
Hierarchical Reinforcement Learning in

Multi-Agent Environment

Group d636a

June 17, 2005

Department of Computer Science Aalborg University

Department of Computer Science

TITLE:

Hierarchical Reinforcement Learning in
Multi-Agent Environment

PROJECT PERIOD:

February 7, 2005 – June 17, 2005

PROJECT GROUP:

d636a

GROUP MEMBERS:

Tim Boesen
Dennis Kjærulff Pedersen

SUPERVISOR:

Uffe Kjærulff

ABSTRACT:

The purpose of this report is to explore the

area of Hierarchical Reinforcement Learning.

First a hierarchical reinforcement approached

called the MaxQ value function decomposition

is described in great detail. Using MaxQ the

state space can be reduced considerably. To

support the claim that MaxQ performs bet-

ter than the basic reinforcement learning algo-

rithm, a test comparing the two is performed.

The results clearly show that as the complex-

ity grows, so does the difference in perfor-

mance between the two.

The MaxQ algorithm does not allow agents to

cooperate. An extension to MaxQ is presented

that allow agents with the same task decom-

position to coordinate and cooperate at a high

level of abstraction. We show that two agents

using the new algorithm does in fact deliver

better results than two agents using the basic

MaxQ value function decomposition.

To further explore the area of multi-agent

reinforcement learning, we propose two ap-

proaches that deals with heterogeneity in

multi-agent environment. The first approach

uses experience sharing to speed up learning,

while the other expands the multi-agent hier-

archical algorithm to allow agents with differ-

ent task decompositions to cooperate.

Preface

This project was done by group d636a at Aalborg University, Department of
Computer Science. We would like to thank Uffe Kjærulff for supervising the
entire project.

Aalborg, June 17, 2005

Dennis Kjærulff Pedersen Tim Boesen

i

ii

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Related Work . 2

1.3 Outline of the Report . 3

2 Reinforcement Learning 5

2.1 Markov Decision Process . 6

2.2 Non-Determinism . 7

2.3 Summary . 9

3 Hierarchical Reinforcement Learning 11

3.1 The Taxi Problem . 12

3.2 Semi-Markov Decision Process 14

3.3 MAXQ Problem Decomposition 14

3.4 Hierarchical Policy . 15

3.5 Projected Value Function . 15

3.5.1 MAXQ Graph . 18

3.6 Optimality in MAXQ . 18

3.6.1 Hierarchical Optimality 19

3.7 The MAXQ-0 Learning Algorithm 20

3.7.1 Example Execution . 20

3.7.2 Requirements to the Algorithm 23

3.8 The MAXQ-Q Learning Algorithm 24

3.8.1 All-States Updating . 24

3.9 State Abstraction . 26

3.9.1 Leaf Irrelevance . 27

iii

3.9.2 Subtask Irrelevance . 28

3.9.3 Result Distribution Irrelevance 29

3.9.4 Termination . 29

3.9.5 Shielding . 30

3.10 Test of HRL . 30

3.10.1 The Taxi Problem and Tabular Reinforcement Learning . 32

3.11 Summary . 36

4 Homogeneous Multi-Agent Hierarchical Reinforcement Learn-

ing 37

4.1 Introduction to the Approach Used 38

4.2 Multi-agent Semi-Markov Decision Process 39

4.3 Task Decomposition . 41

4.4 Hierarchical Multi-Agent Policy 41

4.5 Projected Value Function . 41

4.6 A Hierarchical Multi-agent Reinforcement Learning Algorithm . 43

4.7 The Multi-agent Taxi Problem 46

4.7.1 An Example . 47

4.7.2 State Abstraction . 49

4.8 Testing of the MHRL Algorithm 52

4.8.1 Environmental Setup and Passenger Adding Rules 52

4.8.2 Exploration Policy Used During Learning 53

4.8.3 The Test . 54

4.9 Summary . 57

5 Adding Heterogeneity to Multi-Agent Environments 59

5.1 Heterogeneity in Method . 60

5.1.1 The Concept of Guidance 60

5.1.2 Inter-Agent Guidance . 61

5.1.3 The Independent Agents 62

5.1.4 The Dependent Agents . 64

5.1.5 Expectations . 65

5.2 Heterogeneity in Goal . 67

5.2.1 Expanding the Taxi Problem 67

5.2.2 Communication Using Interest Groups 69

5.2.3 Projected Value Function 72

5.2.4 A Multi-agent Reinforcement Learning Algorithm for Het-
erogeneous Agents . 73

5.3 Summary . 75

iv

6 Conclusion 77

6.1 Future Work . 78

A 5 Step Rewards for the HRL Implementation 79

v

vi

Chapter 1

Introduction

Machine learning is a fast growing field in computer science. Its influence can
be seen in many aspects of our daily lives, from computer games to checking
out groceries at the local supermarket. Within the field of machine learning we
find Reinforcement Learning (RL).

In RL the goal is to teach agents the correct actions in a given situation. This
is done in much the same way humans and animals learn, through trial and
error. When an agent performs a good action, or a series of good actions it is
rewarded. Likewise when it performs a bad action or a series of bad actions it
is penalized. This is the same as when teaching your dog. When the dog does
what it is told we give it a treat, and when it misbehaves we scold it.

RL is the underlying theory behind most of the work done in this report. Be-
cause RL in its basic tabular form, as described by Mitchell in [9], suffers from
scaling problems, it, in itself, is not very useful in real life problems. However,
much research has been done in this area, and several ideas building on the
concept of RL have been developed. One such technique is Relational RL [4]
(RRL). RRL combines traditional reinforcement learning with inductive logic
programming. RRL seeks to generalise over states and objects present in a given
problem domain to handle scaling and speed up learning.

Another path that has also been researched a lot is that of applying hierarchical
structures to a problem, thereby decomposing the problem into a lot of smaller
problems. This branch of RL is called Hierarchical RL [3] (HRL). HRL decom-
poses a problem into sub-problems, or subtasks as they are referred to in the
rest of this report. What makes HRL interesting is the opportunities for state
abstraction it presents. Because we can abstract in the individual subtasks,
we can reduce the amount of space required to represent the value function.
As a result, the learning speed as well as execution speed of a problem can be
increased considerably when compared to regular RL.

The history of reinforcement learning has two main threads which together have
become modern reinforcement learning [13].

One thread concerns the problem of optimal control and its solution using value
functions and dynamic programming. The focus on optimal control dates back

1

to the late 1950s, and was used to describe the problem of designing a controller
to minimise a measure of a dynamical system’s behaviour over time. One of the
approaches to this problem was developed in the mid-1950s by Richard Bellman
and colleagues [1]. This approach uses the concept of a dynamical system’s state
and of a value function, to define a functional equation, now often called the
Bellman equation.

The other thread is concerned with learning through trial and error and began
in the psychology of animal training where “reinforcement” theories are com-
mon. The essence is that actions followed by good or bad outcomes have a
tendency to be picked more or less frequently accordingly. Thorndike called
this the “Law of Effect” [14] because it describes the effect of reinforcing events
on the tendency to select actions. Harry Klopf [6, 7] introduced the trial and
error to artificial intelligence as reinforcement learning. He recognised that an
adaptive behaviour was missing, as researchers had almost only been focusing
on supervised learning.

1.1 Contribution

In this report we will describe the MaxQ learning algorithm invented by Thomas
Dietterich [3]. We will elaborate on the work done by Dietterich, and we will
verify that HRL does in fact provide a substantial increase in performance when
comparing it to basic tabular RL.

In Dietterichs work the focus is on single-agent environments. We will ex-
pand the MaxQ learning algorithm to include cooperating agents by using the
Multi-agent HRL (MHRL) algorithm presented by M. Ghavamzadeh and S. Ma-
hadevan in [8]. As with HRL we will elaborate on the concepts presented in
their report as well as provide testing results of MHRL on a simple multi-agent
problem.

The approach introduced by Ghavamzadeh and Mahadevan focuses on homo-
geneous agents. We will explore the area of Heterogeneity in multi-agent en-
vironments. To this end two approaches are introduced each dealing with a
different aspect of heterogeneity. The first method uses something called inter-
agent experience sharing, and is meant for agents that are heterogeneous in
the sense that they use different learning algorithms to achieve the same goal.
This algorithm also has the property of speeding up learning in cases where the
value function is not shared between agents. The second approach expands the
algorithm presented by Ghavamzadeh and Mahadevan to allow heterogeneous
agents. This is done using a concept called interest groups.

1.2 Related Work

The concept of Q learning has been widely covered by several researchers. Some
of them are Christopher J.C.H. Watkins and Peter Dayan in [15].

The problem of scaling using reinforcement learning has been addressed by,
among others, Sašo Džeroski and Luc De Raedt and Kurt Driessens. In [4]

2

1.3. OUTLINE OF THE REPORT

they explain relational reinforcement learning, which is a learning technique
that combines reinforcement learning with inductive logic programming. The
basic principle of RRL is to describe the state of an environment using rela-
tional properties instead of absolute properties. Often, this makes it possible
to introduce state generalisations that reduces the number of essentially differ-
ent states—thereby creating an opportunity to learn more complex problems.
Instead of representing the behaviour function1 in a table based manner (as
is normally the case in traditional reinforcement learning), RRL makes use of
first order logic and so-called logical classification trees. This enables a more
compact representation.

1.3 Outline of the Report

The report is organised as follows: In Chapter 2, a short description of tradi-
tional RL and the scaling problems associated with the technique are presented.

In Chapter 3 we explain how HRL makes RL much more scaleable. To illustrate
how this can be achieved a problem called the Taxi Problem is used.

Adding multi-agent support to HRL is done in Chapter 4. Here it is explained
how HRL can, with a few modifications, be made to work with multiple agents.

Chapter 5 presents two new approaches for implementing heterogeneity into
multi-agent settings. The first approach uses guidance to speed up learning,
as well as allowing agents with different learning algorithms to learn from each
other. The second approach builds on the concepts presented in Chapter 3 and
Chapter 4, but allows agents with different goals to coordinate and cooperate.

Finally Chapter 6 concludes on the work and results presented in this report.

1In Q learning, this is known as the Q function.

3

4

Chapter 2

Reinforcement Learning

One of the most commonly used paradigms in machine learning is supervised
learning. Supervised learning is a general method for approximating functions,
and can e.g. be used to train neural networks. Training data in supervised
learning consists of input/output pairs, some of which are supplied for training,
while the rest are saved for testing the approximated function.

Supervised learning is very good for solving problems such as classification and
problems where the desired behaviour is known. Many problems fit nicely within
the supervised training paradigm. For instance, imagine that you would like an
agent to learn when the weather is ideal for playing tennis [10]. Then you
simply need to organise a set of examples in which playing tennis is a good idea,
e.g. [(sunny, weak wind),(overcast, weak wind)], and a set in which it
is not a good idea, e.g. [(rainy, weak wind),(rainy, strong wind)], and
feed them to the supervised learning algorithm.

State Reward Action

Environment

Agent

Figure 2.1: Agent interaction with the environment.

For some problems it can be very difficult (or even impossible) to define the
optimal behaviour of an agent in advance. It is often easier to pick out specific
elements from a problem and say: “if the agent is in state s and chooses action a,
then it should be rewarded (or penalised)”. This is the essence of reinforcement
learning, where the agent acts on reinforcing stimuli from the environment in
which it exists. Agents can start out with no knowledge of the environment,
and learn the optimal strategy for reaching an unknown goal as illustrated in
Figure 2.1 [9]. The agent learns in a trial and error manner by exploring the
environment and by, to some extent, exploiting what it has already learnt. Rein-
forcement learning is in some of the literature also referred to as reward/penalty
learning, or consequence learning.

5

CHAPTER 2. REINFORCEMENT LEARNING

This chapter reviews the formalism behind traditional Tabular Reinforcement
Learning (TRL), where the behaviour function being learnt is approximated in
a table based manner.

2.1 Markov Decision Process

A Markov Decision Process (MDP) [9] is a four-tuple 〈S, A, r, δ〉, where S is a
set of states, A is a set of actions, r : S × A → R is a reward function, and
δ : S ×A→ S is a transition function. The process models the ability of being
in a certain state, carrying out an action, and thus ending up in a new state.
Having a state and an action as input, the transition function will provide the
resulting state, and the reward function will provide an immediate reward.

The goal of reinforcement learning is to find a policy which maximizes the total
expected reward retrieved over the course of a given task.

For a policy π, the value function V π, is a function that tells, for each state,
what the expected cumulative reward will be when executing π starting in state
st:

V π (st) ≡ rt + γrt+1 + γ2rt+2 + . . .

≡
∞∑

i=0

γirt+i (2.1)

where t is the current time step, and γ is a constant value between zero and
one, meant to discount the value of future actions. This discount factor has
the effect of making it more desirable to perform “good” actions now instead of
later. An optimal policy, denoted π∗, is one that always chooses the action with
the highest reward.

π∗ ≡ arg max
π

V π (s) , (∀s)

The optimal action π∗(s) for a given state s can be defined as

π∗(s) = arg max
a

[r (s, a) + γV ∗ (δ (s, a))] (2.2)

I.e. the action that maximizes the immediate reward plus the discounted maxi-
mal cumulative value of the state resulting from the transition function δ. Un-
fortunately, this requires access to the reward function r and the transition
function δ, which the agent does not have. Therefore the agent will have to
learn the transition function itself.

One way to do this, is to use the Q learning algorithm. It works by iteratively
approximating the sum of future rewards from a given state. The more itera-
tions performed, the more precise the approximation will become. The value
of the function Q (s, a) is defined as the maximal discounted cumulative reward
obtainable from a given state s by performing a given action a, as follows:

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a)) (2.3)

6

2.2. NON-DETERMINISM

Using V ∗(s) = maxa′ Q(s, a′) a recursive version of Equation 2.3 can be defined
as

Q(s, a) = r(s, a) + γ max
a′

Q(δ(s, a), a′) (2.4)

Notice that the right hand side of Equation 2.3 is a part of Equation 2.2. There-
fore it is possible to redefine π∗ as shown in Equation 2.5 using Equation 2.3
and thereby become independent of the r and δ functions:

π∗ (s) = arg max
a

Q (s, a) (2.5)

We use the symbol Q̂ to describe the agent’s current approximation of Q. Ini-
tially all Q̂ values are set to random values1 or simply zero whereafter the
current state s is observed. Subsequently, the following is repeated infinitely:
An action a is chosen and performed, the resulting immediate reward r and
state s′ are observed, and Q̂ (s, a) is updated (for s, the previous state) using
the current Q̂ value for the new state. The algorithm is described in further
detail in Algorithm 1.

Algorithm 1 The Q learning algorithm for deterministic actions and rewards.

1: for all s and a do

2: Q̂ (s, a)← 0 (or a random value)
3: end for

4: loop

5: s← an initial state
6: repeat

7: a← a chosen action
8: Perform a

9: r ← r (s, a)
10: s′ ← δ (s, a)
11: Q̂ (s, a)← r + γ maxa′ Q̂ (s′, a′)
12: s← s′

13: until s is a goal state
14: end loop

The Q learning algorithm, except the initialisation of Q̂, represents one episode
of learning. For each episode, the agent’s initial state is randomly chosen. An
episode can end, for instance, when the agent enters an absorbing state—a state
where, no matter which action the agent performs, it will stay in that state.

2.2 Non-Determinism

So far this chapter has concerned itself with deterministic environments only. If
we are instead dealing with a non-deterministic environment, which will often be

1 [4] explains why initialising to random values causes faster converging to Q.

7

CHAPTER 2. REINFORCEMENT LEARNING

the case, the transition function δ(s, a) and the reward function r(s, a) may not
always yield the same results given the same input, we will need to extend the
Q learning algorithm. In order to allow non-determinism, the following changes
to the deterministic definitions are made.

V π is redefined to be the expected value (E) over its non-deterministic outcomes
of the discounted cumulative reward received by applying policy π. Hence Equa-
tion 2.1 becomes:

V π(st) ≡ E

[
∞∑

i=0

γirt+i

]

Equation 2.3 is rewritten to express the expected Q value as:

Q(s, a) ≡ E [r(s, a) + γV ∗(δ(s, a))]

= E [r(s, a)] + γE [V ∗(δ(s, a))]

= E [r(s, a)] + γ
∑

s′

P (s′|s, a)V ∗(s′)

where P (s′|s, a) is the probability that action a in state s will result in state s′.
The recursive definition of Q for non-determinism (analogous to Equation 2.4)
is:

Q(s, a) = E[r(s, a)] + γ
∑

s′

P (s′|s, a)max
a′

Q(s′, a′) (2.6)

If e.g. the reward function is non-deterministic i.e. returns different results for
the same state/action pair, our stored Q̂ value for a given s and a would change
every time our deterministic training rule is applied, even if Q̂ is already (close
to) Q. In other words; it would not converge. Therefore, the line

Q̂(s, a)← r + γ max
a′

Q̂(s′, a′)

in Algorithm1 is rewritten into

Q̂n(s, a)← (1− αn)Q̂n−1(s, a) + αn

[
r + max

a′

Q̂n−1(s
′, a′)

]

where αn is the learning factor for the nth iteration of the algorithm. This is an
estimate of Q̂n(s, a) in the nth iteration of the algorithm. The learning factor
can be defined as

αn =
1

1 + visitsn(s, a)

where s and a are the state and action updated during the nth iteration, and
where visitsn(s, a) is the total number of times this state/action pair has been
visited up to and including the nth iteration. Using the learning factor has the
effect of putting more emphasis on the previous approximation of Q̂, and less
on new observations. As αn approaches zero, the Q̂ approximation stabilises.

The fact that Q̂ converges to Q as n approaches infinity in a non-deterministic
environment is proven in [15].

8

2.3. SUMMARY

2.3 Summary

This chapter has reviewed the basic concepts of reinforcement learning. The
Q function was defined to, basically, encapsulate the unknown transition and
reward function. Training an agent becomes a matter of storing and updating
Q values for each state/action pair in the environment.

The biggest problem in reinforcement learning is scaling. This problem is illus-
trated very well by Table 2.1. This table shows the maximum table size that will
be needed to represent a grid world environment under different circumstances.

Grid Size Actions Agents Q̂ Table Size

6 4 1 24
100 4 2 40, 000
200 4 3 32 · 106

500 4 5 125 · 1012

Table 2.1: Scaling of tabular Q learning in the Navigation problem.

In a world with only one agent, where there are 6 grid locations and 4 actions,
the table needed to represent the world is only 24 entries. However as can be
seen it scales very poorly. This is called the curse of dimensionality. Handling
the curse of dimensionality is the main focus of reinforcement learning today.

In the next chapter Hierarchical Reinforcement Learning (HRL) is introduced.
HRL is a technique that attempts to handle the curse of dimensionality by
imposing a hierarchical structure on the problem–thereby making it possible to
solve more complex problems than what is possible with Tabular Reinforcement
Learning.

9

CHAPTER 2. REINFORCEMENT LEARNING

10

Chapter 3

Hierarchical Reinforcement

Learning

As stated in the previous chapter tabular reinforcement learning suffers from the
curse of dimensionality. In this chapter an approach to ease the state explosion
is presented.

When examining a Markov decision problem one might discover hierarchical
structures. The aim of Hierarchical Reinforcement Learning (HRL) is to dis-
cover, and subsequently exploit these structures. One approach that exploit
hierarchical structures is the MaxQ method first presented by Thomas G. Di-
etterich [2]. In this method each subtask is defined in terms of a termination
predicate and a local reward function. These define in which states a subtask
terminates, and what reward should be given when such a state is encountered.

In Section 3.1 a hierarchical problem domain called the Taxi Problem is pre-
sented. By decomposing the Taxi problem into a hierarchical structure some
opportunities for state abstraction are presented. Section 3.9 will present five
general abstraction rules that can be applied to the decomposed problem. By
applying these rules to the Taxi problem the state space is reduced from the
3000 state/action pairs it would take to represent it in tabular Q learning to
only 632 pairs.

In this report the task of discovering the hierarchical structures will not be
described, instead a predefined problem will be used, where the hierarchical
task structure is given in advance. Although the task hierarchy is given in
advance by a programmer, it is up to the learning system to “learn” the optimal
policy for each subtask.

HRL uses temporal abstraction which means that the time, as well as the number
of actions needed by a child task to complete is of no concern to the parent task.
In effect the parent task only looks at the outcome of the child task, thereby
abstracting away from the time taken, and actions performed at the lower levels
of the hierarchy. The problem with temporal abstraction is that it cannot be
represented by a regular MDP. Therefore an extension to MDPs is introduced
in Section 3.2. This extension is called Semi-MDP, and is used in the MaxQ
algorithm.

11

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

4 R G
3 �

2
1
0 Y B

0 1 2 3 4
Figure 3.1: The Taxi problem.

Section 3.7 shows the MaxQ-0 learning algorithm, and Section 3.8 shows an
extension to this algorithm called MaxQ-Q. When learning is complete each
subtask will be an optimal policy to a sub-SMDP 1 of the original MDP. The
policy for the entire problem will be a combination of the individual subtask
policies.

Throughout this chapter the Taxi problem will be used frequently to elaborate
on the problems encountered and to illustrate the principle behind value function
decomposition.

3.1 The Taxi Problem

The Taxi problem consists of a 5 × 5 grid world, in which a taxi agent moves
around. This world is shown in Figure 3.1. In the world there are 4 specific
locations denoted with R, B, G, and Y . In each episode the taxi starts in one of
the 25 grid locations. In one of the four locations(source) a passenger is waiting
for the taxi to take it to a target location(destination). The agent must first
navigate to the source location. Following this it must pick up the passenger.
It must now navigate to the destination location, and put down the passenger.
An episode ends when the passenger has been put down.

There are six primitive actions in the Taxi problem: First there are the four
navigation actions, North, South, East, and West. Furthermore there are the
Pickup and the Putdown actions. To add consequence to the primitive actions,
each primitive action has a penalty of −1. Upon completion of the episode
there is a reward of +20. If the taxi happens to navigate into a wall, then
the state does not change, but a penalty of −1 is still given. Furthermore, if a
Pickup or Putdown is performed in an illegal state the penalty given will be
−10, otherwise it is the normal penalty of −1.

Overall there are 500 different states in this problem if using tabular RL: There
are 25 different grid locations, 5 locations of the passenger (counting the pas-

1Note that an optimal sub-SMDP is not necessarily optimal in the context of the overall
problem, or even in the context of the hierarchy. Section 3.6 describes this problem in further
detail.

12

3.1. THE TAXI PROBLEM

Root

Get Put

Pickup Navigate(t) Putdown

North South East West

t/source t/destination

Figure 3.2: A task graph for the Taxi problem.

senger inside the Taxi as one location), and there are 4 destinations. This gives
a total of 3000 state/action pairs.

Task Decomposition

It is the job of the problem developer to identify the individual subtasks that
the problem should be decomposed into. In the Taxi problem the following four
subtasks have been identified:

• Navigate(t). The parameter t indicates which of the four locations that
is the target location. In this subtask, the goal is to move the taxi from
its current location to t.

• Get. The goal is to move the taxi from its current location to the source
location, and pick up the passenger.

• Put. The goal is to move the taxi from the source location to the desti-
nation location, and put the passenger down.

• Root. This task is the overall task of the system, and represent the entire
Taxi problem.

When defining a subtask there are a number of things that must be done.
First a sub goal must be defined. When this goal is reached, the subtask is
terminated, and control is returned to the calling task. Furthermore, it must
be specified which descendants this task has, both primitive actions, and other
subtasks. The decomposition of the Taxi problem is shown in Figure 3.2. The
task hierarchy is a directed acyclic graph, where each node corresponds to either
a composite or primitive action.

Abstractions and Subtask Sharing

State abstraction is an important concept in hierarchical learning. In the case
of the Taxi problem not all state variables matter in all subtasks, e.g. when the

13

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

navigation subtask is being performed the only thing of importance is where
the taxi is going, whether the passenger is in the taxi or waiting at a location
cannot affect any decisions in the subtask once it has been initialised.

Now that we know that the location of the passenger does not affect the decisions
in the navigate subtask, the Get and Put subtask can share the navigate subtask.
This means that the system would only have to solve the navigate subtask once,
meaning faster learning for the taxi agent, as well as fewer states.

Another abstraction method used is temporal abstraction. By applying tempo-
ral abstractions to the problem, actions that can take a different amount of time,
depending on the state, can be seen as always taking the same amount of time.
The reason why temporal abstractions is applied is to speed up the learning and
planning techniques for MDPs, which is obtained by this simplification.

3.2 Semi-Markov Decision Process

Subtasks are said to be “semi-Markovian” because they can take a variable
stochastic amount of time. Because of this ability an extension of MDPs is
needed. A Semi-Markov Decision Process (SMDP) is a generalisation of MDPs
where actions can take a variable amount of time to complete. SMDPs are
introduced to handle temporal abstraction. Unlike MDPs, where state changes
are only due to the action, in SMDP actions are chosen at discrete points in
time and the state of the system may change continually between the selections
of action.

An SMDP is a four tuple 〈S, A, r, δ〉 where S, A and r are as in an MDP, the
set of states, the set of actions, and the reward function. δ is the multi-step
transition function, δ : S × A → S × N . SMDPs handle the varying amount
of time by letting the variable N denote the number of time steps that action
a requires when it is executed in state s. The transition function will then not
only return a new state, but also the number of steps used to end up in that
state.

3.3 MAXQ Problem Decomposition

The MAXQ decomposition takes an SMDP M and decomposes it into a finite
set of subtasks{M0, M1, . . . , Mn}, where M0 is the root subtask

An unparameterised subtask is a four tuple, 〈Ti, Ai, R̃i, S〉 where

• Ti is the set of termination predicates that partitions S into a set of active
states, SA

i , and a set of terminal states, ST
i . The policy for subtask Mi

can only be executed if the current state s is in SA
i . The subtask Mi

terminates as soon as the SMDP enters a state in ST
i , even if it is still

executing a subtask.

• Ai is the set of actions that can be performed in subtask Mi. These actions
can be both primitive actions and other subtasks, and are referred to as

14

3.4. HIERARCHICAL POLICY

the children of subtask Mi. The sets Ai define a directed acyclic graph
over the subtask M0, . . . , Mn

If a child subtask has formal parameters, then this is interpreted as if the
subtask occurred multiple times in Ai, with one occurrence for each pos-
sible tuple of actual value that could be bound to the formal parameters.

• R̃i is the pseudo-reward function, which specifies a pseudo-reward for each
transition to a terminal state in ST

i . It is used to describe how desirable
each of the terminating states are.

3.4 Hierarchical Policy

A hierarchical policy, π, is a set of policies containing a policy for each subtask:
π = {π0, . . . πn}.

Each policy πi takes a state and returns an action, πi : S → A. The action
A is either a primitive action or a subtask. Algorithm 2 gives a pseudo-code
description of how a hierarchical policy can be executed. A hierarchical policy
is executed using a stack. Each subtask policy takes a state and returns a
primitive action to execute, or a subtask to invoke. When a subtask is invoked,
its name is pushed on the stack and its policy is executed until it enters one
of its terminating states. When a subtask terminates, its name is popped off
the stack. If any subtask on the stack terminates, then all subtasks below the
subtask in the graph are aborted, and control returns to the subtask that had
invoked the terminating subtask. Hence, at any time, Root subtask is located at
the bottom of the stack and the subtask which is currently in control is located
at the top.

3.5 Projected Value Function

The projected value function of hierarchical policy π on subtask Mi, denoted
V π(i, s), is the expected cumulative reward of executing πi, and its descendants,
starting in state s until Mi terminates. We will often denote a subtask by its
index number to avoid cluttering the notations.

The purpose of the MAXQ value function decomposition is to decompose the
projected value function of the root task in terms of all the subtasks.

We let Qπ(i, s, a) be the expected cumulative reward for subtask Mi of per-
forming action a in state s and following hierarchical policy π until subtask Mi

terminates. Action a can either be a primitive action or a child subtask.

The projected value function can then be restated as

Qπ(i, s, a) = V π(a, s) +
∑

s′,N

P π
i (s′, N |s, a)γNQπ(i, s′, πi(s

′)) (3.1)

where N is the number of steps required to complete Mi, s′ is the resulting
state, and πi(s

′) is the best action for Mi in state s′ according to the current
policy.

15

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

Algorithm 2 Pseudo-code for execution of a hierarchical policy.

1: st is the state of the world at time t.
2: Kt is the state of the execution stack at time t.
3: let t = 0; Kt = the empty stack; observe st.
4: push (0, nil) onto stack Kt(invoke the root task with no parameters).
5: repeat

6: while top(Kt) is not a primitive action do

7: let (i, fi) := top(Kt), where i is the "current" subtask, and fi gives the
parameter bindings for i.

8: let (a, fa) := π(s, fi), where a is the action and fa gives the parameter
bindings chosen by policy π.

9: push (a, fa) onto the stack Kt.
10: end while

11: let (a, nil) := pop(Kt) be the primitive action on the top of the stack.
12: execute primitive action a, observe st+1, and receive reward R(st+1|st, a).
13: if any subtask on Kt is terminated in (st+1) then

14: let M ′ be the terminated subtask that is highest (closest to the root)
on the stack.

15: while top(Kt) 6= M ′ do

16: pop(Kt).
17: end while

18: pop(Kt).
19: end if

20: Kt+1 := kt is the resulting execution stack.
21: until Kt+1 is empty

16

3.5. PROJECTED VALUE FUNCTION

The right-most term in this equation is the expected discounted reward of com-
pleting task Mi after executing action a in state s. This term is called the
completion function Cπ(i, s, a).

Using this completion function the Q-function can then be expressed as

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a). (3.2)

The V -function can be expressed as

V π(i, s) =

{
Qπ(i, s, πi(s)) if i is composite∑

s′ P (s′|s, i)R(s′|s, i) if i is primitive
(3.3)

If i is a composite action further decomposition is needed. If i is a primitive
action a leaf node has been reached and further decomposition is not possible.

Equation 3.1, 3.2 and 3.3 are called the decomposition equations because they
recursively decomposes the projected value function for the root task, V π(0, s),
into the projected value function for the individual subtasks and the individual
completion functions, and are therefore known as the decomposition equations.
The only thing that needs to be stored are the C values for all non-primitive
subtasks and the V value for all primitive actions. Using this decomposition
and the stored values all Q values in the hierarchy can be calculated recursively.

The value of Qπ(Root, s, Get) is the cost of executing Get in state s plus what
it takes for Root to terminate once Get has completed.

Qπ(root, s, get) = V π(get, s) + Cπ(root, s, get)

The completion cost C for each node is stored. Therefore the only thing that
needs to be calculated is the value of V π(Get, s). Applying the decomposition
equations, we have that V π(Get, s) = Qπ(Get, s, πGet(s)). This decomposition
continues until a primitive action is encountered. When this happens the com-
bined values are returned recursively. Consider the scenario shown in Figure 3.1,
where the taxi must navigate to R, pickup a passenger and then navigate to B

and put down the passenger. Using the decomposition equations we get the
following:

Qπ(root, s, get) = V π(north) + Cπ(navigate(R), s, north)+

Cπ(get, s, navigate(R)) + Cπ(root, s, get) (3.4)

This means that the complete cost of completing Root amounts to the cost of
the primitive action North, plus the cost of completing Navigate once a north
action has been performed, plus the cost of completing Get once Navigate has
been performed, plus the cost of completing Root once a get has been performed.
The resulting value of this using an optimal policy is

Qπ(root, s, get) = −1 + 0 + (−1) + (−8) = −10

Furthermore a reward of 20 is given for completing the problem resulting in an
overall reward of 10.

17

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

3.5.1 MAXQ Graph

In [2] the author has developed a graphical representation of the task graph,
that he has named the MAXQ Graph. A MAXQ graph for the Taxi problem is
shown in Figure 3.3. The graph contains two kinds of nodes. Max nodes and Q

nodes. The Max nodes correspond to the subtasks in the task decomposition.
There is one Max node for each primitive action and one for each subtask. Each
primitive Max node i stores the value of V π(i, s). The Q nodes correspond to
the actions that are available for each subtask. Each Q node for parent task i,
state s and subtask a stores the value of Cπ(i, s, a). In the MAXQ graph the
children are unordered.

MaxRoot

QGet QPut

MaxGet MaxPut

QPickup QPutdownQNavigateGet QNavigatePut

MaxNavigate(t)

QEast(t) QWest(t) QSouth(t) QNorth(t)

MaxEast MaxWest MaxSouth MaxNorth

t/[destination]t/[source]

MaxPickup MaxPutdown

Figure 3.3: A MAXQ graph for the Taxi problem.

3.6 Optimality in MAXQ

When using MAXQ the best policy that can be expected is a recursively optimal
policy. A recursively optimal policy is a policy where for each individual subtask,
the policies assigned to that tasks descendants are optimal. Recursive optimality
is a kind of local optimality. There is no guarantee that the overall policy
resulting from this will be globally optimal, in fact often it will not be.

Consider the scenario shown in Figure 3.4, where the agent must reach the
location marked with a G. The two subtasks of interest here are the task of
getting out of the left room, and navigating to G in the right room. To exit

18

3.6. OPTIMALITY IN MAXQ

� � � � G
� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

Figure 3.4: The two room maze problem.

the left room the agent must use one of the two doors. The problem when
using recursive optimality is clearly illustrated by the shaded locations. Here
the agent chooses the fastest way out of the room, which in terms of recursive
optimality is the correct action. However, in the context of the overall policy
this behaviour is suboptimal.

The major advantage of recursive optimality is that each subtask is indepen-
dent of objectives that must be reached later in the execution. For example in
Figure 3.4, it has no consequence where in the second room the G is located,
because all that matters in recursive optimality is to find the local optima. Be-
cause of this, the policy for room one remains the same no matter where in
room two the destination is located. This type of state abstraction is discussed
in further detail in Section 3.9.

An advantage of recursive optimality seen from an implementation perspective
is that, because of the independence of other tasks, each subtask(on the same
level), can be distributed to different processes such that learning the individual
policies can happen in parallel independent of parent tasks, thus optimising the
speed at which learning can be done.

3.6.1 Hierarchical Optimality

Another stricter form of optimality is hierarchical optimality [11]. In hierarchical
optimality the best possible overall policy given a hierarchical structure is found.
To achieve this, it is necessary to provide outside information to each subtask.
Consider again the scenario shown in Figure 3.4. Here it is easy to see that in the
shaded area it would be wiser to move north instead of south. To achieve this
the subtask needs information about which door would be the best to use from
a given state. This could easily be implemented into MAXQ by adding different
pseudo rewards for exiting through a certain door, i.e. different terminating
states. However there is a major drawback to this approach. Implementing
this reward would ruin the chance for state abstraction that exists when using
recursive optimality. To illustrate this point, consider what would happen if
the goal G were moved. In this case we would have to learn one policy for

19

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

each location of G, instead of the single policy needed when using recursive
optimality.

So there is a tradeoff between having a high degree of state abstraction, and the
quality of the created policies. In the rest of this report the recursive optimality
solution is used.

One last thing to notice is that hierarchical optimality does not guarantee global
optimality. The hierarchical optimality is restricted by the imposed hierarchical
structure, meaning that if the hierarchical structure is not constructed correctly
then a global optimal policy cannot be achieved.

3.7 The MAXQ-0 Learning Algorithm

MAXQ-0 is a recursive function that executes the current exploration policy
starting at Max node i in state s. Algorithm 3 gives the pseudo code for MAXQ-
0. In the algorithm t represents time steps.

The algorithm performs actions until it reaches a terminating state, at which
point it returns a count of the total number of primitive actions that have been
executed. To execute an action, MAXQ-0 calls itself recursively with the chosen
action as a parameter. If the action is primitive, it is executed and the one-step
reward V (i, s) is updated and the value 1 is returned, which is used in line 10
and 12 to discount the rewards properly. If the action is not primitive, an action
is chosen according to the current exploration policy. The algorithm then calls
itself with the recursive call at line 10 and receives the number of steps, i.e. the
number of primitive actions executed by the chosen subtask. It then uses this
number to update its completion cost. If it is not in a terminating state, a new
action is chosen, otherwise it terminates by returning the total number of steps
used.

3.7.1 Example Execution

In the following a high level description of the MaxQ-0 algorithm is given. This
description focuses on how tasks are pushed on and popped off the execution
stack. When a task is popped of the stack the completion function for that
task is updated. An example of this is when North is popped off the stack
the completion function for C(Navigate(t), s, North) is updated, where s is the
state as it was before the North action.

When a subtask is called in the MaxQ-0 algorithm it is pushed onto an execution
stack. For all problems the Root task will always be at the bottom of the stack,
and the current task will be at the top. Consider the scenario in Figure 3.1.
The taxi is just one location away from being able to pick up the passenger
waiting at location R. In this example the algorithm has already chosen to go
down the Get branch, and then further down the Navigate(R) branch, meaning
the execution stack consists of [Root, Get, Navigate(R)], with Root being the
bottom element, and Navigate(R) the top element.

The next action to be performed is a North action. Because this is a primitive
action it is pushed onto the stack, and popped off after it has been executed.

20

3.7. THE MAXQ-0 LEARNING ALGORITHM

Algorithm 3 Pseudo-code for the MAXQ-0 learning algorithm.

1: Function MAXQ-0(MaxNode i, State s)
2: if i is a primitive MaxNode then

3: execute i, receive reward r, and observe result state s′.
4: V π

t+1(i, s) := (1− αt(i)) · V
π
t (i, s) + αt(i) · rt.

5: return 1.
6: else

7: let count = 0.
8: while Ti(s) is false do

9: choose an action a according to the current exploration policy πx(s).
10: let N = MAXQ-0(a, s).
11: observe result state s′.
12: Cπ

t+1(i, s, a) := (1 − αt(i)) · C
π
t (i, s, a) + αt(i) · γ

NVt(i, s
′)

13: count := count + N
14: s:=s′

15: end while

16: return count

17: end if

18:

19: Main program
20: initialise V π(i, s) and Cπ(i, s, j) arbitrarily.
21: MAXQ-0(root node 0, starting state s0)

Figure 3.5(a) illustrates this. Whenever a task is popped of the stack the state s

of the new top task in the execution stack, in this case Navigate(R), is updated
to the current state [(0, 4), R, B]. Notice that the elements below the new top
element still think s remains the same as it was when it was pushed onto the
stack.

Figure 3.5(b) shows what happens next. Now that the taxi is at the location of
the passenger, Navigate(R) can be popped off the stack, and Get is updated
with the new state.

Next a Pickup action is executed, updating the top stack elements state to
[(0, 4), T, B], where T means that the passenger is located inside the taxi. This
update is seen in Figure 3.5(c).

Because the passenger is inside the taxi the Get subtask terminates, and is
popped off the stack, leaving only the Root task on the stack. This action is
shown in Figure 3.5(d).

Figure 3.5(e) shows the action taken by Root. Because the passenger is inside
the taxi the best action is Put. Following this the Navigate(B) will be pushed
onto the stack. When this is done a number of primitive actions will be called
and ultimately result in [(0, 3), T, B]. Now Navigate(B) can be popped off
the stack, and a Putdown action can be executed. Now the passenger will have
reached its destination, and all that is left to do is to pop the remaining elements
off the stack.

21

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

Root, [(0,3),R,B]

Get, [(0,3),R,B]

Navigate(R), [(0,3),R,B]

North, [(0,3),R,B] North, [(0,4),R,B]

Root, [(0,3),R,B]

Get, [(0,3),R,B]

Navigate(R), [(0,4),R,B]

(a) Executing a North action.

Root, [(0,3),R,B]

Get, [(0,3),R,B]

Navigate(R), [(0,4),R,B]

Root, [(0,3),R,B]

Get, [(0,4),R,B]

(b) Removing the Navigate(R) subtask from the exe-
cution stack.

Root, [(0,3),R,B]

Get, [(0,4),R,B]

Pickup, [(0,4),R,B] Pickup, [(0,4),T,B]

Root, [(0,3),R,B]

Get, [(0,4),T,B]

(c) Executing a Pickup action.

Root, [(0,3),R,B]

Get, [(0,4),T,B]

Root, [(0,4),T,B]

(d) Removing the Get subtask from the execution stack.

Root, [(0,4),T,B]

Put, [(0,4),T,B]

Root, [(0,4),T,B]

Put [(0,4),T,B]

(e) Pushing the Put subtask onto the execution stack.

Figure 3.5: The stack changes occurring when solving the taxi problem.

22

3.7. THE MAXQ-0 LEARNING ALGORITHM

3.7.2 Requirements to the Algorithm

The pseudo code does not show how to handle "ancestor termination". When
an "ancestor" subtask terminates, the descendant subtasks are interrupted and
no C values are updated in any of the interrupted subtasks. An exception is
if the interrupted subtask also is in a terminating state. Then the C value is
updated. Ancestor termination where the C value should not be updated does
not occur in the Taxi problem.

It is also not specified in the pseudo code how to calculate Vt(i, s
′) for composite

actions, since it is not stored in the Max nodes. This is solved by changing the
decomposition equations to Equation 3.5 and Equation 3.6:

Vt(i, s) =

{
maxaQt(i, s, a) if i is composite
Rt(i, s) if i is primitive

(3.5)

where R is the reward function. The Q function is changed to

Qt(i, s, a) = Vt(a, s) + Ct(i, s, a). (3.6)

There are two changes compared to the decomposition equations. First Vt(i, s)
is defined in terms of the Q value of the best action a. This is done, because
no optimal policy is present. Second, there are no π superscript, because the
current value function is not based on a fixed hierarchical policy.

To find the best action a in Equation 3.5 a complete search of all paths through
the MAXQ graph is needed, starting at node i and ending at the leaf nodes.
Algorithm 4 gives pseudo code for a recursive function that implements a depth-
first search.

Algorithm 4 Pseudo-code for greedy execution of the MAXQ graph.

1: Function EvaluateMaxNode(i, s)
2: if i is a primitive MaxNode then

3: return 〈Vt(i, s), i〉.
4: else

5: for all j ∈ Ai do

6: let 〈Vt(j, s), aj〉 = EvaluateMaxNode(j, s).
7: end for

8: let jbest = argmaxjVt(j, s) + C(i, s, j).
9: return

〈
(Vt(j

best, s) + Ct(i, s, j
best))), ajbest

〉

10: end if

The pseudo-code returns both Vt(j
best, s) + Ct(i, s, j

best)) and the action ajbest

at the leaf node that achieves this value.

The exploration policy πx from the Pseudo-code of MAXQ-0 also needs to be
specified. It must be an ordered GLIE policy.

An ordered GLIE policy (Greedy in the Limit with Infinite Exploration) is a
policy that converges in the limit to an ordered greedy policy, which is a greedy
policy that imposes an arbitrary fixed order ω on the available actions and break
ties in favour of the action a that appears earliest in that order.

23

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

This property ensures that MAXQ-0 converges to a uniquely defined recursively
optimal policy. A problem with recursive optimality is that in general, each
Max node i will have a choice of many different locally optimal policies. These
different policies will all achieve the same locally optimal value function, but can
result in different probability transition functions P (s′, N |s, i). These differences
may lead to better or worse policies at higher levels of the MAXQ graph, even
though they make no difference inside subtask i. When using an ordered GLIE
policy it is certain that the same local optimal policy is obtained each time thus
avoiding the problem.

3.8 The MAXQ-Q Learning Algorithm

The MAXQ-0 learning algorithm only works when the pseudo-reward function,
R̃, is zero. When it is different from zero the MAXQ-Q algorithm should be used
instead. The MAXQ-Q algorithm maintains two completion functions. One, C̃,
to use inside the subtasks, and one, C, to use outside of the subtasks. C(i, s, a) is
the completion function which is also used in the MAXQ-0 algorithm and is the
one used by the parent tasks to compute V (i, s). The other completion function,

C̃(i, s, a), is only used inside task i to find the locally optimal policy. This
function will use both the real reward function, R(s′|s, a), and the pseudo-reward

function, R̃(s′|s, a). The pseudo code for MAXQ-Q is shown in Algorithm 5.

The MAXQ-Q algorithm maintains a stack containing the sequence of states
visited in each node. If the algorithm is called with a primitive action the
state s is pushed on the stack, the action is performed and the value function is
updated. Then the stack is returned. If the algorithm is called with a composite
action an action a is chosen using the current exploration policy. The algorithm
then calls itself recursively storing all the states visited while executing the
chosen action a. Then the completion functions are updated with the states
visited. If the resulting state is a terminating state the stack is returned.

3.8.1 All-States Updating

In Algorithm 5 All-States Updating is performed. All-states updating is a way
of speeding up learning by updating the completion function for more than
one state at a time. When action a is chosen for Max node i the execution
of a will move the environment through a series of states (one if the action is
primitive). A property of SMDPs is that action selection for subtask i in state
s is independent of previous states of the environment. This means that no
matter in which of the intermediate states between s and the resulting state s′

the agent starts in, the result will always be s′. Knowing this, we can update
the completion function for all of the intermediate states using lines 15-17 in
Algorithm 5.

This approach can be applied to MaxQ-0 as well.

24

3.8. THE MAXQ-Q LEARNING ALGORITHM

Algorithm 5 Pseudo-code for the MAXQ-Q learning algorithm.

1: Function MAXQ-Q(MaxNode i, State s)
2: let seq =() be the sequence of states visited while executing i.
3: if i is a primitive MaxNode then

4: execute i, receive reward r, and observe result state s′.
5: Vt+1(i, s) := (1− αt(i)) · Vt(i, s) + αt(i) · rt.
6: push s onto the beginning of seq

7: else

8: let count = 0.
9: while Ti(s) is false do

10: choose an action a according to the current exploration policy πx(s)
11: let childseq = MAXQ-Q(a, s), where childseq is the sequence of states

visited while executing action a.
12: observe result state s′

13: let a∗ = argmaxa′ [C̃t(i, s
′, a′) + Vt(a

′, s′)].
14: let N = 1.
15: for all s ∈ childseq do

16: C̃t+1(i, s, a) := (1− αt(i)) · C̃t(i, s, a) + αt(i) · γ
N [R̃i + C̃t(i, s

′, a∗) +
Vt(a

∗, s′)].
17: Ct+1(i, s, a) := (1 − αt(i)) · Ct(i, s, a) + αt(i) · γ

N [Ct(i, s
′, a∗) +

Vt(a
∗, s′)].

18: end for

19: append childseq onto the front of seq.
20: s := s′.
21: end while

22: end if

23: return seq.

25

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

3.9 State Abstraction

As mentioned in the introduction to this chapter one of the motivating factors
for decomposing a problem into a hierarchical structure is the opportunities it
presents for state abstraction in the individual subtasks. In the following, five
rules under which abstraction can be safely applied are presented. To illustrate
the use of these rules the Taxi problem will be used to show how they can be
applied in practice.

A state s is represented as a vector of state variables. In the Taxi problem the
state variables it takes to describe the entire problem are

[(x, y), P, D]

where (x, y) is the coordinate of the taxi. In the current setup of the taxi problem
the world consists of a 5 × 5 grid resulting in 25 possible locations of the taxi.
The P represents the location of the passenger. The passenger can be in five
different locations namely on R, G, B, Y , or inside the taxi T . The destination
of the passenger is represented by D. There are four possible destinations of
the passenger; R, G, B, and Y .

The values that needs to be represented are the values of the value function for
each primitive action, as well as what it takes to complete a task once a subtask
has completed.

In a state, all state variables are not necessary for all subtasks. State abstraction
is the task of only representing the state variables that are relevant for a given
subtask and abstracting away from the others; e.g. the destination of the pas-
senger is irrelevant for the Pickup task. The state abstractions are used for the
state given to the completion function and the state given to the value function
of each primitive action. The job of state abstraction is to reduce the number
of values needed for each of these. The list below shows in which categories the
values are distributed.

Cπ(Root, s, Get) Cπ(Root, s, Put)
Cπ(Get, s, Navigate(t)) Cπ(Get, s, P ickup)
Cπ(Put, s, Navigate(t)) Cπ(Put, s, Putdown)
Cπ(Navigate(t), s, North) Cπ(Navigate(t), s, South)
Cπ(Navigate(t), s, East) Cπ(Navigate(t), s, West)
V π(North, s) V π(South, s)
V π(East, s) V π(West, s)
V π(Pickup, s) V π(Putdown, s)

Without state abstraction the states would look as in Figure 3.6. The num-
ber shown after each completion function and value function is the number of
possible values for the given completion function or value function.

As can be seen the total number of values to be represented by the completion
functions and value functions when no abstraction is applied will far exceed
that which is required by tabular learning. In tabular learning we have the six
actions, the 25 locations of the taxi, the five locations of the passenger and the
four destinations for a total of 3000 values. For each completion function, the

26

3.9. STATE ABSTRACTION

Get(1000)

C(Get,[(x,y),P,D],Navigate(t))(500)

C(Get,[(x,y),P,D],Pickup)(500)

Put(1000)

C(Put,[(x,y),P,D],Navigate(t))(500)

C(Put,[(x,y),P,D],Putdown)(500)

Navigate(t)(8000)

C(Navigate(t),[(x,y),P,D,t],North)(2000)

C(Navigate(t),[(x,y),P,D,t],South)(2000)

C(Navigate(t),[(x,y),P,D,t],East)(2000)

C(Navigate(t),[(x,y),P,D,t],West)(2000)

Root(1000)

C(Root,[(x,y),P,D],Get)(500)

C(Root,[(x,y),P,D],Put)(500)

Pickup(500)

V(Pickup,[(x,y),P,D])(500)

Putdown(500)

V(Putdown,[(x,y),P,D])(500)

North(500)

V(North,[(x,y),P,D])(500)

South(500)

V(South,[(x,y),P,D])(500)

East(500)

V(East,[(x,y),P,D])(500)

West(500)

V(West,[(x,y),P,D])(500)

t/source t/destination

Figure 3.6: The states of each task when no state abstraction is applied.

taxi location, the passenger location, and the destination would be needed, thus
the number of states in each subtask would be 500. For Root with two child
tasks the completion functions would require a total of 1000 values. The Get

and Put subtasks each has two child actions. This would mean 2 · 500 values
for each task. The Navigate subtask has 4 child subtasks, but the parameter
t can also take on four different values, bringing the number of values needed
for navigate up to 8000. Finally, for each primitive action 500 values would
be needed, bringing the total number of values to be represented in the taxi
problem up to 14000.

In the following we will show how, by applying the safe abstraction rules, the
total number of values can be reduced to only 632. In some of the rules we
will refer to the state variable Source. Source is a special case of the passenger
variable. It is used in cases where the passenger can never be found in the taxi,
thus there is no need for a fifth value.

3.9.1 Leaf Irrelevance

A set of state variables is irrelevant to a value function for a primitive action if,
no matter the configuration of the variables, the reward remains the same.

For all the primitive navigation actions the only penalty that can be given is
−1, therefore it is only necessary to represent one value in each of these actions.
For the pickup and putdown actions there are two values, namely, −1 if the taxi
is in a legal state, and −10 if it is in an illegal state. For pickup a legal state is
when the taxi is in the same location as the passenger. For putdown it is when
the taxi is at the destination, and the passenger is in the taxi. By applying leaf
irrelevance we have reduced the number of values needed to represent the value
functions from 3000 to only 8. Figure 3.7 shows the updated task graph.

There are no explicit state variables called Legal or Illegal. These variables are

27

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

Get(1000)

C(Get,[(x,y),P,D],Navigate(t))(500)

C(Get,[(x,y),P,D],Pickup)(500)

Put(1000)

C(Put,[(x,y),P,D],Navigate(t))(500)

C(Put,[(x,y),P,D],Putdown)(500)

Navigate(t)(8000)

C(Navigate(t),[(x,y),P,D,t],North)(2000)

C(Navigate(t),[(x,y),P,D,t],South)(2000)

C(Navigate(t),[(x,y),P,D,t],East)(2000)

C(Navigate(t),[(x,y),P,D,t],West)(2000)

Root(1000)

C(Root,[(x,y),P,D],Get)(500)

C(Root,[(x,y),P,D],Put)(500)

Pickup(2)

V(Pickup,[legality])(2)

Putdown(2)

V([legality])(2)

North(1)

V(North,[])(1)

South(1)

V(South,[])(1)

East(1)

V(East,[])(1)

West(1)

V(West,[])(1)

t/source t/destination

Figure 3.7: The states of each task after leaf irrelevance has been applied.

thought of as abstractions over a set of state configurations. Any given state
can be categorised as either a legal state, or an illegal state.

3.9.2 Subtask Irrelevance

There are two conditions that must be satisfied before a variable can be ab-
stracted away using subtask irrelevance:

1. If a variable is not needed to represent the parent task itself, then the
variable can be removed.

2. If a state variable is not used by any of the child tasks, then that variable
can be removed using subtask irrelevance.

Together these two conditions make up the subtask irrelevance abstraction rule.

Starting from the bottom of the task graph the first place where subtask irrel-
evance can be applied is in the completion functions for Navigate. Applying
the first rule P and D are not needed in the parent task. Because the child
subtasks does not have any variables in its state, the best state we can achieve
in Navigate by applying subtask irrelevance is [(x, y), t].

In Get the destination of the passenger can be abstracted away, leaving only
the passenger location. Furthermore, in the case where the passenger is inside
the taxi does not need to be represented because whenever the passenger is in
the taxi Get will have terminated. Much the same happens in Put, where the
passenger location can be removed.

For Root no variables can be removed using subtask irrelevance because accord-
ing to condition (2) no variables used in a subtask can be removed. Figure 3.8
updates the graph to also include subtask irrelevance.

28

3.9. STATE ABSTRACTION

Get(200)

C(Get,[(x,y),P],Navigate(t))(100)

C(Get,[(x,y),P],Pickup)(100)

Put(200)

C(Put,[(x,y),D],Navigate(t))(100)

C(Put,[(x,y),D],Putdown)(100)

Navigate(t)(400)

C(Navigate(t),[(x,y),t],North)(100)

C(Navigate(t),[(x,y),t],South)(100)

C(Navigate(t),[(x,y),t],East)(100)

C(Navigate(t),[(x,y),t],West)(100)

Root(1000)

C(Root,[(x,y),P,D],Get)(500)

C(Root,[(x,y),P,D],Put)(500)

Pickup(2)

V(Pickup,[legality])(2)

Putdown(2)

V([legality])(2)

North(1)

V(North,[])(1)

South(1)

V(South,[])(1)

East(1)

V(East,[])(1)

West(1)

V(West,[])(1)

t/source t/destination

Figure 3.8: The states of each task after subtask irrelevance has been applied.

At this point, after applying leaf and subtask irrelevance the total number of
values have been reduced to 1808.

3.9.3 Result Distribution Irrelevance

The rule of result distribution irrelevance states that if the state variables can
be divided into two disjoint sets X and Y . The variables in Y are irrelevant for
the result distribution of an action if the actions result state remains the same
no matter the value of Y . When this is the case, Y can be abstracted away.

For the completion function for Put and Get when a navigate is completed, it
is true that no matter what location the taxi starts in, it will always end up
in the same state, thus it will always yield the same result. Therefore the taxi
location can be abstracted away for both Get and Put in the navigate child
instance. Doing so leaves only the source for Get, and the destination for Put.

In the Root subtask result distribution irrelevance can also be applied. Here the
taxi location can be abstracted away, leaving only the source location and the
destination. The graph created after applying result distribution irrelevance is
shown in Figure 3.9.

At this point, after applying leaf and subtask irrelevance the total number of
states have been reduced to 1808. Now that result distribution irrelevance has
also been applied, the total number of values needed to be represented is 648.

3.9.4 Termination

The termination rule can be applied when termination of a subtask guarantees
the termination of the parent subtask. If this is the case, then the completion
cost Cπ(i, s, a) equals zero, and does not need to be represented.

29

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

Get(104)

C(Get,[P],Navigate(t))(4)

C(Get,[(x,y),P],Pickup)(100)

Put(104)

C(Put,[D],Navigate(t))(4)

C(Put,[(x,y),D],Putdown)(100)

Navigate(t)(400)

C(Navigate(t),[(x,y),t],North)(100)

C(Navigate(t),[(x,y),t],South)(100)

C(Navigate(t),[(x,y),t],East)(100)

C(Navigate(t),[(x,y),t],West)(100)

Root(32)

C(Root,[P,D],Get)(16)

C(Root,[P,D],Put)(16)

Pickup(2)

V(Pickup,[legality])(2)

Putdown(2)

V([legality])(2)

North(1)

V(North,[])(1)

South(1)

V(South,[])(1)

East(1)

V(East,[])(1)

West(1)

V(West,[])(1)

t/source t/destination

Figure 3.9: The states of each task after result distribution irrelevance has been
applied.

In the taxi task it holds that, in all states where the passenger is located at the
destination, Put will succeed and result in Root terminating. What this rule is
saying is that if the termination predicate is the same for both parent and child
the termination rule can be applied.

3.9.5 Shielding

If there for subtask Mi exists a state s, such that for all paths from the root of
the MaxQ graph down to, and including, Mi exists a subtask that is terminated,
then there is no need to represent the completion cost for this state because it
can never be executed.

In the Put task it is the case that whenever the passenger is not in the taxi
the completion cost of Put or any of its ancestor tasks (i.e. root) will be zero.
Because of this and that the termination rule Put does not need to represent
any completion costs at all. No matter the state, the cost will be zero.

The termination and shielding rules in combination makes it so that no values
needs to be represented for the completion cost for root once a put has been
completed. This was the last termination rule. The final result can be seen in
Figure 3.10, here the total number of values needed to be represented is 632.

3.10 Test of HRL

In order to test HRL, the Taxi problem from Section 3.1 was implemented.
During learning the taxi can start in any of the 25 locations. The source and
the destination are randomly chosen(the source location is never the same as
the destination location).

30

3.10. TEST OF HRL

Get(104)

C(Get,[P],Navigate(t))(4)

C(Get,[(x,y),P],Pickup)(100)

Put(104)

C(Put,[D],Navigate(t))(4)

C(Put,[(x,y),D],Putdown)(100)

Navigate(t)(400)

C(Navigate(t),[(x,y),t],North)(100)

C(Navigate(t),[(x,y),t],South)(100)

C(Navigate(t),[(x,y),t],East)(100)

C(Navigate(t),[(x,y),t],West)(100)

Root(16)

C(Root,[P,D],Get)(16)

C(Root,[]],Put)(0)

Pickup(2)

V(Pickup,[legality])(2)

Putdown(2)

V([legality])(2)

North(1)

V(North,[])(1)

South(1)

V(South,[])(1)

East(1)

V(East,[])(1)

West(1)

V(West,[])(1)

t/source t/destination

Figure 3.10: The resulting states after all abstraction rules has been applied.

When testing the learnt policy, the taxi will start in location (2, 2) and navigate
to the Y location (0, 0), pickup the passenger, and then navigate to the B

location (3, 0).

A trial run consists of first a learning episode. When this episode is completed
the learnt policy is tested. If the testing goal has not been reached another
learning episode followed by a test is performed.

Each experiment consists of a number of trials. This is because we want to
take into consideration cases where the policy converges extraordinarily fast
and extraordinarily slow.

When initialising a trail, the first episode chooses its actions completely at
random. For each learning episode following this an exploration variable x

decreases thus reducing the chance of a random action being chosen. The way
x is calculated is shown in Equation 3.7

x =

{
(1− iterations

500) if (1− iterations
500) > 0.2

0.2 if (1− iterations
500) ≤ 0.2

(3.7)

when selecting the action x is compared to a random number between 0 and 1.
If x is bigger than this number a random action is chosen.

The learning factor α from line 12 in Algorithm 3 is shown in Equation 3.8.

α =

{
(1 − visits

f
) if (1− visits

f
) > 0.2

0.2 if (1− visits
f

) ≤ 0.2
(3.8)

The visits parameter indicates how many times the state/action pair has been
visited previously, and f is a constant. In the tests f is changed in an attempt to
find the fastest convergence for the given starting state. As the state is visited

31

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

Learning Time

0

5

10

15

20

25

30

35

40

45

50

55

60

� = 1 f=1000 f = 750 f = 500 f = 250 f = 125 f = 75 f = 50

learning factor setting

A
ve

ra
g

e
le

ar
n

in
g

 t
im

e

Learning Time

Standard Deviation

Figure 3.11: Results for different settings of f , and the standard deviation for
each setting.

more and more times, the value returned becomes lower and lower, meaning
more emphasis is put on old data and less on new data.

Because the taxi problem is deterministic, meaning any one state/action pair
leads to only one resulting state, the learning factor only serves to delay conver-
gence. Figure 3.11 shows the average number of episodes needed for an optimal
policy to be found under different settings of f . The values for each setting is an
average found from 100 trails. As can be seen the value of the deviation more
or less increases as the value of f decreases.

On average when running the algorithm with α set to 1, meaning no emphasis
on old data, the average number of episodes to find an optimal policy was 20.22,
whereas the closest competitor was f = 1000, which converged at an average of
21.43. It is also clear that the lower the value of f , the higher the convergence
time. Therefore the optimal update function in Algorithm 3 would be:

Cπ
t+1(i, s, a) = (1 − 1) · Cπ

t (i, s, a) + 1 · γN · Vt(s
′, i) = γN · Vt(s

′, i) (3.9)

3.10.1 The Taxi Problem and Tabular Reinforcement Learn-

ing

To show how the HRL algorithm performs compared to the tabular approach,
the TRL algorithm described in Chapter 2 has been implemented. In the fol-
lowing the two implementations are compared. In the implementation of the
tabular approach the taxi is given a reward of 1 at the end of the episode instead
of a reward each time the taxi performs an action.

Furthermore, some post execution optimising have been made to speed up
learning. First instead of updating Q̂ during execution of the algorithm each

32

3.10. TEST OF HRL

state/action pair encountered is pushed onto a stack. Upon completion of the
algorithm the state/action pairs are popped off the stack and each is updated
according to their place N in the stack, meaning the top pair is given a reward
of 1, rt = 1, while the next is given a reward of rt+1 = rt · γ

N , where . The
state/action pairs along with their assigned values are then compared to the

values in Q̂, and if they are higher they replace the old. Using this setup the
values propagate a lot faster through the Q̂ table, which in turn means faster
convergence.

In the HRL experiment the exploration policy selects an exploration variable
based on the number of trials performed, thus increasing the chance for a learnt
action to be chosen. In the TRL experiment the probability distribution seen
in [4] is used. This formula is shown in Equation 3.10.

P (ai|s) =
k− bQ(s,ai)

∑
j k− bQ(s,aj)

where k > 0 (3.10)

In Equation 3.10 k is a constant. Setting k close to zero means more exploiting,
and closer to one means more exploration. In this experiment k was set to 0.5.

In average the TRL algorithm converged in 28.3 episodes. This is more than 8
episodes more than what required by HRL. However it should be mentioned that
the execution of a single episode is faster in TRL. This could, in part, be due
to the implementations, but mainly because there are much fewer calculations
in the tabular approach. This advantage of TRL is expected to diminish as the
table gets bigger, and each lookup becomes more expensive.

Looking at the distribution of trials over the number of episodes it takes to reach
a perfect path for the taxi in the testing example, there is a clear difference
between the two algorithms. Figure 3.12 shows the result distribution collected
based on 1000 trials.

The two figures does not show how long it takes for the entire problem to
converge but how long it takes the algorithm to find an optimal policy for the
problem mentioned in the beginning of Section 3.10 i.e. for navigating from (2, 2)
to (0, 0), picking up the passenger, and then navigating to (3, 0) and putting
down the passenger.

In Figure 3.12 the x axis shows the number of episodes it takes for a trial to
converge. The y axis shows how many times each of these trials occurs. It is
clear that the result distribution from the TRL algorithm is much more scattered
than that of HRL, meaning that for HRL, a fewer number of iterations is needed
for the average episode count to stabilise.

One might argue that a reduction of 8 time steps in the HRL approach compared
to the TRL approach does not make up for the added number of calculations.
In fact, this claim is confirmed when looking at the time it takes to execute a
trial. in the tabular approach a single trial takes on average 80.05 miliseconds,
whereas the hierarchical approach takes 331.98. Because of this the tabular
approach will be the best to use on this problem if the number of trials, and the
space used is of no consequence.

This experiment is not very encouraging for the hierarchical approach. However,
this problem might be too small to really demonstrate the power of hierarchical

33

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

0

10

20

30

40

50

60

0 25 50 75 100 125 150 175

Episodes

O
cc

u
rr

en
ce

s

(a) TRL occurrence distribution

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Episodes

O
cc

u
rr

en
ce

s

(b) HRL occurrence distribution

Tabular
Time in milliseconds for one trial 80,05
Mean 28,0961
Median 19
Standard Deviation 26,96299
Minimum 1
Maximum 182
Count 1000

(c) Table based statistics

Hierarchical
Time in milliseconds for one trial 331,98
Mean 22,35335
Median 20
Standard Deviation 11,28952
Minimum 2
Maximum 93
Count 1000

(d) Hierarchical based statistics

Figure 3.12: Occurrence distribution and statistics for the 5 by 5 grid Taxi
problem.

34

3.10. TEST OF HRL

9
8 R
7
6 G
5 �
4
3
2
1
0 Y B

0 1 2 3 4 5 6 7 8 9

Figure 3.13: The 10 by 10 grid.

reinforcement learning. The next section compares HRL and TRL on a scaled
up instance of the taxi problem.

Testing on a Larger Problem

To test the scaling abilities of both approaches, the locations that the taxi can
navigate was increased from 25 to 100, that is, from a 5 × 5 grid to a 10 × 10
grid. Doing this increases the number of values to be represented by TRL to
12000, (10 · 10 · 5 · 4 · 6), and the number of values for HRL to 2432. In HRL the
only changes occurs in completion functions where the state requires the taxi
location.

As a consequence of the new grid, the source and destination locations needs to
be moved. The change is as seen in Figure 3.13.

When testing the learnt policy the taxi will start in location (5, 5) navigate to
Y , pickup the passenger and navigate to B, where it will put the passenger
down.

Figure 3.14 shows the statistics generated for the TRL and HRL experiment. As
can be seen the HRL implementation is a lot faster than its tabular counterpart.
In fact the hierarchical implementation only uses in average 61.914 episodes
to find an optimal path, whereas the tabular implementation uses in average
477.79.

What is even more interesting is the average time it takes to execute a trial. In
HRL a trial takes on average 786.43 milliseconds, whereas TRL takes on average
12888.23 milliseconds. The hierarchical solution only increased the time spend
with a factor of 2.37 when changing from the small board to the big board. The
tabular solution increased the time spent with a factor of 161.1. Looking at
these numbers it is not difficult to imagine what will happen when problems get
even larger.

The explanation of why the tabular implementation performs so much worse
than its hierarchical counterpart when scaling up, has to do with the number of
foolish actions that can be performed by TRL as opposed to that of HRL. As

35

CHAPTER 3. HIERARCHICAL REINFORCEMENT LEARNING

TRL
Time in milliseconds for one trial 12888,23
Mean 477,79
Median 299
Standard Deviation 539,9542
Minimum 1
Maximum 3234
Count 500

(a) Table based statistics.

HRL
Time in milliseconds for one trial 786,43
Mean 61,914
Median 59
Standard Deviation 20,26158
Minimum 17
Maximum 133
Count 500

(b) Hierarchical based statistics.

Figure 3.14: Statistics for the 10 by 10 grid Taxi problem.

an example consider the state [(6, 6), Y, B]. In this state the taxi is in location
(6, 6). The passenger is at location Y , meaning it has not yet been picked up.
The destination is at B. In HRL when in the Get subtask there are only 2
possible actions, namely Pickup and Putdown. For the same state in TRL
there are 6 possible actions, meaning the possibility of performing a foolish
action is much greater. Because the actions can be performed in all states, the
number of actions performed in TRL, when not much have been learnt yet, will
be much larger than what will be the case in HRL. Because the number of grid
locations is 4 times greater in the 10 × 10 instance the disadvantages of TRL
becomes that much more apparent than they were in the 5× 5 instance.

3.11 Summary

In this chapter the hierarchical reinforcement learning algorithm introduced by
Dietterich was presented. As can be seen by the results this method offers a lot
compared to tabular Q learning when it comes to time and space issues. The
advantages just becomes more and more apparent when the problems gets more
complex.

In the next chapter this algorithm will be expanded to handle more than one
agent. The transition from single to multi-agent learning presents a number of
new challenges that needs to be addressed. These challenges are described in
great detail.

36

Chapter 4

Homogeneous Multi-Agent

Hierarchical Reinforcement

Learning

Optimal behaviour for an agent in a multi-agent system will usually depend on
the behaviour of the other agents in the system and their behaviour will often
not be predictable.

Multi-agent learning studies algorithms for selecting actions in environments,
where multiple agents coexist. One thing that makes this a complicated problem
is that the behaviour of other agents will change as they adapt their policy
to achieve their own goals. Therefore, the environment will be highly non-
stationary at the beginning of the learning process, and only gradually become
stable.

Multi-agent learning is challenging for two main reasons: Curse of dimension-
ality, the number for parameters to be learned increases dramatically as the
number of agents increases, and partial observability, the states and actions of
the other agents which are required for an agent to make optimal decisions may
not be fully observable and communication between the agents can be costly.
We seek to minimise the effect of these two problems by using HRL. An initial
hierarchical task structure is assumed given in advance. Since we in this report
are only interested in cooperative agents, we define a subtask to be either a co-
operative subtask, in which the agents can communicate, or a non-cooperative
subtask, in which the agents are unaware of each other. Cooperative subtasks
are usually defined at the highest levels of the hierarchy, because the lower level
the tasks are, the more primitive the task will be. In the Taxi problem it would
be strange to let the lowest level consist of cooperative subtasks, since primitive
actions should not depend on the other agents.

37

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

4.1 Introduction to the Approach Used

The work in this chapter on Multi-Agent Hierarchical Reinforcement Learning
(MHRL) elaborates on the work done by Ghavamzadeh and Madadevan in [8].
It also expands the framework for HRL presented in Chapter 3. In Multi-Agent
Hierarchical Reinforcement Learning the authors presents Algorithm 7 and the
projected value function in the MHRL setting.

The idea is that by letting cooperative agents see the high level actions (i.e. the
actions located high in the task graph) of other agents, coordination can be
achieved. Because the agent only knows the high level actions of the other
agents, there is no coordination of primitive tasks, thus reducing both the com-
plexity of the implementation as well as the communication cost and hence the
time needed to learn an optimal policy.

Below four advantages to this approach are listed.

• The explicit task structure of HRL will speed up the learning because of
improved scaling ability.

• Since it would be normal only to communicate in high-level tasks and
that high-level tasks can take a long time to complete, communication is
needed less often.

• That the agents only communicate at the higher levels will also speed up
the learning, since the agents will not have to worry about the low level
details of other agents.

• The agents only need local state information, the locations of the other
agents do not need to be known. This is based on the idea that the agent
can get a rough idea of what states the other agents might be in just by
knowing about the high level action being performed by the other agents.

However this approach is not with out drawbacks. The single largest drawback
of using this approach is

• Since agents only coordinate at a high level, the policy achieved might not
be the optimal policy.

This drawback is often encountered when trying to limit coordination between
agents. It is a tradeoff between how fast we want to learn and how close to an
optimal policy we want to get.

When executing a multi-agent learning algorithm the communication needed
between the agents amounts to finding out what high level actions that are
being performed by other agents. We assume communication is free, reliable,
and instantaneous, i.e. the communication cost is zero, no messages are lost in
the environment, and each agent receives information about the other agents
before taking the next action.

38

4.2. MULTI-AGENT SEMI-MARKOV DECISION PROCESS

4.2 Multi-agent Semi-Markov Decision Process

A multi-agent SMDP (MSMDP) [5] is a six tuple, 〈α, S, A, δ, R, τ〉 where

• A is the set of actions.

• α is the set of n agents, with each agent j ∈ α having a finite set Aj of
individual actions. An element ~a =

〈
a1, . . . , an

〉
of the joint-action space

~A = A1×· · ·×Aj represents the concurrent execution of action aj by each
agent j.

• S and R are as in a SMDP, the set of states and the reward function.

• δ is the multi-step transition function, δ : S× ~A→ S ×N . The difference
from the transition function in SMDP is the ~A which consists of an action
from each agent in the environment. The variable N denotes the number
of time steps that the joint action ~a requires when it is executed in state
s.

• τ is the termination strategy. Since the actions in the joint-action are
temporally extended, they may not terminate at the same time. Therefore
δ depends on how the decision epochs are defined.

Three termination strategies τany , τall and τcontinue for temporally extended
joint-actions were investigated in [12]. In the τany termination strategy the
decision epoch terminates when one of the actions in the joint-action has ter-
minated, thereby interrupting the other actions, meaning that when one agent
finishes an action in a shared subtask all agents will terminate their actions in
the shared subtask, even if they have not completed their tasks. In the τall ter-
mination strategy the decision epoch terminates when all of the actions in the
joint-action have terminated. When an agent finishes its action it is idle until
all the agents have finished their actions. In the τcontinue termination strategy
the decision epoch ends when the first action within the joint-action currently
being executed terminates. As opposed to τany the other agents are not in-
terrupted in their actions and only the terminated agent selects a new action.
This means that the agents do not necessarily share decision epochs. Figure 4.1
illustrates the difference between the three termination strategies. The termina-
tion strategies can be categorised as either synchronous or asynchronous. τany

and τall are synchronous because all agents make a decision at every decision
epoch. τcontinue is asynchronous since an agent does not need to wait for the
other agents before choosing its next action. The choice of termination strategy
depends on the problem at hand. Since it is natural to let the action selections
in the Taxi problem be asynchronous we assume in the rest of this report that
the τcontinue termination strategy is used, meaning that an agents epoch is not
affected by another agent terminating its task, except for the influence it will
have on its policy.

39

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

a1

a3

a2

a1 terminates

interrupted

a=<a1,a2,a3>
→

x

x

(a) τany : The decision epoch ends when
an action terminates. The terminating
action a1 causes actions a2 and a3 to
be interrupted. A new decision epoch
begins afterwards.

a1

a3

a2

a2 terminates

a=<a1,a2,a3>
→

(b) τall: The decision epoch ends when
all the actions have terminated. After-
wards a new decision epoch can begin.
No new actions are chosen before all
agents have terminated their current ac-
tion.

a1

a3

a2

a1 terminates

a'
1

a=<a1,a2,a3>
→

(c) τcontinue: Each agent has its own
decision epochs and starts a new one af-
ter each action.

Figure 4.1: The three termination strategies.

40

4.3. TASK DECOMPOSITION

4.3 Task Decomposition

While an MSMDP provides the theoretical basic for temporal abstraction in the
multi-agent setting it does not specify how tasks can be broken up into subtasks.
A subtask is defined in one of two ways. Either a subtask is cooperative or it is
non-cooperative. In a cooperative subtasks the agents are able to communicate.
In the non-cooperative the agents does not need any knowledge of each other
and are therefore not able to communicate. In this report we are only interested
in cooperative agents and therefore assume that the agents do not wants to work
against each other. If a subtask is a non-cooperative subtask, it is represented
as in the single agent environment. If the subtask is a cooperative subtask, it is

represented as a six tuple
〈
α, Ti, Ai, R̃i, Si, τcontinue

〉
. The difference from the

non-cooperative subtask is the two added elements α and τcontinue. Si is defined
as the single-agent state space. This is an approximation that greatly simplifies
learning, and it is based on the thought that an agent can get a rough idea of
what state the other agents are in just by knowing which high-level action they
are performing [5]. Ai is the joint action space over the actions available to the
agents in subtask i.

4.4 Hierarchical Multi-Agent Policy

Algorithm 6 gives a pseudo-code description of how a hierarchical policy can
be executed in a multi-agent environment. In the algorithm each agent makes
one primitive action before passing the control to the next agent. The primitive
action is found like in Algorithm 2.

4.5 Projected Value Function

The projected value function of a hierarchical policy π on subtask Mi in the
multi-agent setting, denoted V π(i, s,~a), is the expected cumulative reward of
executing πi, and its descendents, starting in state s until Mi terminates.

The function decomposition is like in Section 3.5 except for the completion
function for a cooperative subtask.

The joint completion function for agent j, Cj(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)
is the expected discounted cumulative reward of completing cooperative subtask
i after taking action aj in state s while other agents are performing subtasks
ak, ∀k ∈ 1, . . . , n, k 6= j. The reward is discounted back to the point in time
where aj begins execution.

The projected value function can be restated as Equation 4.1 if aj is a non-
cooperative subtask.

Qjπ

(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj) = V jπ

(aj , s)+

Cjπ

(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj) (4.1)

41

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

Algorithm 6 Pseudo-code for execution of a hierarchical multi-agent policy.

1: α is the set of n agents.
2: st is the state of the world at time t.
3: K1

t , . . . , Kn
t are the states of the execution stacks at time t for the agents

1, . . . , n.
4: let t = 0; K1

t , . . . , Kn
t = the empty stack; observe st.

5: push (0, nil) onto each stack K1
t , . . . , Kn

t (invoke the root task with no pa-
rameters).

6: repeat

7: Choose an agent j with a non-empty execution stack according to a round
robin method.

8: while top(Kj
t) is not a primitive action do

9: let (i, fi) := top(Kj
t), where i is the "current" subtask, and fi gives the

parameter bindings for i.
10: if i is a non-cooperative task then

11: let (a, fa) := π(s, fi), where a is the action and fa gives the parameter
bindings chosen by policy π.

12: else

13: let (a, fa) := π(s, fi,~a), where a is the action and fa gives the pa-
rameter bindings chosen by policy π.

14: end if

15: push (a, fa) onto the stack K
j
t .

16: end while

17: let (a, nil) := pop(Kj
t) be the primitive action on the top of the stack.

18: execute primitive action a, observe st+1, and receive
rewardR(st + 1|st, a).

19: if any subtask on K
j
t is terminated in (st+1) then

20: let M ′ be the terminated subtask that is highest (closest to the root)
on the stack.

21: while top(Kj
t) 6= M ′ do

22: pop(Kj
t).

23: end while

24: pop(Kt).
25: end if

26: K
j
t+1 := k

j
t is the resulting execution stack.

27: until all stacks are empty

42

4.6. A HIERARCHICAL MULTI-AGENT REINFORCEMENT LEARNING
ALGORITHM

If aj is a cooperative subtask it is restated as Equation 4.2, where ã1, . . . , ãj−1,

ãj+1, . . . , ãn denotes the actions made by the other agents in subtask aj .

Qjπ

(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj) = V jπ

(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn)

+ Cjπ

(i, s, a1, . . . , aj−1, aj+1, . . . , an, aj) (4.2)

If i is a non-cooperative subtask but aj is, it is restated as Equation 4.3, where
ã1, . . . , ãj−1, ãj+1, . . . , ãn denotes the actions made by the other agents in sub-
task aj .

Qjπ

(i, s, aj) = V jπ

(aj , s, ã1, . . . , ãj−1, ãj+1, . . . , ãn) + Cjπ

(i, s, a) (4.3)

4.6 A Hierarchical Multi-agent Reinforcement Learn-

ing Algorithm

The algorithm used in the multi-agent setting is an extended version of Algo-
rithm 3. The extension handles the case where the subtask is a cooperative
subtask, where the updating takes the other agents actions into account. There
are however two cases that are not taken into account. First there is the case
where the current task is not a cooperative subtask but the childtask is. The
second is the case where both the task and subtask are cooperative. If only the
childtask is a cooperative subtask the best action should be found as in Equa-
tion 4.4 and the completion function should be updated as in Equation 4.5.

a∗ = arg max
a′∈Ai

[
C

jπ

t (i, s′, a) + V
jπ

t (a′, s′, ã1, . . . , ãn)
]

(4.4)

C
jπ

t+1(i, s, a
j) := (1 − α

j
t (i))C

jπ

t (i, s, aj)+

α
j
t (i)γ

N
[
C

jπ

t (i, s′, a∗) + V
jπ

t (a∗, s′, ã1, . . . , ãn)
]

(4.5)

If it is both the task and childtask that are cooperative the best action should
be found as in Equation 4.6 and the completion function should be updated
as in Equation 4.7 where â1, . . . , âj−1, âj+1, . . . , ân are the actions made by the
other agents in state s′.

a∗ = argmax
a′∈Ai

[
C

jπ

t (i, s′, a, a1 . . . an) + V
jπ

t (a′, s′, ã1, . . . , ãn)
]

(4.6)

C
jπ

t+1(i, s, a
j) := (1 − α

j
t (i))C

jπ

t (i, s, aj, a1 . . . an)+

α
j
t (i)γ

N
[
C

jπ

t (i, s′, a∗, â1, . . . , âj−1, âj+1, . . . , ân) + V
jπ

t (a∗, s′, ã1, . . . , ãn)
]

(4.7)

43

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

Agent a1 Agent a2

Co. Task Action
Wait

Co. Task Action
Wait

t = 0

Co. Task Action
Get(Y)

Perform

Observe

Observe

Co. Task Action
Wait

Perform

t = 1

Co. Task Action
Get(Y)

Co. Task Action
Wait

Observe

Co. Task Action
Get(Y)

Perform

Co. Task Action
Get(R)

Perform

Figure 4.2: Execution of the hierarchical multi-agent algorithm.

In Algorithm 7 a stack seq is maintained. This stack contains the sequence of
states visited and the actions of the shared subtasks being performed by the
other agents. If the algorithm is called with a primitive action the state s is
pushed onto the stack along with the actions of the other agents. The action is
performed and the value function is updated. Then the stack is returned. If the
algorithm is called with a cooperative composite action an action a is chosen
using the current exploration policy. The algorithm then calls itself recursively
storing all the states visited and the actions of the other agents while executing
the chosen action a. It then updates the completion function. If the resulting
state is a terminating state the stack is returned. If the algorithm is called with
a composite action that is not cooperative, the only difference is that the actions
from the other agents are not used.

To illustrate how the algorithm works consider Figure 4.2. Here we have two
agents a1 and a2, where a1 performs a primitive action in time t before a2.
When starting out both agents have their cooperative subtask set to execute a
Wait action. The environment seen from a1 looks as follows:

[(2, 2), _, _, {YR, _, _, _}], Wait

This configuration means that the agent is located in grid location (2, 2). The
two following variables are blank, The first indicating that the agent has not yet
selected a passenger to retrieve and therefore the second is also blank because
there is no passenger destination. Following these variables are the 4 locations
variables, Y , R, G, and B. Only the first has a non blank variable. The first
location represents the Y location. This variable has the value YR meaning the
passenger at location Y would like to go to location R. Wait indicates that the
other agent is performing a Wait action. The agent observes the action of agent
a2 to make sure that this agent is not performing a Get(Y). Since this is not
the case (agent a2 is performing the wait action), a1 can choose to retrieve the
passenger at Y i.e. performing a Get(Y) action. Doing this causes the state as
seen from a1 to change:

[(2, 2), Y, R, {YR, _, _, _}], Wait

44

4.6. A HIERARCHICAL MULTI-AGENT REINFORCEMENT LEARNING
ALGORITHM

Algorithm 7 The Cooperative HRL Algorithm

1: Function Cooperative-HRL(Agent a, Task i at the lth level of the hierarchy,
State s)

2: let Seq = () be the sequence of (state-visited, actions in
⋃L

k=1 Uk being
performed by other agents) while executing i where L is the number of
levels in the hierarchy

3: if i is a primitive action then

4: execute action i, receive reward r and observe result state s′

5: V
jπ

t+1(i, s) := (1− α
j
t (i)) · V

jπ

t (i, s) + α
j
t (i) · rt

6: push (state s, actions in { Ul|l is a cooperation level } being performed
by the other agents) onto the front of Seq

7: else

8: while i has not terminated do

9: if i is a cooperative subtask then

10: Choose action aj according to the current exploration policy
π

j
i (s, a

1, . . . , aj−1, aj+1, . . . , an)
11: let ChildSeq = Cooperative-HRL(j, aj, s), where ChildSeq is the

sequence of (state-visited, actions in
⋃L

k=1 Uk being performed by
the other agents) while executing action aj

12: observe result state s′ and â1, . . . , âj−1, âj+1, . . . , ân actions in Ul

being performed by the other agents

13: let a∗ = argmaxa′∈Ai

[
C

jπ

t (i, s′, â1, . . . , âj−1, âj+1, . . . , ân, a′) + V
jπ

t (a′, s′)
]

14: let N = 0
15: for each (s, a1, . . . , aj−1, aj+1, . . . , an) in ChildSeq from the begin-

ning do

16: N = N + 1
17: C

jπ

t+1(i, s, a
1, . . . , aj−1, aj+1, . . . , an, aj) :=

(1 − α
j
t (i))C

jπ

t (i, s, a1, . . . , aj−1, aj+1, . . . , an, aj)+

α
j
t (i)γ

N
[
C

jπ

t (i, s′, â1, . . . âj−1, âj+1, . . . , ân, a′) + V
jπ

t (a∗, s′)
]

18: end for

19: else

20: choose action aj according to the current exploration policy π
j
i (s)

21: let ChildSeq = Cooperative-HRL(j, aj, s), where ChildSeq is the

sequence of (state-visited, actions in
⋃L

k=1 Uk being performed by
the other agents) while executing action aj

22: observe result state s′

23: let a∗ = argmaxa′∈Ai

[
C

jπ

t (i, s′, a,) + V
jπ

t (a′, s′)
]

24: let N = 0
25: for each state s in ChildSeq from the beginning do

26: N = N + 1
27: C

jπ

t+1(i, s, a
j) := (1 − α

j
t (i))C

jπ

t (i, s, aj) +

α
j
t (i)γ

N
[
C

jπ

t (i, s′, a∗) + V
jπ

t (a∗, s′)
]

28: end for

29: end if

30: append ChildSeq onto the front of Seq

31: s = s′

32: end while

33: end if

34: return Seq

45

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

Once agent a1 performs a primitive action the initiative is given to agent a2.
The view that a2 has of the environment looks similar to that of a1:

[(1, 4), _, _, {YR, _, _, _}], Get(Y)

a2 discovers that there is a passenger at location Y , but after observing the
action of a1 it decides to not attempt to retrieve the passenger. Instead a Wait

action is executed.

Now that both agents have performed a primitive action the time step is incre-
mented by one, and another round of actions can begin.

After a given number of time steps the environment will add more passengers for
the taxies to service. In this case the environment adds a passenger at location
R (destination G). For agent a1 this information is irrelevant, it just continues
to navigate for the passenger at location Y . For a2 this means that instead of
continuing to perform Wait actions it can perform a Get(R). The environment
seen from a2 at time step t = 1 when a1 has performed its action looks as
follows:

[(1, 4), _, _, {YR, RG, _, _}], Get(Y)

The above example demonstrates how the time progresses in the environment,
but also how the agents are supposed to coordinate with each other to avoid
competing for the same passenger.

4.7 The Multi-agent Taxi Problem

To test the MHRL algorithm the Taxi problem is extended with a second taxi.
Let us assume that at every 10th time step a passenger will arrive at one of the
four locations (no passenger can be at that location already). This passenger
will want to be taken to one of the other three locations. Once the passenger has
been delivered it disappears and the taxi is ready to service another passenger.
This process will continue for a set number of time steps. The goal is to maximise
the throughput of passengers over a given period.

The challenge is to coordinate the taxis so that they do not compete for the
same passenger, but instead cooperate so that as many passengers as possible
reach their destinations within the allocated time steps, thereby increasing the
combined overall reward for the two taxies. To simplify the problem two taxies
can be located at the same grid location (think of a grid location as a road, with
two lanes) such that collision detection is not needed.

In the single Taxi problem each primitive action has a penalty of −1, and
performing a Pickup or Putdown in an illegal state is penalised with −10.
In the MHRL version of the Taxi problem the primitive navigation actions have
a penalty of −2, likewise with the Pickup and Putdown actions. The reward in
illegal states does not change. These changes was made to accommodate a new
primitive action, the Wait action. In the extended Taxi problem a Wait action
is penalised with −1. The reward for completing the Root task is increased to
40. There are two main reasons for the change in rewards.

46

4.7. THE MULTI-AGENT TAXI PROBLEM

• If Wait has no penalty, then the agent will most likely learn that the best
action in any given situation will be a Wait. This will happen because
when starting out to learn the cumulative number of penalties received
will be higher than the positive reward given for completing the task,
thus yielding an overall penalty. This will mean that the most favourable
action in Root will be a Wait action. However because the exploration
policy is an ordered GLIE policy all paths are guaranteed to be explored,
so eventually an optimal policy will be found, but it will take much more
time than by setting the value of Wait to something else.

• If Wait has the same penalty as the other actions, then there will be no
point in having this action, because it will be more favourable to just have
all taxies navigate to the passenger, and let the one who gets there first
pick it up. This will mean that learning inter-agent coordination will be
impossible.

In this problem the τcontinue termination strategy from Section 4.2 is employed,
meaning that the termination of a subtask in one agent does not affect the
execution of other agents.

Figure 4.3 shows the decomposition of the multi-agent taxi problem. Notice that
as this is the hierarchy used by all agents in the problem, the agents are homoge-
neous. The problem of incorporating heterogeneous agents into the multi-agent
algorithm is the topic of Chapter 5.

There are only two differences between the multi-agent taxi graph and the single-
agent taxi graph. First, the Get subtask has the parameter t. This parameter is
necessary because the children of any shared subtasks are known to other agents,
and other agents need to know what the agent is doing. Simply knowing that
the agent is doing a Get action is not enough, they need to know where the
agent is getting the passenger from, so that it can learn not to perform the
same action. The second difference is the Wait action. This is, as mentioned, a
primitive action that does nothing except use time steps. This action is useful
when there are no passengers to collect. The agent can then choose to reduce
the penalties given by waiting instead of navigating to an empty location, or a
location already serviced by another taxi.

4.7.1 An Example

Consider the scenario shown in Figure 4.4. Agent 1 is located at position (0,3)
and agent 2 is at (3,2) and both agents have learnt an optimal policy. Now a
passenger arrives at Y . Agent 1 is first to act and checks its policy to see what
it must do. Because agent 2 has not yet performed its first action, agent 1 sees
it as performing a Wait action. The policy lookup πroot(s, Wait) results in a
Get(Y) action, because agent 1 sees that there is a passenger at location Y and
it also sees that agent 2 is not trying to get the passenger.

The projected value function for agent 1 in the subtask Root is as follows:

V (Root, s, {Wait}) = V (Get(Y), s) + C(Root, s, {Wait}, Get(Y))

47

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

MaxRoot

Cooperation Level

Cooperative Subtask

Children of the top-
level Cooperative
Subtask (Root)

QGet(k) QWait QPut

MaxGet(t) MaxWait MaxPut

QPickup QPutdownQNavigateGet(t) QNavigatePut

MaxNavigate(t)

QEast(t) QWest(t) QSouth(t) QNorth(t)

MaxEast MaxWest MaxSouth MaxNorth

k/[source,destinaion]

t/[source]

t/[destination]

Figure 4.3: Multi-agent Taxi problem decomposition

4 R G
3 �

2 �

1
0 Y B

0 1 2 3 4
Figure 4.4: The multi-agent Taxi problem.

48

4.7. THE MULTI-AGENT TAXI PROBLEM

Root

Get(R) Get(G)Get(B)Get(Y) Wait Put

Figure 4.5: The Root task.

Because Root is a shared task the actions of shared tasks of all other agents must
be considered in the value and completion function of Root. Because Get(Y)
is not a shared task, the value function of this task is like the one described in
Chapter 3.

Once agent 1 has performed a primitive action, control is given to agent 2. Agent
2 now checks at what locations there are passengers. Because the environment
is still at time step 1, and new passengers only arrive every 10th step, the only
passenger available is the passenger at location Y . Agent 2 consults its policy
to find the correct action πroot(s, Get(Y)). The policy will return Wait because
it has learnt that if another taxi is performing a Get(Y) action, and no other
passengers are listed as waiting for a taxi, the best overall action will be to wait,
and not try to beat the other taxi’s to the passenger.

The problem with this approach is that sometimes the taxi standing closest to
the passenger has to wait because it is not first to act. This problem could be
fixed by letting each agent know the whereabouts of other agents. However,
this would result in a much larger state space.

In our current setup the order in which agents execute actions remains the same
through the entire episode. Once an agent has performed one primitive action
the agent stops executing, and the initiative is given to the next agent in line.
Using this approach each agent gets one primitive action per time step.

4.7.2 State Abstraction

When expanding to MHRL the number of parameters needed to represent each
task remains the same for all non-cooperative tasks. What is changed are the
parameters needed. Because there can be many passengers in the environment
a source and a destination parameter attached to the environment is no longer
enough. Instead, each taxi has a passenger variable and a destination variable. If
there is no passenger in the taxi, and the taxi has not been assigned a passenger
to pickup, the two variables are blank. If the variables are not blank the Get

task is called with the passenger variable as parameter. Using this setup the
number of variables it takes to represent each taxi remains the same, the only
thing that is changed is the way the variables are found.

A difference between HRL and MHRL when it comes to state abstraction is
when considering the state/action pairs possible. In HRL there were only two
possible actions from Root in the Taxi problem where there in MHRL now are
six. Furthermore there are the shared actions of the other agents to consider.
The 6 possible actions are shown in Figure 4.5.

49

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

Root(614496)

C(Root,[P,D],Get, {Agent2})(96)

C(Root,[]],Put, {Agent2})(0)

C(Root,[(x,y),P,D,{Y,R,G,B}],Wait, {Agent2})(614400)

Wait(102400)

V(Wait,[(x,y),P,D,{Y,R,G,B}])(102400)

Figure 4.6: The added branch to the task graph of Figure 3.10.

In HRL there were only 16 different values (4 source and 4 destination) for the
completion cost of Root once a Get had been completed, whereas in MHRL
there are 4 source, 4 destinations, and the 6 different actions that the other
agent can perform, resulting in a total of 96 values for QGet(t).

The major difference when refactoring the state abstraction scheme to work
with MHRL is in the state abstraction necessary in the Wait task. The Wait

action can be performed at two distinct times in the execution of the problem,
namely before Get, where no passenger has been assigned to the taxi, and before
Put, where a passenger is located inside the taxi. However, it does not make
any sense to perform a Wait action if there is a passenger in the taxi, therefore
performing a Wait before Put is not possible.

If no state abstraction were applied the following variables would be needed.

• The location of the taxi (25)

• The source and destination for the taxi (4× 4)

• If there is any passenger at location Y, R, G, B, and what is their destina-
tion (44)

In total this yields 102400 states. Couple this with the actions of the other
taxies a total of 614400 values need to be represented in the case of one other
taxi. Figure 4.6 shows the added branch to the task graph from Figure 3.10.

In total, adding Wait adds 716800 values to the problem. Naturally this huge
number compared to what it takes to represent the rest of the graph is unac-
ceptable. Therefore state abstraction is even more important here than it is in
single-agent HRL.

By applying the leaf irrelevance rule from Section 3.9.1 we can reduce the num-
ber of values in the value function for wait from 102400 to only 1. This can be
done because we know that no matter the configuration of the state, the only
penalty that a Wait action can yield is −1, thus all variables can be removed.

By applying the subtask irrelevance rule from Section 3.9.2 we can remove the
source and destination from the taxi state. Subtask irrelevance states, that if
a variable is not needed by a child task, or by the task itself, then the variable

50

4.7. THE MULTI-AGENT TAXI PROBLEM

can be removed. This can be done because we know that Wait can only be
performed before Get, meaning the source and destination variables will be
blank. Now that these two variables have been removed, the completion function
looks as follows:

C(Root, [(x, y), {Y, R, G, B}], {Agent2 action}, Wait)

This leaves us with a total of 25 ·44 ·6 values. Applying the last three rules from
Section 3.9.3 to Section 3.9.5 would change nothing. So the best that the safe
abstraction rules can offer is a reduction in the wait branch from 716800 values
to only 38400

Further Abstractions

As stated above no more abstraction using the 5 safe rules from Section 3.9 can
be applied to the Wait task without loosing precision. But consider what will
happen if we were willing to sacrifice some precision for a sizeable reduction in
states. The idea is to, instead of having the destination of the passenger attached
to each of the four locations remove the destination so all that the location tells
the agent is whether or not there is a passenger there. This abstraction would
mean a reduction from 25·44 ·6 values to only 25·42 ·6, 38400 values to only 2400
values. The consequence of doing this is that when choosing which passenger
to navigate to, the destination of that passenger is not taken into account,
meaning that it might have been more profitable to navigate to a passenger
farther away, because this passenger did not need to travel so far, meaning
the total reward would be higher. But by removing the destination from the
state this consideration is not possible. Instead we can expect the penalty for
navigating to a specific destination will become an average of navigating to each
of the other 3 locations. That is if the passenger is at Y , we can expect that the
completion cost for root once a Get(Y) has been performed will be an average
over the distance from Y to the other locations.

In the implementation of the multi-agent taxi task this abstraction is applied.
All in all the number of values to be represented is shown in Figure 4.7 and
amounts to 3113 which is the total number of different value functions and
completion functions in the task graph.

Tabular Q Learning

If the same problem were to be represented in a flat table implementation the
following would be required:

• For each of the four locations there are four settings, namely, no passenger,
and the three other locations.

• For each taxi, a total of 225 settings. This number is achieved by looking
at whether a passenger is in the taxi or not. If a passenger is in the
taxi, only the location of the taxi and the destination of the passenger is
relevant. Likewise if there is no passenger in the taxi, then the relevant
information will be the location of the taxi, and the location the passenger,
if any, the taxi has singled out.

51

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

Get(104)

C(Get,[P],Navigate(t))(4)

C(Get,[(x,y),P],Pickup)(100)

Put(104)

C(Put,[D],Navigate(t))(4)

C(Put,[(x,y),D],Putdown)(100)

Navigate(t)(400)

C(Navigate(t),[(x,y),t],North)(100)

C(Navigate(t),[(x,y),t],South)(100)

C(Navigate(t),[(x,y),t],East)(100)

C(Navigate(t),[(x,y),t],West)(100)

Root(2496)

C(Root,[P,D],Get)(96)

C(Root,[]],Put)(0)

C(Root,[(x,y),{Y,R,G,B},Agent2],Wait)(2400)

Pickup(2)

V(Pickup,[legality])(2)

Putdown(2)

V(Putdown,[legality])(2)

North(1)

V(North,[])(1)

South(1)

V(South,[])(1)

East(1)

V(East,[])(1)

West(1)

V(West,[])(1)

t/source t/destination

Wait(1)

V(Wait,[l])(1)

Figure 4.7: The complete task graph with state abstraction applied.

• The number of taxis.

This results in the following formula for calculating the number of states in the
tabular multi-agent Taxi problem:

states = locloc ∗ (board ∗ loc + (board ∗ (loc + 1)))agents

In the case where the board area is 25 grids, the number of locations is 4 and
the number of agents is 2, the total number of states will be just below 13
millions, all in all resulting in a total number of values to be represented in the
neighbourhood of 90 millions.

4.8 Testing of the MHRL Algorithm

In this section the MHRL algorithm is tested. To this end the Taxi problem
presented previously will be used.

4.8.1 Environmental Setup and Passenger Adding Rules

When initialising a learning episode, two taxies starts at a random location.
Each taxi has no reference to any passenger. Furthermore the environment is
initialised with one passenger at one of the 4 locations. The destination of this
passenger is chosen at random. At certain intervals new passengers are added

52

4.8. TESTING OF THE MHRL ALGORITHM

to the board. The interval at which new passengers are added is set in the
individual tests.

When testing the learnt policy the two taxies both start in location (2, 2). A
passenger will be located at location Y wanting to go to G. When adding a new
passenger to the board the following update rules are applied.

• The locations are prioritised with Y as the most important, followed by
R then G and finally B.

• When adding a passenger this passenger is added to the highest prioritised
location that does not have a passenger associated with it. Meaning that
if for example Y does not have any passenger, then a passenger is added
to this location. If Y already has a passenger we look to the next location.

• The destination of the passenger is as follows:

– Source: Y : destination R.

– Source: R: destination G.

– Source: G: destination B.

– Source: B: destination Y .

Using this scheme we can calculate how many time steps it will take the taxi to
deliver a passenger, assuming a passenger has already been picked up.

• Pickup at Y : 5 time steps to deliver.

• Pickup at R: 9 time steps to deliver.

• Pickup at G: 6 time steps to deliver.

• Pickup at B: 8 time steps to deliver.

With this knowledge we can calculate the optimal value of a test, by simply
tracing the optimal steps.

An episode will consist of 250 time steps, and a trial will consist of 50 episodes.
An episode terminates when time runs out. Whenever this happens the agents
stops acting, and any task that they were doing is cut short, and no more values
will be updated once time runs out.

The value of the learnt policy is measured by the total rewards and penalties
given to all agents during the course of the episode.

4.8.2 Exploration Policy Used During Learning

While executing the learning algorithm, an agent must repeatedly choose the
next action to execute. This action can be chosen at random, but that will most
likely lead to slow learning, since an agent might search non profitable paths
again and again. That is, the agent will keep exploring the environment and
not exploit what is already learnt. On the other hand, if an agent continuously

53

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

chooses the action with the highest payoff, it risks converging to a sub-optimal
policy—simply because there might exist better undiscovered paths (with a
higher payoff) that are never explored.

To solve this dilemma, a prior probability distribution over the possible actions
from the currently known values is calculated. Actions with a high payoff get
a higher probability of being chosen than actions with a low payoff. However,
all actions get a probability greater than zero. The probability distribution is
defined as follows:

P (i, s, a) =
k−Q(i,s,a)

∑
j k−Q(i,s,aj)

(4.8)

where P (ai|s) is the probability of selecting action ai given state s. The con-
stant k > 0 determines how strongly the selection favours actions with high
Q̂ values. Lower values of k encourage exploiting while higher values increase
the probability of exploring. Before calculating the probability distribution, the
range of Q values should be normalized to a number between zero and one.
High Q values might otherwise result in very large numbers. Figure 4.8 shows
the effect of setting the constant to different values. In the experiments the
constant k is set to 0.5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0,000 0,100 0,200 0,300 0,400 0,500 0,600 0,700 0,800 0,900 1,000

k

P
ro

ba
bi

lit
y

of
 C

ho
os

in
g

A
ct

io
n

Q(s,a1)=0,1

Q(s,a2)=0,5

Q(s,a3)=0,7

Q(s,a4)=0,9

Figure 4.8: The effects of constants.

Using this technique ensures that all actions have a possibility of being selected
while learning, thus increasing the chance that all states will be visited. When
testing the learnt policy a greedy policy was used. If two values had the same
value the tie was broken in favour of the first ordered action, just as is the case
with the ordered GLIE.

4.8.3 The Test

In this experiment a passenger will be added every 5 time step. By adding a
passenger every 5 time step we are ensured that all taxies are kept busy at all
times, except for the first 5 time steps, where there is only one passenger on

54

4.8. TESTING OF THE MHRL ALGORITHM

the board. The board that the taxies are navigating on looks like the boards
presented earlier, except that there are no walls except for the those surround-
ing the board. By removing the walls we open up for the possibility that the
agents might be able to find some advanced policy that would otherwise not
be possible. Below we describe a reasonable scenario, and in fact this scenario
would represent the optimal policy had there been walls between the locations.

Optimal behaviour in this case would be that in the beginning, one of the agents
will head for the passenger already on the board. This passenger is at location
Y . Starting in location (2, 2), it takes 4 navigation actions for a taxi to reach
Y and one action to pickup the passenger, for a total of 5 actions. This takes
5 time steps in total. All the while the other agent has been performing wait
actions. When 5 time steps have passed another passenger is added to the board.
because Y is the location with the highest priority the passenger is added to
this location. Now the first agent will head to R to deliver the passenger while
the second agent will head to Y to retrieve a passenger. After 5 time steps, one
taxi will have just delivered a passenger at R, and one will just have picked up
a passenger at Y . Following this every 5 time step one agent will be picking
up a passenger while another will be putting down a passenger. This continues
until all the time steps have been spent.

Using this reasonable behaviour means that at any point except the first 5 time
steps a passenger will be delivered, and a passenger will be picked up. Counting
the reward given for 5 such steps yields the following:

• 8 primitive navigation actions each with a penalty of −2.

• 1 Pickup action, and one Putdown action, each with a penalty of −2.

• A reward of 40 for delivering a passenger.

In total such a 5 block has a total reward of 20. For the first 5 time steps
however, there can be no pickup. therefore, the total penalty is −15(−5 for the
5 wait actions from one agent, and −10 for the other agent (4 navigate and the
pickup)). In total there are 49 of the blocks that yields 20 in reward. In total
this will result in a reward of 965.

� W
� W
� W
� W
X W

(a)
.

	

	

	 �

	 �

O X

(b)
.

�

�

�

�

X O

(c)
.

. . .

� �

� �

� �

� �

O X

(d)
.

Figure 4.9: The steps taken using the optimal policy for the 5 steps scenario.

Figure 4.9 shows the primitive actions taken using an optimal policy when there
are walls between locations as presented in previous chapters. In this figure an

55

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

X represents a pickup, an O is a putdown, and a W is a wait action. An arrow
represents a navigation action.

Sequence of Rewards

When looking at the rewards returned from a trial a typical sequence might be.

. . . 900 935 − 990 965 . . .

The −990 in the middle of positive values might seem puzzling at first. The
explanation for this is very simple. During execution of a test the action believed
to be the best is the action that has the highest Q value. It will often be the case
that the optimal actions value is very close to the value of an action that will
result in a non optimal sequence, or even a sequence with looping behaviour. A
small change in values could change the outcome of the policy query.

Versus Two HRL Agents

To have something to compare the algorithm with, an implementation with two
agents using HRL was made. Each implementation was run for 100 trials, each
trial containing 50 learning episodes interleaved with 50 testing episodes 1. In
Figure 4.10 the average reward of each episode is shown. The curve with a
Cooperative predicate attached represents the average reward of the two MHRL
algorithms. The Uncooperative curve represents the two HRL agents.

-1500

-1000

-500

0

500

1 11 21 31 41

Episodes

R
ew

ar
d

Cooperative
Uncooperative

Figure 4.10: Average reward.

1The test data can be found on the CD.

56

4.9. SUMMARY

In most cases the average reward found is negative. This is due to the problem
explained above. However another disheartening fact appears. It seems that,
except for the early stages of learning, the two HRL agents are getting better
average rewards. A plausible explanation for this is that, because the MHRL
agents have more values in their completion functions, in that they are each
keeping track of the actions of the other agent, it will take longer for their
values to stabilise.

However, it has been assumed that, by using the MHRL algorithm we can
achieve some policies that are not possible for the two HRL agents that are not
cooperating. To examine this we need to look at the maximum rewards given
to each of the agents. Figure 4.11 shows the maximum rewards given in the two
implementations.

930

950

970

990

1 11 21 31 41Episode

R
ew

ar
d

Cooperative

UnCooperative

Figure 4.11: Maximum reward.

Looking at the figure, we can clearly see that the two HRL agents never receive
more than 965 in reward. This reward is achieved by using the policy described
in the beginning of Section 4.8.3. The MHRL implementation however does
achieve some rewards that are higher. In fact the highest reward given to the
MHRL implementation is 973. This reward is achieved by using a much more
complex policy. A trace of the optimal route for the HRL and the MHRL
implementation shown in Appendix A.

4.9 Summary

In this chapter the multi-agent hierarchical reinforcement learning algorithm in-
troduced by Mohammad Ghavamzadeh and Sridhar Mahadevan was presented.

57

CHAPTER 4. HOMOGENEOUS MULTI-AGENT HIERARCHICAL
REINFORCEMENT LEARNING

The algorithm expands on Algorithm 3 from Chapter 3 by splitting up the
composite actions in cooperative and non-cooperative tasks. By doing this co-
operative tasks were able to see the cooperative task of other agents. This had
the effect that complex inter-agent strategies could be devised. During testing
it was shown that using this algorithm did in fact produce policies that was
better than what could be achieved using regular HRL agents.

In this chapter all the agent where homogeneous. In the next chapter the
changes needed to allow heterogeneity are presented.

58

Chapter 5

Adding Heterogeneity to

Multi-Agent Environments

The assumption that agents are homogeneous is becoming increasingly unreal-
istic, since agents will often be designed by different individuals, with different
ideas of what is the correct way to decompose a problem and which is not. Also,
as problems become bigger and more complex, agents will undoubtedly be given
different goals. In this situation the communication scheme used in the previous
chapter is not always usable.

In the previous chapter we introduced an algorithm for handling cooperative
multi-agent environments. This algorithm assumed that:

• All agents operate with the same goal, and are able to perform the same
primitive actions.

• All agents use the MHRL task decomposition, and the decomposition of
all agents are the same.

In this chapter we will introduce two very different approaches to dealing with
heterogeneity. In the first approach we focus on heterogeneity in agents that
have the same goals and primitive actions. The heterogeneity can be found in
the learning algorithms and the settings of the agents. This approach will allow
agents with different learning algorithms, or distributed value functions to share
knowledge. Better learning under this form of heterogeneity can be expected
by having agents share sequences of particularly good state/action pairs. A
sequence of state/action pairs is given an educational value. An educational
value is a value that indicates how much can be learnt from a sequence. How
this value is calculated is determined by the programmer. An example could be
to give all the sequences random values. This approach is called Heterogeneity
in Method, and is the topic of Section 5.1.

The second approach allows agents with different goals to work together. In large
and complex problem domains we will often want to have more than one type
of agent, and often we need these different agents to coordinate and cooperate.

59

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

This could e.g. be because a task needs a component from each agent delivered
at the same time, or perhaps we just do not want the agents to compete for
resources. To achieve this form of coordination and cooperation, a concept
called interest groups is introduced. This approach is called Heterogeneity in
Goal and is the subject of Section 5.2.

5.1 Heterogeneity in Method

So far this report has explored the area of hierarchical reinforcement learning
in single and multi-agent environments. In HRL and MHRL it is possible for
agents to share value functions and completion functions. This is not always
possible either because of a large physical distance, where communication is
costly, or for some other reason. In these cases learning will be slow because
only one agent will be updating the completion function. To speed up learning
when faced with this problem we introduce two different approaches that both
use inter-agent guidance.

Besides being useful to the MHRL algorithm, this approach can also be applied
in cases where the learning algorithm differs, e.g. agent A is using a genetic
learning algorithm, while agent B is using tabular Q learning.

5.1.1 The Concept of Guidance

In very large domains, even with the abstraction and decomposition possible,
it might be difficult to learn anything because the goal/terminal states might
be so sparsely distributed in the state space that they will almost never be
encountered using random exploration. In the Taxi problem an example of this
is the navigate subtask. Here there is only one location that will terminate the
subtask. The more grid locations there are, the less likely it will be that the
taxi encounters this state.

This problem can be solved, or at the very least made less of a problem by
applying guidance. An agent can for instance be guided by providing it with a
reasonable policy in the beginning of the learning process. One way to create
this policy is by logging the behaviour of a human expert and having the agent
mimic this behaviour in its first episode. The agent can, based on the learnt
policy, explore the state space, and thus be directed towards the terminating
states and/or reward states.

Another strategy is to supply guidance interleaved with the normal exploration
policy of the agent, meaning that guidance is provided at certain points during
the execution. One benefit of the interleaving strategy is that the agent can
request guidance whenever it thinks that it is needed. This guidance could be
provided by a human expert, or it could be another process that has experience
with the problem. The advantage of this approach is that the agent can decide
when it wants guidance, so if it is in a state that it does not have a lot of
experience with, it can request help. This approach allows the guidance to
focus on areas of the state space which have not yet been explored.

60

5.1. HETEROGENEITY IN METHOD

5.1.2 Inter-Agent Guidance

The idea in inter-agent guidance is to take a sequence of state/action pairs from
one agent, and give this sequence to another agent, that will then execute the
state/action pairs, and update its value function accordingly.

There are several cases where doing this can be quite beneficial to the learning
process:

• When a state/action pair, or a sequence of state/action pairs are not
visited often, and the chance that another agent will stumble upon this is
minimal. The sequence can then be propagated to other agents.

• When a particular good sequence of state/action pairs has been found, the
agent can share this with other agents, and thereby accelerate learning.

• When agent A and agent B are using different learning algorithms, or
even in cases where only the settings of the same algorithm are different,
providing guidance to another agent might prove useful. This could be
because agent A is very good at learning in one part of the state space,
while agent B is not. In cases such as this, assistance will accelerate the
overall learning rate.

By using inter-agent guidance the amount of data transmitted between agents
is reduced because we only have to transmit data from one agent to another a
few times, instead of every time a value function is updated.

A Motivating Example

Consider a scenario where we have two taxi agents. These agents are acting on
a 100×100 board. Both agents are using the algorithm presented in Chapter 4.
However, the two agents are not sharing value function.

Both agents are navigating around trying to find a specific location, which is a
difficult task due to the size of the board. If an agent is lucky and finds a path
to this target location, we would like this path to be known by the other agent
as well. If we take the state/action pairs from this path and give it to the other
agent, the knowledge of how to find the target location is shared.

The agent receiving the state/action pairs from the path, now only has to exe-
cute each state/action pair, observe the resulting state and the resulting reward,
and update its value function.

In the following, two different approaches to sharing sequences of state/action
pairs are presented.

In the first approach it is assumed that actions of other agents cannot interfere
with the resulting state of a primitive action execution. If this is the case, then
each agent can execute a sequence of state/action pairs independently of other
agents.

The second approach does not have the same assumption as the above. In
this case the execution of a state/action pair might be dependent on the other

61

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

agents behaviour. Therefore all agents needs to be executing a sequence found
in the same time steps. This insures that the resulting states are correct if the
environment is deterministic.

5.1.3 The Independent Agents

The first approach is called The Independent Agents. First an episode is gen-
erated. From this episode each agent stores the sequence of states and actions
that they encountered. Each agent then calls the function in Algorithm 8, and
a sub-sequence is returned. Algorithm 8 describes how this sub-sequence is
selected.

Algorithm 8 The independent agent sequence selection algorithm.

1: Function I-SequenceSelection(Sequence Seq)
2: let P be the empty sequence planner
3: let l be the length of Seq

4: let y = 0
5: while y < l do

6: Let t = y + 1
7: while t < l do

8: let x = the educational value of a sequence starting with element y and
ending in element t, according to a chosen sequence evaluation function

9: add (x, y, t) to P

10: t = t + 1
11: end while

12: end while

13: find a tuple (x, yx, tx) in P with the highest value of x

14: return (x, the sequence of elements from Seqyx
to Seqtx

)

I-SequenceSelection takes the sequence of state/action pairs from an agent as a
parameter. It then assigns an educational value to each possible sub-sequence
of this sequence according to some chosen heuristic. The sub-sequence with the
highest educational value is then returned. If two sub-sequences ties for the
highest educational value, then one is selected at random.

Once all agents have found a sub-sequence, sequence sharing occurs. Each agent
passes the sub-sequence that they have found along to another agent. Now each
agent can execute their new sequence according to Algorithm 9.

I-SequenceExecution iterates through the state/action pairs of the sequence Seq.
For each element the state/action pair is executed, and the resulting state and
reward are observed. The value function of the agent is now updated as it would
have been, had the agent been performing a regular learning episode.

The variable l is the length of the original sequence from which the guidance
sequence is taken. l needs to be available in case the learning algorithm of the
agent needs it, this could be for the discount factor or for some other purpose.

Once all elements in the sequence have been executed the function returns, and
the agent is ready for another learning episode, or exploration episode as the
case may be.

62

5.1. HETEROGENEITY IN METHOD

Algorithm 9 The independent agent sequence execution algorithm.

1: Function I-SequenceExecution(Sequence Seq)
2: let l be the length of the original sequence, made available in the case that

the update value function of the algorithm needs them
3: let t be the index in the original sequence
4: let k be the length of Seq

5: Seq is the sequence of elements Seqi, where 0 ≤ i < k

6: j = 0
7: while j<k do

8: execute the state/action pair found in Seqj , Observe reward r

9: update the value function according to the learning function of the agent.
10: j = j + 1
11: end while

In Figure 5.1 the basic idea behind the independent agents approach is shown.
Figure 5.1(a) shows the sequences of states and actions performed by each agent.
From each of these sequences a sub-sequence is selected to be an educational
sequence. The two sub-sequences selected are denoted s1 and s2. The agents
then execute the new sub-sequence. Figure 5.1(b) shows this. When an agent
reaches the end of the sequence, execution is terminated.

a1

a2

Sequence

s1

s2

Sequence

(a) A sub-sequence is found from each
agent.

a1

a2

Sequence

s1

s2

Sequence

(b) The new sub-
sequence is exe-
cuted.

Figure 5.1: Guidance for the independent agent guidance scheme.

By using this approach each agent chooses a sub-sequence and passes it along
to another agent. The advantage of this approach is that the sub-sequence
chosen by each agent is likely the most educational sub-sequence. Furthermore,
because the sequence chosen by each agent does not have to be from the same
point in time, an agent that has superior learning abilities at the beginning of
an episode can share its knowledge with an agent that is superior at the end of
an episode, and vice versa. A further advantage of this approach is that because
an agent is performing the received sub-sequence independent of the execution
of other agents, it has the option to decline the sub-sequence if it is deemed not
educational enough.

63

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

5.1.4 The Dependent Agents

The second approach is called The Dependent Agents. First an episode is per-
formed. From this episode each agent stores the sequence of states and actions
that they encountered. The function D-SequenceSelection in Algorithm 10 takes
all of these sequences as parameter and returns the sub-sequences that has been
chosen to be shared. These sub-sequences all start at the same time step, and
end at the same time step.

Algorithm 10 The dependent agent sequence selection algorithm.

1: Function D-SequenceSelection(Sequence List SeqList)
2: SeqList is a list of sequences where SeqListi ∈ SeqList is the sequence of

state/action pairs found for the ith agent, 0 ≤ i < l

3: let (x, l, t, Seq) = maxx(I-SequenceSelection(SeqListi))
4: let SeqExec = a list of empty sequences
5: let k = the number of elements in Seq

6: for all SeqListi such that 1 ≤ i ≤ n do

7: add to SeqExeci the sequence of state/action pairs from SeqListi that
are located from index (t− k) to index t

8: end for

9: return SeqExec

Finding the sequences that are to be used, is done by finding the most edu-
cational sub-sequence selected among the best sub-sequences from each agent.
Line 3 of Algorithm 10 shows this.

Once this sequence is found, all the sequences occurring at the same interval
are selected. These sub-sequences are returned.

Before calling the function in Algorithm 11 the returned sub-sequences are dis-
tributed among the agents, such that each agent receives a sub-sequence that it
did not generate.

Now each agent can execute their new sequence according to Algorithm 11. The
order of the execution of sub-sequences should be the same as when they where
created. Meaning that the sequence that used to belong to the first executing
agent should continue to belong to the first executing agent, of course this agent
should not be the same agent as in the original execution.

The function D-SequenceExecution is called with a list of sequences and a list
of agents participating. The function then iterates through the time steps of
the sequences. For each time step each agent executes the state/action pair
attached to their sequence at that time step. They observe the resulting state,
and the resulting reward, and perform the updates that they would have done
had it been a regular learning episode.

Once the sequences have been iterated through, it is possible to continue normal
execution. This means that all agents can continue execution from the resulting
state of the last state/action pair execution in their sub-sequence.

By using this form of guidance we get the situation shown in Figure 5.2, where
a sequence of state/action pairs from time t to time t + k is taken from each

64

5.1. HETEROGENEITY IN METHOD

Algorithm 11 The dependent agent sequence execution algorithm

1: Function D-SequenceExecution(SequenceList SeqList, agentList α)
2: let (xi, li, ti, Seqi) ∈ SeqList be the sequence list along with the stored

variables of agent i

3: let j = 0
4: let n = the number of elements in Seq0

5: while j < n do

6: for all active agents i do

7: let (si, ai) be the stored state/action pair of element j from sequence
Seqi

8: execute si/ai, Observe reward r

9: update the appropriate values according to the learning function of the
agent.

10: end for

11: j = j + 1
12: end while

agent and given to another agent. The agents then start executing in the first
state/action pair of the sequence. When the last state/action pair has been
executed the episode continue as it would if no guidance was applied.

In the dependent approach the only agent that should be able to reject a se-
quence is the agent that receives the sequence with the highest educational value.
If this is the case, then all agents should reject the sequence, and execution of
the guidance algorithm should terminate.

Using this approach agents can share knowledge even when the interleaving
of other agents have influence on the outcome of an action. When changing
sub-sequences in environments where the agents can affect each other the sub-
sequences have to represent the same time interval. If they do not, an agent
can change the environment in such a way that it gets inconsistent with another
agents sub-sequence. An example of this is if two agents, in the same episode,
picks up a passenger at the same location but at different time steps, the sub-
sequences could be selected such that both agents will be trying to pick up the
passenger at the same time step and thus render the sub-sequences inconsistent.

If we want to use this form of guidance and have the agents continue with
execution once the shared sub-sequence has been executed, then this approach
is the only one that will work. The independent agents approach cannot be used
because it does not insure that the sub-sequences end at the same time step.

5.1.5 Expectations

We expect that learning will be faster when using inter-agent guidance, than
what would be the case if no guidance were applied and the agents did not share
value functions. By using the approaches described the agents will help each
other explore the environment. When one agent finds something rewarding,
it will be spread to the other agents as a result of the inter-agent guidance.
However, we expect that learning will be slower than what would be the case
when agents share completion and value function. If these functions were shared,

65

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

a1

a2

Sequence

s1

s2

(a) The sequence from the first episode is saved and used
as guidance by another agent in the next run.

a1

a2

Sequence

s2

s1

(b) Each agent starts with a sequence from another
agent from the previous episode. After this section
has been traversed the agent returns to its normal ex-
ploration policy.

Figure 5.2: Guidance by the other agents. This process is repeated until the
values have converged.

66

5.2. HETEROGENEITY IN GOAL

then all agents would be updating the same functions instead only one agent. So
if one agent does something very rewarding, all agents would gain this knowledge
immediately, thus rendering the need for experience sharing through guidance
useless.

5.2 Heterogeneity in Goal

In this section we introduce a communication scheme aimed at solving the diffi-
culties introduced when using agents that have different goals and different task
structures, but are using the MaxQ value function decomposition model. This
approach is an expansion to MHRL. Therefore, unless otherwise stated things
are as they were in Chapter 4.

To illustrate the need for an algorithm that can handle agents with different
behaviour the taxi problem will be expanded with a third agent. This agent,
which we will call the Janitor agent, will unlike the two taxi agents not service
the passengers, but have an entirely different goal. This problem is introduced
in Section 5.2.1. In Section 5.2.2 we will introduce the idea behind Interest
Groups, and present the learning algorithm in Section 5.2.4.

5.2.1 Expanding the Taxi Problem

In the expanded Taxi problem the four locations, Y , R, G and B will have a
dirtiness level attached to them. As time passes, the locations become more
and more dirty. At some point the status of a location will change from clean
to dirty. If a location is classified as dirty, then no passengers can be picked up
from that location. The goal of the janitor is to clean up the different locations,
thereby changing the classification of a location from dirty to clean.

The challenge in the expanded taxi problem is to, not only coordinate between
the taxies, but also coordinate between the taxies and the janitor, and if more
than one janitor exists, between the janitors as well.

For the janitor the challenge is to learn that when a taxi is navigating to a loca-
tion, then navigating to that same location might cause a conflict between the
two, and should thus be avoided. If, however, a taxi is performing a Pickup(t)
action at a location, the janitor should learn that the taxi will soon be gone from
this location, and navigating to that location will have a low risk of causing a
conflict. Furthermore, the janitor should learn to only navigate to locations
that are classified as dirty.

To reinforce this behaviour we add a penalty to the janitor agent if it attempts
to clean a location on which a taxi is performing a pickup. Furthermore we
increase the time it takes for a taxi to perform a Pickup(t) from 1 time step to
4 time steps to make a conflict more possible.

The taxi on the other hand must learn that when a janitor is navigating to a
location, then it should not try to navigating to that same location. To reinforce
this behaviour a clean action will take 4 time steps. Furthermore when a clean
action is being performed then no passenger can be picked up from that location.

67

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

Root

Maintain(t)Wait

Navigate(t)

North WestEastSouth

Clean(t)

t/destinationt/destination

Figure 5.3: The janitor agent.

To further reinforce the above mentioned behaviour, a penalty is given to the
janitor if it attempts to clean a location where a pickup is being performed.

Performing a clean action in a legal state has a reward of 20. A legal state
is where the janitor is located in one of the four passenger locations, and that
location is classified as dirty. Furthermore, no taxi can be performing a pickup
in that location. Performing a clean action in an illegal state has a penalty of
−20. Each of the navigating actions of the janitor has a penalty of −2 and the
wait action has a penalty of −1.

For the taxi agent, performing a Pickup(t) in a location that is being cleaned
carries the same penalty as performing a Pickup(t) in any other illegal state,
and does not result in the passenger being picked up.

Task Decomposition

In the janitor agent, the following three subtasks have been identified:

• Maintain(t). This task consist of navigating to location t and cleaning it.

• Navigate(t). The parameter t indicates which of the four locations is the
target location. In this subtask, the goal is to move the janitor from its
current location to t.

• Root. This task is the overall task of the system, and represents the entire
janitor task.

The task graph for the janitor is shown in Figure 5.3, and the taxi graph is
shown in Figure 5.4 for easy reference.

In summary, the janitor should learn to prefer dirty locations where either no
taxi is headed to pick up a passenger or a location where a taxi is in the middle
of a Pickup, and will most likely be done by the time the janitor gets there. The
taxi, in turn, should learn to prefer the locations where there is a passenger.
Furthermore, the taxi should not start heading to a location that a janitor is
headed to. If the janitor is in the middle of cleaning a location, the taxi should

68

5.2. HETEROGENEITY IN GOAL

Root

Get(t) Put

Pickup(t) Navigate(t) Putdown(t)

North South East West

t/source t/destination

t/source

Wait

t/source t/destination

Figure 5.4: The taxi agent.

learn that heading there is safe, because the janitor will most likely be done by
the time the taxi gets there.

In the expanded Taxi problem we clearly see a need for an algorithm that can
handle agents with different task decompositions. In the following section a
communication scheme for handling the problems introduced by heterogeneous
agents is presented.

5.2.2 Communication Using Interest Groups

Instead of using the levels in the hierarchy to decide what information is valuable
in a communication task, we introduce a new concept called Interest Groups
(IG).

The idea is that in a given subtask, called an Interest Task, certain actions of
other agents are of great importance to what action the agent should perform.
Important actions are not necessarily children of the same task. Furthermore
actions that are important to one type of agent might not be important to
another type of agent. This is where the interest group approach differ from
subtask sharing. In subtask sharing it is the actions of one task that are visible
to other agents. When using interest groups it is not the actions of a specific
task that are visible, but the actions of importance to the observing agent that
are visible.

To illustrate this difference we will use the expanded Taxi problem. In this
problem a taxi needs to know which actions other taxis are performing. If
another taxi is performing a Get(R) action the agent should learn that it is
unfeasible to also perform a Get(R). If all other taxis are performing either
Wait actions, Put actions, or Get actions to another locations, the agent should
learn that it is safe to navigate for a passenger.

An interest task has an Interest Group attached to it. This interest group
consists of the actions from the other agents that can affect which action to
choose.. The taxi agent has only one interest task which is the Root task. The
interest group attached to this interest task consists of the actions Get(t),Put,
and Wait from the other taxi agents, and Maintain(t) and Clean(t) from the

69

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

Root

Get(t) Put

Pickup(t) Navigate(t) Putdown(t)

North South East West

Wait

Figure 5.5: The taxi agent.

Root

Maintain(t)Wait

Navigate(t)

North WestEastSouth

Clean(t)

Figure 5.6: The janitor agent.

janitor agents. Using the interest group Root can see which actions the other
agents are performing and choose its action accordingly.

Figure 5.5 shows the task decomposition of the taxi agent. The actions of
importance to the interest task Root are marked with a dotted line. Likewise in
the task graph of the janitor agent shown in Figure 5.6, the actions of importance
to the taxi are marked with a dotted line.

A janitor observing a taxi agent is not interested in whether the taxi is waiting
or on its way to put down a passenger. It is only interested in whether the
agent is on its way to pick up a passenger, or if the agent is in the middle of
picking up a passenger. This means that the only tasks of interest are the Get(t)
and Pickup(t). If the problem contains two janitors, then each janitor needs to
know what the other janitor is doing. The tasks of importance in this case are
the Maintain(t) task, and the Wait task. In Figures 5.5 and 5.6 these tasks
are represented with a filled line.

To further illustrate the concept of interest groups consider the Taxi problem
board shown in Figure 5.7. In this figure we have two taxi agents, and two
janitor agents. First assume that taxi agent t1 is picking up a passenger from
location Y , and that taxi agent t2 is waiting. Now assume that janitor agent
j1 is cleaning the dirty location G(the grey shading indicates dirty locations).

70

5.2. HETEROGENEITY IN GOAL

4 R G j1

3

2 t2

1

0 Y t1 j2 B
0 1 2 3 4

Figure 5.7: A taxi board with two taxies and two janitors.

The other janitor agent j2 is waiting.

In this scenario the visible actions from the interest group for each agent would
contain the following.

For agent t1 the visible action from the other taxi agent would be Wait, while
from janitor j1 it would see Clean(G). From janitor agent j2 there would be
no visible action, because it is performing an action that is of no importance to
the taxi agent.

Agent t2 would see the same janitor actions as taxi agent t1. The visible action
from t1 is a Pickup(Y).

For a janitor agent observing the two taxi agents, the visible actions would be
a Pickup(Y) for taxi agent t1, because the taxi is picking up a passenger at
location Y . For taxi agent t2 there is no visible action. The visible action that
j1 can observe from janitor j2 is a Wait. Janitor j2 observes Maintain(G) from
janitor agent j1.

Table 5.1 shows the observable actions of each agent. From this table the dif-
ference between a taxi observing a taxi, and a janitor observing a taxi becomes
clear.

obs. t1 obs. t2 obs j1 obs. j2
t1 Wait Clean(G)
t2 Get(Y) Clean(G)
j1 Pickup(Y) Wait

j2 Pickup(Y) Maintain(G)

Table 5.1: The observable actions for the agents in Figure 5.7.The agents in the
first column are the observing agents.

When a janitor observes a taxi it will either see the taxi as performing a
Pickup(t) action, as performing a Get(t) action, or it will not be able to observe
anything. When looking at the taxi graph we see that Pickup(t) is actually a

71

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

descendent of Get(t) i.e. Pickup(t) occurs further down the task graph. In cases
such as this where there are several tasks from the same interest group occur-
ring in the same branch the rule is that the task furthest down the graph is the
observable task.

In this case there are only two actions in the Get(t) task. A question is then
why did we not just choose the Navigate(t) task as the action in the interest
group? First and foremost, we cannot let Navigate(t) occur in the interest
group, because we cannot know if it is initialised from a Get action, or if it
initialised from a Put action. We could however just let the two actions be
called pickup(t) and NavigateGet(t) and avoid this problem.

Imagine that the janitor agent is interested in if a taxi agent is in the Get(t)
task subtree. If the taxi is in this part of the graph, the janitor is interested in
whether the taxi is performing a pick up or if it is performing an child action to
Get(t) that is not a pick up. If the action is not a pick up, then the janitor is
not interested in the identity of the action, only that it is located in the Get(t)
sub-tree. In this case having only Pickup(t) and Get(t) is a solution.

5.2.3 Projected Value Function

As is the case in the homogeneous setting, the projected value function of a
hierarchical policy π on subtask Mi, denoted V π(i, s), is changed when the task
i is an interest task. V π(i, s, ~u) is the expected cumulative reward of executing
πi, and its descendents, starting in state s until Mi terminates when i is an
interest task. ~u are the actions being executed from the interest group of i.

The joint completion function for agent j, Cj(i, s, u1, . . . un, aj) is the expected
discounted cumulative reward of completing interest task i after taking action
aj in state s while other agents are performing the observable action uk from
the interest group attached to i.

Because there can be several interest tasks in a task graph, an interest task can
be found both as the current task i and as the selected action a, thus we must
have a function decomposition for each of these cases.

In the case where both the current task and the chosen action are interest tasks,
the decomposition can be restated as Equation 5.1.

Qjπ

(i, s, u1 . . . un, aj) = V jπ

(aj , s, ũ1 . . . ũn) + Cjπ

(i, s, u1 . . . un, aj) (5.1)

In this case both the value function for the chosen action aj , and the completion
function for the current task i must be redefined. In order for the functions to be
dependent on the actions of other agents, the executing actions of other agents
found in the interest groups of interest task i and interest task aj must be
represented. The actions in the interest group belonging to aj are represented
as ũ1 . . . ũn. For the interest group belonging to i the actions are represented as
u1 . . . un.

The second case is when the current task i is an interest task, but the chosen
action aj is not. In this case only the completion function needs to rely on the

72

5.2. HETEROGENEITY IN GOAL

actions of other agents. The value function for aj is independent of the other
agents actions. Equation 5.2 shows the decomposition.

Qjπ

(i, s, u1 . . . un, aj) = V jπ

(aj , s) + Cjπ

(i, s, u1 . . . un, aj) (5.2)

It might also be the case that the chosen action aj is an interest task, while
the current task i is not. In this case it is only the value function for aj that
depends on the actions of the other agents. Equation 5.3 shows this case.

Qjπ

(i, s, aj) = V jπ

(aj , s, ũ1 . . . ũn) + Cjπ

(i, s, aj) (5.3)

In the final case neither the current task i nor the chosen action aj is an interest
task. In this case Equation 5.4 can be applied. This is the same decomposition
found in Chapter 3.

Qjπ

(i, s, aj) = V jπ

(aj , s) + Cjπ

(i, s, aj) (5.4)

5.2.4 A Multi-agent Reinforcement Learning Algorithm

for Heterogeneous Agents

The Heterogeneous learning algorithm is an extension to the MaxQ and the
Cooperative MaxQ learning algorithm. Algorithm 12 shows this algorithm.
The algorithm is initialised with the agent name as parameter, as well as the
current task of that agent, and the current state. When initialising an episode,
the current task will be the topmost task. In the janitor and taxi agent case
this will be the Root task.

The first thing that happens is that all the interest groups Gi ∈ G attached
to agent a are found. For each interest group the observable actions currently
being executed by other agents are found. The executing observable action in
interest list k for interest task i is denoted uk

i . For each interest group attached
to the agent one action is observed.

When entering an iteration of the algorithm, a sequence, Seq, of elements is
maintained. Each element consists of a state and the observable actions of each
interest group of that agent being executed at the time the state was encoun-
tered. Each time the algorithm returns from an action, the sequence childSeq,
which is the sequence encountered during the execution of the returning action,
is added to Seq.

If the current task i is a primitive action then the action is executed, the value
function for the primitive action is updated, and the state along with the ob-
servable executing actions of other agents are added to Seq.

If i is a composite task, then there are four special cases:

• i is an interest task, and the chosen action aj is an interest task.

• i is an interest task, and the chosen action aj is not.

• i is not an interest task, but the chosen action aj is.

73

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

Algorithm 12 The Heterogeneous-CHRL Algorithm.

1: Function He-CHRL(Agent a, Task i, State s)
2: let G be a list of interest groups attached to Agent a

3: for each interest list ILj in Gi where Gi ∈ G, add action ui to Ui, where ui

is the action currently being executed in ILj .
4: let Seq = () be the sequence of (state-visited, for each Gi ∈ G add Ui)
5: if i is a primitive action then

6: execute action i, receive reward r and observe result state s′

7: V
jπ

t+1(i, s) := (1 − α
j
t (i)) · V

jπ

t (i, s) + α
j
t (i) · rt

8: push (state s, for each Gi ∈ G add Ui) onto the front of Seq

9: else

10: while i has not terminated do

11: if i is an interest task then

12: Choose action aj according to the current exploration policy
π

j
i (s, u

1
i . . . un

i)
13: let ChildSeq = He-CHRL(j, aj , s)
14: observe result state s′ and current interest group actions û1

i , . . . , û
n
i

for interest task i, and û1
j , . . . , û

n
j if aj is an interest task.

15: if aj is an interest task then

16: a∗ = argmaxa′∈Ai

[
C

jπ

t (i, s′, û1
i , . . . , û

n
i , a′) + V

jπ

t (a′, s′, û1
j , . . . , û

n
j)

]

17: else

18: a∗ = argmaxa′∈Ai

[
C

jπ

t (i, s′, û1
i , . . . , û

n
i , a′) + V

jπ

t (a′, s′)
]

19: end if

20: let vx = V
jπ

t (a∗, s′, û1
j . . . ûn

j) if aj is an interest task, else let vx =

V
jπ

t (a∗, s′)
21: let N = 0
22: for each element in ChildSeq from the beginning do
23: N = N + 1
24: C

jπ

t+1(i, s, u
1
i . . . un

i , aj) := (1 − α
j
t(i))C

jπ

t (i, s, u1
i . . . un

i , aj)+

α
j
t (i)γ

N
h
C

jπ

t (i, s′, bu1
i . . . bun

i , a′) + vx

i

25: end for

26: else

27: choose action aj according to the current exploration policy π
j
i (s)

28: let ChildSeq = Heterogeneous-CHRL(j, aj, s)
29: observe result state s′, and current interest group actions û1

j , . . . , û
n
j

30: if aj is an interest task then

31: let a∗ = argmaxa′∈Ai

[
C

jπ

t (i, s′, a) + V
jπ

t (a′, s′, û1
j , . . . , û

n
j)

]

32: else

33: let a∗ = argmaxa′∈Ai

[
C

jπ

t (i, s′, a) + V
jπ

t (a′, s′)
]

34: end if

35: let vx = V
jπ

t (a∗, s′, û1
j . . . ûn

j) if aj is an interest task, else let vx =

V
jπ

t (a∗, s′)
36: let N = 0
37: for each state s in ChildSeq from the beginning do
38: N = N + 1

39: C
jπ

t+1(i, s, a
j) := (1 − α

j
t (i))C

jπ

t (i, s, aj) + α
j
t (i)γ

N
h
C

jπ

t (i, s′, a∗) + vx

i

40: end for

41: end if

42: append ChildSeq onto the front of Seq

43: s = s′

44: end while

45: end if

46: return Seq

74

5.3. SUMMARY

• i is not an interest task, and neither is the chosen action aj .

In the case where i is an interest task, the completion function will be dependant
on the actions of other agents. In the case where aj is an interest task, the value
function for aj will be dependant of the actions of other agents.

Line 16 of Algorithm 12 shown below as well as line 18, 31 and 33 have the same
function as EvaluateMaxNode function from Algorithm 4

a∗ = argmax
a′∈Ai

[
C

jπ

t (i, s′, û1
i , . . . , û

n
i , a′) + V

jπ

t (a′, s′, û1
j , . . . , û

n
j)

]

5.3 Summary

In this chapter we presented two approaches that each dealt with an aspect
of heterogeneity in multi-agent environments. First the inter-agent guidance
approach was presented. In this approach we presented algorithms that was
meant to increase the learning rate of agents that for one reason or another
could not, or should not communicate too often. The second approach showed
how agents with different goals could be made to work together. This approach
builds upon Algorithm 7 presented in Chapter 4.

75

CHAPTER 5. ADDING HETEROGENEITY TO MULTI-AGENT
ENVIRONMENTS

76

Chapter 6

Conclusion

At the beginning of this report we introduce a direction in machine learning
called Reinforcement Learning. Reinforcement Learning tries to let agents learn
using the same learning principles used in every day life. In its most basic form
reinforcement learning suffers from scaling problems.

Even in the simplest and smallest domains, teaching a machine the skills needed
to complete a task is not trivial. As the state space becomes larger, so does the
amount of computation power needed, and in fact adding just a little complexity
to a domain can cause a massive state explosion.

In an attempt to solve the scaling problem a technique called Hierarchical Re-
inforcement Learning is introduced. This technique decomposes a problem into
a number of smaller problems. In each of these smaller problems state abstrac-
tion can be applied. In this report we showed that on a problem called The
Taxi Problem the number of state/action pairs, when using a 5×5 board, could
be reduced from 3000 when using regular table based reinforcement learning to
only 632. When increasing the board size to 10×10, the difference became even
more apparent. Now the regular approach required 12000 state/action pairs,
whereas hierarchical reinforcement learning only required 2432. This shows,
that as the problem becomes bigger so does the advantage of using hierarchical
reinforcement learning.

Both approaches were tested on the Taxi problem, with the board size set to
10 × 10. The results of this test was very convincing. In this setting the HRL
algorithm converged using just under 1

8 of the time steps needed for regular Q

learning. Furthermore, HRL converged 16 times faster in real time.

Having shown that hierarchical reinforcement learning does in fact provide a
reduction in the state space as well as in the time used to converge, we applied
it in a multi-agent setting.

Instead of just having two agents using the hierarchical learning algorithm a
new approach was used. This approach, first introduced by Ghavamzadeh and
Mahadevan, allows agents to coordinate at a high level of abstraction. This
approach allows the agents to ignore low level details, while still getting an idea
of what state the other agent is in, and what it is doing. Having knowledge

77

CHAPTER 6. CONCLUSION

of other agents intentions should help the agents coordinate, and thus achieve
a higher level of cooperation. To prove this claim an implementation of the
approach was made, and subsequently compared to an implementation with
multiple agents the regular hierarchical approach. As it turned out, the new
approach was able to find policies that yielded higher rewards than what was
possible using the regular hierarchical approach.

Chapter 5 presented two very different approaches that each added a form of
heterogeneity to multi-agent environments. The first approach dealt with the
heterogeneity introduced when agents are using different learning algorithms
but are otherwise identical(including identical goals). We believe this approach
will speed up learning when the value functions of the agents are distributed.
The approach is based on the idea of experience sharing. What this means is,
that when one agent has performed some sequence of actions that is believed
to be good, then this sequence can be shared with other agents, thus improving
the policy of other agents. The second approach dealt with agents that have
different goals, but use the MaxQ function decomposition. In this approach
the concept of Interest Groups were introduced. By using interest groups it is
possible for two agents with entirely different goals to coordinate, so that they
do not compete for the same resources. This approach builds upon the ideas
presented in Chapter 3 and Chapter 4.

6.1 Future Work

First and foremost, testing and validation of the two approaches presented in
Chapter 5 should be conducted. Furthermore testing of HRL and MHRL on
other problems should be conducted. These tests should be made to validate
that the approaches does in fact work on a variety of problem domains.

One issue that was not addressed in this report was how to find a suitable hier-
archical structure to represent a problem. It could be interesting to investigate
what it will take to create an algorithm that could handle this decomposition
automatically.

One of the biggest problems with the MaxQ method is the time it takes to
compute V (i, s). The approach used in this report is shown in Algorithm 4.
The problem with this approach is that calculating V (i, s) requires a depth first
search, where several paths through the task graph must be searched. The bigger
the task graph the more branches must be searched, and the longer time it will
take. It would be interesting to see if a more optimal approach to calculating
V (i, s) could be found.

While HRL and MHRL does provide a substantial reduction in the state space
and an increase in the execution speeds, it still suffers somewhat when the
problems gets bigger. It would be interesting to see if combining Relational
Reinforcement Learning with hierarchical structures will yield improvements.
It should be possible to reduce the state space even further because similar
states can be abstracted away.

78

Appendix A

5 Step Rewards for the HRL

Implementation

a0 a1 a0 a1 a0 a1 a0 a1 a0 a1
� W � � � � � � � �
� W � � � � � � � �
� W � � � � � � � �
� W O � � X O X O �
X W � O � � X � � O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � X � X O � O X �
O X � � � X O � � �
W � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � O X O � � X O X
� O X � � O � � X �
X X � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � O X � X O � O
� � O � � � � X O �
O O � � � � � � � �
� W � � � � � � � �
W W � � � � � � � �
W W � X O X O � � X
W W � � X � � O � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
X � X O � O X � X O
� � � X O � � � � X
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
O X O � � X O X O �
X � � O � � X � � O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� O X � X O � O X �
O � � � � X O � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� X O X O � � X O X
� � X � � O � � X �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
X O � O X � X O � O
� X O � � � � X O �

Figure A.1: Optimal sequence for 5 step MHRL agents.

79

APPENDIX A. 5 STEP REWARDS FOR THE HRL IMPLEMENTATION

a0 a1 a0 a1 a0 a1 a0 a1 a0 a1
� W � � � � � � � �
� W � � � � � � � �
� W � � � � � � � �
� W � � � � � � � �
X W X O X O X O X O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
O X O X O X O X O X
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
X O X O X O X O X O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
O X O X O X O X O X
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
X O X O X O X O X O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
O X O X O X O X O X
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
X O X O X O X O X O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
O X O X O X O X O X
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
X O X O X O X O X O
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
O X O X O X O X O X

Figure A.2: Optimal sequence for 5 step HRL agents.

80

Bibliography

[1] Richard Bellman. Dynamic Programming. Princeton University, 1957.

[2] Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq
value function decomposition. CoRR, cs.LG/9905014, 1999.

[3] Thomas G. Dietterich. Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition. J. Artif. Intell. Res. (JAIR),
13:227–303, 2000.

[4] Sašo Džeroski, Luc De Raedt, and Kurt Driessens. Relational Reinforce-
ment Learning. Machine Learning, 43(1/2):7–52, 2001.

[5] Mohammad Ghavamzadeh and Sridhar Mahadevan. Learning to commu-
nicate and act using hierarchical reinforcement learning. In AAMAS, pages
1114–1121, 2004.

[6] Harry Klopf. Brain Function and Adaptive Systems—A Heterostatic The-
ory. Technical report, Air Force Cambridge Research Laboratories, 1972.
AFCRL-72-0164.

[7] Harry Klopf. The Hedonistic Neuron: A Theory of Memory, Learning,
and Intelligence. Hemisphere, Washington, D.C., December 1982. ISBN
089116202X.

[8] S. Mahadevan M. Ghavamzadeh. Hierarchical multiagent reinforcement
learning. CMPSCI Technical Report 04-02, 2004.

[9] Tom M. Mitchell. Machine Learning, chapter 13 – Reinforcement Learning.
McGraw-Hill, New York, 1997.

[10] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997. ISBN
0-07-115467-1.

[11] Ronald Parr and Stuart J. Russell. Reinforcement learning with hierarchies
of machines. In NIPS, 1997.

[12] Khashayar Rohanimanesh and Sridhar Mahadevan. Learning to take con-
current actions. In NIPS, pages 1619–1626, 2002.

[13] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. Bradford Books, 1998. ISBN 0-262-19398-1.

81

BIBLIOGRAPHY

[14] Edward L. Thorndike. Animal Intelligence. Thoemmes Continuum, 1911.
ISBN 185506698X.

[15] Christopher J.C.H. Watkins and Peter Dayan. Technical Note: Q-Learning.
Machine Learning, 8(3-4):279–292, May 1992.

82

Summary

In this report we start out by describing the principles behind regular Q-learning.
Following this short introduction to reinforment learning we describe how hi-
erarchical structures can be applied to reinforcement learning. To this end we
present the MaxQ reinforcement learning algorithm invented by Thomas Diet-
terich [3].

This algorithm decomposes a problem into smaller problems by applying a hier-
archical structure on the problem. In each of the sub-problems it is very likely
that some part of the overall state does matter, and can therefore be abstracted
away. Because of the great abstraction ability of MaxQ scaling becomes less of a
problem. To test that this is infact so a test was performed. In this test an agent
using the MaxQ algorithm was compared to an agent using regular Q-learning.
The results of this test was very convincing. In this setting the HRL algorithm
converged using just under 1

8 of the time steps needed for regular Q learning.
Furthermore, HRL converged 16 times faster in real time.

In Dietterichs work the focus is on single-agent environments. We have ex-
panded the MaxQ learning algorithm to include cooperating agents by using
the Multi-agent HRL (MHRL) algorithm presented by M. Ghavamzadeh and S.
Mahadevan in [8]. This report gives an in depth description of this approach.
The idea in this approach is that by letting other agents know which high level
action an agent is performing they can get a rough idea of in which state the
agent is in. The knowledge of other agents states and actions can be used to
coordinate the behaviour and thereby increase the agents cooperation skills.
That this approach does indeed improve the agents cooperation skills is shown
by comparing the policy found from two agents using this approach with two
agents just using regular hierarchical reinforcement learning. The results showed
that the cooperating agents was able to find policies that yieled a higher total
reward than what was possible for the two non-cooperating agents.

The approach introduced by Ghavamzadeh and Mahadevan focuses on homo-
geneous agents. We explore the area of Heterogeneity in multi-agent environ-
ments. To this end two approaches that each deals with a different aspect of
heterogenity is introduced. The first method uses something called inter-agent
guidance, and is meant for agents that are heterogeneous in the sense that they
use different learning algorithms to achieve the same goal. This algorithm also
has the property of speeding up learning in cases where the value function is
not shared between agents. The second approach expands the algorithm pre-
sented by Ghavamzadeh and Mahadevan to allow agents with different goals to
cooperate. This is achieved by using a concept called interest groups.

83

