Optimizing the Interval Decision Diagram Im-
plementation in the CF Firewall

Master Thesis
X
[410] [1.2]
Y Y [3;3]
[2,2] 4,10]
[1;1] [3:10] Z L3 (w Z
[12] [4;10] [0;6] 33 [1:4] /[6;10] 7;10] 5;5]
F T
Aalborg University S

Department of Computer Science

Aalborg University

u
o“"G N/I,@

Department of Computer Science

TITLE: Optimizing the Interval Decision Dia-
gram Implementation in the CF Firewall

PROJECT PERIOD:
Febuary 1st, 2005 - November 30th, 2005

PROJECT GROUP:
d603a

GROUP MEMBERS:
]eSper Sloth Christensen, huzzler@cs.aau.dk

PROJECT SUPERVISOR:
Emmanuel Fleury, fleury@cs.aau.dk
Gerd Behrmann, behrmann@cs.aau.dk

NUMBER OF COPIES: 5

REPORT: NUMBER OF PAGES: 67
APPENDIX: NUMBER OF PAGES: 6
TOTAL: NUMBER OF PAGES: 92

SYNOPSIS:

The purpose of this project is to reduce the
time it takes to build a decision diagram
from a set of firewall rules.

We improve the implementation of the CF
firewall and are able to reduce the worst-
case runtime for the functions that per-
form logical operations on decision di-
grams from exponential to polynomial.
We also improve on other functions and
for large rulesets we cut the time it takes
to build the decision diagram from hours
to seconds.

We also look at the order of variables in
the decision diagram and examine what
effect changing the order would have. We
present an algorithm for finding a better
order but discover that the order this gives
does not reduce the size of the decision di-
agram. However, we also see that even if
changing the order does not affect the size
of the decision diagram, it can still influ-
ence the time it takes to build the decision
diagram.

Summary

To secure a personal computer or a local network from attacks from some-
one on the internet a firewall is often used. A firewall sits between the
computer or the network to be protected and the rest of the internet. The
job of the firewall is to scan incoming and outgoing network traffic and fil-
ter out any unwanted network traffic. The firewall administrator indicates
what traffic to filter out by using a list of rules. If a network packet matches
a rule, the policy associated with the rule is carried out on the packet. The
firewall for linux works by matching a packet against the first rule in the
list and moving on to the next until a match is found. This can be very
costly if the matching rule is at the bottom of the list.

Compact Filter (CF) represents the rules as a decision diagram instead.
This makes it possible to match a packet against the ruleset much faster.
However, building the decision diagram is very time consuming for large
rulesets. We therefore look at ways to improve CF so that the decision
diagrams can be build faster.

The implementation of the functions that work on decision diagrams in
CF is very ineffective. An iterator is used in many places when it is nec-
essary to traverse the entire decision diagram. However, the implementa-
tion of this is very ineffective.Furthemore we implement an operator cache
which is used to avoid performing the same logical operation on the same
input more than once. We change the implementation of the functions used
to perform logical operations on decision diagrams and are able to reduce
the worst-case runtime of the functions from exponential to polynomial.

We go on to investigate other ways of reducing the build time for the
decision diagrams that are directly related to the code. We look at the order
of the variables in the decision and also at something called complement
nodes which allows two complement IDDs (IDDs where the TRUE and
FALSE terminal is interchanged) to be represented by the same IDD. In a
decision diagram each node represents a check on a variable and we show
that the order in which these checks are performed is of great importance
to the size of the decision diagram. We propose a method to find an order
of the variables that will give smaller decision diagrams than the order
currently used in CF. Test results show that although the method does not
improve on the size of the graph, changing the order can still reduce the

Page I11 of B2

time it takes to build the decision diagram.

Finally we give some suggestions for further work. It is important to
implement global IDDs in the future to fully utilize the improvements that
we have made. When support of more header fields is added to CF it is
necessary to have another look at the order of variables.

Page IV of

Preface

This report is the documentation of a master thesis project (DAT6) at Aal-
borg University, Dept. of Computer Science. The goal of the project is to
reduce the time it takes to build a filter for the CF firewall. This is done
through code optimization and changes in data structure holding the filter.
All source code can be found at the following internet address:

http:/ /www.cs.aau.dk/ huzzler/dat6.html

Jesper Sloth Christensen

Page V of 82

Table of Contents

Page VII of

l4 81 Buildine the filtercl

|5 Performance Ana]vsiJ

l"') 1 Testing the old imolementatim‘l

lb_Other solutiond

43
43
45

49
49
51
53

55
55
56
58
64

65

67

Page VIII of 82

Chapter 1

Introduction

This chapter will give a basic introduction to the background of the project
and present the motivation for the project. Furthermore, the overall goals
of the project are presented.

1.1 Problem description

Today, making your personal or company network secure has become more
important than ever as the internet has become more and more widespread.
This has made access to information, entertainment, etc. much easier but
it has also made it easier for a malicious person to attack whomever he or
she wishes. One way to guard against such attacks is using a firewall.

A firewall sits between one network (such as the internet or a local area
network) and a local area network or a single computer. It may be located
on a separate machine or one of the machines in the network. The primary
purpose of the firewall is to detect and discard unwanted network traffic.
The traffic may either be inbound or outbound.

INTERNET FIREWALL LOCAL AREA NETWORK

59 =

Figure 1.1: The posibble position of a firewall

The firewall works by comparing each packet in the network traffic with
a set of rules defined by the administrator of the firewall. In linux, netfilter
is used to build the firewall from a set of rules. The rules are written as a
list [N'H]. A rule for netfilter will look something like this:

iptables -A INPUT -s 192.168.0.0/24 -i ethO -d 192.168.0.10 -p tcp --dport 80 -j ACCEPT

Page 1 of 821

Chapter 1: Introduction

215.135.92.116]

215.135.92.116;255.255.255.255]

ACCEPT DENY

Figure 1.2: A simple illustration of the decision diagrams used in CF

If the packet does not match the first rule, it is compared with the next
and so on until a matching rule is found or until the entire list has been
traversed in which case a default policy is applied. In a worst case sce-
nario the matching rule is located at the end of the list meaning that the
firewall spends a lot of time traversing the list. The rules in netfilter may,
however, be split into several lists. Thus a match or partial match in one
list may cause netfilter to begin traversing another list. Thereby the proces
of matching a network packet with a rule may be split into several smaller
checks.

To make mathching network traffic against the ruleset faster, a new type
of firewall has been proposed, Compact filter (CF), which represents the
rules in an entirely different way [CE]. Insted of representing the rules in a
sequential matter as Netfilter does, CF represents the rules using a type of
directed acyclic graph (DAG) called Multi Terminal Interval Decision Dia-
grams (MTIDD). This makes it possible to match a network packet against
the entire ruleset by the use of a number of checks on individual packet
header fields. Each node in the graph represents a check on one of the
fields in a filter rule, such as IP address or port number. Depending on the
outcome of this check one of the outgoing edges is chosen until a terminal
node is reached which says what to do with the packet. A simple illus-
tration of this is shown in figure A more elaborate explanation can be
found in chapter

CF has ben tested against Netfilter and HiPAC (another proposed re-
placement for Netfilter - see http://www.hipac.org) and has proved to
very efficient compared with these two firewalls once it is up and running.
However, building the MTIDD from the rules can be very time consuming
for large rulesets. Small filters with up to around 100 rules takes less than
one second to build, but with 1,000 rules it takes 37 seconds, 5,000 rules
takes around 5 minutes and 50,000 rules takes almost 1.5 hour according
to [CH] (in chapter @l we present a number of filters which take even longer

Page 2 of 82

1.2 Project goal

to build which further underlines the problem with long build times for
filters).

When the number of rules goes up so does the compile time and this
can be a problem if frequent or urgent updates of the ruleset are required.
This could be if e.g. a firewall administrator has a list of banned servers that
computers on the local network are not allowed to visit and which needs
to be updated or if an external host needs to be denied access to the local
network like in the case of a malicious attack. Although this should not
require rebuilding the MTIDD from scratch, CF does not currently support
adding a new rule to an existing filter.

1.2 Project goal

The overall goal of this project is to try to reduce the amount of time spent
on compiling the filter.

We will look at the implementation of LIBIDD, the library in CF used to
build and manipulate decision diagrams. Specifically we will examine the
worst-case runtime of the primary functions to see if this can be improved
and thereby reducing the time it takes to build a filter.

We will also look at other papers on the subject of decision diagrams
in order to find methods that can be applied here and which may also con-
tribute to reducing the compile time of the filters. In particular we will look
at the importance of the ordering of variables. This is a subject which has
claimed a lot of attention in the litterature of decision diagrams. We will
look at ways to discover a better order for a decision diagram and investi-
gate how these findings affect CF and the compile time of filters.

In chapterDlwe take a closer look at interval decision diagrams and de-
scribe what they are and how they are used in CF. In chapter Blwe present
the performance analysis tools used. In chapter @l we identify several prob-
lem areas in LIBIDD and present a new implementation for several func-
tions. We also present test results for the current and new implementa-
tion which shows a huge reduction in the time it takes to build a decision
diagram. In chapter Bl we run some performance analysis on the current
and new implementation of LIBIDD. In chapter @ we present other ways
of improving LIBIDD by looking at the order of variables in the decision
diagram and the use of complement nodes. In chapter [l we present an al-
gorithm for finding a better order for CE. We find that the algorithm does
not give an order which produces a smaller graph. However, we also see
that although an order does not produce a smaller graph it may still help
in reducing the time it takes to build a decision diagram. In chapter B we
conclude on the report and in chapter Blwe present ideas for further work.

Page 3 of 821

Chapter 2

Decision Diagrams

This chapter introduces Interval Decision Diagrams (IDD) and Multi Ter-
minal Interval Decision Diagrams (MTIDD) and how they can be used in
packet filtering. First we show how a rule in a packet filter can be repre-
sented using predicate logic. Then we show how to represent the predicate
logic formula using IDDs. We also how basic logical operators are applied
to IDDs. Finally we present the MTIDD which is used to combine several
IDDs into one decision diagram.

2.1 Representing firewall rules as predicate logic

The first step in showing that IDDs can be used to represent rules in a
packet filter, is to show how these rules may be expressed using predicate
logic. A more elaborate explanation of this is given in [CE04], here we give
a brief summary.

First we give a formal definition of a rule in a firewall filte. A rule (r) is
made up by a set of header fields (n) and a policy (7). Thus we have:

e H, the superset of all possible sets of header fields, n € H
o II = permit, deny, the set of policies, 7 € 11
e Aruler = (n,m)

A rule that drops packets with http traffic to a specific host would be
written as:

2.1) r = (IPDADDR € 212.95.114.156) A (TC PDEST = 80), deny)

where IPDADDR is the destination ip address and TC PDEST is the des-
tination port number. We can then define a filter ¢ as a set of rules over
H x IL

Page 5 of 821

Chapter 2: Decision Diagrams

(22) Y = ((7717 7Tk‘1)7 (7727 7Tk‘2)7 seey (7]7% Trkn))
(ni)i<n is said to be a partition of H iff

° Uiﬁm =H
o n;(\n; =0,Vi,j <nwithi#j

In order to avoid confusion in ambigous filters, we define an ordered
filter where the order prioritizes among overlapping rules. We have that

e ¢ is an ordered filter iff) = (n;, 7,)i<n, With n; C H,m,, € II for all
i < n, where n is the number of rules, and we have an implicit order
> such that (n;, m;) = (n;,7;) <= i>]

An IDD is a DAG (directed acyclic graph) where each node represents
an evaluation of a bounded integer variable. Each outgoing edge corre-
sponds to an interval within the domain of the variable. The result of eval-
uating the variable determines which outgoing edge to follow. An edge
either points to another node or a terminal which is either true or false. An
IDD is defined as follows:

e 1 is an integer variable defined on the domain D, C N
e tis an IDD node iff

— t € T'rue, False or

-t = ((a: S IQ/\tQ)\/(IE el /\tl)\/...\/(IL’ S Ik/\tk)),where I;,i <k
is a partition of D, and ¢;,¢ < k is a set of IDD nodes.

A node is called a root node if there is no predecessor and a set of nodes
is called an IDD if there is only one root node and there are no cycles. var(t)
is the function which returns the value of the variable of the node:

x, ift=ao— (Io,to),(fl,tl),...,(Ik,tk)

2.3 t) =
(2.3) war(t) {t, if t € {True, False}

We call I = ((¢;)i<n),>) an ordered IDD iff > is an order on the vari-
ables such that for all ¢ € (¢;)i<, we have z > var(t;) for all i« < k and
where t = x — (o, 1), (I1,t}), ..., (Ik, t},). Lets consider a logical formula
with four variables, each with the domain [1;10], where x is first in the or-
der, then comes y,z and w.

(2.4)
(1<z2<2M <y <10AN7T<w <10)V(x =3Az2=5)V(4 <z < 10Ay = 2Az = 3)

This gives us the following nodes:

Page 6 of 82

2.2 Reduced IDDs

Figure 2.1: An example of an IDD

o to =z — ([1;2], 00)([3; 3], tooo) ([4; 10], to1)
* too =y — ([1;3], £)([4; 10], too00)

o tor =y — ([1;1], F)([2;2], too1)([3; 10], F')
* tooo = z — ([1;4], F)([5; 5], T')([6; 10], ")

e toor = z — ([1;2], F)([3; 3], T)([4; 10], F")

e tooo0 = w — ([0;6], F')([7;10], T)

A graphical representation of the graph can be seen in figure 211

2.2 Reduced IDDs

A very important aspect when implementing a library for decision dia-
grams is to ensure that the graphs we build are reduced at all times. We
say that an IDD is reduced if it adheres to the following conditions:

e There may not be two identical nodes in the IDD
e Two adjacent edges may not point to the same node

e A node must have at least two children

Figure22shows a graph which is not reduced and figure 23 shows the
same graph in reduced form.

A graph should be kept reduced at all times. This ensures that we per-
form no unnecessary operations and that the graph takes up as little space
as possible.

Page 7 of 821

Chapter 2: Decision Diagrams

Figure 2.2: An unreduced graph

Figure 2.3: A reduced graph

2.3 Boolean operators on IDDs

We can use the same basic boolean operators on IDDs as we can with predi-
cate logic formulas such as AND, OR, NOT etc. If we want to combine two
IDDs, A and B, we use the AND operator which works in the following
way on IDDs:

If we have performed AND on A and B before
return result from that operation
If A and B are terminals
If both are TRUE
return TRUE
Else
return FALSE
If A is a terminal and B is a node
If A is FALSE
return FALSE
Else
For each child of B
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
return B
If A is node and B is a terminal
If B is false
return FALSE
Else
For each child of A

Page 8 of 82

2.3 Boolean operators on IDDs

If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
return A
If A and B are nodes
If A comes before B in the order
For each child of A
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
AND B with each of A’s children
If B comes before A in the order
For each child of B
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
AND A with each of B’s children
If A and B are equal in the order
Build a new node and combine the edges of A and B to form
the edges of the new node
For each child of the new node
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
For each edge AND the IDD pointed to by that interval by A
and B respectively

The check in the beginning of AND ensures that we do not perform
any operation on the same input more than once. This also means that the
worst case runtime of AND is O(n * m) where n is the number of nodes in
A and m is the number of nodes in B.

Let’s elaborate on the last part a bit. If A and B share the same position
in the order, meaning that they represent the same variable, we take the
intervals assigned to the edges of A and B and use these to construct a
new set of intervals. Let’s say that A has two edges [0; 3] which points to
node C and [4; 10] which points to node D, and B has two edges [0; 5] which

Page 9 of 821

Chapter 2: Decision Diagrams

Figure 2.4: IDD A Figure 2.5: IDD B

Figure 2.6: The IDD of A AND B

points to node E and [6; 10] which points to node F, see figures 23 and
Performing AND on A and B would result in a new node with the edges
[0; 3] which points to C AND E, [4; 5] which points to D AND E and [6; 10]
which points to D AND F, see figure

OR looks very similar. In the case that A and B share the same position
in the order, the approach is the same as with AND except that the IDDs
are OR’ed instead. The worst-case runtime is also the same.

If A and B are terminals
If just one is TRUE then return TRUE
else return FALSE
If A is a terminal and B is a node
If A is TRUE
return TRUE
Else
For each child of B
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
return B

Page 10 of

2.3 Boolean operators on IDDs

If A is node and B is a terminal
If B is TRUE
return TRUE
Else
For each child of A
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
return A
If A and B are nodes
If A comes before B in the order
For each child of A
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
OR B with each of A’s children
If B comes before A in the order
For each child of B
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
OR A with each of B’s children
If A and B are equal in the order
Build a new node and combine the edges of A and B to form
the edges of the new node
For each child of the new node
If the child is equal to the adjacent child
merge them
If only one child remains
return that child
Else
For each edge OR the IDD pointed to by that interval by A
and B respectively

NOT is simply a matter of finding the terminals in the IDD and negating
their value. The worst case of is therefore O(n) where n is the number of
nodes in A.

If A is a node

Page 11 of 82

Chapter 2: Decision Diagrams

Perform NOT on each of A’s children
If A is a terminal
If A is TRUE then return FALSE
Else return TRUE

2.4 Representing filter rules with IDDs

By using the header fields of IP packets as the variables, the IDD can be
used to represent the rules in a packet filter. For example, the IDD repre-
senting the two following rules can be seen in figure.4l The rules are writ-
ten in the syntax used in CF. INPUT means that the rule should be added
to the filter attached to the INPUT hook, deny is the policy that should be
applied to a packet that matches the rule, host x.x.x.x denotes an IP ad-
dress, the first being the source and the second being the destination.

INPUT deny host 51.252.160.40 host 73.165.243.220
INPUT deny host 99.225.183.39 host 211.69.141.119

In order to keep it simple we only check source and destination IPs and
we use the standard 4x8 bit notation instead of a single 32 bit value which
is how it is represented in CF. It is also possible to split the variable check
on the IP adress into 4 checks, one for each of the 8 bit segments. While
this may cause the IDD to grow in size because it would take four checks to
check an IP address, the resulting four nodes will have far smaller ranges
and may also result in more sharing.

The IDD is built using the following algorithm:

For each rule in ruleset
Build an IDD for each variable in the rule
AND the IDDs together
OR the rule with the filter IDD

With IDDs we have two different terminals (permit and deny), which
are represented using the true and false terminals in the IDD. If we wanted
to perform more actions on a packet other than simply permitting or deny-
ing it (e.g. logging), this is not possible with an IDD. For this purpose, we
introduce the MTIDD (Multi Terminal Interval Decision Diagram).

2.5 MTIDD

The MTIDD and the definition of an MTIDD node is in many ways similar
to the IDD. The main difference is that instead of two boolean terminals,
we have a set of terminals. Thus the definition of an MTIDD node looks as
follows:

Page 12 of

2.6 Representing an IDD in CF

Figure 2.7: An example of an IDD representing a packet filter

e z is an integer variable defined on the domain D, C N
e tis an MTIDD node iff

— t € T, where T is a set of terminals, or

- t=ux — (lo,to), (I1,t1), ..., (Ir, tx), where I;,i < k is a partition
of D, and t;,7 < k is a set of MTIDD nodes.

It is important here to notice that although an MTIDD can be seen as an
extension of an IDD it is not a boolean formula, it is actually a combination
of several IDDs. That is, evaluating an MTIDD can be seen as evaluating
several IDDs at the same time and performing the actions specified in the
terminals. So you may have to identical IDDs where one leads to a TRUE
terminal which should be interpreted as PERMIT and another leads to a
TRUE terminal which should be interpreted as LOG. In an MTIDD these
are combined into a PERMIT+LOG terminal

2.6 Representing an IDD in CF

We briefly present the way an IDD is currently represented in CF. This will
also help in understanding the following chapters better. The representa-
tion of an MTIDD is almost the same except for the terminal which contains
a list of actions instead of two boolean values.

The representation of a terminal in an IDD is very straightforward. It is
simply an enumeration constant which can take on the values of FALSE and
TRUE.

Page 13 of 82

Chapter 2: Decision Diagrams

typedef enum { FALSE, TRUE} IddTerminal_t;

The node struct contains three elements. name is the name of the vari-
able represented by the node. It is an integer which gives the position of
the variable in the order associated with the decision diagram. partition
contains the partitions of the node and partition_size is the number of
partitions the node has. A partition entry has a lower bound, an upper
bound and a pointer to an idd. When the variable of a node is evaluated
the direction to go in is determined by which partion the result matches.

typedef struct {
int name;
IddPartitionEntry_t* partition;
int partition_size;

} IddNode_t;

The idd struct has a type which is an enumerator that tells whether this
is a node or a terminal, a value which holds the node/terminal struct, a
hashvalue and an id used for assigning unique IDs

typedef struct Idd {
enum { NODE, TERMINAL } type;
union { IddNode_t node; IddTerminal_t terminal; } value;
uint32_t hashvalue;
uint32_t id;
} Idd_t;

Before moving on we briefly present the names we use when talking
about the firewall. CF is the overall name for the entire firewall project,
cfeconf is the tool used for building decision diagrams from rulesets and
LIBIDD is the part of the code responsible for building IDDs.

Now that we have presented the data structure on which CF relies we
go on to introducing the performance analysis tools that we will use later
on.

Page 14 of

Chapter 3

Performance Analysis Tools

This chapter presents the performance analysis tools used in this procjet,
gcov and gprof. These tools are used for coverage measurement and profil-
ing respectfully. The first deals with which parts of the code are executed
and which are not, the second describes how much time a particular part
of the code uses.

3.1 Gcov

Coverage measurement can be be divided into three major groups. The first
is function coverage where we measure which functions were executed, the
second is statement coverage where we look at which individual lines of code
were executed and finally there is branch coverage where we look at which
condition in branch statement is satisfied. We are primarily interested in
statement coverage to see which lines in a highly time consuming function
are executed most.

Geov does not require much preparation to use. All you have to do
is to compile the code with two special GCC options: -fprofile-arcs
-ftest-coverage. A .da file will then be generated for each source file
when the program is run. It is now time to run gcov with the source files
as argument. This will produce a file with the name sourcefile.c.gcov. The
contents of this file will look something like table Bl

Each line of code is preceeded by one of the following symbols:

e - means that the line contains no source code.
e 42 means that the line was executed 42 times.
o #i### means that the line was never executed.

Although we cannot directly see which lines the CPU spends the most
time on, we can use the results to see the relationship between the number

Page 15 of 82

Chapter 3: Performance Analysis Tools

195: 526: iddIteratorPostorderInit(&iddite, idd);
195: 527: while ((cur_idd = iddIteratorPostorderNext(&iddite)) !'= NULL) {

2386: 528: match = 0;
33783: 529: for (i = 0; i < parray_used; i++) {
31779: 530: if (parray[i] == cur_idd) {

382: 531: match = 1;
382: 532: break;

-: 533: }
-: b534: }

1809: 535: if (!match) {

195: 536: parray[parray_used] = cur_idd;

2004: 537: parray_used++;

-: 538: }
-: 539:

2386: 540: if (parray_used >= IDD_PARRAY_SIZE) {
#i##t: 541: printf ("iddDeepFree out of memory");
#####: 542 exit (0);

-: 543: }

-: 544: }

Table 3.1: Example of the output generated by gcov

of times each line is executed. Thus when we know which part of the codes
requires a lot of CPU time, we can use coverage measurement to figure
out which lines or statements we need to do something about in order to
reduce run time. In order to find out how much time is spent on individual
parts of the code we use the profiling tool gprof, which is described in B2

3.2 Gprof

Gprof requires us to set the option -pg when compiling the code. This
enables us to see how much time is spent on each function in the program.
When the program is run a file called gmon. out is generated. After running
the program you run the gprof command with the executable file and the
gmon.out file as input.

This is assuming that we are in the directory where the executable is
located and that we ran the program when this directory was the current
working directory. This is important as the gmon.out file is always writ-
ten to the current working directory, so we have to be aware of directory
changes when we for instance initiate multiple tests using a shell script.
The output from running gprof can be devided into two parts, the flat pro-
file and the call graph. An example of the flat profile is shown in table

The first column (% time)is the percentage of the total time spent on this
particular function, the second column (cumulative seconds) is the number
of seconds spent on the function listed so far, the third column (self sec-
onds) is the number of seconds spent on the respective function, the fourth
column (calls) is how many times the function was called, the fifth column
(self s/call) is the average time spent on the function per call and the sixth

Page 16 of

3.2 Gprof

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
42.20 5.22 5.22 18988 0.00 0.00 iddDeepFree
14.92 7.07 1.85 317114 0.00 0.00 iddHashGetHashValue
6.39 7.86 0.79 2204551 0.00 0.00 iddEqual
5.09 8.49 0.63 5417644 0.00 0.00 iddIteratorPreorderNext
4.12 9.00 0.51 997 0.00 0.00 iddHashInit
3.88 9.48 0.48 1458647 0.00 0.00 iddComparePartitionBounds
2.99 9.85 0.37 994 0.00 0.00 iddHashFree
2.26 10.13 0.28 4454926 0.00 0.00 mnodeStackInit
1.78 10.35 0.22 142716 0.00 0.00 iddHashFind
1.70 10.56 0.21 4496659 0.00 0.00 nodeStackPush

Table 3.2: An example of the gprof flat profile

column (total s/call) is the average time spent on the function and its de-
scendants per call. The entries are sorted based on first self seconds, then
calls and finally the function name.

At the beginning of the flat profile there is a line that reads “Each sample
counts as 0.01 seconds”. This tells us that a 100 Hz sampling rate was used.
What this means is that gprof takes a sample 100 times each second and if
a function is running at the time when the sample is taken then 0.01 second
is added to the runtime of that function. This means that there will be some
uncertainty associated with the results we get, especially for tests run for a
very short time. Here the results will be sensitive to when the samples are
taken.

An example of the call graph is shown in table B3

The entries in the call graph are seperated by a line of dashes. For each
entry there is one line with an index number. This is the function being
profiled. The lines above are the functions that call this function and the
lines below are the functions that this function calls, time is the percent-
age of the total time spent in this function and its children. The following
columns have different meaning depending on whether it is a parent of the
function, the profiled function itself or a child of the function.

For a parent self is the time propagated from the function into this par-
ent, children is time that was propagated from the function’s children into
this parent, called is the number of times this parent called the function and
the total number of times the function was called (recursive calls not in-
cluded).

For the profiled function itself self is the number of seconds spent in this
function, children is the total amount of time propagated into this function
by its children, called is the number of times the function was called by
another function (recursive calls are indicated by a "+ and the number of
recursive calls).

Page 17 of 82

Chapter 3: Performance Analysis Tools

granularity: each sample hit covers 2 byte(s) for 0.08% of 12.37 seconds

index 7 time self children called name
0.01 12.13 1/1 main [2]

[1] 98.1 0.01 12.13 1 yyparse [1]
0.01 5.96 1000/1006 cacl_filter_stack_popping [3]
0.00 4.44 917/917 cacl_fun_tcp_permit_rule [8]
1.10 0.06 4000/18988 iddDeepFree [5]
0.00 0.40 83/83 cacl_fun_udp_permit_rule [25]
0.05 0.00 11001/11001 yylex [43]
0.00 0.04 2000/2000 cacl_fun_ip_idd [46]
0.00 0.04 2000/2000 cacl_fun_port_eq_idd [47]
0.00 0.04 3/3 cacl_filter_add_permitall_rule [49]
0.01 0.00 4000/8000 iddOrderFind [62]
0.00 0.00 2000/2000 cacl_fun_port_value_check [78]
0.00 0.00 1000/1006 cacl_filter_addrule [79]

<spontaneous>

[2] 98.1 0.00 12.14 main [2]
0.01 12.13 1/1 yyparse [1]
0.00 0.00 1/1 cfconfParseOpts [103]
0.00 0.00 1/1 setinput [105]
0.00 0.00 1/1 parsefilter [104]

Table 3.3: An example of the gprof call graph

For a child of the function self is the time that was propagated directly
from the child into the function, children is the time that was propagated
from the child’s children to the function and called is the number of times
the profiled function called the child and the total number of times the child
was called (recursive calls not included).

We are now ready to look at ways of improving the implementation of
LIBIDD. This is done in the next chapter.

Page 18 of

Chapter 4

Implementation

This chapter deals with the ways the current implementation can be im-
proved to reduce the runtime of cfconf. In chapter I we presented the IDD,
the operators NOT, AND and OR and the importance of keeping an IDD
reduced. Unfortunately the current implementation of LIBIDD does not
ensure that an IDD is kept reduced and therefore the worst-case runtime of
the logical operators in LIBIDD is higher than it needs to be. In this chap-
ter we present the problems with the current implementation and come up
with solutions for fixing these problems

First we present a new IDD constructor which ensures that we do not
build a new IDD if we know of an identical IDD which we have previ-
ously built. We then present a new way of computing the hashvalue of an
IDD. Currently the IDD is turned into a string representation which is then
hashed. Then we present an operator cache which stores information about
previous uses of NOT, AND and OR. Using this will help avoid perform-
ing the same operation more than once. We then go on to presenting the
iterator used in LIBIDD to find all the nodes and terminals in an IDD and
why this poses a problem. After that we present the logicial operators and
how we can change the worst case runtime from exponential to polynomial
by using the operator cache. We also present iddDeepFree which is used
to free all the memory associated with an IDD. The worst case runtime for
iddDeepFree is also reduced. We then present benchmark tests of the orig-
inal and the new implementation to show which improvements we have
achieved. Finally we give a summary of the chapter.

4.1 A new IDD constructor

LIBIDD relies on a function for allocating space for a new IDD (iddAlloc ()
and another function for initiating the IDD with specified values (iddNodeInit
and iddTerminalInit). When using these functions to build a new IDD
there is no check to see if the IDD already exists.

Page 19 of 82

Chapter 4: Implementation

The new IDD constructor, named iddMakeNode () ensures that no new
IDD is built which is equivalent to an already existing IDD. The key to the
new IDD constructor is a hashtable which is given to it as an argument from
the calling function. This hashtable must contain all IDDs that the calling
function has constructed previously to the call to iddMakeNode ().

It is up to the calling function to allocate and initiate a hashtable which
is then passed to iddMakeNode () each time it is called together with the
name, partition and the partition size we wish returned. First the function
goes through the partition entries to see if the size of the partition can be
reduced. This is possible if two adjacent partition entries reference the same
child. This is not expensive to do if we know that all IDDs referenced in the
partition are made with iddMakeNode (). If they are we know that for two
IDDs to be identical they have to be the same IDD and therefore the check is
simply a matter of comparing pointer references. If the partition is reduced
to a single entry we return the IDD in that entry (ie. the only child left in
the node) as the result.

iddMakeNode () then looks through the hashtable to see if a match can
be found. If so, the matching IDD is returned, otherwise a new IDD is
allocated and initiated.

A function for making terminals, called iddMakeTerminal also exists.
This is a little simpler in that it only takes a hastable and a terminal value
(TRUE or FALSE) as arguments. It then looks through the hashtable to
see if it can find a terminal with the given terminal value. If it does this
terminal is returned, if not a new terminal is allocated and initiated and
then returned.

By using iddMakeNode () we ensure that there are no identical nodes in
the IDD because it looks for a match in the hashtable prior to creating a
new node, that two adjacent edges do not point to the same child and that
a node has at least two children because if we encounter a node that does
not the child is returned as the result thus discarding the node in question.

4.2 The Hashvalue

In LIBIDD the hashvalue for an IDD is calculated in two steps. First a string
representation of the IDD is produced and then this is turned into a hash-
value using Horner’s algorithm, see table .11

This is a very cumbersome way of getting the hashvalue because we
first have to compute a string representation of the IDD. Therefore we im-
plement a new function for getting a hashvalue for an IDD.

If the IDD is a terminal the hash function simply returns a constant.
There is no point in calculating a hash value for terminals as it will always
be the same. If the IDD is a node we compute a new hashvalue based on
the name of the node, the partitions and the hashvalues of the children. The

Page 20 of

4.3 The operator cache

Seconds

uint32_t iddHashGetHashValue(char *idd_string_rep) {
uint32_t h = 0;
int pos; /* position in idd_string_rep */
for (pos = 0; idd_string_rep[pos] != ’\0’; pos++) {
h = (64*h + idd_string_repl[pos]) % MAXHASH;
}

return h;

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Table 4.1: The current function for obtaining a hashvalue in LIBIDD

7777777 X~ 1 1 1 1 1 1 1

Orilginal hasl|1 function j——
New hash function ---x-»

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
No. of rules

Figure 4.1: Comparing runtimes using the old and new hash function

hashfunction we use is taken from http://burtleburtle.net/bob/c/lookup2.c.
In figure BTl we compare the runtime for cfconf using the old and new
hash function and see that there is a significant reduction in runtime.

4.3 The operator cache

50000

The operator cache is used to store information about operations that we
have already performed. Whenever we are about to perform an operation
on one or two IDDs we look in the operator cache (using the hashvalue of
the operands) to see if we have already performed that operation before. If
so we simply retrieve the result instead of performing the operation again.
If no match is found in the cache we perform the operation and add the

Page 21 of 82

Chapter 4: Implementation

result together with the operands to the operator cache afterwards.

Using the operator cache ensures that we do not perform the same oper-
ation on the same input more than once. When we know this we also know
that the worst-case runtime for the operation is O(n) for unary operations
and O(n * m) for binary operations.

In table L2 we see the struct for a cache entry. Each entry contains point-
ers to the two operands and the result. It also contains an integer called tag.
This is used to distinguish operations performed by different functions or
even instances of the same functions from each other. Each time one of
the functions that uses the cache is called, it increments a global counter
(opcounter) and when we look for a match in the cache, the tag must
match the current value of the global counter. There is a potential prob-
lem here if the counter wraps around but this would imply an extremely
large number of operations which we do not reach. The operator cache is
a global array of cache entries and it is allocated and initiated when the
program starts.

typedef struct

{
uint32_t tag;
Idd_t *argl;
Idd_t *arg2;
Idd_t *result;

} cacheentry_t;

Table 4.2: The operator cache

There are three functions available that can be applied to the operator
cache. An init function (table E.3) which allocates and initializes the cache
with a given size, a destroy function (table E.4) which frees the array and
all the entries in it (but not the IDDs referenced in it) and finally a lookup
function (table L) which looks for an entry which contains the two specied
IDDs. If no match is found an empty entry is returned so that the calling
function may fill out the values from the operation. If more than one oper-
ation should be placed at the same position in the cache, the previous entry
is overwritten. The reason for overwriting existing entries is that we expect
collisions to be very rare, so it is better to risk overwriting an entry than
having to maintain a collision list.

4.4 The Iterator Problem

Several functions in the current implementation such as iddNot () and iddDeepFree
use an iterator to go through an IDD and discover all the nodes and termi-
nals. However, the way the iterator works is not efficient and depending on
the level of sharing we risk running into the same node or terminal several

Page 22 of

4.4 The Iterator Problem

int iddCacheInit(int s)
{
iddCacheDestroy();
size = s;
entries = calloc(sizeof (cacheentry_t), s);
return entries 7 1 : 0;

Table 4.3: The operator cache init function

void iddCacheDestroy()
{

free(entries);

size = 0;

entries = NULL;
}

Table 4.4: The operator cache destroy function

times. In fact, by using the iterator we risk performing the same operation
an exponential number of times instead of a polynomial number of times.

LIBIDD has two iterators, a preorder and a postorder iterator, but they
work in pretty much the same way. The iterator works on a struct which,
among other things contains a pointer to the root of the IDD we wish to
index and a nodestack which is, as the name suggests, a stack containing
IDD nodes. Each time the iterator is called a new node is returned. The
iterator works by taking a node (the first time this is the root node) and
adding that to the nodestack. Then the node pointed to by the first partition
entry of the node at the top of the stack is added to the stack. This continues
until we reach a terminal which is returned as the result. The next time we
look at the second partion entry in the node at the top of the stack and
the node which it points to. This continues until there are no more partion
entries left at which point the node is popped from the stack and returned
as the result.

An example of the proces is shown in figures E.2] - Nodes in the
stack are marked as grey and the IDD returned as the results is marked as
black (remember that the term IDD covers both node and terminal as well
as a set of IDDs, see chapter D)

e First A is pushed onto the stack and we continue to the IDD pointed
to by the first partition of A, which is B. B is then pushed onto the
stack and again we continue to the IDD pointed to by the first par-
tition. This is the terminal T, which is returned as the result. (Fig.

E2)

e On the next run we look at the second partition of B which points to
the terminal F. This is returned as the result. (Fig. E3)

Page 23 of 82

Chapter 4: Implementation

cacheentry_t *iddCacheLookup(unsigned int hash)
{

return &entries[hash % sizel;

3

Table 4.5: The operator cache lookup function

(O (@
> <

T T F

T F

Figure 4.2: Step 1 Figure 4.3: Step 2 Figure 4.4: Step 3

e The next time there are no more partions in B, which is then returned
as the result and popped from the stack. (Fig. E.4)

e We are now back at A and we look at the second partition which
points to C. C’s first partition points to the terminal T, which is re-
turned as the result - here we run into an IDD which we have seen

before. (Fig. £5)

e We now look at the second partition of C, which points to F. Again
we return an IDD that we have seen before. (Fig. E.6)

e C has no more partitions and it is returned as the result and popped
from the stack. (Fig. E7)

e A has no more partions and is returned as the result. The next time
the iterator is called it will return NULL because there are no more
nodes in the nodestack. (Fig. E.8)

When using an iterator to go through an IDD we will run into some of
the nodes more than once if the IDD has any kind of sharing. The more
sharing the more we will run into nodes we have already seen before and
because reduced IDDs only have one TRUE terminal and one FALSE termi-
nal we will run into those many times. This means that the calling function
must check if the node or terminal it gets from the iterator is one that it has

Page 24 of

4.5 Cloning an IDD

OIIOXCIED,
> <

T F T F T F

Figure 4.5: Step 4 Figure 4.6: Step 5 Figure 4.7: Step 6

A

T F

Figure 4.8: Step 7

already received. In the worst-case scenario the running time of the itera-
tor increases exponentially with the number of nodes which gives functions
that use it, such as iddNot () an exponential runtime.

4.5 Cloning an IDD

Several places in LIBIDD an IDD is cloned and the clone is returned instead
of the IDD in question. This is due to the lack of global IDDs and because
the operands for the logical operators are sometimes freed after the opera-
tion is performed it is necessary to return a clone (using iddDeepClone())
instead of the actual IDD which may be freed after the operation is pe-
formed. The function copies the entire IDD rooted at the IDD given to it as
argument. The current implementation is seen in appendix [AJ}

Not only does the current implementation not use a hashtable which

Page 25 of 82

Chapter 4: Implementation

means that the same IDD idd may be cloned several times, it also uses the
iterator to go through the IDD and find all the nodes and terminals. The it-
erator has the flaw that it cannot see if a node has already been returned (by
traversing another path through the graph) so we risk copying the same
node or terminal several times. This will also eliminate any sharing that
might exist in the IDD thus making the IDD unreduced. Therefore we have
implemented a new version of the cloning function. The new implementa-
tion consists of an outer function which may be called by the logical oper-
ators in LIBIDD and an inner helper function which goes through the IDD
using a number of recursive calls. The outer function is seen below.

Idd_t *iddOperatorDeepClone(Idd_t *idd, IddHash_t *hashtable) {
Idd_t *result;

result = iddOperatorDeepCloneHelper (hashtable, idd);

return result;

}

In the helper function we check if the IDD is a node or a terminal. If it is
a terminal we simply return a matching terminal using iddMakeTerminal ().
If it is a node we look in the cache to see if we have already cloned this node
before. If so this is returned. Notice that we use the value opcounter+1 in-
stead of simply opcounter. This is because we cannot increment opcounter
when we call iddOperatorDeepClone () because when we return from the
call the value of opcounter should be same as before the call, otherwise the
calling function cannot continue with using the cache. Therefore we use
the value opcounter+1 here and increment opcounter twice for each call to
the logical operators. If the node has not been cloned before a new node is
made using iddMakeNode () and the result is added to the cache. The helper
function is seen below.

Idd_t *iddOperatorDeepCloneHelper(IddHash_t *hashtable, Idd_t *idd) {
Idd_t *result;
int 1i;
IddPartitionEntry_t *partition;
int partition_size;
cacheentry_t *entry;

if (idd->type == TERMINAL) {
if (idd->value.terminal == TRUE) {
result = iddMakeTerminal (hashtable, TRUE);
return result;
} else {
result = iddMakeTerminal (hashtable, FALSE);
return result;

Page 26 of

4.6 The Logical Operators

} else if (idd->type == NODE) {
entry = iddCacheLookup (HASH1(idd->hashvalue)) ;
if (entry->tag == opcounter+l && entry->argl == idd) {
printf ("iddOperatorDeepCloneHelper: match found in operator cache\n");
return entry->result;

3

partition = iddPartitionAlloc(idd->value.node.partition_size);
partition_size = idd->value.node.partition_size;

for (i = 0; i < idd->value.node.partition_size; i++) {
//printf ("iddOperatorDeepCloneHelper: i = %d\n", i);
partition[i].lower_bound = idd->value.node.partition[i].lower_bound;
partition[i].upper_bound = idd->value.node.partition[i].upper_bound;
partition[i].idd = iddOperatorDeepCloneHelper (hashtable,
idd->value.node.partition[i].idd);

result = iddMakeNode(hashtable, idd->value.node.name,
partition, partition_size);

entry->tag = opcounter+i;
entry->argl = idd;
entry->result = result;

return result;

return result;

}

4.6 The Logical Operators

The functions responsible for the logical operations in LIBIDD have a worstcase
running time that increases exponentially with respect to the number of
nodes in the input IDDs. This chapter describes why this is, how this can

be changed into a worstcase running time which only increases polynom-
ically, and what changes we have made to the implementation to achieve
this.

4.6.1 NOT

The objective of the NOT function is to return an IDD which is identical to
the input IDD except that the TRUE and FALSE terminals are interchanged.
The current implementation of NOT in LIBIDD also does this and the IDD
it returns is also reduced, however the way in which the result is computed

Page 27 of 82

Chapter 4: Implementation

Figure 4.9: IDD used for iddNot() example

is somewhat cumbersome. We come up with a way which is simpler and
more straightforward.

The Current Implementation

In the current implementation the function relies on an iterator to go through
the input IDD which means that we risk doing the same computation sev-
eral times. The more sharing in the IDD, the more times we will be per-
forming a computation that we have already done. The source code for
iddNot () is seen in appendix[A2

We now give an example of what happens when iddNot is run. The
example is based in the IDD in figure

First the iterator returns A to iddNot. The partition of A is then copied
into cur_p. Nothing more happens on the first pass through the outer
while-loop.

On the second pass through the outer while-loop the node B is returned
by the iterator. The cur_p that we set on the first pass (that of the A node) is
now pushed onto the partition stack. Nothing more happens on the second

Page 28 of

4.6 The Logical Operators

pass through the outer while-loop.

On the third pass a TRUE terminal is returned by the iterator. A FALSE
terminal is created and because no match is found in the hashtable, the new
IDD is inserted into the hashtable. The value cur_p_pos associated with B’s
partion on the partition stack is incremented by one.

On the fourth pass the D node is returned by the iterator. The previous
cur_p (that of B) is pushed onto the partition stack.

On the fifth run we run into the TRUE terminal again and should return
a FALSE terminal. A new FALSE terminal is still created but because a
matching terminal is found in the hashtable it is returned instead and the
new terminal is freed. The cur_p_pos associated with D’s partion is also
incremented by one.

On the sixth run a FALSE terminal is returned by the iterator. This
causes a TRUE terminal to be created which is then inserted into the hashtable.
Again the cur_p_pos associated with D’s partion is incremented by one,
and because cur_p_pos is now equal to cur_p_size the inner while-loop is
run. This builds a new IDD with the values located in cur name, cur p
and cur_p_pos. This IDD is identical to D except that the terminals are in-
terchanged. The partition on top of the stack (that of B) is then popped
making the partition of A the new partition at the top of the stack. The
IDD referenced in the last position of B’s position is now set to that of the
new node. Finally cur_p_pos for B is incremented once again. This triggers
a second pass through the inner while-loop. Here the top of the partition
stack is popped again making the partition stack empty. The IDD reference
in the first entry of A’s partition is set to that of B and the cur_p_pos of A is
incremented by one.

On the seventh run through the outer while-loop C is returned by the
iterator. Because cur_p still holds the partition of A this is repushed onto to
the stack and cur_p is set to C’s partition.

On the eighth pass through the outer while-loop something interesting
happens which illustrates the trouble with the current implementation. The
iterator returns D once again, the partition of C is pushed onto the stack and
cur_p is set to D’s partition.

On the ninth pass we encounter the TRUE terminal again just as we did
in the fifth pass and the IDD referenced by the first partition in cur_p (that
of D) is set to the FALSE terminal.

On the tenth pass we reach the FALSE terminal again which results
in the IDD reference in the last position of cur_p being set to the TRUE
terminal. There are now no more partitions in cur_p and a new node is
initiated with the values now in cur_name, cur_p and cur_p_pos. This is
the same IDD that we build in the sixth pass and so we can find it in the
hashtable. The IDD reference in the first partition of C is set to this IDD. It
is clear that the eight, ninth and tenth passes through the outer while-loop
does exactly the same as the fourth, fifth and sixth passes.

Page 29 of 82

Chapter 4: Implementation

On the eleventh pass through the outer while-loop we run into the
FALSE terminal again. The TRUE terminal is found in the hashtable and is
set as the IDD reference in the last position of C. We then go through the
inner while-loop two times to build the IDDs for C and A’s partitions re-
spectively. After that the final result is returned to the function that called
iddNot Q).

As can be seen from the above example the current implementation of
iddNot () performs a lot of needless allocations and initializations of IDDs.
Furthermore there is the extra overhead of creating and using the iterator
and the partition stack. We will get rid of this overhead by presenting a
new implementation, this is done next.

The New Implementation

The new implementation is divided into two functions, a main function
also called iddNot () which is responsible for allocating and freeing the
hashtable used for this call toiddNot () and a helper function which goes
through the IDD to find the terminals through a series of recursive calls.

Idd_t *iddNot(Idd_t *idd) {
IddHash_t hashtable;
Idd_t *result;

opcounter++;

iddHashInit (&hashtable, IDDHASHTBLSIZE);
result = iddNotHelper (&hashtable, idd);
iddHashFree (&hashtable) ;

return result;

The way iddNotHelper () works is very simple. First we see if the IDD
is a terminal. If so we just return the opposite terminal using iddMakeTerminal ()
(remember that iddMakeTerminal () looks in the hashtable to see if the ter-
minal already exists, so we do not risk building the same terminal twice).
If the IDD is a node we perform a lookup in the operator cache to see if we
have already performed NOT on this IDD before. If we have iddNotHelper ()
simply returns the result listed in the operator cache, hence the runtime is
bounded by the size of the input IDD. This check will help avoid perform-
ing NOT on the same IDD more than once as we did in steps eight through
ten in the example of the previous implementation that we gave in section
BTl

If no match is found in the operator cache we copy the partition and
call iddNotHelper () on the IDD referenced in each partition entry. When
we finally exit the for-loop (when we have been through the entire IDD) we

Page 30 of

4.6 The Logical Operators

build a new node using the copied partition (or get a matching IDD from
the hashtable) with iddMakeNode () and an entry in the operator cache is
made. iddNotHelper () then returns the result to iddNot ().

Idd_t *iddNotHelper(IddHash_t *hashtable, Idd_t *idd) {
Idd_t *result = NULL;
int i;
IddPartitionEntry_t *partition;
int partition_size;
cacheentry_t *entry;

/* If idd is a terminal just return the opposite */
if (idd->type == TERMINAL) {
if (idd->value.terminal == TRUE) {
result = iddMakeTerminal (hashtable, FALSE);
} else {
result = iddMakeTerminal (hashtable, TRUE);
}
printf ("iddNotHelper: DANGER! We shouldn’t get here.\n");
} else if (idd->type == NODE) {
entry = iddCacheLookup (HASH1(idd->hashvalue)) ;
if (entry->tag == opcounter && entry->argl == idd) {
return entry->result;

}

partition = iddPartitionAlloc(idd->value.node.partition_size);
partition_size = idd->value.node.partition_size;

if (partition_size < 1) {
printf ("iddNotHelper: partition_size less than 1, exiting\n");
exit (0);

}

for (i = 0; i < idd->value.node.partition_size; i++) {
//printf ("iddNotHelper: i = %d\n", 1i);
partition[i].lower_bound = idd->value.node.partition[i].lower_bound;
partition[i] .upper_bound = idd->value.node.partition[i].upper_bound;
partition[i].idd = iddNotHelper (hashtable,
idd->value.node.partition[i].idd);

result = iddMakeNode (hashtable,
idd->value.node.name,
partition,
partition_size);

entry->tag = opcounter;
entry->argl = idd;
entry->result = result;

Page 31 of 82

Chapter 4: Implementation

}

return result;

}

By implementating iddNot () this way we have eliminated the need for
the partition stack and the iterator. By eliminating the iterator and using
the operator cache, the worst case runtime is reduced from exponential to
polynomial. We have also removed a lot of unnecessary allocations and
initializations. Furthermore the code is now a lot easier to read. The lookup
in the operator cache does, however, present an extra overhead if there is
no sharing in the IDD.

We will now go on to looking at the implementation of AND and OR in
LIBIDD.

4.6.2 AND and OR

The implementation of AND and OR is very similar so we will only de-
scribe the current and new implementation of AND. Appendix [A3 shows
the current implementation of iddAnd ().

If both IDDs are terminals we return a TRUE terminal if both are true,
otherwisewe return false. If one IDD is a terminal and the other is a node,
we return a copy of the IDD if the terminal is TRUE, otherwise we return a
FALSE terminal. If both IDDs are nodes the course of action depends on the
order of the variables they represent. If they represent different variables,
the node with the variable last in the order is AND’ed with each of the
children of the other node. If the nodes represent the same variable, the
partitions are merged and for each new partition entry we AND the IDDs
that this partition entry would refer to in each of the two IDDs.

The current implementation of iddAnd() does not require too many
changes. As with iddNot () we use an outer function (iddAnd()) and a
helper function (iddAndHelper ()). As before the purpose of the outer func-
tion is to allocate, initiate and free the hashtable and the operator cache.
This approach also makes it possible to leave the rest of code intact (i.e.
functions that call iddAnd are not affected). The outer function is seen be-
low.

Idd_t *iddAnd(Idd_t *a_idd, Idd_t *b_idd) {
Idd_t *result;
IddHash_t hashtable;

iddHashInit (&hashtable, IDDHASHTBLSIZE);
opcounter++;

result = iddAndHelper (&hashtable, a_idd, b_idd);
opcounter++;

iddHashFree (&hashtable) ;

Page 32 of

4.6 The Logical Operators

return result;

}

Unless both IDDs are nodes we do not perform a lookup in the operator
cache. If both are terminals we simply return a terminal using iddMakeTerminal ().
If one is a node and the other a terminal, either a terminal is returned or a
copy of the IDD. Since the copy is now produced with iddOperatorDeepClone ()
which also caches its results there is no need to store the result in the oper-
ator cache as well.

If both IDDs are nodes we check if we have already performed this op-
eration before. If we have not we proceed as in the original implementation
with the exception that nodes are now build with iddMakeNode () to ensure
that we do not build the same IDD twice. Also each time we compute a
result it is added to the operator cache. This ensures that the function runs
in polynomial time. The helper function is seen below.

Idd_t *iddAndHelper (IddHash_t *hashtable, Idd_t *a_idd, Idd_t *b_idd) {
int err;
IddPartitionEntry_t *partition;
int partition_size;
Idd_t *result = NULL;
IddPartitionEntryTwo_t *merge_res;
int merge_res_size, merge_res_used;
cacheentry_t *entry;

if (a_idd->type == TERMINAL && b_idd->type == TERMINAL) {
if (a_idd->value.terminal == TRUE && b_idd->value.terminal == TRUE) {
result = iddMakeTerminal (hashtable, TRUE);
} else {
result = iddMakeTerminal (hashtable, FALSE);
}
} else {
if (a_idd->type == TERMINAL) {
if (a_idd->value.terminal == FALSE) {
result = iddMakeTerminal (hashtable, FALSE);
} else {
/* if a is true then return a copy of b_idd */
result = iddOperatorDeepClone(b_idd, hashtable);
}
} else if (b_idd->type == TERMINAL) {
if (b_idd->value.terminal == FALSE) {
result = iddMakeTerminal (hashtable, FALSE);
} else {
/* if b is true then return copy of a */
result = iddOperatorDeepClone(a_idd, hashtable);
}
} else {

Page 33 of 82

Chapter 4: Implementation

entry = iddCacheLookup (HASH2(a_idd->hashvalue, b_idd->hashvalue));

if (entry->tag == opcounter &&
entry->argl == a_idd &&
entry->arg2 == b_idd) {
return entry->result;

3

if (a_idd->value.node.name > b_idd->value.node.name) {

//printf ("iddAndHelper: a > b\n");

/* do the apply left thing */

partition_size = b_idd->value.node.partition_size;

partition = iddPartitionAlloc(partition_size);

err = iddAndApplyLeft(hashtable, partition, partition_size,
b_idd->value.node.partition,
b_idd->value.node.partition_size,
a_idd);

if (err == 0) {

printf ("iddAndHelper received: %d from iddAndApplyLeft\n", err);
}

result = iddMakeNode(hashtable, b_idd->value.node.name,
partition, partition_size);
} else if (a_idd->value.node.name < b_idd->value.node.name) {

//printf ("iddAndHelper: a < b\n");

/* do the apply right b thing */

partition_size = a_idd->value.node.partition_size;

partition = iddPartitionAlloc(partition_size);

err = iddAndApplyRight (hashtable, partition, partition_size,
a_idd->value.node.partition,
a_idd->value.node.partition_size,
b_idd);

if (err == 0)

printf ("iddAndHelper received: %d from iddAndApplyRight\n", err);

result = iddMakeNode (hashtable, a_idd->value.node.name,
partition, partition_size);
} else {

//printf ("iddAndHelper: a == b\n");

/* do the merge thing */

merge_res_size = a_idd->value.node.partition_size +
b_idd->value.node.partition_size;

merge_res = iddPartitionTwoAlloc(merge_res_size);

merge_res_used = iddMergeTwo (a_idd->value.node.partition,
a_idd->value.node.partition_size,
b_idd->value.node.partition,
b_idd->value.node.partition_size,
merge_res, merge_res_size);

Page 34 of

4.7 iddDeepFree

if (merge_res_used == 0)
printf ("iddAndHelper received error %d form iddMergeTwo",
merge_res_used) ;

partition_size = merge_res_used;

partition = iddPartitionAlloc(partition_size);

err = iddAndMerge (hashtable, merge_res, merge_res_used,
partition, partition_size);

if (err == 0)
printf ("iddAndHelper received error %d from iddAndMerge", err);

iddPartitionTwoFree(merge_res); /* won’t need this anymore */

result = iddMakeNode (hashtable,

a_idd->value.node.name,
partition,
partition_size);

}

entry->tag = opcounter;

entry->argl = a_idd;

entry->arg2 = b_idd;

entry->result = result;

return result;

3

The implementation is now consistent with the description we gave in
chapter 23 and the worst-case runtime is O(n * m) where n is the number
of nodes in a_idd and m is the number of nodes in b_idd. The key here
is the use of an operator cache which ensures that we do not perform the
same operation twice.

4.7 iddDeepFree

The function iddDeepFree () is a good example of how ineffective a func-
tion can get by the use of an iterator. The purpose of the function is quite
simple. Given an IDD as input the function finds all the nodes and termi-
nals in the IDD and frees the memory associated with them. The problem
is in the way this is currently implemented, see appendix[A4 The function
uses the iterator to get the nodes and terminals one by one and then store
them in an array. Of course we would have a problem if we tried to free
the same node or terminal twice so before a node or terminal is stored in
the array, the function runs through it and compares each each entry with

Page 35 of 82

Chapter 4: Implementation

/* Registers all nodes and terminals in the idd */ void
iddRegister (Idd_t *idd) {
int i;

if (idd->marked) {
return;

3

idd->marked = 1;
iddarray[array_used] = idd;
array_used++;

if (array_used >= IDD_ARRAY_SIZE) {
printf ("iddRegister out of memory");
exit(0);

}

if (idd->type == NODE) {
for (i = 0; i < idd->value.node.partition_size; i++) {
iddRegister(idd->value.node.partition[i].idd);
}
}
}

Table 4.6: The implementation of iddRegister()

the IDD returned from the iterator. If it is already in the array it is simply
discarded, otherwise it is added. Because of the use of an iterator and the
check of the array the worst-case runtime of iddDeepFree () is exponential
and even best-case is O(n?) because of the search through the array.

To avoid using an iterator to get hold of all the nodes and terminals in
an IDD we implement a function called iddRegister (). The job of this
function is to register all the nodes and terminals in the IDD in a global
array. Unlike the iterator, iddRegister() stops going down a path if it
encounters a node or terminal it has seen before. In order to do this we
add a flag to the IDD struct that indicates if we have encountered it before.
When iddRegister () is called it first checks if we have visited the given
IDD before. If not the flag marked is set and the node or terminal in question
is added to the global array. If it is a node iddRegister () is then called on
each of the children.

With the use of iddRegister () the implementation of iddDeepFree ()
becomes very simple. It is simple a matter of calling iddRegister () on the
root and then freeing the IDDs in the global array. The worst-case runtime
of iddDeepFree is now linear, O(n), with respect to the number of nodes n
in the IDD.

Page 36 of

4.8 Benchmarks

void iddDeepFree(Idd_t *idd) {
int 1i;

array_used = 0;
iddRegister(idd);

/* free list of unique idds */

for (i = 0; i < array_used; i++) {
if (iddarray[i]->type == NODE) {

iddPartitionFree(iddarray[i]->value.node.partition);

}
iddFree(iddarray[il);

}

}

Table 4.7: The new implementation of iddDeepFree()

4.8 Benchmarks

We now run some tests to see how the new implementation has affected
the runtime of cfconf.

4.8.1 Building the filters

The filters are built using a simple algorithm. We use a rule generator that
goes through a network trace one packet at a time and builds a rule that
denies all packets from the sender to the receiver stated in the packet. The
rule also includes the protocol and port numbers used in the packet head-
ers. If a packet is encountered that would produce a rule already in the
filter it is skipped. This proces continues until the desired number of rules
is reached. For this test we used the option to begin the rule building pro-
cess at different points in the network trace. Furthermore the IP adresses
are mangled before they are used to construct the rules. This means the
filters will not begin with the same rules.

The various filters used for the test were all built using the same big net-
work trace. The network trace was produced using tcpdump. We used this
tool to listen on incoming and outgoing traffic on a single machine to pro-
duce the trace. The machine was positioned in a group room on AAU and
the traffic was produced by ordinary network applications such as a web
browser, an IM client, an SSH login on another server and so on. Infor-
mation about the packet headers was collected and saved. No information
about the packet contents was saved as it is not needed. We continued the
recording of network traffic until we reached 100.000 packets. We used the
standard settings meaning that we saved the first 96 bytes from each packet
- enough for the IP and TCP headers.

Page 37 of 82

Chapter 4: Implementation

We made 12 different filters with 10, 20, 50, 100, 250, 500, 1,000, 2,500,
5,000, 10,000, 25,000 and 50,000 rules respectively.

The filter sizes range from very few rules to an extremely high number
of rules. 10 rules is a very short filter which doesn’t allow a firewall admin-
istrator to be very specific about what traffic he wants to permit and deny.
Therefore it is safe to use 10 rules as the smallest number of rules in a fire-
wall filter. On the other hand, 50,000 rules is an extremely large filter which
allows for very specific rules. It is very unlikely that a filter will ever get
this large, so the range of likely filter sizes is well covered. The reason for
using these fabricated filters is that it has not been possible to find real-life
filters of an acceptable size. The filters we have found are example filters of
10-20 rules which are not useful for testing as they are to small to give any
measurable diffence in the test results before and after an optimization.

4.8.2 Test setup

This section describes how the actual tests were done and what results we
got. The tests were run on an AMD XP 1800+ with 512 MB PC133 SDRAM.
Initially we had some problems with the original implementation which
resulted in test results for 25,000 rules and 50,000 being very similar. We
discovered that this is due to the fact that one of the functions in libidd,
iddDeepFree, runs out of memory before the 25,000 rules can be processed.
From running gprof we learn that iddDeepFree runs exactly 311,069 times
for 25,000 and 50,000 rules. It turns out that this is because when an array
used in iddDeepFree reaches a predefined size, the programs halts and and
error message is printed. The array is used to keep track of the nodes in the
IDD, so apparently the filters we use generate a large number of nodes.
The maximum size of the array is currently set to 250,000. The purpose of
this limit is to ensure that iddDeepFree halts before it runs out of memory.
However, in our case this is much too soon. Therefore we have reset the
maximum size to 4,000,000. This value ensures that the program does not
halt before having processed 50000 rules.

An example filter is shown in table The program is run with the
-s option which only simulates creating the filter. The filter is not sent to
the kernel when using this option. This is not necessary as our focus is on
the userspace part of CF. We have, however, modified CF slightly so that
the final MTIDD is still built which is normally not the case when using the
simulate option. This MTIDD is what cfconf passes on to the kernel module
for CF to use. We did this to create as realistic a test setup as possible.
Building the MTIDD is still a part of the userspace part of CF and should
therefore be included when doing the tests. After each test the results will
be moved as the following test results would otherwise be added to those
already present.

Figures and 1Tl show the running time for cfconf for the original

Page 38 of

4.8 Benchmarks

INPUT permit tcp host 51.252.160.40 eq 3128 host 73.165.243.220 eq 2306
INPUT permit tcp host 99.225.183.39 eq 3128 host 211.69.141.119 eq 2306
INPUT permit tcp host 154.46.120.186 eq 2306 host 191.168.185.214 eq 3128
INPUT permit tcp host 3.211.14.207 eq 2306 host 189.94.235.147 eq 3128
INPUT permit udp host 101.112.91.5 eq 1985 host 51.230.197.202 eq 1985
INPUT permit tcp host 116.205.168.122 eq 3128 host 199.101.76.19 eq 2306
INPUT permit tcp host 215.159.5.255 eq 3128 host 138.59.72.157 eq 2306
INPUT permit tcp host 135.109.129.51 eq 2306 host 150.191.4.168 eq 3128
INPUT permit tcp host 134.25.106.61 eq 2306 host 169.179.25.44 eq 3128
INPUT permit tcp host 148.214.128.253 eq 3128 host 107.157.118.171 eq 2306

Table 4.8: A filter with 10 rules

10000

T T T
Original implementation —+—

8000 1

6000 1

Seconds

4000 1

2000 4

0 | 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
No. of rules

Figure 4.10: The runtime of cfconf with the original implementation

and new implementation. Here we see a huge decrease in runtime. For
50,000 rules it has dropped from just under 10,000 seconds to about 18 sec-
onds.

If we look at the matches found in the operator cache, we see that
iddAnd (), idd0r () and iddNot () only find results that are terminals. This
is, however, not so strange when we consider the way rules are built and
the ruleset that we have. All the rules have the same format and the same
variables which means that when we add a new rule to the filter the root
node of both IDDs is the same. When we call idd0r () the IDDs will be
merged at the root node (or the following node if the partitions of both root
nodes are identical). Because LIBIDD does not currently support global
IDDs the results stored in the operator cache are removed when idd0r ()
exits. The same goes for the IDD hashtable. Therefore the information we
acquire about IDDs and operations cannot be used in subsequent calls to
1dd0r (). The same goes for iddAnd (). To make the operator cache more
useful it will require the implementation of global IDDs, but this was not
possible in this project due to lack of time.

Page 39 of 82

Chapter 4: Implementation

T T T
New implementation —+—

Seconds
=
1S

0 1 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
No. of rules

Figure 4.11: The runtime of cfconf with the new implementation

0.8

T
New implementation —+—
Original implementation ---x---

0.7

06

05

04

Seconds

03

02

01 r

1 1 1 1
0 100 200 300 400 500
No. of rules

Figure 4.12: Comparing runtimes up to 500 rules

4.9 Summary

In this chapter we have identified the main problems of the current imple-
mentation of LIBIDD. First of all IDDs are needlessly allocated and initiated
when an identical existing IDD exists. This problem is removed by intro-
ducing a new IDD constructor which first checks if an identical IDD exists.
If so this is returned instead of making a new one. Secondly we replaced
the existing function for getting hashvalues for IDDs. This was based on
turning the IDD into a string representation first and then hashing it. It also
required the hashtable size to be a prime number. The new function simpli-
fies the hashing proces. We also introduced an operator cache for holding
information about previous logical operations on IDDs. However, the ef-
fectiveness of this is reduced by the fact that LIBIDD does not currently
use global IDDs. We have also changed the implementation of the logical
operators NOT, AND and OR and by using the new IDD constructor and

Page 40 of

4.9 Summary

operator cache we are able to reduce the worst case run time from expo-
nential to polynomical. We have also improved the runtime of the function
iddDeepFree () by getting rid of the iterator. The benchmarks in section .8
show how the growth in runtime for cfconf has gone from exponential to
polynomical. While we have improved the implementation of LIBIDD we
have also seen that in order for it to be really efficient the implementation
of LIBIDD must be altered to incorporate global IDDs. However, this was
not possible due to lack of time.

Page 41 of 82

Chapter 5

Performance Analysis

Here we test cfconf using the performance analysis tools described in chap-
ter

5.1 Testing the old implementation

Tables Bl B2 B3 B4 E5 and Bl shows the 10 most time consuming func-
tions for 500, 1000, 5000, 10000, 25000 and 50000 rules respectively.

The functions iddDeepFree (), iddEqual (), iddHashFind, iddComparePartitionBounds,

iddIteratorPreorderInit() and iddIteratorPreorderNext take up alot
of the total time spent.

It is interesting to notice that of these functions, iddDeepFree () has

been altered and iddEqual (), iddComparePartitionBounds,iddIteratorPreorderInit ()

and iddIteratorPreorderNext are no longer used.

%

[
N

RN WD DN

time
41.
.11
.88
.87
.15

69

01

.44
.72
.58
.50

cumulative
seconds

2.
.76
.31
.65
.94
.22
.46
.65
.76
.86

[<2 I I B IS, N NI N N Y

91

self

seconds

2.91
.85
.55
.34
.29
.28
.24
.19
.11
.11

O O O OO OO oo

Each sample counts as 0.01 seconds.

calls
6520
126798
1313417
3110302
2635244
511
2659302
502
70589
589328

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O OO OO oo

00

total
s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O oo Oo

00

name

iddDeepFree
iddHashGetHashValue
iddEqual
iddIteratorPreorderNext
iddIteratorPreorderInit
iddHashInit
nodeStackPush
iddHashFree

iddHashFind
iddComparePartitionBounds

Table 5.1: The gprof flat profile for 500 rules

Page 43 of 82

Chapter 5: Performance Analysis

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
47.61 11.33 11.33 13020 0.00 0.00 iddDeepFree
7.98 13.23 1.90 5033894 0.00 0.00 iddEqual
6.05 14.67 1.44 11115408 0.00 0.00 iddIteratorPreorderNext
5.71 16.03 1.36 267258 0.00 0.00 iddHashGetHashValue
4.16 17.02 0.99 10085610 0.00 0.00 iddIteratorPreorderInit
3.05 17.75 0.73 2280397 0.00 0.00 iddComparePartitionBounds
2.35 18.31 0.56 10136850 0.00 0.00 mnodeStackPush
2.23 18.84 0.53 151957 0.00 0.00 iddHashFind
1.85 19.28 0.44 1002 0.00 0.00 iddHashFree
1.81 19.71 0.43 10098630 0.00 0.00 mnodeStackInit

Table 5.2: The gprof flat profile for 1,000 rules

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
38.92 256.52 256.52 95018 0.00 0.00 iddDeepFree

17.29 370.47 113.95 103309060 0.00 0.00 iddComparePartitionBounds
11.44 445 .89 75.42 1051662 0.00 0.00 iddHashFind

9.99 511.74 65.85 135007858 0.00 0.00 iddEqual

6.07 551.72 39.98 277223558 0.00 0.00 iddIteratorPreorderNext
4.43 580.93 29.21 270182040 0.00 0.00 iddIteratorPreorderInit
2.10 594.78 13.85 270461277 0.00 0.00 nodeStackPush

1.78 606.49 11.70 1988216 0.00 0.00 iddHashGetHashValue

1.75 618.04 11.55 270277058 0.00 0.00 nodeStackInit

1.64 628.88 10.84 270182040 0.00 0.00 iddIteratorPreorderFree

Table 5.3: The gprof flat profile for 5,000 rules

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls Ks/call Ks/call name

41.27 1487.82 1487.82 129940 0.00 0.00 iddDeepFree

13.65 1979.94 492.12 1917025 0.00 0.00 iddHashFind

10.76 2367.81 387.88 256658775 0.00 0.00 iddComparePartitionBounds
9.86 2723.33 355.52 546313708 0.00 0.00 iddEqual

4.89 2899.60 176.27 1106035125 0.00 0.00 iddIteratorPreorderNext
3.41 3022.68 123.08 1092835783 0.00 0.00 iddIteratorPreorderInit
2.50 3112.96 90.28 66929508 0.00 0.00 mtiddEqual

2.43 3200.60 87.65 109939 0.00 0.00 mtiddHashFind

1.45 3253.01 52.40 1093441934 0.00 0.00 mnodeStackPush

1.42 3304.22 51.21 25229135 0.00 0.00 mtiddComparePartitionBounds

Table 5.4: The gprof flat profile for 10,000 rules

Page 44 of

5.2 Testing the new implementation

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls Ks/call Ks/call name

24.88 2482.84 2482.84 324924 0.00 0.00 iddDeepFree

10.85 3565.89 1083.05 2080999663 0.00 0.00 iddIteratorPreorderNext
9.46 4509.53 943.64 3167286725 0.00 0.00 iddEqual

7.46 5253.81 744.28 5151859 0.00 0.00 iddHashFind

7.33 5985.03 731.21 2040161922 0.00 0.00 iddIteratorPreorderInit
6.02 6586.01 600.99 422285683 0.00 0.00 mtiddEqual

5.93 7177.35 591.33 274921 0.00 0.00 mtiddHashFind

5.26 7702.45 525.10 1494524557 0.00 0.00 iddComparePartitionBounds
3.28 8029.65 327.20 160119507 0.00 0.00 mtiddComparePartitionBounds
3.16 8345.08 315.44 847706150 0.00 0.00 mtiddIteratorPreorderNext

Table 5.5: The gprof flat profile for 25,000 rules

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls Ms/call Ms/call name

18.36 4187.34 4187.34 4235926685 0.00 0.00 iddEqual

11.35 6776.65 2589.31 16843429 0.00 0.00 iddIteratorPreorderNext
10.07 9072.31 2295.65 4178047795 0.00 0.00 iddIteratorPreorderInit
7.78 10846.46 1774.15 1738313869 0.00 0.00 iddComparePartitionBounds
5.84 12178.62 1332.16 649924 0.00 0.00 iddDeepFree
5.40 13410.80 1232.18 10842705 0.00 0.00 iddHashFind
5.27 14613.27 1202.47 4210664578 0.00 0.00 mnodeStackPush
5.13 15783.52 1170.25 1737137879 0.00 0.00 mtiddEqual
4.24 16750.01 966.49 4178047795 0.00 0.00 iddIteratorPreorderFree
4.04 17670.72 920.71 4178697719 0.00 0.00 mnodeStackInit

Table 5.6: The gprof flat profile for 50,000 rules

5.2 Testing the new implementation

Tables 7 B8 B9, E10 BT and shows the 10 most time consuming
functions for 500, 1000, 5000, 10000, 25000 and 50000 rules respectively.

Unlike the results for the old implementation the results for the new im-
plementation are more similar. For each filter iddHashInit () and iddHashFree ()
are by far the most time consuming functions. If at some point global IDDs
are implemented in LIBIDD we will not have all these calls to these two
functions but on the other the hashtable will contain more IDDs and there
will be more collisions. It would be interesting, at some point in the future,
to see what effects implementing global IDDs will have on the runtime of
cfeconf and also what functions will then be the most time consuming.

Page 45 of 82

Chapter 5: Performance Analysis

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds calls
51.33 1.16 1.16 3018
37.61 2.01 0.85 3018
2.21 2.06 0.05 7589
1.77 2.10 0.04 53291
0.89 2.12 0.02 23949
0.89 2.14 0.02 20949
0.89 2.16 0.02 6018
0.89 2.18 0.02 5501
0.44 2.19 0.01 25131
0.44 2.20 0.01 3926

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O OO oo

00

total
s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O OO oo

00

name
iddHashInit

iddHashFree
iddOperatorDeepCloneHelper
iddHashFindTerminal
iddhash2

iddHashFindNode
iddRegister

yylex

iddHashInsert
mtiddIddMergeRec

Table 5.7: The gprof flat profile for 500 rules

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds calls
54.94 2.56 2.56 6018
34.12 4.15 1.59 6018
1.50 4.22 0.07 111242
1.07 4.27 0.05 16233
0.86 4.31 0.04 12018
0.64 4.34 0.03 49419
0.64 4.37 0.03 11001
0.64 4.40 0.03 6065
0.64 4.43 0.03 48706
0.43 4.45 0.02 111242

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O OO O O oo

00

total
s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O oo Oo

00

name
iddHashInit

iddHashFree
iddHashFindTerminal
iddOperatorDeepCloneHelper
iddRegister
iddGetHashValue

yylex

iddMergeTwo

iddCacheLookup
iddGetHashValueTerminal

Table 5.8: The gprof flat profile for 1,000 rules

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds calls
51.32 11.91 11.91 30016
36.45 20.37 8.46 30016
1.55 20.73 0.36 91733
0.90 20.94 0.21 596963
0.90 21.15 0.21 176799
0.86 21.35 0.20 259915
0.86 21.55 0.20 60016
0.82 21.74 0.19 55001
0.62 21.89 0.15 259915
0.60 22.03 0.14 229915

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O O OO

00

total
s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O O O O O oo

00

name

iddHashInit
iddHashFree
iddOperatorDeepCloneHelper
iddHashFindTerminal
iddOrHelper
iddhash2
iddRegister

yylex
iddGetHashValue
iddHashFindNode

Table 5.9: The gprof flat profile for 5,000 rules

Page 46 of

5.2 Testing the new implementation

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds calls
50.87 24.22 24.22 59977
36.28 41.49 17.27 59977
2.21 42.54 1.05 193266
1.09 43.06 0.52 1234039
0.79 43.44 0.38 119938
0.78 43.81 0.37 472533
0.69 44 .14 0.33 532494
0.61 44 .43 0.29 373546
0.55 44 .69 0.26 541378
0.51 44 .93 0.25 109949

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O OO O O OO OO

00

total
s/call name
0.00 iddHashInit
.00 iddHashFree
.00 iddOperatorDeepCloneHelper
.00 iddHashFindTerminal
.00 iddRegister
.00 iddHashFindNode
.00 iddhash2
.00 iddOrHelper
.00 iddCacheLookup
.00 yylex

O O O O OO O oo

Table 5.10: The gprof flat profile for 10,000 rules

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds calls
50.15 60.76 60.76 149970
35.07 103.26 42.49 149970
2.73 106.57 3.31 509650
1.22 108.05 1.48 3212111
1.20 109.50 1.45 1222633
0.99 110.69 1.20 299922
0.83 111.69 1.00 1372585
0.73 112.58 0.89 772629
0.69 113.42 0.84 274937
0.69 114.25 0.83 986022

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O O O OO O O oo

00

total
s/call name
0.00 iddHashInit
.00 iddHashFree
.00 iddOperatorDeepCloneHelper
.00 iddHashFindTerminal
.00 iddHashFindNode
.00 iddRegister
.00 iddhash2
.00 iddAndHelper
.00 yylex
.00 iddOrHelper

O O O O O OO oo

Table 5.11: The gprof flat profile for 25,000 rules

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds calls
49.51 122.31 122.31 299970
34.34 207.13 84.82 299970
3.08 214.75 7.62 1034082
1.45 218.32 3.57 2482426
1.19 221.27 2.95 6532990
1.00 223.74 2.47 599922
0.96 226.10 2.36 2782378
0.75 227 .95 1.86 1543451
0.69 229.65 1.70 2001985
0.66 231.28 1.63 2782378

self

s/call

0.
.00
.00
.00
.00
.00
.00
.00
.00
.00

O OO O O OO oo

00

total
s/call name
0.00 iddHashInit
.00 iddHashFree
.00 iddOperatorDeepCloneHelper
.00 iddHashFindNode
.00 iddHashFindTerminal
.00 iddRegister
.00 iddhash2
.00 iddAndHelper
.00 iddOrHelper
.00 iddGetHashValue

O OO O O OO oo

Table 5.12: The gprof flat profile for 50,000 rules

Page 47 of 82

Chapter 6

Other solutions

This chapter discusses possible ways of improving CF by altering the data
representation of the IDDs or the way they are manipulated. So far we have
been looking at optimizing the code in order to reduce the time it takes to
compile the filters, but there may also be something to gain by changing
the representation of the IDDs or the algorithms used to manipulate them.
Many papers exist that deal with different ways of representing decision
diagrams and manipulating them. We will here take a look at some of the
ideas presented in these papers. We particularly look at the ordering of
variables and in chapter [] we benchmark several different orders to see
what effect chosing a different order will have.

6.1 Ordering of variables

In CF it is up to the user to chose a suitable ordering and once that is done
it remains fixed. If the order is poorly chosen it will not only influence run-
time but also require the decision diagram to be build again from scratch if
the user decides to use a new order.

The ordering of variables in a decision diagram has a significant influ-
ence on the size of the graph [OGM] and therefore also on the time it takes
to traverse the graph with a given input. As it will also take more time and
require more memory to build a filter the bigger the graph is, this is also of
interest to us.

Finding an optimal variable ordering is NP-complete [OGM]], so a heuris-
tic approach is usually applied. We will here present some of these ap-
proaches.

Richard Rudell has proposed a solution [Rud] where a minimization
algorithm is run periodically to reduce the size of the decision diagram.
The solution was developed for ordered binary decision diagrams (OBDD),
but can also be applied to IDDs as we shall show here.

Page 49 of 82

Chapter 6: Other solutions

1 T9 T3 Ta Xy Tg T initial
xr1 T3 T2 T4 X5 T X7 | SWaAp (.1‘2,1‘3)
r1 T3 T4 X2 Ty Te X7 | swap (x2,x4)
sl T4 I3) Is e T7 swap (.1‘3,1‘4)
T T4 T2 X3 Ty Te X7 | swap (x3,22)
xr1 T2 T4 X3 X5 T X7 | SWap (.1‘4,1‘2)
)
)
)

xr1 T2 T3 T4 X5 T X7 | SWaAp (.1‘4,1‘3
r1 ®3 T2 x4 Ty Te X7 | swap (x2,x3
xr1 T3 T4 T2 X5 T X7 | SWap (.1‘2,1‘4

Table 6.1: Window Permutation Algorithm example

Rudell proposes two algorithms which both rely on swapping the vari-
ables in two adjacent layers in a decision diagram. If F' = (x;, F1, Fp)
(meaning that if z; is true then F} is chosen and Fj otherwise) is a node at
leveliin the OBDD, then F can be replaced by the tuple (zit1, (zi, Fi1, Fo1), (zi, Fo1, Foo))-
Here F1; is the node reached by evaluating x; and z;;1 to 1 or TRUE. In
an IDD the corresponding tuple would in most cases be somewhat longer,
but the principle is the same. That is, a variable could be evaluated to a
value that lies within one of many intervals thus producing a tuple with
many more elements. The variables are reordered based on one of two al-
gorithms:

Window Permutation Algorithm This algorithms works by selecting a
layer and then trying all possible permutations of the k adjacent layers.
After all possibilities have been examined, the variables are swapped again
in order to place them at the level that yields the smallest decision diagram.
This requires an initial k! — 1 swaps followd by up to k(k — 1)/2 swaps to
return the variables to the optimal level. Table &1l (borrowed from Rudells
paper [Rud]) demonstrates the proces. First 5 swaps are made to test all
permutations of x2, x3 and x4. Then a further 3 swaps are made to return
the variables to the best position found. This is the worst-case scenario.

Rudell also sugests using marking to indicate that the current permuta-
tion of the variables is optimal. The mark is reset when a new permutation
is found for one of the preceding k-1 levels. When all the levels are marked,
there can be no further optimization using this algorithm.

Sifting Algorithm This algorithm works on one variable at a time instead
of several as in the Window Permutation Algorithm. All other variables
are presumed fixed. The variable in question is repeatedly swapped with
its successor until it reaches the bottom of the decision diagram. It is then
swapped with its predecessor until it reaches the top of the diagram. The
optimal position is remembered and the variable is once again swapped

Page 50 of

6.2 Complement nodes

1 T9 T3 Ta Xy Tg T initial

xr1 T2 T3 Ty X4 T X7 | SWaApP (1‘4,.%‘5)
r1 Ty T3 X5 Te X4 X7 | swap (24,%6)
X1 T2 T3 Ty Tg Ty T4 | SWaAP (1‘4,.%‘7)
r1 Ty T3 x4 Ty x4 X7 | swap (x7,x4)
xr1 T2 T3 Ty X4 T Ty | SWaAP (1‘6,.1‘4)
r1 Ty T3 x4 Ty Te X7 | swap (x5,24)
xr1 T2 T4 X3 X5 T Ty | SWaAp (1‘3,.%‘4)
xr1 T4 T2 X3 X5 T Ty | SWaAp (1‘2,.%‘4)
T4 T T2 X3 Ty Te X7 | swap (x1,24)
xr1 T4 T2 XT3 X5 T Ty | SWap (1‘4,.%‘1)
r1 Ty T4 X3 Ty Te X7 | swap (x4,x2)
r1 Ty T3 x4 Ty Te X7 | swap (x4,x3)
xr1 T2 T3 Ty X4 T Ty | SWaApP (1‘4,.%‘5)
r1 T2 T3 X5 Te x4 X7 | swap (24,%6)
xr1 T2 T3 Ty Xg Ty T4 | SWaApP (1‘4,.%‘7)

Table 6.2: Sifting Algorithm example

with is successor until it reaches this position. The advantage of this algo-
rithm is that a variable may be moved a long distance. It does, however,
require a lot of swaps in the worst case scenario (if the optimal position for
a variable is at the bottom of the graph). An example of the worst-case sce-
nario is shown in table Here all possible position are explored using 9
swaps and the variable is returned to the optimal position using another 6
swaps.

Both algorithms do not try to find a complete overall order in one go.
Instead they work on one variable at a time in order to reduce the time
spent on each run of the algorithm.

6.2 Complement nodes

Brace et al. [KSBB9(] proposes the use of complement edges to reduce the
size of BDDs. This makes it possible to represent two BDDs, that are simi-
lar except that their terminal nodes (True and False) are interchanged. By
setting a complement bit on a given edge you indicate that the associated
formula is to be interpreted as the complement of itself. To maintain con-
sistency the true-edge of a node must always be a regular edge. Brace et
al. use the low bit of node pointers as the complement bit thus avoiding
added memory. A number of experiments were performed which showed
a decrease in size of 7 % for the BDD and a reduction in the time it took to
generate the BDDs by almost 50%.

The results presented by Brace et al. appear very promising, at least

Page 51 of 82

Chapter 6: Other solutions

A

[7;10] [1,3] 4,6]

NOT C B C
[1,3] 6;10] /[1,3]
[4:10] (D2 [1:5] D1 4;10]
[9;10] B 118 {0
T F

Figure 6.1: A simple IDD that does not utilize complement nodes

enough to make it worth while to see if their methods can be of use to us.
Although developed for BDDs it is alo possible to apply the approach to
IDDs as they have been shown to be equivalent. The question is how feasi-
ble it will be. Will it require to many modifications to the representation of
the IDDs or can it be done fairly simple.

In LIBIDD complement nodes could be implemented by using the low
bit of the IDD reference in partition entries in nodes. Alternatively an extra
bit could be added to the IDD struct although this would then, as stated,
result in additional memory use.

If complement nodes are implemented this would make it unnecessary
to copy the entire IDD when we perform NOT on it. Instead we set the
complement bit of the IDD reference in the partition entry leading to it.
FigureTlshows a simple IDD where the last partition of the node A refers
to =C. Figure shows the same IDD but with the use of complement
nodes. The " indicates that an edge is a complement edge.

Depending on how much NOT is used, the implementation of comple-
ment nodes can help reduce the size of the IDD and also the time it takes
to build it because we can reduce the number of times we have to con-

Page 52 of

6.3 Summary

T F

Figure 6.2: A simple IDD that incorporates complement nodes

struct a new node. The use of complement nodes will require that LIBIDD
supports global IDDs because we cannot risk that the IDD referenced by
a complement edge is freed at some point because the original IDD is no
longer needed.

6.3 Summary

We have looked at different ways of changing the data structure of the de-
cision diagram in order to reduce the time it takes to build it. We have
primarily looked at the order of the variables in the decision diagram.

We have also looked at the possibility of implementing complement
nodes which can help reduce the size of the IDD and also the time it takes
to build it, because it will no longer be necessary to copy an entire IDD
when performing not. Instead a complement bit will be set on the edge
leading to the IDD in question which means that the IDD should be seen
as the complement of the one actually present (i.e. the TRUE and FALSE
terminals are interchanged).

We will no go on to examine the effects of changing the order of vari-

Page 53 of 82

Chapter 6: Other solutions

ables in CD. We will use a variant of one of the dynamic algorithms, the
sifting algorithm, as this provides a simple way of determining an order
for the decision diagram. Also our focus is not on finding the very best
order but on discovering the effects of changing the order in CF.

Page 54 of

Chapter 7

Finding a better order for CF

In this chapter we look at finding a better order for CF than the existing
one using a variant of the sifting algorithm described in chapterdl First we
show how changing the order of variable can reduce the size of a graph.
Then we present the algorithm we will use to find the new order. We then
find the best position in the order for each variable and finally we test what
effect changing the order has on the runtime.

7.1

The current order

In the current implementation of LIBIDD the order is fixed. The order is:

1.

® N e W

IP_PROTOCOL The number of the transport layer protocol used. Cur-
rently only 6 protocols are supported - TCP (6), UDP (17), ICMP (1),
IGMP (2), IP in IP (4), PIM (?).

IP_ FRAGMENT_DATALEN This is the fragment offset and datalength
fields which have been combined.

IP_SADDR The source IP address.
IP_DADDR The destination IP address.
TCP_DEST The destination TCP port.
TCP_SOURCE The source TCP port.
UDP_DEST The destination UDP port.
UDP_SOURCE The source UDP port.

This gives a total of 8! = 40320 different permutations. There are also
some permutations that would not make a difference. For instance, us-
ing the above order but with with UDP_DEST, UDP_SOURCE, TCP_DEST,

Page 55 of 82

Chapter 7: Finding a better order for CF

Figure 7.1: An example of a small graph

TCP_SOURCE as the last four would give the same result, as a rule would
naturally never include both tcp and udp ports, and they would therefore
never be found on the same path through the graph. This also raises the
question of why CF does not simply use the same to variables for port
numbers instead of having two for UDP and two for TCP. This could be
changed in the future. There are, however, still a large number of possi-
ble permutations and we will now look at how we can determine the best
suitable order.

7.2 The algorithm

The primary goal of the project is to reduce the compile time for the filters.
Therefore we will come up with a method to find the a better order for CF.

If we are to be able to measure any difference then we have to use filters
with a large enough number of rules in it, but this will also make it a very
time-consuming experiment. Therefore we will look at how we can reduce
the number of variable permutations that we have to test.

The range of the variables are very different. IP_PROTOCOL has a
range from 0 to 255 (8 bits); TCP_DEST, TCP_SOURCE, UDP_DEST and
UDP_SOURCE have a range from 0 to 65,535 (16 bit); IP_.SADDR and IP.DADDR
have a range from 0 to 4,294,967,296 (32 bit). Although not all values for a
variable are in use for a single graph, there is no doubt that in this case the
number of values used increases as the range gets bigger. The placement
of nodes with many edges has an influence on the size of the graph. If
all nodes representing the same variable are said to have the same num-
ber of outgoing edges, then the size of the graph (number of nodes) can
be computed using size = ey + ege; + eperea + ..., where e; is the number
of outgoing edges from a node in level ¢ (assuming that there is no shar-
ing). An example of this can be seen on figures[ZTland A nodes have 2
edges, B nodes have 3 edges and C nodes have 4 edges.

As can be seen from the graphs and deducted from simple calculation,
the lower in the graph nodes with many edges are, the smaller the graph
will be, again assuming no sharing. In our case it is a very fair assumption

Page 56 of

7.2 The algorithm

Figure 7.2: An example of a big graph

for each variable in order
for each possible position in order
compute and remember size of graph
move the variable to the position which gave the smallest graph
in case of a tie select the highest position in the order
go to the next variable

Table 7.1: The algorithm we use to rearrange variables

that the nodes with the biggest range has the highest number of edges, and
therefore should be placed at the bottom of the graph. However, depend-
ing on the level of sharing this might not be the case in LIBIDD. We will test
this assumption using a variant of the sifting algorithm to test which place-
ment of each variable gives the best result ie. the graph with fewest nodes
and edges. This involves testing all the possible positions of the variable.
We simply remember the best position and update the order before testing
the next variable. We can do this because we do not have to worry about
minimizing the number of swaps pr. run. In case of a tie, we will use the
position which is nearest the top of the graph. The algorithm we use is as
follows:

In section[Z3 we test the best position in the order for each variable us-
ing this algorithm. The position in the order we come up with after testing
each variable is the best position for that variable assuming that the posi-
tion for the other variables remain fixed. By doing this for every variable
we are able to get closer to an optimal order without having to check every
possible permutation of the variables.

By optimal order we mean an order which will produce a graph with
the smallest possible number of nodes. By reducing the number of nodes
and edges we can reduce the number of logical operations we need to per-
form and thereby the time it takes to build the graph.

As we have shown, we will get the smallest graph (assuming no shar-
ing) if nodes with the highest number of outgoing edges are located at the
lowest level in the graph, nodes with the second highest number of outgo-
ing edges are located at the second lowest level and so on. It goes without
saying that variables with the largest domain can result in nodes with the
highest number of outgoing edges, although this doesn’t have to be the

Page 57 of 82

Chapter 7: Finding a better order for CF

IP_PROTOCOL
Position | Nodes | Edges New order
1 1038 5112 IP_PROTOCOL
2 1038 5113 IP_FRAGMENT_DATALEN
3 2036 8271 IP_SADDR
4 1054 5325 IP_DADDR
5 1054 5316 TCP_DEST
6 1044 5295 TCP_SOURCE
7 1044 5295 UDP_DEST
8 1038 5247 UDP_SOURCE

Table7.2: Testing the best position for Table 7.3: The order after testing IP_PROTOCOL

IP_PROTOCOL

case. In our case we have domains of three different sizes, 8, 16, and 32
bits. We would expect a variable like IP_.PROTOCOL to be positioned at
the top of the order as there are (currently) only six different values that
this variable can have. We would also expect the variables IP_SADDR and
IP_DADDR to be positioned at the bottom of the order as they will have a
high number of outgoing edges because of the many different IP addresses
used in the filters. The variables representing port numbers (TCP_DEST,
TCP_SOURCE, UDP_DEST, UDP_SOURCE) would then be positioned in
between.

7.3 Test results

The order before any optimization is done is as shown at the beginning of
this chapter. We now test the size of the graph for each variable at each
position in the order according to the algorithm described in section
That is, after testing a variable we move it to the position which gave the
smallest graph. The new optimized order is shown next to the test results.
We test the variables in the order they were in in the original order. The
filter used for these test has a 1000 rules, all with a DENY policy.

TableslZ2and [Z4show that moving either IP>_ PROTOCOL or IP_.FRAGMENT_DATALEN
doesn’t yield any improvement, it just increases the size of the graph. The
best position for these two variables is the one they occupy in the original
order.

Moving IP_SADDR to a new position didn’t reduce the size of the graph
(see table [Z8), but according to our algorithm a variable should be moved
to the highest possible postion in case of a tie. Therefore IP.SADDR is
moved to position 8.

The results in table [Z8 show that again no improvement is reached but
IP_DADDR is moved to position 3 according to the algorithm.

Page 58 of

7.3 Test results

IP_FRAGMENT_DATALEN
Position | Nodes | Edges

1 1038 5113

2 1038 5112

3 2036 8106

4 1054 5160

5 1051 5151

6 1044 5130

7 1044 5130

8 1038 5112

Table 7.4: Testing the best position
IP_.FRAGMENT_DATALEN

IP_SADDR
Position | Nodes | Edges
1 3034 | 11100
2 2036 | 8106
3 1038 | 5112
4 1038 | 5112
5 1944 7830
6 2853 | 10557
7 2929 | 10785
8 3005 | 11013

Table 7.6: Testing the best position
IP_.SADDR

IP_DADDR
Position | Nodes | Edges
1 3034 | 11100
2 2036 | 8106
3 1038 | 5112
4 1038 | 5112
5 1944 | 7830
6 2853 | 10557
7 2929 | 10785
8 3005 | 11013

Table 7.8: Testing the best position
IP_DADDR

New order

IP_PROTOCOL
IP_.FRAGMENT_DATALEN
IP_SADDR

IP_.DADDR

TCP_DEST

TCP_SOURCE

UDP_DEST

UDP_SOURCE

Table 7.5: The order after testing
for IP_.FRAGMENT_DATALEN

New order

IP_PROTOCOL
IP_FRAGMENT_DATALEN
IP_.SADDR

IP_DADDR

TCP_DEST

TCP_SOURCE

UDP_DEST

UDP_SOURCE

for Table 7.7: The order after testing IP_ SADDR

New order

IP_PROTOCOL
IP_.FRAGMENT_DATALEN
IP_DADDR

IP_SADDR

TCP_DEST

TCP_SOURCE

UDP_DEST

UDP_SOURCE

for Table 7.9: The order after testing IP_.DADDR

Page 59 of 82

Chapter 7: Finding a better order for CF

TCP_DEST

Position | Nodes | Edges New order
1 1053 5173 IP_PROTOCOL
2 1044 5130 IP_.FRAGMENT_DATALEN
3 1036 5106 TCP_DEST
+ 1944 | 7830 IP_.DADDR
5 1038 5112 IP_SADDR
6 1039 5115 TCP_SOURCE
7 1039 5115 UDP_DEST
8 1039 5115 UDP_SOURCE

Table 7.10: Testing the best position for Table 7.11: The order after testing TCP_DEST
TCP_DEST
TCP_SOURCE

Position | Nodes | Edges New order
1 1053 5171 IP_PROTOCOL
2 1045 5133 IP_.FRAGMENT_DATALEN
3 1038 5112 TCP_DEST
4 1039 5115 IP_.DADDR
5 1945 | 7833 IP_SADDR
6 1036 5106 TCP_SOURCE
7 1036 5106 UDP_DEST
8 1036 5106 UDP_SOURCE

Table 7.12: Testing the best position for Table 7.13: The order after testing TCP_SOURCE

TCP_SOURCE

Moving TCP_DEST doesn’t change much, however moving it to posi-
tion 3 does give a minute improvement. The graphs is reduced by two
nodes and six edges.

Moving TCP_SOURCE doesn’t give any improvements (as seen in table
and it remains at position 6.

UDP_DEST is moved to position 3 as the gives a reduction of a single
edge.

Thus after having testing the optimal position for each variable (assum-
ing that the other variables remain fixed), we have arrived at a new order,
which looks like this:

1. IP_.PROTOCOL
2. IP_.FRAGMENT_DATALEN
3. UDP_SOURCE

4. UDP_DEST

Page 60 of

7.3 Test results

UDP_DEST
Position | Nodes | Edges New order
1 1049 5156 IP_PROTOCOL
2 1042 5123 IP_FRAGMENT_DATALEN
3 1036 5105 UDP_DEST
4 1036 5105 TCP_DEST
5 1112 5334 IP_DADDR
6 1036 5106 IP_SADDR
7 1036 5106 TCP_SOURCE
8 1036 5106 UDP_SOURCE
Table 7.14: Testing the best position for Table 7.15: The order after testing UDP_DEST
UDP_DEST
UDP_SOURCE New order
Posttion 1\1823 ° E;}E;ZS [P PROTOCOL
7 1042 5123 IP_FRAGMENT_DATALEN
3 | 1036 | 5105 UDP_SOURCE
4 1036 | 5105 [Tjglfggssg
5 1036 5105 D D_ADDR
6 1112 | 5333 -
IP_SADDR
7 1036 5105
8 1036 5105 TCP_SOURCE
. o Table 7.17: The order after testing
Table 7.16: ;FjegtIl)nSgO [jtllgé . best position for UDP.SOURCE
5. TCP_DEST
6. IP_.DADDR
7. IP.SADDR

8. TCP_SOURCE

Let us just summarize on the keyresults. In particular let us look at the
size of the graph for the original order, the best order and the worst order.
The results are shown in table[ZT8 Here we can see how the ordering of the
variables influences the size of the graph. We have not reduced the size of
the graph by much but we can see, that there is a major difference between
the worst order and best order found with our algorithm.

We also tried running the algorithm where we chose the lowest possible
position in case of a tie. This gave the same size graph but with a somewhat
different order:

1. IP_.PROTOCOL

Page 61 of 82

Chapter 7: Finding a better order for CF

Nodes | Edges
Original order 1038 | 5112
Best order 1036 | 5105
Worst order 3034 | 11100

Table 7.18: Summary of the test results

2. TCP_DEST
3. UDP_DEST
4. IP_.SADDR
5. IP_.DADDR
6. TCP_SOURCE
7. UDP_SOURCE

8. IP.FRAGMENT_DATALEN

In the beginning of the chapter we stated that we expected the variables
with the largest domains to be at the bottom of the graph. If that had been
the case we would have got an order that looks like this:

1. IP_.PROTOCOL

2. IP_.FRAGMENT_DATALEN
3. TCP_DEST

4. TCP_.SOURCE

5. UDP_DEST

6. UDP_SOURCE

7. IP.SADDR

8. IP.DADDR

Testing the size of the graph that this order gives us shows that we
would get a graph with 1038 nodes and 5113 edges. So apparently there
is not much to gain from changing the order of the variables. But when we
measure the time it takes to run cfconf with the three different orders we
have just presented, we get some interesting results. The results are shown
in figure Z3 where Order 1 is the order we found with the algorithm, Order
2 is the order we would have got if we chose the lowest position in case of

Page 62 of

7.3 Test results

20 T T T T T T T T T
Order1 —+—
Order 2 —--x-— g
18 | Order 3 --—-*--"%

Original order -

Seconds

0 1 1 1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
No. of rules

Figure 7.3: Comparing the time for the orders plus the original order

a tie, Order 3 is the order we originally expected to see and Original order is
ofcourse the order orginally used in CF.

Order 2 and the original order gave almost identical results and so the
line for these two orders look as one. This is the top most line in the graph.
Order 1 which is the order found with the algorithm gave a somewhat bet-
ter result than the original order but the best results are achieved with Or-
der 3. For all orders we have to use filters with many rules to see any
noticable changes. But why do we get the results we do. The difference in
the size of the graph we get is extremely small but you should consider that
the graph is built using many logical operations and a different order can
result in some of these operations running slightly faster. Order 3 which re-
sulted in the lowest runtime does not give the smallest graph but this does
not matter since the difference in the size of the graph is so small. How-
ever, it does raise the point that even though an order does not result in the
smallest graph it can result in the lowest runtime. This presents a problem
when the goal is to reduce the runtime because how do you determine that
order without having to test all possible orders? This is a matter for future
work.

Page 63 of 82

Chapter 7: Finding a better order for CF

74 Summary

We have presented an algorithm for finding a better variable order which
is based on the sifting algorithm described in chapter B We have presented
the order that we expected would give the best results. We have applied
the algorithm to the current order in LIBIDD and come up with a different
order. We then tested this order along with the order we expected to give
the best results and the order we would get if we had used a slightly dif-
ferent version of the algorithm. The tests showed that size of the graph we
get with the different orders is virtually the same. The runtime for cfconf
does not change much either with a different order, but there is a sligt re-
duction when using the order we originally expected to see. This indicates
that perhaps we should look for an order which gives the shortest runtime
instead of one which gives the smallest graph since, apparently, this does
not need to be the same.

Page 64 of

Chapter 8

Conclusion

In this paper we have presented Compact Filter (CF) which is an alternative
firewall for linux. CF represents the rules as a graph instead of one or more
lists of rules. However, building the graph takes a long time when the
ruleset grows. This project has focused on reducing the time it takes to
build the graph.

We make use of the performance analysis tools gcov and gprof which are
described in chapter @ By adding a few flags when compiling the code, we
are able to get information about which functions are very time consuming.
We use this knowledge to make suggestions for an optimization of the code.

We focus on the logical operators plus their helper functions and the
function iddDeepFree(). iddDeepFree() used an iterator to discover all
the nodes and terminals in an IDD but unfortunatly this does not distin-
guish between new nodes and ones it has already visited. Therefore it is
necessary to check for this whenever a new node is returned by the iterator.
We are able to eliminate the use of the iterator and the very time-consuming
check of the node returned by the iterator by adding a marked bit to the
IDD struct. This is used to ensure that we do not run into nodes we have
already seen. We also add an operator cache which the logical operators
use to save information about operations already performed. Thereby we
can avoid performing the same operations twice. Before each logical oper-
ation we look in the operator cache to see if we have performed it before.
If so we reuse the result instead of performing the operation again. By us-
ing the operator cache we have reduced the runtime for the logical opera-
tors from exponential to polynomial. Finally the function which computes
hashvalues for IDDs has been replaced so it no longer relies on a string
representation of the IDD.

We have examined papers on improving the data structure of a decision
diagram. An interesting subject is the order of the variables in the decision
diagram. Many papers focus on the need to select the order carefully and
many algorithms exist to help in selecting the order. We have showed that

Page 65 of 82

Chapter 8: Conclusion

the order has a significant influence on the size of the diagram. We have
used a variant of the sifting algorithm to find the best position for each vari-
able in the order. Test showed that the order found with the algorithm
yielded a graph which has virtually the same size as a graph based on the
original order in CF. However we did notice that although changing the
order does not produce a smaller graph, it can have an effect on the overall
runtime.

All in all we have showed that it is possible to reduce the time it takes
to build the decision diagram from a ruleset and quite significantly in fact.
For a ruleset of 50,000 rules the time it takes to build the decision diagram
is reduced from about 9933 seconds (2h45mb55s) to about 18 seconds. Also
we have gained knowledge that can be useful in other programs that builds
decision diagrams.

Page 66 of

Chapter 9

Further work

Here we lok at some of the further work that needs to be done or could be
done on cfconf in the future.

We have made several improvements to LIBIDD which has helped in
making the library much more efficient but in order to fully utilize the im-
provements it is necessary to implement global IDDs which will make it
possible to reuse results from previous calls to the logical operators and
not just from within a single call. Furthermore it will also make it unneces-
sary to return a clone of an IDD when performing AND or OR on a node
and a terminal. The node itself may be returned as there is no risk of the
operands being deleted afterwards.

CF currently supports 8 fields (actually it is 9 but FRAGMENT and
DATALEN are combined into one check in CF) in the IP, TCP and UDP
headers. If/when this is extended to include more fields it will be neces-
sary to look at the order again. It may also be necessary to make a tool
which automatically selects the order based on which yields the smallest
graph in terms of the number of nodes it contains.

We have looked at the ordering of variables as a way of reduzing the
size of the graph representing the filter and thereby also the time it takes
to build the filter. This is, however, just one way of optimizing the graph.
Others may exist, including complement nodes that we described in chap-
ter @ that need to explored. Although the runtime of cfconf has already
been reduced significantly there may still be an advantage to gain after the
filter has been sent to the kernel ie. when the CF firewall is up and running.
Furthermore, we have not investigated what effects changing the order has
had on the time it takes to match a packet against the filter. This could also
be interesting to look at.

Page 67 of 82

Appendix A

The original source code

This chapter presents the original source code for some of the functions in
LIBIDD.

A.1 iddDeepClone()

Idd_t *iddDeepClone(Idd_t *idd_in_root) {
IddIteratorPreorder_t iddite;
Idd_t *res_root = NULL; /* the root node of the result */
Idd_t *new = NULL; /* a new idd node waiting to be assinged */
IddPartitionEntry_t *cur_p = NULL; /* the current partition */
int cur_name;
int cur_p_size;
int cur_p_pos; /* p for partition */
Idd_t *idd = idd_in_root;
IddPartitionStack_t pstack;

iddPartitionStackInit (&pstack);
iddIteratorPreorderInit(&iddite, idd_in_root);

idd = iddIteratorPreorderNext (&iddite); /* return the root */

while (idd != NULL) {
switch (idd->type) {
case TERMINAL:
new = iddAlloc();
iddTerminalInit(new, idd->value.terminal);
/* assign res to some partition entry */
if (cur_p != NULL) {
cur_plcur_p_pos].idd = new;
cur_p_pos++;

} else {
res_root = new; /* idd_in_root is a terminal */
}

Page 69 of 82

Chapter A: The original source code

break;
case NODE:
if (cur_p != NULL)
iddPartitionStackPush(&pstack, cur_name, cur_p, cur_p_size, cur_p_pos);
cur_name = idd->value.node.name;
cur_p = iddPartitionCopy(idd->value.node.partition,
idd->value.node.partition_size);
cur_p_pos = 0;
cur_p_size = idd->value.node.partition_size;
break;
default:
printf ("iddDeepClone: unitialized idd detected!\n");
b
/* if partition is full then instantiate node and backtrack */
/* note: by ensuring that res_root==NULL we know that cur_p has been set */
while ((cur_p_pos == cur_p_size) && (res_root == NULL)) {
new = iddAlloc();

iddNodeInit (new, cur_name, cur_p, cur_p_size);
/* pop from the stack and set pos and size again */
if (!iddPartitionStackIsEmpty(&pstack)) {
iddPartitionStackPop (&pstack, &cur_name, &cur_p,
&cur_p_size, &cur_p_pos);
cur_plcur_p_pos].idd = new;
cur_p_pos+t;
} else { /x if stack is empty then we are done */
res_root = new;
3
¥
idd = iddIteratorPreorderNext(&iddite);
}

iddIteratorPreorderFree(&iddite);

if (res_root == NULL) {
printf ("iddDeepClone Failed\n");
}

return res_root;

A.2 iddNot()

Idd_t *iddNot(Idd_t *idd) {
IddHash_t iddhash;
Idd_t *tmp_idd = NULL;
Idd_t *res_root = NULL;

IddIteratorPreorder_t iddite;

Page 70 of

A.2 iddNot()

Idd_t *cur_idd = NULL; /* idd returned from iterator */
IddPartitionStack_t pstack; /* store partitions that we have not finished */

Idd_t *new_idd; /* the idd we are building */

IddPartitionEntry_t *cur_p = NULL; /* partition we work on currently*/
int cur_p_size = 0; /* size of the current partition */

int cur_p_pos = 0; /* current pos in the new idd */

int cur_name;

int 1i;

iddPartitionStackInit(&pstack);
iddHashInit (&iddhash, IDDHASHTBLSIZE) ;
iddIteratorPreorderInit(&iddite, idd);

while ((cur_idd = iddIteratorPreorderNext (&iddite)) !'= NULL) {
switch (cur_idd->type) {
case TERMINAL:
new_idd = iddAlloc();
if (cur_idd->value.terminal == FALSE)
iddTerminalInit(new_idd, TRUE);
else
iddTerminalInit(new_idd, FALSE);

tmp_idd = iddHashFind(&iddhash, new_idd);
if (tmp_idd == NULL) {
iddHashInsert (&iddhash, new_idd) ;
} else {
iddFree(new_idd);
new_idd = tmp_idd;
}

if (cur_p != NULL) {
cur_plcur_p_pos].idd = new_idd;
cur_p_pos++; /* later we check if new_p is full */
} else {
res_root = new_idd;
}
break;
case NODE:
if (cur_p !'= NULL) {
iddPartitionStackPush(&pstack, cur_name, cur_p,
cur_p_size, cur_p_pos);
}
cur_name = cur_idd->value.node.name;
cur_p_size = cur_idd->value.node.partition_size;
cur_p_pos = 0;

Page 71 of 82

Chapter A: The original source code

cur_p = iddPartitionAlloc(cur_p_size);
for (i = 0; i < cur_p_size; i++) { /* copy bounds */
cur_p[i].lower_bound =
cur_idd->value.node.partition[i] .lower_bound;
cur_p[i] .upper_bound =
cur_idd->value.node.partition[i] .upper_bound;
cur_p[i].idd = NULL;
}
break;
default:
printf("iddOptimize FATEL error: uinitialized idd detected!\n");
}

while ((cur_p_pos == cur_p_size) && (res_root == NULL)) {
new_idd = iddAlloc();
iddNodeInit (new_idd, cur_name, cur_p, cur_p_size);

/* pop from stack to set cur_* again */
if (!iddPartitionStackIsEmpty(&pstack)) {
iddPartitionStackPop(&pstack, &cur_name, &cur_p,
&cur_p_size, &cur_p_pos);
/* optimize a little */
if (new_idd->value.node.partition_size == 1) {
cur_p[cur_p_pos].idd = new_idd->value.node.partition[0].idd;
iddPartitionFree(new_idd->value.node.partition);
iddFree(new_idd) ;
} else {
/* check if similar idd exists */
tmp_idd = iddHashFind(&iddhash, new_idd);
if (tmp_idd == NULL) {
iddHashInsert (&iddhash, new_idd) ;
} else {
/* free partition and idd */
iddPartitionFree(new_idd->value.node.partition);
iddFree(new_idd); /* well we dont need this no more */
new_idd = tmp_idd;
}
cur_p[cur_p_pos].idd = new_idd;
}
cur_p_pos++;
} else { /x if stack is empty then we are done */
if (new_idd->value.node.partition_size > 1) {
res_root = new_idd;
} else {
res_root = new_idd->value.node.partition[0].idd;
}
}
} /* while cur_p_pos */
} /* while preordernextx*/

Page 72 of

A.3iddAnd()

iddIteratorPreorderFree(&iddite);

if (res_root == NULL) {
printf ("iddNot failed\n");
}

return res_root;

A.3 iddAnd()

Idd_t *iddAnd(Idd_t *a_idd, Idd_t *b_idd) {
int err;
IddPartitionEntry_t *partition;
int partition_size;
Idd_t *result;
IddPartitionEntryTwo_t *merge_res;
int merge_res_size, merge_res_used;

if (a_idd->type == TERMINAL) {
if (b_idd->type == TERMINAL) {
/* and the two terminals and return the result */
result = iddAlloc();
err = iddTerminalIlnit(result, iddTermAnd(a_idd->value.terminal,
b_idd->value.terminal));
if (err == 0)
printf ("iddAnd received: %d from iddTerminallInit\n", err);
} else {
/* if a is false then return false term */
if (a_idd->value.terminal == FALSE) {
result = iddAlloc();
err = iddTerminalInit(result, FALSE);
if (err == 0)
printf ("iddAnd received: %d from iddTerminallnit\n", err);
} else { /x if a is true then return a copy of b_idd */
result = iddDeepClone(b_idd) ;
}
}
} else {
if (b_idd->type == TERMINAL) {
/* if b is false then return false */
if (b_idd->value.terminal == FALSE) {
printf("iddAnd: b_idd->value.terminal == FALSE\n");
result = iddAlloc();
err = iddTerminalInit(result, FALSE);
if (err == 0)
printf ("iddAnd received: %d from iddTerminallnit\n", err);
} else {

Page 73 of 82

Chapter A: The original source code

/* if b is true then return copy of a */
result = iddDeepClone(a_idd);
b
} else {
if (a_idd->value.node.name > b_idd->value.node.name) {
/* do the apply left thing */
partition_size = b_idd->value.node.partition_size;
partition = iddPartitionAlloc(partition_size);
err = iddAndApplyLeft(partition, partition_size,
b_idd->value.node.partition,
b_idd->value.node.partition_size,
a_idd);
if (err == 0) {
printf ("iddAnd received: %d from iddAndApplyLeft\n", err);
b
result = iddAlloc();
err = iddNodeInit(result, b_idd->value.node.name,
partition, partition_size);
if (err == 0)
printf ("iddAnd received: %d from iddNodeInit\n", err);
} else if (a_idd->value.node.name < b_idd->value.node.name) {
/* do the apply right b thing */
partition_size = a_idd->value.node.partition_size;
partition = iddPartitionAlloc(partition_size);
err = iddAndApplyRight (partition, partition_size,
a_idd->value.node.partition,
a_idd->value.node.partition_size,
b_idd);
if (err == 0)
printf ("iddAnd received: %d from iddAndApplyRight\n", err);
result = iddAlloc();
err = iddNodeInit(result, a_idd->value.node.name,
partition, partition_size);
if (err == 0)
printf ("iddAnd received: %d from iddNodeInit\n", err);
} else {
/* do the merge thing */
merge_res_size = a_idd->value.node.partition_size +
b_idd->value.node.partition_size;
merge_res = iddPartitionTwoAlloc(merge_res_size);
merge_res_used = iddMergeTwo(a_idd->value.node.partition,
a_idd->value.node.partition_size,
b_idd->value.node.partition,
b_idd->value.node.partition_size,
merge_res, merge_res_size);
if (merge_res_used == 0)
printf ("iddAnd received error %d form iddMergeTwo", merge_res_used);
partition_size = merge_res_used;
partition = iddPartitionAlloc(partition_size);

Page 74 of

A.4 iddDeepFree()

err = iddAndMerge (merge_res, merge_res_used,

partition, partition_size);
if (err == 0)

printf ("iddAnd received error %d from iddAndMerge", err);
iddPartitionTwoFree (merge_res); /* won’t need this anymore */
result = iddAlloc();
err = iddNodeInit(result, a_idd->value.node.name,

partition, partition_size);
if (err == 0)

printf ("iddAnd received: %d from iddNodeInit\n", err);

}
}
}
return result;

}

A4 iddDeepFree()

void iddDeepFree(Idd_t *idd) {
IddIteratorPostorder_t iddite;
Idd_t *cur_idd = NULL;
int i;

int parray_used = 0;
int match = 0;

if (idd == NULL) {
return;

}

iddIteratorPostorderInit(&iddite, idd);
while ((cur_idd = iddIteratorPostorderNext (&iddite)) !'= NULL) {
match = 0;
for (i = 0; i < parray_used; i++) {
if (parray[i] == cur_idd) {
match = 1;
break;
}
}
if ('match) {
parray [parray_used] = cur_idd;
parray_used++;

}

if (parray_used >= IDD_PARRAY_SIZE) {
printf ("iddDeepFree out of memory");
exit (0);

}

Page 75 of 82

Chapter A: The original source code

}

iddIteratorPostorderFree(&iddite) ;

/* free list of unique idd’s */
for (i = 0; i < parray_used; i++) {
if (parray[i]l->type == NODE)
iddPartitionFree(parray[i]->value.node.partition);
iddFree(parray[il);
}
}

Page 76 of

List of Figures

Page 77 of 82

Chapter A: LIST OF FIGURES

|7 1 An example of a small gra Q_]J

|7 2 Anexampleofabiceraph

Page 78 of

List of Tables

Page 79 of 82

Chapter A: LIST OF TABLES

|7 4 Testing the best position for IP FRAGMENT DATALE]\i

|7 5__The order after testing [P ERAGMENT DATAI F]\i
|7 6__Testing the best position for IP SADDR‘I
|7 7 __The order after testing 1P SADDR‘I
|7 8 Testing the best position for IP DADDIJ
|7 9 __The order after testing 1P DADDR‘I
|7 10_Testing the best position for TCP DESTI
|7 11_The order after testing TCP DESTI
|7 12_Testing the best position for TCP SOURCEI
|7 13_The order after testing TCP. SOURCﬂ
|7 14_Testing the best position for UDP DESTI
|7 15_The order after testing UDP DESTI
|7 16_Testing the best position for UDP_SOURC d
|7 17_The order after testing UDP SOURC EI

59

Page 80 of

Bibliography

[ctt]

[Fre04]

[GPR]

[KMBM]

[KSBB90]

[MFK]

[NF]

[OGM]

[PCP93]

Henrik Reif Andersen. An introduction to binary decision dia-
grams.

Randal E. Bryant. Graph-based algorithms for boolean function
manipulation.

The buddy project.
Mikkel Christiansen and Emmanuel Fleury. Compact filter.

Mikkel Christiansen and Emmanual Fleury. An mtidd based
firewall - using decision diagrams for packet filtering. 2004.

Gcov manual.
Zech Frey. Coverage measurement and profiling. 2004.
Gprof manual.

Rohit Kapur Kenneth M. Butler, Don E. Ross and M. Ray Mercer.
Heuristics to compute variable orderings for efficient manipula-
tion of ordered binary decision diagrams.

Richard L. Rudell Karl S. Brace and Randal E. Bryant. Efficient
implementation of a bdd package. 1990.

H. Fujisawa M. Fujita and N. Kawato. Evaluation and improve-
ments of boolean comparison methond based on binary decision
diagrams.

The netfilter /iptables project.

Shlomi Livne Orna Grumberg and Shaul Markovitch. Learning
to order bdd variables in verification.

I. Hajj P. Chung and J. Patel. Efficient variable ordering heuristics
for shared robdd. 1993.

Page 81 of 82

Chapter A: BIBLIOGRAPHY

[Rud]

[SMSV]

[SMY90]

Richard Rudell. Dymanic variable ordering for ordered binary
decision diagrams.

R. Brayton S. Malik, A. Wang and A. Sangiovanni-Vinventelli.
Logic verification using binary decision diagrams in a logic syn-
thesis environment.

N. Ishura S. Minato and S. Yajima. Shared binary decision di-
agrams with attributed edges for efficient boolean function ma-
nipulation. 1990.

Page 82 of

	Introduction
	Problem description
	Project goal
	Decision Diagrams
	Representing firewall rules as predicate logic
	Reduced IDDs
	Boolean operators on IDDs
	Representing filter rules with IDDs
	MTIDD
	Representing an IDD in CF
	Performance Analysis Tools
	Gcov
	Gprof

	Implementation
	A new IDD constructor
	The Hashvalue
	The operator cache
	The Iterator Problem
	Cloning an IDD
	The Logical Operators
	NOT
	AND and OR

	iddDeepFree

	Benchmarks
	Building the filters
	Test setup

	Summary
	Performance Analysis
	Testing the old implementation
	Testing the new implementation

	Other solutions
	Ordering of variables
	Complement nodes
	Summary
	Finding a better order for CF
	The current order
	The algorithm
	Test results
	Summary
	Conclusion
	Further work
	The original source code
	iddDeepClone()
	iddNot()
	iddAnd()
	iddDeepFree()

