
Don’t Optimize Yet!
On an approach for making early performance

evaluation usable to Software Engineering

Group E4-114 Supervisor
René Hansen Bent Thomsen
Dennis Micheelsen

The Faculty of Engineering and Science
University of Aalborg

Department of Computer Science

TITLE:
Don’t Optimize Yet!

SUBTITLE:
On an approach for making early
performance evaluation usable
to Software Engineering

SEMESTER PERIOD:
DAT6,
1st February 05 - 15th June 05

PROJECT GROUP:
E4-114
René Hansen,rhansen@cs.aau.dk

Dennis Micheelsen,sak@cs.aau.dk

SUPERVISOR:
Bent Thomsen,bt@cs.aau.dk

NO. COPIES: 6

NO. PAGES: 91

Abstract:

There are three rules to performance opti-
mizations: Don’t optimize yet!, Don’t opti-
mize yet!, Don’t optimize yet! Tradition-
ally, the popular notion towards performance
has been to ignore it until it could no longer
be ignored. However, many companies have
faced the consequence of this approach, find-
ing that some performance problems are im-
possible to solve through code optimization
alone. A discipline called Software Per-
formance Engineering(SPE) tries to alleviate
performance problems before they arise by
modelling performance already at the design
phase. However, SPE has never caught on
in the mainstream Software Engineering prac-
tices - mainly because it relies on specialized
performance staff. In this thesis we propose an
approach making early performance consider-
ations more amenable to Software Engineer-
ing. We have created a J2ME test application
that derives performance characteristics of the
target environment. The test application can
be used to supply input estimates that would
otherwise need to be supplied by a SPE spe-
cialist. The input estimates from the test appli-
cation are used to annotate activity diagrams
according to the UMLTM Profile for Schedula-
bility, Performance, and Time which results in
performance predictions of the system under
development. We have investigated the valid-
ity of our approach by applying it to a test case,
a J2ME application.

Preface

This thesis is written at the Department of Computer Science at the faculty of Engi-
neering and Science. The thesis is written by group E4-114 in the field of Database
and Programming Technologies. We wish to thank our supervisor Bent Thomsen
for his input and many inspiring sessions throughout the work on this thesis.

Aalborg, June, 2005

Dennis Micheelsen René Hansen

Contents

List of Tables ii

List of Figures iv

List of Listings 1

1 Introduction 3

I Related Work 9

2 Software Performance Engineering 11

2.1 Execution Graphs .15

2.2 The System Execution Model .18

2.3 Other approaches .23

3 Problems and proposed solutions 27

3.1 Problems with SPE .27

3.2 Proposed solutions .32

4 UML TM Profile for Schedulability, Performance and Time 35

4.1 Performance analysis of a UML model37

4.2 Concepts and techniques .38

CONTENTS i

II Our Approach 47

5 Describing our approach 49

5.1 The Record Management System49

5.2 Networking . 50

5.3 Obtaining input estimates .50

5.4 Using the results .52

6 Applying our approach 55

6.1 A description of the test case .55

6.2 Scenarios .58

7 Evaluating our approach 65

7.1 Evaluating the RMS results .66

7.2 Conlusion on the RMS test results72

7.3 Evaluating the network results73

7.4 Conclusion on the network results75

7.5 Overall evaluation of our approach75

III Conclusion and future work 79

8 Conclusion 81

8.1 Shortcomings and future work84

8.2 Summary .85

Bibliography 87

List of Tables

5.1 Size of Java primitives .51

7.1 Results of RMS operations on the logistics application67

7.2 The results returned from the test application emulating the work-
load of the logistics application67

7.3 Results of operations relevant for performing writes obtained from
the test application .68

7.4 The total write time computed for the avg., max., and 95th mea-
sures as well as the total time measured69

7.5 The average, minimum, and maximum times for writing on the
logistics application .69

7.6 The percent-wise deviation between the estimates of the test appli-
cation and the actual results of the logistics application for write
operations. .69

7.7 Results of operations relevant for performing reads obtained from
the test application .70

7.8 The total read time computed for the avg., max., and 95th measures
as well as the total read time measured71

7.9 The average, minimum, and maximum times for reading on the
logistics application .71

7.10 The percent-wise deviation between the estimates of the test ap-
plication and the actual results of the logistics application for read
operations .71

7.11 Results of delete operations obtained from the test application . .72

LIST OF TABLES iii

7.12 The average, minimum, and maximum times for deleting a record
store on the logistics application72

7.13 The percent-wise deviation between the estimates of the test appli-
cation and the actual results of the logistics application for delete
operations .72

7.14 Results of Networking operations in the logistics application . . .73

7.15 Results of Networking operations in the test application74

7.16 Relevant results of Networking operations in the logistics application74

7.17 Relevant results of Networking operations in the test application .74

7.18 The percent-wise deviation between the estimates of the test appli-
cation and the actual results of the logistics application for fetching
operations .74

7.19 Relevant results of Networking operations in the logistics application74

7.20 Relevant results of Networking operations in the test application .75

7.21 The percent-wise deviation between the estimates of the test appli-
cation and the actual results of the logistics application for the send
operation . 75

List of Figures

2.1 The SPE modelling process [41]14

2.2 Basic execution graph nodes .16

2.3 Sequence structure .17

2.4 Loop structure .18

2.5 Case structure .18

2.6 Queue-server representation of a resource [41]19

2.7 Hypothetical execution profile20

4.1 The UML profile for Schedulability, Performance, and Time. The
performance component is indicated by the solid line.36

4.2 Abstract view of the model processing process [13]38

4.3 The Performance analysis domain model [13]40

6.1 Test application architecure .56

6.2 The overall activity diagram .57

6.3 Get Route w/time activity diagram59

6.4 Save persistent w/time activity diagram60

6.5 Read persistent w/time activity diagram61

6.6 Abruption w/with activity diagram 62

6.7 Finish route w/ time activity diagram63

LIST OF FIGURES v

7.1 The input screen for the RMS test on the test application66

7.2 The class diagram for the route67

Listings

1.1 Calculating a row sum . 4

1.2 Calculating a row sum (optimized) 4

5.1 Example customer class .51

1Introduction

Producing high quality software is, or at least should be, the overriding goal of any
software development project.
A number of factors determine the software quality including [36,44]:

• maintainability, the effort required to locate and fix errors in a program;

• flexibility, the effort required to modify an operational program;

• reusability, the extent to which a program (or parts of a program) can be used
in other applications - related to the packaging and scope of the functions that
the program performs;

• Usability; Effort required to learn and operate a program;

• Efficiency, the amount of computing resources required by a program to per-
form its function.

However, while the first four of the quality attributes can be targetedproactively
through modular design, well-documented code and a host of best-practices for
user interface design, the general literature on software engineering does not ad-
vocate the same tactic for theefficiency, i.e., performance, aspect. Rather, perfor-
mance is handledreactively, that is, in response to performance problems arising.
In essence, this means that performance problems are not discovered until the latter
stages of the systems development process when actual executable code exist. Tra-
ditionally, the approach to alleviating performance problems has consisted of per-
forming code optimization and tuning. This approach presents several problems,
however. Code optimizations and tuning may make the code harder to understand
and maintain, it may introduce new bugs that become even harder to resolve due

4 Introduction

to the added complexity [5]. Consider the following example, that computes the
sum of two rows. A straightforward version might compute the row sum as seen in
Listing 1.1 [39].

1
2 double [] rowsum = new double[n] ;
3 f o r (i n t i =0 ; i <n ; i ++)
4 f o r (i n t j =0 ; j <m; j ++)
5 rowsum [i] += a r r [i] [j] ;

Listing 1.1: Row sum calculation

A more efficient version might calculate the row sum as seen in Listing 1.2 [39].

1 double [] rowsum = new double[n] ;
2 f o r (i n t i =0 ; i <n ; i ++) {
3 double [] a r r i = a r r [i] ;
4 double sum = 0 . 0 ;
5 f o r (i n t j =0 ; j <m; j ++)
6 sum += a r r i [j] ;
7 rowsum [i] = sum ;
8 }

Listing 1.2: Optimized row sum calculation

The second example results in more efficient code, but also code that is harder to
read and understand.

This small example illustrates the point that achieving efficiency by code optimiza-
tion and tuning may afflict other quality attributes such as the maintainability and
flexibility of the software.

As a consequence, the general golden rule has been to avoid any performance con-
siderations until the latest possible point, exemplified by statements such as:

“Ignore efficiency through most of the development cycle. Tune per-
formance once the program is running correctly and the design reflects
your best understanding of how the code should be structured. The
needed changes will be limited in scope or will illuminate opportuni-
ties for better design.” [4]

“Changes in the system architecture to improve performance should as
a rule be postponed until the system is being (partly) built. Experience
shows that one frequently makes the wrong guesses, at least in large
and complex systems, when it comes to the location of the bottlenecks
critical to performance. To make correct assessments regarding neces-
sary performance optimization, in most cases, we need something to
measure.” [20]

5

As it is, the cost of correcting error increases dramatically throughout the lifetime
of a software project. An error in this instance denotes any quality problem that is
discovered. A study at IBM [36], based on cost data from actual software projects,
indicated that from the time of design, the cost of correcting an error increases
6.5 times just before testing commences; 15 times during testing; and finally, after
release between 60-100 times. Moreover, [41] notes that many performance prob-
lems cannot be solved through code optimizations and tuning, but instead require
extensive redesign to be alleviated. As a result, performance problems uncovered
during late stages of the development process may result in schedule and resource
overruns, damaged customer relations, lost income and even project failure.

It would be beneficial to discover performance problems at an earlier point where
they can be corrected faster and more cost-effective. And indeed, approaches for
doing so, exist. Software Performance Engineering (SPE) is an approach that
targets performance problems at the analysis and design phases through perfor-
mance modelling of critical use cases and the scenarios that describe them. How-
ever, SPE presents a number of problems. It requires special skill and knowledge
of performance-related issues, including knowledge of an appropriate formalism
(e.g., Execution Graphs and Queueing Network Models) in order to be able to
construct and solve the performance models. Also, SPE is an inherently people
dependant approach in that it requires a performance specialist to supply input, in
the form of estimates, to the performance models. As a result, the accuracy of the
predictions from the performance models depend exclusively on the quality of the
estimates supplied by the performance specialist. This raises a question regarding
the reliability of the resulting performance predictions.

A number of alternative approaches have emerged from SPE. These approaches
can be largely divided into two: 1) approaches that provide alternative ways of
modelling performance and 2) approaches applying SPE to specific application
domains (e.g., performance analysis of client-server systems). However, like their
SPE ancestor, these approaches require performance skills and are dependant on a
performance specialist to provide input-estimates to the performance models.

Although SPE emerged in 1981 it has still not been incorporated into the prac-
tices of Software Engineering (SE) [27]. Proposals have been made to adapt the
SE process models to accommodate SPE into the development effort and ease the
integration of SPE into SE by educating developers in performance and by intro-
ducing more scientific, formal models into SE [27, 38]. However, we do not feel
that such an approach is likely to be accepted into the main SE community. This
would also require a reorganization of the computer science (CS) courses being
taught at the majority of universities, as they do not include any required perfor-
mance evaluation courses for CS undergraduates [21, 27]. Instead, we feel that
early performance considerations to a much larger extent must be adapted into the
existing SE paradigm.

6 Introduction

In this, our master thesis, we propose an alternative to the SPE way of estimating
performance. Motivated by the aforementioned problems with SPE we propose an
approach that is easily integrated into the software engineering domain.

This is achieved by substituting input estimates supplied by a performance spe-
cialist to a performance model with a test application that derives performance
characteristics of a target device. The test application can used to obtain input
estimates which can be used as part of the design to establish if there are any per-
formance problems in a system. Also, we wish to hide details about performance
model creation and solution which would otherwise require special performance
knowledge.

Our focus is on making performance evaluation of systems at the design stage
transparentandusableto software engineers, as well as producing an approach that
provides morereliableperformance predictions and is cost-efficient to effecuate.

• Transparency is achieved by hiding details of performance modelling and
solution to the developer. The creation and solution of performance models
is done “behind the scenes” without intervention from a developer.

• The approach is usable, in that we base input estimates to performance mod-
els on actual measurements on the execution environment, thus dispensing
with the need for a performance specialist to provide input estimates.

• The fact that the estimates of our approach rely on actual measurements
should add to the reliability of the resulting predictions.

• Finally, the approach is cost-efficient in that it saves the costs of expensive
SPE activities and specialized performance staff.

To support our approach, we will model key performance scenarios using UML
activity diagrams according to the UML 2.0 Superstructure Specification [31] and
use the UMLTM Profile for Schedulability, Performance, and Time Specification
(UML-SPT) [13]. The activity diagrams will be annotated with input estimates
from our test application. Various UML tools (e.g., [11, 25, 29, 33]) support the
export of annotated UML models into XML. This XML representation can then be
used as input by performance analysis tools, solved, and be reported back into the
UML tool. In this way, developers can receive performance estimates of a system
without having to manually create and solve the needed performance models (i.e.,
not requiring knowledge of specific formalisms used for model construction and
solution).

The focus of our investigation is on performance of J2ME applications. Mobile de-
vices is a rapidly increasing market and more and more applications are being de-
veloped for mobile devices, supported by high-level programming languages such

7

as C# and Java. Of course the device characteristics are very limited when com-
pared to traditional computers. As a result companies may experience performance
problems when moving to the J2ME platform. Particularly two areas of operation
may cause performance problems in the J2ME domain, namely the use of persi-
stent storage and network. This thesis is aimed at estimating the performance of
applications that makes use of these “heavy-hitters”.

We investigate the validity of our approach by applying it to a end-to-end (J2EE-
J2ME) application and measuring the accuracy of the resulting estimates.

The remainder of this thesis is organized into three parts. In the first part we de-
scribe the existing approaches to handling performance problems early in the de-
velopment process. We give an account of their problems and present our solution
to these problems. This part also contains a description of the performance compo-
nent of the UML-SPT profile which will be used to attach performance annotations
to activity diagrams describing the scenarios of our test case. In the second part
we present our approach, apply it to our test case, and evaluate the validity of our
approach based on the results obtained. In the final part of this thesis we conclude
on our approach and discuss possible future work.

Part I

Related Work

2Software
Performance
Engineering

Software Performance Engineering (SPE) is an approach specifically targeted to-
wards constructing software systems that meet their performance requirements.
SPE focuses on achieving good performance primarily by constructing perfor-
mance models, beginning at the early stages of systems development. The per-
formance models model the performance of the suggested architecture and high-
level design and are refined throughout the development process as more detailed
knowledge becomes available. The reason for beginning performance modelling
at an early stage is to identify performance bottleneck at an early point where cor-
rection of performance problems is more cost-efficient.

The modelling process focuses on the subset of the system’s use cases which are
deemed critical from a performance perspective.

SPE is a systematic approach that proceeds according to a nine step plan described
below and illustrated in figure 2.1.

1. Assess performance risk: An assessment of performance risks is done in or-
der to determine the amount of SPE effort that is required for a particular
project. Performance risks include familiarity with the type of system that
is to be developed, new technologies, computer and network ressources re-
quired, and so forth. A high degree of performance risks implies a greater

12 Software Performance Engineering

deal of effort to be put into SPE activities.

2. Identify critical use cases. The critical use cases are those that are important
to the operation of the system, or that are important to performance as seen
by the user, i.e., theresponsivenessof the system. In the UML, use cases are
represented by use case diagrams

3. Select key performance scenarios. A use case typically consists of several
scenarios. Scenarios are externally visible execution paths which can be ex-
pressed in the UML by either sequence-, activity-, or collaboration diagrams
capturing the flow of messages being passed between objects. As it is, SPE
uses an augmented form of sequence diagrams that includes extensions for
decomposing a scenario into subscenarios, as well as constructs to express
looping, alternation and optional execution. Typically only a subset of the
scenarios constituting a use case will be important from a performance per-
spective. The objective is to identify these scenarios. Indications to which
are the key scenarios are those that are executed frequently, or those that are
critical to the perceived performance of the system.

4. Establish performance objectives. Quantitative performance objectives are
defined for each selected scenario in order to evaluate the performance char-
acteristics of the system.

The steps 5 through 8 are repeated until there are no outstanding performance
problems.

5. Construct performance models. SPE uses execution graphs to represent the
software processing steps of each the selected performance scenarios. The
sequence diagrams representing these key scenarios are translated to execu-
tion graphs.

6. Determine software resource requirements. Software resources are the re-
sources affecting the performance of the software. The types of software
resources to consider depend on the application to be developed and the
software that the application interfaces with, so software resources may in-
clude CPU, I/O, messages, etc. as well as, say, calls to middleware functions
or functions in different processes. Determining software resource require-
ments means establishing the amount of work that is required for each of
these software resources, for instance how many messages must be sent or
how many CPU instructions are needed to perform a given operation.

7. Add computer resource requirements. The computer resources represent key
devices in the execution environment from which the identified software re-
sources require service. Computer resources include CPU time, number of
physical I/O, size of messages sent and so forth. Information about the exe-
cution environment can be obtained from the UML deployment diagram and

13

other documentation. The software resource requirements are mapped onto
the amount of service they require from the computer resources. Computer
resource requirements are represented in a so-calledoverhead matrix.

8. Evaluate the models. Solving the execution graph yields the resource re-
quirements of the proposed software in isolation, i.e., without considering
external factors, such as other programs competing for resources. If the so-
lution indicates that there are no performance problems, the next step is to
solve thesystem execution model. The system execution model character-
izes the performance of the software in the presence of factors that could
cause contention for resources, such as other programs competing for CPU
time. The system execution model is represented by means of a Queueing
Network Model (QNM).

9. Verify and validate the models: A continuous verification and validation of
the constructed models occur in parallel with the actual construction and
subsequent evaluation of the models. Verification and validation answers the
following questions: “Are we building the model right” and “are we building
the right model”, respectively. Model verification and validation are aimed
at determining whether the model predictions provide an accurate reflection
of the software’s performance as well as detect whether there are any model
omissions.

The preceding nine steps describe SPE as it is approached in a single phase of the
development cycle. These steps are applied iteratively for each subsequent phase
of the development process, each cycle resulting in more refined models as the
design evolves and more information becomes available.

Computer ressource requirements specifies the characteristics of the target execu-
tion environment such as the types of devices available, the quantity of each device,
their speed, and so forth, and also connect the software resource requirements to
their device usage. As mentioned, computer resource requirements are expressed
via a so-called overhead matrix, of which we will now give an example. This
example is taken from [41].

Device CPU Disk Network
Quantity 1 1 1

Service Unit KInstr. Phys. I/O Msgs.
WorkUnit 20 0 0

DB 500 2 0
Msgs 10 2 1

Service Time 0.00001 0.02 0.01

The values inserted into the table represent the processing overhead for a trans-
action in an ATM application. The concrete values are not important, as they are

14 Software Performance Engineering

hypothetical [41], but what is important, however, is how these values are arrived
at.

The names of the devices are in the first row, the second row shows the quantity
of each device that is available, and the third row describes the unit of service

establish
performance
objectives

risk
performance
assess

Identify
critical
use cases

modify
product
concept

performance
model(s)

evaluate

add software
resource
requirements

construct
performance
model(s)

select key
performance
scenarios

Modify/
create
scenarios

revise
performance
objectives

verify and
validate
models

[feasible]

[infeasible][performance
acceptable]

add computer

requirements
resource

Figure 2.1: The SPE modelling process [41]

2.1 Execution Graphs 15

for each of the devices, e.g., a single unit for the CPU corresponds to 1000 CPU
instructions.

The values in the center section of the table defines the mapping between software
resource requests and device usage. For example, theDB row specifies that each
DB request requires 500K CPU instructions and 2 physical I/Os.Msgs require
10K CPU instructions, 2 I/Os, and 1 network message. Finally, eachWorkUnit
requires 20K instructions.

The bottom row specifies the service time for each device.

An overhead matrix is created for each of the key performance scenarios, and this
is used as input when creating the software execution model (Execution Graph)
and system execution model (Queueing Network Model). Creating and solving
both the Execution Graphs and later Queueing Network Models can be performed
algorithmically and commercial tools exist for doing so. However, for the purpose
of clarification, we present a brief description of this conversion process.

2.1 Execution Graphs

In order to calculate the accumulated time for a use case, which may consist of
several performance scenarios, the sequence diagrams are converted to execution
graphs and the accumulated time is then calculated. In the following we give a
high-level description of the algorithms that perform this transformation. We start
by giving a brief account of an execution graph.

2.1.1 Description

An execution graph consists ofnodesconnected byarcs. The nodes of an execution
graph representprocessing steps, which essentially are a collection of operations
that perform a single function in the software system. Arcs represent the order of
execution between processing steps.

Basic nodesrepresent processing steps at the lowest level of detail which mean that
the processing step cannot be decomposed any further. The level of detail is relative
to the current development stage, however, and a basic node may in a later stage
be a candidate for further decomposition. Resource requirements are specified for
each basic node.Expanded nodeson the other hand, represent processing steps
that are elaborated in another subgraph. The subgraph may contain both basic and
expanded nodes and can thus be recursively decomposed.

16 Software Performance Engineering

A repetition node, represented by a circle with a diagonal line, denotes a repetition
of one or more nodes.

A case node, represented by a fork-like figure, denotes a conditional execution of
alternate processing steps. It has one or moreattached nodesthat represent the
choices that may be executed. The choices are annotated with their probability of
being executed.

Figure 2.2 summarizes the various nodes.

n

Basic node

Extended node

Loop Node

Case Node

Figure 2.2: Basic execution graph nodes

2.1.2 Transforming sequence diagrams to execution graphs

Given that SPE uses an augmented form of sequence diagrams that allow ex-
tensions for decomposition, loops and conditional expressions the transformation
process to execution graphs is straightforward. The most obvious approach to per-
forming the transformation is to follow the message arrows through the sequence
diagram, and make each action a basic node in the execution graph. However, in
many cases, individual actions may be combined into a single basic node. Alter-
natively, an expanded node can be used to summarize a series of actions with the
details shown in the subgraph.

2.1 Execution Graphs 17

2.1.3 Calculating the time for a use case

Once the performance scenarios constituting a use case have been converted to
execution graphs, the accumulated time of the use case can be calculated. We now
present a high-level description of the algorithms that perform this transformation.

The solution algorithms works as follows. The graph is examined and a basic
structure is identified. There are three types of basic structures: sequence struc-
tures, denoting sequential execution, loop structures denoting repeated execution,
and case structures, denoting conditional execution.

The solution algorithms utilize graph reduction to compute the time: The time for
the structure is computed and replaced by a “computed node” that displays the
time it takes to complete the structure. This process is continued until the graph is
reduced to a single computed node, which represent the result of the analysis.

The computed time for a sequence structure is the sum of the times of the nodes in
the sequence. This is illustrated in figure 2.3

t
1

t
2

t
n

t

+ ... ++= t1 t2 t nt

Figure 2.3: Sequence structure

For loop structures, the node time is multiplied by the loop repetition factor. This
is illustrated in figure 2.4

The computation for case nodes is divided into three: shortest path, longest path
and average analysis where the time for shortest path for the case node is the mini-
mum of the times for the conditionally executed nodes, while the longest path rep-
resent the maximum (or worst case) times. For the average analysis, each node’s
time is multiplied with its execution probability. Graph reduction for case nodes is
illustrated in figure 2.5

18 Software Performance Engineering

1t

n

t

t n= 1t

Figure 2.4: Loop structure

1

t

t += p1tt 0

t

t
2

p

p

t

1

2
0

1 + p2 2t

Figure 2.5: Case structure

For expanded nodes, the algorithms are applied recursively to the subgraph and the
computed result substitutes the expanded node.

More advanced algorithms exist for parallel execution, but we will not discuss
these, as they do not apply to the J2ME domain as of yet, and thus not relevant for
the remainder of this thesis.

2.2 The System Execution Model

Solving the software execution model (execution graph) yields an analysis of the
performance of the system in isolation. As such, the resulting estimate is an opti-
mistic one. In order to characterize the performance of the system in the presence
of other resources competing for resources, the next step is to create and solve a
system execution modelthat takes into account a contention for resources. Possi-
ble sources of contention for resources include: multiple users of a system, other
applications utilizing the same hardware resources, and an application may itself
consist of several concurrent processes or threads.

SPE uses Queueing Network Models (QNM) to represent the system execution
model. We will now give a brief introduction into QNMs. This description is
based on [41,45]

2.2 The System Execution Model 19

2.2.1 Queueing Network Models

Queueing Network Models (QNM) represents a system as a network of queues
and servers.Serversrepresent resources (such as CPU, disk or network) that pro-
vide some service to the software andqueuesrepresentjobs (a generic term for
computations requesting service) waiting for service from a server.

The most basic structure is a single server with an attached queue. A simple exam-
ple illustrating the queue-server relationship is this: An application is started. To
begin execution, the application (or job) requires service from a CPU (the server);
if the server is busy, the job is held in a queue until the server is available. When the
server is available, the job is removed from the queue and receives service from the
server. Upon completion, the job leaves the server. Similarly, the queue-server re-
lationship may represent a web service receiving a request, processing the request,
and returning a response.

Of course, most systems utilize several different resources (CPU, one or more
disks, network, etc.), so several queue-servers are connected in a network.

Figure 2.6 depicts a simple queue and server. The time spent in the queue is called
the wait timeand the time spent receiving service is called theservice time. The
accumulated time (wait time + service time) is called theresidence time.

Queue Server

Residence time

Service TimeWait Time

Figure 2.6: Queue-server representation of a resource [41]

Performance metrics

There are four average values that are calculated and used as the main performance
metrics for each server. These are

• Residence time. The average residence time (wait time + service time) is
calculated.

• Utilization, which is calculated as the average percent of the time that the
server is busy supplying service.

20 Software Performance Engineering

• Throughput. This is the average rate of job completion.

• Queue length. This is the average number of jobs at a server. This includes
both jobs in the queue as well as jobs receiving service.

The values of the above metrics are affected by factors such as the number of jobs,
the amount of service they require, the time required for the server to service the
jobs, and the scheduling policy that is used (First-Come-First-Served, time slicing,
priority scheduling, etc.)

In order to determine these metrics, the server in question is observed over a period
of time and the arrival and completion of jobs as well as the busy time for the server
are measured. Then the four performance metrics are calculated as follows:

If we say that the measurement period isT , number of arrivalsA, number of com-
pletionsC, and busy timeB then the utilization and throughput can be immediately
calculated by using the measurement periodT as divisor:

Utilization U = B
T

ThroughputX = C
T

The mean service time, S, can also be calculated. The mean service time is the
average amount of time that a job spends receiving service from the server:

S = B
C

In order to determine the residence time and queue length, the measurement period
must be split up into intervals. Consider a hypothetical execution profile, taken
from [41], and illustrated in fig 2.7.

0
0

6

4

2

5 10 2015

Time (seconds)

N
um

be
r

of
 jo

bs

Figure 2.7: Hypothetical execution profile

2.2 The System Execution Model 21

This measurement period last 20 seconds and is divided into one second intervals.
Then the number of jobs at the server for each interval,W , is sum up:

W =
∑

intervals(#jobs)

In this example, this adds to:

W = 0+0+0+1+2+3+3+4+3+4+5+4+3+2+1+0+1+2+2+1 = 41

The residence time (R) and queue lengthN can now be calculated using W as
numerator:

R = W
C

N = W
T

As seen, the above calculations of the main performance metrics rely on actual
measurements. However, the approach of SPE in the early phases of the develop-
ment process, is to rely onestimates. The estimates concern the predictedworkload
intensityandservice requirements. Workload is a term denoting the collection of
requests for service and workload intensity is a measure of the number of requests
made in a given time interval. Service requirements are the amount of time that the
workload requires from each of the devices.

Types of QNM

There are two types of QNMs: Closed models and open models.

Open models are appropriate for modelling systems where jobs arrive, receive
some service, and then leave the system. An example might be a web service that
receives a request, processes the request, and then sends a response. For an open
system theworkload intensityis specified as thearrival rate, that is, the rate at
which jobs arrive for service. The service requirements are specified as thenumber
of visitsfor each device and themean service timeper visit.

In contrast to open models, closed models have no external arrivals or departures.
Instead, jobs keep circulating among queues. Closed models are appropriate for
interactive systems where users issue a request, receive a response, and then issue
another request.

22 Software Performance Engineering

Solving an open QNM The following parameters are specified:
λ is the arrival rate of jobs
Vi is the number of visits to a devicei.
Si is the mean service time at devicei.

The performance metric can then be solved as follows:
Thesystem throughputequals the arrival rate at the system assumingjob flow bal-
ance. Job flow balance is a property stating that the system is fast enough to handle
the arrivals.

System throughput,X0

X0 = λ

Device throughput, the throughput of a devicei, denotedXi is calculated by mul-
tiplying the system throughput with the number of visits to the device:

Xi = X0 × V i

The device utilization, which is the utilization of a devicei, Ui, is arrived at by
multiplying the device throughput with the mean service time:

Ui = Xi × Si

The device residence timefor each visit to a devicei, Ri, is calculated using the
mean service time and utilization of the device as follows:

Ri = Si
1−Ui

Thedevice queue lengthat a devicei, Ni, is the device residence time multiplied
with the device throughput:

Ni = Ri ×Xi

Finally, the system response time for the QNM as a whole is calculated. The calcu-
lation of the system response time uses Little’s Formula [41] which also require the
average number of jobs(N) in the entire QNM. This can be calculated as follows:

N =
∑

i Ni

2.3 Other approaches 23

Now the system response time,RT , can be calculated using Little’s Formula as
follows:

RT = N
X0

Solving a closed QNM When solving a closed QNM the workload intensity is
specified as thenumber of users(or simultaneous jobs) and thethink time, which
is the average delay between receiving a response and sending the next request.
Solving a closed QNM is more complex and the description of this solution is
beyond the scope of this thesis.

Creating and solving the system execution model

We will now give a brief description of the process of creating and solving a system
execution model.

In order to construct and solve a system execution model, the first step is to add
queue-servers to represent the key computer resources and devices. Then, connec-
tions between queues are added. The third step is to decide whether the system is
modeled more appropriate using an open or closed QNM. Fourthly, the workload
intensities for each scenario must be determined. The arrival rate and/or number of
users is based on an anticipated use of the system and the service times are obtained
from the solution to the software execution model. The last step of the process is
to specify the service requirements. The device characteristics (processor speed,
average time to complete an I/O operation, etc.) come from specifications of the
execution environment while the visits and service times come from the software
execution model.

2.3 Other approaches

A number of alternative approaches to early performance evaluation have emerged
from the SPE foundation. These contributions can be largely divided into two
categories: 1) Those that model performance by alternate means as compared to
SPE, and 2) approaches targeted at specific application domains.

24 Software Performance Engineering

2.3.1 Alternate modelling approaches

[24] incorporates activity diagrams into the SPE approach. In addition, they
present a prototype for a CASE tool that translates model elements from activity
diagrams into a Generalized Stochastic Petri Net (GSPN).

[8] present a methodology that from UML use case diagrams, sequence dia-
grams and deployment diagrams produce an Extended Queueing Network Model
(EQNM). The methodology includes algorithms for extracting performance as-
pects from the UML models and integrating them into the EQNM.

[9] takes a somewhat similar approach in that it relies on information contained
in use case diagrams, sequence diagrams and deployment diagrams. The resulting
performance model, however, is a QNM.

[35] propose a graph-grammar based method for transforming performance an-
notated UML models into a Layered Queueing Network (LQNM) performance
model. The transformation takes as input an XML file that describes the UML
model according to the XMI (XML Metadata Interchange) [30] interface and out-
puts a corresponding LQNM model description file. They rely on a combination
of collaboration diagrams, deployment diagrams, and activity diagrams to express
the software architecture, the allocation of software components to hardware re-
sources, and represent the performance scenarios. They report on problems re-
garding the inter-operability with UML tools, since the UML tools do not entirely
support the UML standard. As a consequence, they had to change the XML files
exported from the UML tools in order to add missing features.

The authors of [35] extend their previous work in this article [14], proposing an
alternative approach that implements the UML to LQN transformation by using
XSLT (Extensible Stylesheet Language for Transformations) [46]. The input to
the transformation is once again an XML file representation of the UML model
and the output an LQNM description file. They provide a comparison with their
previous approach concluding that the XSLT transformation approach is faster to
develop. However, their problems with existing UML tools are unresolved.

Lastly, the authors have continued their work from [14,35] in [15]. It directly builds
on [14] by using an XML representation of UML models according to the XMI
interface, exported by a UML tool (Rational Rose). The transformation is done
via XSLT, and this time the UML models are transformed into a simulation-based
performance model (CSIM18 [43]). The work in all three articles is constrained to
the client-server architectural pattern.

2.3 Other approaches 25

2.3.2 Specific application domain approaches

PRIMAmob-UML is an extension of PRIMA-UML [9] specifically targeted at sys-
tems that make use of mobile code. To this end PRIMAmob-UML uses an ex-
tended UML notation as well as extended EGs and EQNMs to account for mobile
code.

[22] is an example of SPE being applied in the development process of a Digital
Signal Processing a (DSP) application.

[6] applies SPE to web services. The paper has two contributions: 1) it proposes
a web services based infrastructure to support Clinical Decision Support Systems
(CDSSs) for processing data from multiple medical domains, and 2) it uses SPE to
analyze the performance of the proposed system.

[26] present a methodology for evaluating the performance of the design of client-
server systems. They base their methodology on a special software performance
engineering language, developed by one of the authors, calledClisspe (CLIen-
t/Server Software Performance Evaluation). A compiler for the Clisspe language
generates a performance model (QNM) that can be solved by a model (QNM)
solver.

[23] present a trace tool called EXTRA (Executable Trace Files) developed by
IBM as part of the Visual Age for C++ product. They show how this tool can be
used to generate traces for key performance scenarios of a prototype or a partially
implemented systems in order to arrive at estimates which a performance analyst
can then map into a Layered Queueing Network Model. These performance scenar-
ios are then inserted into another IBM product named the Distributed Application
Development Toolkit (DADT) which is used to consider the performance impact
of design and configuration changes. These two tools are applied to a case study
of a distributed application system.

3Problems
and proposed

solutions

3.1 Problems with SPE

The greatest problem of adopting SPE as we view it, is the heavy reliance on a
performance specialist being associated to a development project, in order to make
SPE work.

This fact is probably expressed most clearly in step number 7 of the SPE approach:
adding computer resource requirements. Adding computer resource requirements
means determining the amount of service that is required for various operations.

The overhead matrix representing the computer resource requirements is what
drives the model solutions, and thus result in the final estimates of the system.

But manually supplying the computer resource requirements constitutes a great
problem, as we will now illustrate.

In order to determine the approximated time it takes to complete a key task (key
performance scenario) the amount of CPU instructions must be estimated.

We argue that most system developers/programmers do not have a clear appre-
ciation of how many CPU instructions correspond to an operation specified in a

28 Problems and proposed solutions

high-level programming language. For instance, few programmers probably real-
ize that a database query may involve several hundred thousands or even millions
of instructions [41]. In order to calculate a correspondence between application
lines of code and CPU instructions we would need compilable code. Of course,
this defers the whole point of estimating performance at an early point. For the
sake of argument, let’s assume that we do have compilable code. Even then, differ-
ent compilers may generate significantly varying machine code or bytecode, and
advanced compilers may perform optimizations that may be near impossible to
predict beforehand.

There is also the problem of information hiding. When using middleware layers,
interfaces or externally made components, such as when combining web services,
the details of functionality are obscured. This is usually considered good practice
from a software engineering perspective, but it significantly adds to the complexity
of performance analysis.

As a consequence, any estimates which are to be likely predictions of the perfor-
mance, requires the presence of a highly competent performance specialist who has
a profound understanding of intricate details of the target environment and relevant
software. Maintaining the qualities of such a performance specialist - keeping him
up to date with the continuous and rapid emergence of new technologies is a job in
itself. This also makes the SPE approach inherently people dependent. Maintain-
ing this level of performance knowledge in several developers, to account for any
people departures, is not a feasible option, at least not in smaller organizations.

3.1.1 Reliability of performance predictions

The reliance on a performance specialist also introduces an element of uncertainty
concerning the reliability of the resulting performance estimates (predictions). The
accuracy of the resulting performance estimates are a direct function of the level
of expertise of the performance specialist who supplies the input estimates. If the
input estimates supplied by the performance specialist are not reasonably accurate
then nor will the resulting estimates from solving the performance models be. As
[40] notes: “Model making requires possibly invalid assumptions”.

3.1.2 SPE and OO

Object-oriented (OO) systems present additional challenges for SPE. Performing
an OO function is likely to involve numerous and complex interactions between
many different objects making the interactions difficult to trace. This difficulty is
further compounded by polymorphism [41]. Add to this the advent of exceptions

3.1 Problems with SPE 29

which may cause sudden breaks in the control flow, and the unpredictable perfor-
mance spikes incurred by the garbage collector kicking in. These factors contribute
to making performance estimations of an OO system extremely difficult.

3.1.3 The cost of SPE

Initially, the input estimates may rely on guesses, and then as the development
process progresses and more information becomes available SPE activities are con-
ducted in order to reflect this new knowledge: input estimates are adjusted, perfor-
mance models are modified or recreated and the models are verified and validated.

Developing a model manually can be a very labor intensive and error-prone process.
Applications may use a host of different hardware and software resources, includ-
ing objects, threads, middleware, operating system processes, network, databases
and so forth. Performance modelling needs to consider all these aspects. Further-
more, it is a major challenge to ensure that the model remains in sync with an
evolving design [23].

This brings up the issue of the cost of implementing SPE. [41] argues that the
cost of SPE is minor relative to the overall project cost. According to [41] the
cost of SPE at Lucent Technologies range from less than one percent of the total
project budget for projects with a low performance risk to ten percent of the total
budget for projects where the performance risk is very high. Arguably, the majority
of companies do not have a project budget that is anywhere near that of Lucent
Technologies and the percentage-wise cost for SPE may thus be far greater for
smaller companies.

Moreover, SPE may be a “hard sale”. If an organization is not developing pro-
jects/software where performance constitutes a great risk, or has not encountered
performance problems in previous projects they are probably not prone to make
an investment in the adoption of SPE to account for the possible occurrence of
problems in future projects.

3.1.4 Determining amount of SPE effort

Achieving high quality software is a complex mix of factors that vary between
projects. Quality in software encompasses quality attributes such as maintain-
ability, flexibility, reusability, efficiency, and determining which ones should be
emphasized in a particular project depend on the application to be built and the
customer who requested it [36]. High performance may not be the most important
criteria for success, so including SPE activities into every project may not be rel-
evant. [41] notes that the amount of SPE effort must be evaluated beforehand and

30 Problems and proposed solutions

if the performance risk is low, the SPE effort should reflect this. However, deter-
mining the correct amount of SPE effort requires experience and a knowledge of
issues that may prove problematic from a performance perspective.

3.1.5 The need for quantitative requirements

According to the SPE approach, quantitative requirements should be established
for all key performance scenarios. This information should be supplied by a sys-
tem architect in collaboration with a performance engineer as well as a marketing
representative and/or a user representative.

As we see it, the demand for establishing quantifiable requirements present a prob-
lem as well. The customer (represented be a user representative) may very well be
a non-technical person who does not have an appreciation of the amount of work
behind each processing step, and will maybe accept no less than the ideal. The cus-
tomer may not have a clear appreciation of how long say, 2 seconds waiting time
is. This may sound acceptable to the customer (representant), but may prove as
an unacceptable waiting time to actual end users. Moreover, if we take the perfor-
mance engineer out of the equation for one minute, “ordinary” system developers
may not have a clear understanding at this point either of the amount of work (in
terms of exact, or even approximate, time measures) that is required for various
parts of the system. Thus, they may inadvertently commit to response times, that
may later prove impossible to obtain.

This situation clearly illustrates the necessity of a performance engineer being
present who hopefully have enough experience to provide reasonably realistic es-
timates, and who is able to convey the arguments of why various parts take as long
time as they do, in order to convince the customer.

If it turns out that the specified objectives can not be met, SPE states that an alterna-
tive may be to renegotiate the objectives with the customer. However, we find that
such a tactic may damage customer relations, particularly if this situation occurs
repeatedly throughout the development process. Even if the customer complies to
the new objectives, we feel such a tactic may leave an impression of unprofessional
conduct.

Lets say that the system to be built should start by collecting data from a server.
This may be an action that should be performed once a day, say at the start of the
work day. It may be the case that this fetching time really isn’t that important, if the
end user can use the waiting time to get or cup of coffee or something. In such a
case, committing to a fetch time of say 10 seconds may be overly constrained, when
in fact the user could easily tolerate, say, one minute, where the user is occupied
doing other things. The process of trying to achieve these 10 seconds may prove

3.1 Problems with SPE 31

impossible, necessitating a renegotiation, when in fact this could be avoided by
listening to what is the typical workday scenario of the end user is.

3.1.6 Software Engineering and SPE

SPE has not yet been incorporated into the practices of Software Engineering (SE)
[27]. The author of [27] point to a lack of scientific principles and models in SE,
a lack of education in performance, and an IT workforce employing many people
with less than a bachelors degree and no formal training as possible causes as
to why performance is not considered at the design time in software engineering
projects.

[21] has conducted a survey of undergraduate computer science courses at highly
ranked computer science schools in the United States (the top 24 research and doc-
torate schools according to data from Computer Research Association’s Taulbee
Survey [21]) in order to find out what kind of education undergraduates are re-
ceiving with respect to designing, building, and maintaining software that exhibits
good performance. The survey was aimed at the undergraduate level, since they
represent the majority of the workforce - only about 20 percent of the computer
scientist students receive a graduate degree.

The survey indicated a number of shortcomings, including:

• Performance was rarely discussed (64.87% of the software engineering courses
spend little or no time discussing performance-related subjects)

• In the cases where performancewasdiscussed, the subject was either inade-
quately or not defined (84.84% of the courses had an inadequate or missing
performance definition)

• Performance was regarded as a late life cycle activity (72% of the courses
advocated a reactive strategy to performance).

• In most cases performance was viewed as a low-level system or algorithmic
problem (74.07% of the courses regarded low-level system components or
algorithmic efficiency as having the greatest impact on application perfor-
mance.)

• Not a single course discussed how to measure resource utilization (no tech-
niques for measuring throughput and utilization of resources)

• Only few of the courses (27.02%) discussed performance modelling. Of
these courses, half used models for performance validation before imple-
mentation while the other half used models to diagnose problems in an im-
plemented system.

32 Problems and proposed solutions

• SPE was only mentioned in two courses, and one of these incorrectly implied
that SPE was a specialized discipline for database-centered and real-time
applications.

Since performance issues have traditionally been considered a late life cycle ac-
tivity, SPE is not reflected in the mainstream process models [38]. [38] point to a
number of problems in the mainstream process models that adversely effects the
integration of SPE into SE and propose an extension that explicitly takes SPE ac-
tivities into account.

However, integrating SPE into SE is contingent on the appropriate amount of per-
formance knowledge being available, which the survey [21] shows may far from
always be the case.

As a result, achieving widespread use of SPE would entail a reorganization of the
computer science courses being taught at the majority of universities, as well as a
new or extended process model that explicitly takes SPE into account.

We do not regard these two conditions to be realistically met in the near future and
as a consequence early performance considerations must rather be be adapted into
the existing SE paradigm instead of vice versa.

3.2 Proposed solutions

We propose an alternative to the SPE way of estimating performance. Motivated by
the problems with SPE, described in the previous section, we propose an approach,
that is easily integrated into the software engineering domain.

This approach is realized by making a test application that captures performance
characteristics of the execution environment. The user (developer) uses the test
application to obtain performance measurements of a series of relevant operations
executed on the target device. The results from these tests are then used as input
to a performance annotated UML activity diagram. In order to remain compli-
ant with the recent advances in UML performance annotations, we rely on the
UMLTM Profile for Schedulability, Performance, and Time Specification (UML-
SPT) for annotating the activity diagrams. The annotated diagrams can be exported
into XML, and the XML representation of the model can then be used as input to a
performance analysis tools which generates and solves an appropriate performance
model and reports the result back into the appropriate UML tool.

Our objective is to make performance evaluation of systems in the design phase:

3.2 Proposed solutions 33

Usable in that developers do not require extensive knowledge of the multitude
of different devices that applications can be developed to, nor knowledge
of the amount of processing that various high-level operations incur on the
underlying architecture.

Transparent by hiding details of performance model construction and solution
from the developer.

Reliable by removing the issue of whether the input estimates supplied by the
performance specialist can be trusted. By using a test application instead we
should be able to obtain consistently reliable estimates.

Cost-efficient as costs associated with manually constructing, solving and later
updating or recreating performance models, as well as costs associated with
specialized performance staff, are saved.

Collectively, these advantages clearly make early performance validation signifi-
cantly more amenable to incorporation into the mainstream practices of software
engineering.

Regarding the issue of establishing quantitative requirements for all key perfor-
mance scenarios that SPE advocates, we advice against it. Performance has tradi-
tionally been treated as a non-functional requirement [27, 36, 44], meaning that it
is not directly concerned with the specific functions delivered by the system (i.e.,
not expressed as an explicit requirement). Rather, non-functional requirements re-
late to the system as a whole and are implicitly assumed to be satisfactory (e.g.,
showing satisfactory performance). By making performance a functional require-
ment we further rely on a skillful performance specialist (to establish reasonable
requirements) which is the situation we are trying to avoid.

4UMLTM Profile for
Schedulability,

Performance
and Time

The UMLTM profile for Schedulability, Performance, and Time [13] (UML-SPT) is
a UML profile that extends the standard UML with notions for modelling schedu-
lability, performance, and time. The point of interest for this thesis is the perfor-
mance component of the profile which is used for general performance analysis
of UML models. Figure 4.1 illustrates the entire profile graphically, and the area
enclosed by a solid line indicates the place of the performance component in the
UML-SPT profile. The main source of information on the performance component
is derived from [13].

The performance component of the profile provides facilities for:

• Capturing quantitative performancerequirements.

• Associating performance-relatedQuality of Service(QoS) characteristicswith
selected elements of an UML model.

• Execution parametersto allow modelling tools to compute predicted perfor-
mance characteristics.

36 UMLTM Profile for Schedulability, Performance and Time

RTresourceModeling
<<profile>>

<<profile>>
RTtimeModeling

<<imports>>

<<profile>>
RTconcurrencyModeling

Analysis Models

<<profile>>
RSAprofile

<<imports>>

<<profile>>
SAprofile

<<profile>>
PAprofile

<<imports>>
<<imports>>

General Resource Modeling Framework

<<imports>>

<<imports>>

Figure 4.1: The UML profile for Schedulability, Performance, and Time. The
performance component is indicated by the solid line.

• Presenting performance results computed by the tools.

The performance profile extends the UML metamodel withstereotypes, tagged
valuesandconstraints, which enables performance annotations to be attached to a
UML model. [35]

4.1 Performance analysis of a UML model 37

A Stereotypeis a construct that allows the creation of new model elements that
are specific to a particular domain, such as performance. A stereotype is
represented as a string enclosed in guillemets («»). An example might be
a stereotype «processor »that indicates that this model element represents a
processor.

A tagged valueconsists of a tag and value, that allows the specification of addi-
tional properties for a model element. The tag is the name of the property and
the value field is the value for that property. The UML-SPT profile defines
a formal language, called Tagged Value Language (TVL), for specifying the
value. TVL is based on a very limited subset of the Perl programming lan-
guage and the syntax should be familiar to most programmers (we refer to
Appendix A of [13] for a description of TVL). A tagged value is enclosed by
braces and appears as follows: {<tag-name> = <TVL-expression>} . An ex-
ample might be a tagged value {processorSpeed = 1800Mhz} that is attached
to a model element stereotyped by the aforementioned «processor »stereo-
type, indicating that the processor has a processor speed of 1800 Mhz.

A constraint is a restriction or condition which may be placed on an individual
model element or a collection of elements. The constraint is enclosed by
braces ({}) and interpreted according to a language which may be: the UML
Object Constraint Language; a programming language (e.g., C++ or Java); a
formal notation; or a natural language [41]. An example of a constraint may
be this: {responseTime < 200}.

In the performance domain, stereotypes and tagged values can be used to cap-
ture information about the execution environment (e.g., processor speed, network
speed, etc) while constraints can be used to specify performance requirements.

4.1 Performance analysis of a UML model

In order to conduct performance analysis of an annotated UML model, the UML
model must be translated into a performance model. Then, a performance analysis
tool can be used to solve the performance model. (Examples of performance tools
can be found here [7, 18, 34, 37, 42, 43]). Finally the performance analysis results
must be imported back into the UML model. This procedure is illustrated in figure
4.2

Performance tools may use different formalisms for performance analysis, includ-
ing QNM, Layered QNM, Stochastic Process Algebra, Petri Nets, Markov Chains,
and simulation models. However, as it is, we have not been able to find any perfor-
mance analysis tools that, at this point, support the transformation process of anno-

38 UMLTM Profile for Schedulability, Performance and Time

Figure 4.2: Abstract view of the model processing process [13]

tated UML models into input to the performance analysis tools. Rather, the tools
we have cited above rely on a user supplying input manually. Granted, attempts
have been made to try and automate, at least the first step, of the transformation
process [8,14,15,24,35,49] but the work has not resulted in tools for general use.
The backward process (supplying the results of performance solutions back into
the UML model) appear to be uninvestigated [35] at this point, meaning that the
performance modelling of UML diagrams still require knowledge of creating and
solving the appropriate performance models.

4.2 Concepts and techniques

The concepts and techniques of performance analysis in the UML-SPT realm re-
semble those which we have already introduced in Chapter 2. Ascenariodefines
an execution path which has a response time and throughput. Each scenario is ex-
ecuted by aworkload(collection of requests) with an appliedworkload intensity.
An openworkload has a stream of requests (or jobs) that arrive in a predefined pat-
tern in which case the workload intensity denotes the arrival rate of the requests,
whereas aclosedworkload has a fixed number of jobs that cycle between executing
the scenario and spending an external delay period (think time) between receiving
a response and issuing the next request. In this case the workload intensity is the
number of users/simultaneous jobs and thethink time.

A scenario consists of a number ofscenario stepsthat are joined in a sequence with
a predecessor-successor relationship. Steps may be connected via forks, joins and
loops and a step may thus have multiple predecessors and successors. A step may
be an elementary operation that cannot be decomposed any further or may be an
operation that is defined by a sub-scenario.

To each step is assigned a mean execution count which is a measure of the average
amount of times the step is repeated when it is executed. A step also has ahost
execution demandwhich is the execution time of the step on its host device in a

4.2 Concepts and techniques 39

given deployment.

The resource demandsby a step include its host execution demand as well as the
demands of all its sub-steps.

Resourcesare modelled asservers. Resource-operationsof a resource are the steps,
or sequence of steps which use the resource, consisting of the stages of acquiring,
utilizing and releasing the resource. Resource-operations are thus similar to the
queue-serverrelationship introduced earlier.

Theservice timeof a resource is defined as thehost execution demandof the steps
hosted by the resource.

Performance measuresfor a system include resource utilizations, waiting times,
execution demands (what SPE calls service requirements, e.g., CPU cycles), and
the response times to execute a scenario or scenario step. Each measure may be
defined in different versions:

Required value : A performance objective established for a scenario of scenario
step. This value may originate directly from system requirements or from a
performance estimate based on the requirements.

Assumed value : This value is supplied based on experience.

Estimated value : This value is calculated by a performance tool and reported
back into the model.

Measured value : This value is obtained by conducting actual measurements.

The value of any of the above versions may be stated as one of several statistical
properties, for instance, the mean or maximum value.

4.2.1 Domain model

Figure 4.3 shows the general performance model that identifies the basic abstrac-
tions and relationships used in performance analysis in the UML realm.

Performance context

A common usage of performance analysis tools is to analyze the system under
varying conditions with different parameters while maintaining the same system
structure. This way, the performance of the system can be estimated, accounting

40 UMLTM Profile for Schedulability, Performance and Time

probability
repetition
delay
operations
interval
executionTime

PStep

hostExecutionDemand
responseTime

PScenario

1..* 1
0..* +resource

0..1

<<deploys>>

+host

0..*

processingRate
contextSwitchTime
priorityRange
isPreemptible

PProcessigResource

responseTime
capacity
accessTime

witingTime

occurrencePattern

OpenWorkloadCloseWorkload

population
externalDelay

utilization
schedulingPolicy
throughput

PResource

priority
responseTime

Workload

PerformanceContext
1

1

1..*

1

1

{ordered}

1..*

PPassiveResource

+root

0..*

1..*
1..*

0..*

0..*

+predecessor

+successor

Figure 4.3: The Performance analysis domain model [13]

for varying loads on the system, e.g., estimating the impact of periods of heavy
load on the system.

A performance contextspecifies one or more scenarios that are used to investi-
gate various situations of changing loads. Therefore, a performance context also
involves a set of resources that are used by the scenarios and a set of workloads
applied to the scenarios.

Scenario

As mentioned, a scenario consists of a sequence of scenario steps joined together
in a predecessor-successor relationship. The steps of a scenario are executed on
(potentially different) host resources. A host resource is only specified for a sce-
nario if all the steps constituting the scenario execute on thesamehost resource.
Different workloads can be applied to the scenario. The scenario element has two
attributes: ThehostExecutionDemandattribute denotes the total execution demand
(service requirement) of the scenario if all the steps execute on the same host. Oth-
erwise it is not specified. TheresponseTimeattribute states the total time required

4.2 Concepts and techniques 41

to execute the scenario.

Step

A step indicates an increment in the execution of a scenario and a step is related
to other steps in the aforementioned predecessor-successor relationship. A step
is specific to a certain scenario and in general a step takes finite time to execute.
A step may describe an operation of any level of granularity appropriate for the
current modelling effort. Later, the step may be decomposed into finer-grained
steps. Consequently, scenario steps are modelled as a sub-type of scenarios which
allows for a hierarchical decomposition of scenarios. A step has the following
attributes:

• hostExecutionDemand(inherited from Scenario). If a step is defined at the
finest granularity it executes on a unique host resource and this is the total
execution demand of the step on the resource. Otherwise, if the step has
a decomposition into a sub-scenario, this is the total demand of the sub-
scenario, assuming that all the steps constituting the sub-scenario execute on
the same host.

• delay. This is an inserted delay (e.g., think time) within the step.

• probability. In cases where the predecessor of a step has multiple successors,
this is the probability of this step being executed.

• interval. If a step is repeated within a scenario, this is the interval between
repetitions of the step.

• repetition. If a step is repeated within a scenario, this is the number of times
the step is repeated.

• operations. This specifies operation on resources that are not explicitly rep-
resented in the model. Instead, these resources are resolved by the appropri-
ate performance analysis modelling tool.

Resource

This is an abstract view of a resource which may be eitherpassiveor active. We
will discuss active and passive resources in the following. A resource may partic-
ipate (be utilized) in one or more scenarios of a performance context. A resource
has the following attributes:

42 UMLTM Profile for Schedulability, Performance and Time

• utilization. The value of this attribute is often supplied as the result of model
analysis (e.g., solving a QNM) and indicates the average percent of the time
that the resource is being utilized.

• throughput. This is the average rate at which the resource perform its func-
tion.

• schedulingPolicy. This is the scheduling policy in effect for accessing the
resource.

ProcessingResource

A processing resource is a device such as a processor, interface device or storage
device. A processingResource has the following attributes:

• processingRate, which is the relative speed factor for the processor.

• contextSwithTime. This is the amount of time it takes for the processing
resouce to switch from the execution of one scenario to a different one.

• priorityRange. This is the permissible range of priorities with which re-
source actions can be executed.

• isPreemptible. This is a boolean value that indicates if the processor is pre-
emptible once it begins execution of an action.

Passive Resouce

A passive resource is a resource that is protected by an access mechanism. Con-
current access to the resource is restricted according to some access control policy.
The following attributes characterizes a passive resource:

• capacity. This is a measure of the maximum amount of concurrent users of
the resource.

• accessTime. This is the delay period a scenario incurs when acquiring and
releasing the resource.

• utilization. Utilization for a passive resource is expressed as the average
number of concurrent users of the resource.

• responseTime. This is the total amount of time elapsed from the point of
acquiring the resource until the point of releasing the resource.

4.2 Concepts and techniques 43

• waitingTime. This is the elapsed time from a resource request until the re-
quest is granted.

Workload

Workload is an abstraction that specifies the execution demand for a a given sce-
nario. In addition, required or estimated response time for the scenario pertaining
to this workload is given. A workload can be either open or closed. The attributes
of a workload are:

• responseTime. The total amount of time from the corresponding scenario is
started until it is completed.

• priority. This is the priority of the workload.

OpenWorkload

As mentioned, an open workload is characterized by requests arriving continuously
into the system at a fixed rate. An openWorkload has a single attribute:

• occurencePattern. This denotes the interval between arriving requests.

ClosedWorkload

In a closed workload, a fixed number of jobs (or users) cycle between executing
the scenario and spending an external think time delay. The attributes are:

• population. This is the size of the workload (number of users/jobs)

• externalDelay. This is the think time delay, i.e., the delay between the end
of one response and the start of the next.

The next section describes how the concepts of the performance domain model are
mapped to extensions to the UML metamodel.

4.2.2 Mapping the domain model

Scenarios can be modelled as either activity- or collaboration diagrams. In our ap-
proach, we will be using activity diagrams to model scenarios, so we will concen-

44 UMLTM Profile for Schedulability, Performance and Time

trate the discussion on mapping the performance concepts onto UML extensions
to an activity diagram. As mentioned, the extensions to the UML metamodel is
expressed via stereotypes, tagged value and constraints.

Using activity graphs, as opposed to using collaboration diagrams, gives the ad-
vantage that a scenario can be decomposed into a hierarchical structure, that is, an
activity graph may consist of several lower-level activity graphs.

PerformanceContext

A performance context can be modelled by an activity diagram stereotyped by the
«PAcontext»stereotype. (All extension element names of the performance portion
of the UML-SPT profile are prefixed with “PA”.) We will defer a discussion of the
details of the extension elements, but instead refer to [13] for further details. In case
of a scenario containing lower-level activity graphs, only the performance context
of the topmost level can have a workload defined. A requirement concerning the
activity diagram is that the swimlanes can only be used to represent the resources
used or the object instances participating in the activity.

Scenario

Scenarios are modelled by the activities (also called states or actions) and transition
between activities of the activity graph. The UML-SPT profile does not define an
explicit scenario stereotype, but instead identifies the scenario by the first step (root
step) of the scenario. Also, workload information is attached to the root step.

Step

Each activity or sub-activity of the activity graph is stereotyped as a «PAstep».
Workload information can be attached to a step if it is the root step of the top-
most performance context. This workload is then imposed on steps of lower-level
performance contexts.

Workload

The workload for a scenario is modelled by a tagged value associated with the
root step of the topmost performance context. Optionally, the root step can be
stereotyped as a «PAOpenLoad»or «PAClosedLoad».

4.2 Concepts and techniques 45

ProcessingResouce

A processing resource can be modelled in two ways. Either by associating the
appropriate stereotype «PAhost»with a partition (swimlane). This approach, how-
ever, is only appropriate in situations where where each instance is executing on its
own host. Alternatively, in cases where swimlanes represent instances executing
on different hosts, and some instances may share hosts the activity diagram can be
coupled with a deployment diagram. This is the most common situation.

PassiveResource

Passive resources are represented by swimlanes stereotyped with the «PAresource»stereotype.

Part II

Our Approach

5Describing
our approach

Our approach, in this thesis, is targeted at performance on the J2ME platform. The
motivation for choosing the J2ME platform is that device characteristics are very
limited and applications are thus particularly susceptible to performance degrada-
tions. Two areas in particular present a challenge on the J2ME platform: network
usage and persistence. There are widely differing performance characteristics be-
tween local and remote operations and similarly between operations using persis-
tence and operations that do not. These effects are further compounded on the
J2ME platform. Therefore, these two areas are the focus in this thesis.

5.1 The Record Management System

Persistence in J2ME is implemented via the Record Management System (RMS),
an API that provides applications with local, on-device persistence. As the name
implies, data are saved into records, which can be a somewhat misleading term
since records does not contain any fields. Rather, data are saved into a record as
an array of bytes. It is not possible to change selected parts of a record - instead
an entire record must be read, changes to the data must be made in memory, and
finally the entire record must be written back [12].

A record can be used to store the state of a class (i.e., the value of its fields) persis-
tently by converting the fields of the class into a byte array which is inserted into a
record.

50 Describing our approach

Records are logically collected in to record stores. In order to work on a record
store it must be first be opened. Correspondingly, an open record store must at
some point be closed.

5.2 Networking

Use of networking on a mobile device can prove problematic due to the limited
network bandwidth. There are a few different way a mobile device can access the
internet. The most common ways is through either GSM-CSD, which operates at
9,6 kbps or GSM-GPRS which has a theoretical maximum of 172 kbps. Further-
more standards like EDGE which operates at speed upto 55 kbps and HSCSD at
28.8 kbps also exist. The new 3G standard which is becoming increasingly more
widespread operates at speeds upto 384 kbps depending on how you are positioned
in relation to the antenna. These speeds does however not match the speed of wired
networks which operates at speeds between 512 kbps and several mbps for the typ-
ical ADSL connection and between 10 mbps and 1gbps for local area networks.

In this installment we are using web services. Web services are supported by the
JSR-172 API in J2ME. However at the present time the JSR-172 API has only
been adopted by very few devices - as an example Nokia only has developed three
phones so far supporting the JSR-172 API, the N70, N90, and N91 [1–3] and these
are still rather expensive. As a consequence, in order to communicate with web
services on mobile devices third party libraries must be used. In this thesis we
have focused on the use of kSOAP 1.2 [16, 17] as the web service library used to
communicate with web services.

5.3 Obtaining input estimates

We have created a test application which tests the performance characteristics of
the RMS and networking.
The test application can be used by a developer to obtain input estimates which are
used to annotate the activity diagrams.

5.3.1 Testing the RMS

The RMS part of the test application allows the developer to specify the number
of record stores, the number of records in each record store and the size of each
record.

5.3 Obtaining input estimates 51

Then the test application tests the time it takes to open and close record stores, read
from and write to records, and the time it takes to delete the record stores.

The number of record stores to be input depend on the number of container classes
that are to be saved persistently (e.g., customers, visits).

The number of records in each record store depend on the number of objects in the
container classes (e.g., the number of customers).

Finally, the last parameter, record size, can be determined by investigating the fields
of the objects to be saved. The size of a record can be determined by summing the
size of the Java primitive data types of all the fields of the object. Table 5.1 shows
the size of the data types which are defined by the Java Language Specification
[48].

data type size
byte 1 byte
char 2 bytes
short 2 bytes
int 4 bytes

float 4 bytes
long 8 bytes

double 8 bytes

Table 5.1: Size of Java primitives

To illustrate, we will use a simplified customer class, which is shown in listing 5.1.

1 pub l i c c l a s s Customer {
2 p r i v a t e i n t custNum ;
3 p r i v a t e S t r i n g name ;
4 }

Listing 5.1: Example customer class

When saving a string into a record (i.e., converting it into a byte array) the resulting
size of the byte array is the number of characters combined with a delimiter in each
end. However, since the final size of a string is not known before it is implemented
we have opted for setting a fixed serialized string size at 150 bytes, which corre-
sponds to a string of length 148 characters. The choice of 150 bytes is that we feel
that this size will suffice in the majority of cases and at the same time this is not an
artificially high number.

In this way, the record size for saving the class customer will be: 4 (int) + 150
(String) = 154 bytes.

Some UML tools, such as IBM’s Rational XDE Developer [19], are able to derive

52 Describing our approach

and present the size of classes based on a class diagram.

5.3.2 Testing the network

On a wireless device the process of requesting data from a web service using
kSOAP consists of these four parts:

1. Creating a SOAP message to send to the web service.

2. Calling the webservice with the SOAP message just created.

3. Getting the result from the webservice.

4. Converting the received SOAP message into an appropriate data structure to
be used in the application.

The test application measures the total amount of time it takes from the point of
creating the SOAP message until the received SOAP message is converted into
an appropriate data structure. The reason for this approach is that it allows the
developer to performance model the application without any knowledge about how
the SOAP message is generated, sent, parsed, and converted into a data structures.

As the overall load of the network, both data and speak, has an effect on the band-
width available at any given time, it is imperative that the network test be conducted
at a time of the day that is representative of the users “usage pattern”. Obviously,
conducting tests at a time that does not correlate to the actual use of end users
produces results that may give a false indication as to the performance of network
operation times. For instance, the load between 8 a.m. and 9 a.m., when a lot of
people are just starting their workday, can be expected to be greater than the load
between 2 a.m. and 3 a.m.

5.4 Using the results

The results obtained from running the test application are used to annotate the
activity diagrams describing the scenarios of a system with respect to operations
on the RMS and network. Then the performance annotated diagrams are used to
derive performance estimates of the system based on the algorithm for computing
Execution Graphs(EG). EGs will suffice since their is no contention for resources
on a J2ME device, and the web service that is contacted is treated as a black-box.

We deliver the results of the tests as three statistical properties: The average, max-
imum and 95th percentile [47] response times. The reason for including the 95th

5.4 Using the results 53

percentile is that it is generally less sensitive to odd spikes in the response time than
the average value can be. This is however only true if the data set is sufficiently
large.

6Applying our
approach

In this chapter we will give an example of how the input estimates from the test
application are used to annotate the activity diagrams describing the scenarios of
the system. We will also illustrate how the input estimates are used as a basis for
computing the performance predictions. As a test case we will be using a system
that we developed as part of a previous project in the fall of 2004 [28].

6.1 A description of the test case

The test case is an end-to-end system consisting of a J2ME application communi-
cating with a web service. It is a package registration system developed to aid a
logistics company in keeping track of their package elements. The logistics com-
pany functions as a central storage for a number of wholesale dealers (customers)
and the aim of the system is to help optimize the process of registering package
elements that are used to transport goods as they move from the logistics company
to the wholesale dealers and back again.

The scenario is this:
At the warehouse of the logistics company products that are to be shipped out, are
packaged and loaded onto a truck. The truck driver receives a route of where the
products are to be delivered. At each customer along the route the truck driver
delivers the products (and the package elements used to carry the products) and in
return he loads onto the truck empty package elements from the customer which he

56 Applying our approach

returns to the logistics company. The truck driver registers the amount of package
elements delivered and received, respectively. At the end of the route the truck
driver returns to the logistics company and fills out a paper form of the amount of
package elements that was delivered and received at each customer.

The logistics company wanted to streamline this process and dispense with the
paper work. The solution was to equip each truck driver with a mobile phone
and develop a J2ME application which could be used by the truck driver to enter
package information pertaining to a particular route. At the start of the day, the
J2ME application allowed the truck driver to fetch his route from a web service
and as the route was completed the route could be sent back to the web service.

A requirement to the system was that it would be able to recover gracefully from
crashes and information should also be saved persistently if the data could not be
sent to the web service.

The architecture of the system is depicted in Figure 6.1.

We will now give an overall view of the functionality of the system by describing
the user-application interaction. The user-application interaction is illustrated by a
high-level activity diagram i figure 6.2.

Figure 6.1: Test application architecure

The user starts the application. Upon startup, the application examines if persistent
data is saved since the last invocation of the application. This situation occurs if
the truck driver has not yet sent data from the last route he worked on back to the

6.1 A description of the test case 57

Start program

Route number?

Get route

finish route

started

input data

End program

send route

show route

Route finished

process request
and reply

undefined

Waiting

process request
and reply

undefined

Waiting

Truck driver Web serviceApplication

Figure 6.2: The overall activity diagram

web service. This may be facilitated by a conscious choice by the truck driver
(i.e., a choice to close the application), a failure to send the data back to the web
service, or a power failure or some other condition causing the application to shut
down. In this case the application resumes operation by showing an overview of
the previous route and the progress of the route. Otherwise, if no persistent data
exist, the application queries the user for a route with a particular route number
to be fetched. The truck driver plots in a route number and the application sends
a request to the web service for the specified route. The route is transmitted to
the device, the data are saved persistently, and the user is shown an overview of
the route (the collection of customers to be visited). For each customer, the user
inputs the appropriate data, which happens through a series of input screens. Upon
completion of a route, the truck driver chooses “finish route” and the data are sent

58 Applying our approach

back to the web service. If the data was successfully transmitted, the persistent
storage (RMS) is “wiped clean”, otherwise the data remain in the RMS until a
successful transmission can be completed.

The key performance scenarios selected for performance annotations are: “finish
route”, “get route”, “‘read persistent” and “save persistent” since these are the ones
involving the network and persistent storage.

6.2 Scenarios

In the following the selected key performance scenarios are described in activity
diagrams. These activity diagrams are annotated, as described in Chapter 4, with
performance information obtained through experiments with the test application.

It should be noted that the performance annotations attached to the activity dia-
grams are derived from a single run of the test application. As it is, we have con-
ducted several tests of both the test application as well as the logistics applications
in order to account for possible variance in the results.

6.2.1 Get route

The activity diagram for the following scenario can be seen in Figure 6.3. The
truck driver starts the application and the application checks for persistent data
indicating that the previous route is unfinished. If this is the case we proceed to the
“read persistent data” sub-activity diagram. The performance annotations attached
to the “read persistent data” step denotes the accumulated response time for the
sub-steps (expressed in the sub-activity diagram). We can see that the execution
time (or host execution demand), PAdemand, for the step is 361.2 milliseconds on
average (’mean’) and this is a measured (’msr’) value (by our test application).

If no persistent data exist the application starts afresh and the truck driver is queried
for the route number. Assuming a valid route number, the route is fetched from the
web service. As can be seen from the performance annotation on the “Fetch route”
step the time it takes to fetch a route has been measured at an average of 23974.8
milliseconds by our test application (or rather the time it takes to fetch 36189 bytes
of data).

Upon successful reception of a route from the web service, the data are saved
persistently. This process is specified in the "save persistent” sub-activity diagram
and the accumulated measured mean time is correspondingly attached to the “save
persistent” state.

6.2 Scenarios 59

Start program

Read
persistent data

input route number Fetch route

save persistent

Show route

Truck driver Web service

process request
and reply

undefined

Waiting

Persistent data

{PAdemand=
(’msr’,’mean’,23974.8,’ms’)}

{PAdemand=
(’msr’,’mean’,2510,’ms’)}

{PAdemand=
(’msr’,’mean’,336,’ms’)}

[Yes]

[No]

Application

[Cancel]

Figure 6.3: Get Route w/time activity diagram

As described, the “get route” activity can take two directions pending on whether
or not persistent data are present - as modelled by the forking at the “persistent
data?” state. In the case of persistent data being present the total time it takes
before the route can be shown to the user is determined by the execution demand
of the “read persistent data” state which is estimated to be 361.2 milliseconds by
our test application. Conversely, if no persistent data exist, the total time it takes
before a route can be shown is estimated to be 23974.8 milliseconds ("Fetch route")
followed by 2529.6 milliseconds incurred by saving the route persistently totalling
26504.4 milliseconds.

60 Applying our approach

save element

Open persistent storage

close persistent storage

{PAdemand=
(’msr’,’mean’,150,’ms’)}

{PAdemand=
(’msr’,’mean’,47.2,’ms’)

PArep=50}

{PAdemand=

(’msr’,’mean’,0,’ms’)}

[More elements]

[No more elemnts]

Application

Figure 6.4: Save persistent w/time activity diagram

6.2.2 Save persistent

Saving data in most cases is a three step process consisting of the steps of opening
a record store, saving records to the record store, and closing the record store upon
completion. Alternatively, a static reference to an open record store can be kept in
which case the opening and closing of a record store are omitted from this process.
As can be seen from the activity diagram in figure 6.4 we are modelling the first
case. The average measured time to open a record store is derived from the results
of running our test application and the "open persistent storage" step is annotated
with this information.

The average time to write a record (save an element) is measured at 47.2 mil-
liseconds and the number of elements to be saved in this example is 50 which is
indicated by setting PArep (the repetition factor) to 50.

6.2 Scenarios 61

Thirdly, the appropriate average measured value is attached to the "close persistent
storage" step.

These three steps happen in succession and the total execution time for writing 50
records (including opening and closing the record store) is thus 150 + (47.2 * 50)
+ 0 = 2510 which, as we saw in the "get route" activity diagram, is the value given
to the state encompassing this sub-activity.

6.2.3 Read persistent

Open persistent storage

close persistent storage

load element

{PAdemand=
(’msr’,’mean’,6,’ms’)}

{PAdemand=
(’msr’,’mean’,6.6,’ms’)
PArep=50}

(’msr’,’mean’,0,’ms’)}
{PAdemand=

[More elements]

[No more elemnts]

Application

Figure 6.5: Read persistent w/time activity diagram

Reading data from the RMS, illustrated in Figure 6.5, follow a path similar to
that of writing to the RMS. More specifically, it consists of the steps of opening a
record store, performing the reads (i.e., iterating over the record store and reading
the records) and closing the record store. As before, the steps are annotated with
the appropriate performance information obtained from running the test application
and the resulting execution time for reading 50 elements from the RMS in this case

62 Applying our approach

adds to 6 + (6.6 * 50) + 0 = 336 milliseconds which is given as the host execution
demand for the "read persistent" step.

6.2.4 Abruption

Active

Save persistent

Abrupted by
external source
(AMS or user)

{PAdemand=
(’msr’,’mean’,2529.6,’ms’)}

Abruption

Application

Figure 6.6: Abruption w/with activity diagram

To account for a sudden abruption of application execution, data must be saved
persistently in order to ensure that the present route can be resumed on the next
startup. The procedure at this point is identical to saving the data when the route
was received from the web service as described in 6.2.2

6.2.5 Finish route

When the truck driver chooses "finish route" this initiates a send to the web service.
The average estimated time it takes to send 75574 bytes of data, as reported by the
test application, corresponding to the size of the constructed SOAP message of the
route to be sent is used to annotate the "Send Route" step.

6.2 Scenarios 63

Choose "End route"

Retry?

Persistent storage
Remove

Send finished

Send route

process request
and reply

undefined

Waiting

{PAdemand=
(’msr’,’mean’,321.6,’ms’)}

{PAdemand=
(’msr’,’mean,33523.8,’ms’)}

Truck driver Application

[Yes]

[No]

[No connection]

Web service

Figure 6.7: Finish route w/ time activity diagram

When the application receives an acknowledgement from the web wervice indicat-
ing that the transmission was successful, the RMS is deleted.

The estimated average value for deleting a record store, as reported by the test
application, is annotated to the "delete persistent storage" step. The estimated total
execution time for a successful send then comes to 33523.8(for "Send Route") +
321.6 (for "delete persistent storage") totalling 33845.4 milliseconds.

7Evaluating
our approach

In this chapter we investigate the extent to which our objective of creating an ap-
proach that is useable, reliable, transparent, and cost-efficient are met. The bulk
of the chapter is devoted to an investigation on the accuracy of the input estimates
supplied by the test application.

We present, compare and investigate the results obtained by running the test ap-
plication and test case (logistics application) ten times each. The tests have been
conducted ten times each in order to account for variance in the results. The results
we use for comparison are taken as the average of the ten tests. For the logistics ap-
plication we have measured the best-case, worst-case, and average case scenarios.
For instance, this means that the worst-case value we will use is the value obtained
by taking the average value of all the worst-case values and similarly for the the
best- and average cases.

The results from running the test application are delivered as three statistical mea-
sures: the average, maximum and 95th percentile results. These are used to mea-
sure the times ofsingleoperations (e.g., the time it takes to open a single record
store or the time it takes to read a single record from a record store). In addition,
the test application also return the total elapsed time for reading and writing all the
elements of a record store. As with the results for the logistics application we use
the average value obtained over the course of the ten runs. In essence, we take the
average of the ten maximum times, average times, and 95th percentile times.

According to Daniel A. Menascé, ACM Fellow, an error margin of up to 30% is
considered acceptable in performance analysis [40]. We will investigate whether

66 Evaluating our approach

this aim is achieved by the performance results returned from our test application.

7.1 Evaluating the RMS results

We have used the test application to emulate a route consisting of 50 visits to 50
customers combined into a single record store. Originally these two containers
were placed into separate record stores (customers and visits) in the logistics ap-
plication but due to the design of our test application we have decided to collapse
the two containers into a single record store.

The reason for this is that our test application in its current version only allows a
single parameter input to be specified for the number of records and the size of
records (the input screen for the RMS test can be seen in Figure 7.1). Obviously,
the number of records in different record stores as well the size of these records
would probably vary in a real-world application. This design choice in our test
application was made for reasons of speedy development since we are focusing on
investigating the accuracy of the input estimates supplied by our test application
rather than concentrating on making the test application user friendly in this first
version. We thus found it faster to collapse the two record stores of the the logistics
application into a single record store. It is of course still possible to emulate dif-
ferent record stores with different number of records and record sizes with our test
application but this requires the test application to be executed separately for each
record store. However, splitting up the tests this way will not give a representative
workload emulation and possible memory problems might escape undiscovered. It
should be noted that the appropriate changes to the test application can easily be
incorporated into a second version of the test application.

Figure 7.1: The input screen for the RMS test on the test application

So, to emulate the logistics application we have conducted ten tests on the test
application involving a single record store with 50 records containing the combined

7.1 Evaluating the RMS results 67

data of customers and visits. The size of the records come to a total of 637 bytes ((4
× 150 for Strings) + (9× 4 for ints) + (1 for boolean) according to our assumption
of serialized strings occupying 150 bytes. The class diagram for a route can be
seen in Figure 7.1.

Customer

public StringCustomername;
public String Customernumber
public int RMSIndex

Visit

public String CustomerOrdernumber;
public String ordernumber;
public int visitnumber;
public int arrivalTime;
public int returnBox;
public int returnPallet;
public int returnhalfPallet;
public int box;
public int pallet;
public int halfPallet;
public boolean visited=false;

1
1

Figure 7.2: The class diagram for the route

Table 7.1 shows the results of the logistics application specified as the average of
the average, minimum (best case) and maximum (worst case) total times measured
in milliseconds for reading, writing and deleting 50 records over the course of ten
runs.

Test avg. total time max. total time min. total time
Reading 240,5 ms. 406 ms. 186 ms.
Writing 3671,8 ms. 3812 ms. 3548 ms.
Deleting 999,8 ms. 1047 ms. 953 ms.

Table 7.1: Results of RMS operations on the logistics application

Table 7.2 shows the results of our test application emulating the logistics applica-
tion on ten different runs.

Test avg. max 95th percentile total
Create 126,7 ms. 234 ms. 141 ms. –
Open 3 ms. 15 ms. 15 ms. –
Close 0 ms. 0 ms. 0 ms. –
Read 6,9 ms. 50,2 ms. 16 ms. 372,1 ms.
Write 47,7 ms. 135,9 ms. 96,8 ms. 2481,3 ms.
Delete 323,3 ms. 344 ms. 343 ms. –

Table 7.2: The results returned from the test application emulating the workload of
the logistics application

68 Evaluating our approach

It should be noted that for the 95th percentile value given for the operations that
happen only once in each test (i.e., create, open, close, and delete record store) we
have somewhat artificially supplied the second highest value of the ten runs as the
95th percentile. This is because in order to ensure that the 95th percentile is not
(guaranteed to be) equal to the maximum value, the data set (in this case number
of tests) must be at least 20.

The only exception to the "individual operation times" is the "total" column which
gives the total elapsed time for reading 50 records and writing 50 records.

7.1.1 Comparing the results

Comparing the write results

In order to compare the results we should note that the write times on the logistics
application encompass a "create record store" operation and a "close record store
operation". That is, when data are written persistently on the logistics application,
a new record store is created and after the writes are performed the new record
store is closed. Accordingly, the test results from the test application for writing
must also include the test times for the create record store and close record store
operation.

The subset of results from the test application that are relevant for write operations
are shown in Table 7.3. The second, third, and fourth entry in the "Write" row
show the average, maximum, and 95th percentile results for writing a single record,
whereas the fifth column shows the total execution time for saving all 50 records
as measured by the test application.

Test avg. max 95th percentile total
Create 126,7 ms. 234 ms. 141 ms. –
Write 47,7 ms. 135,9 ms. 96,8 ms. 2481,3 ms.
Close 0 ms. 0 ms. 0 ms. –

Table 7.3: Results of operations relevant for performing writes obtained from the
test application

In order to more directly observe the difference between the total write time on
the logistics application and the total write time on the test application, both the
one measured directly and the ones computed using the different measures we per-
form the calculations "create record store time" + (50×write record time) + "close
record store time" for the average, maximum and 95th percentile results. The re-
sulting estimates can be seen in Table 7.4

7.1 Evaluating the RMS results 69

Test total execution time
total (measured) 2608 ms.
avg. (50 times) 2511,7 ms.

95th percentile (50 times) 4981 ms.
max. (50 times) 7029 ms.

Table 7.4: The total write time computed for the avg., max., and 95th measures as
well as the total time measured

Test avg. total time max. total time min. total time
Writing 3671,8 ms. 3812 ms. 3548 ms.

Table 7.5: The average, minimum, and maximum times for writing on the logistics
application

We contrast these results to the write results of the logistics application (seen in
Table 7.5)

In order to see how the estimates of the test application are positioned with respect
to the actual write times of the logistics application we have shown the percent-
wise deviation of the test application’s estimates to the logistic applications actual
measurements in Table 7.6.

Test app./ Logistics app. avg. max. min
total -28,97% -31,58% -26,49%
avg. -31,59% -34,11% -29,21%
max. +91,43% +84,39% +98,11%

95th percentile +35,66% +30,67% +40,39%

Table 7.6: The percent-wise deviation between the estimates of the test application
and the actual results of the logistics application for write operations.

The results in Table 7.6 has been prefixed with + and -, indicating whether the test
application provides an overestimate or underestimate, respectively, of the logistics
application’s performance.
From Table 7.6 we can see that the measured total time provides us with the most
accurate estimates scoring within the 30% range on two occasions (with a deviation
at 28,97% of the logistics application’s average case and 26,49% of the logistics
application’s best case time). In the case of estimating the worst case, the measured
total time scores just outside at 31.58%. Only one of the single-operation measures
is able to achieve within the 30% error margin, the average measure at a 29,21 de-
viation of the logistics application’s best case write time while scoring just outside
the range of the logistic application’s average case and somewhat close to the 30%
range of the worst case.

70 Evaluating our approach

We can see that the maximum estimated time from the test application is of little
usage in estimating the performance of the logistics application. This is not sur-
prising, as this is the estimate arrived at by taking the single longest write time and
compounding the effect of this by assuming that all records take this time to com-
plete. We have observed quite a significant difference between the average case
and the occasional spike in write time incurred by the garbage collector (presum-
ably) so this result could be expected. The reason for including it was to provide a
worst case estimate.

The 95th percentile measure scores slightly worse than the average measure (in two
out of three cases). Only in the case of estimating the worst case performance of the
logistics application is the 95th percentile more accurate. Our primary concern in
general are the average and worst case performance that we can expect to achieve
from an application, and in the latter case the 95th percentile measure yields the
more accurate estimate, just outside the 30% range (at 30,67%) thus giving the best
worst case estimate. An added benefit of the 95th percentile is that it errs on the
right side of caution so to speak, in that it does not give underestimates of the actual
performance.

Comparing the read results

As for writes, reads also incur two additional operations. In this case an "open
record store" operation as well as a "close record store" operation.

We show the results of the read-relevant operations from the test application in
Table 7.7

Test avg. max 95th percentile total
Open 3 ms. 15 ms. 15 ms. –
Read 6,9 ms. 50,2 ms. 16 ms. 372,1 ms.
Close 0 ms. 0 ms. 0 ms. –

Table 7.7: Results of operations relevant for performing reads obtained from the
test application

Also, to get a clearer picture of the differences between the estimates supplied
by using the different measures we give their resulting estimates ("time of open
record store operation" + "50× "individual read operations" + "close record store
operation". These results can be seen in Table 7.8

We recap the read times from the logistics application in Table 7.9

We then show the accuracy of the read predictions from the test application in
relation to their percent-wise deviation from the actual read results measured on

7.1 Evaluating the RMS results 71

Test total execution time
total (measured) 375,1 ms.
avg. (50 times) 348 ms.

95th percentile (50 times) 815 ms.
max. (50 times) 2525 ms.

Table 7.8: The total read time computed for the avg., max., and 95th measures as
well as the total read time measured

Test avg. total time max. total time min. total time
Reading 240,5 ms. 406 ms. 186 ms.

Table 7.9: The average, minimum, and maximum times for reading on the logistics
application

the logistics application. This can be seen in Table 7.10.

Test app./ Logistics app. avg. max. min
total +55,97% -7,61% +101,67%
avg. +44,52% -14,29% +87,09%
max. +949,89% +521,92% +1257,53%

95th percentile +238,88% +100,74% +338,17%

Table 7.10: The percent-wise deviation between the estimates of the test applica-
tion and the actual results of the logistics application for read operations

As table 7.10 clearly shows the estimates provided by the test application are rather
fragmented. Only in two cases are the estimates within the 30% range of the results
of the target application. The total measured value from the test application comes
close to the worst case read time of the logistics application at a 7,7% deviation
while being more than 100% inaccurate in predicting the best case time. These
results are of course caused by the very large difference between the best- and
worst case read times on the logistics application.

Overall, the total measured read time and average read measure provide the best
estimates in this test positioning themselves between the average and worst case
time on the logistics application and with both being within range of the worst case
time, at a 7.61% and 14,29% deviation respectively.

Both the 95th percentile and maximum estimates from the test application far ex-
ceed the actual read performance of the logistics application.

72 Evaluating our approach

Comparing the delete results

In contrast to the reads and writes discussed in the previous sections, deleting a
record store does not include additional operations. Hence, we can directly ob-
served the delete times.

The estimated times for deleting as reported by the test application are shown in
Table 7.11

Test avg. max 95th percentile
Delete 323,3 ms. 344 ms. 343 ms.

Table 7.11: Results of delete operations obtained from the test application

In relation to the delete times measured on the logistics application and seen in
Table 7.12 the percent-wise deviations of the delete times obtained by the test ap-
plication’s are shown in Table 7.13

Test avg. total time max. total time min. total time
Deleting 999,8 ms. 1047 ms. 953 ms.

Table 7.12: The average, minimum, and maximum times for deleting a record store
on the logistics application

Test app./ Logistics app. avg. max. min
avg. -209,25% -223,85% -194,78%
max -190,64% -204,36% -177,03%

95th percentile -191,49% 205,25% -177,84%

Table 7.13: The percent-wise deviation between the estimates of the test applica-
tion and the actual results of the logistics application for delete operations

As the deviations in Table 7.13 clearly shows, the performance estimates from
the test application in this test will not suffice in providing (even approximately)
accurate estimates.

7.2 Conlusion on the RMS test results

The results of the RMS tests indicate that the total time measured and the average
value of single operations multiplied with the number of records provide the most
accurate estimates of the target platform’s performance. However, as the delete
test illustrated these are not always accurate enough. We suspect, that the reason
for the large difference in these results is that the delete test is conducted on the

7.3 Evaluating the network results 73

logistics application at a time when the garbage collector is reclaiming objects
whereas the test application conducts a "clean" RMS test meaning no additional
objects are created and destroyed. The garbage collector may be the cause of the
anomalies in the estimates. One way to investigate this would be to force a garbage
collection on the target application (for validation purposes) and see whether the
performance estimates of the test application and the performance of the logistics
application would then be approximately similar. (However, as we were sharing
the Nokia phone with another project group also working on their master thesis we
were not able to try out this possibility in time.) If indeed the garbage collector
proved to be the cause of the anomaly it would be beneficial to try and apply our
test application to additional target applications of varying complexities in order to
investigate this effect.

Performance on the target application may also vary significantly between indi-
vidual runs, as we saw from the results in the read test. This, of course, makes
it difficult to provide accurate estimates in every single run and also illustrate the
general problem of providing accurate performance predictions of object-oriented
systems.

7.3 Evaluating the network results

We have conducted five runs of the test application where we emulated fetching
36189 bytes data which contains information about which customers the driver
shall visit on his route. We also emulated sending the route back when the day is
over and the size of this data is 75574 bytes. When sending back the route more
information is sent, e.g. what packaging items have been dropped of and what
packaging items has been returned, which is the cause of the larger byte size to
send than receive.

Test avg. time max time min time
Get route 28549,8 29297 28141
Send route 39240,2 39953 38484

Table 7.14: Results of Networking operations in the logistics application

The results given in Table 7.14 is for the logistics application. The “get route”
times include the time it takes to accept the network connection and to chose a
connection profile, and the “send route” include the time it takes to accept the
network connection.

The results from the test application are given as the average, maximum, and 95th
percentile, and the same issue regarding acceptance of network connection and
connection profile also applies to the test application.

74 Evaluating our approach

Test avg. time max time 95th percentile
Get route 23974.8 25000 24109
Send route 33523 36296 35156

Table 7.15: Results of Networking operations in the test application

7.3.1 Comparing the results

In order to compare the results of the network operations we should note that the
time at which the tests was conducted was between 10 a.m. and 11 a.m. for the test
application and between 9 a.m. and 10 a.m. for the logistics application.

Comparing fetching

Test avg. time max time min time
Get route 28549,8 29297 28141

Table 7.16: Relevant results of Networking operations in the logistics application

Test avg. time max time 95th percentile
Get route 23974.8 25000 24109

Table 7.17: Relevant results of Networking operations in the test application

Test app./ Logistics app. avg. max. min
Get route 16,02% 14,67% 14,94%

Table 7.18: The percent-wise deviation between the estimates of the test applica-
tion and the actual results of the logistics application for fetching operations

We can see from Table 7.18 that the test application gives quite good estimates,
approximately a 15% deviation.

Comparing sending

Test avg. time max time min time
Send route 39240,2 39953 38484

Table 7.19: Relevant results of Networking operations in the logistics application

As we can see from tables 7.19 and 7.20 the logistics application is slightly slower
than the test application.

7.4 Conclusion on the network results 75

Test avg. time max time 95th percentile
Send route 33523,8 36296 35156

Table 7.20: Relevant results of Networking operations in the test application

Test app./ Logistics app. avg. max. min.
Send route 14,57% 9,15% 9,56%

Table 7.21: The percent-wise deviation between the estimates of the test applica-
tion and the actual results of the logistics application for the send operation

From Table 7.21 we get another not surprisingly result as the same applies as to
fetching. The remarkable thing about these deviations is that the maximum and
minimum is below 10% and the average is at the same level as the fetch deviations.

7.4 Conclusion on the network results

As it is, the results of the network tests are rather artificial as we are sending and re-
ceiving exactly the same SOAP messages on both the test application and logistics
application!

However, during the course of this project we have learned that it is not possible
to create dynamic proxies on the J2ME platform. Hence, it is not possible to make
a test application that is able to dynamically test the time it takes to communicate
with a web service. This will continue to be a limitation until (and if) dynamic
proxies on the J2ME platform become a reality.

7.5 Overall evaluation of our approach

We will now discuss the extent to which the objectives ofusability, reliability,
transparency, andcost-efficiencyhave been met by our approach as well as which
problems still remain.

• Usability. The approach is usable in that no performance knowledge is re-
quired in order to run the test application and obtain the input estimates used
to annotate the activity diagrams. For the RMS test, all the user needs to
specify is the number of containers and the amount of elements in each con-
tainer. The data sizes for the records to be saved can be easily obtained by
summing the size of the fields of the appropriate classes. In effect, no special

76 Evaluating our approach

performance knowledge is required to conduct the tests and achieve the in-
put estimates. The annotation of activity diagrams is conducted as part of the
design of the system which means that performance evaluation is effectively
fused into the design process rather than being a separate activity. By making
performance evaluation an intrinsic part of the design process we also ensure
that the performance estimates are always accurate reflections of the current
state of the design, hereby removing the concern of having to keep a separate
performance modeling effort up to par with the evolving design. An added
benefit of our test application is that it implicitly conducts a feasibility study
of the system to be built - if the test application throws an OutOfMemory
exception with the specified parameters, then certainly the target application
is very much at risk of doing so also, as the test application is stripped of
excess functionality. Developers can then use this information to consider
an alternative design.

• Reliabilityof estimates. We have seen that the estimates of our approach are
fairly accurate in the majority of instances when using the total measured
time and average individual time as measures. However, in the RMS test we
observed that in a single test (delete record store) the estimates were not valid
predictions. We attributed this effect to the garbage collector reclaiming
objects during the deletion of record stores on the logistics application but
we will have to conduct additional tests on other applications, varying from
very simple applications to more complex applications, to investigate the
impact of the garbage collector further.

• Transparency. We have not been able to fully achieve the transparency
objective in practice. Instead in our current effort we have relied on an
ad-hoc approach to performance modelling using the algorithm for trans-
forming sequence diagrams to execution graphs which can also be applied
to activity diagrams. The reason that we are saying "not fully" is that the
transformation algorithm is straight-forward to apply and as such does not
require knowledge of execution graphs and can thus be performed by non-
specialists. However it is not optimal from a transparency viewpoint. Ideally,
the construction and solution of an appropriate performance model should
be completely hidden from the developer. The UML-SPT profile lends itself
towards integration with performance tools by the transformation process
described in Chapter 4. As a result, we expect performance tools to inte-
grate more closely with UML tools in the future. As the UML-SPT profile
is still rather new (it went into final release on January 2005) no UML tools
yet support the performance component of the profile. Also, presently there
does not seem to exist a performance tool that, without any intervention from
a developer, can take an XML representation of an activity diagram, com-
pute a performance prediction, and report it back into an XML representation
that could be imported by a UML modelling tool. Thus, achieving full trans-

7.5 Overall evaluation of our approach 77

parency is not yet possible by use of existing UML and performance tools.

• Cost-efficiency. Our approach is cheap to realize. It incurs an initial modest
learning curve associated with familiarizing developers with the UML-SPT
profile (and with the activity diagram-to-execution graph algorithm in our
current installment to compute the result estimates). Otherwise, using our
approach is as simple (and cheap) as executing the test application to assim-
ilate the input estimates and annotating the input estimates to the activity
diagrams.

As we have noted, since dynamic proxies are not a reality on the J2ME platform,
our test application at the present time is not applicable to web services. This limi-
tation can only be resolved once (and indeed if) dynamic proxies become available
on the J2ME platform.

Part III

Conclusion and future work

8Conclusion

Performance can be a make or break factor in determining the success of software
projects. Examples to this fact follows:

NASA was forced to delay the launch of a satellite for a least eight months due
to the Flight Operation Segment (FOS) software in the satellite having unaccept-
able response times for developing satelitte schedules and poor performance in
analyzing satellite status and telemetry data. The cost of the delay has not been
determined, but there is certainly a loss of prestige, and members of Congress
questioned NASA’s ability to manage the program. [41]

Similar problems have been experienced in the B2C market.

“In 2001 $25 billion were lost due to web performance issues” (Zona
Research) [32]

“48% of online shoppers gave up trying to buy some products online
because web pages took too long to load” (Boston Consulting) [32]

And finally, a domestic example: In what has been dubbed the largest scandal in
Danish computer software history, The Amanda system - a system to to aid the
Danish public servant caseworkers in handling cases faster and more efficiently -
failed miserably in a national stress test by showing response times upwards of an
hour and a half. Although the system exhibited a multitude of additional problems
[10], these response times by themselves clearly made the system useless.

A common misconception is that Moore’s Law has rendered performance con-
siderations superfluous. However, this is far from the case as evidenced by the

82 Conclusion

substantial investments being made in performance management. In 1998 the per-
formance management market stood at about 2 billion dollars - by 2005 this num-
ber has grown to just over 4.5 billion dollars [32]. This increase clearly shows
that waiting 18 months for Moore’s law to take effect simply is not an option in a
competitive market.

Despite the importance of performance, performance considerations in traditional
software engineering have been subject to a fix-it-later attitude although correcting
performance at a late stage in the development process can be extremely costly and
in some cases impossible. Moreover, targeting performance by means of perfor-
mance tuning and optimizations may erode other software quality attributes such
as the maintainability and flexibility of the system.

Software Performance Engineering (SPE) tries to address this shortcoming by con-
sidering performance early in the development process.

So far, SPE has not been incorporated into the mainstream software engineering
(SE) discipline which is underlined by the fact that SPE is indeed still a separate
discipline.

A fundamental reason for this may be that performance-related subjects are scarcely
being taught at the majority of computer science schools - often performance is
mentioned as a side note, and often performance is inadequately or not defined.
The problem is worsened when it comes to knowledge of SPE - a survey [21]
showed that out of 24 highly ranked computer science schools in the United States
only two courses mentioned SPE, and one of these even incorrectly implied that
SPE was a specialized discipline for database-centered and real-time applications.

This has made the adoption of SPE into a software development effort highly de-
pendant upon specialized staff being available with an appropriate amount of per-
formance skills and experience.

In this thesis we have pointed to a number of deficiencies of using such an ap-
proach.

• The reliance on a performance specialist in order to be able to obtain per-
formance estimates of the design of a system limits the usability of SPE in
ordinary software development projects.

• The reliability of the performance estimates of the system is dependent on
the level of expertise of the performance specialist who supplies the input
estimates.

• SPE is costly - it consists of an iterative process of performance model cre-
ation and solution combined with validation and verification of the models in
order to obtain increasingly accurate reflections of the system’s performance.

83

We proposed an approach to making early performance evaluation significantly
more appealing to incorporation into traditional software development by 1) sub-
stituting the input estimates supplied by a performance specialist with a test ap-
plication that would provide these input estimates instead and 2) hiding details of
performance model creation and solution to the developer as well as eradicating
the need to posses intricate knowledge of the device characteristics of the devices
to be developed to.

The focus of our approach in this thesis has been directed at performance on the
J2ME platform where we have investigated performance concerns regarding the
two areas that are notoriously “heavy hitters”: network usage and persistent stor-
age. The motivation is that the effects of these two areas are felt particularly on
devices with limited capabilities such as is the case of wireless devices. We have
used an end-to-end application (J2ME-J2EE), which we have developed as part of
a previous project, as a test case in order to investigate the validity of our approach.

We came to the following conclusions regarding the usability, realibility, trans-
parency and cost-efficiency of our approach:

Usability Our approach is usable to "ordinary" SE developers in that no special
performance skills are required.

Reliability of estimates We conducted a number of tests of our test application
as well of our test case application in order to determine whether the input estimates
provided by the test application could be used as a basis for predicting the actual
performance of the test case application. We observed that the input estimates
from our test application in the majority of cases were able to provide reasonably
accurate reflections of the performance of the test case. However, in a single test we
observed an anomali where the performance of the test case where several factors
worse than than the actual performance of the test case. Similarly, we noted that the
performance of the test case application in the RMS read test varied substantially
with the worst case taking more than twice the time of the best case to complete.
This contributes to making performance predictions in every single run of the test
application reliable. We attributed these variations to the garbage collector.

Transparency Within the time frame of this thesis we have not been able to
implement a tool (possibly an add-in to an existing UML tool) that would be able to
compute the final performance predictions of a system based on the input estimates
from our test application. Also, no UML and performance tools exist that support
the model processing process of of UML diagrams. Instead, we have relied on an
ad-hoc execution graph solution of the system.

84 Conclusion

Cost-efficiency The cost of our approach is negligible. It involves the cost to ex-
ecute the test application, which can be done within a matter of a very few minutes,
as well as the cost of annotating the activity diagrams with performance informa-
tion, which is done as part of the design.

8.1 Shortcomings and future work

The test application at the present time is not applicable to web services. This is
due to the fact that the creation of dynamic proxies is not possbile on the J2ME
platform. However, instead of waiting for dynamic proxies to become a reality on
the J2ME platform, a future work may consider estimating the size of the SOAP
messages to be sent by investigating the WSDL file describing the web service.
We could then time the operation of sending and receiving the computed amount
of bytes. The network time could then be combined with a test of various XML
parsers to try and estimate the total time of using web services.

An immediate future work includes further tests to investigate the impact of garbage
collection. We could conduct additional tests of more applications, ranging from
simple ones, where the number of objects are limited, to more complex applica-
tions carrying a larger memory footprint. It would also be beneficial to conduct
these tests on different devices that have different garbage collection implementa-
tions.

Regarding the achievement of transparency, once the UML-SPT profile becomes
incorporated into UML tools the automatization of the model processing process
of UML diagrams will become realizable in practice.

A natural extension to the approach suggested in this thesis would be to include
more general performance considerations in J2ME applications, in particular in-
vestigating the overhead of using object orientation in wireless devices.

Another direction may be to investigate our approach on other platforms, such as
standalone computers and enterprise applications where the heterogenity of both
hardware and software far exceeds that of the J2ME platform.

A limitation, not only of our approach but of performance engineering in general,
is that timeliness is the only performance measure considered. An application’s
memory consumption can be critical to its success. If the application uses exces-
sive memory the garbage collector, which may be very primitive on many wireless
devices, will have to free the allocated memory - a process which may have a sig-
nificant impact on the overall performance, particularly on a wireless device.

8.2 Summary 85

8.2 Summary

Performance, or a lack thereof, can mean the difference between succes or failure
in a software project. A lack of satisfactory performance may cause schedule and
cost overruns and in some cases project cancellation. In a competitive market the
performance of a software product may in some cases be the determining factor in
deciding which product to use. These are all compelling reasons to give the per-
formance aspect a high priority in the design of a software system. The reality is,
however, that performance has usually been relegated to the late life cycle stages
in traditional software engineering. The popular belief has been that possible per-
formance problems can be solved through code optimization and tuning. However,
such an approach has several flaws: Not only can performance problems incur con-
siderable costs to fix at such a late stage, but fixing performance problems through
code optimations and tuning may also very well impair other quality traits of the
system, such as the maintainabilty and flexibility of the system, since the code is
made more complex and thus harder to understand. Finally, some performance
problems are impossible to fix through code optimization and tuning - they reflect
faulty design choices that can only be corrected through extensive re-design of the
system.

A discipline called “Software Performance Engineering (SPE)” emerged in the
eighties with the aim of trying to adress performance issues at the design time of
systems, and by including explicit performance considerations already in the analy-
sis phase of a development process. However, SPE has never really caught on in the
mainstream software engineering practices. The reasons for this is that SPE relies
on specialized formalisms for modelling the performance which are generally not
being taught in the computer science courses at the majority of universities. This
means that the amount of people that have the necessary knowledge to conduct
SPE is limited, and SPE thus becomes inherently people-dependant.

In our master thesis we have proposed and investigated the validity of an approach
that tries to incorporate early performance evaluation into software engineering
without having to rely on specialized staff. The approach towards achieving this
objective was to try and automate the process of obtaining input estimates which
would otherwise have to be supplied by a performance specialist. The means for
doing so is a test application that we have created as part of this project that captures
performance characteristics of a target device. The test application can be used
without any special performance knowledge to obtain input estimates. The input
estimates returned from the test application are used to annotate activity diagrams
with performance information according to the UMLTM Profile for Schedulability,
Performance, and Time(UML-SPT). The annotated activity diagrams are then used
to give a performance prediction of the system to be built.

86 Conclusion

Our work has concentrated on estimating performance for J2ME applications. More
specifically we have targeted our effort on estimating performance for the two ar-
eas on the J2ME platform that typically constitute the greatest performance bottle-
necks: persistent storage and networking.

To validate our approach we have applied it to a test case. We conducted a num-
ber of tests of our test application and test case to investigate whether the input
estimates from the test application could be used as a basis for predicting the ac-
tual performance of the test case. The results from these tests showed that in the
majority of cases this was fulfilled.

Our thesis is divided into three major parts:

In the first part of this thesis we investigated the existing work in the field of
Software Performance Engineering and analysed the shortcomings hindering the
adoption of SPE into the mainstream Software Engineering practices. Next, we
described the performance relevant aspects of the UML-SPT profile in order to
illuminate the concepts and extensions to the UML metamodel that allows for per-
formance to be included in UML modeling.

We commenced the second part of the thesis with a description of our approach.
We went on to illustrate how our approach is used as part of the design effort and
the part concluded with an evaluation of the extent to which our approach is usable
from a Software Engineering standpoint.

Finally, in the third part of this thesis we concluded on our work and discussed
possible future work.

Bibliography

[1] Device specifications for nokia n70.http://www.forum.nokia.com/
devices/N70 .

[2] Device specifications for nokia n90.http://www.forum.nokia.com/
devices/N90 .

[3] Device specifications for nokia n91.http://www.forum.nokia.com/
devices/N91 .

[4] K. Auer and K. Beck. Lazy optimization: Patterns for efficient smalltalk
programming. In J. Vlissides, J. Coplien, and N. Kerth, editors,Pattern Lan-
guages of Program Design, volume 2. Addison-Wesley, 1996.

[5] Doug Bell. Make java fast: Optimize! Internet:http://www.
javaworld.com/javaworld/jw-04-1997/jw-04-optimize.
html .

[6] Christina Catley, Dorina C. Petriu, and Monique Frize. Software performance
engineering of a web service-based clinical decision support infrastructure.
In Proceedings of the fourth international workshop on Software and per-
formance, pages 130–138. SIGMETRICS: ACM Special Interest Group on
Measurement and Evaluation and SIGSOFT: ACM Special Interest Group on
Software Engineering, ACM Press, New York, NY, USA, 2004.

[7] Simul8 Corporation. Simul8. Internet:http://www.simul8.com/ .

[8] Vittorio Cortellessa and Raffaela Mirandola. Deriving a queueing network
based performance model from uml diagrams.http://portal.acm.
org/citation.cfm?id=350406 , 2000. SIGMETRICS: ACM Special
Interest Group on Measurement and Evaluation and SIGSOFT: ACM Special
Interest Group on Software Engineering, ACM Press, New York, NY, USA.

[9] Vittorio Cortellessa and Raffaela Mirandola. Prima-uml: a performance vali-
dation incremental methodology on early uml diagrams.Science of Computer
Programming, 44(1):101–129, 2002.

88 BIBLIOGRAPHY

[10] Stig Dahl. Problembarnet amanda. Internet:http://cph.ing.dk/
arkiv/2400/amanda1.html , 2000.

[11] Gentleware. Poseidon for uml. Internet:http://www.gentleware.
com/ .

[12] Eric Giguere. Record management system basics. Internet:
http://developers.sun.com/techtopics/mobility/midp/
ttips/rmsbasics/ , 2001.

[13] The OMG Group. Uml profile for schedulability, performance, and time spec-
ification. January 2005.

[14] Gordon P. Gu and Dorina C. Petriu. Xslt transfor-
mation from uml models to lqn performance models.
http://portal.acm.org/citation.cfm?doid=584369.584402, 2002. SIGMET-
RICS: ACM Special Interest Group on Measurement and Evaluation and
SIGSOFT: ACM Special Interest Group on Software Engineering, ACM
Press, New York, NY, USA.

[15] Gordon Ping Gu and Dorina C. Petriu. Early evaluation of software perfor-
mance based on the uml performance profile. InProceedings of the 2003
conference of the Centre for Advanced Studies on Collaborative research,
2003.

[16] Stefan Haustein. Internet:http://www.ksoap.org .

[17] Stefan Haustein. Internet:http://www.kobjects.org .

[18] Jane Hillston. Pepa (performance evaluation process algebra). Internet:
http://www.dcs.ed.ac.uk/pepa/ .

[19] IBM. Rational rose xde developer.http://www-306.ibm.com/
software/awdtools/developer/rosexde/ .

[20] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software Development
Process. Addison-Wesley, 1999.

[21] Robert F. Dugan Jr. Performance lies my professor told me: The case for
teaching software performance engineering to undergraduates. InProceed-
ings of the fourth international workshop on Software and performance. De-
partment of Computer Science, Stonehill College, ACM Press, New York,
NY, USA, 2004.

[22] David P. Kelly and Robert S. Oshana. Software performance engineering
a digital signal processing application.http://portal.acm.org/
citation.cfm?id=287328&coll=Portal&dl=GUIDE&CFID=
44134284&CFTOKEN=22262372, 1998. SIGMETRICS: ACM Special

BIBLIOGRAPHY 89

Interest Group on Measurement and Evaluation and SIGSOFT: ACM Special
Interest Group on Software Engineering, ACM Press, New York, NY, USA.

[23] M. Litoiu, Hamid Khafagy, Bin Qin, Anita Rass Wan, and J. Rolia. A perfor-
mance engineering tool and method for distributing applications. InProceed-
ings of the 1997 conference of the Centre for Advanced Studies on Collabo-
rative research. IBM Centre for Advanced Studies Conference, IBM Press,
1997.

[24] Juan Pablo López-Grao, José Merseguer, and Javier Campos. From uml ac-
tivity diagrams to stochastic petri nets: Application to software performance
engineering. http://portal.acm.org/citation.cfm?id=
974048&coll=Portal&dl=GUIDE&CFID=44134284&CFTOKEN=
22262372 , 2004. SIGMETRICS: ACM Special Interest Group on Mea-
surement and Evaluation and SIGSOFT: ACM Special Interest Group on
Software Engineering, ACM Press, New York, NY, USA.

[25] No magic Inc. Magic draw uml. Internet:http://www.magicdraw.
com/ .

[26] Daniel A. Menascé and Hassan Gomaa. On a language based
method for software performance engineering of client/server systems.
http://portal.acm.org/citation.cfm?id=287331&coll=
Portal&dl=GUIDE&CFID=44134284&CFTOKEN=22262372 , 1998.
SIGMETRICS: ACM Special Interest Group on Measurement and Evalua-
tion and SIGSOFT: ACM Special Interest Group on Software Engineering,
ACM Press, New York, NY, USA.

[27] Daniel A. Menascé. Software, performance, or engineering? InProceed-
ings of the third international workshop on Software and performance. De-
partment of Computer Science, George Mason University, ACM Press, New
York, NY, USA, 2002.

[28] Ole Mertz, Kim Algreen, René Hansen, and Dennis Micheelsen..NET vs.
Java - mobilklienter og web services. The Faculty of Enginerring and Science
- Department of Computer Science, Fredrik Bajers vej 7, 9210 Aalborg SOE,
2005.

[29] Visual Object Modelers. Visual uml. Internet:http://www.
visualuml.com/ .

[30] Object Management Group, Inc, http://www.omg.org/
technology/documents/formal/xmi.htm . XML Metadata
Interchange (XMI).

[31] Object Management Group, Inc.(OMG),http://www.uml.org/ . UML
2.0 Superstructure Specification, version 2.0 edition, October 2004.

90 BIBLIOGRAPHY

[32] Stathis Papaefstathiou. State of the art of performance capabilites
of commercial development environments. volume ACM WOSP
2002,http://research.microsoft.com/~efp/WOSP%202002%
20Tutorial.ppt , 2002. Microsoft, Redmond, USA.

[33] Visual Paradigm. Visual paradigm for uml (vp-uml). Internet:http://
www.visual-paradigm.com/product/vpuml/ .

[34] University of Illinois at Urbana-Champaign PERFORM Performability En-
gineering Research Group. Möbius. Internet:http://www.mobius.
uiuc.edu/index.html .

[35] Dorina C. Petriu and Hui Shen. Applying the uml performance pro-
file: Graph grammar-based derivation of lqn models from uml spec-
ifications. Internet: http://www.sce.carleton.ca/faculty/
petriu/papers/TOOLS2002.pdf , 2002.

[36] Roger S. Pressman.Software Engineering. A Practitioner’s Approach. Alfred
Waller. McGraw-Hill International (UK) Limited, 2000.

[37] Stanislaw Raczynski. Qms: Queueing model simulation. Internet:http:
//www.raczynski.com/pn/qms.htm .

[38] Andreas Schmietendorf, Evgeni Dimitrov, and Reiner R. Dumke. Process
models for the software development and performance engineering tasks.
In Proceedings of the third international workshop on Software and perfor-
mance. ACM Press, New York, NY, USA, 2002.

[39] Peter Sestoft. Java performance: Reducing time and space consumption.

[40] James Skene. Unobtrusive performance analysisŰ where is the qos in
tapas? Internet:http://www.cs.ucl.ac.uk/staff/j.skene/
tapas/TAPAS-pres-2.ppt#1 .

[41] Connie U. Smith and Lloyd G. Williams.Performance Solutions: A Practi-
cal Guide to Creating Responsive, Scalable Software. ADDISON-WESLEY,
2002.

[42] Dr. Connie U. Smith. Spe-edTM . Internet:http://www.perfeng.com/
sped.htm .

[43] Mesquite software. Csim. Internet:http://www.mesquite.com/ .

[44] Ian Sommerville.Software Engineering. Addison-Wesley and Pearson Edu-
cation Limited, 6 edition, 2001.

[45] Unknown. Queueing network model. Internet:www.cse.msu.edu/
~cse807/notes/slides/Queueconcepts-aga.ppt .

BIBLIOGRAPHY 91

[46] W3C, http://www.w3.org/TR/xslt . XSL Transformations (XSLT)
Version 1.0, 1999.

[47] Pete Wildman. Section 6 - Measures of Position. STAT 2005,
http://wind.cc.whecn.edu/~pwildman/statnew/section_
6_-_measures_of_position.htm .

[48] Steve Wilson and Jeff Kesselman.Java Platform Performance: Strategies
and Tactics. The Java Series. Sun Microsystems, Inc.,http://java.
sun.com/docs/books/performance/ , 2000.

[49] Murray Woodside and Dorina Petriu. Puma - performance from unified model
analysis.http://www.sce.carleton.ca/rads/puma/ .

