
Simple Object Query Language in PersiJ

� � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

Java

SQL

S
 O

 Q
 L

Expressing declarative SQL queries in

object-oriented Java-like syntax

be so cool!
That would just

AUTHORS

Rolf Njor Jensen
Peter Sönder

Master Thesis
June 2006

ii

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

T ITLE :
Simple Object Query Language in PersiJ

SUBTITLE :
Expressing declarative SQL queries in
object-oriented Java-like syntax

PROJECT PERIOD :
Dat6, Cis4,
Feb 1st - June 1st 2006

PROJECT GROUP:
d630a

GROUP MEMBERS:
Rolf Njor Jensen

Peter Sönder

SUPERVISOR:
Per Madsen

COPIES: 4
PAGES: 102

Abstract:

The impedance mismatch problem of using
Relational Database Management Systems in
statically typed object-oriented programming
languages has been subject to many partial so-
lutions, and has many facets. This project con-
cerns the querying part of such a solution, and
tries to explain deficiencies found in existing
querying methods through analysis and a liter-
ature study.
The goal is to ease the querying process by
designing a new querying language that inte-
grates with the host language, and is statically
checkable, has the same syntax and very simi-
lar semantics as the host language, while being
modularizable and optimizable.
Through a description of the new language –
Simple Object Query Language (SOQL) – and
a description of how it may be translated to
SQL, we argue that it fulfills most criteria.
Subject to development of a compiler and sur-
rounding framework, it could be a favorable
alternative to existing solutions as it among
other properties enables static checking while
still being modularizable and optimizable. The
language fails to retain the same semantics as
Java, the differences being intricate, and in
conclusion it is questionable whether SOQL
makes it any easier to express queries.

ii

At the time, Nixon was normalizing relations with China. I
figured that if he could normalize relations, then so could I.

Ted Codd, father of the relational data model

iv

Preface

Prerequisites

Prerequisites to this thesis is intermediate knowledge of Java 1.5, Structured
Query Language (SQL), object-oriented programming and modeling, and the rela-
tional model.

Reading notes

During the course of this thesis, a considerable number of acronyms is intro-
duced. The first time an acronym is presented, it is written infull, followed by the
shorthand form in parenthesis: Three Letter Abbreviation (TLA). Subsequent uses
of the acronym is the shorthand form. At the beginning of thisthesis there is a
complete list of the acronyms used in this thesis.

Typographical notes

In the rest of the thesis, text that is source code of some sortwill be printed
with this font:System.out.println("Hello World!"); or using a figure as
shown in Figure 1.

1 System.out.println("Hello World!");

Figure 1: Example of source code.

v

Contents

Preface v
Prerequisites . v
Reading notes . v
Typographical notes . v

List of Acronyms xi

1 Introduction 1
1.1 Setting the scene . 1
1.2 Report outline . 1

2 Preliminary Analysis 3
2.1 Existing solutions . 3

2.1.1 Call level interface . 3
2.1.2 Embedded SQL . 3
2.1.3 Object-Relational Mappers 4
2.1.4 Multi-paradigm languages 5

2.2 Why not change the premises? 6
2.2.1 Orthogonal persistence 7
2.2.2 Object-oriented databases 8
2.2.3 Sticking to relational databases 9

2.3 What’s the problem . 9

3 Analysis 13
3.1 Querying approaches . 13

3.1.1 Object-Relational Mappers 13
3.1.2 Embedded queries and multi-paradigm languages14
3.1.3 Native Queries . 14

3.2 Querying method criteria . 15
3.3 Choosing a language . 16
3.4 Transformation . 16
3.5 Method description . 16
3.6 Problem statement . 17

vii

viii CONTENTS

4 The PersiJ framework 19
4.1 Using an existing persistence framework specification 19
4.2 Identifying persistable types . 20
4.3 Entities . 21

4.3.1 Requirements on the Entity Class 22
4.3.2 Persistent fields and properties 22
4.3.3 Mapping objects to relations 23
4.3.4 Multi-valued properties 24

4.4 The EntityCollection . 26
4.4.1 Parametrized type . 26
4.4.2 Constructor . 26
4.4.3 Static data structures . 26
4.4.4 JDBC connectivity . 27
4.4.5 Collection type methods 27
4.4.6 Storing and deleting from persistent storage 28
4.4.7 Using prefecthing and lazy load 29

4.5 Summary . 29

5 Simple Object Query Language 31
5.1 Basic form of query construct . 31

5.1.1 Valid Java . 31
5.1.2 Encapsulating queries in methods 32
5.1.3 Using annotations for markup 33
5.1.4 Body of the query method 33
5.1.5 The base grammar . 35

5.2 Terminology . 39
5.3 Predicates . 39
5.4 Sorting . 40

5.4.1 EntityCollection implements List 40
5.4.2 Which comparison operation 41
5.4.3 Which member to sort on 41

5.5 Limiting . 42
5.6 Modularization . 43

5.6.1 Set operations . 43
5.6.2 Subqueries - contains . 45

5.7 Compilation process . 47

6 Transformation of SOQL 51
6.1 Reference sets . 51
6.2 Template . 52
6.3 Transformation functions . 54

6.3.1 Legend to readingΦ definitions 54
6.4 Field dereferencing . 54

6.4.1 Primitives and Strings 54

CONTENTS ix

6.4.2 One-to-one, one-to-many, owning side 55
6.4.3 Bidirectional, many-to-one, one-to-one, not owningside . 55
6.4.4 Many-to-many . 56

6.5 Method calls . 56
6.6 If-statements . 57
6.7 Sorting . 60
6.8 Limiting . 61
6.9 Modularization . 62

6.9.1 Set operations . 62
6.9.2 Subqueries - contains . 63

6.10 Implementation . 63

7 Discussion 65
7.1 Evaluating by criteria . 65

7.1.1 Static checking . 65
7.1.2 Automatic marshalling and unmarshalling 66
7.1.3 Same paradigm as host language 66
7.1.4 Minimal verbosity . 67
7.1.5 Minimal language alteration 70
7.1.6 Modularization . 71
7.1.7 Optimization . 72

7.2 Expressiveness of SOQL vs. SQL 72

8 Conclusion 75
8.1 Conclusion . 75
8.2 A broader perspective . 76

Bibliography 77

A Signatures of the EntityCollection 81

B Grammar for SOQL 83

x CONTENTS

List of Acronyms

Atomicity, Consistency, Isolation, and Durability (ACID)

The ACID properties are used to describe the transaction properties of a
database management system. By fulfilling these propertiesone can guaran-
tee that the database always is in a consistent state.8, 10

Abstract Compiled Query (ACQ)

A class where each instance is used to collect the different parts of a query
during compilation. The Abstract Compiled Query can at the end of compi-
lation be used to produce the transformed query.49

Application Programming Interface (API)

An Application Programming Interface (API) is the interface that a computer
system or application provides in order to allow requests for service to be
made of it by other computer programs, and/or to allow data tobe exchanged
between the two.5, 8, 13, 26, 40, 41, 44, 45

Annotation Processing Tool (APT)

The Annotation Processing Tool (or APT) is a utility by Sun Microsystems
for processing annotations in Java. It provides a read-onlyview of the pro-
gram structure and source code. When APT runs it can produce new source
files (also other files like configuration files etc.). After this it can compile
the original and newly generated source files [41].21, 33, 47–49

Call Level Interface (CLI)

Interface to a RDBMS that uses text strings containing queries in the SQL
syntax to perform operations on the database.3

db4objects (db4o)

db4o is an open source object-oriented database. It supports both Java and
C#. db4o has successfully implemented Native Queries [14] as their way of
querying [18].8

Database Management System (DBMS)

A collection of programs used to store, modify, and retrieveinformation
from a database.9

xi

xii L IST OF ACRONYMS

Extended Backus Naur Form (EBNF)

All EBNF constructs can be expressed in plain Backus Naur Form (BNF)
using extra productions. EBNF is more readable and succinctthan BNF.83

Enterprise JavaBeans (EJB)

Enterprise JavaBeans (EJB) technology is the server-side component archi-
tecture for the Java 2 Platform, Enterprise Edition (J2EE) platform. EJB
technology enables rapid and simplified development of distributed, transac-
tional, secure and portable applications based on Java technology [22]. The
latest version of EJB is version 3.0, which we will be referring to as EJB.4,
13, 20–23, 25, 26, 29, 31, 33, 85

EJB Query Language (EJB QL)

EJBQL is the query language used in an EJB project. It resembles SQL in
many ways.14

Hibernate Query Language (HQL)

HQL is the object-oriented query language used by the Hibernate framework
[24]. HQL returns objects instead of plain data (as is the case when only us-
ing SQL). It supports notions like inheritance, polymorphism and association
5, 6, 13, 14

Integrated Development Environment (IDE)

An IDE is a piece of software that assist developers in writing source code
through syntax highlight, debuggers, build-in compilers,and other tools that
help simplifying the development process.32

Java Compiler (JavaC)

The Java Compiler tool reads class and interface definitions(source files),
written in the Java programming language, and compiles theminto byte code
class files [26], which can then be executed on a JVM.32, 33, 47, 49

Java Compiler Compiler (JavaCC)

JavaCC is a popular parser generator. It uses a grammar specification and
creates a Java program that can recognize the grammar [27].34–36, 49

Java DataBase Connectivity (JDBC)

JDBC is an API for Java that wraps CLI’s for several differentdatabases.
JDBC is maintained by Sun Microsystems.3, 4, 10, 16, 27, 31, 33, 51, 52,
68, 72, 75

L IST OF ACRONYMS xiii

Java Data Objects (JDO)

JDO provides an abstraction to the persistent layer in Java.It has been pub-
lished under the JSR 12 and the newest version 2.0 under JSR 243 [28]. 4,
13

Java Data Objects Query Language (JDOQL)

JDOQL is the query language used by JDO [28]. JDOQL follows the syntax
of Java where possible.13, 14

Java Persistence Query Language (JPQL)

JPQL is a part of the new Java Persistence API, and defined is indefined in
JSR 220 [31]13

Java Virtual Machine (JVM)

The Java Virtual Machine (or JVM) is a virtual machine, thus the name, that
executes Java byte code.7, 40

Open DataBase Connectivity (ODBC)

A standard for an API that wraps CLI’s for several different databases, pro-
viding a common interface regardless of the underlying RDBMS. ODBC is
a standard co-opted by Microsoft from the SQL Access Group consortium.
3

Object-Relational Mapping (ORM)

Object-Relational Mapping is a technique to link the relational database
with the object-oriented language. There exists many toolsto handle this,
amongst others are Hibernate [24] and JDO [28].4, 13, 21, 23, 29

Plain Old Java Queries (POJQ)

POJQ is a framework for writing and executing database queries written in
Java [8]. POJQ uses Native Queries [14] and bytecode analysis to translate
the Java code into SQL. The initial implementation uses JDO 1.0 [28], but it
should also be possible to use EJB [22].14

Relational Database Management System (RDBMS)

Software systems that manage and store data organized by therelational data
model. See Abraham Silberschatzet al [1] for more verbose explanation.1,
6, 9, 15, 16, 40, 43, 65, 72, 73

Software Developers Kit (SDK)

SDK is an environment for building Java applications. It includes tools for
developing and testing.21

xiv L IST OF ACRONYMS

Simple Object Database Access (SODA)

SODA is an object API to gain access to databases. The currentspecification
focuses on queries with goals like type safety and programming language
independence, and was developed in Java programming language. 8

Simple Object Query Language (SOQL)

SOQL is the object-oriented query language provided by the PersiJ frame-
work. 16, 20, 29, 31, 32, 34, 37, 40–43, 52, 54, 59, 65–73, 75, 76, 83–86

Structured Query Language (SQL)

SQL is a widely used language to query RDBMS. Provides constructs for
insert, update, and deleting information in a RDBMS.v, 3, 5, 6, 10, 13–17,
31, 33, 34, 38, 40, 42–45, 47, 49, 51–55, 57, 62, 65–69, 71, 72, 75, 76, 85,
86

SQL-Java (SQLJ)

SQLJ is a specification for handling SQL in a Java application. Before com-
piling the SQLJ source code it needs to be translated into valid Java code
[40]. 4, 5, 14, 70

Sun Microsystems (Sun)

Sun Microsystems is a vendor of computers, computer components, the So-
laris operating system and the Java programming amongst others [41].7

Three Letter Abbreviation (TLA)

A meta-acronym. As the name suggests, used to describe acronyms of length
three.v

1Introduction

1.1 Setting the scene

The broader problem underlying the work of this thesis is theproblem of us-
ing a Relational Database Management System (RDBMS) in software written us-
ing statically typed object-oriented programming languages. Connecting the two
proves to be quite hard due to differences in data abstraction models, concurrency
models, programming paradigms, primitive type definitions, etc. The problem is
in general referred to with the term “Impedance Mismatch”, first introduced by
Copeland and Maier [15] in a publication about adding persistence support to the
language Smalltalk-80. Originally the use of impedance mismatch stems from
electrical engineering, expressing how hard it is to interconnect two systems.

Throughout the last two decades, much effort has gone into solving the impe-
dance mismatch problem, and while many solutions are widelyadopted by indus-
try, all solutions suffer from some deficiencies.

1.2 Report outline

This report is laid out in the following chapters:

Preliminary Analysis In the following chapter we investigate different solutions
to the Impedance Mismatch problem, noting how each of them isdeficient
in some manner. Thereafter we consider why the premises are not changed
to avoid the problem altogether. Then we use previous work tolist a number
of criteria that a solution to the impedance mismatch problem must fulfill to
properly solve the problem. Finally we reduce the scope of the project to
only concern one facet of the problem.

Analysis The chosen facet is querying, and through an analysis of existing query-
ing methods we find a number of criteria that a querying methodmust fulfill.
Some basic choices for designing a new query language are made, and fi-
nally a problem statement concisely puts forward the specific problem that
is the subject of this project.

1

2 INTRODUCTION

The PersiJ framework To be able to develop the new query language, a surround-
ing context must be available. PersiJ is the name of the persistence frame-
work that is presented. PersiJ is largely based on existing persistence frame-
work specifications, but modified to accommodate special requirements of
the new querying language.

Simple Object Query Language Bit by bit, the new query language is designed,
and this chapter gives an overview and informal descriptionof the different
parts of the language.

Transformation of SOQL Compiling the language is not a trivial task, and this
chapter gives an informal description of the semantics, noting prerequisites
for legal translations of the different parts of the language.

Discussion This chapter evaluates whether the language fulfills each ofthe criteria
set forward in the analysis, and discusses to some degree theexpressiveness
of the new language compared to SQL.

Conclusion Finally, the conclusion summarizes the discussion and the major ad-
vantages and disadvantages of the new language are presented. On a last
note, the conclusion is set in a wider context, taking a broader perspective
on the results of the project.

Enjoy your reading.

2Preliminary Analysis

This chapter starts by investigating existing (classes of)solutions to the Impedance
Mismatch problem. Noting that they are all deficient in different ways, we pose the
question: Why not change the premises? Arguing that relational databases cannot
be replaced by object-oriented databases, the chapter proceeds by listing criteria
that any solution to the impedance mismatch problem must allfulfill. Last we
acknowledge that the scope of this project does not allow forthe development of a
solution to the whole impedance mismatch problem.
This chapter is largely based on our previous work [35].

2.1 Existing solutions

Currently, there are many solutions to the impedance mismatch problem, but
unfortunately they all have one thing in common: they only solve a part of the
problem. In the following, we present some of these solutions.

2.1.1 Call level interface

Call Level Interface (CLI) is an approach where it is possible to embed SQL state-
ments as string variables in the source code which can be shipped to the database
engine. The database then parses and executes the query and the result is returned.
While CLI enables the programmer to use all of the features ofthe database, it is
also subject to script injection problems [33] and lack of static checking. Examples
of CLI are Java DataBase Connectivity (JDBC) and Open DataBase Connectivity
(ODBC). Figure 2.1 shows an example of Java code using JDBC. The example is
split in three parts. The first creates a connection to the database, the second per-
forms a query on the database, and the third inserts a new person into the database.

2.1.2 Embedded SQL

Another approach is Embedded SQL, where SQL statements are embedded within
the source code, and using a pre-compiler, the statements are transformed into
CLI code. This gives some degree of static type checking, andthe dissimilarity
of primitive types are also handled. An example of embedded SQL is SQL-Java

3

4 PRELIMINARY ANALYSIS

1 // Initializing a connection to the RDBMS
2 Class.forName("com.mysql.jdbc.Driver");
3 Connection con= DriverManager.getConnection(
4 "jdbc:mysql://localhost:3306/somedb",
5 "user",
6 "password");
7

8 // Performing a query on the database
9 Statement stmt= con.createStatement();

10 ResultSet rs= stmt.executeQuery(
11 "SELECT * FROM person WHERE fname = ’Peter’");
12

13 while (rs.next()) {
14 String fname= rs.getString("fname");
15 . . .
16 }
17

18 // Inserting a tuple in the database
19 String fname= "Per";
20 Statement stmt= con.createStatement();
21 stmt.executeQuery(
22 "INSERT INTO person (id, fname, lname) " +
23 "VALUES (’’, ’" + fname + "’, ’Madsen’);"
24);

Figure 2.1: Example of JDBC code.

(SQLJ) [40]. Figure 2.2 shows an example of SQLJ. As with the JDBC example in
Figure 2.1, we have three parts. The first creates the connection to the database, the
second queries the database, and the third inserts a new person into the database.

2.1.3 Object-Relational Mappers

After the initiation of the development of the object-oriented programming para-
digm, a lot of work began regarding providing persistent storage support for ob-
jects. Carey and DeWitt [10] gives an overview of the development effort from the
mid-80’s until the mid 90’s, identifying trends, and makingpredictions as to the
future development trends. One of the key areas of future development identified
by Carey and DeWitt in 1996 was “Object-Oriented Client Wrappers” - the use
of object wrappers to support the development of object-oriented client-side ap-
plications against legacy databases[10]. These wrappers have since evolved into
Object-Relational Mapping (ORM) frameworks, and are in widespread use. So-
lutions in this category includes Hibernate [24], TopLink [43], Java Data Objects
(JDO), Enterprise JavaBeans (EJB), etc.

Deficiencies common to these solutions is the need for metadata to identify

5

1 // Initializing a connection to the RDBMS
2 Oracle.connect(
3 "jdbc:oracle:thin:@localhost:1521:somedb",
4 "user",
5 "password"
6);
7

8 // Performing a query on the database
9 SelRowIter result= null ;

10 String fname= "Peter";
11 #sql result = {
12 SELECT * FROM person WHERE fname= :fname
13 };
14

15 while(result.next()) {
16 fname = result.fname();
17 . . .
18 }
19

20 // Inserting a tuple in the database
21 String fname= "Per";
22 #sql {
23 INSERT INTO person(fname, lname) VALUES (:fname, "Madsen")
24 };

Figure 2.2: Example of SQLJ code.

and describe mapping properties, complication of build process, discrepancies of
primitive data types, etc. One of the biggest problems however, is the lack of static
type checking when using string based query approaches – or very complicated
and verbose query expressions [35].

Figure 2.3 shows an example of Java code utilizing Hibernateand its Hibernate
Query Language (HQL). The code presupposes that thePerson class has been
annotated with metadata, and that the rest of the Hibernate framework is properly
configured with database connection information, etc.

2.1.4 Multi-paradigm languages

Recently Microsoft released C# 3.0 (from this point on referred to as C# [16]).
Included in C# is the persistence features of research language Cω [12] [7]. The
object-oriented model of C# has been extended with anonymous types, traits, ex-
pression types, etc., to enable a large syntactic addition to the language that is
somewhat like SQL. The now-included query language can be used both to query
object structures as well as external data sources for whichsome Application Pro-
gramming Interface (API) has been implemented - including relational data sources.

6 PRELIMINARY ANALYSIS

1 // Set up the environment
2 Session session= HibernateUtil.currentSession();
3 Transaction tx= session.beginTransaction();
4

5 // Update the persistent representation of an object
6 Person person= new Person();
7 person.setFName("Per");
8 person.setLName("Madsen");
9

10 session.save(person);
11 tx.commit();
12

13 // Perform a query on the database using HQL
14 Query query= session.createQuery(
15 "FROM Person AS p WHERE p.fname = :fname");
16 query.setCharacter("fname", ’Per’);
17

18 // Handle the query result here
19 for (Iterator it = query.iterate(); it.hasNext()) {
20 Person p= (Person) it.next();
21 . . .
22 }
23

24 HibernateUtil.closeSession();

Figure 2.3: Example of Hibernate using HQL.

The language is extended with one more paradigm (declarative for querying),
and becomes a larger language - potentially harder for the system developer to
master. Figure 2.4 shows an example of querying in C# - and as it can be seen,
the query language is SQL-like, and integrated as a part of the language. In the
example, a new anonymous type is built from the query, which in fact is just a type
that has not been given a type (the anonymous is what makes thequerying possible
in C# as the return type is not known before the query is executed). An alternative
is to just select the objects directly - and populate new instantiations of an existing
type.

2.2 Why not change the premises?

Since it is a problem to use the statically typed object-oriented languages in
conjunction with RDBMSs, why not change the premises and useanother persis-
tent storage mechanism?

7

1 // Establish a query context over ADO.NET connection
2 DataContext context= new DataContext(
3 "Initial Catalog=petdb;Integrated Security=sspi");
4

5 // Grab variables that represent the remote tables that correspond to
6 // Person and Order CLR types
7 Table<Person> custs = context.GetTable<Person>();
8 Table<Order> orders= context.GetTable<Order>();
9

10 // Build the query (using a SQL-like syntax)
11 var query= from c in custs, o in orders
12 where o.Customer== c.Name
13 select new {c.Name, o.OrderID,
14 o.Amount, c.Age};
15

16 // Execute the query and print the result
17 foreach (var item in query)
18 Console.WriteLine("{0} {1} {2} {3}",
19 item.Name, item.OrderID,
20 item.Amount, item.Age);

Figure 2.4: Example of C# code - taken from [32].

2.2.1 Orthogonal persistence

One approach is to use orthogonally persistent object-oriented languages. Orthog-
onal persistence is described by Malcolm P. Atkinson [4], who is one of the creators
of PJama [3]. The PJama project aimed at implementing orthogonal persistence in
Java, but unfortunately the development was stopped because their choice of Java
Virtual Machine (JVM) was abandoned by Sun Microsystems (Sun). In [4] Mal-
colm P. Atkinson uses three properties that must apply for orthogonal persistence
to be fulfilled:

• Orthogonality– The persistence facilities must be available for all data,irre-
spective of their type, class, size or any other property.

• Completeness or Transitivity– If some data structure is preserved, then ev-
erything that is needed to use that data correctly must be preserved with it,
for the same lifetime.

• Persistence Independence– The source and byte codes should not require
any changes to operate on long-lived data. Furthermore, thesemantics of the
language must not change as the result of using persistence.

There exists several examples of orthogonal persistence applied to the object-
oriented paradigm. One of the first was the programming language Self [44], whose

8 PRELIMINARY ANALYSIS

runtime (and development) environment saves the complete state of the application
in a “snapshot”.

Although PJama was abandoned, there was a number of lessons to be learned.
Orthogonal persistence might seem as an attractive alternative at a first glance,
but there are several factors that lead to a disfavoring of this approach. In an or-
thogonally persistent system, it is the state of thewholesystem that is persisted,
and upon restoration, it is thewholestate being restored – all classes, objects, at-
tributes, GUIs etc. An implication of this is the lack of ability to persist and restore
only subsets of a total storage.

Sharing persisted state between concurrent executing applications becomes
difficult, moreover, the Atomicity, Consistency, Isolation, and Durability (ACID)
properties of transactions could not easily be applied to the Java platform [5], and
therefore they had to investigate how a new transaction model could be applied.

2.2.2 Object-oriented databases

One of the predictions of Carey and DeWitt [10] was the demiseof object-oriented
databases. This has shown to be partly true, with object-oriented databases only
gaining acceptance as niche products [30]. While removing some of the impedance
mismatch, existing object-oriented databases do however,still suffer from some
deficiencies. For one thing, expressing queries is still based on declarative queries
without static type checking, or depend upon the construction of programmatic
models representing queries.

Figure 2.5 shows an example of a programmatic model representing a query.
One example of a current object-oriented database is db4objects (db4o). db4o has
one very interesting property: while still providing programmatic query models
and string based queries, the newest release has implemented Native Queries [14].

1 // An example of the Simple Object Database Access (SODA) APIin db4o
2 Query query=db.query();
3 query.constrain(Pilot.class);
4 query.descend("name").constrain("Per Madsen").not();
5 ObjectSet result=query.execute();

Figure 2.5: Example of the SODA query API in action in db4o.

Native Queries is an approach presented by William R. Cook and Carl Rosen-
berger [14] that uses the syntax of the host language (in the case of db4o it is
Java and C#), and by pre-compiling certain methods designated as queries and per-
forming byte-code analysis on the referenced methods, the object-oriented code is
translated to database calls. We will be going into details about Native Queries in
Section 3.1.3.

9

2.2.3 Sticking to relational databases

There are a number of reasons to stick to relational databases and deal with the
impedance mismatch, rather than changing to another form ofpersistent storage.

Legacy data: The relational data model was first introduced in 1970 by C.F.Codd
[11], and has been subject to intensive development since. Database Man-
agement System (DBMS) have been around for nearly as long, and as a
consequence hereof, many applications with the need for some sort of per-
sistent storage is going to operate on legacy data that is noteasily migrated
to another form of persistent storage.

Theoretical foundation: Due to extensive research efforts during the past three
decades, the relational data model, and relational databases rest upon a solid
and extensive theoretical foundation - enabling the DBMS tohave grown to
become complex and highly efficient.

Maturity: The RDBMSs that are in widespread use (e.g. SQL Server [34], Or-
acle Database [36], DB2 [17], PostgreSQL [37], etc.) have meta facilities
(including backup facilities, platform utilization, etc.) and are quite mature,
as they have been under development and in production environments during
the past three decades.

Partial persistence: Unlike some systems that are orthogonally persistent, a rela-
tional database provides the opportunity for partial persistence where only
part of the application’s state gets persisted. More relevant perhaps, is also
that the application does not have to load all of the persisted state upon ap-
plication startup. This is relevant in scenarios where the amount of persisted
data is simply to much to handle in-memory.

2.3 What’s the problem

While there are many suggestions to solutions to the impedance mismatch
problem, Cook and Ibrahim [13] have tried to identify the criteria that a solution
must fulfill in order to solve the impedance mismatch problem, and which prop-
erties can be used to describe different solutions. One of the conclusions of the
article is that for one solution to properly solve the problem, all of the criteria must
be fulfilled.

In our previous work [35] we evaluated these criteria, and while we where re-
viewing some existing solutions we ended up extending the set of available criteria.
Table 2.1 lists an overview of these criteria. Those marked with ∆ were introduced
in our previous work. Those marked with⊗ are added during this project.

10 PRELIMINARY ANALYSIS

Criteria Description
Static checking Having static checking is a huge advantage for the sys-

tem developer. Static checking enables the ability to
check code at compile time, type as well as seman-
tics. This greatly decreases the risk of encountering
run time errors.

Interface style Interacting with the database either through SQL or
the host language is something that need to be con-
sidered. Some existing solutions to the impedance
mismatch problem breaks with the object-oriented
paradigm thus ending up as a multi paradigm lan-
guage. The level of persistence should also be taking
into account.

Type mismatch issue Either the problem of matching the type system from
the programming language to the database is handled
directly by the system developer (i.e. in JDBC) or it is
handled by the framework or language extension (i.e.
with Hibernate).

Reuse To what extent it is possible to reuse parts of the query
in different contexts. In other words - is it possible
to modularize queries, and combine them at compile-
and runtime?

Concurrency How does the application support concurrency and
how does this concurrency map to the ACID proper-
ties? Should the model for concurrency be changed?

Optimization Whether or not the system developer should be able to
do optimization. This could be through criteria ship-
ping, grouping queries, or prefetching related objects.

Build process∆ Depending on whether a framework or language ex-
tension is the preferred choice, there might be changes
to the build process. A language extension would re-
quire a pre-compiler, if the extension is not to be build
into the language itself.

continued on next page

11

continued from previous page

Tool support∆ To what extent there is tools that support the frame-
work or language extension.

Language alteration∆ How many, if any, changes are made to the host lan-
guage.

Schema evolution∆ How is changes in the database schema handled by the
framework or language extension.

Partial persistence⊗ Does the solution allow for persisting only a subset of
the application state, and does it allow for instantiating
only a subset of the persisted state?

Table 2.1: Criteria that can be used for evaluation.

William R. Cook and Carl Rosenberger conclude:

A complete solution to the problem of impedance mismatch must pro-
vide both a clean programming model and high performance. While
issues of mapping data between databases and programming languages
have largely been resolved, significant issues remain. The interface
should leverage the best capabilities of both databases andprogram-
ming languages to for optimization, static typing, and modular devel-
opment. Each of these aspects has a solution by itself. The problem of
impedance mismatch is meeting all the goals simultaneously. . . . [13]

In other words, they conclude that the solutions they have reviewed, all are
deficient in some way, and no solution meets all criteria at once. The scope of
this project does not allow for the development of a full solution to the impedance
mismatch problem, and will instead focus on solving one particular facet of the
problem.

Before proceeding with a description of the particular facet, there are a few
other areas that we would like to remove from our focus. One ofthese is concur-
rency. Although concurrency is an important aspect when working with databases,
we believe that adding the aspect of concurrency to this project would result in
an extra layer of complexity thus removing our focus from thefacet that we find
intriguing. We will also remove our focus from schema evolution. We will be
touching the subject of schema evolution without providingan actual solution, be-
cause this as concurrency lies outside our choice of facet.

12 PRELIMINARY ANALYSIS

3Analysis

In this chapter we will use the preliminary analysis as an outset to choose a facet
of the impedance mismatch problem. We will then analyze thisfacet with respect
to existing solutions, and describe a set of criteria by which a solution to the facet
can be evaluated.

We proceed by presenting the method we will follow to answer the question of
whether it is possible to solve the facet with respect to the presented criteria, and
end with a problem statement that concisely states the problem we will try to solve.

3.1 Querying approaches

The facet that will be treated in this project is the fashion of querying that a
solution to the impedance mismatch problem provides. All the existing kinds of
solutions have deficient ways of performing queries. The following will treat each
kind of solution, noting how the querying method is deficient. The end of this
section will summarize the characteristics that can be usedto describe a querying
fashion, and present a set of criteria that we wish to fulfill with respect to a new
way of querying.

3.1.1 Object-Relational Mappers

ORM solutions such as Hibernate, JDO, EJB, etc. provide goodfacilities for map-
ping relations to objects, balancing the need for fine-grained programmer control
and ease-of-use. One of the problems, namely the separationof mapping metadata
from the source code can be addressed with Java 1.5’s annotations and the lat-
est EJB specification. Unfortunately, the querying mechanisms of the ORM tools
still lack elegance. They provide special object-orientedquerying languages (e.g.
HQL, Java Persistence Query Language (JPQL), and Java Data Objects Query Lan-
guage (JDOQL)), but static type checking is lacking, and while partly operating on
objects, the querying language is still declarative. Alternatively the frameworks
provide support for SQL queries and programmatic querying,using an API that
although native to the host language, is somewhat cumbersome to use.

13

14 ANALYSIS

3.1.2 Embedded queries and multi-paradigm languages

SQLJ and C# amend the language syntax, and allow some sort of SQL inline in
the host language. Both solutions solve the static check issues. Although C# inte-
grates some sort of SQL even deeper, enabling querying on object structures, both
solutions are deficient in one very important way. In an object-oriented language
they introduce a new paradigm - a declarative query language. Our belief is that
this enlarges and complicates the language unnecessarily.

3.1.3 Native Queries

The previously mentioned Native Queries [14] approach has spurred a project
named Plain Old Java Queries (POJQ) onjava.net, which aims to provide sup-
port for Native Queries for JDOQL, but HQL and EJB Query Language (EJB QL)
could also be used with POJQ.

The concept of Native Queries is however quite interesting,since it inherently
solves that static type checking problems. Moreover, sinceit operates with the
syntax of the host language, and similar semantics, it does not require the system
developer to master several paradigms.

Figure 3.1 shows a simple example of Native Queries that retrieves all the stu-
dents that are younger than 20 and have an “A” grade.

1 // A Native Query - specifying the selection predicate by implementing
2 // the abstract method match in the abstract Predicate class
3

4 List students= database.query(
5 new Predicate<Student>(){
6 public boolean match(Student student){
7 return student.getAge() < 20
8 && student.getGrade().equals(gradeA);
9 }

10 }
11);
12

13 // The abstract Predicate class
14 abstract class Predicate<ExtentType> {
15 public <ExtentType> Predicate() {}
16 public abstract boolean match (ExtentType candidate);
17 }

Figure 3.1: Example of Native Queries in Java.

Although Native Queries give an elegant fashion of querying- i.e. that it uses
the semantics of a language that the system developer is already familiar with to
express queries, it does have one very important deficiency (in Java). In absence of

15

anonymous methods (closures), the vehicle chosen to express the predicate (con-
tained in the match method) becomes an anonymous class that implements the
abstract classPredicate. This design choice unfortunately gives a quite verbose
syntax when specifying queries, and is specific to Java.

While the verbosity is a significant drawback, the underlying idea of Native
Queries, namely the ability to express queries in a syntax and semantics native to
the host language, is very appealing.

3.2 Querying method criteria

Considering these query approaches, we propose the following criteria to use
when evaluating a new querying approach:

Static checking: The query form must enable compile time static type and seman-
tic checking. This is one of the biggest deficiencies of string-based queries,
and is necessary to overcome.

Automatic marshalling and unmarshalling: The conversion from the result of
a query to the RDBMS which is a relation with tuples, into a collection of
objects, must be performed by the query mechanism. At least it must be
possible for the rest of the persistence framework to perform the marshalling
and unmarshalling between the two data models.

Same paradigm as host language:The language used to express the query must
be in the same paradigm as the host language. If the host language is object-
oriented, then the query language must be so too. Moreover, the semantics
of the query language and the host language must be as similaras possible,
effectively making the task of writing queries no differentthan expressing
anything else in the host language, and thereby make the querying process
transparent.

Minimal verbosity: The typing required to represent a query must be minimal. If
the querying becomes to complex and difficult to master one might as well
be using SQL.

Minimal language alteration: The alteration of the host language needed to ac-
commodate the queries, must be kept at a minimal level. This is to prevent
the host language from growing unnecessarily.

Modularization: It must be possible to divide a query into different modules that
can be combined or used individually.

Optimization: The query must be transformed into a query language that is native
to the RDBMS – typically SQL. This way the RDBMS is at liberty to per-
form query optimization. Moreover, it should be possible tocombine query

16 ANALYSIS

blocks while retaining the possibility of letting the RDBMSoptimize the
query.

3.3 Choosing a language

When designing a new querying approach, it is necessary to decide which lan-
guage to use as a starting point. We choose to base our projecton Java. C# is
another viable candidate, and the choice of Java is one basedupon personal expe-
rience and knowledge to standard libraries, language syntax and semantics, etc.

3.4 Transformation

The source of the transformation will be syntactical correct Java 1.5 code that
is wrapped in some language construct that designates it as aquery. The target will
be Java 1.5 code which utilizes JDBC to express the query in SQL.

3.5 Method description

In order to be able to answer our problem statement, we proceed by designing a
query language. To support the language design process, a prototype of a compiler
is built alongside with the design process. The developmentof the compiler is
undertaken for the sake of exploring problematic areas, andit is not an explicit
goal to build a working compiler for the whole language.

The language that the compiler is to transform, is to be some subset of Java
(ideally all of Java) into other Java code. The development will start with a minimal
language, which operates only on the basics of the Java language - namely classes,
objects, references, primitives, messages, and branching. The question of whether
it is possible to make a meaningful transformation of this minimal object-oriented
query language (which we denote Simple Object Query Language (SOQL)) will be
the first target. The design of SOQL is subject to the criterialisted in Section 3.2.

To make a meaningful compiler, the rest of the persistence framework must be
in place. The persistence framework (which we denote PersiJ) is designed not to
honor as many criteria as possible from Table 2.1, but merelyto accommodate the
needs from SOQL.

17

3.6 Problem statement

With this project we wish to answer the following question:

Is it possible to design an object-oriented query language integrated with Java,
which can be transformed to Java code that ships the query as SQL to the
database while still fulfilling the criteria: static checkable, automatic mar-
shalling and unmarshalling, minimal verbosity, minimal language alteration,
modularizable, and optimizable?

18 ANALYSIS

4The PersiJ framework

In this chapter we present the PersiJ framework. We proceed by choosing to base
the design of PersiJ on an existing persistence framework specification, and write
how so. Thereafter a class (EntityCollection) is introduced as a part of PersiJ.
Figure 4.1 shows how PersiJ is situated within an application.

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

PersiJ framework

@EntityEntityCollection

SOQL

OtherClassesSOQL compiler

Application

Model classes

Figure 4.1: Illustrating the PersiJ framework within an application.

4.1 Using an existing persistence framework specification

Since building a complete persistence framework is not the focal point of this

19

20 THE PERSIJ FRAMEWORK

project, we base large parts of the PersiJ framework upon existing solutions - not
for the sake of compliance with existing standards, but for the sake of “getting the
job done” quickly.

We base some of the framework upon the proposed final draft of the EJB stan-
dard [22]. Most of the EJB standard is useful for us, as it describes in detail how
a persistence framework could be. However, we have chosen tofollow it only in
part as we would like to be able to show off some particular language design prop-
erties of SOQL. The EJB describes mainly three parts - how entities work and are
described (objects that are mapped to the database), how entities are managed (i.e.
loaded from database and stored) and how they are queried. The two latter parts
are not adopted in the PersiJ framework at all.

Much of the metadata that is required in such a persistence framework is in
PersiJ present as annotations, and in the following sectionwe present a discussion
about this.

4.2 Identifying persistable types

Since we want to build a framework that is not orthogonally persistent, there
needs to be some way to distinguish the classes whose instances have the ability
to be persisted from those that do not. In the following we sketch some principal
approaches for doing so, and acknowledge a few major advantages and disadvan-
tages.

Inheritance: The inheritance hierarchy could be used to mark persistableclasses.
All persistable classes would then inherit from a common superclass. This
makes it possible to utilize polymorphism and standard runtime reflection to
distinguish between persistable and non-persistable classes. Unfortunately
(in this case) Java only has single-inheritance, and requiring all persistable
classes to inherit from one common class limits the expressiveness.

Marker interface: While interfaces normally express a number of abstract meth-
ods that implementing classes (or subclasses hereof) are required to imple-
ment or mark abstract, another alternative use of interfaces is as amarker
interface[25]. A marker interface has no methods, and is used to indicate
that an implementing class has some special property. We disfavor this ap-
proach, since we feel that an interface should indicate thatan object has some
special behavior. Using an interface to mark a property of anobject is not
indicating guaranteed behavior, but another property.

New class modifier: Another alternative is to modify the existing programming
language, and introduce a new class modifier. Introducing new syntax into
the language integrates the identification into the language. A disadvantage
is however that the language grows, and gets more complicated. Moreover,
a new (pre)compiler is required for the whole language.

21

External files: Properties files and XML files (with custom schema) have grown
quite popular to hold configuration options and metadata - e.g. in conjunc-
tion with ORM. External files have two major disadvantages. First of all,
the information they present is not integrated with the typesystem and sec-
ondly, the information is not located directly in the sourcecode, next to the
language elements that they concern.

Annotations: Since Java 1.5, annotations have been a part of the language type
system. Annotations alleviate both of the major disadvantages of properties
files and XML files - they place the metadata right next to the effected lan-
guage element, instead of placing it in another location. Annotations are also
integrated into the type system, and can be available through runtime reflec-
tion. The Annotation Processing Tool (APT) is distributed with the Software
Developers Kit (SDK) for Java 1.5, and provides a framework for processing
annotations.

In the PersiJ framework we have chosen to useannotationsto enhance the
source code. This way we can easily use APT to find the classes marked as entities.

4.3 Entities

The EJB standard describes an entity class as a class that is mapped to a
database, or more precisely:

Definition 1 (Entity) An entity is a lightweight persistent domain object.

EJB proposes to use annotations as metadata. This leads us toadopt the entity
class definition – to a certain degree.

The EJB specification treats how to identify entity classes,how to identify
shadow information1, how to distinguish between property based and member
based access, which properties that entity objects have to uphold, how to map from
entities to relations, how to map foreign key relations in the database to entities,
etc.

The following is a specification of the entity class. Some of the differences
compared to the EJB specification are small and intricate, and some are more mas-
sive. We have chosen to present the specification in some detail, to give a coherent
view of the requirements to an entity class. Therefore, someof the succeeding text
is equal to that of the EJB standard. We will explicitly note where the PersiJ en-
tities differ from the EJB entities in more substantial matters. In general, where it
has been possible, complexity and nice-to-have features have been removed from
the EJB standard.

1Extra information added to the object in order to track it back to the tuple in the database.

22 THE PERSIJ FRAMEWORK

4.3.1 Requirements on the Entity Class

The entity class must be annotated with the@Entity annotation. The entity class
must be a top-level class, and have a public no-args constructor. Entities may ex-
tend non-entity classes as well as entity classes, and non-entity classes may extend
entity classes.

The persistent state of an entity is represented by instancevariables, which
may correspond to JavaBeans properties (see [22] for more information). Instance
variables must not be accessed by clients of the entity. The state of the entity is
available to clients only through the entity’s accessor methods (getter/setter meth-
ods) or other business methods. Instance variables must be private, protected, or
package visibility.

4.3.2 Persistent fields and properties

The persistent state of an entity is stored in its instance variables. An instance
variable can hold persistent state if it is neither marked with the @Transient
annotation, nor thetransient modifier.

Mapping annotations are either applied to a field or its corresponding accessor
method. The behavior is unspecified if both is the case. Mapping annotations on
transient fields have no effect.

It is required that the entity class follow the method conventions for a JavaBean
when persistent properties are used. In this case, for everypersistent property
calledpropertyof the entity, there is a getter method,getProperty, and setter
methodsetProperty. For boolean properties,isProperty is an alternative
name for the getter method.

In addition to returning and setting the persistent state ofthe instance, the prop-
erty accessor methods may contain other business logic as well, for example, to
perform validation. The persistence provider runtime executes this logic when a
property based access is used:

Caution should be exercised in adding business logic to the acces-
sor methods when property-based access is used. The order inwhich
the persistence provider runtime calls these methods when loading or
storing persistent state is not defined. Logic contained in such methods
therefore cannot rely upon a specific invocation order.[22]

The behavior of runtime exceptions in the PersiJ framework is – unlike EJB –
undefined. The reason for this is that we want to start out witha minimal language,
where elements like exceptions have been removed.

The following types are present in the PersiJ framework:

• Primitive types (int, float, byte, short, char, boolean, double, etc.)

• String

23

• Other serializable types and wrappers of the primitive types such asInteger,
Byte, etc.

• Enums

• Entity types and lists of entity types (EntityCollection, etc.)

The metadata for ORM are among others the annotations@Table, @Column,
@Id, @SecondaryTable, @JoinColumn, @ManyToOne, @OneToOne, etc. For
a full listing and specification we refer to EJB specificationin [22]. We will not
describe these as they are described in detail in the specification.

4.3.3 Mapping objects to relations

The EJB specification does not prescribe how to map objects tothe persistent stor-
age, so we need to look at this:

This specification does not prescribe how the abstract persistence schema
of an entity bean should be mapped to a relational (or other) schema
of a persistent store, or define how such a mapping is described. [22]

We will therefore present four different ways of modeling this problem - all
based on some work by Scott W. Ambler [2]. We will briefly summarize the four
approaches:

1. Map hierarchy to a single relation – each hierarchy corresponds to one
relation, with tuples for all the object members.

2. Map each concrete class to a relation– each object becomes one tuple in
one relation.

3. Map each class to its own relation– each class corresponds to a relation.
Each object becomes one tuple in each relation from its classuntil the base
class.

4. Generic mapping – a number of relations contain tuples that describe the
system: the classes, their members, inheritance relationsand attributes. Fi-
nally there is one relation containing tuples with all the values.

The generic mapping (4) does not scale very well and queries quickly becomes
very ineffective compared with the other three solutions. This is therefore not
considered to be a usable approach at all, thus rejected.

Map each hierarchy to a single relation (1) removes the possibility of using
domain constraints such asnot null etc. thus is not a viable solution.

Mapping each concrete class to a relation (2) and mapping each class to its own
relation (3) are both good alternatives. Let us have a look atthe difference between
the two in order to make a choice. Figure 4.2 illustrates the two ideas. In the left

24 THE PERSIJ FRAMEWORK

hand side of the figure,<A> means that class A is declaredabstract thus each
class is mapped to its own relation. Another thing worth noticing is that on the right
hand figure class B both contains the attribute from A and B thus making schema
evolution harder to maintain as adding a new attribute to A should propagate to all
children inheriting from A. On the other hand, the solution on the left hand side
need to map each child to its parent in order to fulfill the inheritance - e.g. through
an id.

Att

<A> Relation A

Att

A

Att
Relation A

Att

Map each concrete class to a relationMap each class to its own relation

C

Ctt
Relation C

Ctt

Relation B

Btt

B

Btt

B

Att
Btt

Relation B

Att Btt

Figure 4.2: The two viable mapping approaches – (2) and (3).

Both solutions have some strong and weak points. Mapping each class to its
own relation require that we model inheritance inside the database. Mapping each
concrete class to a relation handles this by duplicating theinherited attributes on
the cost of schema evolution. Because we are making a proof ofcase rather than
having focus on an entire solution we are choosingmap each concrete class to
a relation (2) but recognizing that this solution might not be the best,if schema
evolution will come in focus in future implementations. Butfor now, this will do
as this is easier to implement.

4.3.4 Multi-valued properties

For multivalued properties – collections of objects – the entity must use the type
EntityCollection (see Section 4.4). This is one area where PersiJ differs from

25

EJB. However, the metadata used to mark the relationships are equal, and so are
their semantics. The following is from the EJB specificationabout entity relation-
ships, but we have taken the liberty to change it to fit our layout.

Relationships among entities may be one-to-one, one-to-many, many-
to-one, or many-to-many.

If there is an association between two entities, one of the following
relationship modeling annotations must be applied to the correspond-
ing persistent property or instance variable of the referencing entity:
@OneToOne, @OneToMany, @ManyToOne, @ManyToMany.

These annotations mirror common practice in relational database sche-
ma modeling. The use of the relationship modeling annotations al-
lows the object/relationship mapping of associations to the relational
database schema to be fully defaulted, to provide an ease-of-develop-
ment facility.

Relationships may be bidirectional or unidirectional. A bidirectional
relationship has both an owning side and an inverse side. A unidi-
rectional relationship has only an owning side. The owning side of a
relationship determines the updates to the relationship inthe database.
The following rules apply to bidirectional relationships:

• The inverse side of a bidirectional relationship must
refer to its owning side by use of the@mappedBy ele-
ment of the@OneToOne,@OneToMany, or@ManyToMany
annotation. The@mappedBy element designates the
property or field in the entity that is the owner of the
relationship.

• The many side of one-to-many / many-to-one bidirec-
tional relationships must be the owning side, hence
the @mappedBy element cannot be specified on the
@ManyToOne annotation.

• For one-to-one bidirectional relationships, the owning
side corresponds to the side that contains the corre-
sponding foreign key.

• For many-to-many bidirectional relationships either side
may be the owning side.

For a full specification, we refer to EJB specification [22] once more.

26 THE PERSIJ FRAMEWORK

4.4 The EntityCollection

Instead of using theEntityManager interface of EJB, we present a collec-
tion type native to the PersiJ framework - namely theEntityCollection (from
this point written as EntityCollection to enhance readability). As we shall see later
in Chapter 5, we want to be able to return a collection of entities from queries.
Since it is a design goal to make the footprint of the framework as small as pos-
sible regarding API and language alteration, we combine themapping of relations
between objects, and the operations for manipulating entities into one type – the
EntityCollection.

We proceed by describing the signature of the EntityCollection, and thereby
explaining how it is supposed to work. All of the signatures can be seen in Ap-
pendix A.

4.4.1 Parametrized type

The EntityCollection is parametrized with one type. The parametrized type is the
entity which the EntityCollection will contain, and the underlying collection type
will contain. Constraining the type that the EntityCollection contains provides two
major advantages:

• All the same advantages that are gained by making any other collection type
parametrized apply - that the compiler statically can checkvalidity of as-
signments and that explicit typecasts no longer is needed when using the
collection.

• The EntityCollection can runtime infer the actual type parameter and from
runtime reflection obtain the necessary information to perform mapping to
the database.

4.4.2 Constructor

The constructor of the EntityCollection is overloaded. Thedefault no-args con-
structor is used when the developer wishes to make a new, empty EntityCollection
that can be used to persist entities.

The other constructor is a constructor used by the PersiJ framework internally.
It takes ajava.sql.ResultSet object as parameter, and iterates over the result-
set - converting the rows from the result set to objects in theEntityCollection.

Figure 4.3 shows the two constructors in use.

4.4.3 Static data structures

Internally, the EntityCollection maintains data structures that map types and pri-
mary key values to references to corresponding loaded objects to assure that there
is only one loaded copy of each entity.

27

1 // Creating and using a new blank EntityCollection
2 EntityCollection<Car> cars = new EntityCollection<Car>();
3 cars.add(new Car("Ferrari","Red","Expensive"));
4 cars.add(new Car("Koenigsegg","Yellow","Ridiculously expensive"));
5

6 // The other constructor used by the PersiJ framework
7 java.sql.PreparedStatement pStmt= con.prepareStatement(
8 "SELECT * FROM cars WHERE pricetag = ?"
9);

10 pStmt.setString(1,"Cheap");
11 java.sql.ResultSet resultSet= pStmt.query();
12 EntityCollection<Car> cheapCars= new EntityCollection<Car>(resultSet);

Figure 4.3: Example illustrating marshalling and unmarshalling.

4.4.4 JDBC connectivity

Statically the EntityCollection class maintains connections to the database. Should
the system developer wish to interact with the database directly using JDBC, the
methodgetConnection() can be used to retrieve a connection to the database.
Figure 4.4 shows an example ofgetConnection().

1 java.sql.Connection conn= EntityCollection.getConnection();
2 java.sql.PreparedStatement preparedStmt= conn.prepareStatement(
3 "SELECT fname FROM person WHERE fname = ’Per’");
4 // Do more with the database/connection here
5 conn.close();

Figure 4.4: Example illustrating the methodgetConnection().

4.4.5 Collection type methods

Since the EntityCollection implements the interfacejava.util.Collection,
all of the methods fromCollection are implemented. Internally the EntityCol-
lection will contain some collection object which actuallyholds all the entities.
The method calls implemented from theCollection interface are wrappers, that
perform some form of action related to the persistence responsibilities, and re-
delegate the call to the underlying collection implementation. In general, the wrap-
ping functionality is responsible for keeping the internalstatic data structure up-to
date. The persistent representation of the objects contained in the EntityCollection
is not updated until the methods described in the following section are called.

One important issue is that the system developer needs to call clear() or
removeAll() before deleting the last reference to the EntityCollection, to enable

28 THE PERSIJ FRAMEWORK

the static data structure to erase all references to the objects contained in the Enti-
tyCollection. If the EntityCollection is not cleared before being garbage collected,
the static data structure will not become aware that the references to the objects that
where contained in the collections now possibly are obsolete, and may be garbage
collected [25].

4.4.6 Storing and deleting from persistent storage

Since the EntityCollection itself does not know whether or not an object is dirty
(that is, in an inconsistent state with the persistent storage) there has to be a way
of persisting the changes. There are four methods - two methods for persisting
objects, and two methods for removing objects from persistent storage. Figure 4.5
shows an example of using the manipulation methods.

1 EntityCollection<Car> cars = new EntityCollection<Car>();
2 Car lamborghini= new Car("Lamborghini","Pink","Expensive");
3 Car mini = new Car("Morris Mini", "Racing Green", "Reasonable");
4 cars.add(lamborghini);
5 cars.add(mini);
6 // The collection cars now contain the lamborghini and mini -but they are
7 // not stored persistently.
8

9 cars.persist(lamborghini);
10 // The lamborghini is stored in the database.
11

12 lamborghini.setColor("Black");
13 // No more ’girly’ colors.
14

15 cars.persist();
16 // The persistent representation of the lamborghini is updated
17 // and the mini is inserted.
18

19 cars.unPersist(mini);
20 // Delete only the mini from both the database and the collection.
21

22 cars.unPersist();
23 // . . .and the lamborghini is deleted too.
24

25 lamborghini = null ;
26 mini = null ;
27 // . . .and the objects can now be garbage collected by the JVM.

Figure 4.5: Example illustrating thepersist methods.

29

4.4.7 Using prefecthing and lazy load

As all other ORM frameworks, PersiJ is subject to problems with loading whole
object graphs upon retrieval of a single object. The EntityCollection allows for
implementing some lazy load technique, where the related objects are loaded on-
demand. As a first approach however, the EntityCollection blindly follows rela-
tions, loading the whole object graph. The PersiJ frameworkis subject to all the
usual problems with lazy loading and prefetching, but usingexisting work on the
subject [6], a satisfactory solution could probably be achieved.

4.5 Summary

The PersiJ framework can be considered as consisting of three parts:

Entities: Entities are objects which are mapped to the database. The metadata
used to describe entities and relations between them is annotations, which
quite closely follow the EJB standard.

EntityCollection: The EntityCollection is a collection that is used to manage enti-
ties, and relationships between them. Apart from the standard Collection

methods, there are extra methods for storing and deleting objects.

SOQL: This is the query language used to retrieve objects from persistent storage.
Look no longer than the following chapter for a description of SOQL.

30 THE PERSIJ FRAMEWORK

5Simple Object
Query Language

In this chapter we will strive to design a method for queryingwithin the PersiJ
framework as laid out in the previous chapter. To summarize these: standard EJB
annotations mark classes that are mapped to a database, and the EntityCollection
type is used to model references between objects.

The modus operandi of this chapter is to start with deciding upon the basic
form of the query construct, and hereafter finding a minimal subset of the Java
language that can be used to perform queries. Constructs forexpressing predicates,
sorting, limiting and a way of modularizing queries is also presented. A number of
examples are given to illustrate the ideas and concepts.

5.1 Basic form of query construct

In Section 3.1.3 we decided not to be using Native Queries as our starting point,
due to the verbose fashion of implementing thePredicate class. The underlying
idea of thematch method (see Figure 3.1), namely the evaluation of a predicate on
each candidate object, will also be the underlying idea for SOQL.

The queries have to marked in some way, so the compiler can recognize them.
Following the fashion of EJB, SOQL queries are also marked with annotations.

Throughout the rest of this section, the form of the query construct is described.

5.1.1 Valid Java

One of the goals of the querying part of the PersiJ framework,is to investigate
to which degree it is possible to express queries to relational databases using a
language that resembles Java 1.5 as much as possible both with regards to syntax
and semantics.

Whichever encapsulating language construct one might choose, the essential
part of the compilation process will be the transformation from ordinary Java code
to Java code utilizing JDBC and SQL statements.

31

32 SIMPLE OBJECTQUERY LANGUAGE

To be able to focus the development process on this transformation, we want to
be able to utilize a standard Java compiler (e.g. Java Compiler (JavaC)) to handle
the compilation of the rest of the application. If this is possible, it is also possi-
ble to compile the source code and reflectively inspect the type system during the
transformation of the query constructs.

This restriction enforces that we (re)use existing language constructs in Java,
and that the queries that the system developer writes are actually syntactically and
somewhat semantically sane (in the eyes of the Java compiler, anyway).

Sticking to standard Java 1.5 syntax also gives the benefit oftool support.
Therefore, an existing Integrated Development Environment (IDE) like Eclipse
[20] is able to operate on the source code with the query constructs.

Another approach would of course be to introduce new language constructs
to mark up queries, but as we will see later, reusing existinglanguage constructs
enables a compilation (and transformation) process that simplifies the development
of this compiler. On one hand, introducing new keywords or language constructs
on method-level or class-level might better cover the semantics of querying, and
make the code easier to read (and write). On the other hand, each new language
construct complicates the language, and potentially makesit more difficult to learn.

We choose to use existing Java constructs in our design, because we believe
that it is possible to use the host language (in this case Java) to express queries.

5.1.2 Encapsulating queries in methods

Given that we want to express the queries using existing Javalanguage constructs,
we have chosen to use a method as the vehicle for a query. Thereare two rea-
sons for this. First of all, we do not feel that implementing anonymous classes like
Native Queries gives an elegant solution. Another reason isthat once the imple-
mentation takes place identifying these methods are somewhat easy - especially if
they are marked in some specific way. We, on the other hand, acknowledge that
methods are not the most elegant solution, but we feel that they are more elegant
than anonymous classes.

We will be building the semantics for the query method littleby little. Starting
with the return type of a query, the result of some query is always a collection of
objects that match the predicate expressed in the query. Using the EntityCollection
as return type integrates SOQL with the rest of PersiJ.

The query method should be able to express a query, and returna collection of
objects from the persistent storage that satisfies the predicate(s) expressed within
the method. Given that we want to utilize a standard Java compiler, the language
for these methods must be a subset to the Java language, and the signature of the
method must be the same before and after the processing done by the PersiJ com-
piler.

The generated code that will constitute the compiled methodmight throw some
exceptions - either from code supplied by the system developer, or from code inter-
acting with the database, etc. Since exceptions are not a part of SOQL, we choose

33

to move the exception handling outside the query method. Anyexception thrown
within the query method stemming from the database handlingcode is wrapped in a
PersiJException, and re-thrown. The signature for the query method therefore
includesthrows PersiJException.

5.1.3 Using annotations for markup

For several reasons, we choose to distinguish the query methods from other meth-
ods by marking them with annotations. This is one of the places where we deviate
from the EJB specification.

• We need to be able to distinguish query methods from other methods. That
is, we need to identify methods working on persistent data inorder to do the
translation from Java source code to JDBC and SQL statements.

• Using annotations, we follow the style used to markup classes that are mapped
to the database.

• Annotations is a native part of the Java language (since 1.5). This means
that we can markup the language with annotations and simply use a standard
Java compiler like JavaC.

• When using annotations to mark the methods, we keep the metadata close to
the code, avoiding external configuration files.

• Instead of having to find the query methods ourselves, we can use APT to
investigate the source base, and kick start the compilationprocess (more
about this in Section 5.7).

5.1.4 Body of the query method

The method itself, and how the method can be called, is subject to normal Java
semantics - this also means that normal access modifiers etc.apply.

The next task is to define how the method can be used to express apredicate
that can be evaluated for each tuple in the database. Trying to solve this problem
could be done several ways. When designing the language there are two design
goals to keep in mind:

1. It should be easy to use (intuitive).

2. It should be compilable with any Java compiler (pure Java source code).

The subset of Java that we want to use is already informally defined, as we in
Section 3.5 chose to only use the basics of the Java language -classes, objects,
references, primitives, messages, and branching. This translates to taking away
loop constructs, generics, exceptions, arrays, anonymousclasses, labels, etc.

34 SIMPLE OBJECTQUERY LANGUAGE

As a syntactical basis for our language we will be using the specification of Java
1.5 that can be found on the homepage for Java Compiler Compiler (JavaCC). This
has then been reduced to remove the elements that we discarded in the analysis
(exceptions, generics, etc.). After reducing this grammar- removing the above
mentioned elements, the grammar for SOQL becomesthe base grammar. The
base grammar can be inspected in Appendix B.

The basic idea of the method (derived from Native Queries) isto have a refer-
ence to a candidate object in scope. Moreover, since the return type of the method
is EntityCollection, a reference to such an object must alsobe in scope. If the can-
didate object is added to the EntityCollection, the candidate object must be con-
tained within the returned collection. We therefore require that the method body
starts with the two lines shown in Figure 5.1 (lines no. 3 and 4). Requiring them to
be the two first statements is merely to ease implementation.

1 @Query
2 EntityCollection<type> someMethod(arguments) throws PersiJException{
3 EntityCollection<type> resultCollection= new EntityCollection<type>();
4 type candidateObject= null ;
5

6 // The actual implementation
7

8 return resultCollection;
9 }

Figure 5.1: Example of the query method.

The arguments to the method,arguments, are optional. These can be input to
the predicates, etc. Thetype in line no. 2-4 needs to be the same type as the type
the EntityCollection returned from the method is parametrized with. To illustrate
this, Figure 5.2 is a more usable example where the structurefrom Figure 5.1 is
preserved. In Figure 5.2 we have replacedtypewith Car, theresultCollectionwith
cars andcandidateObjectwith candidateCar.

Now that we have covered the surrounding code, its time to look at the actual
expression of a predicate itself. The simplest implementation of the method would
only contain a add method that adds all elements to the EntityCollection. Figure 5.3
illustrates the actual implementation of Figure 5.2.

Instead of simply using theadd() method (as described in Section 4.4) it is
possible to use an if-statement to build up the predicate. Here we will briefly
illustrate the idea, as the if-statement will be covered in greater detail in Section 6.6.

Figure 5.4 is an example of the if-statement. Here we are looking at cars and
searching for all cars that are notred.

To ease the translation of Java source code to SQL statements, a return state-
ment is mandatory, and must be the very last statement in the method block. This
makes it easier to read and easier to translate. The return statements can be per-

35

1 @Query
2 EntityCollection<Car> getCars(arguments) throws PersiJException{
3 EntityCollection<Car> cars = new EntityCollection<Car>();
4 Car candidateCar= null ;
5

6 // The actual implementation
7

8 return cars;
9 }

Figure 5.2: Example of the query method.

1 . . .
2 cars.add(candidateCar);
3 . . .

Figure 5.3: Without a predicate inside query method.

1 . . .
2 if (candidateCar.getColor().equals("red")) {
3 // Do nothing
4 } else {
5 cars.add(candidateCar);
6 }
7 . . .

Figure 5.4: With a predicate present inside query method.

ceived a bit like go-to statements (as they break out of the structure) [19]. As we
will be discussing in Section 7.1.3 these if-statements arenot to be evaluated as
regular if-statements, and therefore a return statement inside these would be mis-
leading.

5.1.5 The base grammar

Instead of simply showing examples, Let us review parts of the grammar from
Appendix B. First, consider the block called PersijMethodBlock, which can be
found in Table 5.1.

What is interesting here is the way we are constructing the query method. As
mentioned earlier, the first two lines in the method body are predefined. In the
grammar provided by JavaCC you would find the return statement inside theBlock-
Statementand not in the method block as we have chosen to do this. Again,because

36 SIMPLE OBJECTQUERY LANGUAGE

PersijMethodBlock ::= {
EntityCollection <Type> <IDENTIFIER>

= new EntityCollection <Type> () ;
Type < IDENTIFIER> = null ;
(BlockStatement)*
return <IDENTIFIER> ;
}

Table 5.1: Grammar forPersijMethodBlock.

this could be misleading.
Another part of the grammar that is different from JavaCCs grammar is the

Statementblock illustrated in Table 5.2. This has been reduced drastically from
the JavaCC version in order to remove excessive statements (for, while, switch, try,
etc.). It is only possible to make predicates using the if-statements.

Statement ::= Block
| StatementExpression ;
| IfStatement

Table 5.2: Grammar forStatementblock.

5.1.5.1 Types

The types explicitly present in the base grammar areString and the primitive
types, boolean, char and int, and of course the EntityCollection (see Sec-
tion 4.4). Apart from these, all qualified type names are allowed in expressions,
etc.

5.1.5.2 Assignment operators

Assignment operators have been boiled down to only being=, and it is only possi-
ble to assign the predefined lines in Table 5.1. In other words, declaring variables
inside the body of the method is not possible, which means that any variables to a
query must enter the method as an argument, or already be in the scope containing
the method (i.e. class variables and instance variables).

5.1.5.3 Comparison operators

The comparison operators are restricted to only be<, <=, >, >= and==.

37

5.1.5.4 Boolean operators

The allowed boolean operators are:&&, ||, !

5.1.5.5 Branching

Branching is possible by using if-statements. The form of the if-statements is sim-
ilar to that of (ordinary) Java.

5.1.5.6 Expressions

Expressions are equal to those of Java, and within both statements and expressions,
it is possible to do both method calls and field dereferencing.

5.1.5.7 Method calls

Method calls are the basic mechanism of communicating in an object-oriented
programming language, and have their natural place also in SOQL. Translating
a method call on an object from SOQL to Java, is however not without difficulties.
Due to the nature of the translation, it becomes important tobe able to identify
which methods alter the state of their objects, and which do not. We will elaborate
in detail in Section 6.5 why this is so.

For now, consider Figure 5.5. In line no. 4, a safe method callis made on
paramColor. It is safe for several reasons. The result of the call is not dependent
on the candidate object – theequals method call does (apparently) not alter state
of the object, nor any other objects.

1 public EntityCollection<Car> getCarsByColor(Color paramColor, Counter cntr)
2 throws PersiJException{
3 EntityCollection<Car> cars = new EntityCollection<Car>();
4 Car candidateCar= null ;
5 if (paramColor.getName().equals(candidateCar.getColor().getName())) {
6 cars.add(candidateCar);
7 }
8 candidateCar.getOwner().setName("Per");
9 cntr.count();

10 cntr.infiniteRecursiveMethod();
11

12 return cars;
13 }

Figure 5.5: Using a safe and an unsafe method call.

An unsafe method call is made in line no. 7. Apparently the method call should
be equivalent to renaming all cars owners to “Per”, but it is not safe since it alters
the state of objects that are in the database. Another unsafecall is made in line no.

38 SIMPLE OBJECTQUERY LANGUAGE

8. Thecount method on the objectcntr presumably alters the state of thecntr
object, increasing some internal variable.

When translating this method a problem arises - should the method be called
once for each candidate object being evaluated? Should the method only be called
once? Line no. 9 introduces yet another complication. If method calls are allowed,
then so is recursion. Recursion per se is not problematic - however, infinite recur-
sion is a problem. Non-termination can not be expressed in SQL and a classical
result of computability is that the detection of non-termination is impossible - an
instance of“The halting problem” [39].

Many of the problems with unsafe method calls come down to identifying
whether a method alters state (has side-effect). This is a problem that has been
investigated in some detail.

Dealing with side-effects Although this sounds like an easy task, it isn’t. First
of all, what is a side-effect? Is a method side-effect free ifand only if it doesn’t
change the object in question? What happens if the method changes the state of
another object - is it then without side-effects?

In the object-oriented programming language Eiffel [21] there is a strict dis-
tinction between a function and a procedure. A function doesnot call a procedure
and does not change anything, but simply returns the value (is also calledpure)
whereas a procedure changes something. But in Java we cannotdistinguish be-
tween functions and procedures. One way is to use annotations to markup pure
methods (e.g. using@pure [29]), but this only solves part of the problem - since it
then is up to the programmer to guarantee that the method onlyreturns a value.

A lot of research has been done in the area of side-effects. Alexandru D. Sal-
cianu and Martin C. Rinard [38] uses a technique called pointer analysis [45] to
determine whether or not an object is pure. They distinguishbetweenread-only
parameters andsafeparameters:

A parameter is read-only if the method does not mutate any object
reachable from the parameter... A parameter is safe if it is read-only
and the method does not create any new externally visible heap paths
to objects reachable from the parameter. [38]

There are three approaches to dealing with side-effects in an object-oriented
environment. Either ignore side-effects, deny side-effects, or allow side-effects.
The question then remains. Should we simply ignore side-effects and hope for the
best? Or should we allow side-effects and try to resolve them, and if this fails
inform the developer of the problem or should we simple deny side-effects once
and for all. Denying side-effects completely would not be a viable solution, as we
would need to definewhat a side-effect is- and be able to recognize this. Ignoring
them could result in strange and unexpected behavior of the system. Therefore we
must allow side-effects to be present in the system, and thenfind a way to resolve
these.

39

Using an approach like Alexandru D. Salcianu and Martin C. Rinards are ap-
pealing, as analysis-based approaches does not require e.g. the@pure annotation
to be added to the application.

5.2 Terminology

A few definitions are in place.

Definition 2 (Query Method) A query method is a method in a standard Java 1.5
class definition that is marked with the annotation@Query. A query method must
follow the grammar defined in Section B. The return type of a query method is the
generic type EntityCollection.

Definition 3 (Candidate Object) A candidate object is an object of the same type
as the type-argument to the return type of the query method. Acandidate object
must be of a type that is decorated with the@Entity annotation, and is a required
part of a query method.

Definition 4 (Persistable Object) A persistable object is an object of a class that
is marked with the@Entity annotation.

All possible candidate objects (i.e. all objects of the typethat are present in
persistent storage) are evaluated with respect to the predicate expressed in the query
method. If a candidate object fulfills the predicate, the candidate object is included
in the set of returned objects.

5.3 Predicates

Expressing predicates in the most basic form is done using if-statements. Con-
sider the following phrase:“If a car is colored yellow, add it to the collection of
returned objects.”. The predicate being tested for is of course whether the color
of the car equals yellow - and expressing this in normal Java-like syntax is quite
straightforward (see Figure 5.6).

1 . . .
2 if (candidateCar.getColor().equals("Yellow")) {
3 cars.add(candidateCar);
4 }
5 . . .

Figure 5.6: Expressing a simple predicate.

40 SIMPLE OBJECTQUERY LANGUAGE

To be able to translate the simple predicate, it is necessaryto assign special se-
mantics to theequals method, and assume that it can be translated to the equality
comparison operator in SQL for primitives and strings.

Using both the “then” part and the “else” part of if-statements, and nesting
if-statements, more complicated predicates can be expressed. This approach is
pretty straightforward, and in Section 6.6 a detailed explanation of the translation
to predicates is given.

If the expression in the if-statement does not contain any references to objects
and primitives, the if-statement is not used to build a predicate, but is used to
indicate actual control flow - branching. The branching can be used to dynamically
build queries dependent on which branch of execution is followed runtime.

5.4 Sorting

The standard way of sorting a collection in Java, is by using the static method
sort, and an anonymous implementation of a comparator. The sort method and a
selected part of theComparator interface is shown in Figure 5.7.

1 package java.util;
2 public class Collections{
3 . . .
4 public static <T> void sort(List<T> list, Comparator<? super T> c);
5 . . .
6 }
7

8 public interface Comparator<T> {
9 int compare(T o1,T o2);

10 }

Figure 5.7: Selected parts ofjava.util.Collections andComparator.

Sorting a result from a query can be done likewise in SOQL. While it of course
is possible to do this in the JVM, it can be moved as an operation that the RDBMS
performs. To facilitate this, there are however some issuesto solve.

5.4.1 EntityCollection implements List

The sort method accepts an object that is assignable tojava.util.List, and En-
tityCollection therefore has to be altered to implementjava.util.List instead
of java.util.Collection. Changing the EntityCollection applies to all parts
of PersiJ. The change will introduce a number of new methods in EntityCollection.
The semantics of EntityCollection will also change a little, since a list according to
the Java API is:

41

An ordered collection (also known as a sequence). The user ofthis
interface has precise control over where in the list each element is
inserted. The user can access elements by their integer index (position
in the list), and search for elements in the list.

Unlike sets, lists typically allow duplicate elements. More formally,
lists typically allow pairs of elements e1 and e2 such that e1.equals(e2),
and they typically allow multiple null elements if they allow null ele-
ments at all. . . .

The shortcomings of the list (inefficient search complexity) may be overcome
by the underlying implementation.

5.4.2 Which comparison operation

Letting the system developer provide a customComparator is unfortunately not
possible. The solution is to provide twoComparator classes that are both part of
the PersiJ API:

• AscendingComparator

• DescendingComparator

5.4.3 Which member to sort on

Since an object in an EntityCollection potentially has manymembers, it is not clear
which member to sort on. Inherently, theComparator interface does not provide
any mechanism for indicating this - but since we want make thecomparators work
on all sorts of entities, this needs to be remedied. One solution would be to make a
constructor on the comparators that takes ajava.lang.reflect.Memberobject
as parameter. The SOQL compiler could then use this to reflectively investigate
which member the sort order should be determined after. However, obtaining this
object for some candidate object does require some verbose coding for the system
developer. Figure 5.8 shows an example of this.

Another approach that can coexist with the former, is to add aconstructor to the
comparators that simply takes anObject object as parameter. Upon creation,
the comparator then receives the field that has to be sorted onas a parameter. In
a normal runtime situation, the actual value of the parameter cannot be used to
determine which field to sort on. But because the SOQL compiler inspects the
source code, it can determine which member to sort on. This approach is illustrated
in Figure 5.9.

The obvious drawback to this approach, is that primitives are not objects, and
do not inherit fromObject and can therefore not be used. In this case, the former
approach may be used.

42 SIMPLE OBJECTQUERY LANGUAGE

1 public EntityCollection<Car> getAllCarsSortedByColor() throws PersiJException{
2 EntityCollection<Car> cars = new EntityCollection<Car>();
3 Car candidateCar= null ;
4 cars.add(candidateCar);
5 Collections.sort(
6 cars, new AscendingComparator(
7 candidateCar.getClass().getField("color"))
8);
9 return cars;

10 }
11

12 // Equivalent SQL statement
13 SELECT * FROM cars ORDER BY color ASC

Figure 5.8: Another example of the sorting mechanism in SOQL.

1 public EntityCollection<Car> getAllCarsSortedByColor() throws PersiJException{
2 EntityCollection<Car> cars = new EntityCollection<Car>();
3 Car candidateCar= null ;
4 cars.add(candidateCar);
5 Collections.sort(cars, new AscendingComparator(candidateCar.getColor()));
6 return cars;
7 }
8

9 // Equivalent SQL statement
10 SELECT * FROM cars ORDER BY color ASC

Figure 5.9: An example of the sorting mechanism in SOQL.

5.5 Limiting

Limiting the number of results is a feature of SQL that can be achieved in
SOQL by adding a method to the EntityCollection that sets themaximum number
of elements that it may contains. The method is given specialsemantics in the
sense that if it is called in a query, it is translated to a SQL fragment.

Unfortunately there is no such method already present in theCollection

interface, so we add one, and name itsetMazSize. The reason that it is not
calledsetLimit or similar, is to follow the existing concepts of theCollection
interface, where the number of elements contained in a collection is refereed to as
size. Figure 5.10 shows an example of the limiting mechanism.

43

1 @Query
2 public EntityCollection<Car> get10Cars() throws PersiJException{
3 EntityCollection<Car> cars = new EntityCollection<Car>();
4 Car candidateCar= null ;
5 cars.add(candidateCar);
6 Collections.sort(cars, new AscendingComparator(candidateCar.getMake()));
7 cars.setMaxSize(10);
8 return cars;
9 }

10

11 //Equivalent SQL statement
12 SELECT * FROM cars ORDER BY make LIMIT10

Figure 5.10: An example of the limiting mechanism in SOQL.

5.6 Modularization

One of the goals we want to achieve with SOQL is the ability to modularize
queries. Since the basic encapsulation of a query is a method, modularization can
be achieved by letting@Query annotated methods be called within each other, and
compile time translating this into one query.

This is achieved by letting certain methods on the EntityCollection have special
semantics. Instead of calling the methods, the queries expressed in the@Query
methods that generate them are incorporated in the query currently being compiled.

A prerequisite for modularizing queries like this, is the availability of the source
code of the@Query methods that are called by the one being compiled currently.

By compiling everything to one SQL statement, query optimization by the
RDBMS is possible - the (much worse) alternative being that all the queries are
performed separately, all objects instantiated and the methods on the EntityCollec-
tions evaluated in the runtime environment.

In the following text we base several examples on a common class illustrated
in Figure 5.11.

The following sections will describe each of the methods on EntityCollection
that has special semantics. Their functionality is illustrated with simplistic exam-
ples. In Section 6.9 a more precise explanation and their translation is given. This
section is therefore just a “read and understand examples” section.

5.6.1 Set operations

The familiar set operations intersection, union, and complement can all be modeled
by methods defined in theCollection interface. The normal behavior of these
methods, had they been executed in Java, can be translated toequivalent SQL.

44 SIMPLE OBJECTQUERY LANGUAGE

1 class A {
2 @Query
3 static EntityCollection<Car> getBlackCars() throws PersiJException{
4 EntityCollection<Car> cars = new EntityCollection<Car>();
5 Car candidateCar= null ;
6 if (candidateCar.getColor().equals("Black")) {
7 cars.add(candidateCar);
8 }
9 return cars;

10 }
11

12 @Query
13 static EntityCollection<Car> getRedCars() throws PersiJException{
14 EntityCollection<Car> cars = new EntityCollection<Car>();
15 Car candidateCar= null ;
16 if (candidateCar.getColor().equals("Red")) {
17 cars.add(candidateCar);
18 }
19 return cars;
20 }
21 }

Figure 5.11: Common classes for modularization examples.

5.6.1.1 Intersection - retainAll

The API documentation of Java 1.5 has the following to tell about the method
retainAll:

Retains only the elements in this collection that are contained in the
specified collection (optional operation). In other words,removes
from this collection all of its elements that are not contained in the
specified collection.

If two collections are considered as multi-sets, callingretainAll on one with the
other as parameter can be considered the intersection of thetwo multi-sets. SQL
has anINTERSECT keyword to select the intersection of two select statements.
Figure 5.12 shows an example of how this translation can be made.

5.6.1.2 Union - addAll

The Java API documentation on theaddAll method:

Adds all of the elements in the specified collection to this collection
(optional operation). The behavior of this operation is undefined if
the specified collection is modified while the operation is inprogress.

45

1 class RetainAll {
2 @Query
3 public EntityCollection<Car> getSomeCars() throws PersiJException{
4 EntityCollection<Car> cars = new EntityCollection<Car>();
5 Car candidateCar= null ;
6 if (candidateCar.getPrice().equals("High") {
7 cars.add(candidateCar);
8 }
9 cars.retainAll(A.getBlackCars());

10 return cars;
11 }
12 }
13

14 // Equivalent SQL statement - intersection
15 SELECT * FROM cars WHERE price= ’High’
16 INTERSECT
17 SELECT * FROM cars WHERE color= ’Black’

Figure 5.12: Example using theretainAll method.

(This implies that the behavior of this call is undefined if the specified
collection is this collection, and this collection is nonempty.)

Again, considering two collections multi-sets, the equivalent set operation of call-
ing addAll on one collection with the other as parameter, is an union. Just like
intersection, SQL has anUNION keyword that can produce the union of two selects.
Figure 5.13 shows an example.

5.6.1.3 Difference - removeAll

The Java API documentation on theremoveAll method is:

Removes all this collection’s elements that are also contained in the
specified collection (optional operation). After this callreturns, this
collection will contain no elements in common with the specified col-
lection.

Considering two collections as multi-sets, callingremoveAll on one with the
other, is equivalent to obtaining the complement of the argument collection - or
the set difference. The SQL keywordEXCEPT covers the same operation, and
Figure 5.14 illustrates an example of this.

5.6.2 Subqueries - contains

The contains method on a collection object is meant to determine whether a
given object is contained within the collection - from the Java API documentation:

46 SIMPLE OBJECTQUERY LANGUAGE

1 class AddAll {
2 @Query
3 public EntityCollection<Car> getSomeCars() throws PersiJException{
4 EntityCollection<Car> cars = new EntityCollection<Car>();
5 Car candidateCar= null ;
6 if (candidateCar.getPrice().equals("High") {
7 cars.add(candidateCar);
8 }
9 cars.addAll(A.getBlackCars());

10 cars.addAll(A.getRedCars());
11 return cars;
12 }
13 }
14

15 // Equivalent SQL statement - union
16 SELECT * FROM cars WHERE price= ’High’ UNION
17 SELECT * FROM cars WHERE color= ’Black’ UNION
18 SELECT * FROM cars WHERE color= ’Red’;

Figure 5.13: Example using theaddAll method.

1 class RemoveAll {
2 @Query
3 EntityCollection<Car> getSomeCars(String make) throws PersiJException{
4 EntityCollection<Car> cars = new EntityCollection<Car>();
5 Car candidateCar= null ;
6 if (candidateCar.getPrice().equals("High")) {
7 cars.add(candidateCar);
8 }
9 cars.removeAll(A.getBlackCars());

10 return cars;
11 }
12 }
13

14 // Equivalent SQL statement - complement (set difference)
15 SELECT * FROM cars WHERE price= ’High’
16 EXCEPT
17 SELECT * FROM cars WHERE color= ’Black’;

Figure 5.14: Example using theremoveAll method.

Returns true if this collection contains the specified element. More
formally, returns true if and only if this collection contains at least
one element e such that (o==null ? e==null : o.equals(e)).

47

In SQL this can be modeled either by usingIN and a sub-select, and Figure 5.15
shows an example.

1 class B {
2 @Query
3 static EntityCollection<Model> getOldModels() throws PersiJException{
4 EntityCollection<Model> models= new EntityCollection<Model>();
5 Model candidateModel= null ;
6 if (candidateModel.getStartYear() < 1980) {
7 models.add(candidateModel());
8 }
9 return models;

10 }
11 }
12

13 // Equivalent SQL statement for getOldModels
14 SELECT * FROM models WHERE startyear< 1980
15

16 class Contains{
17 @Query
18 static EntityCollection<Car> getSomeCars() throws PersiJException{
19 EntityCollection<Car> cars = new EntityCollection<Car>();
20 Car candidateCar= null ;
21 if (car.getPrice().equals("High")) {
22 if (B.getOldModels().contains(candidateCar.getModel())) {
23 cars.add(candidateCar);
24 }
25 }
26 return cars;
27 }
28 }
29

30 // Equivalent SQL statement for getSomeCars
31 SELECT * FROM cars WHERE price= ’High’ AND
32 model IN (SELECT id FROM (
33 SELECT * FROM models WHERE startyear< 1980));

Figure 5.15: Example using thecontains method.

5.7 Compilation process

The compilation process of source code using the PersiJ framework is under-
taken by JavaC, APT and a compiler for the query methods. Figure 5.16 illustrates
the compilation process, and the following describes the process in text.

48 SIMPLE OBJECTQUERY LANGUAGE

Source
(temp)

JavaC

Source

+ libs
PersiJ.jar

input

@Query

0

2

5

6

7

8

JavaC
1

43

9

Begin

Syntax check

output

input

copy

input

input

output

output

input

.class

.java−fragments

.class

Query

Abstract Compiled

@CompiledQuery

(temp)

AnnotationProcessorTool

@Entity

10

Semantic check

Transformation

SOQL compiler − AnnotationProcessors

input

Figure 5.16: The compilation process.

1. Compile entire source with standard Java compiler: The first part of the com-
pilation is to compile the source files. The outcome of this process is.class
files with the whole application.

2. Use APT to inspect code base:The next steps are performed using APT with
an AnnotationProcessor for each annotation type. When APT finds an anno-
tation, it will automatic call the AnnotationProcessor forthat annotation.

3. Inspect the classes marked@Entity: This is the first AnnotationPro-
cessor that will run. If no classes are marked with@Entity, then we
cannot have any query methods, as no database schema is present. In-
specting all classes with this annotation is done to make theschema
generation and to build an abstract representation of all the persistable

49

types.

4. Inspect the methods marked@Query: Once the abstract representation
of all persistable types are in place, it is time to inspect all methods
marked with the@Query annotation. These will then be passed to the
query compiler that does the actual transformation to SQL statements.

5. Syntax check: Using a parser generated with JavaCC from the base
grammar, the syntactic check is performed.

6. Semantic check:Some basic semantics are also checked with the
parser.

7. Transformation: If the syntactic and basic semantic check com-
pletes without errors, the parser will generate an abstractsyntax
tree, and default visitors (using the visitor pattern [23]). The ab-
stract syntax tree is then used to generate the Abstract Compiled
Query (ACQ).

8. ACQ: The ACQ contains the information necessary to generate the
SQL queries, and the last compilation step is to use each ACQ to
generate a Java fragment for each query method.

9. Temporary storage of compiled query: APT does not provide the pos-
sibility to replace code in an existing source file. Therefore the source
code containing methods marked with the@Query annotations are copi-
ed to temporary files.

10. Injecting new source code:The newly compiled methods (containing the SQL
queries) are then injected into the temporarily copies of source files. These
are then compiled using JavaC and the compiled code (.class files) are
then replaced with the old ones (that contained the originalcompiled code
from step 1). This way the original source files are left intact.

50 SIMPLE OBJECTQUERY LANGUAGE

6Transformation
of SOQL

In this chapter we will be turning our attention to the informal semantics involving
the translation of source code to JDBC and SQL statements. Wewill also be look-
ing at the template that the newly generated code (the compiled queries marked
with @CompiledQuery) will be placed in, after the PersiJ compiler has been at
work. The translation is described through a number of partial informally defined
transformation functions. Functions are given for field dereferencing, method calls,
if-statements, sorting, limiting, and modularization.

6.1 Reference sets

Before we go into specific details, we must first make one distinctions – objects
are not simply objects in the query method. The object references and primitive
values that are in scope for the query method can be divided into two distinct sets.
The idea of distinguishing between the two sets is to have oneof the sets containing
references that runtime are values stored in the database, and the other set then
contains references to objects that runtime are on the heap (in memory).

The purpose is then to be able to determine which values can beshipped to the
database as parts of query predicates, and which values are to be accessed in the
database. Lets just make a definition for these two sets.

Definition 5 (Persistent set)Contains references to values that runtime are stored
in the database.

Definition 6 (Client set) Contains references to objects that runtime are on the
heap.

The persistent set can be constructed by following the following steps:

1. Include the reference to the candidate object in the set.

51

52 TRANSFORMATION OFSOQL

2. When a new reference is returned from dereferencing a fieldor calling a
method, then if the reference is not in either the persistentset or the client
set, it can be added to the persistent set subject to these conditions:

• The object that the new reference points to is a persistable object.

• The reference to the object on which the member is accessed isalready
in the persistent set.

• The member being accessed is not marked with neither@Transient

nortransient.

• If it is a method being called, it is subject to more conditions which are
explained in more detail in Section 6.5.

All the references that are not in the persistent set, are in the client set.
The distinction can also be seen as separating values into those that somehow

are dependent of the current candidate object being evaluated in the query predi-
cate, and those values that are not. If a value is independentof the current candidate
object, the value can be shipped to the database as a parameter to the query and the
expression that yields it, can be executed independently ofthe query.

These two sets are not actually collected in data structuresat runtime, but
merely defined to facilitate understanding which statements are legal within SOQL
and which are not.

One more definition is needed:

Definition 7 (PersistentExpression)A PersistentExpression is an expression that
yields a reference which is in the persistent set.

6.2 Template

In this section we will be looking at the template for the translated code. That
is, how should we wrap the methods marked@Query? Lets start with an example
of a@Query method. In Figure 6.1 we have an example of a method that retrieves
all car objects from the database.

When the PersiJ compiler translates the@Query method it will markup the
method with@CompiledQuery. We want to markup the new method if we need
to inspect or use the newly created code.

As already mentioned, we are translating the query methods into JDBC and
SQL statements. We therefore need to create a connection to the database as we
would do with any application utilizing JDBC. This means that most of the el-
ements present in Figure 6.2 are like the ones we have in Figure 2.1 from Sec-
tion 2.1.1.

In Figure 6.2compiledSqlStatement in line no. 4 is the part that varies
from method to method as this is the SQL statement compiled from the query
method. How to build these statements are discussed later inSection 6.6.

53

1 @Query
2 public EntityCollection<Car> getAllCars() throws PersiJException{
3 EntityCollection<Car> cars = new EntityCollection<Car>();
4 Car candidateCar= null ;
5 cars.add(candidateCar);
6 return cars;
7 }
8

9 // Equivalent SQL statement
10 SELECT * FROM cars;

Figure 6.1: Example of a method marked with the@Query annotation.

1 @CompiledQuery
2 public EntityCollection<Car> getAllCars() throws PersiJException{
3 // The translated SQL statement
4 String compiledSqlStatement= "SELECT * FROM cars";
5

6 Connection conn;
7 try {
8 conn = EntityCollection.getConnection();
9 PreparedStatement pstmt= conn.prepareStatement(compiledSqlStatement);

10 ResultSet rs= pstmt.executeQuery();
11 EntityCollection cars= new EntityCollection<Car>(rs);
12 } catch(Exception e) {
13 conn.abort();
14 throw new PersiJException(
15 "PersiJ encountered an error during querying.", e);
16 } finally {
17 conn.close();
18 }
19 return cars;
20 }

Figure 6.2: The translated code from Figure 6.1.

In the original source code (see Figure 6.1) we had the initialization of the
car object withCar candidateCar = null. As shown in Figure 6.2 the car
object itself is nowhere to be found. The reason for this is that it is only used when
building up the SQL statements.

54 TRANSFORMATION OFSOQL

6.3 Transformation functions

The rest of this chapter will list a number of partial transformation function
definitions for the five functionsΦWHERE (shorthandΦW), ΦFROM (shorthand
ΦF), ΦORDER (shorthandΦO), ΦLIMIT (shorthandΦL), andΦSET (shorthand
ΦS) respectively. All functions have legal SOQL code as domain, and legal SQL
as range. The function definitions are quite informal, and are used to clarify how
the transformation to SOQL takes place.

The final SQL statement used in the compiled query method, is constructed
by starting with “SELECT * FROM PrimaryTable” wherePrimaryTable is the
name of the table that the class being queried maps to. Then the cumulative output
of theΦFROM function is appended. Thereafter “WHERE TRUE” is appended, and
the cumulative output from theΦWHERE function is appended. The output from
the rest of the functions are then appended.

If there is an if-statement that introduces branching at runtime (see Section 5.3
and Section 6.6), the output of the transformation of the different branches are
stored in separate variables, and runtime the query is combined.

6.3.1 Legend to readingΦ definitions

Text in a font like this:code and encapsulated in" are literals found directly in the
source code, and text like this:statement comes from definitions like Definition 7.
In the output of a function, the sign + is used to indicate string concatenation. The
input to theΦ functions should be seen as a form of pattern matching.

6.4 Field dereferencing

This section explains what happens when during parsing of the query method,
when aPersistentExpressionis encountered, which is subsequently followed by an
access to a field on that persistable object. We useFieldName to denote the name
of the field.

Using the abstract representation of the database schema, the name of that field
in the database is looked up.

6.4.1 Primitives and Strings

If the field is a primitive, aString object or one of the objects wrapping the
primitives, the fields values in the database is in the same relation as the persistable
object.

Definition 8 (DBFieldName) The name of the field in the database is denoted as
DBFieldName.

55

Name Shorthand Explanation
Table T The name of the table that is being

dereferenced.
TablePrimaryKey TPK The name of the column containing the

primary key ofTable.
ForeignTable FT The name of the table that contains the

type of the field in question.
ForeignKey FK The name of the column that contains

the primary key of the other table.

Table 6.1: Legend for Equation 6.2 and Equation 6.3

Equation 6.1 shows what is appended to theWHERE part of the SQL statement.

ΦW

(

PersistentExpression"."FieldName
)

; DBFieldName

(6.1)

6.4.2 One-to-one, one-to-many, owning side

If the field is an object, then there is a relation between the two objects in the
database. Recalling from Section 4.3.4 relations between objects have an owning
side. If this persistable object is the owning side of a one-to-many or a one-to-one
relationship, then Equation 6.2 and Equation 6.3 applies. The table and row names
used in the equations are explained in Table 6.1.

ΦF

(

PersistentExpression"."FieldName
)

;

" JOIN " +FT+ " ON " +
T + "." + TPK+ "=" + FT + "." + FK

(6.2)

ΦW

(

PersistentExpression"."FieldName
)

;

FT

(6.3)

6.4.3 Bidirectional, many-to-one, one-to-one, not owningside

Equation 6.4 and Equation 6.2 (Table 6.2 extends the legend)covers the case when:

• The relation between the objects is a one-to-one and bidirectional, where the
current object is not the owning side.

• The relation between the objects is a many-to-one. In this case, the field will
be an EntityCollection, and the type mapped to the database will be the type
parameter of the EntityCollection.

56 TRANSFORMATION OFSOQL

Name Shorthand Explanation
ForeignTablePrimaryKey FTPK The name of the primary key

of the foreign table.

Table 6.2: Legend for Equation 6.4

Name Shorthand Explanation
AssociativeTable AT The name of the associative table that

maps the relation.
AssociativeTPK ATPK The name of the column that contains

the primary key from the table (TPK)
we are selecting from.

AssociativeFTPK AFTPK The name of the column that contains
the primary key from the foreign table
(FTPK).

Table 6.3: Legend for Equation 6.4

ΦF

(

PersistentExpression"."FieldName
)

;

" JOIN " +FT+ " ON " +
T + "." + FK+ "=" + FT + "." + FTPK

(6.4)

6.4.4 Many-to-many

In the case that the relation is a many-to-many, the object will be an EntityCollec-
tion. In this case, the relation is in the database modeled with an associative table.
Equation 6.5 covers this case, and Table 6.3 extends the legend for the equation.
Equation 6.3 still applies in this case.

ΦF

(

PersistentExpression"."FieldName
)

;

" JOIN " +AT+ " ON " +
T + "." + PK+ "=" + AT + "." + ATPK

" JOIN " +FT+ " ON " +
AT + "." + AFTPK+ "=" + FT + "." + FTPK

(6.5)

6.5 Method calls

If a method call is encountered during the parsing of the bodyof a query
method, the following conditions and associated actions apply.

57

• If the callee of the method is either the candidate object or apersistable
object present in the persistent set. A method call on this reference can be
divided into two distinct groups:

1. The method is a prototypicalgetmethod, which does nothing else than
return either a primitive value or a reference to a persistable object, and
has no arguments. If this is the case, this method call corresponds to
a join in the translated code. The reference returned from the method
call is added to the persistent set. The transformation rules are similar
to that of field dereferencing, and are covered by Equation 6.2 through
Equation 6.5.

2. The method is not a prototypicalget method, and while the return type
is either persistable or a primitive type, the method does more than just
return - and the method may have arguments. If this is the case, a byte-
code analysis of the method is required to determine whetherthe logic
it contains can be rewritten as a part of the SQL statement. Inthis case,
it also has to be determined whether the method is free of side-effects,
and employing a technique like mentioned in Section 5.1.5.7may prove
useful. In any case, determining to which degree it is possible to make
a transformation for these method calls is an open question.

• If the callee of the object is not either the candidate objector a persistable
object present in the persistent set:

1. The method does not take an argument that is in the persistent set, and
no previous method has been invoked on the object with an argument
that is in the persistent set. If this is the case, invocationof the method
may be moved unaltered to the translated query method.

2. The method takes an argument that is in the persistent set.Byte-code
analysis of the method body or some side-effect analysis must be em-
ployed to determine whether the outcome of the method is dependent
on the argument. If it is independent, the invocation may be moved to
the translated block, with the argument replaced by null or similar. In
the case that is is dependent on the argument, it is an open question
whether a translation can be performed.

6.6 If-statements

We will now be looking at the if-statements. These are the ones that build
up the query inside the body of the method. If the expression of the if-statement
contains a reference from the persistent set, then there area few transformation
rules that apply.

58 TRANSFORMATION OFSOQL

Definition 9 (ifPredicate) An ifPredicate is the expression in an if-statement that
evaluates to true or false.

The ifPredicateis, in other words, the predicate that the if-statement evaluates.
Normal Java syntax applies to the predicate.

Definition 10 (addStatement) An add statement is on the form
<Identifier>.add(<Identifier>); where the first identifier is the EntityCollection, and
the second identifier is the entity.

When a branch of the if-statement does not contain anaddStatement, there is
no reason to use the rest of that branch of the if-statement tobuild up the query as
whichever predicates might be expressed are not to be used inthe final predicate.
Take for instance the pseudo code in Figure 6.3 - the tree below predicate 3does
not need to be evaluated as no matter ifpredicate 4evaluates to true or false, it will
always be added due to theadd() in line no. 9. The entire else-statement (line no.
11) does not need to be evaluated as there is not found any add-statement in this
part of the tree.

1 // Pseudo code of if-statements
2 if (predicate1) {
3 if (predicate2) {
4 if (predicate3) {
5 if (predicate4) {
6 add();
7 }
8 }
9 add();

10 }
11 } else {
12 if (predicate5) {
13 // Do nothing containing an add method
14 }
15 }

Figure 6.3: Example of tree structure of if-statements.

Definition 11 (thenStatement) A thenStatement is the first part of the if-statement,
which in normal Java will be executed if the ifPredicate evaluates to true. The con-
tents of the thenStatement is the productions of the grammarnon-terminal “State-
ment”.

Definition 12 (elseStatement)An elseStatement is the second part of the
if-statement, which in normal Java will be executed if the ifPredicate evaluates
to false. The contents of the elseStatement is the productions of the grammar non-
terminal “Statement”.

59

These two definitions are quite important to understand as they will form the
foundation for the query. Definition 11 applies to theifPredicateevaluating to true
(it stems from the termif-then). TheelseStatementis used when theifPredicate
evaluates to false.

To make the following easier to understand we have added the definitions of
the existence and non-existence of theaddStatement.

Definition 13 (Existence of addStatement)The existence of an addStatement
within an thenStatement or an elseStatement is written as∃add.

Definition 14 (Non-existence of addStatement)The non-existence of an addState-
ment within an thenStatement or an elseStatement is writtenas¬∃add.

Having these definitions in place, we proceed describing thetranslation of
if-statements in SOQL. There are four cases, dependent of the existence of an
addStatement in thethenStatement and/or theelseStatement. The four cases
are shown in equations 6.6 through 6.9.

ΦW















"if("ifPredicate") {"

thenStatement | ¬∃add

"} else {"

elseStatement | ¬∃add

"}"















; "" (6.6)

ΦW















"if("ifPredicate") {"

thenStatement | ∃add

"} else {"

elseStatement | ¬∃add

"}"















;

"("+Φ(ifPredicate)+
"AND"+Φ(thenStatement)+")"+

(6.7)

ΦW















"if("ifPredicate") {"

thenStatement | ¬∃add

"} else {"

elseStatement | ∃add

"}"















;

"(NOT"+Φ(ifPredicate)+
"AND"+Φ(elseStatement)+")"

(6.8)

ΦW















"if("ifPredicate") {"

thenStatement | ∃add

"} else {"

elseStatement | ∃add

"}"















;

"("+Φ(ifPredicate)+
"AND"+Φ(thenStatement)+")"+
"OR"+
"(NOT ("+Φ(ifPredicate)+
") AND"+Φ(elseStatement)+")"

(6.9)

60 TRANSFORMATION OFSOQL

If several if-statements are present on the outermost level, each of their trans-
formations is joined with anOR.

If there are if-statements where theifPredicate does not contain any ref-
erences from the persistent set, the predicates that might be expressed deeper
within this if-statement, are combined dependent on the runtime evaluation of the
ifPredicate, and the resulting control flow. Figure 6.4 shows an example,where
the query actually runtime executed against the database, is dependent on the run-
time execution branch.

1 public EntityCollection<Car> getSomeCars(boolean switch)
2 throws PersiJException{
3 EntityCollection<Car> cars = new EntityCollection<Car>();
4 Car candidateCar= null ;
5 if (switch) {
6 if (candidateCar.getColor().equals("Yellow")) {
7 cars.add(candidateCar);
8 }
9 } else {

10 if (candidateCar.getPrice().equals("High")) {
11 cars.add(candidateCar);
12 }
13 }
14 return cars;
15 }
16

17 /**
18 This part of the SQL string is not dependent on the runtime value of switch:
19 SELECT * FROM cars WHERE
20 Dependent on the runtime value of switch, the independent string is then
21 concatenated with either:
22 cars.color = ’Yellow’
23 or
24 cars.price = ’High’
25 **/

Figure 6.4: Example of control flow to build query predicatesdependent at runtime
execution.

6.7 Sorting

As discussed in Section 5.4, sorting can be implemented by assigning special
semantics to a call onjava.util.Collections sort method. This call must
be on the outermost level of the query method.

61

Definition 15 (ResultIdentifier) The ResultIdentifier is the identifier defined in
the first line of the QueryMethod, which points to an EntityCollection that is ul-
timately returned from the query.

Definition 16 (FieldIndicator) A FieldIndicator is either an expression that yields
and object assignable tojava.lang.member, or a field dereferencing on the can-
didate object, or a call to an accessor method on the candidate object.

Definition 17 (PersiJComparator) A PersiJComparator is a class name that is
eitherAscendingComparator or DescendingComparator.

Definition 18 (SortOrder) A SortOrder is eitherASC or DESC.

Equation 6.10 shows the transformation function for sorting.

ΦO

(

"Collections.sort("ResultIdentifier","

"new"PersiJComparator"("FieldIndicator"))"

)

;

" ORDER BY "+DBFieldName+SortOrder

(6.10)

Prerequisites for this transformation function is that thefield to be sorted on
has an ordering, and that it is either a primitive or a string.
The chosenSortOrder depends on whichComparator is chosen.

6.8 Limiting

To limit the maximum number of objects returned from the query, the method
setMaxSize can be called on theResultIdentifier. The call must be present at
the outermost level of the query method. Equation 6.11 showsthe transformation
function.

Definition 19 (IntegerExpression) An IntegerExpression does not contain any ref-
erences from the persistent set, and yields either the primitive int or an object of
typejava.lang.Integer.

ΦL

(

ResultIdentifier".setMazSize("IntegerExpression");"
)

;

" LIMIT "+Eval(IntegerExpression)
(6.11)

Eval(IntegerExression) denotes that theIntegerExpressionis evaluated run-
time, and the result inserted in the query.

62 TRANSFORMATION OFSOQL

6.9 Modularization

As we reviewed in Section 5.6, the methodscontains, removeAll, addAll,
andretainAll can be used to modularize queries. In this section we proceed
by establishing a few definitions, and prerequisites for an informal definition of a
transformation function for these methods.

Definition 20 (QueryExpression) An QueryExpression is an expression that yields
an EntityCollection as a result of a call on a method that is marked with the
@Query annotation.

Definition 21 (ExternalQueryMethod) The ExternalQueryMethod is the source
code of the implementation of the method that is called in theQueryExpression.

Definition 22 (CandidateObjectIdentifier) The CandidateObjectIdentifier is the
identifier pointing at the candidate object.

6.9.1 Set operations

The transformation function definitions in Equations 6.12 through 6.14 define the
transformation functions for respectively intersection,union, and complement. They
are all subject to the following prerequisites:

• The statement they appear in must be at the outermost block level of the
method. This means that they cannot be nested within an if-statement.

• The source code for the query method of theQueryExpression must be
present at compile-time.

• The argument to the method being called on theResultIdentifier (these
areretainAll, addAll, andremoveAll) must be parametrized with the
same type as theResultIdentifier.

The result of the transformation function is to be appended to the SQL string
being built for the current query. The expressionΦ(ExternalQueryMethod)
is the SQL query string that can be compiled for theExternalQueryMethod.
Another part of the transformation that is not covered in theequations is the sur-
rounding statements, which have to be merged too, possibly renaming identifiers,
etc. to avoid naming conflicts.

ΦS

(

ResultIdentifier".retainAll("

QueryExpression");"

)

;

" INTERSECT "+
Φ(ExternalQueryMethod)

(6.12)

63

ΦS

(

ResultIdentifier".addAll("

QueryExpression");"

)

;

" UNION "+
Φ(ExternalQueryMethod)

(6.13)

ΦS

(

ResultIdentifier".removeAll("

QueryExpression");”

)

;

" EXCEPT "+
Φ(ExternalQueryMethod)

(6.14)

6.9.2 Subqueries - contains

As we showed in example Figure 5.15, thecontainsmethod on the EntityCollec-
tion can be used to modularize queries and test for existenceof a value in another
query.

The transformation of acontains call is subject to some prerequisites. The
call must be made to an EntityCollection that is not the one being returned from
the current query. Moreover, the object on which it is called, must be returned
from aQueryExpression, and the source code for the method must be present
at call time. The call must be placed within anifPredicate. The transformation
is two-fold. TheFROM part of the query needs to be amended with the necessary
join (see Equation 6.2 through Equation 6.5). Equation 6.15takes care of adding a
predicate to theWHERE part of the query.

ΦW

(

QueryExpression".contains("PersistentExpression");"
)

;

ForeignKey+" IN(SELECT "+PrimaryKey+
" FROM ("+Φ (ExternalQueryMethod)+"))"

(6.15)

6.10 Implementation

As stated in the method description (see Section 3.5), a compiler prototype has
been built alongside with the language design process. The current state of the
compiler includes all steps until the semantic check (step 7in Figure 5.16).

Parts of the semantic check and transformation process has been implemented,
but the compiler is not yet in a working state.

64 TRANSFORMATION OFSOQL

7Discussion

In this chapter we will go through the criteria presented in the analysis that can be
used to evaluate a method of querying, and evaluate SOQL withrespect to these.
We will also be looking at the expressiveness of SOQL vs. SQL.

7.1 Evaluating by criteria

Throughout the evaluation we will not only refer to SOQL, butalso to PersiJ
because that fulfilling some criteria or not is not only due toproperties solely in
SOQL, but often also because of the combined properties of PersiJ and SOQL.

7.1.1 Static checking

Static checking consists of two facets:

Static type checking The ability to make static type checking of the interactions
between the programming language (in this case Java) and theRDBMS. In
other words, it is at compile time possible to check whether there exists any
type-related mismatches between the queries passed from the application to
the database.

Static semantic checkingThe ability to assure at compile-time that only existing
tables and rows are referenced in the program source, and assure compile-
time that the SQL statements that are executed runtime are sound statements.

PersiJ (and therefore also SOQL) operates on a database schema that is deter-
mined based upon the metadata provided by the developer (explicitly or implicitly)
in the model classes in the form of annotations. Since all queries to the database
are generated based upon interactions between objects in Java, the referenced ta-
bles and rows are sure to exist in the database - subject to theprerequisite that the
mapping metadata is correct.

Queries in SOQL are not string based, and this means that parameters to queries
are by the programmer expressed using existing classes and objects in a strongly,
static typed manner.

65

66 DISCUSSION

Moreover, this also means that the static type checking doneby the Java com-
piler also applies to the SQL statements. If the source code is accepted by the Java
compiler, the generated SQL is also free of type errors (i.e.there is no mismatch
between types in the generated SQL statements).

One problem still remains - it is still possible to do script injection by placing
malicious strings as parameter content. This problem can bealleviated by using
existing approaches [9] combined with the PersiJ framework.

In summary, both static semantic and type checking is done inSOQL due to
inherent properties of the query language design.

7.1.2 Automatic marshalling and unmarshalling

The PersiJ framework provides automatic marshalling and unmarshalling of ob-
jects when working with a persistent storage. This is handled by the EntityCollec-
tion during object instantiation, and when storing data in the database. This design
decision imposes a restriction - it is not possible to query data that is not mapped
to objects.

7.1.3 Same paradigm as host language

SOQL does not contribute with new language constructs, and it works with (a
subset of) the syntax of Java. The semantics are quite another story, as they deviate
somewhat from Java.

Consider Figure 7.1, which is a simple example of a query searching for all
cars by the model Ford. This code is syntactically compliantwith Java, and the
Java compiler will find the code to be semantically sane. But reading the code
and trying to understand what happens applying understanding of normal Java se-
mantics only, will prove a futile exercise. Take line no. 4 which is semantically
correct, but in line no. 5 we are using thecandidateCar object to check, if its
model equals Ford - and considering that the object isnull, this should throw
a NullPointerException. This is not intuitive and requires knowledge to the
SOQL language in order to understand that the candidate object (Definition 3) is
used as base for the SQL statement and is in principle iterated over once for each
candidate row in the database. The query is sane in SOQL - and will produce valid
code once compiled with the PersiJ compiler.

Figure 7.1 addresses another problem with the semantics. Normal Java seman-
tics for if-statements is branching of code execution subject to the evaluation of the
predicate. In SOQL there is no execution flow per se, and therefore no branching as
such - instead, the if-statements are used to build predicates, and dependent on the
existence of anadd() statements the different branches have different impact on
the query predicate being built. Moreover, if noadd() statement is present within
a branch, branch may be entirely ignored (e.g. see Section 6.6). Branching is not al-
together non-existent, since if-statements which test an expression that uses no val-
ues from the database, can be used to runtime determine construction of the query

67

1 @Query
2 public EntityCollection<Car> getFord(Coutner cntr) throws PersiJException{
3 EntityCollection<Car> cars = new EntityCollection<Car>();
4 Car candidateCar= null ;
5 if (candidateCar.getModel().equals("Ford")) {
6 cars.add(candidateCar);
7 } else {
8 // cntr.count();
9 }

10 return cars;
11 }
12

13 // Equivalent SQL statement for getFord
14 SELECT * FROM cars WHERE model= "Ford"

Figure 7.1: Example searching for all types of Ford.

- but the difference of the semantics dependent on the contents of the expression
being tested is not obvious from the syntactic construction(if(Expression)
Block [else Block]) since it is the same.

The syntactical constructions that can actually be translated by the SOQL com-
piler are subject to a number of prerequisites. For the developer these prerequisites
will probably seem intricate and hard-to-understand, and contribute to SOQL be-
ing perceived as non-intuitive. To illustrate this, take the statement in line no. 9
in Figure 7.1. If it was not commented-out, it would not be possible to translate it
to an SQL query. Why? There are many valid semantic questionsto ask and no
simple answer: How many times should the statement be executed? Once for each
tested tuple in the database (and how many is that)? Should itbe executed once
for each tuple that does not match the predicate? If it shouldbe executed at all,
how is it possible to determine the number of executions without instantiating all
candidate objects?

The clarity of what can and what cannot be translated into a SQL query be-
comes even worse when methods are called on objects from the persistent set,
where the methods are not simply accessor methods.

In summary, although SOQL is syntactically within Java, thesemantics are
significantly different, and especially the lack of transparent control flow and intri-
cate rules determining legal and illegal expressions takesSOQL quite far from the
semantics of the host language.

7.1.4 Minimal verbosity

One of the first design decisions for SOQL was not to follow theNative Queries ap-
proach, where an implementation of a class was necessary, aswe felt this required
too much syntactical overhead. In retrospect, the final formof query methods in

68 DISCUSSION

SOQL is not significantly less verbose.
Comparing the verbosity of SOQL to writing the same query in JDBC, SOQL

is less verbose. Illustrating this for a quite simple query is Figure 7.2. The SQL part
of the JDBC code is of course much less verbose than the SOQL query method,
but comparing SOQL to SQL is not quite fair, since the compiled SOQL statement
does much more for the programmer than just being a SQL statement.

1 class A {
2 @Query
3 public static EntityCollection<Owner> getYoungCarOwners()
4 throws PersiJException{
5 EntityCollection<Owner> owners= new EntityCollection<Car>();
6 Owner candidateOwner= null ;
7 if (candidateOwner.getBirthYear() > 1976) {
8 owners.add(candidateOwner);
9 }

10 return owners;
11 }
12

13 // Equivalent JDBC method for getYoungCarOwners
14 public ResultSet getYoungCarOwnersInJdbc() {
15 ResultSet rs= null ;
16 Connection conn;
17 try {
18 conn = EntityCollection.getConnection();
19 PreparedStatement pstmt= conn.prepareStatement(
20 "SELECT * FROM owners WHERE birthyear > ?");
21 pstmt.setInt(1, 1976);
22 rs = pstmt.executeQuery();
23 } catch(Exception e) {
24 conn.abort();
25 // Do exception handling
26 } finally {
27 conn.close();
28 }
29 return rs;
30 }
31 }

Figure 7.2: Example of a simple query.

SOQL can also use other existing queries within a query, and compile them all
into one coherent SQL query. Consider the queries of Figure 7.2 and Figure 7.3
that are used in Figure 7.4

Lets say that we want to combine the three queries from classesA andB in such
a fashion that we get all the cars whose owners are born after 1976 and the models
of the cars that have been involved in most car crashes in union with the most

69

expensive cars. The method for this is calledgetHighRiskCars and is illustrated
in Figure 7.4.

1 class B {
2 public static EntityCollection<Model> getTopCrashedModels(int numResults)
3 throws PersiJException{
4 EntityCollection<Model> models= new EntityCollection<Model>();
5 Model candidateModel= null ;
6 models.setMaxSize(numResults);
7 models.add(candidateModel);
8 Collections.sort(models, new DescendingComparator(
9 candidateModel.getNumCrashed()));

10 return models;
11 }
12

13 // Equivalent SQL statement for getTopCrashedModels
14 SELECT * FROM models ORDER BY numcrashed DESC LIMIT10
15

16 public static EntityCollection<Car> getMostExpensiveCars(int numResults)
17 throws PersiJException{
18 EntityCollection<Car> cars = new EntityCollection<Car>();
19 Car candidateCar= null ;
20 cars.add(candidateCar);
21 cars.setMaxSize(numResults);
22 Collections.sort(cars, new DescendingComparator(cars.getPrice()));
23 return cars;
24 }
25

26 // Equivalent SQL statement for getMostExpensiveCars
27 SELECT * FROM cars ORDER BY price DESC LIMIT10
28 }

Figure 7.3: Example of simple queries.

Writing queries in SQL can be troublesome, and debugging a statement like
the one in Figure 7.4 can be even more troublesome. Since SOQLprovides the
ability to modularize queries, these can be reused in different contexts, and the
modularization provides with better error-localization (i.e. if it is known that one
query method works correctly, it can safely be assumed that it also works correctly
within the new context). As the complexity of the query growsit becomes in-
creasingly harder to read in SQL, whereas in PersiJ it remains readable due to the
modularization.

70 DISCUSSION

1 class C {
2 @Query
3 public EntityCollection<Car> getHighRiskCars() throws PersiJException{
4 EntityCollection<Car> cars = new EntityCollection<Car>();
5 Car candidateCar= null ;
6 if (A.getYoungCarOwners().contains(candidateCar.getOwner())) {
7 cars.add(candidateCar);
8 } else {
9 if (B.getTopCrashedModels(10).contains(candidateCar)) {

10 cars.add(candidateCar);
11 }
12 }
13 cars.Addall(B.getMostExpensiveCars(10));
14 return cars;
15 }
16 }
17

18 // Equivalent SQL statement for getHighRiskCars
19 SELECT * FROM cars JOIN owners ON
20 (cars.ownerid = owners.id WHERE cars.ownerid IN
21 (SELECT id FROM (SELECT * FROM owners WHERE birthyear> 1976))
22 OR (cars.id IN (SELECT id FROM
23 (SELECT * FROM models ORDER BY numcrashed DESC LIMIT10))))
24 UNION
25 (SELECT * FROM cars ORDER BY price DESC LIMIT10)
26

Figure 7.4: Example of modularized query method.

7.1.5 Minimal language alteration

As just mentioned in Section 7.1.3 the PersiJ framework operates within the Java
programming language without introducing new keywords, language constructs,
or paradigms as SQLJ and C# does.

This has been done at great expense. Although no new languageelements
have been introduced, imposing the restriction of not allowing any new language
elements and at the same time rejecting the Native Queries approach results in
a fashion of querying that albeit being syntactically compliant with Java is not
understandable without a prior knowledge to the special semantics of SOQL.

Native Queries was not considered as a way of doing querying as the require-
ment of making an (anonymous) implementation of thePredicate class in Java
is somewhat unwieldy, but this is simply because the Java programming language
does not have a language construct like delegates. Delegates are existent in C#.
Native Queries in C# is quite elegant, and easy to understandand read. Recall Fig-
ure 3.1 found in Section 3.1.3. Writing this in C# with delegates is illustrated in

71

Figure 7.5.

1 delegate(Student student)
2 return student.Age < 20
3 && student.Name.Contains("f");
4 }

Figure 7.5: Re-writing the query part of Figure 3.1 to C# (taken from [14])

It is possible to implement delegates into the Java languageusing the Adapter
pattern [23]. This approach has never really been practicedin Java as it is unwieldy.
It has also been argued that inner classes provide the same functionality as dele-
gates [42], and the delegate construct is therefore not needed when programming
in Java.

In summary, although SOQL meets the criteria of minimal language alteration
syntactically, it semantically deviates very much from Java. Altering SOQL by
introducing new language constructs that requires the programmer to learn new
semantics might be a better alternative than sticking strictly to a no-new-language-
constructs design.

7.1.6 Modularization

As discussed earlier, SOQL does have modularization capabilities. As sketched,
they are now restricted to set operations and using an equivalent of theIN SQL op-
erator in query predicates. Although simple, these modularization capabilities does
provide the system developer with the possibility of splitting queries into smaller
chunks that can be combined in different contexts while at runtime retaining the
efficiency of one large SQL query.

Figure 7.4 is an example of this. Although it is possible to combine and thereby
modularize these queries, modularization statements are subject to a number of
prerequisites. These prerequisites are somewhat unclear to the developer without
intimate knowledge of the semantics of SOQL.

There is one deficiency that might need clarification. Since the queries are
effectively merged at compile-time, replacement of code inthe.class files sub-
sequently will possibly void the intent of the replacement,since changes in query
methods will not propagate to the queries in which they are used. Propagating them
will require a full recompile.

As will be discussed in Section 7.2, SOQL still lacks constructs to mirror some
modularization operations that are present in SQL.

In summary, the modularization features of SOQL may be extended with more
constructs to express e.g. universal and existential quantification, and SOQL would
benefit from a greater transparency of legal ways to use modularization constructs.

72 DISCUSSION

7.1.7 Optimization

All queries expressed in SOQL are compiled to SQL statements, and they are
shipped to the RDBMS. All optimization hereafter is left as an exercise for the
database. As mentioned, it is possible to modularize queries. When these mod-
ularized query methods are compiled, they will also producea single query (see
for instance Figure 7.3). This way the RDBMS can optimize theSQL statement.
Criteria are also shipped separately to the database. It is also possible to implement
some prefetching techniques in EntityCollection. In short, the optimization criteria
has been met.

Further optimization by letting the system developer have the option of rewrit-
ing the compiled queries into (possibly more efficient) equivalent SQL statements
is not possible. This could be made possible by letting the system developer inspect
and alter the Java fragments with the compiled queries before they are inserted into
the source code in the final stages of the compilation process. However, these
changes will not propagate back to the original source and simply disappear once
the original source code is compiled once more.

The system developer may still regain detailed control. It is possible to use
handwritten SQL statements. In order to use these the developer must use the
getConnection() method to manually open and use the JDBC connection (e.g.
see Section 4.4.4).

7.2 Expressiveness of SOQL vs. SQL

An interesting question to pose is the expressiveness of SOQL compared to the
query part of SQL. It is quite clear that SOQL is not as expressive as SQL. The
following lists some things that can be expressed in SQL but not in SOQL:

Null values Null values have quite different semantics in Java and SQL. In Java
a null pointer basically means undefined, while in SQL it means unknown
[35]. Null values cannot be operated on in Java. Trying to call a method to a
null pointer throws an exception. In SQL nulls have special semantics - e.g.
in conjunction with comparison operations. The design of SOQL does not
take null values into consideration, and if it is to operate on legacy data, it is
a necessity to define a behavior.

Aggregates As laid out in this project, it is not possible to use aggregate functions
and do grouping with SOQL. Extending SOQL to make this possible to some
degree may not be too hard for grouping functions that are easily mapped to
methods in the EntityCollection in the same style asaddAll, etc.

Select operationsIn the select clause of a select statement it is possible to do
much more than just retrieve all rows for a table - e.g.SELECT make,

model, price * 1.25 AS inclvat FROM carswhere the value of the

73

price row is multiplied by 1.25 before being returned. This is not possible in
SOQL where all queries select all rows from the table being queried. Due to
this restriction, it is not possible to perform calculations in the database, but
they have to be performed by the application instead.

Non-mapped data SOQL always performs queries that return objects that are
mapped into the database. Querying across several tables and returning a
result-set that does not necessarily map to an entity is not possible. An ex-
tension of this restriction is that other joins than the straightforward join
(outer join, inner join, full join, etc.) cannot be expressed.

Stored procedures and user defined functionsMost RDBMSs have the ability
to write stored procedures and user defined functions that may be used in
queries, etc. These cannot be used with SOQL.

74 DISCUSSION

8Conclusion

8.1 Conclusion

With this project we wish to answer the question posed in the problem state-
ment (Section 3.6):

Is it possible to design an object-oriented query language integrated
with Java, which can be transformed to Java code that ships the query
as SQL to the database while still fulfilling the criteria: static check-
able, automatic marshalling and unmarshalling, minimal verbosity,
minimal language alteration, modularizable, and optimizable?

In summary of the previous chapter, this is how the designed query language Sim-
ple Object Query Language (SOQL) fulfills the selected criteria:

Static checking Both static type and semantic checking. Script injection problems
can be remedied with existing techniques. This criteriais fulfilled.

Automatic marshalling and unmarshalling Is fulfilled.

Same paradigm as host languageAlthough SOQL in the syntactical sense is
squarely within the object-oriented paradigm, the specialsemantics used in
conjecture with building predicates deviate so much from standard Java se-
mantics that we consider this criteria asnot fulfilled.

Minimal verbosity Although less verbose than using JDBC and SQL statements,
SOQL is not less verbose than Native Queries. This criteria ispartly fulfilled.

Minimal language alteration Syntactically there is no alteration to the host lan-
guage, but semantics deviate so much from Java semantics that the language
is altered, and this criteria isnot fulfilled.

Modularization It is in limited ways possible to modularize and combine queries
without sacrificing performance, since it is possible to combine the modular-
ized queries to one request to the database. More ways of modularizing can
be imagined, and we consider this criteriais fulfilled.

75

76 CONCLUSION

Optimization In the sense that the database is free to optimize queries, and that
modularized queries are combined to one, this criteriais fulfilled. In the
sense that it is not possible for the system developer to tweak the generated
SQL queries, this criteria isnot fulfilled.

Most of the criteria set for SOQL have been fulfilled. Furtherdevelopment,
refinement, and implementation of a working compiler we believe would provide
with a query language that could be useful for a large subset of applications. Es-
pecially solving the static checking issues while retaining the ability to ship whole
queries to the database and modularize queries, etc., mighteven make SOQL a
favorable alternative to other query languages.

However, since designing a query language that is integrated with the host
language is the main goal of this project, not fulfilling the criteria of being in the
same paradigm, is a serious drawback. Unfortunately, the differences of semantics
of SOQL and Java are intricate. For this reason, we do not believe that using SOQL
makes querying easier to express than using existing alternatives.

8.2 A broader perspective

The conclusion leads to a consideration about whether or notit is appropriate
to express queries on relational data using object-oriented syntax and semantics.
It is clear that deficiencies regarding e.g. lack of static checking of string-based
query forms must be solved, but we do not necessarily believethat this solution
at the same time should grow closer to the host language regarding syntax and
semantics.

If the persistent storage mechanism is an object-oriented database, the case may
be different. When the persistent storage matches the language of the application,
querying object-oriented databases with an object-oriented language may prove
just right.

Which paradigm to use in the different tiers of ann-tiered application may be
a matter of choosing the right tool for the right job. The object-oriented paradigm
expresses behavior and state combined very well - but may just not be very well
suited for expressing queries on data (that does not incorporate behavior). SQL is a
partly declarative language, and we speculate that maybe using a declarative-based
language is a better tool for expressing queries on relational databases?

Bibliography

[1] A BRAHAM SILBERSCHATZ, H. F. K., AND SUDARSHAN, S. Database
System Concepts, fourth edition ed. McGraw-Hill, 2002.

[2] A MBLER, S. W. Agile Database Techniques: Effective Strategies for the
Agile Software Developer. Wiley, John & Sons, Incorporated, 2003.

[3] ATKINSON, M., AND JORDAN, M. Orthogonal Persistence for the Java Plat-
form - Draft Specification, jun 24 1999.

[4] ATKINSON, M. P. Persistence and Java - A Balancing Act. InProceedings of
the International Symposium on Objects and Databases(London, UK, 2001),
Springer-Verlag, pp. 1–31.

[5] ATKINSON, M. P., AND JORDAN, M. J. Issues Raised by Three Years of
Developing PJama: An Orthogonally Persistent Platform forJava. InICDT
’99: Proceeding of the 7th International Conference on Database Theory
(London, UK, 1999), Springer-Verlag, pp. 1–30.

[6] BERNSTEIN, P. A., PAL , S., AND SHUTT, D. Context-Based Prefetch for
Implementing Objects on Relations. InVLDB ’99: Proceedings of the 25th
International Conference on Very Large Data Bases(San Francisco, CA,
USA, 1999), Morgan Kaufmann Publishers Inc., pp. 327–338.

[7] B IERMAN , G. M., MEIJER, E., AND SCHULTE, W. The essence of data
access in C omega. InECOOP(2005), A. P. Black, Ed., vol. 3586 ofLecture
Notes in Computer Science, Springer, pp. 287–311.

[8] B IGGS, W. Plain Old Java Queries (POJQ).https://pojq.dev.java.
net.

[9] BUEHRER, G., WEIDE, B. W., AND SIVILOTTI , P. A. G. Using parse tree
validation to prevent SQL injection attacks. InSEM(2005), E. D. Nitto and
A. L. Murphy, Eds., ACM, pp. 106–113.

[10] CAREY, M. J., AND DEWITT, D. J. Of Objects and Databases: A Decade of
Turmoil. In VLDB ’96: Proceedings of the 22th International Conferenceon
Very Large Data Bases(San Francisco, CA, USA, 1996), Morgan Kaufmann
Publishers Inc., pp. 3–14.

77

78 BIBLIOGRAPHY

[11] CODD, E. F. A relational model of data for large shared data banks.Commun.
ACM 13, 6 (1970), 377–387.

[12] Cω. http://research.microsoft.com/Comega/.

[13] COOK, W. R., AND IBRAHIM , A. H. Integrating Programming Languages
& Databases: What’s the problem? Submitted for publicationmay 2005, ac-
cessed November 2005 athttp://www.cs.utexas.edu/∼/wcook/
Drafts/2005/PLDBProblem.pdf, 2005.

[14] COOK, W. R., AND ROSENBERGER, C. Native Queries for Persistent Ob-
jects. Dr. Dobb’s Journal (February 2006). http://www.ddj.com/
documents/ddj0602e/.

[15] COPELAND, G., AND MAIER, D. Making smalltalk a database system. In
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international con-
ference on Management of data(New York, NY, USA, 1984), ACM Press,
pp. 316–325.

[16] Visual C# Developer Center. http://msdn.microsoft.com/
vcsharp/programming/language/.

[17] IBM DB2. http://www.ibm.com/db2.

[18] db4objects.http://www.db4o.com.

[19] DIJKSTRA, E. W. Go to statement considered harmful. 351–355.

[20] Eclipse.http://www.eclipse.org.

[21] Eiffel. http://www.eiffel.com.

[22] Enterprise JavaBeans (EJB).http://java.sun.com/products/
ejb/.

[23] GAMMA , E., HELM , R., JOHNSON, R., AND VLISSIDES, J. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison Wesley,
March 1995.

[24] Hibernate.http://www.hibernate.org.

[25] JAMES GOSLING, BILL JOY, G. S., AND BRACHA, G. The
JavaTMLanguage Specification, 3rd Edition. Addison Wesley Professional,
2005.

[26] Java programming language compiler (JavaC).http://java.sun.com/
j2se/1.5.0/docs/tooldocs/solaris/javac.html.

[27] JavaCC.https://javacc.dev.java.net.

BIBLIOGRAPHY 79

[28] Java Data Objects (JDO).http://java.sun.com/products/jdo/.

[29] LEAVENS, G. T., AND CHEON, Y. Design by Contract with JML. Draft
paper for Java Modeling Language, accessed May 2006 atftp://ftp.
cs.iastate.edu/pub/leavens/JML/jmldbc.pdf, 2006.

[30] LEAVITT, N. Whatever Happened to Object-Oriented Databases?IEEE
Computer 33, 8 (2000), 16–19.

[31] L INDA DEM ICHIEL, M. K. JSR 220: Enterprise JavaBeansTM, Version
3.0 - Java Persistence API. Tech. rep., Sun Microsystems, 2006. http:
//jcp.org/en/jsr/detail?id=220.

[32] The LINQ project. http://msdn.microsoft.com/data/ref/
linq/default.aspx?pull=/library/en-us/dndotnet/
html/linqprojectovw.asp#linqprojec topic5.

[33] MCCLURE, R. A., AND KRÜGER, I. H. SQL DOM: compile time checking
of dynamic SQL statements. InICSE ’05: Proceedings of the 27th inter-
national conference on Software engineering(New York, NY, USA, 2005),
ACM Press, pp. 88–96.

[34] Microsoft SQL Server. http://www.microsoft.com/sql/
default.mspx.

[35] MØLLER, T., JENSEN, R. N., AND SÖNDER, P. Persistent Language Ex-
tension and Constructs for Java 1.5. Tech. rep., Faculty of Engineering and
Science, Aalborg University, 2005.

[36] Oracle Corporation.http://www.oracle.com.

[37] PostgreSQL.http://www.postgresql.org.

[38] SALCIANU , A. D., AND RINARD , M. C. Purity and Side Effect Analysis for
Java Programs. InProc. 6th International Conference on Verification, Model
Checking and Abstract Interpretation, January 2005(2005).

[39] SIPSER, M.Introduction to the Theory of Computation. PWS, Boston, MA,
1996.

[40] SQL-Java (SQLJ).http://www.sqlj.org/.

[41] Sun Microsystems.http://www.sun.com.

[42] TEAM , T. J. L. White Paper: About Microsoft’s ”Delegates”. Tech.rep.,
JavaSoft, Sun Microsystems, Inc., 2001.

[43] Oracle TopLink. http://www.oracle.com/technology/
products/ias/toplink/.

80 BIBLIOGRAPHY

[44] UNGAR, D., AND SMITH , R. B. Self: The power of simplicity. InOOPSLA
’87: Conference proceedings on Object-oriented programming systems, lan-
guages and applications(New York, NY, USA, 1987), ACM Press, pp. 227–
242.

[45] WHALEY, J., AND RINARD , M. Compositional pointer and escape analysis
for Java programs.SIGPLAN Not. 34, 10 (1999), 187–206.

ASignatures of the
EntityCollection

1 public class EntityCollection<E> implements Collection<E> {

2

3 // New method
4 public EntityCollection(ResultSet rs) throws PersiJException;
5

6 public EntityCollection();
7 public static Connection getConnection() throws SQLException;
8

9 // Methods implemented from java.util.Collection<E>

10 public int size();
11

12 public boolean isEmpty();
13

14 public boolean contains(Object o);
15

16 public Iterator<E> iterator();
17

18 public Object[] toArray();
19

20 public <T> T[] toArray(T[] arg0);
21

22 public boolean add(E arg0);
23

24 public boolean remove(Object arg0);
25

26 public boolean containsAll(Collection<?> arg0);
27

28 public boolean addAll(Collection<? extends E> arg0);
29

30 public boolean removeAll(Collection<?> arg0);
31

32 public boolean retainAll(Collection<?> arg0);
33

34 public void clear();
35

81

82 SIGNATURES OF THEENTITY COLLECTION

36 // Methods to manipulate data
37
38 /*
39 * Write all contained objects to database - updating and
40 * inserting as necessary.
41 */
42 public void persist();
43
44 /*
45 * Update the representation of element in the persistant
46 * storage.
47 */
48 public void persist(E element);
49
50 /*
51 * Deletes all elements from persistent storage, and clears the
52 * underlying collection
53 */
54 public void unPersist();
55
56 /*
57 * Delete this element both from the collection and from persistent
58 * storage
59 */
60 public void unPersist(E element);
61
62 // Methods that affect query results
63
64 /*
65 * Set the largest number of objects that this EntityCollection may
66 * contain
67 **/
68 public void setMaxSize(int maxSize);
69 }

BGrammar for SOQL

The grammar for SOQL can be found in Table B.1. It is on Extended Backus Naur
Form (EBNF). Reading notes to the grammar: Elements in [] areoptional (could
also be written using ()?), a| between two elements is a choice of the two, elements
marked with * are zero or more times, and finally elements marked with + are
one or more times. Productions for IDENTIFIER, CHARACTERLITERAL, and
STRING LITERAL, and parser-generator specific commands have been omitted
for brevity.

CompilationUnit ::= MethodDeclaration
Identifier ::= <IDENTIFIER>

VariableDeclaratorId ::= <IDENTIFIER>

MethodDeclaration ::= [
(public
| private
| protected)

]
<EntityCollection> <Type>

| MethodDeclarator
| PersijMethodBlock

MethodDeclarator ::= <IDENTIFIER>FormalParameters
throws PersiJException

PersijMethodBlock ::= {
EntityCollection<Type><IDENTIFIER>

= new EntityCollection
<Type>();

Type <IDENTIFIER> = null;
(BlockStatement)*
return <IDENTIFIER>;
}

FormalParameters ::= ([FormalParameter
(,FormalParameter)*])

FormalParameter ::= Type VariableDeclaratorId
Type ::= ReferenceType | PrimitiveType
ReferenceType ::= ClassOrInterfaceType
ClassOrInterfaceType ::= Identifier

[(.Identifier)*]
TypeArgument ::= ReferenceType

continued on next page

83

84 GRAMMAR FOR SOQL

continued from previous page

PrimitiveType ::= boolean | char | int
Name ::= <IDENTIFIER>

[(.<IDENTIFIER>)*]
Expression ::= ConditionalOrExpression

[AssignmentOperator
Expression]

AssignmentOperator ::= =
ConditionalOrExpression ::= ConditionalAndExpression

(||
ConditionalAndExpression

)*
ConditionalAndExpression ::= EqualityExpression

(&& EqualityExpression)*
EqualityExpression ::= PrimaryExpression (

(==|!=) PrimaryExpression
)*

PrimaryExpression ::= PrimaryPrefix
[(PrimarySuffix)*]

PrimaryPrefix ::= Literal
| (Expression)
| AllocationExpression
| Name

PrimarySuffix ::= .AllocationExpression
| .<IDENTIFIER>

| Arguments
Literal ::= <INTEGER LITERAL>

| <CHARACTER LITERAL>

| <STRING LITERAL>

| BooleanLiteral
| NullLiteral

BooleanLiteral ::= true | false
NullLiteral ::= null
Arguments ::= ([ArgumentList])
ArgumentList ::= Expression (,Expression)*
AllocationExpression ::= new PrimitiveType

| new ClassOrInterfaceType
Arguments

Statement ::= Block
| StatementExpression;
| IfStatement

Block ::= { (BlockStatement)* }
BlockStatement ::= Statement
StatementExpression ::= PrimaryExpression

[AssignmentOperator
Expression]

IfStatement ::= if (Expression) Statement
[else Statement]

Table B.1: Grammar for SOQL.

Summary

This is a summary of this report. It is a mandatory part of a Master thesis in
Computer Science written at Aalborg University, Denmark.

The broader underlying problem of this project, is that of the impedance mis-
match encountered when trying to use relational databases in statically typed ob-
jects oriented programming languages. In a preliminary analysis, existing solutions
to the impedance mismatch problem are reviewed, and are all found to be deficient
in some manner. Posing the question: Why not change the premises? It is con-
cluded that relational databases cannot be replaced by object-oriented databases
to avoid the problem altogether. Reviewing existing work onwhat constitutes the
impedance mismatch, a number of criteria are listed, that all must be fulfilled for a
solution to properly solve the impedance mismatch problem.

Acknowledging that the scope of the project does not allow for the development
of a full solution to the impedance mismatch problem, the focus of the project is
narrowed down to solving one facet of the problem: Querying.Through an analysis
of querying methods found in existing solutions to the impedance mismatch prob-
lem, a number of criteria are found to evaluate a querying method by: static check-
able, automatic marshalling and unmarshalling, same paradigm as host language,
minimal verbosity, minimal language alteration, modularizable, and optimizable.

Especially the approach Native Queries which promotes a wayof querying
where queries are expressed in the same paradigm as the host language (in this
case object-oriented) is considered favorable, but still deficient due to a verbose
fashion of implementation.

The specific problem addressed by this project is then definedas: Is it possible
to design an object-oriented query language integrated with Java, which can be
transformed to Java code that ships the query as Structured Query Language (SQL)
to the database while still fulfilling the criteria?

In an effort to answer this question, a new language named Simple Object Query
Language (SOQL) is designed. In order for the language to work, a rudimentary
persistence framework named PersiJ is also described, based largely on Enterprise
JavaBeans (EJB) version 3.

SOQL queries is basically methods in a Java program that havebeen marked
with a special annotation. The allowed syntax inside these methods is a subset

85

of Java, and allows for primitives, classes, objects, messages (method calls) and
branching (if-statements). Using these very basic building blocks SOQL is able to
express predicates, branching of control flow, sorting, limiting and modularization
of queries.

Investigating how the different elements of SOQL may be transformed using a
number of informally defined partial transformation functions, a number of limits
to the translation to SQL are found - especially in conjunction with method calls.

Finally, a discussion of how SOQL fulfills the criteria from the analysis finds
that SOQL is statically checkable, has automatic marshalling and unmarshalling,
minimal verbosity, is modularizable and optimizable. However, due to intricate
differences in semantics from the host language Java, the criteria of being in the
same paradigm as the host language is not considered to be fulfilled.

In conclusion SOQL is found to potentially be a favorable alternative to existing
querying solutions, but while overcoming many important deficiencies simultane-
ously (being statically checkable while retaining modularization and optimization
capabilities) the intricate differences of semantics between Java and SOQL are
found to be a significant drawback.

