
PrefaeThis thesis douments the work done by Carl Christian Sloth Andersen at Aalborg University,Department of Computer Siene, during the spring semester of 2005.I would like to thank U�e Kjærul� for supervising the projet. I would also like to thankHendrik Blokeel for letting me use the ACE data mining system, as well as Jan Ramon,Tom Croonenborghs and Jan Struyf for taking their time to answer my questions regardingthe system.A summary of the thesis an be found in Appendix A.Aalborg, June 17, 2005

Carl Christian Sloth Andersen
i

ii

Contents
1 Introdution 11.1 Problem Representation . 11.2 Outline of the Report . 21.3 Summary of Results . 22 Reinforement Learning 32.1 Reinforement Learning . 32.1.1 Ordered Poliies . 52.2 Learning the Q-Funtion . 52.3 Problem Domains . 72.3.1 The Taxi Domain . 72.3.2 The Bloks World Domain . 82.4 Saling of Reinforement learning . 92.5 Value Predition . 102.6 Generalizing Poliies to New Environments 112.7 Summary . 123 Relational Reinforement Learning 133.1 First-Order Prediate Logi . 133.2 Relational Domains . 143.3 Logial Representation of Poliies . 163.3.1 Bakground Knowledge . 173.3.2 The Poliy Funtion . 183.4 Learning Logial Poliies . 193.4.1 Indution of Logial Deision Trees . 233.4.2 Finding Test Candidates . 24iii

3.4.3 Example Testing . 253.4.4 Quality Heuristis . 263.5 Experimental Evaluation of Relational Reinforement Learning 263.6 Reent Work . 313.7 Summary . 314 Hierarhial Reinforement Learning 334.1 Task Deomposition . 344.1.1 Semi-Markov Deision Proess . 354.1.2 De�nition of a Subtask . 364.1.3 Hierarhial Poliies . 374.2 Hierarhial Semi-Markov Q-Learning . 384.3 MAXQ Value Funtion Deomposition . 394.3.1 De�nition of the Value Funtion Deomposition 414.3.2 MAXQ Graphs . 424.3.3 Di�erent Kinds of Optimality . 444.3.4 The MAXQ-Q Learning Algorithm . 464.4 State Abstrations . 504.4.1 Irrelevant Variable Elimination . 514.4.2 Funnel Ations . 524.4.3 Strutural Constraints . 534.4.4 Overview of State Abstrations in the Taxi Domain 534.5 Non-Hierarhial Exeution of a Hierarhial Poliy 544.6 Hierarhial Exploration Problem . 554.7 Experimental Evaluation of the MAXQ Method 564.7.1 Performane of MAXQ Learning . 574.7.2 Enoding of Knowledge . 594.8 Related Work . 604.9 Summary . 605 Combining Hierarhial and Relational Reinforement Learning 615.1 MAXQ Hierarhy for Bloks World . 615.1.1 Hierarhial Exploration Problem . 625.2 Value and Completion Trees . 635.3 State Abstrations . 64iv

5.3.1 Manual and Semi-Automati State Abstration 675.4 The Poliy Funtion . 685.4.1 Loal P -Trees . 685.4.2 Global P -Tree . 705.5 Experiments . 715.5.1 Hand-Coded Logial State Abstrations 725.5.2 Flat Relational Reinforement Learning 735.5.3 MAXQ Hierarhy with Logial Deision Trees 745.6 Automatially Construted Hierarhies . 755.7 Related Work . 775.8 Summary . 776 Conlusion 796.1 Relational Reinforement Learning . 796.2 Hierarhial Reinforement Learning . 796.3 Combining Relational and Hierarhial Reinforement Learning 806.4 Summary of Contributions . 806.5 Future Work . 81A Summary 83B ACE Bloks World Spei�ation 85B.1 Bakground Knowledge . 85B.2 TILDE-RT Settings for Induing Q-trees . 85B.3 TILDE Settings for Induing P -trees . 86C Relational MAXQ-Q Learning Algorithm 89C.1 Relational MAXQ-Q . 89C.2 Learning Loal P -trees . 89
v

vi

Chapter 1IntrodutionReinforement Learning is the task of teahing an agent optimal behavior in its environmentby reinforing good ations with rewards and poor ations with penalties. At any point intime, the environment is in a spei� state, and the agent is given a seletion of ations tohoose from. The hosen ation moves the environment from its urrent state to a new stateditated by a transition probability distribution. Depending on the hosen ation, the agentis rewarded or penalized. Sine the hoie of ation alters the environment, it also diretlya�ets all subsequent rewards. The primary harateristis of reinforement learning aretrial-and-error and delayed rewards.Currently, there are three main approahes utilized in solving reinforement learning prob-lems. These are dynami programming, Monte Carlo methods and temporal-di�erene learn-ing. This work fouses on Q-learning (Watkins, 1989) and SARSA (Rummery and Niran-jan, 1994), whih are two temporal-di�erene learning algorithms. It is a well-known fat thatboth algorithms produe optimal ontrol poliies given the restrition of in�nite exploration.1.1 Problem RepresentationAs problems grow larger, representation beomes an inreasingly important issue. Many real-world problems and their solutions (i.e. a ontrol poliies) are often impossible to representdiretly in a onventional table-based manner. This has given rise to various approahes toease the problem of a large state spae. In general, the state spae is either redued by the useof state abstrations, or the agent is guided on the right path (thus avoiding a possibly largepart of the state spae). In this report we explore two of these approahes, namely relationalreinforement learning (Dºeroski, Raedt and Driessens, 2001) and hierarhial reinforementlearning using the MAXQ value funtion deomposition (Dietterih, 2000).The idea behind relational reinforement learning is to ombine traditional Q-learning withindutive logi programming and relational state desriptions. This ombination makesit possible to obtain state abstrations through generalization of the state spae. At thetime of writing, there exists no proofs of onvergene for relational reinforement learning,but the topi has been reeiving an inreasingly amount of attention. There are, how-ever, empirial results (although primarily on toy problems) indiating the feasibility ofthe approah (Dºeroski et al., 2001; Driessens, Ramon and Blokeel, 2001; Driessens andDºeroski, 2004). 1

Hierarhial reinforement learning using the MAXQ value funtion builds upon the prinipleof earlier hierarhial approahes (Hauskreht, Meuleau, Kaelbling, Dean and Boutilier, 1998;Parr, 1998). Besides being able to learn a ontrol poliy for a proedural deomposition ofa primary task, the method also deomposes the representation of the learned ontrol poliy(i.e. the value funtion). The deomposition of the value funtion reates the opportunityfor further state abstrations that would otherwise be impossible. The method omes withtheoretial guarantees of onvergene also proven by Dietterih (2000).Besides the re-exploration of these two existing methods, the major ontribution of this workis to explore the advantages of ombining the methods. That is, we investigate the possibilitiesof integrating indutive logi programming into hierarhial reinforement learning. We doso within the boundaries of the already existing theory for the two methods.1.2 Outline of the ReportThe outline of the report is as follows: Chapter 2 overs the basis of traditional reinfore-ment learning using the Q-learning and SARSA algorithms. The two example domains usedthroughout the report, the Bloks World domain and the Taxi domain, are furthermore in-trodued in this hapter. Chapter 3 explores the method of relational reinforement learningand onludes on the advantages of the method through experiments. In Chapter 4 we de-sribe hierarhial reinforement learning using the MAXQ value funtion deomposition.This method is also evaluated through experiments. Finally, Chapter 5 introdues the possi-bilities of ombining relational and hierarhial reinforement learning. We introdue variousapproahes towards the ombination and onludes on their performane though a series ofexperiments.1.3 Summary of ResultsCombining indutive logi programming with hierarhial reinforement learning reates theopportunity for applying logial state abstrations to a task hierarhy. These abstrationsan be applied manually or an be found semi-automatially through the indution of logialdeision trees. Sine subtasks in a hierarhy are simpler than their anestor tasks, patternsof optimality are more easily found by relational reinforement learning. This results in bothfaster onvergene and smaller spae requirements for the learned ontrol poliy. This is the�rst result of this work.The seond result is the observation that automatially onstruted task hierarhies also needsome means of automatially deteting possible state abstrations. We show that logialdeision trees are indeed a powerful tool for this purpose.
2

Chapter 2Reinforement LearningReinforement Learning is the task of teahing an agent optimal behavior in its environmentby reinforing good ations with rewards and poor ations with penalties. At any point intime, the environment is in a spei� state, and the agent is given a seletion of ationsto hoose from. The hosen ation moves the environment from its urrent state to a newstate ditated by a transition probability distribution. Depending on the hosen ation, theagent is rewarded or penalized. The environment of the agent is most often represented as aMarkov deision proess.In Setion 2.1, we will setup a notation for desribing an environment as a Markov deisionproess. We will furthermore desribe a value and ation-value funtion that assigns a nu-merial value to eah state and state/ation pair in the environment. Given any of these twofuntions, an optimal poliy for a domain an easily be derived. Setion 2.2 desribes howthe ation-value funtion an be learned using Q-learning or SARSA. Following, Setion 2.3introdues two domains ommonly used in reinforement learning: the Taxi domain and theBloks World domain. Using the Bloks World domain, Setion 2.4 and 2.5 disusses limi-tations of reinforement learning, inluding issues regarding saling and value predition ofunobserved state/ation pairs.2.1 Reinforement LearningReinforement learning is teahing an agent optimal behavior in its environment simply byreinforing its ations with rewards and penalties. The general omponents of a reinforementlearning problem are an agent and its environment. The agent interats with the environmentin a sequene of disrete time steps t = {0, 1, 2, 3, . . .}. In eah time step, the agent observesthe state of the environment and hooses an ation to perform. As a result of the hosenation, the state of the environment is updated, and the agent reeives a numerial reward (orpenalty) stating the quality of its hoie of ation. The environment is most often representedas a Markov deision proess:De�nition 1 (MDP). A Markov Deision Proess (MDP) is a proess de�ned by a 5-tuple
〈S, A, T, R, T0〉:

• S: the set of states of the environment. A state s ∈ S is a value assignment to allexisting state variables. 3

CHAPTER 2. REINFORCEMENT LEARNING
• A: the set of ations. A(s) denotes the set of available ations in state s ∈ S.
• P : the transition probability distribution, where p(s′|s, a) is the probability of observingstate s′ ∈ S after performing ation a ∈ A(s) in state s ∈ S.
• R: the reward funtion, where R(s′|s, a) is the real-valued reward given to an agentwhen observing state s′ ∈ S after performing ation a ∈ A(s) in state s ∈ S.
• P0: the initial state probability distribution. P0(s) denotes the probability of startingin state s ∈ S.A solution to an MDP is a poliy π(s, a) that maps eah state s ∈ S to a orrespondingprobability distribution of the possible ations a ∈ A(s). The optimal solution to an MDP,denoted π∗, is a poliy that maximizes the expeted umulative reward given a horizon.There may exist several optimal poliies for an MDP.Given a poliy π, eah state an be assigned a number representing the numerial value ofstarting in that state, and thereafter following poliy π. This is ahieved by the value funtion

V π : S → R, whih an be de�ned as
V π(s0) = E

[

H
∑

i=0

γiR(si, ai)

] (2.1)where H is the number of steps in the horizon, and γ is the disount fator, whih determinesthe weight put on future rewards. A distintion is normally made between episodi andontinuous tasks. An episodi task is restarted every time a terminating state is enountered,while a ontinuous task runs forever. So, for a ontinuous task with a in�nite horizon, H = ∞and 0 ≤ γ < 1. For episodi tasks with a �nite horizon and at least one absorbing reward-freestate, H is known and γ is usually set to 1. An absorbing reward-free state is a state in whihall transitions lead bak to the same state with a reward of zero. These states are a way ofunifying the notation of episodi and ontinuous tasks, sine it theoretially makes episoditasks ontinuous (Sutton and Barto, 1998).The value funtion satis�es the Bellman equation for a �xed poliy:
V π(s) =

∑

s′

P (s′|s, π(a)) [R(s′|s, π(a)) + γV π(s′)] (2.2)whih states that the value of a state s, given a poliy π, is the sum of the immediate rewardof performing the ation π(s) and the disounted value of the following state s′. Sine theremay exist several s′ given the spei� ation, the expeted value is alulated by weighting
R(s′|s, π(a)) and γV π(s′) with the probability of observing eah possible s′. The optimalvalue funtion V ∗ is the value funtion that maximizes the expeted umulative reward forall states in S. The optimal value funtion is the �xed point of the Bellman equation:

V ∗(s) = max
a

∑

s′

P (s′|s, a) [R(s′|s, a) + γV π(s′)] (2.3)Similar to the value funtion, an ation-value funtion Q(s, a) an be de�ned. This funtionalso satis�es the Bellman equation and denotes the value of performing ation a in state s.The optimal Q-funtion, written Q∗(s, a), is the �xed point of the equation:4

2.2. LEARNING THE Q-FUNCTION
Q∗(s, a) =

∑

s′

P (s′|s, a)
[

R(s′|s, a) + γ max
a′

Q∗(s′, a′)
] (2.4)Using the Q-funtion, an optimal ation a in state s is an ation that maximizes Q(s, a):

π∗(s) = argmax
a

Q(s, a) (2.5)This is an important equation, beause it illustrates that if an agent learns the Q-funtion,it does not need to learn neither the reward funtion R or the transition probability distrib-ution P . Algorithms following this priniple are therefore referred to as model-free learningtehniques.2.1.1 Ordered PoliiesFor a given MDP, there exists only one optimal ation-value funtion. However, as mentioned,there might exists several optimal poliies for an MDP. These poliies di�er in the ationshosen, when several ations in a state have the same highest Q value. If two ations havethe same value in state s, i.e. Q(s, a1) = Q(s, a2), then neither of them is preferred over theother. To solve this issue, an anti-symmetri transitive ation relation ω an be de�ned as
ω(a1, a2) is true i� ation a1 is preferred to ation a2 in all statesThis establishes an ation ordering suh that, if ω(a1, a2), then ation a1 is hosen when

Q(s, a1) = Q(s, a2). A poliy following an ordering ω is denoted πω, and is said to beordered. There exists only one optimal ordered poliy πω for any MDP.2.2 Learning the Q-FuntionThe idea behind temporal-di�erene (TD) learning is to ontinuously reate approximationsof V or Q based on earlier approximations until onvergene is ahieved. This is very similarto dynami programming (DP), but where DP needs a perfet model of the environment,TD learning does not, and is therefore a model-free learning tehnique. In pratie, theapproximations are most often reated over a single time step, but an in theory be madeover any number of steps. In fat, Monte-Carlo methods are atually a speial ase of TDlearning, where the approximations are reated over all observed steps.In this report, we will make use of the two very similar TD algorithms Q-learning (Watkins,1989) and SARSA (Rummery and Niranjan, 1994). The objetive of both algorithms is tolearn the Q-funtion by ontinuously making new approximations. The algorithms are shownin Table 2.1 and Table 2.2 respetively.
Q̂ denotes the urrent approximation of the real Q-funtion. The learning fator 0 ≤ αt ≤ 1is a number that indiates how muh weight should be put on new observations. It is oftena funtion of the urrent state and ation at time step t:

αt(st, at) =
1

1 + numberOfVisits(st, at)
(2.6)5

CHAPTER 2. REINFORCEMENT LEARNING
1: For eah s, a initialize the table entry Q̂t(s, a) to zero2: Observe the urrent state st3: while (st is not an absorbing reward-free state) do4: Selet an ation at in state st using exploration poliy πe and exeute it5: Reeive immediate reward r6: Observe the new state st+17: Update the table entry for Q̂t+1(st, at) as follows:8: Q̂t+1(st, at) := (1 − αt)Q̂t(st, at) + αt

[

r + γ maxat+1
Q̂t(st+1, at+1)

]9: st ← st+110: end while Table 2.1: The Q-learning algorithm.

1: For eah s, a initialize the table entry Q̂t(s, a) to zero2: Observe the urrent state st3: Selet an ation a in state st using exploration poliy πe4: while (st is not an absorbing reward-free state) do5: Exeute ation at6: Reeive immediate reward r7: Observe the new state st+18: Selet an ation at+1 in state st+1 using exploration poliy πe9: Update the table entry for Q̂t+1(st, at) as follows:10: Q̂t+1(st, at) := (1− αt)Q̂t(st, at) + αt

[

r + γQ̂t(st+1, at+1)
]11: st := st+112: at := at+113: end while Table 2.2: The SARSA algorithm.

6

2.3. PROBLEM DOMAINSTo enhane readability, the dependeny on the st and at are often omitted in the notation.At eah time step, an exploration poliy πe an be derived from the approximated Q-funtionombined with a exploration tehnique. A widely used tehnique is Boltzmann explorationwhih assigns a probability to eah possible ation in a state based on a so-alled temperaturevariable. Boltzmann exploration is de�ned as
P (ai|s) =

T−Q̂(s,ai)

∑

j T−Q̂(s,aj)
(2.7)where P (ai|s) is the probability of seleting ation ai given state s, and T > 0 is thetemperature stating the weight put on exploration. As T approahes 1, the explorationpoliy beomes more and more random. As T approahes 0, the poliy beomes greedy withrespet to the Q values of the respetive ations.The di�erene between Q-learning and SARSA lies in how the urrent poliy is used. Q-learning is said to be o�-poliy beause it separates the urrent poliy from the update ofthe approximation Q̂. When the approximation of Q is updated, the ation at+1 in thenext time step is predited to be the ation that maximizes the approximated Q-funtion.SARSA instead hooses at+1 using the urrent exploration poliy, and is therefore an on-poliy algorithm1.Both Q-learning and SARSA will onverge to the optimal ation-value funtion if the agentfollows an exploration poliy that performs every ation in every state in�nitely often, andif the sequene of αt values satisfy

lim
T→∞

T
∑

t=1

αt = ∞ and lim
T→∞

T
∑

t=1

α2
t < ∞ (2.8)Furthermore, if a �xed exploration poliy is used to selet ations, SARSA will onverge to theation-value funtion of that poliy (Jaakkola, Jordan and Singh, 1994; Jaakkola et al., 1994).2.3 Problem DomainsThroughout the report we will use two domains: the highly hierarhial Taxi domain, andthe highly relational Bloks World domain. The Taxi domain was used in the introdutionof the hierarhial MAXQ value funtion deomposition by Dietterih (2000), and is a goodexample of the bene�ts of this approah. Similarly, the Bloks World domain was used inthe introdution of relational reinforement learning by Dºeroski et al. (2001) beause of itsrelational qualities. Both domains are episodi.2.3.1 The Taxi DomainThe Taxi domain onsists of a 5-by-5 grid with four speially-designated loations markedas R(red), B(blue), G(green) and Y(yellow). Initially, a taxi is plaed in a randomly hosen1The name SARSA omes from the one-step update tuple (st, at, r, st+1, at+1) 7

CHAPTER 2. REINFORCEMENT LEARNINGsquare. One of the four loations is hosen randomly to ontain a passenger, and another asthe destination. The taxi must go to the loation of the passenger, pik up the passenger, goto the destination, and then put down the passenger in the fewest possible steps. Figure 2.1illustrates the domain.
R G

Y B0

1

2

3

4

0 1 2 3 4Figure 2.1: The Taxi Domain.At eah time step, the taxi an hoose to navigate either north, south, east or west. It analso hoose to pik up or to put down the passenger. If the taxi attempts to navigate througha wall, or if it attempts to pikup or putdown a passenger illegally, it will stay in the samesquare. Eah suh �illegal� ation yields a penalty of −10, while other legal ations yields apenalty of −1. The �nal putdown ation yields a reward of 20.There are 25 squares, 4 destinations and 5 loations of the passenger (also ounting insidethe taxi, whih we will denote T). The size of the state spae is alulated as a funtion ofthe grid size g and the number of speially-designated loations n: size(g, n) = gn(n + 1).We will desribe a state in the Taxi domain as a vetor (x, y, p, d) where x and y denotes theloation of the taxi, p denotes the loation of the passenger, and d denotes the destinationof the passenger. The loation of the taxi is expressed in oordinates, while the loation anddestination of the passenger are expressed using the speially-designated loations.2.3.2 The Bloks World DomainThe Bloks World domain onsists of a number of unique bloks. Eah blok has a name,and an either be on the �oor or on top of another blok. We will write on(a,b) if blok a ison top of blok b. A blok a is lear if no other bloks is on top of it, denoted by lear(a).At eah time step, a single blok an either be moved to the �oor (if not already there), oronto any lear blok. The task in Bloks World is to reah a spei�ed goal state in fewestpossible steps. Figure 2.2 shows an example of an initial state and a goal state. A goal statespei�ation might be partial, meaning that the goal is ahieved if a subset of the bloks areat the orret plae. For instane, on(a,b) is a partial goal-state spei�ation.Assuming a domain with three bloks {a, b, }, the available ations are move(x, y) where
x 6= y, x ∈ {a, b, } , y ∈ {a, b, , floor}. The size of the state spae inreases rapidly as morebloks are added. The size an be alulated as:

size(n) =
n

∑

i=1

i(n − 1)!size(n− 1)

(n − 1)!8

2.4. SCALING OF REINFORCEMENT LEARNING
a

c

b c

a

b(a) Initial State (b) Goal StateFigure 2.2: The Bloks World domain.where n is the number of bloks. Table 2.3 shows the number of states for some small valuesof n.
n 1 2 3 4 5

size(n) 1 3 13 73 501
n 6 7 8 9 10

size(n) 4 051 37 633 394 353 4 596 553 58 941 091Table 2.3: The size of the Bloks World domain, where n is the number of bloks, and size(n)is the number of states.Optimal planning in Bloks World was proven to be NP-hard by (Gupta and Nau, 1991).Furthermore, the domain exhibits so-alled deleted-ondition interations, whih has madeit a popular domain in planning literature. As an example of a deleted-ondition interation,onsider again the initial state in Figure 2.2. Given the task of ahieving on(a,b), wewould �rst need to ahieve two onditions: lear(a) and lear(b). Sine b is alreadylear, we lear a with the ation move(,b). But now b is no longer lear, beause weaidentally deleted one ondition in order to ahieve a seond ondition. The key observationhere is that in the subtask of ahieving lear(a), the ation move(,b) is just as optimalas move(,floor). The presene of deleted-ondition interations makes Bloks World aninteresting domain to investigate when ombined with hierarhial reinforement learning.Furthermore, the omplexity of the domain is easily inreased simply by adding more bloks.2.4 Saling of Reinforement learningAs we saw in the previous setion, the size of the state spae in the Bloks World domainquikly grows as more bloks are added. Another e�et of adding more bloks, is that thenumber of possible ations in almost every possible state also inreases. Together, a largestate spae and many available ations reate two primary onerns: the inreasing spaerequirements of the ation-value funtion, and the inreasing time requirements of performingevery ation in every state su�iently often. Imagine a senario with 10 bloks and a fullyspei�ed goal state. The probability of reahing that partiular goal state with initial randomexploration is very low. Not only is the goal state only 1 state out of 58 941 091 states, theagent must also ontinuously hose ations that takes it loser to the goal state�amongstpossible many ations that will take it further away. The reward funtion may give rewardsfor reahing other states than the goal state, so in general this problem ours when therewards are too sparsely distributed. The tehniques presented in this hapter alone aresimply not able to handle suh problems in any reasonable time. 9

CHAPTER 2. REINFORCEMENT LEARNINGTo illustrate the impat of inreasing the number of bloks, we performed an experimentusing the Q-learning algorithm. The task of the agent was to reah the goal on(a,b) fromany initial state. The agent was trained for an inreasing number of primitive steps, and was,with ertain intervals, evaluated through 5 trials. Eah evaluation resulted in a mean errorper trial, whih is the mean di�erene between the optimal solution and the solution hosenby the agent. The reason that we measured performane as a funtion of primitive trainingsteps, instead of omplete episodes, is that an agent explores more (and thus learns more)during an episode as a domain beomes inreasingly omplex�simply beause it will takeit a higher number of primitive steps to reah the goal. To avoid looping behavior, a trialwas interrupted if the agent used more than the maximum number of steps for any initialstate using the partiular number of bloks�e.g. for 3 bloks, the maximum number of stepsrequired to reah on(a,b) from any state is 4. In that ase, the number of steps used by theagent was set to this maximum number. Figure 2.3 shows the results of the experiment.
3 Blocks

4 Blocks

5 Blocks

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 250 500 750 1000 1250 1500

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 2.3: Performane of traditional Q-learning in Bloks World using 3 to 5 bloks.For 3 bloks, optimal behavior is reahed before 100 primitive training steps. Using 4 bloks,optimal behavior is not reahed before after approximately 1 000 steps, and for 5 bloks,approximately 15 000 training steps was needed before ompletely optimal behavior. Clearly,�nding an optimal poliy using traditional Q-learning will beome infeasible very quikly asthe number of bloks inrease.2.5 Value PreditionIt is unreasonable to expet an agent to explore the entire state spae of a very large domainsu�iently for full onvergene. It is even unreasonable to expet it to visit every stateone given some realisti time onstraint. Nevertheless, we would like to be able to preditthe value of state/ations pairs that the agent has never visited. Unfortunately, the tabularrepresentation of the ation-value funtion disussed so far does not allow value preditionfor unobserved state/ation pairs (at least not diretly).An alternative to a tabular representation is to reate a struture, whih performs indutiveinferene on the omponents of a state/ation pair. For instane, given the goal on(a,b)and a state/ation pair with the ation move(a,b), the sum of all future rewards is going tobe 0, beause the goal will be ahieved in the next time step. If suh rules are learned, then10

2.6. GENERALIZING POLICIES TO NEW ENVIRONMENTSpreditions an be made for all state/ation pairs. Of ourse, the quality of the preditionswill depend on the amount of training, as well as the uniformity of the state/ation spae.The most ommon method for indutive inferene is deision tree learning. Beause theation-value funtion maps state/ation pairs to real-valued numbers, it an be representedas a regression tree, where the nodes are tests on the state and ation, and the leafs are thenumerial values. Figure 2.4 shows a regression tree representing an ation-value funtionfor the goal on(a,b) using 3 bloks. Chapter 3 disusses the indution of regression treesfurther. move(a,b)
b(0)y move(,b)n

on(b,a) y
b(−3)y b(−2)n on(,floor)n

move(b,a) y
b(−2)y move(,a)n

b(−2)y b(−1)n
move(,floor)n

on(b,a)y
b(−2)y b(−1)n move(a,)n

b(−3)y move(b,)n
b(−3)y b(−2)nFigure 2.4: An ation-value funtion for the goal on(a,b) using 3 bloks represented as aregression tree.2.6 Generalizing Poliies to New EnvironmentsPoliies using a tabular or regression tree representation, as disussed in this hapter, arevery spei� to the domain in whih they are learned. For example, if a poliy is learnedin a domain with three bloks and the goal on(a,b), then it is not diretly useable if thegoal is hanged to on(a,) or if another blok is added. In fat, these two issues wereused by Dºeroski et al. (2001) as part of the motivation in their introdution of relationalreinforement learning, whih we will desribe in Chapter 3. While this tehnique ertainlysolves these issues, some progress an be made without adding the same amount of overheadduring learning.The �rst issue regarding a hange of goal state (e.g. from on(a,b) to on(a,)) an be solvedby renaming bloks throughout the poliy representation. Consider the regression tree inFigure 2.4 for the goal on(a,b). If we swith the names of eah b and in all nodes, thenthe tree represents a poliy for the goal on(a,). Although the time omplexity of suha renaming mehanism is linear in the number of nodes in the tree, it an still be a timeonsuming task beause the number of nodes for most domains will be high.Adding another blok to a domain will render a learned tabular representation of Q useless.A regression tree an, however, be used as a reasonable poliy to speed up learning in the new11

CHAPTER 2. REINFORCEMENT LEARNINGdomain. Sine the Q-funtion basially enodes the distane to the goal, whih is obviouslydependent on the number of bloks, the old poliy will of ourse only be somewhat reasonable,and ertainly not optimal. The reusability of a regression tree is enhaned signi�antly inChapter 3.2.7 SummaryThis hapter introdued reinforement learning as a learning tehnique that uses rewards andpenalties to reinfore the ations of an agent. The environment in a reinforement learningproblem is represented as a Markov deision proess, whih, given a spei� ordering ofations, has a unique optimal poliy. A poliy an be derived from the ation-value funtion,whih maps state/ation pairs to their expeted umulative reward for some horizon.The two most ommon temporal-di�erene algorithms for learning the ation-value funtionare the o�-poliy Q-learning and the on-poliy SARSA. The two algorithms di�er only intheir predition of the ation hosen in the next time step, and they both onverge givenin�nite exploration and ertain restritions on the learning fator.The Taxi domain, whih is well suited for hierarhial deomposition, was introdued and willbe the primary example in Chapter 4 for showing the advantages of hierarhial reinforementlearning.The relational domain Bloks World was also introdued, and was used do demonstratethe limitations of traditional reinforement learning when using a tabular representation ofthe ation-value funtion. The problem of prediting unobserved values and generalizing tosimilar domains an be handled, to some extent, by the use of regression trees, but otherlimitations still exist. These inlude learning anything reasonable in very large domains butalso learning more general poliies without the need for renaming objets.

12

Chapter 3Relational Reinforement LearningThe previous hapter introdued reinforement learning, and desribed the di�ulties thatthe tehnique must overome. This hapter desribes Relational Reinforement Learning(RRL), whih was introdued by Dºeroski et al. (2001). The idea behind RRL is to ombinereinforement learning with indutive �rst order prediate logi with variables. In its urrentstate, this ombination takes a step towards generalizing agent poliies to similar domainsusing strutural properties. Furthermore, the use of indutive logi also reates the possibilityof applying state abstrations, whih results in a more ompat poliy representation.Setion 3.1 introdues �rst-order prediate logi as a representation language for relationalreinforement problems. In Setion 3.2, we desribe relational MDPs and give a ompletespei�ation of the Bloks World domain. In RRL, poliies are represented using logialdeision trees. These are desribed in Setion 3.3, while Setion 3.4 explains how they an belearned using modi�ed versions of the Q-learning algorithm. In Setion 3.5, experiments areperformed to illustrate the performane of RRL ompared to reinforement learning using apropositional tabular representation. The results of the experiments also show the extend towhih poliies an be generalized to similar domains. Finally, in Setion 3.6 we disus reentwork in the �eld of relational reinforement learning.3.1 First-Order Prediate LogiLearning in any domain requires the use of an appropriate representation language. Anappropriate language should have enough expressive power to represent a domain and a givenproblem ompletely. In pratie, the language should also allow aeptable performane whilelearning.When we introdued the Taxi domain in Chapter 2, we used a propositional representation todesribe the state spae. This representation is very suitable for the Taxi domain, primarilybeause a grid world is very naturally represented using oordinates.When we introdued Bloks World, however, we desribed a state using �rst-order prediatelogi with prediates suh as on(a,b) and lear(a). Bloks World an easily be representedusing a propositional language and oordinates suh as the Taxi domain, but it would seemsomewhat non-intuitive. This is beause the high-level logial language diretly enapsulatesthe onepts that are important in Bloks World. For instane, the answers to questions suh13

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGas �whih blok is on top of blok a?� and �is blok a lear?� are diretly part of the statedesription.First-order logi allows the use of universal and existential quanti�ations, whih make thespei�ation of appropriate domains muh easier. For instane, to speify the available moveations in a Bloks World state, we an set up a premise using the following rule (in Prolognotation): move(X,Y) :- lear(X), lear(Y), not(X=Y)whih states that the onlusion move(X,Y) holds when any two di�erent bloks X and Y arelear (ignoring the �oor for now). Notie that here, X and Y are variables, and exeuting thequery ?-move(X,Y) (with X and Y un-instantiated), we are in fat asking if there exists anytwo bloks for whih the premise of the rule holds. Given a state where both lear(a) andlear(b) holds, the onlusions move(a,b) and move(b,a) an be automatially inferred.For further information on �rst order prediate logi refer to e.g. Russell and Norvig (2003).3.2 Relational DomainsA relational domain is often desribed as the existing relations between objets. In general,a relational domain an be de�ned as a relational Markov deision proess:De�nition 2 (RMDP). A Relational Markov Deision Proess (RMDP) is a proess de�nedby a 7-tuple 〈O, F, S, A, P, R, P0〉:
• O: the set of objets.
• F : the set of prediate relations over O.
• S: the set of all legal states over O and F .
• A: the set of all possible instantiated ations.
• P, R, P0: Unhanged from De�nition 1.The above de�nition inludes the sets F and A, whih are both exponential in the numberof objets in O. These sets an be represented ompatly by using logi. For Bloks Worldwith three bloks {a, b, }, we have that

O = {a, b, },
F = {on(X,Y), lear(X)|X, Y ∈ O, X 6= Y}, and
A = {move(X,Y)|X, Y ∈ O, X 6= Y}.Notie that the ontents of the sets have not been hanged, and their sizes are still exponentialin the number of objets. It is only their representation that has been minimized.In pratie, as desribed in Chapter 2, we need to know the available ations A(s) in any state

s. We also need to represent the transition probability distribution P ompatly. To ahievethis, the ations available in a state, and the transitions they invoke, an be represented in14

3.2. RELATIONAL DOMAINSa STRIPS like manner (Fikes and Nilsson, 1990). STRIPS is a planning system that useslogial formulas to represent ation preonditions and the transitions invoked by ations.Eah ation has a delete list and an add list, and its transition is performed by deleting allinformation in the delete list from the urrent state, and then adding all information fromthe add list. For Bloks World, we de�ne the ation preonditions as the prediate pre, andthe transition probability distribution using the prediate delta. Table 3.1 illustrates thede�nition used by (Dºeroski et al., 2001).pre(S,move(X,Y)) :-holds(S,[lear(X), lear(Y), not(X=Y), not(on(X,floor)℄)).pre(S,move(X,Y)) :-holds(S,[lear(X), lear(Y), not(X=Y), on(X,floor)℄).pre(S,move(X,floor)) :-holds(S,[lear(X), not(on(X,floor))℄).holds(S,[℄).holds(S,[not X=Y | R℄) :-not X=Y, !, holds(S,R).holds(S,[not A | R℄) :-not member(A,S), holds(S,R).holds(S,[A | R℄) :-member(A,S), holds(S,R).delta(S,move(X,Y),NextS) :-holds(S, [lear(X), lear(Y), not(X=Y), not(on(X,floor))℄),delete([lear(Y),on(X,Z)℄, S, S1),add([lear(Z),on(X,Y)℄, S1, NextS).delta(S, move(X,Y), NextS) :-holds(S, [lear(X), lear(Y), not(X=Y), on(X,floor)℄),delete([lear(Y),on(X,floor)℄, S, S1),add([on(X,Y)℄, S1, NextS).delta(S, move(X,floor), NextS) :-holds(S, [lear(X),not on(X,floor)℄),delete([on(X,Z)℄, S, S1),add([lear(Z),on(X,floor)℄, S1, NextS).Table 3.1: Spei�ation of the transition system and ation preonditions for Bloks WorldThe auxiliary prediate holds takes a state S and a list of relations1. If all relations inthe list holds in the state, then the prediate sueeds, otherwise it fails. The preonditionprediate pre takes as input a state S and an ation move(X,Y). If the ation is allowed inS then pre sueeds, otherwise it fails. Finally, the input to delta is also a state S and anation move(X,Y). The last parameter NextS is the output of the prediate and must be anun-instantiated variable when the prediate is alled. If the ation is legal aording to pre,then NextS will be uni�ed with the result of exeuting the ation (i.e. NextS is instantiatedas a side-e�et).A state s ∈ S, whih we will represent in list notation, is any legal state over O and F . Forinstane, the state1While it is standard to use upper-ase letters for sets and lower-ase letters for set elements, Prolognotation unfortunately requires variables to be upper-ase. 15

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING[lear(a), on(a,b), on(b,), on(,floor)℄is legal beause it represents a senario that is possible to build using three bloks. However,the state [on(a,b),on(b,),on(,a)℄ is not legal, beause no suh senario an be built.For some appliations, it might be neessary to inlude a more formal notion of legal statesin the RMDP de�nition.To omplete the formal spei�ation of Bloks World, the penalty for any ation is set to −1.This will make the agent omplete goals in the fewest possible steps to avoid more penaltiesin future time steps (sine there are no more penalties after reahing the goal state). It willalso make the Q values easier to read (e.g. Q(s, a) = −4 means that performing ation a instate s will result in the goal state being reahed in 4 steps). The probability of being aninitial state is equal for all states.3.3 Logial Representation of PoliiesIn itself, a relational MDP does not solve any of the problems disussed in Chapter 2. Inthis setion, we will de�ne a logial representation of the ation-value funtion alled Q-trees (Dºeroski et al., 2001). We will also show how bakground knowledge an be inorpo-rated into Q-trees, thereby ahieving a higher level of abstration.In Chapter 2, the Q funtion was represented both as a table and as a regression tree to obtainthe possibility of value predition. A problem with both of these representations is that anyhanges to the environment or goal spei�ation requires re-learning from srath. Althoughthe latter an be ahieved by the use of a renaming mehanism (as desribed in Setion 2.6),using variables will result in far more elegant solution. A speial kind of deision tree, whihuses �rst order logi, was formally introdued by Blokeel and Raedt (1998). These treesmake use of variables that makes it possible to avoid diret referenes to objets.De�nition 3 (FOLDT). A �rst order logial deision tree (FOLDT) is a binary deisiontree in whih the following applies:
• The nodes of the tree ontain a onjuntion of prediates.
• Di�erent nodes may share variables, under the following restrition: a variable that isintrodued in a node (whih means that it does not our in higher nodes) must notour in the right branh of that node (i.e. the �no� branh).Eah node in an FOLDT ontains a prediate or a onjuntion of prediates (whih is alsojust a prediate). A prediate may ontain one or more variables that will be instantiatedwith di�erent values as the prediate is applied to various examples. Here, an example issimply the state, ation and goal of a spei� time step. Given a node and an example, a nodeprediate either holds or does not hold. If it does not hold, then the example is sorted downthe right branh (the no branh) and no variables are instantiated. Otherwise, the exampleis sorted down the left branh (the yes branh), and any existing variables are instantiatedto the values that allowed the prediate to hold. Figure 3.1 illustrates an FOLDT wherethe variable C is shared between two nodes. Eah leaf is a numerial value�in this asea (random) Q-value. A logial regression tree representing a Q-funtion is referred to as a

Q-tree.16

3.3. LOGICAL REPRESENTATION OF POLICIESroot: goal(on(A,B))on(A,C)on(C,floor)y
b(−1) y

b(−2)n b(−3)n
Figure 3.1: A FOLDT illustrating variable sharing.The illustrated Q-tree ontains an extra root with the prediate goal(on(A,B)). This extraroot is used for prediates that always hold given the state/ation spae and the goal ofthe agent. The point of the extra root is to instantiate relevant variables. In this ase,the goal is to always have a spei� blok on top of another spei� blok, so the prediategoal(on(A,B)) will always hold (beause the variables A and B an be any bloks). However,in the rest of the tree, A and B will be instantiated to the bloks in the atual goal state.For example, given the goal goal(on(b,)), A will be instantiated to b and B to . Thesame way as the goal is wrapped in a goal prediate, we will also wrap ations in an ationprediate.The restrition of not referring to a variable introdued by a partiular node in its right branhmakes sense when observing Figure 3.1. The prediate on(A,C) in the tree introdues thevariable C. It tests if A is on top of any blok C. If the prediate does not hold, then it makesno sense to referene C again2, sine there is no suh blok (i.e. C will remain un-instantiated).A Q-tree an be enoded using a Prolog rule struture, where eah leaf is enoded by exatlyone rule. The premise of a leaf rule is the prediates enountered on the path from the rootof the Q-tree to the partiular leaf. The prediates that do not hold on the path an safely beignored by using the ut-operator (!). The ut-operator denotes that if the rule in questionholds, then no other rules are onsidered. Table 3.2 shows the rule struture representing the

Q-tree of Figure 3.1.q(-1) :- goal(on(A,B)), on(A,C), on(C,floor), !.q(-2) :- goal(on(A,B)), on(A,C), !.q(-3) :- goal(on(A,B)), !.Table 3.2: Prolog rule struture representing the Q-tree of Figure 3.1.Prediates that do not hold on the path to a spei� leaf are enoded in the ordering of rules.For instane, the rightmost leaf in Figure 3.1 with a value of −3 is represented by the lastrule above. If this rule is onsidered, then none of the rules above have sueeded.3.3.1 Bakground KnowledgeA prediate used inside the node of a Q-tree an be any prediate from the set of prediaterelations F (see De�nition 2). It an also be a prediate present in some spei�ed bakgroundknowledge. In RRL, bakground knowledge is simply prediates whih indue fats and2Tehnially, the name C ould be reused, but semantially it would be a di�erent variable. 17

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGrelations on a higher level of abstration using the prediates present in F . For BloksWorld, an example of a bakground knowledge prediate is the above(X,Y) prediate:above(X,Y) :- on(X,Y).above(X,Y) :- on(X,Z), above(Z,Y).The prediate above(X,Y) holds if either X is on Y, or if X is on some other blok Z, andZ is above Y. The use of bakground knowledge has two e�ets: �rst, the representation ofa Q-tree will most likely be more ompat, and seond, it an make a poliy less spei�for the environment in whih it was learned. While the �rst e�et is obvious, the seond iseasily illustrated with an example. Consider an environment with 4 bloks (a, b, and d)and the goal on(a,b). Before being able to perform the ation move(a,b) whih ompletesthe goal, a and b must �rst be lear. While the agent lears a, it should obviously not movebloks onto the stak in whih b is loated (or vie versa). Doing so would not bring it anyloser to the ultimate goal. Thus, the agent should not perform any ation move(X,Y) if eitherabove(Y,a) or above(Y,b) is true. It turns out that an optimal poliy for ahieving on(A,B)for any A and B with any number of bloks an be spei�ed using the above prediate:optimal(goal(on(A,B)),move(A,B)) :- !.optimal(goal(on(A,B)),move(X,Y)) :- above(X,A), not(above(Y,B)), !.optimal(goal(on(A,B)),move(X,Y)) :- above(X,B), not(above(Y,A)), !.Two other ommon goals of the Bloks World domain is unstak and stak. The goalunstak is ahieved if all bloks are on the �oor, and stak is ahieved if all bloks are inthe same stak. While an optimal poliy for unstak is straightforward to de�ne withoutbakground knowledge, this is not possible for stak if the independene of the number ofbloks is to be maintained. From any given initial state, optimal behavior is to loate thehighest stak and then keep moving bloks onto that stak. The optimal poliies for bothstak and unstak an be spei�ed asoptimal(unstak,move(X,floor)) :- on(X,Y), not(Y=floor).optimal(stak,move(X,Y)) :- height(Y,HY), not(height(Z,HZ), HZ > HY).where height(X,H) is bakground knowledge that instantiates the variable H with a numberindiating the height of blok X. The unstak rule is read as: the ation move(X,floor) isoptimal if X is not already on the �oor. The stak rule is read as: the ation move(X,Y) isoptimal if Y is in a stak of height HY, and no blok Z in a higher stak exists.3.3.2 The Poliy FuntionA major part of the motivation behind RRL is to enable generalization of learned poliiesto other similar domains. As brie�y mentioned in the previous Chapter, the Q-funtion, inpriniple, enodes the distane to the goal after performing a state/ation pair. In BloksWorld, this distane is partly determined by the number of bloks in the domain. In e�et,if a new blok is added, then the distane for many state/ation pairs is hanged with theonsequene of making the old poliy perform worse.To avoid the diret enoding of distane, Dºeroski et al. (2001) introdued the poliy funtion
P , whih enodes the optimality of eah ation a in eah state s:18

3.4. LEARNING LOGICAL POLICIES
P (s, a) =

{

1, if a ∈ π∗(s)
0, otherwise (3.1)In general, the P -funtion an be represented more ompatly than the Q-funtion. Sineboth the Q and P funtion an be de�ned in terms of the optimal poliy π∗, the de�nitionof P an be rewritten in terms of Q:

P (s, a) =

{

1, if a ∈ argmaxa Q(s, a)
0, otherwise (3.2)This de�nition of P means that it is still su�ient to learn the Q funtion, sine P an thenbe diretly derived. The P funtion an be represented as a logial lassi�ation tree denotedas a P -tree. Figure 3.2 shows the optimal P -tree for the goal on(A,B) using three bloks.root: goal(on(A,B)), ation(move(C,D))above(C,A)equal(B,D) y

b(0) y
b(1)n ation(move(A,B))n

b(1) y on(B,D)n
lear(B)y

b(0) y on(A,B)n
b(0) y

b(1)n
b(0)n

Figure 3.2: The optimal P -tree for the goal on(A,B) using three bloks.The illustrated P -tree also shows that su�ient learning is needed to ahieve a truly generalpoliy. Clearly, the left branh of the tree is not optimal if more bloks are added. It statesthat, given the goal on(A,B) and the ation move(C,D), an ation is optimal if C is above Aand D is not equal to B. In other words, it is optimal to move bloks away from A as long asthey are not moved diretly onto B. Obviously, a more general tree should enode that bloksmust not be moved onto B or any blok above B. However, an agent trained using only threebloks would never have enountered a senario where suh a rule was neessary. This meansthat true generality in similar domains (as Bloks World with a varying number of bloks)an only be ahieved if training is done in su�iently omplex instanes of the domains. ForBloks World and the goal on(A,B), the example just disussed suggests that the minimumnumber of bloks needed in training to obtain a general poliy is four.3.4 Learning Logial PoliiesThe Q-learning and SARSA algorithms desribed in Chapter 2 are both online algorithmsmeaning that the agent poliy is updated at eah time step. This is straightforward sine19

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGthey both use a tabular representation for the Q funtion. When hanging the representationto a (logial) deision tree, Q is often not updated before at the end of eah episode makingit o�-line learning (the agent does not learn while being online). This is done to avoid theoverhead of updating the Q-tree at eah time step.A Q-tree is indued by using examples generated over the state/ation pairs enounteredover previous episodes. An example is reated for eah state/ation pair, the goal, and theestimated Q value. As in Chapter 2, this estimation is made by prediting the ation takenin the next time step. Table 3.3 shows four examples from Bloks World.Example 1 Example 2goal(on(a,b)). goal(on(a,b)).ation(move(b,floor)). ation(move(b,a)).on(a,floor). on(a,floor).on(b,). on(b,).on(,floor). on(,floor).lear(a). lear(a).lear(b). lear(b).q(-3). q(-2).Example 3 Example 4goal(on(a,b)). goal(on(a,b)).ation(move(a,b)). ation(move(a,floor)).on(a,floor). on(a,b).on(b,). on(b,).on(,floor). on(,floor).lear(a). lear(a).lear(b). q(0).q(-1). Table 3.3: Bloks World examples.In example 4 in the table, the goal state is already reahed and its Q value is therefore set to
0. By generating suh an example per episode, the generated Q-trees will quikly onvergetowards returning 0 for goal states.The Q-RRL algorithm for learning Q-trees is illustrated in Table 3.4, and it is very similarto the traditional Q-learning algorithm (see Table 2.1). Instead of updating Q̂ during anepisode, examples are generated at the end of eah episode and a new Q-tree is induedusing TILDE-RT (Blokeel and Raedt, 1998) and all the examples observed so far. TheTILDE/TILDE-RT algorithms are desribed in Setion 3.4.1.The Q-RRL algorithm learns the Q-funtion, but we would also like to learn the more generalpoliy funtion P . In Setion 3.3.2 it was desribed how P an be de�ned from Q. Thisde�nition an be diretly used to extend the Q-RRL algorithm to produe P -RRL. The twoalgorithms are idential exept that the pseudo-ode in Table 3.5 is appended to the end of
P -RRL.While the P -funtion is obviously more ompat than the Q-funtion, experiments ondutedby Dºeroski et al. (2001) show that it does in fat also perform better in most ases. Sine
P is derived from Q, this seems strange at �rst. The �rst observation to make is that theoptimality of an ation does not always depend on the distane to the goal. The seondobservation is that using a logial deision tree representation of P (as in P -RRL algorithm),20

3.4. LEARNING LOGICAL POLICIES
1: Initialize Q̂0 to assign 0 to all (s, a) pairs2: Initialize Examples to the empty set3: e := 14: while (e < EpisodeCount) do5: e := e + 16: i := 07: Generate a random state s08: while not(goal(st)) do9: Selet ation at in state st using exploration poliy πe and exeute it10: Reeive immediate reward r11: Observe the new state st+112: i := i + 113: end while14: for (j = i− 1 to 0) do15: Generate example x = (sj , aj , q̂j) where16: q̂j := (1− αe)Q̂e−1(sj+1, a) + αe

[

rj + γ maxa Q̂e(sj+1, a)
]17: if (xold = (sj , aj , q̂old) exists in Examples) then18: Replae xold with x in Examples19: else20: Add x to Examples21: end if22: Update Q̂e using TILDE-RT to produe Q̂e+1 using Examples23: end for24: end while Table 3.4: The Q-RRL algorithm.

1: for (all observed states s) do2: for (all ations ak possible in state s) do3: if (state/ation pair (s, ak)) is optimal aording to Q̂e+1) then4: Generate example (s, ak, c) where c = 15: else6: Generate example (s, ak, c) where c = 07: end if8: end for9: end for10: Update P̂e using TILDE to produe P̂e+1 using these examples (s, ak, c)Table 3.5: Learning P -trees from Q-trees within the P -RRL algorithm.
21

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGit is really only the examples that are derived diretly from the Q-funtion. These examplesontain information about the optimality of ations, but not about the distane to the goal,whih has been abstrated away. The indution of the P -tree is therefore a task of generalizingover the optimality of ations. There are, in priniple, two ways that a P -tree an outperforma Q-tree:
• The examples do not over the entire state/ation spae, however all Q-values are orret:This senario is equivalent to moving the learned poliy to a larger and more omplexdomain. The key observation here is that, using a Q-tree, the optimality of a state/a-tion pair is determined not only by the Q value of the pair, but also by the values of allother available ations in the same state. This means that a single error in the Q valuesof any of these ations an hange what is onsidered the optimal ation. Furthermore,although a Q-tree partitions a limited part of the state/ation spae orretly (intopairs with various distanes to the goal), this might not be so for the entire state/a-tion spae. Un-observed state/ation pairs might even have Q-values outside the sopeof the learned Q-tree. Together, these issues will a�et the performane of a Q-tree forun-observed state/ation pairs. Figure 3.3 illustrates how the inorret Q value of apreviously unobserved ation an shift what is onsidered optimal when using a Q-tree.In this ase, the goal is on(a,b) and we assume that the urrent Q-tree is optimal fora domain with 3 bloks. The ation move(d,) is previously unobserved beause it isintrodued by adding the new blok d to the domain.

a

b

c

c

a

b

d

c
move(c,floor)
q = -3

move(c,floor)
q = -3

d

3 blocks 4 blocks

c

move(d,c)
q = -3

Figure 3.3: Previously unobserved ations an only be assigned Q-values within the limit ofthe urrent approximation of Q. Introduing new bloks will therefore result in ations thatare assigned wrong Q-values.The optimal (and only possible) ation, when using 3 blos in the illustrated state, ismove(,floor). This ation yields a Q value of −3. Adding the new blok d introduesthe ation move(d,), whih is of ourse not optimal sine it is atually a step furtheraway from the goal state. However, the Q-tree would possibly assign this unobservedation the same value as move(,floor) beause of the similarity of the state. Worsethan that, it ould happen that move(d,) is assigned an even lower Q-value beauseof similarity with some other state/ation pair. Notie that when using 3 bloks, themaximal value in an optimal Q-tree for any state/aion pair is −4. However, the real
Q-value of the ation move(d,) in Figure 3.3 is −5. Thus, in some states, the notionof optimality will hange. To whih extend depends on the Q-tree.In the examples used during the indution of a P -tree, an ation is either optimalor not optimal�thus the distane to the goal has been abstrated away. Given thatthe known state/ation spae is su�iently large, a reasonable set of rules, separating22

3.4. LEARNING LOGICAL POLICIESoptimal ations from non-optimal ations, an most likely be found. The performaneof suh rules is only a�eted by wether or not there exists strutural similarities betweenoptimal ations. In the senario illustrated in Figure 3.3, blok d is moved on top ofa stak ontaining a and b (bloks in the goal state). Suh an ation is very unlikelyto be lassi�ed as optimal in a P -tree, simply beause it does not show any struturalsimilarities with real optimal ations in Bloks World.
• The examples over the entire state/ation spae, but some Q-values arewrong:Depending on the tests and pruning heuristis available during indution of a P -tree,ations that are not optimal aording to the examples, but whih are in fat optimal,will be grouped with other optimal ations beause of their strutural similarities (giventhat suh errors are limited). During indution, the tests hosen for the tree willpartition presumably optimal and non-optimal ations in the best possible way. Butat some point, nodes will be reahed where the set of examples annot be partitionedany further using the available tests. Beause of their similarities, true optimal ationstend to end up together in suh leaves.Sine a better general performane an be expeted from using the P -funtion, it is alsofeasible to hange the Boltzmann exploration tehnique to utilize the P -funtion (refer toSetion 2.2):

P (ai|s) =
T−P̂(s,ai)

∑

j T−P̂(s,aj)
(3.3)After the P -funtion has been learned as a P -tree, it an be queried to �nd the optimal ationin any given state. The hanges and extensions made in this setion have only been appliedto the Q-learning algorithm. SARSA an be updated similarly for relational reinforementlearning.3.4.1 Indution of Logial Deision TreesIn this work, the TILDE and TILDE-RT algorithms developed by Blokeel and Raedt (1998)have been used to grow P -trees and Q-trees. The algorithms are now part of the ACE datamining system (Blokeel, Raedt, Dehaspe, Ramon, Struyf and Laer, 2004). TILDE andTILDE-RT di�ers only in that they indue lassi�ation trees and regression trees, respe-tively. As will be explained, this di�erene boils down to the heuristis used to determinethe quality of single tests. Table 3.6 shows the basi pseudo-ode for both algorithms.TILDE and TILDE-RT are very similar to lassial deision tree algorithms suh as ID3and C4.5. The task of omputing the possible tests in a node (line 8) is, however, new andnon-trivial. It is desribed further in Setion 3.4.2. Furthermore, an example satis�es thetest in a node only if it also satis�es the tests in nodes higher in the tree when followingthe yes-branh. This is used when determining the quality of a test (line 9 and 14), and isfurther desribed in Setion 3.4.3 and Setion 3.4.4. Finally, sine the outome of a logialtest is either yes or no, the indued trees are always binary.The TILDE/TILDE-RT algorithms are non-inremental algorithms. This means that allobserved examples must be stored in some database, and a new tree must be indued from23

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING1: funtion IndueTree(Examples E) : Tree2: Create a root node n for the tree t3: Split(n,E,t)4: return t5: end6: proedure Split(Node n, Examples E, Tree t)7: best := false8: for (all possible tests q in node n) do9: Compute quality(q)10: if (quality(q) is better than quality(best)) then11: best := q12: end if13: end for14: if (best yields improvements) then15: test(n) := best16: Create two sub-nodes n⊕, n⊖ of n in t17: E⊕ := {e ∈ E | e satis�es best in t}18: E⊖ := {e ∈ E | e does not satisfy best in t}19: Split(n⊕,E⊕,t)20: split(n⊖,E⊖,t)21: else22: Turn n into a leaf23: end if24: end Table 3.6: The TILDE/TILDE-RT algorithm.srath after eah episode. Every time an example is observed, the database must be searhedfor previous observations of the same example, suh that the estimated value an be updated.For all but small domains, this overhead slows down the learning proess onsiderable. For-tunately, researh has shown that the proess an be made muh faster with the use of aninremental tree learner suh as the TG-Algorithm (Driessens et al., 2001)3. For our purpose,however, TILDE/TILDE-RT will su�e.3.4.2 Finding Test CandidatesThe set of prediate relations in a domain F (see De�nition 2) ontains all the relations thatan be present in a state (e.g. on(a,b)). It is important to note that these prediates do notontain variables (although a ompat spei�ation of them might). In a lassial deisiontree learner, this set of relations would be used as tests, where eah test would only be allowedone in any given subtree.For logial deision trees, we now also have to onsider bakground knowledge and vari-ables. Furthermore, we might not even be interested in allowing tests with onstants suhas on(a,b). As spei�ed in De�nition 3, if a variable is introdued in a node, then it an bereferened by nodes in the yes-branh of the subtree of that node. Together this means thata parameter in a test an either introdue a variable, referene an existing variable or be aonstant. This is alled the mode of the parameter. TILDE/TILDE-RT supports restritionof the mode, so that some tests might only be allowed to have parameters with existing vari-ables and so on. Also, a parameter an be assigned a type, whih means that only variables ofthat type an be used. Mode and type restritions are spei�ed using a so-alled delarative3An implementation of the TG-algorithm is also available in the ACE data mining system.24

3.4. LEARNING LOGICAL POLICIESbias. For the prediates on and lear, the delarative bias (using TILDE notation) mightlook like the following: type(on(blok,blok)).type(lear(blok)).rmode(5: on(+-X,+-Y)).rmode(5: on(+-X, floor)).rmode(5: lear(+-X)).The type prediates state that only variables or onstants of the type blok an be used.The rmode prediate is a little more omplex. A + means that an already introdued variablean be used, and a - means that a new variable an be introdued. If needed, # means thatany observed onstant (in the set of examples) an be inserted. The number 5 denoted insidethe rmode prediates indiates how many times tests reated over this prediate are allowedto our in the tree.Consider the Q-tree illustrated in Figure 3.1 and the �rst node with the test on(A,C). Usingthe delarative bias above, this test was hosen among the test andidates
{on(A,B), on(A,C), on(B,A), on(B,C), on(C,A), on(C,B), on(A,floor),on(B,floor), on(C,floor), lear(A), lear(B), lear(C)}where A and B were introdued by the root and C is a new un-instantiated variable. An un-instantiated variable should be read as �any blok�. For this small example, there are already

12 possible tests in the �rst node in the tree. Sine more and more variables are introdued,there will often be many more tests possible in nodes further down the tree. Fortunately,the possible restrition on the number of times a test an our helps to keep the number ofpossible tests reasonable. This requires areful spei�ation though, as one more test ouldmean the di�erene between a good and a poor tree.3.4.3 Example TestingWhen the set of test andidates are determined for a node, eah andidate must be appliedto the set of examples sorted down to that node. The goal is to �nd the test that yields thebest split (Setion 3.4.4 desribes what is meant by the best split). In lassial deision treelearning, eah andidate is simply applied to eah example, but beause of variable sharing,this does not work for logial deision trees. A variable used in a test might have beenintrodued in a node higher in the tree. This means that the value of that partiular variableis dependent on (possible) all the tests from the root to the given node. Sine variablesare not instantiated in failing tests (see Setion 3.3), only positive tests must be onsidered.Again using the Q-tree of Figure 3.1, the node ontaining on(C,floor) in fat representsthe test goal(on(A,B)), on(A,C), on(C,floor)While proessing this node, TILDE will put any example that makes the test sueed into theset E⊕, and all other examples into E⊖. These sets are then used to determine the qualityof the test. 25

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING3.4.4 Quality HeuristisThe best test in a node is hosen among the possible test andidates by using an appropriatequality heuristi. For lassi�ation trees, TILDE uses a measure of information gain (Quinlan,1993) whih must be maximized. Beause only Boolean tests are onsidered, the entropy ofa set of examples E an be de�ned as
entropy(E) = −p⊕ log2 p⊕ − p⊖ log2 p⊖ (3.4)where p⊕ is the proportion of positive examples in E and p⊖ is the proportion of negativeexamples in E. If p⊕ = 0 then we will de�ne p⊕ log2 p⊕ to be 0 (the same applies to p⊖). Theinformation gained for applying a boolean test T on the set of examples E an be de�ned as

gain(E, T) = entropy(E) − (entropy(E⊕) + entropy(E⊖)) (3.5)where E⊕ ∈ E is the set of examples that satisfy T and E⊖ ∈ E is the set of examples thatdo not satisfy T . The value alulated by gain(E, T) is the expeted redution in entropyaused by knowing the outome of test T .For regression trees, TILDE-RT uses the intra-subset variane quality riterion (Breiman,Friedman, Olshen and Stone, 1984) whih must be minimized. The variane of a set ofexamples E an be de�ned as variane(E) =

|E|
∑

i=0

(ti − tmean)2 (3.6)where ti is the target-value in example i and tmean is the mean of all the target variables in
E:

tmean =

∑|E|
i=0 ti

|E|
(3.7)Using the intra-subset variane, the quality of a test T an be de�ned as the relative im-provement of variane:variane-improvement(E, T) =

variane(E⊕) + variane(E⊖)variane(E)
(3.8)The variane improvement is always a number between 0 and 1 beause the summed varianeof E⊕ and E⊖ is never greater than the variane of E.3.5 Experimental Evaluation of Relational ReinforementLearningIn Chapter 2, the performane of tabular Q-learning was evaluated using experiments. Inthis setion, we will experiment with the performane of relational Q-learning. We will tryto larify the answers to the following questions:26

3.5. EXPERIMENTAL EVALUATION OF RELATIONAL REINFORCEMENTLEARNING
• What is the performane of relational Q-learning ompared to tabular Q-learning?
• How does P -trees perform ompared to Q-trees?
• How do the state abstrations possible in RRL a�et the size of the learned poliies?These questions are di�ult to answer theoretially, sine they depend greatly on the ex-amples observed during training episodes. The experiments were onduted the exat sameway as in Setion 2.4. The data obtained for tabular Q-learning in that setion was reusedfor omparison to data obtained by using Q-trees and P -trees. Settings and bakgroundknowledge used with TILDE/TILDE-RT an be found in Appendix B. The performane wasompared for 3 to 5 bloks. Figure 3.4 shows the results of the experiment. Eah diagramshows a graph for tabular Q-learning, a graph for relational Q-learning using Q-trees, and agraph for relational Q-learning using P -trees. The graphs map the number of primitive stepsduring training to the mean error per trial observed during testing. The mean error per trialis the mean di�erene between the steps used by an optimal poliy, and the steps used bythe evaluated poliy. The mean was taken over 10 trials.The results show that relational Q-learning outperforms its tabular ounterpart in every ase.The only exeption to this rule is for 3 bloks where the tabular representation reahes optimalbehavior before the Q-tree, although not before the P -tree. A notieable observation is thatboth Q-trees and P -trees reah a reasonable performane after very little training omparedto tabular Q-learning. For readability, the diagram for 5 bloks does not show when tabular

Q-learning reahes optimal behavior. This happens after approximately 15000 primitive stepsduring training (refer to Setion 2.4).As expeted, by using P -trees the agent reahes reasonable behavior faster than when onlyusing Q-trees. Optimal behavior is also reahed faster, but only slightly. Of ourse, for a
P -tree to perform optimally, it requires an almost optimal Q-tree suh that the notion ofoptimality is not biased in the wrong diretion. Otherwise, a P -tree would not be able to�nd a good pattern of optimality.To determine if P -trees also perform better in more omplex domains, we used the optimaltrees from the previous experiment and applied them to domains with an inreasing numberof bloks. For eah domain, 50 trial states were randomly hosen, whereafter the error pertrial were reorded. Figure 3.5 shows the results of this experiment. The graph shows themean error per trial as a funtion of the number of bloks in the domain.The optimal P -tree learned in a 3 bloks domain performs reasonably well in more omplexdomains, and muh better than the orresponding Q-tree. It does not perform optimalbeause a 3 blok training domain is not omplex enough. The Q-tree learned in a domainwith 4 bloks performs slightly better than the one learned using 3 bloks. However, the P -tree learned for 4 bloks is optimal for any number of bloks. As suggested in Setion 3.3.2,this makes sense sine Bloks World with the goal on(A,B), on an abstrat level, does notbeome any more omplex when using more than 4 bloks. The optimal poliy remains tolear both bloks in the goal state without ever moving bloks onto staks ontaining theother, and then moving A onto B. The optimal P -tree learned in the experiment is illustratedin Figure 3.6, and it learly follows this priniple.The optimal P -tree for the goal on(A,B) lassi�es the �nal ation move(A,B) as optimal.Furthermore, if a blok is moved to the �oor, then it must have been above one of the bloksin the goal state for the ation to be optimal. In other words, it is optimal to lear the twobloks in the goal state. Finally, if neither of these two statements hold, then the following27

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING
3 Bloks

Tabular Q

P-Tree

Q-Tree

0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

0 10 20 30 40 50 60 70 80 90 100

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

4 Bloks
Tabular Q

P-Tree

Q-Tree

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0 100 200 300 400 500 600 700 800 900 1000

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

5 Bloks
Tabular Q

P-Tree

Q-Tree

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 3.4: Performane of traditional Q-learning ompared to relational Q-learning and P -learning in Bloks World using 3 to 5 bloks. The graphs map the number of primitive stepsduring training to the mean error per trial observed over 10 trials.28

3.5. EXPERIMENTAL EVALUATION OF RELATIONAL REINFORCEMENTLEARNING
3 Bloks

Q-Tree

P-Tree

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Blocks

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

4 Bloks
Q-Tree

P-Tree

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13 14 15

Number of Blocks

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 3.5: Performane of Q-trees and P -trees learned for 3 and 4 bloks when applied todomains with more bloks. root: goal(on(A,B)), ation(move(C,D))ation(move(A,B))
b(1) y eq(D,floor)n

above(C,A) y
b(1) y above(C,B)n

b(1) y
b(0)n

above(A,B)n
on(A,B)y

b(0) y on(D,floor)n
b(1) y

b(0)nFigure 3.6: The optimal P -tree for any number of bloks learned using 4 bloks. 29

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGBloks Tabular Q Q-Tree P -Tree
3 25 14 5
4 209 56 7
5 1887 169 9

Tabular Q

Q-Tree

P-Tree
0

500

1000

1500

2000

3 4 5
Number of Blocks

P
o

lic
y

S
iz

e

Table 3.7: The size of poliies when using tabular and relational Q-learning.must hold for an ation to optimal: A must be above B but not diretly on it, and the blokA is being moved onto must be on the �oor. This is spei�ed in the right part of the tree,and seems strange at �rst, but is in fat a side-e�et of having learned using only 4 bloks.During learing of the two bloks in the goal state, there an be at most one lear blok onthe �oor that is not part of the goal state. Any blok not moved to the �oor must be movedonto this irrelevant blok. In a more general setting, a blok an be moved onto any blokthat is not above a blok in the goal state.The experiments have now answered two of the questions stated in the beginning of thesetion. Relational Q-learning performs better than tabular Q-learning, both by reahing areasonable behavior very quikly, but also by reahing optimal behavior with less trainingneeded. Q-trees will perform optimal in the domain in whih they were trained, but donot generalize well when more bloks are added. A P -tree derived from an optimal Q-treewill also perform optimally in the training domain. However, given a training domain withenough bloks, a P -tree will also perform optimally in domains with any number of bloks.During the experiments, poliies for domains with 3, 4 and 5 were learned both for relationaland tabular reinforement learning. The use of logi and bakground knowledge in RRLautomatially enables abstrations over the state/ation spae of a domain. It is thereforeinteresting to investigate to whih extent these abstrations a�et the spae used by thelearned poliies. The size of a tabular poliy is simply the number of ells in the table, whilethe size of a tree-based poliy an be de�ned as the number of leaves. The latter makes sensebeause using the Prolog-based rule notation, there will be exatly one rule for eah leaf.Table 3.7 shows the size used by the learned poliies.The numbers presented in the table should not be read as the only possible sizes of the poli-ies. They are the sizes of the optimal poliies observed during the performed experiments.Depending on the available tests and bakground knowledge, the size of the poliies may varyto eah side. The numbers are, however, a good indiation of the abstration possibilities ofRRL. The graphs, also illustrated in Table 3.7, pitures the exponential growth when usinga tabular representation ompared to logial deision trees.30

3.6. RECENT WORK3.6 Reent WorkAs mentioned, the researh applied to relational reinforement learning sine its introdutionhas moved it past learning algorithms suh as TILDE/TILDE-RT. The inremental TG-algorithm (Driessens et al., 2001) was the �rst obvious step as it ombines TILDE with theinremental G-algorithm (Chapman and Kaelbling, 1991).Following, two other regression algorithms has been developed. The �rst is an instane basedalgorithm named RIB (Driessens and Ramon, 2003). It omputes a weighted average of the
Q values of examples where the weight is inversely proportional to the distane betweenthe examples. The seond algorithm is alled KBR (Gärtner, Driessens and Ramon, n.d.)and uses Gaussian proesses as the regression tehnique. Beause Gaussian proesses are aBayesian tehnique, the KBR algorithm o�ers both basi predition of the Q value, but alsoindiation of the expeted auray of the predition. This indiation an be used by the
Q-learning algorithm to guide exploration.Relational reinforement learning has only been sparsely tested in more realisti domains.One suh test was onduted on a simpli�ed version of the multi-agent board gameRisk (Andersen, Boesen and Pedersen, 2005). The results of that work indiates that rea-sonable poliies an be learned even in semi-omplex multi-agent environments.Furthermore, the integration of guidane into relational reinforement learning has been dis-ussed by Driessens and Dºeroski (2004). Their work evaluates the advantages of supplyingan agent with optimal and reasonable examples during training. The advantages are evalu-ated using both the TG and RIB algorithms.3.7 SummaryThis hapter introdued relational reinforement learning, whih ombines traditional re-inforement learning with indutive logi. The environment is represented as a relationalMarkov deision proess that an be ompatly represented using �rst order prediate logiwith variables. Poliies learned are represented as logial deision trees. Trees that mapexamples to Q-values are denoted Q-trees, and trees that enode the optimality of examplesare denoted P -trees.
Q-trees are learned using a modi�ed version of the Q-learning algorithm from Chapter 2.Instead of updating the Q-funtion ontinuously during an episode, the algorithm insteadgenerates examples. At the end of an episode, these examples are used to indue a Q-tree.This makes relational Q-learning an o�-line learning tehnique.While Q-trees an be trained to produe optimal behavior, they do not generalize well todomains similar to the training domain. For Bloks World, this means adding more bloksto the domain. This is beause the Q-funtion in priniple enodes the distane to the goal,and this distane may hange when the domain is hanged. Instead, the relational Q-learningalgorithm an be extended to also learn P -trees. P -trees are indued over examples denotingthe optimality of ations, whih means that a strutural pattern of optimality is found. Forthis reason, P -trees will perform better in other similar domains, and in some ases evenprodue general optimal behavior. Experiments performed supported this statement.More experiments were onduted to ompare the performane of tabular and relational Q-learning. As expeted, relational Q-learning produes both reasonable and optimal behavior31

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGusing less training than tabular Q-learning. Furthermore, P -trees also outperform Q-treesin the domain in whih they were learned, although only to a minor extend. Finally, thesize of poliies learned in a relational setting were muh smaller than when using a tabularrepresentation. This is beause of the very notieable abstrations, whih the use of logiand bakground knowledge introdue when induing Q-trees and P -trees.

32

Chapter 4Hierarhial ReinforementLearningThe previous hapter presented relational reinforement learning as a tehnique for ahievingstate abstrations and generalizing poliies to similar domains. It was shown that for rela-tional domains, the learning rate of an agent an be signi�antly improved. The suess ofrelational reinforement learning depends, however, on the existene of strutural similaritiesthroughout the state/ation spae of a domain. It is easy to �nd a domain for whih this isnot the ase. Consider the task of navigating through a maze. The reason that esaping amaze an be di�ult is that seemingly similar senarios requires di�erent ations. For exam-ple, the optimal ation when being in a orner with two paths leading east and west dependson the entire maze. The optimal ation for another similar orner might be very di�erent.Applying relational reinforement learning to suh a domain will only add the overhead ofinduing logial deision trees at the end of an episode.Unlike relational reinforement learning, Hierarhial Reinforement Learning (HRL) is notabout generalizing poliies to similar environments. Instead, the idea of HRL is to deom-pose the primary task of an agent into a hierarhy of subtasks. The bene�ts of suh adeomposition an be summarized as
• ahieving a better initial performane, and
• ahieving state abstrations by eliminating irrelevant information and using �funnel�ations.A task hierarhy restrits the ations of an agent at any time step. To some degree, thisguides the agent towards its goal resulting in a better initial performane. As we will see,this kind of guidane an have the side-e�et of slowing down exploration of some parts ofthe state spae onsiderably. State abstrations are ahieved by identifying relevant andirrelevant information for eah individual subtask in the hierarhy. Furthermore, some tasksmight move the environment from some large number of states to a small number of resultingstates. Suh tasks are denoted �funnel� ations.Currently, the most popular method for hierarhial reinforement learning seems to be theMAXQ value funtion deomposition (Dietterih, 2000). This method stands out beause it33

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGdoes not only provide a framework for proedural deomposition of a given task. It also pro-vides a framework for deomposition of the value funtion, whih leads to new opportunitiesfor state abstration.Setion 4.1 desribes the motivation for hierarhial deomposition of a task and introduesthe semi-Markov deision proess that allows temporally extended ations. An intuitiveapproah to hierarhial reinforement learning alled hierarhial semi-Markov Q-learningis explained in Setion 4.2. Following, Setion 4.3 desribes the MAXQ deomposition of thevalue funtion and explains how the deomposed value funtion an be learned. The mostimportant part of hierarhial reinforement learning, namely state abstrations, is desribedin Setion 4.4, while the possibility of non-hierarhial exeution follows in Setion 4.5. Aproblem with some task hierarhies is the inability of exploring all states su�iently often.This problem is desribed in Setion 4.6. An overview of experiments performed to illustratethe performane of the MAXQ method is presented in Setion 4.7. Setion 4.8 desribesother approahes to hierarhial reinforement learning.4.1 Task DeompositionThe Taxi domain introdued in Setion 2.3 is well suited for hierarhial deomposition.In eah episode, the taxi must navigate to the passengers loation, pik up the passenger,navigate to the destination and put down the passenger. Deomposing this task displays theneed for
• temporal abstration,
• state abstration, and
• subtask sharing.Temporal abstration overs that some tasks may be temporally extended, whih meansthat they an take a di�erent number of time steps to omplete. For instane, the task ofnavigating to a spei� loation in the Taxi-grid an be viewed as a temporally extendedtask. Using temporal abstration, the top-level of a hierarhial deomposition an often beexpressed very simple.State Abstrations an be ahieved by eliminating irrelevant state variables inside a subtask.For instane, while the taxi is getting a passenger, the destination of the passenger is irrel-evant, and when navigating to a spei� destination, the only relevant information is thedestination and the position of the taxi.The taxi needs to navigate both to the passenger's loation and to the passenger's destination.Thus, if the subtask of navigating is learned one, then this solution an be shared by bothtasks. This illustrates the need for subtask sharing.The set of individual subtasks in the Taxi domain an be de�ned as
• Navigate(t): move the taxi from its urrent position to one of the four target loations.The target loation is indiated by the formal parameter t.
• Get: move the taxi to the passengers loation and pik up the passenger.34

4.1. TASK DECOMPOSITION
• Put: move the taxi to the destination and put down the passenger.
• Root: the whole taxi task.Eah subtask is de�ned by its own subgoal and terminates when this subgoal is reahed. Asubtask is also de�ned by the possible ations (whih might be other non-primitive subtasks)that it an perform. Suh a de�nition is best illustrated with a task graph as shown inFigure 4.11.

Root

Get Put

Navigate(t)pickup putdown

north south east west

t/source t/destination

Figure 4.1: A task hierarhy for the Taxi domain.The Root task of ompleting one episode is deomposed into the two subtasks Get andPut. Get is further deomposed into Navigate(t) and the primitive ation pikup. Put isdeomposed into Navigate(t) and the primitive ation putdown. Finally, Navigate(t) isdeomposed into the four primitive ations north, south, east and west. The exeutionof subtasks is similar to alling proedures in a programming language. When a subtask isinvoked, ontrol is simply shifted to its poliy. The olletion of individual poliies is denoteda hierarhial poliy.4.1.1 Semi-Markov Deision ProessA traditional MDP annot express temporal extended ations. In partiular, eah primitiveation in an MDP takes exatly 1 time step to perform. When imposing a task hierarhy,subtasks might over several time steps. A Semi-Markov Deision Proess (SMDP) is an MDPin whih ations an take a variable amount of time steps to omplete. This hange a�etsthe transition probability distribution, as well as the de�nition of the value and ation-valuefuntions. Let the random variable N denote the number of time steps it takes to ompletea partiular ation. The transition probability distribution an then be extended to a jointdistribution over the resulting state and N , where P (s′, N |s, a) denotes the probability ofobserving state s′ after N steps when performing ation a in state s. A similar hange anbe made to the reward funtion where R(s′, N |s, a) denotes the reward reeived when s′ isobserved in N steps after performing ation a in state s. The value funtion for a poliy πan now be de�ned as the Bellman equation
V π(s) =

∑

s′,N

P (s′, N |s, π(s))
[

R(s′, N |s, π(s)) + γNV π(s′)
] (4.1)1The task deomposition of the Taxi domain used throughout this hapter is the one de�ned by Dietterih(2000). 35

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGNote that the disount fator (applied to the value of the resulting state s′) is raised tothe power of N . This disounts ations that take more than one time step to ompleteappropriately. The Bellman equation denoting the ation-value funtion is de�ned in a similarfashion:
Qπ(s, a) =

∑

s′,N

P (s′, N |s, a)
[

R(s′, N |s, a) + γNQπ(s′, π(s′))
] (4.2)Both V π(s) and Qπ(s, a) an be rewritten as the sum of the expeted reward for performingation π(s) and the expeted value of the resulting state s′:

V π(s) = R̄(s, π(s)) +
∑

s′,N

P (s′, N |s, π(s))γNV π(s′) (4.3)
Qπ(s, a) = R̄(s, a) +

∑

s′,N

P (s′, N |s, a)γNQπ(s′, π(s′)) (4.4)where R̄(s, a) is the expeted reward with respet to s′ and N for performing ation a instate s.For episodi tasks with γ = 1, an SMDP is equivalent to an MDP. In this ase, futurerewards are not disounted, whih makes the number of steps used by an ation irrelevant.Furthermore, for primitive ations where N = 1, we will suppress N in the notation whendenoting the transition probability distribution and the reward funtion.4.1.2 De�nition of a SubtaskIn general, an MDP M an be deomposed into a set of subtasks {M0, . . . , Mn} with theonvention that M0 is the root-task. For instane, in Figure 4.1, M0 is Root, M1 is Get andso on. Solving M0 is equivalent to solving the original MDP M . To avoid luttering thenotation, we will sometimes denote a subtask Mi simply as i.A subtask is de�ned by its own subtasks and a termination prediate. The terminationprediate partitions the state spae into a set of ative states and a set of terminal states.Furthermore, eah terminal state is assigned a numerial value indiating how desirable it isto terminate exeution in that state.De�nition 4. An unparameterized subtask Mi is a 3-tuple 〈Ti, Ai, R̃i〉 de�ned as:
• Ti(s): the termination prediate over the set of states S. The prediate partitions Sinto a set of ative states Si, and a set of terminal states, whih we will denote Ti(without parameters). Subtask Mi an only be exeuted if the urrent state s is in Si.
• Ai: the set of ations available in subtask i. Ai(s) denotes the ations available in state

s.
• R̃i(s

′|s, a): the pseudo-reward funtion, whih spei�es a pseudo-reward for eah tran-sition from a state s ∈ Si to a state s′ ∈ Ti.36

4.1. TASK DECOMPOSITIONEah primitive ation a from a subtask M is a primitive subtask in the deomposition suhthat a is always exeutable, it always terminates immediately after exeution, and its pseudo-reward funtion is uniformly zero.If a subtask has formal parameters, then eah possible binding of atual values spei�es adistint subtask (i.e. the atual values are part of the name of the subtask). In pratie, ofourse, parameterized subtasks are implemented by extending the de�nition of the termina-tion prediate and reward funtion to also enompass the atual parameter values.The need to speify pseudo-rewards is dependent on the real reward funtion. If rewardsare only given to the agent when the �nal goal state is reahed, then some intermediatesubtasks might never reeive any feedbak. As an example, onsider that our taxi onlyreeived a reward for putting down the passenger at the end of an episode. This rewardwould propagate up to the Root task, but not down to the Get subtask. On the other hand,if rewards or penalties are given for all primitive ations, then the spei�ation of pseudo-rewards is not neessary. Pseudo-rewards an, however, be used to speed up learning orhange the optimal behavior in a subtask. This is further explained in Setion 4.3.4.1.3 Hierarhial PoliiesThe olletion of individual subtask poliies for a hierarhy is denoted a hierarhial poliy.A hierarhial poliy π is thus de�ned as
π = {π0, . . . , πn} (4.5)where n is the number of subtasks in the hierarhy. As in the previous hapters, a poliytakes a state and returns an ation. If a subtask ontains parameters, then its poliy mustalso take these parameters as input. In suh ase, the de�nition of a poliy is π(s, f) where

f is the bindings of atual parameters. A hierarhial poliy an be exeuted using a stakthat initially ontains the root task. At eah time step, the task at the top of the stakis examined. If it is a primitive subtask, then it is exeuted. If it is a omposite subtask,then the task denoted by the omposite subtask's poliy is pushed onto the stak. If thisis a primitive ation, then it is exeuted, and so on. Table 4.1 shows the pseudo-ode forexeuting a hierarhial poliy.After the exeution of a primitive subtask, the algorithm heks if any tasks on the stakhave reahed a terminal state (lines 18-22). If a task M ′ has terminated, then it is poppedo� the stak together with all tasks above M ′ on the stak. As an example, onsider a Taxidomain where the passenger an anel a ride while navigating to the destination. If thishappens, then the Root task has entered a terminal state. All subtasks invoked by Root orits desendants must therefore also terminate, whih is why they are popped o� the stak.At any time step t, the hoie of the next primitive ation to be exeuted is a�eted bythe urrent ontents on the stak. This means that a hierarhial poliy is non-Markovianwith respet to the original MDP. Sine ations are hosen with respet to both the urrentstate s and the ontents on the stak K, Dietterih (2000) de�nes a hierarhial value fun-tion V π(〈s, K〉). This value funtion gives the expeted umulative reward of following thehierarhial poliy π starting in state s with stak ontents K.To avoid the extra spae requirements (and the onsequene of inreased learning di�ulty),Dietterih also de�nes a so-alled projeted value funtion of a hierarhial poliy. 37

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING1: proedure ExeuteHierarhialPoliy(π)2: st is the state of the world at time t.3: Kt is the state of the exeution stak at time t.4: Let t = 0; Kt = the empty stak; observe st.5: Push (0, nil) onto stak Kt(invoke the root task with no parameters).6: repeat7: while (top(Kt) is not a primitive ation)8: Let (i, fi) := top(Kt), where9: i is the name of the �urrent� subroutine, and10: fi gives the parameter bindings for i.11: Let (a, fa) := π(s, fi), where12: a is the ation, and13: fa gives the parameter bindings hosen by poliy πi.14: Push (a, fa) onto the stak Kt.15: end while16: Let (a, nil) := pop(Kt) be the primitive ation on the top of the stak.17: Exeute primitive ation a, observe st+1, and reeive R(st+1|st, a).18: if (any subtask on Kt is terminated in (st+1)) then19: Let M ′ be the terminated subtask losest to the root on the stak.20: while (top(Kt) 6= M ′) do pop(Kt)21: pop(Kt).22: end if23: Kt+1 := kt is the resulting exeution stak.24: until Kt+1 is empty25: endTable 4.1: Pseudo-ode for exeution of a hierarhial poliy.De�nition 5. The projeted value funtion of a hierarhial poliy πi on subtask Mi, denoted
V π(i, s), is the expeted umulative reward of exeuting πi (and the poliies of all desendantsof Mi) starting in state s with an empty stak until Mi terminates.The projeted value funtion for a task disregards ontent pushed onto the stak by any ofits anestors. The value V π(i, s) an be thought of as the value of state s when followingpoliy π given that exeution stops when subtask i terminates.We an also de�ne the projeted ation-value funtion as Qπ(i, s, a) where i is the urrenttask, s is the urrent state and a is the subtask to be exeuted. Similarly, the value Qπ(i, s, a)an be thought of as the value of performing ation a in state s and then following poliy
π until subtask i terminates. We will formalize both the projeted value funtion and theprojeted ation-value funtion in Setion 4.3.4.2 Hierarhial Semi-Markov Q-LearningA primary onept in the MAXQmethod is the deomposition of the projeted value funtion.In this setion, however, we will look at a straight-forward way of solving a task hierarhywithout deomposing the value funtion. This approah is alled Hierarhial Semi-Markov
Q-learning (HSMQ). We will do this to be able to illustrate the di�erenes between thisapproah and MAXQ. Furthermore, the use of HSMQ follows more intuitively from �at (andrelational) reinforement learning.38

4.3. MAXQ VALUE FUNCTION DECOMPOSITIONIn priniple, there are two ways to solve a task hierarhy. The �rst way is to start by learningoptimal poliies for the subtasks at the bottom of the hierarhy. Afterwards, optimal poliiesfor the parents of these tasks are learned. This ontinues until the root is reahed. Doingso e�etively redues eah subtask to a primitive ation for its parent in the hierarhy. Theparent will only observe one kind of behavior from its subtasks, namely optimal behavior.The seond approah is to simultaneously learn optimal poliies for the entire hierarhy. Thisis the approah used by both HSMQ and MAXQ. In this ase, parent tasks observe hangingbehavior from their subtasks as these explore the state spae and eventually onverge toan optimal poliy. Of ourse, a parent task will only onverge to an optimal poliy whenits subtasks have onverged too. Simultaneously learning the entire hierarhy puts an extrarequirement on the exploration poliy used in eah subtask. While traditional Q-learning�only� requires that all states are visited in�nitely often, onvergene now requires that theexploration poliy used is Greedy in the Limit of In�nite Exploration (GLIE). A GLIE poliyis a poliy that, in the limit of in�nite exploration, eventually beomes greedy with respetto Q. Only when a subtask poliy is greedy will the parent task observe optimal behavioronsistently. Boltzmann exploration (see Setion 2.2) an be used to reate a GLIE poliyby ontinuously dereasing the temperature.1: funtion HSMQ(State s, Subtask p)2: Let TotalReward := 03: while (p is not terminated)4: Choose subtask a := πe(s) aording to exploration poliy πe5: Exeute a and observe resulting state s′6: if (a is primitive) then7: Observe one-step reward r := R(s′|s, a)8: else9: r := HSMQ(s,a), whih invokes subroutine a and10: returns the total reward reeived while a exeuted.11: end if12: TotalReward := TotalReward + r13: Update Q̂(p, s, a) := (1 − α)Q̂(p, s, a) + α [r + maxa′ Q(p, s′, a′)]14: end while15: return TotalReward16: endTable 4.2: Pseudo-ode for exeution of a hierarhial poliy.Table 4.2 shows the pseudo-ode for the HSMQ algorithm. The algorithm overs one episodeof learning. At �rst, the algorithm is alled with the initial state and the Root task. Thevariable TotalReward is initialized to hold the sum of the rewards reeived during the Roottask. While Root is not terminated, a subtask is repeatedly hosen using a GLIE explorationpoliy. If the subtask is primitive then it is exeuted and the immediate reward is observed.Otherwise, if a is non-primitive, then it is exeuted by alling HSMQ reursively (the sameway Root was alled), whih returns the total reward reeived during the exeuting of thesubtask. Afterwards, TotalReward is inreased by the observed reward. The total reward isthen used to update the urrent approximation of Q.4.3 MAXQ Value Funtion DeompositionWhen using the HSMQ algorithm, a task hierarhy is treated as a set of independent Q-learning problems. Eah subtask ontains all the values needed to ompletely speify its own39

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGpoliy. In other words, HSMQ provides a proedural deomposition of the learned poliy intopoliies for eah subtask. However, there is bound to exist a dependeny between the valuefuntion of a task and its subtasks. For instane, the value of performing the task Get in theTaxi domain must somehow be related to the value of performing its hild tasks Navigateand pikup.
7

11

8

9

10

6

6

7

8

7

5

5

6

7

6

4

4

5

6

5

3

3

4

5

4

Passenger at Y

12

12

13

14

13

13

13

14

15

14

14

14

15

16

15

15

Dest

16

17

18

14

18

15

16

17

Passenger in Taxi

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

Y YB BFigure 4.2: Value funtion for the ase where the passenger is at (0, 0) (loation Y) and wishesto get to (3, 0) (loation B).
10

14

11

12

13

9

9

10

11

10

8

8

9

10

9

7

7

8

9

8

6

6

7

8

7

Passenger at Y

Dest

15

18

17

16

18

14

17

16

15

13

13

14

15

14

12

12

13

14

13

11

11

12

13

12

Passenger in Taxi

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

Y Y

R R

Figure 4.3: Value funtion for the ase where the passenger is at (0, 0) (loation Y) and wishesto get to (0, 4) (loation R).Figure 4.2 illustrates part of a projeted value funtion for the Taxi hierarhy. In this ase,the passenger is at loation Y and wishes to get to loation B. The left-side maze shows thestate values while getting the passenger, and the right-side maze shows the state values whiledriving the passenger to the destination. For instane, the value of a state, where the taxi isat loation (0, 2) and on its way to get the passenger is 9.Figure 4.3 illustrates a similar value funtion, where the only di�erene is that the passengerwishes to get to loation R. Comparing the value funtions of these two senarios, we seethat there is no similarity between the values in the right-side mazes. However, the values inthe left-side mazes are the same exept for an o�set of 3. This is beause that the left-sidemazes really re�et the same subgoal of moving to loation R and piking up the passenger.They di�er only in what happens after the passenger has been piked up. In Figure 4.2, thedestination is 7 steps away, and in Figure 4.3 the destination is 4 steps away. The di�erene
7 − 4 = 3 aounts for the di�erene between the values in the two mazes.40

4.3. MAXQ VALUE FUNCTION DECOMPOSITIONThe motivation behind deomposing the value funtion is to exploit suh regularities by rep-resenting the left-side value funtion only one. Notie that deomposing the value funtiondoes not enable a more ompat representation in itself. Instead, the deomposition enablesstate abstrations over �funnel� ations, something whih is not possible when using HSMQ.This is further explained in Setion 4.4.4.3.1 De�nition of the Value Funtion DeompositionIn general, the MAXQ method deomposes the projeted ation-value funtion Q(i, s, a)(where i is the urrent subtask, s is the state, and a is the ation to be performed) into thesum of the following two omponents:
• the expeted total reward reeived while exeuting subtask a in state s, and
• the expeted total reward of following the hierarhial poliy π after a has returneduntil parent task i terminates.For a primitive ation a, the �rst omponent is just the expeted immediate reward ofperforming a in s. For a omposite ation, Dietterih (2000) shows that this omponentis instead the projeted value funtion V π(a, s) by proving the following theorem:Theorem 6. Given a task hierarhy over tasks M0, . . . , Mn and a hierarhial poliy π,eah subtask Mi de�nes an SMDP with states Si, ations Ai and the transition probabilitydistribution Pi. The expeted reward funtion of Mi, denoted R̄i(s, a), is de�ned as R̄i(s, a) =

V π(a, s) where
• V π(a, s) is the projeted value funtion for hild task a in state s, and
• If a is a primitive ation then V π(a, s) is de�ned as the expeted immediate reward ofexeuting a in s: V π(a, s) =

∑

s′ P (s′|s, a)R(s′|s, a).The theorem states that the expeted reward reeived by subtask Mi, when exeuting aomposite subtask Ma, is the projeted value funtion V (a, s). If a is primitive, then thereward reeived is instead the expeted immediate reward (as in �at Q-learning). As aonsequene, we an de�ne the ation-value funtion of poliy π when exeuting ation afrom subtask i in state s as
Qπ(i, s, a) = V π(a, s) +

∑

s′,N

Pi(s
′, N |s, a)γNQπ(i, s′, π(s′)) (4.6)whih has the same form as the Bellman equation for an SMDP (see Equation 4.4). If a isprimitive, then V π(a, s) equals the expeted immediate reward, thereby making equations(4.6) and (4.4) idential.Reall that De�nition 5 de�ned a projeted value funtion V (a, s) to be the expeted umu-lative reward reeived until subtask a terminates. This means that the right-most term ofEquation (4.6) denotes the value of ompleting task Mi after exeuting a in state s. Thisterm an be enapsulated in a new funtion alled the ompletion funtion: 41

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING
Cπ(i, s, a) =

∑

s′,N

Pi(s
′, N |s, a)γNQπ(i, s′, π(s′)) (4.7)By substituting the ompletion funtion into Equation (4.6), we get the following de�nitionof the ation-value funtion:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (4.8)Furthermore, the de�nition of the value funtion V π(i, s) an be re-expressed as
V π(i, s) =

{

Qπ(i, s, πi(s)) if i is omposite
∑

s′ P (s′|s, a)R(s′|s, a) if i is primitive (4.9)For a omposite subtask i, this reursive de�nition states that the value of a state s an beomputed as the following equation:
V π(i, s) = Qπ(i, s, πi(s)) = V π(πi(s), s) + Cπ(i, s, πi(s)) (4.10)In other words, to �nd the value of a state s in subtask i given a hierarhial poliy π, wemust simply 1) �nd the value of state s in the subtask denoted by πi(s), and 2) add thevalue of ompleting subtask i after subtask πi(s) has terminated. If πi(s) is also a ompositeation, the this term an be further deomposed in the same way. The reursiveness of Vends in the bottom of the hierarhy when a primitive ation is enountered (as de�ned inEquation 4.9).Dietterih refers to equations (4.7), (4.8) and (4.9) as the deomposition equations for theMAXQ hierarhy under a �xed hierarhial poliy π. These equations reursively deomposethe projeted value funtion V π(0, s), for the root task M0, into the projeted value funtionsfor the subtasks M1, . . . , Mn and the ompletion funtions Cπ(j, s, a) for j = 0, . . . , n. Thismeans that a omplete spei�ation of the deomposed Q and V funtions requires exatlythe storage of

• the ompletion value C(i, s, a) for all omposite subtasks i, states s and subtasks a,and
• the value V (i, s) for all primitive subtasks i and states s.By storing these values, the value of any ombined state/ation pair, of any subtask in thehierarhy, an be omputed by the use of the deomposition equations.4.3.2 MAXQ GraphsTo make it easier to understand the deomposition equations, a task hierarhy an be illus-trated as a MAXQ graph. Figure 4.4 illustrates a MAXQ graph for the Taxi domain. Thegraph ontains two kinds of nodes, Max nodes and Q nodes.Max nodes orresponds to subtasks in the task hierarhy. There is one Max node for eahomposite and primitive subtask. Eah primitive Max node i stores the value of V π(i, s) forall s ∈ Si.42

4.3. MAXQ VALUE FUNCTION DECOMPOSITION
MaxRoot

MaxNavigate(t)

MaxGet MaxPut

MaxPickup MaxPutdown

MaxNorth MaxSouthMaxEast MaxWest

QGet QPut

QPickup QPutdownQNavigateForPutQNavigateForGet

QNorth(t) QSouth(t)QEast(t) QWest(t)

t/source t/destination

Figure 4.4: A MAXQ graph for the Taxi domain. Max nodes orrespond to the subtasks inthe domain, and Q nodes orrespond to the ations available for eah subtask.
Q nodes orresponds to the ations that are available for eah subtask. For instane, theavailable ations from subtask Get are Pikup and Navigate(t/soure). These ations aremodelled as the Q nodes QPikup and QNavigateForGet in the MAXQ graph. Eah Q nodefor parent task i, state s and subtask a stores the value of Cπ(i, s, a). A parent task mayexeute a subtask multiple times before it terminates.The purpose of eah Max node i is to ompute the projeted value funtion V π(i, s) for all
s ∈ Si. For primitive Max nodes, suh as MaxPikup and MaxPutdown in Figure 4.4, thisinformation is stored diretly in the node. For omposite Max nodes, the information mustbe omputed. To ompute the value V π(i, s), the Max node i onsults its poliy πi and �ndsthat the next ation is πi(s). It then queries the Q node orresponding to πi(s) for the value
Qπ(i, s, πi(s)).The Q node does not diretly store this value. It only stores Cπ(i, s, πi(s)), the value ofompleting subtask i after πi(s) has been exeuted. To �nd the value of atually exeuting
πi(s), the Q node queries its hild Max node for V π(πi(s), s). If πi(s) orresponds to aprimitive Max node, then V π(πi(s), s) an be looked up. Otherwise πi(s) is omposite and
V π(πi(s), s) must be omputed by querying further down the MAXQ graph. Afterwards, the
Q value

Qπ(i, s, πi(s)) = V π(πi(s), s) + Cπ(i, s, πi(s)) (4.11)is returned to the Max node i. Sine V π(i, s) = Qπ(i, s, πi(s)), the Max node has �nished itsomputation. 43

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGFor a more onrete example, let s be the state illustrated in Figure 4.5, and assume thatan optimal poliy π∗ has been previously learned. From state s, it requires 1 step to reahthe passenger, 1 step to pik up the passenger, 7 steps to reah the destination, and 1 stepto put down the passenger. Sine eah of these steps has a penalty of −1, and beause thetaxi reeives a reward of 20 after delivering the passenger, the value of state s is 10. Theomplete set of reursive omputations needed for this onlusion looks as follows:
V ∗(North, s) = −1

Qπ∗

(Nav(R), s, North) = V ∗(North, s) + C∗(Nav(R), s, North) = −1 + 0 = −1

V ∗(Nav(R), s) = Q∗(Nav(R), s, North) = −1

Qπ∗

(Get, s, Nav(R)) = V ∗(Nav(R), s) + C∗(Get, s, Nav(R)) = −1 + −1 = −2

V ∗(Get, s) = Q∗(Get, s, Nav(R)) = −2

Q∗(Root, s, Get) = V ∗(Get, s) + C∗(Root, s, Get) = −2 + 12 = 10

V ∗(Root, s) = Q∗(Root, s, Get) = 10

R G

Y B0

1

2

3

4

0 1 2 3 4Figure 4.5: A Taxi domain senario. The taxi is at (0, 3) and the passenger is at (0, 4)(loation R). The destination is (3, 0) (loation B).In general, the MAXQ value funtion deomposition takes the form
V π(0, s) = V π(am, s) + Cπ(am−1, s, am) + . . . + Cπ(a1, s, a2) + Cπ(0, s, a1) (4.12)where a1, . . . , am is the �path� of the Max nodes, from the root-node 0 to the primitive ation

am, hosen by the hierarhial poliy π. This onludes the desription of the representationof the value funtion when using the MAXQ value funtion deomposition.4.3.3 Di�erent Kinds of OptimalityBefore proeeding to desribe an algorithm for learning an optimal poliy using the valuefuntion deomposition, we must �rst de�ne the meaning of optimality given the introdutionof a task hierarhy. Of ourse, without deomposing a task, a truly optimal poliy an belearned using traditional �at Q-learning. However, imposing a hierarhy puts two onstraintson the poliies representable by the hierarhy:44

4.3. MAXQ VALUE FUNCTION DECOMPOSITION
• Within a subtask, some primitive ations may not be allowed. In the Taxi hierarhy, forinstane, the taxi annot perform the ations pikup or putdown during the Navigatesubtask.
• The poliy learned for task Mj must involve the poliies learned for its hild tasks
{Mj0 , . . . , Mjk

}. When the poliy for subtask Mji
is invoked, it will run until a terminalstate in Tji

is enountered. This means that the poliy for task Mj must pass throughsome subset of the terminal states of its subtasks {Tj1 , . . . , Tjk
}.The impat of these two onstraints depends entirely on the spei�ation of the task hierarhy.The taxi hierarhy disussed so far is not a�eted by them, and is apable of representing atruly optimal poliy (in Setion 4.7, however, we will hange this fat). A poliy that is asoptimal as possible, given the onstraints of a hierarhy, is said to be hierarhial optimal.A goal of the MAXQ method is subtask sharing (see Setion 4.1). To ahieve this, individualsubtasks must be ontext-free. For instane, the task Navigate(t) is ontext-free beause ofits target loation parameter t. The task would not be ontext-free if the target-loation wasimpliit (given the parent task exeuting Navigate). To ahieve total subtask independene,an even weaker form of optimality must be pursued. This form of optimality is alled reursiveoptimality.

G G-2

-60

0

Figure 4.6: A domain illustrating reursive optimality. The agent must leave the left roomand go to the goal square G. The poliy illustrated in the left maze is reursively optimal butnot hierarhially optimal. The shaded ells indiate points where the loally optimal poliyis not globally optimal. The poliy illustrated in the right maze is hierarhial optimal dueto the spei�ation of pseudo-rewards.The left-side of Figure 4.6 illustrates the e�ets of pursuing only reursive optimality. The�gure shows a grid world onsisting of two rooms with two doors separating them. The taskof an agent in this world is to reah the goal square G. The primitive ations in this world areNorth, South, East and West, and eah give a penalty of−1. A hierarhy is imposed suh thatthe task of an agent is split into the subtasks ExitLeftRoom and GotoGoal. ExitLeftRoomis only available when the agent is in the left room, and terminates when the right room isentered. GotoGoal is only available in the right room, and terminates when G is reahed.During eah subtask, any primitive ation an be exeuted.The arrows in the �gure represents the reursively optimal poliy given the desribed hierar-hy. The illustrated poliy is loally optimal for both subtasks, but learly not hierarhialoptimal. The shaded ells indiate points where the loally optimal poliy is not globallyoptimal. 45

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGIn this ase, it is possible to speify pseudo-rewards to reah hierarhial optimality. If theagent exits the left room through the lower door, we will assign it a pseudo-reward of −6beause this is the number of steps needed afterwards to reah the goal. Similarly, the agentwill reeive a pseudo-reward of −2 if it exits the left room through the upper door. For now,pseudo-rewards an be thought of simply as extra rewards besides the traditional immediaterewards. The right-side of Figure 4.6 shows a hierarhial optimal poliy for the domainusing the desribed pseudo-rewards.4.3.4 The MAXQ-Q Learning AlgorithmDietterih (2000) presents two learning algorithms for the deomposed value funtion. The�rst one, alledMAXQ-0, an only be applied when the pseudo-reward funtion R̃ is alwayszero. The seond and more general algorithm is alled MAXQ-Q, whih works with anyspei�ation of the pseudo-reward funtion. We will skip the desription of MAXQ-0, sinethis is just a speial ase of MAXQ-Q. The overall goal of MAXQ-Q is to learn a) theompletion value C(i, s, a) for eah omposite subtask i, state s and subtask a, and b) thevalue V (i, s) for eah primitive subtask i and state s.As mentioned in Setion 4.3.3, pseudo-rewards an be thought of as simply extra rewards.As suh, an approah towards inorporating them into a learning algorithm would be to justadd them to the orresponding immediate rewards whenever an update of either C or Vis performed. However, this would have the e�et of hanging the original MDP to havea di�erent reward funtion. Furthermore, the pseudo-rewards for a single subtask ould�ontaminate� the poliies learned throughout the hierarhy. As an example, we will extendthe domain from Figure 4.6 as illustrated in Figure 4.7. To larify the point, let the pseudo-reward for exiting the middle room through the upper door be 100, and the pseudo-rewardfor exiting the middle room through the lower door be 0. The immediate reward for reahingG will remain 20. Now onsider the lower left room. After exiting this room through theupper door, there will remain 11 steps yielding a penalty of −11. Furthermore, adding thepseudo-reward of 100 and a goal-state reward of 20 to this value yields a total reward of 109.If the lower left room is exited through the lower door, then a penalty of −10 is reeived beforethe goal is reahed. The onsequene is that the pseudo-rewards, spei�ed for the subtask ofexiting the middle room, has hanged the optimal poliy for the subtask of exiting the lowerleft room. This poliy is no longer optimal in the shaded ells. In fat it gets even worse,beause the optimal poliy is no longer to reah the goal state. Sine the pseudo-reward isgreater than the reward for entering the goal state, the optimal behavior for the agent willbeome to ontinuously enter and exit the right room.This example learly shows that pseudo-rewards annot simply be added to immediate re-wards. The problem an be solved by learning one ompletion funtion to be used �inside�eah subtask, and a separate ompletion funtion to be used �outside� eah subtask. Theexternal ompletion funtion C(i, s, a) is the one disussed so far. It is omputed withoutreferene to pseudo-rewards, and denotes the expeted reward for ompleting task Mi afterperforming ation a in state s, and then following the learned poliy for Mi. It is used byparent tasks to ompute V (i, s), the expeted value of performing task Mi in state s.The internal value funtion, denoted C̃(i, s, a), is omputed by adding pseudo-rewards to thereal rewards. It is used to �nd the loally optimal poliy for eah subtask Mi. In e�et,MAXQ-Q should learn C and C̃ suh that46

4.3. MAXQ VALUE FUNCTION DECOMPOSITION
G

0

100

Figure 4.7: Pseudo-rewards an �ontaminate� the hierarhy if used simply as extra rewards.The pseudo-reward for exiting the middle room using the upper door is 100, while the immedi-ate reward for reahing G remains 20. The result is that the hierarhial poliy is non-optimalin the shaded ells.
• C̃(i, s, a) denotes the pseudo-reward �ontaminated� ompletion funtion over the lo-ally optimal poliy for task Mi.
• C(i, s, a) denotes the �lean� ompletion funtion over the loally optimal poliy fortask Mi.In other words, the loally optimal poliy for subtask Mi is found using pseudo-rewards toontaminate C̃(i, s, a). Then, C(i, s, a) is learned to be the lean ompletion funtion overthe found loally optimal poliy. The poliies for the parents of Mi is learned using the leanompletion funtion to avoid asading ontamination. As a result, loal optimality an beahieved with pseudo-rewards without worrying about hanging the behavior of other tasksin the hierarhy.Figure 4.3 shows the pseudo-ode for the MAXQ-Q algorithm. Invoking MAXQ-Q(i, s)returns the sequene of states visited by subtask i when being exeuted from state s. Thissequene is maintained in the variable seq. The algorithm �rst heks if i is primitive. If thisis the ase, then i is diretly exeuted. The observed immediate reward is used to update

V (i, s). Indeed, this part of the algorithm an be viewed as learning the immediate rewardfuntion for the original MDP.If a subtask i is not primitive, then the algorithm enters a while loop whih runs until iterminates. During an iteration inside the while loop, an ation a is hosen aording tothe exploration poliy πe(i, s). Ation a is exeuted by alling MAXQ-Q reursively, whihresults in the sequene of states visited during the exeution of a. The resulting state s′ isthen observed. Following, in line 14, the optimal ation a∗ in the next time step is predited.This predition is made using the internal ompletion funtion C̃ for subtask i. We nowhave all the information needed to begin updating both the internal and external ompletionfuntions.To speed up learning in nodes at the top of the task hierarhy, the ompletion funtionsare updated for eah state s visited during the exeution of the hosen ation a. Dietterihrefers to this as �all-states-updating�. The reasoning is that the exeution of a will movethe environment through a sequene of states s1, . . . , sn, Sn+1 where Sn+1 is equal to the47

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

1: funtion MAXQ-Q(MaxNode i, State s)2: Let seq = () be the sequene of states visited while exeuting i3: if (i is a primitive MaxNode)4: Exeute i, reeive rt = R(s′|s, a), and observe result state s′5: Vt+1(i, s) := (1− αt(i)) · Vt(i, s) + αt(i) · rt6: Push s onto the beginning of seq7: else8: Let count = 09: while (Ti(s) is false)10: Choose an ation a aording to the urrent exploration poliy πω(i, s)11: Let childSeq = MAXQ-Q(a,s) where childSeq is the sequene of states12: visited exeuting ation a (in reverse order)13: Observe result state s′14: Let a∗ = arg maxa′

[

C̃t(i, s′, a′) + Vt(a′, s′)
]15: Let N = 116: for (eah s in childSeq) do17: Ct+1(i, s′, a) := (1− αt(i)) · Ct(i, s′, a′) + αt(i) · γNexternalValue(s′)18: C̃t+1(i, s′, a) := (1− αt(i)) · C̃t(i, s′, a′) + αt(i) · γN internalValue(s′)19: where20: externalValue(s′) = [Ct(i, s′, a∗) + Vt(a∗, s′)], and21: internalValue(s′) =

[

R̃i(s
′) + C̃t(i, s′, a∗) + Vt(a∗, s′)

]22: N := N + 123: end for24: Append childSeq onto the front of seq25: s := s′26: end while27: end if28: Return seq29: end30: //main program31: Initialize V (i, s), C(i, s, a) and C̃(i, s, a) arbitrarily32: MAXQ-Q(root node 0, starting state s0)Table 4.3: The MAXQ-Q learning algorithm.

48

4.3. MAXQ VALUE FUNCTION DECOMPOSITIONresulting state s′. Sine all subtasks are Markovian, exeuting a in s2, s3, or any state up to(and inluding) sn, would result in the same state s′.Before updating the ompletion funtions, the internal and external values of exeuting a∗ in
s′ is �rst omputed. The omputation of the internal value inludes possible values reeivedby the pseudo-reward funtion R̃. Notie that the ation a∗ is also used in the omputationof the external value�even though this ation might not be the optimal ation in the nexttime step aording to the external ompletion funtion C. Both ompletion funtions arethen updated, disounting the omputed values properly. The primary observation here isthat the ation a∗, whih is optimal in the next time step aording to C̃, might not beoptimal aording to C. Nevertheless, a∗ is used to update C, whih results in a SARSAlike algorithm (see Table 2.2). In e�et, C will onverge to the non-ontaminated ompletionfuntion over the loally optimal poliies learned by C̃.The updates of C and C̃ requires the omputation of Vt(i, s

′). In Setion 4.3.2 we desribedhow this value ould be omputed for a �xed hierarhial poliy with the reursive deom-position funtions. The problem is that, during learning, there exists no �xed hierarhialpoliy. Furthermore, beause C̃ should onverge to the loally optimal poliy for eah sub-task, ations should always be hosen greedily during the reursive omputation of Vt(i, s
′)(as apposed to be hosen by a �xed poliy). This leads to the following modi�ed de�nitionof the deomposition funtions:

Vt(i, s) =

{

maxa Qt(i, s, a), if i is omposite
Vt(i, s) (lookup) , if i is primitive (4.13)

Qt(i, s, a) = Vt(a, s) + Ct(i, s, a) (4.14)The omputation of Vt(i, s) using the above equations requires a omplete searh of all pathsthrough the MAXQ graph starting at node i and ending at the leaf nodes. Fortunately,MAXQ graphs are normally small of size, so this does not a�et the performane of MAXQ-Q notieably. Table 4.4 shows the funtion EvaluateMaxNode(i,s), whih, among otherthings, alulates Vt(i, s). For omposite tasks, the algorithm hooses the ation amax thatmaximizes Vt(a, s) + C̃(i, s, a) for any a ∈ A(i). The algorithm then uses this ation toalulate the unontaminated value Vt(amax, s) + C(i, s, amax). The unontaminated valueis returned together with the primitive ation reahed at the bottom of the MAXQ graph(orresponding the leaf). This ation is returned to allow non-hierarhial exeution, whihwill be further explained in Setion 4.5. Again, C̃ is used to selet ations beause it willeventually represent the loally optimal poliy. The value returned to other subtasks are,however, based on the unontaminated ompletion funtion C to avoid asading pseudo-reward ontamination.To avoid luttering the pseudo-ode, �anestor� termination (as desribed in Setion 4.1.3) isnot shown in theMAXQ-Q algorithm in Table 4.3. However, �Anestor� termination shouldof ourse be inluded in any �real� implementation of the algorithm. Furthermore,MAXQ-Qrequires that the exploration poliy πω is not only a GLIE poliy, but an ordered GLIE poliy,where ω denotes the ordering of ations used to break ties. An ordered GLIE is requiredbeause, in general, eah subtask Mi will have a hoie between many di�erent loally optimalpoliies. These di�erent loally optimal poliies will all ahieve the same loally optimal valuefuntion, but they may result in di�erent probability transition funtions P (s′, N |s, i). Asa onsequene, the SMDP problems at the level above subtask Mi will di�er depending onwhih of the di�erent loally optimal poliies is hosen by subtask Mi. An ordering of ations
ω ensures that onsistent behavior is observed from subtask Mi. 49

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING1: funtion EvaluateMaxNode(MaxNode i, State s)2: if (i is a primitive MaxNode)3: Return 〈Vt(i, s), i〉4: else5: for (j ∈ Ai(s))6: Let 〈Vt(j, s), aj〉 = EvaluateMaxNode(j,s)7: end for8: Let amax = arg maxj Vt(j, s) + C̃t(i, s, j)9: Return 〈Vt(amax, s) + Ct(i, s, amax), amax〉10: end if11: endTable 4.4: Pseudo-ode for omputing Vt(i, s) for Max node i and state s.4.4 State AbstrationsOne of the reasons to introdue hierarhial reinforement learning is to reate opportunitiesfor state abstrations. In general, for task hierarhies generated by hand, it an be a straight-forward task to simply begin removing irrelevant state variables from di�erent subtasks inthe hierarhy. This is true beause a hand-made hierarhy will often be speially designedto allow state abstrations. The task might, however, be far more omplex for automatiallygenerated hierarhies. To formalize the opportunities of state abstrations when using theMAXQ method, Dietterih (2000) spei�es onditions that permit �safe� state abstration.Furthermore, Dietterih proves that MAXQ-Q will onverge to the same unique reursivelyoptimal poliy with or without �safe� state abstration for any given task hierarhy. In thissetion, we will give a less formal desription of the opportunities for state abstration whenusing the MAXQ method.The purpose of applying state abstrations is to minimize the number of needed values torepresent the projeted value funtion for a task hierarhy. When less values are needed,then less values must be learned, whih in most ases will speed up learning. To be able toevaluate the e�et of applying state abstrations, let us �rst ompute the number of valuesneeded for the Taxi domain without state abstration. We will ignore the representation ofthe internal ompletion funtion C̃ for now.
• To represent V (i, s) for eah of the six leaf nodes in the MAXQ graph, 500 values arerequired for eah leaf beause there are 500 states.
• MaxRoot has two hildren, whih requires a total 500 · 2 = 1 000 values.
• Both MaxGet and MaxPut has two hildren, so eah one also requires 1 000 values givinga total of 2 000.
• MaxNavigate has four hildren and the target parameter t, whih an take on 4 values.For eah hild 500 · 4 = 2 000 values are needed giving a total of 8 000.The total number of values needed for the MAXQ representation is therefore 14 000. To plaethis number in perspetive, onsider that, using �at Q-learning, the number of needed valuesis 3 000.The onditions for state abstration spei�ed by Dietterih all assume that a state s an berepresented as a vetor of values of existing state variables. At eah Max node i, the vetor50

4.4. STATE ABSTRACTIONSan be partitioned into two sets, relevant variables Xi and irrelevant variables Yi. Xi is afuntion that projets a state s into only the variables in Xi:if si = {x0, . . . , xn, y0, . . . , ym} then Xi(si) = {x0, . . . , xn} (4.15)where n is the number of variables in Xi and m is the number of variables in Yi. Stateabstrations are ahieved by, for any state s, using Xi(s) instead of s to represent the projetedvalue funtion. An abstration is safe, when for all states s and subtasks i, we have that
V (i,X (s)) = V (i, s).It is furthermore required that the exploration poliy used during learning is a so-alledabstrat hierarhial poliy. This means that ations in a subtask i must be hosen usingonly information spei�ed by Xi, i.e. :if Xi(s1) = Xi(s2) then πi(s1) = πi(s2) (4.16)Failing to do so will result in unexplainable behavior given Xi. Boltzmann exploration usedthroughout this report an easily be modi�ed to be an abstrat hierarhial explorationpoliy.There are three kinds of onditions under whih state abstrations an be introdued. The�rst ondition involves eliminating irrelevant variables from subtasks in the MAXQ graph.This kind of abstration is mostly useful in the lower part of the MAXQ graph, sine subtasksnear the leaf tend to have only few relevant variables. The seond kind arises from so-alledfunnel ations that move the environment from a large number of urrent states to a smallnumber of resulting states. Funnel ations normally appear in the top of the MAXQ graph.Finally, the third kind of state abstration arises from the struture of the MAXQ graphitself. In e�et, a large part of the state spae may not be reahable for ertain subtasks.In the following, Y will always denote the set of irrelevant variables, while X will denotethe set of relevant variables. After disussing the onditions that allow state abstrations,the total redution of needed values to represent the projeted value funtion for the taskhierarhy is summarized.4.4.1 Irrelevant Variable EliminationIrrelevant variables an be eliminated both in leaves and omposite subtasks in the MAXQgraph. The former ondition is referred to as as Leaf Irrelevane, while the latter is referredto as MaxNode Irrelevane (or Subtask Irrelevane).MaxNode IrrelevaneA set of state variables Y is MaxNode irrelevant for subtask i if the following properties holdfor any stationary abstrat hierarhial poliy π:

• No variable y ∈ Y a�ets the value of any variable x ∈ X in subtask i.
• No variable y ∈ Y a�ets the value funtion V π(a, s) or pseudo-reward funtion R̃i(s)for any hild ation a and any state s. 51

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGIn other words, the hild ations hosen by subtask i must not depend on any variable in Y .Furthermore, the outome of any exeuted hild ation must not depend on any variable in
Y either. If these onditions hold, then the variables in Y are irrelevant for subtask i.In the Taxi domain, two nodes in the MAXQ graph an bene�t from state abstrations usingthe MaxNode irrelevane ondition. First of all, during subtask Get, the destination of thepassenger is irrelevant, beause it does not a�et whih subtasks Get hooses to exeute, nordoes it a�et the outome of these subtasks. This means that the variable an be exludedfrom the ompletion funtions stored in QNavigateForGet and QPikup.Seondly, during the subtask Put, the variable denoting the passenger loation is irrelevant,and an be eliminated from the ompletion funtions in QNavigateForPut and QPutdown.Leaf IrrelevaneWhile the MaxNode Irrelevane ondition eliminates variables in the ompletion funtions foromposite subtasks, the Leaf Irrelevane ondition eliminates variables in the value funtionfor primitive ations. A set of variables Y is leaf irrelevant to primitive ation a if, forany two states s1 and s2 that di�er only in their values of variables in Y , we have that
V π(a, s1) = V π(a, s2). Remember that V π(a, s), for a primitive ation a and state s, isde�ned simply as the expeted immediate reward for performing a in s.The primitive ations North, South, West and East have a onstant immediate reward of
−1. This means that all state variables an be eliminated in their respetive primitive Maxnodes. Furthermore, the immediate rewards of Pikup and Putdown only depend on wetheror not the ations are performed legally. For instane, Putdown is illegal if the taxi is not atthe destination and holding the passenger. Thus, the value funtions for eah of these twoations require 2 values eah.In the elimination of variables in Pikup and Putdown, Dietterih introdues a new variablethat denotes the legality of the ations�something whih is in fat not diretly possible usinghis proposed framework. Indeed, this form of abstration requires logi and is similar toabstrations ahieved using relational reinforement learning. We will return to this subjetin Chapter 5.4.4.2 Funnel AtionsFunnel ations are omposite subtasks that move the environment from a large number ofurrent states to a small number of resulting states. Irrelevant variables in funnel ationsmust satisfy the ondition of Result Distribution Irrelevane. Furthermore, if the terminationof some subtask is guaranteed to make its parent task terminate too, then further abstrationan be applied. This ondition is referred to as Termination.Result Distribution IrrelevaneA set of variables Y is result distribution irrelevant for subtask i if, for all pairs of states s1and s2 that only di�er in their values for state variables in Y , we have that

P π(s′, N |s1, i) = P π(s′, N |s2, i) (4.17)52

4.4. STATE ABSTRACTIONSfor all s′ and N . Thus, to be irrelevant for subtask i, a variable y ∈ Y must not have anye�et on the distribution of resulting states.Consider the Get subtask. No matter what loation the taxi has is in state s, it will be atthe passenger's starting loation in state s′ when Get �nishes exeuting. This makes theloation of the taxi result distribution irrelevant, and the orresponding state variable an beeliminated in QGet and QNavigateForGet. Notie that the taxi loation annot be eliminatedin QPikup beause, when Pikup is exeuted illegally, the ompletion ost is dependent onthe number of steps needed to omplete Get.Similarly, the taxi loation is irrelevant for the Put subtask and an be eliminated from QPutand QNavigateForPut. For QPut, however, a stronger form of abstration an be ahievedusing Termination and the strutural onstraints of the task hierarhy, as desribed in thefollowing.TerminationThe Termination ondition is very intuitive. If a subtask a is guaranteed to terminate in agoal state where its parent task i also terminates, then the ompletion ost of i after a hasterminated must be uniformly zero for all states where a has not terminated.This ondition holds for Put in the Taxi domain. For all states where the passenger is in thetaxi, Put will sueed and result in a goal terminal state for Root. This happens beause thegoals of Put and Root are idential.4.4.3 Strutural ConstraintsThe last form of state abstration arises from the strutural onstraints introdued by thetask hierarhy itself. A task a an only be exeuted in a state s if there exists a path fromthe root down to Mi onsisting of un-terminated tasks. For any state s′ where this is notthe ase, a annot be reahed. This means that it is unneessary to represent the ompletionfuntion C(i, s′, a) for any suh state s′ and parent task i.The Put subtask also satis�es this ondition, whih is known as Shielding. Put is terminatedin all states where the passenger is not in the taxi. Thus, QRoot does not need to representompletion values C(Root, s, Put) for these states. Together with the Termination onditionabove, this means that the entire ompletion funtion represented in Put is uniformly zero.Furthermore, during the subtask Get, the passenger annot be in the taxi in any non-terminalstate. Therefore, any state s where this is the ase an be disregarded.4.4.4 Overview of State Abstrations in the Taxi DomainThe opportunities for state abstration desribed in the previous setion an be summarizedas the following list:
• MaxNorth, MaxSouth, MaxWest, and MaxEast: eah require 1 value (Leaf Irrelevane).
• Pikup and Putdown: eah require 2 values (Leaf Irrelevane). 53

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING
• QNorth(t), QSouth(t), QWest(t), and QEast(t): eah requires 100 values (the pas-senger's loation and destination are MaxNode Irrelevant).
• QNavigateForGet: requires 4 values (the passenger's destination is MaxNode Irrele-vant, and the taxi starting loation is Result Distribution Irrelevant).
• QPikup: requires 100 values (the passenger's destination is MaxNode Irrelevant).
• QGet: requires 16 values (the taxi's loation is Result Distribution Irrelevant, and thepassenger's loation is limited to the four target loations beause of Shielding).
• QNavigateForPut: requires 4 values (the passenger's loation is MaxNode Irrelevant,and the taxi's loation is Result Distribution Irrelevant).
• QPutdown: requires 100 values (the passengers loation is MaxNode Irrelevant).
• QPut: requires 0 values (Termination and Shielding).In total, this results in 632 distint values when using state abstrations. If pseudo-rewardsare needed, then it beomes 2 · 632 = 1 264 values. Compared to the 3 000 values needed for�at Q-learning, this is a fairly low number. Furthermore, if the size of the grid is inreased,then the number of values also inrease. This inrease is muh larger for �at Q-learningompared to the MAXQ hierarhy with state abstrations. The reason is that, while theprojeted value funtion for the task hierarhy as a whole still depends on all state variables,eah of the individual terms, that make up the deomposition of the value funtion, onlydepends on a subset of the state variables.MaxNode Irrelevane and Leaf Irrelevane an also be applied when using the HSMQ al-gorithm. However, Result Distribution Irrelevane, Termination and Shielding annot beapplied. It is only beause the Q funtion is deomposed into the ompletion funtion andthe hild value funtion that it is possible to take advantage of state abstrations that onlya�et the ompletion funtion.4.5 Non-Hierarhial Exeution of a Hierarhial PoliyAs desribed in Setion 4.3.3, the optimal poliy for a task may not be representable givena task hierarhy. Dietterih (2000) presents a very simply tehnique, whih in many asesan derive an optimal non-hierarhial poliy from a hierarhial optimal poliy. The ideais to start at the top of the task hierarhy, and then hoose the loally optimal ation inevery subtask until a primitive ation is reahed�exatly the same as the funtionality ofEvaluateMaxNode. The primitive ation is then exeuted, and ontrol is again diretedto the top of the hierarhy.Table 4.5 shows the pseudo-ode for the proedure ExeutePoliyNonHierarhial,whih follows this idea. At line 3, the algorithm alls EvaluateMaxNode to ondut aomplete searh of all paths through the MAXQ graph. Remember that EvaluateMaxN-ode also returns the primitive ation a found at the end of the path through the graph (seeTable 4.4). Afterwards, ation a is exeuted and the urrent state is updated. This ontinuesuntil the root task of the MAXQ graph terminates.Consider hanging the Taxi domain suh that the passenger, with some probability, hangesdestination after the taxi has started navigating to the original destination. Using a strit54

4.6. HIERARCHICAL EXPLORATION PROBLEM1: proedure ExeutePoliyNonHierarhial(State s)2: while ((T0(s) is false))3: Let 〈V (0, s), a〉 = EvaluateMaxNode(0,s)4: Exeute primitive ation a5: Let s be the resulting state6: end while7: endTable 4.5: Pseudo-ode for exeuting the one-step greedy poliy.hierarhial exeution, the already invoked navigation task must be ompleted, whih meansthat the taxi will drive all the way to the original destination. At that point, it will disoverthat the passenger has hanged destination, and will then begin to navigate towards the newdestination. If non-hierarhial exeution is used instead, ontrol is shifted to the top of thehierarhy after eah primitive ation. This means that the taxi will disover the destinationhange immediately. The di�erene between hierarhial and non-hierarhial exeution of ahierarhial poliy beomes very lear in the experiments illustrated in Setion 4.7.4.6 Hierarhial Exploration ProblemDeomposing a primary task into a task hierarhy an be viewed as supplying the agent withknowledge beause, besides reating opportunities for state abstration, any reasonable taskhierarhy will also guide the agent towards its goal. While this has advantages in form ofa better initial performane, it also introdues a problem regarding su�ient exploration ofertain parts of the state/ation spae. We will refer to this problem as the HierarhialExploration Problem. To our knowledge, this problem has not previously been desribed.In the task hierarhy of the Taxi domain used throughout this hapter, the agent an explorethe entire state/ation spae with the exeption of states and ations that are unreahabledue to strutural onstraints (e.g. putdown when the passenger is not in the taxi). Eventhough the hierarhy as a whole direts the agent in its ations, within a single subtask suhas Navigate(t), the agent will explore eah possible state with an almost equal frequeny.The only exeption is that only one terminal state an be visited during eah invoation ofa subtask.Now, onsider what would happen if we hanged Navigate(t) to a primitive ation (althoughstill temporally abstrated). Being a primitive ation, Navigate(t) will always performoptimally (even during early learning) and will move the agent diretly towards its target t.Figure 4.8 illustrates the exploration frequeny for states in this modi�ed Taxi domain, wherethe shade of gray denotes the relative level of exploration among the states. For simpliity,we assume that the only target loations are R and B.This uneven exploration frequeny ours beause the agent, one on the �right� path, nevervisits the outer states. Sine Navigate(t) is assumed to be optimal, the agent will simplytake the shortest route. In fat, these outer states will only be visited when they are thestarting loation of the taxi (as illustrated in the �gure). This also suggests a solution for theproblem, namely always letting the taxi start in these outer loations�thereby inreasingtheir exploration frequeny. Indeed, it is di�ult to see any other possible solutions for thehierarhial exploration problem. In pratie, a task hierarhy should be arefully reated55

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING
R

B0

1

2

3

4

0 1 2 3 4Figure 4.8: The hierarhial exploration problem with Navigate(t) as an optimal primitiveation. White ells indiate often explored states, while darker shaded ells denote relativelyless explored states. The darker the shade, the less the state is explored.suh that this problem is avoided. We will also disuss the hierarhial exploration problemfor Bloks World in Chapter 5.4.7 Experimental Evaluation of the MAXQ MethodSo far, this hapter has desribed the theoretial advantages of using the MAXQ value fun-tion deomposition. In this setion, we will perform two experiments to larify the perfor-mane of MAXQ in pratie. More spei�ally, the experiments are onduted to answer thefollowing questions:
• How does the MAXQ method perform ompared to �at Q-learning?
• How important are state abstrations?
• How does the enoding of knowledge in a task hierarhy in�uene performane?Both experiments are based on a slightly modi�ed Taxi domain alled the Fikle Taxi do-main2. To make learning more hallenging, the navigation ations North, South, West andEast are made noisy. With probability 0.8, the taxi moves in the intended diretion, butwith probability 0.2, it instead moves to the right of the intended diretion (e.g. if East isintended then with probability 0.2 the taxi will move south). Furthermore, after piking upthe passenger and moving one square away from the passengers's soure loation, the pas-senger hanges the destination with probability 0.3. The purpose of this hange is to makethe optimal poliy non-hierarhial.During training, the Navigate(t) subtask often exhibited looping behavior. In e�et, testinga poliy by hoosing ations stritly greedily does not aurately show the improvement inperformane as a funtion of primitive training steps. For instane, onsider an almostoptimal poliy π. If this poliy results in in�nite looping behavior between states s1 and s2(whenever one of these states are visited), then this behavior overshadows the performane of

π in the rest of the state spae. To avoid looping behavior, we applied Boltzmann exploration,2The �rst experiment is similar to one onduted in Dietterih (2000).56

4.7. EXPERIMENTAL EVALUATION OF THE MAXQ METHODand thereby a ontrollable level of randomness, to the evaluation of a poliy. The explorationtemperature was set to the initial value of 1 (total randomness) for all trials. It was thereafterdereased for eah primitive training step suh that it reahed 0 at an estimated point ofonvergene. The estimated point of onvergene was found by training the agent multipletimes. The estimation was set to the latest onvergene observed.For all experiments, the learning fator α was set to 0.25. Furthermore, all initial V and Cvalues were set to 0.4.7.1 Performane of MAXQ LearningIn this experiment, we evaluated the performane of the following approahes when appliedto the Fikle Taxi domain:
• Flat Q-learning,
• MAXQ without state abstrations (MAXQ),
• MAXQ with state abstrations (MAXQ-SA), and
• MAXQ with state abstrations and non-hierarhial exeution (MAXQ-SA/NHE).After eah training episode, the urrent poliy was tested by observing the error ompared toan optimal poliy. The mean of this error was omputed over 10 training runs per approah.Figure 4.9 shows the mean error per trial (over the 10 runs) as a funtion of primitive trainingsteps.The results of the experiment shows that any form of MAXQ learning have better initialperformane than �at Q-learning. This is due to the onstraints introdued by the taskhierarhy, whih puts a restrition on the number of available primitive ations in any givenstate. Furthermore, it is interesting to see that MAXQ learning without state abstrationatually takes longer to onverge than �at Q-learning. This is aused by the inreased numberof values needed to represent the deomposed value funtion without state abstrations.MAXQ learning with state abstration onverges muh faster than both �at Q-learning andMAXQ without state abstrations. It does not, however, reah true optimality. As men-tioned, this is a result of allowing the passenger to hange destination during an episode.Using the desribed task hierarhy in the Fikle Taxi domain, the taxi an simply not avoidtaking a de-tour in 30 perent of the episodes.Applying non-hierarhial exeution to MAXQ with state abstrations solves this problem,and the same level of optimality as shown by �at Q-learning is reahed. Non-hierarhialexeution allows the taxi to reat immediately to the hange of destination. This advantageis also the reason that this approah reahes its potential optimal behavior a little faster thanwhen not using non-hierarhial exeution.This experiment answers two of the questions stated in the beginning of the setion. Clearly,MAXQ learning outperforms �at Q-learning, however, only when state abstrations are ap-plied. If the optimal poliy is non-hierarhial, then non-hierarhial exeution must also beinorporated. 57

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

Flat Q-Learning

MaxQ
MaxQ SA/NHE MAXQ SA

0,00

100,00

200,00

300,00

400,00

500,00

600,00

0 25000 50000 75000 100000 125000 150000 175000 200000

Primitive Training Steps

M
ea

n
 S

te
p

s
P

er
 T

ri
al

MaxQ

MaxQ SA/NHE

Flat Q-learning

MAXQ SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

0 25000 50000 75000 100000 125000 150000 175000 200000

Primitive Training Steps

M
ea

n
 S

te
p

s
P

er
 T

ri
al

Figure 4.9: Performane of hierarhial MAXQ learning with state abstration and non-hierarhial exeution. The lower diagram shows a lose-up view of the upper diagram.
58

4.7. EXPERIMENTAL EVALUATION OF THE MAXQ METHOD4.7.2 Enoding of KnowledgeThe task hierarhy used so far enodes a great deal of knowledge. For instane, the agent isautomatially informed that during Get, it should only navigate to the passengers loation�and not any of the other three loations. It is reasonable to supply the agent with thisknowledge sine it must be optimal. In general, as muh knowledge as possible should beenoded into a task hierarhy. It is interesting however, to investigate the impat of thisknowledge on the performane of MAXQ learning.To perform the experiment, we hanged the task hierarhy suh that the taxi ould navigateto any of the four target loations during both the Get and Put subtask. This inreases thenumber of available ations in both these subtasks with 3 to a total of 5 (i.e. the hierarhybeomes less informed). The hange also a�ets the number of needed values to representthe projeted value funtion. The total number of values needed is inreased from 632 to
656.We tested the performane of the less informed hierarhy using both state abstrations andnon-hierarhial exeution. Figure 4.10 shows the results of the experiment. The poliyover the previous task hierarhy is denoted �informed� and orresponds to MAXQ SA/NHE inFigure 4.9. The new hierarhy is denoted �less informed�.

MaxQ Less-Informed

MaxQ Informed

Flat Q-learning

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

0 25000 50000 75000 100000 125000 150000 175000 200000

Primitive Training Steps

M
ea

n
 S

te
p

s
P

er
 T

ri
al

Figure 4.10: The performane of a less informed task hierarhy where the taxi an navigateto any of the four target loations during the Get and Put subtasks. The performane isompared to the task hierarhy in Figure 4.4 and �at Q-learning.Surprisingly, the less informed hierarhy performs muh worse than �at Q-learning. Eventhe initial performane is muh worse. This observation should be seen in ontrast to thefat that �at Q-learning requires the learning of almost twie as many values. Indeed, theproblem is not the number of values but the pattern of exploration. The less informedhierarhy allows the agent to navigate to the wrong loations ontinuously during training.In e�et, the number of primitive training steps inreases fast without signi�antly leadingthe agent towards optimality. 59

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGThis experiment answers the question of the e�et of enoding knowledge into task hier-arhies. Without su�ient knowledge, the agent risks wasting training steps performingsubtasks that do not inrease performane in any signi�ant way. The experiment also showsthat the number of needed values (to represent the projeted value funtion) is not neessarilyproportional with the learning rate.4.8 Related WorkThe MAXQ method is not the only hierarhial deomposition tehnique for reinforementlearning. Indeed, the hierarhial deomposition of domain, in order to make the searhfor solutions more e�etive, has been researhed by several authors. Among the more reentdeomposition tehniques is the HAM method introdued by Parr (1998). The HAM methodpermits partial spei�ation of hierarhial and temporally abstrat ations.A similar approah was introdued by Hauskreht et al. (1998). This approah inludes ahierarhial model for handling maro ations using periphery states to simplify the originalenvironment. A goal of the model is the possibility of reusing maro ations in other similarenvironments.4.9 SummaryIn this hapter we desribed two approahes to hierarhial reinforement learning. The �rstapproah, Hierarhial Semi-Markov Q-learning (HSMQ), deomposes the primary task intoa task hierarhy where eah subtask ompletely enapsulates its own Q-funtion. This taskdeomposition allows some degree of state abstration. The seond approah, the MAXQvalue funtion deomposition, goes further and also deomposes the projeted value funtionof a task. This reates even further opportunities for state abstration.A task hierarhy guides the agent towards its goal, and an therefore make it di�ult toexplore the state/ation spae su�iently. This problem an be made smaller by letting theagent start in less explored states, however there does not seem to exist any general solution.Another inherent problem of hierarhial reinforement learning is the inability to diretlyrepresent an optimal poliy that is non-hierarhial. However, using the MAXQ method,non-hierarhial exeution an easily be applied to a task hierarhy. This allows the agent toreah true optimal behavior�even when this is not hierarhial.Two experiments were onduted to evaluate the performane of MAXQ learning. With stateabstrations and non-hierarhial exeution, MAXQ learning was shown to onverge muhfaster the �at Q-learning in the Fikle Taxi domain. Furthermore, the importane of enodingknowledge into a task hierarhy was illustrated by reating a less informed hierarhy. Theless informed hierarhy performed muh worse than �at Q-learning, beause it allowed theagent to waste training steps without inreasing performane signi�antly.
60

Chapter 5Combining Hierarhial andRelational Reinforement LearningIn Chapter 3 and Chapter 4, we desribed two distint approahes to reinforement learning:relational reinforement learning and hierarhial reinforement learning using the MAXQvalue funtion deomposition. The question now remains: an these two tehniques be om-bined to ahieve further advantages? In this hapter we will try to answer this question withinthe boundaries of the theory presented so far. That is, we will explore the possibilities ofintegrating logial state abstrations and logial deision trees into hierarhial reinforementlearning.In Setion 5.1 we de�ne a MAXQ hierarhy for Bloks World and disuss deleted-onditioninterations and the hierarhial exploration problem for the hierarhy. Setion 5.2 introdueslogial value and ompletion trees, while Setion 5.3 introdues logial state abstration intothe MAXQ deomposition. In Setion 5.4 we desribe two approahes for deriving P -treesfrom a MAXQ hierarhy, and in Setion 5.5 we disuss the results of a series of experi-ments onduted with the ombination of relational and hierarhial reinforement learning.Setion 5.6 disusses the appliability of the ombination in automatially onstruted hier-arhies, and �nally we disuss related work in Setion 5.7.5.1 MAXQ Hierarhy for Bloks WorldWe will use Bloks World as the ongoing example domain throughout this hapter. Tothis end, we must �rst de�ne a task hierarhy and a MAXQ graph for the domain. Tokeep things simple, we will one again only onsider the task of staking a spei� blok ontop of another spei� blok. We will denote this root task as Stak(A,B), where A andB are any two distint bloks. The root task an be deomposed into the three subtasks:MakeClear(A), MakeClear(B) and Move(A,B). MakeClear(A) and MakeClear(B) are reallydenoting the same subtask MakeClear(X)�that of learing a spei� blok X. This task anbe further deomposed into Move(Y,Z) for any lear pair of bloks Y and Z in the domain.Figure 5.1 shows the desribed task hierarhy for Bloks World.The task hierarhy desribes the proedural deomposition of the domain. The value fun-tion deomposition is de�ned by the MAXQ graph illustrated in Figure 5.2. The primitive61

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING
Stack(A,B)

Makeclear(X)

Move(Y,Z)

X/A or
X/B

Y/block and
Z/block

Y/A and
Z/B

Figure 5.1: A task hierarhy for the Bloks World domain.Max node MaxMove(Y,Z) ontains the values V (Move(Y,Z), s) for all states s. The Q-nodesontain the ompletion ost of following the urrent poliy after performing the partiularation in the urrent state. Notie that the root Max node takes the parameters A and B.Thus, this hierarhy overs any binding of atual bloks suh as, for instane, stak(a,b)or stak(,a). In general, logial poliies naturally allow parameterized subtasks in a moread-ho fashion than propositional approahes.
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

Figure 5.2: A MAXQ graph for the Bloks World domain. Again, Max nodes orrespond tothe subtasks in the domain, and Q nodes orrespond to the ations available for eah subtask.5.1.1 Hierarhial Exploration ProblemThe hierarhy in Figure 5.1 informs the agent that, to reah its goal, it must lear the twogoal-state bloks A and B and then move A onto B. However, during the learing of a blokX, the agent is not guided in any way. Indeed, the agent an hoose to move any learblok in the domain onto any other lear blok. A valid question here is why we do notsimply restrit the available ations during MakeClear(X) to only inlude ations where ablok is moved to the �oor. Assuming unlimited �oor spae, there learly exist an optimalpoliy using this restrition and we would furthermore e�etively avoid deleted-onditioninterations (see Setion 2.3) where bloks are moved on top of an already leared goal-stateblok. The reason we do not make this restrition is that it would introdue the hierarhial62

5.2. VALUE AND COMPLETION TREESexploration problem, as de�ned in Setion 4.6, into the hierarhy. Consider applying therestrition; during eah training episode, existing blok staks would ��atten� out until thegoal was reahed. Thus, the agent would explore ��at� states far more often than states withhigh staks. The result of this would be poor performane in these states.To avoid deleted-ondition interations without applying restritions to the ations duringMakeClear(X), we will slightly hange the reward funtion. As before, all ations will yielda penalty of −1. Furthermore, ations that move a blok on top of a another blok whih isabove either one of the goal-state bloks (A or B) will arry a seond penalty of −1 yieldinga total penalty of −2. This hange guides the agent towards solving MakeClear(X) withoutmoving bloks onto A or B. Notie that we ould ahieve the same guidane using pseudo-rewards. For simpliity, however, we will ignore pseudo-rewards in this hapter.5.2 Value and Completion TreesAs desribed in Chapter 4, the MAXQ deomposition of the value funtion opens up new op-portunities for state abstrations. Combining MAXQ with relational reinforement learningdoes not hange this fat. First of all, the deomposition redues the size of the individualfuntions, thereby making it easier for a relational learner to �nd suitable patterns. Seondly,if new state abstrations are made possible, then these will also be found by the relationallearner. As a result, we will no longer onsider Q-trees. Instead, the Q funtion is de�nedby a ombination of V -trees (value trees) and C-trees (ompletion trees). These trees are,as Q-trees, logial regression trees. V -trees map a state s and a primitive subtask i to anumerial value. Similarly, C-trees map a state s, a parent task i, and a subtask a to anumerial value.root: roottask(stak(A,B)),task(move(Y,Z)) root: roottask(stak(A,B)),task(makelear(X)), ation(move(Y,Z))above(Z,A)
b(−2)y above(Z,B)n

b(−2) y b(−1)n
above(Y,X)blokson(X,1)y

b(0) y blokson(X,2)n
b(-1) y b(-2)n

. . .n
(a) V -tree for MaxMove(Y,Z). (b) C-tree for QMoveForMakeClear.Figure 5.3: Example of an V -tree and a C-tree for subtasks in the Bloks World MAXQgraph.Figure 5.3 shows an example V -tree and an example C-tree for Bloks World1. The treesare queried in exatly the same way as Q-trees. Q values are omputed by applying thedeomposition equations de�ned in Chapter 4 to the results of querying the V -trees and C-trees. Updated trees are indued at the end of eah episode over the base of examples reated1The prediate blokson(X,N) holds if N is equal to the number of bloks on top of blok X. 63

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNINGduring training. Thus, the MAXQ-Q algorithm must be altered to generate examples andinvoke the indution algorithm TILDE-RT. This hange is very straightforward and similar tothe hange made to the regular Q-learning algorithm in Chapter 3. The omplete relationalMAXQ-Q learning algorithm an be found in Appendix C.The MAXQ graph for Bloks World requires the learning of one V -tree for the Max nodeMaxMove(Y,Z) and three C-trees for the Q-nodes QMakeClear(X), QMove(A,B) andQMoveForMakeClear(X,Y,Z). Figure 5.4 shows a graphial overview of this.
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

V-Tree for
V(s,Move(Y,Z))

C-Tree for
C(MakeClear(X),s,Move(Y,Z))

C-Tree for
C(Stack(A,B),s,MakeClear(X))

C-Tree for
C(Stack(A,B),s,Move(A,B))

Figure 5.4: A graphial overview of the onnetion between the Bloks World MAXQ graphand logial deision trees representing the value and ompletion funtions.5.3 State AbstrationsRelational reinforement learning makes use of �rst order logi both during the spei�ationof a domain and for the indution of logial deision trees. In this hapter we will makea distintion between these two appliations of logi. Doing so enables the possibility ofmanually applying logial state abstrations to hierarhial reinforement learning withoutinduing logial deision trees. In fat, we have already seen a logial state abstrationmanually applied to the Taxi domain in Chapter 4. This abstration onluded on thelegality of Pikup and Putdown ations and introdued a new state variable to ontain thenew information. As mentioned, the framework proposed by Dietterih (2000) does notreally support this kind of abstration. We will therefore introdue two new state abstrationonditions for the MAXQ deomposition. However, we �rst need to de�ne preisely what wemean by a logial abstration.De�nition 7. A logial abstration funtion L : S −→ SL is a mapping from the set of states
S to the set of logial abstrated states SL suh that size(SL) < size(S), where size(S) is afuntion that returns the number of states in S. L(s) denotes the abstration of state s ∈ S.The de�nition of L is left intensionally vague. It overs any funtion that redues the numberof distint states in the state spae. If an abstration funtion is to be useful in a domain, it64

5.3. STATE ABSTRACTIONSmust map eah subset of similar states {s0, . . . , sn} into a single abstrat state sL. Sometimesfurther abstrations an be ahieved by onsidering both a state and ation together (andsometimes even a parent or anestor task). In this ase, L an be hanged to take thisinformation as input (e.g. L(s, a) or L(i, s, a)). The output still remains a single abstratedentity sL.An abstration funtion an be either safe or unsafe. A safe abstration funtion only groupsstates (or state/ation pairs) together that yield the exat same V and C values. Thefollowing are onditions under whih an abstration funtion L is safe. We assume a hash-like lookup table to handle the mapping of multiple values to single abstrated entities.De�nition 8. A logial abstration funtion L is safe for a primitive Max node i if, for thenon-abstrated state s ∈ S and ation a, we have that
V π

i (a, s) = V π
i (L(a, s)) (5.1)De�nition 9. A logial abstration funtion L is safe for a Q-node j if, for the non-abstratedstate s, ation a and MaxNode i, we have that

Cπ
j (i, a, s) = Cπ

j (L(i, a, s)) (5.2)To illustrate these onditions by example, we will proeed to de�ne a omplete logial ab-stration funtion for the Bloks World hierarhy de�ned in Setion 5.1. We will de�ne thefuntion as a set of Prolog rules. The rules take the formlogabstrat(S, I, A, NextS)where S is the non-abstrated state, I is the parent task, A is the subtask, and NextS is thelogial abstrated state. As mentioned, the parent task I an be replaed by any anestortask to A as this an sometimes allow for a higher level of abstration. The �rst rules wede�ne over the logial abstrations possible in the Max node MaxMove(Y,Z).logabstrat(S, stak(A,B), move(Y,Z), [illegal℄) :- above(Z,A), !.logabstrat(S, stak(A,B), move(Y,Z), [illegal℄) :- above(Z,B), !.logabstrat(S, stak(A,B), move(Y,Z), [legal℄).Remember that the agent reeives an immediate penalty of −2 if a blok is moved onto a stakwith either of the goal-state bloks A and B, otherwise it reeives −1. The rules partitionthe state/ation spae into two abstrated states, [legal℄ and [illegal℄, whih exatlyenompass these penalties. More spei�ally, for any non-abstrated state s and ation a wehave that if V π
i (a, s) =

{

−1 then L(s, stak(A,B), a) = [legal℄
−2 then L(s, stak(A,B), a) = [illegal℄ (5.3)where i is the Max node MaxMove(Y,Z). Thus, the abstration satis�es De�nition 8 andis safe. The result is that the number of needed values in MaxMove(Y,Z) is redued to 2.65

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING
V(s,a)=-1

V(s,a)=-2

S

SL

legal

illegal

= distinct state/action pairFigure 5.5: A graphial illustration of the logial abstration applied to the Max nodeMaxMove(Y,Z).Furthermore, this redution is ompletely independent of the number of bloks in the domain.A graphial way to observe the logial abstration is illustrated in Figure 5.5.A thing to notie is that abstrated entities are only used to determine the value of state/a-tion pairs. They are not used in, for instane, the ation preondition funtion or the tran-sition funtion. These funtions do therefore not need rede�nitions even though we aresometimes hanging the state variables dramatially. They still only need to depend on theoriginal state variables present in the domain.There are three Q-nodes in the Bloks World MAXQ graph to whih state abstrations an beapplied. We will start from the top and �rst de�ne logial abstrations for QMakeClear(X):logabstrat(S, stak(A,B), makelear(A), NextS) :-blokson(S,B,N), NextS=[bloks_on_other(N)℄, !.logabstrat(S, stak(A,B), makelear(B), NextS) :-blokson(S,A,N), NextS=[bloks_on_other(N)℄, !.The important thing to notie here is that Q-nodes ontain ompletion funtions. As suh,the information ontained within an abstrated entity must only be exatly enough to on-lude the ompletion ost of the parent task after performing the partiular subtask�in thisase MakeClear(X). Indeed, this is the major advantage of using the MAXQ value funtiondeomposition. After exeuting the subtask MakeClear(A), the only relevant information tothe ompletion of its parent task Stak(A,B) is how many bloks that are above the othergoal-state blok B in state S. This number N is omputed by the prediate blokson(S,B,N).The resulting abstrated entity beomes the single fat bloks_on_other(N). Similarly, forthe subtask MakeClear(B), the only important information for the ompletion funtion ishow many bloks is above A. The redution of needed values in this Q-node is not indepen-dent of the number of bloks in the domain. However, the number has a linear growth rate.For instane, using 3 bloks, only 3 values are needed, beause a blok an only have eitherone, two or three bloks above it.66

5.3. STATE ABSTRACTIONSThe next Q-node is QMove(A,B), whih represents the �nal ation of an episode. We do notneed to de�ne logial abstration rules for this node, beause all state variables are eliminatedusing the Termination and Shielding onditions from Chapter 4. Thus, the ompletion ostafter performing this ation is always zero.Finally, we have the last Q-node QMoveForMakeClear(X,Y,Z). The motivation behind the ab-stration rules for this node is somewhat similar to the abstrations made for MaxMove(Y,Z):logabstrat(S, makelear(X), move(Y,Z), NextS) :-above(S,Y,A), bloksabove(S,X,N),N1 is N-1, NextS=[bloks_on(N1)℄, !logabstrat(S, makelear(X), move(Y,Z), NextS) :-above(S,Z,A), bloksabove(S,X,N),N1 is N+1, NextS=[bloks_on(N1)℄, !logabstrat(S, makelear(X), move(Y,Z), NextS) :-not(above(S,Y,X)), not(above(S,Z,X)),bloksabove(S,X,N), NextS=[bloks_on(N)℄, !During the subtask of learing a blok X, the ompletion ost of moving a blok depends onhow many bloks are above X after the move. Thus two questions must be determined:
• Is the blok Y being moved above X?
• Is the destination blok Z above X?The �rst rule overs the �rst question. In this ase, the blok Y being moved is above X. Asa result, we an represent the abstrated state as bloks_on(N1) where N1 is the previousnumber of bloks above X minus one. The seond rule overs the ase where the destinationblok Z is above X. In this ase, the number of bloks above X is inreased by one. Finally, ifthe stak ontaining X is not involved in the move ation, then the number of bloks aboveX remains the same.The redution in the number of needed values to represent the ompletion funtion forQMoveForMakeClear(X,Y,Z) is again dependent on the number of bloks in the domain.Using three bloks, the number of needed values is redued to two, sine only one or twobloks an be above X without MakeClear(X) being terminated. The number of needed valuesfor this Q-node also has a linear growth rate.5.3.1 Manual and Semi-Automati State AbstrationIn the previous setion we de�ned logial state abstrations for the MAXQ value funtion de-omposition. The question now is how these abstrations relate to the abstrations ahievedby induing logial deision trees. One might be tempted to think that �rst applying log-ial state abstrations manually and then proeeding to indue logial deision trees wouldsomehow result in even further abstrations. Of ourse, this is not the ase.The logial abstrations that an be applied manually are indeed exatly the same abstra-tions that an be disovered during the indution of V -trees and C-trees. Whether or not theyare atually disovered depends on the available tests de�ned by the bakground knowledge67

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING(see Setion 3.3). Finding state abstrations this way an be viewed as semi-automati. Itrequires manual spei�ation of the bakground knowledge, but the tedious task of searhingfor the atual possible abstrations beomes automati. One advantage of applying logialdeision trees to �nd state abstrations is therefore simply that it requires less manual spe-i�ation. On the other hand, the indution of logial deision trees requires more omputerpower. We will ompare the two approahes further in Setion 5.5.5.4 The Poliy FuntionThe poliy funtion P introdued in Chapter 3 enodes the optimality of state/ation pairs.It is by de�nition dependent on the Q-funtion, but was shown to perform better in bothits training domain and other similar domains (see Setion 3.5). In this setion, we willinvestigate how the poliy funtion an be introdued into a relational MAXQ hierarhy. Ingeneral, the P -funtion annot be part of the MAXQ value funtion deomposition beause itdoes not express anything about observed rewards. Instead, the value funtion deompositionan be viewed simply as a representation of a hierarhial Q-funtion from whih P an bederived. In partiular, we will introdue two ways of deriving a P funtion from a MAXQhierarhy. The �rst approah builds a loal P -tree for eah non-primitive Max node in thehierarhy. Eah loal tree denotes the optimality of exeuting subtasks of the Max node.The seond approah builds a single global P -tree for the hierarhy. A global P -tree denotesthe optimality of primitive ations and do not referene omposite subtasks in the MAXQhierarhy.5.4.1 Loal P -TreesRemember that P takes a state s and an ation a as input, and returns 1 if the pair is optimaland otherwise 0 if the pair is not optimal. P is de�ned using the Q-funtion, and sine Q isde�ned by V and C in the MAXQ hierarhy, we an formulate the following de�nition of ahierarhial P funtion:
P (i, s, a) =

{

1, if a ∈ arg maxa (V (s, a) + C(i, s, a))
0, otherwise (5.4)For instane, if MakeClear(A) is optimal in state s during the exeution of subtask Stak(A,B),then P (Stak(A,B), s, MakeClear(A)) = 1. As in Chapter 3, P is represented by a logi-al lassi�ation tree alled a P -tree. In general, a P -tree an be indued for every non-primitive Max node in a MAXQ graph. Thus, using the Bloks World MAXQ graph fromFigure 5.2, we an indue one P -tree for the root Max node MaxStak(A,B), and one P -treefor MaxMakeClear(X). This is illustrated in Figure 5.6.2Using this approah, the relational MAXQ-Q algorithm must generate separate examplesfor eah non-primitive Max node. As in Chapter 3, an example must be generated for allobserved states ombined with all possible ations. When using the non-inremental TILDEalgorithm, these examples must be generated from srath after eah episode followed by theindution of a new P -tree. Assuming a loal P -tree for eah non-primitive Max node, thelearned poliy an be exeuted using the reursive algorithm displayed in Table 5.1.2Notie that this is idential to induing a P -tree for eah non-primitive subtask in the task hierarhyillustrated in Figure 5.1.68

5.4. THE POLICY FUNCTION
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

Local P-Tree for
P(Stack(A,B),s,a)

Local P-Tree for
P(MakeClear(X),s,a)

Figure 5.6: The Bloks World MAXQ graph with attahed loal P -trees for MaxStak(A,B)and MaxMakeClear(X).1: funtion ExeuteHierarhialLoalPoliy(MaxNode i, State s)2: If (i is a primitive Max node)3: Exeute i and observe resulting state s′4: Return s′.5: Else6: While (Ti(s) is false)7: Find the available ations {a0, . . . , an) in state s8: Let m := 09: Let exeuted := false10: While (m <= n and exeuted = false)11: If (P (i, s, am) = 1)12: s := ExeuteLoalPoliy(am , s)13: exeuted := true ; m := m + 114: End If15: End For16: If (exeuted = false)17: s := ExeuteLoalPoliy(a0 , s)18: End If19: End While20: Return s21: End If22: End FuntionTable 5.1: An algorithm for exeuting a poliy represented by the hierarhial loal poliyfuntion P . 69

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNINGThe ExeuteHierarhialLoalPoliy algorithm takes a Max node i and a state s asinput. If i is a primitive Max node, then the orresponding ation is exeuted diretly and theresulting state is returned. Otherwise, the algorithms �rst �nds the set of available ationsin s. It then yles through these ations until an optimal ation aording to P is found.This ation is exeuted by alling ExeuteHierarhialLoalPoliy reursively, whihreturns an updated state. If no ations are lassi�ed as optimal aording to the P funtion(this an happen when P is not fully learned), then the �rst ation a0 is hosen.For examples of loal P -trees for the Bloks World hierarhy, see Setion 5.5.5.4.2 Global P -TreeA loal P -tree, for a task i in a MAXQ hierarhy, enodes the optimality of exeuting bothomposite and primitive subtasks of i. It is, however, also possible to use the MAXQ hierarhyto derive a global P -tree over only the primitive ations in the domain. Suh a tree is similarto the P -trees desribed in Chapter 3 in all ways exept how its examples are generated.Figure 5.7 illustrates the Bloks World MAXQ graph with an attahed global P -tree.
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

Global P-Tree for
P(Stack(A,B),s,Move(Y,Z))

Figure 5.7: The Bloks World MAXQ graph with an attahed global P -tree over all primitiveations in the domain.Even though a MAXQ hierarhy, as a whole, an be viewed simply as any other representa-tion of the Q-funtion for a domain, it also o�ers an opportunity for exploiting its internalstruture. Reall the funtion EvaluateMaxNode de�ned in Chapter 4. This funtionperforms a greedy searh in the MAXQ hierarhy to �nd the path (from the root node toany possible leaf) that yields the highest expeted umulative reward. It returns both thisexpeted reward as well as the primitive ation at the leaf of the path. At the end of anepisode, EvaluateMaxNode an be used to �nd the optimal primitive ations for all ob-served states to reate optimal examples over these pairs. For all other ations, non-optimalexamples are generated. Table 5.2 shows the pseudo-ode for the algorithm GenerateEx-70

5.5. EXPERIMENTSamplesForGlobalP that performs this funtionality. After generating the examples, theyare subsequently fed to TILDE to indue a global P -tree for the MAXQ hierarhy.1: proedure GenerateExamplesForGlobalP(MaxNode root)2: for (all observed states s)3: Find all available primitive ations Ap in state s4: 〈v, amax〉 := EvaluateMaxNode(root, s)5: for (all ations a ∈ Ap)6: If (a = amax) then7: Create optimal example x = {s, a, 1}8: Else9: Create non-optimal example x = {s, a, 0}10: End If11: End For12: End For13: End ProedureTable 5.2: An algorithm for generating examples for induing a global P -tree over a MAXQhierarhy.This onstrution has a single advantage over regular P -trees learned from a �at represen-tation of Q. An imposed hierarhy will often shield ertain primitive ations from beingexeuted in ertain states. This means that EvaluateMaxNode will never return suh ashielded ation as optimal in these states. In e�et, even during early learning, the agent willknow that these shielded ations are never optimal.The Bloks World hierarhy does not bene�t from this advantage, sine no primitive ationsare shielded by the imposed hierarhy in any state. The hierarhy applied to the Taxi domainin Chapter 4, however, would bene�t from it. In partiular, the primitive ations Pikupand Putdown are shielded from exeution in many states in the Taxi domain.5.5 ExperimentsTo evaluate the various approahes for ombining relational and hierarhial reinforementlearning, we performed a series of experiments. The purpose of these experiments was toanswer the following questions:
• What is the performane gain for MAXQ hierarhial reinforement learning whenapplying hand-oded logial state abstrations?
• How does MAXQ hierarhial reinforement learning with hand-oded logial stateabstrations perform ompared to �at relational reinforement learning?
• What is the performane of MAXQ hierarhial reinforement learning using logial

V -trees and C-trees (without hand-oded state abstrations), and to what extend isthis performane improved by introduing loal and global P -trees?
• How does the use of logial deision trees in MAXQ hierarhial reinforement learningompare to the use of hand-oded logial state abstrations? 71

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNINGFor eah approah we measured the mean error per trial as a funtion of primitive trainingsteps. As in the previous hapter, we one again omputed the mean over 10 runs for eahapproah. For hierarhial approahes we de�ned a GLIE exploration poliy using the Boltz-mann exploration tehnique with a dereasing temperature. The temperature was initiallyset to 1, and was then dereased suh that it reahed 0 at the expeted time onvergene. Theexpeted time of onvergene was found by observing a series of test runs for eah approah.All experiments were performed on a Bloks World domain with four bloks.5.5.1 Hand-Coded Logial State AbstrationsIn Chapter 4 we desribed �ve onditions that introdue state abstrations to a MAXQ hier-arhy: Leaf Irrelevane, MaxNode Irrelevane, Result Distribution Irrelevane, Terminationand Shielding. As desribed, these onditions an only be used to eliminate irrelevant statevariables, and not to make logial onlusions over part of the state/ation spae. Usingthese onditions on a state in the Bloks World hierarhy, we an eliminate staks of bloksnot ontaining either of the goal-state bloks A or B. We furthermore do not need to representany values for the Q-node QMove(A,B) (see Setion 5.3).In this experiment, we ompared the performane of a hierarhy with these non-logial stateabstrations to the performane of a hierarhy with the logial state abstrations desribedin Setion 5.3. Figure 5.8 shows the results of the experiment, where MAXQ-SA denotes thehierarhy with non-logial state abstrations and MAXQ-LSA denotes the hierarhy with logialstate abstrations.
MAXQ-LSA

MAXQ-SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

0 50 100 150 200 250 300 350 400 450

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.8: Comparison of the performane of MAXQ hierarhies when hand-oded logialand non-logial state abstrations are applied. MAXQ-LSA denotes a hierarhy with logialstate abstrations, while MAX-SA denotes a hierarhy with only non-logial state abstrationsSine less values are needed to represent the hierarhy for MAXQ-LSA ompared to MAX-SA, itreahes optimal behavior muh faster. During the experiment, the agent learned 136 valuesfor MAXQ-SA, while only 11 values were needed for MAXQ-LSA.72

5.5. EXPERIMENTS5.5.2 Flat Relational Reinforement LearningHaving determined the performane of using logial and non-logial abstrations in BloksWorld, it is interesting to ompare these results to the performane of �at relational rein-forement learning. To ahieve this, we let the agent learn both Q-trees and P -trees over theentire domain. We then ompared the mean performane of these logial deision trees to thedata obtained in the previous experiment. Figure 5.9 shows the results of this omparison.Flat RRL-Q denotes the mean performane of the learned Q-trees, while Flat RRL-P denotesthe mean performane of the learned P -trees.

MAXQ-LSA
Flat RRL-Q

Flat RRL-P

MAXQ-SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 20 40 60 80 100 120 140 160 180

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.9: The performane of MAXQ hierarhies with hand-oded logial and non-logialstate abstrations ompared to �at reinforement learning. Flat RRL-Q denotes the perfor-mane of learned Q-trees, while Flat RRL-P denotes the performane of learned P -trees.The �rst thing to notie is that MAXQ-SA and MAXQ-LSA both have better initial performane.This is a onsequene of the information impliitly enoded in the imposed hierarhy. Theseond thing to notie is that MAXQ-LSA reahes optimal behavior faster than both FlatRRL-Q and Flat RRL-P. This is not surprising sine every possible logial state abstration ishand-oded into the hierarhy of MAXQ-LSA. The relational approahes must instead searhfor these abstrations during learning. Thirdly, MAXQ-SA performs muh worse than �atrelational reinforement learning. This was somewhat unexpeted. It is a diret onsequeneof the powerful logial state abstrations possible in Bloks World that are unavailable toMAXQ-SA.It is muh more surprising that �at relational reinforement learning performs so well om-pared to using hand-oded state abstrations. The most likely explanation for this behavioris that values of unobserved states an be predited when using deision trees. This an resultin reasonable or optimal behavior in unobserved parts of the state spae. Using a tabularrepresentation of the value funtions, as done by MAXQ-SA and MAXQ-LSA, unobserved statesare simply assigned a value of zero. 73

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING5.5.3 MAXQ Hierarhy with Logial Deision TreesBefore proeeding to ompare the performane of hand-oded logial state abstrations tothe use of logial deision trees in the MAXQ hierarhy, we �rst investigated the performaneof three possible approahes to the latter. The �rst approah was to hoose ations using thelearned V -trees and C-trees. The seond approah was to derive a global P -tree from theMAXQ hierarhy, while the third approah was to derive loal P -trees for all non-primitiveMax nodes. The results of the experiment are shown in Figure 5.10, where C/V, P(Global)and P(Loal) refers to the three approahes respetively.
C/V

P (Global)

P (Local)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 10 20 30 40 50 60 70

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.10: The performane of relational MAXQ hierarhies using logial deision trees. C/Vdenotes the performane of learned V -trees and C-trees. P(Loal) denotes the performaneof learned loal P -trees, and P(Global) denotes the performane of learned global P -trees.As expeted, given the experiments performed in Chapter 3, both loal and global P -treesperform better than using only V -trees and C-trees. Furthermore, P(Loal) reahes bothreasonable and optimal behavior slightly faster than P(Global). This happens beause thepatterns of optimality are simpler inside subtasks in the MAXQ hierarhy ompared to theentire domain. For instane, an optimal ation during the subtask MakeClear(X) is simplyan ation that moves away a blok from the stak ontaining X without moving it onto anygoal-state blok. This pattern is easier to learn than the optimal pattern for Stak(A,B),whih inludes learing both A and B and moving A onto B. It is reasonable to expet thatthe advantage of using loal P -trees beomes even greater as the root task beomes moreomplex ompared to its subtasks.The optimal global P -tree learned in this experiment is similar to the optimal P -tree learnedin Chapter 3 (illustrated in Figure 3.6), and has a total of 7 leaves.The optimal loal P -tree learned for the subtask MakeClear(X) is shown in Figure 5.11.The tree lassi�es an ation as optimal if a blok is moved away from the stak ontaining X,otherwise false. It is learly optimal both for a domain with four bloks, but also for a domainwith any number of bloks. The optimal loal P -tree for Stak(A,B) turns out to be theonstant 1. This enodes that every possible ation in the subtask is optimal. Although this74

5.6. AUTOMATICALLY CONSTRUCTED HIERARCHIESroot: roottask(stak(A,B)), task(makelear(X)), ation(move(Y,Z))above(Y,X)
b(1) y

b(0)nFigure 5.11: An optimal loal P -tree for MakeClear(X) using any number of bloks.sounds strange, it is a onsequene of the applied ation preondition funtion. Stak(A,B)an only invoke MakeClear(A) if A is not lear (and similarly with B). Furthermore, if bothA and B are lear, then the only available ation is Move(A,B). As a result, the subtask annever exeute a non-optimal ation.We an now ompare the performane of hand-oded abstrations to the use of logial deisiontrees. To ompare the approahes, we have plotted MAXQ-SA, MAXQ-LSA and P(Loal) fromthe previous experiments into the diagram illustrated in Figure 5.12. The lower diagramshows a lose-up view of the upper diagram.An important thing to remember here is that MAXQ-LSA and MAXQ-SA are hand-oded withall possible logial and non-logial abstrations respetively. P(Loal) must searh for theseabstrations during the indution of logial deision trees. Nevertheless, P(Loal) performsmuh better than MAX-SA. This is again aused by the powerful logial state abstrationspossible in Bloks World that is unavailable to MAX-SA. This statement is supported bythe fat that MAX-LSA stabilizes with optimal behavior almost twie as fast as P(Loal).However, P(Loal) atually outperforms MAXQ-LSA until after 22 primitive training steps. Itdoes not stabilize with optimal behavior before after 55 primitive training steps. This is ane�et of being derived diretly from C/V whih does not onverge before after 65 primitivetraining steps.The reason that P(Loal) performs this well ompared to MAXQ-LSA an again be redited tothe possibility of value predition for unobserved states. It an also be redited to the use of
P -trees that, as explained in Chapter 3, outperforms tehniques that enode the distane tothe goal. Indeed, a pattern of optimality is often simpler than a pattern desribing spei�distanes to the goal.5.6 Automatially Construted HierarhiesThe onduted experiments show that relational and hierarhial reinforement learning anindeed be ombined with advantages. By induing loal and global P -trees we obtainedalmost as good performane as manually hand-oding logial state abstrations into theMAXQ hierarhy. Both manual spei�ation and the indution of logial deision trees anbe time onsuming, so the trade-o� may seem simply to be the alloation of time to the twotasks.Although logial state abstrations may be easy to manually loate in hand-oded hierarhies,suh as the ones used in this report, this may not be the ase in automatially onstrutedhierarhies. By induing logial deision trees to automatially �nd the possible state abstra-tions, one needs only to onstrut a good global bakground knowledge. This bakgroundknowledge an then be used by all subtasks in their searh for state abstrations. In essene,75

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING

MAXQ-LSA

P (Local)

MAXQ-SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

MAXQ-LSA

P (Local)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.12: The performane of relational MAXQ hierarhies using logial deision treesompared to hand-oding state abstrations diretly into a hierarhy. The lower diagramshows a lose-up view of the upper diagram.
76

5.7. RELATED WORKthe ombination of relational and hierarhial reinforement learning may be very useful foragents that must automatially disover the hierarhial strutures within its domain.5.7 Related WorkRonagliolo and Tadepalli (2004) also present a relational extension of hierarhial rein-forement learning using the MAXQ value funtion deomposition. Traditional Q-trees arepieewise onstant in that they map state/ation pairs to a onstant value. This onstru-tion does not perform well when the omplexity of an environment is slightly inreased (asillustrated by the experiments performed in Chapter 3). Instead, Ronagliolo and Tadepallipropose a learning algorithm that learns a new form of hierarhial Q-tree as illustrated inFigure 5.3. The rules are on the form q(Task,Subtask,Value). The symbol _ denotes thatany subtask an be inserted.q(MakeClear(A),_,0) :- lear(A).q(MakeClear(A),MakeClear(B),V) :- on(B,A), q(MakeClear(B),_,V1), V is V1-1.q(Stak(A,B),MakeClear(B),V) :- lear(A), q(MakeClear(B),_,V1), V is V1-1.Table 5.3: Pieewise linear hierarhial Q-tree for the root task Stak(A,B).The illustrated hierarhial Q-tree is pieewise linear. For instane, the value V of exeutingMakeClear(B) during the subtask Stak(A,B) in a state where lear(A) already holds, isomputed as the value V1 of atually exeuting MakeClear(B)minus one. Minus one denotesthat only one ation, namely Move(A,B) remains when both A and B are lear. The workdone by Ronagliolo and Tadepalli only inludes preliminary experiments on the indutionof suh pieewise linear Q-trees.5.8 SummaryIn this hapter we have introdued various approahes for ombining relational reinforementlearning with hierarhial reinforement learning using the MAXQ value funtion deompo-sition. We have shown that logial state abstrations an be applied to a MAXQ hierarhyeither manually or semi-automatially by induing logial deision trees to approximate thevalue and ompletion funtions.Furthermore, we have introdued two approahes for deriving P -trees from a MAXQ hierar-hy. One approah derives a loal P -tree for eah non-primitive Max node in the hierarhy,while the other derives a single global P -tree for the hierarhy.A series of experiments showed that the performane of MAXQ hierarhy with logial deisiontrees omes very lose to the performane of a hierarhy with manually hand-oded stateabstrations. Even �at relational reinforement learning performed fairly well ompared toa hierarhy with hand-oded state abstrations. Notie that these onlusions are basedsolely on the experiments performed on Bloks World with four bloks. Future work shouldevaluate these results on other and more omplex domains.
77

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING

78

Chapter 6ConlusionReinforement learning denotes the proess of teahing an agent optimal behavior in its en-vironment by reinforing its ations with rewards and penalties. Unfortunately, traditionalreinforement learning is inadequate for anything but very small problem domains. In thiswork we have re-explored two existing extensions of reinforement learning, namely rela-tional reinforement learning and hierarhial reinforement learning. We have furthermoreinvestigated the possibilities of ombining these two methods.6.1 Relational Reinforement LearningIn Chapter 3, we explored relational reinforement learning and evaluated the method usingthe Bloks World domain. The onlusions of the work an be summarized as follows:
• Relational reinforement learning exploits the strutural onstraints in relational do-mains. In suh domains, relational reinforement learning with proper bakgroundknowledge will reah both reasonable and optimal behavior faster than traditional re-inforement learning.
• The indution of P -trees to enode the optimality of ations enhanes the performaneof a Q-tree representation of a poliy. Furthermore, a P -tree will often perform well inother similar domains (i.e. a P -tree has better generalization properties).6.2 Hierarhial Reinforement LearningSimilarly, in Chapter 4 we evaluated hierarhial reinforement learning using the MAXQvalue funtion deomposition. For this method we an make the following onlusions:
• A proedural hierarhial deomposition of a problem domain introdues the oppor-tunity for state abstrations beause some variables beome irrelevant in individualsubtasks.
• The MAXQ value funtion deomposition introdues further opportunities for stateabstrations beause of the separation of value and ompletion funtions.79

CHAPTER 6. CONCLUSION
• Constraints reated by an imposed hierarhy will sometimes prohibit an agent fromreahing optimal behavior. This problem is solved by using pseudo-rewards and non-hierarhial exeution of the learned hierarhial poliy.
• A task hierarhy will often guide the agent suh that it avoids exeuting poor ations inertain states. To some extent, this guidane an help an agent learn in domains withsparsely distributed rewards. However, less informed hierarhies an make the agentperform worse ompared to �at reinforement learning.
• Careful onsideration must be employed in the onstrution of the task hierarhy, suhthat the hierarhial exploration problem an be avoided.6.3 Combining Relational and Hierarhial ReinforementLearningIn Chapter 5 we introdued the ombination of relational and hierarhial reinforementlearning. The appliation of indutive logi in the MAXQ value funtion deomposition wassplit into manual spei�ation of state abstrations, and semi-automati detetion of stateabstrations through the indution of logial deision trees. The following onlusions anbe made:
• In appropriate hierarhies, the introdution of logial state abstrations will greatlyinrease the rate in whih optimal behavior is reahed.
• If subtasks in a hierarhy are of limited size, the indution of logial deision trees willoften help disover state abstrations fairly quikly. This is, of ourse, dependent onthe quality of the existing bakground knowledge.
• The individual subtasks in a hierarhy will most often be less omplex ompared to theroot task. As a result, patterns of optimality are more easily found by the indution ofloal P -trees.
• The semi-automati detetion of state abstrations, introdued by the indution oflogial deision trees, an most likely be bene�ially applied to automatially generatedhierarhies.6.4 Summary of ContributionsThis work both re-explores existing material and introdues new knowledge. The new on-tributions of knowledge an be summarized as
• The onstrution and experimental evaluation of a relational MAXQ-Q algorithm.
• Introdution of two methods for deriving loal and global P -trees from a MAXQ hier-arhy.80

6.5. FUTURE WORKThe onstruted relational MAXQ-Q algorithm is general and an be applied to any problemdomain. The two methods for deriving P -trees from a MAXQ hierarhy supplement eahother niely. Loal P -trees will most often onverge faster than a global P -tree. However, aglobal P -tree abstrats away from any referene to the imposed hierarhy and is more diretlyexeuted.Other minor ontributions inlude the following:
• Formulation of the hierarhial exploration problem.
• Experimental evaluation of the advantages of logial state abstrations in relationaldomains.
• The idea that logial deision trees an be used to semi-automatially �nd state ab-strations in automatially generated task hierarhies.The hierarhial exploration problem and its e�ets on MAXQ hierarhies were desribed forboth the Taxi and Bloks World domain. We furthermore evaluated the advantages of usinglogial state abstrations in a relational domain suh as Bloks World. For suh domains,logial state abstrations are vastly superior to any non-logial state abstrations. Finally,we introdued the idea that logial deision trees an be used to semi-automatially �nd stateabstrations in automatially generated task hierarhies.6.5 Future WorkThe evaluation of the ombination of relational and hierarhial reinforement learning inChapter 5 is based only on experiments onduted on the relational Bloks World domainusing four bloks. It would be interesting to investigate the appliation of the method on anon-relational domain suh as the Taxi domain, as well as other realisti (or semi-realisti)problems.It seems likely that a task hierarhy an be used to separate relational and non-relationalsubtasks suh that di�erent learning algorithms an be applied to the hierarhy. For theTaxi domain, a relational learning algorithm ould be applied to all subtasks exept thenon-relational subtask Navigate. This subtask ould then be solved using a propositionalrepresentation language.Learning tehniques for agents are most often used by the omputer game industry to makegames more real and hallenging. The problem with reinforement learning, in this ontext,is that it is primary suited for stationary environments. For example, the attempt to learna navigation poliy for anything but a small stationary domain (suh as the Taxi domain)would require both onsiderable spae and time. Indeed, reinforement learning seems moresuited for making deisions on a higher level of abstration. For an ation omputer game,reinforement learning ould be used to deide when to attak, hide or apply other strategiations. These deisions ould be trained by observing the behavior of the opponent player,thereby ustomizing the agent's behavior to hallenge individual human players. The atuallow-level exeution of a strategi deision ould then be distributed to other more �ttingtehniques.Finally, the hierarhies used in this work are a result of a proedural deomposition of theroot task. The hierarhies enode a �subtask of� relationship between tasks. A relational81

CHAPTER 6. CONCLUSIONsetting might reate the opportunity for riher hierarhies using di�erent relationships suhas e.g. �more spei� than�. For instane, a task in the top of suh a hierarhy ould supplya rude solution to a problem. This rude solution ould then be re�ned by tasks lower inthe hierarhy.

82

Appendix ASummaryReinforement Learning is the task of teahing an agent optimal behavior in its environmentby reinforing good ations with rewards and poor ations with penalties. At any point intime, the environment is in a spei� state, and the agent is given a seletion of ations tohoose from. The hosen ation moves the environment from its urrent state to a new stateditated by a transition probability distribution. Depending on the hosen ation, the agentis rewarded or penalized.As problems grow larger, representation beomes an inreasingly important issue. Many real-world problems and their solutions (i.e. a ontrol poliies) are often impossible to representdiretly in a onventional table-based manner. This has given rise to various approahes toease the problem of a large state spae. In general, the state spae is either redued by theuse of state abstrations, or the agent is guided on the right path (thus avoiding a possiblylarge part of the state spae).In this report we explore two of these approahes, namely relational reinforement learn-ing (Dºeroski et al., 2001) and hierarhial reinforement learning using the MAXQ valuefuntion deomposition (Dietterih, 2000). Relational reinforement learning exploits thestrutural onstraints in relational domains by ombining reinforement learning and in-dutive logi programming. In suh domains, relational reinforement learning with properbakground knowledge will reah both reasonable and optimal behavior faster than tradi-tional reinforement learning. Induing logial deision trees over the optimality of ationsfurthermore enables good generalization properties, suh that learned poliies an be appliedto similar domains.Hierarhial reinforement learning imposes a hierarhial deomposition of a domain. Thisdeomposition has the advantages of reating opportunities for state abstrations and guidingthe agent towards its goal. The MAXQ value funtion deomposition reates the opportunityfor even further state abstrations. As a result, hierarhial reinforement learning withstate abstrations outperforms traditional reinforement learning given a reasonable informedhierarhy. Careful onsideration must, however, be put into the the onstrution of thehierarhial deomposition to avoid exploration problems.Besides the re-exploration of these two existing methods, the major ontribution of this workis to explore the advantages of ombining relational reinforement learning and hierarhi-al reinforement learning. That is, we investigate the possibilities of integrating indutivelogi programming into hierarhial reinforement learning. Logial state abstrations an be83

APPENDIX A. SUMMARYintrodued into a hierarhy either manually or semi-automati by induing logial deisiontrees. The experiments performed in this work shows that the latter requires less spei�-ation and performs almost as good as the former. The �nal result is a general learningalgorithm that outperforms both relational reinforement learning and hierarhial reinfore-ment learning. The algorithm is only evaluated in the Bloks World domain, and should befurther tested in other more realisti domains.

84

Appendix BACE Bloks World Spei�ationThis appendix shows the ACE on�guration �les used for the various Bloks World exper-iments throughout the report. We only show the on�guration �les used for �at relationalreinforement learning, sine the others are almost idential. The only di�erene is bak-ground knowledge for testing on other ations than the primitive Move(X,Y) ation.B.1 Bakground Knowledgeeq(E,X,X).above(E,X,Y) :- on(E,X,Y).above(E,X,Y) :- on(E,X,Z), above(E,Z,Y).ation_move(E,X,Y) :- ation(E,move(X,Y)).goal_on(E,A,B) :- goal(E,stak(A,B)).B.2 TILDE-RT Settings for Induing Q-treestilde_version('3.0').load_pakage(tilde).load(key).predit(qvalue(+ex,-value)).heuristi(eul).eulid(qvalue(E,X), X).tilde_mode(regression).onfidene_level(1).minimal_ases(1).output_options([prolog℄).ftest(1.0).talking(0).use_paks(0).exeute(tilde).exeute(quit). 85

APPENDIX B. ACE BLOCKS WORLD SPECIFICATIONroot((goal_on(E,A,B),ation_move(E,C,D))).typed_language(yes).type(lear(ex,blok)).type(on(ex,blok,blok)).type(eq(ex,blok,blok)).type(above(ex,blok,blok)).type(ation_move(ex,blok,blok)).type(goal_on(ex,blok,blok)).rmode(10: lear(+E,+-X)).rmode(10: on(+E,+-X,+-Y)).rmode(10: on(+E,+-X, floor)).rmode(10: eq(+E,+X,+Y)).rmode(10: eq(+E,+X,floor)).rmode(10: above(+E,+-X,+-Y)).rmode(10: ation_move(+E,+-X,+-Y)).rmode(10: ation_move(+E,+-X,floor)).B.3 TILDE Settings for Induing P -treestilde_version('3.0').load_pakage(tilde).load(key).predit(pvalue(+ex,-value)).onfidene_level(1).minimal_ases(1).output_options([prolog℄).ftest(1.0).talking(0).use_paks(0).root((goal_on(E,A,B),ation_move(E,C,D))).typed_language(yes).type(on(ex,blok,blok)).type(eq(ex,blok,blok)).type(above(ex,blok,blok)).type(lear(ex,blok)).type(ation_move(ex,blok,blok)).type(ation_makelear(ex,blok)).type(goal_on(ex,blok,blok)).rmode(10: lear(+E,+X)).rmode(10: on(+E,+X,+Y)).rmode(10: on(+E,+X, floor)).rmode(10: eq(+E,+X,+Y)).86

B.3. TILDE SETTINGS FOR INDUCING P -TREESrmode(10: eq(+E,+X,floor)).rmode(10: above(+E,+X,+Y)).rmode(10: ation_move(+E,+X,+Y)).rmode(10: ation_move(+E,+X,floor)).

87

APPENDIX B. ACE BLOCKS WORLD SPECIFICATION

88

Appendix CRelational MAXQ-Q LearningAlgorithmThis appendix shows pseudo-ode for a relational MAXQ-Q learning algorithm. The algo-rithm is further extended to produe loal P -trees. Pseudo-ode for produing global P -treesis illustrated in Table 5.2 in Chapter 5.C.1 Relational MAXQ-QTable C.2 shows the pseudo-ode for the relational MAXQ-Q algorithm REL-MAXQ-Q.The algorithm approximates V , C and C̃ using logial deision treesC.2 Learning Loal P -treesTo produe loal P -trees, the relational MAXQ-Q algorithm must be extended with thepseudo-ode illustrated in Table C.1. The pseudo-ode should be exeuted at the end of eahepisode. 1: For (all non-primitive Max nodes i)2: For (all observed states s in Max node i)3: For (all possible subtasks ak possible in state s)4: If (state/ation pair (s, ak)) is optimal5: aording to urrent approximation of Q) Then6: Generate example x = (s, ak, c) where c = 17: Else8: Generate example x = (s, ak, c) where c = 09: End If10: End For11: End For12: Update P i
e using TILDE to produe P i

e+1
using these examples (s, ak , c)13: End ForTable C.1: Learning loal P -trees using a relational MAXQ hierarhy.89

APPENDIX C. RELATIONAL MAXQ-Q LEARNING ALGORITHM
1: funtion REL-MAXQ-Q(MaxNode i, State s)2: Let seq = () be the sequene of states visited while exeuting i3: if (i is a primitive MaxNode)4: Exeute i, reeive rt = R(s′|s, a), and observe result state s′5: Generate example x = (s, i, vt+1) in ExamplesV where6: Vt+1 := (1− αt(i)) · Vt(i, s) + αt(i) · rt7: Push s onto the beginning of seq8: else9: Let count = 010: while (Ti(s) is false)11: Choose an ation a aording to the urrent exploration poliy πω(i, s)12: Let childSeq = REL-MAXQ-Q(a,s) where childSeq is the13: sequene of states visited exeuting ation a (in reverse order)14: Observe result state s′15: Let a∗ = arg maxa′

[

C̃t(i, s′, a′) + Vt(a′, s′)
]16: Let N = 117: for (eah s in childSeq) do18: Generate example x = (i, s, a, c) in ExamplesC where19: c = (1− αt(i)) · Ct(i, s′, a′) + αt(i) · γNexternalValue(s′)20: Generate example x̃ = (i, s, a, c̃) in Examples

C̃
where21: c̃ = (1− αt(i)) · C̃t(i, s′, a′) + αt(i) · γN internalValue(s′)22: with23: externalValue(s′) = [Ct(i, s′, a∗) + Vt(a∗, s′)], and24: internalValue(s′) =

[

R̃i(s
′) + C̃t(i, s′, a∗) + Vt(a∗, s′)

]25: N := N + 126: end for27: Append childSeq onto the front of seq28: s := s′29: end while30: end if31: Return seq32: end33: //main program34: Initialize V (i, s), C(i, s, a) and C̃(i, s, a) to trees produing the value 0 for all inputs35: Initialize ExamplesC , Examples
C̃

and ExamplesV to the empty set36: MAXQ-Q(root node 0, starting state s0)37: Update V using TILDE-RT to produe Ve+1 using ExamplesV38: Update C using TILDE-RT to produe Ce+1 using ExamplesC39: Update C̃ using TILDE-RT to produe C̃e+1 using Examples
C̃Table C.2: Relational MAXQ-Q algorithm.

90

BibliographyAndersen, C. C. S., Boesen, T. and Pedersen, D. K. (2005). Applying relational reinfore-ment learning to multi-agent environments. URL = http://www.s.aau.dk/library/gi-bin/detail.gi?id=1105611153.Blokeel, H. and Raedt, L. D. (1998). Top-Down Indution of First-Order Logial DeisionTrees, Arti�ial Intelligene 101(1-2): 285�297.*iteseer.ist.psu.edu/blokeel98topdown.htmlBlokeel, H., Raedt, L. D., Dehaspe, L., Ramon, J., Struyf, J. and Laer, W. V. (2004). TheACE Data Mining System User's Manual.Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classi�ation andRegression Trees., Wadsworth.Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforementlearning: An algorithm and performane omparisons, Pro. of the 12th IJCAI, Sidney,Australia, pp. 726�731.Dietterih, T. G. (2000). Hierarhial Reinforement Learning with the MAXQ Value Fun-tion Deomposition, J. Artif. Intell. Res. (JAIR) 13: 227�303.Driessens, K. and Dºeroski, S. (2004). Integrating Guidane into Relational ReinforementLearning, Mahine Learning 57: 271�304.Driessens, K. and Ramon, J. (2003). Relational instane based regression for relational rein-forement learning, Proeedings of the Twentieth International Conferene on MahineLearning, AAAI Press, pp. 123�130. URL = http://www.s.kuleuven.a.be/gi-bin-dtai/publ_info.pl?id=40845.Driessens, K., Ramon, J. and Blokeel, H. (2001). Speeding up relational reinforementlearning through the use of an inremental �rst order deision tree learner, LetureNotes in Computer Siene 2167.*iteseer.ist.psu.edu/driessens01speeding.htmlDºeroski, S., Raedt, L. D. and Driessens, K. (2001). Relational Reinforement Learning,Mahine Learning 43(1/2): 7�52.Fikes, R. E. and Nilsson, N. J. (1990). Strips: A new approah to the appliation of theoremproving to problem solving, in J. Allen, J. Hendler and A. Tate (eds), Readings inPlanning, Kaufmann, San Mateo, CA, pp. 88�97.91

BIBLIOGRAPHYGupta, N. and Nau, D. S. (1991). On the omplexity of bloks-world planning., TehnialReport TR 1991-74, The Institute for Systems Researh.Gärtner, T., Driessens, K. and Ramon, J. (n.d.). Graph kernels and gaussian proesses forrelational reinforement learning.*iteseer.ist.psu.edu/644898.htmlHauskreht, M., Meuleau, N., Kaelbling, L. P., Dean, T. and Boutilier, C. (1998). Hierarhialsolution of markov deision proesses using maro-ations., UAI, pp. 220�229.Jaakkola, T., Jordan, M. I. and Singh, S. P. (1994). Convergene of stohasti iterativedynami programming algorithms, in J. D. Cowan, G. Tesauro and J. Alspetor (eds),Advanes in Neural Information Proessing Systems, Vol. 6, Morgan Kaufmann Pub-lishers, In., pp. 703�710.*iteseer.ist.psu.edu/artile/jaakkola93onvergene.htmlParr, R. E. (1998). Hierarhial ontrol and learning for markov deision proesses.*iteseer.ist.psu.edu/parr98hierarhial.htmlQuinlan, J. R. (1993). C4.5: Programs for Mahine Learning, Morgan Kaufmann PublishersIn., San Franiso, CA, USA.Ronagliolo, S. and Tadepalli, P. (2004). Funtion Approximation in Hierarhial RelationalReinforement Learning, Proeedings of the ICML'04 workshop on Relational Reinfore-ment Learning.Rummery, G. A. and Niranjan, M. (1994). On-line q-learning using onnetionist sys-tems, Tehnial Report CUED/F-INFENG/TR 166, Engineering Department, Cam-bridge University.Russell, S. and Norvig, P. (2003). Arti�ial Intelligene: A Modern Approah, 2nd editionedn, Prentie-Hall, Englewood Cli�s, NJ.Sutton, R. S. and Barto, A. G. (1998). Reinforement Learning: An Introdution, MIT Press,Cambridge, MA. A Bradford Book.*http://www-anw.s.umass.edu/ rih/book/the-book.htmlWatkins, C. J. C. H. (1989). Learning from Delayed Rewards, PhD thesis, Cambridge Uni-versity, Cambridge, England.Referenes ontaining URLs are valid as of June 16, 2005.

92

