Preface

This thesis documents the work done by Carl Christian Sloth Andersen at Aalborg University,
Department of Computer Science, during the spring semester of 2005.

I would like to thank Uffe Kjeerulff for supervising the project. I would also like to thank
Hendrik Blockeel for letting me use the ACE data mining system, as well as Jan Ramon,
Tom Croonenborghs and Jan Struyf for taking their time to answer my questions regarding
the system.

A summary of the thesis can be found in Appendix A.
Aalborg, June 17, 2005

Carl Christian Sloth Andersen

ii

Contents

1 Introduction 1
1.1 Problem Representation 1
1.2 Outline of the Report 2
1.3 Summary of Results o 2

2 Reinforcement Learning 3
2.1 Reinforcement Learning oo oL 3

2.1.1 Ordered Policies 5
2.2 Learning the Q-Functiono 5
2.3 Problem Domains e 7
2.3.1 The Taxi Domain 7
2.3.2 The Blocks World Domain 8
2.4 Scaling of Reinforcement learning oL 9
2.5 Value Prediction 10
2.6 Generalizing Policies to New Environments 11
2.7 Summary . . o. ... e e e e e e 12

3 Relational Reinforcement Learning 13
3.1 First-Order Predicate Logic 13
3.2 Relational Domains L 14
3.3 Logical Representation of Policies 16

3.3.1 Background Knowledge, 17
3.3.2 The Policy Function, 18
3.4 Learning Logical Policies 19
3.4.1 Induction of Logical Decision Trees 23
3.4.2 Finding Test Candidates, 24

iii

3.4.3 Example Testing Lo
3.4.4 Quality Heuristicso o
3.5 Experimental Evaluation of Relational Reinforcement Learning
3.6 Recent Work L

3.7 Summary ... e e e e

Hierarchical Reinforcement Learning
4.1 Task Decomposition e e
4.1.1 Semi-Markov Decision Process
4.1.2 Definition of a Subtask oo Lo
4.1.3 Hierarchical Policies
4.2 Hierarchical Semi-Markov -Learning
4.3 MAXQ Value Function Decomposition
4.3.1 Definition of the Value Function Decomposition
4.3.2 MAXQ Graphs
4.3.3 Different Kinds of Optimality
4.3.4 The MAXQ-Q Learning Algorithm
4.4 State Abstractions
4.4.1 TIrrelevant Variable Elimination
4.42 Funnel Actions Lo
4.4.3 Structural Constraintso L
4.4.4 Overview of State Abstractions in the Taxi Domain
4.5 Non-Hierarchical Execution of a Hierarchical Policy
4.6 Hierarchical Exploration Problem
4.7 FExperimental Evaluation of the MAXQ Method
4.7.1 Performance of MAXQ Learning
4.7.2 Encoding of Knowledge
4.8 Related Worko

4.9 SUmMmAaryo e e e e e e e e

Combining Hierarchical and Relational Reinforcement Learning

5.1 MAXQ Hierarchy for Blocks World
5.1.1 Hierarchical Exploration Problem

5.2 Value and Completion Trees

5.3 State Abstractions e e e

iv

5.3.1 Manual and Semi-Automatic State Abstraction
5.4 The Policy Function
54.1 Local P-Trees i
54.2 Global P-Tree
5.5 Experiments.
5.5.1 Hand-Coded Logical State Abstractions
5.5.2 Flat Relational Reinforcement Learning
5.5.3 MAXQ Hierarchy with Logical Decision Trees
5.6 Automatically Constructed Hierarchies
5.7 Related Work

5.8 Summary e e

Conclusion

6.1 Relational Reinforcement Learning
6.2 Hierarchical Reinforcement Learning
6.3 Combining Relational and Hierarchical Reinforcement Learning
6.4 Summary of Contributions oL

6.5 Future Work
Summary

ACE Blocks World Specification

B.1 Background Knowledge
B.2 TILDE-RT Settings for Inducing Q-trees
B.3 TILDE Settings for Inducing P-trees

Relational MAXQ-Q Learning Algorithm
C.1 Relational MAXQ-Q L e
C.2 Learning Local P-trees

79
79
79
80
80
81

83

85
85
85
86

vi

Chapter 1

Introduction

Reinforcement Learning is the task of teaching an agent optimal behavior in its environment
by reinforcing good actions with rewards and poor actions with penalties. At any point in
time, the environment is in a specific state, and the agent is given a selection of actions to
choose from. The chosen action moves the environment from its current state to a new state
dictated by a transition probability distribution. Depending on the chosen action, the agent
is rewarded or penalized. Since the choice of action alters the environment, it also directly
affects all subsequent rewards. The primary characteristics of reinforcement learning are
trial-and-error and delayed rewards.

Currently, there are three main approaches utilized in solving reinforcement learning prob-
lems. These are dynamic programming, Monte Carlo methods and temporal-difference learn-
ing. This work focuses on Q-learning (Watkins, 1989) and SARSA (Rummery and Niran-
jan, 1994), which are two temporal-difference learning algorithms. It is a well-known fact that
both algorithms produce optimal control policies given the restriction of infinite exploration.

1.1 Problem Representation

As problems grow larger, representation becomes an increasingly important issue. Many real-
world problems and their solutions (i.e. a control policies) are often impossible to represent
directly in a conventional table-based manner. This has given rise to various approaches to
ease the problem of a large state space. In general, the state space is either reduced by the use
of state abstractions, or the agent is guided on the right path (thus avoiding a possibly large
part of the state space). In this report we explore two of these approaches, namely relational
reinforcement learning (DZeroski, Raedt and Driessens, 2001) and hierarchical reinforcement
learning using the MAXQ value function decomposition (Dietterich, 2000).

The idea behind relational reinforcement learning is to combine traditional @-learning with
inductive logic programming and relational state descriptions. This combination makes
it possible to obtain state abstractions through generalization of the state space. At the
time of writing, there exists no proofs of convergence for relational reinforcement learning,
but the topic has been receiving an increasingly amount of attention. There are, how-
ever, empirical results (although primarily on toy problems) indicating the feasibility of
the approach (DZeroski et al., 2001; Driessens, Ramon and Blockeel, 2001; Driessens and
Dzeroski, 2004).

Hierarchical reinforcement learning using the MAXQ value function builds upon the principle
of earlier hierarchical approaches (Hauskrecht, Meuleau, Kaelbling, Dean and Boutilier, 1998;
Parr, 1998). Besides being able to learn a control policy for a procedural decomposition of
a primary task, the method also decomposes the representation of the learned control policy
(i.e. the value function). The decomposition of the value function creates the opportunity
for further state abstractions that would otherwise be impossible. The method comes with
theoretical guarantees of convergence also proven by Dietterich (2000).

Besides the re-exploration of these two existing methods, the major contribution of this work
is to explore the advantages of combining the methods. That is, we investigate the possibilities
of integrating inductive logic programming into hierarchical reinforcement learning. We do
so within the boundaries of the already existing theory for the two methods.

1.2 Outline of the Report

The outline of the report is as follows: Chapter 2 covers the basics of traditional reinforce-
ment learning using the Q-learning and SARSA algorithms. The two example domains used
throughout the report, the Blocks World domain and the Taxi domain, are furthermore in-
troduced in this chapter. Chapter 3 explores the method of relational reinforcement learning
and concludes on the advantages of the method through experiments. In Chapter 4 we de-
scribe hierarchical reinforcement learning using the MAXQ value function decomposition.
This method is also evaluated through experiments. Finally, Chapter 5 introduces the possi-
bilities of combining relational and hierarchical reinforcement learning. We introduce various
approaches towards the combination and concludes on their performance though a series of
experiments.

1.3 Summary of Results

Combining inductive logic programming with hierarchical reinforcement learning creates the
opportunity for applying logical state abstractions to a task hierarchy. These abstractions
can be applied manually or can be found semi-automatically through the induction of logical
decision trees. Since subtasks in a hierarchy are simpler than their ancestor tasks, patterns
of optimality are more easily found by relational reinforcement learning. This results in both
faster convergence and smaller space requirements for the learned control policy. This is the
first result of this work.

The second result is the observation that automatically constructed task hierarchies also need
some means of automatically detecting possible state abstractions. We show that logical
decision trees are indeed a powerful tool for this purpose.

Chapter 2

Reinforcement Learning

Reinforcement Learning is the task of teaching an agent optimal behavior in its environment
by reinforcing good actions with rewards and poor actions with penalties. At any point in
time, the environment is in a specific state, and the agent is given a selection of actions
to choose from. The chosen action moves the environment from its current state to a new
state dictated by a transition probability distribution. Depending on the chosen action, the
agent is rewarded or penalized. The environment of the agent is most often represented as a
Markov decision process.

In Section 2.1, we will setup a notation for describing an environment as a Markov decision
process. We will furthermore describe a value and action-value function that assigns a nu-
merical value to each state and state/action pair in the environment. Given any of these two
functions, an optimal policy for a domain can easily be derived. Section 2.2 describes how
the action-value function can be learned using @-learning or SARSA. Following, Section 2.3
introduces two domains commonly used in reinforcement learning: the Taxi domain and the
Blocks World domain. Using the Blocks World domain, Section 2.4 and 2.5 discusses limi-
tations of reinforcement learning, including issues regarding scaling and value prediction of
unobserved state/action pairs.

2.1 Reinforcement Learning

Reinforcement learning is teaching an agent optimal behavior in its environment simply by
reinforcing its actions with rewards and penalties. The general components of a reinforcement,
learning problem are an agent and its environment. The agent interacts with the environment
in a sequence of discrete time steps t = {0,1,2,3,...}. In each time step, the agent observes
the state of the environment and chooses an action to perform. As a result of the chosen
action, the state of the environment is updated, and the agent receives a numerical reward (or
penalty) stating the quality of its choice of action. The environment is most often represented
as a Markov decision process:

Definition 1 (MDP). A Markov Decision Process (MDP) is a process defined by a 5-tuple
<Sa A7 Ta R7 TO>:

e S: the set of states of the environment. A state s € S is a value assignment to all
existing state variables.

CHAPTER 2. REINFORCEMENT LEARNING

e A: the set of actions. A(s) denotes the set of available actions in state s € S.

e P: the transition probability distribution, where p(s’|s, a) is the probability of observing
state s’ € S after performing action a € A(s) in state s € S.

e R: the reward function, where R(s'|s,a) is the real-valued reward given to an agent
when observing state s’ € S after performing action a € A(s) in state s € S.

Py: the initial state probability distribution. Py(s) denotes the probability of starting
in state s € S.

A solution to an MDP is a policy 7(s,a) that maps each state s € S to a corresponding
probability distribution of the possible actions a € A(s). The optimal solution to an MDP,
denoted 7*, is a policy that maximizes the expected cumulative reward given a horizon.
There may exist several optimal policies for an MDP.

Given a policy 7, each state can be assigned a number representing the numerical value of
starting in that state, and thereafter following policy 7. This is achieved by the value function
V7 :S — R, which can be defined as

V™(so) = F

H .
Z 7' R(si, ai)‘| (2.1)

=0

where H is the number of steps in the horizon, and +y is the discount factor, which determines
the weight put on future rewards. A distinction is normally made between episodic and
continuous tasks. An episodic task is restarted every time a terminating state is encountered,
while a continuous task runs forever. So, for a continuous task with a infinite horizon, H = oo
and 0 < v < 1. For episodic tasks with a finite horizon and at least one absorbing reward-free
state, H is known and ~ is usually set to 1. An absorbing reward-free state is a state in which
all transitions lead back to the same state with a reward of zero. These states are a way of
unifying the notation of episodic and continuous tasks, since it theoretically makes episodic
tasks continuous (Sutton and Barto, 1998).

The value function satisfies the Bellman equation for a fixed policy:
VT(s) =Y P(s'|s,m(a) [R(s'|s, m(a)) + 4V (s")] (2.2)

which states that the value of a state s, given a policy m, is the sum of the immediate reward
of performing the action m(s) and the discounted value of the following state s’. Since there
may exist several s’ given the specific action, the expected value is calculated by weighting
R(s'|s,m(a)) and yV7(s') with the probability of observing each possible s’. The optimal
value function V* is the value function that maximizes the expected cumulative reward for
all states in S. The optimal value function is the fixed point of the Bellman equation:

V*(s) = mgxz P(s'|s,a) [R(s'|s,a) + vV ™ (s")] (2.3)

Similar to the value function, an action-value function Q(s,a) can be defined. This function
also satisfies the Bellman equation and denotes the value of performing action a in state s.
The optimal @-function, written Q*(s, a), is the fixed point of the equation:

2.2. LEARNING THE @Q-FUNCTION

Q*(s,a) = Z P(s'|s,a) [R(s'|s, a) +ymaxQ*(s',a’) (2.4)
Using the Q-function, an optimal action a in state s is an action that maximizes Q(s,a):
7 (s) = argmax Q(s, a) (2.5)

This is an important equation, because it illustrates that if an agent learns the Q-function,
it does not need to learn neither the reward function R or the transition probability distrib-
ution P. Algorithms following this principle are therefore referred to as model-free learning
techniques.

2.1.1 Ordered Policies

For a given MDP, there exists only one optimal action-value function. However, as mentioned,
there might exists several optimal policies for an MDP. These policies differ in the actions
chosen, when several actions in a state have the same highest) value. If two actions have
the same value in state s, i.e. Q(s,a1) = Q(s,az), then neither of them is preferred over the
other. To solve this issue, an anti-symmetric transitive action relation w can be defined as

w(a1,az) is true iff action a; is preferred to action as in all states

This establishes an action ordering such that, if w(a1,a2), then action a; is chosen when
Q(s,a1) = Q(s,a2). A policy following an ordering w is denoted =, and is said to be
ordered. There exists only one optimal ordered policy m, for any MDP.

2.2 Learning the ()-Function

The idea behind temporal-difference (TD) learning is to continuously create approximations
of V or @ based on earlier approximations until convergence is achieved. This is very similar
to dynamic programming (DP), but where DP needs a perfect model of the environment,
TD learning does not, and is therefore a model-free learning technique. In practice, the
approximations are most often created over a single time step, but can in theory be made
over any number of steps. In fact, Monte-Carlo methods are actually a special case of TD
learning, where the approximations are created over all observed steps.

In this report, we will make use of the two very similar TD algorithms @Q-learning (Watkins,
1989) and SARSA (Rummery and Niranjan, 1994). The objective of both algorithms is to
learn the Q-function by continuously making new approximations. The algorithms are shown
in Table 2.1 and Table 2.2 respectively.

Q denotes the current approximation of the real @Q-function. The learning factor 0 < ay <1
is a number that indicates how much weight should be put on new observations. It is often
a function of the current state and action at time step t¢:

1
1+ number0fVisits(s, at)

(s, ar) = (2.6)

CHAPTER 2. REINFORCEMENT LEARNING

: For each s, a initialize the table entry Qt(s,a) to zero
: Observe the current state s¢
while (s¢ is not an absorbing reward-free state) do
Select an action a; in state s¢ using exploration policy 7. and execute it
Receive immediate reward r
Observe the new state s¢41
Update the table entry for Qt_H(st,at) as follows:
Qi+1(st,at) == (1 — ay)Qi(s¢, at) + o [,,_ +ymaxa, Qt(8t+1,at+1)]
St < St+1
: end while

LR NPT EXNE

—_

Table 2.1: The @Q-learning algorithm.

: For each s, a initialize the table entry Q¢(s,a) to zero
: Observe the current state s¢
Select an action a in state s¢ using exploration policy e
while (s¢ is not an absorbing reward-free state) do
Execute action a¢
Receive immediate reward r
Observe the new state s¢41
Select an action a¢41 in state s¢41 using exploration policy e
Update the table entry for Qsy1(st,at) as follows:
10: Qut1(st,ar) = (1 — a)Que(se, ar) + vt [T +7Qe(st+1, at+1)]
11: St = S¢41
12: at = Qp41
13: end while

PN W

©

Table 2.2: The SARSA algorithm.

2.3. PROBLEM DOMAINS

To enhance readability, the dependency on the s; and a; are often omitted in the notation.

At each time step, an exploration policy 7. can be derived from the approximated Q-function
combined with a exploration technique. A widely used technique is Boltzmann exploration
which assigns a probability to each possible action in a state based on a so-called temperature
variable. Boltzmann exploration is defined as

T—Q(s,a:)
P(aj|s) = ———— (2.7)
Zj T—Q(s.a;)

where P (a;|s) is the probability of selecting action a; given state s, and T' > 0 is the
temperature stating the weight put on exploration. As T approaches 1, the exploration
policy becomes more and more random. As T approaches 0, the policy becomes greedy with
respect to the () values of the respective actions.

The difference between Q-learning and SARSA lies in how the current policy is used. Q-
learning is said to be off-policy because it separates the current policy from the update of
the approximation Q When the approximation of @ is updated, the action a¢y1 in the
next time step is predicted to be the action that maximizes the approximated Q-function.
SARSA instead chooses a;41 using the current exploration policy, and is therefore an on-
policy algorithm®.

Both @Q-learning and SARSA will converge to the optimal action-value function if the agent
follows an exploration policy that performs every action in every state infinitely often, and
if the sequence of «; values satisfy

T T
lim Zat =00 and Tlim Zaf < 00 (2.8)
t=1 =1

T—o0

Furthermore, if a fixed exploration policy is used to select actions, SARSA will converge to the
action-value function of that policy (Jaakkola, Jordan and Singh, 1994; Jaakkola et al., 1994).

2.3 Problem Domains

Throughout the report we will use two domains: the highly hierarchical Taxi domain, and
the highly relational Blocks World domain. The Taxi domain was used in the introduction
of the hierarchical MAXQ value function decomposition by Dietterich (2000), and is a good
example of the benefits of this approach. Similarly, the Blocks World domain was used in
the introduction of relational reinforcement learning by DZeroski et al. (2001) because of its
relational qualities. Both domains are episodic.

2.3.1 The Taxi Domain

The Taxi domain consists of a 5-by-5 grid with four specially-designated locations marked
as R(red), B(blue), G(green) and Y(yellow). Initially, a taxi is placed in a randomly chosen

!'The name SARSA comes from the one-step update tuple (s¢, at, 7, St+1, at4+1)

CHAPTER 2. REINFORCEMENT LEARNING

square. One of the four locations is chosen randomly to contain a passenger, and another as
the destination. The taxi must go to the location of the passenger, pick up the passenger, go
to the destination, and then put down the passenger in the fewest possible steps. Figure 2.1
illustrates the domain.

4 | R G
3 | &

2

1

o |vY B

0 1 2 3 4

Figure 2.1: The Taxi Domain.

At each time step, the taxi can choose to navigate either north, south, east or west. It can
also choose to pick up or to put down the passenger. If the taxi attempts to navigate through
a wall, or if it attempts to pickup or putdown a passenger illegally, it will stay in the same
square. Each such “illegal” action yields a penalty of —10, while other legal actions yields a
penalty of —1. The final putdown action yields a reward of 20.

There are 25 squares, 4 destinations and 5 locations of the passenger (also counting inside
the taxi, which we will denote T). The size of the state space is calculated as a function of
the grid size g and the number of specially-designated locations n: size(g,n) = gn(n + 1).
We will describe a state in the Taxi domain as a vector (z,y, p, d) where x and y denotes the
location of the taxi, p denotes the location of the passenger, and d denotes the destination
of the passenger. The location of the taxi is expressed in coordinates, while the location and
destination of the passenger are expressed using the specially-designated locations.

2.3.2 The Blocks World Domain

The Blocks World domain consists of a number of unique blocks. Each block has a name,
and can either be on the floor or on top of another block. We will write on(a,b) if block a is
on top of block b. A block a is clear if no other blocks is on top of it, denoted by clear(a).
At each time step, a single block can either be moved to the floor (if not already there), or
onto any clear block. The task in Blocks World is to reach a specified goal state in fewest
possible steps. Figure 2.2 shows an example of an initial state and a goal state. A goal state
specification might be partial, meaning that the goal is achieved if a subset of the blocks are
at the correct place. For instance, on(a,b) is a partial goal-state specification.

Assuming a domain with three blocks {a,b, c}, the available actions are move(z,y) where
x #y,x € {a,b,c},y € {a,b,c,floor}. The size of the state space increases rapidly as more
blocks are added. The size can be calculated as:

. " i(n —1)!size(n — 1)
size(n) = ; (D)

2.4. SCALING OF REINFORCEMENT LEARNING

1) (6

(a) Initial State (b) Goal State

Figure 2.2: The Blocks World domain.

where n is the number of blocks. Table 2.3 shows the number of states for some small values
of n.

n 1 2 3 4 5
size(n) 1 3 13 73 501

n 6 7 8 9 10
size(n) | 4051 | 37633 | 394353 | 4596553 | 58941091

Table 2.3: The size of the Blocks World domain, where n is the number of blocks, and size(n)
is the number of states.

Optimal planning in Blocks World was proven to be NP-hard by (Gupta and Nau, 1991).
Furthermore, the domain exhibits so-called deleted-condition interactions, which has made
it a popular domain in planning literature. As an example of a deleted-condition interaction,
consider again the initial state in Figure 2.2. Given the task of achieving on(a,b), we
would first need to achieve two conditions: clear(a) and clear(b). Since b is already
clear, we clear a with the action move(c,b). But now b is no longer clear, because we
accidentally deleted one condition in order to achieve a second condition. The key observation
here is that in the subtask of achieving clear(a), the action move(c,b) is just as optimal
as move(c,floor). The presence of deleted-condition interactions makes Blocks World an
interesting domain to investigate when combined with hierarchical reinforcement learning.
Furthermore, the complexity of the domain is easily increased simply by adding more blocks.

2.4 Scaling of Reinforcement learning

As we saw in the previous section, the size of the state space in the Blocks World domain
quickly grows as more blocks are added. Another effect of adding more blocks, is that the
number of possible actions in almost every possible state also increases. Together, a large
state space and many available actions create two primary concerns: the increasing space
requirements of the action-value function, and the increasing time requirements of performing
every action in every state sufficiently often. Imagine a scenario with 10 blocks and a fully
specified goal state. The probability of reaching that particular goal state with initial random
exploration is very low. Not only is the goal state only 1 state out of 58 941091 states, the
agent must also continuously chose actions that takes it closer to the goal state—amongst
possible many actions that will take it further away. The reward function may give rewards
for reaching other states than the goal state, so in general this problem occurs when the
rewards are too sparsely distributed. The techniques presented in this chapter alone are
simply not able to handle such problems in any reasonable time.

CHAPTER 2. REINFORCEMENT LEARNING

To illustrate the impact of increasing the number of blocks, we performed an experiment
using the @Q-learning algorithm. The task of the agent was to reach the goal on(a,b) from
any initial state. The agent was trained for an increasing number of primitive steps, and was,
with certain intervals, evaluated through 5 trials. Each evaluation resulted in a mean error
per trial, which is the mean difference between the optimal solution and the solution chosen
by the agent. The reason that we measured performance as a function of primitive training
steps, instead of complete episodes, is that an agent explores more (and thus learns more)
during an episode as a domain becomes increasingly complex—simply because it will take
it a higher number of primitive steps to reach the goal. To avoid looping behavior, a trial
was interrupted if the agent used more than the maximum number of steps for any initial
state using the particular number of blocks—e.g. for 3 blocks, the maximum number of steps
required to reach on(a,b) from any state is 4. In that case, the number of steps used by the
agent was set to this maximum number. Figure 2.3 shows the results of the experiment.

3,50

,,,

1
1

5 Blocks
!

77

Mean Error Per Trial

0 250 500 750 1000 1250 1500
Primitive Steps

Figure 2.3: Performance of traditional @-learning in Blocks World using 3 to 5 blocks.

For 3 blocks, optimal behavior is reached before 100 primitive training steps. Using 4 blocks,
optimal behavior is not reached before after approximately 1000 steps, and for 5 blocks,
approximately 15000 training steps was needed before completely optimal behavior. Clearly,
finding an optimal policy using traditional Q-learning will become infeasible very quickly as
the number of blocks increase.

2.5 Value Prediction

It is unreasonable to expect an agent to explore the entire state space of a very large domain
sufficiently for full convergence. It is even unreasonable to expect it to visit every state
once given some realistic time constraint. Nevertheless, we would like to be able to predict
the value of state/actions pairs that the agent has never visited. Unfortunately, the tabular
representation of the action-value function discussed so far does not allow value prediction
for unobserved state/action pairs (at least not directly).

An alternative to a tabular representation is to create a structure, which performs inductive
inference on the components of a state/action pair. For instance, given the goal on(a,b)
and a state/action pair with the action move(a,b), the sum of all future rewards is going to
be 0, because the goal will be achieved in the next time step. If such rules are learned, then

10

2.6. GENERALIZING POLICIES TO NEW ENVIRONMENTS

predictions can be made for all state/action pairs. Of course, the quality of the predictions
will depend on the amount of training, as well as the uniformity of the state/action space.

The most common method for inductive inference is decision tree learning. Because the
action-value function maps state/action pairs to real-valued numbers, it can be represented
as a regression tree, where the nodes are tests on the state and action, and the leafs are the
numerical values. Figure 2.4 shows a regression tree representing an action-value function
for the goal on(a,b) using 3 blocks. Chapter 3 discusses the induction of regression trees
further.

move(a,b)
) \n
b
y/ n / \
i A EETICNS
/N N
4 eed]
/N /N /N
¥ <: : e Cy [more®0]

(-2) 1) (—2)
RN
(:

(=3)
Figure 2.4: An action-value function for the goal on(a,b) using 3 blocks represented as a
regression tree.

RN

“

<

RN

2)

2.6 Generalizing Policies to New Environments

Policies using a tabular or regression tree representation, as discussed in this chapter, are
very specific to the domain in which they are learned. For example, if a policy is learned
in a domain with three blocks and the goal on(a,b), then it is not directly useable if the
goal is changed to on(a,c) or if another block is added. In fact, these two issues were
used by Dzeroski et al. (2001) as part of the motivation in their introduction of relational
reinforcement learning, which we will describe in Chapter 3. While this technique certainly
solves these issues, some progress can be made without adding the same amount of overhead
during learning.

The first issue regarding a change of goal state (e.g. from on(a,b) to on(a,c)) can be solved
by renaming blocks throughout the policy representation. Consider the regression tree in
Figure 2.4 for the goal on(a,b). If we switch the names of each b and c in all nodes, then
the tree represents a policy for the goal on(a,c). Although the time complexity of such
a renaming mechanism is linear in the number of nodes in the tree, it can still be a time
consuming task because the number of nodes for most domains will be high.

Adding another block to a domain will render a learned tabular representation of @) useless.
A regression tree can, however, be used as a reasonable policy to speed up learning in the new

11

CHAPTER 2. REINFORCEMENT LEARNING

domain. Since the Q-function basically encodes the distance to the goal, which is obviously
dependent on the number of blocks, the old policy will of course only be somewhat reasonable,
and certainly not optimal. The reusability of a regression tree is enhanced significantly in
Chapter 3.

2.7 Summary

This chapter introduced reinforcement learning as a learning technique that uses rewards and
penalties to reinforce the actions of an agent. The environment in a reinforcement learning
problem is represented as a Markov decision process, which, given a specific ordering of
actions, has a unique optimal policy. A policy can be derived from the action-value function,
which maps state/action pairs to their expected cumulative reward for some horizon.

The two most common temporal-difference algorithms for learning the action-value function
are the off-policy @-learning and the on-policy SARSA. The two algorithms differ only in
their prediction of the action chosen in the next time step, and they both converge given
infinite exploration and certain restrictions on the learning factor.

The Taxi domain, which is well suited for hierarchical decomposition, was introduced and will
be the primary example in Chapter 4 for showing the advantages of hierarchical reinforcement
learning.

The relational domain Blocks World was also introduced, and was used do demonstrate
the limitations of traditional reinforcement learning when using a tabular representation of
the action-value function. The problem of predicting unobserved values and generalizing to
similar domains can be handled, to some extent, by the use of regression trees, but other
limitations still exist. These include learning anything reasonable in very large domains but
also learning more general policies without the need for renaming objects.

12

Chapter 3

Relational Reinforcement Learning

The previous chapter introduced reinforcement learning, and described the difficulties that
the technique must overcome. This chapter describes Relational Reinforcement Learning
(RRL), which was introduced by DZzeroski et al. (2001). The idea behind RRL is to combine
reinforcement learning with inductive first order predicate logic with variables. In its current
state, this combination takes a step towards generalizing agent policies to similar domains
using structural properties. Furthermore, the use of inductive logic also creates the possibility
of applying state abstractions, which results in a more compact policy representation.

Section 3.1 introduces first-order predicate logic as a representation language for relational
reinforcement problems. In Section 3.2, we describe relational MDPs and give a complete
specification of the Blocks World domain. In RRL, policies are represented using logical
decision trees. These are described in Section 3.3, while Section 3.4 explains how they can be
learned using modified versions of the Q-learning algorithm. In Section 3.5, experiments are
performed to illustrate the performance of RRL compared to reinforcement learning using a
propositional tabular representation. The results of the experiments also show the extend to
which policies can be generalized to similar domains. Finally, in Section 3.6 we discus recent
work in the field of relational reinforcement learning.

3.1 First-Order Predicate Logic

Learning in any domain requires the use of an appropriate representation language. An
appropriate language should have enough expressive power to represent a domain and a given
problem completely. In practice, the language should also allow acceptable performance while
learning.

When we introduced the Taxi domain in Chapter 2, we used a propositional representation to
describe the state space. This representation is very suitable for the Taxi domain, primarily
because a grid world is very naturally represented using coordinates.

When we introduced Blocks World, however, we described a state using first-order predicate
logic with predicates such as on(a,b) and clear(a). Blocks World can easily be represented
using a propositional language and coordinates such as the Taxi domain, but it would seem
somewhat non-intuitive. This is because the high-level logical language directly encapsulates
the concepts that are important in Blocks World. For instance, the answers to questions such

13

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

as “which block is on top of block a?”’ and “is block a clear?” are directly part of the state
description.

First-order logic allows the use of universal and existential quantifications, which make the
specification of appropriate domains much easier. For instance, to specify the available move
actions in a Blocks World state, we can set up a premise using the following rule (in Prolog
notation):

move(X,Y) :- clear(X), clear(Y), not(X=Y)

which states that the conclusion move (X,Y) holds when any two different blocks X and Y are
clear (ignoring the floor for now). Notice that here, X and Y are variables, and executing the
query ?7-move (X,Y) (with X and Y un-instantiated), we are in fact asking if there exists any
two blocks for which the premise of the rule holds. Given a state where both clear(a) and
clear(b) holds, the conclusions move(a,b) and move(b,a) can be automatically inferred.

For further information on first order predicate logic refer to e.g. Russell and Norvig (2003).

3.2 Relational Domains

A relational domain is often described as the existing relations between objects. In general,
a relational domain can be defined as a relational Markov decision process:

Definition 2 (RMDP). A Relational Markov Decision Process (RMDP) is a process defined
by a 7-tuple (O, F,S, A, P,R, Py):

e O: the set of objects.
e F': the set of predicate relations over O.
e §: the set of all legal states over O and F.

e A: the set of all possible instantiated actions.

e P R, Py: Unchanged from Definition 1.

The above definition includes the sets F' and A, which are both exponential in the number
of objects in O. These sets can be represented compactly by using logic. For Blocks World
with three blocks {a, b, c}, we have that

O ={a,b,c},
F = {on(X,Y),clear(X)|X,Y € O,X # Y}, and
A = {move(X,Y)|X,Y € O,X # Y}.

Notice that the contents of the sets have not been changed, and their sizes are still exponential
in the number of objects. It is only their representation that has been minimized.

In practice, as described in Chapter 2, we need to know the available actions A(s) in any state
s. We also need to represent the transition probability distribution P compactly. To achieve
this, the actions available in a state, and the transitions they invoke, can be represented in

14

3.2. RELATIONAL DOMAINS

a STRIPS like manner (Fikes and Nilsson, 1990). STRIPS is a planning system that uses
logical formulas to represent action preconditions and the transitions invoked by actions.
Each action has a delete list and an add list, and its transition is performed by deleting all
information in the delete list from the current state, and then adding all information from
the add list. For Blocks World, we define the action preconditions as the predicate pre, and
the transition probability distribution using the predicate delta. Table 3.1 illustrates the
definition used by (Dzeroski et al., 2001).

pre(S,move(X,Y)) :-

holds (S, [clear (X), clear(Y), not(X=Y), not(on(X,floor)])).
pre(S,move(X,Y)) :-

holds (S, [clear(X), clear(Y), not(X=Y), on(X,floor)]).
pre(S,move(X,floor)) :-

holds (S, [clear(X), not(on(X,floor))]).

holds(S,[1).
holds (S, [not X=Y | R]) :-

not X=Y, !, holds(S,R).
holds (S, [not A | R]) :-

not member(A,S), holds(S,R).
holds(S,[A | R]) :-

member (A,S), holds(S,R).

delta(S,move(X,Y),NextS) :-
holds (S, [clear(X), clear(Y), not(X=Y), not(on(X,floor))]),
delete([clear(Y),on(X,Z)], S, S1),
add([clear(Z),on(X,Y)], S1, NextS).

delta(S, move(X,Y), NextS) :-
holds (S, [clear(X), clear(Y), not(X=Y), on(X,floor)]),
delete([clear(Y),on(X,floor)], S, S1),
add([on(X,Y)], S1, NextS).

delta(S, move(X,floor), NextS) :-
holds (S, [clear(X),not on(X,floor)l),
delete([on(X,Z)], S, S1),
add([clear(Z) ,on(X,floor)], S1, NextS).

Table 3.1: Specification of the transition system and action preconditions for Blocks World

The auxiliary predicate holds takes a state S and a list of relations'. If all relations in
the list holds in the state, then the predicate succeeds, otherwise it fails. The precondition
predicate pre takes as input a state S and an action move (X,Y). If the action is allowed in
S then pre succeeds, otherwise it fails. Finally, the input to delta is also a state S and an
action move (X,Y). The last parameter NextS is the output of the predicate and must be an
un-instantiated variable when the predicate is called. If the action is legal according to pre,
then NextS will be unified with the result of executing the action (i.e. NextS is instantiated
as a side-effect).

A state s € S, which we will represent in list notation, is any legal state over O and F'. For
instance, the state

L'While it is standard to use upper-case letters for sets and lower-case letters for set elements, Prolog
notation unfortunately requires variables to be upper-case.

15

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

[clear(a), on(a,b), on(b,c), on(c,floor)]

is legal because it represents a scenario that is possible to build using three blocks. However,
the state [on(a,b),on(b,c),on(c,a)] is not legal, because no such scenario can be built.
For some applications, it might be necessary to include a more formal notion of legal states
in the RMDP definition.

To complete the formal specification of Blocks World, the penalty for any action is set to —1.
This will make the agent complete goals in the fewest possible steps to avoid more penalties
in future time steps (since there are no more penalties after reaching the goal state). It will
also make the @) values easier to read (e.g. Q(s,a) = —4 means that performing action a in
state s will result in the goal state being reached in 4 steps). The probability of being an
initial state is equal for all states.

3.3 Logical Representation of Policies

In itself, a relational MDP does not solve any of the problems discussed in Chapter 2. In
this section, we will define a logical representation of the action-value function called Q-
trees (DZeroski et al., 2001). We will also show how background knowledge can be incorpo-
rated into Q-trees, thereby achieving a higher level of abstraction.

In Chapter 2, the @ function was represented both as a table and as a regression tree to obtain
the possibility of value prediction. A problem with both of these representations is that any
changes to the environment or goal specification requires re-learning from scratch. Although
the latter can be achieved by the use of a renaming mechanism (as described in Section 2.6),
using variables will result in far more elegant solution. A special kind of decision tree, which
uses first order logic, was formally introduced by Blockeel and Raedt (1998). These trees
make use of variables that makes it possible to avoid direct references to objects.

Definition 3 (FOLDT). A first order logical decision tree (FOLDT) is a binary decision
tree in which the following applies:

e The nodes of the tree contain a conjunction of predicates.

e Different nodes may share variables, under the following restriction: a variable that is
introduced in a node (which means that it does not occur in higher nodes) must not
occur in the right branch of that node (i.e. the “no” branch).

Each node in an FOLDT contains a predicate or a conjunction of predicates (which is also
just a predicate). A predicate may contain one or more variables that will be instantiated
with different values as the predicate is applied to various examples. Here, an example is
simply the state, action and goal of a specific time step. Given a node and an example, a node
predicate either holds or does not hold. If it does not hold, then the example is sorted down
the right branch (the no branch) and no variables are instantiated. Otherwise, the example
is sorted down the left branch (the yes branch), and any existing variables are instantiated
to the values that allowed the predicate to hold. Figure 3.1 illustrates an FOLDT where
the variable C is shared between two nodes. Each leaf is a numerical value—in this case
a (random) @-value. A logical regression tree representing a (Q-function is referred to as a
Q-tree.

16

3.3. LOGICAL REPRESENTATION OF POLICIES

root: goal(on(A,B))

-

(-1 (-2)
Figure 3.1: A FOLDT illustrating variable sharing.

The illustrated Q-tree contains an extra root with the predicate goal (on(A,B)). This extra
root is used for predicates that always hold given the state/action space and the goal of
the agent. The point of the extra root is to instantiate relevant variables. In this case,
the goal is to always have a specific block on top of another specific block, so the predicate
goal(on(A,B)) will always hold (because the variables A and B can be any blocks). However,
in the rest of the tree, A and B will be instantiated to the blocks in the actual goal state.
For example, given the goal goal(on(b,c)), A will be instantiated to b and B to c. The
same way as the goal is wrapped in a goal predicate, we will also wrap actions in an action
predicate.

The restriction of not referring to a variable introduced by a particular node in its right branch
makes sense when observing Figure 3.1. The predicate on(A,C) in the tree introduces the
variable C. It tests if A is on top of any block C. If the predicate does not hold, then it makes
no sense to reference C again?, since there is no such block (i.e. C will remain un-instantiated).

A @Q-tree can be encoded using a Prolog rule structure, where each leaf is encoded by exactly
one rule. The premise of a leaf rule is the predicates encountered on the path from the root
of the @-tree to the particular leaf. The predicates that do not hold on the path can safely be
ignored by using the cut-operator (!). The cut-operator denotes that if the rule in question
holds, then no other rules are considered. Table 3.2 shows the rule structure representing the
Q-tree of Figure 3.1.

q(-1) :- goal(on(A,B)), on(A,C), on(C,floor), !.
q(-2) :- goal(on(A,B)), on(A,C), !.
q(-3) :- goal(on(4,B)), !.

Table 3.2: Prolog rule structure representing the Q-tree of Figure 3.1.

Predicates that do not hold on the path to a specific leaf are encoded in the ordering of rules.
For instance, the rightmost leaf in Figure 3.1 with a value of —3 is represented by the last
rule above. If this rule is considered, then none of the rules above have succeeded.

3.3.1 Background Knowledge

A predicate used inside the node of a Q-tree can be any predicate from the set of predicate
relations F' (see Definition 2). It can also be a predicate present in some specified background
knowledge. In RRL, background knowledge is simply predicates which induce facts and

2Technically, the name C could be reused, but semantically it would be a different variable.

17

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

relations on a higher level of abstraction using the predicates present in F. For Blocks
World, an example of a background knowledge predicate is the above (X,Y) predicate:

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

The predicate above(X,Y) holds if either X is on Y, or if X is on some other block Z, and
Z is above Y. The use of background knowledge has two effects: first, the representation of
a Q-tree will most likely be more compact, and second, it can make a policy less specific
for the environment in which it was learned. While the first effect is obvious, the second is
easily illustrated with an example. Consider an environment with 4 blocks (a, b, c and d)
and the goal on(a,b). Before being able to perform the action move(a,b) which completes
the goal, a and b must first be clear. While the agent clears a, it should obviously not move
blocks onto the stack in which b is located (or vice versa). Doing so would not bring it any
closer to the ultimate goal. Thus, the agent should not perform any action move (X,Y) if either
above(Y,a) or above(Y,b) is true. It turns out that an optimal policy for achieving on(A,B)
for any A and B with any number of blocks can be specified using the above predicate:

optimal (goal(on(A,B)) ,move(A,B)) :- !.
optimal(goal (on(A,B)) ,move(X,Y)) :- above(X,A), not(above(Y,B)), !.
optimal(goal (on(A,B)) ,move(X,Y)) :- above(X,B), not(above(Y,A)), !.

Two other common goals of the Blocks World domain is unstack and stack. The goal
unstack is achieved if all blocks are on the floor, and stack is achieved if all blocks are in
the same stack. While an optimal policy for unstack is straightforward to define without
background knowledge, this is not possible for stack if the independence of the number of
blocks is to be maintained. From any given initial state, optimal behavior is to locate the
highest stack and then keep moving blocks onto that stack. The optimal policies for both
stack and unstack can be specified as

optimal (unstack,move(X,floor)) :- on(X,Y), not(Y=floor).
optimal (stack,move(X,Y)) :- height(Y,HY), not(height(Z,HZ), HZ > HY).

where height (X,H) is background knowledge that instantiates the variable H with a number
indicating the height of block X. The unstack rule is read as: the action move (X,floor) is
optimal if X is not already on the floor. The stack rule is read as: the action move(X,Y) is
optimal if Y is in a stack of height HY, and no block Z in a higher stack exists.

3.3.2 The Policy Function

A major part of the motivation behind RRL is to enable generalization of learned policies
to other similar domains. As briefly mentioned in the previous Chapter, the @Q-function, in
principle, encodes the distance to the goal after performing a state/action pair. In Blocks
World, this distance is partly determined by the number of blocks in the domain. In effect,
if a new block is added, then the distance for many state/action pairs is changed with the
consequence of making the old policy perform worse.

To avoid the direct encoding of distance, DZeroski et al. (2001) introduced the policy function
P, which encodes the optimality of each action a in each state s:

18

3.4. LEARNING LOGICAL POLICIES

|1, ifaen(s)
P(s, a) = { 0, otherwise (3.1)

In general, the P-function can be represented more compactly than the @Q-function. Since
both the @ and P function can be defined in terms of the optimal policy 7*, the definition
of P can be rewritten in terms of @:

| 1, if a € argmax, Q(s,a)
P(s, a) = { 0, otherwise (3.2)

This definition of P means that it is still sufficient to learn the () function, since P can then
be directly derived. The P function can be represented as a logical classification tree denoted
as a P-tree. Figure 3.2 shows the optimal P-tree for the goal on(A,B) using three blocks.

root: goal(on(A,B)), action(move(C,D))
o T
action(move(A,B))

;

\

.

/\

) on(A B\

(0) @

—
=}

=

=

=
=

N\

O.

Figure 3.2: The optimal P-tree for the goal on(A,B) using three blocks.

The illustrated P-tree also shows that sufficient learning is needed to achieve a truly general
policy. Clearly, the left branch of the tree is not optimal if more blocks are added. It states
that, given the goal on(A,B) and the action move (C,D), an action is optimal if C is above A
and D is not equal to B. In other words, it is optimal to move blocks away from A as long as
they are not moved directly onto B. Obviously, a more general tree should encode that blocks
must not be moved onto B or any block above B. However, an agent trained using only three
blocks would never have encountered a scenario where such a rule was necessary. This means
that true generality in similar domains (as Blocks World with a varying number of blocks)
can only be achieved if training is done in sufficiently complex instances of the domains. For
Blocks World and the goal on(A,B), the example just discussed suggests that the minimum
number of blocks needed in training to obtain a general policy is four.

3.4 Learning Logical Policies

The @Q-learning and SARSA algorithms described in Chapter 2 are both online algorithms
meaning that the agent policy is updated at each time step. This is straightforward since

19

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

they both use a tabular representation for the @) function. When changing the representation
to a (logical) decision tree, @) is often not updated before at the end of each episode making
it off-line learning (the agent does not learn while being online). This is done to avoid the
overhead of updating the Q-tree at each time step.

A Q-tree is induced by using examples generated over the state/action pairs encountered
over previous episodes. An example is created for each state/action pair, the goal, and the
estimated @ value. As in Chapter 2, this estimation is made by predicting the action taken
in the next time step. Table 3.3 shows four examples from Blocks World.

Example 1 Example 2
goal(on(a,b)). goal(on(a,b)).
action(move(b,floor)). action(move(b,a)).
on(a,floor). on(a,floor).
on(b,c). on(b,c).
on(c,floor). on(c,floor).
clear(a). clear(a).
clear(b). clear(b).

q(-3). q(-2).

Example 3 Example 4
goal(on(a,b)). goal(on(a,b)).
action(move(a,b)). action(move(a,floor)).
on(a,floor). on(a,b).

on(b,c). on(b,c).
on(c,floor). on(c,floor).
clear(a). clear(a).
clear(b). q(0).

q(-1).

Table 3.3: Blocks World examples.

In example 4 in the table, the goal state is already reached and its @ value is therefore set to
0. By generating such an example per episode, the generated Q-trees will quickly converge
towards returning 0 for goal states.

The @Q-RRL algorithm for learning Q-trees is illustrated in Table 3.4, and it is very similar
to the traditional Q-learning algorithm (see Table 2.1). Instead of updating Q during an
episode, examples are generated at the end of each episode and a new Q-tree is induced
using TILDE-RT (Blockeel and Raedt, 1998) and all the examples observed so far. The
TILDE/TILDE-RT algorithms are described in Section 3.4.1.

The @Q-RRL algorithm learns the @-function, but we would also like to learn the more general
policy function P. In Section 3.3.2 it was described how P can be defined from . This
definition can be directly used to extend the Q-RRL algorithm to produce P-RRL. The two
algorithms are identical except that the pseudo-code in Table 3.5 is appended to the end of
P-RRL.

While the P-function is obviously more compact than the Q-function, experiments conducted
by Dzeroski et al. (2001) show that it does in fact also perform better in most cases. Since
P is derived from @, this seems strange at first. The first observation to make is that the
optimality of an action does not always depend on the distance to the goal. The second
observation is that using a logical decision tree representation of P (as in P-RRL algorithm),

20

3.4. LEARNING LOGICAL POLICIES

1: Initialize Qo to assign O to all (s, a) pairs
2: Initialize Exzamples to the empty set
3:e:=1

4: while (e < EpisodeCount) do

5: e:=e+1

6: 1:=0

7 Generate a random state sg

8: while not(goal(s¢)) do

9: Select action a: in state s; using exploration policy 7. and execute it
10: Receive immediate reward r

11: Observe the new state s¢41

12: =1+ 1

13: end while
14: for (j =i —1to 0) do

15: Generate example x = (sj, aj,{;) where

16: dj = (1 — ae)Qe-1(sj+1,0) + ac [rj +ymaxe Qe(sj+1,a)]
17: if (2014 = (54,05, do14) exists in Exzamples) then

18: Replace z,;q with in Examples

19: else

20: Add z to Examples

21: end if

22: Update Qe using TILDE-RT to produce Qe+1 using Examples
23: end for

24: end while

Table 3.4: The Q-RRL algorithm.

1: for (all observed states s) do

2: for (all actions ay, possible in state s) do

3: if (state/action pair (s, ay)) is optimal according to Q.41) then

4: Generate example (s, ag,c) where ¢ = 1

5: else

6: Generate example (s, ag,c) where ¢ =0

7 end if

8: end for

9: end for

10: Update P. using TILDE to produce 15@+1 using these examples (s, ag, ¢)

Table 3.5: Learning P-trees from Q-trees within the P-RRL algorithm.

21

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

it is really only the examples that are derived directly from the @-function. These examples
contain information about the optimality of actions, but not about the distance to the goal,
which has been abstracted away. The induction of the P-tree is therefore a task of generalizing
over the optimality of actions. There are, in principle, two ways that a P-tree can outperform
a Q-tree:

e The examples do not cover the entire state/action space, however all Q-

values are correct:

This scenario is equivalent to moving the learned policy to a larger and more complex
domain. The key observation here is that, using a Q-tree, the optimality of a state/ac-
tion pair is determined not only by the @ value of the pair, but also by the values of all
other available actions in the same state. This means that a single error in the @ values
of any of these actions can change what is considered the optimal action. Furthermore,
although a @Q-tree partitions a limited part of the state/action space correctly (into
pairs with various distances to the goal), this might not be so for the entire state/ac-
tion space. Un-observed state/action pairs might even have Q-values outside the scope
of the learned @-tree. Together, these issues will affect the performance of a Q-tree for
un-observed state/action pairs. Figure 3.3 illustrates how the incorrect @ value of a
previously unobserved action can shift what is considered optimal when using a Q-tree.
In this case, the goal is on(a,b) and we assume that the current Q)-tree is optimal for
a domain with 3 blocks. The action move(d,c) is previously unobserved because it is
introduced by adding the new block d to the domain.

3 blocks 4 blocks

move(c,floor)
\q -3

move(d,c)
q=-3
move(c,floor)
q=-3

Figure 3.3: Previously unobserved actions can only be assigned Q-values within the limit of
the current approximation of Q). Introducing new blocks will therefore result in actions that
are assigned wrong (Q-values.

22

The optimal (and only possible) action, when using 3 blocs in the illustrated state, is
move (c,floor). This action yields a @ value of —3. Adding the new block d introduces
the action move(d, c), which is of course not optimal since it is actually a step further
away from the goal state. However, the Q-tree would possibly assign this unobserved
action the same value as move (c,floor) because of the similarity of the state. Worse
than that, it could happen that move(d,c) is assigned an even lower ()-value because
of similarity with some other state/action pair. Notice that when using 3 blocks, the
maximal value in an optimal @-tree for any state/acion pair is —4. However, the real
@-value of the action move(d,c) in Figure 3.3 is —5. Thus, in some states, the notion
of optimality will change. To which extend depends on the Q-tree.

In the examples used during the induction of a P-tree, an action is either optimal
or not optimal—thus the distance to the goal has been abstracted away. Given that
the known state/action space is sufficiently large, a reasonable set of rules, separating

3.4. LEARNING LOGICAL POLICIES

optimal actions from non-optimal actions, can most likely be found. The performance
of such rules is only affected by wether or not there exists structural similarities between
optimal actions. In the scenario illustrated in Figure 3.3, block d is moved on top of
a stack containing a and b (blocks in the goal state). Such an action is very unlikely
to be classified as optimal in a P-tree, simply because it does not show any structural
similarities with real optimal actions in Blocks World.

e The examples cover the entire state/action space, but some ()-values are
wrong:
Depending on the tests and pruning heuristics available during induction of a P-tree,
actions that are not optimal according to the examples, but which are in fact optimal,
will be grouped with other optimal actions because of their structural similarities (given
that such errors are limited). During induction, the tests chosen for the tree will
partition presumably optimal and non-optimal actions in the best possible way. But
at some point, nodes will be reached where the set of examples cannot be partitioned
any further using the available tests. Because of their similarities, true optimal actions
tend to end up together in such leaves.

Since a better general performance can be expected from using the P-function, it is also
feasible to change the Boltzmann exploration technique to utilize the P-function (refer to
Section 2.2):

T—PB(s,a:)
P(a;ls) = —————— (3.3)
Zj T—P(s,a;)

After the P-function has been learned as a P-tree, it can be queried to find the optimal action
in any given state. The changes and extensions made in this section have only been applied
to the Q-learning algorithm. SARSA can be updated similarly for relational reinforcement
learning.

3.4.1 Induction of Logical Decision Trees

In this work, the TILDE and TILDE-RT algorithms developed by Blockeel and Raedt (1998)
have been used to grow P-trees and Q-trees. The algorithms are now part of the ACE data
mining system (Blockeel, Raedt, Dehaspe, Ramon, Struyf and Laer, 2004). TILDE and
TILDE-RT differs only in that they induce classification trees and regression trees, respec-
tively. As will be explained, this difference boils down to the heuristics used to determine
the quality of single tests. Table 3.6 shows the basic pseudo-code for both algorithms.

TILDE and TILDE-RT are very similar to classical decision tree algorithms such as ID3
and C4.5. The task of computing the possible tests in a node (line 8) is, however, new and
non-trivial. It is described further in Section 3.4.2. Furthermore, an example satisfies the
test in a node only if it also satisfies the tests in nodes higher in the tree when following
the yes-branch. This is used when determining the quality of a test (line 9 and 14), and is
further described in Section 3.4.3 and Section 3.4.4. Finally, since the outcome of a logical
test is either yes or no, the induced trees are always binary.

The TILDE/TILDE-RT algorithms are non-incremental algorithms. This means that all
observed examples must be stored in some database, and a new tree must be induced from

23

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

1: function INDUCETREE(Examples E) : Tree
2: Create a root node n for the tree ¢
3: Seuit(n,E,t)
4: returnt
5: end
6: procedure SpLit(Node n, Examples F, Tree t)
7: best:= false
8: for (all possible tests g in node n) do
9: Compute quality(q)
10: if (quality(q) is better than quality(best)) then
11: best := q
12: end if
13: end for
14: if (best yields improvements) then
15: test(n) := best
16: Create two sub-nodes ng, ng of nin ¢
17: Eg := {e € E | e satisfies best in t}
18: Eg :={e € E | e does not satisfy best in t}
19: SpLiT(ng,Eg,t)
20: sPLIT(ng,Fgo,t)
21: else
22: Turn n into a leaf
23: end if
24: end

Table 3.6: The TILDE/TILDE-RT algorithm.

scratch after each episode. Every time an example is observed, the database must be searched
for previous observations of the same example, such that the estimated value can be updated.
For all but small domains, this overhead slows down the learning process considerable. For-
tunately, research has shown that the process can be made much faster with the use of an
incremental tree learner such as the TG-Algorithm (Driessens et al., 2001)3. For our purpose,
however, TILDE/TILDE-RT will suffice.

3.4.2 Finding Test Candidates

The set of predicate relations in a domain F' (see Definition 2) contains all the relations that
can be present in a state (e.g. on(a,b)). It is important to note that these predicates do not
contain variables (although a compact specification of them might). In a classical decision
tree learner, this set of relations would be used as tests, where each test would only be allowed
once in any given subtree.

For logical decision trees, we now also have to consider background knowledge and vari-
ables. Furthermore, we might not even be interested in allowing tests with constants such
as on(a,b). As specified in Definition 3, if a variable is introduced in a node, then it can be
referenced by nodes in the yes-branch of the subtree of that node. Together this means that
a parameter in a test can either introduce a variable, reference an existing variable or be a
constant. This is called the mode of the parameter. TILDE/TILDE-RT supports restriction
of the mode, so that some tests might only be allowed to have parameters with existing vari-
ables and so on. Also, a parameter can be assigned a type, which means that only variables of
that type can be used. Mode and type restrictions are specified using a so-called declarative

3An implementation of the TG-algorithm is also available in the ACE data mining system.

24

3.4. LEARNING LOGICAL POLICIES

bias. For the predicates on and clear, the declarative bias (using TILDE notation) might
look like the following:

type(on(block,block)).
type(clear(block)).
rmode(5: on(+-X,+-Y)).
rmode(5: on(+-X, floor)).
rmode(5: clear(+-X)).

The type predicates state that only variables or constants of the type block can be used.
The rmode predicate is a little more complex. A + means that an already introduced variable
can be used, and a - means that a new variable can be introduced. If needed, # means that
any observed constant (in the set of examples) can be inserted. The number 5 denoted inside
the rmode predicates indicates how many times tests created over this predicate are allowed
to occur in the tree.

Consider the @-tree illustrated in Figure 3.1 and the first node with the test on(A,C). Using
the declarative bias above, this test was chosen among the test candidates

{on(4,B),on(A,C),on(B,A),on(B,C),on(C,A),on(C,B),on(A,floor),
on(B,floor),on(C,floor),clear(A), clear(B),clear(C)}

where A and B were introduced by the root and C is a new un-instantiated variable. An un-
instantiated variable should be read as “any block”. For this small example, there are already
12 possible tests in the first node in the tree. Since more and more variables are introduced,
there will often be many more tests possible in nodes further down the tree. Fortunately,
the possible restriction on the number of times a test can occur helps to keep the number of
possible tests reasonable. This requires careful specification though, as one more test could
mean the difference between a good and a poor tree.

3.4.3 Example Testing

When the set of test candidates are determined for a node, each candidate must be applied
to the set of examples sorted down to that node. The goal is to find the test that yields the
best split (Section 3.4.4 describes what is meant by the best split). In classical decision tree
learning, each candidate is simply applied to each example, but because of variable sharing,
this does not work for logical decision trees. A variable used in a test might have been
introduced in a node higher in the tree. This means that the value of that particular variable
is dependent on (possible) all the tests from the root to the given node. Since variables
are not instantiated in failing tests (see Section 3.3), only positive tests must be considered.
Again using the Q-tree of Figure 3.1, the node containing on(C,floor) in fact represents
the test

goal(on(A,B)), on(A,C), on(C,floor)

While processing this node, TILDE will put any example that makes the test succeed into the
set Eg, and all other examples into E5. These sets are then used to determine the quality
of the test.

25

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

3.4.4 Quality Heuristics

The best test in a node is chosen among the possible test candidates by using an appropriate
quality heuristic. For classification trees, TILDE uses a measure of information gain (Quinlan,
1993) which must be maximized. Because only Boolean tests are considered, the entropy of
a set of examples E' can be defined as

entropy(E) = —pg log, pg — pe logy pe (3.4)

where pg is the proportion of positive examples in £ and pg is the proportion of negative
examples in E. If pg = 0 then we will define pg log, pg to be 0 (the same applies to pg). The
information gained for applying a boolean test T on the set of examples F can be defined as

gain(E,T) = entropy(FE) — (entropy(Eg) + entropy(Eg)) (3.5)

where Eg € F is the set of examples that satisfy 7' and Eg € FE is the set of examples that
do not satisfy 7'. The value calculated by gain(E,T) is the expected reduction in entropy
caused by knowing the outcome of test 7.

For regression trees, TILDE-RT uses the intra-subset variance quality criterion (Breiman,
Friedman, Olshen and Stone, 1984) which must be minimized. The variance of a set of
examples F can be defined as

||
variance(E) = Z (tz - tmean)2 (36)
=0

where t; is the target-value in example ¢ and t,,¢q, iS the mean of all the target variables in
E:

St
tm an — = 3.7
o = &2 (37

Using the intra-subset variance, the quality of a test T can be defined as the relative im-
provement of variance:

variance(Eg) + variance(Eg)

variance-improvement(E,T) = (3.8)

variance(E)

The variance improvement is always a number between 0 and 1 because the summed variance
of Fg and Eg is never greater than the variance of E.

3.5 Experimental Evaluation of Relational Reinforcement
Learning

In Chapter 2, the performance of tabular @-learning was evaluated using experiments. In
this section, we will experiment with the performance of relational @-learning. We will try
to clarify the answers to the following questions:

26

3.5. EXPERIMENTAL EVALUATION OF RELATIONAL REINFORCEMENT
LEARNING

e What is the performance of relational @)-learning compared to tabular @)-learning?
e How does P-trees perform compared to @-trees?

e How do the state abstractions possible in RRL affect the size of the learned policies?

These questions are difficult to answer theoretically, since they depend greatly on the ex-
amples observed during training episodes. The experiments were conducted the exact same
way as in Section 2.4. The data obtained for tabular @-learning in that section was reused
for comparison to data obtained by using Q-trees and P-trees. Settings and background
knowledge used with TILDE/TILDE-RT can be found in Appendix B. The performance was
compared for 3 to 5 blocks. Figure 3.4 shows the results of the experiment. Each diagram
shows a graph for tabular Q-learning, a graph for relational @Q-learning using Q-trees, and a
graph for relational Q-learning using P-trees. The graphs map the number of primitive steps
during training to the mean error per trial observed during testing. The mean error per trial
is the mean difference between the steps used by an optimal policy, and the steps used by
the evaluated policy. The mean was taken over 10 trials.

The results show that relational Q-learning outperforms its tabular counterpart in every case.
The only exception to this rule is for 3 blocks where the tabular representation reaches optimal
behavior before the Q-tree, although not before the P-tree. A noticeable observation is that
both @Q-trees and P-trees reach a reasonable performance after very little training compared
to tabular @-learning. For readability, the diagram for 5 blocks does not show when tabular
@-learning reaches optimal behavior. This happens after approximately 15000 primitive steps
during training (refer to Section 2.4).

As expected, by using P-trees the agent reaches reasonable behavior faster than when only
using Q-trees. Optimal behavior is also reached faster, but only slightly. Of course, for a
P-tree to perform optimally, it requires an almost optimal @Q-tree such that the notion of
optimality is not biased in the wrong direction. Otherwise, a P-tree would not be able to
find a good pattern of optimality.

To determine if P-trees also perform better in more complex domains, we used the optimal
trees from the previous experiment and applied them to domains with an increasing number
of blocks. For each domain, 50 trial states were randomly chosen, whereafter the error per
trial were recorded. Figure 3.5 shows the results of this experiment. The graph shows the
mean error per trial as a function of the number of blocks in the domain.

The optimal P-tree learned in a 3 blocks domain performs reasonably well in more complex
domains, and much better than the corresponding @Q-tree. It does not perform optimal
because a 3 block training domain is not complex enough. The @Q-tree learned in a domain
with 4 blocks performs slightly better than the one learned using 3 blocks. However, the P-
tree learned for 4 blocks is optimal for any number of blocks. As suggested in Section 3.3.2,
this makes sense since Blocks World with the goal on(A,B), on an abstract level, does not
become any more complex when using more than 4 blocks. The optimal policy remains to
clear both blocks in the goal state without ever moving blocks onto stacks containing the
other, and then moving A onto B. The optimal P-tree learned in the experiment is illustrated
in Figure 3.6, and it clearly follows this principle.

The optimal P-tree for the goal on(A,B) classifies the final action move (A,B) as optimal.
Furthermore, if a block is moved to the floor, then it must have been above one of the blocks
in the goal state for the action to be optimal. In other words, it is optimal to clear the two
blocks in the goal state. Finally, if neither of these two statements hold, then the following

27

30 40 50 60 70 80 90 100
Primitive Steps

20

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

[eli] 1ad o3 ueapy

000 1200 1400 1600 1800 2000

1
Primitive Steps

Primitive Steps
0

100 200 300 400 500 600 700 800 900 1000

200 400 600 80

0

2,50
0,50

[eli]l Jad Jo1ig ueapy

learning in Blocks World using 3 to 5 blocks. The graphs map the number of primitive steps

Figure 3.4: Performance of traditional @-learning compared to relational Q-learning and P-
during training to the mean error per trial observed over 10 trials.

28

3.5. EXPERIMENTAL EVALUATION OF RELATIONAL REINFORCEMENT
LEARNING

3 Blocks
s
=
@
o
S
]
C
I
[}
=
Of——
3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Blocks
4 Blocks
T R EEEEEEEEES
6 !
8 |
E 5 |
o} ! !
a4 ! !
S | Q]j
= s S -Tree)
|.u3: ;
c 1 |
A e e A
= |

4 5 6 7 8 9 10 11 12 13 14 15
Number of Blocks

Figure 3.5: Performance of Q-trees and P-trees learned for 3 and 4 blocks when applied to
domains with more blocks.

root: goal(on(A,B)), action(move(C,D))

action(move(A,B))
>N
)
. \
above (4,B)
27N
o on(A,B)
e 0 o

&) 0

y

—

Figure 3.6: The optimal P-tree for any number of blocks learned using 4 blocks.

29

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

Blocks | Tabular Q | Q-Tree | P-Tree
3 25 14 5
4 209 56 7
5 1887 169 9
2000

Tabular Q

» 1500

N

21000

2

& s00

Q-Ti
0‘ ! P»T‘ree
3 4 5

Number of Blocks

Table 3.7: The size of policies when using tabular and relational @-learning.

must hold for an action to optimal: A must be above B but not directly on it, and the block
A is being moved onto must be on the floor. This is specified in the right part of the tree,
and seems strange at first, but is in fact a side-effect of having learned using only 4 blocks.
During clearing of the two blocks in the goal state, there can be at most one clear block on
the floor that is not part of the goal state. Any block not moved to the floor must be moved
onto this irrelevant block. In a more general setting, a block can be moved onto any block
that is not above a block in the goal state.

The experiments have now answered two of the questions stated in the beginning of the
section. Relational @-learning performs better than tabular @-learning, both by reaching a
reasonable behavior very quickly, but also by reaching optimal behavior with less training
needed. @Q-trees will perform optimal in the domain in which they were trained, but do
not generalize well when more blocks are added. A P-tree derived from an optimal Q-tree
will also perform optimally in the training domain. However, given a training domain with
enough blocks, a P-tree will also perform optimally in domains with any number of blocks.

During the experiments, policies for domains with 3, 4 and 5 were learned both for relational
and tabular reinforcement learning. The use of logic and background knowledge in RRL
automatically enables abstractions over the state/action space of a domain. It is therefore
interesting to investigate to which extent these abstractions affect the space used by the
learned policies. The size of a tabular policy is simply the number of cells in the table, while
the size of a tree-based policy can be defined as the number of leaves. The latter makes sense
because using the Prolog-based rule notation, there will be exactly one rule for each leaf.
Table 3.7 shows the size used by the learned policies.

The numbers presented in the table should not be read as the only possible sizes of the poli-
cies. They are the sizes of the optimal policies observed during the performed experiments.
Depending on the available tests and background knowledge, the size of the policies may vary
to each side. The numbers are, however, a good indication of the abstraction possibilities of
RRL. The graphs, also illustrated in Table 3.7, pictures the exponential growth when using
a tabular representation compared to logical decision trees.

30

3.6. RECENT WORK

3.6 Recent Work

As mentioned, the research applied to relational reinforcement learning since its introduction
has moved it past learning algorithms such as TILDE/TILDE-RT. The incremental TG-
algorithm (Driessens et al., 2001) was the first obvious step as it combines TILDE with the
incremental G-algorithm (Chapman and Kaelbling, 1991).

Following, two other regression algorithms has been developed. The first is an instance based
algorithm named RIB (Driessens and Ramon, 2003). It computes a weighted average of the
@ values of examples where the weight is inversely proportional to the distance between
the examples. The second algorithm is called KBR (Gértner, Driessens and Ramon, n.d.)
and uses Gaussian processes as the regression technique. Because Gaussian processes are a
Bayesian technique, the KBR algorithm offers both basic prediction of the @ value, but also
indication of the expected accuracy of the prediction. This indication can be used by the
Q@-learning algorithm to guide exploration.

Relational reinforcement learning has only been sparsely tested in more realistic domains.
One such test was conducted on a simplified version of the multi-agent board game

Risk (Andersen, Boesen and Pedersen, 2005). The results of that work indicates that rea-
sonable policies can be learned even in semi-complex multi-agent environments.

Furthermore, the integration of guidance into relational reinforcement learning has been dis-
cussed by Driessens and DZeroski (2004). Their work evaluates the advantages of supplying
an agent with optimal and reasonable examples during training. The advantages are evalu-
ated using both the TG and RIB algorithms.

3.7 Summary

This chapter introduced relational reinforcement learning, which combines traditional re-
inforcement learning with inductive logic. The environment is represented as a relational
Markov decision process that can be compactly represented using first order predicate logic
with variables. Policies learned are represented as logical decision trees. Trees that map
examples to ()-values are denoted Q-trees, and trees that encode the optimality of examples
are denoted P-trees.

Q-trees are learned using a modified version of the Q-learning algorithm from Chapter 2.
Instead of updating the @-function continuously during an episode, the algorithm instead
generates examples. At the end of an episode, these examples are used to induce a Q-tree.
This makes relational)-learning an off-line learning technique.

While Q-trees can be trained to produce optimal behavior, they do not generalize well to
domains similar to the training domain. For Blocks World, this means adding more blocks
to the domain. This is because the Q-function in principle encodes the distance to the goal,
and this distance may change when the domain is changed. Instead, the relational @-learning
algorithm can be extended to also learn P-trees. P-trees are induced over examples denoting
the optimality of actions, which means that a structural pattern of optimality is found. For
this reason, P-trees will perform better in other similar domains, and in some cases even
produce general optimal behavior. Experiments performed supported this statement.

More experiments were conducted to compare the performance of tabular and relational Q-
learning. As expected, relational @-learning produces both reasonable and optimal behavior

31

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING

using less training than tabular @)-learning. Furthermore, P-trees also outperform Q-trees
in the domain in which they were learned, although only to a minor extend. Finally, the
size of policies learned in a relational setting were much smaller than when using a tabular
representation. This is because of the very noticeable abstractions, which the use of logic
and background knowledge introduce when inducing @-trees and P-trees.

32

Chapter 4

Hierarchical Reinforcement
Learning

The previous chapter presented relational reinforcement learning as a technique for achieving
state abstractions and generalizing policies to similar domains. It was shown that for rela-
tional domains, the learning rate of an agent can be significantly improved. The success of
relational reinforcement learning depends, however, on the existence of structural similarities
throughout the state/action space of a domain. It is easy to find a domain for which this is
not the case. Consider the task of navigating through a maze. The reason that escaping a
maze can be difficult is that seemingly similar scenarios requires different actions. For exam-
ple, the optimal action when being in a corner with two paths leading east and west depends
on the entire maze. The optimal action for another similar corner might be very different.
Applying relational reinforcement learning to such a domain will only add the overhead of
inducing logical decision trees at the end of an episode.

Unlike relational reinforcement learning, Hierarchical Reinforcement Learning (HRL) is not
about generalizing policies to similar environments. Instead, the idea of HRL is to decom-
pose the primary task of an agent into a hierarchy of subtasks. The benefits of such a
decomposition can be summarized as

e achieving a better initial performance, and

e achieving state abstractions by eliminating irrelevant information and using “funnel”
actions.

A task hierarchy restricts the actions of an agent at any time step. To some degree, this
guides the agent towards its goal resulting in a better initial performance. As we will see,
this kind of guidance can have the side-effect of slowing down exploration of some parts of
the state space considerably. State abstractions are achieved by identifying relevant and
irrelevant information for each individual subtask in the hierarchy. Furthermore, some tasks
might move the environment from some large number of states to a small number of resulting
states. Such tasks are denoted “funnel” actions.

Currently, the most popular method for hierarchical reinforcement learning seems to be the
MAXQ value function decomposition (Dietterich, 2000). This method stands out because it

33

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

does not only provide a framework for procedural decomposition of a given task. It also pro-
vides a framework for decomposition of the value function, which leads to new opportunities
for state abstraction.

Section 4.1 describes the motivation for hierarchical decomposition of a task and introduces
the semi-Markov decision process that allows temporally extended actions. An intuitive
approach to hierarchical reinforcement learning called hierarchical semi-Markov @Q-learning
is explained in Section 4.2. Following, Section 4.3 describes the MAXQ decomposition of the
value function and explains how the decomposed value function can be learned. The most
important part of hierarchical reinforcement learning, namely state abstractions, is described
in Section 4.4, while the possibility of non-hierarchical execution follows in Section 4.5. A
problem with some task hierarchies is the inability of exploring all states sufficiently often.
This problem is described in Section 4.6. An overview of experiments performed to illustrate
the performance of the MAX(Q method is presented in Section 4.7. Section 4.8 describes
other approaches to hierarchical reinforcement learning.

4.1 Task Decomposition

The Taxi domain introduced in Section 2.3 is well suited for hierarchical decomposition.
In each episode, the taxi must navigate to the passengers location, pick up the passenger,
navigate to the destination and put down the passenger. Decomposing this task displays the
need for

e temporal abstraction,
e state abstraction, and

e subtask sharing.

Temporal abstraction covers that some tasks may be temporally extended, which means
that they can take a different number of time steps to complete. For instance, the task of
navigating to a specific location in the Taxi-grid can be viewed as a temporally extended
task. Using temporal abstraction, the top-level of a hierarchical decomposition can often be
expressed very simple.

State Abstractions can be achieved by eliminating irrelevant state variables inside a subtask.
For instance, while the taxi is getting a passenger, the destination of the passenger is irrel-
evant, and when navigating to a specific destination, the only relevant information is the
destination and the position of the taxi.

The taxi needs to navigate both to the passenger’s location and to the passenger’s destination.
Thus, if the subtask of navigating is learned once, then this solution can be shared by both
tasks. This illustrates the need for subtask sharing.

The set of individual subtasks in the Taxi domain can be defined as

e Navigate(t¢): move the taxi from its current position to one of the four target locations.
The target location is indicated by the formal parameter ¢.

e Get: move the taxi to the passengers location and pick up the passenger.

34

4.1. TASK DECOMPOSITION

e Put: move the taxi to the destination and put down the passenger.

e Root: the whole taxi task.

Each subtask is defined by its own subgoal and terminates when this subgoal is reached. A
subtask is also defined by the possible actions (which might be other non-primitive subtasks)
that it can perform. Such a definition is best illustrated with a task graph as shown in
Figure 4.11.

t/'source t/destination
pickup | Navigate(t) | |putdown|

| north || south || east || west |

Figure 4.1: A task hierarchy for the Taxi domain.

The Root task of completing one episode is decomposed into the two subtasks Get and
Put. Get is further decomposed into Navigate(t) and the primitive action pickup. Put is
decomposed into Navigate(t) and the primitive action putdown. Finally, Navigate(t) is
decomposed into the four primitive actions north, south, east and west. The execution
of subtasks is similar to calling procedures in a programming language. When a subtask is
invoked, control is simply shifted to its policy. The collection of individual policies is denoted
a hierarchical policy.

4.1.1 Semi-Markov Decision Process

A traditional MDP cannot express temporal extended actions. In particular, each primitive
action in an MDP takes exactly 1 time step to perform. When imposing a task hierarchy,
subtasks might cover several time steps. A Semi-Markov Decision Process (SMDP) is an MDP
in which actions can take a variable amount of time steps to complete. This change affects
the transition probability distribution, as well as the definition of the value and action-value
functions. Let the random variable N denote the number of time steps it takes to complete
a particular action. The transition probability distribution can then be extended to a joint
distribution over the resulting state and N, where P(s’, N|s,a) denotes the probability of
observing state s’ after N steps when performing action a in state s. A similar change can
be made to the reward function where R(s’, N|s,a) denotes the reward received when s’ is
observed in N steps after performing action a in state s. The value function for a policy 7
can now be defined as the Bellman equation

V™(s) =Y _ P(s',N|s,x(s)) [R(s', N|s,x(s)) + 7V V7 ()] (4.1)

s’ N

IThe task decomposition of the Taxi domain used throughout this chapter is the one defined by Dietterich
(2000).

35

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

Note that the discount factor (applied to the value of the resulting state s’) is raised to
the power of N. This discounts actions that take more than one time step to complete
appropriately. The Bellman equation denoting the action-value function is defined in a similar
fashion:

Q™ (s,a) = Z P(s',N|s,a) [R(s', Nls,a) +vN Q™ (s, 77(5'))} (4.2)

s’ N

Both V™ (s) and Q™ (s,a) can be rewritten as the sum of the expected reward for performing
action 7(s) and the expected value of the resulting state s’

VT(s) = R(s,m(s))+) P(s’, Nls,m(s)y"V7(s) (4.3)
s’ N
Q"(s,a) = R(s,a)+ »_ P(s',Nl|s,a)y" Q" (s, x(s")) (4.4)
s’ N

where R(s,a) is the expected reward with respect to s’ and N for performing action a in
state s.

For episodic tasks with v = 1, an SMDP is equivalent to an MDP. In this case, future
rewards are not discounted, which makes the number of steps used by an action irrelevant.
Furthermore, for primitive actions where N = 1, we will suppress N in the notation when
denoting the transition probability distribution and the reward function.

4.1.2 Definition of a Subtask

In general, an MDP M can be decomposed into a set of subtasks {My,..., M, } with the
convention that Mj is the root-task. For instance, in Figure 4.1, My is Root, M is Get and
so on. Solving My is equivalent to solving the original MDP M. To avoid cluttering the
notation, we will sometimes denote a subtask M; simply as i.

A subtask is defined by its own subtasks and a termination predicate. The termination
predicate partitions the state space into a set of active states and a set of terminal states.
Furthermore, each terminal state is assigned a numerical value indicating how desirable it is
to terminate execution in that state.

Definition 4. An unparameterized subtask M; is a 3-tuple (T;, A, R) defined as:
e T;(s): the termination predicate over the set of states S. The predicate partitions S

into a set of active states S;, and a set of terminal states, which we will denote T;
(without parameters). Subtask M; can only be executed if the current state s is in S;.

e A;: the set of actions available in subtask i. A;(s) denotes the actions available in state
s.

o R;(s'|s,a): the pseudo-reward function, which specifies a pseudo-reward for each tran-
sition from a state s € S; to a state s’ € T;.

36

4.1. TASK DECOMPOSITION

Each primitive action a from a subtask M is a primitive subtask in the decomposition such
that a is always executable, it always terminates immediately after execution, and its pseudo-
reward function is uniformly zero.

If a subtask has formal parameters, then each possible binding of actual values specifies a
distinct subtask (i.e. the actual values are part of the name of the subtask). In practice, of
course, parameterized subtasks are implemented by extending the definition of the termina-
tion predicate and reward function to also encompass the actual parameter values.

The need to specify pseudo-rewards is dependent on the real reward function. If rewards
are only given to the agent when the final goal state is reached, then some intermediate
subtasks might never receive any feedback. As an example, consider that our taxi only
received a reward for putting down the passenger at the end of an episode. This reward
would propagate up to the Root task, but not down to the Get subtask. On the other hand,
if rewards or penalties are given for all primitive actions, then the specification of pseudo-
rewards is not necessary. Pseudo-rewards can, however, be used to speed up learning or
change the optimal behavior in a subtask. This is further explained in Section 4.3.

4.1.3 Hierarchical Policies

The collection of individual subtask policies for a hierarchy is denoted a hierarchical policy.
A hierarchical policy 7 is thus defined as

m={mo,...,Tn} (4.5)

where n is the number of subtasks in the hierarchy. As in the previous chapters, a policy
takes a state and returns an action. If a subtask contains parameters, then its policy must
also take these parameters as input. In such case, the definition of a policy is 7(s, f) where
f is the bindings of actual parameters. A hierarchical policy can be executed using a stack
that initially contains the root task. At each time step, the task at the top of the stack
is examined. If it is a primitive subtask, then it is executed. If it is a composite subtask,
then the task denoted by the composite subtask’s policy is pushed onto the stack. If this
is a primitive action, then it is executed, and so on. Table 4.1 shows the pseudo-code for
executing a hierarchical policy.

After the execution of a primitive subtask, the algorithm checks if any tasks on the stack
have reached a terminal state (lines 18-22). If a task M’ has terminated, then it is popped
off the stack together with all tasks above M’ on the stack. As an example, consider a Taxi
domain where the passenger can cancel a ride while navigating to the destination. If this
happens, then the Root task has entered a terminal state. All subtasks invoked by Root or
its descendants must therefore also terminate, which is why they are popped off the stack.

At any time step ¢, the choice of the next primitive action to be executed is affected by
the current contents on the stack. This means that a hierarchical policy is non-Markovian
with respect to the original MDP. Since actions are chosen with respect to both the current
state s and the contents on the stack K, Dietterich (2000) defines a hierarchical value func-
tion V7 (({s, K)). This value function gives the expected cumulative reward of following the
hierarchical policy 7 starting in state s with stack contents K.

To avoid the extra space requirements (and the consequence of increased learning difficulty),
Dietterich also defines a so-called projected value function of a hierarchical policy.

37

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

1: procedure ExEcUuTEHIERARCHICALPOLICY(7)

2 s¢ is the state of the world at time ¢.

3 K is the state of the execution stack at time ¢t.

4: Let t = 0; Ky = the empty stack; observe s¢.

5: Push (0,nil) onto stack K¢(invoke the root task with no parameters).
6: repeat

7 while (top(K¢) is not a primitive action)

8 Let (3, f;) := top(K¢), where

9: i is the name of the “current” subroutine, and

10: fi gives the parameter bindings for i.

11: Let (a, fo) := m(s, fi), where

12: a is the action, and

13: fa gives the parameter bindings chosen by policy ;.

14: Push (a, fo) onto the stack K.

15: end while

16: Let (a,nil) := pop(K¢) be the primitive action on the top of the stack.
17: Execute primitive action a, observe s¢11, and receive R(s¢+1]|st,a).
18: if (any subtask on K; is terminated in (s¢4+1)) then

19: Let M’ be the terminated subtask closest to the root on the stack.
20: while (top(K¢) # M') do pop(Kt)

21: pop(Kt).

22: end if

23: K1 := k¢ is the resulting execution stack.

24: until K41 is empty

25: end

Table 4.1: Pseudo-code for execution of a hierarchical policy.

Definition 5. The projected value function of a hierarchical policy m; on subtask M;, denoted
V7(i,s), is the expected cumulative reward of executing m; (and the policies of all descendants
of M;) starting in state s with an empty stack until M; terminates.

The projected value function for a task disregards content pushed onto the stack by any of
its ancestors. The value V7 (i,s) can be thought of as the value of state s when following
policy m given that execution stops when subtask ¢ terminates.

We can also define the projected action-value function as Q™ (i, s,a) where i is the current
task, s is the current state and a is the subtask to be executed. Similarly, the value Q™ (i, s, a)
can be thought of as the value of performing action a in state s and then following policy
m until subtask ¢ terminates. We will formalize both the projected value function and the
projected action-value function in Section 4.3.

4.2 Hierarchical Semi-Markov ()-Learning

A primary concept in the MAXQ method is the decomposition of the projected value function.
In this section, however, we will look at a straight-forward way of solving a task hierarchy
without decomposing the value function. This approach is called Hierarchical Semi-Markov
Q-learning (HSMQ). We will do this to be able to illustrate the differences between this
approach and MAXQ. Furthermore, the use of HSMQ follows more intuitively from flat (and
relational) reinforcement learning.

38

4.3. MAXQ VALUE FUNCTION DECOMPOSITION

In principle, there are two ways to solve a task hierarchy. The first way is to start by learning
optimal policies for the subtasks at the bottom of the hierarchy. Afterwards, optimal policies
for the parents of these tasks are learned. This continues until the root is reached. Doing
so effectively reduces each subtask to a primitive action for its parent in the hierarchy. The
parent will only observe one kind of behavior from its subtasks, namely optimal behavior.

The second approach is to simultaneously learn optimal policies for the entire hierarchy. This
is the approach used by both HSMQ and MAXQ. In this case, parent tasks observe changing
behavior from their subtasks as these explore the state space and eventually converge to
an optimal policy. Of course, a parent task will only converge to an optimal policy when
its subtasks have converged too. Simultaneously learning the entire hierarchy puts an extra
requirement on the exploration policy used in each subtask. While traditional Q-learning
“only” requires that all states are visited infinitely often, convergence now requires that the
exploration policy used is Greedy in the Limit of Infinite Exploration (GLIE). A GLIE policy
is a policy that, in the limit of infinite exploration, eventually becomes greedy with respect
to . Only when a subtask policy is greedy will the parent task observe optimal behavior
consistently. Boltzmann exploration (see Section 2.2) can be used to create a GLIE policy
by continuously decreasing the temperature.

1: function HSMQ(State s, Subtask p)

2 Let Total Reward := 0

3 while (p is not terminated)

4 Choose subtask a := mc(s) according to exploration policy e
5: Execute a and observe resulting state s’

6 if (a is primitive) then

7 Observe one-step reward r := R(s’|s, a)

8

: else
9: r := HSMQ(s,a), which invokes subroutine a and
10: returns the total reward received while a executed.
11: end if
12: TotalReuA)ard = TotalRewm:d +r
13: Update Q(p7 S ll) = (1 - OZ)Q(p, S, ll) +a [T + maxg/ Q(p7 5’7 al)}
14: end while
15: return Total Reward
16: end

Table 4.2: Pseudo-code for execution of a hierarchical policy.

Table 4.2 shows the pseudo-code for the HSMQ algorithm. The algorithm covers one episode
of learning. At first, the algorithm is called with the initial state and the Root task. The
variable TotalReward is initialized to hold the sum of the rewards received during the Root
task. While Root is not terminated, a subtask is repeatedly chosen using a GLIE exploration
policy. If the subtask is primitive then it is executed and the immediate reward is observed.
Otherwise, if a is non-primitive, then it is executed by calling HSMQ recursively (the same
way Root was called), which returns the total reward received during the executing of the
subtask. Afterwards, TotalReward is increased by the observed reward. The total reward is
then used to update the current approximation of Q.

4.3 MAXQ Value Function Decomposition

When using the HSMQ algorithm, a task hierarchy is treated as a set of independent Q-
learning problems. Each subtask contains all the values needed to completely specify its own

39

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

policy. In other words, HSMQ provides a procedural decomposition of the learned policy into
policies for each subtask. However, there is bound to exist a dependency between the value
function of a task and its subtasks. For instance, the value of performing the task Get in the
Taxi domain must somehow be related to the value of performing its child tasks Navigate
and pickup.

Passenger at Y Passenger in Taxi
4 7 6 5 4 3 4 12 13 14 15 14
3 8 7 6 5 4 3 13 14| 15 16 15
2 9 8 7 6 5 2 14 15 16 17 16
1 10 7 6 5 4 1 13 14 15 18 17
0 11 6 5 4 3 0 12 | 13 14 | Dest | 18
Y B Y B
0 1 2 3 4 0 1 2 3 4

Figure 4.2: Value function for the case where the passenger is at (0, 0) (location Y) and wishes
to get to (3,0) (location B).

Passenger at Y Passenger in Taxi
4 10R 9 8 7 6 4 DeSIR 18 13 12 11
3 11 10 9 8 7 3 18 17 14 13 12
2 12 11 10 9 8 2 17 16 15 14 13
1 13 | 10 9 8 7 1 16 15 14 13 12
0 14Y 9 8 7 6 0 15Y 14 13 12 11
0 1 2 3 4 0 1 2 3 4

Figure 4.3: Value function for the case where the passenger is at (0,0) (location Y) and wishes
to get to (0,4) (location R).

Figure 4.2 illustrates part of a projected value function for the Taxi hierarchy. In this case,
the passenger is at location Y and wishes to get to location B. The left-side maze shows the
state values while getting the passenger, and the right-side maze shows the state values while
driving the passenger to the destination. For instance, the value of a state, where the taxi is
at location (0,2) and on its way to get the passenger is 9.

Figure 4.3 illustrates a similar value function, where the only difference is that the passenger
wishes to get to location R. Comparing the value functions of these two scenarios, we see
that there is no similarity between the values in the right-side mazes. However, the values in
the left-side mazes are the same except for an offset of 3. This is because that the left-side
mazes really reflect the same subgoal of moving to location R and picking up the passenger.
They differ only in what happens after the passenger has been picked up. In Figure 4.2, the
destination is 7 steps away, and in Figure 4.3 the destination is 4 steps away. The difference
7 — 4 = 3 accounts for the difference between the values in the two mazes.

40

4.3. MAXQ VALUE FUNCTION DECOMPOSITION

The motivation behind decomposing the value function is to exploit such regularities by rep-
resenting the left-side value function only once. Notice that decomposing the value function
does not enable a more compact representation in itself. Instead, the decomposition enables
state abstractions over “funnel” actions, something which is not possible when using HSMQ.
This is further explained in Section 4.4.

4.3.1 Definition of the Value Function Decomposition

In general, the MAXQ method decomposes the projected action-value function Q(i,s,a)
(where 7 is the current subtask, s is the state, and a is the action to be performed) into the
sum of the following two components:

e the expected total reward received while executing subtask a in state s, and

e the expected total reward of following the hierarchical policy 7 after a has returned
until parent task ¢ terminates.

For a primitive action a, the first component is just the expected immediate reward of
performing a in s. For a composite action, Dietterich (2000) shows that this component
is instead the projected value function V™ (a, s) by proving the following theorem:

Theorem 6. Given a task hierarchy over tasks My, ..., M, and a hierarchical policy m,
each subtask M; defines an SMDP with states S;, actions A; and the transition probability
distribution P;. The expected reward function of M;, denoted R;(s,a), is defined as R;(s,a) =
V7 (a,s) where

e V™ (a,s) is the projected value function for child task a in state s, and

e If @ is a primitive action then V7 (a,s) is defined as the expected immediate reward of
executing a in s: V™ (a,s) = >, P(s']s,a)R(s'|s, a).

The theorem states that the expected reward received by subtask M;, when executing a
composite subtask M,, is the projected value function V(a,s). If a is primitive, then the
reward received is instead the expected immediate reward (as in flat Q-learning). As a
consequence, we can define the action-value function of policy m when executing action a
from subtask i in state s as

Q" (i,s,a) = V™ (a,5) + Y_ Pi(s', N|s,a)y" Q" (i, s, m(s")) (4.6)

s’ N

which has the same form as the Bellman equation for an SMDP (see Equation 4.4). If a is
primitive, then V™ (a,s) equals the expected immediate reward, thereby making equations
(4.6) and (4.4) identical.

Recall that Definition 5 defined a projected value function V' (a, s) to be the expected cumu-
lative reward received until subtask a terminates. This means that the right-most term of
Equation (4.6) denotes the value of completing task M; after executing a in state s. This
term can be encapsulated in a new function called the completion function:

41

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

C™(i,s,a) = Y Pi(s',N|s,a)y~ Q" (i, s, m(s)) (4.7)

s',N

By substituting the completion function into Equation (4.6), we get the following definition
of the action-value function:

Q7 (i,8,a) =V™(a,s) + C™(i,s,a) (4.8)

Furthermore, the definition of the value function V7 (i, s) can be re-expressed as

e o~ | QT(i,s,mi(s)) if ¢ is composite
Vilis) = { >« P(s'|s,a)R(s'|s,a) if i is primitive (4.9)

For a composite subtask 4, this recursive definition states that the value of a state s can be
computed as the following equation:

V7(i,8) = Q" (i,8,mi(s)) = V™ (mi(s),s) + C" (i, s,mi(s)) (4.10)

In other words, to find the value of a state s in subtask ¢ given a hierarchical policy w, we
must simply 1) find the value of state s in the subtask denoted by m;(s), and 2) add the
value of completing subtask 4 after subtask 7;(s) has terminated. If 7;(s) is also a composite
action, the this term can be further decomposed in the same way. The recursiveness of V'
ends in the bottom of the hierarchy when a primitive action is encountered (as defined in
Equation 4.9).

Dietterich refers to equations (4.7), (4.8) and (4.9) as the decomposition equations for the
MAXQ hierarchy under a fixed hierarchical policy 7. These equations recursively decompose
the projected value function V7™ (0, s), for the root task My, into the projected value functions
for the subtasks M, ..., M, and the completion functions C™(j, s,a) for j = 0,...,n. This
means that a complete specification of the decomposed @ and V functions requires exactly
the storage of

e the completion value C(i,s,a) for all composite subtasks 4, states s and subtasks a,
and
o the value V (i, s) for all primitive subtasks ¢ and states s.

By storing these values, the value of any combined state/action pair, of any subtask in the
hierarchy, can be computed by the use of the decomposition equations.

4.3.2 MAXQ Graphs

To make it easier to understand the decomposition equations, a task hierarchy can be illus-
trated as a MAXQ graph. Figure 4.4 illustrates a MAXQ graph for the Taxi domain. The
graph contains two kinds of nodes, Max nodes and @) nodes.

Max nodes corresponds to subtasks in the task hierarchy. There is one Max node for each
composite and primitive subtask. Each primitive Max node ¢ stores the value of V7 (i, s) for
all s € S;.

42

4.3. MAXQ VALUE FUNCTION DECOMPOSITION

[QNavigateForGet] [QNavigateForPut]

t/source t/destination

MaxPickup MaxNavigate(t) MaxPutdown

MaxNorth MaxSouth

MaxEast MaxW est

Figure 4.4: A MAXQ graph for the Taxi domain. Max nodes correspond to the subtasks in
the domain, and @ nodes correspond to the actions available for each subtask.

() nodes corresponds to the actions that are available for each subtask. For instance, the
available actions from subtask Get are Pickup and Navigate(t/source). These actions are
modelled as the) nodes QPickup and QNavigateForGet in the MAXQ graph. Each @ node
for parent task i, state s and subtask a stores the value of C™(i,s,a). A parent task may
execute a subtask multiple times before it terminates.

The purpose of each Max node 4 is to compute the projected value function V7 (i, s) for all
s € S;. For primitive Max nodes, such as MaxPickup and MaxPutdown in Figure 4.4, this
information is stored directly in the node. For composite Max nodes, the information must
be computed. To compute the value V™ (i, s), the Max node i consults its policy m; and finds
that the next action is m;(s). It then queries the @ node corresponding to m;(s) for the value

Q7 (i,s,mi(s))-

The @ node does not directly store this value. It only stores C™(i,s,m;(s)), the value of
completing subtask 7 after m;(s) has been executed. To find the value of actually executing
m;(s), the @ node queries its child Max node for V™ (m;(s),s). If m;(s) corresponds to a
primitive Max node, then V™ (m;(s), s) can be looked up. Otherwise m;(s) is composite and
V7 (m;(s), s) must be computed by querying further down the MAXQ graph. Afterwards, the
Q value

Q7 (i,s,m(s)) =V™(mi(s),8) + C™(i,8,m(s)) (4.11)

is returned to the Max node 7. Since V™ (i, s) = Q™ (i, s, m(s)), the Max node has finished its
computation.

43

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

For a more concrete example, let s be the state illustrated in Figure 4.5, and assume that
an optimal policy 7* has been previously learned. From state s, it requires 1 step to reach
the passenger, 1 step to pick up the passenger, 7 steps to reach the destination, and 1 step
to put down the passenger. Since each of these steps has a penalty of —1, and because the
taxi receives a reward of 20 after delivering the passenger, the value of state s is 10. The
complete set of recursive computations needed for this conclusion looks as follows:

V*(North, s) -1
Q™ (Nav(R),s,North) = V*(North,s)+ C*(Nav(R),s,North) = —1+0=—1
V*(Nav(R),s) = Q*(Nav(R),s,North) = —1
Q™ (Get,s,Nav(R)) = V*(Nav(R),s)+ C*(Get,s,Nav(R)) = —1 4 —1 = —2
)
)
)

(
(
(
V*(Get, s *(Get, s,Nav(R)) = —2
(
(

Il
= O

Q" (R.oot s, Get *(Get, s) + C*(Root, s,Get) = =2+ 12 = 10
V*(Root, s Q" (Root, s,Get) = 10

4 | R G
3 | &

2

1

o |vY B

0 1 2 3 4

Figure 4.5: A Taxi domain scenario. The taxi is at (0,3) and the passenger is at (0,4)
(location R). The destination is (3,0) (location B).

In general, the MAXQ value function decomposition takes the form

V™(0,s) = V™(am,s) + C"(am-1,$8,am) + ...+ C™ (a1, 8,a2) + C™(0, s, a1) (4.12)

where a1, ..., a,, is the “path” of the Max nodes, from the root-node 0 to the primitive action
am, chosen by the hierarchical policy 7. This concludes the description of the representation
of the value function when using the MAXQ value function decomposition.

4.3.3 Different Kinds of Optimality

Before proceeding to describe an algorithm for learning an optimal policy using the value
function decomposition, we must first define the meaning of optimality given the introduction
of a task hierarchy. Of course, without decomposing a task, a truly optimal policy can be
learned using traditional flat -learning. However, imposing a hierarchy puts two constraints
on the policies representable by the hierarchy:

44

4.3. MAXQ VALUE FUNCTION DECOMPOSITION

e Within a subtask, some primitive actions may not be allowed. In the Taxi hierarchy, for

instance, the taxi cannot perform the actions pickup or putdown during the Navigate
subtask.

e The policy learned for task A; must involve the policies learned for its child tasks
{Mjq, ..., Mj, }. When the policy for subtask 1, is invoked, it will run until a terminal
state in 7}, is encountered. This means that the policy for task M; must pass through
some subset of the terminal states of its subtasks {T},,..., T}, }.

The impact of these two constraints depends entirely on the specification of the task hierarchy.
The taxi hierarchy discussed so far is not affected by them, and is capable of representing a
truly optimal policy (in Section 4.7, however, we will change this fact). A policy that is as
optimal as possible, given the constraints of a hierarchy, is said to be hierarchical optimal.

A goal of the MAXQ method is subtask sharing (see Section 4.1). To achieve this, individual
subtasks must be context-free. For instance, the task Navigate(t) is context-free because of
its target location parameter t. The task would not be context-free if the target-location was
implicit (given the parent task executing Navigate). To achieve total subtask independence,

an even weaker form of optimality must be pursued. This form of optimality is called recursive
optimality.

ST [2]o]0E 56
o R ol e I N O B R
R RO RO R B N R R R R B
U BN EN NN N RN
N IR R

N BEIE

Figure 4.6: A domain illustrating recursive optimality. The agent must leave the left room
and go to the goal square G. The policy illustrated in the left maze is recursively optimal but
not hierarchically optimal. The shaded cells indicate points where the locally optimal policy
is not globally optimal. The policy illustrated in the right maze is hierarchical optimal due
to the specification of pseudo-rewards.

The left-side of Figure 4.6 illustrates the effects of pursuing only recursive optimality. The
figure shows a grid world consisting of two rooms with two doors separating them. The task
of an agent in this world is to reach the goal square G. The primitive actions in this world are
North, South, East and West, and each give a penalty of —1. A hierarchy is imposed such that
the task of an agent is split into the subtasks ExitLeftRoom and GotoGoal. ExitLeftRoom
is only available when the agent is in the left room, and terminates when the right room is
entered. GotoGoal is only available in the right room, and terminates when G is reached.
During each subtask, any primitive action can be executed.

The arrows in the figure represents the recursively optimal policy given the described hierar-
chy. The illustrated policy is locally optimal for both subtasks, but clearly not hierarchical

optimal. The shaded cells indicate points where the locally optimal policy is not globally
optimal.

45

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

In this case, it is possible to specify pseudo-rewards to reach hierarchical optimality. If the
agent exits the left room through the lower door, we will assign it a pseudo-reward of —6
because this is the number of steps needed afterwards to reach the goal. Similarly, the agent
will receive a pseudo-reward of —2 if it exits the left room through the upper door. For now,
pseudo-rewards can be thought of simply as extra rewards besides the traditional immediate
rewards. The right-side of Figure 4.6 shows a hierarchical optimal policy for the domain
using the described pseudo-rewards.

4.3.4 The MAXQ-Q Learning Algorithm

Dietterich (2000) presents two learning algorithms for the decomposed value function. The
first one, called MAXQ-0, can only be applied when the pseudo-reward function R is always
zero. The second and more general algorithm is called MAXQ-Q, which works with any
specification of the pseudo-reward function. We will skip the description of MAXQ-0, since
this is just a special case of MAXQ-Q. The overall goal of MAXQ-Q is to learn a) the
completion value C(i,s,a) for each composite subtask i, state s and subtask a, and b) the
value V' (i, s) for each primitive subtask ¢ and state s.

As mentioned in Section 4.3.3, pseudo-rewards can be thought of as simply extra rewards.
As such, an approach towards incorporating them into a learning algorithm would be to just
add them to the corresponding immediate rewards whenever an update of either C' or V'
is performed. However, this would have the effect of changing the original MDP to have
a different reward function. Furthermore, the pseudo-rewards for a single subtask could
“contaminate” the policies learned throughout the hierarchy. As an example, we will extend
the domain from Figure 4.6 as illustrated in Figure 4.7. To clarify the point, let the pseudo-
reward for exiting the middle room through the upper door be 100, and the pseudo-reward
for exiting the middle room through the lower door be 0. The immediate reward for reaching
G will remain 20. Now consider the lower left room. After exiting this room through the
upper door, there will remain 11 steps yielding a penalty of —11. Furthermore, adding the
pseudo-reward of 100 and a goal-state reward of 20 to this value yields a total reward of 109.
If the lower left room is exited through the lower door, then a penalty of —10 is received before
the goal is reached. The consequence is that the pseudo-rewards, specified for the subtask of
exiting the middle room, has changed the optimal policy for the subtask of exiting the lower
left room. This policy is no longer optimal in the shaded cells. In fact it gets even worse,
because the optimal policy is no longer to reach the goal state. Since the pseudo-reward is
greater than the reward for entering the goal state, the optimal behavior for the agent will
become to continuously enter and exit the right room.

This example clearly shows that pseudo-rewards cannot simply be added to immediate re-
wards. The problem can be solved by learning one completion function to be used “inside”
each subtask, and a separate completion function to be used “outside” each subtask. The
external completion function C(i,s,a) is the one discussed so far. It is computed without
reference to pseudo-rewards, and denotes the expected reward for completing task M; after
performing action a in state s, and then following the learned policy for M;. It is used by
parent tasks to compute V' (4, s), the expected value of performing task M; in state s.

The internal value function, denoted C(4, s, a), is computed by adding pseudo-rewards to the
real rewards. It is used to find the locally optimal policy for each subtask M;. In effect,
MAXQ-Q should learn C' and C such that

46

4.3. MAXQ VALUE FUNCTION DECOMPOSITION

LILL L9 2| eeie) ©
LILL LD T
2 222 T[T TR
TS| T
D DERER] T | Do N D
TR O 2 2 2 (2T

Figure 4.7: Pseudo-rewards can “contaminate” the hierarchy if used simply as extra rewards.
The pseudo-reward for exiting the middle room using the upper door is 100, while the immedi-
ate reward for reaching G remains 20. The result is that the hierarchical policy is non-optimal
in the shaded cells.

o« C (i,8,a) denotes the pseudo-reward “contaminated” completion function over the lo-
cally optimal policy for task M;.

e (C(i,s,a) denotes the “clean” completion function over the locally optimal policy for
task M;.

In other words, the locally optimal policy for subtask M; is found using pseudo-rewards to
contaminate C(i,s,a). Then, C(i,s,a) is learned to be the clean completion function over
the found locally optimal policy. The policies for the parents of M; is learned using the clean
completion function to avoid cascading contamination. As a result, local optimality can be
achieved with pseudo-rewards without worrying about changing the behavior of other tasks
in the hierarchy.

Figure 4.3 shows the pseudo-code for the MAXQ-Q algorithm. Invoking MAXQ-Q(i,s)
returns the sequence of states visited by subtask ¢ when being executed from state s. This
sequence is maintained in the variable seq. The algorithm first checks if ¢ is primitive. If this
is the case, then i is directly executed. The observed immediate reward is used to update
V(i,s). Indeed, this part of the algorithm can be viewed as learning the immediate reward
function for the original MDP.

If a subtask ¢ is not primitive, then the algorithm enters a while loop which runs until 4
terminates. During an iteration inside the while loop, an action a is chosen according to
the exploration policy 7 (i, s). Action a is executed by calling MAXQ-Q recursively, which
results in the sequence of states visited during the execution of a. The resulting state s’ is
then observed. Following, in line 14, the optimal action a* in the next time step is predicted.
This prediction is made using the internal completion function C for subtask i. We now
have all the information needed to begin updating both the internal and external completion
functions.

To speed up learning in nodes at the top of the task hierarchy, the completion functions
are updated for each state s visited during the execution of the chosen action a. Dietterich
refers to this as “all-states-updating”. The reasoning is that the execution of a will move
the environment through a sequence of states s1,...,Sn, Sn41 where S,41 is equal to the

47

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

48

NN DN = = = = e e e e
WHQOLIIDPT w2 o©

SN

%)
@

27:
28:
29:

30:

32:

V)

: function MAXQ-Q(MaxNode 3, State s)
Let seq = () be the sequence of states visited while executing ¢
if (¢ is a primitive MaxNode)
Execute i, receive r¢ = R(s’|s,a), and observe result state s’
Vig1(is8) == (1 — e (3)) - Vi(4, 8) + e (4) - 1t
Push s onto the beginning of seq

Let count =0
while (T;(s) is false)

Choose an action a according to the current exploration policy mw (i, s)
Let childSeq = MAXQ-Q(a,s) where childSeq is the sequence of states
visited executing action a (in reverse order)
Observe result state s’
Let a* = argmax,/ [Ct(i,s/,a’) + Vt(a/,s/)}
Let N=1
for (each s in childSeq) do
Cit1(i, ' a) = (1 — ot (4)) - Ce (4, ', a’) + a (i) - v esternal Value(s")
Cir1(i,8",a) := (1 — (i) - Ce(i, 8", a’) + ot (i) - v internal Value(s")
where
ezternal Value(s') = [C¢ (i, 8',a*) + Vi (a*, s’)], and
internal Value(s') = [RZ (') 4 Cu(i, &', a*) + Vi(a*, s’)]
N:=N+1
end for
Append childSeq onto the front of seq
s:=s

end while

Return seq

//main program ~
: Initialize V (4, s), C(i, s,a) and C(, s, a) arbitrarily
MAXQ-Q(root node 0, starting state so)

Table 4.3: The MAXQ-Q learning algorithm.

4.3. MAXQ VALUE FUNCTION DECOMPOSITION

resulting state s’. Since all subtasks are Markovian, executing a in so, s3, or any state up to
(and including) s,, would result in the same state s’.

Before updating the completion functions, the internal and external values of executing a* in
s’ is first computed. The computation of the internal value includes possible values received
by the pseudo-reward function R. Notice that the action a* is also used in the computation
of the external value—even though this action might not be the optimal action in the next
time step according to the external completion function C'. Both completion functions are
then updated, discounting the computed values properly. The primary observation here is
that the action a*, which is optimal in the next time step according to C, might not be
optimal according to C. Nevertheless, a* is used to update C, which results in a SARSA
like algorithm (see Table 2.2). In effect, C' will converge to the non-contaminated completion
function over the locally optimal policies learned by C.

The updates of C' and C requires the computation of Vi (i, 8"). In Section 4.3.2 we described
how this value could be computed for a fixed hierarchical policy with the recursive decom-
position functions. The problem is that, during learning, there exists no fixed hierarchical
policy. Furthermore, because C should converge to the locally optimal policy for each sub-
task, actions should always be chosen greedily during the recursive computation of V;(i, s)
(as apposed to be chosen by a fixed policy). This leads to the following modified definition
of the decomposition functions:

) _ max, Q¢(%,s,a), if i is composite
Vilis) = { Vi(i, s) (lookup) , if ¢ is primitive (4.13)
Q:(i,s,a) = Vi(a,s)+ Ci(i,s,a) (4.14)

The computation of V; (4, s) using the above equations requires a complete search of all paths
through the MAXQ graph starting at node ¢ and ending at the leaf nodes. Fortunately,
MAXQ graphs are normally small of size, so this does not affect the performance of MAXQ-
Q noticeably. Table 4.4 shows the function EVALUATEMAXNODE(4,s), which, among other
things, calculates V;(i, s). For composite tasks, the algorithm chooses the action a,q, that
maximizes V;(a,s) + C(i,s,a) for any a € A(i). The algorithm then uses this action to
calculate the uncontaminated value Vi(amaz,s) + C(4, S, Gmaz). The uncontaminated value
is returned together with the primitive action reached at the bottom of the MAXQ graph
(corresponding the leaf). This action is returned to allow non-hierarchical execution, which
will be further explained in Section 4.5. Again, C is used to select actions because it will
eventually represent the locally optimal policy. The value returned to other subtasks are,
however, based on the uncontaminated completion function C to avoid cascading pseudo-
reward contamination.

To avoid cluttering the pseudo-code, “ancestor” termination (as described in Section 4.1.3) is
not shown in the MAXQ-Q algorithm in Table 4.3. However, “Ancestor” termination should
of course be included in any “real” implementation of the algorithm. Furthermore, MAXQ-Q
requires that the exploration policy 7, is not only a GLIE policy, but an ordered GLIE policy,
where w denotes the ordering of actions used to break ties. An ordered GLIE is required
because, in general, each subtask M; will have a choice between many different locally optimal
policies. These different locally optimal policies will all achieve the same locally optimal value
function, but they may result in different probability transition functions P(s’, N|s,i). As
a consequence, the SMDP problems at the level above subtask M; will differ depending on
which of the different locally optimal policies is chosen by subtask M;. An ordering of actions
w ensures that consistent behavior is observed from subtask M;.

49

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

1: function EvaLuaATEMAXNoDE(MaxNode i, State s)
2 if (¢ is a primitive MaxNode)

3 Return (Vi (4, s),%)

4 else

5: for (j € Ai(s))

6 Let (Vi(4,5), aj) = EVALUATEM AXNODE(j,s)
7 end for

8: Let amas = argmax; Vi(4,8) + Cy (4,8,9)

9: Return (Vi(amaz,s) + Ct(i, 8, amaz), Gmaz)
10: end if

11: end

Table 4.4: Pseudo-code for computing V;(i, s) for Max node i and state s.

4.4 State Abstractions

One of the reasons to introduce hierarchical reinforcement learning is to create opportunities
for state abstractions. In general, for task hierarchies generated by hand, it can be a straight-
forward task to simply begin removing irrelevant state variables from different subtasks in
the hierarchy. This is true because a hand-made hierarchy will often be specially designed
to allow state abstractions. The task might, however, be far more complex for automatically
generated hierarchies. To formalize the opportunities of state abstractions when using the
MAXQ method, Dietterich (2000) specifies conditions that permit “safe” state abstraction.
Furthermore, Dietterich proves that MAXQ-Q will converge to the same unique recursively
optimal policy with or without “safe” state abstraction for any given task hierarchy. In this
section, we will give a less formal description of the opportunities for state abstraction when
using the MAXQ method.

The purpose of applying state abstractions is to minimize the number of needed values to
represent the projected value function for a task hierarchy. When less values are needed,
then less values must be learned, which in most cases will speed up learning. To be able to
evaluate the effect of applying state abstractions, let us first compute the number of values
needed for the Taxi domain without state abstraction. We will ignore the representation of
the internal completion function C for now.

e To represent V (i, s) for each of the six leaf nodes in the MAXQ graph, 500 values are
required for each leaf because there are 500 states.
e MaxRoot has two children, which requires a total 500 - 2 = 1000 values.

e Both MaxGet and MaxPut has two children, so each one also requires 1 000 values giving
a total of 2 000.

e MaxNavigate has four children and the target parameter ¢, which can take on 4 values.
For each child 500 - 4 = 2000 values are needed giving a total of 8 000.

The total number of values needed for the MAXQ representation is therefore 14 000. To place
this number in perspective, consider that, using flat @-learning, the number of needed values
is 3000.

The conditions for state abstraction specified by Dietterich all assume that a state s can be
represented as a vector of values of existing state variables. At each Max node i, the vector

50

4.4. STATE ABSTRACTIONS

can be partitioned into two sets, relevant variables X; and irrelevant variables Y;. & is a
function that projects a state s into only the variables in X;:

if s; ={xo,...,Tn,Y0,---,Ym} then Xi(s;) = {zo,...,zn} (4.15)

where n is the number of variables in X; and m is the number of variables in Y;. State
abstractions are achieved by, for any state s, using X;(s) instead of s to represent the projected
value function. An abstraction is safe, when for all states s and subtasks 7, we have that
V(i,X(s)) =V(i,s).

It is furthermore required that the exploration policy used during learning is a so-called
abstract hierarchical policy. This means that actions in a subtask ¢ must be chosen using
only information specified by &j, i.e. :

if Xi(sl) = Xi(SQ) then 7Ti(81) = 7Ti(82) (416)

Failing to do so will result in unexplainable behavior given &;. Boltzmann exploration used
throughout this report can easily be modified to be an abstract hierarchical exploration
policy.

There are three kinds of conditions under which state abstractions can be introduced. The
first condition involves eliminating irrelevant variables from subtasks in the MAX(Q graph.
This kind of abstraction is mostly useful in the lower part of the MAXQ graph, since subtasks
near the leaf tend to have only few relevant variables. The second kind arises from so-called
funnel actions that move the environment from a large number of current states to a small
number of resulting states. Funnel actions normally appear in the top of the MAXQ graph.
Finally, the third kind of state abstraction arises from the structure of the MAXQ graph
itself. In effect, a large part of the state space may not be reachable for certain subtasks.

In the following, Y will always denote the set of irrelevant variables, while X will denote
the set of relevant variables. After discussing the conditions that allow state abstractions,
the total reduction of needed values to represent the projected value function for the task
hierarchy is summarized.

4.4.1 Irrelevant Variable Elimination
Irrelevant variables can be eliminated both in leaves and composite subtasks in the MAXQ

graph. The former condition is referred to as as Leaf Irrelevance, while the latter is referred
to as MaxNode Irrelevance (or Subtask Irrelevance).

MaxNode Irrelevance

A set of state variables Y is MaxNode irrelevant for subtask i if the following properties hold
for any stationary abstract hierarchical policy 7:

e No variable y € Y affects the value of any variable € X in subtask 4.

e No variable y € Y affects the value function V7 (a, s) or pseudo-reward function R;(s)
for any child action @ and any state s.

51

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

In other words, the child actions chosen by subtask 7 must not depend on any variable in Y.
Furthermore, the outcome of any executed child action must not depend on any variable in
Y either. If these conditions hold, then the variables in Y are irrelevant for subtask .

In the Taxi domain, two nodes in the MAXQ graph can benefit from state abstractions using
the MaxNode irrelevance condition. First of all, during subtask Get, the destination of the
passenger is irrelevant, because it does not affect which subtasks Get chooses to execute, nor
does it affect the outcome of these subtasks. This means that the variable can be excluded
from the completion functions stored in QNavigateForGet and QPickup.

Secondly, during the subtask Put, the variable denoting the passenger location is irrelevant,
and can be eliminated from the completion functions in QNavigateForPut and QPutdown.

Leaf Irrelevance

While the MaxNode Irrelevance condition eliminates variables in the completion functions for
composite subtasks, the Leaf Irrelevance condition eliminates variables in the value function
for primitive actions. A set of variables Y is leaf irrelevant to primitive action a if, for
any two states s; and sg that differ only in their values of variables in Y, we have that
V™(a,s1) = V™(a,s2). Remember that V™ (a,s), for a primitive action a and state s, is
defined simply as the expected immediate reward for performing a in s.

The primitive actions North, South, West and East have a constant immediate reward of
—1. This means that all state variables can be eliminated in their respective primitive Max
nodes. Furthermore, the immediate rewards of Pickup and Putdown only depend on wether
or not the actions are performed legally. For instance, Putdown is illegal if the taxi is not at
the destination and holding the passenger. Thus, the value functions for each of these two
actions require 2 values each.

In the elimination of variables in Pickup and Putdown, Dietterich introduces a new variable
that denotes the legality of the actions—something which is in fact not directly possible using
his proposed framework. Indeed, this form of abstraction requires logic and is similar to
abstractions achieved using relational reinforcement learning. We will return to this subject
in Chapter 5.

4.4.2 Funnel Actions

Funnel actions are composite subtasks that move the environment from a large number of
current states to a small number of resulting states. Irrelevant variables in funnel actions
must satisfy the condition of Result Distribution Irrelevance. Furthermore, if the termination

of some subtask is guaranteed to make its parent task terminate too, then further abstraction
can be applied. This condition is referred to as Termination.

Result Distribution Irrelevance

A set of variables Y is result distribution irrelevant for subtask ¢ if, for all pairs of states s;
and s, that only differ in their values for state variables in Y, we have that

P7™(s',N|s1,i) = P™(s', N|sa,1) (4.17)

52

4.4. STATE ABSTRACTIONS

for all s and N. Thus, to be irrelevant for subtask ¢, a variable y € Y must not have any
effect on the distribution of resulting states.

Consider the Get subtask. No matter what location the taxi has is in state s, it will be at
the passenger’s starting location in state s’ when Get finishes executing. This makes the
location of the taxi result distribution irrelevant, and the corresponding state variable can be
eliminated in QGet and QNavigateForGet. Notice that the taxi location cannot be eliminated
in QPickup because, when Pickup is executed illegally, the completion cost is dependent on
the number of steps needed to complete Get.

Similarly, the taxi location is irrelevant for the Put subtask and can be eliminated from QPut
and QNavigateForPut. For QPut, however, a stronger form of abstraction can be achieved
using Termination and the structural constraints of the task hierarchy, as described in the
following.

Termination

The Termination condition is very intuitive. If a subtask a is guaranteed to terminate in a
goal state where its parent task 4 also terminates, then the completion cost of i after a has
terminated must be uniformly zero for all states where a has not terminated.

This condition holds for Put in the Taxi domain. For all states where the passenger is in the
taxi, Put will succeed and result in a goal terminal state for Root. This happens because the
goals of Put and Root are identical.

4.4.3 Structural Constraints

The last form of state abstraction arises from the structural constraints introduced by the
task hierarchy itself. A task a can only be executed in a state s if there exists a path from
the root down to M; consisting of un-terminated tasks. For any state s’ where this is not
the case, a cannot be reached. This means that it is unnecessary to represent the completion
function C(4, ', a) for any such state s’ and parent task .

The Put subtask also satisfies this condition, which is known as Shielding. Put is terminated
in all states where the passenger is not in the taxi. Thus, QRoot does not need to represent
completion values C'(Root, s, Put) for these states. Together with the Termination condition
above, this means that the entire completion function represented in Put is uniformly zero.

Furthermore, during the subtask Get, the passenger cannot be in the taxi in any non-terminal
state. Therefore, any state s where this is the case can be disregarded.

4.4.4 Overview of State Abstractions in the Taxi Domain

The opportunities for state abstraction described in the previous section can be summarized
as the following list:

e MaxNorth, MaxSouth, MaxWest, and MaxEast: each require 1 value (Leaf Irrelevance).

e Pickup and Putdown: each require 2 values (Leaf Irrelevance).

93

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

e QNorth(t), QSouth(t), QWest(t), and QEast(t): each requires 100 values (the pas-
senger’s location and destination are MaxNode Irrelevant).

e (NavigateForGet: requires 4 values (the passenger’s destination is MaxNode Irrele-
vant, and the taxi starting location is Result Distribution Irrelevant).

e QPickup: requires 100 values (the passenger’s destination is MaxNode Irrelevant).

e QGet: requires 16 values (the taxi’s location is Result Distribution Irrelevant, and the
passenger’s location is limited to the four target locations because of Shielding).

e (NavigateForPut: requires 4 values (the passenger’s location is MaxNode Irrelevant,
and the taxi’s location is Result Distribution Irrelevant).

e QPutdown: requires 100 values (the passengers location is MaxNode Irrelevant).

e QPut: requires 0 values (Termination and Shielding).

In total, this results in 632 distinct values when using state abstractions. If pseudo-rewards
are needed, then it becomes 2 - 632 = 1264 values. Compared to the 3000 values needed for
flat Q-learning, this is a fairly low number. Furthermore, if the size of the grid is increased,
then the number of values also increase. This increase is much larger for flat Q-learning
compared to the MAXQ hierarchy with state abstractions. The reason is that, while the
projected value function for the task hierarchy as a whole still depends on all state variables,
each of the individual terms, that make up the decomposition of the value function, only
depends on a subset of the state variables.

MaxNode Irrelevance and Leaf Irrelevance can also be applied when using the HSMQ al-
gorithm. However, Result Distribution Irrelevance, Termination and Shielding cannot be
applied. It is only because the @ function is decomposed into the completion function and
the child value function that it is possible to take advantage of state abstractions that only
affect the completion function.

4.5 Non-Hierarchical Execution of a Hierarchical Policy

As described in Section 4.3.3, the optimal policy for a task may not be representable given
a task hierarchy. Dietterich (2000) presents a very simply technique, which in many cases
can derive an optimal non-hierarchical policy from a hierarchical optimal policy. The idea
is to start at the top of the task hierarchy, and then choose the locally optimal action in
every subtask until a primitive action is reached—exactly the same as the functionality of
EvALUATEMAXNODE. The primitive action is then executed, and control is again directed
to the top of the hierarchy.

Table 4.5 shows the pseudo-code for the procedure EXECUTEPOLICYNONHIERARCHICAL,
which follows this idea. At line 3, the algorithm calls EVALUATEMAXNODE to conduct a
complete search of all paths through the MAXQ graph. Remember that EVALUATEM AXN-
ODE also returns the primitive action a found at the end of the path through the graph (see
Table 4.4). Afterwards, action a is executed and the current state is updated. This continues
until the root task of the MAXQ graph terminates.

Consider changing the Taxi domain such that the passenger, with some probability, changes
destination after the taxi has started navigating to the original destination. Using a strict

54

4.6. HIERARCHICAL EXPLORATION PROBLEM

1: procedure ExEcuTEPOLICYNONHIERARCHICAL(State s)
2 while ((To(s) is false))

3 Let (V (0, s),a) = EvALUATEM AxNoODE(0,s)

4: Execute primitive action a

5 Let s be the resulting state

6 end while
7: end

Table 4.5: Pseudo-code for executing the one-step greedy policy.

hierarchical execution, the already invoked navigation task must be completed, which means
that the taxi will drive all the way to the original destination. At that point, it will discover
that the passenger has changed destination, and will then begin to navigate towards the new
destination. If non-hierarchical execution is used instead, control is shifted to the top of the
hierarchy after each primitive action. This means that the taxi will discover the destination
change immediately. The difference between hierarchical and non-hierarchical execution of a
hierarchical policy becomes very clear in the experiments illustrated in Section 4.7.

4.6 Hierarchical Exploration Problem

Decomposing a primary task into a task hierarchy can be viewed as supplying the agent with
knowledge because, besides creating opportunities for state abstraction, any reasonable task
hierarchy will also guide the agent towards its goal. While this has advantages in form of
a better initial performance, it also introduces a problem regarding sufficient exploration of
certain parts of the state/action space. We will refer to this problem as the Hierarchical
Exploration Problem. To our knowledge, this problem has not previously been described.

In the task hierarchy of the Taxi domain used throughout this chapter, the agent can explore
the entire state/action space with the exception of states and actions that are unreachable
due to structural constraints (e.g. putdown when the passenger is not in the taxi). Even
though the hierarchy as a whole directs the agent in its actions, within a single subtask such
as Navigate(t), the agent will explore each possible state with an almost equal frequency.
The only exception is that only one terminal state can be visited during each invocation of
a subtask.

Now, consider what would happen if we changed Navigate (t) to a primitive action (although
still temporally abstracted). Being a primitive action, Navigate(t) will always perform
optimally (even during early learning) and will move the agent directly towards its target ¢.
Figure 4.8 illustrates the exploration frequency for states in this modified Taxi domain, where
the shade of gray denotes the relative level of exploration among the states. For simplicity,
we assume that the only target locations are R and B.

This uneven exploration frequency occurs because the agent, once on the “right” path, never
visits the outer states. Since Navigate(t) is assumed to be optimal, the agent will simply
take the shortest route. In fact, these outer states will only be visited when they are the
starting location of the taxi (as illustrated in the figure). This also suggests a solution for the
problem, namely always letting the taxi start in these outer locations—thereby increasing
their exploration frequency. Indeed, it is difficult to see any other possible solutions for the
hierarchical exploration problem. In practice, a task hierarchy should be carefully created

95

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

0 B

0 1 2 3 4

Figure 4.8: The hierarchical exploration problem with Navigate(t) as an optimal primitive
action. White cells indicate often explored states, while darker shaded cells denote relatively
less explored states. The darker the shade, the less the state is explored.

such that this problem is avoided. We will also discuss the hierarchical exploration problem
for Blocks World in Chapter 5.

4.7 Experimental Evaluation of the MAXQ Method

So far, this chapter has described the theoretical advantages of using the MAXQ value func-
tion decomposition. In this section, we will perform two experiments to clarify the perfor-
mance of MAXQ in practice. More specifically, the experiments are conducted to answer the
following questions:

e How does the MAXQ method perform compared to flat Q-learning?
e How important are state abstractions?

e How does the encoding of knowledge in a task hierarchy influence performance?

Both experiments are based on a slightly modified Taxi domain called the Fickle Taxi do-
main?. To make learning more challenging, the navigation actions North, South, West and
East are made noisy. With probability 0.8, the taxi moves in the intended direction, but
with probability 0.2, it instead moves to the right of the intended direction (e.g. if East is
intended then with probability 0.2 the taxi will move south). Furthermore, after picking up
the passenger and moving one square away from the passengers’s source location, the pas-
senger changes the destination with probability 0.3. The purpose of this change is to make
the optimal policy non-hierarchical.

During training, the Navigate (t) subtask often exhibited looping behavior. In effect, testing
a policy by choosing actions strictly greedily does not accurately show the improvement in
performance as a function of primitive training steps. For instance, consider an almost
optimal policy 7. If this policy results in infinite looping behavior between states s; and so
(whenever one of these states are visited), then this behavior overshadows the performance of
m in the rest of the state space. To avoid looping behavior, we applied Boltzmann exploration,

2The first experiment is similar to one conducted in Dietterich (2000).

56

4.7. EXPERIMENTAL EVALUATION OF THE MAXQ METHOD

and thereby a controllable level of randomness, to the evaluation of a policy. The exploration
temperature was set to the initial value of 1 (total randomness) for all trials. It was thereafter
decreased for each primitive training step such that it reached 0 at an estimated point of
convergence. The estimated point of convergence was found by training the agent multiple
times. The estimation was set to the latest convergence observed.

For all experiments, the learning factor a was set to 0.25. Furthermore, all initial V' and C
values were set to 0.

4.7.1 Performance of MAXQ Learning

In this experiment, we evaluated the performance of the following approaches when applied
to the Fickle Taxi domain:

Flat @-learning,

MAXQ without state abstractions (MAXQ),

MAXQ with state abstractions (MAXQ-SA), and

MAXQ with state abstractions and non-hierarchical execution (MAXQ-SA/NHE).

After each training episode, the current policy was tested by observing the error compared to
an optimal policy. The mean of this error was computed over 10 training runs per approach.
Figure 4.9 shows the mean error per trial (over the 10 runs) as a function of primitive training
steps.

The results of the experiment shows that any form of MAXQ learning have better initial
performance than flat @-learning. This is due to the constraints introduced by the task
hierarchy, which puts a restriction on the number of available primitive actions in any given
state. Furthermore, it is interesting to see that MAXQ learning without state abstraction
actually takes longer to converge than flat ()-learning. This is caused by the increased number
of values needed to represent the decomposed value function without state abstractions.

MAXQ learning with state abstraction converges much faster than both flat Q-learning and
MAXQ without state abstractions. It does not, however, reach true optimality. As men-
tioned, this is a result of allowing the passenger to change destination during an episode.
Using the described task hierarchy in the Fickle Taxi domain, the taxi can simply not avoid
taking a de-tour in 30 percent of the episodes.

Applying non-hierarchical execution to MAXQ with state abstractions solves this problem,
and the same level of optimality as shown by flat @-learning is reached. Non-hierarchical
execution allows the taxi to react immediately to the change of destination. This advantage
is also the reason that this approach reaches its potential optimal behavior a little faster than
when not using non-hierarchical execution.

This experiment answers two of the questions stated in the beginning of the section. Clearly,
MAXQ learning outperforms flat Q-learning, however, only when state abstractions are ap-
plied. If the optimal policy is non-hierarchical, then non-hierarchical execution must also be
incorporated.

57

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

400,00
300,00

[eul Jad sdals uesy

00
MaxQ SA/NHE
0,00 +

50000 75000 100000 125000 150000 175000 200000
Primitive Training Steps

25000

0

Flat Q-learning

[ell 1ad sdais uealy

50000 75000 100000 125000 150000 175000 200000

25000

Primitive Training Steps

Figure 4.9: Performance of hierarchical MAXQ learning with state abstraction and non-

hierarchical execution. The lower diagram shows a close-up view of the upper diagram.

o8

4.7. EXPERIMENTAL EVALUATION OF THE MAXQ METHOD

4.7.2 Encoding of Knowledge

The task hierarchy used so far encodes a great deal of knowledge. For instance, the agent is
automatically informed that during Get, it should only navigate to the passengers location—
and not any of the other three locations. It is reasonable to supply the agent with this
knowledge since it must be optimal. In general, as much knowledge as possible should be
encoded into a task hierarchy. It is interesting however, to investigate the impact of this
knowledge on the performance of MAXQ learning.

To perform the experiment, we changed the task hierarchy such that the taxi could navigate
to any of the four target locations during both the Get and Put subtask. This increases the
number of available actions in both these subtasks with 3 to a total of 5 (i.e. the hierarchy
becomes less informed). The change also affects the number of needed values to represent
the projected value function. The total number of values needed is increased from 632 to
656.

We tested the performance of the less informed hierarchy using both state abstractions and
non-hierarchical execution. Figure 4.10 shows the results of the experiment. The policy
over the previous task hierarchy is denoted “informed” and corresponds to MAXQ SA/NHE in
Figure 4.9. The new hierarchy is denoted “less informed”.

1000,00 F-=--—=——=———==—=—=—=—————————~—~—~—~—~—~—~—~—

Mean Steps Per Trial
o
o
o
o
o

MaxQ Informed
L

|
0 25000 50000 75000 100000 125000 150000 175000 200000
Primitive Training Steps

Figure 4.10: The performance of a less informed task hierarchy where the taxi can navigate
to any of the four target locations during the Get and Put subtasks. The performance is
compared to the task hierarchy in Figure 4.4 and flat Q)-learning.

Surprisingly, the less informed hierarchy performs much worse than flat @Q-learning. Even
the initial performance is much worse. This observation should be seen in contrast to the
fact that flat Q-learning requires the learning of almost twice as many values. Indeed, the
problem is not the number of values but the pattern of exploration. The less informed
hierarchy allows the agent to navigate to the wrong locations continuously during training.
In effect, the number of primitive training steps increases fast without significantly leading
the agent towards optimality.

59

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

This experiment answers the question of the effect of encoding knowledge into task hier-
archies. Without sufficient knowledge, the agent risks wasting training steps performing
subtasks that do not increase performance in any significant way. The experiment also shows
that the number of needed values (to represent the projected value function) is not necessarily
proportional with the learning rate.

4.8 Related Work

The MAXQ method is not the only hierarchical decomposition technique for reinforcement
learning. Indeed, the hierarchical decomposition of domain, in order to make the search
for solutions more effective, has been researched by several authors. Among the more recent
decomposition techniques is the HAM method introduced by Parr (1998). The HAM method
permits partial specification of hierarchical and temporally abstract actions.

A similar approach was introduced by Hauskrecht et al. (1998). This approach includes a
hierarchical model for handling macro actions using periphery states to simplify the original
environment. A goal of the model is the possibility of reusing macro actions in other similar
environments.

4.9 Summary

In this chapter we described two approaches to hierarchical reinforcement learning. The first
approach, Hierarchical Semi-Markov @-learning (HSMQ), decomposes the primary task into
a task hierarchy where each subtask completely encapsulates its own Q-function. This task
decomposition allows some degree of state abstraction. The second approach, the MAXQ
value function decomposition, goes further and also decomposes the projected value function
of a task. This creates even further opportunities for state abstraction.

A task hierarchy guides the agent towards its goal, and can therefore make it difficult to
explore the state/action space sufficiently. This problem can be made smaller by letting the
agent start in less explored states, however there does not seem to exist any general solution.

Another inherent problem of hierarchical reinforcement learning is the inability to directly
represent an optimal policy that is non-hierarchical. However, using the MAXQ method,
non-hierarchical execution can easily be applied to a task hierarchy. This allows the agent to
reach true optimal behavior—even when this is not hierarchical.

Two experiments were conducted to evaluate the performance of MAXQ learning. With state
abstractions and non-hierarchical execution, MAXQ learning was shown to converge much
faster the flat Q-learning in the Fickle Taxi domain. Furthermore, the importance of encoding
knowledge into a task hierarchy was illustrated by creating a less informed hierarchy. The
less informed hierarchy performed much worse than flat @-learning, because it allowed the
agent to waste training steps without increasing performance significantly.

60

Chapter 5

Combining Hierarchical and
Relational Reinforcement Learning

In Chapter 3 and Chapter 4, we described two distinct approaches to reinforcement learning:
relational reinforcement learning and hierarchical reinforcement learning using the MAXQ
value function decomposition. The question now remains: can these two techniques be com-
bined to achieve further advantages? In this chapter we will try to answer this question within
the boundaries of the theory presented so far. That is, we will explore the possibilities of
integrating logical state abstractions and logical decision trees into hierarchical reinforcement
learning.

In Section 5.1 we define a MAXQ hierarchy for Blocks World and discuss deleted-condition
interactions and the hierarchical exploration problem for the hierarchy. Section 5.2 introduces
logical value and completion trees, while Section 5.3 introduces logical state abstraction into
the MAX(Q decomposition. In Section 5.4 we describe two approaches for deriving P-trees
from a MAXQ hierarchy, and in Section 5.5 we discuss the results of a series of experi-
ments conducted with the combination of relational and hierarchical reinforcement learning.
Section 5.6 discusses the applicability of the combination in automatically constructed hier-
archies, and finally we discuss related work in Section 5.7.

5.1 MAXQ Hierarchy for Blocks World

We will use Blocks World as the ongoing example domain throughout this chapter. To
this end, we must first define a task hierarchy and a MAXQ graph for the domain. To
keep things simple, we will once again only consider the task of stacking a specific block on
top of another specific block. We will denote this root task as Stack(A,B), where A and
B are any two distinct blocks. The root task can be decomposed into the three subtasks:
MakeClear (A), MakeClear (B) and Move(A,B). MakeClear (A) and MakeClear (B) are really
denoting the same subtask MakeClear (X)—that of clearing a specific block X. This task can
be further decomposed into Move(Y,Z) for any clear pair of blocks Y and Z in the domain.
Figure 5.1 shows the described task hierarchy for Blocks World.

The task hierarchy describes the procedural decomposition of the domain. The value func-
tion decomposition is defined by the MAXQ graph illustrated in Figure 5.2. The primitive

61

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

XIA or

Stack(A,B)
XB
o
Y/block and
Move(Y,Z)

Z/block

Figure 5.1: A task hierarchy for the Blocks World domain.

Max node MaxMove (Y,Z) contains the values V(Move(Y,Z), s) for all states s. The Q-nodes
contain the completion cost of following the current policy after performing the particular
action in the current state. Notice that the root Max node takes the parameters A and B.
Thus, this hierarchy covers any binding of actual blocks such as, for instance, stack(a,b)
or stack(c,a). In general, logical policies naturally allow parameterized subtasks in a more
ad-hoc fashion than propositional approaches.

MaxStack(A,B)

XIA or

QMakeclear(X)

MaxMakeClear(X)

Y/block and
Z/block

A
[QMoveForMakeCIear(X,Y,Z)]

Y/A and
z/B

MaxMove(Y,Z)

Figure 5.2: A MAXQ graph for the Blocks World domain. Again, Max nodes correspond to
the subtasks in the domain, and @) nodes correspond to the actions available for each subtask.

5.1.1 Hierarchical Exploration Problem

The hierarchy in Figure 5.1 informs the agent that, to reach its goal, it must clear the two
goal-state blocks A and B and then move A onto B. However, during the clearing of a block
X, the agent is not guided in any way. Indeed, the agent can choose to move any clear
block in the domain onto any other clear block. A valid question here is why we do not
simply restrict the available actions during MakeClear (X) to only include actions where a
block is moved to the floor. Assuming unlimited floor space, there clearly exist an optimal
policy using this restriction and we would furthermore effectively avoid deleted-condition
interactions (see Section 2.3) where blocks are moved on top of an already cleared goal-state
block. The reason we do not make this restriction is that it would introduce the hierarchical

62

5.2. VALUE AND COMPLETION TREES

exploration problem, as defined in Section 4.6, into the hierarchy. Consider applying the
restriction; during each training episode, existing block stacks would “flatten” out until the
goal was reached. Thus, the agent would explore “flat” states far more often than states with
high stacks. The result of this would be poor performance in these states.

To avoid deleted-condition interactions without applying restrictions to the actions during
MakeClear (X), we will slightly change the reward function. As before, all actions will yield
a penalty of —1. Furthermore, actions that move a block on top of a another block which is
above either one of the goal-state blocks (A or B) will carry a second penalty of —1 yielding
a total penalty of —2. This change guides the agent towards solving MakeClear (X) without
moving blocks onto A or B. Notice that we could achieve the same guidance using pseudo-
rewards. For simplicity, however, we will ignore pseudo-rewards in this chapter.

5.2 Value and Completion Trees

As described in Chapter 4, the MAXQ decomposition of the value function opens up new op-
portunities for state abstractions. Combining MAX(Q with relational reinforcement learning
does not change this fact. First of all, the decomposition reduces the size of the individual
functions, thereby making it easier for a relational learner to find suitable patterns. Secondly,
if new state abstractions are made possible, then these will also be found by the relational
learner. As a result, we will no longer consider Q-trees. Instead, the @ function is defined
by a combination of V-trees (value trees) and C-trees (completion trees). These trees are,
as @-trees, logical regression trees. V-trees map a state s and a primitive subtask i to a
numerical value. Similarly, C-trees map a state s, a parent task i, and a subtask a to a
numerical value.

root: roottask(stack(A,B)), root: roottask(stack(A,B)),

task (move(Y,Z)) task (makeclear (X)), action(move(Y,Z))

/ & blockson(X,1)
- 7N
7N :
o > 7N
: :

(1) (-2)

(a) V-tree for MaxMove(Y,Z). (b) C-tree for QMoveForMakeClear.

Figure 5.3: Example of an V-tree and a C-tree for subtasks in the Blocks World MAXQ
graph.

Figure 5.3 shows an example V-tree and an example C-tree for Blocks World!. The trees
are queried in exactly the same way as @-trees. @ values are computed by applying the
decomposition equations defined in Chapter 4 to the results of querying the V-trees and C-
trees. Updated trees are induced at the end of each episode over the base of examples created

IThe predicate blockson(X,N) holds if N is equal to the number of blocks on top of block X.

63

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

during training. Thus, the MAXQ-Q algorithm must be altered to generate examples and
invoke the induction algorithm TILDE-RT. This change is very straightforward and similar to
the change made to the regular Q-learning algorithm in Chapter 3. The complete relational
MAXQ-Q learning algorithm can be found in Appendix C.

The MAXQ graph for Blocks World requires the learning of one V-tree for the Max node
MaxMove(Y,Z) and three C-trees for the ()-nodes QMakeClear (X), QMove (A,B) and
QMoveForMakeClear (X,Y,Z). Figure 5.4 shows a graphical overview of this.

C-Tree for
C(Stack(A,B),s,Move(A,B))

C-Tree for
C(Stack(A,B),s,MakeClear(X))

MaxStack(A,B)

XI/A or

QMakeclear(X)

MaxMakeClear(X)

Y/block and
ZIblock

QMoveForMakeClear(X,Y,Z) Y/A and

z/B

C-Tree for
C(MakeClear(X),s,Move(Y,Z))

£

Figure 5.4: A graphical overview of the connection between the Blocks World MAXQ graph
and logical decision trees representing the value and completion functions.

V-Tree for
V(s,Move(Y,Z))

A 4

MaxMove(Y,Z)

5.3 State Abstractions

Relational reinforcement learning makes use of first order logic both during the specification
of a domain and for the induction of logical decision trees. In this chapter we will make
a distinction between these two applications of logic. Doing so enables the possibility of
manually applying logical state abstractions to hierarchical reinforcement learning without
inducing logical decision trees. In fact, we have already seen a logical state abstraction
manually applied to the Taxi domain in Chapter 4. This abstraction concluded on the
legality of Pickup and Putdown actions and introduced a new state variable to contain the
new information. As mentioned, the framework proposed by Dietterich (2000) does not
really support this kind of abstraction. We will therefore introduce two new state abstraction
conditions for the MAXQ decomposition. However, we first need to define precisely what we
mean by a logical abstraction.

Definition 7. A logical abstraction function L : S — S, is a mapping from the set of states
S to the set of logical abstracted states Sy such that size(Sc) < size(S), where size(S) is a
function that returns the number of states in S. L(s) denotes the abstraction of state s € S.

The definition of L is left intensionally vague. It covers any function that reduces the number
of distinct states in the state space. If an abstraction function is to be useful in a domain, it

64

5.3. STATE ABSTRACTIONS

must map each subset of similar states {so, ..., s, } into a single abstract state s;. Sometimes
further abstractions can be achieved by considering both a state and action together (and
sometimes even a parent or ancestor task). In this case, £ can be changed to take this
information as input (e.g. £(s,a) or L(i,s,a)). The output still remains a single abstracted
entity s..

An abstraction function can be either safe or unsafe. A safe abstraction function only groups
states (or state/action pairs) together that yield the exact same V and C values. The
following are conditions under which an abstraction function £ is safe. We assume a hash-
like lookup table to handle the mapping of multiple values to single abstracted entities.

Definition 8. A logical abstraction function L is safe for a primitive Max node i if, for the
non-abstracted state s € S and action a, we have that

Vi (a,s) = Vi"(L(a, 5)) (5.1)

Definition 9. A logical abstraction function L is safe for a Q-node j if, for the non-abstracted
state s, action a and MazxNode i, we have that

C7(iya,8) = C7(L(i,a,s)) (5.2)

To illustrate these conditions by example, we will proceed to define a complete logical ab-
straction function for the Blocks World hierarchy defined in Section 5.1. We will define the
function as a set of Prolog rules. The rules take the form

logabstract (S, I, A, NextS)

where S is the non-abstracted state, I is the parent task, A is the subtask, and NextS is the
logical abstracted state. As mentioned, the parent task I can be replaced by any ancestor
task to A as this can sometimes allow for a higher level of abstraction. The first rules we
define cover the logical abstractions possible in the Max node MaxMove(Y,Z).

logabstract (S, stack(A,B), move(Y,Z), [illegall) :- above(Z,A), !.
logabstract (S, stack(A,B), move(Y,Z), [illegall]) :- above(Z,B), !.
logabstract (S, stack(A,B), move(Y,Z), [legall).

Remember that the agent receives an immediate penalty of —2 if a block is moved onto a stack
with either of the goal-state blocks A and B, otherwise it receives —1. The rules partition
the state/action space into two abstracted states, [legall and [illegall, which exactly
encompass these penalties. More specifically, for any non-abstracted state s and action a we
have that

—1 then L(s,stack(A,B),a) = [legall

if Vi"(a,) = { —2 then L(s,stack(A,B),a) = [illegall (5.3)

where i is the Max node MaxMove(Y,Z). Thus, the abstraction satisfies Definition 8 and
is safe. The result is that the number of needed values in MaxMove(Y,Z) is reduced to 2.

65

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

e = distinct state/action pair

Figure 5.5: A graphical illustration of the logical abstraction applied to the Max node
MaxMove(Y,Z).

Furthermore, this reduction is completely independent of the number of blocks in the domain.
A graphical way to observe the logical abstraction is illustrated in Figure 5.5.

A thing to notice is that abstracted entities are only used to determine the value of state/ac-
tion pairs. They are mot used in, for instance, the action precondition function or the tran-
sition function. These functions do therefore not need redefinitions even though we are
sometimes changing the state variables dramatically. They still only need to depend on the
original state variables present in the domain.

There are three -nodes in the Blocks World MAXQ graph to which state abstractions can be
applied. We will start from the top and first define logical abstractions for QMakeClear (X):

logabstract (S, stack(A,B), makeclear(A), NextS) :-
blockson(S,B,N), NextS=[blocks_on_other(N)], !.

logabstract (S, stack(A,B), makeclear(B), NextS) :-
blockson(S,A,N), NextS=[blocks_on_other(N)], !.

The important thing to notice here is that Q-nodes contain completion functions. As such,
the information contained within an abstracted entity must only be exactly enough to con-
clude the completion cost of the parent task after performing the particular subtask—in this
case MakeClear (X). Indeed, this is the major advantage of using the MAXQ value function
decomposition. After executing the subtask MakeClear (A), the only relevant information to
the completion of its parent task Stack(A,B) is how many blocks that are above the other
goal-state block B in state S. This number N is computed by the predicate blockson(S,B,N).
The resulting abstracted entity becomes the single fact blocks_on_other (N). Similarly, for
the subtask MakeClear (B), the only important information for the completion function is
how many blocks is above A. The reduction of needed values in this @-node is not indepen-
dent of the number of blocks in the domain. However, the number has a linear growth rate.
For instance, using 3 blocks, only 3 values are needed, because a block can only have either
one, two or three blocks above it.

66

5.3. STATE ABSTRACTIONS

The next @-node is QMove (A,B), which represents the final action of an episode. We do not
need to define logical abstraction rules for this node, because all state variables are eliminated
using the Termination and Shielding conditions from Chapter 4. Thus, the completion cost
after performing this action is always zero.

Finally, we have the last @-node QMoveForMakeClear (X,Y,Z). The motivation behind the ab-
straction rules for this node is somewhat similar to the abstractions made for MaxMove (Y,Z):

logabstract (S, makeclear(X), move(Y,Z), NextS) :-
above(S,Y,A), blocksabove(S,X,N),
N1 is N-1, NextS=[blocks_on(N1)], !

logabstract (S, makeclear(X), move(Y,Z), NextS) :-
above(S,Z,A), blocksabove(S,X,N),
N1 is N+1, NextS=[blocks_on(N1)], !

logabstract (S, makeclear(X), move(Y,Z), NextS) :-
not (above(S,Y,X)), not(above(S,Z,X)),
blocksabove(S,X,N), NextS=[blocks_on(N)], !

During the subtask of clearing a block X, the completion cost of moving a block depends on
how many blocks are above X after the move. Thus two questions must be determined:

e Is the block Y being moved above X?

e Is the destination block Z above X7

The first rule covers the first question. In this case, the block Y being moved is above X. As
a result, we can represent the abstracted state as blocks_on(N1) where N1 is the previous
number of blocks above X minus one. The second rule covers the case where the destination
block Z is above X. In this case, the number of blocks above X is increased by one. Finally, if
the stack containing X is not involved in the move action, then the number of blocks above
X remains the same.

The reduction in the number of needed values to represent the completion function for
QMoveForMakeClear (X,Y,Z) is again dependent on the number of blocks in the domain.
Using three blocks, the number of needed values is reduced to two, since only one or two
blocks can be above X without MakeClear (X) being terminated. The number of needed values
for this @-node also has a linear growth rate.

5.3.1 Manual and Semi-Automatic State Abstraction

In the previous section we defined logical state abstractions for the MAXQ value function de-
composition. The question now is how these abstractions relate to the abstractions achieved
by inducing logical decision trees. One might be tempted to think that first applying log-
ical state abstractions manually and then proceeding to induce logical decision trees would
somehow result in even further abstractions. Of course, this is not the case.

The logical abstractions that can be applied manually are indeed exactly the same abstrac-
tions that can be discovered during the induction of V-trees and C-trees. Whether or not they
are actually discovered depends on the available tests defined by the background knowledge

67

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

(see Section 3.3). Finding state abstractions this way can be viewed as semi-automatic. It
requires manual specification of the background knowledge, but the tedious task of searching
for the actual possible abstractions becomes automatic. One advantage of applying logical
decision trees to find state abstractions is therefore simply that it requires less manual spec-
ification. On the other hand, the induction of logical decision trees requires more computer
power. We will compare the two approaches further in Section 5.5.

5.4 The Policy Function

The policy function P introduced in Chapter 3 encodes the optimality of state/action pairs.
It is by definition dependent on the @-function, but was shown to perform better in both
its training domain and other similar domains (see Section 3.5). In this section, we will
investigate how the policy function can be introduced into a relational MAXQ hierarchy. In
general, the P-function cannot be part of the MAXQ value function decomposition because it
does not express anything about observed rewards. Instead, the value function decomposition
can be viewed simply as a representation of a hierarchical Q-function from which P can be
derived. In particular, we will introduce two ways of deriving a P function from a MAXQ
hierarchy. The first approach builds a local P-tree for each non-primitive Max node in the
hierarchy. Each local tree denotes the optimality of executing subtasks of the Max node.
The second approach builds a single global P-tree for the hierarchy. A global P-tree denotes
the optimality of primitive actions and do not reference composite subtasks in the MAXQ
hierarchy.

5.4.1 Local P-Trees

Remember that P takes a state s and an action a as input, and returns 1 if the pair is optimal
and otherwise 0 if the pair is not optimal. P is defined using the @Q-function, and since @ is
defined by V and C in the MAXQ hierarchy, we can formulate the following definition of a
hierarchical P function:

1, if a € argmax, (V(s,a) + C(i, s,a))

0, otherwise (5.4)

P(i,s,a) = {
For instance, if MakeClear (4) is optimal in state s during the execution of subtask Stack (A,B),
then P(Stack(A,B),s,MakeClear(A)) = 1. As in Chapter 3, P is represented by a logi-
cal classification tree called a P-tree. In general, a P-tree can be induced for every non-
primitive Max node in a MAXQ graph. Thus, using the Blocks World MAXQ graph from
Figure 5.2, we can induce one P-tree for the root Max node MaxStack (A,B), and one P-tree
for MaxMakeClear (X). This is illustrated in Figure 5.6.2

Using this approach, the relational MAXQ-Q algorithm must generate separate examples
for each non-primitive Max node. As in Chapter 3, an example must be generated for all
observed states combined with all possible actions. When using the non-incremental TILDE
algorithm, these examples must be generated from scratch after each episode followed by the
induction of a new P-tree. Assuming a local P-tree for each non-primitive Max node, the
learned policy can be executed using the recursive algorithm displayed in Table 5.1.

2Notice that this is identical to inducing a P-tree for each non-primitive subtask in the task hierarchy
illustrated in Figure 5.1.

68

5.4. THE POLICY FUNCTION

Local P-Tree for
P(Stack(A,B),s,a)

MaxStack(A,B)

XIA or
Local P-Tree for X/B

P(MakeClear(X),s,a)

QMakeclear(X)

MaxMakeClear(X)

Y/block and
Z/block

QMoveForMakeClear(X,Y,Z) Y/A and

z/B

MaxMove(Y,Z)

Figure 5.6: The Blocks World MAXQ graph with attached local P-trees for MaxStack(A,B)
and MaxMakeClear (X).

1: function ExecuTEHIERARCHICALLOCALPOLICY(MAXNODE 4, STATE s)
2 If (¢ is a primitive Max node)

3 Execute ¢ and observe resulting state s’

4: Return s’.

5: Else

6 While (T;(s) is false)

7
8

Find the available actions {ao,...,an) in state s

: Let m:=0
9: Let executed := false
10: While (m <= n and ezecuted = false)
11: If (P(%,s,am) = 1)
12: s := ExecuteLocalPolicy(am , s)
13: executed := true ; m :=m+ 1
14: End If
15: End For
16: If (executed = false)
17: s := ExecuteLocalPolicy(ao, s)
18: End If
19: End While
20: Return s

21: End If
22: End Function

Table 5.1: An algorithm for executing a policy represented by the hierarchical local policy
function P.

69

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

The EXECUTEHIERARCHICALLOCALPOLICY algorithm takes a Max node ¢ and a state s as
input. If 7 is a primitive Max node, then the corresponding action is executed directly and the
resulting state is returned. Otherwise, the algorithms first finds the set of available actions
in s. It then cycles through these actions until an optimal action according to P is found.
This action is executed by calling EXECUTEHIERARCHICALLOCALPOLICY recursively, which
returns an updated state. If no actions are classified as optimal according to the P function
(this can happen when P is not fully learned), then the first action ag is chosen.

For examples of local P-trees for the Blocks World hierarchy, see Section 5.5.

5.4.2 Global P-Tree

A local P-tree, for a task ¢ in a MAXQ hierarchy, encodes the optimality of executing both
composite and primitive subtasks of . It is, however, also possible to use the MAXQ hierarchy
to derive a global P-tree over only the primitive actions in the domain. Such a tree is similar
to the P-trees described in Chapter 3 in all ways except how its examples are generated.
Figure 5.7 illustrates the Blocks World MAXQ graph with an attached global P-tree.

Global P-Tree for
P(Stack(A,B),s,Move(Y,Z))

MaxStack(A,B)

XI/A or
X/B

QMakeclear(X)

MaxMakeClear(X)

Y/block and
ZIblock

QMoveForMakeClear(X,Y,Z) Y/A and

z/B

MaxMove(Y,Z)

Figure 5.7: The Blocks World MAXQ graph with an attached global P-tree over all primitive
actions in the domain.

Even though a MAXQ hierarchy, as a whole, can be viewed simply as any other representa-
tion of the @Q-function for a domain, it also offers an opportunity for exploiting its internal
structure. Recall the function EVALUATEMAXNODE defined in Chapter 4. This function
performs a greedy search in the MAXQ hierarchy to find the path (from the root node to
any possible leaf) that yields the highest expected cumulative reward. It returns both this
expected reward as well as the primitive action at the leaf of the path. At the end of an
episode, EVALUATEMAXNODE can be used to find the optimal primitive actions for all ob-
served states to create optimal examples over these pairs. For all other actions, non-optimal
examples are generated. Table 5.2 shows the pseudo-code for the algorithm GENERATEEX-

70

5.5. EXPERIMENTS

AMPLESFORGLOBALP that performs this functionality. After generating the examples, they
are subsequently fed to TILDE to induce a global P-tree for the MAXQ hierarchy.

1: procedure GENERATEEXAMPLESFORGLOBALP (MAXNODE root)
2 for (all observed states s)

3 Find all available primitive actions A, in state s

4: (v, @maz) := EVALUATEM AXNODE(root, s)

5: for (all actions a € Ap)

6 If (@ = @maz) then

7 Create optimal example z = {s,a,1}

8

Else
9: Create non-optimal example =z = {s, a, 0}
10: End If
11: End For

12: End For
13: End Procedure

Table 5.2: An algorithm for generating examples for inducing a global P-tree over a MAXQ
hierarchy.

This construction has a single advantage over regular P-trees learned from a flat represen-
tation of Q. An imposed hierarchy will often shield certain primitive actions from being
executed in certain states. This means that EVALUATEMAXNODE will never return such a
shielded action as optimal in these states. In effect, even during early learning, the agent will
know that these shielded actions are never optimal.

The Blocks World hierarchy does not benefit from this advantage, since no primitive actions
are shielded by the imposed hierarchy in any state. The hierarchy applied to the Taxi domain
in Chapter 4, however, would benefit from it. In particular, the primitive actions Pickup
and Putdown are shielded from execution in many states in the Taxi domain.

5.5 Experiments

To evaluate the various approaches for combining relational and hierarchical reinforcement
learning, we performed a series of experiments. The purpose of these experiments was to
answer the following questions:

e What is the performance gain for MAXQ hierarchical reinforcement learning when
applying hand-coded logical state abstractions?

e How does MAXQ hierarchical reinforcement learning with hand-coded logical state
abstractions perform compared to flat relational reinforcement learning?

e What is the performance of MAXQ hierarchical reinforcement learning using logical
V-trees and C-trees (without hand-coded state abstractions), and to what extend is

this performance improved by introducing local and global P-trees?

e How does the use of logical decision trees in MAXQ hierarchical reinforcement learning
compare to the use of hand-coded logical state abstractions?

71

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

For each approach we measured the mean error per trial as a function of primitive training
steps. As in the previous chapter, we once again computed the mean over 10 runs for each
approach. For hierarchical approaches we defined a GLIE exploration policy using the Boltz-
mann exploration technique with a decreasing temperature. The temperature was initially
set to 1, and was then decreased such that it reached 0 at the expected time convergence. The
expected time of convergence was found by observing a series of test runs for each approach.
All experiments were performed on a Blocks World domain with four blocks.

5.5.1 Hand-Coded Logical State Abstractions

In Chapter 4 we described five conditions that introduce state abstractions to a MAXQ hier-
archy: Leaf Irrelevance, MaxNode Irrelevance, Result Distribution Irrelevance, Termination
and Shielding. As described, these conditions can only be used to eliminate irrelevant state
variables, and not to make logical conclusions over part of the state/action space. Using
these conditions on a state in the Blocks World hierarchy, we can eliminate stacks of blocks
not containing either of the goal-state blocks A or B. We furthermore do not need to represent
any values for the @Q-node QMove(A,B) (see Section 5.3).

In this experiment, we compared the performance of a hierarchy with these non-logical state
abstractions to the performance of a hierarchy with the logical state abstractions described
in Section 5.3. Figure 5.8 shows the results of the experiment, where MAXQ-SA denotes the
hierarchy with non-logical state abstractions and MAXQ-LSA denotes the hierarchy with logical
state abstractions.

80,00

70,00

Mean Error Per Trial
B
o
o
o
T

Primitive Training Steps

Figure 5.8: Comparison of the performance of MAXQ hierarchies when hand-coded logical
and non-logical state abstractions are applied. MAXQ-LSA denotes a hierarchy with logical
state abstractions, while MAX-SA denotes a hierarchy with only non-logical state abstractions

Since less values are needed to represent the hierarchy for MAXQ-LSA compared to MAX-SA, it
reaches optimal behavior much faster. During the experiment, the agent learned 136 values
for MAXQ-SA, while only 11 values were needed for MAXQ-LSA.

72

5.5. EXPERIMENTS

5.5.2 Flat Relational Reinforcement Learning

Having determined the performance of using logical and non-logical abstractions in Blocks
World, it is interesting to compare these results to the performance of flat relational rein-
forcement learning. To achieve this, we let the agent learn both Q-trees and P-trees over the
entire domain. We then compared the mean performance of these logical decision trees to the
data obtained in the previous experiment. Figure 5.9 shows the results of this comparison.
Flat RRL-Q denotes the mean performance of the learned Q-trees, while Flat RRL-P denotes
the mean performance of the learned P-trees.

Mean Error Per Trial

MAXQ-LSA

0 20 40 60 80 100 120 140 160 180
Primitive Training Steps

Figure 5.9: The performance of MAXQ hierarchies with hand-coded logical and non-logical
state abstractions compared to flat reinforcement learning. Flat RRL-Q denotes the perfor-
mance of learned @Q-trees, while Flat RRL-P denotes the performance of learned P-trees.

The first thing to notice is that MAXQ-SA and MAXQ-LSA both have better initial performance.
This is a consequence of the information implicitly encoded in the imposed hierarchy. The
second thing to notice is that MAXQ-LSA reaches optimal behavior faster than both Flat
RRL-Q and Flat RRL-P. This is not surprising since every possible logical state abstraction is
hand-coded into the hierarchy of MAXQ-LSA. The relational approaches must instead search
for these abstractions during learning. Thirdly, MAXQ-SA performs much worse than flat
relational reinforcement learning. This was somewhat unexpected. It is a direct consequence
of the powerful logical state abstractions possible in Blocks World that are unavailable to
MAXQ-SA.

It is much more surprising that flat relational reinforcement learning performs so well com-
pared to using hand-coded state abstractions. The most likely explanation for this behavior
is that values of unobserved states can be predicted when using decision trees. This can result
in reasonable or optimal behavior in unobserved parts of the state space. Using a tabular
representation of the value functions, as done by MAXQ-SA and MAXQ-LSA, unobserved states
are simply assigned a value of zero.

73

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

5.5.3 MAXQ Hierarchy with Logical Decision Trees

Before proceeding to compare the performance of hand-coded logical state abstractions to
the use of logical decision trees in the MAXQ hierarchy, we first investigated the performance
of three possible approaches to the latter. The first approach was to choose actions using the
learned V-trees and C-trees. The second approach was to derive a global P-tree from the
MAXQ hierarchy, while the third approach was to derive local P-trees for all non-primitive
Max nodes. The results of the experiment are shown in Figure 5.10, where C/V, P(Global)
and P(Local) refers to the three approaches respectively.

Mean Error Per Trial
ul
o
o
o
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

P (Global)
30,00 L\ - \THEOR) N

|
10,00 pigealy \ ~ Am—m ST
|

0,00 : T t T f |
0 10 20 30 40 50 60 70
Primitive Training Steps

Figure 5.10: The performance of relational MAXQ hierarchies using logical decision trees. C/V
denotes the performance of learned V-trees and C-trees. P(Local) denotes the performance
of learned local P-trees, and P(Global) denotes the performance of learned global P-trees.

As expected, given the experiments performed in Chapter 3, both local and global P-trees
perform better than using only V-trees and C-trees. Furthermore, P(Local) reaches both
reasonable and optimal behavior slightly faster than P(Global). This happens because the
patterns of optimality are simpler inside subtasks in the MAX(Q hierarchy compared to the
entire domain. For instance, an optimal action during the subtask MakeClear (X) is simply
an action that moves away a block from the stack containing X without moving it onto any
goal-state block. This pattern is easier to learn than the optimal pattern for Stack(A,B),
which includes clearing both A and B and moving A onto B. It is reasonable to expect that
the advantage of using local P-trees becomes even greater as the root task becomes more
complex compared to its subtasks.

The optimal global P-tree learned in this experiment is similar to the optimal P-tree learned
in Chapter 3 (illustrated in Figure 3.6), and has a total of 7 leaves.

The optimal local P-tree learned for the subtask MakeClear(X) is shown in Figure 5.11.
The tree classifies an action as optimal if a block is moved away from the stack containing X,
otherwise false. It is clearly optimal both for a domain with four blocks, but also for a domain
with any number of blocks. The optimal local P-tree for Stack(A,B) turns out to be the
constant 1. This encodes that every possible action in the subtask is optimal. Although this

74

5.6. AUTOMATICALLY CONSTRUCTED HIERARCHIES

root: roottask(stack(A,B)), task(makeclear (X)), action(move(Y,Z))

above(Y,X)

N

) (0)

Figure 5.11: An optimal local P-tree for MakeClear (X) using any number of blocks.

sounds strange, it is a consequence of the applied action precondition function. Stack(A,B)
can only invoke MakeClear (A) if A is not clear (and similarly with B). Furthermore, if both
A and B are clear, then the only available action is Move (A,B). As a result, the subtask can
never execute a non-optimal action.

We can now compare the performance of hand-coded abstractions to the use of logical decision
trees. To compare the approaches, we have plotted MAXQ-SA, MAXQ-LSA and P(Local) from
the previous experiments into the diagram illustrated in Figure 5.12. The lower diagram
shows a close-up view of the upper diagram.

An important thing to remember here is that MAXQ-LSA and MAXQ-SA are hand-coded with
all possible logical and non-logical abstractions respectively. P(Local) must search for these
abstractions during the induction of logical decision trees. Nevertheless, P(Local) performs
much better than MAX-SA. This is again caused by the powerful logical state abstractions
possible in Blocks World that is unavailable to MAX-SA. This statement is supported by
the fact that MAX-LSA stabilizes with optimal behavior almost twice as fast as P(Local).
However, P(Local) actually outperforms MAXQ-LSA until after 22 primitive training steps. It
does not stabilize with optimal behavior before after 55 primitive training steps. This is an
effect of being derived directly from C/V which does not converge before after 65 primitive
training steps.

The reason that P(Local) performs this well compared to MAXQ-LSA can again be credited to
the possibility of value prediction for unobserved states. It can also be credited to the use of
P-trees that, as explained in Chapter 3, outperforms techniques that encode the distance to
the goal. Indeed, a pattern of optimality is often simpler than a pattern describing specific
distances to the goal.

5.6 Automatically Constructed Hierarchies

The conducted experiments show that relational and hierarchical reinforcement learning can
indeed be combined with advantages. By inducing local and global P-trees we obtained
almost as good performance as manually hand-coding logical state abstractions into the
MAXQ hierarchy. Both manual specification and the induction of logical decision trees can
be time consuming, so the trade-off may seem simply to be the allocation of time to the two
tasks.

Although logical state abstractions may be easy to manually locate in hand-coded hierarchies,
such as the ones used in this report, this may not be the case in automatically constructed
hierarchies. By inducing logical decision trees to automatically find the possible state abstrac-
tions, one needs only to construct a good global background knowledge. This background
knowledge can then be used by all subtasks in their search for state abstractions. In essence,

75

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL

REINFORCEMENT LEARNING

MAXQ-SA

=

g

(=}

o)

O 9 9 9 9 9 9o 9 o o
S o ©o © o 9o 9o o 9o 9o
S o g 8 o 8 o o S S
g & © ~ © B I ® &

[ell Jad 10413 uesyy

100 150 200 250 300 350 400

50

Primitive Training Steps

6,00 F----r--—-7----1----1

10,00
8,00
7,00

[eliL Jad 10413 ueay

Primitive Training Steps

Figure 5.12: The performance of relational MAXQ hierarchies using logical decision trees

compared to hand-coding state abstractions directly into a hierarchy.

shows a close-up view of the upper diagram.

The lower diagram

76

5.7. RELATED WORK

the combination of relational and hierarchical reinforcement learning may be very useful for
agents that must automatically discover the hierarchical structures within its domain.

5.7 Related Work

Roncagliolo and Tadepalli (2004) also present a relational extension of hierarchical rein-
forcement learning using the MAXQ value function decomposition. Traditional Q-trees are
piecewise constant in that they map state/action pairs to a constant value. This construc-
tion does not perform well when the complexity of an environment is slightly increased (as
illustrated by the experiments performed in Chapter 3). Instead, Roncagliolo and Tadepalli
propose a learning algorithm that learns a new form of hierarchical Q-tree as illustrated in
Figure 5.3. The rules are on the form q(Task,Subtask,Value). The symbol _ denotes that
any subtask can be inserted.

q(MakeClear(A),_,0) :- clear(A).
q(MakeClear (A) ,MakeClear (B),V) :- on(B,A), q(MakeClear(B),_,V1), V is Vi-1.
q(Stack(A,B) ,MakeClear(B),V) :- clear(d), gq(MakeClear(B),_,V1), V is V1-1.

Table 5.3: Piecewise linear hierarchical @-tree for the root task Stack(4,B).

The illustrated hierarchical @Q-tree is piecewise linear. For instance, the value V of executing
MakeClear (B) during the subtask Stack(A,B) in a state where clear (A) already holds, is
computed as the value V1 of actually executing MakeClear (B) minus one. Minus one denotes
that only one action, namely Move(A,B) remains when both A and B are clear. The work
done by Roncagliolo and Tadepalli only includes preliminary experiments on the induction
of such piecewise linear @-trees.

5.8 Summary

In this chapter we have introduced various approaches for combining relational reinforcement
learning with hierarchical reinforcement learning using the MAXQ value function decompo-
sition. We have shown that logical state abstractions can be applied to a MAXQ hierarchy
either manually or semi-automatically by inducing logical decision trees to approximate the
value and completion functions.

Furthermore, we have introduced two approaches for deriving P-trees from a MAXQ hierar-
chy. One approach derives a local P-tree for each non-primitive Max node in the hierarchy,
while the other derives a single global P-tree for the hierarchy.

A series of experiments showed that the performance of MAXQ hierarchy with logical decision
trees comes very close to the performance of a hierarchy with manually hand-coded state
abstractions. Even flat relational reinforcement learning performed fairly well compared to
a hierarchy with hand-coded state abstractions. Notice that these conclusions are based
solely on the experiments performed on Blocks World with four blocks. Future work should
evaluate these results on other and more complex domains.

7

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONAL
REINFORCEMENT LEARNING

78

Chapter 6

Conclusion

Reinforcement learning denotes the process of teaching an agent optimal behavior in its en-
vironment by reinforcing its actions with rewards and penalties. Unfortunately, traditional
reinforcement learning is inadequate for anything but very small problem domains. In this
work we have re-explored two existing extensions of reinforcement learning, namely rela-
tional reinforcement learning and hierarchical reinforcement learning. We have furthermore
investigated the possibilities of combining these two methods.

6.1 Relational Reinforcement Learning

In Chapter 3, we explored relational reinforcement learning and evaluated the method using
the Blocks World domain. The conclusions of the work can be summarized as follows:

e Relational reinforcement learning exploits the structural constraints in relational do-
mains. In such domains, relational reinforcement learning with proper background
knowledge will reach both reasonable and optimal behavior faster than traditional re-
inforcement learning.

e The induction of P-trees to encode the optimality of actions enhances the performance
of a -tree representation of a policy. Furthermore, a P-tree will often perform well in
other similar domains (i.e. a P-tree has better generalization properties).

6.2 Hierarchical Reinforcement Learning

Similarly, in Chapter 4 we evaluated hierarchical reinforcement learning using the MAXQ
value function decomposition. For this method we can make the following conclusions:

e A procedural hierarchical decomposition of a problem domain introduces the oppor-
tunity for state abstractions because some variables become irrelevant in individual
subtasks.

e The MAXQ value function decomposition introduces further opportunities for state
abstractions because of the separation of value and completion functions.

79

CHAPTER 6. CONCLUSION

e Constraints created by an imposed hierarchy will sometimes prohibit an agent from
reaching optimal behavior. This problem is solved by using pseudo-rewards and non-
hierarchical execution of the learned hierarchical policy.

e A task hierarchy will often guide the agent such that it avoids executing poor actions in
certain states. To some extent, this guidance can help an agent learn in domains with
sparsely distributed rewards. However, less informed hierarchies can make the agent
perform worse compared to flat reinforcement learning.

e Careful consideration must be employed in the construction of the task hierarchy, such
that the hierarchical exploration problem can be avoided.

6.3 Combining Relational and Hierarchical Reinforcement
Learning

In Chapter 5 we introduced the combination of relational and hierarchical reinforcement
learning. The application of inductive logic in the MAXQ value function decomposition was
split into manual specification of state abstractions, and semi-automatic detection of state
abstractions through the induction of logical decision trees. The following conclusions can
be made:

e In appropriate hierarchies, the introduction of logical state abstractions will greatly
increase the rate in which optimal behavior is reached.

e If subtasks in a hierarchy are of limited size, the induction of logical decision trees will
often help discover state abstractions fairly quickly. This is, of course, dependent on
the quality of the existing background knowledge.

e The individual subtasks in a hierarchy will most often be less complex compared to the
root task. As a result, patterns of optimality are more easily found by the induction of
local P-trees.

e The semi-automatic detection of state abstractions, introduced by the induction of
logical decision trees, can most likely be beneficially applied to automatically generated
hierarchies.

6.4 Summary of Contributions

This work both re-explores existing material and introduces new knowledge. The new con-
tributions of knowledge can be summarized as

e The construction and experimental evaluation of a relational MAXQ-Q algorithm.

e Introduction of two methods for deriving local and global P-trees from a MAXQ hier-
archy.

80

6.5. FUTURE WORK

The constructed relational MAXQ-Q algorithm is general and can be applied to any problem
domain. The two methods for deriving P-trees from a MAXQ hierarchy supplement each
other nicely. Local P-trees will most often converge faster than a global P-tree. However, a
global P-tree abstracts away from any reference to the imposed hierarchy and is more directly
executed.

Other minor contributions include the following:

e Formulation of the hierarchical exploration problem.

e Experimental evaluation of the advantages of logical state abstractions in relational
domains.

e The idea that logical decision trees can be used to semi-automatically find state ab-
stractions in automatically generated task hierarchies.

The hierarchical exploration problem and its effects on MAXQ hierarchies were described for
both the Taxi and Blocks World domain. We furthermore evaluated the advantages of using
logical state abstractions in a relational domain such as Blocks World. For such domains,
logical state abstractions are vastly superior to any non-logical state abstractions. Finally,
we introduced the idea that logical decision trees can be used to semi-automatically find state
abstractions in automatically generated task hierarchies.

6.5 Future Work

The evaluation of the combination of relational and hierarchical reinforcement learning in
Chapter 5 is based only on experiments conducted on the relational Blocks World domain
using four blocks. It would be interesting to investigate the application of the method on a
non-relational domain such as the Taxi domain, as well as other realistic (or semi-realistic)
problems.

It seems likely that a task hierarchy can be used to separate relational and non-relational
subtasks such that different learning algorithms can be applied to the hierarchy. For the
Taxi domain, a relational learning algorithm could be applied to all subtasks except the
non-relational subtask Navigate. This subtask could then be solved using a propositional
representation language.

Learning techniques for agents are most often used by the computer game industry to make
games more real and challenging. The problem with reinforcement learning, in this context,
is that it is primary suited for stationary environments. For example, the attempt to learn
a navigation policy for anything but a small stationary domain (such as the Taxi domain)
would require both considerable space and time. Indeed, reinforcement learning seems more
suited for making decisions on a higher level of abstraction. For an action computer game,
reinforcement learning could be used to decide when to attack, hide or apply other strategic
actions. These decisions could be trained by observing the behavior of the opponent player,
thereby customizing the agent’s behavior to challenge individual human players. The actual
low-level execution of a strategic decision could then be distributed to other more fitting
techniques.

Finally, the hierarchies used in this work are a result of a procedural decomposition of the
root task. The hierarchies encode a “subtask of” relationship between tasks. A relational

81

CHAPTER 6. CONCLUSION

setting might create the opportunity for richer hierarchies using different relationships such
as e.g. “more specific than”. For instance, a task in the top of such a hierarchy could supply
a crude solution to a problem. This crude solution could then be refined by tasks lower in
the hierarchy.

82

Appendix A

Summary

Reinforcement Learning is the task of teaching an agent optimal behavior in its environment
by reinforcing good actions with rewards and poor actions with penalties. At any point in
time, the environment is in a specific state, and the agent is given a selection of actions to
choose from. The chosen action moves the environment from its current state to a new state
dictated by a transition probability distribution. Depending on the chosen action, the agent
is rewarded or penalized.

As problems grow larger, representation becomes an increasingly important issue. Many real-
world problems and their solutions (i.e. a control policies) are often impossible to represent
directly in a conventional table-based manner. This has given rise to various approaches to
ease the problem of a large state space. In general, the state space is either reduced by the
use of state abstractions, or the agent is guided on the right path (thus avoiding a possibly
large part of the state space).

In this report we explore two of these approaches, namely relational reinforcement learn-
ing (Dzeroski et al., 2001) and hierarchical reinforcement learning using the MAXQ value
function decomposition (Dietterich, 2000). Relational reinforcement learning exploits the
structural constraints in relational domains by combining reinforcement learning and in-
ductive logic programming. In such domains, relational reinforcement learning with proper
background knowledge will reach both reasonable and optimal behavior faster than tradi-
tional reinforcement learning. Inducing logical decision trees over the optimality of actions
furthermore enables good generalization properties, such that learned policies can be applied
to similar domains.

Hierarchical reinforcement learning imposes a hierarchical decomposition of a domain. This
decomposition has the advantages of creating opportunities for state abstractions and guiding
the agent towards its goal. The MAXQ value function decomposition creates the opportunity
for even further state abstractions. As a result, hierarchical reinforcement learning with
state abstractions outperforms traditional reinforcement learning given a reasonable informed
hierarchy. Careful consideration must, however, be put into the the construction of the
hierarchical decomposition to avoid exploration problems.

Besides the re-exploration of these two existing methods, the major contribution of this work
is to explore the advantages of combining relational reinforcement learning and hierarchi-
cal reinforcement learning. That is, we investigate the possibilities of integrating inductive
logic programming into hierarchical reinforcement learning. Logical state abstractions can be

83

APPENDIX A. SUMMARY

introduced into a hierarchy either manually or semi-automatic by inducing logical decision
trees. The experiments performed in this work shows that the latter requires less specifi-
cation and performs almost as good as the former. The final result is a general learning
algorithm that outperforms both relational reinforcement learning and hierarchical reinforce-
ment learning. The algorithm is only evaluated in the Blocks World domain, and should be
further tested in other more realistic domains.

84

Appendix B

ACE Blocks World Specification

This appendix shows the ACE configuration files used for the various Blocks World exper-
iments throughout the report. We only show the configuration files used for flat relational
reinforcement learning, since the others are almost identical. The only difference is back-
ground knowledge for testing on other actions than the primitive Move (X,Y) action.

B.1 Background Knowledge

eq(E,X,X).

above(E,X,Y) :- on(E,X,Y).

above(E,X,Y) :- on(E,X,Z), above(E,Z,Y).
action_move(E,X,Y) :- action(E,move(X,Y)).
goal_on(E,A,B) :- goal(E,stack(A,B)).

B.2 TILDE-RT Settings for Inducing ()-trees

tilde_version(’3.07%).
load_package(tilde).
load(key) .
predict(gvalue(+ex,-value)).
heuristic(eucl).
euclid(gvalue(E,X), X).
tilde_mode(regression) .
confidence_level(1).
minimal_cases(1).
output_options([prologl).
ftest(1.0).

talking(0).

use_packs (0).
execute(tilde).
execute(quit).

85

APPENDIX B. ACE BLOCKS WORLD SPECIFICATION

root((goal_on(E,A,B) ,action_move(E,C,D))).

typed_language (yes) .
type(clear(ex,block)).
type(on(ex,block,block)).
type(eq(ex,block,block)).
type(above(ex,block,block)) .
type(action_move(ex,block,block)).
type(goal_on(ex,block,block)).

rmode(10: clear (+E,+-X)).

rmode(10: on(+E,+-X,+-Y)).

rmode(10: on(+E,+-X, floor)).

rmode (10: eq(+E,+X,+Y)).

rmode (10: eq(+E,+X,floor)).

rmode(10: above(+E,+-X,+-Y)).
rmode(10: action_move(+E,+-X,+-Y)).
rmode(10: action_move(+E,+-X,floor)).

B.3 TILDE Settings for Inducing P-trees

tilde_version(’3.07%).
load_package(tilde).
load(key) .
predict(pvalue(+ex,-value)).
confidence_level(1).
minimal_cases(1).
output_options([prolog]).
ftest(1.0).

talking(0).

use_packs(0).

root((goal_on(E,A,B) ,action_move(E,C,D))).

typed_language (yes) .
type(on(ex,block,block)).
type(eq(ex,block,block)).
type(above(ex,block,block)) .
type(clear(ex,block)).
type(action_move(ex,block,block)).
type(action_makeclear(ex,block)).
type(goal_on(ex,block,block)).

rmode(10: clear (+E,+X)).
rmode(10: on(+E,+X,+Y)).
rmode(10: on(+E,+X, floor)).
rmode(10: eq(+E,+X,+Y)).

86

B.3. TILDE SETTINGS FOR INDUCING P-TREES

rmode(10:
rmode(10:
rmode(10:
rmode(10:

eq(+E,+X,floor)) .

above (+E,+X,+Y)).
action_move(+E,+X,+Y)).
action_move(+E,+X,floor)).

87

APPENDIX B. ACE BLOCKS WORLD SPECIFICATION

88

Appendix C

Relational MAXQ-Q Learning
Algorithm

This appendix shows pseudo-code for a relational MAXQ-Q learning algorithm. The algo-
rithm is further extended to produce local P-trees. Pseudo-code for producing global P-trees
is illustrated in Table 5.2 in Chapter 5.

C.1 Relational MAXQ-Q

Table C.2 shows the pseudo-code for the relational MAXQ-Q algorithm REL-MAXQ-Q.
The algorithm approximates V', C and C' using logical decision trees

C.2 Learning Local P-trees

To produce local P-trees, the relational MAXQ-Q algorithm must be extended with the
pseudo-code illustrated in Table C.1. The pseudo-code should be executed at the end of each
episode.

1: For (all non-primitive Max nodes %)

2 For (all observed states s in Max node)

3 For (all possible subtasks aj, possible in state s)

4 If (state/action pair (s,ag)) is optimal

5: according to current approximation of Q) Then
6: Generate example = (s, ag,c) where ¢ =1
7 Else

8: Generate example z = (s, ag,c) where ¢ =0

9: End If

10: End For

11: End For

12: Update P! using TILDE to produce P;f+1 using these examples (s, ag,c)
13: End For

Table C.1: Learning local P-trees using a relational MAXQ hierarchy.

89

APPENDIX C. RELATIONAL MAXQ-Q LEARNING ALGORITHM

90

1:
2:
3
4:
5.
6
7
8

9:

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:

33:
34:
35:

36:

37:
38:
39:

function REL-MAXQ-Q(MaxNode i, State s)
Let seq = () be the sequence of states visited while executing ¢
if (¢ is a primitive MaxNode)
Execute i, receive rs = R(s|s,a), and observe result state s’
Generate example « = (s,4,v¢4+1) in Ezamplesy, where
Vigr == (1 — ou(d)) - Vi(4, 8) + e (i) - e
Push s onto the beginning of seq
else
Let count =0
while (T;(s) is false)
Choose an action a according to the current exploration policy mw (i, s)
Let childSeq = REL-MAXQ-Q(a,s) where childSeq is the
sequence of states visited executing action a (in reverse order)
Observe result state s’
Let a* = arg max,/ [Ct(i,s/,a’) + Vt(a/,s/)}
Let N =1

for (each s in childSeq) do
Generate example z = (i, s, a, ¢) in Ezamples where
c=(1— (i) - Ce(i,s',a") + ar(i) - vV external Value(s")
Generate example = (i, s,a,¢) in Ezamples where
E=(1—ai(d) Ci(,s,a’) + ai(@) - vV internal Value(s')
with
external Value(s') = [Ct (3, 8',a*) + Vi(a*, ')], and
internal Value(s') = [Ri(s/) + Ci(i,s',a*) + Vi(a*, s’)]
N:=N+1
end for

Append childSeq onto the front of seq
s:=s
end while
end if
Return seq
end

//main program B

Initialize V' (4, s), C(3, s,a) and C(i, s,a) to trees producing the value 0 for all inputs
Initialize Ezamplesc, Ezampless and Ezamplesy to the empty set

MAXQ-Q(root node 0, starting state sg)

Update V using TILDE-RT to produce V.1 using Ezamplesy,
Update C' using TILDE-RT to produce Cet1 using Ezampless
Update C' using TILDE-RT to produce Ce41 using Ezamples

Table C.2: Relational MAXQ-Q algorithm.

Bibliography

Andersen, C. C. S., Boesen, T. and Pedersen, D. K. (2005). Applying relational reinforce-
ment learning to multi-agent environments. URL = http://www.cs.aau.dk/library/cgi-
bin/detail.cgi?id=1105611153.

Blockeel, H. and Raedt, L. D. (1998). Top-Down Induction of First-Order Logical Decision
Trees, Artificial Intelligence 101(1-2): 285-297.
*citeseer.ist.psu.edu/blockeel98topdown.html

Blockeel, H., Raedt, L. D., Dehaspe, L., Ramon, J., Struyf, J. and Laer, W. V. (2004). The
ACE Data Mining System User’s Manual.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and
Regression Trees., Wadsworth.

Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforcement
learning: An algorithm and performance comparisons, Proc. of the 12th IJCAI, Sidney,
Australia, pp. 726-731.

Dietterich, T. G. (2000). Hierarchical Reinforcement Learning with the MAXQ Value Func-
tion Decomposition, J. Artif. Intell. Res. (JAIR) 13: 227-303.

Driessens, K. and DZeroski, S. (2004). Integrating Guidance into Relational Reinforcement
Learning, Machine Learning 57: 271-304.

Driessens, K. and Ramon, J. (2003). Relational instance based regression for relational rein-
forcement learning, Proceedings of the Twentieth International Conference on Machine
Learning, AAAT Press, pp. 123-130. URL = http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publ _info.pl?id=40845.

Driessens, K., Ramon, J. and Blockeel, H. (2001). Speeding up relational reinforcement
learning through the use of an incremental first order decision tree learner, Lecture
Notes in Computer Science 2167.

*citeseer.ist.psu.edu/driessensOlspeeding.html

Dzeroski, S., Raedt, L. D. and Driessens, K. (2001). Relational Reinforcement Learning,
Machine Learning 43(1/2): 7-52.

Fikes, R. E. and Nilsson, N. J. (1990). Strips: A new approach to the application of theorem
proving to problem solving, in J. Allen, J. Hendler and A. Tate (eds), Readings in
Planning, Kaufmann, San Mateo, CA, pp. 88-97.

91

BIBLIOGRAPHY

Gupta, N. and Nau, D. S. (1991). On the complexity of blocks-world planning., Technical
Report TR 1991-7/4, The Institute for Systems Research.

Gartner, T., Driessens, K. and Ramon, J. (n.d.). Graph kernels and gaussian processes for
relational reinforcement learning.
*citeseer.ist.psu.edu/644898. html

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T. and Boutilier, C. (1998). Hierarchical
solution of markov decision processes using macro-actions., UAIL pp. 220-229.

Jaakkola, T., Jordan, M. I. and Singh, S. P. (1994). Convergence of stochastic iterative
dynamic programming algorithms, in J. D. Cowan, G. Tesauro and J. Alspector (eds),
Advances in Neural Information Processing Systems, Vol. 6, Morgan Kaufmann Pub-
lishers, Inc., pp. 703-710.

*citeseer.ist.psu.edu/article /jaakkola93convergence.html

Parr, R. E. (1998). Hierarchical control and learning for markov decision processes.
*citeseer.ist.psu.edu/parr98hierarchical.html

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

Roncagliolo, S. and Tadepalli, P. (2004). Function Approximation in Hierarchical Relational
Reinforcement Learning, Proceedings of the ICML’04 workshop on Relational Reinforce-
ment Learning.

Rummery, G. A. and Niranjan, M. (1994). On-line g-learning using connectionist sys-
tems, Technical Report CUED/F-INFENG/TR 166, Engineering Department, Cam-
bridge University.

Russell, S. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach, 2nd edition
edn, Prentice-Hall, Englewood Cliffs, NJ.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA. A Bradford Book.
*http://www-anw.cs.umass.edu/ rich/book/the-book.html

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards, PhD thesis, Cambridge Uni-
versity, Cambridge, England.

References containing URLs are valid as of June 16, 2005.

92

