
Prefa
eThis thesis do
uments the work done by Carl Christian Sloth Andersen at Aalborg University,Department of Computer S
ien
e, during the spring semester of 2005.I would like to thank U�e Kjærul� for supervising the proje
t. I would also like to thankHendrik Blo
keel for letting me use the ACE data mining system, as well as Jan Ramon,Tom Croonenborghs and Jan Struyf for taking their time to answer my questions regardingthe system.A summary of the thesis
an be found in Appendix A.Aalborg, June 17, 2005

Carl Christian Sloth Andersen
i

ii

Contents
1 Introdu
tion 11.1 Problem Representation . 11.2 Outline of the Report . 21.3 Summary of Results . 22 Reinfor
ement Learning 32.1 Reinfor
ement Learning . 32.1.1 Ordered Poli
ies . 52.2 Learning the Q-Fun
tion . 52.3 Problem Domains . 72.3.1 The Taxi Domain . 72.3.2 The Blo
ks World Domain . 82.4 S
aling of Reinfor
ement learning . 92.5 Value Predi
tion . 102.6 Generalizing Poli
ies to New Environments 112.7 Summary . 123 Relational Reinfor
ement Learning 133.1 First-Order Predi
ate Logi
 . 133.2 Relational Domains . 143.3 Logi
al Representation of Poli
ies . 163.3.1 Ba
kground Knowledge . 173.3.2 The Poli
y Fun
tion . 183.4 Learning Logi
al Poli
ies . 193.4.1 Indu
tion of Logi
al De
ision Trees . 233.4.2 Finding Test Candidates . 24iii

3.4.3 Example Testing . 253.4.4 Quality Heuristi
s . 263.5 Experimental Evaluation of Relational Reinfor
ement Learning 263.6 Re
ent Work . 313.7 Summary . 314 Hierar
hi
al Reinfor
ement Learning 334.1 Task De
omposition . 344.1.1 Semi-Markov De
ision Pro
ess . 354.1.2 De�nition of a Subtask . 364.1.3 Hierar
hi
al Poli
ies . 374.2 Hierar
hi
al Semi-Markov Q-Learning . 384.3 MAXQ Value Fun
tion De
omposition . 394.3.1 De�nition of the Value Fun
tion De
omposition 414.3.2 MAXQ Graphs . 424.3.3 Di�erent Kinds of Optimality . 444.3.4 The MAXQ-Q Learning Algorithm . 464.4 State Abstra
tions . 504.4.1 Irrelevant Variable Elimination . 514.4.2 Funnel A
tions . 524.4.3 Stru
tural Constraints . 534.4.4 Overview of State Abstra
tions in the Taxi Domain 534.5 Non-Hierar
hi
al Exe
ution of a Hierar
hi
al Poli
y 544.6 Hierar
hi
al Exploration Problem . 554.7 Experimental Evaluation of the MAXQ Method 564.7.1 Performan
e of MAXQ Learning . 574.7.2 En
oding of Knowledge . 594.8 Related Work . 604.9 Summary . 605 Combining Hierar
hi
al and Relational Reinfor
ement Learning 615.1 MAXQ Hierar
hy for Blo
ks World . 615.1.1 Hierar
hi
al Exploration Problem . 625.2 Value and Completion Trees . 635.3 State Abstra
tions . 64iv

5.3.1 Manual and Semi-Automati
 State Abstra
tion 675.4 The Poli
y Fun
tion . 685.4.1 Lo
al P -Trees . 685.4.2 Global P -Tree . 705.5 Experiments . 715.5.1 Hand-Coded Logi
al State Abstra
tions 725.5.2 Flat Relational Reinfor
ement Learning 735.5.3 MAXQ Hierar
hy with Logi
al De
ision Trees 745.6 Automati
ally Constru
ted Hierar
hies . 755.7 Related Work . 775.8 Summary . 776 Con
lusion 796.1 Relational Reinfor
ement Learning . 796.2 Hierar
hi
al Reinfor
ement Learning . 796.3 Combining Relational and Hierar
hi
al Reinfor
ement Learning 806.4 Summary of Contributions . 806.5 Future Work . 81A Summary 83B ACE Blo
ks World Spe
i�
ation 85B.1 Ba
kground Knowledge . 85B.2 TILDE-RT Settings for Indu
ing Q-trees . 85B.3 TILDE Settings for Indu
ing P -trees . 86C Relational MAXQ-Q Learning Algorithm 89C.1 Relational MAXQ-Q . 89C.2 Learning Lo
al P -trees . 89
v

vi

Chapter 1Introdu
tionReinfor
ement Learning is the task of tea
hing an agent optimal behavior in its environmentby reinfor
ing good a
tions with rewards and poor a
tions with penalties. At any point intime, the environment is in a spe
i�
 state, and the agent is given a sele
tion of a
tions to
hoose from. The
hosen a
tion moves the environment from its
urrent state to a new statedi
tated by a transition probability distribution. Depending on the
hosen a
tion, the agentis rewarded or penalized. Sin
e the
hoi
e of a
tion alters the environment, it also dire
tlya�e
ts all subsequent rewards. The primary
hara
teristi
s of reinfor
ement learning aretrial-and-error and delayed rewards.Currently, there are three main approa
hes utilized in solving reinfor
ement learning prob-lems. These are dynami
 programming, Monte Carlo methods and temporal-di�eren
e learn-ing. This work fo
uses on Q-learning (Watkins, 1989) and SARSA (Rummery and Niran-jan, 1994), whi
h are two temporal-di�eren
e learning algorithms. It is a well-known fa
t thatboth algorithms produ
e optimal
ontrol poli
ies given the restri
tion of in�nite exploration.1.1 Problem RepresentationAs problems grow larger, representation be
omes an in
reasingly important issue. Many real-world problems and their solutions (i.e. a
ontrol poli
ies) are often impossible to representdire
tly in a
onventional table-based manner. This has given rise to various approa
hes toease the problem of a large state spa
e. In general, the state spa
e is either redu
ed by the useof state abstra
tions, or the agent is guided on the right path (thus avoiding a possibly largepart of the state spa
e). In this report we explore two of these approa
hes, namely relationalreinfor
ement learning (Dºeroski, Raedt and Driessens, 2001) and hierar
hi
al reinfor
ementlearning using the MAXQ value fun
tion de
omposition (Dietteri
h, 2000).The idea behind relational reinfor
ement learning is to
ombine traditional Q-learning withindu
tive logi
 programming and relational state des
riptions. This
ombination makesit possible to obtain state abstra
tions through generalization of the state spa
e. At thetime of writing, there exists no proofs of
onvergen
e for relational reinfor
ement learning,but the topi
 has been re
eiving an in
reasingly amount of attention. There are, how-ever, empiri
al results (although primarily on toy problems) indi
ating the feasibility ofthe approa
h (Dºeroski et al., 2001; Driessens, Ramon and Blo
keel, 2001; Driessens andDºeroski, 2004). 1

Hierar
hi
al reinfor
ement learning using the MAXQ value fun
tion builds upon the prin
ipleof earlier hierar
hi
al approa
hes (Hauskre
ht, Meuleau, Kaelbling, Dean and Boutilier, 1998;Parr, 1998). Besides being able to learn a
ontrol poli
y for a pro
edural de
omposition ofa primary task, the method also de
omposes the representation of the learned
ontrol poli
y(i.e. the value fun
tion). The de
omposition of the value fun
tion
reates the opportunityfor further state abstra
tions that would otherwise be impossible. The method
omes withtheoreti
al guarantees of
onvergen
e also proven by Dietteri
h (2000).Besides the re-exploration of these two existing methods, the major
ontribution of this workis to explore the advantages of
ombining the methods. That is, we investigate the possibilitiesof integrating indu
tive logi
 programming into hierar
hi
al reinfor
ement learning. We doso within the boundaries of the already existing theory for the two methods.1.2 Outline of the ReportThe outline of the report is as follows: Chapter 2
overs the basi
s of traditional reinfor
e-ment learning using the Q-learning and SARSA algorithms. The two example domains usedthroughout the report, the Blo
ks World domain and the Taxi domain, are furthermore in-trodu
ed in this
hapter. Chapter 3 explores the method of relational reinfor
ement learningand
on
ludes on the advantages of the method through experiments. In Chapter 4 we de-s
ribe hierar
hi
al reinfor
ement learning using the MAXQ value fun
tion de
omposition.This method is also evaluated through experiments. Finally, Chapter 5 introdu
es the possi-bilities of
ombining relational and hierar
hi
al reinfor
ement learning. We introdu
e variousapproa
hes towards the
ombination and
on
ludes on their performan
e though a series ofexperiments.1.3 Summary of ResultsCombining indu
tive logi
 programming with hierar
hi
al reinfor
ement learning
reates theopportunity for applying logi
al state abstra
tions to a task hierar
hy. These abstra
tions
an be applied manually or
an be found semi-automati
ally through the indu
tion of logi
alde
ision trees. Sin
e subtasks in a hierar
hy are simpler than their an
estor tasks, patternsof optimality are more easily found by relational reinfor
ement learning. This results in bothfaster
onvergen
e and smaller spa
e requirements for the learned
ontrol poli
y. This is the�rst result of this work.The se
ond result is the observation that automati
ally
onstru
ted task hierar
hies also needsome means of automati
ally dete
ting possible state abstra
tions. We show that logi
alde
ision trees are indeed a powerful tool for this purpose.
2

Chapter 2Reinfor
ement LearningReinfor
ement Learning is the task of tea
hing an agent optimal behavior in its environmentby reinfor
ing good a
tions with rewards and poor a
tions with penalties. At any point intime, the environment is in a spe
i�
 state, and the agent is given a sele
tion of a
tionsto
hoose from. The
hosen a
tion moves the environment from its
urrent state to a newstate di
tated by a transition probability distribution. Depending on the
hosen a
tion, theagent is rewarded or penalized. The environment of the agent is most often represented as aMarkov de
ision pro
ess.In Se
tion 2.1, we will setup a notation for des
ribing an environment as a Markov de
isionpro
ess. We will furthermore des
ribe a value and a
tion-value fun
tion that assigns a nu-meri
al value to ea
h state and state/a
tion pair in the environment. Given any of these twofun
tions, an optimal poli
y for a domain
an easily be derived. Se
tion 2.2 des
ribes howthe a
tion-value fun
tion
an be learned using Q-learning or SARSA. Following, Se
tion 2.3introdu
es two domains
ommonly used in reinfor
ement learning: the Taxi domain and theBlo
ks World domain. Using the Blo
ks World domain, Se
tion 2.4 and 2.5 dis
usses limi-tations of reinfor
ement learning, in
luding issues regarding s
aling and value predi
tion ofunobserved state/a
tion pairs.2.1 Reinfor
ement LearningReinfor
ement learning is tea
hing an agent optimal behavior in its environment simply byreinfor
ing its a
tions with rewards and penalties. The general
omponents of a reinfor
ementlearning problem are an agent and its environment. The agent intera
ts with the environmentin a sequen
e of dis
rete time steps t = {0, 1, 2, 3, . . .}. In ea
h time step, the agent observesthe state of the environment and
hooses an a
tion to perform. As a result of the
hosena
tion, the state of the environment is updated, and the agent re
eives a numeri
al reward (orpenalty) stating the quality of its
hoi
e of a
tion. The environment is most often representedas a Markov de
ision pro
ess:De�nition 1 (MDP). A Markov De
ision Pro
ess (MDP) is a pro
ess de�ned by a 5-tuple
〈S, A, T, R, T0〉:

• S: the set of states of the environment. A state s ∈ S is a value assignment to allexisting state variables. 3

CHAPTER 2. REINFORCEMENT LEARNING
• A: the set of a
tions. A(s) denotes the set of available a
tions in state s ∈ S.
• P : the transition probability distribution, where p(s′|s, a) is the probability of observingstate s′ ∈ S after performing a
tion a ∈ A(s) in state s ∈ S.
• R: the reward fun
tion, where R(s′|s, a) is the real-valued reward given to an agentwhen observing state s′ ∈ S after performing a
tion a ∈ A(s) in state s ∈ S.
• P0: the initial state probability distribution. P0(s) denotes the probability of startingin state s ∈ S.A solution to an MDP is a poli
y π(s, a) that maps ea
h state s ∈ S to a
orrespondingprobability distribution of the possible a
tions a ∈ A(s). The optimal solution to an MDP,denoted π∗, is a poli
y that maximizes the expe
ted
umulative reward given a horizon.There may exist several optimal poli
ies for an MDP.Given a poli
y π, ea
h state
an be assigned a number representing the numeri
al value ofstarting in that state, and thereafter following poli
y π. This is a
hieved by the value fun
tion

V π : S → R, whi
h
an be de�ned as
V π(s0) = E

[

H
∑

i=0

γiR(si, ai)

] (2.1)where H is the number of steps in the horizon, and γ is the dis
ount fa
tor, whi
h determinesthe weight put on future rewards. A distin
tion is normally made between episodi
 and
ontinuous tasks. An episodi
 task is restarted every time a terminating state is en
ountered,while a
ontinuous task runs forever. So, for a
ontinuous task with a in�nite horizon, H = ∞and 0 ≤ γ < 1. For episodi
 tasks with a �nite horizon and at least one absorbing reward-freestate, H is known and γ is usually set to 1. An absorbing reward-free state is a state in whi
hall transitions lead ba
k to the same state with a reward of zero. These states are a way ofunifying the notation of episodi
 and
ontinuous tasks, sin
e it theoreti
ally makes episodi
tasks
ontinuous (Sutton and Barto, 1998).The value fun
tion satis�es the Bellman equation for a �xed poli
y:
V π(s) =

∑

s′

P (s′|s, π(a)) [R(s′|s, π(a)) + γV π(s′)] (2.2)whi
h states that the value of a state s, given a poli
y π, is the sum of the immediate rewardof performing the a
tion π(s) and the dis
ounted value of the following state s′. Sin
e theremay exist several s′ given the spe
i�
 a
tion, the expe
ted value is
al
ulated by weighting
R(s′|s, π(a)) and γV π(s′) with the probability of observing ea
h possible s′. The optimalvalue fun
tion V ∗ is the value fun
tion that maximizes the expe
ted
umulative reward forall states in S. The optimal value fun
tion is the �xed point of the Bellman equation:

V ∗(s) = max
a

∑

s′

P (s′|s, a) [R(s′|s, a) + γV π(s′)] (2.3)Similar to the value fun
tion, an a
tion-value fun
tion Q(s, a)
an be de�ned. This fun
tionalso satis�es the Bellman equation and denotes the value of performing a
tion a in state s.The optimal Q-fun
tion, written Q∗(s, a), is the �xed point of the equation:4

2.2. LEARNING THE Q-FUNCTION
Q∗(s, a) =

∑

s′

P (s′|s, a)
[

R(s′|s, a) + γ max
a′

Q∗(s′, a′)
] (2.4)Using the Q-fun
tion, an optimal a
tion a in state s is an a
tion that maximizes Q(s, a):

π∗(s) = argmax
a

Q(s, a) (2.5)This is an important equation, be
ause it illustrates that if an agent learns the Q-fun
tion,it does not need to learn neither the reward fun
tion R or the transition probability distrib-ution P . Algorithms following this prin
iple are therefore referred to as model-free learningte
hniques.2.1.1 Ordered Poli
iesFor a given MDP, there exists only one optimal a
tion-value fun
tion. However, as mentioned,there might exists several optimal poli
ies for an MDP. These poli
ies di�er in the a
tions
hosen, when several a
tions in a state have the same highest Q value. If two a
tions havethe same value in state s, i.e. Q(s, a1) = Q(s, a2), then neither of them is preferred over theother. To solve this issue, an anti-symmetri
 transitive a
tion relation ω
an be de�ned as
ω(a1, a2) is true i� a
tion a1 is preferred to a
tion a2 in all statesThis establishes an a
tion ordering su
h that, if ω(a1, a2), then a
tion a1 is
hosen when

Q(s, a1) = Q(s, a2). A poli
y following an ordering ω is denoted πω, and is said to beordered. There exists only one optimal ordered poli
y πω for any MDP.2.2 Learning the Q-Fun
tionThe idea behind temporal-di�eren
e (TD) learning is to
ontinuously
reate approximationsof V or Q based on earlier approximations until
onvergen
e is a
hieved. This is very similarto dynami
 programming (DP), but where DP needs a perfe
t model of the environment,TD learning does not, and is therefore a model-free learning te
hnique. In pra
ti
e, theapproximations are most often
reated over a single time step, but
an in theory be madeover any number of steps. In fa
t, Monte-Carlo methods are a
tually a spe
ial
ase of TDlearning, where the approximations are
reated over all observed steps.In this report, we will make use of the two very similar TD algorithms Q-learning (Watkins,1989) and SARSA (Rummery and Niranjan, 1994). The obje
tive of both algorithms is tolearn the Q-fun
tion by
ontinuously making new approximations. The algorithms are shownin Table 2.1 and Table 2.2 respe
tively.
Q̂ denotes the
urrent approximation of the real Q-fun
tion. The learning fa
tor 0 ≤ αt ≤ 1is a number that indi
ates how mu
h weight should be put on new observations. It is oftena fun
tion of the
urrent state and a
tion at time step t:

αt(st, at) =
1

1 + numberOfVisits(st, at)
(2.6)5

CHAPTER 2. REINFORCEMENT LEARNING
1: For ea
h s, a initialize the table entry Q̂t(s, a) to zero2: Observe the
urrent state st3: while (st is not an absorbing reward-free state) do4: Sele
t an a
tion at in state st using exploration poli
y πe and exe
ute it5: Re
eive immediate reward r6: Observe the new state st+17: Update the table entry for Q̂t+1(st, at) as follows:8: Q̂t+1(st, at) := (1 − αt)Q̂t(st, at) + αt

[

r + γ maxat+1
Q̂t(st+1, at+1)

]9: st ← st+110: end while Table 2.1: The Q-learning algorithm.

1: For ea
h s, a initialize the table entry Q̂t(s, a) to zero2: Observe the
urrent state st3: Sele
t an a
tion a in state st using exploration poli
y πe4: while (st is not an absorbing reward-free state) do5: Exe
ute a
tion at6: Re
eive immediate reward r7: Observe the new state st+18: Sele
t an a
tion at+1 in state st+1 using exploration poli
y πe9: Update the table entry for Q̂t+1(st, at) as follows:10: Q̂t+1(st, at) := (1− αt)Q̂t(st, at) + αt

[

r + γQ̂t(st+1, at+1)
]11: st := st+112: at := at+113: end while Table 2.2: The SARSA algorithm.

6

2.3. PROBLEM DOMAINSTo enhan
e readability, the dependen
y on the st and at are often omitted in the notation.At ea
h time step, an exploration poli
y πe
an be derived from the approximated Q-fun
tion
ombined with a exploration te
hnique. A widely used te
hnique is Boltzmann explorationwhi
h assigns a probability to ea
h possible a
tion in a state based on a so-
alled temperaturevariable. Boltzmann exploration is de�ned as
P (ai|s) =

T−Q̂(s,ai)

∑

j T−Q̂(s,aj)
(2.7)where P (ai|s) is the probability of sele
ting a
tion ai given state s, and T > 0 is thetemperature stating the weight put on exploration. As T approa
hes 1, the explorationpoli
y be
omes more and more random. As T approa
hes 0, the poli
y be
omes greedy withrespe
t to the Q values of the respe
tive a
tions.The di�eren
e between Q-learning and SARSA lies in how the
urrent poli
y is used. Q-learning is said to be o�-poli
y be
ause it separates the
urrent poli
y from the update ofthe approximation Q̂. When the approximation of Q is updated, the a
tion at+1 in thenext time step is predi
ted to be the a
tion that maximizes the approximated Q-fun
tion.SARSA instead
hooses at+1 using the
urrent exploration poli
y, and is therefore an on-poli
y algorithm1.Both Q-learning and SARSA will
onverge to the optimal a
tion-value fun
tion if the agentfollows an exploration poli
y that performs every a
tion in every state in�nitely often, andif the sequen
e of αt values satisfy

lim
T→∞

T
∑

t=1

αt = ∞ and lim
T→∞

T
∑

t=1

α2
t < ∞ (2.8)Furthermore, if a �xed exploration poli
y is used to sele
t a
tions, SARSA will
onverge to thea
tion-value fun
tion of that poli
y (Jaakkola, Jordan and Singh, 1994; Jaakkola et al., 1994).2.3 Problem DomainsThroughout the report we will use two domains: the highly hierar
hi
al Taxi domain, andthe highly relational Blo
ks World domain. The Taxi domain was used in the introdu
tionof the hierar
hi
al MAXQ value fun
tion de
omposition by Dietteri
h (2000), and is a goodexample of the bene�ts of this approa
h. Similarly, the Blo
ks World domain was used inthe introdu
tion of relational reinfor
ement learning by Dºeroski et al. (2001) be
ause of itsrelational qualities. Both domains are episodi
.2.3.1 The Taxi DomainThe Taxi domain
onsists of a 5-by-5 grid with four spe
ially-designated lo
ations markedas R(red), B(blue), G(green) and Y(yellow). Initially, a taxi is pla
ed in a randomly
hosen1The name SARSA
omes from the one-step update tuple (st, at, r, st+1, at+1) 7

CHAPTER 2. REINFORCEMENT LEARNINGsquare. One of the four lo
ations is
hosen randomly to
ontain a passenger, and another asthe destination. The taxi must go to the lo
ation of the passenger, pi
k up the passenger, goto the destination, and then put down the passenger in the fewest possible steps. Figure 2.1illustrates the domain.
R G

Y B0

1

2

3

4

0 1 2 3 4Figure 2.1: The Taxi Domain.At ea
h time step, the taxi
an
hoose to navigate either north, south, east or west. It
analso
hoose to pi
k up or to put down the passenger. If the taxi attempts to navigate througha wall, or if it attempts to pi
kup or putdown a passenger illegally, it will stay in the samesquare. Ea
h su
h �illegal� a
tion yields a penalty of −10, while other legal a
tions yields apenalty of −1. The �nal putdown a
tion yields a reward of 20.There are 25 squares, 4 destinations and 5 lo
ations of the passenger (also
ounting insidethe taxi, whi
h we will denote T). The size of the state spa
e is
al
ulated as a fun
tion ofthe grid size g and the number of spe
ially-designated lo
ations n: size(g, n) = gn(n + 1).We will des
ribe a state in the Taxi domain as a ve
tor (x, y, p, d) where x and y denotes thelo
ation of the taxi, p denotes the lo
ation of the passenger, and d denotes the destinationof the passenger. The lo
ation of the taxi is expressed in
oordinates, while the lo
ation anddestination of the passenger are expressed using the spe
ially-designated lo
ations.2.3.2 The Blo
ks World DomainThe Blo
ks World domain
onsists of a number of unique blo
ks. Ea
h blo
k has a name,and
an either be on the �oor or on top of another blo
k. We will write on(a,b) if blo
k a ison top of blo
k b. A blo
k a is
lear if no other blo
ks is on top of it, denoted by
lear(a).At ea
h time step, a single blo
k
an either be moved to the �oor (if not already there), oronto any
lear blo
k. The task in Blo
ks World is to rea
h a spe
i�ed goal state in fewestpossible steps. Figure 2.2 shows an example of an initial state and a goal state. A goal statespe
i�
ation might be partial, meaning that the goal is a
hieved if a subset of the blo
ks areat the
orre
t pla
e. For instan
e, on(a,b) is a partial goal-state spe
i�
ation.Assuming a domain with three blo
ks {a, b,
}, the available a
tions are move(x, y) where
x 6= y, x ∈ {a, b,
} , y ∈ {a, b,
, floor}. The size of the state spa
e in
reases rapidly as moreblo
ks are added. The size
an be
al
ulated as:

size(n) =
n

∑

i=1

i(n − 1)!size(n− 1)

(n − 1)!8

2.4. SCALING OF REINFORCEMENT LEARNING
a

c

b c

a

b(a) Initial State (b) Goal StateFigure 2.2: The Blo
ks World domain.where n is the number of blo
ks. Table 2.3 shows the number of states for some small valuesof n.
n 1 2 3 4 5

size(n) 1 3 13 73 501
n 6 7 8 9 10

size(n) 4 051 37 633 394 353 4 596 553 58 941 091Table 2.3: The size of the Blo
ks World domain, where n is the number of blo
ks, and size(n)is the number of states.Optimal planning in Blo
ks World was proven to be NP-hard by (Gupta and Nau, 1991).Furthermore, the domain exhibits so-
alled deleted-
ondition intera
tions, whi
h has madeit a popular domain in planning literature. As an example of a deleted-
ondition intera
tion,
onsider again the initial state in Figure 2.2. Given the task of a
hieving on(a,b), wewould �rst need to a
hieve two
onditions:
lear(a) and
lear(b). Sin
e b is already
lear, we
lear a with the a
tion move(
,b). But now b is no longer
lear, be
ause wea

identally deleted one
ondition in order to a
hieve a se
ond
ondition. The key observationhere is that in the subtask of a
hieving
lear(a), the a
tion move(
,b) is just as optimalas move(
,floor). The presen
e of deleted-
ondition intera
tions makes Blo
ks World aninteresting domain to investigate when
ombined with hierar
hi
al reinfor
ement learning.Furthermore, the
omplexity of the domain is easily in
reased simply by adding more blo
ks.2.4 S
aling of Reinfor
ement learningAs we saw in the previous se
tion, the size of the state spa
e in the Blo
ks World domainqui
kly grows as more blo
ks are added. Another e�e
t of adding more blo
ks, is that thenumber of possible a
tions in almost every possible state also in
reases. Together, a largestate spa
e and many available a
tions
reate two primary
on
erns: the in
reasing spa
erequirements of the a
tion-value fun
tion, and the in
reasing time requirements of performingevery a
tion in every state su�
iently often. Imagine a s
enario with 10 blo
ks and a fullyspe
i�ed goal state. The probability of rea
hing that parti
ular goal state with initial randomexploration is very low. Not only is the goal state only 1 state out of 58 941 091 states, theagent must also
ontinuously
hose a
tions that takes it
loser to the goal state�amongstpossible many a
tions that will take it further away. The reward fun
tion may give rewardsfor rea
hing other states than the goal state, so in general this problem o

urs when therewards are too sparsely distributed. The te
hniques presented in this
hapter alone aresimply not able to handle su
h problems in any reasonable time. 9

CHAPTER 2. REINFORCEMENT LEARNINGTo illustrate the impa
t of in
reasing the number of blo
ks, we performed an experimentusing the Q-learning algorithm. The task of the agent was to rea
h the goal on(a,b) fromany initial state. The agent was trained for an in
reasing number of primitive steps, and was,with
ertain intervals, evaluated through 5 trials. Ea
h evaluation resulted in a mean errorper trial, whi
h is the mean di�eren
e between the optimal solution and the solution
hosenby the agent. The reason that we measured performan
e as a fun
tion of primitive trainingsteps, instead of
omplete episodes, is that an agent explores more (and thus learns more)during an episode as a domain be
omes in
reasingly
omplex�simply be
ause it will takeit a higher number of primitive steps to rea
h the goal. To avoid looping behavior, a trialwas interrupted if the agent used more than the maximum number of steps for any initialstate using the parti
ular number of blo
ks�e.g. for 3 blo
ks, the maximum number of stepsrequired to rea
h on(a,b) from any state is 4. In that
ase, the number of steps used by theagent was set to this maximum number. Figure 2.3 shows the results of the experiment.
3 Blocks

4 Blocks

5 Blocks

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 250 500 750 1000 1250 1500

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 2.3: Performan
e of traditional Q-learning in Blo
ks World using 3 to 5 blo
ks.For 3 blo
ks, optimal behavior is rea
hed before 100 primitive training steps. Using 4 blo
ks,optimal behavior is not rea
hed before after approximately 1 000 steps, and for 5 blo
ks,approximately 15 000 training steps was needed before
ompletely optimal behavior. Clearly,�nding an optimal poli
y using traditional Q-learning will be
ome infeasible very qui
kly asthe number of blo
ks in
rease.2.5 Value Predi
tionIt is unreasonable to expe
t an agent to explore the entire state spa
e of a very large domainsu�
iently for full
onvergen
e. It is even unreasonable to expe
t it to visit every stateon
e given some realisti
 time
onstraint. Nevertheless, we would like to be able to predi
tthe value of state/a
tions pairs that the agent has never visited. Unfortunately, the tabularrepresentation of the a
tion-value fun
tion dis
ussed so far does not allow value predi
tionfor unobserved state/a
tion pairs (at least not dire
tly).An alternative to a tabular representation is to
reate a stru
ture, whi
h performs indu
tiveinferen
e on the
omponents of a state/a
tion pair. For instan
e, given the goal on(a,b)and a state/a
tion pair with the a
tion move(a,b), the sum of all future rewards is going tobe 0, be
ause the goal will be a
hieved in the next time step. If su
h rules are learned, then10

2.6. GENERALIZING POLICIES TO NEW ENVIRONMENTSpredi
tions
an be made for all state/a
tion pairs. Of
ourse, the quality of the predi
tionswill depend on the amount of training, as well as the uniformity of the state/a
tion spa
e.The most
ommon method for indu
tive inferen
e is de
ision tree learning. Be
ause thea
tion-value fun
tion maps state/a
tion pairs to real-valued numbers, it
an be representedas a regression tree, where the nodes are tests on the state and a
tion, and the leafs are thenumeri
al values. Figure 2.4 shows a regression tree representing an a
tion-value fun
tionfor the goal on(a,b) using 3 blo
ks. Chapter 3 dis
usses the indu
tion of regression treesfurther. move(a,b)
b(0)y move(
,b)n

on(b,a) y
b(−3)y b(−2)n on(
,floor)n

move(b,a) y
b(−2)y move(
,a)n

b(−2)y b(−1)n
move(
,floor)n

on(b,a)y
b(−2)y b(−1)n move(a,
)n

b(−3)y move(b,
)n
b(−3)y b(−2)nFigure 2.4: An a
tion-value fun
tion for the goal on(a,b) using 3 blo
ks represented as aregression tree.2.6 Generalizing Poli
ies to New EnvironmentsPoli
ies using a tabular or regression tree representation, as dis
ussed in this
hapter, arevery spe
i�
 to the domain in whi
h they are learned. For example, if a poli
y is learnedin a domain with three blo
ks and the goal on(a,b), then it is not dire
tly useable if thegoal is
hanged to on(a,
) or if another blo
k is added. In fa
t, these two issues wereused by Dºeroski et al. (2001) as part of the motivation in their introdu
tion of relationalreinfor
ement learning, whi
h we will des
ribe in Chapter 3. While this te
hnique
ertainlysolves these issues, some progress
an be made without adding the same amount of overheadduring learning.The �rst issue regarding a
hange of goal state (e.g. from on(a,b) to on(a,
))
an be solvedby renaming blo
ks throughout the poli
y representation. Consider the regression tree inFigure 2.4 for the goal on(a,b). If we swit
h the names of ea
h b and
 in all nodes, thenthe tree represents a poli
y for the goal on(a,
). Although the time
omplexity of su
ha renaming me
hanism is linear in the number of nodes in the tree, it
an still be a time
onsuming task be
ause the number of nodes for most domains will be high.Adding another blo
k to a domain will render a learned tabular representation of Q useless.A regression tree
an, however, be used as a reasonable poli
y to speed up learning in the new11

CHAPTER 2. REINFORCEMENT LEARNINGdomain. Sin
e the Q-fun
tion basi
ally en
odes the distan
e to the goal, whi
h is obviouslydependent on the number of blo
ks, the old poli
y will of
ourse only be somewhat reasonable,and
ertainly not optimal. The reusability of a regression tree is enhan
ed signi�
antly inChapter 3.2.7 SummaryThis
hapter introdu
ed reinfor
ement learning as a learning te
hnique that uses rewards andpenalties to reinfor
e the a
tions of an agent. The environment in a reinfor
ement learningproblem is represented as a Markov de
ision pro
ess, whi
h, given a spe
i�
 ordering ofa
tions, has a unique optimal poli
y. A poli
y
an be derived from the a
tion-value fun
tion,whi
h maps state/a
tion pairs to their expe
ted
umulative reward for some horizon.The two most
ommon temporal-di�eren
e algorithms for learning the a
tion-value fun
tionare the o�-poli
y Q-learning and the on-poli
y SARSA. The two algorithms di�er only intheir predi
tion of the a
tion
hosen in the next time step, and they both
onverge givenin�nite exploration and
ertain restri
tions on the learning fa
tor.The Taxi domain, whi
h is well suited for hierar
hi
al de
omposition, was introdu
ed and willbe the primary example in Chapter 4 for showing the advantages of hierar
hi
al reinfor
ementlearning.The relational domain Blo
ks World was also introdu
ed, and was used do demonstratethe limitations of traditional reinfor
ement learning when using a tabular representation ofthe a
tion-value fun
tion. The problem of predi
ting unobserved values and generalizing tosimilar domains
an be handled, to some extent, by the use of regression trees, but otherlimitations still exist. These in
lude learning anything reasonable in very large domains butalso learning more general poli
ies without the need for renaming obje
ts.

12

Chapter 3Relational Reinfor
ement LearningThe previous
hapter introdu
ed reinfor
ement learning, and des
ribed the di�
ulties thatthe te
hnique must over
ome. This
hapter des
ribes Relational Reinfor
ement Learning(RRL), whi
h was introdu
ed by Dºeroski et al. (2001). The idea behind RRL is to
ombinereinfor
ement learning with indu
tive �rst order predi
ate logi
 with variables. In its
urrentstate, this
ombination takes a step towards generalizing agent poli
ies to similar domainsusing stru
tural properties. Furthermore, the use of indu
tive logi
 also
reates the possibilityof applying state abstra
tions, whi
h results in a more
ompa
t poli
y representation.Se
tion 3.1 introdu
es �rst-order predi
ate logi
 as a representation language for relationalreinfor
ement problems. In Se
tion 3.2, we des
ribe relational MDPs and give a
ompletespe
i�
ation of the Blo
ks World domain. In RRL, poli
ies are represented using logi
alde
ision trees. These are des
ribed in Se
tion 3.3, while Se
tion 3.4 explains how they
an belearned using modi�ed versions of the Q-learning algorithm. In Se
tion 3.5, experiments areperformed to illustrate the performan
e of RRL
ompared to reinfor
ement learning using apropositional tabular representation. The results of the experiments also show the extend towhi
h poli
ies
an be generalized to similar domains. Finally, in Se
tion 3.6 we dis
us re
entwork in the �eld of relational reinfor
ement learning.3.1 First-Order Predi
ate Logi
Learning in any domain requires the use of an appropriate representation language. Anappropriate language should have enough expressive power to represent a domain and a givenproblem
ompletely. In pra
ti
e, the language should also allow a

eptable performan
e whilelearning.When we introdu
ed the Taxi domain in Chapter 2, we used a propositional representation todes
ribe the state spa
e. This representation is very suitable for the Taxi domain, primarilybe
ause a grid world is very naturally represented using
oordinates.When we introdu
ed Blo
ks World, however, we des
ribed a state using �rst-order predi
atelogi
 with predi
ates su
h as on(a,b) and
lear(a). Blo
ks World
an easily be representedusing a propositional language and
oordinates su
h as the Taxi domain, but it would seemsomewhat non-intuitive. This is be
ause the high-level logi
al language dire
tly en
apsulatesthe
on
epts that are important in Blo
ks World. For instan
e, the answers to questions su
h13

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGas �whi
h blo
k is on top of blo
k a?� and �is blo
k a
lear?� are dire
tly part of the statedes
ription.First-order logi
 allows the use of universal and existential quanti�
ations, whi
h make thespe
i�
ation of appropriate domains mu
h easier. For instan
e, to spe
ify the available movea
tions in a Blo
ks World state, we
an set up a premise using the following rule (in Prolognotation): move(X,Y) :-
lear(X),
lear(Y), not(X=Y)whi
h states that the
on
lusion move(X,Y) holds when any two di�erent blo
ks X and Y are
lear (ignoring the �oor for now). Noti
e that here, X and Y are variables, and exe
uting thequery ?-move(X,Y) (with X and Y un-instantiated), we are in fa
t asking if there exists anytwo blo
ks for whi
h the premise of the rule holds. Given a state where both
lear(a) and
lear(b) holds, the
on
lusions move(a,b) and move(b,a)
an be automati
ally inferred.For further information on �rst order predi
ate logi
 refer to e.g. Russell and Norvig (2003).3.2 Relational DomainsA relational domain is often des
ribed as the existing relations between obje
ts. In general,a relational domain
an be de�ned as a relational Markov de
ision pro
ess:De�nition 2 (RMDP). A Relational Markov De
ision Pro
ess (RMDP) is a pro
ess de�nedby a 7-tuple 〈O, F, S, A, P, R, P0〉:
• O: the set of obje
ts.
• F : the set of predi
ate relations over O.
• S: the set of all legal states over O and F .
• A: the set of all possible instantiated a
tions.
• P, R, P0: Un
hanged from De�nition 1.The above de�nition in
ludes the sets F and A, whi
h are both exponential in the numberof obje
ts in O. These sets
an be represented
ompa
tly by using logi
. For Blo
ks Worldwith three blo
ks {a, b,
}, we have that

O = {a, b,
},
F = {on(X,Y),
lear(X)|X, Y ∈ O, X 6= Y}, and
A = {move(X,Y)|X, Y ∈ O, X 6= Y}.Noti
e that the
ontents of the sets have not been
hanged, and their sizes are still exponentialin the number of obje
ts. It is only their representation that has been minimized.In pra
ti
e, as des
ribed in Chapter 2, we need to know the available a
tions A(s) in any state

s. We also need to represent the transition probability distribution P
ompa
tly. To a
hievethis, the a
tions available in a state, and the transitions they invoke,
an be represented in14

3.2. RELATIONAL DOMAINSa STRIPS like manner (Fikes and Nilsson, 1990). STRIPS is a planning system that useslogi
al formulas to represent a
tion pre
onditions and the transitions invoked by a
tions.Ea
h a
tion has a delete list and an add list, and its transition is performed by deleting allinformation in the delete list from the
urrent state, and then adding all information fromthe add list. For Blo
ks World, we de�ne the a
tion pre
onditions as the predi
ate pre, andthe transition probability distribution using the predi
ate delta. Table 3.1 illustrates thede�nition used by (Dºeroski et al., 2001).pre(S,move(X,Y)) :-holds(S,[
lear(X),
lear(Y), not(X=Y), not(on(X,floor)℄)).pre(S,move(X,Y)) :-holds(S,[
lear(X),
lear(Y), not(X=Y), on(X,floor)℄).pre(S,move(X,floor)) :-holds(S,[
lear(X), not(on(X,floor))℄).holds(S,[℄).holds(S,[not X=Y | R℄) :-not X=Y, !, holds(S,R).holds(S,[not A | R℄) :-not member(A,S), holds(S,R).holds(S,[A | R℄) :-member(A,S), holds(S,R).delta(S,move(X,Y),NextS) :-holds(S, [
lear(X),
lear(Y), not(X=Y), not(on(X,floor))℄),delete([
lear(Y),on(X,Z)℄, S, S1),add([
lear(Z),on(X,Y)℄, S1, NextS).delta(S, move(X,Y), NextS) :-holds(S, [
lear(X),
lear(Y), not(X=Y), on(X,floor)℄),delete([
lear(Y),on(X,floor)℄, S, S1),add([on(X,Y)℄, S1, NextS).delta(S, move(X,floor), NextS) :-holds(S, [
lear(X),not on(X,floor)℄),delete([on(X,Z)℄, S, S1),add([
lear(Z),on(X,floor)℄, S1, NextS).Table 3.1: Spe
i�
ation of the transition system and a
tion pre
onditions for Blo
ks WorldThe auxiliary predi
ate holds takes a state S and a list of relations1. If all relations inthe list holds in the state, then the predi
ate su

eeds, otherwise it fails. The pre
onditionpredi
ate pre takes as input a state S and an a
tion move(X,Y). If the a
tion is allowed inS then pre su

eeds, otherwise it fails. Finally, the input to delta is also a state S and ana
tion move(X,Y). The last parameter NextS is the output of the predi
ate and must be anun-instantiated variable when the predi
ate is
alled. If the a
tion is legal a

ording to pre,then NextS will be uni�ed with the result of exe
uting the a
tion (i.e. NextS is instantiatedas a side-e�e
t).A state s ∈ S, whi
h we will represent in list notation, is any legal state over O and F . Forinstan
e, the state1While it is standard to use upper-
ase letters for sets and lower-
ase letters for set elements, Prolognotation unfortunately requires variables to be upper-
ase. 15

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING[
lear(a), on(a,b), on(b,
), on(
,floor)℄is legal be
ause it represents a s
enario that is possible to build using three blo
ks. However,the state [on(a,b),on(b,
),on(
,a)℄ is not legal, be
ause no su
h s
enario
an be built.For some appli
ations, it might be ne
essary to in
lude a more formal notion of legal statesin the RMDP de�nition.To
omplete the formal spe
i�
ation of Blo
ks World, the penalty for any a
tion is set to −1.This will make the agent
omplete goals in the fewest possible steps to avoid more penaltiesin future time steps (sin
e there are no more penalties after rea
hing the goal state). It willalso make the Q values easier to read (e.g. Q(s, a) = −4 means that performing a
tion a instate s will result in the goal state being rea
hed in 4 steps). The probability of being aninitial state is equal for all states.3.3 Logi
al Representation of Poli
iesIn itself, a relational MDP does not solve any of the problems dis
ussed in Chapter 2. Inthis se
tion, we will de�ne a logi
al representation of the a
tion-value fun
tion
alled Q-trees (Dºeroski et al., 2001). We will also show how ba
kground knowledge
an be in
orpo-rated into Q-trees, thereby a
hieving a higher level of abstra
tion.In Chapter 2, the Q fun
tion was represented both as a table and as a regression tree to obtainthe possibility of value predi
tion. A problem with both of these representations is that any
hanges to the environment or goal spe
i�
ation requires re-learning from s
rat
h. Althoughthe latter
an be a
hieved by the use of a renaming me
hanism (as des
ribed in Se
tion 2.6),using variables will result in far more elegant solution. A spe
ial kind of de
ision tree, whi
huses �rst order logi
, was formally introdu
ed by Blo
keel and Raedt (1998). These treesmake use of variables that makes it possible to avoid dire
t referen
es to obje
ts.De�nition 3 (FOLDT). A �rst order logi
al de
ision tree (FOLDT) is a binary de
isiontree in whi
h the following applies:
• The nodes of the tree
ontain a
onjun
tion of predi
ates.
• Di�erent nodes may share variables, under the following restri
tion: a variable that isintrodu
ed in a node (whi
h means that it does not o

ur in higher nodes) must noto

ur in the right bran
h of that node (i.e. the �no� bran
h).Ea
h node in an FOLDT
ontains a predi
ate or a
onjun
tion of predi
ates (whi
h is alsojust a predi
ate). A predi
ate may
ontain one or more variables that will be instantiatedwith di�erent values as the predi
ate is applied to various examples. Here, an example issimply the state, a
tion and goal of a spe
i�
 time step. Given a node and an example, a nodepredi
ate either holds or does not hold. If it does not hold, then the example is sorted downthe right bran
h (the no bran
h) and no variables are instantiated. Otherwise, the exampleis sorted down the left bran
h (the yes bran
h), and any existing variables are instantiatedto the values that allowed the predi
ate to hold. Figure 3.1 illustrates an FOLDT wherethe variable C is shared between two nodes. Ea
h leaf is a numeri
al value�in this
asea (random) Q-value. A logi
al regression tree representing a Q-fun
tion is referred to as a

Q-tree.16

3.3. LOGICAL REPRESENTATION OF POLICIESroot: goal(on(A,B))on(A,C)on(C,floor)y
b(−1) y

b(−2)n b(−3)n
Figure 3.1: A FOLDT illustrating variable sharing.The illustrated Q-tree
ontains an extra root with the predi
ate goal(on(A,B)). This extraroot is used for predi
ates that always hold given the state/a
tion spa
e and the goal ofthe agent. The point of the extra root is to instantiate relevant variables. In this
ase,the goal is to always have a spe
i�
 blo
k on top of another spe
i�
 blo
k, so the predi
ategoal(on(A,B)) will always hold (be
ause the variables A and B
an be any blo
ks). However,in the rest of the tree, A and B will be instantiated to the blo
ks in the a
tual goal state.For example, given the goal goal(on(b,
)), A will be instantiated to b and B to
. Thesame way as the goal is wrapped in a goal predi
ate, we will also wrap a
tions in an a
tionpredi
ate.The restri
tion of not referring to a variable introdu
ed by a parti
ular node in its right bran
hmakes sense when observing Figure 3.1. The predi
ate on(A,C) in the tree introdu
es thevariable C. It tests if A is on top of any blo
k C. If the predi
ate does not hold, then it makesno sense to referen
e C again2, sin
e there is no su
h blo
k (i.e. C will remain un-instantiated).A Q-tree
an be en
oded using a Prolog rule stru
ture, where ea
h leaf is en
oded by exa
tlyone rule. The premise of a leaf rule is the predi
ates en
ountered on the path from the rootof the Q-tree to the parti
ular leaf. The predi
ates that do not hold on the path
an safely beignored by using the
ut-operator (!). The
ut-operator denotes that if the rule in questionholds, then no other rules are
onsidered. Table 3.2 shows the rule stru
ture representing the

Q-tree of Figure 3.1.q(-1) :- goal(on(A,B)), on(A,C), on(C,floor), !.q(-2) :- goal(on(A,B)), on(A,C), !.q(-3) :- goal(on(A,B)), !.Table 3.2: Prolog rule stru
ture representing the Q-tree of Figure 3.1.Predi
ates that do not hold on the path to a spe
i�
 leaf are en
oded in the ordering of rules.For instan
e, the rightmost leaf in Figure 3.1 with a value of −3 is represented by the lastrule above. If this rule is
onsidered, then none of the rules above have su

eeded.3.3.1 Ba
kground KnowledgeA predi
ate used inside the node of a Q-tree
an be any predi
ate from the set of predi
aterelations F (see De�nition 2). It
an also be a predi
ate present in some spe
i�ed ba
kgroundknowledge. In RRL, ba
kground knowledge is simply predi
ates whi
h indu
e fa
ts and2Te
hni
ally, the name C
ould be reused, but semanti
ally it would be a di�erent variable. 17

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGrelations on a higher level of abstra
tion using the predi
ates present in F . For Blo
ksWorld, an example of a ba
kground knowledge predi
ate is the above(X,Y) predi
ate:above(X,Y) :- on(X,Y).above(X,Y) :- on(X,Z), above(Z,Y).The predi
ate above(X,Y) holds if either X is on Y, or if X is on some other blo
k Z, andZ is above Y. The use of ba
kground knowledge has two e�e
ts: �rst, the representation ofa Q-tree will most likely be more
ompa
t, and se
ond, it
an make a poli
y less spe
i�
for the environment in whi
h it was learned. While the �rst e�e
t is obvious, the se
ond iseasily illustrated with an example. Consider an environment with 4 blo
ks (a, b,
 and d)and the goal on(a,b). Before being able to perform the a
tion move(a,b) whi
h
ompletesthe goal, a and b must �rst be
lear. While the agent
lears a, it should obviously not moveblo
ks onto the sta
k in whi
h b is lo
ated (or vi
e versa). Doing so would not bring it any
loser to the ultimate goal. Thus, the agent should not perform any a
tion move(X,Y) if eitherabove(Y,a) or above(Y,b) is true. It turns out that an optimal poli
y for a
hieving on(A,B)for any A and B with any number of blo
ks
an be spe
i�ed using the above predi
ate:optimal(goal(on(A,B)),move(A,B)) :- !.optimal(goal(on(A,B)),move(X,Y)) :- above(X,A), not(above(Y,B)), !.optimal(goal(on(A,B)),move(X,Y)) :- above(X,B), not(above(Y,A)), !.Two other
ommon goals of the Blo
ks World domain is unsta
k and sta
k. The goalunsta
k is a
hieved if all blo
ks are on the �oor, and sta
k is a
hieved if all blo
ks are inthe same sta
k. While an optimal poli
y for unsta
k is straightforward to de�ne withoutba
kground knowledge, this is not possible for sta
k if the independen
e of the number ofblo
ks is to be maintained. From any given initial state, optimal behavior is to lo
ate thehighest sta
k and then keep moving blo
ks onto that sta
k. The optimal poli
ies for bothsta
k and unsta
k
an be spe
i�ed asoptimal(unsta
k,move(X,floor)) :- on(X,Y), not(Y=floor).optimal(sta
k,move(X,Y)) :- height(Y,HY), not(height(Z,HZ), HZ > HY).where height(X,H) is ba
kground knowledge that instantiates the variable H with a numberindi
ating the height of blo
k X. The unsta
k rule is read as: the a
tion move(X,floor) isoptimal if X is not already on the �oor. The sta
k rule is read as: the a
tion move(X,Y) isoptimal if Y is in a sta
k of height HY, and no blo
k Z in a higher sta
k exists.3.3.2 The Poli
y Fun
tionA major part of the motivation behind RRL is to enable generalization of learned poli
iesto other similar domains. As brie�y mentioned in the previous Chapter, the Q-fun
tion, inprin
iple, en
odes the distan
e to the goal after performing a state/a
tion pair. In Blo
ksWorld, this distan
e is partly determined by the number of blo
ks in the domain. In e�e
t,if a new blo
k is added, then the distan
e for many state/a
tion pairs is
hanged with the
onsequen
e of making the old poli
y perform worse.To avoid the dire
t en
oding of distan
e, Dºeroski et al. (2001) introdu
ed the poli
y fun
tion
P , whi
h en
odes the optimality of ea
h a
tion a in ea
h state s:18

3.4. LEARNING LOGICAL POLICIES
P (s, a) =

{

1, if a ∈ π∗(s)
0, otherwise (3.1)In general, the P -fun
tion
an be represented more
ompa
tly than the Q-fun
tion. Sin
eboth the Q and P fun
tion
an be de�ned in terms of the optimal poli
y π∗, the de�nitionof P
an be rewritten in terms of Q:

P (s, a) =

{

1, if a ∈ argmaxa Q(s, a)
0, otherwise (3.2)This de�nition of P means that it is still su�
ient to learn the Q fun
tion, sin
e P
an thenbe dire
tly derived. The P fun
tion
an be represented as a logi
al
lassi�
ation tree denotedas a P -tree. Figure 3.2 shows the optimal P -tree for the goal on(A,B) using three blo
ks.root: goal(on(A,B)), a
tion(move(C,D))above(C,A)equal(B,D) y

b(0) y
b(1)n a
tion(move(A,B))n

b(1) y on(B,D)n

lear(B)y

b(0) y on(A,B)n
b(0) y

b(1)n
b(0)n

Figure 3.2: The optimal P -tree for the goal on(A,B) using three blo
ks.The illustrated P -tree also shows that su�
ient learning is needed to a
hieve a truly generalpoli
y. Clearly, the left bran
h of the tree is not optimal if more blo
ks are added. It statesthat, given the goal on(A,B) and the a
tion move(C,D), an a
tion is optimal if C is above Aand D is not equal to B. In other words, it is optimal to move blo
ks away from A as long asthey are not moved dire
tly onto B. Obviously, a more general tree should en
ode that blo
ksmust not be moved onto B or any blo
k above B. However, an agent trained using only threeblo
ks would never have en
ountered a s
enario where su
h a rule was ne
essary. This meansthat true generality in similar domains (as Blo
ks World with a varying number of blo
ks)
an only be a
hieved if training is done in su�
iently
omplex instan
es of the domains. ForBlo
ks World and the goal on(A,B), the example just dis
ussed suggests that the minimumnumber of blo
ks needed in training to obtain a general poli
y is four.3.4 Learning Logi
al Poli
iesThe Q-learning and SARSA algorithms des
ribed in Chapter 2 are both online algorithmsmeaning that the agent poli
y is updated at ea
h time step. This is straightforward sin
e19

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGthey both use a tabular representation for the Q fun
tion. When
hanging the representationto a (logi
al) de
ision tree, Q is often not updated before at the end of ea
h episode makingit o�-line learning (the agent does not learn while being online). This is done to avoid theoverhead of updating the Q-tree at ea
h time step.A Q-tree is indu
ed by using examples generated over the state/a
tion pairs en
ounteredover previous episodes. An example is
reated for ea
h state/a
tion pair, the goal, and theestimated Q value. As in Chapter 2, this estimation is made by predi
ting the a
tion takenin the next time step. Table 3.3 shows four examples from Blo
ks World.Example 1 Example 2goal(on(a,b)). goal(on(a,b)).a
tion(move(b,floor)). a
tion(move(b,a)).on(a,floor). on(a,floor).on(b,
). on(b,
).on(
,floor). on(
,floor).
lear(a).
lear(a).
lear(b).
lear(b).q(-3). q(-2).Example 3 Example 4goal(on(a,b)). goal(on(a,b)).a
tion(move(a,b)). a
tion(move(a,floor)).on(a,floor). on(a,b).on(b,
). on(b,
).on(
,floor). on(
,floor).
lear(a).
lear(a).
lear(b). q(0).q(-1). Table 3.3: Blo
ks World examples.In example 4 in the table, the goal state is already rea
hed and its Q value is therefore set to
0. By generating su
h an example per episode, the generated Q-trees will qui
kly
onvergetowards returning 0 for goal states.The Q-RRL algorithm for learning Q-trees is illustrated in Table 3.4, and it is very similarto the traditional Q-learning algorithm (see Table 2.1). Instead of updating Q̂ during anepisode, examples are generated at the end of ea
h episode and a new Q-tree is indu
edusing TILDE-RT (Blo
keel and Raedt, 1998) and all the examples observed so far. TheTILDE/TILDE-RT algorithms are des
ribed in Se
tion 3.4.1.The Q-RRL algorithm learns the Q-fun
tion, but we would also like to learn the more generalpoli
y fun
tion P . In Se
tion 3.3.2 it was des
ribed how P
an be de�ned from Q. Thisde�nition
an be dire
tly used to extend the Q-RRL algorithm to produ
e P -RRL. The twoalgorithms are identi
al ex
ept that the pseudo-
ode in Table 3.5 is appended to the end of
P -RRL.While the P -fun
tion is obviously more
ompa
t than the Q-fun
tion, experiments
ondu
tedby Dºeroski et al. (2001) show that it does in fa
t also perform better in most
ases. Sin
e
P is derived from Q, this seems strange at �rst. The �rst observation to make is that theoptimality of an a
tion does not always depend on the distan
e to the goal. The se
ondobservation is that using a logi
al de
ision tree representation of P (as in P -RRL algorithm),20

3.4. LEARNING LOGICAL POLICIES
1: Initialize Q̂0 to assign 0 to all (s, a) pairs2: Initialize Examples to the empty set3: e := 14: while (e < EpisodeCount) do5: e := e + 16: i := 07: Generate a random state s08: while not(goal(st)) do9: Sele
t a
tion at in state st using exploration poli
y πe and exe
ute it10: Re
eive immediate reward r11: Observe the new state st+112: i := i + 113: end while14: for (j = i− 1 to 0) do15: Generate example x = (sj , aj , q̂j) where16: q̂j := (1− αe)Q̂e−1(sj+1, a) + αe

[

rj + γ maxa Q̂e(sj+1, a)
]17: if (xold = (sj , aj , q̂old) exists in Examples) then18: Repla
e xold with x in Examples19: else20: Add x to Examples21: end if22: Update Q̂e using TILDE-RT to produ
e Q̂e+1 using Examples23: end for24: end while Table 3.4: The Q-RRL algorithm.

1: for (all observed states s) do2: for (all a
tions ak possible in state s) do3: if (state/a
tion pair (s, ak)) is optimal a

ording to Q̂e+1) then4: Generate example (s, ak, c) where c = 15: else6: Generate example (s, ak, c) where c = 07: end if8: end for9: end for10: Update P̂e using TILDE to produ
e P̂e+1 using these examples (s, ak, c)Table 3.5: Learning P -trees from Q-trees within the P -RRL algorithm.
21

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGit is really only the examples that are derived dire
tly from the Q-fun
tion. These examples
ontain information about the optimality of a
tions, but not about the distan
e to the goal,whi
h has been abstra
ted away. The indu
tion of the P -tree is therefore a task of generalizingover the optimality of a
tions. There are, in prin
iple, two ways that a P -tree
an outperforma Q-tree:
• The examples do not
over the entire state/a
tion spa
e, however all Q-values are
orre
t:This s
enario is equivalent to moving the learned poli
y to a larger and more
omplexdomain. The key observation here is that, using a Q-tree, the optimality of a state/a
-tion pair is determined not only by the Q value of the pair, but also by the values of allother available a
tions in the same state. This means that a single error in the Q valuesof any of these a
tions
an
hange what is
onsidered the optimal a
tion. Furthermore,although a Q-tree partitions a limited part of the state/a
tion spa
e
orre
tly (intopairs with various distan
es to the goal), this might not be so for the entire state/a
-tion spa
e. Un-observed state/a
tion pairs might even have Q-values outside the s
opeof the learned Q-tree. Together, these issues will a�e
t the performan
e of a Q-tree forun-observed state/a
tion pairs. Figure 3.3 illustrates how the in
orre
t Q value of apreviously unobserved a
tion
an shift what is
onsidered optimal when using a Q-tree.In this
ase, the goal is on(a,b) and we assume that the
urrent Q-tree is optimal fora domain with 3 blo
ks. The a
tion move(d,
) is previously unobserved be
ause it isintrodu
ed by adding the new blo
k d to the domain.

a

b

c

c

a

b

d

c
move(c,floor)
q = -3

move(c,floor)
q = -3

d

3 blocks 4 blocks

c

move(d,c)
q = -3

Figure 3.3: Previously unobserved a
tions
an only be assigned Q-values within the limit ofthe
urrent approximation of Q. Introdu
ing new blo
ks will therefore result in a
tions thatare assigned wrong Q-values.The optimal (and only possible) a
tion, when using 3 blo
s in the illustrated state, ismove(
,floor). This a
tion yields a Q value of −3. Adding the new blo
k d introdu
esthe a
tion move(d,
), whi
h is of
ourse not optimal sin
e it is a
tually a step furtheraway from the goal state. However, the Q-tree would possibly assign this unobserveda
tion the same value as move(
,floor) be
ause of the similarity of the state. Worsethan that, it
ould happen that move(d,
) is assigned an even lower Q-value be
auseof similarity with some other state/a
tion pair. Noti
e that when using 3 blo
ks, themaximal value in an optimal Q-tree for any state/a
ion pair is −4. However, the real
Q-value of the a
tion move(d,
) in Figure 3.3 is −5. Thus, in some states, the notionof optimality will
hange. To whi
h extend depends on the Q-tree.In the examples used during the indu
tion of a P -tree, an a
tion is either optimalor not optimal�thus the distan
e to the goal has been abstra
ted away. Given thatthe known state/a
tion spa
e is su�
iently large, a reasonable set of rules, separating22

3.4. LEARNING LOGICAL POLICIESoptimal a
tions from non-optimal a
tions,
an most likely be found. The performan
eof su
h rules is only a�e
ted by wether or not there exists stru
tural similarities betweenoptimal a
tions. In the s
enario illustrated in Figure 3.3, blo
k d is moved on top ofa sta
k
ontaining a and b (blo
ks in the goal state). Su
h an a
tion is very unlikelyto be
lassi�ed as optimal in a P -tree, simply be
ause it does not show any stru
turalsimilarities with real optimal a
tions in Blo
ks World.
• The examples
over the entire state/a
tion spa
e, but some Q-values arewrong:Depending on the tests and pruning heuristi
s available during indu
tion of a P -tree,a
tions that are not optimal a

ording to the examples, but whi
h are in fa
t optimal,will be grouped with other optimal a
tions be
ause of their stru
tural similarities (giventhat su
h errors are limited). During indu
tion, the tests
hosen for the tree willpartition presumably optimal and non-optimal a
tions in the best possible way. Butat some point, nodes will be rea
hed where the set of examples
annot be partitionedany further using the available tests. Be
ause of their similarities, true optimal a
tionstend to end up together in su
h leaves.Sin
e a better general performan
e
an be expe
ted from using the P -fun
tion, it is alsofeasible to
hange the Boltzmann exploration te
hnique to utilize the P -fun
tion (refer toSe
tion 2.2):

P (ai|s) =
T−P̂(s,ai)

∑

j T−P̂(s,aj)
(3.3)After the P -fun
tion has been learned as a P -tree, it
an be queried to �nd the optimal a
tionin any given state. The
hanges and extensions made in this se
tion have only been appliedto the Q-learning algorithm. SARSA
an be updated similarly for relational reinfor
ementlearning.3.4.1 Indu
tion of Logi
al De
ision TreesIn this work, the TILDE and TILDE-RT algorithms developed by Blo
keel and Raedt (1998)have been used to grow P -trees and Q-trees. The algorithms are now part of the ACE datamining system (Blo
keel, Raedt, Dehaspe, Ramon, Struyf and Laer, 2004). TILDE andTILDE-RT di�ers only in that they indu
e
lassi�
ation trees and regression trees, respe
-tively. As will be explained, this di�eren
e boils down to the heuristi
s used to determinethe quality of single tests. Table 3.6 shows the basi
 pseudo-
ode for both algorithms.TILDE and TILDE-RT are very similar to
lassi
al de
ision tree algorithms su
h as ID3and C4.5. The task of
omputing the possible tests in a node (line 8) is, however, new andnon-trivial. It is des
ribed further in Se
tion 3.4.2. Furthermore, an example satis�es thetest in a node only if it also satis�es the tests in nodes higher in the tree when followingthe yes-bran
h. This is used when determining the quality of a test (line 9 and 14), and isfurther des
ribed in Se
tion 3.4.3 and Se
tion 3.4.4. Finally, sin
e the out
ome of a logi
altest is either yes or no, the indu
ed trees are always binary.The TILDE/TILDE-RT algorithms are non-in
remental algorithms. This means that allobserved examples must be stored in some database, and a new tree must be indu
ed from23

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING1: fun
tion Indu
eTree(Examples E) : Tree2: Create a root node n for the tree t3: Split(n,E,t)4: return t5: end6: pro
edure Split(Node n, Examples E, Tree t)7: best := false8: for (all possible tests q in node n) do9: Compute quality(q)10: if (quality(q) is better than quality(best)) then11: best := q12: end if13: end for14: if (best yields improvements) then15: test(n) := best16: Create two sub-nodes n⊕, n⊖ of n in t17: E⊕ := {e ∈ E | e satis�es best in t}18: E⊖ := {e ∈ E | e does not satisfy best in t}19: Split(n⊕,E⊕,t)20: split(n⊖,E⊖,t)21: else22: Turn n into a leaf23: end if24: end Table 3.6: The TILDE/TILDE-RT algorithm.s
rat
h after ea
h episode. Every time an example is observed, the database must be sear
hedfor previous observations of the same example, su
h that the estimated value
an be updated.For all but small domains, this overhead slows down the learning pro
ess
onsiderable. For-tunately, resear
h has shown that the pro
ess
an be made mu
h faster with the use of anin
remental tree learner su
h as the TG-Algorithm (Driessens et al., 2001)3. For our purpose,however, TILDE/TILDE-RT will su�
e.3.4.2 Finding Test CandidatesThe set of predi
ate relations in a domain F (see De�nition 2)
ontains all the relations that
an be present in a state (e.g. on(a,b)). It is important to note that these predi
ates do not
ontain variables (although a
ompa
t spe
i�
ation of them might). In a
lassi
al de
isiontree learner, this set of relations would be used as tests, where ea
h test would only be allowedon
e in any given subtree.For logi
al de
ision trees, we now also have to
onsider ba
kground knowledge and vari-ables. Furthermore, we might not even be interested in allowing tests with
onstants su
has on(a,b). As spe
i�ed in De�nition 3, if a variable is introdu
ed in a node, then it
an bereferen
ed by nodes in the yes-bran
h of the subtree of that node. Together this means thata parameter in a test
an either introdu
e a variable, referen
e an existing variable or be a
onstant. This is
alled the mode of the parameter. TILDE/TILDE-RT supports restri
tionof the mode, so that some tests might only be allowed to have parameters with existing vari-ables and so on. Also, a parameter
an be assigned a type, whi
h means that only variables ofthat type
an be used. Mode and type restri
tions are spe
i�ed using a so-
alled de
larative3An implementation of the TG-algorithm is also available in the ACE data mining system.24

3.4. LEARNING LOGICAL POLICIESbias. For the predi
ates on and
lear, the de
larative bias (using TILDE notation) mightlook like the following: type(on(blo
k,blo
k)).type(
lear(blo
k)).rmode(5: on(+-X,+-Y)).rmode(5: on(+-X, floor)).rmode(5:
lear(+-X)).The type predi
ates state that only variables or
onstants of the type blo
k
an be used.The rmode predi
ate is a little more
omplex. A + means that an already introdu
ed variable
an be used, and a - means that a new variable
an be introdu
ed. If needed, # means thatany observed
onstant (in the set of examples)
an be inserted. The number 5 denoted insidethe rmode predi
ates indi
ates how many times tests
reated over this predi
ate are allowedto o

ur in the tree.Consider the Q-tree illustrated in Figure 3.1 and the �rst node with the test on(A,C). Usingthe de
larative bias above, this test was
hosen among the test
andidates
{on(A,B), on(A,C), on(B,A), on(B,C), on(C,A), on(C,B), on(A,floor),on(B,floor), on(C,floor),
lear(A),
lear(B),
lear(C)}where A and B were introdu
ed by the root and C is a new un-instantiated variable. An un-instantiated variable should be read as �any blo
k�. For this small example, there are already

12 possible tests in the �rst node in the tree. Sin
e more and more variables are introdu
ed,there will often be many more tests possible in nodes further down the tree. Fortunately,the possible restri
tion on the number of times a test
an o

ur helps to keep the number ofpossible tests reasonable. This requires
areful spe
i�
ation though, as one more test
ouldmean the di�eren
e between a good and a poor tree.3.4.3 Example TestingWhen the set of test
andidates are determined for a node, ea
h
andidate must be appliedto the set of examples sorted down to that node. The goal is to �nd the test that yields thebest split (Se
tion 3.4.4 des
ribes what is meant by the best split). In
lassi
al de
ision treelearning, ea
h
andidate is simply applied to ea
h example, but be
ause of variable sharing,this does not work for logi
al de
ision trees. A variable used in a test might have beenintrodu
ed in a node higher in the tree. This means that the value of that parti
ular variableis dependent on (possible) all the tests from the root to the given node. Sin
e variablesare not instantiated in failing tests (see Se
tion 3.3), only positive tests must be
onsidered.Again using the Q-tree of Figure 3.1, the node
ontaining on(C,floor) in fa
t representsthe test goal(on(A,B)), on(A,C), on(C,floor)While pro
essing this node, TILDE will put any example that makes the test su

eed into theset E⊕, and all other examples into E⊖. These sets are then used to determine the qualityof the test. 25

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING3.4.4 Quality Heuristi
sThe best test in a node is
hosen among the possible test
andidates by using an appropriatequality heuristi
. For
lassi�
ation trees, TILDE uses a measure of information gain (Quinlan,1993) whi
h must be maximized. Be
ause only Boolean tests are
onsidered, the entropy ofa set of examples E
an be de�ned as
entropy(E) = −p⊕ log2 p⊕ − p⊖ log2 p⊖ (3.4)where p⊕ is the proportion of positive examples in E and p⊖ is the proportion of negativeexamples in E. If p⊕ = 0 then we will de�ne p⊕ log2 p⊕ to be 0 (the same applies to p⊖). Theinformation gained for applying a boolean test T on the set of examples E
an be de�ned as

gain(E, T) = entropy(E) − (entropy(E⊕) + entropy(E⊖)) (3.5)where E⊕ ∈ E is the set of examples that satisfy T and E⊖ ∈ E is the set of examples thatdo not satisfy T . The value
al
ulated by gain(E, T) is the expe
ted redu
tion in entropy
aused by knowing the out
ome of test T .For regression trees, TILDE-RT uses the intra-subset varian
e quality
riterion (Breiman,Friedman, Olshen and Stone, 1984) whi
h must be minimized. The varian
e of a set ofexamples E
an be de�ned as varian
e(E) =

|E|
∑

i=0

(ti − tmean)2 (3.6)where ti is the target-value in example i and tmean is the mean of all the target variables in
E:

tmean =

∑|E|
i=0 ti

|E|
(3.7)Using the intra-subset varian
e, the quality of a test T
an be de�ned as the relative im-provement of varian
e:varian
e-improvement(E, T) =

varian
e(E⊕) + varian
e(E⊖)varian
e(E)
(3.8)The varian
e improvement is always a number between 0 and 1 be
ause the summed varian
eof E⊕ and E⊖ is never greater than the varian
e of E.3.5 Experimental Evaluation of Relational Reinfor
ementLearningIn Chapter 2, the performan
e of tabular Q-learning was evaluated using experiments. Inthis se
tion, we will experiment with the performan
e of relational Q-learning. We will tryto
larify the answers to the following questions:26

3.5. EXPERIMENTAL EVALUATION OF RELATIONAL REINFORCEMENTLEARNING
• What is the performan
e of relational Q-learning
ompared to tabular Q-learning?
• How does P -trees perform
ompared to Q-trees?
• How do the state abstra
tions possible in RRL a�e
t the size of the learned poli
ies?These questions are di�
ult to answer theoreti
ally, sin
e they depend greatly on the ex-amples observed during training episodes. The experiments were
ondu
ted the exa
t sameway as in Se
tion 2.4. The data obtained for tabular Q-learning in that se
tion was reusedfor
omparison to data obtained by using Q-trees and P -trees. Settings and ba
kgroundknowledge used with TILDE/TILDE-RT
an be found in Appendix B. The performan
e was
ompared for 3 to 5 blo
ks. Figure 3.4 shows the results of the experiment. Ea
h diagramshows a graph for tabular Q-learning, a graph for relational Q-learning using Q-trees, and agraph for relational Q-learning using P -trees. The graphs map the number of primitive stepsduring training to the mean error per trial observed during testing. The mean error per trialis the mean di�eren
e between the steps used by an optimal poli
y, and the steps used bythe evaluated poli
y. The mean was taken over 10 trials.The results show that relational Q-learning outperforms its tabular
ounterpart in every
ase.The only ex
eption to this rule is for 3 blo
ks where the tabular representation rea
hes optimalbehavior before the Q-tree, although not before the P -tree. A noti
eable observation is thatboth Q-trees and P -trees rea
h a reasonable performan
e after very little training
omparedto tabular Q-learning. For readability, the diagram for 5 blo
ks does not show when tabular

Q-learning rea
hes optimal behavior. This happens after approximately 15000 primitive stepsduring training (refer to Se
tion 2.4).As expe
ted, by using P -trees the agent rea
hes reasonable behavior faster than when onlyusing Q-trees. Optimal behavior is also rea
hed faster, but only slightly. Of
ourse, for a
P -tree to perform optimally, it requires an almost optimal Q-tree su
h that the notion ofoptimality is not biased in the wrong dire
tion. Otherwise, a P -tree would not be able to�nd a good pattern of optimality.To determine if P -trees also perform better in more
omplex domains, we used the optimaltrees from the previous experiment and applied them to domains with an in
reasing numberof blo
ks. For ea
h domain, 50 trial states were randomly
hosen, whereafter the error pertrial were re
orded. Figure 3.5 shows the results of this experiment. The graph shows themean error per trial as a fun
tion of the number of blo
ks in the domain.The optimal P -tree learned in a 3 blo
ks domain performs reasonably well in more
omplexdomains, and mu
h better than the
orresponding Q-tree. It does not perform optimalbe
ause a 3 blo
k training domain is not
omplex enough. The Q-tree learned in a domainwith 4 blo
ks performs slightly better than the one learned using 3 blo
ks. However, the P -tree learned for 4 blo
ks is optimal for any number of blo
ks. As suggested in Se
tion 3.3.2,this makes sense sin
e Blo
ks World with the goal on(A,B), on an abstra
t level, does notbe
ome any more
omplex when using more than 4 blo
ks. The optimal poli
y remains to
lear both blo
ks in the goal state without ever moving blo
ks onto sta
ks
ontaining theother, and then moving A onto B. The optimal P -tree learned in the experiment is illustratedin Figure 3.6, and it
learly follows this prin
iple.The optimal P -tree for the goal on(A,B)
lassi�es the �nal a
tion move(A,B) as optimal.Furthermore, if a blo
k is moved to the �oor, then it must have been above one of the blo
ksin the goal state for the a
tion to be optimal. In other words, it is optimal to
lear the twoblo
ks in the goal state. Finally, if neither of these two statements hold, then the following27

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNING
3 Blo
ks

Tabular Q

P-Tree

Q-Tree

0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

0 10 20 30 40 50 60 70 80 90 100

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

4 Blo
ks
Tabular Q

P-Tree

Q-Tree

0,00

0,50

1,00

1,50

2,00

2,50

3,00

0 100 200 300 400 500 600 700 800 900 1000

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

5 Blo
ks
Tabular Q

P-Tree

Q-Tree

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Primitive Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 3.4: Performan
e of traditional Q-learning
ompared to relational Q-learning and P -learning in Blo
ks World using 3 to 5 blo
ks. The graphs map the number of primitive stepsduring training to the mean error per trial observed over 10 trials.28

3.5. EXPERIMENTAL EVALUATION OF RELATIONAL REINFORCEMENTLEARNING
3 Blo
ks

Q-Tree

P-Tree

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Blocks

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

4 Blo
ks
Q-Tree

P-Tree

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13 14 15

Number of Blocks

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 3.5: Performan
e of Q-trees and P -trees learned for 3 and 4 blo
ks when applied todomains with more blo
ks. root: goal(on(A,B)), a
tion(move(C,D))a
tion(move(A,B))
b(1) y eq(D,floor)n

above(C,A) y
b(1) y above(C,B)n

b(1) y
b(0)n

above(A,B)n
on(A,B)y

b(0) y on(D,floor)n
b(1) y

b(0)nFigure 3.6: The optimal P -tree for any number of blo
ks learned using 4 blo
ks. 29

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGBlo
ks Tabular Q Q-Tree P -Tree
3 25 14 5
4 209 56 7
5 1887 169 9

Tabular Q

Q-Tree

P-Tree
0

500

1000

1500

2000

3 4 5
Number of Blocks

P
o

lic
y

S
iz

e

Table 3.7: The size of poli
ies when using tabular and relational Q-learning.must hold for an a
tion to optimal: A must be above B but not dire
tly on it, and the blo
kA is being moved onto must be on the �oor. This is spe
i�ed in the right part of the tree,and seems strange at �rst, but is in fa
t a side-e�e
t of having learned using only 4 blo
ks.During
learing of the two blo
ks in the goal state, there
an be at most one
lear blo
k onthe �oor that is not part of the goal state. Any blo
k not moved to the �oor must be movedonto this irrelevant blo
k. In a more general setting, a blo
k
an be moved onto any blo
kthat is not above a blo
k in the goal state.The experiments have now answered two of the questions stated in the beginning of these
tion. Relational Q-learning performs better than tabular Q-learning, both by rea
hing areasonable behavior very qui
kly, but also by rea
hing optimal behavior with less trainingneeded. Q-trees will perform optimal in the domain in whi
h they were trained, but donot generalize well when more blo
ks are added. A P -tree derived from an optimal Q-treewill also perform optimally in the training domain. However, given a training domain withenough blo
ks, a P -tree will also perform optimally in domains with any number of blo
ks.During the experiments, poli
ies for domains with 3, 4 and 5 were learned both for relationaland tabular reinfor
ement learning. The use of logi
 and ba
kground knowledge in RRLautomati
ally enables abstra
tions over the state/a
tion spa
e of a domain. It is thereforeinteresting to investigate to whi
h extent these abstra
tions a�e
t the spa
e used by thelearned poli
ies. The size of a tabular poli
y is simply the number of
ells in the table, whilethe size of a tree-based poli
y
an be de�ned as the number of leaves. The latter makes sensebe
ause using the Prolog-based rule notation, there will be exa
tly one rule for ea
h leaf.Table 3.7 shows the size used by the learned poli
ies.The numbers presented in the table should not be read as the only possible sizes of the poli-
ies. They are the sizes of the optimal poli
ies observed during the performed experiments.Depending on the available tests and ba
kground knowledge, the size of the poli
ies may varyto ea
h side. The numbers are, however, a good indi
ation of the abstra
tion possibilities ofRRL. The graphs, also illustrated in Table 3.7, pi
tures the exponential growth when usinga tabular representation
ompared to logi
al de
ision trees.30

3.6. RECENT WORK3.6 Re
ent WorkAs mentioned, the resear
h applied to relational reinfor
ement learning sin
e its introdu
tionhas moved it past learning algorithms su
h as TILDE/TILDE-RT. The in
remental TG-algorithm (Driessens et al., 2001) was the �rst obvious step as it
ombines TILDE with thein
remental G-algorithm (Chapman and Kaelbling, 1991).Following, two other regression algorithms has been developed. The �rst is an instan
e basedalgorithm named RIB (Driessens and Ramon, 2003). It
omputes a weighted average of the
Q values of examples where the weight is inversely proportional to the distan
e betweenthe examples. The se
ond algorithm is
alled KBR (Gärtner, Driessens and Ramon, n.d.)and uses Gaussian pro
esses as the regression te
hnique. Be
ause Gaussian pro
esses are aBayesian te
hnique, the KBR algorithm o�ers both basi
 predi
tion of the Q value, but alsoindi
ation of the expe
ted a

ura
y of the predi
tion. This indi
ation
an be used by the
Q-learning algorithm to guide exploration.Relational reinfor
ement learning has only been sparsely tested in more realisti
 domains.One su
h test was
ondu
ted on a simpli�ed version of the multi-agent board gameRisk (Andersen, Boesen and Pedersen, 2005). The results of that work indi
ates that rea-sonable poli
ies
an be learned even in semi-
omplex multi-agent environments.Furthermore, the integration of guidan
e into relational reinfor
ement learning has been dis-
ussed by Driessens and Dºeroski (2004). Their work evaluates the advantages of supplyingan agent with optimal and reasonable examples during training. The advantages are evalu-ated using both the TG and RIB algorithms.3.7 SummaryThis
hapter introdu
ed relational reinfor
ement learning, whi
h
ombines traditional re-infor
ement learning with indu
tive logi
. The environment is represented as a relationalMarkov de
ision pro
ess that
an be
ompa
tly represented using �rst order predi
ate logi
with variables. Poli
ies learned are represented as logi
al de
ision trees. Trees that mapexamples to Q-values are denoted Q-trees, and trees that en
ode the optimality of examplesare denoted P -trees.
Q-trees are learned using a modi�ed version of the Q-learning algorithm from Chapter 2.Instead of updating the Q-fun
tion
ontinuously during an episode, the algorithm insteadgenerates examples. At the end of an episode, these examples are used to indu
e a Q-tree.This makes relational Q-learning an o�-line learning te
hnique.While Q-trees
an be trained to produ
e optimal behavior, they do not generalize well todomains similar to the training domain. For Blo
ks World, this means adding more blo
ksto the domain. This is be
ause the Q-fun
tion in prin
iple en
odes the distan
e to the goal,and this distan
e may
hange when the domain is
hanged. Instead, the relational Q-learningalgorithm
an be extended to also learn P -trees. P -trees are indu
ed over examples denotingthe optimality of a
tions, whi
h means that a stru
tural pattern of optimality is found. Forthis reason, P -trees will perform better in other similar domains, and in some
ases evenprodu
e general optimal behavior. Experiments performed supported this statement.More experiments were
ondu
ted to
ompare the performan
e of tabular and relational Q-learning. As expe
ted, relational Q-learning produ
es both reasonable and optimal behavior31

CHAPTER 3. RELATIONAL REINFORCEMENT LEARNINGusing less training than tabular Q-learning. Furthermore, P -trees also outperform Q-treesin the domain in whi
h they were learned, although only to a minor extend. Finally, thesize of poli
ies learned in a relational setting were mu
h smaller than when using a tabularrepresentation. This is be
ause of the very noti
eable abstra
tions, whi
h the use of logi
and ba
kground knowledge introdu
e when indu
ing Q-trees and P -trees.

32

Chapter 4Hierar
hi
al Reinfor
ementLearningThe previous
hapter presented relational reinfor
ement learning as a te
hnique for a
hievingstate abstra
tions and generalizing poli
ies to similar domains. It was shown that for rela-tional domains, the learning rate of an agent
an be signi�
antly improved. The su

ess ofrelational reinfor
ement learning depends, however, on the existen
e of stru
tural similaritiesthroughout the state/a
tion spa
e of a domain. It is easy to �nd a domain for whi
h this isnot the
ase. Consider the task of navigating through a maze. The reason that es
aping amaze
an be di�
ult is that seemingly similar s
enarios requires di�erent a
tions. For exam-ple, the optimal a
tion when being in a
orner with two paths leading east and west dependson the entire maze. The optimal a
tion for another similar
orner might be very di�erent.Applying relational reinfor
ement learning to su
h a domain will only add the overhead ofindu
ing logi
al de
ision trees at the end of an episode.Unlike relational reinfor
ement learning, Hierar
hi
al Reinfor
ement Learning (HRL) is notabout generalizing poli
ies to similar environments. Instead, the idea of HRL is to de
om-pose the primary task of an agent into a hierar
hy of subtasks. The bene�ts of su
h ade
omposition
an be summarized as
• a
hieving a better initial performan
e, and
• a
hieving state abstra
tions by eliminating irrelevant information and using �funnel�a
tions.A task hierar
hy restri
ts the a
tions of an agent at any time step. To some degree, thisguides the agent towards its goal resulting in a better initial performan
e. As we will see,this kind of guidan
e
an have the side-e�e
t of slowing down exploration of some parts ofthe state spa
e
onsiderably. State abstra
tions are a
hieved by identifying relevant andirrelevant information for ea
h individual subtask in the hierar
hy. Furthermore, some tasksmight move the environment from some large number of states to a small number of resultingstates. Su
h tasks are denoted �funnel� a
tions.Currently, the most popular method for hierar
hi
al reinfor
ement learning seems to be theMAXQ value fun
tion de
omposition (Dietteri
h, 2000). This method stands out be
ause it33

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGdoes not only provide a framework for pro
edural de
omposition of a given task. It also pro-vides a framework for de
omposition of the value fun
tion, whi
h leads to new opportunitiesfor state abstra
tion.Se
tion 4.1 des
ribes the motivation for hierar
hi
al de
omposition of a task and introdu
esthe semi-Markov de
ision pro
ess that allows temporally extended a
tions. An intuitiveapproa
h to hierar
hi
al reinfor
ement learning
alled hierar
hi
al semi-Markov Q-learningis explained in Se
tion 4.2. Following, Se
tion 4.3 des
ribes the MAXQ de
omposition of thevalue fun
tion and explains how the de
omposed value fun
tion
an be learned. The mostimportant part of hierar
hi
al reinfor
ement learning, namely state abstra
tions, is des
ribedin Se
tion 4.4, while the possibility of non-hierar
hi
al exe
ution follows in Se
tion 4.5. Aproblem with some task hierar
hies is the inability of exploring all states su�
iently often.This problem is des
ribed in Se
tion 4.6. An overview of experiments performed to illustratethe performan
e of the MAXQ method is presented in Se
tion 4.7. Se
tion 4.8 des
ribesother approa
hes to hierar
hi
al reinfor
ement learning.4.1 Task De
ompositionThe Taxi domain introdu
ed in Se
tion 2.3 is well suited for hierar
hi
al de
omposition.In ea
h episode, the taxi must navigate to the passengers lo
ation, pi
k up the passenger,navigate to the destination and put down the passenger. De
omposing this task displays theneed for
• temporal abstra
tion,
• state abstra
tion, and
• subtask sharing.Temporal abstra
tion
overs that some tasks may be temporally extended, whi
h meansthat they
an take a di�erent number of time steps to
omplete. For instan
e, the task ofnavigating to a spe
i�
 lo
ation in the Taxi-grid
an be viewed as a temporally extendedtask. Using temporal abstra
tion, the top-level of a hierar
hi
al de
omposition
an often beexpressed very simple.State Abstra
tions
an be a
hieved by eliminating irrelevant state variables inside a subtask.For instan
e, while the taxi is getting a passenger, the destination of the passenger is irrel-evant, and when navigating to a spe
i�
 destination, the only relevant information is thedestination and the position of the taxi.The taxi needs to navigate both to the passenger's lo
ation and to the passenger's destination.Thus, if the subtask of navigating is learned on
e, then this solution
an be shared by bothtasks. This illustrates the need for subtask sharing.The set of individual subtasks in the Taxi domain
an be de�ned as
• Navigate(t): move the taxi from its
urrent position to one of the four target lo
ations.The target lo
ation is indi
ated by the formal parameter t.
• Get: move the taxi to the passengers lo
ation and pi
k up the passenger.34

4.1. TASK DECOMPOSITION
• Put: move the taxi to the destination and put down the passenger.
• Root: the whole taxi task.Ea
h subtask is de�ned by its own subgoal and terminates when this subgoal is rea
hed. Asubtask is also de�ned by the possible a
tions (whi
h might be other non-primitive subtasks)that it
an perform. Su
h a de�nition is best illustrated with a task graph as shown inFigure 4.11.

Root

Get Put

Navigate(t)pickup putdown

north south east west

t/source t/destination

Figure 4.1: A task hierar
hy for the Taxi domain.The Root task of
ompleting one episode is de
omposed into the two subtasks Get andPut. Get is further de
omposed into Navigate(t) and the primitive a
tion pi
kup. Put isde
omposed into Navigate(t) and the primitive a
tion putdown. Finally, Navigate(t) isde
omposed into the four primitive a
tions north, south, east and west. The exe
utionof subtasks is similar to
alling pro
edures in a programming language. When a subtask isinvoked,
ontrol is simply shifted to its poli
y. The
olle
tion of individual poli
ies is denoteda hierar
hi
al poli
y.4.1.1 Semi-Markov De
ision Pro
essA traditional MDP
annot express temporal extended a
tions. In parti
ular, ea
h primitivea
tion in an MDP takes exa
tly 1 time step to perform. When imposing a task hierar
hy,subtasks might
over several time steps. A Semi-Markov De
ision Pro
ess (SMDP) is an MDPin whi
h a
tions
an take a variable amount of time steps to
omplete. This
hange a�e
tsthe transition probability distribution, as well as the de�nition of the value and a
tion-valuefun
tions. Let the random variable N denote the number of time steps it takes to
ompletea parti
ular a
tion. The transition probability distribution
an then be extended to a jointdistribution over the resulting state and N , where P (s′, N |s, a) denotes the probability ofobserving state s′ after N steps when performing a
tion a in state s. A similar
hange
anbe made to the reward fun
tion where R(s′, N |s, a) denotes the reward re
eived when s′ isobserved in N steps after performing a
tion a in state s. The value fun
tion for a poli
y π
an now be de�ned as the Bellman equation
V π(s) =

∑

s′,N

P (s′, N |s, π(s))
[

R(s′, N |s, π(s)) + γNV π(s′)
] (4.1)1The task de
omposition of the Taxi domain used throughout this
hapter is the one de�ned by Dietteri
h(2000). 35

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGNote that the dis
ount fa
tor (applied to the value of the resulting state s′) is raised tothe power of N . This dis
ounts a
tions that take more than one time step to
ompleteappropriately. The Bellman equation denoting the a
tion-value fun
tion is de�ned in a similarfashion:
Qπ(s, a) =

∑

s′,N

P (s′, N |s, a)
[

R(s′, N |s, a) + γNQπ(s′, π(s′))
] (4.2)Both V π(s) and Qπ(s, a)
an be rewritten as the sum of the expe
ted reward for performinga
tion π(s) and the expe
ted value of the resulting state s′:

V π(s) = R̄(s, π(s)) +
∑

s′,N

P (s′, N |s, π(s))γNV π(s′) (4.3)
Qπ(s, a) = R̄(s, a) +

∑

s′,N

P (s′, N |s, a)γNQπ(s′, π(s′)) (4.4)where R̄(s, a) is the expe
ted reward with respe
t to s′ and N for performing a
tion a instate s.For episodi
 tasks with γ = 1, an SMDP is equivalent to an MDP. In this
ase, futurerewards are not dis
ounted, whi
h makes the number of steps used by an a
tion irrelevant.Furthermore, for primitive a
tions where N = 1, we will suppress N in the notation whendenoting the transition probability distribution and the reward fun
tion.4.1.2 De�nition of a SubtaskIn general, an MDP M
an be de
omposed into a set of subtasks {M0, . . . , Mn} with the
onvention that M0 is the root-task. For instan
e, in Figure 4.1, M0 is Root, M1 is Get andso on. Solving M0 is equivalent to solving the original MDP M . To avoid
luttering thenotation, we will sometimes denote a subtask Mi simply as i.A subtask is de�ned by its own subtasks and a termination predi
ate. The terminationpredi
ate partitions the state spa
e into a set of a
tive states and a set of terminal states.Furthermore, ea
h terminal state is assigned a numeri
al value indi
ating how desirable it isto terminate exe
ution in that state.De�nition 4. An unparameterized subtask Mi is a 3-tuple 〈Ti, Ai, R̃i〉 de�ned as:
• Ti(s): the termination predi
ate over the set of states S. The predi
ate partitions Sinto a set of a
tive states Si, and a set of terminal states, whi
h we will denote Ti(without parameters). Subtask Mi
an only be exe
uted if the
urrent state s is in Si.
• Ai: the set of a
tions available in subtask i. Ai(s) denotes the a
tions available in state

s.
• R̃i(s

′|s, a): the pseudo-reward fun
tion, whi
h spe
i�es a pseudo-reward for ea
h tran-sition from a state s ∈ Si to a state s′ ∈ Ti.36

4.1. TASK DECOMPOSITIONEa
h primitive a
tion a from a subtask M is a primitive subtask in the de
omposition su
hthat a is always exe
utable, it always terminates immediately after exe
ution, and its pseudo-reward fun
tion is uniformly zero.If a subtask has formal parameters, then ea
h possible binding of a
tual values spe
i�es adistin
t subtask (i.e. the a
tual values are part of the name of the subtask). In pra
ti
e, of
ourse, parameterized subtasks are implemented by extending the de�nition of the termina-tion predi
ate and reward fun
tion to also en
ompass the a
tual parameter values.The need to spe
ify pseudo-rewards is dependent on the real reward fun
tion. If rewardsare only given to the agent when the �nal goal state is rea
hed, then some intermediatesubtasks might never re
eive any feedba
k. As an example,
onsider that our taxi onlyre
eived a reward for putting down the passenger at the end of an episode. This rewardwould propagate up to the Root task, but not down to the Get subtask. On the other hand,if rewards or penalties are given for all primitive a
tions, then the spe
i�
ation of pseudo-rewards is not ne
essary. Pseudo-rewards
an, however, be used to speed up learning or
hange the optimal behavior in a subtask. This is further explained in Se
tion 4.3.4.1.3 Hierar
hi
al Poli
iesThe
olle
tion of individual subtask poli
ies for a hierar
hy is denoted a hierar
hi
al poli
y.A hierar
hi
al poli
y π is thus de�ned as
π = {π0, . . . , πn} (4.5)where n is the number of subtasks in the hierar
hy. As in the previous
hapters, a poli
ytakes a state and returns an a
tion. If a subtask
ontains parameters, then its poli
y mustalso take these parameters as input. In su
h
ase, the de�nition of a poli
y is π(s, f) where

f is the bindings of a
tual parameters. A hierar
hi
al poli
y
an be exe
uted using a sta
kthat initially
ontains the root task. At ea
h time step, the task at the top of the sta
kis examined. If it is a primitive subtask, then it is exe
uted. If it is a
omposite subtask,then the task denoted by the
omposite subtask's poli
y is pushed onto the sta
k. If thisis a primitive a
tion, then it is exe
uted, and so on. Table 4.1 shows the pseudo-
ode forexe
uting a hierar
hi
al poli
y.After the exe
ution of a primitive subtask, the algorithm
he
ks if any tasks on the sta
khave rea
hed a terminal state (lines 18-22). If a task M ′ has terminated, then it is poppedo� the sta
k together with all tasks above M ′ on the sta
k. As an example,
onsider a Taxidomain where the passenger
an
an
el a ride while navigating to the destination. If thishappens, then the Root task has entered a terminal state. All subtasks invoked by Root orits des
endants must therefore also terminate, whi
h is why they are popped o� the sta
k.At any time step t, the
hoi
e of the next primitive a
tion to be exe
uted is a�e
ted bythe
urrent
ontents on the sta
k. This means that a hierar
hi
al poli
y is non-Markovianwith respe
t to the original MDP. Sin
e a
tions are
hosen with respe
t to both the
urrentstate s and the
ontents on the sta
k K, Dietteri
h (2000) de�nes a hierar
hi
al value fun
-tion V π(〈s, K〉). This value fun
tion gives the expe
ted
umulative reward of following thehierar
hi
al poli
y π starting in state s with sta
k
ontents K.To avoid the extra spa
e requirements (and the
onsequen
e of in
reased learning di�
ulty),Dietteri
h also de�nes a so-
alled proje
ted value fun
tion of a hierar
hi
al poli
y. 37

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING1: pro
edure Exe
uteHierar
hi
alPoli
y(π)2: st is the state of the world at time t.3: Kt is the state of the exe
ution sta
k at time t.4: Let t = 0; Kt = the empty sta
k; observe st.5: Push (0, nil) onto sta
k Kt(invoke the root task with no parameters).6: repeat7: while (top(Kt) is not a primitive a
tion)8: Let (i, fi) := top(Kt), where9: i is the name of the �
urrent� subroutine, and10: fi gives the parameter bindings for i.11: Let (a, fa) := π(s, fi), where12: a is the a
tion, and13: fa gives the parameter bindings
hosen by poli
y πi.14: Push (a, fa) onto the sta
k Kt.15: end while16: Let (a, nil) := pop(Kt) be the primitive a
tion on the top of the sta
k.17: Exe
ute primitive a
tion a, observe st+1, and re
eive R(st+1|st, a).18: if (any subtask on Kt is terminated in (st+1)) then19: Let M ′ be the terminated subtask
losest to the root on the sta
k.20: while (top(Kt) 6= M ′) do pop(Kt)21: pop(Kt).22: end if23: Kt+1 := kt is the resulting exe
ution sta
k.24: until Kt+1 is empty25: endTable 4.1: Pseudo-
ode for exe
ution of a hierar
hi
al poli
y.De�nition 5. The proje
ted value fun
tion of a hierar
hi
al poli
y πi on subtask Mi, denoted
V π(i, s), is the expe
ted
umulative reward of exe
uting πi (and the poli
ies of all des
endantsof Mi) starting in state s with an empty sta
k until Mi terminates.The proje
ted value fun
tion for a task disregards
ontent pushed onto the sta
k by any ofits an
estors. The value V π(i, s)
an be thought of as the value of state s when followingpoli
y π given that exe
ution stops when subtask i terminates.We
an also de�ne the proje
ted a
tion-value fun
tion as Qπ(i, s, a) where i is the
urrenttask, s is the
urrent state and a is the subtask to be exe
uted. Similarly, the value Qπ(i, s, a)
an be thought of as the value of performing a
tion a in state s and then following poli
y
π until subtask i terminates. We will formalize both the proje
ted value fun
tion and theproje
ted a
tion-value fun
tion in Se
tion 4.3.4.2 Hierar
hi
al Semi-Markov Q-LearningA primary
on
ept in the MAXQmethod is the de
omposition of the proje
ted value fun
tion.In this se
tion, however, we will look at a straight-forward way of solving a task hierar
hywithout de
omposing the value fun
tion. This approa
h is
alled Hierar
hi
al Semi-Markov
Q-learning (HSMQ). We will do this to be able to illustrate the di�eren
es between thisapproa
h and MAXQ. Furthermore, the use of HSMQ follows more intuitively from �at (andrelational) reinfor
ement learning.38

4.3. MAXQ VALUE FUNCTION DECOMPOSITIONIn prin
iple, there are two ways to solve a task hierar
hy. The �rst way is to start by learningoptimal poli
ies for the subtasks at the bottom of the hierar
hy. Afterwards, optimal poli
iesfor the parents of these tasks are learned. This
ontinues until the root is rea
hed. Doingso e�e
tively redu
es ea
h subtask to a primitive a
tion for its parent in the hierar
hy. Theparent will only observe one kind of behavior from its subtasks, namely optimal behavior.The se
ond approa
h is to simultaneously learn optimal poli
ies for the entire hierar
hy. Thisis the approa
h used by both HSMQ and MAXQ. In this
ase, parent tasks observe
hangingbehavior from their subtasks as these explore the state spa
e and eventually
onverge toan optimal poli
y. Of
ourse, a parent task will only
onverge to an optimal poli
y whenits subtasks have
onverged too. Simultaneously learning the entire hierar
hy puts an extrarequirement on the exploration poli
y used in ea
h subtask. While traditional Q-learning�only� requires that all states are visited in�nitely often,
onvergen
e now requires that theexploration poli
y used is Greedy in the Limit of In�nite Exploration (GLIE). A GLIE poli
yis a poli
y that, in the limit of in�nite exploration, eventually be
omes greedy with respe
tto Q. Only when a subtask poli
y is greedy will the parent task observe optimal behavior
onsistently. Boltzmann exploration (see Se
tion 2.2)
an be used to
reate a GLIE poli
yby
ontinuously de
reasing the temperature.1: fun
tion HSMQ(State s, Subtask p)2: Let TotalReward := 03: while (p is not terminated)4: Choose subtask a := πe(s) a

ording to exploration poli
y πe5: Exe
ute a and observe resulting state s′6: if (a is primitive) then7: Observe one-step reward r := R(s′|s, a)8: else9: r := HSMQ(s,a), whi
h invokes subroutine a and10: returns the total reward re
eived while a exe
uted.11: end if12: TotalReward := TotalReward + r13: Update Q̂(p, s, a) := (1 − α)Q̂(p, s, a) + α [r + maxa′ Q(p, s′, a′)]14: end while15: return TotalReward16: endTable 4.2: Pseudo-
ode for exe
ution of a hierar
hi
al poli
y.Table 4.2 shows the pseudo-
ode for the HSMQ algorithm. The algorithm
overs one episodeof learning. At �rst, the algorithm is
alled with the initial state and the Root task. Thevariable TotalReward is initialized to hold the sum of the rewards re
eived during the Roottask. While Root is not terminated, a subtask is repeatedly
hosen using a GLIE explorationpoli
y. If the subtask is primitive then it is exe
uted and the immediate reward is observed.Otherwise, if a is non-primitive, then it is exe
uted by
alling HSMQ re
ursively (the sameway Root was
alled), whi
h returns the total reward re
eived during the exe
uting of thesubtask. Afterwards, TotalReward is in
reased by the observed reward. The total reward isthen used to update the
urrent approximation of Q.4.3 MAXQ Value Fun
tion De
ompositionWhen using the HSMQ algorithm, a task hierar
hy is treated as a set of independent Q-learning problems. Ea
h subtask
ontains all the values needed to
ompletely spe
ify its own39

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGpoli
y. In other words, HSMQ provides a pro
edural de
omposition of the learned poli
y intopoli
ies for ea
h subtask. However, there is bound to exist a dependen
y between the valuefun
tion of a task and its subtasks. For instan
e, the value of performing the task Get in theTaxi domain must somehow be related to the value of performing its
hild tasks Navigateand pi
kup.
7

11

8

9

10

6

6

7

8

7

5

5

6

7

6

4

4

5

6

5

3

3

4

5

4

Passenger at Y

12

12

13

14

13

13

13

14

15

14

14

14

15

16

15

15

Dest

16

17

18

14

18

15

16

17

Passenger in Taxi

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

Y YB BFigure 4.2: Value fun
tion for the
ase where the passenger is at (0, 0) (lo
ation Y) and wishesto get to (3, 0) (lo
ation B).
10

14

11

12

13

9

9

10

11

10

8

8

9

10

9

7

7

8

9

8

6

6

7

8

7

Passenger at Y

Dest

15

18

17

16

18

14

17

16

15

13

13

14

15

14

12

12

13

14

13

11

11

12

13

12

Passenger in Taxi

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

Y Y

R R

Figure 4.3: Value fun
tion for the
ase where the passenger is at (0, 0) (lo
ation Y) and wishesto get to (0, 4) (lo
ation R).Figure 4.2 illustrates part of a proje
ted value fun
tion for the Taxi hierar
hy. In this
ase,the passenger is at lo
ation Y and wishes to get to lo
ation B. The left-side maze shows thestate values while getting the passenger, and the right-side maze shows the state values whiledriving the passenger to the destination. For instan
e, the value of a state, where the taxi isat lo
ation (0, 2) and on its way to get the passenger is 9.Figure 4.3 illustrates a similar value fun
tion, where the only di�eren
e is that the passengerwishes to get to lo
ation R. Comparing the value fun
tions of these two s
enarios, we seethat there is no similarity between the values in the right-side mazes. However, the values inthe left-side mazes are the same ex
ept for an o�set of 3. This is be
ause that the left-sidemazes really re�e
t the same subgoal of moving to lo
ation R and pi
king up the passenger.They di�er only in what happens after the passenger has been pi
ked up. In Figure 4.2, thedestination is 7 steps away, and in Figure 4.3 the destination is 4 steps away. The di�eren
e
7 − 4 = 3 a

ounts for the di�eren
e between the values in the two mazes.40

4.3. MAXQ VALUE FUNCTION DECOMPOSITIONThe motivation behind de
omposing the value fun
tion is to exploit su
h regularities by rep-resenting the left-side value fun
tion only on
e. Noti
e that de
omposing the value fun
tiondoes not enable a more
ompa
t representation in itself. Instead, the de
omposition enablesstate abstra
tions over �funnel� a
tions, something whi
h is not possible when using HSMQ.This is further explained in Se
tion 4.4.4.3.1 De�nition of the Value Fun
tion De
ompositionIn general, the MAXQ method de
omposes the proje
ted a
tion-value fun
tion Q(i, s, a)(where i is the
urrent subtask, s is the state, and a is the a
tion to be performed) into thesum of the following two
omponents:
• the expe
ted total reward re
eived while exe
uting subtask a in state s, and
• the expe
ted total reward of following the hierar
hi
al poli
y π after a has returneduntil parent task i terminates.For a primitive a
tion a, the �rst
omponent is just the expe
ted immediate reward ofperforming a in s. For a
omposite a
tion, Dietteri
h (2000) shows that this
omponentis instead the proje
ted value fun
tion V π(a, s) by proving the following theorem:Theorem 6. Given a task hierar
hy over tasks M0, . . . , Mn and a hierar
hi
al poli
y π,ea
h subtask Mi de�nes an SMDP with states Si, a
tions Ai and the transition probabilitydistribution Pi. The expe
ted reward fun
tion of Mi, denoted R̄i(s, a), is de�ned as R̄i(s, a) =

V π(a, s) where
• V π(a, s) is the proje
ted value fun
tion for
hild task a in state s, and
• If a is a primitive a
tion then V π(a, s) is de�ned as the expe
ted immediate reward ofexe
uting a in s: V π(a, s) =

∑

s′ P (s′|s, a)R(s′|s, a).The theorem states that the expe
ted reward re
eived by subtask Mi, when exe
uting a
omposite subtask Ma, is the proje
ted value fun
tion V (a, s). If a is primitive, then thereward re
eived is instead the expe
ted immediate reward (as in �at Q-learning). As a
onsequen
e, we
an de�ne the a
tion-value fun
tion of poli
y π when exe
uting a
tion afrom subtask i in state s as
Qπ(i, s, a) = V π(a, s) +

∑

s′,N

Pi(s
′, N |s, a)γNQπ(i, s′, π(s′)) (4.6)whi
h has the same form as the Bellman equation for an SMDP (see Equation 4.4). If a isprimitive, then V π(a, s) equals the expe
ted immediate reward, thereby making equations(4.6) and (4.4) identi
al.Re
all that De�nition 5 de�ned a proje
ted value fun
tion V (a, s) to be the expe
ted
umu-lative reward re
eived until subtask a terminates. This means that the right-most term ofEquation (4.6) denotes the value of
ompleting task Mi after exe
uting a in state s. Thisterm
an be en
apsulated in a new fun
tion
alled the
ompletion fun
tion: 41

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING
Cπ(i, s, a) =

∑

s′,N

Pi(s
′, N |s, a)γNQπ(i, s′, π(s′)) (4.7)By substituting the
ompletion fun
tion into Equation (4.6), we get the following de�nitionof the a
tion-value fun
tion:

Qπ(i, s, a) = V π(a, s) + Cπ(i, s, a) (4.8)Furthermore, the de�nition of the value fun
tion V π(i, s)
an be re-expressed as
V π(i, s) =

{

Qπ(i, s, πi(s)) if i is
omposite
∑

s′ P (s′|s, a)R(s′|s, a) if i is primitive (4.9)For a
omposite subtask i, this re
ursive de�nition states that the value of a state s
an be
omputed as the following equation:
V π(i, s) = Qπ(i, s, πi(s)) = V π(πi(s), s) + Cπ(i, s, πi(s)) (4.10)In other words, to �nd the value of a state s in subtask i given a hierar
hi
al poli
y π, wemust simply 1) �nd the value of state s in the subtask denoted by πi(s), and 2) add thevalue of
ompleting subtask i after subtask πi(s) has terminated. If πi(s) is also a
ompositea
tion, the this term
an be further de
omposed in the same way. The re
ursiveness of Vends in the bottom of the hierar
hy when a primitive a
tion is en
ountered (as de�ned inEquation 4.9).Dietteri
h refers to equations (4.7), (4.8) and (4.9) as the de
omposition equations for theMAXQ hierar
hy under a �xed hierar
hi
al poli
y π. These equations re
ursively de
omposethe proje
ted value fun
tion V π(0, s), for the root task M0, into the proje
ted value fun
tionsfor the subtasks M1, . . . , Mn and the
ompletion fun
tions Cπ(j, s, a) for j = 0, . . . , n. Thismeans that a
omplete spe
i�
ation of the de
omposed Q and V fun
tions requires exa
tlythe storage of

• the
ompletion value C(i, s, a) for all
omposite subtasks i, states s and subtasks a,and
• the value V (i, s) for all primitive subtasks i and states s.By storing these values, the value of any
ombined state/a
tion pair, of any subtask in thehierar
hy,
an be
omputed by the use of the de
omposition equations.4.3.2 MAXQ GraphsTo make it easier to understand the de
omposition equations, a task hierar
hy
an be illus-trated as a MAXQ graph. Figure 4.4 illustrates a MAXQ graph for the Taxi domain. Thegraph
ontains two kinds of nodes, Max nodes and Q nodes.Max nodes
orresponds to subtasks in the task hierar
hy. There is one Max node for ea
h
omposite and primitive subtask. Ea
h primitive Max node i stores the value of V π(i, s) forall s ∈ Si.42

4.3. MAXQ VALUE FUNCTION DECOMPOSITION
MaxRoot

MaxNavigate(t)

MaxGet MaxPut

MaxPickup MaxPutdown

MaxNorth MaxSouthMaxEast MaxWest

QGet QPut

QPickup QPutdownQNavigateForPutQNavigateForGet

QNorth(t) QSouth(t)QEast(t) QWest(t)

t/source t/destination

Figure 4.4: A MAXQ graph for the Taxi domain. Max nodes
orrespond to the subtasks inthe domain, and Q nodes
orrespond to the a
tions available for ea
h subtask.
Q nodes
orresponds to the a
tions that are available for ea
h subtask. For instan
e, theavailable a
tions from subtask Get are Pi
kup and Navigate(t/sour
e). These a
tions aremodelled as the Q nodes QPi
kup and QNavigateForGet in the MAXQ graph. Ea
h Q nodefor parent task i, state s and subtask a stores the value of Cπ(i, s, a). A parent task mayexe
ute a subtask multiple times before it terminates.The purpose of ea
h Max node i is to
ompute the proje
ted value fun
tion V π(i, s) for all
s ∈ Si. For primitive Max nodes, su
h as MaxPi
kup and MaxPutdown in Figure 4.4, thisinformation is stored dire
tly in the node. For
omposite Max nodes, the information mustbe
omputed. To
ompute the value V π(i, s), the Max node i
onsults its poli
y πi and �ndsthat the next a
tion is πi(s). It then queries the Q node
orresponding to πi(s) for the value
Qπ(i, s, πi(s)).The Q node does not dire
tly store this value. It only stores Cπ(i, s, πi(s)), the value of
ompleting subtask i after πi(s) has been exe
uted. To �nd the value of a
tually exe
uting
πi(s), the Q node queries its
hild Max node for V π(πi(s), s). If πi(s)
orresponds to aprimitive Max node, then V π(πi(s), s)
an be looked up. Otherwise πi(s) is
omposite and
V π(πi(s), s) must be
omputed by querying further down the MAXQ graph. Afterwards, the
Q value

Qπ(i, s, πi(s)) = V π(πi(s), s) + Cπ(i, s, πi(s)) (4.11)is returned to the Max node i. Sin
e V π(i, s) = Qπ(i, s, πi(s)), the Max node has �nished its
omputation. 43

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGFor a more
on
rete example, let s be the state illustrated in Figure 4.5, and assume thatan optimal poli
y π∗ has been previously learned. From state s, it requires 1 step to rea
hthe passenger, 1 step to pi
k up the passenger, 7 steps to rea
h the destination, and 1 stepto put down the passenger. Sin
e ea
h of these steps has a penalty of −1, and be
ause thetaxi re
eives a reward of 20 after delivering the passenger, the value of state s is 10. The
omplete set of re
ursive
omputations needed for this
on
lusion looks as follows:
V ∗(North, s) = −1

Qπ∗

(Nav(R), s, North) = V ∗(North, s) + C∗(Nav(R), s, North) = −1 + 0 = −1

V ∗(Nav(R), s) = Q∗(Nav(R), s, North) = −1

Qπ∗

(Get, s, Nav(R)) = V ∗(Nav(R), s) + C∗(Get, s, Nav(R)) = −1 + −1 = −2

V ∗(Get, s) = Q∗(Get, s, Nav(R)) = −2

Q∗(Root, s, Get) = V ∗(Get, s) + C∗(Root, s, Get) = −2 + 12 = 10

V ∗(Root, s) = Q∗(Root, s, Get) = 10

R G

Y B0

1

2

3

4

0 1 2 3 4Figure 4.5: A Taxi domain s
enario. The taxi is at (0, 3) and the passenger is at (0, 4)(lo
ation R). The destination is (3, 0) (lo
ation B).In general, the MAXQ value fun
tion de
omposition takes the form
V π(0, s) = V π(am, s) + Cπ(am−1, s, am) + . . . + Cπ(a1, s, a2) + Cπ(0, s, a1) (4.12)where a1, . . . , am is the �path� of the Max nodes, from the root-node 0 to the primitive a
tion

am,
hosen by the hierar
hi
al poli
y π. This
on
ludes the des
ription of the representationof the value fun
tion when using the MAXQ value fun
tion de
omposition.4.3.3 Di�erent Kinds of OptimalityBefore pro
eeding to des
ribe an algorithm for learning an optimal poli
y using the valuefun
tion de
omposition, we must �rst de�ne the meaning of optimality given the introdu
tionof a task hierar
hy. Of
ourse, without de
omposing a task, a truly optimal poli
y
an belearned using traditional �at Q-learning. However, imposing a hierar
hy puts two
onstraintson the poli
ies representable by the hierar
hy:44

4.3. MAXQ VALUE FUNCTION DECOMPOSITION
• Within a subtask, some primitive a
tions may not be allowed. In the Taxi hierar
hy, forinstan
e, the taxi
annot perform the a
tions pi
kup or putdown during the Navigatesubtask.
• The poli
y learned for task Mj must involve the poli
ies learned for its
hild tasks
{Mj0 , . . . , Mjk

}. When the poli
y for subtask Mji
is invoked, it will run until a terminalstate in Tji

is en
ountered. This means that the poli
y for task Mj must pass throughsome subset of the terminal states of its subtasks {Tj1 , . . . , Tjk
}.The impa
t of these two
onstraints depends entirely on the spe
i�
ation of the task hierar
hy.The taxi hierar
hy dis
ussed so far is not a�e
ted by them, and is
apable of representing atruly optimal poli
y (in Se
tion 4.7, however, we will
hange this fa
t). A poli
y that is asoptimal as possible, given the
onstraints of a hierar
hy, is said to be hierar
hi
al optimal.A goal of the MAXQ method is subtask sharing (see Se
tion 4.1). To a
hieve this, individualsubtasks must be
ontext-free. For instan
e, the task Navigate(t) is
ontext-free be
ause ofits target lo
ation parameter t. The task would not be
ontext-free if the target-lo
ation wasimpli
it (given the parent task exe
uting Navigate). To a
hieve total subtask independen
e,an even weaker form of optimality must be pursued. This form of optimality is
alled re
ursiveoptimality.

G G-2

-60

0

Figure 4.6: A domain illustrating re
ursive optimality. The agent must leave the left roomand go to the goal square G. The poli
y illustrated in the left maze is re
ursively optimal butnot hierar
hi
ally optimal. The shaded
ells indi
ate points where the lo
ally optimal poli
yis not globally optimal. The poli
y illustrated in the right maze is hierar
hi
al optimal dueto the spe
i�
ation of pseudo-rewards.The left-side of Figure 4.6 illustrates the e�e
ts of pursuing only re
ursive optimality. The�gure shows a grid world
onsisting of two rooms with two doors separating them. The taskof an agent in this world is to rea
h the goal square G. The primitive a
tions in this world areNorth, South, East and West, and ea
h give a penalty of−1. A hierar
hy is imposed su
h thatthe task of an agent is split into the subtasks ExitLeftRoom and GotoGoal. ExitLeftRoomis only available when the agent is in the left room, and terminates when the right room isentered. GotoGoal is only available in the right room, and terminates when G is rea
hed.During ea
h subtask, any primitive a
tion
an be exe
uted.The arrows in the �gure represents the re
ursively optimal poli
y given the des
ribed hierar-
hy. The illustrated poli
y is lo
ally optimal for both subtasks, but
learly not hierar
hi
aloptimal. The shaded
ells indi
ate points where the lo
ally optimal poli
y is not globallyoptimal. 45

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGIn this
ase, it is possible to spe
ify pseudo-rewards to rea
h hierar
hi
al optimality. If theagent exits the left room through the lower door, we will assign it a pseudo-reward of −6be
ause this is the number of steps needed afterwards to rea
h the goal. Similarly, the agentwill re
eive a pseudo-reward of −2 if it exits the left room through the upper door. For now,pseudo-rewards
an be thought of simply as extra rewards besides the traditional immediaterewards. The right-side of Figure 4.6 shows a hierar
hi
al optimal poli
y for the domainusing the des
ribed pseudo-rewards.4.3.4 The MAXQ-Q Learning AlgorithmDietteri
h (2000) presents two learning algorithms for the de
omposed value fun
tion. The�rst one,
alledMAXQ-0,
an only be applied when the pseudo-reward fun
tion R̃ is alwayszero. The se
ond and more general algorithm is
alled MAXQ-Q, whi
h works with anyspe
i�
ation of the pseudo-reward fun
tion. We will skip the des
ription of MAXQ-0, sin
ethis is just a spe
ial
ase of MAXQ-Q. The overall goal of MAXQ-Q is to learn a) the
ompletion value C(i, s, a) for ea
h
omposite subtask i, state s and subtask a, and b) thevalue V (i, s) for ea
h primitive subtask i and state s.As mentioned in Se
tion 4.3.3, pseudo-rewards
an be thought of as simply extra rewards.As su
h, an approa
h towards in
orporating them into a learning algorithm would be to justadd them to the
orresponding immediate rewards whenever an update of either C or Vis performed. However, this would have the e�e
t of
hanging the original MDP to havea di�erent reward fun
tion. Furthermore, the pseudo-rewards for a single subtask
ould�
ontaminate� the poli
ies learned throughout the hierar
hy. As an example, we will extendthe domain from Figure 4.6 as illustrated in Figure 4.7. To
larify the point, let the pseudo-reward for exiting the middle room through the upper door be 100, and the pseudo-rewardfor exiting the middle room through the lower door be 0. The immediate reward for rea
hingG will remain 20. Now
onsider the lower left room. After exiting this room through theupper door, there will remain 11 steps yielding a penalty of −11. Furthermore, adding thepseudo-reward of 100 and a goal-state reward of 20 to this value yields a total reward of 109.If the lower left room is exited through the lower door, then a penalty of −10 is re
eived beforethe goal is rea
hed. The
onsequen
e is that the pseudo-rewards, spe
i�ed for the subtask ofexiting the middle room, has
hanged the optimal poli
y for the subtask of exiting the lowerleft room. This poli
y is no longer optimal in the shaded
ells. In fa
t it gets even worse,be
ause the optimal poli
y is no longer to rea
h the goal state. Sin
e the pseudo-reward isgreater than the reward for entering the goal state, the optimal behavior for the agent willbe
ome to
ontinuously enter and exit the right room.This example
learly shows that pseudo-rewards
annot simply be added to immediate re-wards. The problem
an be solved by learning one
ompletion fun
tion to be used �inside�ea
h subtask, and a separate
ompletion fun
tion to be used �outside� ea
h subtask. Theexternal
ompletion fun
tion C(i, s, a) is the one dis
ussed so far. It is
omputed withoutreferen
e to pseudo-rewards, and denotes the expe
ted reward for
ompleting task Mi afterperforming a
tion a in state s, and then following the learned poli
y for Mi. It is used byparent tasks to
ompute V (i, s), the expe
ted value of performing task Mi in state s.The internal value fun
tion, denoted C̃(i, s, a), is
omputed by adding pseudo-rewards to thereal rewards. It is used to �nd the lo
ally optimal poli
y for ea
h subtask Mi. In e�e
t,MAXQ-Q should learn C and C̃ su
h that46

4.3. MAXQ VALUE FUNCTION DECOMPOSITION
G

0

100

Figure 4.7: Pseudo-rewards
an �
ontaminate� the hierar
hy if used simply as extra rewards.The pseudo-reward for exiting the middle room using the upper door is 100, while the immedi-ate reward for rea
hing G remains 20. The result is that the hierar
hi
al poli
y is non-optimalin the shaded
ells.
• C̃(i, s, a) denotes the pseudo-reward �
ontaminated�
ompletion fun
tion over the lo-
ally optimal poli
y for task Mi.
• C(i, s, a) denotes the �
lean�
ompletion fun
tion over the lo
ally optimal poli
y fortask Mi.In other words, the lo
ally optimal poli
y for subtask Mi is found using pseudo-rewards to
ontaminate C̃(i, s, a). Then, C(i, s, a) is learned to be the
lean
ompletion fun
tion overthe found lo
ally optimal poli
y. The poli
ies for the parents of Mi is learned using the
lean
ompletion fun
tion to avoid
as
ading
ontamination. As a result, lo
al optimality
an bea
hieved with pseudo-rewards without worrying about
hanging the behavior of other tasksin the hierar
hy.Figure 4.3 shows the pseudo-
ode for the MAXQ-Q algorithm. Invoking MAXQ-Q(i, s)returns the sequen
e of states visited by subtask i when being exe
uted from state s. Thissequen
e is maintained in the variable seq. The algorithm �rst
he
ks if i is primitive. If thisis the
ase, then i is dire
tly exe
uted. The observed immediate reward is used to update

V (i, s). Indeed, this part of the algorithm
an be viewed as learning the immediate rewardfun
tion for the original MDP.If a subtask i is not primitive, then the algorithm enters a while loop whi
h runs until iterminates. During an iteration inside the while loop, an a
tion a is
hosen a

ording tothe exploration poli
y πe(i, s). A
tion a is exe
uted by
alling MAXQ-Q re
ursively, whi
hresults in the sequen
e of states visited during the exe
ution of a. The resulting state s′ isthen observed. Following, in line 14, the optimal a
tion a∗ in the next time step is predi
ted.This predi
tion is made using the internal
ompletion fun
tion C̃ for subtask i. We nowhave all the information needed to begin updating both the internal and external
ompletionfun
tions.To speed up learning in nodes at the top of the task hierar
hy, the
ompletion fun
tionsare updated for ea
h state s visited during the exe
ution of the
hosen a
tion a. Dietteri
hrefers to this as �all-states-updating�. The reasoning is that the exe
ution of a will movethe environment through a sequen
e of states s1, . . . , sn, Sn+1 where Sn+1 is equal to the47

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

1: fun
tion MAXQ-Q(MaxNode i, State s)2: Let seq = () be the sequen
e of states visited while exe
uting i3: if (i is a primitive MaxNode)4: Exe
ute i, re
eive rt = R(s′|s, a), and observe result state s′5: Vt+1(i, s) := (1− αt(i)) · Vt(i, s) + αt(i) · rt6: Push s onto the beginning of seq7: else8: Let count = 09: while (Ti(s) is false)10: Choose an a
tion a a

ording to the
urrent exploration poli
y πω(i, s)11: Let childSeq = MAXQ-Q(a,s) where childSeq is the sequen
e of states12: visited exe
uting a
tion a (in reverse order)13: Observe result state s′14: Let a∗ = arg maxa′

[

C̃t(i, s′, a′) + Vt(a′, s′)
]15: Let N = 116: for (ea
h s in childSeq) do17: Ct+1(i, s′, a) := (1− αt(i)) · Ct(i, s′, a′) + αt(i) · γNexternalValue(s′)18: C̃t+1(i, s′, a) := (1− αt(i)) · C̃t(i, s′, a′) + αt(i) · γN internalValue(s′)19: where20: externalValue(s′) = [Ct(i, s′, a∗) + Vt(a∗, s′)], and21: internalValue(s′) =

[

R̃i(s
′) + C̃t(i, s′, a∗) + Vt(a∗, s′)

]22: N := N + 123: end for24: Append childSeq onto the front of seq25: s := s′26: end while27: end if28: Return seq29: end30: //main program31: Initialize V (i, s), C(i, s, a) and C̃(i, s, a) arbitrarily32: MAXQ-Q(root node 0, starting state s0)Table 4.3: The MAXQ-Q learning algorithm.

48

4.3. MAXQ VALUE FUNCTION DECOMPOSITIONresulting state s′. Sin
e all subtasks are Markovian, exe
uting a in s2, s3, or any state up to(and in
luding) sn, would result in the same state s′.Before updating the
ompletion fun
tions, the internal and external values of exe
uting a∗ in
s′ is �rst
omputed. The
omputation of the internal value in
ludes possible values re
eivedby the pseudo-reward fun
tion R̃. Noti
e that the a
tion a∗ is also used in the
omputationof the external value�even though this a
tion might not be the optimal a
tion in the nexttime step a

ording to the external
ompletion fun
tion C. Both
ompletion fun
tions arethen updated, dis
ounting the
omputed values properly. The primary observation here isthat the a
tion a∗, whi
h is optimal in the next time step a

ording to C̃, might not beoptimal a

ording to C. Nevertheless, a∗ is used to update C, whi
h results in a SARSAlike algorithm (see Table 2.2). In e�e
t, C will
onverge to the non-
ontaminated
ompletionfun
tion over the lo
ally optimal poli
ies learned by C̃.The updates of C and C̃ requires the
omputation of Vt(i, s

′). In Se
tion 4.3.2 we des
ribedhow this value
ould be
omputed for a �xed hierar
hi
al poli
y with the re
ursive de
om-position fun
tions. The problem is that, during learning, there exists no �xed hierar
hi
alpoli
y. Furthermore, be
ause C̃ should
onverge to the lo
ally optimal poli
y for ea
h sub-task, a
tions should always be
hosen greedily during the re
ursive
omputation of Vt(i, s
′)(as apposed to be
hosen by a �xed poli
y). This leads to the following modi�ed de�nitionof the de
omposition fun
tions:

Vt(i, s) =

{

maxa Qt(i, s, a), if i is
omposite
Vt(i, s) (lookup) , if i is primitive (4.13)

Qt(i, s, a) = Vt(a, s) + Ct(i, s, a) (4.14)The
omputation of Vt(i, s) using the above equations requires a
omplete sear
h of all pathsthrough the MAXQ graph starting at node i and ending at the leaf nodes. Fortunately,MAXQ graphs are normally small of size, so this does not a�e
t the performan
e of MAXQ-Q noti
eably. Table 4.4 shows the fun
tion EvaluateMaxNode(i,s), whi
h, among otherthings,
al
ulates Vt(i, s). For
omposite tasks, the algorithm
hooses the a
tion amax thatmaximizes Vt(a, s) + C̃(i, s, a) for any a ∈ A(i). The algorithm then uses this a
tion to
al
ulate the un
ontaminated value Vt(amax, s) + C(i, s, amax). The un
ontaminated valueis returned together with the primitive a
tion rea
hed at the bottom of the MAXQ graph(
orresponding the leaf). This a
tion is returned to allow non-hierar
hi
al exe
ution, whi
hwill be further explained in Se
tion 4.5. Again, C̃ is used to sele
t a
tions be
ause it willeventually represent the lo
ally optimal poli
y. The value returned to other subtasks are,however, based on the un
ontaminated
ompletion fun
tion C to avoid
as
ading pseudo-reward
ontamination.To avoid
luttering the pseudo-
ode, �an
estor� termination (as des
ribed in Se
tion 4.1.3) isnot shown in theMAXQ-Q algorithm in Table 4.3. However, �An
estor� termination shouldof
ourse be in
luded in any �real� implementation of the algorithm. Furthermore,MAXQ-Qrequires that the exploration poli
y πω is not only a GLIE poli
y, but an ordered GLIE poli
y,where ω denotes the ordering of a
tions used to break ties. An ordered GLIE is requiredbe
ause, in general, ea
h subtask Mi will have a
hoi
e between many di�erent lo
ally optimalpoli
ies. These di�erent lo
ally optimal poli
ies will all a
hieve the same lo
ally optimal valuefun
tion, but they may result in di�erent probability transition fun
tions P (s′, N |s, i). Asa
onsequen
e, the SMDP problems at the level above subtask Mi will di�er depending onwhi
h of the di�erent lo
ally optimal poli
ies is
hosen by subtask Mi. An ordering of a
tions
ω ensures that
onsistent behavior is observed from subtask Mi. 49

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING1: fun
tion EvaluateMaxNode(MaxNode i, State s)2: if (i is a primitive MaxNode)3: Return 〈Vt(i, s), i〉4: else5: for (j ∈ Ai(s))6: Let 〈Vt(j, s), aj〉 = EvaluateMaxNode(j,s)7: end for8: Let amax = arg maxj Vt(j, s) + C̃t(i, s, j)9: Return 〈Vt(amax, s) + Ct(i, s, amax), amax〉10: end if11: endTable 4.4: Pseudo-
ode for
omputing Vt(i, s) for Max node i and state s.4.4 State Abstra
tionsOne of the reasons to introdu
e hierar
hi
al reinfor
ement learning is to
reate opportunitiesfor state abstra
tions. In general, for task hierar
hies generated by hand, it
an be a straight-forward task to simply begin removing irrelevant state variables from di�erent subtasks inthe hierar
hy. This is true be
ause a hand-made hierar
hy will often be spe
ially designedto allow state abstra
tions. The task might, however, be far more
omplex for automati
allygenerated hierar
hies. To formalize the opportunities of state abstra
tions when using theMAXQ method, Dietteri
h (2000) spe
i�es
onditions that permit �safe� state abstra
tion.Furthermore, Dietteri
h proves that MAXQ-Q will
onverge to the same unique re
ursivelyoptimal poli
y with or without �safe� state abstra
tion for any given task hierar
hy. In thisse
tion, we will give a less formal des
ription of the opportunities for state abstra
tion whenusing the MAXQ method.The purpose of applying state abstra
tions is to minimize the number of needed values torepresent the proje
ted value fun
tion for a task hierar
hy. When less values are needed,then less values must be learned, whi
h in most
ases will speed up learning. To be able toevaluate the e�e
t of applying state abstra
tions, let us �rst
ompute the number of valuesneeded for the Taxi domain without state abstra
tion. We will ignore the representation ofthe internal
ompletion fun
tion C̃ for now.
• To represent V (i, s) for ea
h of the six leaf nodes in the MAXQ graph, 500 values arerequired for ea
h leaf be
ause there are 500 states.
• MaxRoot has two
hildren, whi
h requires a total 500 · 2 = 1 000 values.
• Both MaxGet and MaxPut has two
hildren, so ea
h one also requires 1 000 values givinga total of 2 000.
• MaxNavigate has four
hildren and the target parameter t, whi
h
an take on 4 values.For ea
h
hild 500 · 4 = 2 000 values are needed giving a total of 8 000.The total number of values needed for the MAXQ representation is therefore 14 000. To pla
ethis number in perspe
tive,
onsider that, using �at Q-learning, the number of needed valuesis 3 000.The
onditions for state abstra
tion spe
i�ed by Dietteri
h all assume that a state s
an berepresented as a ve
tor of values of existing state variables. At ea
h Max node i, the ve
tor50

4.4. STATE ABSTRACTIONS
an be partitioned into two sets, relevant variables Xi and irrelevant variables Yi. Xi is afun
tion that proje
ts a state s into only the variables in Xi:if si = {x0, . . . , xn, y0, . . . , ym} then Xi(si) = {x0, . . . , xn} (4.15)where n is the number of variables in Xi and m is the number of variables in Yi. Stateabstra
tions are a
hieved by, for any state s, using Xi(s) instead of s to represent the proje
tedvalue fun
tion. An abstra
tion is safe, when for all states s and subtasks i, we have that
V (i,X (s)) = V (i, s).It is furthermore required that the exploration poli
y used during learning is a so-
alledabstra
t hierar
hi
al poli
y. This means that a
tions in a subtask i must be
hosen usingonly information spe
i�ed by Xi, i.e. :if Xi(s1) = Xi(s2) then πi(s1) = πi(s2) (4.16)Failing to do so will result in unexplainable behavior given Xi. Boltzmann exploration usedthroughout this report
an easily be modi�ed to be an abstra
t hierar
hi
al explorationpoli
y.There are three kinds of
onditions under whi
h state abstra
tions
an be introdu
ed. The�rst
ondition involves eliminating irrelevant variables from subtasks in the MAXQ graph.This kind of abstra
tion is mostly useful in the lower part of the MAXQ graph, sin
e subtasksnear the leaf tend to have only few relevant variables. The se
ond kind arises from so-
alledfunnel a
tions that move the environment from a large number of
urrent states to a smallnumber of resulting states. Funnel a
tions normally appear in the top of the MAXQ graph.Finally, the third kind of state abstra
tion arises from the stru
ture of the MAXQ graphitself. In e�e
t, a large part of the state spa
e may not be rea
hable for
ertain subtasks.In the following, Y will always denote the set of irrelevant variables, while X will denotethe set of relevant variables. After dis
ussing the
onditions that allow state abstra
tions,the total redu
tion of needed values to represent the proje
ted value fun
tion for the taskhierar
hy is summarized.4.4.1 Irrelevant Variable EliminationIrrelevant variables
an be eliminated both in leaves and
omposite subtasks in the MAXQgraph. The former
ondition is referred to as as Leaf Irrelevan
e, while the latter is referredto as MaxNode Irrelevan
e (or Subtask Irrelevan
e).MaxNode Irrelevan
eA set of state variables Y is MaxNode irrelevant for subtask i if the following properties holdfor any stationary abstra
t hierar
hi
al poli
y π:

• No variable y ∈ Y a�e
ts the value of any variable x ∈ X in subtask i.
• No variable y ∈ Y a�e
ts the value fun
tion V π(a, s) or pseudo-reward fun
tion R̃i(s)for any
hild a
tion a and any state s. 51

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGIn other words, the
hild a
tions
hosen by subtask i must not depend on any variable in Y .Furthermore, the out
ome of any exe
uted
hild a
tion must not depend on any variable in
Y either. If these
onditions hold, then the variables in Y are irrelevant for subtask i.In the Taxi domain, two nodes in the MAXQ graph
an bene�t from state abstra
tions usingthe MaxNode irrelevan
e
ondition. First of all, during subtask Get, the destination of thepassenger is irrelevant, be
ause it does not a�e
t whi
h subtasks Get
hooses to exe
ute, nordoes it a�e
t the out
ome of these subtasks. This means that the variable
an be ex
ludedfrom the
ompletion fun
tions stored in QNavigateForGet and QPi
kup.Se
ondly, during the subtask Put, the variable denoting the passenger lo
ation is irrelevant,and
an be eliminated from the
ompletion fun
tions in QNavigateForPut and QPutdown.Leaf Irrelevan
eWhile the MaxNode Irrelevan
e
ondition eliminates variables in the
ompletion fun
tions for
omposite subtasks, the Leaf Irrelevan
e
ondition eliminates variables in the value fun
tionfor primitive a
tions. A set of variables Y is leaf irrelevant to primitive a
tion a if, forany two states s1 and s2 that di�er only in their values of variables in Y , we have that
V π(a, s1) = V π(a, s2). Remember that V π(a, s), for a primitive a
tion a and state s, isde�ned simply as the expe
ted immediate reward for performing a in s.The primitive a
tions North, South, West and East have a
onstant immediate reward of
−1. This means that all state variables
an be eliminated in their respe
tive primitive Maxnodes. Furthermore, the immediate rewards of Pi
kup and Putdown only depend on wetheror not the a
tions are performed legally. For instan
e, Putdown is illegal if the taxi is not atthe destination and holding the passenger. Thus, the value fun
tions for ea
h of these twoa
tions require 2 values ea
h.In the elimination of variables in Pi
kup and Putdown, Dietteri
h introdu
es a new variablethat denotes the legality of the a
tions�something whi
h is in fa
t not dire
tly possible usinghis proposed framework. Indeed, this form of abstra
tion requires logi
 and is similar toabstra
tions a
hieved using relational reinfor
ement learning. We will return to this subje
tin Chapter 5.4.4.2 Funnel A
tionsFunnel a
tions are
omposite subtasks that move the environment from a large number of
urrent states to a small number of resulting states. Irrelevant variables in funnel a
tionsmust satisfy the
ondition of Result Distribution Irrelevan
e. Furthermore, if the terminationof some subtask is guaranteed to make its parent task terminate too, then further abstra
tion
an be applied. This
ondition is referred to as Termination.Result Distribution Irrelevan
eA set of variables Y is result distribution irrelevant for subtask i if, for all pairs of states s1and s2 that only di�er in their values for state variables in Y , we have that

P π(s′, N |s1, i) = P π(s′, N |s2, i) (4.17)52

4.4. STATE ABSTRACTIONSfor all s′ and N . Thus, to be irrelevant for subtask i, a variable y ∈ Y must not have anye�e
t on the distribution of resulting states.Consider the Get subtask. No matter what lo
ation the taxi has is in state s, it will be atthe passenger's starting lo
ation in state s′ when Get �nishes exe
uting. This makes thelo
ation of the taxi result distribution irrelevant, and the
orresponding state variable
an beeliminated in QGet and QNavigateForGet. Noti
e that the taxi lo
ation
annot be eliminatedin QPi
kup be
ause, when Pi
kup is exe
uted illegally, the
ompletion
ost is dependent onthe number of steps needed to
omplete Get.Similarly, the taxi lo
ation is irrelevant for the Put subtask and
an be eliminated from QPutand QNavigateForPut. For QPut, however, a stronger form of abstra
tion
an be a
hievedusing Termination and the stru
tural
onstraints of the task hierar
hy, as des
ribed in thefollowing.TerminationThe Termination
ondition is very intuitive. If a subtask a is guaranteed to terminate in agoal state where its parent task i also terminates, then the
ompletion
ost of i after a hasterminated must be uniformly zero for all states where a has not terminated.This
ondition holds for Put in the Taxi domain. For all states where the passenger is in thetaxi, Put will su

eed and result in a goal terminal state for Root. This happens be
ause thegoals of Put and Root are identi
al.4.4.3 Stru
tural ConstraintsThe last form of state abstra
tion arises from the stru
tural
onstraints introdu
ed by thetask hierar
hy itself. A task a
an only be exe
uted in a state s if there exists a path fromthe root down to Mi
onsisting of un-terminated tasks. For any state s′ where this is notthe
ase, a
annot be rea
hed. This means that it is unne
essary to represent the
ompletionfun
tion C(i, s′, a) for any su
h state s′ and parent task i.The Put subtask also satis�es this
ondition, whi
h is known as Shielding. Put is terminatedin all states where the passenger is not in the taxi. Thus, QRoot does not need to represent
ompletion values C(Root, s, Put) for these states. Together with the Termination
onditionabove, this means that the entire
ompletion fun
tion represented in Put is uniformly zero.Furthermore, during the subtask Get, the passenger
annot be in the taxi in any non-terminalstate. Therefore, any state s where this is the
ase
an be disregarded.4.4.4 Overview of State Abstra
tions in the Taxi DomainThe opportunities for state abstra
tion des
ribed in the previous se
tion
an be summarizedas the following list:
• MaxNorth, MaxSouth, MaxWest, and MaxEast: ea
h require 1 value (Leaf Irrelevan
e).
• Pi
kup and Putdown: ea
h require 2 values (Leaf Irrelevan
e). 53

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING
• QNorth(t), QSouth(t), QWest(t), and QEast(t): ea
h requires 100 values (the pas-senger's lo
ation and destination are MaxNode Irrelevant).
• QNavigateForGet: requires 4 values (the passenger's destination is MaxNode Irrele-vant, and the taxi starting lo
ation is Result Distribution Irrelevant).
• QPi
kup: requires 100 values (the passenger's destination is MaxNode Irrelevant).
• QGet: requires 16 values (the taxi's lo
ation is Result Distribution Irrelevant, and thepassenger's lo
ation is limited to the four target lo
ations be
ause of Shielding).
• QNavigateForPut: requires 4 values (the passenger's lo
ation is MaxNode Irrelevant,and the taxi's lo
ation is Result Distribution Irrelevant).
• QPutdown: requires 100 values (the passengers lo
ation is MaxNode Irrelevant).
• QPut: requires 0 values (Termination and Shielding).In total, this results in 632 distin
t values when using state abstra
tions. If pseudo-rewardsare needed, then it be
omes 2 · 632 = 1 264 values. Compared to the 3 000 values needed for�at Q-learning, this is a fairly low number. Furthermore, if the size of the grid is in
reased,then the number of values also in
rease. This in
rease is mu
h larger for �at Q-learning
ompared to the MAXQ hierar
hy with state abstra
tions. The reason is that, while theproje
ted value fun
tion for the task hierar
hy as a whole still depends on all state variables,ea
h of the individual terms, that make up the de
omposition of the value fun
tion, onlydepends on a subset of the state variables.MaxNode Irrelevan
e and Leaf Irrelevan
e
an also be applied when using the HSMQ al-gorithm. However, Result Distribution Irrelevan
e, Termination and Shielding
annot beapplied. It is only be
ause the Q fun
tion is de
omposed into the
ompletion fun
tion andthe
hild value fun
tion that it is possible to take advantage of state abstra
tions that onlya�e
t the
ompletion fun
tion.4.5 Non-Hierar
hi
al Exe
ution of a Hierar
hi
al Poli
yAs des
ribed in Se
tion 4.3.3, the optimal poli
y for a task may not be representable givena task hierar
hy. Dietteri
h (2000) presents a very simply te
hnique, whi
h in many
ases
an derive an optimal non-hierar
hi
al poli
y from a hierar
hi
al optimal poli
y. The ideais to start at the top of the task hierar
hy, and then
hoose the lo
ally optimal a
tion inevery subtask until a primitive a
tion is rea
hed�exa
tly the same as the fun
tionality ofEvaluateMaxNode. The primitive a
tion is then exe
uted, and
ontrol is again dire
tedto the top of the hierar
hy.Table 4.5 shows the pseudo-
ode for the pro
edure Exe
utePoli
yNonHierar
hi
al,whi
h follows this idea. At line 3, the algorithm
alls EvaluateMaxNode to
ondu
t a
omplete sear
h of all paths through the MAXQ graph. Remember that EvaluateMaxN-ode also returns the primitive a
tion a found at the end of the path through the graph (seeTable 4.4). Afterwards, a
tion a is exe
uted and the
urrent state is updated. This
ontinuesuntil the root task of the MAXQ graph terminates.Consider
hanging the Taxi domain su
h that the passenger, with some probability,
hangesdestination after the taxi has started navigating to the original destination. Using a stri
t54

4.6. HIERARCHICAL EXPLORATION PROBLEM1: pro
edure Exe
utePoli
yNonHierar
hi
al(State s)2: while ((T0(s) is false))3: Let 〈V (0, s), a〉 = EvaluateMaxNode(0,s)4: Exe
ute primitive a
tion a5: Let s be the resulting state6: end while7: endTable 4.5: Pseudo-
ode for exe
uting the one-step greedy poli
y.hierar
hi
al exe
ution, the already invoked navigation task must be
ompleted, whi
h meansthat the taxi will drive all the way to the original destination. At that point, it will dis
overthat the passenger has
hanged destination, and will then begin to navigate towards the newdestination. If non-hierar
hi
al exe
ution is used instead,
ontrol is shifted to the top of thehierar
hy after ea
h primitive a
tion. This means that the taxi will dis
over the destination
hange immediately. The di�eren
e between hierar
hi
al and non-hierar
hi
al exe
ution of ahierar
hi
al poli
y be
omes very
lear in the experiments illustrated in Se
tion 4.7.4.6 Hierar
hi
al Exploration ProblemDe
omposing a primary task into a task hierar
hy
an be viewed as supplying the agent withknowledge be
ause, besides
reating opportunities for state abstra
tion, any reasonable taskhierar
hy will also guide the agent towards its goal. While this has advantages in form ofa better initial performan
e, it also introdu
es a problem regarding su�
ient exploration of
ertain parts of the state/a
tion spa
e. We will refer to this problem as the Hierar
hi
alExploration Problem. To our knowledge, this problem has not previously been des
ribed.In the task hierar
hy of the Taxi domain used throughout this
hapter, the agent
an explorethe entire state/a
tion spa
e with the ex
eption of states and a
tions that are unrea
habledue to stru
tural
onstraints (e.g. putdown when the passenger is not in the taxi). Eventhough the hierar
hy as a whole dire
ts the agent in its a
tions, within a single subtask su
has Navigate(t), the agent will explore ea
h possible state with an almost equal frequen
y.The only ex
eption is that only one terminal state
an be visited during ea
h invo
ation ofa subtask.Now,
onsider what would happen if we
hanged Navigate(t) to a primitive a
tion (althoughstill temporally abstra
ted). Being a primitive a
tion, Navigate(t) will always performoptimally (even during early learning) and will move the agent dire
tly towards its target t.Figure 4.8 illustrates the exploration frequen
y for states in this modi�ed Taxi domain, wherethe shade of gray denotes the relative level of exploration among the states. For simpli
ity,we assume that the only target lo
ations are R and B.This uneven exploration frequen
y o

urs be
ause the agent, on
e on the �right� path, nevervisits the outer states. Sin
e Navigate(t) is assumed to be optimal, the agent will simplytake the shortest route. In fa
t, these outer states will only be visited when they are thestarting lo
ation of the taxi (as illustrated in the �gure). This also suggests a solution for theproblem, namely always letting the taxi start in these outer lo
ations�thereby in
reasingtheir exploration frequen
y. Indeed, it is di�
ult to see any other possible solutions for thehierar
hi
al exploration problem. In pra
ti
e, a task hierar
hy should be
arefully
reated55

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING
R

B0

1

2

3

4

0 1 2 3 4Figure 4.8: The hierar
hi
al exploration problem with Navigate(t) as an optimal primitivea
tion. White
ells indi
ate often explored states, while darker shaded
ells denote relativelyless explored states. The darker the shade, the less the state is explored.su
h that this problem is avoided. We will also dis
uss the hierar
hi
al exploration problemfor Blo
ks World in Chapter 5.4.7 Experimental Evaluation of the MAXQ MethodSo far, this
hapter has des
ribed the theoreti
al advantages of using the MAXQ value fun
-tion de
omposition. In this se
tion, we will perform two experiments to
larify the perfor-man
e of MAXQ in pra
ti
e. More spe
i�
ally, the experiments are
ondu
ted to answer thefollowing questions:
• How does the MAXQ method perform
ompared to �at Q-learning?
• How important are state abstra
tions?
• How does the en
oding of knowledge in a task hierar
hy in�uen
e performan
e?Both experiments are based on a slightly modi�ed Taxi domain
alled the Fi
kle Taxi do-main2. To make learning more
hallenging, the navigation a
tions North, South, West andEast are made noisy. With probability 0.8, the taxi moves in the intended dire
tion, butwith probability 0.2, it instead moves to the right of the intended dire
tion (e.g. if East isintended then with probability 0.2 the taxi will move south). Furthermore, after pi
king upthe passenger and moving one square away from the passengers's sour
e lo
ation, the pas-senger
hanges the destination with probability 0.3. The purpose of this
hange is to makethe optimal poli
y non-hierar
hi
al.During training, the Navigate(t) subtask often exhibited looping behavior. In e�e
t, testinga poli
y by
hoosing a
tions stri
tly greedily does not a

urately show the improvement inperforman
e as a fun
tion of primitive training steps. For instan
e,
onsider an almostoptimal poli
y π. If this poli
y results in in�nite looping behavior between states s1 and s2(whenever one of these states are visited), then this behavior overshadows the performan
e of

π in the rest of the state spa
e. To avoid looping behavior, we applied Boltzmann exploration,2The �rst experiment is similar to one
ondu
ted in Dietteri
h (2000).56

4.7. EXPERIMENTAL EVALUATION OF THE MAXQ METHODand thereby a
ontrollable level of randomness, to the evaluation of a poli
y. The explorationtemperature was set to the initial value of 1 (total randomness) for all trials. It was thereafterde
reased for ea
h primitive training step su
h that it rea
hed 0 at an estimated point of
onvergen
e. The estimated point of
onvergen
e was found by training the agent multipletimes. The estimation was set to the latest
onvergen
e observed.For all experiments, the learning fa
tor α was set to 0.25. Furthermore, all initial V and Cvalues were set to 0.4.7.1 Performan
e of MAXQ LearningIn this experiment, we evaluated the performan
e of the following approa
hes when appliedto the Fi
kle Taxi domain:
• Flat Q-learning,
• MAXQ without state abstra
tions (MAXQ),
• MAXQ with state abstra
tions (MAXQ-SA), and
• MAXQ with state abstra
tions and non-hierar
hi
al exe
ution (MAXQ-SA/NHE).After ea
h training episode, the
urrent poli
y was tested by observing the error
ompared toan optimal poli
y. The mean of this error was
omputed over 10 training runs per approa
h.Figure 4.9 shows the mean error per trial (over the 10 runs) as a fun
tion of primitive trainingsteps.The results of the experiment shows that any form of MAXQ learning have better initialperforman
e than �at Q-learning. This is due to the
onstraints introdu
ed by the taskhierar
hy, whi
h puts a restri
tion on the number of available primitive a
tions in any givenstate. Furthermore, it is interesting to see that MAXQ learning without state abstra
tiona
tually takes longer to
onverge than �at Q-learning. This is
aused by the in
reased numberof values needed to represent the de
omposed value fun
tion without state abstra
tions.MAXQ learning with state abstra
tion
onverges mu
h faster than both �at Q-learning andMAXQ without state abstra
tions. It does not, however, rea
h true optimality. As men-tioned, this is a result of allowing the passenger to
hange destination during an episode.Using the des
ribed task hierar
hy in the Fi
kle Taxi domain, the taxi
an simply not avoidtaking a de-tour in 30 per
ent of the episodes.Applying non-hierar
hi
al exe
ution to MAXQ with state abstra
tions solves this problem,and the same level of optimality as shown by �at Q-learning is rea
hed. Non-hierar
hi
alexe
ution allows the taxi to rea
t immediately to the
hange of destination. This advantageis also the reason that this approa
h rea
hes its potential optimal behavior a little faster thanwhen not using non-hierar
hi
al exe
ution.This experiment answers two of the questions stated in the beginning of the se
tion. Clearly,MAXQ learning outperforms �at Q-learning, however, only when state abstra
tions are ap-plied. If the optimal poli
y is non-hierar
hi
al, then non-hierar
hi
al exe
ution must also bein
orporated. 57

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNING

Flat Q-Learning

MaxQ
MaxQ SA/NHE MAXQ SA

0,00

100,00

200,00

300,00

400,00

500,00

600,00

0 25000 50000 75000 100000 125000 150000 175000 200000

Primitive Training Steps

M
ea

n
 S

te
p

s
P

er
 T

ri
al

MaxQ

MaxQ SA/NHE

Flat Q-learning

MAXQ SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

0 25000 50000 75000 100000 125000 150000 175000 200000

Primitive Training Steps

M
ea

n
 S

te
p

s
P

er
 T

ri
al

Figure 4.9: Performan
e of hierar
hi
al MAXQ learning with state abstra
tion and non-hierar
hi
al exe
ution. The lower diagram shows a
lose-up view of the upper diagram.
58

4.7. EXPERIMENTAL EVALUATION OF THE MAXQ METHOD4.7.2 En
oding of KnowledgeThe task hierar
hy used so far en
odes a great deal of knowledge. For instan
e, the agent isautomati
ally informed that during Get, it should only navigate to the passengers lo
ation�and not any of the other three lo
ations. It is reasonable to supply the agent with thisknowledge sin
e it must be optimal. In general, as mu
h knowledge as possible should been
oded into a task hierar
hy. It is interesting however, to investigate the impa
t of thisknowledge on the performan
e of MAXQ learning.To perform the experiment, we
hanged the task hierar
hy su
h that the taxi
ould navigateto any of the four target lo
ations during both the Get and Put subtask. This in
reases thenumber of available a
tions in both these subtasks with 3 to a total of 5 (i.e. the hierar
hybe
omes less informed). The
hange also a�e
ts the number of needed values to representthe proje
ted value fun
tion. The total number of values needed is in
reased from 632 to
656.We tested the performan
e of the less informed hierar
hy using both state abstra
tions andnon-hierar
hi
al exe
ution. Figure 4.10 shows the results of the experiment. The poli
yover the previous task hierar
hy is denoted �informed� and
orresponds to MAXQ SA/NHE inFigure 4.9. The new hierar
hy is denoted �less informed�.

MaxQ Less-Informed

MaxQ Informed

Flat Q-learning

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

800,00

900,00

1000,00

0 25000 50000 75000 100000 125000 150000 175000 200000

Primitive Training Steps

M
ea

n
 S

te
p

s
P

er
 T

ri
al

Figure 4.10: The performan
e of a less informed task hierar
hy where the taxi
an navigateto any of the four target lo
ations during the Get and Put subtasks. The performan
e is
ompared to the task hierar
hy in Figure 4.4 and �at Q-learning.Surprisingly, the less informed hierar
hy performs mu
h worse than �at Q-learning. Eventhe initial performan
e is mu
h worse. This observation should be seen in
ontrast to thefa
t that �at Q-learning requires the learning of almost twi
e as many values. Indeed, theproblem is not the number of values but the pattern of exploration. The less informedhierar
hy allows the agent to navigate to the wrong lo
ations
ontinuously during training.In e�e
t, the number of primitive training steps in
reases fast without signi�
antly leadingthe agent towards optimality. 59

CHAPTER 4. HIERARCHICAL REINFORCEMENT LEARNINGThis experiment answers the question of the e�e
t of en
oding knowledge into task hier-ar
hies. Without su�
ient knowledge, the agent risks wasting training steps performingsubtasks that do not in
rease performan
e in any signi�
ant way. The experiment also showsthat the number of needed values (to represent the proje
ted value fun
tion) is not ne
essarilyproportional with the learning rate.4.8 Related WorkThe MAXQ method is not the only hierar
hi
al de
omposition te
hnique for reinfor
ementlearning. Indeed, the hierar
hi
al de
omposition of domain, in order to make the sear
hfor solutions more e�e
tive, has been resear
hed by several authors. Among the more re
entde
omposition te
hniques is the HAM method introdu
ed by Parr (1998). The HAM methodpermits partial spe
i�
ation of hierar
hi
al and temporally abstra
t a
tions.A similar approa
h was introdu
ed by Hauskre
ht et al. (1998). This approa
h in
ludes ahierar
hi
al model for handling ma
ro a
tions using periphery states to simplify the originalenvironment. A goal of the model is the possibility of reusing ma
ro a
tions in other similarenvironments.4.9 SummaryIn this
hapter we des
ribed two approa
hes to hierar
hi
al reinfor
ement learning. The �rstapproa
h, Hierar
hi
al Semi-Markov Q-learning (HSMQ), de
omposes the primary task intoa task hierar
hy where ea
h subtask
ompletely en
apsulates its own Q-fun
tion. This taskde
omposition allows some degree of state abstra
tion. The se
ond approa
h, the MAXQvalue fun
tion de
omposition, goes further and also de
omposes the proje
ted value fun
tionof a task. This
reates even further opportunities for state abstra
tion.A task hierar
hy guides the agent towards its goal, and
an therefore make it di�
ult toexplore the state/a
tion spa
e su�
iently. This problem
an be made smaller by letting theagent start in less explored states, however there does not seem to exist any general solution.Another inherent problem of hierar
hi
al reinfor
ement learning is the inability to dire
tlyrepresent an optimal poli
y that is non-hierar
hi
al. However, using the MAXQ method,non-hierar
hi
al exe
ution
an easily be applied to a task hierar
hy. This allows the agent torea
h true optimal behavior�even when this is not hierar
hi
al.Two experiments were
ondu
ted to evaluate the performan
e of MAXQ learning. With stateabstra
tions and non-hierar
hi
al exe
ution, MAXQ learning was shown to
onverge mu
hfaster the �at Q-learning in the Fi
kle Taxi domain. Furthermore, the importan
e of en
odingknowledge into a task hierar
hy was illustrated by
reating a less informed hierar
hy. Theless informed hierar
hy performed mu
h worse than �at Q-learning, be
ause it allowed theagent to waste training steps without in
reasing performan
e signi�
antly.
60

Chapter 5Combining Hierar
hi
al andRelational Reinfor
ement LearningIn Chapter 3 and Chapter 4, we des
ribed two distin
t approa
hes to reinfor
ement learning:relational reinfor
ement learning and hierar
hi
al reinfor
ement learning using the MAXQvalue fun
tion de
omposition. The question now remains:
an these two te
hniques be
om-bined to a
hieve further advantages? In this
hapter we will try to answer this question withinthe boundaries of the theory presented so far. That is, we will explore the possibilities ofintegrating logi
al state abstra
tions and logi
al de
ision trees into hierar
hi
al reinfor
ementlearning.In Se
tion 5.1 we de�ne a MAXQ hierar
hy for Blo
ks World and dis
uss deleted-
onditionintera
tions and the hierar
hi
al exploration problem for the hierar
hy. Se
tion 5.2 introdu
eslogi
al value and
ompletion trees, while Se
tion 5.3 introdu
es logi
al state abstra
tion intothe MAXQ de
omposition. In Se
tion 5.4 we des
ribe two approa
hes for deriving P -treesfrom a MAXQ hierar
hy, and in Se
tion 5.5 we dis
uss the results of a series of experi-ments
ondu
ted with the
ombination of relational and hierar
hi
al reinfor
ement learning.Se
tion 5.6 dis
usses the appli
ability of the
ombination in automati
ally
onstru
ted hier-ar
hies, and �nally we dis
uss related work in Se
tion 5.7.5.1 MAXQ Hierar
hy for Blo
ks WorldWe will use Blo
ks World as the ongoing example domain throughout this
hapter. Tothis end, we must �rst de�ne a task hierar
hy and a MAXQ graph for the domain. Tokeep things simple, we will on
e again only
onsider the task of sta
king a spe
i�
 blo
k ontop of another spe
i�
 blo
k. We will denote this root task as Sta
k(A,B), where A andB are any two distin
t blo
ks. The root task
an be de
omposed into the three subtasks:MakeClear(A), MakeClear(B) and Move(A,B). MakeClear(A) and MakeClear(B) are reallydenoting the same subtask MakeClear(X)�that of
learing a spe
i�
 blo
k X. This task
anbe further de
omposed into Move(Y,Z) for any
lear pair of blo
ks Y and Z in the domain.Figure 5.1 shows the des
ribed task hierar
hy for Blo
ks World.The task hierar
hy des
ribes the pro
edural de
omposition of the domain. The value fun
-tion de
omposition is de�ned by the MAXQ graph illustrated in Figure 5.2. The primitive61

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING
Stack(A,B)

Makeclear(X)

Move(Y,Z)

X/A or
X/B

Y/block and
Z/block

Y/A and
Z/B

Figure 5.1: A task hierar
hy for the Blo
ks World domain.Max node MaxMove(Y,Z)
ontains the values V (Move(Y,Z), s) for all states s. The Q-nodes
ontain the
ompletion
ost of following the
urrent poli
y after performing the parti
ulara
tion in the
urrent state. Noti
e that the root Max node takes the parameters A and B.Thus, this hierar
hy
overs any binding of a
tual blo
ks su
h as, for instan
e, sta
k(a,b)or sta
k(
,a). In general, logi
al poli
ies naturally allow parameterized subtasks in a moread-ho
 fashion than propositional approa
hes.
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

Figure 5.2: A MAXQ graph for the Blo
ks World domain. Again, Max nodes
orrespond tothe subtasks in the domain, and Q nodes
orrespond to the a
tions available for ea
h subtask.5.1.1 Hierar
hi
al Exploration ProblemThe hierar
hy in Figure 5.1 informs the agent that, to rea
h its goal, it must
lear the twogoal-state blo
ks A and B and then move A onto B. However, during the
learing of a blo
kX, the agent is not guided in any way. Indeed, the agent
an
hoose to move any
learblo
k in the domain onto any other
lear blo
k. A valid question here is why we do notsimply restri
t the available a
tions during MakeClear(X) to only in
lude a
tions where ablo
k is moved to the �oor. Assuming unlimited �oor spa
e, there
learly exist an optimalpoli
y using this restri
tion and we would furthermore e�e
tively avoid deleted-
onditionintera
tions (see Se
tion 2.3) where blo
ks are moved on top of an already
leared goal-stateblo
k. The reason we do not make this restri
tion is that it would introdu
e the hierar
hi
al62

5.2. VALUE AND COMPLETION TREESexploration problem, as de�ned in Se
tion 4.6, into the hierar
hy. Consider applying therestri
tion; during ea
h training episode, existing blo
k sta
ks would ��atten� out until thegoal was rea
hed. Thus, the agent would explore ��at� states far more often than states withhigh sta
ks. The result of this would be poor performan
e in these states.To avoid deleted-
ondition intera
tions without applying restri
tions to the a
tions duringMakeClear(X), we will slightly
hange the reward fun
tion. As before, all a
tions will yielda penalty of −1. Furthermore, a
tions that move a blo
k on top of a another blo
k whi
h isabove either one of the goal-state blo
ks (A or B) will
arry a se
ond penalty of −1 yieldinga total penalty of −2. This
hange guides the agent towards solving MakeClear(X) withoutmoving blo
ks onto A or B. Noti
e that we
ould a
hieve the same guidan
e using pseudo-rewards. For simpli
ity, however, we will ignore pseudo-rewards in this
hapter.5.2 Value and Completion TreesAs des
ribed in Chapter 4, the MAXQ de
omposition of the value fun
tion opens up new op-portunities for state abstra
tions. Combining MAXQ with relational reinfor
ement learningdoes not
hange this fa
t. First of all, the de
omposition redu
es the size of the individualfun
tions, thereby making it easier for a relational learner to �nd suitable patterns. Se
ondly,if new state abstra
tions are made possible, then these will also be found by the relationallearner. As a result, we will no longer
onsider Q-trees. Instead, the Q fun
tion is de�nedby a
ombination of V -trees (value trees) and C-trees (
ompletion trees). These trees are,as Q-trees, logi
al regression trees. V -trees map a state s and a primitive subtask i to anumeri
al value. Similarly, C-trees map a state s, a parent task i, and a subtask a to anumeri
al value.root: roottask(sta
k(A,B)),task(move(Y,Z)) root: roottask(sta
k(A,B)),task(make
lear(X)), a
tion(move(Y,Z))above(Z,A)
b(−2)y above(Z,B)n

b(−2) y b(−1)n
above(Y,X)blo
kson(X,1)y

b(0) y blo
kson(X,2)n
b(-1) y b(-2)n

. . .n
(a) V -tree for MaxMove(Y,Z). (b) C-tree for QMoveForMakeClear.Figure 5.3: Example of an V -tree and a C-tree for subtasks in the Blo
ks World MAXQgraph.Figure 5.3 shows an example V -tree and an example C-tree for Blo
ks World1. The treesare queried in exa
tly the same way as Q-trees. Q values are
omputed by applying thede
omposition equations de�ned in Chapter 4 to the results of querying the V -trees and C-trees. Updated trees are indu
ed at the end of ea
h episode over the base of examples
reated1The predi
ate blo
kson(X,N) holds if N is equal to the number of blo
ks on top of blo
k X. 63

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNINGduring training. Thus, the MAXQ-Q algorithm must be altered to generate examples andinvoke the indu
tion algorithm TILDE-RT. This
hange is very straightforward and similar tothe
hange made to the regular Q-learning algorithm in Chapter 3. The
omplete relationalMAXQ-Q learning algorithm
an be found in Appendix C.The MAXQ graph for Blo
ks World requires the learning of one V -tree for the Max nodeMaxMove(Y,Z) and three C-trees for the Q-nodes QMakeClear(X), QMove(A,B) andQMoveForMakeClear(X,Y,Z). Figure 5.4 shows a graphi
al overview of this.
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

V-Tree for
V(s,Move(Y,Z))

C-Tree for
C(MakeClear(X),s,Move(Y,Z))

C-Tree for
C(Stack(A,B),s,MakeClear(X))

C-Tree for
C(Stack(A,B),s,Move(A,B))

Figure 5.4: A graphi
al overview of the
onne
tion between the Blo
ks World MAXQ graphand logi
al de
ision trees representing the value and
ompletion fun
tions.5.3 State Abstra
tionsRelational reinfor
ement learning makes use of �rst order logi
 both during the spe
i�
ationof a domain and for the indu
tion of logi
al de
ision trees. In this
hapter we will makea distin
tion between these two appli
ations of logi
. Doing so enables the possibility ofmanually applying logi
al state abstra
tions to hierar
hi
al reinfor
ement learning withoutindu
ing logi
al de
ision trees. In fa
t, we have already seen a logi
al state abstra
tionmanually applied to the Taxi domain in Chapter 4. This abstra
tion
on
luded on thelegality of Pi
kup and Putdown a
tions and introdu
ed a new state variable to
ontain thenew information. As mentioned, the framework proposed by Dietteri
h (2000) does notreally support this kind of abstra
tion. We will therefore introdu
e two new state abstra
tion
onditions for the MAXQ de
omposition. However, we �rst need to de�ne pre
isely what wemean by a logi
al abstra
tion.De�nition 7. A logi
al abstra
tion fun
tion L : S −→ SL is a mapping from the set of states
S to the set of logi
al abstra
ted states SL su
h that size(SL) < size(S), where size(S) is afun
tion that returns the number of states in S. L(s) denotes the abstra
tion of state s ∈ S.The de�nition of L is left intensionally vague. It
overs any fun
tion that redu
es the numberof distin
t states in the state spa
e. If an abstra
tion fun
tion is to be useful in a domain, it64

5.3. STATE ABSTRACTIONSmust map ea
h subset of similar states {s0, . . . , sn} into a single abstra
t state sL. Sometimesfurther abstra
tions
an be a
hieved by
onsidering both a state and a
tion together (andsometimes even a parent or an
estor task). In this
ase, L
an be
hanged to take thisinformation as input (e.g. L(s, a) or L(i, s, a)). The output still remains a single abstra
tedentity sL.An abstra
tion fun
tion
an be either safe or unsafe. A safe abstra
tion fun
tion only groupsstates (or state/a
tion pairs) together that yield the exa
t same V and C values. Thefollowing are
onditions under whi
h an abstra
tion fun
tion L is safe. We assume a hash-like lookup table to handle the mapping of multiple values to single abstra
ted entities.De�nition 8. A logi
al abstra
tion fun
tion L is safe for a primitive Max node i if, for thenon-abstra
ted state s ∈ S and a
tion a, we have that
V π

i (a, s) = V π
i (L(a, s)) (5.1)De�nition 9. A logi
al abstra
tion fun
tion L is safe for a Q-node j if, for the non-abstra
tedstate s, a
tion a and MaxNode i, we have that

Cπ
j (i, a, s) = Cπ

j (L(i, a, s)) (5.2)To illustrate these
onditions by example, we will pro
eed to de�ne a
omplete logi
al ab-stra
tion fun
tion for the Blo
ks World hierar
hy de�ned in Se
tion 5.1. We will de�ne thefun
tion as a set of Prolog rules. The rules take the formlogabstra
t(S, I, A, NextS)where S is the non-abstra
ted state, I is the parent task, A is the subtask, and NextS is thelogi
al abstra
ted state. As mentioned, the parent task I
an be repla
ed by any an
estortask to A as this
an sometimes allow for a higher level of abstra
tion. The �rst rules wede�ne
over the logi
al abstra
tions possible in the Max node MaxMove(Y,Z).logabstra
t(S, sta
k(A,B), move(Y,Z), [illegal℄) :- above(Z,A), !.logabstra
t(S, sta
k(A,B), move(Y,Z), [illegal℄) :- above(Z,B), !.logabstra
t(S, sta
k(A,B), move(Y,Z), [legal℄).Remember that the agent re
eives an immediate penalty of −2 if a blo
k is moved onto a sta
kwith either of the goal-state blo
ks A and B, otherwise it re
eives −1. The rules partitionthe state/a
tion spa
e into two abstra
ted states, [legal℄ and [illegal℄, whi
h exa
tlyen
ompass these penalties. More spe
i�
ally, for any non-abstra
ted state s and a
tion a wehave that if V π
i (a, s) =

{

−1 then L(s, sta
k(A,B), a) = [legal℄
−2 then L(s, sta
k(A,B), a) = [illegal℄ (5.3)where i is the Max node MaxMove(Y,Z). Thus, the abstra
tion satis�es De�nition 8 andis safe. The result is that the number of needed values in MaxMove(Y,Z) is redu
ed to 2.65

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING
V(s,a)=-1

V(s,a)=-2

S

SL

legal

illegal

= distinct state/action pairFigure 5.5: A graphi
al illustration of the logi
al abstra
tion applied to the Max nodeMaxMove(Y,Z).Furthermore, this redu
tion is
ompletely independent of the number of blo
ks in the domain.A graphi
al way to observe the logi
al abstra
tion is illustrated in Figure 5.5.A thing to noti
e is that abstra
ted entities are only used to determine the value of state/a
-tion pairs. They are not used in, for instan
e, the a
tion pre
ondition fun
tion or the tran-sition fun
tion. These fun
tions do therefore not need rede�nitions even though we aresometimes
hanging the state variables dramati
ally. They still only need to depend on theoriginal state variables present in the domain.There are three Q-nodes in the Blo
ks World MAXQ graph to whi
h state abstra
tions
an beapplied. We will start from the top and �rst de�ne logi
al abstra
tions for QMakeClear(X):logabstra
t(S, sta
k(A,B), make
lear(A), NextS) :-blo
kson(S,B,N), NextS=[blo
ks_on_other(N)℄, !.logabstra
t(S, sta
k(A,B), make
lear(B), NextS) :-blo
kson(S,A,N), NextS=[blo
ks_on_other(N)℄, !.The important thing to noti
e here is that Q-nodes
ontain
ompletion fun
tions. As su
h,the information
ontained within an abstra
ted entity must only be exa
tly enough to
on-
lude the
ompletion
ost of the parent task after performing the parti
ular subtask�in this
ase MakeClear(X). Indeed, this is the major advantage of using the MAXQ value fun
tionde
omposition. After exe
uting the subtask MakeClear(A), the only relevant information tothe
ompletion of its parent task Sta
k(A,B) is how many blo
ks that are above the othergoal-state blo
k B in state S. This number N is
omputed by the predi
ate blo
kson(S,B,N).The resulting abstra
ted entity be
omes the single fa
t blo
ks_on_other(N). Similarly, forthe subtask MakeClear(B), the only important information for the
ompletion fun
tion ishow many blo
ks is above A. The redu
tion of needed values in this Q-node is not indepen-dent of the number of blo
ks in the domain. However, the number has a linear growth rate.For instan
e, using 3 blo
ks, only 3 values are needed, be
ause a blo
k
an only have eitherone, two or three blo
ks above it.66

5.3. STATE ABSTRACTIONSThe next Q-node is QMove(A,B), whi
h represents the �nal a
tion of an episode. We do notneed to de�ne logi
al abstra
tion rules for this node, be
ause all state variables are eliminatedusing the Termination and Shielding
onditions from Chapter 4. Thus, the
ompletion
ostafter performing this a
tion is always zero.Finally, we have the last Q-node QMoveForMakeClear(X,Y,Z). The motivation behind the ab-stra
tion rules for this node is somewhat similar to the abstra
tions made for MaxMove(Y,Z):logabstra
t(S, make
lear(X), move(Y,Z), NextS) :-above(S,Y,A), blo
ksabove(S,X,N),N1 is N-1, NextS=[blo
ks_on(N1)℄, !logabstra
t(S, make
lear(X), move(Y,Z), NextS) :-above(S,Z,A), blo
ksabove(S,X,N),N1 is N+1, NextS=[blo
ks_on(N1)℄, !logabstra
t(S, make
lear(X), move(Y,Z), NextS) :-not(above(S,Y,X)), not(above(S,Z,X)),blo
ksabove(S,X,N), NextS=[blo
ks_on(N)℄, !During the subtask of
learing a blo
k X, the
ompletion
ost of moving a blo
k depends onhow many blo
ks are above X after the move. Thus two questions must be determined:
• Is the blo
k Y being moved above X?
• Is the destination blo
k Z above X?The �rst rule
overs the �rst question. In this
ase, the blo
k Y being moved is above X. Asa result, we
an represent the abstra
ted state as blo
ks_on(N1) where N1 is the previousnumber of blo
ks above X minus one. The se
ond rule
overs the
ase where the destinationblo
k Z is above X. In this
ase, the number of blo
ks above X is in
reased by one. Finally, ifthe sta
k
ontaining X is not involved in the move a
tion, then the number of blo
ks aboveX remains the same.The redu
tion in the number of needed values to represent the
ompletion fun
tion forQMoveForMakeClear(X,Y,Z) is again dependent on the number of blo
ks in the domain.Using three blo
ks, the number of needed values is redu
ed to two, sin
e only one or twoblo
ks
an be above X without MakeClear(X) being terminated. The number of needed valuesfor this Q-node also has a linear growth rate.5.3.1 Manual and Semi-Automati
 State Abstra
tionIn the previous se
tion we de�ned logi
al state abstra
tions for the MAXQ value fun
tion de-
omposition. The question now is how these abstra
tions relate to the abstra
tions a
hievedby indu
ing logi
al de
ision trees. One might be tempted to think that �rst applying log-i
al state abstra
tions manually and then pro
eeding to indu
e logi
al de
ision trees wouldsomehow result in even further abstra
tions. Of
ourse, this is not the
ase.The logi
al abstra
tions that
an be applied manually are indeed exa
tly the same abstra
-tions that
an be dis
overed during the indu
tion of V -trees and C-trees. Whether or not theyare a
tually dis
overed depends on the available tests de�ned by the ba
kground knowledge67

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING(see Se
tion 3.3). Finding state abstra
tions this way
an be viewed as semi-automati
. Itrequires manual spe
i�
ation of the ba
kground knowledge, but the tedious task of sear
hingfor the a
tual possible abstra
tions be
omes automati
. One advantage of applying logi
alde
ision trees to �nd state abstra
tions is therefore simply that it requires less manual spe
-i�
ation. On the other hand, the indu
tion of logi
al de
ision trees requires more
omputerpower. We will
ompare the two approa
hes further in Se
tion 5.5.5.4 The Poli
y Fun
tionThe poli
y fun
tion P introdu
ed in Chapter 3 en
odes the optimality of state/a
tion pairs.It is by de�nition dependent on the Q-fun
tion, but was shown to perform better in bothits training domain and other similar domains (see Se
tion 3.5). In this se
tion, we willinvestigate how the poli
y fun
tion
an be introdu
ed into a relational MAXQ hierar
hy. Ingeneral, the P -fun
tion
annot be part of the MAXQ value fun
tion de
omposition be
ause itdoes not express anything about observed rewards. Instead, the value fun
tion de
omposition
an be viewed simply as a representation of a hierar
hi
al Q-fun
tion from whi
h P
an bederived. In parti
ular, we will introdu
e two ways of deriving a P fun
tion from a MAXQhierar
hy. The �rst approa
h builds a lo
al P -tree for ea
h non-primitive Max node in thehierar
hy. Ea
h lo
al tree denotes the optimality of exe
uting subtasks of the Max node.The se
ond approa
h builds a single global P -tree for the hierar
hy. A global P -tree denotesthe optimality of primitive a
tions and do not referen
e
omposite subtasks in the MAXQhierar
hy.5.4.1 Lo
al P -TreesRemember that P takes a state s and an a
tion a as input, and returns 1 if the pair is optimaland otherwise 0 if the pair is not optimal. P is de�ned using the Q-fun
tion, and sin
e Q isde�ned by V and C in the MAXQ hierar
hy, we
an formulate the following de�nition of ahierar
hi
al P fun
tion:
P (i, s, a) =

{

1, if a ∈ arg maxa (V (s, a) + C(i, s, a))
0, otherwise (5.4)For instan
e, if MakeClear(A) is optimal in state s during the exe
ution of subtask Sta
k(A,B),then P (Sta
k(A,B), s, MakeClear(A)) = 1. As in Chapter 3, P is represented by a logi-
al
lassi�
ation tree
alled a P -tree. In general, a P -tree
an be indu
ed for every non-primitive Max node in a MAXQ graph. Thus, using the Blo
ks World MAXQ graph fromFigure 5.2, we
an indu
e one P -tree for the root Max node MaxSta
k(A,B), and one P -treefor MaxMakeClear(X). This is illustrated in Figure 5.6.2Using this approa
h, the relational MAXQ-Q algorithm must generate separate examplesfor ea
h non-primitive Max node. As in Chapter 3, an example must be generated for allobserved states
ombined with all possible a
tions. When using the non-in
remental TILDEalgorithm, these examples must be generated from s
rat
h after ea
h episode followed by theindu
tion of a new P -tree. Assuming a lo
al P -tree for ea
h non-primitive Max node, thelearned poli
y
an be exe
uted using the re
ursive algorithm displayed in Table 5.1.2Noti
e that this is identi
al to indu
ing a P -tree for ea
h non-primitive subtask in the task hierar
hyillustrated in Figure 5.1.68

5.4. THE POLICY FUNCTION
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

Local P-Tree for
P(Stack(A,B),s,a)

Local P-Tree for
P(MakeClear(X),s,a)

Figure 5.6: The Blo
ks World MAXQ graph with atta
hed lo
al P -trees for MaxSta
k(A,B)and MaxMakeClear(X).1: fun
tion Exe
uteHierar
hi
alLo
alPoli
y(MaxNode i, State s)2: If (i is a primitive Max node)3: Exe
ute i and observe resulting state s′4: Return s′.5: Else6: While (Ti(s) is false)7: Find the available a
tions {a0, . . . , an) in state s8: Let m := 09: Let exe
uted := false10: While (m <= n and exe
uted = false)11: If (P (i, s, am) = 1)12: s := Exe
uteLo
alPoli
y(am , s)13: exe
uted := true ; m := m + 114: End If15: End For16: If (exe
uted = false)17: s := Exe
uteLo
alPoli
y(a0 , s)18: End If19: End While20: Return s21: End If22: End Fun
tionTable 5.1: An algorithm for exe
uting a poli
y represented by the hierar
hi
al lo
al poli
yfun
tion P . 69

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNINGThe Exe
uteHierar
hi
alLo
alPoli
y algorithm takes a Max node i and a state s asinput. If i is a primitive Max node, then the
orresponding a
tion is exe
uted dire
tly and theresulting state is returned. Otherwise, the algorithms �rst �nds the set of available a
tionsin s. It then
y
les through these a
tions until an optimal a
tion a

ording to P is found.This a
tion is exe
uted by
alling Exe
uteHierar
hi
alLo
alPoli
y re
ursively, whi
hreturns an updated state. If no a
tions are
lassi�ed as optimal a

ording to the P fun
tion(this
an happen when P is not fully learned), then the �rst a
tion a0 is
hosen.For examples of lo
al P -trees for the Blo
ks World hierar
hy, see Se
tion 5.5.5.4.2 Global P -TreeA lo
al P -tree, for a task i in a MAXQ hierar
hy, en
odes the optimality of exe
uting both
omposite and primitive subtasks of i. It is, however, also possible to use the MAXQ hierar
hyto derive a global P -tree over only the primitive a
tions in the domain. Su
h a tree is similarto the P -trees des
ribed in Chapter 3 in all ways ex
ept how its examples are generated.Figure 5.7 illustrates the Blo
ks World MAXQ graph with an atta
hed global P -tree.
MaxStack(A,B)

MaxMakeClear(X)

MaxMove(Y,Z)

QMakeclear(X) QMove(A,B)

QMoveForMakeClear(X,Y,Z)

Y/block and
Z/block

X/A or
X /B

Y/A and
Z/B

Global P-Tree for
P(Stack(A,B),s,Move(Y,Z))

Figure 5.7: The Blo
ks World MAXQ graph with an atta
hed global P -tree over all primitivea
tions in the domain.Even though a MAXQ hierar
hy, as a whole,
an be viewed simply as any other representa-tion of the Q-fun
tion for a domain, it also o�ers an opportunity for exploiting its internalstru
ture. Re
all the fun
tion EvaluateMaxNode de�ned in Chapter 4. This fun
tionperforms a greedy sear
h in the MAXQ hierar
hy to �nd the path (from the root node toany possible leaf) that yields the highest expe
ted
umulative reward. It returns both thisexpe
ted reward as well as the primitive a
tion at the leaf of the path. At the end of anepisode, EvaluateMaxNode
an be used to �nd the optimal primitive a
tions for all ob-served states to
reate optimal examples over these pairs. For all other a
tions, non-optimalexamples are generated. Table 5.2 shows the pseudo-
ode for the algorithm GenerateEx-70

5.5. EXPERIMENTSamplesForGlobalP that performs this fun
tionality. After generating the examples, theyare subsequently fed to TILDE to indu
e a global P -tree for the MAXQ hierar
hy.1: pro
edure GenerateExamplesForGlobalP(MaxNode root)2: for (all observed states s)3: Find all available primitive a
tions Ap in state s4: 〈v, amax〉 := EvaluateMaxNode(root, s)5: for (all a
tions a ∈ Ap)6: If (a = amax) then7: Create optimal example x = {s, a, 1}8: Else9: Create non-optimal example x = {s, a, 0}10: End If11: End For12: End For13: End Pro
edureTable 5.2: An algorithm for generating examples for indu
ing a global P -tree over a MAXQhierar
hy.This
onstru
tion has a single advantage over regular P -trees learned from a �at represen-tation of Q. An imposed hierar
hy will often shield
ertain primitive a
tions from beingexe
uted in
ertain states. This means that EvaluateMaxNode will never return su
h ashielded a
tion as optimal in these states. In e�e
t, even during early learning, the agent willknow that these shielded a
tions are never optimal.The Blo
ks World hierar
hy does not bene�t from this advantage, sin
e no primitive a
tionsare shielded by the imposed hierar
hy in any state. The hierar
hy applied to the Taxi domainin Chapter 4, however, would bene�t from it. In parti
ular, the primitive a
tions Pi
kupand Putdown are shielded from exe
ution in many states in the Taxi domain.5.5 ExperimentsTo evaluate the various approa
hes for
ombining relational and hierar
hi
al reinfor
ementlearning, we performed a series of experiments. The purpose of these experiments was toanswer the following questions:
• What is the performan
e gain for MAXQ hierar
hi
al reinfor
ement learning whenapplying hand-
oded logi
al state abstra
tions?
• How does MAXQ hierar
hi
al reinfor
ement learning with hand-
oded logi
al stateabstra
tions perform
ompared to �at relational reinfor
ement learning?
• What is the performan
e of MAXQ hierar
hi
al reinfor
ement learning using logi
al

V -trees and C-trees (without hand-
oded state abstra
tions), and to what extend isthis performan
e improved by introdu
ing lo
al and global P -trees?
• How does the use of logi
al de
ision trees in MAXQ hierar
hi
al reinfor
ement learning
ompare to the use of hand-
oded logi
al state abstra
tions? 71

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNINGFor ea
h approa
h we measured the mean error per trial as a fun
tion of primitive trainingsteps. As in the previous
hapter, we on
e again
omputed the mean over 10 runs for ea
happroa
h. For hierar
hi
al approa
hes we de�ned a GLIE exploration poli
y using the Boltz-mann exploration te
hnique with a de
reasing temperature. The temperature was initiallyset to 1, and was then de
reased su
h that it rea
hed 0 at the expe
ted time
onvergen
e. Theexpe
ted time of
onvergen
e was found by observing a series of test runs for ea
h approa
h.All experiments were performed on a Blo
ks World domain with four blo
ks.5.5.1 Hand-Coded Logi
al State Abstra
tionsIn Chapter 4 we des
ribed �ve
onditions that introdu
e state abstra
tions to a MAXQ hier-ar
hy: Leaf Irrelevan
e, MaxNode Irrelevan
e, Result Distribution Irrelevan
e, Terminationand Shielding. As des
ribed, these
onditions
an only be used to eliminate irrelevant statevariables, and not to make logi
al
on
lusions over part of the state/a
tion spa
e. Usingthese
onditions on a state in the Blo
ks World hierar
hy, we
an eliminate sta
ks of blo
ksnot
ontaining either of the goal-state blo
ks A or B. We furthermore do not need to representany values for the Q-node QMove(A,B) (see Se
tion 5.3).In this experiment, we
ompared the performan
e of a hierar
hy with these non-logi
al stateabstra
tions to the performan
e of a hierar
hy with the logi
al state abstra
tions des
ribedin Se
tion 5.3. Figure 5.8 shows the results of the experiment, where MAXQ-SA denotes thehierar
hy with non-logi
al state abstra
tions and MAXQ-LSA denotes the hierar
hy with logi
alstate abstra
tions.
MAXQ-LSA

MAXQ-SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

0 50 100 150 200 250 300 350 400 450

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.8: Comparison of the performan
e of MAXQ hierar
hies when hand-
oded logi
aland non-logi
al state abstra
tions are applied. MAXQ-LSA denotes a hierar
hy with logi
alstate abstra
tions, while MAX-SA denotes a hierar
hy with only non-logi
al state abstra
tionsSin
e less values are needed to represent the hierar
hy for MAXQ-LSA
ompared to MAX-SA, itrea
hes optimal behavior mu
h faster. During the experiment, the agent learned 136 valuesfor MAXQ-SA, while only 11 values were needed for MAXQ-LSA.72

5.5. EXPERIMENTS5.5.2 Flat Relational Reinfor
ement LearningHaving determined the performan
e of using logi
al and non-logi
al abstra
tions in Blo
ksWorld, it is interesting to
ompare these results to the performan
e of �at relational rein-for
ement learning. To a
hieve this, we let the agent learn both Q-trees and P -trees over theentire domain. We then
ompared the mean performan
e of these logi
al de
ision trees to thedata obtained in the previous experiment. Figure 5.9 shows the results of this
omparison.Flat RRL-Q denotes the mean performan
e of the learned Q-trees, while Flat RRL-P denotesthe mean performan
e of the learned P -trees.

MAXQ-LSA
Flat RRL-Q

Flat RRL-P

MAXQ-SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 20 40 60 80 100 120 140 160 180

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.9: The performan
e of MAXQ hierar
hies with hand-
oded logi
al and non-logi
alstate abstra
tions
ompared to �at reinfor
ement learning. Flat RRL-Q denotes the perfor-man
e of learned Q-trees, while Flat RRL-P denotes the performan
e of learned P -trees.The �rst thing to noti
e is that MAXQ-SA and MAXQ-LSA both have better initial performan
e.This is a
onsequen
e of the information impli
itly en
oded in the imposed hierar
hy. These
ond thing to noti
e is that MAXQ-LSA rea
hes optimal behavior faster than both FlatRRL-Q and Flat RRL-P. This is not surprising sin
e every possible logi
al state abstra
tion ishand-
oded into the hierar
hy of MAXQ-LSA. The relational approa
hes must instead sear
hfor these abstra
tions during learning. Thirdly, MAXQ-SA performs mu
h worse than �atrelational reinfor
ement learning. This was somewhat unexpe
ted. It is a dire
t
onsequen
eof the powerful logi
al state abstra
tions possible in Blo
ks World that are unavailable toMAXQ-SA.It is mu
h more surprising that �at relational reinfor
ement learning performs so well
om-pared to using hand-
oded state abstra
tions. The most likely explanation for this behavioris that values of unobserved states
an be predi
ted when using de
ision trees. This
an resultin reasonable or optimal behavior in unobserved parts of the state spa
e. Using a tabularrepresentation of the value fun
tions, as done by MAXQ-SA and MAXQ-LSA, unobserved statesare simply assigned a value of zero. 73

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING5.5.3 MAXQ Hierar
hy with Logi
al De
ision TreesBefore pro
eeding to
ompare the performan
e of hand-
oded logi
al state abstra
tions tothe use of logi
al de
ision trees in the MAXQ hierar
hy, we �rst investigated the performan
eof three possible approa
hes to the latter. The �rst approa
h was to
hoose a
tions using thelearned V -trees and C-trees. The se
ond approa
h was to derive a global P -tree from theMAXQ hierar
hy, while the third approa
h was to derive lo
al P -trees for all non-primitiveMax nodes. The results of the experiment are shown in Figure 5.10, where C/V, P(Global)and P(Lo
al) refers to the three approa
hes respe
tively.
C/V

P (Global)

P (Local)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 10 20 30 40 50 60 70

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.10: The performan
e of relational MAXQ hierar
hies using logi
al de
ision trees. C/Vdenotes the performan
e of learned V -trees and C-trees. P(Lo
al) denotes the performan
eof learned lo
al P -trees, and P(Global) denotes the performan
e of learned global P -trees.As expe
ted, given the experiments performed in Chapter 3, both lo
al and global P -treesperform better than using only V -trees and C-trees. Furthermore, P(Lo
al) rea
hes bothreasonable and optimal behavior slightly faster than P(Global). This happens be
ause thepatterns of optimality are simpler inside subtasks in the MAXQ hierar
hy
ompared to theentire domain. For instan
e, an optimal a
tion during the subtask MakeClear(X) is simplyan a
tion that moves away a blo
k from the sta
k
ontaining X without moving it onto anygoal-state blo
k. This pattern is easier to learn than the optimal pattern for Sta
k(A,B),whi
h in
ludes
learing both A and B and moving A onto B. It is reasonable to expe
t thatthe advantage of using lo
al P -trees be
omes even greater as the root task be
omes more
omplex
ompared to its subtasks.The optimal global P -tree learned in this experiment is similar to the optimal P -tree learnedin Chapter 3 (illustrated in Figure 3.6), and has a total of 7 leaves.The optimal lo
al P -tree learned for the subtask MakeClear(X) is shown in Figure 5.11.The tree
lassi�es an a
tion as optimal if a blo
k is moved away from the sta
k
ontaining X,otherwise false. It is
learly optimal both for a domain with four blo
ks, but also for a domainwith any number of blo
ks. The optimal lo
al P -tree for Sta
k(A,B) turns out to be the
onstant 1. This en
odes that every possible a
tion in the subtask is optimal. Although this74

5.6. AUTOMATICALLY CONSTRUCTED HIERARCHIESroot: roottask(sta
k(A,B)), task(make
lear(X)), a
tion(move(Y,Z))above(Y,X)
b(1) y

b(0)nFigure 5.11: An optimal lo
al P -tree for MakeClear(X) using any number of blo
ks.sounds strange, it is a
onsequen
e of the applied a
tion pre
ondition fun
tion. Sta
k(A,B)
an only invoke MakeClear(A) if A is not
lear (and similarly with B). Furthermore, if bothA and B are
lear, then the only available a
tion is Move(A,B). As a result, the subtask
annever exe
ute a non-optimal a
tion.We
an now
ompare the performan
e of hand-
oded abstra
tions to the use of logi
al de
isiontrees. To
ompare the approa
hes, we have plotted MAXQ-SA, MAXQ-LSA and P(Lo
al) fromthe previous experiments into the diagram illustrated in Figure 5.12. The lower diagramshows a
lose-up view of the upper diagram.An important thing to remember here is that MAXQ-LSA and MAXQ-SA are hand-
oded withall possible logi
al and non-logi
al abstra
tions respe
tively. P(Lo
al) must sear
h for theseabstra
tions during the indu
tion of logi
al de
ision trees. Nevertheless, P(Lo
al) performsmu
h better than MAX-SA. This is again
aused by the powerful logi
al state abstra
tionspossible in Blo
ks World that is unavailable to MAX-SA. This statement is supported bythe fa
t that MAX-LSA stabilizes with optimal behavior almost twi
e as fast as P(Lo
al).However, P(Lo
al) a
tually outperforms MAXQ-LSA until after 22 primitive training steps. Itdoes not stabilize with optimal behavior before after 55 primitive training steps. This is ane�e
t of being derived dire
tly from C/V whi
h does not
onverge before after 65 primitivetraining steps.The reason that P(Lo
al) performs this well
ompared to MAXQ-LSA
an again be
redited tothe possibility of value predi
tion for unobserved states. It
an also be
redited to the use of
P -trees that, as explained in Chapter 3, outperforms te
hniques that en
ode the distan
e tothe goal. Indeed, a pattern of optimality is often simpler than a pattern des
ribing spe
i�
distan
es to the goal.5.6 Automati
ally Constru
ted Hierar
hiesThe
ondu
ted experiments show that relational and hierar
hi
al reinfor
ement learning
anindeed be
ombined with advantages. By indu
ing lo
al and global P -trees we obtainedalmost as good performan
e as manually hand-
oding logi
al state abstra
tions into theMAXQ hierar
hy. Both manual spe
i�
ation and the indu
tion of logi
al de
ision trees
anbe time
onsuming, so the trade-o� may seem simply to be the allo
ation of time to the twotasks.Although logi
al state abstra
tions may be easy to manually lo
ate in hand-
oded hierar
hies,su
h as the ones used in this report, this may not be the
ase in automati
ally
onstru
tedhierar
hies. By indu
ing logi
al de
ision trees to automati
ally �nd the possible state abstra
-tions, one needs only to
onstru
t a good global ba
kground knowledge. This ba
kgroundknowledge
an then be used by all subtasks in their sear
h for state abstra
tions. In essen
e,75

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING

MAXQ-LSA

P (Local)

MAXQ-SA

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 50 100 150 200 250 300 350 400

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

MAXQ-LSA

P (Local)

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Primitive Training Steps

M
ea

n
 E

rr
o

r
P

er
 T

ri
al

Figure 5.12: The performan
e of relational MAXQ hierar
hies using logi
al de
ision trees
ompared to hand-
oding state abstra
tions dire
tly into a hierar
hy. The lower diagramshows a
lose-up view of the upper diagram.
76

5.7. RELATED WORKthe
ombination of relational and hierar
hi
al reinfor
ement learning may be very useful foragents that must automati
ally dis
over the hierar
hi
al stru
tures within its domain.5.7 Related WorkRon
agliolo and Tadepalli (2004) also present a relational extension of hierar
hi
al rein-for
ement learning using the MAXQ value fun
tion de
omposition. Traditional Q-trees arepie
ewise
onstant in that they map state/a
tion pairs to a
onstant value. This
onstru
-tion does not perform well when the
omplexity of an environment is slightly in
reased (asillustrated by the experiments performed in Chapter 3). Instead, Ron
agliolo and Tadepallipropose a learning algorithm that learns a new form of hierar
hi
al Q-tree as illustrated inFigure 5.3. The rules are on the form q(Task,Subtask,Value). The symbol _ denotes thatany subtask
an be inserted.q(MakeClear(A),_,0) :-
lear(A).q(MakeClear(A),MakeClear(B),V) :- on(B,A), q(MakeClear(B),_,V1), V is V1-1.q(Sta
k(A,B),MakeClear(B),V) :-
lear(A), q(MakeClear(B),_,V1), V is V1-1.Table 5.3: Pie
ewise linear hierar
hi
al Q-tree for the root task Sta
k(A,B).The illustrated hierar
hi
al Q-tree is pie
ewise linear. For instan
e, the value V of exe
utingMakeClear(B) during the subtask Sta
k(A,B) in a state where
lear(A) already holds, is
omputed as the value V1 of a
tually exe
uting MakeClear(B)minus one. Minus one denotesthat only one a
tion, namely Move(A,B) remains when both A and B are
lear. The workdone by Ron
agliolo and Tadepalli only in
ludes preliminary experiments on the indu
tionof su
h pie
ewise linear Q-trees.5.8 SummaryIn this
hapter we have introdu
ed various approa
hes for
ombining relational reinfor
ementlearning with hierar
hi
al reinfor
ement learning using the MAXQ value fun
tion de
ompo-sition. We have shown that logi
al state abstra
tions
an be applied to a MAXQ hierar
hyeither manually or semi-automati
ally by indu
ing logi
al de
ision trees to approximate thevalue and
ompletion fun
tions.Furthermore, we have introdu
ed two approa
hes for deriving P -trees from a MAXQ hierar-
hy. One approa
h derives a lo
al P -tree for ea
h non-primitive Max node in the hierar
hy,while the other derives a single global P -tree for the hierar
hy.A series of experiments showed that the performan
e of MAXQ hierar
hy with logi
al de
isiontrees
omes very
lose to the performan
e of a hierar
hy with manually hand-
oded stateabstra
tions. Even �at relational reinfor
ement learning performed fairly well
ompared toa hierar
hy with hand-
oded state abstra
tions. Noti
e that these
on
lusions are basedsolely on the experiments performed on Blo
ks World with four blo
ks. Future work shouldevaluate these results on other and more
omplex domains.
77

CHAPTER 5. COMBINING HIERARCHICAL AND RELATIONALREINFORCEMENT LEARNING

78

Chapter 6Con
lusionReinfor
ement learning denotes the pro
ess of tea
hing an agent optimal behavior in its en-vironment by reinfor
ing its a
tions with rewards and penalties. Unfortunately, traditionalreinfor
ement learning is inadequate for anything but very small problem domains. In thiswork we have re-explored two existing extensions of reinfor
ement learning, namely rela-tional reinfor
ement learning and hierar
hi
al reinfor
ement learning. We have furthermoreinvestigated the possibilities of
ombining these two methods.6.1 Relational Reinfor
ement LearningIn Chapter 3, we explored relational reinfor
ement learning and evaluated the method usingthe Blo
ks World domain. The
on
lusions of the work
an be summarized as follows:
• Relational reinfor
ement learning exploits the stru
tural
onstraints in relational do-mains. In su
h domains, relational reinfor
ement learning with proper ba
kgroundknowledge will rea
h both reasonable and optimal behavior faster than traditional re-infor
ement learning.
• The indu
tion of P -trees to en
ode the optimality of a
tions enhan
es the performan
eof a Q-tree representation of a poli
y. Furthermore, a P -tree will often perform well inother similar domains (i.e. a P -tree has better generalization properties).6.2 Hierar
hi
al Reinfor
ement LearningSimilarly, in Chapter 4 we evaluated hierar
hi
al reinfor
ement learning using the MAXQvalue fun
tion de
omposition. For this method we
an make the following
on
lusions:
• A pro
edural hierar
hi
al de
omposition of a problem domain introdu
es the oppor-tunity for state abstra
tions be
ause some variables be
ome irrelevant in individualsubtasks.
• The MAXQ value fun
tion de
omposition introdu
es further opportunities for stateabstra
tions be
ause of the separation of value and
ompletion fun
tions.79

CHAPTER 6. CONCLUSION
• Constraints
reated by an imposed hierar
hy will sometimes prohibit an agent fromrea
hing optimal behavior. This problem is solved by using pseudo-rewards and non-hierar
hi
al exe
ution of the learned hierar
hi
al poli
y.
• A task hierar
hy will often guide the agent su
h that it avoids exe
uting poor a
tions in
ertain states. To some extent, this guidan
e
an help an agent learn in domains withsparsely distributed rewards. However, less informed hierar
hies
an make the agentperform worse
ompared to �at reinfor
ement learning.
• Careful
onsideration must be employed in the
onstru
tion of the task hierar
hy, su
hthat the hierar
hi
al exploration problem
an be avoided.6.3 Combining Relational and Hierar
hi
al Reinfor
ementLearningIn Chapter 5 we introdu
ed the
ombination of relational and hierar
hi
al reinfor
ementlearning. The appli
ation of indu
tive logi
 in the MAXQ value fun
tion de
omposition wassplit into manual spe
i�
ation of state abstra
tions, and semi-automati
 dete
tion of stateabstra
tions through the indu
tion of logi
al de
ision trees. The following
on
lusions
anbe made:
• In appropriate hierar
hies, the introdu
tion of logi
al state abstra
tions will greatlyin
rease the rate in whi
h optimal behavior is rea
hed.
• If subtasks in a hierar
hy are of limited size, the indu
tion of logi
al de
ision trees willoften help dis
over state abstra
tions fairly qui
kly. This is, of
ourse, dependent onthe quality of the existing ba
kground knowledge.
• The individual subtasks in a hierar
hy will most often be less
omplex
ompared to theroot task. As a result, patterns of optimality are more easily found by the indu
tion oflo
al P -trees.
• The semi-automati
 dete
tion of state abstra
tions, introdu
ed by the indu
tion oflogi
al de
ision trees,
an most likely be bene�
ially applied to automati
ally generatedhierar
hies.6.4 Summary of ContributionsThis work both re-explores existing material and introdu
es new knowledge. The new
on-tributions of knowledge
an be summarized as
• The
onstru
tion and experimental evaluation of a relational MAXQ-Q algorithm.
• Introdu
tion of two methods for deriving lo
al and global P -trees from a MAXQ hier-ar
hy.80

6.5. FUTURE WORKThe
onstru
ted relational MAXQ-Q algorithm is general and
an be applied to any problemdomain. The two methods for deriving P -trees from a MAXQ hierar
hy supplement ea
hother ni
ely. Lo
al P -trees will most often
onverge faster than a global P -tree. However, aglobal P -tree abstra
ts away from any referen
e to the imposed hierar
hy and is more dire
tlyexe
uted.Other minor
ontributions in
lude the following:
• Formulation of the hierar
hi
al exploration problem.
• Experimental evaluation of the advantages of logi
al state abstra
tions in relationaldomains.
• The idea that logi
al de
ision trees
an be used to semi-automati
ally �nd state ab-stra
tions in automati
ally generated task hierar
hies.The hierar
hi
al exploration problem and its e�e
ts on MAXQ hierar
hies were des
ribed forboth the Taxi and Blo
ks World domain. We furthermore evaluated the advantages of usinglogi
al state abstra
tions in a relational domain su
h as Blo
ks World. For su
h domains,logi
al state abstra
tions are vastly superior to any non-logi
al state abstra
tions. Finally,we introdu
ed the idea that logi
al de
ision trees
an be used to semi-automati
ally �nd stateabstra
tions in automati
ally generated task hierar
hies.6.5 Future WorkThe evaluation of the
ombination of relational and hierar
hi
al reinfor
ement learning inChapter 5 is based only on experiments
ondu
ted on the relational Blo
ks World domainusing four blo
ks. It would be interesting to investigate the appli
ation of the method on anon-relational domain su
h as the Taxi domain, as well as other realisti
 (or semi-realisti
)problems.It seems likely that a task hierar
hy
an be used to separate relational and non-relationalsubtasks su
h that di�erent learning algorithms
an be applied to the hierar
hy. For theTaxi domain, a relational learning algorithm
ould be applied to all subtasks ex
ept thenon-relational subtask Navigate. This subtask
ould then be solved using a propositionalrepresentation language.Learning te
hniques for agents are most often used by the
omputer game industry to makegames more real and
hallenging. The problem with reinfor
ement learning, in this
ontext,is that it is primary suited for stationary environments. For example, the attempt to learna navigation poli
y for anything but a small stationary domain (su
h as the Taxi domain)would require both
onsiderable spa
e and time. Indeed, reinfor
ement learning seems moresuited for making de
isions on a higher level of abstra
tion. For an a
tion
omputer game,reinfor
ement learning
ould be used to de
ide when to atta
k, hide or apply other strategi
a
tions. These de
isions
ould be trained by observing the behavior of the opponent player,thereby
ustomizing the agent's behavior to
hallenge individual human players. The a
tuallow-level exe
ution of a strategi
 de
ision
ould then be distributed to other more �ttingte
hniques.Finally, the hierar
hies used in this work are a result of a pro
edural de
omposition of theroot task. The hierar
hies en
ode a �subtask of� relationship between tasks. A relational81

CHAPTER 6. CONCLUSIONsetting might
reate the opportunity for ri
her hierar
hies using di�erent relationships su
has e.g. �more spe
i�
 than�. For instan
e, a task in the top of su
h a hierar
hy
ould supplya
rude solution to a problem. This
rude solution
ould then be re�ned by tasks lower inthe hierar
hy.

82

Appendix ASummaryReinfor
ement Learning is the task of tea
hing an agent optimal behavior in its environmentby reinfor
ing good a
tions with rewards and poor a
tions with penalties. At any point intime, the environment is in a spe
i�
 state, and the agent is given a sele
tion of a
tions to
hoose from. The
hosen a
tion moves the environment from its
urrent state to a new statedi
tated by a transition probability distribution. Depending on the
hosen a
tion, the agentis rewarded or penalized.As problems grow larger, representation be
omes an in
reasingly important issue. Many real-world problems and their solutions (i.e. a
ontrol poli
ies) are often impossible to representdire
tly in a
onventional table-based manner. This has given rise to various approa
hes toease the problem of a large state spa
e. In general, the state spa
e is either redu
ed by theuse of state abstra
tions, or the agent is guided on the right path (thus avoiding a possiblylarge part of the state spa
e).In this report we explore two of these approa
hes, namely relational reinfor
ement learn-ing (Dºeroski et al., 2001) and hierar
hi
al reinfor
ement learning using the MAXQ valuefun
tion de
omposition (Dietteri
h, 2000). Relational reinfor
ement learning exploits thestru
tural
onstraints in relational domains by
ombining reinfor
ement learning and in-du
tive logi
 programming. In su
h domains, relational reinfor
ement learning with properba
kground knowledge will rea
h both reasonable and optimal behavior faster than tradi-tional reinfor
ement learning. Indu
ing logi
al de
ision trees over the optimality of a
tionsfurthermore enables good generalization properties, su
h that learned poli
ies
an be appliedto similar domains.Hierar
hi
al reinfor
ement learning imposes a hierar
hi
al de
omposition of a domain. Thisde
omposition has the advantages of
reating opportunities for state abstra
tions and guidingthe agent towards its goal. The MAXQ value fun
tion de
omposition
reates the opportunityfor even further state abstra
tions. As a result, hierar
hi
al reinfor
ement learning withstate abstra
tions outperforms traditional reinfor
ement learning given a reasonable informedhierar
hy. Careful
onsideration must, however, be put into the the
onstru
tion of thehierar
hi
al de
omposition to avoid exploration problems.Besides the re-exploration of these two existing methods, the major
ontribution of this workis to explore the advantages of
ombining relational reinfor
ement learning and hierar
hi-
al reinfor
ement learning. That is, we investigate the possibilities of integrating indu
tivelogi
 programming into hierar
hi
al reinfor
ement learning. Logi
al state abstra
tions
an be83

APPENDIX A. SUMMARYintrodu
ed into a hierar
hy either manually or semi-automati
 by indu
ing logi
al de
isiontrees. The experiments performed in this work shows that the latter requires less spe
i�-
ation and performs almost as good as the former. The �nal result is a general learningalgorithm that outperforms both relational reinfor
ement learning and hierar
hi
al reinfor
e-ment learning. The algorithm is only evaluated in the Blo
ks World domain, and should befurther tested in other more realisti
 domains.

84

Appendix BACE Blo
ks World Spe
i�
ationThis appendix shows the ACE
on�guration �les used for the various Blo
ks World exper-iments throughout the report. We only show the
on�guration �les used for �at relationalreinfor
ement learning, sin
e the others are almost identi
al. The only di�eren
e is ba
k-ground knowledge for testing on other a
tions than the primitive Move(X,Y) a
tion.B.1 Ba
kground Knowledgeeq(E,X,X).above(E,X,Y) :- on(E,X,Y).above(E,X,Y) :- on(E,X,Z), above(E,Z,Y).a
tion_move(E,X,Y) :- a
tion(E,move(X,Y)).goal_on(E,A,B) :- goal(E,sta
k(A,B)).B.2 TILDE-RT Settings for Indu
ing Q-treestilde_version('3.0').load_pa
kage(tilde).load(key).predi
t(qvalue(+ex,-value)).heuristi
(eu
l).eu
lid(qvalue(E,X), X).tilde_mode(regression).
onfiden
e_level(1).minimal_
ases(1).output_options([prolog℄).ftest(1.0).talking(0).use_pa
ks(0).exe
ute(tilde).exe
ute(quit). 85

APPENDIX B. ACE BLOCKS WORLD SPECIFICATIONroot((goal_on(E,A,B),a
tion_move(E,C,D))).typed_language(yes).type(
lear(ex,blo
k)).type(on(ex,blo
k,blo
k)).type(eq(ex,blo
k,blo
k)).type(above(ex,blo
k,blo
k)).type(a
tion_move(ex,blo
k,blo
k)).type(goal_on(ex,blo
k,blo
k)).rmode(10:
lear(+E,+-X)).rmode(10: on(+E,+-X,+-Y)).rmode(10: on(+E,+-X, floor)).rmode(10: eq(+E,+X,+Y)).rmode(10: eq(+E,+X,floor)).rmode(10: above(+E,+-X,+-Y)).rmode(10: a
tion_move(+E,+-X,+-Y)).rmode(10: a
tion_move(+E,+-X,floor)).B.3 TILDE Settings for Indu
ing P -treestilde_version('3.0').load_pa
kage(tilde).load(key).predi
t(pvalue(+ex,-value)).
onfiden
e_level(1).minimal_
ases(1).output_options([prolog℄).ftest(1.0).talking(0).use_pa
ks(0).root((goal_on(E,A,B),a
tion_move(E,C,D))).typed_language(yes).type(on(ex,blo
k,blo
k)).type(eq(ex,blo
k,blo
k)).type(above(ex,blo
k,blo
k)).type(
lear(ex,blo
k)).type(a
tion_move(ex,blo
k,blo
k)).type(a
tion_make
lear(ex,blo
k)).type(goal_on(ex,blo
k,blo
k)).rmode(10:
lear(+E,+X)).rmode(10: on(+E,+X,+Y)).rmode(10: on(+E,+X, floor)).rmode(10: eq(+E,+X,+Y)).86

B.3. TILDE SETTINGS FOR INDUCING P -TREESrmode(10: eq(+E,+X,floor)).rmode(10: above(+E,+X,+Y)).rmode(10: a
tion_move(+E,+X,+Y)).rmode(10: a
tion_move(+E,+X,floor)).

87

APPENDIX B. ACE BLOCKS WORLD SPECIFICATION

88

Appendix CRelational MAXQ-Q LearningAlgorithmThis appendix shows pseudo-
ode for a relational MAXQ-Q learning algorithm. The algo-rithm is further extended to produ
e lo
al P -trees. Pseudo-
ode for produ
ing global P -treesis illustrated in Table 5.2 in Chapter 5.C.1 Relational MAXQ-QTable C.2 shows the pseudo-
ode for the relational MAXQ-Q algorithm REL-MAXQ-Q.The algorithm approximates V , C and C̃ using logi
al de
ision treesC.2 Learning Lo
al P -treesTo produ
e lo
al P -trees, the relational MAXQ-Q algorithm must be extended with thepseudo-
ode illustrated in Table C.1. The pseudo-
ode should be exe
uted at the end of ea
hepisode. 1: For (all non-primitive Max nodes i)2: For (all observed states s in Max node i)3: For (all possible subtasks ak possible in state s)4: If (state/a
tion pair (s, ak)) is optimal5: a

ording to
urrent approximation of Q) Then6: Generate example x = (s, ak, c) where c = 17: Else8: Generate example x = (s, ak, c) where c = 09: End If10: End For11: End For12: Update P i
e using TILDE to produ
e P i

e+1
using these examples (s, ak , c)13: End ForTable C.1: Learning lo
al P -trees using a relational MAXQ hierar
hy.89

APPENDIX C. RELATIONAL MAXQ-Q LEARNING ALGORITHM
1: fun
tion REL-MAXQ-Q(MaxNode i, State s)2: Let seq = () be the sequen
e of states visited while exe
uting i3: if (i is a primitive MaxNode)4: Exe
ute i, re
eive rt = R(s′|s, a), and observe result state s′5: Generate example x = (s, i, vt+1) in ExamplesV where6: Vt+1 := (1− αt(i)) · Vt(i, s) + αt(i) · rt7: Push s onto the beginning of seq8: else9: Let count = 010: while (Ti(s) is false)11: Choose an a
tion a a

ording to the
urrent exploration poli
y πω(i, s)12: Let childSeq = REL-MAXQ-Q(a,s) where childSeq is the13: sequen
e of states visited exe
uting a
tion a (in reverse order)14: Observe result state s′15: Let a∗ = arg maxa′

[

C̃t(i, s′, a′) + Vt(a′, s′)
]16: Let N = 117: for (ea
h s in childSeq) do18: Generate example x = (i, s, a, c) in ExamplesC where19: c = (1− αt(i)) · Ct(i, s′, a′) + αt(i) · γNexternalValue(s′)20: Generate example x̃ = (i, s, a, c̃) in Examples

C̃
where21: c̃ = (1− αt(i)) · C̃t(i, s′, a′) + αt(i) · γN internalValue(s′)22: with23: externalValue(s′) = [Ct(i, s′, a∗) + Vt(a∗, s′)], and24: internalValue(s′) =

[

R̃i(s
′) + C̃t(i, s′, a∗) + Vt(a∗, s′)

]25: N := N + 126: end for27: Append childSeq onto the front of seq28: s := s′29: end while30: end if31: Return seq32: end33: //main program34: Initialize V (i, s), C(i, s, a) and C̃(i, s, a) to trees produ
ing the value 0 for all inputs35: Initialize ExamplesC , Examples
C̃

and ExamplesV to the empty set36: MAXQ-Q(root node 0, starting state s0)37: Update V using TILDE-RT to produ
e Ve+1 using ExamplesV38: Update C using TILDE-RT to produ
e Ce+1 using ExamplesC39: Update C̃ using TILDE-RT to produ
e C̃e+1 using Examples
C̃Table C.2: Relational MAXQ-Q algorithm.

90

BibliographyAndersen, C. C. S., Boesen, T. and Pedersen, D. K. (2005). Applying relational reinfor
e-ment learning to multi-agent environments. URL = http://www.
s.aau.dk/library/
gi-bin/detail.
gi?id=1105611153.Blo
keel, H. and Raedt, L. D. (1998). Top-Down Indu
tion of First-Order Logi
al De
isionTrees, Arti�
ial Intelligen
e 101(1-2): 285�297.*
iteseer.ist.psu.edu/blo
keel98topdown.htmlBlo
keel, H., Raedt, L. D., Dehaspe, L., Ramon, J., Struyf, J. and Laer, W. V. (2004). TheACE Data Mining System User's Manual.Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classi�
ation andRegression Trees., Wadsworth.Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinfor
ementlearning: An algorithm and performan
e
omparisons, Pro
. of the 12th IJCAI, Sidney,Australia, pp. 726�731.Dietteri
h, T. G. (2000). Hierar
hi
al Reinfor
ement Learning with the MAXQ Value Fun
-tion De
omposition, J. Artif. Intell. Res. (JAIR) 13: 227�303.Driessens, K. and Dºeroski, S. (2004). Integrating Guidan
e into Relational Reinfor
ementLearning, Ma
hine Learning 57: 271�304.Driessens, K. and Ramon, J. (2003). Relational instan
e based regression for relational rein-for
ement learning, Pro
eedings of the Twentieth International Conferen
e on Ma
hineLearning, AAAI Press, pp. 123�130. URL = http://www.
s.kuleuven.a
.be/
gi-bin-dtai/publ_info.pl?id=40845.Driessens, K., Ramon, J. and Blo
keel, H. (2001). Speeding up relational reinfor
ementlearning through the use of an in
remental �rst order de
ision tree learner, Le
tureNotes in Computer S
ien
e 2167.*
iteseer.ist.psu.edu/driessens01speeding.htmlDºeroski, S., Raedt, L. D. and Driessens, K. (2001). Relational Reinfor
ement Learning,Ma
hine Learning 43(1/2): 7�52.Fikes, R. E. and Nilsson, N. J. (1990). Strips: A new approa
h to the appli
ation of theoremproving to problem solving, in J. Allen, J. Hendler and A. Tate (eds), Readings inPlanning, Kaufmann, San Mateo, CA, pp. 88�97.91

BIBLIOGRAPHYGupta, N. and Nau, D. S. (1991). On the
omplexity of blo
ks-world planning., Te
hni
alReport TR 1991-74, The Institute for Systems Resear
h.Gärtner, T., Driessens, K. and Ramon, J. (n.d.). Graph kernels and gaussian pro
esses forrelational reinfor
ement learning.*
iteseer.ist.psu.edu/644898.htmlHauskre
ht, M., Meuleau, N., Kaelbling, L. P., Dean, T. and Boutilier, C. (1998). Hierar
hi
alsolution of markov de
ision pro
esses using ma
ro-a
tions., UAI, pp. 220�229.Jaakkola, T., Jordan, M. I. and Singh, S. P. (1994). Convergen
e of sto
hasti
 iterativedynami
 programming algorithms, in J. D. Cowan, G. Tesauro and J. Alspe
tor (eds),Advan
es in Neural Information Pro
essing Systems, Vol. 6, Morgan Kaufmann Pub-lishers, In
., pp. 703�710.*
iteseer.ist.psu.edu/arti
le/jaakkola93
onvergen
e.htmlParr, R. E. (1998). Hierar
hi
al
ontrol and learning for markov de
ision pro
esses.*
iteseer.ist.psu.edu/parr98hierar
hi
al.htmlQuinlan, J. R. (1993). C4.5: Programs for Ma
hine Learning, Morgan Kaufmann PublishersIn
., San Fran
is
o, CA, USA.Ron
agliolo, S. and Tadepalli, P. (2004). Fun
tion Approximation in Hierar
hi
al RelationalReinfor
ement Learning, Pro
eedings of the ICML'04 workshop on Relational Reinfor
e-ment Learning.Rummery, G. A. and Niranjan, M. (1994). On-line q-learning using
onne
tionist sys-tems, Te
hni
al Report CUED/F-INFENG/TR 166, Engineering Department, Cam-bridge University.Russell, S. and Norvig, P. (2003). Arti�
ial Intelligen
e: A Modern Approa
h, 2nd editionedn, Prenti
e-Hall, Englewood Cli�s, NJ.Sutton, R. S. and Barto, A. G. (1998). Reinfor
ement Learning: An Introdu
tion, MIT Press,Cambridge, MA. A Bradford Book.*http://www-anw.
s.umass.edu/ ri
h/book/the-book.htmlWatkins, C. J. C. H. (1989). Learning from Delayed Rewards, PhD thesis, Cambridge Uni-versity, Cambridge, England.Referen
es
ontaining URLs are valid as of June 16, 2005.

92

