Simple Object Query Language in PersiJ

That would just
be so cool!

SQL

Expressing declarative SQL queries in
object-oriented Java-like syntax

AUTHORS
Rolf Njor Jensen
Peter Sonder

Master Thesis
June 2006

Faculty of Engineering and Science 5({

Aalborg University

GUNy,

X
° :%\

AW

TITLE :
Simple Object Query Language in PersiJ

SUBTITLE :
Expressing declarative SQL queries in
object-oriented Java-like syntax

PROJECT PERIOD:
Dat6, Cis4,
Feb 1st - June 1st 2006

PROJECT GROUP:
d630a

GROUP MEMBERS:
Rolf Njor Jensen

Peter Sonder

SUPERVISOR:
Per Madsen

CoPIES: 4
PAGES: 102

Department of Computer Science

Abstract:

The impedance mismatch problem of usipg

Relational Database Management Systems in
statically typed object-oriented programming
languages has been subject to many partiallso-
lutions, and has many facets. This project con-

cerns the querying part of such a solution, gnd

tries to explain deficiencies found in existing
querying methods through analysis and a liter-
ature study.
The goal is to ease the querying process|by
designing a new querying language that inte-
grates with the host language, and is statically
checkable, has the same syntax and very simi-
lar semantics as the host language, while being
modularizable and optimizable.
Through a description of the new language —
Simple Object Query Language (SOQL) — anhd
a description of how it may be translated to
SQL, we argue that it fulfils most criterig.
Subject to development of a compiler and syr-
rounding framework, it could be a favorable
alternative to existing solutions as it among
other properties enables static checking while
still being modularizable and optimizable. The
language fails to retain the same semantics$ as
Java, the differences being intricate, and|in

conclusion it is questionable whether SOQL
makes it any easier to express queries.

At the time, Nixon was normalizing relations with China. |
figured that if he could normalize relations, then so could I.

Ted Codd, father of the relational data model

Preface

Prerequisites

Prerequisites to this thesis is intermediate knowledgeawh 1.5, Structured
Query Language (SQL), object-oriented programming andetirog, and the rela-
tional model.

Reading notes

During the course of this thesis, a considerable number roingms is intro-
duced. The first time an acronym is presented, it is writtefulinfollowed by the
shorthand form in parenthesis: Three Letter Abbreviatidnd). Subsequent uses
of the acronym is the shorthand form. At the beginning of thissis there is a
complete list of the acronyms used in this thesis.

Typographical notes

In the rest of the thesis, text that is source code of somewsbrbe printed
with this font: Syst em out . println("Hell o Wrld!"); orusing a figure as
shown in Figure 1.

1 Systemoutprintin(" Hel | o Wor | d!'");

Figure 1. Example of source code.

Preface

Prerequisites
Reading notes
Typographical notes

Contents

List of Acronyms

1 Introduction

11
1.2

Settingthescene,
Reportoutline

2 Preliminary Analysis

2.1

2.2

2.3

3.1

3.2
3.3
3.4
3.5
3.6

Existingsolutions
2.1.1 Calllevelinterface
212 EmbeddedSQL.
2.1.3 Object-Relational Mappers
2.1.4 Multi-paradigm languages
Why not change the premises?
2.2.1 Orthogonal persistence

2.2.2 Object-oriented databases

2.2.3 Sticking to relational databases

What'stheproblem

Analysis
Querying approaches,

3.1.1 Object-Relational Mappers
3.1.2 Embedded queries and multi-paradigm languages . . .
3.1.3 NativeQueries
Querying method criteria
Choosingalanguage

Transformation
Method description L.
Problem statement

Vii

viii

CONTENTS

4 The PersiJ framework

4.1 Using an existing persistence framework specification

4.2 ldentifying persistable types
4.3 Entities

4.3.1 Requirements on the Entity Class

4.3.2 Persistent fields and properties
4.3.3 Mapping objects torelations
4.3.4 Multi-valued properties

4.4 The EntityCollection

441 Parametrizedtype.
442 Constructor
4.4.3 Static data structures L.
4.4.4 JDBCconnectivity
4.45 Collectiontypemethods
4.4.6 Storing and deleting from persistent storage
4.4.7 Using prefecthing and lazyload
45 Summary e e

5 Simple Object Query Language

5.1 Basicformofqueryconstruct.

511 ValidJava
5.1.2 Encapsulating queries in methods
5.1.3 Using annotations for markup
5.1.4 Body of the query method
515 Thebasegrammar

52 Terminology
53 Predicateso
54 Sorting.

5.4.1 EntityCollection implements List

5.4.2 Which comparison operation
5.4.3 Which membertosorton.
55 Limiting

5.6 Modularization

5.6.1 Setoperations.
5.6.2 Subqueries-contains

5.7 Compilation process

6 Transformation of SOQL

6.1 Referencesets

6.2 Template

6.3 Transformation functions

6.3.1 Legend to reading definitions
6.4 Field dereferencing
6.4.1 Primitives and Strings

CONTENTS iX

6.4.2 One-to-one, one-to-many, owningside 55
6.4.3 Bidirectional, many-to-one, one-to-one, not owrsidg . 55
6.4.4 Many-to-many 56
6.5 Methodcalls. 56
6.6 If-statements 57
6.7 Sorting. 60
6.8 Limiting 61
6.9 Modularization 62
6.9.1 Setoperations. 0. 62
6.9.2 Subqueries-contains 63
6.10 Implementation 63
7 Discussion 65
7.1 Evaluating bycriteria 65
7.1.1 Staticchecking 65
7.1.2 Automatic marshalling and unmarshalling 6 6
7.1.3 Same paradigm as hostlanguage 66
7.1.4 Minimalverbosity, 67
7.1.5 Minimal language alteration 70
7.1.6 Modularization o oL 71
7.1.7 Optimization 72
7.2 Expressiveness of SOQLvs. SQL 72
8 Conclusion 75
8.1 Conclusion 75
8.2 Abroaderperspective L L L o 76
Bibliography 77
A Signatures of the EntityCollection 81

B Grammar for SOQL 83

CONTENTS

List of Acronyms

Atomicity, Consistency, Isolation, and Durability (ACID)

The ACID properties are used to describe the transactiopepties of a
database management system. By fulfilling these propemiecan guaran-
tee that the database always is in a consistent 8a1€.

Abstract Compiled Query (ACQ)

A class where each instance is used to collect the differars pf a query
during compilation. The Abstract Compiled Query can at the ef compi-
lation be used to produce the transformed qué$y.

Application Programming Interface (API)

An Application Programming Interface (API) is the intedethat a computer
system or application provides in order to allow requestssévice to be
made of it by other computer programs, and/or to allow dateetexchanged
between the two5, 8, 13, 26, 40, 41, 44, 45

Annotation Processing Tool (APT)

The Annotation Processing Tool (or APT) is a utility by Suncktisystems
for processing annotations in Java. It provides a read-aiely of the pro-
gram structure and source code. When APT runs it can procewesource
files (also other files like configuration files etc.). Afterstlit can compile
the original and newly generated source files [£11].33, 47—-49

Call Level Interface (CLI)

Interface to a RDBMS that uses text strings containing @sein the SQL
syntax to perform operations on the database.

db4objects (db4o)

db4o is an open source object-oriented database. It ssppaotth Java and
C#. db4o has successfully implemented Native Queries [d4heir way of
querying [18].8

Database Management System (DBMS)

A collection of programs used to store, modify, and retrieiermation
from a databased

Xi

Xii LIST OF ACRONYMS

Extended Backus Naur Form (EBNF)

All EBNF constructs can be expressed in plain Backus NaumH&NF)
using extra productions. EBNF is more readable and suctiiactBNF.83

Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB) technology is the server-sigganent archi-
tecture for the Java 2 Platform, Enterprise Edition (J2EB)f@rm. EJB
technology enables rapid and simplified development ofidiged, transac-
tional, secure and portable applications based on Javadlegy [22]. The
latest version of EJB is version 3.0, which we will be refegrio as EJB4,
13,2023 25, 26 29, 31, 33,85

EJB Query Language (EJB QL)

EJBQL is the query language used in an EJB project. It ressyBOL in
many waysl14

Hibernate Query Language (HQL)

HQL is the object-oriented query language used by the Haderframework
[24]. HQL returns objects instead of plain data (as is the easen only us-
ing SQL). It supports notions like inheritance, polymogrhiand association
5,613, 14

Integrated Development Environment (IDE)

An IDE is a piece of software that assist developers in wgisource code
through syntax highlight, debuggers, build-in compilensd other tools that
help simplifying the development proce&2

Java Compiler (JavaC)

The Java Compiler tool reads class and interface definitjsogrce files),
written in the Java programming language, and compiles themibyte code
class files [26], which can then be executed on a J8R).33 47, 49

Java Compiler Compiler (JavaCC)
JavaCC is a popular parser generator. It uses a grammafispéan and
creates a Java program that can recognize the grammar32+36 49

Java DataBase Connectivity (JDBC)

JDBC is an API for Java that wraps CLI's for several differeiatabases.
JDBC is maintained by Sun Microsystent.4, 10, 16, 27, 31, 33, 51, 52
68, 72, 75

LIST OF ACRONYMS Xiil

Java Data Objects (JDO)
JDO provides an abstraction to the persistent layer in Jatas been pub-
lished under the JSR 12 and the newest version 2.0 under JSR&H 4,
13

Java Data Objects Query Language (JDOQL)
JDOQL is the query language used by JDO [28]. JIDOQL follovessyntax
of Java where possibld3, 14

Java Persistence Query Language (JPQL)
JPQL is a part of the new Java Persistence API, and definedlfimed in
JSR 220 [311L3

Java Virtual Machine (JVM)

The Java Virtual Machine (or JVM) is a virtual machine, thins hame, that
executes Java byte codg.40

Open DataBase Connectivity (ODBC)

A standard for an API that wraps CLI's for several differeatabases, pro-
viding a common interface regardless of the underlying REBKDBC is
a standard co-opted by Microsoft from the SQL Access Groupsadium.
3

Object-Relational Mapping (ORM)

Object-Relational Mapping is a technique to link the relasil database
with the object-oriented language. There exists many ttlsandle this,
amongst others are Hibernate [24] and JDO [28]L3, 21, 23, 29

Plain Old Java Queries (POJQ)

POJQ is a framework for writing and executing database gsenritten in
Java [8]. POJQ uses Native Queries [14] and bytecode agsatysianslate
the Java code into SQL. The initial implementation uses JIJ2B], but it
should also be possible to use EJB [223.

Relational Database Management System (RDBMS)

Software systems that manage and store data organized ®tatienal data
model. See Abraham Silberschatzal [1] for more verbose explanation,
6,9, 15,16 40, 43,65, 72, 73

Software Developers Kit (SDK)

SDK is an environment for building Java applications. Ifuaes tools for
developing and testin@1

Xiv LIST OF ACRONYMS

Simple Object Database Access (SODA)

SODA is an object APIto gain access to databases. The cugpenification
focuses on queries with goals like type safety and prograngrtanguage
independence, and was developed in Java programming lgadtia

Simple Object Query Language (SOQL)
SOQL is the object-oriented query language provided by #nsi® frame-
work. 16, 20, 29, 31, 32 34, 37, 40-43 52, 54, 59, 65-73 75, 76 83-86
Structured Query Language (SQL)

SQL is a widely used language to query RDBMS. Provides coatstrfor
insert, update, and deleting information in a RDBMS3, 5, 6, 10, 13-17,
31, 33, 34 38, 40, 42—-45 47, 49, 51-55 57, 62, 65-69 71, 72 75, 76 85,
86

SQL-Java (SQLJ)
SQLJ is a specification for handling SQL in a Java applicati®efore com-
piling the SQLJ source code it needs to be translated intd Java code
[40]. 4,5 14,70

Sun Microsystems (Sun)

Sun Microsystems is a vendor of computers, computer conmisnine So-
laris operating system and the Java programming amongstsol]. 7

Three Letter Abbreviation (TLA)

A meta-acronym. As the name suggests, used to describeyatsai length
three.v

Introduction

1.1 Setting the scene

The broader problem underlying the work of this thesis isgrablem of us-
ing a Relational Database Management System (RDBMS) iwaoftwritten us-
ing statically typed object-oriented programming langesagConnecting the two
proves to be quite hard due to differences in data abstrantindels, concurrency
models, programming paradigms, primitive type definitiogte. The problem is
in general referred to with the term “Impedance Mismatch’stfintroduced by
Copeland and Maier [15] in a publication about adding ptsise support to the
language Smalltalk-80. Originally the use of impedancenmish stems from
electrical engineering, expressing how hard it is to irdarect two systems.

Throughout the last two decades, much effort has gone ifingathe impe-
dance mismatch problem, and while many solutions are widdtpted by indus-
try, all solutions suffer from some deficiencies.

1.2 Report outline

This report is laid out in the following chapters:

Preliminary Analysis In the following chapter we investigate different soluson
to the Impedance Mismatch problem, noting how each of thedefigient
in some manner. Thereafter we consider why the premisesoachanged
to avoid the problem altogether. Then we use previous woliktta number
of criteria that a solution to the impedance mismatch prokbeust fulfill to
properly solve the problem. Finally we reduce the scope efpitoject to
only concern one facet of the problem.

Analysis The chosen facet is querying, and through an analysis direyiguery-
ing methods we find a number of criteria that a querying methadt fulfill.
Some basic choices for designing a new query language are,raad fi-
nally a problem statement concisely puts forward the spepifablem that
is the subject of this project.

2 INTRODUCTION

The PersiJ framework To be able to develop the new query language, a surround-
ing context must be available. PersiJ is the name of thegtersie frame-
work that is presented. PersiJ is largely based on exisgéngjgience frame-
work specifications, but modified to accommodate specialireqents of
the new querying language.

Simple Object Query Language Bit by bit, the new query language is designed,
and this chapter gives an overview and informal descriptibiine different
parts of the language.

Transformation of SOQL Compiling the language is not a trivial task, and this
chapter gives an informal description of the semanticanggirerequisites
for legal translations of the different parts of the langelag

Discussion This chapter evaluates whether the language fulfills eatteatriteria
set forward in the analysis, and discusses to some degresphessiveness
of the new language compared to SQL.

Conclusion Finally, the conclusion summarizes the discussion and thiemad-
vantages and disadvantages of the new language are prbsérea last
note, the conclusion is set in a wider context, taking a keoaerspective
on the results of the project.

Enjoy your reading.

Preliminary Analysis

This chapter starts by investigating existing (classesdaf)tions to the Impedance
Mismatch problem. Noting that they are all deficient in diffiet ways, we pose the
question: Why not change the premises? Arguing that relatidatabases cannot
be replaced by object-oriented databases, the chapteequedy listing criteria
that any solution to the impedance mismatch problem mudubill. Last we
acknowledge that the scope of this project does not allowhi®development of a
solution to the whole impedance mismatch problem.

This chapter is largely based on our previous work [35].

2.1 Existing solutions

Currently, there are many solutions to the impedance migmatoblem, but
unfortunately they all have one thing in common: they onlivs@ part of the
problem. In the following, we present some of these solgtion

2.1.1 Calllevel interface

Call Level Interface (CLI) is an approach where it is possitol embed SQL state-
ments as string variables in the source code which can bpeghifp the database
engine. The database then parses and executes the quehgagdult is returned.
While CLI enables the programmer to use all of the featureb®fdatabase, it is
also subject to script injection problems [33] and lack afistchecking. Examples
of CLI are Java DataBase Connectivity (JDBC) and Open DaaBznnectivity
(ODBC). Figure 2.1 shows an example of Java code using JDBE ekample is
split in three parts. The first creates a connection to thebdee, the second per-
forms a query on the database, and the third inserts a nearpiete the database.

2.1.2 Embedded SQL

Another approach is Embedded SQL, where SQL statementsrdredeled within
the source code, and using a pre-compiler, the statememtsaasformed into
CLI code. This gives some degree of static type checking,thadlissimilarity
of primitive types are also handled. An example of embedd@d 8 SQL-Java

22

4 PRELIMINARY ANALYSIS

/I Initializing a connection to the RDBMS
ClassforNamg" com nmysql . j dbc. Dri ver");
Connection con= DriverManagergetConnectiof
"jdbc:nysql :/ /1 ocal host: 3306/ sonedb",
"user",
"password");

/I Performing a query on the database
Statement stmt concreateStatemef)t
ResultSet rs= stmtexecuteQuery
" SELECT * FROM per son WHERE f name = ' Peter’");

while (rs.nexy)) {
String fname= rs.getString" f nanme");

}

/I Inserting a tuple in the database
String fname= " Per " ;
Statement stmt concreateStatemef)t

stmtexecuteQuerfy
"I NSERT | NTO person (id, fname, | name) " +
"VALUES ("', '" + fname+ "', ' Madsen’);"
);

Figure 2.1: Example of JDBC code.

(SQLJ) [40]. Figure 2.2 shows an example of SQLJ. As with DBQ example in
Figure 2.1, we have three parts. The first creates the caonéotthe database, the
second queries the database, and the third inserts a nesnpets the database.

2.1.3 Object-Relational Mappers

After the initiation of the development of the object-otieth programming para-
digm, a lot of work began regarding providing persistentagje support for ob-
jects. Carey and DeWitt [10] gives an overview of the develept effort from the
mid-80’s until the mid 90’s, identifying trends, and makipgedictions as to the
future development trends. One of the key areas of futureldpment identified
by Carey and DeWitt in 1996 was “Object-Oriented Client Wras” - the use
of object wrappers to support the development of objearmed client-side ap-
plications against legacy databasf<)]. These wrappers have since evolved into
Object-Relational Mapping (ORM) frameworks, and are ineggread use. So-
lutions in this category includes Hibernate [24], TopLid3], Java Data Objects
(JDO), Enterprise JavaBeans (EJB), etc.

Deficiencies common to these solutions is the need for migtadadentify

© 00 N O 0o b WN PP

11
12
13
14
15
16
17
18
19
20
21
22
23
24

/I Initializing a connection to the RDBMS

Oracleconnect
"jdbc:oracle:thin: @ocal host: 1521: sonedb",
"user",
"passwor d"

);

/I Performing a query on the database
SelRowlter result= null;
String fname= "Pet er";
#sql result= {
SELECT * FROM person WHERE fname :fname
h

while(resultnexy)) {
fname = resultfnamd);

}

/I Inserting a tuple in the database
String fname= " Per " ;
#sql {
INSERT INTO person(fname Inam@ VALUES (:fname " Madsen")
h

Figure 2.2: Example of SQLJ code.

and describe mapping properties, complication of builccess, discrepancies of
primitive data types, etc. One of the biggest problems hewes the lack of static
type checking when using string based query approaches ergrcomplicated
and verbose query expressions [35].

Figure 2.3 shows an example of Java code utilizing Hiberaatkits Hibernate
Query Language (HQL). The code presupposes thaP¢haon class has been
annotated with metadata, and that the rest of the Hibernateefvork is properly
configured with database connection information, etc.

2.1.4 Multi-paradigm languages

Recently Microsoft released C# 3.0 (from this point on nefdrto as C# [16]).
Included in C# is the persistence features of research Qo [12] [7]. The
object-oriented model of C# has been extended with anongrtyqes, traits, ex-
pression types, etc., to enable a large syntactic additaine language that is
somewhat like SQL. The now-included query language can béd bsth to query
object structures as well as external data sources for vdante Application Pro-
gramming Interface (API) has been implemented - includeigtional data sources.

© 00 N O OB~ WDN PP

NNNNNDRERRRRRRR R B
EWNPOOO®NOUWUMOWNLELRO

6 PRELIMINARY ANALYSIS

/I Set up the environment
Session sessior HibernateUtilcurrentSessiaf);
Transaction tx= sessiorbeginTransactiaf);

/I Update the persistent representation of an object
Person persor new Persoff);

personsetFNamé' Per ");

personsetLNam¢' Madsen");

sessiorsaveépersol);
tx.commit));

/I Perform a query on the database using HQL
Query query= sessiorcreateQuerfy

"FROM Per son AS p WHERE p. f name = : f nanme");
querysetCharactét f nane", ' Per’);

/I Handle the query result here

for (Iterator it = queryiteratd); it.hasNexf)) {
Person p= (Person it.nexy);

}

HibernateUtilcloseSessid{);

Figure 2.3: Example of Hibernate using HQL.

The language is extended with one more paradigm (declarfdivquerying),
and becomes a larger language - potentially harder for teesydeveloper to
master. Figure 2.4 shows an example of querying in C# - and @mibe seen,
the query language is SQL-like, and integrated as a parteofahguage. In the
example, a new anonymous type is built from the query, whmdagt is just a type
that has not been given a type (the anonymous is what makgséinging possible
in C# as the return type is not known before the query is ereuiin alternative
is to just select the objects directly - and populate nevamisitions of an existing

type.

2.2 Why not change the premises?

Since it is a problem to use the statically typed objectrigd languages in
conjunction with RDBMSs, why not change the premises andansther persis-
tent storage mechanism?

© 00 N O 0 WN P

T T e S o S S S S
© ©W o ~NO® U DWNLERO

/I Establish a query context over ADO.NET connection
DataContext context new DataContext
"Initial Catal og=petdb;Integrated Security=sspi");

/I Grab variables that represent the remote tables that espond to
/I Person and Order CLR types

Table<Person- custs = contextGetTable<Person-();

Table<Order> orders= contextGetTable<Order>();

/I Build the query (using a SQL-like syntax)
var query= from c in custs o in orders
where oCustomer== c.Name
selectnew {c.Name 0.OrderID,
o.Amount c.Age};

/I Execute the query and print the result
foreach (var item in query
ConsoleWriteLine(" {0} {1} {2} {3}",
item.Name item.OrderID,
item.Amount item.Age);

Figure 2.4: Example of C# code - taken from [32].

2.2.1 Orthogonal persistence

One approach is to use orthogonally persistent objectiaitlanguages. Orthog-
onal persistence is described by Malcolm P. Atkinson [4]pv&tone of the creators
of PJama [3]. The PJama project aimed at implementing oothalgpersistence in
Java, but unfortunately the development was stopped bedhes choice of Java
Virtual Machine (JVM) was abandoned by Sun Microsystems{Sin [4] Mal-
colm P. Atkinson uses three properties that must apply fitnogional persistence
to be fulfilled:

¢ Orthogonality— The persistence facilities must be available for all date;
spective of their type, class, size or any other property.

e Completeness or Transitivity If some data structure is preserved, then ev-
erything that is needed to use that data correctly must sepred with it,
for the same lifetime.

e Persistence IndependeneeThe source and byte codes should not require
any changes to operate on long-lived data. Furthermorasgtmantics of the
language must not change as the result of using persistence.

There exists several examples of orthogonal persisteréedpo the object-
oriented paradigm. One of the first was the programming laggself [44], whose

a b~ W NP

8 PRELIMINARY ANALYSIS

runtime (and development) environment saves the complete af the application
in a “snapshot”.

Although PJama was abandoned, there was a number of lessbeddarned.
Orthogonal persistence might seem as an attractive diteznat a first glance,
but there are several factors that lead to a disfavoring isfapproach. In an or-
thogonally persistent system, it is the state of wiele system that is persisted,
and upon restoration, it is thgholestate being restored — all classes, objects, at-
tributes, GUIs etc. An implication of this is the lack of atyilto persist and restore
only subsets of a total storage.

Sharing persisted state between concurrent executingcapphs becomes
difficult, moreover, the Atomicity, Consistency, Isolaticand Durability (ACID)
properties of transactions could not easily be applied ¢aldva platform [5], and
therefore they had to investigate how a new transaction hoaddd be applied.

2.2.2 Object-oriented databases

One of the predictions of Carey and DeWitt [10] was the derofsgbject-oriented
databases. This has shown to be partly true, with objeetited databases only
gaining acceptance as niche products [30]. While remowingesof the impedance
mismatch, existing object-oriented databases do howsti#rsuffer from some
deficiencies. For one thing, expressing queries is stilktham declarative queries
without static type checking, or depend upon the constractif programmatic
models representing queries.

Figure 2.5 shows an example of a programmatic model reptiegea query.
One example of a current object-oriented database is dédishjdb4o). db4o has
one very interesting property: while still providing pragnmatic query models
and string based queries, the newest release has implairidatiee Queries [14].

/I An example of the Simple Object Database Access (SODA)iMARb40
Query querydb.query();

guery.constrairiPilot.class;

querydescen' nane").constraif" Per Madsen").not);

ObjectSet resultqueryexecutg);

Figure 2.5: Example of the SODA query API in action in db4o.

Native Queries is an approach presented by William R. CodkCGarl Rosen-
berger [14] that uses the syntax of the host language (in dse of db4o it is
Java and C#), and by pre-compiling certain methods desdrest queries and per-
forming byte-code analysis on the referenced methods,ldjeeBoriented code is
translated to database calls. We will be going into detditsuaNative Queries in
Section 3.1.3.

2.2.3 Sticking to relational databases

There are a number of reasons to stick to relational datakese deal with the
impedance mismatch, rather than changing to another fopersistent storage.

Legacy data: The relational data model was first introduced in 1970 by Cded
[11], and has been subject to intensive development sinegakiase Man-
agement System (DBMS) have been around for nearly as lordjasma
consequence hereof, many applications with the need foe samt of per-
sistent storage is going to operate on legacy data that isasity migrated
to another form of persistent storage.

Theoretical foundation: Due to extensive research efforts during the past three
decades, the relational data model, and relational datalvast upon a solid
and extensive theoretical foundation - enabling the DBMBaee grown to
become complex and highly efficient.

Maturity: The RDBMSs that are in widespread use (e.g. SQL Server [34], O
acle Database [36], DB2 [17], PostgreSQL [37], etc.) havéanfeilities
(including backup facilities, platform utilization, efcand are quite mature,
as they have been under development and in production envaots during
the past three decades.

Partial persistence: Unlike some systems that are orthogonally persistentaa rel
tional database provides the opportunity for partial géesice where only
part of the application’s state gets persisted. More releparhaps, is also
that the application does not have to load all of the pertistate upon ap-
plication startup. This is relevant in scenarios where theunt of persisted
data is simply to much to handle in-memory.

2.3 What's the problem

While there are many suggestions to solutions to the impsxlamnismatch
problem, Cook and Ibrahim [13] have tried to identify thetenia that a solution
must fulfill in order to solve the impedance mismatch prohlemd which prop-
erties can be used to describe different solutions. Oneetémclusions of the
article is that for one solution to properly solve the probjall of the criteria must
be fulfilled.

In our previous work [35] we evaluated these criteria, andemie where re-
viewing some existing solutions we ended up extending thefswailable criteria.
Table 2.1 lists an overview of these criteria. Those markitl v were introduced
in our previous work. Those marked withare added during this project.

10

PRELIMINARY ANALYSIS

Criteria

Description

Static checking

Interface style

Type mismatch issue

Reuse

Concurrency

Optimization

Build processA

Having static checking is a huge advantage for the sys-
tem developer. Static checking enables the ability to
check code at compile time, type as well as seman-
tics. This greatly decreases the risk of encountering
run time errors.

Interacting with the database either through SQL or

the host language is something that need to be con-
sidered. Some existing solutions to the impedance
mismatch problem breaks with the object-oriented

paradigm thus ending up as a multi paradigm lan-

guage. The level of persistence should also be taking
into account.

Either the problem of matching the type system from
the programming language to the database is handled
directly by the system developer (i.e. in JDBC) or it is
handled by the framework or language extension (i.e.
with Hibernate).

To what extent it is possible to reuse parts of the query
in different contexts. In other words - is it possible
to modularize queries, and combine them at compile-
and runtime?

How does the application support concurrency and
how does this concurrency map to the ACID proper-
ties? Should the model for concurrency be changed?

Whether or not the system developer should be able to
do optimization. This could be through criteria ship-
ping, grouping queries, or prefetching related objects.

Depending on whether a framework or language ex-
tension is the preferred choice, there might be changes
to the build process. A language extension would re-
quire a pre-compiler, if the extension is not to be build
into the language itself.

continued on next page

11

continued from previous page

Tool supportA To what extent there is tools that support the frame-
work or language extension.

Language alteratioh | How many, if any, changes are made to the host lan-
guage.

Schema evolutior\ How is changes in the database schema handled by the
framework or language extension.

Partial persistence Does the solution allow for persisting only a subset of
the application state, and does it allow for instantiating
only a subset of the persisted state?

Table 2.1: Criteria that can be used for evaluation.

William R. Cook and Carl Rosenberger conclude:

A complete solution to the problem of impedance mismatch pnos
vide both a clean programming model and high performanceiléVh
issues of mapping data between databases and programnmggdges
have largely been resolved, significant issues remain. mtesface
should leverage the best capabilities of both databasespamgram-
ming languages to for optimization, static typing, and maddevel-
opment. Each of these aspects has a solution by itself. Tidgon of
impedance mismatch is meeting all the goals simultaneously13]

In other words, they conclude that the solutions they haveewed, all are
deficient in some way, and no solution meets all criteria aeonThe scope of
this project does not allow for the development of a full siolu to the impedance
mismatch problem, and will instead focus on solving oneipaler facet of the
problem.

Before proceeding with a description of the particular fatieere are a few
other areas that we would like to remove from our focus. Onia@de is concur-
rency. Although concurrency is an important aspect wherkingrwith databases,
we believe that adding the aspect of concurrency to thiseptajould result in
an extra layer of complexity thus removing our focus from fteet that we find
intriguing. We will also remove our focus from schema eviolnt We will be
touching the subject of schema evolution without providamgactual solution, be-
cause this as concurrency lies outside our choice of facet.

12

PRELIMINARY ANALYSIS

Analysis

In this chapter we will use the preliminary analysis as arseuto choose a facet
of the impedance mismatch problem. We will then analyzefedst with respect
to existing solutions, and describe a set of criteria by Whisolution to the facet
can be evaluated.

We proceed by presenting the method we will follow to ansWwerguestion of
whether it is possible to solve the facet with respect to ttesgnted criteria, and
end with a problem statement that concisely states thegmohble will try to solve.

3.1 Querying approaches

The facet that will be treated in this project is the fashiémuerying that a
solution to the impedance mismatch problem provides. Adlakisting kinds of
solutions have deficient ways of performing queries. Thiefghg will treat each
kind of solution, noting how the querying method is deficiefithe end of this
section will summarize the characteristics that can be tse@scribe a querying
fashion, and present a set of criteria that we wish to fulfithwespect to a new
way of querying.

3.1.1 Object-Relational Mappers

ORM solutions such as Hibernate, JDO, EJB, etc. provide dacitities for map-
ping relations to objects, balancing the need for fine-g@iprogrammer control
and ease-of-use. One of the problems, namely the sepadditivapping metadata
from the source code can be addressed with Java 1.5’s aionstand the lat-
est EJB specification. Unfortunately, the querying medrasiof the ORM tools
still lack elegance. They provide special object-oriergedrying languages (e.g.
HQL, Java Persistence Query Language (JPQL), and Java Dpget©Query Lan-
guage (JDOQL)), but static type checking is lacking, andevbartly operating on
objects, the querying language is still declarative. Al&tively the frameworks
provide support for SQL queries and programmatic queryurgifng an API that
although native to the host language, is somewhat cumbersonmse.

13

© 00 N O O A~ WDN P

I e e e e Y
~N o b wWNPRERO

14 ANALYSIS

3.1.2 Embedded queries and multi-paradigm languages

SQLJ and C# amend the language syntax, and allow some sofloirfline in
the host language. Both solutions solve the static checdiesssAlthough C# inte-
grates some sort of SQL even deeper, enabling querying ectadifuctures, both
solutions are deficient in one very important way. In an dbggiented language
they introduce a new paradigm - a declarative query langu@gye belief is that
this enlarges and complicates the language unnecessarily.

3.1.3 Native Queries

The previously mentioned Native Queries [14] approach lmasred a project
named Plain Old Java Queries (POJQ) @va. net , which aims to provide sup-
port for Native Queries for JDOQL, but HQL and EJB Query Laage (EJB QL)
could also be used with POJQ.

The concept of Native Queries is however quite interessingge it inherently
solves that static type checking problems. Moreover, sinoperates with the
syntax of the host language, and similar semantics, it doesequire the system
developer to master several paradigms.

Figure 3.1 shows a simple example of Native Queries thaevess all the stu-
dents that are younger than 20 and have an “A’ grade.

/I A Native Query - specifying the selection predicate bylémenting
/I the abstract method match in the abstract Predicate class

List students= databasejuery
new Predicate:Student-(){
public boolean matchStudent studepf
return studenigetAgd) < 20
&& studentgetGrad€).equal¢gradeA;

);

/I The abstract Predicate class
abstract class Predicate<ExtentType> {
public <ExtentType- Predicate() {}
public abstract boolean match (ExtentType candidaje

Figure 3.1: Example of Native Queries in Java.

Although Native Queries give an elegant fashion of querying. that it uses
the semantics of a language that the system developer &lglfamiliar with to
express queries, it does have one very important deficiemdaya). In absence of

15

anonymous methods (closures), the vehicle chosen to exfirepredicate (con-
tained in the match method) becomes an anonymous classntpgnments the
abstract clasBr edi cat e. This design choice unfortunately gives a quite verbose
syntax when specifying queries, and is specific to Java.

While the verbosity is a significant drawback, the undedyidea of Native
Queries, namely the ability to express queries in a syntaxsamantics native to
the host language, is very appealing.

3.2 Querying method criteria

Considering these query approaches, we propose the faljpgriteria to use
when evaluating a new querying approach:

Static checking: The query form must enable compile time static type and seman
tic checking. This is one of the biggest deficiencies of gtdased queries,
and is necessary to overcome.

Automatic marshalling and unmarshalling: The conversion from the result of
a query to the RDBMS which is a relation with tuples, into dextion of
objects, must be performed by the query mechanism. At I¢astst be
possible for the rest of the persistence framework to perfiie marshalling
and unmarshalling between the two data models.

Same paradigm as host languageThe language used to express the query must
be in the same paradigm as the host language. If the hostdgagds object-
oriented, then the query language must be so too. Moredwesdmantics
of the query language and the host language must be as sagifarssible,
effectively making the task of writing queries no differéhin expressing
anything else in the host language, and thereby make thgiggesrocess
transparent.

Minimal verbosity: The typing required to represent a query must be minimal. If
the querying becomes to complex and difficult to master orghtras well
be using SQL.

Minimal language alteration: The alteration of the host language needed to ac-
commodate the queries, must be kept at a minimal level. FHis prevent
the host language from growing unnecessarily.

Modularization: It must be possible to divide a query into different modules t
can be combined or used individually.

Optimization: The query must be transformed into a query language thatiiena
to the RDBMS - typically SQL. This way the RDBMS is at liberty per-
form query optimization. Moreover, it should be possibledmbine query

16 ANALYSIS

blocks while retaining the possibility of letting the RDBMgptimize the
query.

3.3 Choosing a language

When designing a new querying approach, it is necessarycidelehich lan-
guage to use as a starting point. We choose to base our porjetdava. C# is
another viable candidate, and the choice of Java is one lhgsgdpersonal expe-
rience and knowledge to standard libraries, language symd semantics, etc.

3.4 Transformation

The source of the transformation will be syntactical cdardava 1.5 code that
is wrapped in some language construct that designates fj@srg. The target will
be Java 1.5 code which utilizes JDBC to express the query In SQ

3.5 Method description

In order to be able to answer our problem statement, we pddmedesigning a
query language. To support the language design processtaayme of a compiler
is built alongside with the design process. The developroéihe compiler is
undertaken for the sake of exploring problematic areas,iisdnot an explicit
goal to build a working compiler for the whole language.

The language that the compiler is to transform, is to be sambeet of Java
(ideally all of Java) into other Java code. The developmaeihstart with a minimal
language, which operates only on the basics of the Javadgeginamely classes,
objects, references, primitives, messages, and branchhggquestion of whether
it is possible to make a meaningful transformation of thisimal object-oriented
query language (which we denote Simple Object Query Lang(@@QL)) will be
the first target. The design of SOQL is subject to the critéstad in Section 3.2.

To make a meaningful compiler, the rest of the persisteramadwork must be
in place. The persistence framework (which we denote Bassdksigned not to
honor as many criteria as possible from Table 2.1, but méoefycommodate the
needs from SOQL.

17

3.6 Problem statement

With this project we wish to answer the following question:

Is it possible to design an object-oriented query languagegrated with Java,
which can be transformed to Java code that ships the querydst8 the
database while still fulfilling the criteria: static chedsl®, automatic mar-
shalling and unmarshalling, minimal verbosity, minimahdmage alteration,
modularizable, and optimizable?

18

ANALYSIS

The PersiJ framework

In this chapter we present the PersiJ framework. We procgethi@iosing to base
the design of PersiJ on an existing persistence framewaifggation, and write
how so. Thereafter a class (EntityCollection) is introdlies a part of PersiJ.
Figure 4.1 shows how PersiJ is situated within an applinatio

Application

PersiJ framework Model classes

EntityCollection @Entity

SOQL compiler OtherClasses

L\,
2

Figure 4.1: lllustrating the PersiJ framework within an laggtion.

4.1 Using an existing persistence framework specification

Since building a complete persistence framework is not dlealfpoint of this

19

20 THE PERSIJ FRAMEWORK

project, we base large parts of the PersiJ framework upastimgisolutions - not
for the sake of compliance with existing standards, buttierdake of “getting the
job done” quickly.

We base some of the framework upon the proposed final drafiedEdB stan-
dard [22]. Most of the EJB standard is useful for us, as it diess in detail how
a persistence framework could be. However, we have chosttldw it only in
part as we would like to be able to show off some particulaglege design prop-
erties of SOQL. The EJB describes mainly three parts - howtiestvork and are
described (objects that are mapped to the database), hitigseate managed (i.e.
loaded from database and stored) and how they are queriestwithlatter parts
are not adopted in the PersiJ framework at all.

Much of the metadata that is required in such a persistermeaefivork is in
PersiJ present as annotations, and in the following seat®present a discussion
about this.

4.2 ldentifying persistable types

Since we want to build a framework that is not orthogonallyspent, there
needs to be some way to distinguish the classes whose iasthage the ability
to be persisted from those that do not. In the following wel@dksome principal
approaches for doing so, and acknowledge a few major adyestand disadvan-
tages.

Inheritance: The inheritance hierarchy could be used to mark persistdh$ses.
All persistable classes would then inherit from a commorestipss. This
makes it possible to utilize polymorphism and standardimmmteflection to
distinguish between persistable and non-persistablsadasUnfortunately
(in this case) Java only has single-inheritance, and reqguall persistable
classes to inherit from one common class limits the expressss.

Marker interface: While interfaces normally express a number of abstract meth
ods that implementing classes (or subclasses hereof) queed to imple-
ment or mark abstract, another alternative use of intesféi€@as amarker
interface[25]. A marker interface has no methods, and is used to itelica
that an implementing class has some special property. Vi&vdrsthis ap-
proach, since we feel that an interface should indicatesthabject has some
special behavior. Using an interface to mark a property oblgect is not
indicating guaranteed behavior, but another property.

New class modifier: Another alternative is to modify the existing programming
language, and introduce a new class modifier. Introducing sy@tax into
the language integrates the identification into the langud@gdisadvantage
is however that the language grows, and gets more complicMereover,

a new (pre)compiler is required for the whole language.

21

External files: Properties files and XML files (with custom schema) have grown
quite popular to hold configuration options and metadatg.- ie. conjunc-
tion with ORM. External files have two major disadvantagegstfof all,
the information they present is not integrated with the tgpstem and sec-
ondly, the information is not located directly in the souccele, next to the
language elements that they concern.

Annotations: Since Java 1.5, annotations have been a part of the langypge t
system. Annotations alleviate both of the major disadvgagaof properties
files and XML files - they place the metadata right next to tHeotéd lan-
guage element, instead of placing it in another locatiomaiations are also
integrated into the type system, and can be available througtime reflec-
tion. The Annotation Processing Tool (APT) is distributeittvthe Software
Developers Kit (SDK) for Java 1.5, and provides a frameworkpfocessing
annotations.

In the Persid framework we have chosen to aeaotationsto enhance the
source code. This way we can easily use APT to find the clasadsnhas entities.

4.3 Entities

The EJB standard describes an entity class as a class thapgeoh to a
database, or more precisely:

Definition 1 (Entity) An entity is a lightweight persistent domain object.

EJB proposes to use annotations as metadata. This leadsdispbthe entity
class definition — to a certain degree.

The EJB specification treats how to identify entity clasdesy to identify
shadow informatioh, how to distinguish between property based and member
based access, which properties that entity objects hayghtld, how to map from
entities to relations, how to map foreign key relations ia ttatabase to entities,
etc.

The following is a specification of the entity class. Somehsd tifferences
compared to the EJB specification are small and intricat same are more mas-
sive. We have chosen to present the specification in somg, defgive a coherent
view of the requirements to an entity class. Therefore, soitiee succeeding text
is equal to that of the EJB standard. We will explicitly nothere the PersiJ en-
tities differ from the EJB entities in more substantial raedt In general, where it
has been possible, complexity and nice-to-have featunes tbeen removed from
the EJB standard.

Extra information added to the object in order to track itlotcthe tuple in the database.

22 THE PERSIJ FRAMEWORK

4.3.1 Requirements on the Entity Class

The entity class must be annotated with @t i t y annotation. The entity class
must be a top-level class, and have a public no-args cotmtrUentities may ex-
tend non-entity classes as well as entity classes, andmitig-elasses may extend
entity classes.

The persistent state of an entity is represented by instaadables, which
may correspond to JavaBeans properties (see [22] for mfmeriation). Instance
variables must not be accessed by clients of the entity. Tdie ef the entity is
available to clients only through the entity’s accessorhoés (getter/setter meth-
ods) or other business methods. Instance variables musivagep protected, or
package visibility.

4.3.2 Persistent fields and properties

The persistent state of an entity is stored in its instanceabi@s. An instance
variable can hold persistent state if it is neither markethwie @r ansi ent
annotation, nor ther ansi ent modifier.

Mapping annotations are either applied to a field or its gpoading accessor
method. The behavior is unspecified if both is the case. Mapanhnotations on
transient fields have no effect.

Itis required that the entity class follow the method conigars for a JavaBean
when persistent properties are used. In this case, for guensistent property
called property of the entity, there is a getter methagkt Pr operty, and setter
methodset Property. For boolean properties,sProperty is an alternative
name for the getter method.

In addition to returning and setting the persistent stata@fnstance, the prop-
erty accessor methods may contain other business logic lasfeveexample, to
perform validation. The persistence provider runtime aeies this logic when a
property based access is used:

Caution should be exercised in adding business logic to twes

sor methods when property-based access is used. The ordérich

the persistence provider runtime calls these methods wdeatirig or

storing persistent state is not defined. Logic containedigisnethods
therefore cannot rely upon a specific invocation ord2g]

The behavior of runtime exceptions in the PersiJ framewsrkuinlike EJB —
undefined. The reason for this is that we want to start out avitiinimal language,
where elements like exceptions have been removed.

The following types are present in the PersiJ framework:

e Primitive typesint,fl oat, byt e,short,char, bool ean, doubl e, etc.)

e String

23

e Other serializable types and wrappers of the primitive $yqaech as nt eger
Byt e, etc.

e Enums

e Entity types and lists of entity typeg&rti t yCol | ecti on, etc.)

The metadata for ORM are among others the annotat@asl! e, @ol um,
@ d, @econdar yTabl e, @oi nCol utm, @anyToOne, @neToOne, etc. For
a full listing and specification we refer to EJB specificatinf22]. We will not
describe these as they are described in detail in the spitfic

4.3.3 Mapping objects to relations

The EJB specification does not prescribe how to map objettetpersistent stor-
age, so we need to look at this:

This specification does not prescribe how the abstract pensce schema
of an entity bean should be mapped to a relational (or othehesna
of a persistent store, or define how such a mapping is destr[Bg]

We will therefore present four different ways of modelingstproblem - all
based on some work by Scott W. Ambler [2]. We will briefly sumipa the four
approaches:

1. Map hierarchy to a single relation — each hierarchy corresponds to one
relation, with tuples for all the object members.

2. Map each concrete class to a relatior- each object becomes one tuple in
one relation.

3. Map each class to its own relation- each class corresponds to a relation.
Each object becomes one tuple in each relation from its clasisthe base
class.

4. Generic mapping— a number of relations contain tuples that describe the
system: the classes, their members, inheritance relatiodsttributes. Fi-
nally there is one relation containing tuples with all théues.

The generic mapping (4) does not scale very well and queudeklyg becomes
very ineffective compared with the other three solutionshisTis therefore not
considered to be a usable approach at all, thus rejected.

Map each hierarchy to a single relation (1) removes the bilisgiof using
domain constraints such ast nul | etc. thus is not a viable solution.

Mapping each concrete class to a relation (2) and mappingaass to its own
relation (3) are both good alternatives. Let us have a lodkeadifference between
the two in order to make a choice. Figure 4.2 illustrates Weeitleas. In the left

24 THE PERSIJ FRAMEWORK

hand side of the figuresA> means that class A is declaralist r act thus each
class is mapped to its own relation. Another thing worthging is that on the right
hand figure class B both contains the attribute from A and B thaking schema
evolution harder to maintain as adding a new attribute to@ukhpropagate to all
children inheriting from A. On the other hand, the solutiontbe left hand side
need to map each child to its parent in order to fulfill the nithece - e.g. through
an id.

Map each class to its own relation Map each concrete class to a relatior

<A> Relation A : A Relation A
Att Att | Al Att
A] X]
| |
B Relation B B Relation B
Btt | Att
Btt : Att | Btt
2 ---1 ! |Btt X -
| | |
c Relation C
Ctt Ctt

Figure 4.2: The two viable mapping approaches — (2) and (3).

Both solutions have some strong and weak points. Mapping elass to its
own relation require that we model inheritance inside thalslse. Mapping each
concrete class to a relation handles this by duplicatingrtherited attributes on
the cost of schema evolution. Because we are making a prazd#sef rather than
having focus on an entire solution we are choosingp each concrete class to
a relation (2) but recognizing that this solution might not be the bé&sschema
evolution will come in focus in future implementations. Bat now, this will do
as this is easier to implement.

4.3.4 Multi-valued properties

For multivalued properties — collections of objects — thétgmust use the type
EntityCol | ecti on (see Section 4.4). This is one area where PersiJ differs from

25

EJB. However, the metadata used to mark the relationsh@gpsaural, and so are
their semantics. The following is from the EJB specificatmout entity relation-
ships, but we have taken the liberty to change it to fit ourléyo

Relationships among entities may be one-to-one, one-toynmaany-
to-one, or many-to-many.

If there is an association between two entities, one of tieviing

relationship modeling annotations must be applied to tlmeespond-
ing persistent property or instance variable of the refg@rgnentity:
@neToOne, @neToMany, @/anyToOne, @/any ToMany.

These annotations mirror common practice in relationakdietse sche-
ma modeling. The use of the relationship modeling annatatil-
lows the object/relationship mapping of associations trtlational
database schema to be fully defaulted, to provide an easexaflop-
ment facility.

Relationships may be bidirectional or unidirectional. Aikectional
relationship has both an owning side and an inverse side. iéi-un
rectional relationship has only an owning side. The ownidg sf a
relationship determines the updates to the relationsHipeiniatabase.
The following rules apply to bidirectional relationships:

e The inverse side of a bidirectional relationship must
refer to its owning side by use of ti@mppedBy ele-
ment of the@neToOne, @neToMany, or @/any ToMany
annotation. TheaappedBy element designates the
property or field in the entity that is the owner of the
relationship.

e The many side of one-to-many / many-to-one bidirec-
tional relationships must be the owning side, hence
the @rappedBy element cannot be specified on the
@/manyToOne annotation.

e For one-to-one bidirectional relationships, the owning
side corresponds to the side that contains the corre-
sponding foreign key.

e For many-to-many bidirectional relationships either side
may be the owning side.

For a full specification, we refer to EJB specification [22Eemore.

26 THE PERSIJ FRAMEWORK

4.4 The EntityCollection

Instead of using th&nt i t yManager interface of EJB, we present a collec-
tion type native to the PersiJ framework - namely En¢i t yCol | ecti on (from
this point written as EntityCollection to enhance readsh)il As we shall see later
in Chapter 5, we want to be able to return a collection of estifrom queries.
Since it is a design goal to make the footprint of the framéwas small as pos-
sible regarding API and language alteration, we combinertapping of relations
between objects, and the operations for manipulatingiestibto one type — the
EntityCollection.

We proceed by describing the signature of the EntityCabectand thereby
explaining how it is supposed to work. All of the signatures de seen in Ap-
pendix A.

4.4.1 Parametrized type

The EntityCollection is parametrized with one type. Theapagtrized type is the
entity which the EntityCollection will contain, and the wertying collection type
will contain. Constraining the type that the EntityColieat contains provides two
major advantages:

¢ All the same advantages that are gained by making any otliection type
parametrized apply - that the compiler statically can chealidity of as-
signments and that explicit typecasts no longer is needezhwising the
collection.

e The EntityCollection can runtime infer the actual type paeter and from
runtime reflection obtain the necessary information toguenfmapping to
the database.

4.4.2 Constructor

The constructor of the EntityCollection is overloaded. T™sdault no-args con-
structor is used when the developer wishes to make a newydngityCollection
that can be used to persist entities.

The other constructor is a constructor used by the Persikfrerk internally.
It takes g ava. sql . Resul t Set object as parameter, and iterates over the result-
set - converting the rows from the result set to objects irghityCollection.

Figure 4.3 shows the two constructors in use.

4.4.3 Static data structures

Internally, the EntityCollection maintains data struesithat map types and pri-
mary key values to references to corresponding loaded tshje@ssure that there
is only one loaded copy of each entity.

© 00 N O 0o WN PP

=R e
N B O

a b~ W NP

27

/I Creating and using a new blank EntityCollection

EntityCollectioncCar> cars = new EntityCollection<Car>();

carsaddnew Carn" Ferrari " ," Red"," Expensi ve"));

carsaddnew Car" Koeni gsegg",”" Yel | ow'," Ri di cul ousl y expensi ve"));

/I The other constructor used by the PersiJ framework
javasql.PreparedStatement pStmt conprepareStatemefnt
"SELECT * FROM cars WHERE pricetag = ?"
);
pStmtsetStringl," Cheap");
javasql.ResultSet resultSet pStmtquery();
EntityCollectioncCar> cheapCarss new EntityCollection<cCar>(resultSef,

Figure 4.3: Example illustrating marshalling and unmaltsita

4.4.4 JDBC connectivity

Statically the EntityCollection class maintains connaasi to the database. Should
the system developer wish to interact with the databasettjirasing JDBC, the

methodget Connecti on() can be used to retrieve a connection to the database.

Figure 4.4 shows an example @t Connecti on().

javasgl.Connection conr= EntityCollectiongetConnectiof);

javasql.PreparedStatement preparedStmtonnprepareStatement
" SELECT f name FROM per son WHERE f nane = ' Per’");

/I Do more with the database/connection here

connclosd);

Figure 4.4: Example illustrating the methgdt Connecti on() .

4.4.5 Collection type methods

Since the EntityCollection implements the interfgcava. util . Col | ecti on,
all of the methods fronCol | ect i on are implemented. Internally the EntityCol-
lection will contain some collection object which actuahliplds all the entities.
The method calls implemented from tBel | ect i on interface are wrappers, that
perform some form of action related to the persistence respilities, and re-
delegate the call to the underlying collection implemeatatin general, the wrap-
ping functionality is responsible for keeping the intersttic data structure up-to
date. The persistent representation of the objects cauamthe EntityCollection
is not updated until the methods described in the followiecfien are called.

One important issue is that the system developer needs It@lozhr () or
renoveAl | () before deleting the last reference to the EntityCollegttorenable

© 00 N o O b~ wWDN PP

NN RNRNNNNNRERRRRRRRR R
N o U R WONRPOOOWNOOMNOWRINIEP O

28 THE PERSIJ FRAMEWORK

the static data structure to erase all references to thetshjentained in the Enti-
tyCollection. If the EntityCollection is not cleared betdneing garbage collected,
the static data structure will not become aware that theestes to the objects that
where contained in the collections now possibly are obspbatd may be garbage
collected [25].

4.4.6 Storing and deleting from persistent storage

Since the EntityCollection itself does not know whether ot an object is dirty
(that is, in an inconsistent state with the persistent geyréhere has to be a way
of persisting the changes. There are four methods - two rdstfar persisting
objects, and two methods for removing objects from pensis®rage. Figure 4.5
shows an example of using the manipulation methods.

EntityCollectioncCar> cars = new EntityCollection<Car>();

Car lamborghini= new Car(" Lanbor ghi ni " ," Pi nk" ," Expensi ve");

Car mini= new Car"Mdrris Mni", "Raci ng Green", "Reasonabl e");
carsaddlamborghin);

carsaddmini);

/I The collection cars now contain the lamborghini and minbut they are

/I not stored persistently.

carspersisflamborghin);
/I The lamborghini is stored in the database.

lamborghinisetColo(" Bl ack");
/I No more 'girly’ colors.

carspersis();
/I The persistent representation of the lamborghini is upda
/I and the mini is inserted.

carsunPersigmini);
/I Delete only the mini from both the database and the cabdect

carsunPersig;
/I ...and the lamborghini is deleted too.

lamborghini= null;
mini = null;
/I ...and the objects can now be garbage collected by the JVM.

Figure 4.5: Example illustrating theer si st methods.

29

4.4.7 Using prefecthing and lazy load

As all other ORM frameworks, PersiJ is subject to problemih wiading whole
object graphs upon retrieval of a single object. The Entilig&tion allows for
implementing some lazy load technique, where the relatgectsbare loaded on-
demand. As a first approach however, the EntityCollectiondb} follows rela-
tions, loading the whole object graph. The PersiJ frameviodubject to all the
usual problems with lazy loading and prefetching, but usirigting work on the
subject [6], a satisfactory solution could probably be exbd.

4.5 Summary

The PersiJ framework can be considered as consisting @& pjaes:

Entities: Entities are objects which are mapped to the database. Thredata
used to describe entities and relations between them isatiors, which
quite closely follow the EJB standard.

EntityCollection: The EntityCollection is a collection that is used to managje e
ties, and relationships between them. Apart from the stainda | ecti on
methods, there are extra methods for storing and deletijegish

SOQL: Thisis the query language used to retrieve objects fromigters storage.
Look no longer than the following chapter for a descriptidrs@QL.

30

THE PERSJ FRAMEWORK

Simple Object
Query Language

In this chapter we will strive to design a method for queryimghin the PersiJ
framework as laid out in the previous chapter. To summalieed: standard EJB
annotations mark classes that are mapped to a databasdyeaBdtityCollection
type is used to model references between objects.

The modus operandi of this chapter is to start with decidipgnuthe basic
form of the query construct, and hereafter finding a minimddsget of the Java
language that can be used to perform queries. Construagpoessing predicates,
sorting, limiting and a way of modularizing queries is alsegented. A number of
examples are given to illustrate the ideas and concepits.

5.1 Basic form of query construct

In Section 3.1.3 we decided not to be using Native Queriesiastarting point,
due to the verbose fashion of implementing Enedi cat e class. The underlying
idea of therat ch method (see Figure 3.1), namely the evaluation of a prexlmat
each candidate object, will also be the underlying idea Q8.

The queries have to marked in some way, so the compiler cagmexe them.
Following the fashion of EJB, SOQL queries are also market amnotations.

Throughout the rest of this section, the form of the querystuet is described.

5.1.1 Valid Java

One of the goals of the querying part of the PersiJ framewarko investigate
to which degree it is possible to express queries to relatidatabases using a
language that resembles Java 1.5 as much as possible bbtregétrds to syntax
and semantics.

Whichever encapsulating language construct one mightsshabe essential
part of the compilation process will be the transformatiemf ordinary Java code
to Java code utilizing JDBC and SQL statements.

31

32 SIMPLE OBJECTQUERY LANGUAGE

To be able to focus the development process on this tranafmm we want to
be able to utilize a standard Java compiler (e.g. Java Cem@iavaC)) to handle
the compilation of the rest of the application. If this is pibde, it is also possi-
ble to compile the source code and reflectively inspect the system during the
transformation of the query constructs.

This restriction enforces that we (re)use existing langueagnstructs in Java,
and that the queries that the system developer writes anallgcsyntactically and
somewhat semantically sane (in the eyes of the Java corguilgway).

Sticking to standard Java 1.5 syntax also gives the benefibadfsupport.
Therefore, an existing Integrated Development Envirortn{#DE) like Eclipse
[20] is able to operate on the source code with the query nartst

Another approach would of course be to introduce new langwmstructs
to mark up queries, but as we will see later, reusing exidinguage constructs
enables a compilation (and transformation) process thgildies the development
of this compiler. On one hand, introducing new keywords aglaage constructs
on method-level or class-level might better cover the se¢itaf querying, and
make the code easier to read (and write). On the other haoh,resav language
construct complicates the language, and potentially midkesre difficult to learn.

We choose to use existing Java constructs in our designubeacae believe
that it is possible to use the host language (in this casg daexpress queries.

5.1.2 Encapsulating queries in methods

Given that we want to express the queries using existinglaagauage constructs,
we have chosen to use a method as the vehicle for a query. @heitgvo rea-
sons for this. First of all, we do not feel that implementimgpaymous classes like
Native Queries gives an elegant solution. Another reasdimaisonce the imple-
mentation takes place identifying these methods are soatesasy - especially if
they are marked in some specific way. We, on the other handoad&dge that
methods are not the most elegant solution, but we feel tiegtdhe more elegant
than anonymous classes.

We will be building the semantics for the query method lilijelittle. Starting
with the return type of a query, the result of some query isagisva collection of
objects that match the predicate expressed in the quergglitse EntityCollection
as return type integrates SOQL with the rest of PersiJ.

The query method should be able to express a query, and eetwitection of
objects from the persistent storage that satisfies the qatsqs) expressed within
the method. Given that we want to utilize a standard Java temfhe language
for these methods must be a subset to the Java language,easiditature of the
method must be the same before and after the processing gidhe BersiJ com-
piler.

The generated code that will constitute the compiled methigght throw some
exceptions - either from code supplied by the system deeelap from code inter-
acting with the database, etc. Since exceptions are not aff@OQL, we choose

33

to move the exception handling outside the query method. eagption thrown
within the query method stemming from the database handbdg is wrapped in a
Per si JExcept i on, and re-thrown. The signature for the query method theeefor
includest hr ows Per si JExcepti on.

5.1.3 Using annotations for markup

For several reasons, we choose to distinguish the queryostetiom other meth-
ods by marking them with annotations. This is one of the gacleere we deviate
from the EJB specification.

e We need to be able to distinguish query methods from othehadst That
is, we need to identify methods working on persistent datader to do the
translation from Java source code to JDBC and SQL statements

¢ Using annotations, we follow the style used to markup cktsat are mapped
to the database.

e Annotations is a native part of the Java language (since IB)s means
that we can markup the language with annotations and singgastandard
Java compiler like JavaC.

e When using annotations to mark the methods, we keep the atatalbse to
the code, avoiding external configuration files.

e Instead of having to find the query methods ourselves, we sarAPT to
investigate the source base, and kick start the compilgifogess (more
about this in Section 5.7).

5.1.4 Body of the query method

The method itself, and how the method can be called, is sutgegormal Java
semantics - this also means that normal access modifierapgity.

The next task is to define how the method can be used to expesliaate
that can be evaluated for each tuple in the database. Tryiaglve this problem
could be done several ways. When designing the language #nertwo design
goals to keep in mind:

1. It should be easy to use (intuitive).

2. It should be compilable with any Java compiler (pure Javacsocode).

The subset of Java that we want to use is already informafipet# as we in
Section 3.5 chose to only use the basics of the Java languelgsses, objects,
references, primitives, messages, and branching. Thslai@s to taking away
loop constructs, generics, exceptions, arrays, anonyrlasses, labels, etc.

© 0 N O OB~ WN PP

34 SIMPLE OBJECTQUERY LANGUAGE

As a syntactical basis for our language we will be using tleeifigation of Java
1.5 that can be found on the homepage for Java Compiler CenfpdvaCC). This
has then been reduced to remove the elements that we diddartiee analysis
(exceptions, generics, etc.). After reducing this grammiaamoving the above
mentioned elements, the grammar for SOQL becothesbase grammar The
base grammar can be inspected in Appendix B.

The basic idea of the method (derived from Native QuerieR) save a refer-
ence to a candidate object in scope. Moreover, since therstpe of the method
is EntityCollection, a reference to such an object must bésm scope. If the can-
didate object is added to the EntityCollection, the cangid#ject must be con-
tained within the returned collection. We therefore reguirat the method body
starts with the two lines shown in Figure 5.1 (lines no. 3 andquiring them to
be the two first statements is merely to ease implementation.

@Query

EntityCollectionctype> someMethotarguments throws PersiJException
EntityCollection<type> resultCollection= new EntityCollection<type>();
type candidateObject null;
/I The actual implementation
return resultCollection

¥

Figure 5.1: Example of the query method.

The arguments to the methatt,gunent s, are optional. These can be input to
the predicates, etc. Thgpein line no. 2-4 needs to be the same type as the type
the EntityCollection returned from the method is pararzettiwith. To illustrate
this, Figure 5.2 is a more usable example where the struétome Figure 5.1 is
preserved. In Figure 5.2 we have replatgaewith Car , theresultCollectionwith
car s andcandidateObjectvith candi dat eCar .

Now that we have covered the surrounding code, its time th &idhe actual
expression of a predicate itself. The simplest impleméeniaif the method would
only contain a add method that adds all elements to the Eldltgction. Figure 5.3
illustrates the actual implementation of Figure 5.2.

Instead of simply using thadd() method (as described in Section 4.4) it is
possible to use an if-statement to build up the predicatere ke will briefly
illustrate the idea, as the if-statement will be covered@ater detail in Section 6.6.

Figure 5.4 is an example of the if-statement. Here we areingo&t cars and
searching for all cars that are rmet.

To ease the translation of Java source code to SQL statenaerggirn state-
ment is mandatory, and must be the very last statement in gtleath block. This
makes it easier to read and easier to translate. The rettenstnts can be per-

N © 00 N O O~ WN B

N o o WN R

35

@Query

EntityCollectioncCar> getCargargumentys throws PersiJExceptior{
EntityCollectioncCar> cars = new EntityCollection<cCar>();
Car candidateCar null;
/I The actual implementation
return cars

¥

Figure 5.2: Example of the query method.

carsaddcandidateCar

Figure 5.3: Without a predicate inside query method.

if (candidateCagetColof).equal§" r ed")) {
/I Do nothing

} else{
carsaddcandidateCar

}

Figure 5.4: With a predicate present inside query method.

ceived a bit like go-to statements (as they break out of thetsire) [19]. As we
will be discussing in Section 7.1.3 these if-statementsnateto be evaluated as
regular if-statements, and therefore a return statemsitddrthese would be mis-
leading.

5.1.5 The base grammar

Instead of simply showing examples, Let us review parts efdrammar from
Appendix B. First, consider the block called PersijMethtm®, which can be
found in Table 5.1.

What is interesting here is the way we are constructing tlegygmethod. As
mentioned earlier, the first two lines in the method body assigfined. In the
grammar provided by JavaCC you would find the return statémside theBlock-
Statemenand not in the method block as we have chosen to do this. Agatause

36 SIMPLE OBJECTQUERY LANGUAGE

Persij MethodBl ock ::= {
EntityCol | ecti on <Type> <I DENTI FI ER>
= new EntityCol | ection <Type> () ;
Type < IDENTIFIER> = null ;
(Bl ockStatenment)=
return <IDENTIFI ER> ;

}

Table 5.1: Grammar fdPersijMethodBlock

this could be misleading.

Another part of the grammar that is different from JavaCGCargnar is the
Statemenblock illustrated in Table 5.2. This has been reduced drabfi from
the JavaCC version in order to remove excessive statenfenta/file, switch, try,
etc.). Itis only possible to make predicates using thedfeshents.

Statemrent ::= Block
| Statement Expression ;
| I fStatenent

Table 5.2: Grammar faBtatemenblock.

5.1.5.1 Types

The types explicitly present in the base grammar @rei ng and the primitive
types, bool ean, char andi nt, and of course the EntityCollection (see Sec-
tion 4.4). Apart from these, all qualified type names arevadid in expressions,
etc.

5.1.5.2 Assignment operators

Assignment operators have been boiled down to only beingnd it is only possi-
ble to assign the predefined lines in Table 5.1. In other watdslaring variables
inside the body of the method is not possible, which meartsatavariables to a
guery must enter the method as an argument, or already be sttipe containing
the method (i.e. class variables and instance variables).

5.1.5.3 Comparison operators

The comparison operators are restricted to onlybe:=, >, >= and==.

37

5.1.5.4 Boolean operators

The allowed boolean operators afet, ||, !

5.1.5.5 Branching

Branching is possible by using if-statements. The form efittstatements is sim-
ilar to that of (ordinary) Java.

5.1.5.6 Expressions

Expressions are equal to those of Java, and within botmsgatis and expressions,
it is possible to do both method calls and field dereferencing

5.1.5.7 Method calls

Method calls are the basic mechanism of communicating inlgactoriented
programming language, and have their natural place als@i@QLS Translating
a method call on an object from SOQL to Java, is however ndtowit difficulties.
Due to the nature of the translation, it becomes importariet@ble to identify
which methods alter the state of their objects, and whichalo\We will elaborate
in detail in Section 6.5 why this is so.

For now, consider Figure 5.5. In line no. 4, a safe methodisathade on
par antCol or . It is safe for several reasons. The result of the call is epeddent
on the candidate object — tlegual s method call does (apparently) not alter state
of the object, nor any other objects.

1 public EntityCollectioncCar> getCarsByColdiColor paramColar Counter cnty
2 throws PersiJException{
3 EntityCollection<cCar> cars = new EntityCollection<Car>();

4 Car candidateCar null;

5 if (paramCologetNamé).equalgcandidateCagetColof).getNamé))) {
6 carsaddcandidateCar

7

8

9

candidateCagetOwne().setNam¢' Per ");

cntr.couny);
10 cntr.infiniteRecursiveMetho(;
11
12 return cars

13 }

Figure 5.5: Using a safe and an unsafe method call.

An unsafe method call is made in line no. 7. Apparently thehoetall should
be equivalent to renaming all cars owners to “Per”, but itds safe since it alters
the state of objects that are in the database. Another unoatfs made in line no.

38 SIMPLE OBJECTQUERY LANGUAGE

8. Thecount method on the objeatnt r presumably alters the state of thet r
object, increasing some internal variable.

When translating this method a problem arises - should thiodebe called
once for each candidate object being evaluated? Shouldeteodhonly be called
once? Line no. 9 introduces yet another complication. Itoeétcalls are allowed,
then so is recursion. Recursion per se is not problematigveter, infinite recur-
sion is a problem. Non-termination can not be expressed in 8@ a classical
result of computability is that the detection of non-teratian is impossible - an
instance of The halting problem”[39].

Many of the problems with unsafe method calls come down tatifjéng
whether a method alters state (has side-effect). This i®blgmn that has been
investigated in some detail.

Dealing with side-effects Although this sounds like an easy task, it isn’'t. First
of all, what is a side-effect? Is a method side-effect freanifl only if it doesn't
change the object in question? What happens if the methaugekahe state of
another object - is it then without side-effects?

In the object-oriented programming language Eiffel [21grthis a strict dis-
tinction between a function and a procedure. A function daescall a procedure
and does not change anything, but simply returns the vatuelgp calledoure)
whereas a procedure changes something. But in Java we adistinguish be-
tween functions and procedures. One way is to use annaatiomarkup pure
methods (e.g. usin@ur e [29]), but this only solves part of the problem - since it
then is up to the programmer to guarantee that the method-etigns a value.

A lot of research has been done in the area of side-effecexafdru D. Sal-
cianu and Martin C. Rinard [38] uses a technique called poiahalysis [45] to
determine whether or not an object is pure. They distingbistwveenread-only
parameters ansifeparameters:

A parameter is read-only if the method does not mutate angcbbj
reachable from the parameter... A parameter is safe if iemsd-only
and the method does not create any new externally visiblp paths
to objects reachable from the paramet{g38]

There are three approaches to dealing with side-effects iobgect-oriented
environment. Either ignore side-effects, deny side-¢dfeor allow side-effects.
The question then remains. Should we simply ignore sidectsffand hope for the
best? Or should we allow side-effects and try to resolve thema if this fails
inform the developer of the problem or should we simple dedg-effects once
and for all. Denying side-effects completely would not baable solution, as we
would need to definerhat a side-effect isand be able to recognize this. Ignoring
them could result in strange and unexpected behavior ofyfters. Therefore we
must allow side-effects to be present in the system, andfthdra way to resolve
these.

39

Using an approach like Alexandru D. Salcianu and Martin QiaRis are ap-
pealing, as analysis-based approaches does not requirdthe@ur e annotation
to be added to the application.

5.2 Terminology

A few definitions are in place.

Definition 2 (Query Method) A query method is a method in a standard Java 1.5
class definition that is marked with the annotati@@uer y. A query method must
follow the grammar defined in Section B. The return type ofergmethod is the
generic type EntityCollection.

Definition 3 (Candidate Object) A candidate object is an object of the same type
as the type-argument to the return type of the query methodar@lidate object
must be of a type that is decorated with @t i t y annotation, and is a required
part of a query method.

Definition 4 (Persistable Object) A persistable object is an object of a class that
is marked with thegnt i t y annotation.

All possible candidate objects (i.e. all objects of the tyjpat are present in
persistent storage) are evaluated with respect to theqatedixpressed in the query
method. If a candidate object fulfills the predicate, thedidate object is included
in the set of returned objects.

5.3 Predicates

Expressing predicates in the most basic form is done usisigiiements. Con-
sider the following phrase€'lf a car is colored yellow, add it to the collection of
returned objects”” The predicate being tested for is of course whether ther colo
of the car equals yellow - and expressing this in normal Jilteasyntax is quite
straightforward (see Figure 5.6).

g b~ W NP

if (candidateCagetColof).equalg” Yel | ow")) {
carsaddcandidateCar
}

Figure 5.6: Expressing a simple predicate.

© 0 N O OB~ WDN P

=
o

40 SIMPLE OBJECTQUERY LANGUAGE

To be able to translate the simple predicate, it is necesearysign special se-

mantics to theequal s method, and assume that it can be translated to the equality

comparison operator in SQL for primitives and strings.

Using both the “then” part and the “else” part of if-statetsgrand nesting
if-statements, more complicated predicates can be exgaesEhis approach is
pretty straightforward, and in Section 6.6 a detailed exgli@n of the translation
to predicates is given.

If the expression in the if-statement does not contain afgreaces to objects
and primitives, the if-statement is not used to build a pra, but is used to
indicate actual control flow - branching. The branching camiged to dynamically
build queries dependent on which branch of execution isdi@d runtime.

5.4 Sorting

The standard way of sorting a collection in Java, is by udiegstatic method
sort, and an anonymous implementation of a comparator. The srad and a
selected part of th€onpar at or interface is shown in Figure 5.7.

package javautil;
public class Collections {

public static <T> void sor{List<T> list, Comparatox? super T> c);

}

public interface ComparatozT> {
int comparéT o0l T 02);
}

Figure 5.7: Selected parts jphva. util . Col | ecti ons andConpar at or .

Sorting a result from a query can be done likewise in SOQL.I&Mhof course
is possible to do this in the JVM, it can be moved as an operdliat the RDBMS
performs. To facilitate this, there are however some isgusslve.

5.4.1 EntityCollection implements List

The sort method accepts an object that is assignalplavta. uti | . Li st ,and En-
tityCollection therefore has to be altered to implemiesmta. uti | . Li st instead
of java. util. Col I ecti on. Changing the EntityCollection applies to all parts
of PersiJ. The change will introduce a number of new metho@ntityCollection.
The semantics of EntityCollection will also change a ljtdance a list according to
the Java APl is:

41

An ordered collection (also known as a sequence). The ustriof
interface has precise control over where in the list eachmelet is

inserted. The user can access elements by their integex {ipdsition

in the list), and search for elements in the list.

Unlike sets, lists typically allow duplicate elements. Bléormally,
lists typically allow pairs of elements el and e2 such thatglals(e2),
and they typically allow multiple null elements if they alloull ele-
ments at all. ...

The shortcomings of the list (inefficient search complexibhay be overcome
by the underlying implementation.

5.4.2 Which comparison operation

Letting the system developer provide a custompar at or is unfortunately not
possible. The solution is to provide tv@mnpar at or classes that are both part of
the PersiJ API:

e Ascendi ngConpar at or

e Descendi ngConpar at or

5.4.3 Which member to sort on

Since an object in an EntityCollection potentially has mamgmbers, it is not clear
which member to sort on. Inherently, tenpar at or interface does not provide
any mechanism for indicating this - but since we want makectimeparators work
on all sorts of entities, this needs to be remedied. Oneisolutould be to make a
constructor on the comparators that takgawaa. | ang. r ef | ect . Menber object
as parameter. The SOQL compiler could then use this to rieictinvestigate
which member the sort order should be determined after. Mervebtaining this
object for some candidate object does require some verlmobegefor the system
developer. Figure 5.8 shows an example of this.

Another approach that can coexist with the former, is to aclohatructor to the
comparators that simply takes @hj ect obj ect as parameter. Upon creation,
the comparator then receives the field that has to be sorted anparameter. In
a normal runtime situation, the actual value of the paramedanot be used to
determine which field to sort on. But because the SOQL compilgpects the
source code, it can determine which member to sort on. Tipioaph is illustrated
in Figure 5.9.

The obvious drawback to this approach, is that primitivesrait objects, and
do not inherit fromCbj ect and can therefore not be used. In this case, the former
approach may be used.

© 00 N O OB~ WN P

e =
W N R O

© 00 N O O B~ WDN PP

=
o

42 SIMPLE OBJECTQUERY LANGUAGE

public EntityCollectioncCar> getAllCarsSortedByColdg) throws PersiJException

EntityCollectioncCar> cars = new EntityCollection<Car>();
Car candidateCar null;
carsaddcandidateCar
Collectionssor{

cars new AscendingComparat6r

candidateCagetClas§).getField" col or "))

);

return cars

}

/I Equivalent SQL statement
SELECT * FROM cars ORDER BY color ASC

Figure 5.8: Another example of the sorting mechanism in SOQL

public EntityCollectioncCar> getAllCarsSortedByColdg) throws PersiJException
EntityCollectioncCar> cars = new EntityCollectioncCar>();
Car candidateCar null;
carsaddcandidateCar
Collectionssor{cars new AscendingComparat(randidateCagetColof)));
return cars

}

/I Equivalent SQL statement
SELECT * FROM cars ORDER BY color ASC

Figure 5.9: An example of the sorting mechanism in SOQL.

5.5 Limiting

Limiting the number of results is a feature of SQL that can bleieved in
SOQL by adding a method to the EntityCollection that setsthg&mum number
of elements that it may contains. The method is given speealantics in the
sense that if it is called in a query, it is translated to a SfQgihent.

Unfortunately there is no such method already present inCthe ect i on
interface, so we add one, and nameédt MazSi ze. The reason that it is not
calledset Li mi t or similar, is to follow the existing concepts of tliel | ecti on
interface, where the number of elements contained in aatimteis refereed to as
size. Figure 5.10 shows an example of the limiting mechanism

© 00 N O 0 WN PP

11
12

43

@Query

public EntityCollectioncCar> getl0Car§ throws PersiJExceptior{
EntityCollectioncCar> cars = new EntityCollection<cCar>();
Car candidateCar null;
carsaddcandidateCar
Collectionssoricars new AscendingComparat(eandidateCagetMakg)));
carssetMaxSiz€10);
return cars

}

/[Equivalent SQL statement
SELECT * FROM cars ORDER BY make LIMIT10

Figure 5.10: An example of the limiting mechanism in SOQL.

5.6 Modularization

One of the goals we want to achieve with SOQL is the ability tmdodarize
queries. Since the basic encapsulation of a query is a methodularization can
be achieved by lettingiuer y annotated methods be called within each other, and
compile time translating this into one query.

This is achieved by letting certain methods on the Entitygatiion have special
semantics. Instead of calling the methods, the queriesesged in theduery
methods that generate them are incorporated in the quagntiyrbeing compiled.

A prerequisite for modularizing queries like this, is thaiability of the source
code of the@uer y methods that are called by the one being compiled currently.
By compiling everything to one SQL statement, query optatian by the
RDBMS is possible - the (much worse) alternative being thiatha queries are
performed separately, all objects instantiated and théadston the EntityCollec-

tions evaluated in the runtime environment.

In the following text we base several examples on a commas ¢lustrated
in Figure 5.11.

The following sections will describe each of the methods atitiZollection
that has special semantics. Their functionality is illastd with simplistic exam-
ples. In Section 6.9 a more precise explanation and theislaiion is given. This
section is therefore just a “read and understand exampéesibs.

5.6.1 Set operations

The familiar set operations intersection, union, and cemgnt can all be modeled
by methods defined in theéol | ect i on interface. The normal behavior of these
methods, had they been executed in Java, can be translagqditalent SQL.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

44 SIMPLE OBJECTQUERY LANGUAGE

classA {

@Query

static EntityCollectioncCar> getBlackCar§ throws PersiJException{
EntityCollectioncCar> cars = new EntityCollectioncCar>();
Car candidateCar null;
if (candidateCagetColof).equalg’ Bl ack")) {

carsaddcandidateCar

}
return cars

}

@Query

static EntityCollectioncCar> getRedCar@ throws PersiJException
EntityCollectioncCar> cars = new EntityCollectioncCar>();
Car candidateCar null;
if (candidateCagetColoK).equal§’ Red")) {

carsaddcandidateCar

}
return cars

}

}

Figure 5.11: Common classes for modularization examples.

5.6.1.1 Intersection - retainAll

The API documentation of Java 1.5 has the following to tethwalthe method
retai nAll:

Retains only the elements in this collection that are comdiin the

specified collection (optional operation). In other woradsmoves
from this collection all of its elements that are not contnin the
specified collection.

If two collections are considered as multi-sets, calliegai nAl I on one with the
other as parameter can be considered the intersection oitheulti-sets. SQL
has anl NTERSECT keyword to select the intersection of two select statements
Figure 5.12 shows an example of how this translation can lweema

5.6.1.2 Union - addAll

The Java API documentation on theédAl | method:

Adds all of the elements in the specified collection to thicion
(optional operation). The behavior of this operation is afided if
the specified collection is modified while the operation iprivgress.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

45

class RetainAll {
@Query
public EntityCollectioncCar> getSomeCaf} throws PersiJException{
EntityCollectioncCar> cars = new EntityCollectioncCar>();
Car candidateCar null;
if (candidateCagetPric€).equalg' Hi gh") {
carsaddcandidateCar
carsretainAll(A.getBlackCar§);
return cars
}
}

/I Equivalent SQL statement - intersection
SELECT * FROM cars WHERE price= * Hi gh’
INTERSECT

SELECT * FROM cars WHERE color= ' Bl ack’

Figure 5.12: Example using thet ai nAl I method.

(This implies that the behavior of this call is undefined & gpecified
collection is this collection, and this collection is norsn)

Again, considering two collections multi-sets, the eglawaset operation of call-
ing addAl I on one collection with the other as parameter, is an uniost like
intersection, SQL has asNIl ONkeyword that can produce the union of two selects.
Figure 5.13 shows an example.

5.6.1.3 Difference - removeAll

The Java API documentation on thenoveAl | method is:

Removes all this collection’s elements that are also coetiin the
specified collection (optional operation). After this cedturns, this
collection will contain no elements in common with the sipeticol-
lection.

Considering two collections as multi-sets, callingnoveAl | on one with the
other, is equivalent to obtaining the complement of the augnt collection - or
the set difference. The SQL keywoBEKCEPT covers the same operation, and
Figure 5.14 illustrates an example of this.

5.6.2 Subqueries - contains

The cont ai ns method on a collection object is meant to determine whether a
given object is contained within the collection - from theal API documentation:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

© 00 N o g b~ WDN PP

T o
N o oM WN RO

46 SIMPLE OBJECTQUERY LANGUAGE

class AddAIl {
@Query
public EntityCollectioncCar> getSomeCaf} throws PersiJExceptior{
EntityCollectioncCar> cars = new EntityCollectioncCar>();
Car candidateCax null;
if (candidateCagetPric€).equalg" Hi gh") {
carsaddcandidateCar

carsaddAll(A.getBlackCar§);
carsaddAll(A.getRedCarg);
return cars

}

/I Equivalent SQL statement - union

SELECT * FROM cars WHERE price= * Hi gh’ UNION
SELECT * FROM cars WHERE colo= ' Bl ack’” UNION
SELECT * FROM cars WHERE colo= ' Red’ ;

Figure 5.13: Example using tleeldAl | method.

class RemoveAll {

@Query

EntityCollectioncCar> getSomeCafString maké throws PersiJException
EntityCollection<cCar> cars = new EntityCollection<Car>();
Car candidateCar null;
if (candidateCagetPric€).equal¢” Hi gh")) {

carsaddcandidateCar

}

carsremoveAl(A.getBlackCarg);
return cars

}

/I Equivalent SQL statement - complement (set difference)
SELECT * FROM cars WHERE price= ' Hi gh’

EXCEPT

SELECT * FROM cars WHERE color ' Bl ack’ ;

Figure 5.14: Example using thenoveAl | method.

Returns true if this collection contains the specified elemeéviore
formally, returns true if and only if this collection contei at least
one element e such that (o==null ? e==null : o.equals(e)).

© 00 N O 0o b WN PP

W W W WNDNDNDNDNDNNDMNNDNNMNNERERPRRPRPERREERERPRPRPPER
W NP O OWW~NOO UM WDNEPOOOWONOOOGMWDNERELO

47

In SQL this can be modeled either by usingand a sub-select, and Figure 5.15
shows an example.

classB {
@Query
static EntityCollectioncModel> getOldModel§) throws PersiJException
EntityCollectioncModel> models= new EntityCollectioncModel>();
Model candidateModet null;
if (candidateModegetStartYea) < 1980) {
modelsaddcandidateModé€));
¥
return models
}
}
/I Equivalent SQL statement for getOldModels

SELECT * FROM models WHERE startyear. 1980

class Contains{
@Query
static EntityCollectioncCar> getSomeCaf3 throws PersiJException
EntityCollectioncCar> cars = new EntityCollection<Car>();
Car candidateCar null;
if (cargetPricé).equalg” Hi gh")) {
if (B.getOldModel§).containgcandidateCagetMode())) {
carsaddcandidateCar
}
¥

return cars

}

/I Equivalent SQL statement for getSomeCars
SELECT * FROM cars WHERE price= " H gh’ AND
model IN (SELECT id FROM (

SELECT * FROM models WHERE startyear 1980));

Figure 5.15: Example using th@nt ai ns method.

5.7 Compilation process

The compilation process of source code using the Persikfrank is under-
taken by JavaC, APT and a compiler for the query methods.r&igu 6 illustrates
the compilation process, and the following describes tbegss in text.

48 SIMPLE OBJECTQUERY LANGUAGE

Begin
N@ @ output
JavaC .class
Source ;
input Jjava— fragments
© Q@CompiledQuery
opy L 1
Source nput]
input (temp) L
input

output
@ (‘
JavaC ® AnnotationProcessorT ool
®
-

output @
SOQL compiler — AnnotationProcessors
input Syntax check
.class [Y ®
(temp) ¢

[Semantic check @

!

]
(rvostomann |2

input ¢
\Persid.ja Abstract Compiled
+ libs Query
> 7

Figure 5.16: The compilation process.

1. Compile entire source with standard Java compiler: The first part of the com-
pilation is to compile the source files. The outcome of thixpss is cl ass
files with the whole application.

2. Use APT to inspect code baseThe next steps are performed using APT with
an AnnotationProcessor for each annotation type. When ARIE fin anno-
tation, it will automatic call the AnnotationProcessor foat annotation.

3. Inspect the classes marke@&nt i ty: This is the first AnnotationPro-
cessor that will run. If no classes are marked v@#nt it y, then we
cannot have any query methods, as no database schema istphese
specting all classes with this annotation is done to makesthema
generation and to build an abstract representation of alpérsistable

49

types.

4. Inspect the methods markeda@uer y: Once the abstract representation
of all persistable types are in place, it is time to inspetiathods
marked with the@uer y annotation. These will then be passed to the
query compiler that does the actual transformation to S@tesients.

5. Syntax check: Using a parser generated with JavaCC from the base
grammar, the syntactic check is performed.

6. Semantic check: Some basic semantics are also checked with the
parser.

7. Transformation: If the syntactic and basic semantic check com-
pletes without errors, the parser will generate an abstwauiax
tree, and default visitors (using the visitor pattern [23[he ab-
stract syntax tree is then used to generate the Abstract Gnp
Query (ACQ).

8. ACQ: The ACQ contains the information necessary to generate the
SQL queries, and the last compilation step is to use each ACQ t
generate a Java fragment for each query method.

9. Temporary storage of compiled query: APT does not provide the pos-
sibility to replace code in an existing source file. Therefthre source
code containing methods marked with t@@uer y annotations are copi-
ed to temporary files.

10. Injecting new source code:The newly compiled methods (containing the SQL
gueries) are then injected into the temporarily copies of@®files. These
are then compiled using JavaC and the compiled codegss files) are
then replaced with the old ones (that contained the originatpiled code
from step 1). This way the original source files are left ihtac

50

SIMPLE OBJECTQUERY LANGUAGE

Transformation
of SOQL

In this chapter we will be turning our attention to the inf@mnsemantics involving
the translation of source code to JDBC and SQL statementsvilN&so be look-
ing at the template that the newly generated code (the cethpjlieries marked
with @onpi | edQuery) will be placed in, after the PersiJ compiler has been at
work. The translation is described through a number of glartformally defined
transformation functions. Functions are given for fieldafierencing, method calls,
if-statements, sorting, limiting, and modularization.

6.1 Reference sets

Before we go into specific details, we must first make onerdistins — objects
are not simply objects in the query method. The object refare and primitive
values that are in scope for the query method can be dividedviro distinct sets.
The idea of distinguishing between the two sets is to havesbtiee sets containing
references that runtime are values stored in the databadetha other set then
contains references to objects that runtime are on the leapefnory).

The purpose is then to be able to determine which values cahipped to the
database as parts of query predicates, and which values heedccessed in the
database. Lets just make a definition for these two sets.

Definition 5 (Persistent set) Contains references to values that runtime are stored
in the database.

Definition 6 (Client set) Contains references to objects that runtime are on the
heap.

The persistent set can be constructed by following thevioiig steps:

1. Include the reference to the candidate object in the set.

51

52 TRANSFORMATION OFSOQL

2. When a new reference is returned from dereferencing a dielchlling a
method, then if the reference is not in either the persigenbr the client
set, it can be added to the persistent set subject to thegdioas:

e The object that the new reference points to is a persistdipjeD

e The reference to the object on which the member is accesséaésly
in the persistent set.

e The member being accessed is not marked with ne@eansi ent
nortransi ent.

e Ifitis a method being called, it is subject to more condiiavhich are
explained in more detail in Section 6.5.

All the references that are not in the persistent set, afedtlient set.

The distinction can also be seen as separating values ioge that somehow
are dependent of the current candidate object being eealuatthe query predi-
cate, and those values that are not. If a value is independflére current candidate
object, the value can be shipped to the database as a paraotéequery and the
expression that yields it, can be executed independentlyeaduery.

These two sets are not actually collected in data structaresintime, but
merely defined to facilitate understanding which statesard legal within SOQL
and which are not.

One more definition is needed:

Definition 7 (PersistentExpression) A PersistentExpression is an expression that
yields a reference which is in the persistent set.

6.2 Template

In this section we will be looking at the template for the siated code. That
is, how should we wrap the methods markaglier y? Lets start with an example
of a@uery method. In Figure 6.1 we have an example of a method thagvesi
all car objects from the database.

When the PersiJ compiler translates @iery method it will markup the
method with@Conpi | edQuer y. We want to markup the new method if we need
to inspect or use the newly created code.

As already mentioned, we are translating the query methadsJDBC and
SQL statements. We therefore need to create a connectitie tdetabase as we
would do with any application utilizing JDBC. This meansttinaost of the el-
ements present in Figure 6.2 are like the ones we have ind-@gudr from Sec-
tion 2.1.1.

In Figure 6.2conpi | edSql St at enent in line no. 4 is the part that varies
from method to method as this is the SQL statement compilesh fihe query
method. How to build these statements are discussed laB=ation 6.6.

© 00 N O 0o WN P

=
o

© 00N O b WN PP

N e o
O © o ~NO U~ WNRO

53

@Query

public EntityCollectioncCar> getAllCarg) throws PersiJException{
EntityCollectioncCar> cars = new EntityCollection<cCar>();
Car candidateCar null;
carsaddcandidateCar
return cars

}

/I Equivalent SQL statement
SELECT * FROM cars

Figure 6.1: Example of a method marked with @gier y annotation.

@CompiledQuery

public EntityCollectioncCar> getAllCarg) throws PersiJException{
/I The translated SQL statement
String compiledSqlStatement " SELECT * FROM cars";

Connection conn
try {
conn = EntityCollectiongetConnectiof;
PreparedStatement pstmt connprepareStatemeftompiledSqlStatement
ResultSet rs= pstmtexecuteQuery;
EntityCollection cars= new EntityCollection<cCar>(rs);
} catch(Exception ¢ {
connabor();
throw new PersiJException
"PersiJ encountered an error during querying.", e);

}+ finally {
connclosd);
}

return cars

Figure 6.2: The translated code from Figure 6.1.

In the original source code (see Figure 6.1) we had the lizdigon of the
car object withCar candi dateCar = nul|. As shown in Figure 6.2 the car
object itself is nowhere to be found. The reason for thisas itis only used when
building up the SQL statements.

54 TRANSFORMATION OFSOQL

6.3 Transformation functions

The rest of this chapter will list a number of partial tramsfiation function
definitions for the five function®yy ;g re (shorthand®y), ® rroas (shorthand
®r), Porprer (shorthand®p), ®1 7 (shorthand®;), and®ggr (shorthand
dg) respectively. All functions have legal SOQL code as domaird legal SQL
as range. The function definitions are quite informal, ardused to clarify how
the transformation to SOQL takes place.

The final SQL statement used in the compiled query methodpnstoucted
by starting with ‘SELECT * FROM PrimaryTable” where PrimaryTable is the
name of the table that the class being queried maps to. Tkeauthulative output
of the ® rroas function is appended. ThereaftefERE TRUE” is appended, and
the cumulative output from théyy zprE function is appended. The output from
the rest of the functions are then appended.

If there is an if-statement that introduces branching atims (see Section 5.3
and Section 6.6), the output of the transformation of théediht branches are
stored in separate variables, and runtime the query is cwdbi

6.3.1 Legend to readingd definitions

Text in a font like this:code and encapsulated inare literals found directly in the
source code, and text like thistatement comes from definitions like Definition 7.
In the output of a function, the sign + is used to indicatengtioncatenation. The
input to the® functions should be seen as a form of pattern matching.

6.4 Field dereferencing

This section explains what happens when during parsingeofjtiery method,
when aPersistentExpressiois encountered, which is subsequently followed by an
access to a field on that persistable object. WeRigéd N ame to denote the name
of the field.

Using the abstract representation of the database scheenaaiine of that field
in the database is looked up.

6.4.1 Primitives and Strings

If the field is a primitive, aSt ri ng object or one of the objects wrapping the
primitives, the fields values in the database is in the satagae as the persistable
object.

Definition 8 (DBFieldName) The name of the field in the database is denoted as
DBFieldName.

55

Name Shorthand Explanation

Table T The name of the table that is being
dereferenced.

TablePrimaryKey TPK The name of the column containing the
primary key ofT'able.

ForeignTable FT The name of the table that contains the
type of the field in question.

ForeignKey FK The name of the column that contains

the primary key of the other table.

Table 6.1: Legend for Equation 6.2 and Equation 6.3

Equation 6.1 shows what is appended to\eRE part of the SQL statement.

Dy (PersistentExpression" . " Field Name) ~» DBFieldName
(6.1)

6.4.2 One-to-one, one-to-many, owning side

If the field is an object, then there is a relation between @ dbjects in the
database. Recalling from Section 4.3.4 relations betwégtts have an owning
side. If this persistable object is the owning side of a aieitiny or a one-to-one
relationship, then Equation 6.2 and Equation 6.3 appliég. tAble and row names
used in the equations are explained in Table 6.1.

dr (Persistent Expression” . " FieldName)
~ (6.2)

" JON " +FT+" ON" +
T+"." +TPK+"=" + FT+"." + FK

Dy (Persistent Expression” . " Field Name)
~ (6.3)
FT

6.4.3 Bidirectional, many-to-one, one-to-one, not owningide
Equation 6.4 and Equation 6.2 (Table 6.2 extends the legenéys the case when:

e The relation between the objects is a one-to-one and bidired, where the
current object is not the owning side.

e The relation between the objects is a many-to-one. In ttge,dae field will
be an EntityCollection, and the type mapped to the datab#kkenhe type
parameter of the EntityCollection.

56 TRANSFORMATION OFSOQL

Name Shorthand Explanation
ForeignTablePrimaryKey FTPK The name of the primary key
of the foreign table.

Table 6.2: Legend for Equation 6.4

Name Shorthand Explanation

AssociativeT able AT The name of the associative table that
maps the relation.

AssociativeT PK ATPK The name of the column that contains
the primary key from the table/{P K)
we are selecting from.

Associative FTPK AFTPK The name of the column that contains
the primary key from the foreign table
(FTPK).

Table 6.3: Legend for Equation 6.4

dp (Persistent Expression” . " Field Name)
~ (6.4)
" JON " +FT+" ON " +
T+"."+FK+"="+FT+"." + FTPK

6.4.4 Many-to-many

In the case that the relation is a many-to-many, the objetbaian EntityCollec-
tion. In this case, the relation is in the database modelédavi associative table.
Equation 6.5 covers this case, and Table 6.3 extends theddge the equation.
Equation 6.3 still applies in this case.

dr (Persistent Expression” . " FieldName)
a4
" JON " AT+ ON "+ (6.5)
T+"." +PK+"="+ AT +"." + ATPK
" JON" +FT+" ON " +
AT +"." + AFTPK+"="+FT+"." + FTPK

6.5 Method calls

If a method call is encountered during the parsing of the bofda query
method, the following conditions and associated actioqyap

57

o If the callee of the method is either the candidate object pemsistable
object present in the persistent set. A method call on tlieseace can be
divided into two distinct groups:

1. The method is a prototypicget method, which does nothing else than
return either a primitive value or a reference to a persistabject, and
has no arguments. If this is the case, this method call quorets to
a join in the translated code. The reference returned framtathod
call is added to the persistent set. The transformatiors rale similar
to that of field dereferencing, and are covered by Equatidritough
Equation 6.5.

2. The method is not a prototypiogét method, and while the return type
is either persistable or a primitive type, the method doerertitan just
return - and the method may have arguments. If this is the edsge-
code analysis of the method is required to determine whétledingic
it contains can be rewritten as a part of the SQL statemenhigrcase,
it also has to be determined whether the method is free ofeffdets,
and employing a technigue like mentioned in Section 5.1rfay prove
useful. In any case, determining to which degree it is pésstomake
a transformation for these method calls is an open question.

o If the callee of the object is not either the candidate objea persistable
object present in the persistent set:

1. The method does not take an argument that is in the perisgste and
no previous method has been invoked on the object with armeegu
that is in the persistent set. If this is the case, invocatioie method
may be moved unaltered to the translated query method.

2. The method takes an argument that is in the persistenBg&t-code
analysis of the method body or some side-effect analysi¢ beiem-
ployed to determine whether the outcome of the method isruigre
on the argument. If it is independent, the invocation may loeed to
the translated block, with the argument replaced by nuliroilar. In
the case that is is dependent on the argument, it is an opestiaque
whether a translation can be performed.

6.6 If-statements

We will now be looking at the if-statements. These are thesahat build
up the query inside the body of the method. If the expressfdheoif-statement
contains a reference from the persistent set, then thera fae transformation
rules that apply.

© 00 N o O b~ WwDN PP

e o
g bh WN R O

58 TRANSFORMATION OFSOQL

Definition 9 (ifPredicate) An ifPredicate is the expression in an if-statement that
evaluates to true or false.

TheifPredicateis, in other words, the predicate that the if-statementuatak.
Normal Java syntax applies to the predicate.

Definition 10 (addStatement)An add statement is on the form
<ldentifier-.add(Identifier-); where the first identifier is the EntityCollection, and
the second identifier is the entity.

When a branch of the if-statement does not contaiadaStatementhere is
no reason to use the rest of that branch of the if-statememntild up the query as
whichever predicates might be expressed are not to be ughd final predicate.
Take for instance the pseudo code in Figure 6.3 - the treevb@ledicate 3does
not need to be evaluated as no mattgrédicate 4evaluates to true or false, it will
always be added due to thdd() in line no. 9. The entire else-statement (line no.
11) does not need to be evaluated as there is not found angtaiggnent in this
part of the tree.

/Il Pseudo code of if-statements
if (predicatel) {
if (predicate2) {
if (predicate3) {
if (predicate4) {
add);
}
}
add);
} else{
if (predicateb) {
/I Do nothing containing an add method
}
}

Figure 6.3: Example of tree structure of if-statements.

Definition 11 (thenStatement) A thenStatement is the first part of the if-statement,
which in normal Java will be executed if the ifPredicate exadds to true. The con-
tents of the thenStatement is the productions of the gramigraterminal “State-
ment”.

Definition 12 (elseStatement)An elseStatement is the second part of the
if-statement, which in normal Java will be executed if th&raflicate evaluates
to false. The contents of the elseStatement is the prodsatibthe grammar non-
terminal “Statement”.

59

These two definitions are quite important to understand &g will form the
foundation for the query. Definition 11 applies to ifieredicateevaluating to true
(it stems from the ternif-then). The elseStatemeris used when thé&Predicate
evaluates to false.

To make the following easier to understand we have addeddfimittbns of
the existence and non-existence of #uelStatement

Definition 13 (Existence of addStatement)The existence of an addStatement
within an thenStatement or an elseStatement is writtetedsl.

Definition 14 (Non-existence of addStatement)lhe non-existence of an addState-
ment within an thenStatement or an elseStatement is watiefdadd.

Having these definitions in place, we proceed describingtridseslation of
if-statements in SOQL. There are four cases, dependenteoétstence of an
addStatement in thethenStatement and/or theelseStatement. The four cases
are shown in equations 6.6 through 6.9.

“i f("ifPredicate") {"
thenStatement | =3add
Oy ["} else {" ~ (6.6)
elseStatement | =3add
"y

“i f("if Predicate") {"
thenStatement | Jadd
Sy | "} else {"
elseStatement | —Jadd
.y

e +®(i f Predicate)+
" AND' +®(thenStatement)+") " +

6.7)

"if("if Predicate") {"
thenStatement | —Jadd
Sy | "} else {"
elseStatement | Jadd

" (NOT" +® (i f Predicate)+
"AND' +®(elseStatement)+") "

"y
(6.8)
“if("ifPredicate") {" "("+®(if Predicate)+
thenStatement | Jadd "AND' +®(thenStatement)+") " +
Oy | "} else {° ~ TOR+
elseStatement | Jadd "(NOT ("+®(ifPredicate)+
" ") AND'+®(elseStatement)+") "

(6.9)

© 00N g~ WDN PP

NNNNNNERRRRRRR R B
OB WONRPOOO®NOONMWNIERO

60 TRANSFORMATION OFSOQL

If several if-statements are present on the outermost,leaeh of their trans-
formations is joined with aoR.

If there are if-statements where thi¢ Predicate does not contain any ref-
erences from the persistent set, the predicates that m@ylexpressed deeper
within this if-statement, are combined dependent on thémanevaluation of the
if Predicate, and the resulting control flow. Figure 6.4 shows an examplere
the query actually runtime executed against the databaslependent on the run-
time execution branch.

public EntityCollectioncCar> getSomeCafboolean switch)
throws PersiJException
EntityCollectioncCar> cars = new EntityCollection<Car>();
Car candidateCar null;
if (switch) {
if (candidateCagetColof).equalg” Yel | ow")) {
carsaddcandidateCar
} else{
if (candidateCagetPric€).equal¢” Hi gh")) {
carsaddcandidateCar
}
}
return cars
}
/**
This part of the SQL string is not dependent on the runtimeiesalf switch:

SELECT * FROM cars WHERE
Dependent on the runtime value of switch, the independeinigsis then
concatenated with either:

cars.color = ’Yellow’
or

cars.price = 'High’

**/

Figure 6.4: Example of control flow to build query predicatependent at runtime
execution.

6.7 Sorting

As discussed in Section 5.4, sorting can be implemented sigrang special
semantics to a call opava. util. Col | ecti ons sort method. This call must
be on the outermost level of the query method.

61

Definition 15 (Resultldentifier) The Resultldentifier is the identifier defined in
the first line of the QueryMethod, which points to an Entity€xtion that is ul-
timately returned from the query.

Definition 16 (FieldIndicator) A FieldIndicator is either an expression that yields
and object assignable java. | ang. nenber , or a field dereferencing on the can-
didate object, or a call to an accessor method on the candidaject.

Definition 17 (PersiJComparator) A PersiJComparator is a class name that is
eitherAscendi ngConpar at or or Descendi ngConpar at or .

Definition 18 (SortOrder) A SortOrder is eitheASC or DESC.

Equation 6.10 shows the transformation function for sgrtin

"new' PersiJComparator" (" FieldIndicator"))"
a4

' ORDER BY "+DBFieldName+SortOrder

o < "Col | ections. sort (" Resultldentifier",")
0
(6.10)

Prerequisites for this transformation function is that fieéd to be sorted on
has an ordering, and that it is either a primitive or a string.
The choserbortOrder depends on whicltomparator is chosen.

6.8 Limiting

To limit the maximum number of objects returned from the gutre method
set MaxSi ze can be called on th&esultIdentifier. The call must be present at
the outermost level of the query method. Equation 6.11 shbe/$ransformation
function.

Definition 19 (IntegerExpression) An IntegerExpression does not contain any ref-
erences from the persistent set, and yields either the fivimiint or an object of
typej ava. | ang. | nt eger.

P (Resultldentifier". set MazSi ze(" Integer Expression") ;")
a4

LIMT "+Eval(Integer Expression)
(6.11)

Eval(Integer Exression) denotes that thimtegerExpressiors evaluated run-
time, and the result inserted in the query.

62 TRANSFORMATION OFSOQL

6.9 Modularization

As we reviewed in Section 5.6, the methadsht ai ns, renoveAl | ,addAl |,
andr et ai nAl'l can be used to modularize queries. In this section we proceed
by establishing a few definitions, and prerequisites formdorimal definition of a
transformation function for these methods.

Definition 20 (QueryExpression) An QueryExpression is an expression that yields
an EntityCollection as a result of a call on a method that isrked with the
@uer y annotation.

Definition 21 (ExternalQueryMethod) The ExternalQueryMethod is the source
code of the implementation of the method that is called irQtheryExpression.

Definition 22 (CandidateObjectldentifier) The CandidateObjectldentifier is the
identifier pointing at the candidate object.

6.9.1 Set operations

The transformation function definitions in Equations 6.i&tgh 6.14 define the
transformation functions for respectively intersectionion, and complement. They
are all subject to the following prerequisites:

e The statement they appear in must be at the outermost bloek dé the
method. This means that they cannot be nested within aatiésent.

e The source code for the query method of theeryExpression must be
present at compile-time.

e The argument to the method being called on Bwsultldentifier (these
arer et ai nAl |, addAl | , andr enpveAl |) must be parametrized with the
same type as thBesultldentifier.

The result of the transformation function is to be appendetthé SQL string
being built for the current query. The expressidOFzternalQueryM ethod)
is the SQL query string that can be compiled for theternalQueryM ethod.
Another part of the transformation that is not covered inghjgations is the sur-
rounding statements, which have to be merged too, posshlgming identifiers,
etc. to avoid naming conflicts.

o Resultldentifier".retainAll (" - " | NTERSECT "+
S QueryExpression") ;" & (ExternalQueryMethod)
(6.12)

63

o Resultldentifier" . addAl | (" - " UNION "+
s QueryExpression”) ;" & (EzternalQueryMethod)
(6.13)

QueryExpression") ;" & (ExternalQueryMethod)

(Resultldentifier". renoveAl | (") " EXCEPT "+
bg ~
(6.14)

6.9.2 Subqueries - contains

As we showed in example Figure 5.15, ttent ai ns method on the EntityCollec-
tion can be used to modularize queries and test for existeinaezalue in another
query.

The transformation of aont ai ns call is subject to some prerequisites. The
call must be made to an EntityCollection that is not the onadgesturned from
the current query. Moreover, the object on which it is calleulist be returned
from aQueryExpression, and the source code for the method must be present
at call time. The call must be placed within ahPredicate. The transformation
is two-fold. TheFROMpart of the query needs to be amended with the necessary
join (see Equation 6.2 through Equation 6.5). Equation 6k&s care of adding a
predicate to th@®HERE part of the query.

Dy (QueryFEzxpression". cont ai ns(" PersistentExpression™) ;")
a4
ForeignKey+" | N(SELECT "+PrimaryKey+

FROM (" +® (ExternalQueryMethod)+"))"
(6.15)

6.10 Implementation

As stated in the method description (see Section 3.5), a il@ngpototype has
been built alongside with the language design process. Uirent state of the
compiler includes all steps until the semantic check (stepFigure 5.16).

Parts of the semantic check and transformation processdessiimplemented,
but the compiler is not yet in a working state.

64

TRANSFORMATION OFSOQL

Discussion

In this chapter we will go through the criteria presentedhim analysis that can be
used to evaluate a method of querying, and evaluate SOQLresipect to these.
We will also be looking at the expressiveness of SOQL vs. SQL.

7.1 Evaluating by criteria

Throughout the evaluation we will not only refer to SOQL, hbigo to PersiJ
because that fulfilling some criteria or not is not only dugtoperties solely in
SOQL, but often also because of the combined propertiesrsflPand SOQL.

7.1.1 Static checking

Static checking consists of two facets:

Static type checking The ability to make static type checking of the interactions
between the programming language (in this case Java) arkDBMS. In
other words, it is at compile time possible to check whetherd exists any
type-related mismatches between the queries passed feoappiication to
the database.

Static semantic checkingThe ability to assure at compile-time that only existing
tables and rows are referenced in the program source, anceassmpile-
time that the SQL statements that are executed runtime anglstatements.

Persid (and therefore also SOQL) operates on a databaseasthat is deter-
mined based upon the metadata provided by the developdic{gymr implicitly)
in the model classes in the form of annotations. Since altigsi¢o the database
are generated based upon interactions between objectgantfia referenced ta-
bles and rows are sure to exist in the database - subject rehequisite that the
mapping metadata is correct.

Queries in SOQL are not string based, and this means thahptees to queries
are by the programmer expressed using existing classesbggtin a strongly,
static typed manner.

65

66 DISCUSSION

Moreover, this also means that the static type checking dgrthe Java com-
piler also applies to the SQL statements. If the source codedepted by the Java
compiler, the generated SQL is also free of type errors (here is no mismatch
between types in the generated SQL statements).

One problem still remains - it is still possible to do scripjeiction by placing
malicious strings as parameter content. This problem caallb@ated by using
existing approaches [9] combined with the PersiJ framework

In summary, both static semantic and type checking is dor&0QL due to
inherent properties of the query language design.

7.1.2 Automatic marshalling and unmarshalling

The Persid framework provides automatic marshalling andaushalling of ob-
jects when working with a persistent storage. This is hahtlethe EntityCollec-
tion during object instantiation, and when storing datehimdatabase. This design
decision imposes a restriction - it is not possible to quextadhat is not mapped
to objects.

7.1.3 Same paradigm as host language

SOQL does not contribute with new language constructs, amebiks with (a
subset of) the syntax of Java. The semantics are quite argitrg, as they deviate
somewhat from Java.

Consider Figure 7.1, which is a simple example of a querycbéay for all
cars by the model Ford. This code is syntactically complisith Java, and the
Java compiler will find the code to be semantically sane. Batliing the code
and trying to understand what happens applying understgrafinormal Java se-
mantics only, will prove a futile exercise. Take line no. 4igbhis semantically
correct, but in line no. 5 we are using thendi dat eCar object to check, if its
model equals Ford - and considering that the objectuis! , this should throw
aNul | Poi nt er Excepti on. This is not intuitive and requires knowledge to the
SOQL language in order to understand that the candidatetof@efinition 3) is
used as base for the SQL statement and is in principle iteater once for each
candidate row in the database. The query is sane in SOQL - éiqgteduce valid
code once compiled with the PersiJ compiler.

Figure 7.1 addresses another problem with the semanticesndldava seman-
tics for if-statements is branching of code execution sttlifethe evaluation of the
predicate. In SOQL there is no execution flow per se, andfibierao branching as
such - instead, the if-statements are used to build predicabhd dependent on the
existence of amdd() statements the different branches have different impact on
the query predicate being built. Moreover, if add() statement is present within
a branch, branch may be entirely ignored (e.g. see SectynEranching is not al-
together non-existent, since if-statements which teskpression that uses no val-
ues from the database, can be used to runtime determinewditst of the query

© 00 N O 0o WN P

11
12
13
14

67

@Query
public EntityCollectioncCar> getFordCoutner cnty throws PersiJException
EntityCollectioncCar> cars = new EntityCollection<cCar>();
Car candidateCar null;
if (candidateCagetMode().equal¢” For d")) {
carsaddcandidateCar
} else{
/I cntr.count();
}

return cars

}

/I Equivalent SQL statement for getFord
SELECT * FROM cars WHERE modef " For d"

Figure 7.1: Example searching for all types of Ford.

- but the difference of the semantics dependent on the cisntérthe expression
being tested is not obvious from the syntactic construcf{idn Expr essi on)
Bl ock [el se Bl ock]) since itis the same.

The syntactical constructions that can actually be traedlby the SOQL com-
piler are subject to a number of prerequisites. For the dpeelthese prerequisites
will probably seem intricate and hard-to-understand, adribute to SOQL be-
ing perceived as non-intuitive. To illustrate this, take #tatement in line no. 9
in Figure 7.1. If it was not commented-out, it would not be gibke to translate it
to an SQL query. Why? There are many valid semantic questimask and no
simple answer: How many times should the statement be ee@d2u@nce for each
tested tuple in the database (and how many is that)? Shobklékecuted once
for each tuple that does not match the predicate? If it shbaléxecuted at all,
how is it possible to determine the number of executionsautlinstantiating all
candidate objects?

The clarity of what can and what cannot be translated into & §G@ry be-
comes even worse when methods are called on objects frometiséstent set,
where the methods are not simply accessor methods.

In summary, although SOQL is syntactically within Java, feenantics are
significantly different, and especially the lack of trangwa control flow and intri-
cate rules determining legal and illegal expressions t&aQL quite far from the
semantics of the host language.

7.1.4 Minimal verbosity

One of the first design decisions for SOQL was not to followlagive Queries ap-
proach, where an implementation of a class was necessamg fdt this required
too much syntactical overhead. In retrospect, the final fofrguery methods in

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

68 DISCUSSION

SOQL is not significantly less verbose.

Comparing the verbosity of SOQL to writing the same queryDBC, SOQL
is less verbose. lllustrating this for a quite simple qusryigure 7.2. The SQL part
of the JDBC code is of course much less verbose than the SOéty quethod,
but comparing SOQL to SQL is not quite fair, since the conth# QL statement
does much more for the programmer than just being a SQL staiem

classA {
@Query
public static EntityCollectioncOwner> getYoungCarOwne(}
throws PersiJException{
EntityCollectioncOwner> owners= new EntityCollection<Car>();
Owner candidateOwner null;
if (candidateOwnegetBirthYeaf) > 1976) {
ownersaddcandidateOwnegy

}

return owners

}

/I Equivalent JDBC method for getYoungCarOwners
public ResultSet getYoungCarOwnersinJ@b¢
ResultSet rs= null;
Connection conn
try {
conn = EntityCollectiongetConnectiof);
PreparedStatement pstmt connprepareStatemeft
"SELECT * FROM owner s WHERE bi rt hyear > ?");
pstmtsetin{1, 1976);
rs = pstmtexecuteQuery;
} catch(Exception ¢ {
connabor{);
/I Do exception handling
} finally {
connclosd);
}

return rs;

}

Figure 7.2: Example of a simple query.

SOQL can also use other existing queries within a query, antpde them all
into one coherent SQL query. Consider the queries of Figiteaiid Figure 7.3
that are used in Figure 7.4

Lets say that we want to combine the three queries from dasaedB in such
a fashion that we get all the cars whose owners are born &t dand the models
of the cars that have been involved in most car crashes imunith the most

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

69

expensive cars. The method for this is called Hi ghRi skCar s and is illustrated
in Figure 7.4.

classB {
public static EntityCollectioncModel> getTopCrashedModdist numResults
throws PersiJException{
EntityCollectioncModel> models= new EntityCollectioncModel>();
Model candidateModet null;
modelssetMaxSizénumResulty
modelsaddcandidateModé|
Collectionssori{models new DescendingComparator
candidateModegietNumCrashd(g));

return models

}

/I Equivalent SQL statement for getTopCrashedModels

SELECT * FROM models ORDER BY numcrashed DESC LIMIID

public static EntityCollectioncCar> getMostExpensiveCafigst numResults

throws PersiJException{

EntityCollectioncCar> cars = new EntityCollection<Car>();
Car candidateCar null;
carsaddcandidateCar
carssetMaxSizénumResulty
Collectionssor{cars new DescendingComparaf@arsgetPricg)));
return cars

}

/I Equivalent SQL statement for getMostExpensiveCars

SELECT * FROM cars ORDER BY price DESC LIMITLO

}

Figure 7.3: Example of simple queries.

Writing queries in SQL can be troublesome, and debuggingtarsent like
the one in Figure 7.4 can be even more troublesome. Since S&ides the
ability to modularize queries, these can be reused in diffiecontexts, and the
modularization provides with better error-localizatiore (if it is known that one
query method works correctly, it can safely be assumed th#a works correctly
within the new context). As the complexity of the query grotvbecomes in-
creasingly harder to read in SQL, whereas in PersiJ it resm@iadable due to the
modularization.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

70 DISCUSSION

classC {
@Query
public EntityCollectioncCar> getHighRiskCar§ throws PersiJException{
EntityCollectioncCar> cars = new EntityCollectioncCar>();
Car candidateCar null;
if (A.getYoungCarOwne(kcontaingcandidateCagetOwne())) {
carsaddcandidateCar
} else{
if (B.getTopCrashedModdlR0).containgcandidateCgy {
carsaddcandidateCar
}

carsAddall(B.getMostExpensiveCafk0));
return cars

}

/I Equivalent SQL statement for getHighRiskCars
SELECT * FROM cars JOIN owners ON
(carsownerid = ownersid WHERE carsownerid IN
(SELECT id FROM (SELECT * FROM owners WHERE birthyear 1976))
OR (carsid IN (SELECT id FROM
(SELECT * FROM models ORDER BY numcrashed DESC LIMIID))))
UNION
(SELECT * FROM cars ORDER BY price DESC LIMITLO)

Figure 7.4: Example of modularized query method.

7.1.5 Minimal language alteration

As just mentioned in Section 7.1.3 the PersiJ frameworkaipsrwithin the Java
programming language without introducing new keywordaglage constructs,
or paradigms as SQLJ and C# does.

This has been done at great expense. Although no new langleagents
have been introduced, imposing the restriction of not dlignany new language
elements and at the same time rejecting the Native Querig®agh results in
a fashion of querying that albeit being syntactically cop with Java is not
understandable without a prior knowledge to the speciabsgins of SOQL.

Native Queries was not considered as a way of doing quengrtgearequire-
ment of making an (anonymous) implementation of Phedi cat e class in Java
is somewhat unwieldy, but this is simply because the Javgranoming language
does not have a language construct like delegates. Dedegedeexistent in C#.
Native Queries in C# is quite elegant, and easy to understaddead. Recall Fig-
ure 3.1 found in Section 3.1.3. Writing this in C# with deleggais illustrated in

A W N P

71

Figure 7.5.

delegat€Student studeit
return studentAge < 20
&& studentNameContaing"' f ");

Figure 7.5: Re-writing the query part of Figure 3.1 to C# éaltrom [14])

It is possible to implement delegates into the Java languag®y the Adapter
pattern [23]. This approach has never really been practicéava as it is unwieldy.
It has also been argued that inner classes provide the saroionality as dele-
gates [42], and the delegate construct is therefore noteteetien programming
in Java.

In summary, although SOQL meets the criteria of minimal lsage alteration
syntactically, it semantically deviates very much fromalaltering SOQL by
introducing new language constructs that requires thergnoger to learn new
semantics might be a better alternative than stickingthtric a no-new-language-
constructs design.

7.1.6 Modularization

As discussed earlier, SOQL does have modularization chipegi As sketched,
they are now restricted to set operations and using an dguoivaf thel N SQL op-
erator in query predicates. Although simple, these mothaiion capabilities does
provide the system developer with the possibility of sipigtqueries into smaller
chunks that can be combined in different contexts while atime retaining the
efficiency of one large SQL query.

Figure 7.4 is an example of this. Although it is possible tmbine and thereby
modularize these queries, modularization statementsudnject to a number of
prerequisites. These prerequisites are somewhat unolé¢ae developer without
intimate knowledge of the semantics of SOQL.

There is one deficiency that might need clarification. Sirte®e dueries are
effectively merged at compile-time, replacement of codthen cl ass files sub-
sequently will possibly void the intent of the replacemece changes in query
methods will not propagate to the queries in which they aeel uBropagating them
will require a full recompile.

As will be discussed in Section 7.2, SOQL still lacks condguo mirror some
modularization operations that are present in SQL.

In summary, the modularization features of SOQL may be elddnvith more
constructs to express e.g. universal and existential dication, and SOQL would
benefit from a greater transparency of legal ways to use raddation constructs.

72 DISCUSSION

7.1.7 Optimization

All queries expressed in SOQL are compiled to SQL statememtd they are
shipped to the RDBMS. All optimization hereafter is left as exercise for the
database. As mentioned, it is possible to modularize gaeighen these mod-
ularized query methods are compiled, they will also prodasingle query (see
for instance Figure 7.3). This way the RDBMS can optimize $i¢L statement.
Criteria are also shipped separately to the database.l$bipassible to implement
some prefetching techniques in EntityCollection. In shibi optimization criteria
has been met.

Further optimization by letting the system developer h&eedption of rewrit-
ing the compiled queries into (possibly more efficient) gglent SQL statements
is not possible. This could be made possible by letting tlstesy developer inspect
and alter the Java fragments with the compiled queries bdfiey are inserted into
the source code in the final stages of the compilation procéksvever, these
changes will not propagate back to the original source amglgidisappear once
the original source code is compiled once more.

The system developer may still regain detailed control.s [péssible to use
handwritten SQL statements. In order to use these the demeloust use the
get Connect i on() method to manually open and use the JDBC connection (e.g.
see Section 4.4.4).

7.2 Expressiveness of SOQL vs. SQL

An interesting question to pose is the expressiveness oflS®@pared to the
query part of SQL. It is quite clear that SOQL is not as expvesas SQL. The
following lists some things that can be expressed in SQL butmSOQL:

Null values Null values have quite different semantics in Java and S@LJava
a null pointer basically means undefined, while in SQL it neeanknown
[35]. Null values cannot be operated on in Java. Trying tbacatethod to a
null pointer throws an exception. In SQL nulls have speatahantics - e.g.
in conjunction with comparison operations. The design of@&@oes not
take null values into consideration, and if it is to operatdegacy data, it is
a necessity to define a behavior.

Aggregates As laid out in this project, it is not possible to use aggredanctions
and do grouping with SOQL. Extending SOQL to make this pdssdsome
degree may not be too hard for grouping functions that anéyeaapped to
methods in the EntityCollection in the same styleaddAl | , etc.

Select operationsIn the select clause of a select statement it is possible to do
much more than just retrieve all rows for a table - eSELECT make,
nodel, price = 1.25 AS inclvat FROM cars where the value of the

73

price row is multiplied by 1.25 before being returned. Thigidt possible in
SOQL where all queries select all rows from the table beirgrigd. Due to
this restriction, it is not possible to perform calculagdn the database, but
they have to be performed by the application instead.

Non-mapped data SOQL always performs queries that return objects that are
mapped into the database. Querying across several taldesetamning a
result-set that does not necessarily map to an entity is osgtiple. An ex-
tension of this restriction is that other joins than the igtrdorward join
(outer join, inner join, full join, etc.) cannot be expredse

Stored procedures and user defined functiondMost RDBMSs have the ability
to write stored procedures and user defined functions thgtbeaused in
gueries, etc. These cannot be used with SOQL.

74

DiscussioN

Conclusion

8.1 Conclusion

With this project we wish to answer the question posed in tioblpm state-
ment (Section 3.6):

Is it possible to design an object-oriented query languagegrated
with Java, which can be transformed to Java code that shipsjtiery
as SQL to the database while still fulfilling the criteriaat check-
able, automatic marshalling and unmarshalling, minimatbasity,
minimal language alteration, modularizable, and optintitz®

In summary of the previous chapter, this is how the designegyganguage Sim-
ple Object Query Language (SOQL) fulfills the selected dete

Static checking Both static type and semantic checking. Script injectiarbfgms
can be remedied with existing techniques. This criteyialfilled.

Automatic marshalling and unmarshalling Is fulfilled.

Same paradigm as host languageélthough SOQL in the syntactical sense is
squarely within the object-oriented paradigm, the spesgahantics used in
conjecture with building predicates deviate so much froamdard Java se-
mantics that we consider this criteriarast fulfilled

Minimal verbosity Although less verbose than using JDBC and SQL statements,
SOQL is not less verbose than Native Queries. This critepauiitly fulfilled.

Minimal language alteration Syntactically there is no alteration to the host lan-
guage, but semantics deviate so much from Java semanti¢ghéHanguage
is altered, and this criteria ot fulfilled

Modularization It is in limited ways possible to modularize and combine ipger
without sacrificing performance, since it is possible to bora the modular-
ized queries to one request to the database. More ways oflanzilig can
be imagined, and we consider this critagdulfilled.

75

76 CONCLUSION

Optimization In the sense that the database is free to optimize queridghah
modularized queries are combined to one, this critegitulfilled. In the
sense that it is not possible for the system developer tokitvesagenerated
SQL queries, this criteria isot fulfilled

Most of the criteria set for SOQL have been fulfilled. Furtdexwelopment,
refinement, and implementation of a working compiler wedsaiwould provide
with a query language that could be useful for a large sutfsapications. Es-
pecially solving the static checking issues while retagrtime ability to ship whole
queries to the database and modularize queries, etc., mgit make SOQL a
favorable alternative to other query languages.

However, since designing a query language that is integyraith the host
language is the main goal of this project, not fulfilling théeria of being in the
same paradigm, is a serious drawback. Unfortunately, ffereinces of semantics
of SOQL and Java are intricate. For this reason, we do nahethat using SOQL
makes querying easier to express than using existing attees.

8.2 A broader perspective

The conclusion leads to a consideration about whether oit roappropriate
to express queries on relational data using object-odegyatax and semantics.
It is clear that deficiencies regarding e.g. lack of statieaing of string-based
query forms must be solved, but we do not necessarily betteaethis solution
at the same time should grow closer to the host languagediegasyntax and
semantics.

If the persistent storage mechanism is an object-orierdégbdse, the case may
be different. When the persistent storage matches the dgegof the application,
querying object-oriented databases with an object-atkitanguage may prove
just right.

Which paradigm to use in the different tiers of aftiered application may be
a matter of choosing the right tool for the right job. The abjeriented paradigm
expresses behavior and state combined very well - but maygise very well
suited for expressing queries on data (that does not incatgbehavior). SQL is a
partly declarative language, and we speculate that maybg asleclarative-based
language is a better tool for expressing queries on reldtidatabases?

Bibliography

[1] ABRAHAM SILBERSCHATZ, H. F. K., AND SUDARSHAN, S. Database
System Conceptfourth edition ed. McGraw-Hill, 2002.

[2] AMBLER, S. W. Agile Database Techniques: Effective Strategies for the
Agile Software DevelopeiViley, John & Sons, Incorporated, 2003.

[3] ATKINSON, M., AND JORDAN, M. Orthogonal Persistence for the Java Plat-
form - Draft Specification, jun 24 1999.

[4] ATKINSON, M. P. Persistence and Java - A Balancing ActPtaceedings of
the International Symposium on Objects and Datab@lsesdon, UK, 2001),
Springer-Verlag, pp. 1-31.

[5] ATKINSON, M. P., AND JORDAN, M. J. Issues Raised by Three Years of
Developing PJama: An Orthogonally Persistent PlatformJioa. INICDT
'99: Proceeding of the 7th International Conference on ase Theory
(London, UK, 1999), Springer-Verlag, pp. 1-30.

[6] BERNSTEIN, P. A., AL, S.,AND SHUTT, D. Context-Based Prefetch for
Implementing Objects on Relations. YL.DB '99: Proceedings of the 25th
International Conference on Very Large Data Bag&sn Francisco, CA,
USA, 1999), Morgan Kaufmann Publishers Inc., pp. 327-338.

[7] BIERMAN, G. M., MEIJER, E., AND SCHULTE, W. The essence of data
access in C omega. BCOOP(2005), A. P. Black, Ed., vol. 3586 dafecture
Notes in Computer Scienc8pringer, pp. 287-311.

[8] BiIGGs, W. Plain Old Java Queries (POJQ@}).t ps: // poj g. dev. j ava.
net .

[9] BUEHRER, G., WEIDE, B. W., AND SIVILOTTI, P. A. G. Using parse tree
validation to prevent SQL injection attacks. $EM (2005), E. D. Nitto and
A. L. Murphy, Eds., ACM, pp. 106-113.

[10] CAREY, M. J.,AND DEWITT, D. J. Of Objects and Databases: A Decade of
Turmoail. InVLDB '96: Proceedings of the 22th International Conference
Very Large Data Base$San Francisco, CA, USA, 1996), Morgan Kaufmann
Publishers Inc., pp. 3-14.

77

78 BIBLIOGRAPHY

[11] CobDp, E. F. Arelational model of data for large shared data ba@ksamun.
ACM 13 6 (1970), 377-387.

[12] Cw. http://research. m crosoft. coni Conega/.

[13] Cook, W. R.,AND IBRAHIM, A. H. Integrating Programming Languages
& Databases: What'’s the problem? Submitted for publicatr@y 2005, ac-
cessed November 2005 lat t p: / / www. cs. ut exas. edu/ ~/ wcook/
Draft s/ 2005/ PLDBPr obl em pdf , 2005.

[14] Cook, W. R., AND ROSENBERGER C. Native Queries for Persistent Ob-
jects. Dr. Dobb’s Journal (February 2006). ht t p: / / waww. ddj . coml
docunent s/ ddj 0602e/ .

[15] CoPELAND, G., AND MAIER, D. Making smalltalk a database system. In
SIGMOD '84: Proceedings of the 1984 ACM SIGMOD internatiooan-
ference on Management of dafidew York, NY, USA, 1984), ACM Press,
pp. 316-325.

[16] Visual C# Developer Center. http://nmsdn. m crosoft.com
vcshar p/ programm ng/ | anguage/ .

[17] IBM DB2. http://ww. i bm com db2.

[18] db4dobjectshtt p: // www. db4o. com

[19] DIIKSTRA, E. W. Go to statement considered harmful. 351-355.
[20] Eclipse.htt p://ww. ecl i pse. org.

[21] Eiffel. http://ww. ei ffel.com

[22] Enterprise JavaBeans (EJB).http://java. sun. com product s/
ej b/.

[23] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Pat-
terns: Elements of Reusable Object-Oriented Softwaigldison Wesley,
March 1995.

[24] Hibernate.ht t p: / / www. hi ber nat e. or g.

[25] JAMES GOSLING, BiLL Joy, G. S., AND BRACHA, G. The
JavdMLanguage Specification, 3rd EditiorAddison Wesley Professional,
2005.

[26] Java programming language compiler (Javd@) p: //j ava. sun. com
j 2se/ 1. 5.0/ docs/t ool docs/ sol ari s/javac. htm .

[27] JavaCChtt ps://javacc. dev. | ava. net .

BIBLIOGRAPHY 79

[28] Java Data Objects (JDOht t p: //j ava. sun. coni product s/j do/.

[29] LEAVENS, G. T., AND CHEON, Y. Design by Contract with JML. Dratft
paper for Java Modeling Language, accessed May 2006 pt// f t p.
cs.iastate. edu/ pub/ | eavens/ JM./j m dbc. pdf , 2006.

[30] LEAVITT, N. Whatever Happened to Object-Oriented DatabasdEEE
Computer 338 (2000), 16-19.

[31] LiNnDA DEMICHIEL, M. K. JSR 220: Enterprise JavaBeansTM, Version
3.0 - Java Persistence API. Tech. rep., Sun Microsysten@s.2bt t p:
[1jcp.org/en/jsr/detail ?i d=220.

[32] The LINQ project. http://nmsdn. m crosoft.com data/ref/
i ng/ defaul t.aspx?pul | =/1ibrary/en-us/dndot net/
htm /i ngproj ect ovw. asp#l i nqpr oj ec_t opi c5.

[33] MCCLURE, R. A.,AND KRUGER, |. H. SQL DOM: compile time checking
of dynamic SQL statements. MBCSE '05: Proceedings of the 27th inter-
national conference on Software engineer{iNgw York, NY, USA, 2005),
ACM Press, pp. 88-96.

[34] Microsoft SQL Server. http://ww. i crosoft.conf sql/
def aul t. nspx.

[35] M@LLER, T., ENSEN, R. N., AND SONDER, P. Persistent Language Ex-
tension and Constructs for Java 1.5. Tech. rep., Facultyngfrteering and
Science, Aalborg University, 2005.

[36] Oracle Corporationht t p: // www. or acl e. com
[37] PostgreSQLht t p: / / www. post gresql . org.

[38] SALCIANU, A. D., AND RINARD, M. C. Purity and Side Effect Analysis for
Java Programs. IRroc. 6th International Conference on Verification, Model
Checking and Abstract Interpretation, January 2q@505).

[39] SIPSER, M.Introduction to the Theory of ComputatioRWS, Boston, MA,
1996.

[40] SQL-Java (SQLIhttp://ww. sqglj.org/.
[41] Sun Microsystemshtt p: //wwv. sun. com

[42] TEAM, T. J. L. White Paper: About Microsoft's "Delegates”. Techp.,
JavaSoft, Sun Microsystems, Inc., 2001.

[43] Oracle TopLink. http://ww. oracl e. conit echnol ogy/
products/ias/toplink/.

80 BIBLIOGRAPHY

[44] UNGAR, D., AND SMITH, R. B. Self: The power of simplicity. IOOPSLA
'87: Conference proceedings on Object-oriented prograngidystems, lan-
guages and applicationdNew York, NY, USA, 1987), ACM Press, pp. 227-
242.

[45] WHALEY, J.,AND RINARD, M. Compositional pointer and escape analysis
for Java programsSIGPLAN Not. 3410 (1999), 187-206.

Signatures of the
EntityCollection

1 public class EntityCollection<E> implements Collection< E> {
2

3 /I New method

4 public EntityCollectior{ResultSet rsthrows PersiJExceptian
5

6 public EntityCollection();

7 public static Connection getConnectiGnthrows SQLException
8

9 /I Methods implemented from java.util.CollectioB>
10 public int sizg);

11

12 public boolean isEmpty();

13

14 public boolean containgObject 9;

15

16 public lterato<E> iteratox);

17

18 public Objecf] toArray();

19

20 public <T> T[] toArray(T[] arg0Q;

21

22 public boolean addE argQ;

23

24 public boolean remov€Object arg®;

25

26 public boolean containsAl{Collection<?> arg0);

27

28 public boolean addAll(Collection<? extends E> arg0;
29

30 public boolean removeAl[(Collection<?> arg0;

31

32 public boolean retainAll(Collection<?> argO);

33

34 public void cleax);

35

81

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

82

SIGNATURES OF THEENTITY COLLECTION

/l Methods to manipulate data

/*

* Write all contained objects to database - updating and
* inserting as necessary.

*/

public void persisf);

/*

* Update the representation of element in the persistant
* storage.

*/

public void persis(E elemeny,

/*

* Deletes all elements from persistent storage, and clears t
* underlying collection

*/

public void unPersig);

/*

* Delete this element both from the collection and from pstesit
* storage

*/

public void unPersigE elemeny,

/I Methods that affect query results

/*
* Set the largest number of objects that this EntityCollttmay
* contain

**/

public void setMaxSizént maxSizé;

Grammar for SOQL

The grammar for SOQL can be found in Table B.1. It is on Exterigieckus Naur
Form (EBNF). Reading notes to the grammar: Elements in [oatenal (could
also be written using ()?), |between two elements is a choice of the two, elements
marked with * are zero or more times, and finally elements m@nkith + are
one or more times. Productions for IDENTIFIER, CHARACTER ERAL, and
STRING.LLITERAL, and parser-generator specific commands have beetiedl

for brevity.
Conpi | ati onUni t
Identifier

Vari abl eDecl aratorld
Met hodDecl ar ati on

Met hodDecl ar at or

Per si j Met hodBl ock

For mal Par anet ers

For mal Par anet er

Type

Ref er enceType

O assOlnterfaceType

TypeAr gunent

Met hodDecl ar ati on
<I DENTI FI ER>
<| DENTI FI ER>
[
(public
| private
| protected)
]
<EntityColl ection> <Type>
| Met hodDecl ar at or
| Persij MethodBl ock
<| DENTI FI ER>For mal Par anet er s
t hrows Persi JException
{

EntityCol | ecti on<Type><| DENTI FI ER>
= new EntityCollection
<Type>();
Type <IDENTIFIER> = null;
(Bl ockStatenent)=
return <l DENTI Fl ER>;
}
([For mal Par anet er
(, Formal Paraneter)*])
Type Vari abl eDecl aratorld
Ref erenceType | PrimtiveType
C assOlnterfaceType
Identifier
[(.ldentifier)=*]
Ref er enceType

continued on next page

83

84

GRAMMAR FOR SOQL

PrimtiveType
Nanme

Expr essi on

Assi gnment Qper at or
Condi ti onal Or Expr essi on

Condi t i onal AndExpr essi on

Equal i t yExpressi on

Pri mar yExpr essi on

PrimaryPrefix

Pri marySuffix

Literal

Bool eanLi t eral

Nul | Li teral

Argunent s

Ar gurent Li st
Al | ocati onExpressi on

St at erent

Bl ock
Bl ockSt at enent
St at enent Expr essi on

| f St at enent

Tabl e B. 1:

continued from previous page

bool ean | char | int
<| DENTI FI ER>

[(. <I DENTI FI ER>) *]
Condi ti onal Or Expr essi on
[Assi gnnent Oper at or

Expr essi on]

Condi t i onal AndExpr essi on

1l
Condi ti onal AndExpr essi on
)*
Equal i t yExpressi on
(&& EqualityExpression)=*
Pri mar yExpression (
(==|'=) PrimaryExpression
)*
PrimaryPrefix
[(PrimarySuffix)=]
Li teral
| (Expression)
| All ocati onExpression
| Nane
. Al'l ocati onExpressi on
| . <I DENTI FI ER>
| Argunents
<I NTEGER LI TERAL >
| <CHARACTERLI TERAL>
| <STRI NG.LI TERAL>
| Bool eanLiteral
| Nul'lLiteral
true | fal se
nul |
([ArgunentList])
Expression (, Expression)*
new PrimitiveType
| new C assOrlnterfaceType
Argunent s
Bl ock
| Statement Expression;
| 1fStatenent
{ (Bl ockStatenment)* }
St at enent
Pri mar yExpr essi on
[Assi gnment Qper at or
Expressi on]
i f (Expression) Statenent
[el se Statement]

G ammar for SOQL.

Summary

This is a summary of this report. It is a mandatory part of a tetathesis in
Computer Science written at Aalborg University, Denmark.

The broader underlying problem of this project, is that & impedance mis-
match encountered when trying to use relational databasstatically typed ob-
jects oriented programming languages. In a preliminaryyaig existing solutions
to the impedance mismatch problem are reviewed, and areusltifto be deficient
in some manner. Posing the question: Why not change the geefilt is con-
cluded that relational databases cannot be replaced bygtaljented databases
to avoid the problem altogether. Reviewing existing workwdrat constitutes the
impedance mismatch, a number of criteria are listed, thatast be fulfilled for a
solution to properly solve the impedance mismatch problem.

Acknowledging that the scope of the project does not allavitfe development
of a full solution to the impedance mismatch problem, thaugoof the project is
narrowed down to solving one facet of the problem: Queryiffgough an analysis
of querying methods found in existing solutions to the imgreze mismatch prob-
lem, a number of criteria are found to evaluate a queryindhoteby: static check-
able, automatic marshalling and unmarshalling, same gamads host language,
minimal verbosity, minimal language alteration, moduatile, and optimizable.

Especially the approach Native Queries which promotes a efaguerying
where gueries are expressed in the same paradigm as theahgstage (in this
case object-oriented) is considered favorable, but sfiictent due to a verbose
fashion of implementation.

The specific problem addressed by this project is then detiseld it possible
to design an object-oriented query language integratedh ditva, which can be
transformed to Java code that ships the query as Structuresh anguage (SQL)
to the database while still fulfilling the criteria?

In an effort to answer this question, a new language nameg|8i@bject Query
Language (SOQL) is designed. In order for the language t&waorudimentary
persistence framework named PersiJ is also described] taagely on Enterprise
JavaBeans (EJB) version 3.

SOQL queries is basically methods in a Java program that bese marked
with a special annotation. The allowed syntax inside theséhaus is a subset

85

of Java, and allows for primitives, classes, objects, ngess@émethod calls) and
branching (if-statements). Using these very basic buglditocks SOQL is able to
express predicates, branching of control flow, sortingitlirg and modularization
of queries.

Investigating how the different elements of SOQL may bedfamed using a
number of informally defined partial transformation fucis, a number of limits
to the translation to SQL are found - especially in conjwrcivith method calls.

Finally, a discussion of how SOQL fulfills the criteria froret analysis finds
that SOQL is statically checkable, has automatic marstgalind unmarshalling,
minimal verbosity, is modularizable and optimizable. Hwes due to intricate
differences in semantics from the host language Java, iteziarof being in the
same paradigm as the host language is not considered tdfitiedul

In conclusion SOQL is found to potentially be a favorableiative to existing
querying solutions, but while overcoming many importarficiencies simultane-
ously (being statically checkable while retaining modiziaion and optimization
capabilities) the intricate differences of semantics leetwJava and SOQL are
found to be a significant drawback.

