Aalborg University

(:‘ Department of Computer Science
Fredrik Bajersvej 7 E @ 9220 Aalborg & e Denmark

MuLri-RELATIONAL DECISION TREE
BASED ON SELECTION GRAPH

MASTER THESIS
Nguyen Ba Tu Jorge Arturo Sanchez Flores
tunb@cs.aau.dk jsanchez@cs.aau.dk

Aalborg, June 2006

Abstract

The area of data mining has been studied for years. The main idea is to try to find useful infor-
mation from large amounts of data. Many algorithms have been developed for this purpose, but
one of the drawbacks from these algorithms is that they only work on single tables. Unfortunately
most of the data stored in the real-world are relational databases, consisting of multiple tables and
their associations. In order to solve the problem of having relational data, a technique used is
multi-relational data mining. This area encompasses multi-relational association rule discovery,
multi-relational decision trees and multi-relational distance based methods, among others.

In this thesis we explore the area of multi-relational data mining focusing on multi-relational
decision tree based on selection graph. We go from the theoretical introduction to the practical
aspects. Firstly, we review the existing concepts of selection graph to show disadvantage points on
these. Then, we introduce the formal definition of selection graph. Secondly, we implement the
multi-relational decision tree learning algorithm based on selection graph. Finally, we run some
experiments and obtain the results from our implementation. We compare them with the results of
a commercial software for data mining to estimate the quality of our methodology.

Preface

This thesis was written during the Spring Semester of 2006, as the result of our studies at Aalborg
University, to fulfill the requirements for the degree of Master of Science.

Acknowledgements First of all, we would like to thank our supervisor Manfred Jaeger, for his
valuable help during the development of this thesis, for his comments and suggestions when writ-
ing the thesis.

Ba Tu dedicates this thesis to his parents, to his family and to his girlfriend.
Ba Tu expresses his deep gratitude to the Danish Government for free of tuition fee for his studies.

Jorge dedicates this thesis to his parents Jorge and Angeles, to his brothers Abraham, Isaac and to
his sister Gela.

Jorge was supported by the Programme AlBan, the European Union Programme of High Level
Scholarships for Latin America, scholarship No.(E04M029937MX).

iii

Table of Contents

1 Introduction 1
1.1 Knowledge Discovery in Database 1

1.2 Motivation o o e e e e e e 2

1.3 Organization of the Thesis 3

2 Problem Definition 5
2.1 Relational Database 5
2.2 Objectsand Patterns 7
2.3 Problem Formulation L. 7

3 Multi-Relational Data Mining 9
3.1 Introduction to SelectionGraph 9
3.2 Existing Selection Graph Concepts 9
3.3 Formal SelectionGraph 12
3.3.1 Formal Definition 12

3.3.2 Semantic of Selection Graph 12

3.3.3 Transformation of Selection Graph to SQL Statement 16

3.34 Refinement of SelectionGraph 19

3.3.5 Complement of Refinement 22

3.3.6 Exploring the Refinement Space 25

3.4 Multi-Relational Decision Tree Learning Algorithm 25
3.4.1 Multi-Relational Decision Tree Definition 26

3.4.2 Multi-Relational Decision Tree Construction 26

34.3 Partitionof LeafNodes 28

3.4.4 Information Gain Associated with Refinements 29

345 Stopping Criterion e 31

3.5 Multi-Relational Decision Tree in Classification Process 31

vi TABLE OF CONTENTS
3.5.1 ClassifyaNewlInstance 32

3,52 ClassifyaNewDatabase 33

3.6 Multi-Relational Decision Tree in Practice 33
3.6.1 Graphical User Interface 34

3.6.2 Building the Multi-Relational Decision Tree 35

3.6.3 Using the Multi-Relational Decision Tree as Classifier 36

4 Experimental Results 39
4.1 MOVIES Database it 39
4.2 FINANCIAL Database ittt 47
4.3 Comparison with Clementine 50
43.1 MOVIES e 51

432 FINANCIAL s 54

5 Conclusion 57
5.1 Further Work 57

List of Figures

2.1
2.2

3.1
3.2
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

MOVIES database schema 6
Sample of the MOVIES database 7
Simple example of a selectiongraph L 0oL 10
Properties of edges in a selection graph L oL, 10
Correct ‘add negative condition’ refinement 11
Wrongcaseof fflag L 12
Selection graph withtwonodes 12
The simplest selection graph L. 13
Simple selection graph Lo 13
Decomposition of selection graph 14
Semantic of selectiongraph L Lo 16
Example of aselectiongraph 18
Considering selection graph oL oL oL 19
Simple selection graph L 19
‘Add positive condition’ refinement Lo 20
‘Add positive condition’ refinement example 20
‘Add present edge and extended node’ refinement 20
‘Add present edge and extended node’ refinement example 21
Unexpected selectiongraph 21
Complement of selection graph 22
Condition complement L L 23
‘Condition complement’ example 23
Edge complement L 24
‘Edge complement’ example 24
Tree data structure Lo 25

vii

viii LIST OF FIGURES
3.24 Structure of multi-relational decisiontree 26
3.25 Imitial selection graph 27
3.26 Refinement and its complement after one iteration 28
3.27 Refinement and its complement after two iterations 28
3.28 Resultingtree L 29
3.29 Overview of system architecture 34
3.30 Main graphical user interface and ‘Parameter’ function 34
3.31 Data structure of multi-relational decisiontree 35
3.32 Interface of the ‘Learning’ function 36
3.33 Interface of the ‘Classification’ function 37
4.1 MOVIES database schema 40
42 Resultingtreefor MOVIES 45
4.3 One example of a selection graph obtained in the tree for MOVIES 46
4.4 Another example of a selection graph obtained in the tree for MOVIES 46
4.5 FINANCIAL databaseschema 47
4.6 Resulting tree for FINANCIAL 50
4.7 Example of selection graph with its complement obtained in the tree 50
4.8 Modeling in Clementine for MOVIES 52
4.9 Decision tree for MOVIES drawn from Clementine 52
4.10 Analysis obtained with Clementine for MOVIES 52
4.11 Resulting tree obtained using MOVIES table 53
4.12 Modeling in Clementine for FINANCIAL 54
4.13 Decision tree drawn from Clementine for FINANCIAL 55
4.14 Analysis obtained with Clementine for FINANCIAL 55

List of Tables

2.1 Iustration of table structure 5
2.2 Notationused L 6
3.1 Semantic of the simplest selectiongraph 13
3.2 Semantic of the simple selectiongraph 14
3.3 Semantic of the selection graphin Figure 3.8.a. 14
3.4 Semantic of the selection graph in Figure3.8b 15
3.5 Semantic of the selection graph in Figure 3.8.c. 15
3.6 Selection graph translation to SQL-statement 16
3.7 Semantic of the selection graph in Figure 3.12 20
3.8 Semantic of the ‘add positive condition’ refinement example 21
3.9 Semantic of the ‘add present edge and extended node’ refinement example 21
3.10 Semantic of the ‘condition complement’ example 23
3.11 Semantic of the ‘edge complement’ example 24
3.12 Table structure storing the learned tree 32
4.1 Results with different stopping criteria and the same attributes for MOVIES . . . 41
4.2 List of selected attributes for MOVIES 42
4.3 Results with increasing number of attributes and stopping criterion=1 x 107 . . 43
4.4 Results with increasing number of attributes and stopping criterion=5 x 107 . . 43
4.5 Results with increasing number of attributes and stopping criterion=9 x 1076 . . 43
4.6 Results with increasing number of attributes and stopping criterion=0.001 44
4.7 Results with increasing number of attributes and stopping criterion=0.005 44
4.8 Results with increasing number of attributes and stopping criterion=0.009 44
4.9 Confusion matrix for MOVIES database 45
4.10 List of selected attributes for FINANCIAL 48
4.11 Results with different stopping criteria with same attributes for FINANCIAL . . . 49

X

LIST OF TABLES

4.12 Results with increasing number of attributes and stopping criterion=1x 1071 . . 49

4.13 Confusion matrix for FINANCIAL database 49

Chapter 1

Introduction

In this chapter we present a brief introduction to knowledge discovery in database and give the
motivation of our thesis.

1.1 Knowledge Discovery in Database

Nowadays, the capabilities for collecting data are changing rapidly. Millions of databases are
being used in fields such as business management, government administration, scientific and en-
gineering data management and many others. Most of these databases are relational databases.
The large amount of data collected and stored might contain some information, which could be
useful, but it is not obvious to recognize, nor trivial to obtain it. Sifting through such amounts of
data is impossible for humans and even some existing algorithms are inefficient when trying to
solve this task. This has generated a need for new techniques and tools that can intelligently and
automatically transform the stored data into useful information and knowledge. Data mining is
recommended as a solution for this problem. This solution relies heavily on the area of computer
science called machine learning, but it is also influenced by statistics, information theory and other
fields.

When studying literature about data mining, we have encountered with terms such like: data
mining and knowledge discovery in databases (KDD). In various sources [1, 2], those terms are
explained on rather different way. A clear definition of data mining is presented in [3]:

“Data mining is the process of extracting valid, previously unknown, comprehensible,
and actionable information from large databases and using it to make crucial business
decisions.”

A different view is presented in [4]:

“Knowledge discovery in databases (often called data mining) aims at the discovery
of useful information from large collections of data.”

2 Chapter 1. Introduction

Also through the literature about the topic, the terms data mining and KDD sometimes are used
without distinction. In this thesis, we do not go through the comparison of both concepts, but we
use them with the same meaning — the discovery of useful information from large collections of
data. Basically, the process of knowledge discovery consists of three subtasks [5]:

e Pre-processing of data: this task adapts the original format of the data to fit the input format
of the data mining algorithm.

e Data mining: once formatted the data, one or more algorithms must be applied to extract
patterns, regularities or general rules from the data.

e Post-processing of result: sometimes the result requires to be turned or translated to more
intelligible format.

Almost all data mining algorithms currently available, are based on datasets consisting of a single
table. These algorithms only allow the analysis of fairly simple objects. It requires that each
object be described by a fixed set of attributes stored in a single table. When we need to represent
more complex objects that are stored in a relational database containing multiple tables, each
object can be described by multiple records in multiple tables. To be able to analyse relational
databases containing multiple relations properly, we need to write specific algorithms to cope with
the structural information that occurs in relational databases. The multi-relational data mining
framework described in this thesis is one of the solutions.

1.2 Motivation

Data mining algorithms look for patterns in data. While most existing data mining approaches
look for patterns in a single data table, multi-relational data mining approaches look for patterns
that involve multiple related tables from a relational database. In recent years, multi-relational data
mining encompasses multi-relational association rule discovery, multi-relational decision trees and
multi-relational distance based methods, among others.

The multi-relational data mining framework proposed in [6] is a novel approach that exploits
the semantic information in the database using Structured Query Language (SQL) to learn directly
from data in a relational database. Based on this framework, several algorithms for multi-relational
data mining have been developed.

e The same authors of [6], in [7], introduce a general description of a decision tree induction
algorithm, based on the multi-relational data mining framework and logical decision tree.
There are no experimental results available concerning the performance of the algorithm for
induction of decision trees from a relational database proposed in [7].

e Based on [5], implementation and experiments reported by [8] have shown that MRDTL -
A multi-relational decision tree learning algorithm is competitive with other approaches to
learning from relational data.

e Moreover, other implementation and experiments (MRDTL-2) reported by [9] have shown
that running time of the implementation in [8] is slow. Therefore, authors turns the algorithm
to speed up multi relational decision tree learning.

1.3. Organization of the Thesis 3

In this master thesis, we want to implement, experiment and improve the current techniques for
multi-relational data mining using selection graphs.

1.3 Organization of the Thesis

Chapter 2 introduces the problem definition. Chapter 3 describes in more detail the multi-relational
data mining framework, and discusses our implementation. Chapter 4 presents the results of our
experiments. Finally, chapter 5 concludes the thesis and gives possible future directions.

Chapter 2

Problem Definition

In this chapter we review the fundamental concepts in relational databases and we define the
problem formulation.

2.1 Relational Database

We will assume that the data to be analyzed is stored in a relational database. A relational database
consists of a set of tables and a set of associations (i.e. constraints) between pairs of tables describ-
ing how records in one table relate to records in another table. Each table stores a set of objects
that have the same properties. Each table consists of rows and columns. Each row of the table
represents one record corresponding to one object. Each column is one attribute (property) of an
object. For example, we have MOVIE table, the following Table 2.1 shows the table structure.

| ID [Name | Producer | StudioName |
1 | Number thirteen | Hitchcock | Islington
2 | Elstree Calling Brunel BIP Elstre
3 | Lifeboat MacGowan | Fox

Table 2.1: Illustration of table structure

In the above example, MOVIE table consists of three rows and four columns (ID, Name, Producer,
StudioName). Each row is the description of one movie, e.g., the second row is the description
of the second movie (2, Elstree Calling, Brunel, BIP Elstre). Each column corresponds to one
attribute of the movie, e.g. the second column is the ‘name’ attribute. All elements in this column
store all names of movie. The element at the second row and the second column is ‘Elstree
Calling’, which denotes that the second movie name is ‘Elstree Calling’.

In this thesis, we use the notation in Table 2.2

Definition 1 The domain of the attribute T.A is denoted as DOM(T.A) and is defined as the set of
all different values that the records from table T can have in the column of attribute A.

Definition 2 A primary key of table T, denoted as T.ID, has a unique value for each row in this
table.

6 Chapter 2. Problem Definition

| Notation | Meaning \

T Table

D Database

T.ID ID is a primary key of T
T.A A is an attribute of T

Table 2.2: Notation used

Definition 3 A foreign key in table T, referencing table T, denoted as T,:T.ID, takes values belong
to DOM(T.ID).

An association between two tables describes the relationships between records in both tables. It is
defined through primary and foreign keys. The relationship is characterised by the multiplicity of
the association. The multiplicity of an association determines whether several records in one table
relate to single or multiple records in the second table:

e One-to-one. A record in table T is associated with at most one record in table 7, and a
record in T is associated with at most one record in 7.

e One-to-many. A record in table T is associated with any number (zero or more) of records
in table T». A record in T, however, can be associated with at most one record (entity) in
T.

Also, the multiplicity determines whether every record in one table needs to have at least one
corresponding record in the second table.

CAST MOVIES STUDIO
ActorName R StudioName
) MovielD -
MovielD eyr— Founder
DirlD .
Role) City
Note FilmiD Countr
Title y
Y Producer
ACTOR Author
realAward DIRECTOR
ActorName
- Award :
Gender StudioName DirectorName
DateOfBirth DirectorName DirectorlD
DateOfDeath Pcode
Origin Background

Figure 2.1: MOVIES database schema

Example 2.1:

The data model in Figure 2.1 describes DIRECTOR, MOVIES, STUDIO, CAST and ACTOR as
well as how each of these relate to each other. We also use this database schema throughout this
thesis. The database schema shows that director may have zero or more movies. Each studio also
produces zero or more movies. Cast corresponds to the association between role and actor in each
movie. Figure 2.2 shows data used as sample data in this thesis.

2.2. Objects and Patterns 7

DIRECTOR STUDIO
directorName | pcode background studioName city founder country
R. W. Neill D Ir Universal North Hollywood -1 USA
Boleslawski D Ru MGM Culver City -1 USA
Schertzinger DCM Am 20th Century Hollywood -1 USA
Brabin D Br Paramount Los Angeles USA
vonStroheim DA Os
Stahl ADP Am
MOVIES
movielD dirlD title producer author studioName directorName award
38 RWN Pursuit to Algiers not known -1 Universal R.W.Neill Y
44 RWN Terror by Night Howard Benedict -1 Universal R.W.Neill Y
10 RyB The Painted Veil Stromberg -1 MGM Boleslawski Y
12 RyB Les Miserables D.F. Zanuck -1 20th Century Boleslawski N
81 Vis The Mikado not known WS. Gilbert Schertzinger Y
84 Vis Road to Singapore Harlan Thompson -1 Paramount Schertzinger Y
85 Vis Road to Zanzibar Paul Jones -1 Paramount Schertzinger N
9 ChB The Mask of Fu Manchu Thalberg -1 MGM Brabin N
5 EvS Greed vonStroheim Frank Norris MGM vonStroheim N
30 IMS The Magnificent Obsession Stahl Lloyd C. Universal Stahl Y
CAST ACTOR
movielD | actorName role note actorName gender dateOfBirth dateOfDeath | origin
38 Philip Abbott -1 railway porter Maury Abram u -1 1992 -1
44 Bud Abbott -1 Paul Jones M 1960 1984 Am
10 Bud Abbott -1 Bud Abbott M 1895 1974 Am
12 Diahnne Abbott -1 Diahnne Abbott F -1 1992 Am
81 George Abbott -1 George Abbott M 1897 1964 Am
81 John Abbott -1 adolescent John Abbott M 1905 1964 Br
86 Maury Abram -1 Philip Abbott M 1923 1964 Am
9 Maury Abram -1 Kareem Abdul J M -1 1992 Am
5 Walter Abel -1 Walter Abel M 1898 1967 Am
30 Murray Abraham -1 dictator Murray Abraham M -1 1992 -1

Figure 2.2: Sample of the MOVIES database

2.2 Objects and Patterns

In a relational database, the data model consists of multiple related tables. One table represents
one kind of objects. Each row is one record corresponding to a single object. The purpose of
multi-relational data mining will be to predict the objects based on a class label in a relational
database. We will refer to descriptions of potentially interesting sets of objects as multi-relational
patterns, or simply patterns when clear from the context.

2.3 Problem Formulation

The data model consists of multiple tables, we can choose several kinds of related objects or single
kind of objects as central to the analysis. In this approach, we choose single kind of objects we
want to analyse, by selecting one of the tables as central (called the target table). Each record in
the target table will correspond to a single object in the database. Any information pertaining to
the object which is stored in other tables can be looked up by following the associations in the data
model. If the data mining algorithm requires a dependent attribute for classification, we can define
a particular target attribute within the target table. The purpose of multi-relational data mining
is the discovery of useful information from large relational database. At present, there are many

8 Chapter 2. Problem Definition

research directions such as multi-relational association rule discovery, multi-relational decision
trees and multi-relational distance based methods. We only focus on multi-relational decision tree
learning. Therefore, we introduce the problem formulation as follows:

Given: Data stored in relational database
Goal: Build multi-relational decision tree for predicting target attribute
in target table

Example 2.2:

Given: Data was stored in MOVIE relational database schema
Goal: Build multi-relational decision tree for predicting whether movie
has received an award or not

Chapter 3

Multi-Relational Data Mining

In this chapter, we introduce the formal definition of selection graph, and then present the multi-
relational decision tree based on that concept. We conclude this chapter by describing the system
architecture and the implementation details.

3.1 Introduction to Selection Graph

The multi-relational data mining framework was first introduced by Knobbe and colleague in
1999 [6]. The multi-relational data mining framework is based on the search for interesting pat-
terns in the relational database, where patterns can be viewed as subsets of the objects from the
database having some properties. In order to describe the selected patterns, they defined the con-
cept of selection graph. Basically, selection graphs can be represented graphically as labeled
directed graphs and are used to represent selections of objects. The selection graphs also can be
transformed directly to SQL query.

Before we introduce the formal selection graph described in section 3.3, we review the existing
concepts of selection graph in the following section.

3.2 Existing Selection Graph Concepts

The concept of selection graphs was first introduced by Knobbe and colleague [7]. In order to
understand the concept, we will give an overview of the original definition.

Definition 4 A selection graph S is a directed graph (N, E), where N is a set of triples (T, C, s)
called selection nodes, T is a table in the data model and C is a, possibly empty, set of conditions
on attributes in T of type T.A operator c; the operator is one of the usual selection operators, =,
>, <, etc (for example STUDIO.name = ‘MGM’). s is a flag with possible values open and closed.
E is a set of tuples (P, Q, a, e) called selection edges, where P and Q are selection nodes and a is
an association between P.T and Q.T in the data model (for example T1.ID = T»:T1.ID). e is a flag
with possible values present and absent. The selection graph contains at least one node ngy that
corresponds to the target table T.

10 Chapter 3. Multi-Relational Data Mining

Selection graphs can be represented graphically as labeled directed graphs. This means that it can
be described as a directed graph with its nodes having a label. The label could be a table name
or a table name with a condition of some sort on one of the attributes of the table that the node
represents.

Example 3.3:

The following is an example of a selection graph with two nodes:

MOVIES STUDIO

Figure 3.1: Simple example of a selection graph

In Figure 3.1, the label of the left node is MOVIES corresponding to MOVIES table, and the right
one is STUDIO corresponding to STUDIO table.

The nodes in graph have the flag s. The value of s is indicated by the absence or presence of a
cross in the node, representing the value open and closed respectively. When the node’s s flag is
open it means that the selection graph can be extended from that node by including an edge. When
the node’s s flag is closed, there cannot be further growth through that node. In Figure 3.1, the
MOVIES node is open, but STUDIO node is closed.

STUDIO
MOVIES

DIRECTOR

Figure 3.2: Properties of edges in a selection graph

An edge between two nodes can be translated as relation between two tables in a relational dataset.
A relation R between two tables T and T, can be said to be of type T1.ID = T,:T,.ID, where ID
is a primary key in table 7 and ID is also the foreign key in T». The edge also has an e flag. The
value of e is indicated by the absence or presence of a cross on the arrow, representing the value
present and absent respectively. Present means that there exists R described above between two
tables. R maps tuples in T to T, and selects tuples that are equal. On the other hand, absent selects
the complement of the tuples selected by present. In Figure 3.2, the edge between MOVIES and
STUDIO node is present, the edge between MOVIES and DIRECTOR node is absent.

In Hector’s thesis, when extending the selection graph to represent a subset (also called refine-
ment), he introduced one disadvantage. In order to solve this disadvantage case, in [8], Hector L.,
Anna A. and Vasant H. changed Knobbe’s definition of selection graph by adding the f flag into
selection nodes. f is a flag with possible values front and back. It is used to compare how two
nodes are connected between an edge. It indicates which node comes before the other in context
of each edge. We introduce this selection graph definition as follows:

3.2. Existing Selection Graph Concepts 11

Definition 5 A selection graph S is a directed graph, includes a pair (N,E), where N is a set of
tuple (T, C, s, f) called selection nodes. T is a table in the data model and C is a, possibly empty, set
of conditions on attributes in T of type T.A operator c; the operator is one of the usual selection
operators, =, >, <, etc (for example STUDIO.name = ‘MGM’). s is a flag with possible values
open and closed. fis a flag with possible values front and back.

E is a set of tuples (P, Q, a, e) called selection edges, where P and Q are selection nodes and a is
an association between P.T and Q.T in the data model (for example T1.ID = T»:T1.ID). e is a flag
with possible values present and absent.

The selection graph contains at least one node nq that corresponds to the target table T.

Rule to set value for f flag

Flag f is set to front for those nodes that on their path to ny have no closed edges. For all the
other nodes flag f is set to back. All refinements can only be applied to the open, front nodes in the
selection graph S.

We will explain why they need f flag using the following selection graph. This selection graph
includes two branches: top and bottom branch. The top branch is denoted by regular label on
nodes. The bottom branch is denoted by the italic label on nodes.

CAST MOVIES

ACTOR

MOVIES

category="action’
Figure 3.3: Correct ‘add negative condition’ refinement

If we have no flag f, we can extend CAST or MOVIES node in the bottom branch. Because they
are open node. When we can extend, we can get the refinement of above selection graph. This
means that the refinement can return greater number of records than the above selection graph
does. This is a contradiction with the refinement principle: the refinement returns less number of
records than its selection graph does.

If we have flag f, with the above rule, all nodes in bottom branch will be set to back value and all
nodes in top branch will be set to front value. This means that we only make refinements based on
the nodes in the top branch. They still keep the refinement principle.

When consider the f flag, we discover that it is valid if selection graph structure is a tree. Because
we have only one path from considering node to the node ny corresponding to target table, so
we are easy to set value for f flag of that node. The selection graph in Figure 3.4 will show our
statement.

With the selection graph in Figure 3.4, we cannot set value for f flag of MOVIES node. Because
f flag of MOVIES node is front if we choose the path: MOVIES— CAST— ACTOR. But it is
also back if we choose the path: MOVIES— CAST— ROLE— ACTOR.

12 Chapter 3. Multi-Relational Data Mining

CAST MOVIES

ACTOR category="action

ROLE

Figure 3.4: Wrong case of f flag
3.3 Formal Selection Graph

3.3.1 Formal Definition

Based on Knobbe’s definition and the discovering of Hector A.L., Anna A. and their colleagues,
we introduce the different definition of selection graph that we will use in this thesis:

Definition 6 A selection graph Sis a tree (N, E), where N is a set of triples (T, C, k) called selection
nodes, T is a table in the data model and C is a, possibly empty, set of conditions (C = {cy, ..., Cy})
on attributes in T of type T.A operator v; the operator is one of the usual selection operators, =,
>, <, etc. and v is any possible value in T.A (for example STUDIO.name = ‘MGM’); k is a flag
with possible values extend and non-extend. E is a set of tuples (P, Q, e, a) called selection edges,
where P and Q are different selection nodes; e is a flag with possible values present and absent;
a is an association between P.T and Q.T in the data model, is defined by the relation between the
primary key in P and a foreign key in Q, or the other way around (for example T\.ID = T,:T,.ID).
The selection graph contains at least one root node ny that corresponds to the target table T).

In this definition, instead of using the s and f flags as in [7], [8], [9] and [10], we use the k flag.
The value of k is indicated by the absence or presence of a cross in the node, representing the value
extend and non-extend respectively. When the node’s k flag is extend it means that the selection
graph can be extended from that node by including an edge or condition. When the node’s k flag
is non-extend, there cannot be further growth through that node. For example, in Figure 3.5, the
MOVIES node is extend, but STUDIO node is non-extend.

MOVIES STUDIO

Figure 3.5: Selection graph with two nodes

3.3.2 Semantic of Selection Graph

Selection graphs represent selections of patterns in relational database. The selection node N rep-
resents a selection of records in the corresponding table N.7" which is determined by the set of con-
ditions N.C and the relationship with records in other tables characterised by selection edges con-

3.3. Formal Selection Graph 13

nected to N. In other words selection graphs represent subset of objects from relational database
having some properties.

For the purpose of this section we will refer to the tuple relational calculus [11], expressed as

{r] P(n)}

it is the set of tuples 7 such that predicate P is true for ¢. We use #[A] to denote the value of tuple ¢
on attribute A, and ¢ € T to denote that tuple 7 is in table 7.

Example 3.4:

The simplest selection graph consists of one node corresponding to target table, as the following
Figure shows.

MOVIES

Figure 3.6: The simplest selection graph

The graph in Figure 3.6 represents all records in MOVIES table.

{t|t €e MOVIES} 3.1
RWN Pursuit to Algiers not known -1 Universal R.W.Neill Y
RWN Terror by Night Howard Benedict -1 Universal R.W.Neill Y
RyB The Painted Veil Stromberg -1 MGM Boleslawski Y
RyB Les Miserables D.F. Zanuck -1 20th Century Bolesl| N
ViS The Mikado not known WS.Gilbert Schertzinger Y
Vis Road to Singapore Harlan Thompson -1 Paramount Schertzinger Y
Vis Road to Zanzibar Paul Jones -1 Paramount Schertzinger N
ChB The Mask of Fu Manchu Thalberg -1 MGM Brabin N
EvS Greed vonStroheim Frank Norris MGM vonStroheim N
IMS The Magnificent Obsession Stahl Lloyd C. Universal Stahl Y

Table 3.1: Semantic of the simplest selection graph

Example 3.5:

Now we have a more complex selection graph, composed of two nodes and one condition.

MOVIES STUDIO

: :M.sludioname:S.studioname: :

studioname="MGM’

Figure 3.7: Simple selection graph

The graph in Figure 3.7 represents the records in MOVIES table that have studioname equals to
‘MGM’.

14 Chapter 3. Multi-Relational Data Mining

{t| 3 s € STUDIO(t[studioname] = s[studioname] A s[studioname] = ‘MGM")) 3.2)

Figure 3.2 shows the records in the database that are represented by selection graph in Figure 3.7.

RyB The Painted Vell Stromberg -1 MGM Boleslawski Y
ChB The Mask of Fu Manchu Thalberg -1 MGM Brabin N
EvS Greed vonStroheim Frank Norris MGM vonStroheim N

Table 3.2: Semantic of the simple selection graph

Decomposition of Selection Graph

We now have a more complex selection graph, we can decompose it to many simpler selection
graphs. The simpler selection graphs will still keep similar semantics. Figure 3.8.a is the complex
selection graph, b and c are the simple one that we decompose from a.

MOVIES CAST ACTOR

M.movie=C.movie C.actorn=A.actorn
DIRECTOR

gender='F’

b) DIRECTOR

MOVIES & ACTOR

C.actorn=A.actorn

gender='F’ MOVIES

Figure 3.8: Decomposition of selection graph

The selection graph in Figure 3.8.a returns the subset of object (the movies that have at least one
female actor and have both studioname and directorname).

RyB Les Miserables D.F.Zanuck -1 20th Century Boleslawski N

Table 3.3: Semantic of the selection graph in Figure 3.8.a

The selection graph in Figure 3.8.b returns the subset of object (the movies that their actor’s gender
is equal to ‘F’).

{t| ds e CAST(t[moviel D] = s[moviel D]
A du € ACTOR(slactorName] = ulactorName] A u[gender] = F))} 3.3)

The selection graph in Figure 3.8.c returns the subset of object (the movies have both studioname
and directorname).

3.3. Formal Selection Graph 15

RyB Les Miserables D.F.Zanuck -1 20th Century Boleslawski N

Table 3.4: Semantic of the selection graph in Figure 3.8.b

{t| 4 s € DIRECTOR(t|directorName] = s[directorName]
AJdu e STUDIO(s[studioName] = u[studioName]))} 3.4)

Pursuit to Algiers not known -1 Universal R.W.Neill Y
RWN Terror by Night Howard Benedict -1 Universal R.W.Neill Y
RyB The Painted Veil Stromberg -1 MGM Boleslawski Y
RyB Les Miserables D.F.Zanuck -1 20th Century Boleslawski N
Vis Road to Singapore Harlan Thompson -1 Paramount Schertzinger Y
Vis Road to Zanzibar Paul Jones -1 Paramount Schertzinger N
ChB The Mask of Fu Manchu Thalberg -1 MGM Brabin N
EvS Greed vonStroheim Frank Norris MGM vonStroheim N
IMS The Magnificent Obsession Stahl Lloyd C. Universal Stahl Y

Table 3.5: Semantic of the selection graph in Figure 3.8.c

We define that a subset of objects in a complex selection graph is equal to the intersection of all
objects in its subgraphs. Therefore, the subset of objects in the complex selection graph is often
less than or equals to union of all subset in its subgraphs.

From the several existing selection graph, also we can compose them into one more complex
selection graph using the intersection of all objects in the subgraphs.

After the presented example, we can now give the formal semantic for selection graphs using the
following inductive definition.

SEMANTIC _DEFINITION(S : Selection Graph)
Begin
1. S has no branch
Sem(S)={tf|lteT(C)),j=1,..,m} 3.5
where T(C}), are the conditions on a table and define a subset of the table.

2. S has n branches (n > 1)

Let us assume that we have both semantics of n — 1 branch selection graph and new added
one: Sem(S ,—1) and S em(S ,.y), respectively (Figure 3.9).

if the new added edge is open then
Sem(S,)=1{t,€T|t, € Sem(S,—1) A Ju(u € Sem(S ,.,,) A u[A] = t,[B]} (3.6)

where u[A] = ¢[B], is an association between tuples u, ¢ on attribute [A] and, that for each
t € P there exists a set of u € Q.

else
Sem(S,)={t,€T|t, € Sem(S,—1) A ~Ju(u € Sem(S ,;on,)} A u[A] = t,[Bl} 3.7
end if

end

16 Chapter 3. Multi-Relational Data Mining

A
Sem(S,)

(" Sn-1 R
Sem(Sn—l)

Sem(S new)

Figure 3.9: Semantic of selection graph

3.3.3 Transformation of Selection Graph to SQL Statement

We need a new technique (tools) that can manipulate the data in relational database efficiently.
The shortest way to manipulate data in relational database is with SQL statements. As explained
above, selection graphs represent subset of objects from relational database having some proper-
ties. We introduce the induction algorithm that transforms selection graph into SQL statement to
get patterns. The pseudocode is shown in Algorithm 1

This algorithm uses GET_SUBGRAPH(Q) function to return the selection subgraph with root
node be Q.

The algorithm effectively produces a join of all the tables associated with an open node. For each
subgraph attached to an absent edge, a sub-query is produced by calling the GET_SUBGRAPH
procedure. The fact that we state select distinct in the main query rather than select is caused by
the fact that a record in target table 7y may be covered by the selection graph in multiple ways.
Since the target table represents our objects, they should be counted only once.

The generic resulting SQL-statement is shown in the following Table 3.6

GENERIC QUERY:

select distinct 7. primary_key
from table_list

where join_list

and condition_list

* Ty = target_table

Table 3.6: Selection graph translation to SQL-statement

Example 3.6:

We assume that we have the selection graph shown in Figure 3.10. We run Algorithm 2 step-by-
step to illustrate how it works.

3.3. Formal Selection Graph

17

Algorithm 1 GET_SQL (S)

1: Input: Selection graph §
2: QOutput: SQL statement S g/
3: Init:
Table _list:=";
Join_list:="";
Condition_list:=";
4: If nodes = O then exit;
5: for each nodes[i] of S do
6: Table_list.add(nodes[i].T);
7 Condition_list.add(nodes[i].C);
8: for j=0 to outgoing edges from nodes[i] do
9 if edges[j].e = present then

10: join :="edges[j].P.ID = edges[j].Q:P.ID’;
11: Join_list.add(join);

12: else

13: Sub:= GET_SUBGRAPH (edges[j].Q)

14: join:= node.ID not in GET_SQL(Sub)

15: Join_list.add(join);

16: end if

17: end for

18: end for

19: return S g/ = SELECT root_table.ID
FROM table _list
WHERE join_list AND condition_list

Algorithm 2 GET_SUBGRAPH (root node)

1: Input: root node N
2: Output: Selection graph S
3: Init:
Nodes ="
Edges =";
Nodes = Nodes.add(N);
If edges outgoing from N = 0 then exit;
for each edge outgoing from N do
Edges.add(edge);
GET_SUBGRAPH(edge.Q)
end for
10: return S(Nodes, Edges)

L X DR

18 Chapter 3. Multi-Relational Data Mining

STUDIO

MOVIES country="USA

MOVIES STUDIO

country="USA’ and
studioname="MGM’

Figure 3.10: Example of a selection graph

Step 1: Initialize the value of variables: table_list, join_list and condition_list to empty.

We start running the algorithm with input parameters(whole selection graph §). First, we have
root node. This is MOVIES node. We get value of variables as follows:

e Table_list = MOVIES.

e Condition_list="".

We have two outgoing edges from MOVIES node:

e With present edge MOVIES—STUDIO, we get join_list = MOVIES .studioname = STUDIO.
studioname.

o With absent edge MOVIES—MOVIES, we call GET_SUBGRAPH starting with non —
extend MOVIES node. And then, we remove all subgraph starting with non — extend
MOVIES node. We can get join_list to add join variable as follows:

join = MOVIES.movielD not in
(SELECT MOVIES.movielD
FROM MOVIES, STUDIO
WHERE MOVIES.studioname=STUDIO.studioname
AND STUDIO.studioname = MGM
AND STUDIO.country=USA)

Step 2:

We have only one node. This is STUDIO node. We get value of variables as follows:

e Table_list = MOVIES, STUDIO
e Condition_list=‘STUDIO.studioname=MGM’

We have no edges. Therefore, this algorithm will stop here. Finally, this algorithm returns SQL-
statement as follows:

3.3. Formal Selection Graph 19

SELECT MOVIES.movielID

FROM MOVIES, STUDIO

WHERE MOVIES.studioname = STUDIO.studioname
AND STUDIO.studioname = MGM

AND MOVIES.movieID NOT IN (

SELECT MOVIES.movieID

FROM MOVIES, STUDIO

WHERE MOVIES.studioname = STUDIO.studioname
AND STUDIO.studioname = MGM

AND STUDIO.country = USA)

3.3.4 Refinement of Selection Graph

Multi-relational data mining algorithms search for and successively refine interesting patterns.
During the search, patterns will be considered and those that are promising will be refined. The
idea of search for patterns is basically a top-down search [7]. In order to search, they first intro-
duced the concept of refinement and its complement in [7]. Basically, a refinement is a selection
graph that bests represents the data, based on the prediction we are trying to find. Refinements
can be made to find a hypothesis that is consistent with the data. After each refinement, we can
reduce the search space and efficiently evaluate potentially interesting patterns [7]. In other words,
the refinement principle is the refinement returns less number of patterns than its selection graph
does. Given the selection graph, there are two methods for refinement: addition of conditions and
addition of extended nodes and present edges and two methods for complement of refinement:
condition complement and edge complement. Below, we will explain in detail how each refine-
ment works using examples from MOVIE database. We will illustrate all refinements on selection
graph based on Figure 3.11. The complement of refinement is introduced in section 3.3.5.

Note that a refinement can only be applied to extended node in a selection graph.

Ty T;
(¢}

Figure 3.11: Considering selection graph

We introduce the graph in Figure 3.12, that will be used in this section to show the different
examples.

MOVIES STUDIO

: :M.studionamezs.sludiuname: :

country="USA’
Figure 3.12: Simple selection graph
Add positive condition This refinement adds a condition c to the set of conditions C in the refined

node. This refinement does not change the structure in the selection graph S, nor the value
of k changes.

20 Chapter 3. Multi-Relational Data Mining

To T;
Candc

Figure 3.13: ‘Add positive condition’ refinement

Using the selection graph in Figure 3.12 as example, we make the refinement STUDIO.
studioname=‘MGM’ as the condition c. This condition ¢ will be added to the set of condi-
tions C for the node STUDIO, in which the condition STUDIO.country=‘USA’ was previ-
ously defined. The selection graph in Figure 3.14 shows this refinement. Table 3.7 repre-
sents the semantic of the selection graph in Figure 3.12 with one condition. After adding
the condition in this example, Table 3.8 represents the semantic for this refinement.

MOVIES STUDIO

O—0)

country="USA’ and
studioname="MGM’

Figure 3.14: ‘Add positive condition’ refinement example

Pursuit to Algiers not known MGM R.W.Neill Y
Terror by Night Howard Benedict MGM Y
The Painted Veil Stromberg MGM Y
Les Miserables D. Zanuck 20th Century Boleslawski N
The Mikado not known Miramax Schertzinger Y
Road to Singapore Harlan Thompson Paramount Y
Zanzibar Paul Jones Dreamworks Paul Jones N
The Mask of Fu Manchu Thalberg Fox Brabin N
Greed VonStroheim MGM VonStroheim N
The Crowd K.Vidor MGM K. Vidor Y
6000 Enemies Lucien Hubbs MGM N
The Magnificent Obsession Stahl MGM Y
London After Midnight Stahl Universal Franklin Y
Seven Women Bernard Smith MGM N
Mogambo Zimbalist MGM Y

Table 3.7: Semantic of the selection graph in Figure 3.12

Add present edge and extended node This refinement adds a present edge and its table as an
extended node to the selection graph S.

Figure 3.15: ‘Add present edge and extended node’ refinement

Using the selection graph in Figure 3.12, a new edge from MOVIE node to DIRECTOR
node results in the selection graph in Figure 3.16. Table 3.7 is the semantic of the selection
graph in Figure 3.12. The semantic for this example is represented in Table 3.9.

3.3. Formal Selection Graph 21

Pursuit to Algiers not known R.W.Neill Y
Terror by Night Howard Benedict MGM Y
The Painted Veil Stromberg MGM Y
Greed VonStroheim MGM VonStroheim N
The Crowd K.Vidor MGM K. Vidor Y
6000 Enemies Lucien Hubbs MGM N
The Magnificent Obsession Stahl MGM Y
Seven Women Bernard Smith MGM N
Mogambo Zimbalist MGM Y

Table 3.8: Semantic of the ‘add positive condition’ refinement example

STUDIO

country="USA’

MOVIES

DIRECTOR

Figure 3.16: ‘Add present edge and extended node’ refinement example

Pursuit to Algiers not known MGM R.W.Neill Y
Les Miserables D. Zanuck 20th Century Boleslawski N
The Mikado not known Miramax Schertzinger Y
Zanzibar Paul Jones Dreamworks Paul Jones N
The Mask of Fu Manchu Thalberg Fox Brabin N
Greed VonStroheim MGM VonStroheim N
The Crowd K.Vidor MGM K. Vidor Y
London After Midnight Stahl Universal Franklin Y

Table 3.9: Semantic of the ‘add present edge and extended node’ refinement example

It is worth mentioning that the ‘add condition’ refinement takes place only on the attributes of
the involved table. The exploration of the tables in the database is performed with the ‘add edge
present edge and extended node’ refinement.

Avoiding non-meaningful conditions

When we build a refinement by adding conditions there could be some unexpected selection graphs
to occur. For example, the condition sex = ‘male’ is meaningful, but the sex > ‘male’ is a non-
meaningful condition. Since we can only compare that condition with two values. Figure 3.17
represents this selection graph.

MOVIES ACTOR
sex>‘male’

Figure 3.17: Unexpected selection graph

In order to avoid non-meaningful conditions, we use the data type of the column. First, we check
the data type of column, and then we make the decision on which operator can be chosen based
on this selection. Algorithm 3 shows this pseudocode.

22 Chapter 3. Multi-Relational Data Mining

Algorithm 3 CHOOSE_OPERATOR (7, A)
1: Input: Table T, Column name A.
Output: Operator.
SELECT datatype of A INTO type FROM T
switch type
case: boolean
Operator:= {=}
case: numeric
Operator:= one of {<, >, =, <=, >=, <>}
case: string
Operator:= one of {=, <>}
: end switch
: return Operator

R e A A

—
N = 2

3.3.5 Complement of Refinement

In SET theory, the complement concept is defined as follows: If A and B are sets, then the comple-
ment of A in B is the set of elements in B but not in A. Besides, the semantic of selection graph is
the set of interesting objects. Therefore, we introduce the complement concept for selection graph
as follows.

Definition 7 Given a selection graph S and its refinement R(S), the complement of R(S) is a selec-
tion graph R_com(S) that contains the elements in S which are not in R(S).

)

ram(

R(S)

Figure 3.18: Complement of selection graph

In Figure 3.18, the middle bounded square represents all elements of selection graph S. The small
inner square represents all elements of refinement selection graph R(S). And the area in between
represents all elements of complement of refinement of selection graph R_com(S').

Now, we introduce the two methods for creating the complement of the refinements described in
section 3.3.4.

Condition complement This is used when we create the complement of ‘Add positive condition’
refinement. When the considering node is the root node ng, the new condition is negated and
added to the list of conditions C in ng. When the considering node is not the root node ng, the

3.3. Formal Selection Graph 23

complement adds a new absent edge from ng (corresponding to target table 7) to a subgraph
representing the original graph plus the non-negated condition to the corresponding node’s
condition list. The value of k flag in all nodes that belong to the subgraph will be set to
non-extend.

Remark: when the considering node is not ng, we do not use the association between ny and
the node corresponding to T in the subgraph because the two nodes represent 7. In other
words, the association 7¢.ID = T.ID is redundant.

T;

Ty

Ty T;

Candc

Figure 3.19: Condition complement

Using the selection graph in Figure 3.7, we use the condition ‘country=USA’ in the condi-
tion list, we add a new absent edge from the MOVIES node to the subgraph of MOVIES
and STUDIO node, then we add the new condition ‘studioname=MGM’ into STUDIO node
of the subgraph. The & flags in all nodes of the subgraph are set to non-extend. Table 3.10
shows the semantic for this complement, the rows represented by Table 3.10 and Table 3.8
partitions Table 3.7, ensuring that all elements in a selection graph are covered by its refine-
ment and complement.

STUDIO

MOVIES country="USA

MOVIES STUDIO

country="USA’ and
studioname="MGM’

Figure 3.20: ‘Condition complement’ example

Remark: In Figure 3.20, we do not use the association MOVIES.movielD = MOVIES.
movielD between the root node of the selection graph and MOVIES node of the subgraph
(MOVIES — STUDIO).

Les Miserables D. Zanuck 20th Century Boleslawski N
The Mikado not known Miramax Schertzinger Y
Road to Singapore Harlan Thompson Paramount Y
Zanzibar Paul Jones Dreamworks Paul Jones N
The Mask of Fu Manchu Thalberg Fox Brabin N
London After Midnight Stahl Universal Franklin Y

Table 3.10: Semantic of the ‘condition complement’ example

24 Chapter 3. Multi-Relational Data Mining

Proposition 1 The condition complement is the complement of the add positive condition
refinement.

Edge complement This is used when we create the complement of ‘Add present edge and ex-
tended node’ refinement. When the node to be complemented is directly associated to the
root node in the selection graph S, we add an absent edge and its corresponding table as
a non-extended node (Figure 3.21.a). When the node to be complemented is not directly
associated to the root node in the selection graph S, we apply a procedure similar to the
‘condition complement’ (Figure 3.21.b).

Figure 3.21: Edge complement

Using the selection graph in Figure 3.12, a new absent edge from MOVIE node to DIREC-
TOR non-extended node results in selection graph (Figure 3.22). Since this is the comple-
ment of the ‘add present edge and extended node’ refinement, Table 3.11 is the semantic for
this example.

STUDIO

MOVIES country="USA

DIRECTOR

Figure 3.22: ‘Edge complement’ example

Terror by Night Howard Benedict MGM Y
The Painted Veil Stromberg MGM Y
Road to Singapore Harlan Thompson Paramount Y
6000 Enemies Lucien Hubbs MGM N
The Magnificent Obsession Stahl MGM Y
Seven Women Bernard Smith MGM N
Mogambo Zimbalist MGM Y

Table 3.11: Semantic of the ‘edge complement’ example

Proposition 2 The edge complement is the complement of the add present edge and ex-
tended node refinement.

3.4. Multi-Relational Decision Tree Learning Algorithm 25

3.3.6 Exploring the Refinement Space

The exploration of conditions represents time spent in building the tree, as the number of con-
ditions increases the time taken increases as well. The number of ‘add positive condition’ re-
finements can become quite big, depending on the number of the distinct values in each column.
Because the conditions were constructed by format as column_name - operator - value. Besides,
we known that some conditions are only present in a few instances in the table of the database,
while others are present in a lot of instances. Therefore, it would be a waste of time trying the
conditions that presents a few instances. To avoid the exploration of all the conditions, we decided
to try only a few conditions that present a lot of instances.

In order to do this, we create an array of conditions involving the condition and the count of
instances corresponding to each condition. The conditions are listed in descending order of count
and only a few selection of conditions from the top are tested by the ‘add positive condition’
refinement. In other words, the requirement for a condition to be tested is that it has to be in
several instances in the table of the database. The Algorithm 4 is the pseudocode to get the most
frequent value to create the condition for the considering column.

Algorithm 4 GET_CONDITION (T, A)
1: Input: Table T, Column A.
2: Output: Condition.
3: Get the value in T.A that is the most frequence;
4: opt := CHOOSE_OPERATOR(T, A);
5: return T.A opt value;

3.4 Multi-Relational Decision Tree Learning Algorithm

A tree data structure accessed beginning at the root node. Each node is either a leaf or an internal
node. An internal node has one or more child nodes and is called the parent of its child nodes.
Contrary to a physical tree, the root is usually depicted at the top of the structure, and the leaves
are depicted at the bottom.

root
parent
and leaf
child

.

Figure 3.23: Tree data structure

Based on this concept, we introduce the definition of multi-relational decision tree based on se-
lection graph. Basically, a multi-relational decision tree has a data structure similar as a tree, but
each node refers to a selection graph.

26 Chapter 3. Multi-Relational Data Mining

3.4.1 Multi-Relational Decision Tree Definition

The definition of multi-relational decision tree is as follows:

Definition 8 A multi-relational decision tree T is a binary tree (N), where N is a set of tuples
(V. L, C, RC, LC) called tree nodes, V refers to the corresponding selection graph; L is a flag
with possible values true or false, represented whether node is leaf or not; C is a class label,
empty for non-leaf nodes; RC and LC represent the identification of the right and left child nodes,
respectively. And T has the following properties:

The left child node refers to the refinement of the selection graph of the parent node.

The right child node is the complement of the left child node.

Figure 3.24: Structure of multi-relational decision tree

3.4.2 Multi-Relational Decision Tree Construction

In [6], Knobbe and colleagues introduced an algorithm for top-down induction of multi-relational
decision tree within the multi-relational data mining framework. It illustrated the use of selection
graphs, and specifically the use of complementary selection graphs in the second branch of a split.
In order to search interesting patterns, where patterns can be viewed as subsets of the objects from
the database having some properties. The most interesting subsets are chosen according to some
measures (i.e. information gain for classification task), which guides the search in the space of
all patterns. The search for interesting patterns usually proceeds by a top-down induction. For
each interesting pattern, sub-patterns are obtained with the help of refinement operator, which can
be seen as further division of the set of objects covered by initial pattern. Top-down induction of
interesting pattern proceeds recursively applying such refinement operators to the best patterns.
The pseudocode is shown in Algorithm 5.

In order to initiate the algorithm for constructing the tree, we need two input parameters. The
first is the selection graph. This selection graph S will be the initial node and it will represent the
target table T, with the attribute of interest. The second is the relational database D, this will be
the hypothesis space where the algorithm will search to discover patterns.

The algorithm starts with a selection graph including a single node at the root of the tree which
represents the target table 7y. By analyzing all possible refinements of the considering selection
graph, and examining their quality by applying some measures (e.g. information gain), we deter-
mine the optimal refinement. This optimal refinement, together with its complement, are used to
create the patterns associated with the left and the right branch respectively. Based on the stopping
criterion it may turn out that the optimal refinement and its complement do not give cause for

3.4. Multi-Relational Decision Tree Learning Algorithm 27

Algorithm 5 BUILD _TREE (S: selection graph, D: database)
1: Input: Selection graph S, Database D
Output: Root of multi-relational decision tree 7 .R

Create root node of tree 7 .R;
if stopping_criterion(S) then
return 7 .R;
else
R:=optimal _refinement(S);
7 R.LC := BUILD_TREE(D, R(S));
7 .R.RC := BUILD_TREE(D, R,u(S));
. end if
: return 7 .R;

R AT A S

—
N = O

further splitting, a leaf node is introduced instead. Whenever the optimal refinement does provide
a good split, a left and right branch are introduced and the procedure is applied to each of these
recursively.

Example 3.7:

In order to illustrate how Algorithm 5 works, we apply it to a classification problem within MOVIE
example database. The problem is described in section 2.3. We are still predicting whether movies
get an award or not.

We start with an initial selection graph which represents the target table MOVIE corresponding to
all movies in our database (Figure 3.25).

MOVIES

Figure 3.25: Initial selection graph

By running optimal_re finement function (detailed description in section 3.4.4) using ‘add condi-
tion’ and ‘add edge’ refinement, we assume that we can get the following list of possible refine-
ments:

e Add positive condition MOVIES.producer = ‘Hitchcock’.

e Add positive condition MOVIES.dirID = ‘H’.

e Add present edge and extended node from MOVIES to STUDIO.

e Add present edge and extended node from MOVIES to DIRECTOR.

In optimal_re finement function, every refinement is tested resulting that STUDIO produces many
MOVIES is the best choice. The following selection graph and its complement are created for left
and right branch respectively (Figure 3.26).

28 Chapter 3. Multi-Relational Data Mining

MOVIES STUDIO MOVIES STUDIO
a) The best refinement b) The corresponding complement

Figure 3.26: Refinement and its complement after one iteration

We check the best refinement in stopping_criterion function (described in section 3.4.5). We as-
sume that it does not meet the stopping condition, so the induction process is continued recursively
for the set of movies that were produced by studios. At this point in the tree, we assume that we
only demonstrate the effect for left branch, and get the following list of refinements, besides the
previous list of refinements:

e Add positive condition STUDIO.studioname = ‘MGM’.
e Add positive condition STUDIO.country = ‘USA’.
e Add present edge and extended node from MOVIES to DIRECTOR.

The same process of finding the optimal refinement is repeated, and this time a condition on the
studioname is introduced. The left branch will now represent the set of movies that were produced
by MGM studio. The right branch will be the set of movies that were not produced by MGM
studio. Figure 3.27 shows the refinement of selection graph and its complement.

STUDIO

MOVIES STUDIO MOVIES

O—0)

studioname="MGM’

MOVIES STUDIO

studioname="MGM’
Figure 3.27: Refinement and its complement after two iterations

We check again the best refinement in stopping_criterion function. We assume that it meets the
stopping condition, so the induction process is stopped. The resulting decision tree will be in the
following Figure 3.28.

3.4.3 Partition of Leaf Nodes

Based on Definition 8, each node of multi-relational decision tree represents the corresponding
selection graph. Each node of multi-relational decision tree has maximum two children nodes.
Selection graphs in left children nodes is refinement of the one in parent node. According to
Algorithm 5, at lines 9 and 10, in two children nodes, the selection graph in the right node is the
complement of the one in the left node. Therefore, subset in the parent node was always split into
two non-overlap subsets. In other words, the subset in root node was split into non-overlap subsets
in leaf nodes. Consequently, all leaf nodes partitions the subset of target table into non-overlap
subsets. Hence, we state the following proposition.

3.4. Multi-Relational Decision Tree Learning Algorithm 29

MOVIES

[\AOWES smmo} (MOVIES STUDIO}

MOVIES STUDIO STUDIO

name=MGM’

MOVIES STUDIO

Figure 3.28: Resulting tree

Proposition 3 The subsets of the target table defined by the leaf node form a partition of the target
table.

3.4.4 Information Gain Associated with Refinements

In Algorithm 5, the function optimal_re finement(S') considers every possible refinement that can
be made to the current selection graph S and selects the (locally) optimal refinement (i.e., one that
maximizes information gain). Here, R(S) denotes the selection graph resulting from applying the
refinement R to the selection graph S. R, (S) denotes the application of the complement of R to
the selection graph S. In order to measure information gain for each possible refinement, some
kind of statistic gathering from the database is necessary. Therefore, multi-relational decision tree
learning (MRDTL) uses SQL operations to obtain the counts needed for calculating information
gain associated with the refinements. For that purpose, a series of queries have been proposed
in [7], and they are outlined below.

Computing of Counts

Firstly we show the calculation of the information gain with current selection graph S. Let T be
the target table. We have the SQL query that returns the counts of current selection graph count(S)
as follows:

SELECT T7,.target_attribute, COUNT (7y,.ID)
FROM table_list

WHERE join_list

AND condition_list

30 Chapter 3. Multi-Relational Data Mining

Note that only join_list and condition_list can be empty, but at least one table will be in table list.

Secondly, we show the calculation of the information gain associated with ‘add condition’ refine-
ment. Let 7; be the table associated with one of the nodes in the current selection graph S and
T;.A; be the attribute to be refined, and R, ;(S) and R¢y,-y;j(S) be the add condition T;.A; = v;
refinement and its complement respectively. The goal is to calculate entropies associated with
the split based on the ‘add condition’ refinement and ‘condition’ complement. This requires the
following counts: count(R,;(S)) and count(Rcom—yj(S)). The result of the SQL query shown below
returns a list of the necessary counts: count(R, ;(S)).

SELECT To.target_attribute, T;A;, COUNT (7y.ID)

FROM table_list
WHERE join_list
AND condition_list and 7;.A;=v;

GROUP BY T7j.target_attribute, T;.A;

The sum of the resulting counts must be equal to the result of prior query that measures the support
of a pattern. The rest of the counts needed for the computation of the information gain can be
obtained from the following formula:

count(Reom—vj(S)) = count(S) — count(R,;(S)) (3.8)

Finally, consider the SQL query for the calculation of the information gain associated with ‘add
present edge and extended node’ refinement. Let T; be the table associated with one of the nodes
in the current selection graph S and e be the edge to be added from table T; to table T'; . R.(S) and
Riom-(S) be the add edge e refinement and its complement respectively. The goal is to calculate
entropies associated with the split based on the refinement and its complement. This requires the
following counts: count(R.(S)) and count(R om-.(S)). The result of the SQL query shown below
returns a list of the necessary counts: count(R,(S)).

SELECT To.target_attribute, COUNT (7y.ID)

FROM table_list
WHERE join_list AND e
AND condition_list

GROUP BY Tj.target_attribute

The sum of these counts can exceed the support of the given pattern if the nominal attribute is not
in the target table and multiple records with different values for selected attribute may correspond
to a single record in the target table. The rest of the counts needed for the computation of the
information gain can be obtained from the following formula:

count(Reom—e(S)) = count(S) — count(R.(S)) 3.9

3.5. Multi-Relational Decision Tree in Classification Process 31

Entropy

Based on the counts that were computed as above, we can calculate entropy of S, R(S), and
Reom(S) from the following formula:

sc = Z ci (3.10)

ci€counts

pi=—L (3.11)
SC

Entropy($) =~) pi*loga(p) (3.12)

ci€counts

Information Gain

Based on the entropy of S, R(S), and R, (S), we can calculate the information gain for refinement
as follows:

IR(S)| IRcom(S)I
S| Entropy(R(S)) — —|S|

Gain = Entropy(S) — Entropy(Reom(S)) (3.13)

3.4.5 Stopping Criterion

The function stopping criterion determines whether the optimal refinement leads to a good split
based on the statistics associated with the optimal refinement and its complement. In our case,
we compare stopping_criterion that user inputs with the highest information of refinements. If
stopping_criterion is less than or equal to the highest information, then we will stop splitting on
the considering branch.

3.5 Multi-Relational Decision Tree in Classification Process

In the first step (learning process), we build a multi-relational decision tree, which was explained
in the previous section 3.4. In the second step (classification process), we are going to use the tree
as classifier. In this classification process, the structure of the multi-relational decision tree after
learning, is stored as a table in the database. The table that stores the built tree has the structure
shown in Table 3.12.

The SQL query for the leaf nodes (represented by a value of -1 in the LEFT_CHILD and RIGHT_
CHILD) is executed to set the value for the class_label. We set to majority class label in result of
SQL query. The Algorithm 6 shows the pseudocode.

When we use the multi-relational decision tree as classifier, we have two types of classification:
classify a new instance, and classify a new set of instances (or a new database that has the same

32

Chapter 3. Multi-Relational Data Mining

| Columns | Meaning \

NODE_ID identification of node (0, for the root node).
SQL_QUERY stores the SQL statement of the selection graph.
LEFT_CHILD identification of the left child node.
RIGHT_CHILD | identification of the right child node.
CLASS_LABEL | stores the classification label, only for leaf nodes.

Table 3.12: Table structure storing the learned tree

Algorithm 6 SET_CLASS_LABEL (7)

1:
2:

10:

Input: Table stored tree structure: T
for each row in T has LEFT_CHILD=-1 and RIGHT_CHILD=-1 do
count total instances from SQL_QUERY;
count positive instances from SQL_QUERY;
if (positive > total/2) then
CLASS_LABEL := Y’;
else
CLASS_LABEL := ‘N’;
end if
end for

structure as the training database). These two classification tasks are described in the following
sections.

3.5.1 Classify a New Instance

This classification uses depth-first search on multi-relational decision tree. We start searching from
the root node of the tree. If the new instance is covered by the subset of instances returned from
the SQL query corresponding to this node, we go through the left child node. Then, we check the
existence of the new instance in the subset of the left child node. If the instance is covered, we
will continue going to left branch, otherwise we go to the right node, and check if the instance is
covered. We will stop when the node is a leaf node, and assign the class_label of this leaf node to
the new instance. The Algorithm 7 shows the pseudocode for this type of classification.

Algorithm 7 CLASSIFY _INSTANCE (7R, I)

1:

— " p—
N = 2

XD R R

Input: Root node of tree TR, new Instance 1.
Output: Class_label.
if 7.R.L = true then
return 7 .R.C;
else
Sub:= Sem(7.R.LC.V);
if / is in S ub then
CLASSIFY _INSTANCE(T .R.LC, I);
else
CLASSIFY _INSTANCE(7 .R.RC, I);
end if

. end if

3.6. Multi-Relational Decision Tree in Practice 33

3.5.2 Classify a New Database

The classification process described previously only covers the case of a new instance, but it can
be the case that we have not only one but many new instances. Also, these new instances may have
associations among other tables. In this case we will have classification of a new database. Given
a new set of previously unseen instances to be classified, the queries of leaf nodes are applied
to the database. The set of instances that a query returns will be assigned the class label that the
corresponding selection graph has. According to the proposition 3, a given instance will not assign
conflicting class labels. The Algorithm 8 is pseudocode for classification of new database.

Algorithm 8 CLASSIFY_DATABASE (7, D)
1: Input: tree T, new Database D.
2: Output: Class_label for all instances in database.
3: for each node n in 7.N do
4: if n.L=true then
5: CL:=n.C;
6: SI:=Sem(n.V);,
7
8
9:

Given D.Ty.ID € S 1, set D.Ty.target _attribute = CL;
end if
end for

In multi-relational decision tree, each node represents one SQL query. In both of the above algo-
rithms, the SQL query is the main item our algorithms spend time running it. Therefore, we try
to reduce the number of SQL query running times. This is the reason that we use two different
methods for two cases of classification:

e When classifying for an instance, we used Algorithm 7. Because most of binary trees have
depth degree less than the number of leaf nodes. In Algorithm 7, the total time of SQL query
running is the depth degree from root node to a particular leaf node.

e When classifying for a database, if we use Algorithm 7 then we have to apply the algorithm
for each instance, sequentially. Therefore, the total time of SQL query running = number
of instances * depth degree. Besides, if we use only leaf nodes to classify (corresponding
to Algorithm 8), the total time of SQL query running = number of leaf nodes. Normally,
the number of leaf nodes is almost less than the number of instances. Therefore, the new
database is classified faster.

3.6 Multi-Relational Decision Tree in Practice

The system was designed according to the client/server architecture. It consists of three parts: the
graphic user interface (GUI), the inference engine and the database connection. The system was
implemented in Java® programming language.

*Java Technology website: http://java.sun.com/

34 Chapter 3. Multi-Relational Data Mining

Entire system architecture

Database connection

Relational database

Figure 3.29: Overview of system architecture

3.6.1 Graphical User Interface

The graphical interface is used to interact with the mining engine to perform test and evaluation.
It is built in order to have minimum intervention during the mining process. The evaluator or
user initially uses the interface to connect to the desired database. The graphical interface consists
of three functions: Parameter, Learning and Classification. The Parameter function helps the
user to set the initial parameter values to start the system. The Learning function provides to the
user the menu to interact with the inference engine to build the multi-relational decision tree. The
Classification function supports the user to use the built tree as classifier. Figure 3.30 shows the
main graphical user interface and the Parameter function.

= AAU datamining program using selection graph

System Engine Help

Parameter | Learning

[set parameters for system! e

L&)

Parameter st
This file describes the parameters of system
i# Author Nguyen Ba Tu

All parameters for connecting to database

IDBCDiver=com mysgl jdbe. Driver
HostName=localost

Port=3308

DEName=movies2006
Userame=root

Passward=a

i# #ll paramsters for leaming the R decision tree 4

iable_list= actor, casts, dirsctor, movies, studio,

factor= actoractorame =

Figure 3.30: Main graphical user interface and ‘Parameter’ function

3.6. Multi-Relational Decision Tree in Practice 35

The Inference Engine

This part includes two phases:

1. Build the multi-relational decision tree. This phase is implemented according to the theory
described in section 3.4.

2. Use the multi-relational decision tree as classifier.

3.6.2 Building the Multi-Relational Decision Tree

We implemented the multi-relational decision tree as binary tree. This tree consists of nodes and
edges. The data structure of node includes five properties: NodelD, Value, Leaf, Right child node,
and Left child node. Within a node, the Value property stores the identify of its selection graph.
Leaf is used to check whether node is leaf node or not. Right child node and left child node are
pointers to refer to the children node. The structure of multi-relational decision tree is shown in
Figure 3.31.

NodelD Value Leaf

Right child Left child ;
Selection graph

NodelD Value Leaf NodelD Value Leaf

Right child Left child Right child Left child

Figure 3.31: Data structure of multi-relational decision tree

In order to build the multi-relational decision tree, the GUI will first show some options for the
user. Then the user has to choose the following parameters:

o Target attribute and target table.
o List of the interesting attributes.

o Input value for stopping criterion.

Based on Algorithm 5, we start with a selection graph including a single node at the root of the tree
which represents the target table Ty. By analyzing all possible refinements of the considering se-
lection graph, and examining their quality by applying information gain calculated in section 3.4.4,
we determine the optimal refinement. This optimal refinement, together with its complement, are
used to create the patterns associated with the left and the right branch respectively. Based on
the stopping criterion it may turn out that the optimal refinement and its complement do not give
cause for further splitting, a leaf node is introduced instead. Whenever the optimal refinement
does provide a good split, a left and right branch are introduced and the procedure is applied to
each of these recursively. The Figure 3.32 shows the Learning function from system.

36

Chapter 3. Multi-Relational Data Mining

S AAU datamining program Using selection graph:
System Engine Help

@ 2 £

-
Parameter | Learning | Classification

[Learning the multi relational decison tree... v |
Select the target table and atiribute !
& DI movies B
[moviein Stoppimg criterion ooz |
[airip
[finic
[tite
[producer Create the tree H Save the tree ‘
[author
R Finish creating the multi relational decisiontree ..
[stusioMarme
[} award j
R Resulting tree Selection graph per each node
[actor.actorName D Rocttn sg=00 B
O actor gt ¢ 3 2h left node with sg=2 [) 5TUDIO - studia.city= *- studio founder="
. ¢ [4 left node with sy = 4 [) cASTS - casts.note = *- casts.role ="
actor.dateofbirth ¢ [&th left node with sg = 6 [oIRECTOR
actor dateofdeath ¢ [B4 left node with sy =8 &£ movies
[actor.origin ¢ 3104 left nade with sg = 10 [0} studio - studio.city = " studio faunder =
[] casts.movield § 3 12-th left nade with sg=12
[casts.actorName ¢ 314+t left nade with sg = 14 Dycaste o
oo T 16 ot movis with s 18 [director - director peode =
castsnote o [17-th right node with sg=17
D director.directorName [15th right node with sg = 15
) director directarid ¢ 313t right node with sg = 13
diroctor peode § [22-th left nade with sg= 22
irecor background [24-th Ieft node with sg = 24
oo el [25th right node with sg = 25
_ ¢ [23t right node with sy = 23
[E movies.diriD [0 26-th Ieft noce with s = 26
(] maovies filmid [37-th right node with sg = 37
[movies title ¢ [11-th Hight node with 5= 11
movies.producer [} 28-th left node with 50 = 28
movies.author ¢ 3 284 right node with s = 20
[[] movies.directorName [30:4h left node with sg = 30
[] movies.studioName [31+t right node with sg = 31
[] movies.award [8-t right node with sg =8
[] studio. studioName [7-th right node with sg =7
[] studiio.city [&t right node with sg =5
studio.founder [3+t right node with sg =3
[] stutio.country

Figure 3.32: Interface of the ‘Learning’ function

In the Figure 3.32, the multi-relational decision tree consists of 31 nodes. Each node corresponds
to one selection graph. The tree is shown in the left tree view, the corresponding selection graph is
shown in the right tree view. The non-extended node of selection graph is presented in lowercases.
The extended node of selection graph is presented in uppercases.

3.6.3 Using the Multi-Relational Decision Tree as Classifier

As described in section 3.5, this function will get SQL query and class_label from table in database.
And then, It will run SQL query to get instances and apply class_label for each instances.

Figure 3.33 is an example from our system when classifying a new database.

3.6. Multi-Relational Decision Tree in Practice

'AAU'datamining program Using selection graph

System Engine Help
& A £
Parameter | Learning | Classification
[5] Classifythe data using the mutti relational decison tree... o O
Select classification tyne
The Table's data
© New one record wielD | dinD | fimid | title pracucer authar realtward|_award
1 |Re [Ratn [Cry Freedam not knawn Marble Archil v <]
New one database
© RAIS Chaplin not knawn Tristar E
, RAIT Hi Spelling not knawn Savoy
Eeleciheliotabasal RATS in Love and War Etmest Hernili Mew Line
[Al databases RAZZ Gray Owl Jake Ebertshl not knawn
o (=3 information_schema ROD3 Pulney Swope not knawn ownay Columbia
> O3 aauleaming ROD10__ |Greasers Palace not knawn not knawn ovney
o O kg3 ROD20_[Too Mush Sun not knawn not knawn ownay
= 006 RWF1 ‘why does Herr R ugADOC= ot knawn not knawn AntiTheatert
fravies R not knawn not knawn AntiTheatert
7] moviesClassiy R Gods oTthe PlagueghOnc: [notknown not known AniiThealert
[y actor R The American SoldigADOC= |not known not known AntiTheater
[casts R hity Peter Berlim nat known
D director R eware ofa Holy not knawn not knawn
R e American SoldigAOOC: |nat known not knawn
R e Merchant of FOgADOCE |nat known not knawn ango
[studio R 6 Biter Tears not known angg
o I maviesTraining R i: Fear Eats thegAOOC £ nat known nat known ango
o O mysal R |Em Brinst notknown Thomas Fonil ango
R Fox and his friendgAO0C not knawn not knawn ango 0
R not knawn not knawn 0
2 R Wother K'usters GogADOC: |not known not knawn 0
3 RWF22__|Chinese Roulette Fasshinder not knawn Albalross i |
4 |ReE R Bolwieser ot knawn ot knawn M ~|
clageification Fesult Table
Total %I &0
% right 0.7602 0.0692 06010
wrong 0.2398 0.1300 0.109%
copyright. ALl rights reserved.
. D

Figure 3.33: Interface of the ‘Classification’ function

Chapter 4

Experimental Results

In this chapter we show the results obtained after testing the system. First, we will refer to the
database already introduced and used previously, the MOVIES database. Second, we will use
another database for more tests, the FINANCIAL database. Finally, we will compare the results
obtained from both databases with another software. The experiments were performed on a stan-
dard desktop PC (Pentium 4 CPU 2.66 GHz, 512 MB RAM) using MySQL* database running on
the same machine.

4.1 MOVIES Database

As a demonstration of how our system works, we perform a number of experiments with the
previously mentioned MOVIES database.

Task Description

The MOVIES database is a relational database with stored data about movies and related infor-
mation. The tables in the database are ACTOR, STUDIO, MOVIES, CASTS, and DIRECTOR.
The MOVIES table is the central table with each movie having a unique identifier. The actors of a
given movie are stored in the CASTS table. Each row in the CASTS table represents the relation-
ship between an actor and given movie in each cast. More information about individual actors is
in ACTOR table. All directors in MOVIES table are listed in the table called DIRECTOR. Table
STUDIO provides some information about the studios in which movies were made. The entity
relationship diagram of this database is shown in Figure 4.1.

This database contains description of Movies and the characteristic to be predicted is represented
by the attribute Award. The total number of tuples in the MOVIES table are 12046, the database
also consists of 6714 actors, 186 studios and 3133 directors.

The main goal is to classify whether a movie received or not an award. The database has a col-
umn(award) that stores this attribute as Y if the movie received an award, N otherwise.

*MySQL website: http://dev.mysql.com/

39

40

Chapter 4. Experimental Results

CAST MOVIES STUDIO
ActorName : StudioName
) MovielD -_—
MovielD vnrr— Founder
DirlD .
Role) City
Note FilmiD Countr
Title y
Y Producer
ACTOR Author
realAward DIRECTOR
ActorName
- Award)
Gender StudioName DirectorName
DateOfBirth DireciorName DirectorlD
DateOfDeath Pcode
Origin Background

Figure 4.1: MOVIES database schema

Methodology

The database was divided into two disjoint subsets for the purpose of learning and classification
process, respectively. The learning process used % of instances. The other % of the instances is
used in the classification process. The process of dividing the database involved the splitting of not
only the MOVIES table but all the related tables, since it is a relational database. The following
Algorithm 9 shows the procedure for splitting the database.

Algorithm 9 SPLITTING_DATABASE (D, D;, D,.)
1: Input: Original Database D.

2: Output: Learning Database D, Classification Database D..

3: Creating Dy, D, so that they have the same structure with D;

4: [* Creating the training database D; */

5: Insert % of D.MOVIES into D;. MOVIES;

6: Insert D.DIRECTOR into D;DIRECTOR so that D.DIRECTOR.Directorname =
D; MOVIES.Directorname;

7: Insert D.STUDIO into D, STUDIO so that D.STUDIO.StudioName =

D;.MOVIES.Studioname;
8: Insert D.CAST into D;.CAST so that D.CAST.MovielD = D; MOVIES.MoviesID;
9: Insert D.ACTOR into D;.ACTOR so that D.ACTOR.Actorname = D;.CAST.Actorname;
10: /* Creating the classification database D, */
11: D..MOVIES := D.MOVIES minus D; MOVIES;
12: Do line 6 to 9 again with D, instead of Dy;
13: return D;, D,

During the learning process, we used different stopping criteria and selected different interesting
attributes. Although, the system was run with different selection of interesting attributes, different
input for stopping criterion, but always the same target table and target attribute: MOVIES and
award, respectively. The results varied in size of the obtained tree (number of nodes), and in
the accuracy obtained in the classification process. Further explanation on how the tests were
performed and the results obtained are presented in the following sections.

4.1. MOVIES Database 41

Results

The first test we performed consisted in selecting all the attributes from our list of interesting
attributes. We keep that list but change the input value of the stopping criterion. The purpose of
this test is to find the optimal value (or interval) for the stopping criterion. We consider we have
an optimal value when we get the highest accuracy.

stopping criterion size accuracy | time® | time’
(# nodes) (%) (sec) (sec)

9x 1071 57 76.39 124.29 | 3.93
9 x 1:0‘14 5.7 76f39 128:.73 3.:73
9 x 1:0‘13 5:7 76?39 127:.46 3.2)1
9 x 1:0*12 5:7 76?39 128:.98 2.:62
9 x 1:0*” 5:7 76?39 126:.31 2.:79
9 x 1:0’10 5:7 76f39 128:.92 2.:68
9 x :10’9 5:7 76i39 127:.07 2.:74
9 x :10‘8 5:7 76f39 128:.82 2.:79
9 x :10‘7 5:7 76539 124;.98 3.;)2
9 x :10“’ 5:7 76?39 126:.15 3.:17
9 x :10‘5 5:7 76f39 127:.85 3.:10
9 x :10‘4 5:7 75f92 121:.61 3.2)4
9 x :10‘3 4:9 75f65 74f09 2.:92
9 x :10‘2 3 69f00 4.:25 1.:79

“Learning process
bClassification process

Table 4.1: Results with different stopping criteria and the same attributes for MOVIES

We are interested in measuring the number of nodes, the time it takes to create the tree, the time
in the classification process and the accuracy when classifying. Table 4.1 shows these results,
obtained changing the input for the stopping criterion but using always the same list of interesting

42 Chapter 4. Experimental Results

attributes. The interesting attributes used for this test were all attributes in the database except the
target attribute (the 25 attributes from Table 4.2).

attributes parameters
(Table.column) (#)
Movies.year

Movies.producer
Movies.author
Movies.directorName
Movies.studioName 5
Studio.studioName
Studio.city
Studio.country
Director.directorName
Director.background 10
Casts.movielD
Casts.actorName
Casts.role
Actor.actorName
Actor.gender 15
Studio.founder
Director.pcode
Casts.note
Actor.dateOfBirth
Actor.dateOfDeath 20
Movies.dirID
Movies.filmID
Movies.title
Actor.origin
Actor.notes 25

Table 4.2: List of selected attributes for MOVIES

Based on the results from the previous test we can set an input for the stopping criterion for our
second test, but now we will change the list for the interesting attributes. We will start with a few
and increase the number until we have all of them. The purpose of this test is to find the best
result and evaluate the relationship between the accuracy and the attributes. Firstly, we choose the
value of stopping criterion to be 1 x 107, then 5 x 107 and finally 9 x 1075, With each stopping
criterion, we change the list for the interesting attributes as shown in Table 4.2.

In Table 4.3 we can see the results of the test in terms of size of the obtained tree, accuracy achieved
with the classifier and time. We used stopping criterion to be 1 X 107, For this tests we changed
the number of attributes, starting with a few and increasing the number, but we always used the
same stopping criterion.

Table 4.4 shows the results after applying the same selection of attributes as above but now with
a stopping criterion of 5 x 107, In Table 4.5 we show the results with a stopping criterion of
9% 107°.

We choose the values of stopping criterion in the optimal interval but change the list of attributes.
We choose the values of stopping criterion to be (9 x 107%, 5 x 107, 1 x 107%), and we get
the similar accuracy for all the tests. The reason is that the stopping criteria we choose, is the
threshold. Hence, the accuracy does not change and is always equal to the best value. In order to

4.1. MOVIES Database

43

attributes size accuracy | time’ | time’
(#) (# nodes) (%) (sec) (sec)

5 55 76.39 113.96 | 3.93

10 59 76.39 130.06 | 3.04

15 59 76.39 130.06 | 4.21

20 57 76.39 134.67 | 4.95

25 57 76.39 124.04 | 4.68

“Learning process
bClassification process

Table 4.3: Results with increasing number of attributes and stopping criterion=1 x 107°

attributes size accuracy | time® | time®
(#) (# nodes) (%) (sec) (sec)

5 55 76.39 107.43 | 4.28

10 59 76.39 12539 | 4.26

15 59 76.39 123.34 | 4.50

20 57 76.39 127.10 | 2.71

25 57 76.39 130.65 | 3.76

“Learning process
bClassification process

Table 4.4: Results with increasing number of attributes and stopping criterion=5 x 107°

attributes size accuracy | time® | time’
(#) (# nodes) (%) (sec) (sec)
5 55 76.39 105.75 | 3.37
10 59 76.39 12421 | 4.06
15 59 76.39 126.76 | 4.06
20 57 76.39 12232 | 2.31
25 57 76.39 12335 | 2.26

“Learning process
bClassification process

Table 4.5: Results with increasing number of attributes and stopping criterion=9 x 107°

44 Chapter 4. Experimental Results

estimate the important degree of attributes to the accuracy, we choose the stopping criteria that do
not belong to the optimal interval. These results are shown below.

In Table 4.6 we can see the results of the test in terms of size of the obtained tree, accuracy achieved
with the classifier and time. For this tests we changed the number of attributes, starting with a few
and increasing the number, but we always used the same stopping criterion of 0.001.

b

attributes size accuracy | time? | time
(#) (# nodes) (%) (sec) (sec)

5 51 76.34 89.21 2.32

10 57 76.39 117.15 | 2.92

15 57 76.39 115.56 | 2.76

20 57 76.39 128.36 | 2.78

25 57 75.92 118.85 | 2.98

“Learning process
bClassification process

Table 4.6: Results with increasing number of attributes and stopping criterion=0.001

Table 4.7 shows the results after applying the same selection of attributes as above but now with a
stopping criterion of 0.005. In Table 4.8 we show the results with a stopping criterion of 0.009.

attributes size accuracy | time’ | time’
(#) (# nodes) (%) (sec) (sec)
5 55 76.39 115.51 | 2.15
10 55 76.00 146.59 | 2.23
15 55 75.57 91.39 | 2.64
20 53 75.10 89.87 | 2.61
25 55 75.10 100.26 | 3.02

“Learning process
bClassification process

Table 4.7: Results with increasing number of attributes and stopping criterion=0.005

attributes size accuracy | time” | time’
(#) (# nodes) (%) (sec) (sec)

5 41 76.22 96.20 | 2.42

10 53 76.00 151.68 | 2.92

15 35 75.57 56.81 2.23

20 35 75.57 57.21 1.76

25 41 75.57 70.35 1.82

“Learning process
bClassification process

Table 4.8: Results with increasing number of attributes and stopping criterion=0.009

Table 4.9 shows the best results for the classification process. These results are obtained by com-
paring the class label that the classifier assigns to each of the instances with a real class value
stored in the database.

4.1. MOVIES Database 45

True
Y N
Y | 10.93 | 14.72
N | 889 | 65.46

Predicted

Table 4.9: Confusion matrix for MOVIES database

Models

We have previously presented the general results when testing the system. In this part we present
some models and selection graphs to get and idea on how the trees look like.

Figure 4.2 shows part of one model of the trees obtained during the learning process. In this top
part of the tree we can notice that the nodes in the tree have selection graphs with only conditions
on the target table (MOVIES). The interesting part from this tree is that we can see that it splits
on the condition ‘studioname="", meaning that a movie must have something as studio, and from
there other conditions are added to the refinements of selection graphs in the tree. It is important
to mention that as the tree grows, not only conditions are added but also edges.

MOVIES

O

3th
MOVIES

O

studioname="

MOVIES

O

studioname<>"

9th
MOVIES MOVIES MOVIES
studioname=" AND studioname="AND studioname<>" AND, studioname<>" AND
producer="not known’ producer<>‘not known producer="not known’ producer<>‘not known
6th 7th 10th 11th
MOVIES MOVIES MOVIES MOVIES

studioname="AND studioname="AND studioname<>" AND studioname<>" AND
producer<>'not known] producer<>‘not known'’ producer<>‘not known'’ producer<>'not known]
author="not known’ author<>‘not known’ director="Hitchcok’ director<>Hitchcok’

Figure 4.2: Resulting tree for MOVIES

Figure 4.3 shows one example of a selection graph and its complement obtained from a leaf node
in the resulting tree. We can see that this selection graph consists of two nodes with conditions on
both nodes.

46

Chapter 4. Experimental Results

MOVIES

STUDIO

O—0)

studioname<>" and
producer<>'not known’ and
year>=1957 and
author<>‘not known’

country="USA’

N

STUDIO h
MOVIES
studioname<>“ and MOVIES STUDIO
producer<>‘not known and
year>=1957 and
author<>‘not known’
studioname<>"and | country="USA’
producer<>'not known’ and
year>=1 al
author<>‘not known’)

Y

Figure 4.3: One example of a selection graph obtained in the tree for MOVIES

In Figure 4.4 we show another example of a more complex selection graph and its compliment.
This selection graph corresponds to another leaf node in the resulting tree.

I

MOVIES

studioname<>" and
year>=1957 and
producer= not known’

CASTS)

role="and = |
actorname='s a

STUDIO

(CASTS R
rofe="

MOVIES STUDIO CASTS
SR MOVIES Rorndme=s a’
producer="not known

Ao STUDIO
producer="not known’
N J
Y

Figure 4.4: Another example of a selection graph obtained in the tree for MOVIES

In both cases (Figure 4.3 and Figure 4.3), we can see that not only the target table (MOVIES) is
present in the nodes and that conditions are also added for the other nodes in the selection graphs.

Analysis

o The best accuracy observed was around 76%

e We started the testing with all attributes and different stopping criteria. We got the optimal
interval of stopping criteria between 9 x 10~ and 9 x 10713

¢ In order to estimate the important degree of attributes to the accuracy, we choose the stop-
ping criteria that do not belong to the optimal interval. And then, we had the result that was
shown in Table 4.6 with 0.001, Table 4.7 with 0.005, and Table 4.8 with 0.009. Based on
these results, we observe that the attributes have a different important degree in the accuracy.
For example, in Table 4.8 with 0.009, when the number of attributes is equal to 5 or 10, we
obtain the better accuracy than the one with 15, 20 and 25 attributes. We think that some
attributes are importance and others can make the noise. This proves that attributes have a
different important degree in relation to the accuracy.

4.2. FINANCIAL Database 47

4.2 FINANCIAL Database

At present, banks offer different services to individuals. These services include managing account,
credits, loans and others. The bank stores data about their clients, the accounts (transactions within
several months), the loans already granted, the credit cards issued in a relational database. The
following Figure 4.5 shows the financial database used in PKDD’99 Discovery Challenge [12].

ORDER TRANS
orderlD transID
bankTo tDate
accountTo type
amount LOAN operation
kSymbol loanD amount
loaniD —_ balance

IDate

kSymbol
aDate

bank
amount account

DISTRICT duration

ayment loaniD
districtiD payments
2 frequency
a3 state DISP
a4

ispID

a5 dp
a6 CLIENT yp
a7 cardID
28 clientlD clientID
a9 ts):)t(hday loanID
ato districtiD
all
at2 CARD
al3
al4 cardiD
al5 type
al6 issued

Figure 4.5: FINANCIAL database schema

The database consists of seven related tables: TRANS, DISTRICT, LOAN, CLIENT, ORDER,
DISP and CARD. The meaning of each table is shown as follows:

CLIENT characteristics of a client.
DISP relates together a client with a loan.
(i.e. this relation describes the rights of clients to apply loans).
ORDER characteristics of a payment order.
TRANS describes one transaction on a loan.
LOAN describes a loan granted for a given client.
CARD a credit card issued to a client.
DISTRICT describes demographic characteristics of a district.

In this database, the table CLIENT describes characteristics of persons who can manipulate with
the loans. The table LOAN and CARD describe some services which the bank offers to its clients;
more credit cards can be issued to a client, at most one loan can be granted to a client. Clients,
credit cards and loans are related together in the relation ‘DISP’ (disposition). The table DIS-
TRICT gives some publicly available information about the districts (e.g. the unemployment rate);
additional information about the clients can be deduced from this table.

This database consists of 682 loans, 827 clients, 54694 transactions, 1513 orders, 827 dispositions,
36 cards and 77 districts.

48 Chapter 4. Experimental Results

Task Description

The goal is to classify whether a loan is granted (Y), or not (N). The database has a column (state)
that stores this attribute.

Methodology

The database was divided into two disjoint subsets for the purpose of learning and classification
process, respectively. The learning process used % of instances. The other % of the instances is
used in the classification process. The process of dividing the database involved the splitting of not
only the loan table but all the related tables, since it is a relational database. A procedure similar
to Algorithm 9 was applied to this database.

Results

The first test we performed consisted in selecting 15 attributes from our list of interesting attributes
shown in Table 4.10. We keep that list but change the input value of the stopping criterion. The
purpose of this testing is to find the optimal value (or interval) for the stopping criterion. We
consider we have an optimal value when we obtain the highest accuracy.

attributes parameters
(Table.column) (#)

Loan.duration
Loan.payments

Loan.frequency 3
Client.sex
Card.type
Disposition.type 6

Order.bank_to

Order.k_symbol
Transaction.type 9
Transaction.operation
Transaction.k_symbol
Transaction.bank 12
District.a2
District.a3
District.a4 15

Table 4.10: List of selected attributes for FINANCIAL

Table 4.11 shows the results after running the program with a fixed 15 attributes but changing the
stopping criteria.

Based on the results from the previous test we can set an input for the stopping criterion for our
second test, but now we will change the list for the interesting attributes. We will start with a few
and increase the number until we have all of them. The purpose of this test is to find the best result
and evaluate the relationship between the accuracy and the interesting attributes.

4.2. FINANCIAL Database

49

stopping criterion size accuracy | time® | time”
(# nodes) (%) (sec) | (sec)

1x 107 27 7621 | 7547 | 1.79
1x107 27 76.21 76.16 | 1.88
1x1073 27 76.21 75.27 | 1.70
1x1072 23 76.21 64.75 | 1.67
1x107! 3 76.21 8.45 1.73

“Learning process
bClassification process

Table 4.11: Results with different stopping criteria with same attributes for FINANCIAL

Table 4.12 shows the results obtained after testing the system with the interesting attributes ac-
cording to Table 4.10 and using the same stopping criterion, in this case 1 x 107,

attributes size accuracy | time’ | time’
(#) (# nodes) (%) (sec) | (sec)

3 25 76.21 66.83 | 1.75

6 27 76.21 76.24 | 1.78

9 27 76.21 7542 | 2.17

12 27 76.21 75.56 | 2.34

15 27 76.21 7547 | 2.61

“Learning process
bClassification process

Table 4.12: Results with increasing number of attributes and stopping criterion=1 x 107!
Table 4.13 shows the best results for the classification process. These results are obtained by

comparing the class label that the classifier assigns to each of the instances with a real class value
stored in the database.

True

Y N
) Y [2643 | 12.33
Predicted 077514978

Table 4.13: Confusion matrix for FINANCIAL database

Models

We have previously presented the general results when testing the system. In this part we present

some models and selection graphs to get and idea on how the trees look like. The Figure 4.6 shows
one tree obtained after we run our tests.

50 Chapter 4. Experimental Results

O O

duration<=24 duration>24

Figure 4.6: Resulting tree for FINANCIAL

Figure 4.7 shows one selection graph and its complement corresponding to one leaf node in the
resulting tree. The selection graph consists of two nodes with conditions on both nodes. Also, we
can see as the tree grows both edges and conditions are added to the nodes.

LOAN CARD (" CARD B
duration<=24 and type='junior’

o< 0B ATEK
PO CBRATY

Y

Suslen Tt o) LOAN CARD

PO'CBRATU
duration<=24 and type='junior’
duration<=12 and
B EBRkT GO ATEN)

Y

Figure 4.7: Example of selection graph with its complement obtained in the tree
Analysis

e The only accuracy observed was 76.21%

o We started the testing with 15 attributes and different stopping criteria. We got the optimal
interval of stopping criterion is 1 x 107! to 1 x 107>.

e Based on Table 4.12, we used three attributes in table LOAN as input, we observed that
the duration attribute is the most important. Because we can get the best accuracy and this
attribute is used as unique variable in model of this multi-relational decision tree.

4.3 Comparison with Clementine

Clementine® ' is a data mining tool for the quickly development of predictive models using busi-
ness expertise to improve decision making. It is designed around the industry-standard CRISP-DM
model, and supports the entire data mining process, from data to better business results.

TClementine website: http://www.spss.com/clementine/index.htm (we used version 9.0)

4.3. Comparison with Clementine 51

In this section we compare our previous results with Clementine. The main idea is to show that
our system performs as good as other system, having only one table for consideration.

4.3.1 MOVIES

In this part we compare the results obtained from the MOVIES database with Clementine. The
test script is built as follows:

e We use only table MOVIES (title, producer, author, directorname, studioname, and award)
for both testing on Clementine and our implementation.

We use modeling for decision tree based on the algorithm C5.0 in Clementine.

We run our implementation with different stopping criteria.

We choose the best result from our implementation.

o We compare the tree structure and accuracy between the two systems.

Below, we describe our testing in detail. First, we show the testing on Clementine and then on our
implementation.

Clementine Model

In Figure 4.8, we show the model we built. Clementine supports several modelings to build deci-
sion trees: C5.0, CHAID, and C&R, but we only use the modeling C5.0 to build the decision tree.
In this model, we used the MOVIES table as the data source, therefore attributes from that table are
our input parameters including title, producer, author, directorname, studioname. We also define
award as our output parameter. In Clementine, they support three methods (First, 1-to-n, Random
%) to split dataset. We choose the First method to split data because it can create the training and
testing dataset that are similar to datasets we used in our implementation. We used a sample node
for dividing the table in two different sets training and testing. For the training set we selected the
first % of the total records in the table. For the testing set we discarded the same % of the sample
used for training.

Finally we build the tree on the training set and get a model for each case. The resulting tree
structure is shown in Figure 4.9.

After running our model in the training set, we can analyse it obtaining the summary and accuracy
showed in Figure 4.10.

MRDT Implementation

In this testing, we only use attributes in table MOVIES including title, producer, author, director-
name, studioname as input, and award as output. We also use stopping criterion to be 9 x 107.
We choose this number because it belongs to the optimal interval of stopping criterion. During the
learning process, we get the decision tree with 11 nodes, shown in Figure 4.11.

Chapter 4. Experimental Results

4 SireamMovies* - Clementine 9.0

File Edit Insert View Tools SuperMode Window Help

FEEEESOFREEERIDOIOEOR

Training set
? o v

awarrd

Movies dh Type

/

@ —-‘@a/ —

Test set award Analysis

Figure 4.8: Modeling in Clementine for MOVIES

4 award

[Z/File) Generate @

e

O[] G (e] le- @] lo]

producer = Hitcheock [Mode: N] = N

producer = empty [Mode: M1 => N

producer = not known [Mode:N] = N

9 producer= other [Made: Y]

studioName in ["Columbia'] [Mode: Y] = ¥
studioName in ["Disney'] [Made:] => ¥
studioName in ["Fox"] [Mode:] = ¥
studioMame in ["MGM"] [Mode:] => ¥
studioName in ["Paramount'] [Mode: V] = ¥
studioName in ["RKO"] [Made:] = ¥
studioName in ["Shamley’ "Universal"] [Mode: Y] => Y
studioMame in ["UA"] [Mode: Y] = Y
studioName in ["Ua"] [Made: Y] = ¥
studioName in ["Universal’] [Mate:¥] =5 ¥
studioMame in [“arners"] [Mode: Y] = ¥
studioMame in ["empty"] [Mode:N] => N
studioName in ["fox] [Mode: Y] = ¥
studioName in ["other'] [Mode:¥] =5 ¥

Figure 4.9: Decision tree for MOVIES drawn from Clementine

EN Analysis of [award] #1
|=lFile | Edit @@
‘ & Collapss Al || R Expand Al ‘

@ Results for outaut field award
@ Cormparing $C-award with award

Correct 3074 76,54%
Wrong 047 73,46%
Total 4016
@ Coincidence Matrix for §C-award (rows show actuals)
N Y
N 2636 580
Y 362 438

Anaysis | Annatatians |

Figure 4.10: Analysis obtained with Clementine for MOVIES

4.3. Comparison with Clementine 53

MOVIES

O

3th
MOVIES

O

studioname="

MOVIES

O

studioname<>"

6th 7th
MOVIES MOVIES MOVIES MOVIES
studioname=" AND studioname="AND studioname<>" AND, studioname<>" AND
producer="not known’ producer<>‘not known) producer="not known’ producer<>‘not known)
9th 10th 11th
MOVIES MOVIES MOVIES MOVIES

studioname<>" AND, studioname<>" AND, studioname<>" AND studioname<>" AND
producer="not known’ producer="nat known’ producer<>‘not known’ producer<>‘not known’
director="Hitchcock’ director<>‘Hitchcock’ director="Hitchcok’ director<>‘Hitchcok’

Figure 4.11: Resulting tree obtained using MOVIES table

And the obtained accuracy is 76,39% in the classification process. The confusion matrix we
obtained is shown in Table 4.9.

Comparison

Based on the experimental results performed in previous section, we can conclude that:

e Both accuracies are the similar (one is 76,54% and other is 76,39%).

e Both tree structures are different. In Clementine, the depth of decision tree is 2 and consists
of 18 nodes. In our implementation, the depth of decision tree is 4, and includes 11 nodes.
We have a different structure of decision tree, because we use different learning algorithms.
Therefore, the order of attributes in the two models is different. In Clementine, producer
attribute is chosen before studioname, while our implementation reverses and continues
with director attribute.

e We obtained different trees but similar accuracies, because both trees choose the attributes:
producer, studioname as important variables for classification.

e We obtained a good result from our implementation.

54 Chapter 4. Experimental Results

4.3.2 FINANCIAL

In this part we compare the results obtained from the FINANCIAL database with Clementine. The
test script is built as follows:

We use only table LOAN (amount, duration, payments, and state) for both testing on Clemen-
tine and our implementation.

We use modeling for decision tree based on the algorithm C5.0 in Clementine.

We run our implementation with different stopping criteria.

We choose the best result from our implementation.

e We compare the tree structure and an accuracy between the two systems.

Below, we describes our testing in detail. First, we shows the testing on Clementine and then on
our implementation.

Clementine Model

Once again, in Clementine we only use the modeling C5.0 to build the decision tree. In Fig-
ure 4.12, we show the model we built.

4 streamFinancial* - Clementine 9.0

File Edit Insert ¥iew Tools SuperbNode Window Help

[CISE] 2] S el [o]s/ 0] [][»]e[n][x]a]a

@

/rainmg Set
4
A
g)

—- %

Financial db Tyne \

@—b%, —r

Testing Get state Analysis

Figure 4.12: Modeling in Clementine for FINANCIAL

In this model, we used the LOAN table as the data source, therefore attributes from that table are
our input parameters including amount, duration, and payments. We also define state as our output
parameter. We divided the records in two different sets (training and testing). We also used First
method to split dataset. We used a sample node for dividing the table in two different sets training

and testing. For the training set we selected the first % of the total records, discarding the same %

4.3. Comparison with Clementine 55

for the testing set. Finally we build the tree on the training set and get a model for each case. The
resulting tree structure is shown in Figure 4.13.

y [Z/File) Generate @ @
B [0 e Fus G 5

$C-state

Hate 0
Category % n
Ll 67.47 307
LA 3253148
Total 100.00 455
El

duration

<=2400 =24.00

Nnd‘e‘\ Node 2
Catenory % n Category % n
L 3481 63| |[MN 20.06 244
ny 6518 118 | (my 1086 30
Total 39.78 181 Total 60.32 274

I
[model | viewer | Summary | Settings | Annotations
| cansel | [eootr || meser |

Figure 4.13: Decision tree drawn from Clementine for FINANCIAL

After running our model in the training set, we can analyse it obtaining the summary and accuracy
showed in Figure 4.14.

Analysis of [state] #6 =)= (s
[=lFile ~ Edit @@ @@
| & Collapse All H R Expand Al |

@ Results for output figld state
@ Comparing $C-state with state

Correct 173 76.21%
Wrong 4] 23,70%
Total 277

§ Coincidence Matrix for §C-state (rows show actuals)
N Y|

N 113 28
Y 26/ 60

Analysis | Annotations

Figure 4.14: Analysis obtained with Clementine for FINANCIAL

MRDT Implementation

Based on testing results in section 4.2, we choose the optimal stopping criterion be 1 x 107!,
and list of attributes in LOAN table including amount, duration, and payments. We have the tree
structure in Figure 4.6. The confusion matrix we obtained is shown in Table 4.13.

Comparison

Based on the experimental results performed in previous section, we can conclude that: both tree
structures and both accuracies are the same and we obtained a good result from our implementa-
tion.

Chapter 5

Conclusion

Multi-relational data mining has been studied for many years. This framework focuses on the dis-
covery of useful information from relational database using the pattern language called selection
graph. This framework has several advantages, but there are still a few disadvantages. To solve
some of the disadvantages from previous definitions of selection graph, we introduced the formal
definition of selection graph. Based on this definition, we constructed the multi-relational decision
tree. And then, we implemented a multi-relational decision tree.

We have tested this multi-relational decision tree on two well-known relational databases, MOVIES
and FINANCIAL. The experimental results were promising and showed that it is feasible to mine
from relational databases. Also, we compared the results against a commercial tool for data min-
ing, Clementine. The accuracy obtained in both cases was similar. The positive results suggest
that the current work could be continued in future researches.

5.1 Further Work

Even though we will not conduct more research, we give some directions that could be taken from
this point.

Aggregate Functions Implement the use of aggregate functions as an extension to the system.
The purpose of using the aggregate functions is to deal with one-to-many relationships in
the database. To use the aggregate functions, we have to extend the definition of selection
graph. The edge in a selection graph, which originally represented existential associations,
are annotated with aggregate functions that summarize the selected substructure by the con-
nected subgraph. This means that whenever a new table is involved over a one-to-many
association, an aggregate functions can be applied to capture its features. On the other hand,
we can use aggregate functions to characterize the structural information that is stored in
tables and associations between them. The detailed desciption on how this extension could
be used can be found in [13].

Relational Features We based our work in selection graphs, but there is another approach known
as relational features [14] when selecting the patterns. An extension to the system can be
implemented so both approaches can be specified and compared. In propositional data, a

57

58

Chapter 5. Conclusion

feature is defined as a combination of an attribute, an operator and a value. For exam-
ple, a feature of Movies might be producer = ‘Stromberg’ - movies that its producer is
‘Stromberg’. Relational feature is also a combination of an attribute, an operator and a
value but the attribute is referenced by a feature that belongs to other related object. For
example, a relational feature of Movies can be Movie(x), Studio(y): country(y)=‘USA’ and
studioln(x,y) - determines whether the country of a studio that makes a movie is ‘USA’.
When object X has a one-to-many relation to object Y, relational feature must consider set
of attribute values on the object Y. In this case, besides using the standard database aggre-
gate functions to map set of values to single values, Neville and his colleague introduced
DEGREE feature as the degree of objects and the degree of links. The detailed desciption
on how this extension could be used can be found in [14].

Bibliography

[1] Heikki Mannila David J. Hand and Padhraic Smyth. Principles of Data Mining. MIT Press,
2001.

[2] Nada Dzeroski, Saso; Lavrac. Relational Data Mining. Springer, 2001.

[3] E. Simoudis. Reality check for data mining. In IEEE Expert: Intelligent Systems and Their
Applications, volume 11, pages 26-33, 1996.

[4] Heikki Mannila. Methods and problems in data mining. In ICDT, pages 41-55, 1997.

[5] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision
trees. Artificial Intelligence, 101(1-2):285-297, 1998.

[6] Arno J. Knobbe, Hendrik Blockeel, Arno P. J. M. Siebes, and D. M. G. van der Wallen.
Multi-relational data mining. Technical Report INS-R9908, 31, 1999.

[7] Arno J. Knobbe, Arno Siebes, and Daniel van der Wallen. Multi-relational decision tree
induction. In Principles of Data Mining and Knowledge Discovery, pages 378-383, 1999.

[8] Héctor Ariel Leiva. MRDTL: A multi-relational decision tree learning algorithm, 2002.
[9] Anna Atramentov and Vasant Honavar. Speeding up multi-relational data mining, 2003.

[10] A. Atramentov, H. Leiva, and V. Honavar. A multi-relational decision tree learning algo-
rithm: Implementation and experiments, 2003.

[11] Henry F. Korth Abraham Silberschatz and S. Sudarshan. Database System Concepts, 4th
edition. McGraw-Hill, 2002.

[12] PKDD °99 Discovery Challenge: A collaborative effort in knowledge discovery from
databases. http://lisp.vse.cz/pkdd99/challenge/chall.htm, Seen May 16, 2006.

[13] A.J. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions in multi-relational
search. August 2002.

[14] Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay. Learning relational prob-
ability trees. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 625-630, New York, NY, USA, 2003. ACM
Press.

59

