273 APPENDIX F. TEST TABLE B
RedAlert DarkReign2 Warzone2100 AgeofMytho

logy
EmpireEarth
2

Star
raft ArmiesofExi
go

War
raftII War
raftIII PrototypeImp
lementation

CompleteImp
lementation

Strategi
 PlanningUsing Counters X X XExploiting Weak Spots XStrategi
 Variation in one Game X X X XStrategi
 Variation Game to Game X X X X X X XReasonable Expansions X X X XUsing Map XGood Buildorder X X X X X XTa
ti
al PlannerUsing Formations X X X X X XMap Considered when Moving XUsing Ta
ti
al Manoeuvres X XMeasure Own Str. vs Enemy Str. X X X / XStaying in Control of Units X X XMi
romanagementSaving Hurt Units X X / XFo
us Fire X X / XCounter Fo
us XUsing Support X X X X X XResour
e ManagementPredi
ting Resour
e Needs XSpending Available Resour
es X X X X X / XFlexible Resour
e Gathering XBase BuildingGood Pla
ement of Def. Buildings X X X XGood Pla
ement of Hrv. Buildings X X X XSensible Base X X X XS
outingDoes It S
out At All X X X XS
outing Map X X XS
outing Enemy X X / XS
outing at Sensible Times XUsing the A
quired Information X X XSensible Unit Used for S
outing X X X XLearningLearning XCooperationAI-AI Cooperative StrategyCooperating X X XResour
e SharingHuman-AI Communi
ation Available XAI-Human Communi
ation Available XHelping if Human Atta
ks XHelping if Human is Atta
ked XHandling Temporary Allian
esTable F.1: Test Table B

APPENDIX G. GAME LOGS Page 245 of 273
Appendix GGame LogsThe following will list �ve game log examples, demonstrating what the AIis doing and reasoning about during a game. All game logs will in
lude theAI's
hoi
e of strategy, when it is s
outs and what unit it
hooses, and rea-soning about the opponent's strategy. The AI uses the strategy tree shownin Figure K.3 in all the examples. When new information is dis
overed aboutthe enemy, the opponent model is printed, as well as the reasoning about theopponent's strategy done in the Probabilisti
 Reasonoing module. The "Po-tential Strategies" output indi
ates whi
h strategies the AI
urrently thinksthe opponent is doing, and the number after ea
h potential strategy indi
atesa deviation fa
tor
ompared to the a
tual strategy tree node. Following this,the Strategi
 Planning module prints the potential
ounter strategies, and anumber indi
ating how likely it is that the strategy is going to
ounter theopponent's strategy. Game log G.1 and G.2 furthermore in
ludes when theAI has built a unit, to show how the AI is
apable of following the
urrentlysele
ted strategy. Listing G.1: AI game log 11 [Game Ti
k : 1 ℄2 Chosen s t a r t s t r a t e gy : Fast te
h3 [Game Ti
k : 2 ℄4 . . .5 [Game Ti
k : 31 ℄6 S
out ing Miss ion Started :7 Unit type s e l e
 t e d f o r s
out ing : worker8 [Game Ti
k : 32 ℄9 . . .10 [Game Ti
k : 61 ℄11 Opponent model :12 − Name: marine − 0 − Per
entage : 013 − Name: tank − 0 − Per
entage : 014 − Name: worker − 6 − Per
entage : 10015 − Name: barra
ks − 0 − Per
entage : 016 − Name:
ont ro lCente r − 0 − Per
entage : 017 − Name: f a
 t o ry − 0 − Per
entage : 0

Page 246 of 273 APPENDIX G. GAME LOGS18 Poten t i a l S t r a t e g i e s :19 − Fast expand − 020 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 10021 Chosen Counter Strategy : Marines22 [Game Ti
k : 62 ℄23 . . .24 [Game Ti
k : 89 ℄25 Opponent model :26 − Name: marine − 2 − Per
entage : 18 .181827 − Name: tank − 3 − Per
entage : 27 .272728 − Name: worker − 6 − Per
entage : 54 .545529 − Name: barra
ks − 0 − Per
entage : 030 − Name:
ont ro lCente r − 1 − Per
entage : 5031 − Name: f a
 t o ry − 1 − Per
entage : 5032 Poten t i a l S t r a t e g i e s :33 − Fast expand − 7 .7534 − Fast te
h − 7 .135 − Mixed − 6 .7536 Counter s t r a t e gy : Fast expand − Ab i l i t y to
ounter s t r a t e gy : 92 .937 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 92 .2538 Counter s t r a t e gy : Mass tanks − Ab i l i t y to
ounter s t r a t e gy : 93 .2539 Chosen Counter Strategy : Mass tanks40 [Game Ti
k : 90 ℄41 . . . Listing G.2: AI game log 21 [Game Ti
k : 1 ℄2 Chosen s t a r t s t r a t e gy : Marines3 [Game Ti
k : 2 ℄4 . . .5 [Game Ti
k : 31 ℄6 S
out ing Miss ion Started :7 Unit type s e l e
 t e d f o r s
out ing : worker8 [Game Ti
k : 32 ℄9 . . .10 [Game Ti
k : 167 ℄11 Opponent model :12 − Name: marine − 2 − Per
entage : 22 .222213 − Name: tank − 1 − Per
entage : 11 .111114 − Name: worker − 6 − Per
entage : 66 .666715 − Name: barra
ks − 0 − Per
entage : 016 − Name:
ont ro lCente r − 0 − Per
entage : 017 − Name: f a
 t o ry − 0 − Per
entage : 018 Poten t i a l S t r a t e g i e s :19 − Fast expand − 8 .2520 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 91 .7521 Chosen Counter Strategy : Marines22 [Game Ti
k : 168 ℄23 . . .24 [Game Ti
k : 184 ℄25 Opponent model :26 − Name: marine − 5 − Per
entage : 41 .666727 − Name: tank − 1 − Per
entage : 8 .33333

APPENDIX G. GAME LOGS Page 247 of 27328 − Name: worker − 6 − Per
entage : 5029 − Name: barra
ks − 0 − Per
entage : 030 − Name:
ont ro lCente r − 1 − Per
entage : 5031 − Name: f a
 t o ry − 1 − Per
entage : 5032 Poten t i a l S t r a t e g i e s :33 − Fast expand − 8 .2534 − Marines − 7 .2535 − Mass marines − 936 − Mixed − 7 .4166737 Counter s t r a t e gy : Fast te
h − Ab i l i t y to
ounter s t r a t e gy : 92 .7538 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 91 .2539 Counter s t r a t e gy : Mass tanks − Ab i l i t y to
ounter s t r a t e gy : 92 .583340 Counter s t r a t e gy : Mixed − Ab i l i t y to
ounter s t r a t e gy : 9141 Chosen Counter Strategy : Fast te
h42 [Game Ti
k : 185 ℄43 . . . Listing G.3: AI game log 31 [Game Ti
k : 1 ℄2 Chosen s t a r t s t r a t e gy : Marines3 [Game Ti
k : 2 ℄4 . . .5 [Game Ti
k : 31 ℄6 S
out ing Miss ion Started :7 Unit type s e l e
 t e d f o r s
out ing : worker8 [Game Ti
k : 32 ℄9 . . .10 [Game Ti
k : 56 ℄11 Unit Bu i l t : worker12 [Game Ti
k : 57 ℄13 . . .14 [Game Ti
k : 64 ℄15 Unit Bu i l t : marine16 [Game Ti
k : 65 ℄17 . . .18 [Game Ti
k : 112 ℄19 Unit Bu i l t : worker20 [Game Ti
k : 113 ℄21 . . .22 [Game Ti
k : 128 ℄23 Unit Bu i l t : marine24 [Game Ti
k : 129 ℄25 . . .26 [Game Ti
k : 192 ℄27 Unit Bu i l t : marine28 [Game Ti
k : 193 ℄29 . . .30 [Game Ti
k : 256 ℄31 Unit Bu i l t : marine32 [Game Ti
k : 257 ℄33 . . .34 [Game Ti
k : 320 ℄35 Unit Bu i l t : marine

Page 248 of 273 APPENDIX G. GAME LOGS36 [Game Ti
k : 321 ℄37 . . .38 [Game Ti
k : 346 ℄39 Opponent model :40 − Name: marine − 3 − Per
entage : 3041 − Name: tank − 1 − Per
entage : 1042 − Name: worker − 6 − Per
entage : 6043 − Name: barra
ks − 0 − Per
entage : 044 − Name:
ont ro lCente r − 0 − Per
entage : 045 − Name: f a
 t o ry − 0 − Per
entage : 046 Poten t i a l S t r a t e g i e s :47 − Fast expand − 7 .3333348 − Marines − 9 .4166749 − Mass marines − 7 .3666750 − Mixed − 9 .9166751 Counter s t r a t e gy : Fast te
h − Ab i l i t y to
ounter s t r a t e gy : 90 .583352 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 92 .666753 Counter s t r a t e gy : Mass tanks − Ab i l i t y to
ounter s t r a t e gy : 90 .083354 Counter s t r a t e gy : Mixed − Ab i l i t y to
ounter s t r a t e gy : 92 .633355 Chosen Counter Strategy : Marines56 [Game Ti
k : 347 ℄57 . . .58 [Game Ti
k : 358 ℄59 Opponent model :60 − Name: marine − 8 − Per
entage : 38 .095261 − Name: tank − 7 − Per
entage : 33 .333362 − Name: worker − 6 − Per
entage : 28 .571463 − Name: barra
ks − 0 − Per
entage : 064 − Name:
ont ro lCente r − 1 − Per
entage : 5065 − Name: f a
 t o ry − 1 − Per
entage : 5066 Poten t i a l S t r a t e g i e s :67 − Fast expand − 7 .3333368 − Fast te
h − 9 .8666769 − Marines − 9 .6570 − Mass marines − 9 .9666771 − Mixed − 3 .572 Counter s t r a t e gy : Fast expand − Ab i l i t y to
ounter s t r a t e gy : 90 .133373 Counter s t r a t e gy : Fast te
h − Ab i l i t y to
ounter s t r a t e gy : 90 .3574 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 92 .666775 Counter s t r a t e gy : Mass tanks − Ab i l i t y to
ounter s t r a t e gy : 96 .576 Counter s t r a t e gy : Mixed − Ab i l i t y to
ounter s t r a t e gy : 90 .033377 Chosen Counter Strategy : Mass tanks78 [Game Ti
k : 359 ℄79 . . .80 [Game Ti
k : 414 ℄81 Unit Bu i l t : worker82 [Game Ti
k : 415 ℄83 . . .84 [Game Ti
k : 470 ℄85 Unit Bu i l t : worker86 [Game Ti
k : 471 ℄87 . . .88 [Game Ti
k : 486 ℄89 Unit Bu i l t : tank

APPENDIX G. GAME LOGS Page 249 of 27390 [Game Ti
k : 487 ℄91 . . .92 [Game Ti
k : 614 ℄93 Unit Bu i l t : tank94 [Game Ti
k : 615 ℄95 . . .96 [Game Ti
k : 742 ℄97 Unit Bu i l t : tank98 [Game Ti
k : 743 ℄99 . . . Listing G.4: AI game log 41 [Game Ti
k : 1 ℄2 Chosen s t a r t s t r a t e gy : Fast te
h3 [Game Ti
k : 2 ℄4 . . .5 [Game Ti
k : 31 ℄6 S
out ing Miss ion Started :7 Unit type s e l e
 t e d f o r s
out ing : worker8 [Game Ti
k : 32 ℄9 . . .10 [Game Ti
k : 5 6 : ℄11 Unit Bu i l t : worker12 [Game Ti
k : 5 7 : ℄13 . . .14 [Game Ti
k : 1 1 2 : ℄15 Unit Bu i l t : worker16 [Game Ti
k : 1 1 3 : ℄17 . . .18 [Game Ti
k : 1 2 8 : ℄19 Unit Bu i l t : tank20 [Game Ti
k : 1 2 9 : ℄21 . . .22 [Game Ti
k : 256 ℄23 Unit Bu i l t : tank24 [Game Ti
k : 257 ℄25 . . .26 [Game Ti
k : 384 ℄27 Unit Bu i l t : tank28 [Game Ti
k : 385 ℄29 . . .30 [Game Ti
k : 392 ℄31 Opponent model :32 − Name: marine − 0 − Per
entage : 033 − Name: tank − 1 − Per
entage : 14 .285734 − Name: worker − 6 − Per
entage : 85 .714335 − Name: barra
ks − 0 − Per
entage : 036 − Name:
ont ro lCente r − 0 − Per
entage : 037 − Name: f a
 t o ry − 0 − Per
entage : 038 Poten t i a l S t r a t e g i e s :39 − Fast expand − 2 .5666740 − Fast te
h − 8 .841 Counter s t r a t e gy : Fast expand − Ab i l i t y to
ounter s t r a t e gy : 91 .2

Page 250 of 273 APPENDIX G. GAME LOGS42 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 97 .433343 Chosen Counter Strategy : Marines44 [Game Ti
k : 393 ℄45 . . .46 [Game Ti
k : 400 ℄47 Opponent model :48 − Name: marine − 2 − Per
entage : 16 .666749 − Name: tank − 4 − Per
entage : 33 .333350 − Name: worker − 6 − Per
entage : 5051 − Name: barra
ks − 0 − Per
entage : 052 − Name:
ont ro lCente r − 1 − Per
entage : 10053 − Name: f a
 t o ry − 0 − Per
entage : 054 Poten t i a l S t r a t e g i e s :55 − Fast expand − 6 .0556 − Fast te
h − 5 .8557 − Mass tanks − 9 .3666758 − Mixed − 7 .5166759 Counter s t r a t e gy : Fast expand − Ab i l i t y to
ounter s t r a t e gy : 94 .1560 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 93 .9561 Counter s t r a t e gy : Mass marines − Ab i l i t y to
ounter s t r a t e gy : 90 .633362 Counter s t r a t e gy : Mass tanks − Ab i l i t y to
ounter s t r a t e gy : 92 .483363 Chosen Counter Strategy : Fast expand64 [Game Ti
k : 401 ℄65 . . . Listing G.5: AI game log 51 [Game Ti
k : 1 ℄2 Chosen s t a r t s t r a t e gy : Marines3 [Game Ti
k : 2 ℄4 . . .5 [Game Ti
k : 31 ℄6 S
out ing Miss ion Started :7 Unit type s e l e
 t e d f o r s
out ing : worker8 [Game Ti
k : 32 ℄9 . . .10 [Game Ti
k : 367 ℄11 Opponent model :12 − Name: marine − 2 − Per
entage : 5013 − Name: tank − 0 − Per
entage : 014 − Name: worker − 2 − Per
entage : 5015 − Name: barra
ks − 0 − Per
entage : 016 − Name:
ont ro lCente r − 0 − Per
entage : 017 − Name: f a
 t o ry − 0 − Per
entage : 018 Poten t i a l S t r a t e g i e s :19 − Fast expand − 9 .1666720 − Marines − 4 .2521 − Mass marines − 2 .222 Counter s t r a t e gy : Fast te
h − Ab i l i t y to
ounter s t r a t e gy : 95 .7523 Counter s t r a t e gy : Marines − Ab i l i t y to
ounter s t r a t e gy : 90 .833324 Counter s t r a t e gy : Mixed − Ab i l i t y to
ounter s t r a t e gy : 97 .825 Chosen Counter Strategy : Mixed26 [Game Ti
k : 368 ℄27 . . .

APPENDIX H. PERFORMANCE LOG Page 251 of 273
Appendix HPerforman
e Log

Listing H.1: Module game ti
k performan
e log1 Game t i
 k : 12 A
tion planner 03 Base bu i l d i ng 04 GDF
onne
t ion 05 Per
ept i n t e r p r e t e r 426 Rea
t ive module 07 Resour
e manager 08 S t r a t e g i
 p lanner 09 Ta
 t i
 a l p lanner 151011 Game t i
 k : 212 A
tion planner 113 Base bu i l d i ng 014 GDF
onne
t ion 015 Per
ept i n t e r p r e t e r 016 Rea
t ive module 017 Resour
e manager 018 Ta
 t i
 a l p lanner 141920 Game t i
 k : 321 A
tion planner 022 GDF
onne
t ion 023 Per
ept i n t e r p r e t e r 024 Rea
t ive module 025 Resour
e manager 1126 Ta
 t i
 a l p lanner 142728 Game t i
 k : 429 A
tion planner 030 GDF
onne
t ion 031 Per
ept i n t e r p r e t e r 032 Rea
t ive module 033 Ta
 t i
 a l p lanner 143435 . . .36

Page 252 of 273 APPENDIX H. PERFORMANCE LOG37 Game t i
 k : 3138 A
tion planner 039 GDF
onne
t ion 040 Per
ept i n t e r p r e t e r 041 Rea
t ive module 042 Ta
 t i
 a l p lanner 144344 Game t i
 k : 3245 A
tion planner 046 GDF
onne
t ion 047 Per
ept i n t e r p r e t e r 048 Rea
t ive module 049 Resour
e manager 050 S t r a t e g i
 p lanner 051 Ta
 t i
 a l p lanner 285253 Game t i
 k : 3354 A
tion planner 055 GDF
onne
t ion 056 Per
ept i n t e r p r e t e r 057 Rea
t ive module 058 Ta
 t i
 a l p lanner 1459 . . .

APPENDIX I. PATHFINDING TESTS Page 253 of 273
Appendix IPath�nding Tests

Page 254 of 273 APPENDIX I. PATHFINDING TESTS

Path foundMap

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot1"

Figure I.1: Path found in path�nding test

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot2"

Figure I.2: Path found in path�nding test

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot3"

Figure I.3: Path found in path�nding test

APPENDIX I. PATHFINDING TESTS Page 255 of 273

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

"path_plot4"

Figure I.4: Path found in path�nding test

APPENDIX J. CODE EXAMPLES Page 257 of 273
Appendix JCode ExamplesJ.1 Unit and Building Spe
i�
ationsListing J.1: Spe
i�
ation of a worker type1 name = "worker "2 type = "Unit"3 pr e
ond i t i on s = ["
ont ro lCente r " ℄4 h i t p o i n t s = 605 atta
k_max = 56 atta
k_min = 27 ground_atta
k_range = 48 movement_speed = 39 s ight_range = 510 a
 t i on s = ["move" , " atta
k " , " stop " , "mine" , " re turn_resour
e s " ,11 " bui ld_
ontro lCenter " , " bui ld_barra
ks " , " bu i ld_fa
tory " ℄12 minera l s = 7513 gas = 014 built_by = "
ont ro lCente r "15 build_time = 7516 supply_
ost = 0Listing J.2: Spe
i�
ation of a marine type1 name = "marine"2 type = "Unit"3 pr e
ond i t i on s = [" barra
k " ℄4 h i t p o i n t s = 1005 atta
k_max = 506 atta
k_min = 307 ground_atta
k_range = 88 movement_speed = 39 s ight_range = 610 a
 t i on s = ["move" , " atta
k " , " stop " ℄11 minera l s = 10012 built_by = "barra
k "13 build_time = 10014 supply_
ost = 1

Page 258 of 273 APPENDIX J. CODE EXAMPLESListing J.3: Spe
i�
ation of a tank type1 name = "tank"2 type = "Unit"3 pr e
ond i t i on s = [" f a
 t o ry " ℄4 h i t p o i n t s = 5005 atta
k_max = 106 atta
k_min = 57 ground_atta
k_range = 68 movement_speed = 29 s ight_range = 710 a
 t i on s = ["move" , " atta
k " , " stop " ℄11 minera l s = 40012 gas = 013 built_by = " f a
 t o ry "14 build_time = 015 supply_
ost = 2Listing J.4: Spe
i�
ation of a
ommand
enter type1 name = "
ont ro lCente r "2 type = "Bui ld ing "3 pr e
ond i t i on s = [℄4 h i t p o i n t s = 50005 atta
k_max = 06 atta
k_min = 07 ground_atta
k_range = 08 movement_speed = 29 s ight_range = 410 a
 t i on s = [" train_worker " , " stop " ℄11 minera l s = 60012 gas = 013 built_by = "worker "14 build_time = 300Listing J.5: Spe
i�
ation of a barra
ks type1 name = " barra
ks "2 type = "Bui ld ing "3 pr e
ond i t i on s = ["
ont ro lCente r " ℄4 h i t p o i n t s = 10005 atta
k_max = 06 atta
k_min = 07 ground_atta
k_range = 08 movement_speed = 09 s ight_range = 410 a
 t i on s = [" train_marine" , " stop " ℄11 minera l s = 40012 gas = 013 built_by = "worker "14 build_time = 200Listing J.6: Spe
i�
ation of a fa
tory type1 name = " f a
 t o ry "

APPENDIX J. CODE EXAMPLES Page 259 of 2732 type = "Bui ld ing "3 pr e
ond i t i on s = ["
ont ro lCente r " , " barra
ks " ℄4 h i t p o i n t s = 14005 atta
k_max = 06 atta
k_min = 07 ground_atta
k_range = 08 movement_speed = 09 s ight_range = 410 a
 t i on s = ["build_tank" , " stop " ℄11 minera l s = 40012 gas = 013 built_by = "worker "14 build_time = 200J.2 Known StrategiesListing J.7: Code for de�ning strategies in the Known Strategies knowledge base1 s ta r t ing_po int = {2 "name" : " S ta r t i ng po int " ,3 " pre
ond i t i on " : "" ,4 " fo l l ow_up_strateg i e s " : ["Fast expand" , "Marines " ,5 "Fast te
h " ℄ ,6 "
ounter s " : [℄ ,7 " per
entage_use " : 100 ,8 " time" : 0 ,9 "purpose " : " s tep " ,10 " expans ions " : 0 ,11 "
ont ro lCente r " : 1 ,12 " barra
ks " : 0 ,13 " f a
 t o ry " : 0 ,14 "worker " : 6 ,15 "marine" : 0 ,16 " tank" : 017 }1819 fast_expand = {20 "name" : "Fast expand" ,21 " pre
ond i t i on " : " S ta r t i ng po int " ,22 " fo l l ow_up_strateg i e s " : ["Mass marines " ℄ ,23 "
ounter s " : ["Marine Rush" ℄ ,24 " per
entage_use " : 30 ,25 " time" : 500 ,26 "purpose " : " s tep " ,27 " expans ions " : 1 ,28 "
ont ro lCente r " : 2 ,29 " barra
ks " : 0 ,30 " f a
 t o ry " : 0 ,31 "worker " : 12 ,32 "marine" : 0 ,33 " tank" : 034 }3536 mass_marines = {

Page 260 of 273 APPENDIX J. CODE EXAMPLES37 "name" : "Mass marines " ,38 " pre
ond i t i on " : "Fast expand" ,39 " fo l l ow_up_strateg i e s " : [℄ ,40 "
ounter s " : ["Mixed" ℄ ,41 " per
entage_use " : 100 ,42 " time" : 1000 ,43 "purpose " : " atta
k " ,44 " expans ions " : 1 ,45 "
ont ro lCente r " : 2 ,46 " barra
ks " : 0 ,47 " f a
 t o ry " : 0 ,48 "worker " : 18 ,49 "marine" : 30 ,50 " tank" : 051 }5253 marines = {54 "name" : "Marines " ,55 " pre
ond i t i on " : " S ta r t i ng po int " ,56 " fo l l ow_up_strateg i e s " : ["Mixed" ℄ ,57 "
ounter s " : ["Fast te
h " ℄ ,58 " per
entage_use " : 40 ,59 " time" : 500 ,60 "purpose " : " atta
k " ,61 " expans ions " : 0 ,62 "
ont ro lCente r " : 1 ,63 " barra
ks " : 1 ,64 " f a
 t o ry " : 0 ,65 "worker " : 8 ,66 "marine" : 10 ,67 " tank" : 068 }6970 mixed = {71 "name" : "Mixed" ,72 " pre
ond i t i on " : "Marines " ,73 " fo l l ow_up_strateg i e s " : [℄ ,74 "
ounter s " : ["Mass tanks " ℄ ,75 " per
entage_use " : 100 ,76 " time" : 1000 ,77 " expans ions " : 0 ,78 "purpose " : " atta
k " ,79 "
ont ro lCente r " : 1 ,80 " barra
ks " : 1 ,81 " f a
 t o ry " : 1 ,82 "worker " : 10 ,83 "marine" : 15 ,84 " tank" : 1085 }8687 f a s t_te
h = {88 "name" : "Fast te
h " ,89 " pre
ond i t i on " : " S ta r t i ng Point " ,90 " fo l l ow_up_strateg i e s " : ["Mass tanks " ℄ ,

APPENDIX J. CODE EXAMPLES Page 261 of 27391 "
ounter s " : ["Fast expand" ℄ ,92 " per
entage_use " : 30 ,93 " time" : 500 ,94 "purpose " : " s tep " ,95 " expans ions " : 0 ,96 "
ont ro lCente r " : 1 ,97 " barra
ks " : 1 ,98 " f a
 t o ry " : 1 ,99 "worker " : 8 ,100 "marine" : 0 ,101 " tank" : 5102 }103104 mass_tanks = {105 "name" : "Mass tanks " ,106 " pre
ond i t i on " : "Fast te
h " ,107 " fo l l ow_up_strateg i e s " : [℄ ,108 "
ounter s " : ["Mass marines " ℄ ,109 " per
entage_use " : 100 ,110 " time" : 1000 ,111 "purpose " : " atta
k " ,112 " expans ions " : 0 ,113 "
ont ro lCente r " : 1 ,114 " barra
ks " : 1 ,115 " f a
 t o ry " : 2 ,116 "worker " : 12 ,117 "marine" : 0 ,118 " tank" : 20119 }120121 s t r a t e g i e s = [s tar t ing_point , fast_expand , marines , fast_te
h ,122 mass_marines , mixed , mass_tanks ℄

APPENDIX K. IMPORTANT FIGURES Page 263 of 273
Appendix KImportant Figures

Page 264 of 273 APPENDIX K. IMPORTANT FIGURES

Figure K.1: A human model for playing RTS games

APPENDIX K. IMPORTANT FIGURES Page 265 of 273

Figure K.2: The
ognitive framework ar
hite
ture

Page 266 of 273 APPENDIX K. IMPORTANT FIGURES

Figure K.3: The strategy tree used for testing the AI

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 267 of 273
Appendix LAI Development in IndustryL.1 RTS Companies Conta
tedThe following will list the
ompanies we have attempted to
onta
t, alongwith the RTS games they have developed:Digital Realily: War Front: Turning Point(http://www.digitalreality.hu/ - info�digitalreality.hu)Stormregion: Codename: Panzers Phase One + Rush for Berlin(http://www.stormregion.
om/ - info�stormregion.
om)Big Huge Games: Rise of Nations(http://www.bighugegames.
om/ - info�bighugegames.
om)Reli
: Homeworld 1+2(http://www.reli
.
om/ - amy.farris�vugames.
om)Battlefront: Histway: Les Grognards(http://www.battlefront.
om/ - support�battlefront.
om)Mad Do
 Software: Empire Earh I + II(http://www.maddo
software.
om/ - sotoole�maddo
software.
om)Inhuman Games: Trash(http://www.inhumangames.
om/ - info�inhumangames.
om)G2games: Allian
e: Future Combat(http://www.g2games.
om/ - http://www.g2games.
om/
orporate.shtml)Creative Assembly: Total War series(http://www.
reative-assembly.
o.uk/ - info�
reative-assembly.
o.uk)Evolution Vault: Gala
ti
 Dream(http://www.evolutionvault.net/ -
onta
t�evolutionvault.net)

Page 268 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRYReality Pump: Earth 2160(http://www.realitypump.pl/ - o�
e�realitypump.pl)Ensemble Studios: Age of Empires series(http://www.ensemblestudios.
om/- webmaster�ensemblestudios.
om)Haemimont Games: Rising Kingdoms(http://www.haemimontgames.
om/ - info�haemimontgames.
om)Pyro Studios: Imperial Glory(http://www.pyrostudios.
om/ - pyrostudios�pyrostudios.
om)Cat Daddy Games: Ameri
an Civil War: Gettysburg + Medievel Con-quest(http://www.
atdaddygames.
om/ -
atdaddy�
atdaddy.
om)GSC Game World: Cossa
ks(http://www.gs
-game.
om/ - anton�gs
-game.kiev.ua)Enemy Te
hnology: I of the Enemy(http://www.enemyte
hnology.
om/ - info�enemyte
hnology.
om)K-D Lab: Maelstrom(http://www.kdlab.
om/eng/ -
onta
ts�kdlab.
om)Magi
te
h: Takedo 1+2(http://www.ezgame.
om/ - magi
te
t�ezgame.
om)Oddlabs: Tribal Trouble(http://www.oddlabs.
om/ - mail�oddlabs.
om)Bla
k Hole Entertainment: Armies of Exigo(http://www.bla
kholegames.
om/ - info�bla
kholegames.
om)Fireglow Games: Sudden Strike(http://www.�reglowgames.
om/ -
onta
t��reglowgames.
om)Related Design: Castle Strike(http://www.related-designs.de/ - info�related-designs.de)Timegate Studios: Kohan(http://www.timegate.
om/ - inf-05�timegate.
om)Massive Entertainment: Ground Control I + II(http://www.massive.se/ - info�massive.se)Primal Software: Besiger(http://www.primal-soft.
om/en/ - info�primal-soft.
om)

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 269 of 273In�nite Intera
tive: Warlords Battle
ry 3 + 4(http://www.in�nite-intera
tive.
om/-
onta
t�in�nite-intera
tive.
om)Independent Arts: Against Rome(http://www.independent-arts-software.de/- info�independent-arts-software.de)Legend Studios: War Times(http://www.lsgames.
om/ - info�lsgames.
om)Lesta Studio: WWI: The Great War(http://www.lesta.ru/ - serg�lesta.ru)THQ: Supreme Commander + Warhammer: Dawn of Way(http://www.thq-games.
om/ - info.thq.
om/support/generalsupport.asp)CDV Software: Hidden Stroke + Cossa
ks 2: Napoleon Wars(http://www.
dv.de/ - mail�
dv.de)Strategy First: Nexagon: Deathmat
h(http://www.strategy�rst.
om/ - info�strategy�rst.
om)Blizzard Entertainment: Star
raft and War
raft series(http://www.blizzard.
om/ - support�blizzard.
om)The Bitmap Brothers: World War II: Frontline(http://www.bitmap-brothers.
o.uk/-
onta
t�bitmap-brothers.
o.uk)Rival Intera
tive: Real War: Roque States(http://www.real-war.
om/ - Jim.Omer�RivalIntera
tive.
om)Zuxxex: World War II: Panzer Claws(http://www.zuxxez.
om/ - info�zuxxez.
om)Pandemi
 Studios: Army Men(http://www.pandemi
studios.
om/ - info�pandemi
studios.
om)Obje
t Software: Dragon Throne: Battle of Red Cli�s(http://eng.obje
tgames.
om/ - info�obje
tsw.
om)Ele
troni
 Arts LA: Command & Conquer Series(http://westwood.ea.
om/ - info�ea.
om)

Page 270 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRYL.2 Mail to RTS Game Development CompaniesHi In relation to our master-thesis developed at the department of
omputers
ien
e, Aalborg University we would like your help in answering a few ques-tions
on
erning development of AI in the game industry. If this requestwas sent to the wrong department, please forward it to a person who
anhelp us. We are writing this to your
ompany, be
ause you have a history ofdeveloping RTS games, whi
h is the fo
us of our master-thesis.We are
urrently developing an AI framework for RTS games based onthe de
ision pro
ess of a human player. Knowing that di�erent RTS gameshave di�erent fo
us in game style, the modular design allows the developerto fo
us on the areas that are important for that parti
ular genre. Lessimportant modules
an be left handled by standard implementations in theframework. We believe that using this framework for AI development willhave the following e�e
ts:
• Stru
tured overview of the AI development pro
ess.
• Signi�
antly improve the AI.
• Redu
ed development
ost.
• Redu
ed development time.
• Workload shifted towards game designers instead of programmers.We hope that you will take a few minutes to answer the following ques-tions. Please indi
ate how you base your answers/estimates - e.g. on yourown experien
e or on the
urrent pra
ti
e in your
ompany/developmentteam.1. How mu
h time would you estimate is
urrently used on developing AIin RTS games - e.g. how many man-hours are used?2. Who develops the AI? Is it programmers or game designers?3. Is the AI
reated from s
rat
h or are AI libraries used?4. How
onne
ted are the game engine and the AI? Is it
ompletely sep-arated or
losely integrated in the engine?5. Do you think that our idea/produ
t of an generi
 RTS AI framework
ould be of use in the industry? Why/why not?Your answers will be used to get insight into the pro
ess and use of toolsin AI development.

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 271 of 273L.3 Answers from RTS Game Development Com-paniesAll answers
orresponds to the questions in Appendix L.2.L.3.1 OddlabsAnswers from Oddslabs were in danish:1. Jeg ved ikke så meget om andre spils AI, men AI'en til TT er en megetsimpel state-ma
hine der på yderst naiv vis tager stilling fra tur til tur.Den har ikke taget meget mere end 3 uger at lave.2. Den er udviklet af en programmør.3. Helt fra bunden.4. AI'en er meget stærk bundet til TT.5. Jeg kan godt se potentiale i at have et generisk RTS AI framework, menjeg er ikke sikker på det vil virke i praksis. Det skal virkelig være letat gå til, og give nogle meget store fordele i form af kompli
eret logikog lign., hvis man skal bruge tid på at integrere et tredjeparts systemind i sit spil, frem for selv at bygge noget ind, som er skrædersyet tilsituationen. I vores tilfælde havde det måske været smart da vi varnået til et punkt i udviklingen hvor vi måtte "nøjes" med en primitivAI, fordi der ikke var tid til at gå i dybden med udviklingen. Tilgengæld tvivler jeg på vi kunne have gjort det lige så hurtigt hvis viskulle sætte os ind i et generisk system der samtidig skulle bankes indi den struktur vi havde i spillet.Med andre ord, så kan jeg nok ikke sige om det er en god ide før jeghar set produktet.L.3.2 In�nite Intera
tive1. About 12 man-months in all of our RTS games so far.2. Programmers develop an AI framework, based on a movement/pathingsystem. Then they work WITH the game designers to build and re�nean AI. As we use more and more s
ripting (LUA is our language of
hoi
e), more and more AI is being by our designers rather than theprogrammers.3. We have our own movement/pathing libraries on whi
h everything isbuilt. Everything apart from the movement and pathing is
reatedfrom s
rat
h on every game.

Page 272 of 273 APPENDIX L. AI DEVELOPMENT IN INDUSTRY4. They are kept
ompletely seperate. However, various fun
tions of theengine have been added to help with AI, su
h as line-of-sight
al
ula-tions.5. Possible, but di�
ult to apply to *every* RTS game, be
ause of thevariations on design in ea
h game. But I think that a limited frameworkwould be useful, as long as all of the items were quite independent andquite easily extended: Some of the areas we break our AI's down intoare:
• Movement
• Pathing
• Formations
• In�uen
e maps (e.g. for dete
tion of danger)
• Threat assessment
• A
tions/orders
• A state ma
hine of a
tions of individual a
tors
• Grouping me
hanisms
• A method for tra
king and remembering enemies
• Building and produ
tion hierar
hies
• Resour
e usage and needs
• Managing and prioritizing obje
tivesIf an AI framework
onsisted of base
lasses for dealing with thingslike this, then it would indeed save time.L.3.3 Inhuman GamesFirst o� I would de�ne
lassify AI into two groups: low level and high level.Low level AI mostly in
ludes path�nding, target sele
tion, and mis
 a
tions(spell
asting, loading/unloading resour
es, et
). High level AI in
ludes de-
iding what to build and where to send your for
es.1. At least two man years. About half the time for low-level AI, andanother half for high-level stu�.The hardest part of the low-level AI is probably path�nding. Path�nd-ing itself
an take a long time to develop, espe
ially if you are tryingto make good path�nding that s
ales well.2. Programmers tend to do most of the AI development. In
reasinglygame designers with s
ripting ability are developing AI. Game design-ers tend to only
ontrol very high level aspe
ts of AI.

APPENDIX L. AI DEVELOPMENT IN INDUSTRY Page 273 of 2733. I believe they are usually
reated from strat
h.4. This probably varies greatly between proje
ts. In the RTS, Trash, thehigh level AI and path�nding are well seperated. Target sele
tion isnot seperated as well as it
ould be.5. If your AI is the great, I think it
ould be sold. It would have to beextremely good and easy to integrate into any RTS game engine. Ifthis was the
ase, perhaps you
ould
harge $100k USD for it�if soldto big AAA studios.L.3.4 Fireglow Games1. It's di�
ult to make a pre
ise estimation, be
ause vagueness of framesof whi
h part of the game engine is AI and whi
h is not. About 5000man-hours.2. Both programmers and designers do, and even if
onsider a VirtualMa
hine to be not a part of the AI engine, there's a plenty of workdone by programmers.3. Partially our AI engine is based on the third-party Virtual Ma-
hine/S
ript System, but most part is written in-house.4. Our AI engine
onsists of several modules, some of them are external,and some are
losely tied with the game and gameplay.5. As always, it would have some use. How mu
h? It depens on theframefork's quality and its pri
e. If the framework will
ontain ne
es-sary fun
tions (most demanded are probably path�nding and s
riptinglanguage with virtual ma
hine), and it is a�ordable, it will be used bydevelopes.

