
Title:
Guidelines on Modelling a Train by use of Graph

Theme:
Algorithms and Data Structures

Project Unit:
EVU, autumn 2005

Student:
Niels Klitgaard Lassen

Supervisor:
Linas Bukauskas

Number printed:
3

Pages:
16

Date of Completion:
January 11, 2006

Niels Klitgaard Lassen

Page 1 of 16

Aalborg University
Department of Computer Science
Fredrik Bajers Vej 7, building E
DK-9220 Aalborg Ø
http://www.cs.aau.dk/

Synopsis:

This report describes Guidelines on

Modelling a Train by use of Graph.

The proposed model considers

Services, which are requested by the

Customers, as Vertices and concrete

solutions, which delivers the requested

Services, are represented as Edges.

The model is added information

concerning Component properties at

the Edges and information concerning

Conditions and Constraints at the

Vertices.

The Model describes the most

important connections between

Components and Subsystems in a

Graph, which can be processed by an

Algorithm.

Table of content
1 Problem Definition...3
2 Design Issues..5

2.1 Definition of Vertices..5
2.2 Definition of Edges...6
2.3 Summary of the Design..7

3 Approach to Problem..8
3.1 Conditions and Properties on Edges and Vertices..8
3.2 Quantity of Components...8
3.3 An Example of Modelling...10
3.4 When Subbranches not are Independent...13

4 Future Work..15
5 Conclusions..16

Page 2 of 16

1 Problem Definition
This report describes guidelines on modelling a Train, which must be optimized by use of an
Algorithm running on the Graph. The Graph is the basis for development of an Algorithm, which
aids the Engineers during the Design Process of a Train. The Design Procedure of a Train is
complex, since the Train consists of many different Parts, which must fit together. For instance, an
IC3 Train – are driven by DSB - consists of around 8000 different Parts.

Beyond the Requirement that the Parts must fit together, everything must be designed in order to
meet the maximum load in the working Environment. The maximum Torque Moment in the
Gearboxes must meet the maximum Moment delivered by the Engines (This Moment occurs, when
braking the Train by use of the Engines) and the Power supply must deliver Energy for the Air-
conditioning System, the Interior light and so on …

Some general Requirements from the Customers are:
• X1 numbers of Train sets of a low price.
• The Train must carry X2 number of passengers.
• The maximum consumption of Fuel must be X3 l/km.
• The Speed shall be X4 km/hour.
• The minimum Acceleration shall be X5 m/s2.
• High Reliability (max. X6 stopping errors per 1 million km).
• The Traction System must be supplied by Diesel – or by Electricity.

- The above Requirements are set up by every Customer.

Some Customers have further Requirements, which could be:
• There must be light at the passenger Seats.
• The Chairs shall be placed in Groups of four around a Table…
• The Train must be equipped with a Toilet.

Some of the requirements are counter clockwise, in the sense that they pull design decisions i
different directions. For instance, reducing the Price can result in a heavy Train, which has poor
effect on fuel consumption and reliability and vice versa. The big Puzzle to the design Engineers is
to select the right Subsuppliers for every Part of the Train and to ensure that everything fits
together. This is done by requesting offers from Subsuppliers on the different Parts and
Components. There are two different types of Subsuppliers; Those who produces the
Components/Parts for the Train as a secondary product of their Business, and those who produces
Parts for Trains as their primary Business. Suppliers, who only have the delivery of components to
Trains as a secondary production, often only are willing to make a few customizations of a
standard Product. This group of suppliers is typically those, who deliver engines, Brakes, Air
Conditioning and so on, whereas the group, who produces components for Trains as a part of their
primary business are willing to deliver expensive but fully customized Components. No matter
which Subsupplier you are dealing with, it is necessary to specify the working conditions for their
Components, and since not all Interfaces can be specified from the very beginning, the process of
designing the Train will run in more iterations. It will be attempted to lock the Design around the
important and critical Parts at an early stage of the iterations, while less important and fully
customized Components can be specified in a more precise way in later Iterations. However, the
request for offer must always specify to the Subsuppliers, how their Subparts are loaded, when the
Train is in operation, and specify some further requirements on how the Subpart must be
constructed in order to fit with the rest of the Train (This means a specification of the Interfaces).
When the Subsuppliers return with their Offers, the Group of Designers selects the best Offer, and
the design of the Train is locked on this Part.

This report presents a model of the Train, which - given a set of Components or Subsystems - can

Page 3 of 16

be used in an Algorithm designed with the purpose to help the designers to choose among many
Components, which Components to use in the Design of a Train. The Design of the Graph Model
proposed in this report, supports development of an optimization Algorithm, which is able to select
between different Subsuppliers and to return a set of Components that can be joined into the
globally optimized Design of the Train.

Some further and nice properties of the Graph and Algorithm could be that it would be easy to
make "What if ...?" analysis on Constraints and Subsystems and an Analysis on, which Constraint
or Resource is the critical Bottleneck on locally Subsystems. The “What if ...” analysis could, for
instance, be used to set up some indication on how important, it is to reduce the Weight; Meaning
“If the weight is reduced by 1000kg in the Interior-equipment, the price of the Equipment can raise
10000$ without influencing the total cost Price negatively, since the cost Price of Boogie and
Power Supply is reduced more due to reduced requirements on these parts”. Information about the
Bottleneck Constraint in a Subsystem can explain which Requirement is the most critical in a
Subsystem. This makes it easier to the Design Engineers to focus on the most important
Constraint during the Design and Production Process. The considerations on “What if...”-analysis
and Bottleneck Constraints are not discussed further in this Report.

Page 4 of 16

2 Design Issues
This chapter describes a Graph model, which is used in an Algorithm to find an optimum solution,
for the Design Problem. The Graph is denoted, G, and consists of Edges, E, and Vertices, V, and
these notions will be used in the following to relate the design of a
Train consisting of many different parts and components into a
Graph – see Figure 2.1.

The chapter takes its basis in a model of the boogie subsystem,
since the sub graph at this level have all the properties of the
global graph but is easier to survey, than the situation where the
entire train i considered.

2.1 Definition of Vertices
There can be set up more different approaches to
model the Graph of a Train, but considering Vertices
as services or functions and considering connections
between these Vertices as Edges leads to a Graph,
that represents the Train as a nearly complete Tree
Structure. The Tree Structure is a logical way to
consider the design of a Train, meant in the way, that
a Train is equipped with the services: Interior, Front,
Traction, Boogie, Airconditioning, Controlling System
and Carbody. The Subsystem or Branch of the
Boogie also have Branches, which is a branch for
Wheel set and a Branch for Frame, where a Wheel
Set is considered as a Subbranch with the
Subbranches Wheels, Shaft and Brakes. The other
main Branches in the Train can also be divided into
Subbranches and Subbranches to Subbranches
resulting in a Tree Structure – see Figure 2.2. In
later sections it is discussed, that the Graph not
always will be a complete Tree Structure.

The functionalities or services represented by each
Vertex are requested by the Customers or
Subsystems and Components. Customers can have
Requirements leading directly to a Vertex for a
particular Service. This could for instance be the
situation, when the Customer request the Boogies to
be equipped with pneumatic Brakes. This request
results in a Subbranch to the Boogie Branch, and
this Subbranch has at highest Level a Vertex
specifying the request of pneumatic Brakes on the
Boogie. The request on a Service can also be set up
due to dependencies between Subsystems. This
could be the requirement that the Boogie at least
consists of a Frame and two Wheel sets - otherwise
it is not denoted a Boogie and can not deliver the functionality, which it is expected to deliver, when
it is denoted a Boogie. Both the Frame and the Wheel set are therefore modelled as Vertices in
Subbranches to the Boogie-branch.

Page 5 of 16

V2
Service2

V1
Service1

G(E,V)

E2
Component2

E1
Component1

Figure 2.1: The Graph consist of
vertices V1 and V2 connected by
Edge E1 and Edge E2

Wheel

Wheelset

Brake
Shaft

Bogie

GearboxFrame

Traction

Engine Cooling

Train

Aircondi-
tioning

Interior

Control-
ling

System

Traction

Front

Boogie

Carbody

Figure 2.2: An incomplete Graph of a Train. The
main Branch Boogie has been detailed, whereas
the other main Branches are left back in a cause
detailing Level.

2.2 Definition of Edges
Edges are the concrete solutions to reach the requested requirements set up by defining the
Vertices – see Figure 2.1. This means concrete Components and Subsystems assembled by
concrete components are considered as Edges, which delivers a specific Functionality or Service.
There can be some overlap in the conception of Vertices and Edges, because a Component often
is denoted by the name of the service, it delivers. An example is the Brake-component, which
actually has the property, that it can deliver the Service to brake the Train. However, in the
description of Edges it is the specific Component or assembly of Components (sub System), which
is denoted an Edge. This means, the Brakes from different Suppliers are presented in the Graph
as different Edges with different Parameters, but the Subgraph for the Boogie only has one Vertex
representing the Service delivered by the Brakes. Different Edges connecting Vertex Brake to the
Vertex Boogie, therefore represents different possible choices to get the Service Brake - for
instance respectively a German supplier and a Chinese supplier.

It has also been considered to model specific Components as Vertices, and then the connections
between the vertices should carry information of how many vertices to be used for a feasible
design of a Train. A Component could end up with no representation in the final Design of the
Train, and the Edge to that Component therefore should act, as if the Component/Vertex not was
represented in the Graph. A model of a Wheel set would for instance consist of the Vertices
Wheels, with Part Number Pno1, Brakes, with Part Number Pno2 and Shaft, with Part Number Pno3

and these Vertices should be connected by Edges, if the Components could be assembled into a
feasible solution. The Edges should carry a parameter on the quantity of Components needed to
design the Wheel set. If it was possible select between two different Brake Components, the
Algorithm should handle to set the Quantity of the one Brake Component to zero and the Quantity
of the other Brake Component to two. Dependencies between Brakes and Shaft could be
expressed as directed Edges. The Train perhaps could be modelled in this way, but the Graph
model would end up being very complex. Therefore this solution is not further discussed.

Directed or Undirected Edges
Edges in Graphs can be described as Directed or Undirected. The Edge from Wheelset to Boogie
is directed, which means a Boogie has Wheelsets, and it make no sense to have a Wheelset
without having a Boogie – see Figure 2.3. The Wheelset is incident to the Boogie. Since the Graph
only consists of Vertices, which must be included in the final Design of the Train, all Vertices must
be "visited" during the call of the optimization Procedure. In order to limit the size of the Problem to
be handled in the Algorithm, all Edges are specified as directed and the Graph furthermore must
be acyclic. This means that the Algorithm on the Boogie Subbranch performs a bottom up Analysis
starting from Wheel, Brake and Shaft and towards the adjacent Boogie Vertex. Since the Wheel,
Brake and Shaft vertices not are adjacent to the Boogie - due to the direction of the Edges - the
directed Edges ensures a subbranch will not be considered over and over again.

Normally the in-degree (number of Edges entering the Vertex) is higher or equal than the out-
degree, but there can be situations, where a Vertex has higher out-degree than in-degree, and this
can cause problems to the Algorithm. This issue is discussed in the section” When Subbranches
not are Independent“.

Page 6 of 16

Figure 2.3: The Figure shows the Subgraph of the Boogie
Subsystem.

Wheel

Wheelset

Brake
Shaft

Bogie

GearboxFrame

2.3 Summary of the Design

The model of the Graph G has been described as consisting of Vertices, V, and Edges, E. Vertices
represents the requested Functions or Services and the Edges represents concrete Components
and Subsystems, which delivers the Service requested by the Vertices. Vertices can be set up by
answering the question: "What functionality and properties must the solution have?", whereas
Edges can be set up by answering "How can these functionalities and properties be reached?".
Some typical requirements on the Services are, for instance, minimum Engine Power, maximum
Torque moment on axles, Colours in the Interior or of electrical Parts and so on, and these
requirements are met by the properties of the Components representing the Edges.
Modelling the graph, by specifying requirements to the solution though a set up of all requested
services in Vertices and possible choices of Components in Edges, results in a Graph, where the
optimum Solution, which could be minimum Price, can be found by an Algorithm minimizing the
Price of visiting all Vertices considering no Constraints are violated.

Page 7 of 16

3 Approach to Problem
This chapter describes things to be aware of when choosing an Algorithm - or Strategy - for the
solution of the optimization Problem. Subsystems in the Graph of the train/boogie are not
independent of each other. This is due to the fact, that for instance the weight of the interior effects
the needed engine power. If the Price is considered as the cost function, it’s therefore not for sure
the cheapest (and heaviest) Interior, which results in the cheapest train, because there perhaps is
needed a more powerfully and expensive Engine to carry a cheap and perhaps heavy interior.
Because of this, shortest path Algorithms can not be applied to the overall solution of the system,
since the shortest path algorithms are greedy, which means they presume, that no subproblems
can be optimized. Therefore dynamic programming is considered as the alternative.

There are here described some techniques to contribute for a solution of the optimization problem.
The technique described are constraint functions, setup of quantity of components and a
description on how to model a Problem, where Subbranches not are independent of each other.

3.1 Conditions and Properties on Edges and Vertices
When the algorithm runs, it checks the different solutions for feasibility, ensuring that no
component is overloaded or coupled to components,
which it can not be joined together with in the real
life solution. In order to handle these kinds of
problems, it is necessary to place a Property Table
on each Edge, carrying the main properties of the
particular Component considered. The Property
Table is connected to the Edge as Satellite data, and
the Information inside the Table concerns the
properties of the Component and the Quantity of the
particular Component. The Constraint functions and
Conditions are placed on the Vertices. These
validates the properties of incoming Edges and
propagate properties from incoming Edges to
outgoing Edges, and the conditions are also
represented as Satellite data placed at the Vertices
corresponding to the data on the Edges – see Figure
3.1.
The Conditions at the Vertices concerns:

• resource constraints expressed as combination of Algebraic functions and Logical
expressions. These constraints concern some kind of resources, which must not be used
up, when the system is designed. An example could be maximum weight shall not be more
than 1000kg.

• violation constraints expressed as Logical expressions. These constraints expresses
incompatibility between Components. An example could be Electrical equipment, where low
Voltage Components not can be used in the same circuit as high Voltage Components.

• aggregations of the properties of incoming Edges. An example is accumulation of weight.
• regular expressions. Notation sum(E*.weight) implies the sum of the weight of all incoming

Edges. An example could be that all Electrical Equipment must have the same operating
voltage (220V).

The outgoing Edges are all considered to be generated runtime by the Algorithm performing the
analysis, and only feasible solutions are generated. Properties on the outgoing Edges are all
inherited or propagated from properties of incoming Edges. An example is later given in Figure 3.5.

3.2 Quantity of Components
Some components in the graph must be represented in a given proportion to each other. A

Page 8 of 16

Vz

Ex

Vx

Name Value

Name Closed Condition

Ey

Vy

Name Value

Figure 3.1:The Figure shows how Edges and
Vertices are added respectively Property Tables
and Constraint Tables.

Wheelset with Brakes - consists of the components Wheels, Shaft and Brakes – and these
Components are always represented with the following proportion to each other 2-1-2 – see Figure
3.2. A Wheelset consists of 2 Wheels 1 Shaft and 2 Brakes, and this is modelled in the Graph by
use of the Property Table, which is added an attribute called Quantity.

An other solution could be to allow two Edges representing the same Component between Vertex
Wheel and Vertex Wheelset and two Edges between Vertex Brakes and Vertex Wheelset the
Brakes as depicted in the Figure 3.2. The chosen approach effects the Algorithm in a Complexity
reducing direction, since it ensures, that the algorithm does not select different Components of the
same Component Type, to set up the optimum solution.

Calculated Quantities
In some Situation, the algorithm must calculate how many components that are needed to fulfil a
certain constraint. This can done by iterating on the Quantity Attribute places on the Property
Table, and this Quantity can be increased until the Constraint is fulfilled or a given limit has been
reached. It has been considered to allow cycles in the Graph, where Backward directed Edges
without properties could be used by the Algorithm to move backwards in the Graph structure,
applying yet another of the constraining Edge, and re-estimate the limiting constraint. This proposal
has the poor characteristic that it is difficult to control that the same component is used on both
Edges. For this reason, it has been decided to consider the quantity as an attribute in the property
table. An example of how the calculated Quantities is presented in the Property Table respectively
the Condition Table is given in Figure 3.5 in the Tables connected to E8 and V4.

Limitation of optimization problem
In order to limit the size of the Problem during the optimization process, only Property Parameters
of locally interest are considered, when selecting the composition of Components and Systems.
The Design parameters are encapsulated at the local level by use of the Condition Table on the
Vertices, which is supplied with a Column called “closed”. The Column is set by the designers and
tells, if the Design Parameter is encapsulated to the Subsystem. If the Attribute is set as “No”, the
Parameter propagates to a Design consideration at higher level, whereas the Attribute Value “Yes”
indicates that the Parameter is encapsulated at this Level. The encapsulation of parameters and

Page 9 of 16

Figure 3.2: The Figure shows to approaches to represent Components in a given
proportion relative to each other. Figure A shows how the number of Components
represented by an Edge is expressed in an Attribute in the property Table, whereas
there are added more Edges to the Model in the design showed in figure B.

Brake

Wheel

Shaft

Wheel

Brake

Wheelset
Vz

EyEx

Wheel
Vx

Brake
Vy

Name Value
Quantity 2
Weight 20kg

Name Value
Quantity 2
Weight 10kg

Name Closed Condition
Weight No sum(E*.weight * E*.quantity)

Ey

Shaft
Vy

Name Value
Quantity 1
Weight 25kg

Wheelset
Vz

Ex
Name Value
Weight 20kg

Ex

Wheel
Vx

Name Value
Weight 20kg

Ey
Name Value
Weight 10kg

Ey

Brake
Vy

Name Value
Weight 10kg

Shaft
Vz

Name Value
Weight 25kg

Ez

Name Closed Condition
Weight No sum(E*.weight)

A) B)

check for feasibility done by the conditions described in the Condition Tables are important tools to
reduce the size of the problem. The difference between not to reduce the problem – shown in
Figure 3.3 - and the Situation, where Condition Table has effected the amount of feasible solutions
– see - is expected to be high.

3.3 An Example of Modelling
The Model in Figure 3.5 shows the Boogie Subsystem and in this, the Wheelset Subsystem
consisting of Wheels, Brakes and Shaft. The Model includes Property Tables on the Edges and
Condition Tables on the Vertices. The different characteristics of the Components are described in
the Property Tables connected to the Edges, and Components delivered by different Suppliers has

Page 10 of 16

Figure 3.3:The Figure shows the expansion of Edges from Components being part of
Wheelset and to the Boogie. Part A shows Wheelset can be configured in 27 different
ways which propagates to 243 different configurations at Boogie Level, if the Boogie is
assembled of 5 different service types each supported by 3 different choices of
Components. Conditions are here expected not to effect the amount of possible
solutions.

Wheel

Wheelset

Brake
Shaft

Boogie

GearboxFrame

1..27

Wheel

Wheelset

Brake

Shaft

PropertyPropertyProperty

PropertyPropertyProperty PropertyPropertyProperty

PropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyProperty

Condition

Wheelset

Boogie

Gearbox

Frame

PropertyPropertyProperty

PropertyPropertyProperty
PropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyProperty

Traction

Engine

PropertyPropertyProperty1..243

Condition

A) B) C)

Figure 3.4:The Figure shows that the conditions at Wheelset Level reduces the
amount of feasible Solutions from 27 to 15, which as shown in part B effects the
amount of possible solutions for the Boogie very much.

Wheel

Wheelset

Brake
Shaft

Boogie

GearboxFrame

1..15

Wheel

Wheelset

Brake

Shaft

PropertyPropertyProperty

PropertyPropertyProperty PropertyPropertyProperty

PropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyProperty

Condition

Wheelset

Boogie

Gearbox

Frame

PropertyPropertyProperty

PropertyPropertyProperty

Traction

Engine

PropertyPropertyProperty1..135

Condition

A) B) C)

PropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyFeasiblePropertyPropertyProperty

different properties. Property Tables describes the important Design Parameters on the Subsystem
or Component, and the Parameter price could be used by the Algorithm to find the overall optimum
Solution. Other parameters (diameter, weight, length, and colour) are important in the sense to
make the Parts fit together, since they describe Interface properties or other characteristics of the
Components. The Interface description is handled by use of the Condition Tables describing the
Constrains in the Graph.

Some comments to Notions used in Figure 3.5:
• A concrete Edge between two Vertices is denoted by name Ei and is expected to carry a

Property Table. An Example could be the Edge E1 between Vertex Wheel V1 and Vertex
Wheelset V4. The Edge E1 is related to a Property Table.

• An arbitrary Edge between Wheel Vx and Vertex Wheelset Vy is denoted (Vx,Vy). (V1,V4) Є
{E1,E2}.

• There is used a regular expression for expressing the condition on price in Vertex V5. E*

means all incoming Edges.
• A concrete parametre in the Property Table on an Edge is referenced by its Edge and

Parametre name. (V1,V4).do references the value of Parametre “Diametre outer” on Edge
E1 or E2 depending on the Edge chosen between the considered Vertices.

• Edges E7, E8 and E9 are expected to be generated automatically by the Algorithm, and their
Property Table are here set up by Propagating the Properties of incoming Edges to Vertex
V4 by use of Condition Table related to Vertex V4.

• The Condition Table related to Vertex V4 contains a Logic expression E1 NOT E3 meaning
these two Edges excludes each other.

• The Condition Table related to Vertex V4 propagates properties from incoming Edges to
outgoing Edges. The propagated properties has attribute value “No” in column “Closed”.
The Condition Table related to Vertex, V4, ensures the property “weight”, is accumulated
from the incoming Edges and set into the Property Table of generated outgoing Edges, E7,
E8 and E9.

• A Logical Constraint on inner Diameter for driving shaft in Wheels and Brakes respectively
Outer Diameter of Shaft ensures that the parts can be assembled. The Diameter inner has
the “closed” Attribute Value “Yes” at the Wheelset Vertex V4, which means these properties
are encapsulated and must not be considered, when setting up a composition on Boogie
consisting of Frame and Wheelset.

• The property Quantity is locked for Wheels, Shaft and Brakes in the sence that the attribute
values for “Quantity” on Edges E1,... E6 is set to “1” or “2”. On the Edge (V4,V5) the attribute
is set to “1+” meaning the Algorithm can increase the quantity in order to reach a feasible
Solution.

• E10, which is not expected to be the only Edge leaving Vertex V5 references the subpath
{E7, Ex, Ey, Ez}, which indicates all subgraphs to V4 is out of interest at this Level.

Some comments to Figure 3.5, which makes it easier to read:
• E6 is excluded from all feasible Solutions due to constraint on di.
• Ex, Ey and Ez are expected to enter V5 and each Edge is expected to carry a property Table.

Page 11 of 16

Page 12 of 16

Figure 3.5:The Figure shows how the Condition Tables at the Vertices can be used to
reduce the number of possible Solutions, as well as how the Subsystem properties
are encapsulated.

Wheel
V1

Wheelset
V4

Brake
V3

Shaft
V2

E5
E3E2

E1

E4

Price 200$

Name Value
Partno
Weight

Diametre
outer [do]
Diametre
inner [di]

Color

02141
200kg

0.6m

0.15m

black

Quantity 2

Quantity 1

Name Value
Partno
Weight

Length-y
Diametre
outer [do]

Price

04231
120kg
0.15m

0.15m

200$

Price 180$

Name Value
Partno
Weight

Diametre
outer [do]
Diametre
inner [di]

Color

02142
180kg

0.7m

0.15m

grey

Quantity 2

Quantity 1

Name Value
Partno
Weight

Length-y
Diametre
outer [do]

Price

04232
100kg
0.15m

0.15m

200$

E6

Name Value
Weight

Diametre
outer [do]

Color

700kg

0.6m

black
Price 800$

Quantity
Subpath

1+
 E1,E4,E5

Name Value
Weight

Diametre
outer [do]

Color

660kg

0.7m

grey
Price 760$

Quantity
Subpath

1+
 E2,E4,E5

Name Value
Weight

Diametre
outer [do]

Color

680kg

0.7m

grey
Price 760$

Quantity
Subpath

1+
 E2,E3,E5

Name
Supplier
Weight

Diametre
inner [di]

Length-y
Color
Price

Closed Condition
Yes
No

Yes

Yes
No

 E1NOT E3
 sum(E*.Weight*E*.Quantity)
 (V1,V4).di=(V2,V4).do AND
 (V3,V4).di=(V2,V4).do

 (V2,V4).length-y= (V3,V4).length-y
 (V1,V4).color

No sum(E*.price*E*.Quantity)

Diametre
outer [do] No (V1,V4).do

Quantity No 1+
Subpath No (V1,V4),(V2,V4),(V3,V4)

Boogie
V5

E9

E8E7

E10

Name Value
Weight 700kg*(V4,V5).quantity+Ex.weight*Ex.quantity+Ey.weight*Ey.quantity+Ez.weight*Ez.quantity
Price 800$*(V4,V5).quantity+Ex.price*Ex.quantity+Ey.price*Ey.quantity+Ez.price*Ez.quantity

Quantity
Subpath

 1+
 E7,Ex,Ey,Ez

Name
Weight

Quantity
Wheelset

Color
Price

Closed Condition
No

Yes

Yes

 sum(E*.Weight*E*.Quantity)

V4,V5.quantity < 4

 (V4,V5).color= (Vx,V5).color
No sum(E*.price*E*.Quantity)

Diametre
outer [do] Yes (V4,V5).do < (Vx,V5).length

Quantity No 1+
Subpath No (V4,V5),(Vx,V5),(Vy,V5),(Vz,V5)

Ez

Ey

Ex

Vx

Vy

Vz

Name Value
Partno
Weight

Diametre
inner [di]
Length-y

Price

02191
100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Name Value
Partno
Weight

Diametre
inner [di]
Length-y

Price

02192
100kg

0.20m

0.15m
120$

Quantity 2
Air intake

[ai] 120l/min

3.4 When Subbranches not are Independent
There are basically two ways to model the issue, when more Subgraphs requests services from
the same Service. In the one Model, the System, which deliver the requested resource, is
connected directly to the root element in the Tree Structure – see Figure 3.6. By use of the
Condition Table at Root Level it is possible to express which configurations of the Subsystems are
feasible and which is not.

The other Model also makes use of the Condition Tables at the Vertices for handling the Problem.
In this Model the Constraint on Air Supply on delivery of compressed air to all depending Systems
is placed higher in the Structure in order to reduce the amount of possible combinations to be
violated on this constraint. In order to keep the graph directed an acyclic there has been introduced
some dummy Vertices, and the out-degree of the Vertices are allowed to be higher than 1 – see
Figure 3.7. Note in Figure 3.7 that the Edges E7 and E8 are not carrying any properties, but they
have to exist in order to V7 can produce E10 and V9 can produce E11. V7 and V9 are both denoted
“dummy” because, they are introduced in order to avoid cycles. Edge E12 is related to an property
Table containing the properties related to Air Supply, and these properties can be propagated to
the Train Level.

Page 13 of 16

Figure 3.6:The Air Supply delivers compressed Air for more Systems -
Doors and Brakes - and the Constraint on Air Supply is in the Model
placed in the Constraint Table at the Root (Train).

Door
V1

Air
Supply

V3

Brake
V2

E1

Train
VRoot

Name Value
Partno
Weight

Diametre
inner [di]
Length-y

Price

02191
100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Name Value
Partno
Weight
Price

04691
1100kg
8100$

Quantity 1
Air out

[ao] 300l/min

Vy

Vx

E2 E3

Ey

Vz

Ex
Ez

Name Value

Weight
Price

z.weight kg
z.price $

Air out
[ao] 300l/min

Name Value

Weight

Price

x.weight kg

x.price $

Air intake
[ai] 60l/min

Name Value

Weight

Price

y.weight kg

y.weight $

Air intake
[ai] 100l/minVi

Name Value
Partno
Weight
Width
Height
Price

03231
60kg

1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Name
Weight
Price

Subpath

Closed Condition
Yes
Yes

Yes

 sum()
 sum()

 Ex, Ey, Ez, Ei

Air
constraint Yes Ez.ao >Ex.ai +Ey.ai

Page 14 of 16

Figure 3.7: The situation, where subpaths in the Graph are not independent, is here
modelled by use of dummy-vertices.

Door
dummy

V4

Com-
pressor

V3

Brake
Dummy

V9

Brake
dummy

V5

E5

E1

E4

E6

Train
VRoot

E9

E8

E7

Door
Dummy

V7

Air
Supply
Dummy

V8

Name Value
Partno
Weight

Diametre
inner [di]
Length-y

Price

02191
100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Name Value
Partno
Weight
Price

04691
1100kg
8100$

Quantity 1
Air out

[ao] 300l/min

Air
Supply

V6

Name
Weight
Price

Subpath

Closed Condition
No
No

No

 (V3,V6).Weight*(V3,V6).Quantity)
 (V3,V6).price*(V3,V6).Quantity

 (V3,V6)

Air
constraint Yes (V3,V6).ao >

 (V5,V6).ai +(V4,V6).ai

Vy

Vx

E2

E3

Name Value
Weight
Price

1100kg
8100$

Subpath E2

Name Value
Weight
Price

1100kg
8100$

Subpath E2

Name
Weight
Price

Subpath

Closed Condition
Yes
Yes
Yes

Name
Weight
Width
Height
Price

Closed Condition
No
No
No

 (V1,V4).Weight
 (V1,V4).Width
 (V1,V4).height

No (V1,V4).price
Exists Yes (V5,V4)

Subpath No (V1,V4)

E10

E11

Vz

Name Value
Partno
Weight
Width
Height
Price

03231
60kg

1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Door
V1

Name Value
Weight
Width
Height
Price

60kg
1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Name Value
Weight

Diametre
inner [di]
Length-y

Price

100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Brake
V2

Name
Weight
Width
Height
Price

Closed Condition
No
No
No

 (V4,V7).Weight
 (V4,V7).Width
 (V4,V7).height

No (V4,V7).price
Exists Yes (V8,V7)

Subpath No (V4,V7)

Name
Weight

Diametre
inner [di]
Length-y

Exists
Price

Closed Condition
No

No

No
Yes

 (V5,V9).Weight

 (V5,V9).di

 (V5,V9).length-y
 (V8,V9)

No (V5,V9).price
Quantity No (V5,V9).quantity
Subpath No (V5,V9)

Name
Weight

Diametre
inner [di]
Length-y

Exists
Price

Closed Condition
No

No

No
Yes

 (V2,V5).Weight

 (V2,V5).di

 (V2,V5).length-y
 (V5,V5)

No (V2,V5).price
Quantity No (V2,V5).quantity
Subpath No (V2,V5)

E12

Name Value
Weight
Width
Height
Price

60kg
1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Subpath E4

Name Value
Weight
Width
Height
Price

60kg
1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Subpath E1

Name Value
Weight

Diametre
inner [di]
Length-y

Price

100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Subpath E3

Name Value
Weight

Diametre
inner [di]
Length-y

Price

100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Subpath E7

4 Future Work
The future work will be to set up a Cost function to be optimized, to develop an Algorithm, an
Application and a Database Design for the technical part of the optimization, and to find a way to
visualize the optimized Configuration.

Cost Function - or Object Function
The Cost function describes what to be optimized. When considering the Optimization of a Train or
Boogie, there are at least two different concerns to be optimized. The price is obviously an Object
for optimization, but the total Weight of the Train is an object as well, because the heavier the Train
is, the bigger is the loss of energy during operation, when breaking and accelerating the Train. This
means that the optimization problem is multiobjective [1] and this kind of problems can be handled
in two different ways.

• One Method is to express a single Cost function as a combined sum of weighted factors to
the different Cost functions.

• The other Method is to consider the most important factor of the Cost function as the overall
Cost function in problem, and redefine other Cost functions as Constraints to the
Optimization. The Cost functions defined as Constraints in the Optimization Process can be
varied in order to find the overall optimal Solution.

Considering the optimization of a Boogie, the optimization could be done by expressing the
Problem as: Minimize the total Price of the Boogie considering the total Weight of the Boogie must
not exceed 4.5ton or 5 ton or 5.5ton.

Developing an Algorithm for the Optimization
The overall consideration when designing the Algorithm is, that the Algorithm performs a bottom-up
analysis, and dynamic programming (fastest way through an Assembly Line [2 pg 324]) inspires
the Design. The approach of dynamic programming is that results to Subproblems are stored and
reused in every step of the Algorithm. It is also a Requirement, that all Vertices (in this report
considered as Functions or Services) are visited in order to get at valid Solution of a Train. The
Graph do not look like a well known Graph because, there are more starting points in the directed
Graph, every subproblem must be checked for it´s feasibility and there are more Edges between
the the same pair of Vertices.

Visualizing Results of the Optimization
Finally there should be done a lot of work in visualizing the results of the optimization, and it will in
this context also be reasonable to consider, if it is possible to make “What if...”-analysis and to
detect Bottleneck Constraints to optimal configurations.

Page 15 of 16

5 Conclusions
This report presents a Graph Model, which can be used for modelling a Train. Vertices are
considered to be Services og Functions, which the Customers or Subsystems request on the Train,
and Edges are considered as concrete Solutions on how the requested service can be delivered.
Edges are either considered as components delivered by Subsuppliers or as Subsystems set up
by the algorithm during execution. Vertices carries Satelite data, here named Condition Tables, and
these Tables are used for checking, if a given/proposed solution for a Subsystem is feasible or not.
Edges also carries Satelite data named Property Tables, and these Tables specifies some
important features on the Edges. The Condition Tables on the Vertices also helps the Algorithm to
propagate properties from Property Tables placed on the incoming Edges to the Subsystem
property Tables placed on outgoing Edges. This means the Subsystems inherits and propagates
some of the properties of the Components, of which they consist.
The Graph is directed and acyclic, and there has been given examples on how these properties
can be maintained, even when considering a complicated design issue, where more sub-paths in
the Graph requests a service delivered by one component.

In the last chapter there is given an Example on how the directed and acyclic behavior of the
Graph in conjunction with the use of Condition Tables, can be used to express how Component
properties are inherited and propagated into Subsystem Properties. A Subgraph, representing a
Subsystem in the Graph, only has to be revised once, and storing the Subsystem properties, leads
to a Model of the Graph, which can be used in a more effectively Algorithm than the case where
Sub-solution was not stored and infeasible solutions not excluded at an early stage.

Bibliography
1: Arora, Introduction to optimum design pg.466, McGraw Hill, 1989
2: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to
Algorithms, Second edition, MIT Press, 2003, ISBN 0-262-53196-8

Page 16 of 16

	1 Problem Definition
	2 Design Issues
	2.1 Definition of Vertices
	2.2 Definition of Edges
	2.3 Summary of the Design

	3 Approach to Problem
	3.1 Conditions and Properties on Edges and Vertices
	3.2 Quantity of Components
	3.3 An Example of Modelling
	3.4 When Subbranches not are Independent

	4 Future Work
	5 Conclusions

