
Department of Computer Science
Aalborg University
Fredrik Bajersvej 7E
DK–9220 Aalborg Øst
Denmark

Automatic Translation of
Timed-Arc Petri Nets to

Timed Automata

Master’s Thesis

Aalborg University

June 2005

Group members: Krishna Prasad Gundam gundam@cs.aau.dk
Ye Tian tianye@cs.aau.dk

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:

Automatic Translation
of Timed-Arc Petri Nets
to Timed Automata

THESIS PERIOD:
SSE4,
February – June 2005

GROUP MEMBERS:
Ye Tian
Krishna Prasad Gundam

SUPERVISOR:
Jǐŕı Srba

NUMBER OF COPIES: 6

REPORT PAGES: 76

APPENDIX PAGES: 6

TOTAL PAGES: 91

SYNOPSIS:

The main objective of this thesis is to investi-

gate possibilities of automatic verification of

TAPN. We focus on translations of various

subclasses of TAPN into TA. Our aim is to

verify the reachability properties of TAPN by

verifying the translated TA using verification

tool Uppaal.

Our reduction technique works for a sub-class

of TAPN namely k-conservative nets. And the

translator is implemented on Java platform

considering both input and output files as

XML files. Moreover we present two case

studies on Fischer’s protocol and Alternating

Bit Protocol.

Acknowledgement

Our heartfelt gratitude goes first to our mentor Jǐŕı Srba, whose academic guid-
ance and illuminating suggestions have encouraged and helped us greatly in our
master degree study and in the completion of our thesis. We are very grateful
for his advise and valuable discussions.

Our warm thanks go also to the Umbrella group and Morten Kühnrich for
their help with LATEXwriting.

To My parents, Guoqing Tian and Xiuzhen Li
My love, Lillian

Ye Tian

To My mother, Vijaya Kumari Gundam, father, Narayana Reddy Gundam
My family and friends

Krishna Prasad Gundam

5

Contents

Contents 7

1 Introduction 9

1.1 Technology Elevation . 9

1.2 Formal Methods . 10

1.3 Our Focus . 12

1.4 Related Work . 13

1.5 Report Overview . 13

2 Basic Definitions 15

2.1 Petri Nets . 15

2.2 Timed Automata . 27

3 Translations from TAPN to TA 33

3.1 Basic Idea of Translation . 33

3.2 Removing Useless Transitions . 33

3.3 Reduction of Degree of TAPN . 36

3.4 Reduction from TAPN to TA/TAN 45

3.5 Conclusion . 56

4 Implementation 59

4.1 Introduction . 59

4.2 Tools and Programming Languages Used 59

4.3 XML Reader and Writer . 61

4.4 Reduction Algorithms . 65

5 Case Study 67

5.1 Case Study I: Fischer’s Protocol 67

5.2 Case Study II: Alternating Bit Protocol 72

6 Conclusion and Future Work 81

7

Page 8 of 91 CONTENTS

6.1 Our Contribution . 81

6.2 Future Work . 82

A Tools and Howtos 83

A.1 Roméo . 83

A.2 Uppaal . 83

A.3 XMLSpy . 84

B DTD 85

B.1 Analysis and Diagram . 85

B.2 DTD Code . 86

C CD Packages 87

C.1 Readme . 87

C.2 Tools . 87

C.3 Program Packages . 87

C.4 Examples . 88

Bibliography 89

CONTENTS

1Introduction

This report is a documentation of our master thesis, which specifies about the
translation techniques from Timed Arc Petri Nets into Timed Automata. The
report signifies both formal proof of the translations and the practical imple-
mentation of the achieved results. The report is made as part of our masters
thesis at Department of Computer Science, Aalborg University, Denmark.

1.1 Technology Elevation

In this age of technology, mankind lifestyle is greatly influenced by the latest
technological advancements. Of all the inventions mankind has made so far,
invention of computers has vital role because of its widespread usage in many
activities ranging from mail sending to missile launching. Areas of computer
applications have found no boundaries and they became integral part of human
life. The areas of its applications also became wider. Even home appliances
as small as coffee machines, T.V. remote controllers have computers in them.
As we further narrow down the areas of computers applications, important ma-
chines like nuclear power plants station shutdown machines, aerospace machines
and medical equipment are controlled by computers.

Computer programs which are embedded in these kind of systems are called
as Embedded Systems and those which react to external stimuli are Reactive
Systems.

1.1.1 Embedded and Real-Time Systems

Definition of Embedded System as given in Wikipedia [40] encyclopedia:

An Embedded System is a special-purpose computer system, which is completely
encapsulated by the device it controls. An embedded system has specific require-
ments and performs pre-defined tasks, unlike a general-purpose personal com-
puter.

In Wikipedia encyclopedia, we have the definition of

9

Page 10 of 91 1.2. FORMAL METHODS

Real Time System

A Real-Time System responds in a (timely) predictable way to unpredictable ex-
ternal stimuli arrivals. In short, a Real-Time System has to fulfil under extreme
load conditions.

These real time systems or reactive systems are prone to change in their be-
havior and also react to changes in real time. Obviously correctness of these
systems is very crucial as their areas of applications are hazard prone. Failure of
such systems may result in catastrophe, hence design of such systems as reliable
ensuring safety is vital.

1.1.2 How Secured Are We?

As we can see various applications of these systems gave numerous positive im-
plications to humans, at the same time one should not over look the potential
threats that may be caused because of these systems. Stopping usage of such
systems, is not a wise solution to the problem. Instead it is better to design
these systems as failure proof thereby ensuring their services to mankind. There
is growing concern about the safe usage of such systems considering their po-
tential threat under failure circumstances.

Thoroughly tested and software usage in these systems in not merely a solu-
tion instead the whole process of verifying such systems is mechanized. So here
the computers again come into rescue of verifying such systems which is termed
as computer aided verification. In the following section formal methods em-
ployed to ensure the security of these systems are explained.

1.2 Formal Methods

As defined in [40], formal methods refer to mathematically based techniques for
the specification, development and verification of software and hardware sys-
tems.

Formal methods can be applied to specify the system and also can be used
as guide to develop concrete system. The other main feature of formal methods
is to verify once a formal specification has been developed. Possible approaches
of the formal methods are

1. Human-Directed Proof, and

2. Model checking, in which a system verifies certain properties by means of
an exhaustive search of all possible states that a system could enter during
its execution.

CHAPTER 1. INTRODUCTION

1.2. FORMAL METHODS Page 11 of 91

In the following sections the model checking is explained in detail.

1.2.1 Model Checking

Quoted from [40], Model Checking is a method to algorithmically verify finite
state systems formally. This is achieved by verifying if the model, often deriving
from a hardware or software design, satisfies a logical specification.

In the model checking phenomenon the specification is written as temporal logic
formulas and the model is expressed as a state transition system. The transi-
tions systems are the graphical representation of these systems with nodes and
edges. They are directed graphs consisting of nodes (or vertices) and edges.
The nodes represents states of a system, edges represent execution of the sys-
tem which alters the state of the system enabling it moving from one node to
the other.

In the following section the formal definition of labeled transition system is
given.

1.2.2 Labeled Transition System

First the definition of transition is presented and is followed by the various
extensions to these transition systems.

Definition 1. A transition system is a pair of the form

(S,→)

where

1. S is a set of states (configurations), and

2. → is a set of transitions (transition relations) such that →⊆ S × S.

Basically a transition system only defines the states and transitions themselves,
i.e., if the system can move from one state to another. But it does not care
much about the distinguishing qualities among each transitions and how the
system moves among states. In further discussion, we need stronger constraint
of transitions and introduce a system which is the fundamental research object
in Petri nets and timed automata, called labeled transition system (called LTS
in short).

The LTS is the extend notion of the transition system. A LTS consists of
a collection of states and a collection of transitions between them. The tran-
sitions are labeled by actions that happen when the transition is taken (or fired).

Formally, it is defined as:

CHAPTER 1. INTRODUCTION

Page 12 of 91 1.3. OUR FOCUS

Definition 2. A labeled transition system is a triple

(S,L,→)

where

1. S is a set of states (configurations),

2. L is a set of labels, and

3. → is a set of transitions →⊆ S × L × S, and if (S1, α, S2) ∈→ then we

write S1
α

−→ S2.

Figure 1.1 illustrate a labeled transition system which shows a simple gear opera-
tion. Stop is the initial state, and with a transition ShiftGearUP, it goes to node
Gear1, i.e., it runs at a low speed and could shift to either Stop (through the
transition ShiftGearDown) or Gear2 (through the transition ShiftGearDown)
which has a higher speed. When it reaches the state Gear2, the system can only
go back to node Gear1 (through the transition ShiftGearDown).

Stop Gear1 Gear2

ShiftGearUp ShiftGearUp

ShiftGearDownShiftGearDown

Figure 1.1: An Example of LTS

These labeled transition systems are extended with time and many other fea-
tures so that the real time or safety critical systems can be modeled according
to their behavior. Timed automata and Petri nets falls into such category. The
detailed definitions of these are explained clearly in following chapters.

1.3 Our Focus

We are working on one of the subclasses of Petri Nets with time called con-
servative Timed-Arc Petri Nets. Timed-arc Petri nets are useful in modeling
various real world examples and by doing so we can effectively check several
systems properties. The class of nets we are dealing with are the nets where
time constraints are associated to arcs, and this class is called Timed-Arc Petri
Nets (TAPN). In this class, tokens in each place are of certain ages where the
tokens with correct age are used for firing the transitions.

CHAPTER 1. INTRODUCTION

1.4. RELATED WORK Page 13 of 91

One of the most popular ways of modeling real time system is to model it
using the Timed Automata where the systems can be modeled according to
clock conditions or constraints based on time. This timing aspect in modeling
brings it very close to real world systems like traffic lights, and many embedded
controllers. Most of our work is related with the timed-arc Petri nets (TAPN)
and timed automata (TA).

1.3.1 Motivation Behind Our Work

We know how important and how useful it is if we model the real world sys-
tems. There are several methods and ready made modeling tools for doing it so.
For example when we model the system as TA we have tools like Uppaal [37],
KRONOS [24] etc., and if we want to model the system as Petri nets (PN) and
accordingly its extensions then for colored PN we have CPN tools, for Timed
PN Roméo [32] and Tina [36]. But to our knowledge there is no tool available
so far for modeling the TAPN.

Since there is no tool to model and verify the TAPN we are interested in finding
a solution for doing it. One of the ways we have chosen is to convert the TAPN
to the TA as the TA has many verification tools. Here the problem would be to
develop an algorithm such that it can convert the TAPN into TA.

1.4 Related Work

The related work on converting these Petri nets into timed automata is explained
in the papers [13]. In this paper the translation of Timed Petri nets into timed
automata is explained. Their model is, however, different from TAPN and the
reduction idea is also different.

1.5 Report Overview

The rest of the report is organized as follows. Chapter 2 contains the formal
definitions of all the classes of Petri nets we have mentioned throughout the
report. We also gave brief description of the timed automata along with intro-
duction to the Uppaal tool.

Chapter 3 includes the reduction techniques we have proposed to reduce the
TAPN into TA. Chapter consists all the proof results and techniques of some of
the classes of TAPN.

Chapter 4 gives insight knowledge about practical implementation of the re-
ductions we have presented in earlier chapters. Algorithms are implemented

CHAPTER 1. INTRODUCTION

Page 14 of 91 1.5. REPORT OVERVIEW

and explained.

Chapter 5 documents the experiments we did on two of the case-studies we
studied namely Fischer’s protocol and Alternating Bit Protocol.

Chapter 6 concludes the report enlightening future enhancements to our work.

Appendices A and B contain the practical information about how to install
the tools we are using, and DTD of the TAPN we designed. Appendices C and
D contain the parser codes and example of input/output XML files. Appendices
E refers to CD package along with the Readme file and program packages with
examples.

CHAPTER 1. INTRODUCTION

2Basic Definitions

In this chapter we will describe the basic definitions of Petri Nets, Automata
and timed extensions to them. Also chapter gives introduction about the vari-
ous problems of the Petri Nets like reachability property, coverability property,
liveness property and deadlock property. Apart from the above topics we will
give brief introduction to the Uppaal tool.

2.1 Petri Nets

Petri nets were devised in 1962 by Carl Adam Petri [31], as a tool for modeling
and analyzing processes. One of the strengths of this tool is the fact that it en-
ables processes to be described graphically. Despite the fact that Petri nets are
graphical, they have a strong mathematical basis. Unlike many other schematic
techniques, they are entirely formalized. It is often possible to make strong
statements about the properties of the process being modeled. There are also
several analysis techniques and tools available which can be applied to analyze
a given Petri net.

Over the years, the model proposed by Carl Adam Petri has been expanded
upon in many different ways. It is possible to model complex processes in an
accessible way.

Let us see various extensions of the Petri Nets. The three most important
extensions are:

a) colored extension,

b) timed extension, and

c) hierarchical extension.

We call Petri nets extended with color, time, and hierarchy high-level Petri nets.

In this report we focus on the timed extension to these Petri Nets.

15

Page 16 of 91 2.1. PETRI NETS

2.1.1 Ordinary Petri Nets

Definition 3. (Place/Transition Nets) A Place/Transition Net, or just a
Petri Net, is a four tuple N = (P, T, F,M0) such that

1. P is a finite set of places, T is a finite set of transitions(P
⋂

T = ∅).

2. F is called the flow relation, F ⊆ (P × T)
⋃

(T × P).

3. M0 : P → N; M0 is called the initial marking of N; in general, a mapping
M : P → N is called a marking of N.

Given a ∈ P
⋃

T , the preset of a, denoted by •a, is defined as

{a′ | (a′, a) ∈ F};

while the postset of a, denoted by a•, is defined as

{a′ | (a, a′) ∈ F}.

Definition 4. (Firing Rule of P/T Nets) Firing rule of a P/T net is the rule
under which condition a transition can be fired. It shows the way how an ordi-
nary P/T net runs.

Let N = (P, T, F,M0) be a P/T net, and M is a marking in it, and t ∈ T .

1. We say that t is enabled at marking M if and only if:

∀p ∈ •t.M(p) > 0

i.e., on each precondition of t we have at least one token.

2. If t is enabled at M, it can be fired, and by its firing we reach a marking
M’ which is obtained, for every place p, as follows:

M ′(p) = M(p) + F (t, p) − F (p, t),

where

F (x, y) =

{

1 if (x, y) ∈ F
0 otherwise.

Thus, from each precondition place of t we remove a token, and we add
a new token on each postcondition place of t. As usual, we denote these
evolutions by M [t〉M ′.

If for a sequence of markings

M0,M1,M2, ...Mn

CHAPTER 2. BASIC DEFINITIONS

2.1. PETRI NETS Page 17 of 91

we have
M0[t1〉M1[t2〉M2[t3〉 · · · [tn〉Mn

then we say that Mn is reachable from M0 and the sequence

σ = t1, t2, t3, ...tn

is called an occurrence sequence.

We denote this by M0[σ〉Mn and say that Mn is the marking reached via
σ.

Definition 5. (Reachable Marking) We say that a marking M of a Petri net is
reachable if it is reachable by some occurrence sequence from the initial marking.
The set of reachable markings of the net (P, T, F,M0) is denoted by [M0〉.

We should note that the empty sequence is an occurrence sequence and it reaches
the initial marking M0.

A Simple Example

Here we show a simple example of Place/Transition net.

Imagine there is a very simple library system: two students A and B, and a
book in this little library. The basic rule is that only one person can borrow
the book from the library. Upon this problem, we give the following model to
represent the system, as illustrated in Figure 2.1.

The places which have initial tokens are A, B and Library. This means that at
the beginning, both A and B have library card and can borrow the book which is
available in the library. In this case, both of the transitions Aborrow and Bborrow

are enabled because there is a token in each of the places, either A and Library,
or B and Library. Let us assume that transition Aborrow is fired at this time (if
Bborrow is fired first, the situation is symmetric), which means A successfully
borrowed the book first. Hence tokens in A and Library are consumed while
there generate another new token in Aholding, this means that A is holding the
book now. Since there is no token in Library any longer, we can see that Bborrow

is not enabled now, which means B can not borrow the book temporarily. And
there is only one transition Areturn enabled in the net now. This situation is
illustrated in Figure 2.2.

When Areturn is fired, token in Aholding is consumed while in each of the places,
A and Library, one new token is generated, which means that A returns the
book and the book is available in the library again. Thus the system goes back
to its initial states, where each of A, Library, and B has a token, as illustrated
in Figure 2.1. Again, both Aborrow and Bborrow are enabled in this case, such
that both A and B have the chance to borrow the book now. If it is B who

CHAPTER 2. BASIC DEFINITIONS

Page 18 of 91 2.1. PETRI NETS

A_holding A

Library

B B_holding

A_borrow B_borrow

A_return B_return

Figure 2.1: A P/T net for the Little Library System

successfully borrowed the book at this time, then the similar situation could be
described as Figure 2.3.

Because there are no more constraints on this model, A and B has the same
priority at this time. We can not make sure which transition will be fired next
time, thus we do not know which person will borrow the book when the book
is available again. We need some more conditions to consider the time features,
thus we introduce a class of Petri nets with timed extension in Section 2.1.2.

In the following, we will present some subclasses of the ordinary Petri nets.
Definitions can be found e.g. in the paper presented by Hee and Sidorova [21].

K-Bounded Petri Nets

Definition 6. A marking M of a net N is said to be k-bounded if, for all
places p of the net, the number of tokens in that place never exceeds k. A Petri
net is k-bounded if all reachable markings are k-bounded. Such that,

∀p ∈ P, M(p) ≤ k.

Particularly, 1-bounded nets are also called 1-safe nets, i.e., for every place p
in the net and for any reachable marking M , it holds

M(p) ≤ 1.

1-safe nets have stronger constraint comparing to the k-bounded nets. Because
in a 1-safe net, the 1-safe property limits each place can have only 1 token at

CHAPTER 2. BASIC DEFINITIONS

2.1. PETRI NETS Page 19 of 91

A_holding
A

Library

B B_holding

A_borrow B_borrow

A_return B_return

Figure 2.2: A Borrowed Book

most, thus the property limits the total number of tokens can not be greater
than the number of places.

Figure 2.4 illustrates an example of 2-bounded Petri net.

K-Conservative Petri Nets

There is another class of nets, which constantly holds the same number of tokens
all the time, defined as below.

Definition 7. A net N is conservative if and only if all its reachable markings
have exactly the same number of tokens. Thus a net N is k-conservative if
and only if for every reachable marking M , we have

∑

p∈P

M(p) = k

Figure 2.5 illustrates an example of 3-conservative Petri net.

2.1.2 Timed Extension of Petri Nets

Given a process modeled as a Petri net, we often want to be able to make state-
ments about its expected performance. If we produce a model of the traffic
lights at a road junction, then we are probably also interested in the number of
vehicles which this junction can handle per hour. If we model the production

CHAPTER 2. BASIC DEFINITIONS

Page 20 of 91 2.1. PETRI NETS

A_holding A

Library

B B_holding

A_borrow B_borrow

A_return B_return

Figure 2.3: Similar Situation if B Borrowed the Book

process in a car factory, then we also want to know the expected completion
time and the capacity required. In order to be able to answer these questions,
it is necessary to include pertinent information about the timing of a process
in the model. The classical Petri net, however, does not allow the modeling of
“time”. Even with color extension, it is still difficult to model the timing of a
process. Therefore, we will extended classical Petri nets with time.

Definitions in this subsection are based on [15].

Definition 8. (Timed-arc Petri Net) A Timed-Arc Petri Net is defined as
a four tuple N=(P, T, F, times) such that,

1. P is a finite set of places, T is a finite set of transitions (P ∩ T = ∅),

2. F is the flow relation, F ⊆ (P × T) ∪ (T × P),

3. times is a function that associates to each arc (p,t) in F a pair of natural
numbers, the second of which can be infinity,
i.e., times: F |P×T → N × (N ∪ {∞}).

In the meanwhile, we define the terminology size as follows.

Definition 9. Let N = (P, T, F, times) be a TAPN, the size of N is defined as
|N | = |P | + |T | + |F |.

To simplify some definitions we consider only arcs with weight 1, but the exten-
sion to general arcs with greater weights is straightforward.

CHAPTER 2. BASIC DEFINITIONS

2.1. PETRI NETS Page 21 of 91

P 1

P 2
P 3

P 4
P 5

P 6

T 1

T 2
T 3 T 4 T 5

Figure 2.4: An Example of 2-Bounded Petri Net

When times(p, t) = [t1, t2] we write πi(p, t) to denote ti, for i = 1, 2. Since
times defines the intervals of age of the tokens to be consumed by the firing
of each transition (see Definition 10), we will always have π1(p, t) ≤ π2(p, t).
Moreover, we will write x ∈ times(p, t) to denote π1(p, t) ≤ x ≤ π2(p, t).

Markings are defined by means of multisets on R
+. Thus, a marking M is

a function M : P → B(R+) where B(R+) denotes the set of finite multisets of
real numbers. This means each place is annotated with a certain number of
tokens, and each one of them has associated a non-negative real number (its
age). We denote the set of markings of N by M(N), and using classical set
notation, we denote the total number of tokens on a place p by |M(p)|.

Definition 10. (Firing Rule of TAPN) Firing rule of a TAPN is the rule under
which condition a transition can be fired. It shows the way how a TAPN runs
and it is more complicated compared to an ordinary P/T net.

Let N=(P, T, F, times) be a TAPN, and M is a marking in it, and t ∈ T .

1. We say that t is enabled at marking M if and only if:

∀p ∈ •t ∃xp ∈ R such that xp ∈ M(p) ∧ xp ∈ times(p, t) (1)

i.e., on each precondition of t we have a token whose age belongs to
times(p,t).

2. If t is enabled in M, it can be fired, and by its firing we reach a marking

CHAPTER 2. BASIC DEFINITIONS

Page 22 of 91 2.1. PETRI NETS

Figure 2.5: An Example of 3-Conservative Petri Net, notice that it is also 1-safe

M ′ which can be obtained as follows:

M ′(p) = M(p) − C−(p, t) + C+(t, p), ∀p ∈ P

where both the subtraction and the addition operators work on multisets,
and

- C−(p, t) =

{

{xp} where xp ∈ M(p) and xp ∈ times(p, t) if p ∈ •t
∅ otherwise

- C+(t, p) =

{

∅ if p /∈ t•

{0} otherwise.

Thus, from each precondition place of t we remove a token fulfilling (1),
and we add a new token (with age 0) on each postcondition place of t.

As usual, we denote these evolutions by M [t〉M ′, and it is noteworthy that
these evolutions are in general non-deterministic, because when we fire a
transition t, some of its precondition places could hold several tokens with
different ages, that could be used to fire it. Besides, we see that the firing
of transitions does not consume any time.

Therefore, we define another evaluation to model the passage of time as
below. In this case, we increase the age of the tokens in the net by the
same time:

3. If d ∈ R
+ is the passage of time in marking M and no tokens are fired,

then we define
∀p ∈ P.M ′(p) = M(p) + d

which means the operation on a multiset such that

M ′(p) = {xp + d | xp ∈ M(p)}.

CHAPTER 2. BASIC DEFINITIONS

2.1. PETRI NETS Page 23 of 91

We denote this by M [ǫ(d)〉M ′, say that the age of the tokens in the net is
increased by the same time d.

A Simple Example of TAPN

Let us see a simple example of TAPN. Again, we recall the small library system
in Section 2.1.1. There is a obvious limitation in the system that we can not
make sure which transition will be definitely fired when the both the two tran-
sitions, Aborrow and Bborrow, are enabled. As we cannot make every decision
only by will or chance in life, we need some “rule” for the system. In this case,
we modify it with time extensions, shown in Figure 2.6.

Figure 2.6: Add Time Extension to the Small Library System

The time extension in this modified system adds time constraints. For exam-
ple, on the arc from place A to transition Aborrow, we give a time constraint
[3, 365], i.e., A can borrow the book from library after he gets the library card
at least 3 days, and should be no later than 365 days to keep the card active and
valid. And the time constraint [0, 30] on the arc from place Aborrow to transition
Areturn means that A can validly hold the book for 30 days. If A holds the book
for more than 30 days, then the transition Areturn is not enabled any longer, i.e.,
the valid return procedure is not available to A any more. Thus we can active
another “payingfine” system in this case. But we here only focus on the time
extension and will not give the whole complicated system in details. The time
constraint on the arcs from place Library to transitions Aborrow and Bborrow

mean that the library could lent the book as long as it is available. Similarly,
the situation of B is symmetric.

CHAPTER 2. BASIC DEFINITIONS

Page 24 of 91 2.1. PETRI NETS

In the modified Petri net with timed extension, which is called TAPN, we can
then solve the problem of deciding whom the book should be lent to. Because
once the student who borrowed the book returns it, the age of the new generated
token in the net is 0, i.e., it has to wait until the age increases to 3, then it has
the authority to borrow a book from the library. While during this period, only
the transition on the other side is enabled, i.e., the other student has a higher
priority rather than this student. Thus the timed extension distinguishes them
from each other.

In the following, we will present some subclasses of the timed-arc Petri nets.
Definitions can be found in the paper by Hee and Sidorova [21].

k-Bounded TAPN

Definition 11. We say that a marking M is k-bounded if

∀p ∈ P.|M(p)| ≤ k.

A TAPN N is k-bounded if all its reachable markings are k-bounded.

Similar to the way in ordinary Petri nets, 1-bounded TAPN are also called 1-safe
TAPN.

Figure 2.7 illustrates an example of 2-bounded TAPN.

k-Conservative TAPN

Definition 12. A TAPN N is k-conservative if and only if all its reachable
markings have exactly k tokens, i.e., for every reachable marking M , we have

∑

p∈P

|M(p)| = k

Figure 2.8 illustrates an example of 3-conservative TAPN.

2.1.3 Selection of Problems

According to [31], there are two categories of problems related to Petri nets and
they are Dynamic and Static Problems.

Dynamic problems characterize the behavior of individual Petri nets for ex-
ample whether it is possible to reach a marking in which no step is enabled. It

CHAPTER 2. BASIC DEFINITIONS

2.1. PETRI NETS Page 25 of 91

Figure 2.7: An Example of 2-Bounded TAPN

is often rather difficult to verify dynamic problems in particular when relying
only on informal arguments.

Static problems can be decided from the definition of individual Petri Nets
without considering the possible occurrence sequences.

Reachability Problem

The reachability problem for a net N (either a P/T net or a TAPN) with initial
marking M0 is the problem of deciding for a given marking M of N if it is
reachable from the marking M0, i.e., to decide if

M ∈ [M0〉.

There are few varieties of reachability problems like

1. Submarking Reachability Problem: The Submarking reachability problem
restricts the reachability problem to consider only a subset of places, not
caring about the markings of other places.

2. Zero-Reachability Problem: The zero-reachability problem asks if the spe-
cific marking with zero tokens in all places is reachable.

3. Single-Space Zero Reachability Problem: The single-space zero reachabil-
ity problem asks if it is possible to empty all the tokens out of a particular
place.

CHAPTER 2. BASIC DEFINITIONS

Page 26 of 91 2.1. PETRI NETS

Figure 2.8: An Example of 3-Conservative TAPN, it is also 1-safe

Coverability Problem

The coverability problem for a TAPN N with initial marking M0 is the problem
of deciding for a marking M if there exists a marking M ′ where M ′ ∈ [M0〉 such
that for all places p in the net, M(p) is a subset of M ′(p), i.e., to decide if

∃M ′.M ′ ∈ [M0〉 ∧ ∀p ∈ P.M(p) ⊆ M ′(p).

While for a P/T net N with initial marking M0 is the problem of deciding for
a marking M if there exists a marking M ′ where M ′ ∈ [M0〉 such that for all
places p in the net, M(p) ≤ M ′(p), i.e., to decide if

∃M ′.M ′ ∈ [M0〉 ∧ ∀p ∈ P.M(p) ≤ M ′(p).

Liveness Problem

A net N(either a P/T net or a TAPN) is live if for every transition t of N
and every reachable marking M , some marking in [M〉 enables t. The liveness
problem for a net is the problem of deciding if it is live.

Deadlock Problem

A marking of a net is a deadlock if it enables no transitions. The deadlock
problem for a net N(either a P/T net or a TAPN) is the problem of deciding if
any of its reachable markings is a deadlock.

Selection of Results

For Place/Transition nets, it is known that the deadlock and reachability prob-
lems are polynomialy equivalent and deadlock problem is polynomial time re-
ducible to the liveness problem [9, 12, 18], and that they are all decidable and

CHAPTER 2. BASIC DEFINITIONS

2.2. TIMED AUTOMATA Page 27 of 91

EXPSPACE-hard [20, 26, 11].

Similarly, in the 1-safe case, the three problems are all PSPACE-complete [11].

For timed-arc Petri nets, the reachability problem is undecidable [15], while the
coverability problem is decidable [4]. Very recent results show that deadlock
and liveness are also undecidable [29].

2.1.4 Verification Tools for Petri Nets

Nowadays we have several verification tools for Petri nets, such as Roméo [32]
and Tina [36]. Roméo is used for time Petri nets analysis, and provides several
methods for translating TPNs to TA and computation of state class graphs. It
is developed by the Real-Time Systems team in the Communications and Cy-
bernetic Research Institute of Nantes.

To the best of our knowledge, there is no verification tool for timed-arc Petri
nets. To investigate verification approaches to timed-arc Petri nets is the aim
of our project.

2.2 Timed Automata

2.2.1 Description

Timed automata [1] were first introduced by Alur and Dill in 1990 and has since
then been established itself as a standard model for real-time systems.

Timed automata are finite state automata extended with a number of real val-
ued clocks. Graphically a timed automaton can be depicted as nodes with
arrows going from one node to another when there is a transition. We write
constraints (also known as guards) at the origin of a transition and reset sets
at the destination of the transition. At the center of the arrow we write the label.

In Figure 2.9 we have a very simple automaton with only two states and one
transition. The transition goes from the initial state S0 to the state S1. The
initial state is marked with double circles. The guard consists of only one atomic
formula saying that the value of clock x should be less than 3. Similarly only one
clock is reset (x:=0). The label on the transition is ’c!’. This is the comple-
ment action of ’c?’, which means that this transition must synchronize with an
’c?’ transition in another timed automaton. As in CCS [27] we can also have
transitions with no label, these transitions are in fact τ transitions that does
not need to synchronize. Figure 2.9 illustration was made using the graphical
interface for Uppaal (see Section 2.2.5).

2.2.2 Timed Automata

Following are some auxiliary definitions related to timed automata models:

CHAPTER 2. BASIC DEFINITIONS

Page 28 of 91 2.2. TIMED AUTOMATA

S0 S1

x<3

c!

x:=0

Figure 2.9: A Simple Timed Automaton in Uppaal

Actions Let Chan be a finite set of channels, ranged over by c. We define Act

to be a finite set of actions ranged over by a. For each channel in Chan we
define two actions such that Act = {c!|c ∈ Chan}

⋃

{c?|c ∈ Chan}. We
define a complement operator ¯: Act → Act as c̄! = c? and c̄? = c!. We
define ∆ to represent an infinite set of delay actions,

∆ = {ǫ(d)|d ∈ R
+}

where we use R
+ to stand for the non-negative reals. The special internal

action is represented by τ . We define the two sets

Actτ = Act ∪ {τ}

∆τ = ∆ ∪ {τ}.

Clocks and Constraints Let C is a finite set of real valued clocks ranged over
by x, y, z. A clock valuation

u : C → R
+

is a function that assigns to each clock a real non-negative value. We also
define

R
+c

to be set of all clock valuations. We write u(x) to mean the value of the
clock x in the clock valuation u. We define two operations on clock valu-
ations: Reset and Delay.

In Reset a set of clocks is set to zero:

u′ = u[r 7→ 0], r ⊆ C

defined by

∀x ∈ r.u′(x) = 0 and ∀x ∈ C\r.u′(x) = u(x)

In Delay all clocks are increased with the same value:

u + d : C → R
+ where d ∈ R

+,

defined by
∀x ∈ C.(u + d)(x) = u(x) + d.

We define B(C) to be the set of all clock constraints (also known as guards),
g ::= A | g∧g where A is an atomic formula of the form: x ≺ n or x−y ≺ n
for ≺∈ {=,≤,≥, <,>} and n being a natural number. We write g(u) |= tt

to mean that the clock constraint g is true under clock valuation u.

CHAPTER 2. BASIC DEFINITIONS

2.2. TIMED AUTOMATA Page 29 of 91

Then we can formally define a timed automaton which is basically a finite au-
tomaton extended with real-valued clocks as follows:

Definition 13. (Timed Automata) A timed automaton is defined by a tuple
A = (Actτ , L, l0, C,E) where

1. Actτ is a set of actions defined above,

2. L is a finite set of locations (or nodes),

3. l0 ∈ L is the initial location,

4. C is a finite set of clocks,

5. E ⊆ L×B(C)×Actτ×2C×L is a set of edges. The tuple e = (l, g, µ, r, l′) ∈
E stands for an edge from location l to location l′(the target of e) with
action µ, where r denotes the set of clocks to be reset to 0 and g is the
enabling condition (or guard) over the clocks of A.

The semantics of timed automata is described in terms of a labelled transition
system, defined by the triple (S,L,→), such that

1. S = L×R
+C

, i.e., the states (configurations) consist of a node (location)
and a clock valuation,

2. L = Actτ ∪ ∆, i.e., the labels are the union of actions and delay actions,
and

3. → is the transition relation which is defined as:

(l, u)
a

−→ (l′, u′) iff ∃(l, g, a, r, l′,) ∈ E. g(u) |= tt ∧ u′ = [r 7→ 0]u

(l, u)
ǫ(d)
−→ (l′, u′) iff ∃d ∈ R

+. l′ = l ∧ u′ = u + d.

A configuration of a timed automaton A is a pair (l, u) ∈ L× R
+C

. The initial
configuration a TA A is defined as a pair (l0, u0) where

1. l0 is the initial location, and

2. u0 is the zero-valuation where ∀x ∈ C.u0(x) = 0.

In a TA A, if there is a sequence of configurations (l0, u0), (l1, u1), ..., (lm, um),
such that

(l0, u0)
a1−→ (l1, u1)

a2−→ · · ·
am−→ (lm, um)

where
ai ∈ Actτ ∪ ∆, (i = 1, 2, ...m),

then we say that the configuration (lm, um) is reachable from (l0, u0), and
denote this by

(l0, u0) →
∗ (lm, um).

CHAPTER 2. BASIC DEFINITIONS

Page 30 of 91 2.2. TIMED AUTOMATA

2.2.3 Network of Timed Automata

Definition 14. (Timed Automata Networks) A network of timed automata
(short in TAN) N over actions Actτ and clocks C has the form:

N = A1|A2|A3...|An

where each Ai (called process) is a timed automaton over actions Act and clocks
C.

The clocks are all potentially global, but may in reality be local by being used

in only one automaton. In the following definition of the semantics, we write
−→
l

to mean a vector (l1, l2, l3, ..., ln) of locations in each automaton Ai.

Definition 15. (Updating Rule of TAN) A TAN N = A1|A2|A3...|An over
actions Act and clocks C defines a labelled transition system (S,L,→) where
each of the states is a location (or node) in each timed automaton Ai and a

clock valuation S = L1 × L2 × · · · × Ln × R
+C

, the labels are L = ∆τ , and the
transition relation → is defined as:

• (
−→
l , u)

τ
−→ (

−→
l′ , u′) iff for some i, j ∈ {1, ..., n} where i 6= j and a ∈ Act,

∃(li, gi, a, ri, l
′

i) ∈ Ei

∃(lj , gj , ā, rj , l
′

j) ∈ Ej

gi(u) ∧ gj(u) |= tt, u′ = [ri ∪ rj 7→ 0]u
∀k /∈ {i, j}.l′k = lk.

• (
−→
l , u)

τ
−→ (

−→
l′ , u′) iff for some i ∈ {1, ..., n},

∃(li, gi, τ, ri, l
′

i) ∈ Ei

gi(u) |= tt, u′ = [ri 7→ 0]u
∀k /∈ {i}.l′k = lk.

• (
−→
l , u)

ǫ(d)
−→ (

−→
l′ , u′) iff

−→
l′ =

−→
l and u′ = u + d for all d ∈ R

+.

The three types of transitions presented above can be described respectively as
synchronizing, private, and delay transitions. The first is synchronizing because
two timed automata synchronize by taking transitions labelled with each others
complement. The second is private because it involves only one timed automa-
ton. The third is a delay transition where all clocks are increased by the same
value.

Synchronous communication between the processes is by hand shake synchro-
nization using input and output actions. Following Figure 2.10 is an example to
illustrate the semantics. We have two simple timed automata that we combine
into the TAN N = S | T .

2.2.4 Selection of Problems in TA

Reachability Problem

The reachability problem for a TA A with initial configuration (l0, u0) is the
problem of deciding for a given configuration (l, u) of A if it is reachable from

CHAPTER 2. BASIC DEFINITIONS

2.2. TIMED AUTOMATA Page 31 of 91

S0 S1

x<3

c!

x:=0

T0 T1

y>2

c?

Figure 2.10: An example of TAN consists of two simple TA S and T

the configuration (l0, u0), i.e., to decide if

(l0, u0) →
∗ (l, u).

Deadlock Problem

A configuration (l, u) of a TA is a deadlock if (l, u) 9, i.e., it cannot reach
another configuration. The deadlock problem for a TA A with initial configura-
tion (l0, u0) is the problem of deciding if any of its reachable configuration is a
deadlock.

Results

These problems are known to be PSPACE-complete [2].

2.2.5 Verification Tool: Uppaal

This part is taken from [17]. Uppaal [6] is a tool for modeling, simulation and
verification of real-time systems. Uppaal is being developed jointly by Uppsala
University and Aalborg University. Uppaal usage is appropriate for systems
that can be modeled as a collection of non-deterministic processes with finite
control structure and real valued clocks, communicating through channels or
shared variables. The verification is done by automatic model-checker engine.
Using Uppaal we can construct abstract models of many system, simulate its
dynamic behavior, specify and verify its safety properties and bounded liveness
properties which can be useful to analyze and design embedded systems and
real time systems. It consists of two main parts: a graphical user interface and
a model-checker engine. It requires that Java 1.4 or higher is installed on the
computer (for the latest version Uppaal 3.5.2, Java 1.5 is needed). The engine
part is by default executed on the same computer as the user interface, but can
also run on a more powerful server.

Uppaal has three main utilities: a description language, a simulator, and a
model-checker. The description language is useful to represent the system as

CHAPTER 2. BASIC DEFINITIONS

Page 32 of 91 2.2. TIMED AUTOMATA

collection of inter-related Timed Automata. Description language also has sev-
eral data variables which can be applied on these Timed Automata designed
with its help. The simulator and verifier are useful to graphically analyze the
system behavior by considering various constraints on state space generated by
the system. The simulator graphically represents the system behavior, it repre-
sents each and every transition the system took and the corresponding values
for each transition. Verifier on the other hand is useful to check the properties
of the system. In the query box we can verify several logic properties whether
its satisfiable or not for the whole state space generated by the system.

Uppaal is based on timed automata, that is finite state machine with clocks.
The clocks are the way to handle time in Uppaal. Time is continuous and the
clocks measure time progress. It is allowed to test the value of a clock or to
reset it. Time will progress globally at the same pace for the whole system. A
system in Uppaal is composed of concurrent processes, each of them modeled
as an automaton. The automaton has a set of locations. Transitions are used
to change location. To control when to fire a transition, it is possible to have a
guard and a synchronization. A guard is a condition on the variables and the
clocks saying when the transition is enabled. The synchronization mechanism
in Uppaal is a hand-shaking synchronization: two processes take a transition
at the same time, one will have a a! and the other a a?, a being the synchro-
nization channel. When taking a transition actions are possible: assignment of
variables or reset of clocks. The following example which is illustrated in Figure
2.11 will make you familiar with this short description.

safe

unsafe

y >= delay

release!

L == 1

take !

y := 0

y >= delay

release!

L == 0

take !

y := 0

Figure 2.11: Example of a timed automaton in Uppaal

CHAPTER 2. BASIC DEFINITIONS

3Translations from
TAPN to TA

This chapter deals with the reduction from TAPN into TA. First we will present
basic idea of the reduction techniques/algorithms and then give the construction
in a formal way.

3.1 Basic Idea of Translation

In this report, we focus on the translation of k-conservative TAPN only. Intu-
itively, unbounded number of tokens will lead to unbounded number of templates
in our reduction techniques. More precisely, a variant number of tokens will lead
to a variant number of templates. Thus we discuss only conservative TAPN in
the report. In this chapter, otherwise is stated, all the TAPN mentioned below
means a conservative one.

We study several cases of k-conservative TAPN and notice that in many con-
servative TAPN, some of its transitions will never be fired only because of the
syntactical reasons. Which means that once such a transition is fired, the num-
ber of the tokens will not be kept as k. Since these transitions will never be
fired, we call them useless transitions.

Thus in general, we follow two steps to implement the translation reduction
from a TAPN to a TA. First, a TAPN N is reduced to a new TAPN N ′ which
has the same properties while has no useless transitions. In the second step, we
translate N ′ into the corresponding timed automaton TA. That means that the
whole reduction can be shown as:

N → N ′, and then N ′ → TA.

3.2 Removing Useless Transitions

As a start, we begin with the 1-conservative TAPN, and then go into the k-
conservative TAPN.

33

Page 34 of 91 3.2. REMOVING USELESS TRANSITIONS

A transition t in a Petri net can be fired only if each of its input places has at
least one token which has qualified age. And once t is fired, each of its output
arcs adds a token to each postcondition place. That means in a 1-conservative
TAPN, no transitions with two or more input arcs can be fired, as there cannot
be two or more places holding at least one token each at the same time. Nor can
a transition with two or more output arcs be fired. In this case the net would
generate more than one token after firing, which is forbidden in 1-conservative
nets. Thus we can remove all the useless transitions in the first step and define
them as those transitions which have either more than one input place or more
than one output place. The set of useful transitions and useless transitions in a
1-conservative net are

Tuseful
def
= {t ∈ T | |•t| = |t•| = 1},

Tuseless
def
= T − Tuseful.

Then, let us have a look at a more complex class, called 2-conservative nets.
These are Petri nets in which every reachable marking always has exactly 2
tokens. Because neither of the two tokens can be consumed, there cannot be
a transition where |•t| > |t•| is enabled. Since no tokens could be generated
as well, transitions where |•t| < |t•| will not be enabled, either. We define the
useful transitions where

Tuseful
def
= {t ∈ T | 1 ≤ |•t| = |t•| ≤ 2}.

And then, we have

Tuseless
def
= T − Tuseful.

With a further research based on the 1-conservative nets and 2-conservative
nets, we discover several qualities of the transitions of k-conservative nets. A
useful transition of a k-conservative net could be defined in the following way.

Definition 16. The useful transitions of a k-conservative net N is a set of
transitions which have the same number of input arc(s) and output arc(s) no
greater than k, formally defined as:

Tuseful
def
= {t ∈ T |1 6 |•t| = |t•| 6 k}

Tuseless
def
= T − Tuseful.

Let N be a k-conservative TAPN (P, T, F, times), and N ′ be the modified one
(P ′, T ′, F ′, times′) which has been removed all useless transitions as follows,

1. P ′
def
= P ,

2. T ′
def
= T − Tuseless,

3. F ′
def
= {(p, t) ∈ F | t ∈ T ′} ∪ {(t, p) ∈ F | t ∈ T ′},

4. times′(p, t) = times(p, t) where p ∈ P ′, t ∈ T ′.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.2. REMOVING USELESS TRANSITIONS Page 35 of 91

Theorem 1. A marking M is reachable in N from the initial marking M0 iff
M is reachable in N ′ from the initial marking M0, i.e.,

M ∈ [M0〉 in N ⇔ M ∈ [M0〉 in N ′.

Proof.

• “ ⇒ ”: Assume M ∈ [M0〉 in N and M is reached from M0 by an
occurrence sequence σ = t1, t2, t3, ...tn. Because each transition ti in σ
(i = 1, 2, ...n) is fired, it means that ti ∈ Tuseful and ti will not be re-
moved as a useless transition. Such that we can find the corresponding
ti in N ′ which means that σ can be fired also in N ′. Since the initial
markings in N and N ′ are equal, we have M0[σ〉M in N ′ which means

M ∈ [M0〉 in N ′.

• “ ⇐ ”: Let us consider the opposite direction. Assume M ∈ [M0〉 in N ′

and M is reached from M0 by an occurrence sequence σ = t1, t2, t3, ...tn.
Because for every transition ti (i = 1, 2, ...n), it is true that ti ∈ T ′ and

T ′
def
= T − Tuseless, then t′i ∈ T , and hence σ is an occurrence sequence

also in N . Therefore, we have M0[σ〉M in N , which implies

M ∈ [M0〉 in N.

Here is an example of removing useless transitions in a 2-conservative TAPN. In
Figure 3.1 we illustrate an original TAPN, and we see how the useless transitions
are removed.

Figure 3.1: Original 2-Conservative TAPN Contains Useless Transitions

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 36 of 91 3.3. REDUCTION OF DEGREE OF TAPN

According to the removing rules, we remove the transitions T4, T5, T6, and T7,
and then get the modified TAPN (see Figure 3.2).

Figure 3.2: Modified TAPN Contains No Useless Transitions

Remark 1. Unless otherwise stated, all TAPNs mentioned afterwards in this
chapter are assumed to be those without useless transitions.

After we got a TAPN that contains no useless transitions, we then are able to
translate it into TA/TAN.

3.3 Reduction of Degree of TAPN

First, we introduce a terminology of degree in k-conservative TAPN.

Definition 17. Let N be a k-conservative TAPN which contains only useful
transitions. As before, we can write

Tuseful
def
= T1 ∪ T2 ∪ · · · ∪ Tk

where

Ti = {t | |•t| = |t•| = i} (i = 1, 2, · · ·k).

We say that N is of degree d (d ∈ {0, 1, · · ·, k}) iff Ti = ∅ for all i where
d < i ≤ k.

Notice the different synchronization mechanisms between the firing rule of a
TAPN and what we can simulate in Uppaal, the maximum number of synchro-
nization channels limits us that we cannot reduce TAPN with a degree higher
than 2, directly into a TAN.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.3. REDUCTION OF DEGREE OF TAPN Page 37 of 91

So before translating, we have to modify the TAPN to make it suitable to be
translated. The idea is to reduce the degree of a k-conservative TAPN step by
step, until it is with a degree no more than 2, then we are able to reduce it into
TA/TAN using the synchronization mechanism in Uppaal.

3.3.1 Reduction from 3-Conservative TAPN to
3-Conservative TAPN of Degree 2

To give an easy beginning, we start at the reduction from 3-Conservative TAPN
to 3-Conservative TAPN of Degree 2.

Let N = (P, T, F, times) be a 3-conservative TAPN, we have Tuseful = T1 ∪
T2 ∪ T3.

Definition 18. Given a 3-conservative TAPN N = (P, T, F, times), we define
a reduced 3-conservative TAPN N ′ = (P ′, T ′, F ′, times′) of degree 2 in the
following way:

1. P ′
def
= P ∪ {p1

t , p
2
t , p

3
t | t ∈ T3};

2. T ′
def
= T1 ∪ T2 ∪ {t1, t2, t3 | t ∈ T3};

3. (a) for all t ∈ T1 ∪ T2,

• F1
def
= {(p, t), (t, p′) | t ∈ T1 ∪ T2 and p ∈ •t, p′ ∈ t•}, and

• times′(p, t)
def
= times(p, t) where p ∈ •t,

(b) for any t ∈ T3, let us fix {pt
1, p

t
2, p

t
3} = •t and {qt

1, q
t
2, q

t
3} = t•, then

t is replaced by t1, t2, t3 in the following way:

• F2
def
= {(pt

1, t
1), (pt

2, t
1), (t1, p1

t), (t
1, p2

t), (p
2
t , t

2), (pt
3, t

2),
(t2, p3

t), (t
2, qt

3), (p
1
t , t

3), (p3
t , t

3), (t3, qt
1), (t

3, qt
2) | t ∈ T3}, and

• the function times′ is defined as:

– times′(pt
1, t

1)
def
= times(pt

1, t)

– times′(pt
2, t

1)
def
= times(pt

2, t)

– times′(pt
3, t

2)
def
= times(pt

3, t)

– times′(p1
t , t

3)
def
= [0, 0]

– times′(p2
t , t

2)
def
= [0, 0]

– times′(p3
t , t

3)
def
= [0, 0].

F ′ = F1 ∪ F2.

Figure 3.3 and Figure 3.4 demonstrate a simple example of the reduction.

For the further study on the reduction, we introduce a function f to present the
correspondence between N and N ′.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 38 of 91 3.3. REDUCTION OF DEGREE OF TAPN

Figure 3.3: A Given TAPN with degree 3

Figure 3.4: The Reduction from 3-Degree to 2-Degree

Definition 19. (Correspondence Function) For a marking M in a given TAPN
N and the degree-reduced TAPN N ′, we define f(M) in N ′,

f : (P → B(R)) −→ (P ′ → B(R))

such that

f(M(p)) =

{

M(p) p ∈ P
∅ p /∈ P.

In the meanwhile, we introduce some terminology.

Definition 20. Given a 3-degree TAPN N and the degree-reduced TAPN N ′,
we say that a marking M ′ in N ′ is stable iff

∃M in N s.t. f(M) = M ′.

Any other M ′ in N ′ which is not stable, we call an intermediate marking. We
say that a place p ∈ P ′ is original if p ∈ P , otherwise we call it intermediate.
Similarly, we say that a transition t ∈ T ′ is original if t ∈ T , otherwise we call
it intermediate.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.3. REDUCTION OF DEGREE OF TAPN Page 39 of 91

Recall the example in Figure 3.4, we can see that p1, p2, p3, q1, q2, q3 are original
places while p1

t , p
2
t , p

3
t are intermediate places.

Theorem 2. A 3-conservative TAPN N is polynomial time reducible to a 3-
conservative TAPN N ′ with degree 2, preserving reachability, i.e., for a marking
M of a 3-conservative TAPN N with the initial marking M0, we have

M ∈ [M0〉 in N iff f(M) ∈ [f(M0)〉 in N ′. (3.1)

Proof. We will show the proof for a single transition firing, which naturally
generalizes to a sequence of transitions.

1. M0[t〉M ⇒ f(M) ∈ [f(M0)〉
Assume transition t is fired in this step, so there are two situations as
follows:

(a) t ∈ T1 ∪ T2

According to Definition 19 and Definition 18, it is easy to see that

f(M0)[t〉f(M).

(b) t ∈ T3

According to Definition 18, we can see that three intermediate tran-
sitions t1, t2, t3 and three intermediate places p1

t , p
2
t , p

3
t are generated.

Hence there are intermediate markings M ′ and M ′′ in N ′ s.t.

f(M0)[t
1〉M ′[t2〉M ′′[t3〉f(M)

according to Definition 19.

2. f(M) ∈ [f(M0)〉 ⇒ M ∈ [M0〉
For any stable marking M ′ in N ′, we consider only two cases:

• M ′ is reachable from another stable marking M ′

0 in 1 step.

• M ′ is reachable from another stable marking M ′

0 through some in-
termediate markings.

(a) Without intermediate markings: M ′

0[t
′〉M ′.

According to Definition 19 and Definition 18, we know t′ ∈ T1 ∪ T2

and according to Definition 20, there are M0, M in N s.t.

f(M0) = M ′

0 and f(M) = M ′.

Now we can see that also M0[t
′〉M .

(b) With intermediate markings, there are two cases as well.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 40 of 91 3.3. REDUCTION OF DEGREE OF TAPN

• Through three intermediate transitions only;

• Through three intermediate transitions and some original tran-
sitions in T1 or T2.

i. Through only three intermediate transitions t1, t2, t3 for some
t ∈ T3:
According to Definition 18, let us assume

M ′

1[t
1〉M ′

2[t
2〉M ′

3[t
3〉M ′

4

where M ′

1 and M ′

4 are stable markings, and M ′

2 and M ′

3 are in-
termediate ones.
Since the sequence of transitions t1, t2, t3 are reduced from a
t ∈ T3, hence we know t′ ∈ T3 and according to Definition 20,
there are M1, M4 in N s.t.

f(M1) = M ′

1 and f(M4) = M ′

4.

Hence we can see that M1[t〉M4.

ii. In the case that intermediate and original transitions are mixed,
observe that no other transitions with two input places for some
different t′ can be fired, i.e., no transitions from T2 and no
intermediate transitions t1, t2, t3 for t′ 6= t can be fired. In
this case, we can see that besides t1, t2, t3, there are transitions
t1, · · ·, tj ∈ T1. Thus we have

M ′

0
t1

→ M ′

1
t1→ M ′

2 · ··
ti→ M ′

i+1
t2

→ M ′

i+2

ti+1

→ · · ·
tj

→ M ′

j+2
t3

→ M ′

where t1, t2, t3 are the intermediate transitions and tk ∈ T1

(k = 1, 2, ..., j), which is the most general case how such firing
can look. According to the time constraints [0, 0] in the inputs
of intermediate transitions, the sequence of transitions

t1, t1, · · ·ti, t
2, ti+1, · · ·tj , t

3 (3.2)

are fired without time elapsing, i.e., the transitions sequence 3.2
has the same effect as

t1, t2, · · ·, ti, t
1, t2, t3, ti+1, · · ·, tj . (3.3)

Since the corresponding relationship through sequence of tran-
sitions of t ∈ T1 ∪ T2 has been proved before, and the sequence
of transitions of t1, t2, t3 is proved as well, according to Defini-
tion 20, we know there are t′ ∈ T3 and a sequence of transitions
t1, t2, · · ·, tj ∈ T1 ∪ T2 and there are M0, M in N s.t.

f(M0) = M ′

0 and f(M) = M ′

and through a sequence of transitions, M ∈ [M0〉.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.3. REDUCTION OF DEGREE OF TAPN Page 41 of 91

Complexity Analysis

Let N = (P, T, F, times) be a general 3-conservative TAPN and N ′ = (P ′, T ′, F ′, times’)
be the reduced 3-conservative TAPN with degree 2. Comparing to N , we have
the space complexity of N ′ as below:

• |P ′| = |P | + 3|T3|

• |T ′| = |T1| + |T2| + 3|T3|

• |F ′| = |F | + 6|T3|

Theorem 3. Let N = (P, T, F, times) be a general 3-conservative TAPN and
N ′ = (P ′, T ′, F ′, times′) be the reduced 3-conservative TAPN with degree 2.
The complexity of N ′ is linear in size of N .

Proof.

|N ′| = |P ′| + |T ′| + |F ′|
= (|P | + 3|T3|) + (|T1| + |T2| + 3|T3|) + (|F | + 6|T3|)
= |P | + |T1| + |T2| + 12|T3| + |F |
6 |P | + 12|T | + |F |
6 12|N |.

With further study, we find that the reduction of degree is safe even if there are
more tokens in the net and it is k-conservative (k > 2), but still of degree 2.

Remark 2. Any k-conservative TAPN of degree 3, it can be reduced to a k-
conservative TAPN of degree 2, preserving the reachability property.

3.3.2 Reduction from Conservative TAPN of Degree
k to Degree k-1

Based on the study on the reduction of degree 3, we can see that the reduced
conservative TAPN of degree 2 keeps the reachability property even if there are
more tokens in the original TAPN of degree 3, which inspires us presenting the
reduction from a conservative TAPN of degree k to degree k-1 where k > 2.
Thus step by step, we finally can have a TAPN of only degree 2, which will be
more suitable to be reduced into TAN.

Let N = (P, T, F, times) be a conservative TAPN of degree k, we have Tuseful =
T1 ∪ T2 ∪ · · · ∪ Tk.

Definition 21. Given a conservative TAPN N = (P, T, F, times) of degree k,
we define a reduced conservative TAPN N ′ = (P ′, T ′, F ′, times′) of degree k-1
in the following way:

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 42 of 91 3.3. REDUCTION OF DEGREE OF TAPN

1. P ′
def
= P ∪ {p1

t , p
2
t , · · ·, p

2k−3
t | t ∈ Tk};

2. T ′
def
= T1 ∪ T2 ∪ · · · ∪ Tk−1 ∪ {t1, t2, · · ·, tk | t ∈ Tk};

3. (a) for all t ∈ T1 ∪ T2 ∪ · · · ∪ Tk−1,

• F1
def
= {(p, t), (t, p′) | p ∈ •t, p′ ∈ t•}, and

• times′(p, t)
def
= times(p, t) where p ∈ •t,

(b) for any t ∈ Tk, let us fix {pt
1, p

t
2, · · ·, p

t
k} = •t and {qt

1, q
t
2, · · ·, q

t
k} = t•,

then t is replaced by t1, t2, · · ·, tk in the following way:

• F2
def
= {(pt

i, t
1), (t1, pi

t), (p
k−3+n
t , tn), (pt

k, t2), (pk+1−n
t , tn),

(tk, qt
1), (t

n, pk−2+n
t), (tn, qt

k+2−n) | t ∈ Tk,
(i = 1, · · ·(k − 1)), (n = 2, · · ·k)}, and

• the function times′ is defined as:

– times′(pt
i, t

1)
def
= times(pt

i, t)

– times′(pt
k, t2)

def
= times(pt

k, t)

– all other added arcs have the interval [0, 0]

where i = 1, · · ·(k − 1))

F ′ = F1 ∪ F2.

Figure 3.5 and Figure 3.6 demonstrate a simple example of the reduction from
a TAPN with degree 5 to a TAPN with degree 4.

Figure 3.5: A Given TAPN with degree 5

Similar to Definition 19, we also have the correspondence function for a general
conservative TAPN of degree k.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.3. REDUCTION OF DEGREE OF TAPN Page 43 of 91

Figure 3.6: The Reduction from 5-Degree to 4-Degree

Definition 22. (k-Degree Correspondence Function) For a marking M in a
given TAPN N of degree k and the reduced TAPN N ′ of degree k-1, we define
f(M) in N ′,

f : (P → B(R)) −→ (P ′ → B(R))

such that

f(M(p)) =

{

M(p) p ∈ P
∅ p /∈ P.

And as Definition 20, we modify the terminologies for a general conservative
TAPN as follows:

Definition 23. Given a k-degree TAPN N and the degree-reduced TAPN N ′,
we say that a marking M ′ in N ′ is stable iff

∃M in N s.t. f(M) = M ′.

Any other M ′ in N ′ which is not stable, we call an intermediate marking. We
say that a place p ∈ P ′ is original if p ∈ P , otherwise we call it intermediate.
Similarly, we say that a transition t ∈ T ′ is original if t ∈ T , otherwise we call
it intermediate.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 44 of 91 3.3. REDUCTION OF DEGREE OF TAPN

Theorem 4. A conservative TAPN N of degree k is polynomial time reducible
to a conservative TAPN N ′ with degree k-1 (k>2), preserving reachability, i.e.,
for a marking M of TAPN N with the initial marking M0, we have

M ∈ [M0〉 in N iff f(M) ∈ [f(M0)〉 in N ′. (3.4)

Proof Sketch. The proof proceeds the same idea as the proof of Theorem 2.
There are more situations that extra tokens and more complicate behaviors
exist, but the basic idea lies on the interval [0, 0] limits all the tokens in
intermediate places have to be fired instantly, otherwise will be dead. This
mechanism ensures the correctness of the reduction.

Complexity Analysis

Let N = (P, T, F, times) be a general conservative TAPN of degree k and N ′ =
(P ′, T ′, F ′, times’) be the reduced conservative TAPN degree k-1. Comparing
to N , we have the space complexity of N ′ as below:

• |P ′| = |P | + (2k − 3)|Tk|

• |T ′| = |T1| + |T2| + · · · + |Tk−1| + k|Tk|

• |F ′| = |F | + (4k − 6)|Tk|

Remark 3. Let N = (P, T, F, times) be a general conservative TAPN of degree
k and N ′ = (P ′, T ′, F ′, times′) be the reduced conservative TAPN of degree k-1.
N ′ has a polynomial size to N , i.e., the size(|N ′|) of N ′ is O(k|N |).

Proof.

|N ′| = |P ′| + |T ′| + |F ′|
= (|P |+ (2k − 3)|Tk|) + (|T1|+ |T2|+ · · ·+ |Tk−1|+ k|Tk|) + (|F |+ (4k− 6)|Tk|)
= |P | + |T1| + |T2| + · · · + |Tk−1| + (7k − 9)|Tk| + |F |
6 |P | + (7k − 9)|T | + |F |
6 (7k − 9)|N |.
Thus we have |N ′| = O(k|N |).

In the meanwhile, the reader may also wonder why not to consider another
reduction of degree k, as illustrated in Figure 3.7. For each single step, the
complexity is:

• |P ′| = |P | + k|Tk|

• |T ′| = |T1| + |T2| + · · · + |Tk−1| + 2|Tk|

• |F ′| = |F | + 2k|Tk|.

It is easy to implement it a single step, but we construct the reduction in a
recursive algorithm, generally. The problem of this reduction is that it generates
an extra transition of degree k-1 for each k-degree transition in the original net,
which makes the cost of the reduction exponentially increase. Thus we keep the
first reduction, which has a polynomial cost in implementation.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.4. REDUCTION FROM TAPN TO TA/TAN Page 45 of 91

Figure 3.7: Another Reduction from 5-Degree to 4-Degree

3.4 Reduction from TAPN to TA/TAN

3.4.1 Reduction of 1-Conservative TAPN

When a TAPN is reduced as the degree is no more than 2, we are ready to
translate into TA.

Among all the TAPN, 1-conservative case has the strongest constraint and could
be the easiest one to start the discussion.

According to the removing rule, we can easily get the modified TAPN with-
out useless transitions. We keep all the places in N as the states in TA, and all
the useful transitions (with arcs) as the transitions in TA. The age of the token
corresponds to a new clock x in TA. The place which has the initial token, is
corresponding to the initial location in TA. Thus we can define the reduction
from 1-conservative TAPN to timed automata in this formal way:

Definition 24. (Reduction of 1-Conservative TAPN)
Let N = (P, T, F, times) with initial marking M0 be a TAPN without use-
less transitions. We define the corresponding timed automaton as A(N) =

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 46 of 91 3.4. REDUCTION FROM TAPN TO TA/TAN

(Actτ , L, l0, C,E) such that

1. Actτ
def
= {τ},

2. L
def
= P ,

3. l0
def
= p such that |M0(p)| = 1 (this place is always unique because M is a

1-conservative marking),

4. C
def
= {x},

5. E is defined s.t. if t ∈ T then (l, g, τ, r, l′) ∈ E where

• l
def
= p s.t. {p} = •t,

• g
def
= π1(p, t) ≤ x ∧ x ≤ π2(p, t) where

[π1(p, t), π2(p, t)] = times(p, t) where {p} = •t,

• τ is internal actions,

• r
def
= {x}, and

• l′
def
= p s.t. {p} = t•.

For the further study on the reduction of 1-conservative TAPN, we introduce a
function f to present the correspondence relationship between TAPN and TA.

Definition 25. (Correspondence Function) We define a correspondence func-
tion

f : (P → B(R+)) −→ (L × R
+C

)

by
f(M) = (l, u),

where

1. l
def
= p where |M(p)| = 1, and

2. u(x)
def
= xp s.t. {xp} = M(p).

Theorem 5. 1-conservative TAPNs are polynomial time reducible to timed au-
tomata, preserving reachability, i.e., for every reachable marking M of a 1-
conservative TAPN N , we have

M ∈ [M0〉 iff f(M0) →
∗ f(M).

Proof. It is enough to prove that for every transition t ∈ T where M [t〉M ′ we

have f(M)
τ

−→ f(M ′) and vice versa, and for every time increasing transition

M [ǫ(d)〉M ′ we have f(M)
ǫ(d)
−→ f(M ′) and vice versa. Below, we give the proof

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.4. REDUCTION FROM TAPN TO TA/TAN Page 47 of 91

formally.

Let N = (P, T, F, times) with initial marking M0 be a TAPN without useless
transitions, and A(N) = (Actτ , L, l0, C,E) is the corresponding timed automa-
ton as defined above.

1. “ ⇒ ”:

(a) M [t〉M ′ ⇒ f(M)
τ

−→ f(M ′)

Because M and M ′ are markings of N , according to Definition 25, we
have the corresponding configurations (l, u) and (l′, u′), respectively,
such that,

– l = p where |M(p)| = 1, u(x) = xp s.t. {xp} = M(p), and

– l′ = p′ where |M ′(p′)| = 1, u′(x) = xp′ s.t. {xp′} = M ′(p′).

According to Definition 10, firing rules of TAPN, we have {p} = •t
and {p′} = t•.

Then according to Definition 24, we have

– l = p where {p} = •t and l′ = p′ where {p′} = t•,

– u(x) = xp s.t. {xp} = M(p) and u′(x) = xp′ s.t. xp′ = 0,

– g(u) |= tt.

Hence we have (l, u)
τ

−→ (l′, u′) according to Definition 13.

(b) M [ǫ(d)〉M ′ ⇒ f(M)
ǫ(d)
−→ f(M ′)

Next, consider M [ǫ(d)〉M ′ (d ∈ R
+) s.t. f(M) = (l, u) and f(M ′) =

(l′, u′).

Then according to Definition 10, Definition 24 and Definition 25, we
have

– l = l′, and

– u(x) = xp s.t. {xp} = M(p) and
u′(x) = xp′ s.t. xp′ = xp + d, where {xp} = M(p).

Hence we have (l, u)
ǫ(d)
−→ (l′, u′) according to Definition 13.

2. “ ⇐ ”

(a) f(M)
τ

−→ (l′, u′) ⇒ there is t ∈ T s.t. M [t〉M ′ and f(M ′) = (l′, u′)

Let M be a marking and f(M) = (l, u), such that (l, u)
τ

−→ (l′, u′).
Due to (l, g, τ, {x}, l′) ∈ E, and according to Definition 24, there is
t ∈ T such that

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 48 of 91 3.4. REDUCTION FROM TAPN TO TA/TAN

– l = p where {p} = •t,

– g(u) = x ≥ π1(p, t) ∧ x ≤ π2(p, t) |= tt,

– l′ = p where {p} = t•.

According to Definition 24, we have u′(x) = 0.
Thus let M ′ be a marking s.t. M [t〉M ′ and f(M ′) = (l1, u1).
Then according to the Definition 25, we have

– l1 = p where {p} = t•, and

– u1(x) = 0.

According to Definition 24, we have l1 = l′ and u1(x) = 0 = u′(x),
therefore (l1, u1) = (l′, u′).
Hence M [t〉M ′ such that f(M ′) = (l′, u′).

(b) f(M)
ǫ(d)
−→ (l′, u′) ⇒ M [ǫ(d)〉M ′ s.t. f(M ′) = (l′, u′)

Let M be a marking and f(M) = (l, u), such that (l, u)
ǫ(d)
−→ (l′, u′).

First, according to Definition 13, we have
l′ = l, and
u′(x) = u(x) + d.
Thus let M ′ be a marking where M [ǫ(d)〉M ′,
and f(M ′) = (l1, u1).
Then according to Definition 25, we have

– l1 = p where |M ′(p)| = 1, and

– u1(x) = x′

p s.t. {x′

p} = M ′(p) where x′

p = xp + d, where {xp} =
M(p).

Hence l1 = l = l′, and u1(x) = u(x) + d = u′(x),
which means that (l1, u1) = (l′, u′),
This gives M [t〉M ′ such that f(M ′) = (l′, u′).

From the above, we prove that the corresponding relation between TAPN mark-
ings and TA configurations is 1-to-1 mapping. Which means, for a sequence of
markings in TAPN N , we have a corresponding sequence of configurations in
TA A and the other way round.

Given a simple example of TAPN N , which has only the useful transitions T1,
T2, T3, as illustrated in Figure 3.8. According to the reduction rule, we get the
corresponding timed automaton TA, as illustrated in Figure 3.9.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.4. REDUCTION FROM TAPN TO TA/TAN Page 49 of 91

Figure 3.8: An Example of A Modified 1-Conservative TAPN

P1 P2

P3

P4

x>=2 && x<=4

x:=0

x>=3 && x<=5

x:=0

x>=1 && x<=3

x:=0

Figure 3.9: Translated 1-Conservative TAPN Model in Timed Automaton

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 50 of 91 3.4. REDUCTION FROM TAPN TO TA/TAN

Remark 4. For a TAPN, if for all transitions we have

|•t| = |t•| = 1,

but there are more tokens in the initial marking, then we can translate it into
network of TA according to the same technique which is used in the reduction of
1-conservative TAPN, and the number of tokens will correspond to the number
of parallel components.

3.4.2 Reduction of 2-Conservative TAPN

As we have the modified TAPN (see Figure 3.2) which has removed all the use-
less transitions, now we can go on with the reduction to timed automaton.

To illustrated the 2-conservative TAPN reduction algorithm we give an example.
In this example we explain the construction of TA from a given 2-conservative
TAPN.

First, recall what we have discussed in Section 3.2. The useful transitions in a
2-conservative TAPN are Tuseful = T1 ∪ T2 where

• T1 = {t ∈ T | |•t| = |t•| = 1}, and

• T2 = {t ∈ T | |•t| = |t•| = 2}.

For those t ∈ T1, the construction is the same as the construction of TA from
1-conservative TAPN. The 2-conservative TAPN is allowed to have these kind
of transitions as well.

While for those t ∈ T2, the construction is altered at the places wherever such
transitions exists.

Synchronization Problem and Solution

In a 2-conservative TAPN, the most different point other than 1-conservative
TAPN is that there is one more kind of transition which has two input arcs
and two output arcs, thus |•t| = |t•| = 2. The simple reduction model for
1-conservative TAPN is lacking the capability to make this reduction to timed
automata. In other words, simply making a copy of all the places and all the
useful transitions can not simulate the performance of the TAPN in timed au-
tomata.

At such transition places we use the communication channels present in timed
automata. In TA, channels are used to synchronize the processes. This is done
by annotating edges in the model with synchronization labels.

These communication channels allow the parallel composition of two different
templates. Here one template will be communicating with the other template,
in other words, one template will make calls while the other template listens to

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.4. REDUCTION FROM TAPN TO TA/TAN Page 51 of 91

the calls. The communication which is possible in TA and is handshake com-
munication. The communication is achieved using the operators ! and ?.

Now let us take the 2-conservative TAPN (see Figure 3.2) as the example. Fol-
lowing is how we make the reduction. As in the example of 2-conservative TAPN
we can see two kinds of transitions. We reduce in the following way.

We construct two templates (see Figure 3.11) with the same number of places
as we have in the original 2-conservative TAPN.

The places P2 and P4 with tokens in the initial marking from Figure 3.2 were
marked as initial places in each of the two TAs.

1. We reduce T1 in the TAPN into the transition in TA the same way as in
the 1-conservative TAPN reduction.

2. For T2 and T3, each of them is replaced by transitions between places
which have the outgoing transitions to the places which has input transi-
tions. We mark each transition edge with a channel such that a transition
channel is communicating with the transition channel in the other tem-
plate transition.

As we can see in the figure for the transition T2 in 2-conservative TAPN we
have two templates P1 and P2.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 52 of 91 3.4. REDUCTION FROM TAPN TO TA/TAN

P1

P2

P4

P5

P3 P6

P7

x1>=1 && x1<=6

x1:=0 x1>=1 && x1<=4

T2!

x1:=0 x1>=4 && x1<=8

T3?

x1:=0

x1>=3 && x1<=7

T3!

x1:=0

T2?

x1>=2 && x1<=7 x1:=0

Figure 3.10: Template P1 in the Corresponding TAN Model for 2-Conservative
TAPN

P1

P2

P4

P5

P3 P6

P7

x1>=1 && x1<=6

x1:=0 x1>=1 && x1<=4

T2!

x1:=0 x1>=4 && x1<=8

T3?

x1:=0

x1>=3 && x1<=7

T3!

x1:=0

T2?

x1>=2 && x1<=7 x1:=0

Figure 3.11: Template P2 in the Corresponding TAN Model for 2-Conservative
TAPN

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.4. REDUCTION FROM TAPN TO TA/TAN Page 53 of 91

With reference of the example, we give the formal reduction of 2-conservative
TAPN below.

Definition 26. (Reduction of 2-Conservative TAPN)
Let N = (P, T, F, times) with initial marking M0 be a 2-conservative TAPN
without useless transitions. We define the corresponding timed automata net-
work as a network of timed automata TAN(N) = A1(N)|A2(N) where A1(N) =
(Actτ , L1, l10, C,E1) and A1(N) = (Actτ , L2, l20, C,E2) such that

1. Actτ
def
= {τ} ∪ { t! | t ∈ T2} ∪ { t? | t ∈ T2},

2. L1 = L2 def
= P ,

3. l10 is defined as the place where the first token in M0 is, while l20 is defined
as the place where the second in M0 is,

4. C
def
= {x1, x2},

5. for all the t ∈ T ,

(a) if t ∈ T1, we add

i. (l1, g1, a, r1, l1
′
) ∈ E1 where

• l1
def
= p s.t. {p} = •t,

• g1 def
= π1(p, t) ≤ x1 ∧ x1 ≤ π2(p, t) where

[π1(p, t), π2(p, t)] = times(p, t) where {p} = •t,

• a
def
= τ is the internal action,

• r1 def
= {x1}, and

• l1
′ def

= p′ s.t. {p′} = t•.

ii. (l2, g2, a, r2, l2
′
) ∈ E2 where

• l2
def
= p s.t. {p} = •t,

• g2 def
= π1(p, t) ≤ x2 ∧ x2 ≤ π2(p, t) where

[π1(p, t), π2(p, t)] = times(p, t) where {p} = •t,

• a
def
= τ is the internal action,

• r2 def
= {x2}, and

• l2
′ def

= p′ s.t. {p′} = t•.

(b) if t ∈ T2, first we fix {p1, p2} = •t and {p3, p4} = t•, then we add

i. (p1, g
1, t!, r1, p3) ∈ E1 and (p2, g

2, t?, r1, p4) ∈ E1 s.t.

• g1 def
= π1(p1, t) ≤ x1 ∧ x1 ≤ π2(p1, t) |= tt where

[π1(p1, t), π2(p1, t)] = times(p1, t),

• g2 def
= π1(p2, t) ≤ x1 ∧ x1 ≤ π2(p2, t) |= tt where

[π1(p2, t), π2(p2, t)] = times(p2, t),

• r1 def
= {x1}, and

ii. (p1, g
1, t!, r2, p3) ∈ E2 and (p2, g

2, t?, r2, p4) ∈ E2 s.t.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 54 of 91 3.4. REDUCTION FROM TAPN TO TA/TAN

• g1 def
= π1(p1, t) ≤ x2 ∧ x2 ≤ π2(p1, t) |= tt where

[π1(p1, t), π2(p1, t)] = times(p1, t),

• g2 def
= π1(p2, t) ≤ x2 ∧ x2 ≤ π2(p2, t) |= tt where

[π1(p2, t), π2(p2, t)] = times(p2, t),

• r2 def
= {x2}.

Theorem 6. 2-conservative TAPNs are polynomial time reducible to timed
automata network(s), preserving reachability, i.e., for a marking M of a 2-
conservative TAPN N with the initial marking M0, we have

M ∈ [M0〉 iff ∀C ∈ f(M0). ∃C ′ ∈ f(M) s.t. C →∗ C ′. (3.5)

Proof. The proof idea could be explained in two parts, according to two kinds
of different transitions in the net. For those transitions t ∈ T1, the arguments
are the same as that of the 1-conservative TAPN. For those transitions t ∈ T2,
it is more complex. Synchronization between different processes is critical.

First, let us look at the case that M ′ is reachable in one step from M , i.e.,
M ′ is reachable from M by firing a transition t or a time elapsing transition
ǫ(d). We will prove that

M [t〉M ′ iff ∀C ∈ f(M). ∃C ′ ∈ f(M ′) s.t. C
τ

−→ C ′, (3.6)

and

M [ǫ(d)〉M ′ iff ∀C ∈ f(M). ∃C ′ ∈ f(M ′) s.t. C
ǫ(d)
−→ C ′. (3.7)

Let N = (P, T, F, times) with initial marking M0 be a 2-conservative TAPN
without useless transitions, and TAN(N) = A1(N)|A2(N) is the corresponding
timed automata network as defined above.

1. M [t〉M ′ ⇒ ∀C ∈ f(M). ∃C ′ ∈ f(M ′) s.t. C
τ

−→ C ′

Let f(M) = {(p1, p2, u1), (p2, p1, u2)} and f(M ′) = {(p′1, p
′

2, u
′

1), (p
′

2, p
′

1, u
′

2)}

(a) t ∈ T1, let •t = {p} and t• = {p′}, thus either

i. p = p1

For all C ∈ f(M), we have (p1, p2, u1)
τ

−→ (p′, p2, ū1) and (p2, p1, u2)
τ

−→
(p2, p

′, ū2).
According to the Definition 15, we have
ū1(x1) = 0, ū1(x2) = u′

1(x2) and ū2(x1) = u′

2(x1), ū2(x2) = 0,
hence (p′, p2, ū1) ∈ f(M ′) and (p2, p

′, ū2) ∈ f(M ′).

ii. p = p2 is symmetric to case 1(a)i.

(b) t ∈ T2, let •t = {p1, p2} and t• = {p′1, p
′

2}, thus either

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.4. REDUCTION FROM TAPN TO TA/TAN Page 55 of 91

i. (p1, p2, u1)
τ

−→ (p′1, p
′

2, ū1) or (p1, p2, u1)
τ

−→ (p′2, p
′

1, ū2)
According to Definition 15,
ū1(x1) = 0 = u1(x1), ū1(x2) = 0 = u1(x2)
ū2(x1) = 0 = u2(x1), ū2(x2) = 0 = u2(x2),
and hence (p′1, p

′

2, ū1) ∈ f(M ′), (p′2, p
′

1, ū2) ∈ f(M ′).

ii. (p2, p1, u2) is symmetric to case 1(b)i.

2. M [ǫ(d)〉M ′ ⇒ ∀C ∈ f(M). ∃C ′ ∈ f(M ′) s.t. C
ǫ(d)
−→ C ′

Let f(M) = {(p1, p2, u1), (p2, p1, u2)}, so f(M ′) = {(p1, p2, u
′

1), (p2, p1, u
′

2)}.

(a) (p1, p2, u1)
ǫ(d)
−→ (p1, p2, ū1)

because
ū1(x1) = u1(x1) + d = u′

1(x1) and
ū1(x2) = u1(x2) + d = u′

1(x2),

therefore (p1, p2, u1)
ǫ(d)
−→ (p1, p2, u

′

1)

(b) (p2, p1, u2)
ǫ(d)
−→ (p2, p1, ū2)

because
ū2(x1) = u2(x1) + d = u′

2(x1) and
ū2(x2) = u2(x2) + d = u′

2(x2),

therefore (p1, p2, u2)
ǫ(d)
−→ (p1, p2, u

′

2)

3. Let M , M ′ be markings of N , f(M) = {(p1, p2, u1), (p2, p1, u2)} and
f(M) = {(p′1, p

′

2, u
′

1), (p′2, p
′

1, u
′

2)}, we show that

∀C ∈ f(M). ∃C ′ ∈ f(M ′) s.t. C
τ

−→ C ′ ⇒ M [t〉M ′.

Since we know that either (p1, p2, ū1)
τ

−→ (p′1, p
′

2, u
′

1) or (p1, p2, ū1)
τ

−→
(p′2, p

′

1, u
′

2) must exist, then

(a) let (p1, p2, u1)
τ

−→ (p′1, p
′

2, u
′

1), due to Definition 26, this is possible
because of some t ∈ T .

i. t ∈ T1

A. •t = {p1}
p′2 = p2, {p

′

1} = t•, u′

1(x1) = 0, u′

1(x2) = u1(x2),
and hence M [t〉M ′;

B. •t = {p2} is symmetric.

ii. t ∈ T2, so according to Definition 15 and Definition 26, •t =
{p1, p2}, t

• = {p′1, p
′

2},
thus u′

1(x1) = u′

1(x2) = 0, i.e., M ′(p1) = M ′(p2) = {0},
and hence M [t〉M ′.

(b) (p1, p2, u1)
τ

−→ (p′2, p
′

1, u
′

2) is symmetric to case 3a.

4. For the case

∀C ∈ f(M). ∃C ′ ∈ f(M ′) s.t. C
ǫ(d)
−→ C ′ ⇒ M [ǫ(d)〉M ′,

the time elapsing steps are obvious as before.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

Page 56 of 91 3.5. CONCLUSION

With all of above, Equation (3.6) and Equation (3.7) are proved. Now we show
the proof of Equation (3.5) by induction.

Equation (3.5) can be also written in the way

M0[t1〉M1[t2〉 · · · [tn〉M
′ iff ∀C ∈ f(M0). ∃C ′ ∈ f(M ′) s.t. C →∗ C ′. (3.8)

1. n = 0, it is obvious that any marking is reachable from itself.

2. n = 1,

M0[t1〉M
′ iff ∀C ∈ f(M0). ∃C ′ ∈ f(M) s.t. C →∗ C ′

is obviously true from what we proved before.

3. Assume that Equation (3.8) is true when n = i:

M0[t1〉M1[t2〉··· [ti〉M
′ iff ∀C ∈ f(M0). ∃C ′ ∈ f(M ′) s.t. C →∗ C ′. (3.9)

then for the case n = i + 1,
we have M0[t0〉M1[t1〉 · · · [ti〉M

′[ti+1〉M
′′ on the left side.

From Equation (3.6) and Equation (3.7), we know that

M ′[ti+1〉M
′′ iff ∀C ′ ∈ f(M ′). ∃C ′′ ∈ f(M ′′) s.t. C ′ →∗ C ′′. (3.10)

So from Equation (3.9) and Equation (3.10) we have

M0[t0〉M1[t1〉···[ti〉M
′[ti+1〉M

′′ iff ∀C ∈ f(M0). ∃C ′′ ∈ f(M ′′) s.t. C →∗ C ′′.

With all of above, Equation (3.5) is proved.

Remark 5. For a 2-degree TAPN, we can translate it into network of TA ac-
cording to the same technique which is used in the reduction of 2-conservative
TAPN, and the number of tokens will correspond to the number of parallel com-
ponents.

So in this case, we can translate all the k-conservative TAPN into TA/TAN by
synthetically using the reduction of degree and from TAPN to TA/TAN.

3.5 Conclusion

In this chapter, we discussed the reduction techniques from k-conservative TAPN
to TA/TAN. Generally, we translate a given TAPN by

1. Removing useless transitions.

2. Reducing the degree from k to k-1, until we get a 2-degree TAPN.

3. Reducing the TAPN to TA/TAN.

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

3.5. CONCLUSION Page 57 of 91

For 1-conservative TAPN, we can directly translate it into TA after we moved
the useless transitions. While for those k-conservative TAPN, we follow the way
shown below:

k-conservative TAPN

⇓

k-conservative TAPN contains useful transitions only

⇓

k-conservative TAPN of degree (k-1)

⇓

k-conservative TAPN of degree (k-2)

⇓

...

⇓

k-conservative TAPN of degree 2

⇓

TAN with k templates

CHAPTER 3. TRANSLATIONS FROM TAPN TO TA

4Implementation

4.1 Introduction

In this chapter we emphasize on the implementation of our reduction algorithm.
The idea behind the implementation is that we would like to modify a given
XML file of TAPN format into the XML format which is valid for the Uppaal

tool. The input XML file satisfies the DTD [39] format what we have proposed
for a TAPN. Our aim is to read the input XML which is a TPAN and process
it and generate Uppaal compatible XML file as output. By doing it so we can
actually verify the reachability of the newly generated TA which corresponds
to the original TAPN. As our main emphasis is to find a way to automate the
process so that it can be used for reachability of TAPN.

We have started using the XML and Java technologies as the implementation
more specifically we need XML (extensible markup language) the format used
to store the TAPN and TA diagrams. In order to read and write these XML file
we have chosen Java programming language because of its portability and also
we have various ready made API such as SAX [33], DOM [14] and JDOM [22].

4.2 Tools and Programming Languages Used

In this section we give brief description about the various tools and programming
languages we have used in developing the parser.

4.2.1 XML

Extensible Markup Language (XML) is simple and convenient text format de-
rived from SGML (ISO 8879).XML is originally designed for the publication of
large scale electronic data. XML is playing a crucial role in the exchange of a
wide variety of data on the web. It is one of the extensions to the HTML where
the tags are predefined. Most importantly XML is W3C recommended form of
data storage and representation.

59

Page 60 of 91 4.2. TOOLS AND PROGRAMMING LANGUAGES USED

4.2.2 Why XML?

Since there are many data storage techniques and software tools available one
would wonder why we have chosen XML as our standard data storage and ma-
nipulating tool. The answer is very simple and straight forward, we want the
data to be re-used and manipulated rather than confining it to remain dormant.
Unlike HTML where the data presentation is given more importance, XML gives
means to store, carry and exchange data.

To add further XML has the versatility to create user defined tags while cre-
ating the data representation format. The basic condition before creating any
XML file that it has to follow DTD format. For this reason we have agreed on
the DTD of TAPN and followed that format right through the parser imple-
mentation. Unlike the other data storage tools like MS-Access or Oracle where
data is stored in the form of tables in XML data is stored in the form of XML
files. And we have so many data accessing tools for these XML files. Also,
the data we need to store isn’t very large which has to be stored putting some
constraints while accessing and writing data. We were constantly looking for
a tool which could provide us simplicity in storing and retrieving data, apart
from the that more flexible in exchange of data. XML was the good choice for
us when compared with other existing tools.

4.2.3 Java

We have opted to use the Java programming language to parse the XML docu-
ments. Its because of its portability. We use JAVA to implement the concrete
programming. Because in this project, what are more focussed in finding a way
for the problem and translation here is not the bottle neck. In this case, a high-
level and highly modularized programming tool is a good choice.

In this process we have considered various Java parsers like JDOM, SAX etc
and decided to go with the JDOM (Java Document Object Model). The XML
JDOM is Java enabled API. We will explain few more things regarding this
JDOM in next few sections. Based on the XML objects which need to be mod-
ified, we use XMLSpy [42], which is a powerful XML file editing tool of Altova
Inc.. Altova XMLSpy 2004 Home Edition is an entry level XML development
tool for designing and editing applications involving XML technologies.

4.2.4 JDOM

The JDOM is an Application Programming Interface (API) for HTML and XML
documents. As a W3C specification, the objective for the XML JDOM has been
to provide a standard programming interface to a wide variety of applications.
The XML JDOM is designed to be used with most programming languages and
operating systems. With the XML JDOM, a programmer can create an XML
document, navigate its structure, and add, modify, or delete its elements. Java
Document Object Model(JDOM) is a specification for a set of interfaces that
XML parser which can be implemented in order to provide a model of an XML
document as set of objects.

CHAPTER 4. IMPLEMENTATION

4.3. XML READER AND WRITER Page 61 of 91

There are two main parts to the JDOM:

1. the core that describes interfaces for accessing XML, and

2. the HTML specific JDOM API.

The JDOM represents a tree view of the XML document. The documentEle-

ment is the top-level of the tree. This element has one or many childNodes that
represent the branches of the tree. A Node Interface Model is used to access the
individual elements in the node tree. As an example, the childNodes property
of the documentElement can be accessed with a for each construct to enumerate
each individual node.

XML elements can be extracted from an XML document by traversing the node
tree, by accessing the elements by number, or by accessing the elements by name.

One common way to extract XML elements from an XML document is to tra-
verse the node tree and extract the text value of each element.

4.3 XML Reader and Writer

In this section we would like to describe in few words about the XML Reader and
Writer which are the two main parts in the parser. The reader and the writer
are written using the JDOM API. We have presented the XML representation
format for the TAPN and the TA generated by the parser.

4.3.1 XML Reader

This part particularly represents the document format i.e. the XML format
of TAPN and the various methods of the JDOM API used to access the data.
Before writing further first we would like to show the XML format of a TAPN
showed in Figure 4.1 below.

1 <?xml version="1.0"?>
2

3 <tpn >
4

5 <place > <name >P0 </name > <pid >pid0 </pid > </place >
6 <place ><name >P1 </name > <pid >pid1 </pid > </place >
7

8 <token > <id>pid0 </id > </token >
9

10 <transition ><id>T1 </id> <label >one </label > </transition >
11 <transition > <id >T2 </id > <label >two </label > </transition >
12

13 <arc >
14 <source >pid0 </source >
15 <target >T1 </target >
16 <type >PlaceTransition </type >
17 <lb >5</lb >
18 <ub >500</ub>
19 </arc >

CHAPTER 4. IMPLEMENTATION

Page 62 of 91 4.3. XML READER AND WRITER

Figure 4.1: A Given Example of TAPN

20

21 <arc >
22 <source >T1 </source >
23 <target >pid1 </target >
24 <type >TransitionPlace </type >
25 <lb >0</lb >
26 <ub >0</ub >
27 </arc >
28

29 <arc >
30 <source >pid0 </source >
31 <target >T2 </target >
32 <type >PlaceTransition </type >
33 <lb >3</lb >
34 <ub >8</ub >
35 </arc >
36

37 <arc >
38 <source >T2 </source >
39 <target >pid0 </target >
40 <type >TransitionPlace </type >
41 <lb >0</lb >
42 <ub >0</ub >
43 </arc >
44

45 </tpn >

The reader basically reads the data stored in these XML files using the notions.
In the following piece of code we show how to read the token id of the TAPN
which is important in deciding the start place of the TA. We make use of the
List data structure and create the list with elements which are defined with in
the token. After that we use a iterator to process through those elements and
find the data which is encapsulated with in id section of the token element and
store it to some integer variable. Like this we use different number of lists to
various elements and sub-elements and to process through them to retrieve the
data.

CHAPTER 4. IMPLEMENTATION

4.3. XML READER AND WRITER Page 63 of 91

1 List tokenList = root.getChildren("token");
2 Iterator tokenIterator = tokenList.iterator ();
3

4 while (tokenIterator.hasNext ()) {
5

6 Element tokenElement = (Element) tokenIterator.next();
7 id=String.valueOf(tokenElement.getChild("id").getTextTrim ())

;
8 }// end of while loop

4.3.2 XML Writer

In XML writer the predefined functions of JDOM like the setText(), and
setIndex() comes in handy while constructing the XML document. The fol-
lowing code represents the insertion of the declaration element with some data
into it. The sub elements are added into the main element in the similar manner.

1 public void setDeclaration(String app3Name) {
2 Element setDeclaration = new Element("declaration");
3 setDeclaration.setText(app3Name);
4 insertBefore("template",setDeclaration);
5 }

Unlike the other built in functions the insertBefore() function searches the
possible children for the given elements and inserts the current element at appro-
priate place. Before inserting it ensures the place of the element to be inserted.
The insertBefore() function is given below.

1 private Element insertBefore(String tag , Element w_element){
2

3 List w_children = doc2.getRootElement ().getChildren ();
4 i f (w_children.isEmpty ()){
5 doc2.getRootElement ().addContent(w_element);
6 }
7 else {
8 int position = 0;
9 Iterator it = w_children.iterator ();

10 while (it.hasNext ()) {
11 i f (((Element)it.next()).getName ().equals(tag)) {
12 break;
13

14 }// end of if condition
15

16 position ++;
17

18 } //end of while loop
19

20 w_children.add(position , w_element);
21

22 }// end of else
23

24 return w_element;
25

26 } // end of insertBefore

CHAPTER 4. IMPLEMENTATION

Page 64 of 91 4.3. XML READER AND WRITER

4.3.3 XML Output

The following XML represents the XML file of TA generated by the parser which
is Uppaal compatible, illustrated as in Figure 4.2.

P 1P 0

x>=3 && x<=8

x:=0

x>=5 && x<=500

x:=0

Figure 4.2: Output TA of the Given Example of TAPN

1 <?xml version="1.0" encoding="UTF -8"?> <!DOCTYPE nta PUBLIC
2 " -//Uppaal Team//DTD Flat System 1.0// EN"
3 "http ://www.docs.uu.se/docs/rtmv/uppaal/xml/flat -1_0.dtd">
4

5 <nta >
6 <declaration >chan T1 ,T2 </ declaration >
7 <template >
8 <name >P1 </name >
9 <parameter />

10 <declaration >clock x;</declaration >
11 <location id="pid0">
12 <name >P0 </name >
13 </location >
14 <location id="pid1">
15 <name >P1 </name >
16 </location >
17 <init ref="pid0" />
18 <transition >
19 <source ref="pid0" />
20 <target ref="pid1" />
21 <label kind="guard">x>=5 and x<=500 </ label >
22 <label kind="assignment">x:=0</label >
23 <label kind="synchronisation" />
24 </transition >
25 <transition >
26 <source ref="pid0" />
27 <target ref="pid0" />
28 <label kind="guard">x>=3 and x<=8</label >
29 <label kind="assignment">x:=0</label >
30 <label kind="synchronisation" />
31 </transition >
32 </template >
33 <template >
34 <name >P2 </name >

CHAPTER 4. IMPLEMENTATION

4.4. REDUCTION ALGORITHMS Page 65 of 91

35 <parameter />
36 <declaration >clock x;</declaration >
37 </template >
38 <instantiation >// intialise here </ instantiation >
39 <system >system P1,P2;</system >
40 </nta >

4.4 Reduction Algorithms

We have the reduction algorithms followed in implementing the parser. The
whole parser is implemented following Theorem 5, Theorem 6 and Theorem 2
shown before.

For Theorem 2, we implemented a parser that could able to convert the 3-
conservative TAPN to 2-conservative TAPN. The idea behind this is to con-
vert the input XML document which is in 3-conservative TAPN form into 2-
conservative TAPN XML format. Then follow Theorem 6 and Theorem 5, we
have implemented a parser that can convert the conservative TAPN of degree 1
and 2 into TA XML format which is given to the Uppaal as input and is valid
as well.

Packages of full programs codes are available in the attached CD.

CHAPTER 4. IMPLEMENTATION

5Case Study

In this chapter we will show how real-world examples can be modeled as timed-
arc Petri nets. We will model Fischer’s protocol [41] which is one of the solutions
to mutual exclusion problem and Alternating Bit Protocol [5] which shows the
way how we communicate bit data in network.

5.1 Case Study I: Fischer’s Protocol

Now, let us have a look at a good practical application of translating a 3-
conservative TAPN into timed automata.

5.1.1 Motivation and Application

For security reasons, we sometimes want to avoid having more than one process
available for a certain event at a certain time, like the two sides of a coin.

Once we have available to use a mechanism to provide synchronization, where
update is thereby sequentially ordered, we say that the processes provide Mutual
Exclusion over a shared resource. Mutual Exclusion is the assurance that only
one process is given access to a shared resource at any one time [10].
It is a good case for us to build a TAPN model, and more important to verify
the properties of the reduced TAN through tool Uppaal.

5.1.2 Fischer’s Protocol

Why Fischer’s Protocol

We choose Fischer’s Protocol as a case study for this Mutual Exclusion prob-
lem. The protocol was first proposed by Fischer [16], and later studied in
[2, 23, 25, 34]. Instead of using atomic test-and-set instructions or semaphores,
as is nowadays often done to assure mutual exclusion, Fischer’s protocol only
assumes atomic reads and writes to a shared variable. Mutual exclusion in Fis-
cher’s Protocol is guaranteed by carefully placing bounds on the execution times

67

Page 68 of 91 5.1. CASE STUDY I: FISCHER’S PROTOCOL

of the instructions, leading to a protocol which is very simple, and relies heavily
on time aspects. This makes it an ideal candidate for the purpose we have in
mind, namely to try to verify a not too difficult protocol which still has quite
intricate timing aspects.

How Does It Work

The idea behind the protocol is that the timing constraints on the local clocks
are set so that only one process can enter the critical section if the shared vari-
able is equal to its own number.

Assume a concurrent system with n processes P1, · · ·Pn. Let xi be the local
clock for each process Pi. Then the formal description of it is given as following:

• Pi
def
= Ai

• Ai
def
= ({v = 0}, τ, {xi}).Bi

• Bi
def
= ({xi < const1}, τ, {v := i, xi}).Ci

• Ci
def
= ({v = i, xi > const2}, τ, {v := i}).CSi

or ({v 6= i, xi > const2}, τ, {}).Ai

• CSi
def
= ({v = i}, τ, {v := 0}).Ai.

Figure 5.1 illustrates the protocol intuitively. Each process Pi may be in either
of the four local states Ai, Bi, Ci,CSi. At first, all processes are in the A-state
and the shared variable v is initially 0. Then a process Pi which tries to enter
the critical section will change state from Ai to Bi if it sees v = 0. After then, it
will move on from Bi to Ci before the clock xi proceeds to const1, meanwhile
reset the clock xi to 0 and assign v to its own process number i. From Ci, when
the clock value of xi is larger than const2, it can move to the critical section
CSi if v is still equal to its own process number, or go back to the A-state if v
is not equal to its own process number. Once a process Pi enters the critical
section, it can move back to A-state and assign v to 0, to start a new round.

5.1.3 Modeling

In this section, we take the example of avoiding two processes reach the critical
section at the same time. Which means to prove the actual mutual exclusion
between the two critical sections.

We model the system of two processes as a 3-conservative TAPN (see Figure
5.2) and then automatically convert it into a TAN, and then verify its properties
using the verification tool Uppaal.

CHAPTER 5. CASE STUDY

5.1. CASE STUDY I: FISCHER’S PROTOCOL Page 69 of 91

Figure 5.1: Fischer’s Protocol

Each process path has a resource request place (i.e. Ai), a waiting place (i.e.
Bi), a controlling place (i.e. Ci) and a critical section place (i.e. CSi). We have
considered each token as process (we use token instead of process hereafter) and
one of the places as critical section (we use critical place instead of critical sec-
tion hereafter) in the net so that at a given time only one of the tokens remain
in that place. We model the shared variable with three controlling places (i.e. vi

where i = 0, 1, 2), which always contain the third token in one of them and help
the token in each process to reach the critical place. There is one condition to be
satisfied by the process before entering the critical place. For any token before
entering the critical place should have the message token within its controlling
state. If the above condition satisfies then only it can actually enter the critical
place.

CHAPTER 5. CASE STUDY

Page 70 of 91 5.1. CASE STUDY I: FISCHER’S PROTOCOL

Figure 5.2: TAPN for Fischer’s Protocol with 2 Processes

CHAPTER 5. CASE STUDY

5.1. CASE STUDY I: FISCHER’S PROTOCOL Page 71 of 91

5.1.4 Verification

To know the correctness of our reduction, we verify the automatically generated
TAN in Uppaal. Because we model the TAPN according to the protocol itself,
so if it outputs the expected results for this corresponding TAN, then we can
conclude that the protocol is correct.

Actually, we have verified the Fischer’s protocol using the reduction we present
before. In the 3-conservative TAPN, a third token is used to model the shared
variable and as a whole abiding the Fischer’s protocol design. We have con-
sidered two processes trying to enter the critical places named CS1 and CS2,
respectively. Only one of the two can reach the goal.

The protocol is not safe if there are tokens in both CS1 and CS2 at some certain
time, while no matter what the age of each token is. We can easily verify the
possibility of this case in the reduced TAN, i.e., to check if both of the corre-
sponding locations CS1 and CS2 can be reached at some time.

If we have a dry run of the net we can see the first token which actually enters
the resource request place will remain the last to enter the critical place which
is characteristic of this protocol. Our aim is to verify this automatically.

With the tool Uppaal, we verified the reachability in the reduced TAN. To
verify the reachability with a loose constraint on time, we omit clock constraint
in the verifier formula in Uppaal, i.e., we only have to verify the reachability
or unreachability of any certain location(s). Figure 5.3 illustrates one of the
templates of the reduced time automata.

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9 P10

x>=0
T1!
x:=0

x>=0
T1?
x:=0

x>=0 and x<=1
T2!
x:=0

x>=0
T2?
x:=0

x>=2
T3!
x:=0

x>=0
T3?
x:=0

x>=0
T4!
x:=0

x>=0
T4?
x:=0

x>=0 and x<=1

T5! x:=0

x>=0
T5?
x:=0

x>=2
T6!
x:=0

x>=0
T6? x:=0

x>=0 and x<=1
T7!
x:=0

x>=0
T7?
x:=0

x>=0 and x<=1
T8!
x:=0

x>=0
T8?
x:=0

x>=0 and x<=1
T9! x:=0

x>=0
T9?
x:=0

x>=0 and x<=1
T10! x:=0

x>=0
T10?
x:=0

x>=0
T11!
x:=0

x>=0
T11?
x:=0

x>=0
T12!
x:=0

x>=0
T12?
x:=0

x>=0
T13!
x:=0 x>=0

T13?
x:=0

x>=0
T14!
x:=0

x>=0
T14?
x:=0

x>=0
T15!
x:=0x>=0

T15?
x:=0

x>=0

T16! x:=0

x>=0
T16?
x:=0

Figure 5.3: Template 1 in the TAN for Fischer’s Protocol with 2 processes, Template
2 and Template 3 are the same except with the initial location P4 and P8, respectively.

And then we have the verification results as below:

CHAPTER 5. CASE STUDY

Page 72 of 91 5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL

1. E<>Token1.CS1 or Token2.CS2

Property is satisfied.

2. E<>Token1.CS1 && Token2.CS2

Property is not satisfied.

Query 1 verifies the reachability of the model, i.e., either process 1 or process
2 can reach the critical section. And Query 2 verifies the unreachability of the
model, i.e., the situation which both process 1 and process 2 reach the critical
sections cannot happen. In other words, the model implements Fischer’s Pro-
tocol for Mutual Exclusive problem.

Further more, we construct a Error-Check TAPN for the original model, which
contains three extra error-check transitions (with degree 3) and three extra
places which represent the error unsafe property of the model. Figure 5.4 illus-
trates this modified TAPN with degree 3. For simplification reasons, we present
only the part which the newly added places and transitions involved and the ig-
nored part keeps the same as the original TAPN. With the reduction technique,
we also get the reduced TAN (one of the templates Token1 is illustrated in Fig-
ure 5.5) and check the reachability of the TAN with tool Uppaal. The verifier
shows correct results as below, i.e., the correctness of our reduction techniques.

1. E<>Token1.Error or Token2.Error or Token3.Error

Property is not satisfied.

In this modified model, Query 1 verifies the unreachability or the Error location,
i.e., there cannot be more than one process can reach the critical section.

There is not the possibility that two processes reach their critical sections at
the same time, i.e., in the original TAPN, there cannot be the case that tokens
exist in both places CS1 and CS2 at the same time. Intuitively, the situation
which there is a token in CS1, a token in CS2 and the third token in either v0,
v1 or v2 is not available.

5.2 Case Study II: Alternating Bit Protocol

In this section, we choose alternating bit protocol [8] as the second discussion
of our case studies.

5.2.1 Motivation and Application

Network and communication act more and more important roles in the IT indus-
try and human life nowadays. To make sure that the information is transferred
correctly is one of the most important goals over the network. Many commu-
nication protocols make important use of timing values in their specifications,

CHAPTER 5. CASE STUDY

5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL Page 73 of 91

v0

v1

v2

Error1

CS1

Error2

CS2

Error3

Error

Check1 Check0 Check2

E1

E2

E3

Figure 5.4: Modified TAPN for Fischer’s Protocol, with Error-check Places

such as recovery from losses of messages is implemented using time-outs. And
alternating bit protocol is one of them which provides an introductory example
to the analysis method.

5.2.2 Alternating Bit Protocol

Why Alternating Bit Protocol

Alternating bit protocol was brought first by K. A. Bartlett, R. A. Scantle-
bury, and P. T. Wilkinson in 1969. The protocol transmits messages between
two participators, allowing only one message being transmitted at a time, over
an unreliable transmission medium [8]. On the behavior of the transmission
medium, the protocol assumes that messages or acknowledgments may be lost
in transit. Particularly, Bernard Berthomieu and Michel Diaz presented a time
Petri net (TPN) model for this protocol in [5]. Thus it will be a good object for
our second case study.

How Does It Work

The protocol is based on such a idea that the recovery from losses is done by
using a time-out and retransmitting mechanism. i.e., the sender records the
time when it sends a message and if an acknowledgment of its delivery does not
return within a given time, then the message is retransmitted.

The text below is partly cited from [5]. This selected mechanism must be suf-

CHAPTER 5. CASE STUDY

Page 74 of 91 5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL

Error

Error2Error1 Error3

A1

B1

C1

CS1

A2

B2

C2

CS2

v0

v1 v2

x==0
T19t3?
x:=0

x==0
T18t3?
x:=0

x==0
T17t3?
x:=0

x>=0
T19t2?
x:=0

x>=0
T18t2?
x:=0

x>=0
T17t2?
x:=0

x==0
T19t3!
x:=0

x==0
T17t3!
x:=0

x==0
T18t3!
x:=0

x>=0
T19t1?
x:=0

x>=0
T18t1?
x:=0

x>=0
T17t1?
x:=0

x==0
T19t2!
x:=0

x==0
T18t2!
x:=0

x==0
T17t2!
x:=0

x>=0
T19t1!
x:=0

x>=0
T17t1!
x:=0

x>=0
T18t1!
x:=0

x>=0
T1!
x:=0

x>=0
T1?
x:=0

x>=0 and x<=1
T2!
x:=0

x>=0
T2?
x:=0

x>=2
T3!
x:=0

x>=0
T3?
x:=0

x>=0
T4!
x:=0

x>=0
T4?
x:=0

x>=0 and x<=1

T5! x:=0

x>=0
T5?
x:=0

x>=2
T6!
x:=0

x>=0
T6? x:=0

x>=0 and x<=1
T7!
x:=0 x>=0

T7?
x:=0

x>=0 and x<=1
T8!
x:=0

x>=0
T8?
x:=0

x>=0 and x<=1
T9! x:=0

x>=0
T9?
x:=0

x>=0 and x<=1
T10! x:=0

x>=0
T10?
x:=0

x>=0
T11!
x:=0

x>=0
T11?
x:=0

x>=0
T12!
x:=0

x>=0
T12?
x:=0

x>=0
T13!
x:=0

x>=0

T13?
x:=0

x>=0
T14!
x:=0

x>=0
T14?
x:=0

x>=0
T15!
x:=0

x>=0
T15?
x:=0

x>=0

T16! x:=0

x>=0
T16?
x:=0

Figure 5.5: Template Token1 of the Modified TAN for Fischer’s Protocol, with Error-
check Places

ficient for recovering from losses and for preventing the acceptance of duplicate
messages. i.e., upon the reception of a message, the receiver must be able to
decide whether this message is a new message or an old one (duplicate). To
solve this problem, messages are numbered, prior to transmission, with modulo-
2 sequence numbers and, for every packet received, an acknowledgment is sent
that carries the sequence number of the received packet.

5.2.3 Modeling

Our model is inspired by a similar model in [5]. The losses of messages and
acknowledgments are represented simply as transitions without output places.
In other words, a token will be consumed once such a transition is fired, i.e. the
message or acknowledgment is lost then. In the meanwhile, time-out and re-
transmitting mechanisms are represented by the transitions which have different
time constraints.

We modify the model as a conservative TAPN with degree 2 (see Figure 5.6).
Basic idea is that adding an extra place Buffer which contains the extra token/-
tokens and keep the conservative property of the net.

The meanings of the transitions are as follows:

CHAPTER 5. CASE STUDY

5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL Page 75 of 91

SP0 Send Packet 0
RP0 Resend Packet 0
RA0 Receive Acknowledgment 0
RLP0 Receive and Release Packet 0
SA0 Send Acknowledgment 0
RJP0 Receive and Reject Packet 0
LP0 Lose Packet 0
LA0 Lose Acknowledgement 0
SP1 Send Packet 1
RP1 Resend Packet 1
RA1 Receive Acknowledgment 1
RLP1 Receive and Release Packet 1
SA1 Send Acknowledgment 1
RJP1 Receive and Reject Packet 1
LP1 Lose Packet 1
LA1 Lose Acknowledgement 1

We first start with no timing information, thus we have the TAPN model (see
Figure 5.6) with loose time constraints (i.e. all transitions have time constraints
[0,∞]) and then we are able to check the reachability of the reduced TAN in
Uppaal.

5.2.4 Verification and Modified Model

According to the protocol, it is not safe if

1. the Receiver sends the acknowledgement while the Sender has not sent it
yet, nor

2. the Sender is sending the next bit of message while the Receiver has not
sent the acknowledgement yet.

When the original TAPN is 3-conservative i.e. there is only one token in Buffer,
we can easily verify the possibilities of above cases in the reduced TAN with
the tool Uppaal. As how we verified in Section 5.1, we omit clock constraint
in the verifier formula in Uppaal, i.e., we only have to verify the reachability
or unreachability of any certain location(s). In the verifier of Uppaal, we have
the results as below:

1. E<>(Token1.S3 && Token2.R1) or (Token1.S1 && Token2.R3)

Property is not satisfied.

2. E<>(Token1.S1 or Token1.S3 or Token1.S4) && Token2.R2

Property is not satisfied.

3. E<>(Token1.S1 or Token1.S2 or Token1.S3) && Token2.R4

Property is not satisfied.

CHAPTER 5. CASE STUDY

Page 76 of 91 5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL

1S 1

S 2

S 3

S 4

M 1

M 2

M 3

M 4

R 2

R 3

R 4

1
R 1

1
Buffer

SP0

RA0

SP1

RA1

RSP0

RSP1

LP0

LA0

LP1

LA1

RJP0

RJP1

RLP0

AP0

RLP1

AP1

Figure 5.6: TAPN with Loose Time Constraints for Alternating Bit Protocol

Query 1, 2 and 3 verify the unreachability of the model. More precisely, Query
1 verifies the situation of Unsafety 1 (the Receiver sends the acknowledgement
while the Sender has not sent it yet) cannot happen. Query 2 and Query 3
verify the situation of Unsafety 2 (the Sender is sending the next bit of message
while the Receiver has not sent the acknowledgement yet) cannot happen. In
other words, the model implements alternating bit protocol.

It seems that we get a correct result as what we should have from the pro-
tocol. But the situation is when we add more tokens in Buffer, safety of the
model is not kept any more.

1. E<>(Token1.S3 && Token2.R1) or (Token1.S1 && Token2.R3)

Property is satisfied.

2. E<>(Token1.S1 or Token1.S3 or Token1.S4) && Token2.R2

Property is satisfied.

CHAPTER 5. CASE STUDY

5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL Page 77 of 91

3. E<>(Token1.S1 or Token1.S2 or Token1.S3) && Token2.R4

Property is satisfied.

With further study on it, we find that it is because both of the communication
between Sender and Buffer, and Receiver and Buffer are easy to be synchro-
nized. Whenever one of the tokens in Buffer is consumed by the synchroniza-
tion with Sender, there will still be another token with the right time constraint
available for the synchronization with Receiver. The problem is the token now
in the Receiver will be always ready to fire because of the loose time constraints.

In this case, we add some time constraints according to the general case of
the protocol. For each output arc of Buffer and each input arc of the Lose

transitions (i.e. LP0, LA0, LP1 and LA1), we add [0,∞], i.e., the intervals [0,∞]
are given for sending the numbered messages. For the arcs from S2 to RSP0 and
from S4 to RSP1, we add [5,∞]. For the other input arcs of a certain transition,
we keep the time constraints as what has been given to the transition itself in
the TPN model presented in [5]. Thus, we have a modified TAPN model ac-
cording to the alternating bit protocol itself. As illustrated in Figure 5.7, we
can see that it actually is a 3-conservative TAPN with degree 2 only. Similar to
that in Section 5.1, the time constraints are regarded as [0,∞] for those input
arcs of a transition where there is no intervals shown in the TAPN.

Based on the modified TAPN with general time constraints, we verify the au-
tomatically generated TAN in Uppaal and get the expected results, i.e., the
protocol keeps safety. Figure 5.8 illustrates one of the templates of the reduced
time automata.

1. E<>(Token1.S3 && Token2.R1) or (Token1.S1 && Token2.R3)

Property is not satisfied.

2. E<>(Token1.S1 or Token1.S3 or Token1.S4) && Token2.R2

Property is not satisfied.

3. E<>(Token1.S1 or Token1.S2 or Token1.S3) && Token2.R4

Property is not satisfied.

5.2.5 Experiments

With further experiments on the cases where there are more tokens in the place
Buffer, we get more copies of the same template models the buffer tokens in the
translating. We have different timing results on the cases, while the protocol
remains safe even with larger capacity of communication channels. The reduced
TAN has the same number of templates corresponding to the number of tokens
in TAPN model.

System Configuration:

CHAPTER 5. CASE STUDY

Page 78 of 91 5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL

Figure 5.7: Modified TAPN for Alternating Bit Protocol

Server 1 Server 2
Name Athlon 8 T4
CPU AMD Athlon (tm) 700MHz Pentium M 1.5GHz
RAM 392M 512M
OS Microsoft Windows 2000 Profes-

sional
Microsoft Windows XP Profes-
sional

Comparison of the time cost on different number of tokens:

CHAPTER 5. CASE STUDY

5.2. CASE STUDY II: ALTERNATING BIT PROTOCOL Page 79 of 91

Buffer

R1

R4

R3

R2

M4

M3

M2

M1

S4

S3

S2

S1
x>=0 && x<=1

RJP0?
x:=0

x>=0 && x<=1
RJP1?
x:=0

x>=0
RJP1!
x:=0

x>=0
RJP0!
x:=0

x>=0
AP1?
x:=0

x>=0 && x<=1
RLP1?
x:=0

x>=0
AP0?
x:=0

x>=0 && x<=2
AP1!
x:=0

x>=0
RLP1!
x:=0

x>=0 && x<=2
AP0!
x:=0

x>=0 && x<=1
RLP0?

x:=0

x>=0
RLP0!

x:=0

x>=0 && x<=1
RA1?

x:=0
x:=0

x:=0

x:=0

x:=0

x>=0
RSP1?
x:=0

x>=0
SP1?
x:=0

x>=0 && x<=1
RA0?

x:=0

x>=0

RSP0?
x:=0

x>=0
SP0?
x:=0

x>=5
RSP1!
x:=0

x>=5
RSP0!
x:=0

x>=0
RA1!
x:=0

x>=0
SP1!
x:=0

x>=0
RA0!
x:=0

x>=0
SP0!
x:=0

Figure 5.8: Template Token1 of the TAN for Alternating Bit Protocol

Total number of to-
kens

Time of checking verification property
(seconds)

Server 1 Server 2
5 <1 <1
6 2-3 1
7 14 11
8 76 74
9 690 616

10 >3600 >3600

According to the results from the table above, we can see that the time cost
increases rapidly. We presume that it is because of the rapid increase of the
synchronization channels and the explosion of the state space when a template
is added .

CHAPTER 5. CASE STUDY

6Conclusion and
Future Work

Model Checking is becoming more and more inevitable in designing real-time
systems because it is important to check the safety property of such systems.
It is no longer confined in verifying the hardware as the production of a correct
software is equally important.

As a modeling tool, Petri nets are popular as they have strong mathematical
and conceptual formalism developed over years. TAPN is one of the extensions
to these Petri nets with time features. Modeling in TAPN is a more meaningful
way to construct the real-time systems as the time features of TAPN can be ex-
tended to model the time features in the real-time systems. The time features
in TAPN concentrate on tokens rather than on transitions as in TPN. Thus for
some systems, TAPN provides a better way to model.

However, verification tool which is specified for TAPN model is not available to
the best of our knowledge. The unavailability of such a specific tool inspired us
to find a solution for the problem. As we can see there are two ways to solve this
problem, either to develop an independent TAPN verification tool or make uses
of existing verification tools by converting the TAPN as the input for such tools.

Since Uppaal, a matured verification tool for timed automata (TA), has been
developed for more than ten years and has an optimized high-level efficiency,
we choose the second way. We focus on using a reduction technique to translate
the input TAPN model into a TA and verify the property in Uppaal.

6.1 Our Contribution

During the thesis work, we studied several subclasses of TAPN and presented
formal reduction techniques for converting them from timed-arc Petri nets into
timed automata or timed automata network. Relationship between TAPN and
TA is built up during the course. The general idea is based on two points:

81

Page 82 of 91 6.2. FUTURE WORK

1. For all conservative TAPN of k degree where k is greater than 2, we reduce
the degree to k-1, until we get an equivalent net of degree 2;

2. For 1-conservative TAPN and 2-conservative TAPN, we reduce them di-
rectly into TA/TAN.

All the presented reductions preserve reachability. We have further implemented
these formal techniques in Java. First a DTD is designed for general TAPN
which we have used in the parser. And then our reduction algorithms are im-
plemented as a Java-XML parser which automatically translates the XML file
in TAPN format to the Uppaal compatible XML file. The parser includes both
the degree-reduction and the transformation to TA.

We outlined two case studies, Fischer’s protocol and alternating bit protocol.
Both of them are modeled as TAPNs first and then reduced to the TA/TAN
using the implemented parser. The newly generated network of TA are verified
in the Uppaal to check the reachability and safety properties of the protocols.
We have got correct answers while verifying the properties of these protocols as
expected.

Furthermore, from the results we got in the experiments, we notice that Up-

paal performs better than Roméo in verifying the properties of the model with
similar structures.

6.2 Future Work

The idea of reduction from TAPN to TA has been presented in our thesis for
some of the subclasses of TAPN, which are the k-conservative TAPN more pre-
cisely. However, we only brought one of the possibility of which we can verify
some certain properties of a k-conservative TAPN, and built up the relation-
ship between TAPN and TA. It would be interesting to extend the reduction
techniques formally to the whole subclass of bounded TAPN. And it would be
also interesting that to investigate whether our reductions can be adopted for
stronger equivalence notions (e.g. to preserve bisimulation).

In the parser so far we have been constructing the input XML file by hand, and
next step would be to have a proper and user-friendly GUI so that the input
XML files can be generated automatically by the tool. With that we can say
that we have a proper tool for verifying the TAPN which would be the first of
its kind.

CHAPTER 6. CONCLUSION AND FUTURE WORK

ATools and Howtos

A.1 Roméo

We use Roméo as an interface to construct the basic models of Petri nets. Below
are the steps we took to make this tool run on Windows:

1. Download the latest version of Roméo from here:
http://www.irccyn.ec-nantes.fr/irccyn/d/en/equipes/TempsReel

/logs/software-2-romeo&ver=version-2-2.4.2.

2. Extracted it.

3. Downloaded TCL from here:
http://www.activestate.com/Products/Download

/Register.plex?id=ActiveTcl.

4. Installed TCL.

5. Run romeo.tcl from the folder that was created in step 2.

A.2 Uppaal

The current official release is Uppaal 3.4.10 (May 11, 2005). And more informa-
tion and further download instructions and user guide are also available on the
homepage of Uppaal: http://www.uppaal.com. Below we cite the instructions
from the Uppaal homepage.

A.2.1 Installation Instructions

To download and install (or upgrade to) the current version of Uppaal:

1. Choose the version from the download area:
http://www.it.uu.se/research/group/darts/uppaal

/download.shtml#downloads.

83

Page 84 of 91 A.3. XMLSPY

2. Fill in the license agreement and press the Accept and Download button.

3. Download the zip-file containing the installation files.

4. Unzip the downloaded zip-file. This should created a number of files,
including: uppaal2k.jar, uppaal, and the directories bin-Linux, bin-
SunOS, bin-Win32, and demo. The bin-directories should all contain the
two files server(.exe) and verifyta(.exe) plus some additional files,
depending on the platform. The directory demo should contain some demo
files with suffixes .xml, and .q.

5. Make sure you have the Java version 1.4 (e.g. J2SE Java Runtime En-
vironment) or newer installed and properly configured on your system.
The Uppaal GUI will not run without Java installed. Java for SunOS,
Windows95/98/NT, and Linux can be downloaded from java.sun.com.

6. To run Uppaal on Linux or SunOS systems run the startup script named
uppaal2k (or uppaal in the beta 2). To run on Windows95/98/NT sys-
tems, just double-click the file uppaal2k.jar.

7. (Optional) Users can join the Uppaal mailing list. The mailing list is
intended for users of the tool. To join the list, email:
uppaal-subscribe@yahoogroups.com.

To post to the mailing list, email:
uppaal@yahoogroups.com.

More information is available on
http://groups.yahoo.com/group/uppaal/.

A.2.2 Java

Users can download Java 2 Platform Standard Edition 5.0 (J2SE 5.0) on
http://java.sun.com/j2se/1.5.0/download.jsp.

More user guide and other downloads are also available.

A.3 XMLSpy

Altova XMLSpyr 2005 is the industry standard XML development environ-
ment for modeling, editing, debugging, and transforming all XML technologies,
then automatically generating runtime code in multiple programming languages.
XMLSpyr 2005 is the ultimate productivity enhancer for J2EE, .NET, Eclipse,
and database developers that need the latest XML, Web services and database
technologies. More information and free trials could be found on:
http://www.altova.com/download_spy_enterprise.html.

APPENDIX A. TOOLS AND HOWTOS

BDTD

B.1 Analysis and Diagram

Figure B.1 illustrates the structure of the DTD we use in an input TAPN file,
using the GUI(Graphical User Interface) of Altova XMLSpyr 2005.

Figure B.1: DTD for the Input TAPN XML

85

Page 86 of 91 B.2. DTD CODE

B.2 DTD Code

1

2 <?xml version="1.0" encoding="UTF -8"?> <!--DTD generated by XMLSpy
3 v2005 rel. 3 U (http:// www.altova.com)-->
4

5 <!ELEMENT tapn (place+, token+, transition+, arc+)>
6

7

8 <!ELEMENT place (name , pid)>
9 <!ELEMENT name (# PCDATA)>

10 <!ELEMENT pid (# PCDATA)>
11

12 <!ELEMENT transition (id , label)>
13 <!ELEMENT id (# PCDATA)>
14 <!ELEMENT label (# PCDATA)>
15

16 <!ELEMENT token (id)>
17 <!ELEMENT id (# PCDATA)>
18

19 <!ELEMENT arc (source , target , type , lb , ub)>
20 <!ELEMENT source (# PCDATA)>
21 <!ELEMENT target (# PCDATA)>
22 <!ELEMENT type (# PCDATA)>
23 <!ELEMENT lb (# PCDATA)>
24 <!ELEMENT ub (# PCDATA)>

APPENDIX B. DTD

CCD Packages

C.1 Readme

C.2 Tools

• J2SE

• Uppaal

• Roméo

• TCL

• XMLSpy

• JDOM

C.3 Program Packages

• Howtos

• XML Parser

1. Reader

2. Writer

– Reducing Degree

– Translating into TA

87

Page 88 of 91 C.4. EXAMPLES

C.4 Examples

• XML files

• Graphics

APPENDIX C. CD PACKAGES

Bibliography

[1] [AD90] Rajeev Alur, David L. Dill. A Theory of Timed Automata. Theoret-
ical Computer Science 126:183-235, 1994. Preliminary versions appeared in
Automata, Languages, and Programming: Proceedings of the 17th ICALP,
LNCS 443, 1990, and Real Time: Theory in Practice, LNCS 600, 1991.

[2] [AL92a] M. Abadi and L. Lamport. An old-fashioned recipe Report Sys-
tems Research Center 91, Digital Equipment October 1992. To appear in
ACM Transactions on Programming Systems. An earlier version appeared
as [AL92b].

[3] [AL92b] M. Abadi and L. Lamport. An old-fashioned recipe for real time,
1992. In [7], pages 1-27.

[4] [AN01] Parosh Aziz Abdulla and Aletta Nyln. Timed Petri nets and BQOs.
In Proc. 22nd International Conference on application and theory of Petri
nets (ICATPN), volume 2075 of LNCS, pages 53-70, 2001.

[5] [BD91] Bernard Berthomieu and Michel Diaz, Member, IEEE. Modeling
and Verification of Time Dependent Systems Using Time Petri Nets. IEEE
Transactions On Software Engineering, vol. 17, no. 3, March 1991.

[6] [BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial
on Uppaal. In proceedings of the 4th International School on Formal Meth-
ods for the Design of Computer, Communication, and Software Systems
(SFM-RT’04). LNCS 3185.

[7] [BHRR92] J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozen-
berg, editors. Real-Time: Theory in Practice. Number 600 in Lecture Notes
in Computer Science. Springer-Verlag, 1992. Proceedings of the REX Work-
shop, Mook, The Netherlands, June 1991.

[8] [BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A Note
On Reliable Full-Duplex Transmission Over Half-Duplex Link. Commun.
ACM, vol. 12, no. 5, May 1969.

[9] [BT87] Eike Best and P. S. Thiagarajan. Some classes of Live and Save
Petri Nets. In K. Voss, H. J. Genrich, and G. Rozenberg, editors, Advances
in Petri Nets, pages 71-97. Springer-Verlag, 1987.

[10] [CDK00] George Coulouris, Jean Dollimore and Tim Kindberg. Distrib-
uted System: Concepts and Design, Third Edition (ISBN: 0-201-61918-0).
Addison-Wesley Publishers Limited 1984, 1988, and Pearson Education
Limited 2001.

89

Page 90 of 91 BIBLIOGRAPHY

[11] [CEP95] Allan Cheng, Javier Esparza, Jens Palsberg. Complexity Results
for 1-safe Nets. Theoretical Computer Science, 147(1-2):117-136, 1995.

[12] [CHEP71] Fred Commoner, Anatole W. Holt, S. Even, and Amir Pnueli.
Marked Directed Graphs. Journal of Computer and System Sciences, 5:511-
523, 1971.

[13] [CR04] Franck Cassez and Olivier-H. Roux. From Time Petri Nets to Timed
Automata. IRCCyN/CNRS UMR 6597, BP 92101, 1 rue de la Noë 44321
Nantes Cedex 3 France, c©Published by Elsevier Science B. V. 2004.

[14] [DOM] http://www.w3schools.com/dom/dom_intro.asp

[15] [ERA+00] D. de Frutos Escrig, V. Valero Ruiz, and O. Marroqúın Alonso.
Decidability of Properties of Timed-Arc Petri Nets.

[16] [Fi85] M. Fischer. Re: where are you? Electronic mail message from
Michael Fischer to Leslie Lamport. Arpanet message sent on June 25, 1985
18:56:29 EDT, number 8506252257.AA07636@yale-bulldog.yale.arpa
(47 lines), 1985.

[17] [GL04] Krishna Prasad Gundam and Vasu Hossaholal Lingegowda. Model
Checking Task Graph Scheduling with Timed Automata using Uppaal.
SSE3 paper, Department of Computer Science, Aalborg University, 2004.

[18] [GL73] Hartmann J. Genrich and Kurt Lautenbach. Synchronisations-
graphen. Acta Informatica, 2:143-161, 1973.

[19] [GRM97] Michel Goossens, Sebastian Rahtz and Frank Mittelbach. The
LATEX Graphics Companion. Addison-Wesley, Reading, Massachusetts,
1997, ISBN 0-201-85469-4.

[20] [Ha72] Michel Hack. The Recursive Equivalence of the Reachability Problem
and the Liveness Problem for Petri nets and Vector Addition System. In
Proc. 15th Annual Symposium on Switching and Automata Theory, pages
156-164, 1974.

[21] [HS03] K. Van Hee, N. Sidorova. Process Modelling and Analysis.
http://wwwis.win.tue.nl/2M320/slides2003.pdf, 2003.

[22] [JDOM] http://www.jdom.org/

[23] [JPXZ94] W. Janssen, M. Poel, Q. Xu, and J. Zwiers. Layering of real-time
distributed processes. To appear in the proceedings of the Third Interna-
tional School and Symposium on Formal Techniques in Real Time and Fault
Tolerant Systems, Lübeck, Germany, September 1994.

[24] [KRONOS] http://www-verimag.imag.fr/TEMPORISE/kronos/

[25] [Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions
on Computer Systems. 5(1):1-11, 1987.

[26] [Li76] Richard J. Lipton. The Reachability Problem Requires Exponential
Space. Technical Report 62, Yale University, 1976.

BIBLIOGRAPHY

BIBLIOGRAPHY Page 91 of 91

[27] [Mi89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989

[28] [NSS+00] Mogens Nielsen, Vladimiro Sassone, Jǐŕı Srba. Towards a Notion
of Distributed Time for Petri Nets.

[29] [OSJ05] Ragnhildur Óskarsdóttir, Sigmar Stefánsson and Tómas Jónasson.
On Deciding Behavioral Properties for Petri Nets: Timed-Arc Petri Nets
and their Extensions. Master’s thesis, Department of Computer Science,
Aalborg University, Denmark, May 2005.

[30] [Ou94] John K. Ousterhout. TCL and the TK Tool Kit. Addison-Wesley,
Reading, Massachusetts, 1994, ISBN 0-201-63337-X.

[31] [Pe81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
Prentice-Hall, Inc. 1981

[32] [Roméo] http://www.irccyn.ec-nantes.fr/irccyn/d/en/equipes
/TempsReel/logs/software-2-romeo

[33] [SAX] http://www.saxproject.org

[34] [SBM92] F. Schneider, B. Bloom, and K. Marzullo. Putting time into proof
outlines. In [7], pages 618-639, 1992.

[35] [Si97] Michael Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 1997, ISBN 7-111-10840-X.

[36] [Tina] http://www.laas.fr/tina/

[37] [Uppaal] http://www.uppaal.com

[38] [Ve94] Jan Joris Vereijken. Fischer’s Protocol in Timed Process Algebra.
Department of Computing Science, Eindhoven University of Technology.
August 18, 1994.

[39] [W3DTD] http://www.w3schools.com/dtd/default.asp

[40] [Wiki] http://en.wikipedia.org/wiki/Main_Page

[41] [WPD] Wang Yi, Paul Pettersson and Mats Daniels. Automatic Verification
of Real-Time Communicating Systems by Constraint-Solving. Department
of Computer Systems, Uppsala University, Box 325, S751 05, Uppsala,
Sweden. Email:{yi,paupet,matsd}@docs.uu.se

[42] [XMLSpy] http://www.altova.com/products_ide.html

BIBLIOGRAPHY

