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Synopsis:

This report describes Guidelines on 

Modelling a Train by use of Graph. 

The proposed model considers 

Services, which are requested by the 

Customers, as Vertices and concrete 

solutions, which delivers the requested 

Services, are represented as Edges. 

The model is added information 

concerning Component properties at 

the Edges and information concerning 

Conditions and Constraints at the 

Vertices. 

The Model describes the most 

important connections between 

Components and Subsystems in a 

Graph, which can be processed by an 

Algorithm.
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1 Problem Definition
This report  describes guidelines on modelling a Train,  which must  be optimized by use of  an 
Algorithm running on the Graph. The Graph is the basis for development of an Algorithm, which 
aids the Engineers during the Design Process of a Train. The Design Procedure of a Train is 
complex, since the Train consists of many different Parts, which must fit together. For instance, an 
IC3 Train – are driven by DSB - consists of around 8000 different Parts. 

Beyond the Requirement that the Parts must fit together, everything must be designed in order to 
meet  the  maximum  load  in  the  working  Environment.  The  maximum  Torque  Moment  in  the 
Gearboxes must meet the maximum Moment delivered by the Engines (This Moment occurs, when 
braking the Train by use of the Engines) and the Power supply must deliver Energy for the Air-
conditioning System, the Interior light and so on … 

Some general Requirements from the Customers are:
• X1 numbers of Train sets of a low price.
• The Train must carry X2 number of passengers.
• The maximum consumption of Fuel must be X3 l/km. 
• The Speed shall be X4 km/hour.
• The minimum Acceleration shall be X5 m/s2.
• High Reliability (max. X6 stopping errors per 1 million km).
• The Traction System must be supplied by Diesel – or by Electricity.

- The above Requirements are set up by every Customer.

Some Customers have further Requirements, which could be:
• There must be light at the passenger Seats.
• The Chairs shall be placed in Groups of four around a Table…
• The Train must be equipped with a Toilet.

Some of the requirements are counter clockwise, in the sense that they pull design decisions i 
different directions. For instance, reducing the Price can result in a heavy Train, which has poor 
effect on fuel consumption and reliability and vice versa. The big Puzzle to the design Engineers is 
to  select  the  right  Subsuppliers  for  every  Part  of  the  Train  and to  ensure  that  everything fits 
together.  This  is  done  by  requesting  offers  from  Subsuppliers  on  the  different  Parts  and 
Components.  There  are  two  different  types  of  Subsuppliers;  Those  who  produces  the 
Components/Parts for the Train as a secondary product of their Business, and those who produces 
Parts for Trains as their primary Business. Suppliers, who only have the delivery of components to 
Trains  as  a  secondary  production,  often  only  are  willing  to  make  a  few  customizations  of  a 
standard  Product.  This  group of  suppliers  is  typically  those,  who  deliver  engines,  Brakes,  Air 
Conditioning and so on, whereas the group, who produces components for Trains as a part of their 
primary business are willing to deliver  expensive but  fully  customized Components. No matter 
which Subsupplier you are dealing with, it is necessary to specify the working conditions for their 
Components, and since not all Interfaces can be specified from the very beginning, the process of 
designing the Train will run in more iterations. It will be attempted to lock the Design around the 
important  and  critical  Parts  at  an  early  stage  of  the  iterations,  while  less  important  and  fully 
customized Components can be specified in a more precise way in later Iterations. However, the 
request for offer must always specify to the Subsuppliers, how their Subparts are loaded, when the 
Train  is  in  operation,  and  specify  some  further  requirements  on  how  the  Subpart  must  be 
constructed in order to fit with the rest of the Train (This means a specification of the Interfaces). 
When the Subsuppliers return with their Offers, the Group of Designers selects the best Offer, and 
the design of the Train is locked on this Part. 

This report presents a model of the Train, which - given a set of Components or Subsystems - can 
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be used in an Algorithm designed with the purpose to help the designers to choose among many 
Components, which Components to use in the Design of a Train. The Design of the Graph Model 
proposed in this report, supports development of an optimization Algorithm, which is able to select 
between different Subsuppliers and to return a set of  Components that can be joined into the 
globally optimized Design of the Train. 

Some further and nice properties of the Graph and Algorithm could be that it would be easy to 
make "What if ...?" analysis on Constraints and Subsystems and an Analysis on, which Constraint 
or Resource is the critical Bottleneck on locally Subsystems. The “What if ...” analysis could, for 
instance, be used to set up some indication on how important, it is to reduce the Weight; Meaning 
“If the weight is reduced by 1000kg in the Interior-equipment, the price of the Equipment can raise 
10000$ without  influencing the total  cost  Price negatively,  since the cost  Price of  Boogie and 
Power Supply is reduced more due to reduced requirements on these parts”. Information about the 
Bottleneck Constraint in a Subsystem can explain which Requirement is the most critical  in a 
Subsystem.  This  makes  it  easier  to  the  Design  Engineers  to  focus  on  the  most  important 
Constraint during the Design and Production Process. The considerations on “What if...”-analysis 
and Bottleneck Constraints are not discussed further in this Report.
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2 Design Issues
This chapter describes a Graph model, which is used in an Algorithm to find an optimum solution, 
for the Design Problem. The Graph is denoted, G, and consists of Edges, E, and Vertices, V, and 
these notions will be used in the following to relate the design of a 
Train consisting of  many different  parts  and components into a 
Graph – see Figure 2.1. 

The chapter takes its basis in a model of the boogie subsystem, 
since the  sub graph at  this  level  have all  the properties of  the 
global graph but is easier to survey, than the situation where the 
entire train i considered. 

2.1 Definition of Vertices
There can be set up more different  approaches to 
model the Graph of a Train, but considering Vertices 
as services or functions and considering connections 
between these Vertices as Edges leads to a Graph, 
that represents the Train as a nearly complete Tree 
Structure.  The  Tree  Structure  is  a  logical  way  to 
consider the design of a Train, meant in the way, that 
a Train is equipped with the services: Interior, Front, 
Traction, Boogie, Airconditioning, Controlling System 
and  Carbody.  The  Subsystem  or  Branch  of  the 
Boogie also have Branches,  which is a branch for 
Wheel set and a Branch for Frame, where a Wheel 
Set  is  considered  as  a  Subbranch  with  the 
Subbranches Wheels, Shaft and Brakes. The other 
main Branches in the Train can also be divided into 
Subbranches  and  Subbranches  to  Subbranches 
resulting in a Tree Structure – see  Figure  2.2. In 
later  sections  it  is  discussed,  that  the  Graph  not 
always will be a complete Tree Structure. 

The functionalities or services represented by each 
Vertex  are  requested  by  the  Customers  or 
Subsystems and Components. Customers can have 
Requirements  leading  directly  to  a  Vertex  for  a 
particular  Service.  This  could  for  instance  be  the 
situation, when the Customer request the Boogies to 
be  equipped  with  pneumatic  Brakes.  This  request 
results  in  a Subbranch to the Boogie  Branch,  and 
this  Subbranch  has  at  highest  Level  a  Vertex 
specifying the request of  pneumatic Brakes on the 
Boogie. The request on a Service can also be set up 
due  to  dependencies  between  Subsystems.  This 
could  be  the  requirement  that  the  Boogie  at  least 
consists of a Frame and two Wheel sets - otherwise 
it is not denoted a Boogie and can not deliver the functionality, which it is expected to deliver, when 
it is denoted a Boogie. Both the Frame and the Wheel set are therefore modelled as Vertices in 
Subbranches to the Boogie-branch. 
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2.2 Definition of Edges
Edges are the concrete solutions to reach the requested requirements set  up  by defining the 
Vertices  –  see  Figure  2.1.  This  means concrete  Components  and Subsystems assembled by 
concrete components are considered as Edges, which delivers a specific Functionality or Service. 
There can be some overlap in the conception of Vertices and Edges, because a Component often 
is denoted by the name of the service, it  delivers. An example is the Brake-component, which 
actually  has  the  property,  that  it  can  deliver  the  Service  to  brake  the  Train.  However,  in  the 
description of Edges it is the specific Component or assembly of Components (sub System), which 
is denoted an Edge. This means, the Brakes from different Suppliers are presented in the Graph 
as different Edges with different Parameters, but the Subgraph for the Boogie only has one Vertex 
representing the Service delivered by the Brakes. Different Edges connecting Vertex Brake to the 
Vertex  Boogie,  therefore  represents  different  possible  choices  to  get  the  Service  Brake  -  for 
instance respectively a German supplier and a Chinese supplier. 

It has also been considered to model specific Components as Vertices, and then the connections 
between the vertices should carry information of  how many vertices to be used for  a feasible 
design of a Train. A Component could end up with no representation in the final Design of the 
Train, and the Edge to that Component therefore should act, as if the Component/Vertex not was 
represented in  the Graph.  A model  of  a  Wheel  set  would  for  instance consist  of  the Vertices 
Wheels, with Part Number Pno1, Brakes, with Part Number Pno2 and Shaft, with Part Number Pno3 

and these Vertices should be connected by Edges, if the Components could be assembled into a 
feasible solution. The Edges should carry a parameter on the quantity of Components needed to 
design the Wheel  set.  If  it  was possible select  between two different  Brake Components,  the 
Algorithm should handle to set the Quantity of the one Brake Component to zero and the Quantity 
of  the  other  Brake  Component  to  two.  Dependencies  between  Brakes  and  Shaft  could  be 
expressed as directed Edges. The Train perhaps could be modelled in this way, but the Graph 
model would end up being very complex. Therefore this solution is not further discussed. 

Directed or Undirected Edges
Edges in Graphs can be described as Directed or Undirected. The Edge from Wheelset to Boogie 
is directed, which means a Boogie has Wheelsets, and it  make no sense to have a Wheelset 
without having a Boogie – see Figure 2.3. The Wheelset is incident to the Boogie. Since the Graph 
only consists of Vertices, which must be included in the final Design of the Train, all Vertices must 
be "visited" during the call of the optimization Procedure. In order to limit the size of the Problem to 
be handled in the Algorithm, all Edges are specified as directed and the Graph furthermore must 
be acyclic. This means that the Algorithm on the Boogie Subbranch performs a bottom up Analysis 
starting from Wheel, Brake and Shaft and towards the adjacent Boogie Vertex. Since the Wheel, 
Brake and Shaft vertices not are adjacent to the Boogie - due to the direction of the Edges - the 
directed Edges ensures a subbranch will not be considered over and over again. 

Normally the in-degree (number of Edges entering the Vertex) is higher or equal than the out-
degree, but there can be situations, where a Vertex has higher out-degree than in-degree, and this 
can cause problems to the Algorithm. This issue is discussed in the section” When Subbranches
not are Independent“.
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Figure 2.3: The Figure shows the Subgraph of the Boogie 
Subsystem.  
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2.3 Summary of the Design

The model of the Graph G has been described as consisting of Vertices, V, and Edges, E. Vertices 
represents the requested Functions or Services and the Edges represents concrete Components 
and Subsystems, which delivers the Service requested by the Vertices. Vertices can be set up by 
answering the  question:  "What  functionality  and properties must  the  solution have?",  whereas 
Edges can be set up by answering "How can these functionalities and properties be reached?". 
Some typical requirements on the Services are, for instance, minimum Engine Power, maximum 
Torque  moment  on  axles,  Colours  in  the  Interior  or  of  electrical  Parts  and  so on,  and  these 
requirements are met by the properties of the Components representing the Edges.
Modelling the graph, by specifying requirements to the solution though a set up of all requested 
services in Vertices and possible choices of Components in Edges, results in a Graph, where the 
optimum Solution, which could be minimum Price, can be found by an Algorithm minimizing the 
Price of visiting all Vertices considering no Constraints are violated. 
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3 Approach to Problem
This chapter describes things to be aware of when choosing an Algorithm - or Strategy - for the 
solution  of  the  optimization  Problem.  Subsystems  in  the  Graph  of  the  train/boogie  are  not 
independent of each other. This is due to the fact, that for instance the weight of the interior effects 
the needed engine power. If the Price is considered as the cost function, it’s therefore not for sure 
the cheapest (and heaviest) Interior, which results in the cheapest train, because there perhaps is 
needed a more powerfully and expensive Engine to carry a cheap and perhaps heavy interior. 
Because of this, shortest path Algorithms can not be applied to the overall solution of the system, 
since the shortest path algorithms are greedy, which means they presume, that no subproblems 
can be optimized. Therefore dynamic programming is considered as the alternative.

There are here described some techniques to contribute for a solution of the optimization problem. 
The  technique  described  are  constraint  functions,  setup  of  quantity  of  components  and  a 
description on how to model a Problem, where Subbranches not are independent of each other.

3.1 Conditions and Properties on Edges and Vertices
When  the  algorithm  runs,  it  checks  the  different  solutions  for  feasibility,  ensuring  that  no 
component is overloaded or coupled to components, 
which it can not be joined together with in the real 
life  solution.  In  order  to  handle  these  kinds  of 
problems, it is necessary to place a Property Table 
on each Edge, carrying the main properties of the 
particular  Component  considered.  The  Property 
Table is connected to the Edge as Satellite data, and 
the  Information  inside  the  Table  concerns  the 
properties of the Component and the Quantity of the 
particular Component. The Constraint functions and 
Conditions  are  placed  on  the  Vertices.  These 
validates  the  properties  of  incoming  Edges  and 
propagate  properties  from  incoming  Edges  to 
outgoing  Edges,  and  the  conditions  are  also 
represented as Satellite data placed at the Vertices 
corresponding to the data on the Edges – see Figure
3.1. 
The Conditions at the Vertices concerns: 

• resource  constraints  expressed  as  combination  of  Algebraic  functions  and  Logical 
expressions. These constraints concern some kind of resources, which must not be used 
up, when the system is designed. An example could be maximum weight shall not be more 
than 1000kg.

• violation  constraints  expressed  as  Logical  expressions.  These  constraints  expresses 
incompatibility between Components. An example could be Electrical equipment, where low 
Voltage Components not can be used in the same circuit as high Voltage Components.

• aggregations of the properties of incoming Edges. An example is accumulation of weight.
• regular expressions. Notation sum(E*.weight) implies the sum of the weight of all incoming 

Edges. An example could be that all Electrical Equipment must have the same operating 
voltage (220V).

The outgoing Edges are all considered to be generated runtime by the Algorithm performing the 
analysis,  and only  feasible  solutions are  generated.  Properties  on the  outgoing Edges are  all 
inherited or propagated from properties of incoming Edges. An example is later given in Figure 3.5.

3.2 Quantity of Components
Some components  in  the  graph  must  be  represented  in  a  given  proportion  to  each  other.  A 
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Figure 3.1:The Figure shows how Edges and 
Vertices are added respectively Property Tables 
and Constraint Tables.



Wheelset  with  Brakes  -  consists  of  the  components  Wheels,  Shaft  and  Brakes  –  and  these 
Components are always represented with the following proportion to each other 2-1-2 – see Figure
3.2. A Wheelset consists of 2 Wheels 1 Shaft and 2 Brakes, and this is modelled in the Graph by 
use of the Property Table, which is added an attribute called Quantity.

An other solution could be to allow two Edges representing the same Component between Vertex 
Wheel  and Vertex Wheelset  and two Edges between Vertex Brakes and Vertex Wheelset  the 
Brakes as depicted in the Figure 3.2. The chosen approach effects the Algorithm in a Complexity 
reducing direction, since it ensures, that the algorithm does not select different Components of the 
same Component Type, to set up the optimum solution. 

Calculated Quantities
In some Situation, the algorithm must calculate how many components that are needed to fulfil a 
certain constraint.  This can done by iterating on the Quantity Attribute places on the Property 
Table, and this Quantity can be increased until the Constraint is fulfilled or a given limit has been 
reached. It has been considered to allow cycles in the Graph, where Backward directed Edges 
without  properties could be used by the Algorithm to move backwards in the Graph structure, 
applying yet another of the constraining Edge, and re-estimate the limiting constraint. This proposal 
has the poor characteristic that it is difficult to control that the same component is used on both 
Edges. For this reason, it has been decided to consider the quantity as an attribute in the property 
table. An example of how the calculated Quantities is presented in the Property Table respectively 
the Condition Table is given in Figure 3.5 in the Tables connected to E8 and V4.

Limitation of optimization problem
In order to limit the size of the Problem during the optimization process, only Property Parameters 
of locally interest are considered, when selecting the composition of Components and Systems. 
The Design parameters are encapsulated at the local level by use of the Condition Table on the 
Vertices, which is supplied with a Column called “closed”. The Column is set by the designers and 
tells, if the Design Parameter is encapsulated to the Subsystem. If the Attribute is set as “No”, the 
Parameter propagates to a Design consideration at higher level, whereas the Attribute Value “Yes” 
indicates that the Parameter is encapsulated at this Level. The encapsulation of parameters and 
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Figure 3.2: The Figure shows to approaches to represent Components in a given 
proportion relative to each other. Figure A shows how the number of Components 
represented by an Edge is expressed in an Attribute in the property Table, whereas 
there are added more Edges to the Model in the design showed in figure B.
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check for feasibility done by the conditions described in the Condition Tables are important tools to 
reduce the size of the problem. The difference between not to  reduce the problem – shown in 
Figure 3.3 - and the Situation, where Condition Table has effected the amount of feasible solutions 
– see - is expected to be high. 

 

3.3 An Example of Modelling
The Model  in  Figure  3.5 shows the  Boogie  Subsystem and in  this,  the  Wheelset  Subsystem 
consisting of Wheels, Brakes and Shaft. The Model includes Property Tables on the Edges and 
Condition Tables on the Vertices. The different characteristics of the Components are described in 
the Property Tables connected to the Edges, and Components delivered by different Suppliers has 
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Figure 3.3:The Figure shows the expansion of Edges from Components being part of 
Wheelset and to the Boogie. Part A shows Wheelset can be configured in 27 different  
ways which propagates to 243 different configurations at Boogie Level, if the Boogie is 
assembled of 5 different service types each supported by 3 different choices of  
Components. Conditions are here expected not to effect the amount of possible 
solutions.
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Figure 3.4:The Figure shows that the conditions at Wheelset Level reduces the 
amount of feasible Solutions from 27 to 15, which as shown in part B effects the 
amount of possible solutions for the Boogie very much.
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different properties. Property Tables describes the important Design Parameters on the Subsystem 
or Component, and the Parameter price could be used by the Algorithm to find the overall optimum 
Solution. Other parameters (diameter, weight, length, and colour) are important in the sense to 
make the Parts fit together, since they describe Interface properties or other characteristics of the 
Components. The Interface description is handled by use of the Condition Tables describing the 
Constrains in the Graph.

Some comments to Notions used in Figure 3.5:
• A concrete Edge between two Vertices is denoted by name Ei and is expected to carry a 

Property Table. An Example could be the Edge E1 between Vertex Wheel V1 and Vertex 
Wheelset V4. The Edge E1 is related to a Property Table.

• An arbitrary Edge between  Wheel Vx and Vertex Wheelset Vy is denoted (Vx,Vy). (V1,V4) Є 
{E1,E2}.  

• There is used a regular expression for expressing the condition on price in Vertex V5. E* 

means all incoming Edges.
• A concrete parametre in the Property Table on an Edge is referenced by its Edge and 

Parametre name. (V1,V4).do references the value of Parametre “Diametre outer” on Edge 
E1 or E2 depending on the Edge chosen between the considered Vertices.

• Edges E7, E8 and E9 are expected to be generated automatically by the Algorithm, and their 
Property Table are here set up by Propagating the Properties of incoming Edges to Vertex 
V4 by use of Condition Table related to Vertex V4.

• The Condition Table related to Vertex V4 contains a Logic expression E1 NOT E3 meaning 
these two Edges excludes each other.

• The Condition Table related to Vertex V4 propagates properties from incoming Edges to 
outgoing Edges. The propagated properties has attribute value “No” in column “Closed”. 
The Condition Table related to Vertex, V4, ensures the property “weight”, is accumulated 
from the incoming Edges and set into the Property Table of generated outgoing Edges, E7, 
E8 and E9. 

• A Logical Constraint on inner Diameter for driving shaft in Wheels and Brakes respectively 
Outer Diameter of Shaft ensures that the parts can be assembled. The Diameter inner has 
the “closed” Attribute Value “Yes” at the Wheelset Vertex V4, which means these properties 
are encapsulated and must not be considered, when setting up a composition on Boogie 
consisting of Frame and Wheelset. 

• The property Quantity is locked for Wheels, Shaft and Brakes in the sence that the attribute 
values for “Quantity” on Edges E1,... E6 is set to “1” or “2”. On the Edge (V4,V5) the attribute 
is set to “1+” meaning the Algorithm can increase the quantity in order to reach a feasible 
Solution.

• E10, which is not expected to be the only Edge leaving Vertex V5 references the subpath 
{E7, Ex, Ey, Ez}, which indicates all subgraphs to V4 is out of interest at this Level.  

Some comments to Figure 3.5, which makes it easier to read:
• E6 is excluded from all feasible Solutions due to constraint on di. 
• Ex, Ey and Ez are expected to enter V5 and each Edge is expected to carry a property Table.
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Figure 3.5:The Figure shows how the Condition Tables at the Vertices can be used to 
reduce the number of possible Solutions, as well as how the Subsystem properties 
are encapsulated. 
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 (V2,V4).length-y= (V3,V4).length-y
 (V1,V4).color

No  sum(E*.price*E*.Quantity)

Diametre
outer [do] No  (V1,V4).do

Quantity No  1+
Subpath No  (V1,V4),(V2,V4),(V3,V4)

Boogie
V5

E9

E8E7

E10

Name Value
Weight   700kg*(V4,V5).quantity+Ex.weight*Ex.quantity+Ey.weight*Ey.quantity+Ez.weight*Ez.quantity
Price  800$*(V4,V5).quantity+Ex.price*Ex.quantity+Ey.price*Ey.quantity+Ez.price*Ez.quantity

Quantity
Subpath

 1+
 E7,Ex,Ey,Ez

Name
Weight

Quantity
Wheelset

Color
Price

Closed Condition
No

Yes

Yes

 sum(E*.Weight*E*.Quantity)

V4,V5.quantity < 4

 (V4,V5).color= (Vx,V5).color
No  sum(E*.price*E*.Quantity)

Diametre
outer [do] Yes  (V4,V5).do <  (Vx,V5).length

Quantity No  1+
Subpath No  (V4,V5),(Vx,V5),(Vy,V5),(Vz,V5)

Ez

Ey

Ex

Vx

Vy

Vz

Name Value
Partno
Weight

Diametre 
inner [di]
Length-y

Price

02191
100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Name Value
Partno
Weight

Diametre 
inner [di]
Length-y

Price

02192
100kg

0.20m

0.15m
120$

Quantity 2
Air intake

[ai] 120l/min



3.4 When Subbranches not are Independent
There are basically two ways to model the issue, when more Subgraphs requests services from 
the  same  Service.  In  the  one  Model,  the  System,  which  deliver  the  requested  resource,  is 
connected directly  to  the root  element  in  the  Tree Structure  – see  Figure  3.6.  By  use of  the 
Condition Table at Root Level it is possible to express which configurations of the Subsystems are 
feasible and which is not.
 

The other Model also makes use of the Condition Tables at the Vertices for handling the Problem. 
In this Model the Constraint on Air Supply on delivery of compressed air to all depending Systems 
is placed higher in the Structure in order to reduce the amount of possible combinations to be 
violated on this constraint. In order to keep the graph directed an acyclic there has been introduced 
some dummy Vertices, and the out-degree of the Vertices are allowed to be higher than 1 – see 
Figure 3.7. Note in Figure 3.7 that the Edges E7 and E8 are not carrying any properties, but they 
have to exist in order to V7 can produce E10 and V9 can produce E11. V7 and V9 are both denoted 
“dummy” because, they are introduced in order to avoid cycles. Edge E12 is related to an property 
Table containing the properties related to Air Supply, and these properties can be propagated to 
the Train Level.
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Figure 3.6:The Air Supply delivers compressed Air for more Systems - 
Doors and Brakes - and the Constraint on Air Supply is in the Model 
placed in the Constraint Table at the Root (Train).

Door
V1

Air
Supply

V3

Brake
V2

E1

Train
VRoot

Name Value
Partno
Weight

Diametre 
inner [di]
Length-y

Price

02191
100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Name Value
Partno
Weight
Price

04691
1100kg
8100$

Quantity 1
Air out

[ao] 300l/min

Vy

Vx

E2 E3

Ey

Vz

Ex
Ez

Name Value

Weight
Price

z.weight kg
z.price $

Air out
[ao] 300l/min

Name Value

Weight

Price

x.weight kg

x.price $

Air intake
[ai] 60l/min

Name Value

Weight

Price

y.weight kg

y.weight $

Air intake
[ai] 100l/minVi

Name Value
Partno
Weight
Width
Height
Price

03231
60kg

1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Name
Weight
Price

Subpath

Closed Condition
Yes
Yes

Yes

 sum()
 sum()

 Ex, Ey, Ez, Ei

Air 
constraint Yes  Ez.ao >Ex.ai +Ey.ai
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Figure 3.7: The situation, where subpaths in the Graph are not independent, is here 
modelled by use of dummy-vertices.

Door 
dummy

V4

Com-
pressor

V3

Brake
Dummy 

V9

Brake 
dummy

V5

E5

E1

E4

E6

Train
VRoot

E9

E8

E7

Door
Dummy

V7

Air
Supply
Dummy

V8

Name Value
Partno
Weight

Diametre 
inner [di]
Length-y

Price

02191
100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Name Value
Partno
Weight
Price

04691
1100kg
8100$

Quantity 1
Air out

[ao] 300l/min

Air
Supply

V6

Name
Weight
Price

Subpath

Closed Condition
No
No

No

 (V3,V6).Weight*(V3,V6).Quantity)
 (V3,V6).price*(V3,V6).Quantity

 (V3,V6)

Air 
constraint Yes  (V3,V6).ao >

                     (V5,V6).ai +(V4,V6).ai

Vy

Vx

E2

E3

Name Value
Weight
Price

1100kg
8100$

Subpath E2

Name Value
Weight
Price

1100kg
8100$

Subpath E2

Name
Weight
Price

Subpath

Closed Condition
Yes
Yes
Yes

Name
Weight
Width
Height
Price

Closed Condition
No
No
No

 (V1,V4).Weight
 (V1,V4).Width
 (V1,V4).height

No  (V1,V4).price
Exists Yes  (V5,V4)

Subpath No  (V1,V4)

E10

E11

Vz

Name Value
Partno
Weight
Width
Height
Price

03231
60kg

1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Door
V1

Name Value
Weight
Width
Height
Price

60kg
1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Name Value
Weight

Diametre 
inner [di]
Length-y

Price

100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Brake 
V2

Name
Weight
Width
Height
Price

Closed Condition
No
No
No

 (V4,V7).Weight
 (V4,V7).Width
 (V4,V7).height

No  (V4,V7).price
Exists Yes  (V8,V7)

Subpath No  (V4,V7)

Name
Weight

Diametre 
inner [di]
Length-y

Exists
Price

Closed Condition
No

No

No
Yes

 (V5,V9).Weight

 (V5,V9).di

 (V5,V9).length-y
 (V8,V9)

No  (V5,V9).price
Quantity No  (V5,V9).quantity
Subpath No  (V5,V9)

Name
Weight

Diametre 
inner [di]
Length-y

Exists
Price

Closed Condition
No

No

No
Yes

 (V2,V5).Weight

 (V2,V5).di

 (V2,V5).length-y
 (V5,V5)

No  (V2,V5).price
Quantity No  (V2,V5).quantity
Subpath No  (V2,V5)

E12

Name Value
Weight
Width
Height
Price

60kg
1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Subpath  E4

Name Value
Weight
Width
Height
Price

60kg
1.55m
1.95m
2100$

Quantity 1
Air intake

[ai] 60l/min

Subpath  E1

Name Value
Weight

Diametre 
inner [di]
Length-y

Price

100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Subpath  E3

Name Value
Weight

Diametre 
inner [di]
Length-y

Price

100kg

0.15m

0.15m
100$

Quantity 2
Air intake

[ai] 100l/min

Subpath  E7



4 Future Work
The future work will be to set up a Cost function to be optimized, to develop an Algorithm, an 
Application and a Database Design for the technical part of the optimization, and to find a way to 
visualize the optimized Configuration.

Cost Function - or Object Function
The Cost function describes what to be optimized. When considering the Optimization of a Train or 
Boogie, there are at least two different concerns to be optimized. The price is obviously an Object 
for optimization, but the total Weight of the Train is an object as well, because the heavier the Train 
is, the bigger is the loss of energy during operation, when breaking and accelerating the Train. This 
means that the optimization problem is multiobjective [1] and this kind of problems can be handled 
in two different ways.

• One Method is to express a single Cost function as a combined sum of weighted factors to 
the different Cost functions.

• The other Method is to consider the most important factor of the Cost function as the overall 
Cost  function  in  problem,  and  redefine  other  Cost  functions  as  Constraints  to  the 
Optimization. The Cost functions defined as Constraints in the Optimization Process can be 
varied in order to find the overall optimal Solution. 

Considering  the  optimization  of  a  Boogie,  the  optimization  could  be  done  by  expressing  the 
Problem as: Minimize the total Price of the Boogie considering the total Weight of the Boogie must 
not exceed 4.5ton or 5 ton or 5.5ton. 

Developing an Algorithm for the Optimization
The overall consideration when designing the Algorithm is, that the Algorithm performs a bottom-up 
analysis, and dynamic programming (fastest way through an Assembly Line [2 pg 324]) inspires 
the Design. The approach of dynamic programming is that results to Subproblems are stored and 
reused in every step of the Algorithm. It  is also a Requirement, that all  Vertices (in this report 
considered as Functions or Services) are visited in order to get at valid Solution of a Train. The 
Graph do not look like a well known Graph because, there are more starting points in the directed 
Graph, every subproblem must be checked for it´s feasibility and there are more Edges between 
the the same pair of Vertices.

Visualizing Results of the Optimization
Finally there should be done a lot of work in visualizing the results of the optimization, and it will in 
this context also be reasonable to consider, if it is possible to make “What if...”-analysis and to 
detect Bottleneck Constraints to optimal configurations.
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5 Conclusions
This  report  presents  a  Graph  Model,  which  can  be  used  for  modelling  a  Train.  Vertices  are 
considered to be Services og Functions, which the Customers or Subsystems request on the Train, 
and Edges are considered as concrete Solutions on how the requested service can be delivered. 
Edges are either considered as components delivered by Subsuppliers or as Subsystems set up 
by the algorithm during execution. Vertices carries Satelite data, here named Condition Tables, and 
these Tables are used for checking, if a given/proposed solution for a Subsystem is feasible or not. 
Edges  also  carries  Satelite  data  named  Property  Tables,  and  these  Tables  specifies  some 
important features on the Edges. The Condition Tables on the Vertices also helps the Algorithm to 
propagate  properties  from  Property  Tables  placed  on  the  incoming  Edges  to  the  Subsystem 
property Tables placed on outgoing Edges. This means the Subsystems inherits and propagates 
some of the properties of the Components, of which they consist.
The Graph is directed and acyclic, and there has been given examples on how these properties 
can be maintained, even when considering a complicated design issue, where more sub-paths in 
the Graph requests a service delivered by one component. 

In the last chapter there is given an Example on how the directed and acyclic behavior of the 
Graph in conjunction with the use of Condition Tables, can be used to express how Component 
properties are inherited and propagated into Subsystem Properties. A Subgraph, representing a 
Subsystem in the Graph, only has to be revised once, and storing the Subsystem properties, leads 
to a Model of the Graph, which can be used in a more effectively Algorithm than the case where 
Sub-solution was not stored and infeasible solutions not excluded at an early stage. 
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