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SYNOPSIS:

This report documents our work on engineering a
dynamic XML full-text index, usable for querying
structured XML documents with simple syntax. We
focus primarily on designing an index structure fea-
sible for incremental updates while also discussing
associated maintenance strategies for efficiently
migrating data from an in-memory index into disk
based B-trees. The proposed index structure is
designed as a series of cascading inverted indexes:
One index kept in main memory containing the
working set of documents, one incrementally built
disk based B-tree containing documents recently
ruled out of the former index, and finally one static
disk based B-tree containing documents that have
remained static in a period long time.

The efficiency of minimizing the amount of data
stored in the indexes is researched. We evaluate
on various compression schemes in the context of
compressing entire inverted lists vs. single postings.
In extension, we propose a customized variable byte
length encoding scheme for storing Dewey paths
efficiently.

We facilitate the concept ofmeet operator in
order to filter search results and return the most
relevant XML elements. We refine our previously
proposed algorithm for themeetoperator in order
to increase the relevance of result sets.

In conclusion we conduct empirical tests,
showing that the implemented system performs
reasonably within the intended environment.
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Summary

The amount of data stored on desktop computers is growing each day; therefore, the
capability of conveniently searching documents based on their content and getting
search results presented at a fine granularity is becoming more important to users.
Realizing this fact, many companies such asCopernic, Google, Apple, Microsoft, and
Yahoo!have put effort to develop full-text desktop search technologies, and recently
they have launched their respective desktop search applications.

To be able to search for every word occurring in the content ofeach file, afull-
text indexis needed. A full-text index is somewhat like a reference book, where the
location of most terms can be looked up. The concept of havinga full-text index is
taken from information retrieval systems, where applications are built in a client-server
environment. In such environments, disk space is not an urgent matter, and thus the
disk size of the inverted indexes is often sacrificed in favorof fast query evaluation.

This project focuses on the development of adynamic full-text search engine
targeted at desktop computers (and LANs), with particular emphasis on designing an
efficient index structure. Working with desktop computers introduces new challenges,
as compared to working with server applications which are capable of evaluating
millions of queries per second. Some of the most interestingchallenges when designing
the index structure are: (i) how to efficiently index new documents and how to
dynamically update the index to reflect changes on the indexed documents in the index,
(ii) how to organize and represent data in the index to reduceits size, and (iii) how to
efficiently query XML documents and present query results ata fine granularity.

The aforementioned questions have been addressed in our index structure design by
employing a range of techniques to optimize the overall performance of the frequently
updated index. One of the employed techniques isindex partitioning. This is
accomplished by having a cascade of three indexes, composedby an in-memory cached
index, a small dynamic index and a large static index, instead of a single database
index. Doing so, we are able to reflect updated files in-place and, at the same time,
avoid frequent full index reconstructions. In-place indexing means whenever new
documents are added or existing documents are modified/deleted they will be indexed
without re-building the entire index, thus providing up-to-date information access for
users. When the cached index becomes full, a batch of documents will be moved to
the dynamic index, and the dynamic index will occasionally be merged with the static
index. In addition to index partitioning, we also usecachingand a number of strategies
for moving data from the cached index to disk to optimize index updates.

Furthermore, we have utilizedDewey encodingandVariable Byte Length encoding
to encode postings, consisting of terms and their respective location, to be stored
in the underlying indexes. Additionally, other codecs likeRun Length Encoding,
Huffman coding, Rice, Lempel Ziv (LZ77), Burrows-Wheeler Transform and Unary
have also been experimented with and compared in order to keep disk requirements at

http://www.copernic.com/
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http://www.yahoo.com
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a minimum.
We have primarily focused on indexing XML documents and other hierarchically

structured data. In order to index non-structured data, a set of plugins that extracts
meta-data and generates valid XML documents have been implemented.

In this project we want to facilitatecontent-based searchon a collection of
XML documents witharbitrary schemas; i.e., when users formulate queries on XML
documents which contain potentially relevant information, they need not to know
about the mark-up structure that is used. To support this kind of search, we exploit
the hierarchical structure of XML and its inherent fine granularity, so that keyword
searches do not always return entire documents, but can return deeply nested XML
elements containing the desired keywords.

When presenting query results, a number of challenges arises: (i) how should
one result element be ranked over another, (ii) how should a union of two result sets
associated with different terms be ranked, and (iii) how should the resulting XML
elements be displayed (considering we allow arbitrary schemas), etc. To address these
challenges we usemeetoperator which was originally introduced by Schmidtet al..

In conlcussion, tests have been conducted to show the performance and the
functionalities of the system developed.
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Chapter 1

Introduction

Presenting data in both a human readable and machine interpretable way has been a
challenge for developers in decades. As a result of these researches, a wide range of
data formats has emerged. The root of most of these human and machine readable
formats is theStandard Generalized Markup Language(SGML) [1]. Being one
of the initial specified formats within its area, SGML was later outpaced by more
modern formats such asHyper-Text Markup Language(HTML) [ 2]. HTML is the
original format for exchanging displayable data on the World Wide Web and later has
become what common people often call the “Internet”. In the recent years, a new
format Extensible Markup Language (XML) [3] has emerged. XML is well suited for
storing/exchanging database data and other structured data normally used in business
applications. In comparison to HTML, XML offers the capability of keeping the
presentation part and the data part of a document separated,while HTML merges these
into one document.

Traditional database management systems (DBMS) generallyhave been the choice
for persistent storage of structured data. Moreover, traditional DBMSs provide efficient
mechanisms for modifying and retrieving data. However, they have a number of
drawbacks when it comes to exchange of data as compared to XML. First, the stored
data is tightly coupled with the database schemas and data type definitions, rendering
data exchange difficult. In XML, on the other hand, this information is self-contained,
and the presence of tags makes the documents self-documenting, i.e., a schema need
not be consulted to understand the meaning of the text. Second, data exported from
a DBMS is often in a proprietary format, whereas the XML format is based on an
international standard and is widely supported.

The increasing popularity of XML is partly due to the limitations of the other two
major technologies for representing structured and semi-structured documents. HTML
provides a fixed, predefined set of tags; these tags are mainlyfor presentation purposes
and do not bear useful semantics. SGML is an international standard for the definition
of device- and system-independent methods of representingtext in electronic form.
SGML differs from HTML in its emphasis on the semantics of document content
(with user-definable, self-describing mark-ups) rather than presentation. However,
the original SGML specification is too complex to be useful inmany commercial
applications [4].
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XML documents are textual documents both human and machine readable. An
XML document has a strict syntax, making parsing simple, andits hierarchical
structure makes it suitable for many types of documents. On the downside, the verbose
and redundant nature of the XML representation introduces an overhead which makes
XML unsuitable as a general storage scheme.

Originally, XML was designed to meet the challenges of large-scale electronic
publishing, but it is now also playing an important role in the exchange of a wide
variety of data (e.g., text, sound, images, etc.) on the Web. It is particularly useful as
a data format when one application needs to communicate withanother application, or
integrate information from external sources. Since its initial recommendation [5] was
published by theW3Cin 1998, XML has now become the de facto standard format for
web publishing and data transportation. This general acceptance can be attributed to
two of the XML’s core characteristics, namely flexibility and extensibility. Just as SQL
is the dominantlanguagefor querying relational data, XML is becoming the dominant
format for data exchange.

Furthermore, researchers in the field reckon that XML potentially will yield
(i) more precise search by providing additional information in the elements, (ii) a
better integrated search of documents from heterogeneous sources, (iii) a powerful
search paradigm using structural as well as content specifications, and (iv) data
and information exchange to share resources and to support cooperative search [6].
Interestingly, Microsoft has recently announced that theywill adopt the industry-
standard XML technology for the default file formats in the next version of Microsoft
Office editions (currently code-named Office 12) to “give customers improved data
interoperability and dramatically smaller file sizes.” [7].

The remainder of this chapter is organized as follows. In thenext section we
analyze the problem of developing a dynamic XML full-text search engine. In
Section1.2we formulate project objectives, and finally an outline of the report is given.

1.1 Problem Analysis

The widespread use of XML in digital libraries, product catalogues, scientific data
repositories and across the Web arises the need for efficientmanagement and retrieval
of XML documents. In order to obtain adequate performance, the XML data need to be
organized (indexed) in a way that facilitates efficient retrieval of the desired data from
large repositories of XML documents. Without indexes, the database may be forced
to conduct a full scan to locate the desired data records, which can be a lengthy and
inefficient process. In this project we focus on the development of adynamic full-text
search enginetargeted at desktop computers, with particular emphasis ondesigning an
efficient index structure.

1.1.1 Full-Text Indexing

At the core of most search engines lies afull-text index[8]. In short, a full-text index
is an index containing all words occurring in a collection ofdocument,e.g., the World
Wide Web, and a reference to each of these occurrences. A full-text index can be
compared to the index in a book; however, the latter is not full as the index does not

http://w3c.org/
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contain all words written in the book nor is each occurrence of a word referenced.
Signature files, forward index and inverted index are three well-known kinds of full-
text indexes; however, the underlying index structure for most XML search engines is
the inverted index [6, 9] and the technique of choice for most Web search engines [8].

1.1.2 Updating Full-Text Indexes

When operating in a dynamic environment, XML documents are subject to frequent
changes. In some applications, documents arrive at a high rate, and even within the
context of a single desktop machine, a naive update strategythat consumes lots of CPU
cycles and disk accesses would not be of value. Therefore, keeping inverted indexes
always up-to-date with the content of documents at the XML element’s granularity is a
challenge. When designing a dynamic full-text index structure, one must consider the
index update problem.

1.1.3 Encoding Data in Full-Text Indexes

Inverted indexes are generally large, ranging between 7% and 300% of the size of the
indexed document colloction, and often require several gigabyte of storage [10, 11],
thus the data stored in inverted indexes must be encoded intoa compact representation.
In this project, the problem of data encoding and decoding must be considered.

1.1.4 Content-Based Keyword Search

Having data stored in XML documents rather than records in a database requires new
approaches for querying. As a result many query systems, such as XQuery [12],
XRANK [ 13], XXL [ 14] and XQL [15] have been developed. However, like their
counterparts in the field of relational databases SQL, thesesystems are declarative
languages relying on data schemas, thus ana priori knowledge of the document
schemas is necessary in order to perform queries on the XML documents. While this
approach ensures accurate results, a search however is restricted to collections of XML
documents of the same schema.

Database schemas are used to constrain what and how information can be stored
in the database and to constrain the data types of the stored information. In constrast,
XML documents by default can be created without any associated schema, that is, an
element may have any number (or type) of subelement or attribute. Thedocument type
definition(DTD) is a schema mechanism, included as part of the XML standard [16].
The DTD, however, is only an optional part of an XML document.The main purpose
of a DTD is much like that of a schema: to constrain the information present in the
document. However, the DTD in fact does not constrain types in the sense of basic
types like integer or string. Instead, it constrains the appearance of subelements and
attributes within an element. Document schemas are not our concern as the intention
behind our XML search engine is to provide a schema-less querying facility that works
solely on the hierarchical structure. This means that we maydiscard all DTDs and
focus on the actual content of the XML documents when processing keyword searches.

Evaluating keyword search queries over hierarchical XML documents introduces
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new challenges. First, XML keyword search queries do not always return entire
documents, but may return deeply nested XML elements that contain the desired
keywords. Second, the nested structure of XML implies that the notion of ranking is
no longer at the granularity of a document, but at the granularity of an XML element.
Finally, the notion of keyword proximity is quite complex inthe hierarchical XML
data model [13]. Traditional database methods for searching datasets using full-text
indexes have been focusing on finding exact hits, whereas more recent systems (e.g.,
[13] and [14]) rely on the XML hierarchy in order to find collections of relevant data.

As web search techniques can be employed to handle collections of flat documents,
such as HTML, the assumption that they can be applied to a collection of XML
documents seems reasonable since the former type can be seenas a special case of
the latter. The hierarchical structure of XML documents, however, suggests finer
granularity for indexing and retrieval, thus indexing and retrieval could be done on
the basis of XML elements rather than documents. Searching the XML documents
by translating XML elements into HTML format is not a plausible solution since it
imposes a large computation overhead and leaves the processof displaying search
results rather difficult [13].

In this project we want to facilitatecontent-based keyword searchin a collection
of XML documents witharbitrary schemas;i.e., when users formulate queries on
XML documents which contain potentially relevant information, they need not to know
about the mark-up structure that is used. To support this kind of search, we exploit
the hierarchical structure of XML and its inherent fine granularity, so that keyword
searches do not always return entire documents, but can return deeply nested XML
elements containing the desired keywords. In the case of queries of a single term,
result extraction from the document collection is easy; however, ranking queries with
multiple terms introduces several challenges. These challenges are met in the system
to be devoloped by employing themeetoperator which was originally introduced by
Schmidtet al. [17, 18].

1.1.5 Retrospective

In our previously conducted work [19] within the field of XML full-text search engine
developement, we have experienced a range of critical issues to be addressed in this
project. The issues include optimization techniques, conceptual changes, and ideas for
extending the search engine. Through the development of a search engine, we will
address the following issues:

Optimizations. We want to experiment withtechniques for minimizing the storage
space requirementsof our databases by coupling related data originally spanning
multiple database records into single database records. More importantly, we
want to implement acaching functionalityto handle the problem of frequently
modified files. The caching mechanism should focus on keepingrecent files in
memory to avoid disk I/O. Accompanying this caching mechanism, we must
increase the use of the internal Berkeley DB cache, which is used for building
and maintaining disk-based B-trees.

Conceptual changes.We want to redesign the implementation with amodular
structure in mind. The modular design will make it possible to replace
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essential components without loosing functionality. While redesigning the
system architecture,multi-threadingcould be introduced in order to process files
without interferring the user sitting in front of the PC.

Extensions. The system to be developed is intented for use in desktop environments,
thus the need for integrating with third party applicationsarises. Instead of
writing a multitude of scripts interacting with, for instance, MS Office products,
we propose to integrate our system directly into the operating system. In
addition, we want to develop a plugin structure to allow third party developers to
develop file shredders for non-XML documents.

After having analyzed the problem area we are now in a position to formulate the
project objectives.

1.2 Project Objectives

Based on the research results conducted in the previous project, this project continues
the processs of developing adynamic full-text search engine, called KALCHAS 1,
targeted at desktop computers, with particular emphasis ondesigning an efficient
index structure. Furthermore, we want to build from scratcha dynamic full-text
search engine, facilitating content-based keyword searching in collections of XML
documents. In this context, the system to be developed should address the following
issues:

1. Architecture design. When designing the system architecture, the emphasis
should be put on high modularity and extensibility. Further, the system should
be made embeddable in other applications, accomplished by providing a simple
API to allow easy integation for third party applications.

2. Index structure. When designing a dynamic full-text index structure, the focus
should primarly be put on handling updates of indexed files inan efficient way.
Moreover, the system should be able to handle both frequently modified files as
well as static files.

3. Index compression.In order to minimize the data stored in the indexes, we want
to experiment with different compression schemes to find thebest candidate.

4. Keyword search. Our system is intended for searching in medium-sized
collections of XML documents residing on typical desktop PCs with arbitrary
schemas; that is, when users search for XML documents containing potentially
relevant information, they need not to know about the mark-up structure used.
To facilitate this kind of search and, moreover, to obtain results at the element
granularity offered by the structure of the XML format, we will utilize the meet
operator proposed by Schmidtet al. [17, 18].

In addition, we will reconsider and address the issues mentioned previously in
Section1.1.5.

1http://kalchas.dk/

http://kalchas.dk/
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1.3 Thesis Outline

The remainder of the report is organized as follows:

Preliminaries (Chapter2) provides the reader a basic technical insight of the problem
domain by introducing terminologies.

Dewey Encoding and Compression(Chapter 3) first introduces a method for
capturing the hierarchical structure of XML documents. Afterwards, we describe
the encoding scheme that is used and other codecs that have been experimented
with.

meet Operator (Chapter4) describes themeetoperator that will be used for content-
based keyword searches.

System Architecture (Chapter 5) describes the overall system architecture of
KALCHAS. Further, we describe how to embed KALCHAS in applications, and
we present two applications having embedded.

Index Structures (Chapter 6) describes the structures used for storing inverted
indexes and techniques used to maintain these.

Supported Operations (Chapter 7) describes the operations provided by the
KALCHAS API. Here, we explain in details how the operations have been
designed and implemented.

Tests and Evaluation (Chapter8) describes the tests of the system, especially its
performance. At the same time, we evaluate the tests of our system.

Conclusions (Chapter9) concludes the report and evaluates our work. Furthermore,
we will discuss topics to be investigated in the future work.



Chapter 2

Preliminaries

This chapter is intended to provide the reader with a basic technical insight into the
problem domain by presenting terminologies and, at the sametime, discuss some
of the previous work directly related to ours. First, we present the XML data
model (Section2.1). Second, we explain how a full-text index building processis
executed (Section2.2). Finally, we discuss how to efficiently store the inverted indexes
(Section2.3).

2.1 XML Data Model

An XML documentis a hierarchical structure consisting of nested elements which can
be assigned attributes and values. All the XML documents start with a single root
element that may contain any number of nested elements; however, elements cannot be
interleaved. In addition, elements may contain data and must be delimited by a start
and an end tag. Attributes, however, can only contain data;i.e., they cannot contain
elements nor have attributes. Child elements (or subelements) of a parent element are
ordered whereas its attributes are not ordered. For a formaldefinition of the XML data
model, the reader is referred to the XML specification [20] which describes precisely
the XML data model through the XML language grammar.

Listing 2.1 shows an example XML document representing a small collection of
scientific papers. The<bibliography> element is the root element, and it has
<paper>, <title>, <author>, and<year> subelements nested under it. In this
project we do not consider pointers pointing to internal/external XML elements and
external XML documents.

By convention an XML document is modeled as atree with a single root, where
each element is mapped into a node, thus called adocument tree. Textual content
is assumed to be only in the leaf nodes, and internal nodes represent the structural
relationships between elements. We formally define an XML document tree as follows:
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<bibliography>
<paper>

<title>The Anatomy of a Large−S ca le H y p e r t e x t u a l
Web Search Engine </title>
<author> Sergey Br in , Lawrence Page </author>
<year>2000 </year>

</paper>
. . .
<paper>

<title> B u i l d i n g a D i s t r i b u t e d F u l l−Text Index
f o r t h e Web </title>
<author> Sergey Melnik , S r i ram Raghavan ,
Beve r l y Yang , Hector Garc ia−Mol ina </author>
<year>2001 </year>

</paper>
</bibliography>

Listing 2.1 : A structured XML document

Definition 2.1 (XML Document Tree). An XML document can be represented as a rooted
treeT = (V, E, r) where

• V ≡ Vele ∪Vval is a set of nodes represented in the XML documents.Vval arevalue
nodescontaining actual data, andVele areelement nodes(or structural nodes),i.e.,
nodes containing nested nodes but no data.

• r ∈ V is theroot nodeof the document, and

• E ≡ {(vi, vj)|vi, vj ∈ V ∧ parent(vj) = vi}.

Figure 2.1 depicts the document tree of Listing2.1. Here, the nodes
<bibliography> and <paper> are the element nodes, whereas<title>,
<author>, and<year> are the value nodes. Throughout this report the terms
“element” and “node” will be used interchangeably.

<bibliography>

<paper>

<title> <author> <year>

<paper>

<title> <author> <year>

Figure 2.1 : Document tree of Listing2.1

The HTML data model can also be perceived as a special versionthe XML
data model: An HTML document is an XML document with only two value nodes
V ′

val = {head, body}, one element nodeV ′

ele = {xhtml} and two edgesE′ =
{(xhtml, head), (xhtml, body)}, and its document tree isT ′ = (V ′, E′, xhtml).

Furthermore, a collection of XML documents can be defined as follows:

Definition 2.2 (XML Collections). A collection of XML documents is a forest,i.e., an
unordered set of XML document trees.
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2.2 Building Full-Text Indexes

In the spirit of other search engines we choose to employ inverted index as the
underlying index structure for our XML search engine. Aninverted indexis a collection
of inverted lists, where each list is associated with a particular term. Aninverted
list for a given term is a collection of Unified Resource Identifiers (URI) [21] of
those documents that contain that term. If the position of a term occurrence in a
document is needed, each entry in the inverted list also contains a location offset.
Positional information of terms is needed for proximity queries and query result
ranking, and omitting this information in the inverted index imposes limitations [22].
An entry in an inverted list is also called aposting, and as a minimum it encodes
the(term,location) information wherelocation is a URI. We illustrate the
structure of an inverted index in Figure2.2, and the definition of these terms is shown
Definition 2.3 and is used seamless in this report. A survey on indexing of XML
documents can be found in [6].

Term Inverted list
term1 loc . . . , loc, loc
term2 loc, loc, . . . loc
...

...
termn−1 loc, loc, . . .
termn loc, loc, . . .

Figure 2.2 : Inverted index

Definition 2.3 (Terminology of inverted indexes). The following definitions will be used
throughout the remainder of this report:

Term is a single word defined as a sequence of alpha-numerical characters. In full-text
index almost all terms are subject to be indexed, except a setof trivial terms,e.g.,
“the”, “and”, “or”, “but”, etc. They are often referred to asstop words.

Location is used to describe the position of a specific term.

Posting is a pair(term,location) describing a single occurrence of a term.

Inverted list of a given term is a list of locations describing all the occurrences of that term.

Inverted index is a collection of inverted lists, where each list is associated with a
particular term.

Building an inverted index generally happens as follows. Given a collection of
XML documents to be indexed, the parser scans one document ata time in order to
strip all the metadata, such as XML tags, and extracts terms from the document to
produce a set of(term,location) postings. After that, the(term,location)
postings will be passed to the indexer which then inserts these postings into an inverted
index. This process is repeated until the entire collectionhas been indexed as illustrated
in Figure2.3.
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Parser
 Indexer


Postings

XML


documents


Inverted


index


Figure 2.3 : The process of building an inverted index

2.3 Persistent Storage

Inverted indexes are generally large, ranging between 7% and 300% of the size of the
indexed document collection, and often require several terabyte of storage [10, 11].
Due to the massive storage requirements, inverted indexes do not usually fit into main
memory, but are kept partly on secondary storage. Additionally, building an inverted
index is generally rather resource expensive in terms of CPUand disk usage. In this
section we discuss the storage scheme that has been employedto store the inverted
indexes.

When opting for a persistent storage system, one of two extremes can be taken;
either implementing a special purpose, custom made system or using an existing
database management system (DBMS). Using an existing DBMS has the advantage
of making it possible to leverage on high level query languages, well-established data
models, and advanced logical storage schemes; however, it has the downside of having
a large footprint in terms of resource usage. A running DBMS often consists of a
single process and multiple threads which are partly independent of the applications
accessing the DBMS. In order to handle queries expressed in high-level languages
(e.g., SQL), the DBMS applies advanced techniques such as query parsing and query
optimization. Custom implementations, on the other hand, can be tailored, making it
possible to apply very specific optimizations; however, this approach may increase the
overall complexity of the system as well as development time[23].

Somewhere in between existing DBMSs and specialized customimplementations
lie embedded databasessuch as Berkeley DB [24]. An embedded database is a library
that links directly into the application providing basic database functionalities, and as
a result both database and application run in the same address space, avoiding network
and inter-process communication [23].

Constructing databases for use in Berkeley DB requires low-level information of
the database store, since Berkeley DB does not employ schemas. Instead, it only
supports records consisting of(key,data) pairs, and compared to most database
systems only a few simple operations are offered, namely insert, delete, retrieve
and update. However, due to the nature of Berkeley DB, the fields in records can
contain any type of low-level data, such as C structs, makingit possible to store more
advanced data structures. Additionally, bothkey anddata fields can be of variable
length, rendering efficient use of secondary storage possible. As Berkeley DB does
not make use of schemas, it is unaware of the type and structure of data stored in
records; it simply recognizes keys and considers data fieldsas simple payload. As a
result, the stored data is tightly coupled with the application creating and accessing
it. Additionally, since Berkeley DB does not offer any interfaces to the end user,
all functionalities related to inserting, deleting and updating data on the logical level
must be implemented by an application programmer, making the database an obvious
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choice in scenarios where only a few specialized and predictable queries are needed,
e.g.simple key lookups.



Chapter 3

Dewey Encoding and
Compression

In order to represent the exact location of a term, we need to define a way of serializing
XML documents. Several approaches suiting this purpose already exists (see [6]).
One way of defining the location of a term is on a per-document basis, treating XML
documents as flat documents and disregarding the hierarchical structure of XML; this
method is often used in Web search engines such as Google [8]. Another approach
is to treat each XML document as a document tree as defined in Definition 2.1 on
page8. However, [6, 13] mention that the perception of XML documents being trees
is not entirely correct, since facilities such as XPath, XLink and XPointer introduce
graph-like scenarios.

In this project, we have chosen the latter approach and utilized a so-calledDewey
encodingwhich is a node ordering method used to serialize the hierarchical structure
of XML documents. Using this method we are able to specify locations in a flat format
without loosing structural information. Our use of Dewey encoding is described in
detail in Section3.1.

As a result of Dewey encoding, a set of Dewey paths is generated. Dewey paths
make up the largest part of inverted indexes; thus it is desirable to represent them
in a compact way. In addition to the reduced space utilization, using an efficient
compression scheme results in faster processing time when storing and retrieving
postings in the indexes [25]. Compression of Dewey paths is described in details in
Section3.2.

3.1 Dewey Encoding

Dewey encoding[26] is a node ordering method used to serialize the hierarchical
structure of XML documents. This is accomplished by encoding each node’s position
in an XML document as a data value; each node is assigned a vector representing the
Dewey pathfrom the document’s root to the node. We distinguish between“Dewey
number” being a single integer value assigned to a specific node, and “Dewey path”
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being a specific path from the document root to a given element.

We formally define Dewey paths as follows:

Definition 3.1 (Dewey Paths).Given a functionnid : V 7→ N to generate a Dewey number
for every node. For any nodev ∈ V , let path(v) = 〈nid(r), . . . , nid(v)〉 be the Dewey
path ofv, where〈r, . . . , v〉 is the sequence of nodes found on the unique path from the
document rootr to v.

In this project Dewey paths are used as URI to describelocation of the
(term,location) postings, wherelocation uniquely identifies the absolute
location of a specific XML element in whichterm occurs.

Figure3.1shows a document tree of the sample XML document (from Listing 2.1)
labelled with node position values, and Table3.1 enumerates all the Dewey paths of
leaf nodes in a flat representation form. Such a representation of Dewey paths is fairly
easy to store since each Dewey number is local to its parent, thus the Dewey number
values are normally quite small and need only few bytes to be represented. The use
of Dewey paths is crucial in our project; without Dewey pathswe would not be able
to translate the hierarchy of XML documents into a flat formatready for storing in a
database.

<bibliography>
1

<paper>
1

<title>
1

<author>
2

<year>
3

<paper>
2

<title>
1

<author>
2

<year>
3

Figure 3.1 : A labelled document tree of Listing2.1

Dewey path Corresponding leaf node
/1/1/1 <title>
/1/1/2 <author>
/1/1/3 <year>
/1/2/1 <title>
/1/2/2 <author>
/1/2/3 <year>

Table 3.1 : Dewey paths of the labelled document tree

There are two major schemes to assign Dewey numbers to nodes:global ordering
scheme and local ordering scheme. In theglobal ordering scheme, each element is
assigned a globally unique Dewey number (see Figure3.2). As opposed to this scheme,
in local ordering scheme, only siblings should have unique Dewey numbers, thus quite
a few elements could have the same Dewey number (see Figure3.1). The former
one has the drawback of requiring more storage space than thelater one, because
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in the global ordering scheme the value of assigned Dewey numbers may be very
large. For this reason we employ the local ordering scheme. Despite each individual
Dewey number assigned to the elements is non-unique, the calculated Dewey paths are
always unique,i.e., no two elements in the same document have the same Dewey path.
In addition, Zobelet al. [27] claim that using the local ordering scheme indirectly
improves the overall compression rate of succeeding compression codecs.

<bibliography>
1

<paper>
2

<title>
3

<author>
4

<year>
5

<paper>
6

<title>
7

<author>
8

<year>
9

Figure 3.2 : Document tree of Listing2.1using a Dewey global ordering

Computing Dewey paths according to the local ordering scheme is carried out as
follows. Since XML elements do not overlap, a stack structure can be used to keep
track of them and compute current Dewey path. Once an XML start tag is encountered,
the Dewey number stored in the top element is incremented by one and a new element
is pushed onto the stack. Once an XML end tag is encountered, the top element is
simply popped. At any given time, the Dewey numbers stored onthe stack represent
the Dewey path for the current XML element. When encountering a new start tag, a
new Dewey number must be pushed onto the stack. In our implementation, computing
Dewey paths is done at the same time as document shredding proceeds. For more
information about computing Dewey paths the reader is referred to Section7.2.1.1.

3.2 Compression

Once the Dewey paths are computed they are meant to be stored in either main memory
or on disk. In the first case, compression is not an issue sincewe only store small
amounts of data. However, the data stored on disk needs to be compressed efficiently
in order to save disk space and thus increase the overall performance of the system.

Looking at the integral values of Dewey numbers within Deweypaths, we observe
that the range of values decreases proportionally with the nesting level in the XML
documents. This means that a Dewey number associated with a deeply nested XML
element will be assigned a lower value than XML elements on higher nesting levels.
Observing Listing2.1, we see that (i) document ID of the XML document may range
very high value in accordance with the number of indexed documents in the collection,
(ii) a high number of<paper> nodes will result in high Dewey numbers, and (iii)
inside a<paper> element the number of children decreases. This behavior is caused
by the data-centric definition [28] of the XML file shown in Listing2.1.

Reflecting on this we see that Dewey paths are generally made up of few large
Dewey numbers and many small Dewey numbers. In order to compress these Dewey
paths efficiently we must then be able to handle both high and low integral values.
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The most time and space efficient way of doing so is by using a Variable Byte
Length (VBL) [25, 29] compression scheme; this has been tested and is described
in Section8.5on page77.

Compressing inverted indexes is a well-investigated field,covered by many
conference papers. However, most of the approaches described in [29, 30, 31] are
targeted at collections of flat documents. The codecs1 described in these papers
rely on the ability to sort locations in a monotonically increasing order, which is
straightforward since their locations are described usinga single integer value, but
not a sequence as in KALCHAS.

3.2.1 Variable Byte Length Codec

Our variant of aVariable Byte Length(VBL) codec is built on the idea of dividing a data
value into a minimum of bytes, such that a minimum number of bytes will be allocated
for representing a specific data value. Figure3.3illustrates that in our implementation,
for each byte, the first 6 bits are used to representdata value(indicated by D) and the
last 2 bits assignal bits(indicated by E and F). Here, E is used to indicate if the current
byte is the last byte used to serially encode a Dewey number, and F is used to indicate
if the current Dewey number is the ending entry of a Dewey path. The value ranges of
Dewey numbers mapped to the size in bytes is shown in Table3.2.

D D D D D D E F
1 2 3 4 5 6 7 8

Figure 3.3 : Byte format: the first 6 bits used to represent data values, the last 2 bits used
as signal fields

Min. value Max. value No. bytes needed
0 63 (26 − 1) 1 Byte

64 4.095 (212 − 1) 2 Bytes
4.096 262.143 (218 − 1) 3 Bytes

262.144 16.777.216 (224 − 1) 4 Bytes

Table 3.2 : VBL byte sizes

Example 1. Given a Dewey path/5000/700/63/ consisting of three Dewey
numbers, 6 bytes must be allocated to represent the Dewey path using VBL encoding,
because three bytes are needed to encode 5000, two bytes to encode 700, and one byte
to encode 63. Now we analyze the value of signal bits in the sixallocated bytes:

Byte 1–3. E is not set (i.e. 0) in the first and second bytes, but is set (i.e. 1) in the
third byte to indicate that the current byte is the last byte used to serially encode
Dewey number 5000. F is 0 in all of these bytes because 5000 is not the last
entry of the Dewey path.

Byte 4–5. E is 0 in byte 4, but 1 in byte 5. F is 0 in all of these bytes because 700 is
not the last entry of the Dewey path.

1A codec is a set of routines for compression and decompression.
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Byte 6. Both E and F is 1, because byte 6 is the last byte used to represent 63, and the
Dewey number 63 is also the last entry of the Dewey path.

The VBL codec is abyte wisecodec which encodes in an 8 bit aligned fashion,
making encoding and decoding optimized for standard CPUs. Other means of codecs
relies onbit wise encoding and decoding, resulting in better compression ratios and
longer execution times. The slow down of bit wise codecs is caused by missing
alignments, since standard CPUs read data in 8-bit aligned chunks (8 bits, 16 bits,
32 bits, etc.) [25].

3.2.1.1 VBL Encoding

Pseudocode for encoding one Dewey number using the VBL codecis given in
Figure3.4. Encoding whole Dewey paths is done by sequentially encoding each Dewey
number in the Dewey path and appending the data to the output data stream. The
parametern is the Dewey number to encode, andLastDeweyNumber is a Boolean
value indicating ifn is the final Dewey number in the Dewey path. Notice thatr is
the output data stream, and+ is an overloaded operator used to append data. The≫
operator is an ordinary right shift, and we access bits as vectors, i.e. referring to the 6
lower bits ofv is writtenv[1..6] and a single bit is referred to asv[i], i ∈ [1..8].

VBL-ENCODE(n, LastDeweyNumber)
1 r ← ∅
2 v ← n

3 while (v ≥ 26 − 1) do
4 r ← r + (v[1..6])
5 v ← v ≫ 6
6 if (LastDeweyNumber = true) then
7 v[8]← 1
8 v[7]← 1
9 r ← r + v

10 return r

Figure 3.4 : VBL encoding

3.2.1.2 VBL Decoding

Pseudocode for decoding one encoded Dewey number using the VBL decoding is given
in Figure3.5. Decoding of a whole Dewey path is done by sequentially decoding each
Dewey number in the Dewey path, and the VBL-DECODE function will report when
the end of a Dewey path has been reached.
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VBL-D ECODE(b, i)
1 r ← 0
2 s← 0
3 while (bi[7] 6= 1 AND bi[8] 6= 1) do
4 r ← r + (bi ≪ s)
5 s← s + 6
6 i← i + 1
7 r ← r + (bi ≪ s)
8 i← i + 1
9 return (r, bi[8] = 1)

Figure 3.5 : VBL decoding

3.2.2 Other Codecs

In addition to VBL, we will now introduce a set of compressionand decompression
schemes utilized in this project. In the tradition of other parts of the implementation,
we have included an external library, the Basic CompressionLibrary (BCL) [32],
implementing a number of common codecs, such asRun Length Encoding, Huffman,
Rice and Lempel Ziv. These codecs are all standard compression codecs. In
addition to the BCL, we have implemented two customized codecs: Burrows-Wheeler
Transform[33] codec, andUnary codec. All of the above codecs are lossless2 and
thus no information is lost in the process. In the following we will briefly discuss the
differences between the mentioned compression schemes:

Run Length Encoding (RLE). The RLE codec is a general purpose codec usede.g.
in JPEG compression. RLE encoding is done by reducing sequences of repeating
values into a single value and a number indicating the lengthof the original
sequence. RLE is efficient in cases where repeating sequences are long, this is
often the case in very deep XML documents where each XML node contains
very few children.

Huffman. The Huffman codec is one of the most common codecs and is more
advanced than RLE. The basic principle behind Huffman compression is to
perform a statistical analysis of the uncompressed data andthen represent
common values with a low amount of bits and not so common values with a
high amount of bits. In order to decode the compressed data the Huffman codec
stores a symbol tree, built by generating a histogram for alldata values in the
uncompressed data set. In the case of the BCL implementationof the Huffman
codec, the tree is at most 384 bytes in the compressed data. The size of the tree
is crucial for choosing when to use this codec,e.g.Huffman is not suited for data
less than 500 bytes.

Rice. The Rice codec is much similar to the Huffman codec and thus tries to fit as many
words into as few bits as possible. Unlike the Huffman codec the Rice codec
will not build an expensive histogram for each value, but instead try to encode

2http://en.wikipedia.org/wiki/Category:Lossless_compression_algorithms

http://en.wikipedia.org/wiki/Category:Lossless_compression_algorithms
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lower values with fewer bits and higher values with “enough”bits. This can be
seen as a static Huffman tree. In comparison to the Huffman codec the main
advantage of Rice is that Rice uses a static tree where Huffman builds a dynamic
tree (which is expensive to build in some cases). In relationto Dewey paths, and
the way KALCHAS generates them, the theory dictates that Rice would be well-
suited since most Dewey paths will have all Dewey numbers to be relatively low,
except for the document ID at the beginning of the Dewey path.

Lempel Ziv (LZ77). Along with the Huffman codec, the LZ77 codec is one of the
most used codecs. The implementation provided by BCL is based on the original
Lempel Ziv 1977 implementation. LZ77 is an extension to the very simple RLE
codec and thus seeks to replace sequences of repeating values with fewer bits.
In addition to the RLE codec, LZ77 references previous sequences of the same
repeating values and thus is able to compress better than RLEin some cases.

Burrows-Wheeler Transform (BWT). The BWT codec is also known as a “block
sorting algorithm”. BWT works by performing a number of arithmetic
operations leaving data in a more structured order. Encoding of data is done
by first writing down all possible permutations and subsequently sorting the
permutations lexically. This results in a matrix where the right most column
comprises the final BWT code. Decoding is done by iterativelyinserting the
encoded data as the left most column of the matrix while sorting. After the final
iteration the decoded data is located at the column startingand ending with the
allocated delimiter symbol. As can be read from above this algorithm improves
the overall compression ratio, however it also introduces anoticeable penalty in
terms of execution time.

Unary. Unary coding is a way of representing non negative integralsby their ordinal
values,i.e. the number4 is represented as1111. Representing values by their
unary coding makes it easier for succeeding codecs to compress the data since
the codes are highly redundant. A drawback of the unary coding is that high
values consumes large amounts of storage,i.e. 232 is represented by232 bits
amounting to a total536.870.912 bytes while the same value easily could be
represented by a 32 bit integer consuming a mere 4 bytes of memory.

The API documentation of BCL suggests to try out variations of sequential
compression,e.g. first encode using RLE, then LZ77 and finally Huffman. In
Section8.5 on page77 we will test and evaluate which of the above codecs, and
sequences of codecs should be used in KALCHAS for optimal performance. An
important fact about the above codecs is that they are all efficient at decoding which is
crucial for the query performance [29, 30].

3.3 Summary

Dewey encoding is a generic way of serializing hierarchically structured data. We
consider two types of Dewey encoding, namely the global ordering and the local
ordering. The latter has been chosen in order to reduce the integral values of the
generated Dewey numbers, and thus increasing the performance of the subsequent
compression.
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Compression of Dewey numbers is divided in to two special cases, namely the
case of single postings (as seen in DI) and the case of compressing lists of postings
(as seen in SI). Compressing single postings needs specially designed algorithms for
encoding and decoding (such as the customized VBL codec) while lists of postings hold
more data, which make it feasible to apply more generic compression schemes, such
as Huffman, LZ77, and RLE. Test and evaluation of the aforementioned compression
schemes are shown in Section8.5on page77.



Chapter 4

Meet Operator

This chapter will define the concept of “meet” (Section4.1) and provide algorithms for
meet computation (Sections4.2–4.3).

4.1 Definitions

Having the basic concepts of the XML data model (Section2.1) and Dewey paths
(Section3.1) defined, we are now in a position to introduce themeetoperator, which
is the underlying algorithm of our keyword search processing. The idea of themeet
operator was originally introduced by Schmidtet al. [17, 18]. Basically, themeet
operator is a graph function that operates on a set of Dewey paths to compute the most
“interesting” node containing specific search terms (keywords). Working with XML
elements represented as nodes in the XML document tree, we want to rank specific
nodes by their relevance. Given a non-empty set of nodes, themost interesting node
in the set is the node shared by the majority of nodes in the set. Having paths in the
document trees defined using Dewey paths we see that finding the union of Dewey
paths is a special case of the more general problem of computing “longest common
prefixes”.

Before defining the concept of “meet” we now define the conceptof “longest
common prefixes”.

Definition 4.1 (Longest Common Prefixes).Given two Dewey pathsp = [d0, . . . , dn]
andp′ = [d′

0, . . . , d
′

m], the prefix functionlcp computes thelongest common prefixof p, p′

as follows:

lcp(p, p′) = [d0, . . . , dl],

wherel = max{i|(d0 = d′

0) ∧ (d1 = d′

1) ∧ . . . ∧ (di = d′

i), 0 ≤ i ≤ min(n, m)}.

Based on the above definition, the concept of “meet” is definedas follows:
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Definition 4.2 (The Concept of “Meet”). Given two Dewey pathsp = path(v) andp′ =
path(v′), v, v′ ∈ V , themeetof p, p′ is the longest common prefix ofp, p′; that is,

meet(p, p′) = lcp(path(v), path(v′)).

As can be seen from Definition4.2, themeetoperator computes thelongest common
prefix between two Dewey paths. Translating this problem into the domain of XML
document trees, we find that themeetoperator calculates thelowest common ancestor.

Ranking in themeetoperator is executed on the theory that a deeply nested node
containing many search terms is more important than a deeplynested node containing
few search terms. This idea of ranking using the concept of the “lowest common
ancestor” is also conducted in XRANK [13]. However, most traditional indexes
provide ranking by means of global statistics for the index (i.e. IDF). In fact, Melnik
et al. [10] argue that it is a necessity in any modern inverted index. Our tests, and the
following example, demonstrate that ranking based on the functionality of themeet
operator and the structural hierarchy of the XML documents suffices and provides
accurate results.

Example 2. We search for the terms “Engine” and “Sergey” in an inverted index of
the document shown in Listing2.1. Initially, the index will return exact match on
all search terms as postings,i.e. <Engine,/0/0/0> and<Sergey,/0/0/1>.
Computing thelongest common prefixof Dewey paths/0/0/0 and/0/0/1 we get
/0/0. Therefore, the returned result is the<article> element (left sub-tree), since
<article> is associated with the Dewey path/0/0 and<article> is the deepest
node in the document tree that contains both search terms. Here, the<article>
element is said to be thelowest common ancestor.

Note that the/ character is only used to separate the Dewey numbers from each
other when they need to be displayed. Internally, in the implementation Dewey paths
are represented as a vector ofunsigned integers. While defining themeetterminologies
above we implicitly introduced what this project defines as results from ourmeet
operator.

4.2 Naïve Algorithm

Meets are computed by means of themeet operator. Finding meets using the
meetoperator actually amounts to finding the longest common prefixes of the input
Dewey paths set, as stated previously. The problem of findinglongest common
prefixes [34, 35] is a general class of problem, thus having numerous ways of
solving. In the DAT5 project, we have evaluated three different implementations of the
meetoperator (based on the naïve algorithm, graph-based algorithm, and line-based
algorithm) [19, Chapter 3]. Previous tests have additionally shown that the line-based
(now called “scan-based”) algorithm is the most efficient one. To introduce the reader
to the implementation of themeetoperator we have included both the Naïve Algorithm
and the optimized Scan-Based Algorithm.

One way to implement themeetoperator is to compute “all” meets of an input set of
Dewey paths, select and output only the most important nodes. The pseudocode of this
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algorithm is shown in Definition4.3. MEET-TWO takes as input two Dewey pathsp, p′

and outputs the longest common prefix ofp, p′ as defined in Definition4.1on page20.
MEET-SET takes as input a set of Dewey pathsP , builds all possible combinations of
meets using MEET-TWO and outputs them. If the number of input Dewey paths isn,
the number of meets returned isn2.

Definition 4.3 (Initial meet algorithm). Given two Dewey pathspi andpj we define the
meetbetween them as follows:

• MEET-TWO(pi, pj) = lcp(pi, pj)

Given a set of Dewey pathsP we define themeetof the set as follows:

• MEET-SET(P ) = {M EET-TWO(pi, pj)|pi, pj ∈ P}

Given a set of Dewey pathsP and a constantk we define themeetof P with relevancek as
follows:

• MEET-K(P,k) = {p|(p ∈ MEET-SET(P ) ∧ length[p] > k}

To prevent the document ID of XML documents to be returned as actual meets, we
have implemented the MEET-K procedure to only return meets whose depth is greater
thank. Selecting which “meets” should be returned in the output set is done by a simple
selection rulelength[p] > k. Due to the encoding format of Dewey paths described in
Section3.1and Section7.2.1.2we definek = 1.

The time complexity of MEET-TWO is O(l) wherel = min(length[p], length[p′])
since comparing two Dewey pathsp, p′ takes linear time. Computation of MEET-SET

takesO(hn2) because each Dewey path of the input set must be compared witheach
other, hencen2, andh = max{length[p]|p ∈ P} is the generic upper bound on all
individual path comparisons.

This approach is rather naïve and not suitable for practicalpurposes since its time
complexity is quadratic and its memory usage is linear in thesize of the input. To
compute meets, all nodes inP need to be loaded into main memory and compared
with each other to find all meets, thus resulting in a huge amount of duplicates in the
result set and rendering performance penalty. In addition to the inefficient memory
utilization, no ranking is performed on the result set.

4.3 Scan-Based Algorithm

To eliminate the shortages of the algorithm presented above, we introduce another
algorithm that is able to perform ranking and, at the same time, compute meets.
However, before presenting the scan-based algorithm we need to discuss the problem
of ranking.

4.3.1 Ranking Search Results

After being computed, the query result set must be ranked anddisplayed in a way that
is relevant to users. Ranking is not within the scope of this project, however, we will
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now try to outline some of the general ideas of ranking. When displaying the result set
we want: (i) all hits in the result set must berelevantto the query at hand, and (ii) the
search result must be displayed in an understandable and user-friendly way [36]. To
meet these requirements we opted to rank XML elements of the result set according to
the principle shown in Definition4.4.

Definition 4.4 (Ranking principles). The ranking functionality embodied by themeet
operator complies with the following rules:

Specific nodes first.Rank deepest nodes in document higher than nodes higher up inthe
document tree since in most cases they are more specific.

Short distance first. Rank XML elements by the node proximity (i.e., thedistancein the
document).

The concept of “proximity” of keywords is defined in Definition 4.5.

Definition 4.5 (Node Proximity). Proximity of two nodesprox(v, v′) in the tree is defined
as the length of the path between the nodes through their lowest common ancestorc:

prox(v, v′) = (length[v]− length[c]) + (length[v′]− length[c]),

wherelength[vi] returns the number of edges found on the path from the rootr to nodevi.

For more advanced ranking the reader is referred to [8, 13]. In the extreme case
we would have to implement a static rank analyzer, as proposed in the XRANK
system [13].

4.3.2 Scan-Based Meet Algorithm

Since the submission of [19] the need for a better implementation of themeetoperator
has shown. In result of this we have fine-tuned the ranking mechanism, which
calculated real time, for better query results. The new algorithm is shown in Figure4.1.
MEET-SCAN takes as input a set of postings ordered by Dewey paths (cf. Figure7.7).
The algorithm visits each posting exactly once, comparing two Dewey paths with each
other to compute the current meet and outputting whenever one of the following rules
is satisfied:

Rule 1: Output the current meet if the Dewey path loaded from the input set originates
from another document.

Rule 2: Output the current meet if the meet betweenp andp′ has a depth shorter than
k. This happens when two nodes have nothing else in common thanthe root and
the document ID.

Rule 3: To provide basic ranking we calculate how many entities fromthe input set
are intersected by the current meet (v), this is done by increasing thehitcounter
component ofv. If the term of the newly loaded Dewey path is not already
contained inv we increase thehitcounter by 10 otherwise we increase by1.
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MEET-SCAN(P )
1 R← ∅
2 v ← P.PeekTop()
3 while (P 6= ∅) do
4 u← P.PopTop()
5 d← prox(U,V )
6 v ← lcp(U, V )
7 Rule 1:
8 if (d = −∞) then
9 R← R ∧ {v}

10 v ← u

11 Rule 2:
12 if (d < k) then
13 R← R ∪ {v}
14 v ← u

15 Rule 3:
16 if (d ≥ k) then
17 if (vterm ∩ uterm = ∅) then
18 vterm ← vterm ∪ uterm

19 vrank ← vrank + 10
20 if (vterm ∩ uterm 6= ∅) then
21 vrank ← vrank + 1
22 Rule 4:
23 if (vrank ≥ 10) then
24 R← R ∪ {v}
25 v ← u

26 return R

Figure 4.1 : Scan-basedmeetalgorithm
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This is done to rank nodes that contain many terms higher thannodes containing
few terms.

Rule 4: When we have a sufficient amount of elements of the current meet (v) we
output it and promoteu to our new working meet.

Figure 4.1 shows the pseudocode for the revised implementation of themeet
operator. The algorithm works by iterating through the sorted input setP until reaching
the end (lines 3–25). During each iteration, the next posting is read (u) and a temporary
meet(v) is calculated. Whenever one of the rules applies to the temporarymeet(v), v is
added to the result setR. After addingv to the result set, we copy the value ofu into v
and the iteration continues. By computingmeetin this way, we incrementally identify
relevant elements, by traversing from the most specific elements (those returned by
the inverted index) up to more generally elements (containing multiple occurrences
of terms). Source code for theMEET-SCAN meetoperator is given in ListingA.3 on
page94.

The time complexity of MEET-SCAN is O(n) wheren is the number of elements
in the input set.

4.4 Summary

Themeetoperator is a graph function intended for finding the “most relevant” nodes
within a given set of Dewey paths. In theory, it works by calculating the lowest
common ancestor. In the context of XML, the lowest common ancestor between two
XML elements is promoted as being more relevant than the two XML elements alone.
Computing themeetis done using our proposed MEET-SCAN algorithm. In addition
to finding the lowest common ancestors of a set of XML elements, ranking the search
results according to the computed relevance with respect tothe user-specified query
has also been incorporated in themeetoperator.



Chapter 5

System Architecture

This chapter primarily focuses on the design principles behind the KALCHAS

architecture. First, we describe the overall system architecture of KALCHAS

(Section 5.1). Second, we describe how to embed KALCHAS in applications
(Section 5.2), and we describe two applications having KALCHAS embedded
(Section5.3). Finally, we describe how developers can create plugins toenable
KALCHAS to support specific file formats (Section5.4).

5.1 KALCHAS Architecture

The design of the KALCHAS architecture has laid stress on high modularity and
extensibility. This has resulted in a layered system designas shown in Figure5.1. This
shows that the system is divided into three layers, each layer unaware of the layer on
top of it. The layering is reflected directly in the source code as individual namespaces.

Kalchas


Console


Kalchas


Explorer

Web


Interface

Other


Plugins
 KALCHAS Kernel


System Libraries: Expat, Berkeley DB, Boost,


MS Windows API, CommonC++, etc.


Application


Layer


Kernel


Layer


OS


Layer


Figure 5.1 : The KALCHAS architecture

Starting from the bottom we find the Operating System Layer. In this layer,
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all system libraries are contained, includingMicrosoft Windows API, Expat [37],
Berkeley DB[38], Boost C++ libraries[39], andGNU CommonC++[40] which are
used directly in the KALCHAS kernel.

In the middle is the Kernel Layer containing the main KALCHAS kernel and
auxiliary plugins. The KALCHAS kernel is the KALCHAS core system itself
that can be embedded in external applications (see Section5.2). The auxiliary
plugins are introduced to allow third party developers to add their own file format
handlers/shredders to the KALCHAS system (see Section5.4). The implementation of
the middle layer is separated into two namespaces, namelykalchas_kernel and
kalchas_plugins.

At the top of the layered architecture is the Application Layer. In this layer we
have all applications that embed the KALCHAS kernel. Examples of such applications
are Kalchas Console, the web-based PHP interface, and Kalchas Explorer. In the
implementation all the functionalities provided by KALCHAS to external applications
are wrapped in thekalchas_api namespace.

Developing the KALCHAS kernel has taken place in object-oriented C++, with no
strict coupling to the object-oriented analysis and design. We have utilized the object-
oriented aspect of C++ to group functions and data structures by functionality rather
than simulating real-life phenomena. This has been done by organizing classes in
namespaces.

Building the system as modular as possible allows easy adjustments for new
techniques without tampering with the functionality of therest of the code. To do
that we have additionally designed a set of generic interfaces (virtual abstract classes)
to be implemented.

5.2 Embedding KALCHAS

The KALCHAS kernel has been designed and compiled as a dynamic link library
kalchas.dll to allow an easy application integration. Thekalchas.dll library
file provides an API (as shown in Table5.1) for third party application developers at
the Application Layer level. For a detailed description of each function in the API, the
interested reader is referred to Chapter7 and/or the KALCHAS API Documentation in
http://kalchas.dk/.

To demonstrate the ease of embedding KALCHAS into third party applications,
a code example is given in AppendixA.1 on page91. This code example
illustrates how to (i) import KALCHAS into the application, (ii) add the file
bibliography.xml, and (iii) execute a query for the terms “Engine” and “Sergey”.
Thebibliography.xml file in the example is the same file shown in Listing2.1,
and the query result after being processed by themeetoperator is as explained in
Example2 on page21.

Since the file is a standard XML document, the internal XML shredder will be used
to produce the formatted query result as shown in Listing5.1. The listing illustrates that
meta information to the query results is added. Each individual result is packed into
a <kalchas_result> XML element. Within this element are the generated meta
information, including the<filename>, <keywords> and<value> tag. The

http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_start_page.asp
http://expat.sourceforge.net
http://www.sleepycat.com/products/db.shtml
http://www.boost.org/
http://cplusplus.sourceforge.net/
http://kalchas.dk/
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Functions Description

AddFile Add a file to the index.
DeleteFile Delete a file from the index and make sure that any future

queries will not return results in the given file until it is
added again.

UpdateFile Notify the index that a certain file is updated. If the file
has not changed on disk the file is not re-indexed.

QueryRetrieve Query the index for a sequence of search terms and
return a list results in XML format.

ForceCronjob Allow K ALCHAS to perform maintenance jobs, such as
index merges, index clean up, etc. This function should
in general not be used, as KALCHAS is equipped with
a mechanism to automatically detect when maintenance
should be executed.

ErrorCodeToString Translate one of the defined eKalchasErrorCode enu-
meration values into human readable text.

Table 5.1 : KALCHAS API

<kalchas_result>
<filename> b i b l i o g r a p h y . xml </filename>
<keywords>Engine Sergey </keywords>
<value>

<paper id="1">
<title>The Anatomy of a Large−S ca le H y p e r t e x t u a l
Web Search Engine </title>
<author>Sergey Br in , Lawrence Page </author>
<year>2000 </year>

</paper>
</value>

</kalchas_result>

Listing 5.1 : Portion of the original XML

content of the<value> tag in this case is generated by the internal XML shredder,
and as such is a verbatim copy of the original XML element returned by themeet
operator1.

5.3 Applications Using KALCHAS

In this project, a set of applications embedding the KALCHAS kernel has been
implemented,e.g. Kalchas Console and Kalchas Explorer. These applications
demonstrate the majority of the functionality presented bythe API. The most
significant application is Kalchas Explorer which is a state-of-the-art desktop search
engine comparable to prominent systems such as Copernic Desktop Search [41],
Google Desktop [42], Apple Spotlight [43], MSN Search Toolbar [44], and Yahoo!

1External plugins for other file formats may choose to return other kinds of data in the value field
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Desktop Search [45].

5.3.1 Kalchas Console

A simple example of employing KALCHAS is the Kalchas Console (see Figure5.2).
This is a small text-based query application that serves as atool to get immediate
access in order to test KALCHAS’ functionality.

Figure 5.2 : Kalchas Console screenshot

5.3.2 Kalchas Explorer

In addition, another application is also provided to demonstrate an advanced scenario
of employing KALCHAS. Kalchas Explorer is our desktop search engine for Microsoft
Windows with real-time dynamic updates. This application facilitates all of the
functionality provided by KALCHAS. If using the default search mechanism that is
shipped with Microsoft Windows, one is often presented withinaccurate results and
long search time. This is due to the lack of proper index management. Whenever one
starts a new search for a given query, the MS Windows desktop search will traverse
the whole file system while opening all files to test for relevance according to the
query. Instead, using the KALCHAS kernel we have been able to build a system that
manages to execute searches in reasonable time while providing accurate results ranked
by relevance. Figure5.3 shows a screenshot of Kalchas Explorer running for the first
time.

The structure of Kalchas Explorer is shown in Figure5.5, and each of the
components shown in the figure is described below:

Kalchas Explorer: Once the system is installed the program Kalchas Explorer will
have its own folder in the Start Menu and additionally start every time Windows
is booted.

XML Explorer: We have placed a small query field within the graphical user
interface. Once a query has been processed, the query resultwill be shown in a
new window — the Kalchas Explorer XML (see Figure5.6)

Disk Crawler: Disk Crawler is used to traverse the entire file system while indexing
all known file formats. This function is intended to be executed at install time.

File System Integration: After the disk has been crawled using Disk Crawler, all new
or added files will be indexed automatically. This is done by peeking Windows
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Figure 5.3 : Kalchas Explorer screenshot

Figure 5.4 : Kalchas Web Interface screenshot
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Figure 5.5 : Kalchas Explorer structure

Figure 5.6 : XML Explorer screenshot
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Shell Notifications. These notifications are sent out whenever a file has been
added to the file system, deleted from the file system, moved from the file system,
etc.

Server Daemon: In order to enable other applications to use the index generated by
the Kalchas Explorer we have implemented a tiny TCP/IP server daemon using a
home made textual protocol. The daemon is started on port 9999 every on every
start up.

Web Interface: If the destination desktop system has a web server installed(such as
Apache with PHP), one is able to install the provided web interface for querying
the index. This web interface provides a cleaner and more intuitive way of
browsing results of a query. The server-side PHP script is communicating with
the server daemon in order to query for results. Figure5.4 shows how the web
interface is designed.

Other Applications: Using the textual protocol to communicate with the server
daemon, external developers are able to interact with the Kalchas Explorer. This
could be used to build advanced search mechanism such as Google Desktop
which combines online web search with desktop search available e.g. from a
web browser.

5.4 Extending KALCHAS

The basic functionality of KALCHAS is to implement a dynamic XML search
index. Additionally, one may also want to index other files, especially in cases like
Kalchas Explorer. In order to support as many file formats as possible in KALCHAS,
we have developed a plugin framework, in which any third party developer is allowed
to create shredders for any known file formats. Internal to KALCHAS is the XML
shredder that handles all files identified. The data output from the XML shredder are
tokens based on the actual text found in the document. However, other file formats
may contain no indexable content and thus need to have meta data generated,e.g.,
JPEG or MP3 files mainly consist of binary data unsuitable forindexing. Support for
such files should be implemented as KALCHAS file support plugins. The idea of using
external plugins, and thus allowing third party developersto extend the functionality
of the search engine, is a fairly new turn in desktop search engine development and has
only been officially announced in Apple Spotlight [43] (and KALCHAS).

5.4.1 File Support Interface

All file support plugins written for KALCHAS must implement the predefined
cKalchasFileSupport interface located in thekalchas_plugin namespace.
The interface is virtual and abstract and thus all functionslisted must be implemented
by the plugin developer. A description of the interface can be seen in Table5.2 and a
technical description can be found in the code documentation.

An example file plugin is shown in ListingA.2. The example uses all the functions
mentioned in the interface shown in Table5.2. In order to use the code, it should be
compiled using Microsoft Visual Studio C++ with an appropriate work space. The
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Functions Description

Initialize Initialize the processing of a given file.
Process Start processing the initialized file. Postings should

be buffered and be available untilDeinitialize
is called.

GetNext Once the call toProcess is done KALCHAS will
iterate through the postings by calling this function
and retrieve postings one by one.

Deinitialize Release any resources allocated since the call to
Initialize.

GetNumExtensions Return the number of file format extensions
supported by this plugin.

GetExtension Retrieve a textual representation of the supported
file format.

RetrieveXML Retrieve the XML associated with a given input
Dewey path. This function is called whenever a
query return hits within a file format supported by
an external plugin.

DestroyInstance Release any resources allocated by the plugin. This
is called once in the shut down phase of KALCHAS.

Table 5.2 : Kalchas File Support Interface

outputPLUGIN_PGP.DLL should be placed in the same folder as the KALCHAS

DLLs. When KALCHAS kernel invoked, it will scan the folder for any files matching
thePLUGIN_*.DLL pattern and attempt to load them. For each plugin, KALCHAS

will query the plugin for its supported extensions and keep track of those using a string
map. If two plugins,a andb, are supporting the same file format/formats anda was
loaded beforeb only the latter will be used for shredding. Using these plugins, a third
party developer is able to rewrite our internal XML shredder, which uses Standard
Template Library (STL) [46] and Expat [37], to something that may suit his purpose
better than our general purpose shredder.

5.4.2 Example Extensions

To provide example on how to extend the file support in KALCHAS we have developed
the following plugins:

Plain text The pluginPLUGIN_TXT.DLL is developed to be able to index simple
plain text formats (.txt files). In order to index the tokens correctly, the plugin
introduces meta data. This meta data is seen by the location of the postings
outputted by the plain text plugin. All locations in the output postings are/42/1
token where42 is the document ID from KALCHAS.

Source codeOur plugin to handle C/C++ source code, C/C++ header files, PHP files,
C# files is located in thePLUGIN_SRC.DLL plugin. Normally source code files
would be indexed as plain text files, however our example plugin shows how to
index source code files down to semantic structures. This finegranularity is
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implemented by shredding the source code as XML files with{-signs indicating
an XML start tag (<tag>) and}-signs indicating XML end tags. Searching
for keywords within source code results in structural chunkof code, i.e., if a
search query returns hits within a given function the whole function source code
is shown in the output.

Audio. Audio files, MP3 only, are indexed using their ID3v2 tags and generated meta
data in thePLUGIN_MP3.DLL. The content of the ID3v2 tags is basically
indexed as plain text and on top of that we extract meta data about the audio file
(i.e., stereo/mono, bit rate, etc).



Chapter 6

Index Structures

This chapter describes the structures used for storing the inverted indexes and the
approaches used for maintaining these. Moreover, we present the techniques used for
keeping the indexes up-to-date while distributing the costof updates.

XML documents in the repository may be subject to frequent changes (e.g.,
updating, addition and deletion of documents), thus the inverted index should
simultaneously reflect these changes in order to provide users an up-to-date access
to the information. This is, however, a challenging task since frequent updates on the
inverted index cause high workload.

In this project we have employed a range of techniques to optimize index updating.
The first technique isindex partitioning. This is accomplished by having a cascade
of three indexes — composed of an in-memory cached index, a small dynamic index,
and a large static index — instead of a single one. Doing so, weare able to index
newly arrived or changed documents in-place and, at the sametime, avoid frequent full
index reconstructions. In-place indexing means whenever new documents are added
or existing documents are modified/deleted they will be indexed when re-building the
entire index, thus providing up-to-date information access for users. When the cached
index becomes full, a batch of old documents will be flushed into the dynamic index,
and the dynamic index will occasionally be merged with the static index. The reason
why we do this is mainly to reduce disk I/O accesses. An earlier experiment on three
alternative strategies for index updates (in-place update, index merging, and complete
re-build) conducted by Lesteret al. [47] has also shown that merging is the fastest
approach for large numbers of updates. A similar technique has also been proposed by
Tomasicet al. [22]. To address the problem of incremental updates of invertedlists,
they propose a new dual-structure index which is able to dynamically separate long and
short inverted lists.

In addition to index partitioning, we also usecachingand a number of strategies for
moving posting from the cached index to disk to optimize index updates. Recently, Lim
et al. [9] have proposed a new technique to update the inverted index for previously
indexed documents whose contents have changed. Their technique uses the idea of
using landmarks together with the diff algorithm to detect the differences between
documents to reduce the number of postings in the inverted index that need to be
updated. Further, to underpin this research direction, a number of algorithms to
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detect changes in XML data has also been developed [48, 49]. However, a repository
containing old versions of documents is a prerequisite for all of these techniques, and
thus they do not apply for KALCHAS.

Figure 6.1 : Index structure

In general, the overall index structure of KALCHAS is designed as a series
of cascading indexes, where each index has a specific purpose, providing distinct
properties and trade-offs. Postings enter the system in oneindex and slowly seeps
through to the next one, as illustrated in Figure6.1. This approach allows flexible
fine-tuning a various parameters which directly effects theperformance of the system,
especially update performance. Thecached index(CI) is an in-memory inverted index,
serving as a working set containing recently processed postings and thus yielding better
index update performance on frequently modified documents.Unlike CI, thedynamic
index(DI) andstatic index(SI) are rather large, therefore they are kept on disk. Both
the DI and SI are used to support persistent storage of the inverted indexes. The former,
however, has an additional special purpose, namely supporting incremental updates.

6.1 The Cached Index

The dual index structure proposed in the previous project [19, see pp.48] contained two
indexes: a small dynamic index (i.e. DYNDIL) and a large static index (i.e. STATDIL).
This scheme allowed incremental updates and outperformed the single index structure;
however, while performing well on bulk insertion of documents, it did not handle
frequently modified documents efficiently, which was problematic given the intended
environment. Often, desktop user work on a relative small set of files at any given time,
but this set is frequently modified. For instance, when working on spreadsheets users
often save the contents periodically (or it is auto-saved).The problem, in the context
of the dual index structure, was caused by only using disk based B-trees for storing
postings,i.e. when a document had been processed the postings would immediately be
written to disk. In the context of frequently modified documents, this approach has the
disadvantage that data is likely to be modified shortly afterit has been written to disk,
thereby causing two problems: (i) the data initially written to disk is rendered stale
(while still occupying space in the B-tree), and (ii) all data in the modified document
must be written to disk again. Thus, the approach resulted ininefficient use of both
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disk access and the B-tree. To handle these problems acached index(CI) is introduced
in KALCHAS.

CI is provided as an in-memory inverted index containing postings from the most
recently created or modified documents. The advantage of a CIis twofold: (i)
utilization of disk I/O and handling of the disk based B-treeis improved, and (ii)
the general responsiveness of the system can be enhanced by postponing disk I/O
operations. The imposed increase in performance is depending on the strategy used
for writing the contents of the cache to disk. Having CI alongwith the other indexes,
however, has raised a number of questions. For instance:

Organization. How should the generated postings be stored and organized inCI after
being shredded?

Migration. How should the cached documents be moved from CI to DI in orderto
minimize disk I/O accesses?

Each of these questions will be discussed in the following subsections.

6.1.1 Data Organization

When a document has been shredded by Expat [37] and tokenized, we create an
inverted index representing the postings extracted from the document. In order to
achieve high performance, we store these postings according to their term in a search
tree. Definition6.1 formally defines the organization of postings shredded froma
given document. A search tree could be implemented as a red-black search tree which
guarantees efficient insertion, deletion and retrieval.

Definition 6.1 (Organization of postings in CI). The search treeT for a given document
D is organized as follows:

• N is the set of nodes inT covering all unique terms found inD

• ILtermi
= (loc0, ..., lock) is the inverted list of locations associated with

termi ∈ D

• N [termi] is the node inT whereN [termi] = ILtermi

sorted on term, so that

• termi ≤ termj iff termi is lexicographically less than or equal totermj

In the C++ implementation of KALCHAS we have chosen to use the Standard
Template Library’smap data structure which is a sorted associative container. An
associative containeris a variable sized container that supports efficient retrieval of
elements (values) based on keys. It supports insertion and removal of elements, but
differs from a sequence in that it does not provide a mechanism for inserting an element
at a specific position. Additionally,sorted associative containersuse an ordering
relation on their keys; two keys are considered to be equivalent if neither one is less than
the other. This sorting order in the context of shredded terms is shown in Definition6.1.
Sorted associative containers guarantee that the complexity for most operations is never
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worse than logarithmic, and they also guarantee that their elements are always sorted
in ascending order by key [46]. The map container is implemented as a (red-black)
search tree, thus common operations like insertion, deletion, and search are supported.
Put shortly, a document stored in CI is represented as a search tree ordered by indexed
terms where the nodes contain inverted lists for the associated term.

In order to store several documents in CI, we use a double linked list containing all
the shredded data. This is done to allow fast insertion and removal of documents. When
inserting a new document in the cache, we simply place the search tree containing the
shredded data into the linked list (as seen in Figure6.2). A consequence of this design
is that our inverted lists are not interleaved in memory, butrather grouped by DocID.
This has the advantage that cached documents can easily be moved from CI to DI.

Document trees in the cache

...

Newly shredded postings

...

Figure 6.2 : Insertion of a new document in the cache

While a multitude of research projects concludes that compressing inverted lists can
increase the overall performance of an inverted index, we have found that compressing
the inverted lists stored in CI introduces an unnecessary overhead in terms of execution
time. This is due to the fact that documents stored in the CI are subject to frequent
updates and compression would only prolong the time of updating the overall index.
Additionally, compressing data stored in CI would introduce a computation overhead
when migrating data from CI to DI due to different storage schemes. However, we do
apply compression on single postings stored in the CI,i.e. postings are compressed
individually and not sequentially. Compressing single postings has two advantages: (i)
compressed postings consume less RAM than uncompressed, and (ii) migration from
CI to DI is faster. As described in Chapter3 a customized VBL codec is used when
compressing single postings.
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6.1.2 CI-to-DI Migration Policy

As the main purpose of CI is to avoid writing unnecessarily todisk by postponing write
operations, the memory allocated to CI should be able to holda working set of files.
By “working set” we mean the set of files which is likely to be modified multiple times
within a certain time frame. We assume that of all the previously modified documents,
the document most likely to be modified next is the one most recently modified, and
based on this assumption a LRU (Least Recently Used) policy is used for moving
documents from the cache. Although this is a somewhat simplified assumption, we
believe it catches the essence of general desktop user behavior, where users normally
work on only a few documents at a time. This assumption is supported by the widely
used Zipf’s law [50]. Figure6.3shows the relationship between specific documents and
their frequency of update. Using Zipf’s law we observe that only a subset of documents
are subject to frequent updates which is the scenario we support through the CI.
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Figure 6.3 : Zipf’s law applied to a document collection

As the size of the working set can vary from user to user and from day to day, it is
difficult to point out an universal appropriate size. If the memory allocated to CI is too
small to hold the working set, it will at some point be necessary to write data to disk,
which is likely to be modified again within a certain time frame causing additional
disk I/O. On the other hand, if too much memory is allocated toCI, memory would
simply be wasted. It should be noted that this problem is not solved by dynamically
allocating memory to CI, since such an approach simply ensures that the allocated
memory contains data. However, from the drawback describedabove it should be
clear that allocating more memory than necessary to CI is preferable as compared to
allocating too little memory.
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In KALCHAS the amount of memory allocated to CI is controlled manually.More
specifically, it is possible to control the maximum number ofposting which at any time
can be in the cache. As both the term and location field of postings can be of variable
length, it is not possible to control the exact amount of allocated memory.

When new documents are loaded into memory CI may become full,thus some
cached documents must be moved from the volatile memory cache into a persistent
storage (i.e. dynamic index). In this context, the LRU policy is employed,meaning
that (some of) the documents which have been least recently modified are selected as
candidates for being written to DI. As postings always are moved from CI to DI on a
per-document basis, postings are clustered in memory on DocID.

When migrating the cached documents from CI into DI, the performance aspects
must be taken into consideration. One way is to move one document at a time from CI
to DI. By using such a strategy we can make good use of the cacheby postponing write
operations for as long as possible, but unfortunately writing only relative few postings
to disk at a time does not make efficient use of disk I/O. However, if more than one
document is moved at a time, chances are that a higher degree of disk I/O utilization
can be achieved. Unfortunately, this can also affect cache performance negatively, since
write operations are not postponed for as long as possible. This problem is solved by
increasing the size of CI, so that the cache can store the working set and additionally a
batch set as illustrated by Figure6.4.
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Figure 6.4 : The cached index contains a working set of documents. A subset of the
documents in working set also constitute the batch set, which contains all documents that
will be written to disk during the next migration.

The batch set contains documents that will be written to diskduring the next
migration, and as can be seen from Figure6.4 it overlaps with the working set. While
all documents in the batch set are candidates for being written to disk, it is still desirable
to be able to modify them while they still are in memory. Batching documents to be
migrated from CI to DI also has the advantage of increasing the possibility of common
terms. This means that when moving several documents from CIto DI, the probability
of the migrating documents sharing one or more terms is high;i.e. if two documents
contain the word “the”, the inverted lists would be written sequentially to disk rather
and thus increase performance. The probability of colliding terms in two documents
is described using Zipf’s law, which is assumed to apply to most natural languages,
e.g. the play “Hamlet” by Shakespeare follows the Zipfian distribution in terms of
frequency of words (the word “the” appears 27921 times while“abuser” appears 1
time).
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In Section8.3 the performance of CI with respect to cache size is tested and
evaluated.

6.1.3 Summary

CI is the in-memory index, intended for maintaining a working set of documents.
Storing postings in CI, as opposed to storing them in a disk based index, is introduced
in order to reflect frequent updates in-place. Additionally, CI allows migration of
consecutive postings in local sort order, which improves the penalty of moving data
from CI to DI.

6.2 The Dynamic Index

In this section we describe thedynamic index, DI, which is the first disk based inverted
index in the index chain of KALCHAS. Being the first index after CI, DI is updated
as documents are migrated from the former. As CI is only capable of storing relative
few documents, DI must frequently be updated, hence update performance is essential.
Thus, we are willing to trade in low disk space consumption, efficient storage and
retrieval of inverted lists in order to perform these updates in an efficient manner.

6.2.1 Access Methods

Berkeley DB offers four access methods: Queue, Recno, Hash and, B-tree1. While
the two primer methods use logical record number as primary key, the two latter
support custom primary keys making both suitable access methods as it is necessary
to perform lookups on terms in a full text index. However, we chose the B-tree access
method for two reasons: first, according to [23] B-trees are likely to render better
performance for applications using variable length records; second, as the records in a
B-tree are logically ordered on the key,i.e. term in our case, the Berkeley DB B-tree
implementation can apply prefix omission in order to reduce the amount of data needed
to uniquely identify each key item.

A B+-tree consists of internal pages containing(key,pointer) pairs pointing
to other pages, and leaf pages containing(key,value) pairs,i.e. records (we will
use the terms “record” and(key,value) pair interchangeably). It is generally
shallow, thus only a few disk accesses are usually needed to retrieve a record and,
furthermore, frequently used pages can easily be cached to reduce the number of disk
accesses even more. Both internal and leaf pages are stored on disk blocks, but whereas
the former stores pointers, the latter can also store data, making the B-tree not only an
indexing method, but also a file organization of records. Thus, using Berkeley DB’s
B-tree it is possible to store both index term and associatedlocations. Records and leaf
pages are ordered as described by Definitions6.2 and6.3 respectively and illustrated
by Figure6.5.

1Although the access method is labeled B-tree it is most likely a B+-tree implementation (see [24]).
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Figure 6.5 : Two leaf pages stored on disk blocks. Records within a leaf page are physically
organized according to their key value and leaf pages are link in such a way that no record
in one page has a key value smaller than any record in any previous page.

Definition 6.2 (Order of records in a leaf page).The set of recordsRm in a leaf pagepm

forms a listRLm where:

• P is the set of all leaf pages

• rm,i is the i’th record inpm ∈ P

• keym,i is the key ofrm,i

• rm,i ≤ rn,j iff keym,i ≤ keyn,j

so that

• RLm ≡ {[rm,0, rm,1...rm,y ]|rm,i ≤ rm,i+1∀m, i ∈ Z+}

Definition 6.3 (Order of leaf pages in a B-tree).The set of leaf pagesP in a B-tree forms
a listLPL where, givenpn andpn ∈ P :

• pm ≤ pn iff rm,i ≤ rn,j∀rm,i ∈ pm ∧ rn,j ∈ pn, pm ∈ P ∧ pn ∈ P

so that

• LPL ≡ {[p0, p1 . . . pm, pn . . . pz]|pm ≤ pn∀m ≤ n}.

Above definitions will serve as a basis for the B-tree relateddiscussions in the
remainder of this chapter. While both definitions describe the logical organization of
records and leaf pages, the former definition also describesthe physical organization
of records on leaf pages; thus, if data is inserted into a B-tree in key order, records
can simply be written sequentially to disk blocks, avoidingrearrangements on disk
blocks. Inserting or deleting records will eventually leadto rearrangement of the
internal pages of a B-tree, but since this generally would belocalized to a few pages,
i.e. disk blocks, the operations are fairly inexpensive (in terms of Big-Oh notation
the operations might be expensive, but in the context of large data structures that do
not fit into main memory avoiding disk I/O is often more important than general time
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complexity considerations). In the case of massive incremental updates, however, the
reorganization of both internal and leaf pages can become very disk I/O intensive due
to pages becoming over- or underfull and potentially effecting other pages, thereby
making further reorganization necessary. Finally, since the leaf pages are ordered and
linked as defined in Definition6.2and Definition6.3and illustrated by Figure6.5, both
equality queries and range queries are supported.

6.2.2 Index Maintenance Strategies

Some systems which use inverted indexes to support full-text search apply a re-build
strategy for maintaining the index. Using such a strategy, the index is not incrementally
updated, rather it is frequently re-built from scratch by shredding the documents and
extracting postings. The postings are then often sorted andstored in intermediate data
structures, referred to assorted runs, before they are finally processed into inverted
lists [10]. Using a re-build strategy and sorted runs allows for greatflexibility when
storing the postings in inverted lists. As incremental updates are not applied to the
index, the cost of modifying inverted lists can simply be ignored, making it possible to
use a record storage scheme which is equivalent to the logical concept of an inverted
list. Hence, an inverted list maps directly to a record; the term associated with the
inverted list is stored in the key field and the sorted list of locations is stored in the
data field. This has the advantage of rendering relative gooddisk space utilization as
overhead introduced by the database system for keeping metainformation for each
record is kept relatively low, since the number of records isequivalent to the number
of unique terms, cf. the equivalent mapping between inverted lists and records. As
Berkeley DB uses a 5 bytes overhead to store a key or data item on a page, storing
only 10 bytes (5 bytes for the key item and 5 bytes for the data item) per unique
term rather than 10 bytes per term occurrence reduces the overhead significantly2.
Unfortunately, keeping the index up-to-date by applying a re-build strategy is often
very expensive in terms of CPU and disk usage due to the fact that the entire process
of shredding, extracting, sorting, and storing must be repeated for each re-build. Thus,
the strategy is seldom employed on a per-document-basis, rather the process is often
repeated with time intervals. Finally, the re-build strategy has the disadvantage of
requiring additionally disk space since a copy of the old index must be kept during the
index re-build process in order to handle queries.

As opposed to the index re-build strategy, an index maintenance strategy based on
incremental updates does not re-build the index from scratch for each update, rather
only changes made to the indexed document collection between successive updates are
“inserted” into the index. This includes newly created documents, modified documents,
and deleted documents. Although this is likely to render index updates on a per-
document-basis at a lower cost, than when using an index re-build strategy, applying
an incremental update strategy is not as straightforward asaforementioned.

The overall principles for adding new documents are fairly simple: documents are
shredded, postings extracted, sorted and inserted into inverted lists. However, when
using an incremental update strategy the extracted postings are intended to augment
the existing ones rather than replace these, and thus the existing inverted lists must
be patched with the extracted postings and therefore the cost of modifying inverted

2http://www.sleepycat.com/docs/ref/am_misc/diskspace.html

http://www.sleepycat.com/docs/ref/am_misc/diskspace.html
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lists must be considered. Especially, care must be taken when designing the storage
scheme for the inverted lists as these are subject to frequent updates. In particular, the
equivalent mapping between inverted lists and records, as described above, would not
be optimal. If, for instance, a new occurrence of a term is to be reflected in the index,
it would be necessary to retrieve the entire inverted list for this term from disk (causing
disk I/O), insert the new posting in sort order into the inverted list (causing CPU usage),
and finally the modified inverted list must be written to disk (again causing disk I/O).
For very large inverted lists, which can be several kilobytes large and spanning multiple
disk blocks, this can become prohibitively resource demanding, which is additionally
offset by the fact that each new document easily contains several hundred distinct
terms.

Handling modified and deleted documents is somewhat more difficult when using
an incremental update strategy than when using a re-build strategy. In essence,
the problem is how to update the inverted lists by removing locations associated
with deleted occurrences of a term (due to documents being modified or deleted).
While this is relatively simple in repository-based systems, such as most Web search
engines, it is somewhat more challenging in a system which does not have access to
previous versions of documents [9]. In such systems, identifying and updating inverted
lists containing stale information (i.e., locations) associated with modified or deleted
documents requires a complete scan of all inverted lists which poses heavy disk I/O
loads on the system and could not be employed on a per-document-basis. Alternatively,
a forward index could be used to identify the relevant inverted lists, but unfortunately
this also adds a significant performance overhead to the system, due to the fact that for
each incremental update both the inverted and forward indexmust be updated, again
causing heavy disk I/O loads.

6.2.3 Supporting Incremental Updates

In KALCHAS, we wish to make new or modified data available for querying asquickly
as possible by keeping the inverted index fresh, and thus we need to employ an
index maintenance strategy which allows us to apply updateson a per-document-
basis while not seizing all system resources. Although the index re-build strategy has
desirable benefits, such as straightforwardness and efficient disk space utilization, it is
mainly applicable in contexts where index maintenance is not triggered by document
modifications but rather time intervals, as is the case with Web search engines, due
to the massive CPU and disk usage associated with each re-build. For this reason,
the index re-build strategy is not used in KALCHAS, rather the employed maintenance
strategy is based on incremental updates and index merges (the latter will be described
in Section6.3).

As described previously, applying incremental updates to an inverted index
introduces challenges, which must be addressed in order to yield good performance.
More specifically, the following topics must be addressed:

Storage scheme.Storage schemes for storing the inverted lists must be “reasonable”.
However, a trade-off must often be made between disk space consumption and
update performance.

Stale postings.Stale postings must be removed from the inverted index without
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Figure 6.6 : The storage scheme used in DI

frequently seizing a substantial part of system resources.

Quality of service. Some quality of service assurance (QoS) should be applied with
respect to the cost of incremental updates. As the performance of updates on a
B-tree is inverse proportionally the size of the tree, the cost of inserting, deleting,
or modifying a single record increases as the tree grows. While it is not possible
to provide a strict upper bound on the cost of indexing a single document (due
to the fact that the cost heavily depends on the number of terms stored in the
document), we will instead employ an index maintenance strategy which allows
us to control and limit the cost of updating a record in the tree (see Section6.3.3).

As pointed out in Section6.2.2 a trade-off often exists between general update
performance and storage consumption with respect to inverted lists. On the one hand
we do not want the system use excessive amounts of disk space to store the inverted
lists, and on the other hand we want to optimize incremental updates of the inverted
lists. Since we wish to perform index updates on a per-document-basis, it is reasonable
to expect rather frequent updates, and thus DI has been designed with an emphasis on
update performance, mapping a posting directly to a record as illustrated by Figure6.6.

This storage scheme is very similar to thesingle payloadscheme suggested by
Melnik et al. [10] and in terms of advantages and disadvantages they are alike.
However, for historical reasons a composite key containingboth term and location
was used in the latter scheme in order to support ordering of records on both term and
location3.

As illustrated by Figure6.6 DI is likely to contain records with duplicate keys,
which is handled by leveraging on Berkeley DB’s built-in support for handling multiple
data items for a single key item. By default duplicate items are not supported and
successive store operations will overwrite previous data items for a given key item.
However, Berkeley DB can be set up to provide basic support for duplicates. This is
performed by Berkeley DB by only storing the key item once andproviding a pointer to
an off-tree duplicate page storing the data items ordered (by default) by insertion-order.

3Older version of Berkeley DB did not support custom orderingof multiple data items associated to a
single key item. By using a composite key and supplying a custom key comparison function records could
be ordered on both term and location.
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In order to retrieve all data items for a given key it is necessary to use Berkeley DB’s
cursor interface and iterate through the data items, as the standard lookup method only
retrieves the first data item for a key item. Thus, the conceptof an inverted list is not
directly supported by this storage scheme, rather it must beimplemented at a higher
level by using the approach described above. However, for the sake of simplicity we
will in the remainder of this chapter refer to an single key item with an associated list of
data items as an “inverted list”. Finally, it should be notedthat VBL encoding discussed
in Section3.2.1is applied to value field of records in DI in order to reduce thesize of
these. Due to the small size of data stored in these fields applying more elaborate
compression is generally not beneficial as the compression ratio would generally be to
poor to justify the computational overhead.

Usually, the locations in inverted list are stored in ascending location order,
but we have chosen to use the standard insertion-order in DI due to performance
considerations: (i) Encoding schemes requiring location-ordered locations,e.g.
numerical difference and prefix omission [11], are not applied to data items, and (ii) all
locations must be sorted prior to being processed by themeetoperator. As the locations
may be associated with different terms, it would be necessary to perform a (merge) sort
of the locations, even if every inverted list contained locations in location order. Thus,
sorting the locations do not add any benefits. Rather, it might even add an unnecessary
disk I/O overhead; when using location-ordered inverted list, inserting a single location
can potentially push another location off-page, making it necessary to read and write
one more page (this in turn can cause more locations to push off-page). Thus, for
long lists inserting locations at the front can lead to many pages being modified. By
using insertion-order rather than location-order it is possible append locations to the
inverted list, making it possible only to modify the page storing the tail on the inverted
list. It should be noted, this if real inverted lists were used (rather than linked lists of
duplicates) this optimization would not be possible, as modifying a long inverted list
spanning multiple disk block would require all blocks to read and written - not just the
page containing the modification.

However, inserting records in insertion-order has the consequence that selective,
partial retrieval of inverted lists is not supported in KALCHAS 4. This can be explained
by considering the SQL query below:

SELECT location
FROM InvertedLists
WHERE term = $TERM AND location < $MAX_LOCATION

In our case, the only index on tableInvertedList is on the attributeterm and no
additional indexing or sorting is performed. The equality predicate in theWHERE clause
can efficiently be handled due to the index onterm, however the inequality predicate
would require examination of every row satisfying the primer predicate,i.e. due to
lack of additional indexing or sorting there is no way to exclude rows satisfying the
equality predicate without examining them. If, however, rows were sorted additionally
with respect to the attributelocation, no further rows would have to examined once
the inequality predicate was evaluated false.

4Some systems optimize query performance when a single (search) term is highly selective,i.e. has a
short inverted list, by performing zig-zag joins.
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While this would be a serious performance issue for systems handling high rates
of queries,e.g. Web search engines, it is less important for a system where query
processing performance is not paramount,e.g. in single user environments with
standard desktop computers. Additionally, it must be takeninto account that we trade
in this feature in exchange of better update performance.

Figure6.9 illustrate what aforementioned B+-tree would look like after inserting
a record with the termwim as key value, using the Berkeley DB implementation of a
B+-tree and a standard B+-tree implementation respectively.
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Figure 6.7 : A fragment of a B+-tree, consisting of a single internal page and a single leaf
page, prior to inserting a record with the termwim as key value.
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Figure 6.8 : A fragment of a Berkeley DB B+-tree, consisting of a single internal page and
two leaf pages, after having inserted a record with the termwim as key value.
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Figure 6.9 : A fragment of a standard B+-tree, consisting of a single internal pages and
two leaf pages, after having inserted a record with the termwim as key value.

In addition to considering the storage scheme of records, the order in which records
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are inserted into the inverted index must also be taken into account. As mentioned
previously, inserting records in key order makes it possible to write them sequentially
to disk without having to rearrange disk blocks. However, this is a special property of
the Berkeley DB implementation of a B-tree, as illustrated by Figure6.7, Figure6.8,
and Figure6.9.

Figure6.7 illustrates a fragment of a B+-tree, consisting of an internal page with
a key value containing the terman and a pointer to a leaf page, which contains seven
records5. When used as an file organization of records, the leaf pages of a B+-tree store
bothkey anddata values, but for the sake of clarity, the data field of records have
been omitted in all the figures. Figure6.8and

As can be seen from the two latter figures, the difference between the Berkeley DB
and the standard B+-tree implementation lies in how pages are split when becoming
overfull. In the general case (as illustrated by Figure6.9) approximately half of all
records/pointers are moved to the subsequent page, but since records are inserted in key
order, the gap left behind will never be filled. This renders poor page space utilization,
thus increasing the height of the tree and thereby also the number of pages accessed
in order to retrieve a record. In the Berkeley DB B-tree implementation, however,
insertion in key order is considered “best case” and resultsin near-full pages; looking
at Figure6.8subsequent records, which, due to key order insertion, all have a key with
a lexicographical value of at leastwim will be inserted to the “right” of the record with
the currently highest key value, leaving no gaps behind.

Unfortunately, it is not possible to fully exploit the advantages related to key order
insertion when inserting records into DI. As stated previously, the index is intended
for handling incremental updates on a per-document-basis and thus posting are also
extracted, sorted, and inserted on a per-document-basis, making it possible only to
insert in locally sorted order rather than globally sorted order. Hence, incremental
updates have an inherently negative effect on both page fill factor and well as disk
access pattern. Although globally ordered key insertion-order cannot be achieved,
records should still be pre-ordered prior to inserted into aB-tree:

• General time complexity of insertion into a B-tree is not favorable compared to
other sorting algorithms.

• Expensive reorganisation of the B-tree may be needed. When inserting the i’th
record it may become necessary to push one or more of the previously inserted
i-1 records off-page, either directly or indirectly, resulting in an I/O penalty.

To lessen the negative effects of incremental updates, DI has been augmented with
another disk based inverted index, SI, which is also based ona Berkeley DB B-tree.
Splitting the disk based inverted index up into two parts, thereby making it possible to
reduce the size of DI, has a number of advantages:

Reduced storage space overheadAs explained previously Berkeley DB uses meta
data for keeping track of(key,pointer) and(key,value) pairs. Hence,
reducing the number of(key,value) pairs in DI also reduces the storage
space needed to hold meta data.

5As illustrated by the dotted lines the internal page contains additional key values and pointers, which for
purpose of illustration have been left out.
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Improved B-tree update performance Since the performance of incremental up-
dates performed on a B-tree deteriorates as the tree grows, reducing the number
of (key,value) pairs improves performance.

Globally ordered key order insertion By applying a re-merge index maintenance
strategy on SI,(key,value) pairs can be inserted in globally ordered key
order into SI, making high page space utilization and roughly sequential disk
access feasible.

SI will be covered in detail in Section6.3, and for the moment we only note that
postings at some point are moved from DI to SI, resulting in a merge of the two.

Finally, in addition to tuning DI for handling incremental updates, stale postings
most also be removed without causing unnecessary heavy diskloads. As no
information which makes it possible to locate stale postings is provided, identifying
stale information requires a complete scan of all(key,value) pairs, which under
normal circumstances will seize a substantial part of all disk I/O and effect general
responsiveness. As a consequence, records are not explicitly deleted from the B-
tree. Rather, during the merge process where postings are moved from DI to SI stale
information can be filtered by only introducing additional CPU usage; as all postings
and inverted lists must be read from disk in order to perform the merge operation, stale
information can simple be filtered by examining the documentID of every location and
comparing it to an in-memory list of invalid document IDs andany location containing
an invalid document ID is simply discarded.

6.2.4 Summary

DI is a disk based inverted index which relies on a simple storage scheme for postings
in order to efficiently provide support for incremental updates. In general, the main
purpose of DI, with respect to the disk based part of KALCHAS’ inverted index, is to
distribute the cost of updates, mainly at the expense of efficient storage space utilization
and sequential disk access.

To sum up DI provides distinct properties and trade-off as listed below:

Pros • Postings can efficiently be added to the index without havingto retrieve
inverted lists, insert the locations, and finally write the modified inverted
lists back to disk, potentially causing several blocks to beread and written
back to disk for each inverted list.

Cons • A fairly large storage space overhead is imposed by BerkeleyDB due the
storage scheme. As the meta data is added for each key and dataitem,
storing each location as a single data item, rather then clustering locations
in inverted lists, increases the overhead significantly.

• As records are inserted in locally sorted order, the page fillfactor is effected
negatively, making it difficult to achieve 100% page space utilization. This
increases the height of the tree and thus the number of pages that must be
read in order to retrieve a record. Additionally, as Berkeley DB uses 26
bytes of meta data per page, having a low page fill factor also effects the
storage space overhead.
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• The locally sorted order also effects the disk access pattern, causing more
random access.

Although DI seems to provide more drawback than advantages,it is important to
note that these drawbacks are inevitably linked to the support of incremental updates. In
Chapter8, a number of tests and evaluations describing the performance of KALCHAS

with respect to migration policies are provided.

6.3 The Static Index

The second disk based inverted index in KALCHAS is thestatic index(SI). As indicated
by the name the contents of SI is relative static as compared to the other inverted
indexes, CI and DI. Additionally, the vast majority of data stored in KALCHAS resides
inside SI.

The main purpose of SI is to provide for means of reducing the cost of performing
incremental updates on DI by distributing the cost of these updates. As described
previously the update performance of a B-tree is especiallydependent on two factors:
insertion order and size of the tree. By using only a single disk based inverted index
it would not be possible to control these factors; postings from documents could only
be inserted in locally sorted order and the tree would grow asmore documents were
indexed. However, once the inverted index is split into two disk based B-trees it is
possible to reduce the size of one index, making it feasible to perform incremental
updates at a reasonable cost, and insert in global order intothe second.

In this section, we describe SI in detail. We present and discuss the data structures
used for storing term and location related information and explain how SI is managed.

6.3.1 Data Organization

The index structure in KALCHAS is designed as a series of indexes (see Figure6.1),
where data enters the system in one index and slowly seeps through to the next one. If
the documents, to which data is associated, remain unmodified, the data will eventually
be inserted into SI which thus contains the least frequentlymodified data, hence the
name. Assuming that the modification frequency of indexabledocuments on desktop
computers at any given time follows a Zipf distribution [50], most documents would
be indexed in SI. Based on this assumption, the storage scheme used for storing term
and location related information in SI must be designed withparticular emphasis on
this property. Especially, the storage overhead of each posting should be kept as low.
Additionally, as SI is maintained by applying a re-merge strategy (see Section6.3.3)
the cost of performing incrementally updates need not to be considered, thus the design
should be quite different from that of DI.

Like DI, SI is also based on a Berkeley DB B-tree, which makes it possible for SI to
contain variable length records with custom keys. Additionally, records can easily and
relatively efficiently be accessed in key order, which is essential for the maintenance
strategy used in SI.

Disk space consumption is minimized by applying a storage scheme identical to



6.3. THE STATIC INDEX 51

Term Locations

term1 location2, location7. . .location177

term2 location4, location5. . .location231

...
...

termn locationi

Figure 6.10 : The storage scheme used in SI

the full list scheme suggested by Melniket al. [10] where a term and an associated
inverted list maps directly to a(key,value) pair as illustrated by Figure6.10. From
the figure it can be seen that the index contains a single(key,value) pair for each
unique term; the term is stored in the key field while the list of occurrences of the
term is stored in the value field. As Berkeley DB uses 5 bytes ofmeta data to keep
track of each key item and each data item and 26 bytes per page,the overall size of the
inverted index can be heavily reduced by using this storage scheme as compared to the
scheme used in DI, where the number of(key,value) pairs is equal to the number
of postings.

As the concept of an inverted list is directly supported by this storage scheme, it is
possible to retrieve an entire inverted list in a single Berkeley DB operation. It should
be noted that although retrieval of inverted lists only takes a single operation, multiple
disk blocks may be required to be read (apart from traversingthe tree) due to variable
length value fields,i.e. if the list is very long, it may span multiple pages. Managing
very large key and data items in Berkeley DB is handled by introducing overflow pages,
which are stored off-tree and require additional disk I/O tobe accessed. By default,
Berkeley DB stores at a minimum two(key,value) pairs per page. Therefore, if
a key item or data item is more than one quarter of the page size, the pair is moved
off-tree to an overflow page.

6.3.2 Reducing Storage Requirements

KALCHAS is designed to handle both text- and data-centric documents, which means
that the lengths of the inverted lists can vary dramatically, assuming that the frequency
distribution of terms in natural language text follows Zipf’s law6. This is illustrated
in Figure6.11which shows the distribution of the 200 most commonly used words
in Shakespeare’sHamlet. As illustrated by the figure only a relative small number
of words are very frequently used.Hamletcontains more than 30.000 words of which
more than 4000 are unique, and the 20 most commonly used wordsoccur nearly 10.000
time, i.e. roughly 0.5% of the (unique) words constitutes 33% of the entire text.

Assuming that (i) this type of distribution is commonly seenin text centric
documents and (ii) documents often share a large part of their most commonly used
words, it becomes evident that some inverted lists are proneto grow very long. In
the context of a storage scheme mapping inverted lists directly to records, some
records will grow so large, that they must be kept off-tree onoverflow pages, which
unfortunately both increases the size of the index as well a access time for these lists.
This would be unacceptable in systems that spend a large percentage of processing time

6http://en.wikipedia.org/wiki/Zipf%27s_Law

http://en.wikipedia.org/wiki/Zipf%27s_Law
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Figure 6.11 : Number of occurrences of the 200 most frequently used words in
Shakespeare’sHamlet.

on handling queries, but as KALCHAS is mainly intended for desktop environments the
cost of having to perform additional disk I/O for some queries is acceptable, although
not desirable.

Nevertheless, sincestop wordsare used in KALCHAS to prevent some terms from
being indexed, the number of overflow pages is reduced. However, this is not done
with an emphasis on reducing the number of overflow pages. Rather, some terms tend
to be too general to aid in reducing the number of results for any keyword search.
Hence, the indexing process can be optimized by omitting these without affecting the
quality of results. This is illustrated in Table6.1 which lists the 20 most commonly
used words inHamlet, MacBeth, and theOld Testament. Terms considered non-stop
words in KALCHAS are in boldface. Looking at Table6.1 it is worth noticing the
considerable overlap of commonly used words in the three texts. With the exception
of a few, most words are nouns, pronouns, verbs, and prepositions that are used in
virtually any English, natural language text, and including them in the inverted index
would rarely help produce more specific search results.

Rank Document
# Hamlet MacBeth Old Testament

1 the the the
2 and and and
3 to to of
4 of i to
5 i of in
6 you macbeth that
7 a a shall
8 my that he
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Rank Document
# Hamlet MacBeth Old Testament
9 hamlet in lord
10 in you his
11 it my for
12 that is i
13 is not unto
14 not with a
15 lord it they
16 this his be
17 his be it
18 but he is
19 with have them
20 for but with

Table 6.1 : The most commonly used words inHamlet, MacBeth, andThe Old
Testament. Terms in boldface are non-stop words.

Although overflow pages are not generally considered problematic in KALCHAS it
is desirable to minimize the number, as this reduces the storage requirements. Apart
from employing stop words, increasing the page size can alsoreduce the number, but
unfortunately this approach has a number of drawbacks. As Berkeley DB provides
locking of page as the finest level of granularity when using B-trees, increasing the
page size can degrade performance with respect to concurrency as the risk of blocking
is increased. The I/O efficiency is also likely to be affectedsince the minimum amount
of data which can be read or written in a single access is increased. For instance, if
most inverted lists can be stored on a single 4 KB page, retrieving one of these would
require reading one disk block (assuming a disk block size of4 KB)7. If the page size
was increased to 8 KB to accommodate very long lists, the samescenario would require
reading and writing the double amount of data, even if both the original and modified
inverted list could easily be stored on a 4 KB page. However, if data generally is read
and written in chunks larger than the standard disk block, increasing the page size can
result in a performance gain, since (i) the chunks are less likely to be fragmented, (ii)
most operating systems uses pre-fetch when accessing disk,and finally (iii) the fan-out
is improved thereby reducing the height of the tree.

Since the level of concurrency in KALCHAS is low, increasing the page size is not
likely to affect performance in this area. However, analyzing how disk I/O efficiency
is affected is not as straightforward as the answer is dependent on a several factors.
First, assuming that the frequency distribution of terms follows Zipf’s law, so does the
length of the inverted lists. The “steepness” of the distribution indicates the percentage
of inverted lists which are considerably larger than the average length. The steeper
distribution, the fewer lists will be affected by using a small page size. Second, the size
of the indexed document collection also plays an important role, since the inverted lists
inevitably will grow as the collection grows, hence the choice of page size should also
be based on this parameter. Finally, it should be noted that using a page size smaller
than the block size of the file system is generally not recommended, as the operating
system must retrieve at least an entire disk block for every operation, regardless of the

7In the example we ignore the cost of traversing the tree to perform lookup.
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page size.

In KALCHAS we are using the default Berkeley DB B-tree page size, which is
based on the block size of the file system storing the B-tree. As this size is sufficient
for storing the inverted lists of a medium sized document collection without having a
high percentage of overflow pages, the result is a reasonabledegree disk I/O efficiency

6.3.3 Index Maintenance Strategies

Since the task of handling modifications to a document collection on a per-document
basis is mainly done by DI, many of the inherently associatedproblems need not be
addressed in SI. This allows for greater flexibility when maintaining SI as random
access modifications can be avoided altogether. In order to distribute the cost of
expensive incremental updates, however, data stored in DI should periodically be
migrated to SI, thereby limiting the growth of DI and reducing the amount of page
reorganization due to updates.

MERGE(L, L′)
1 R← ∅
2 while (L 6= ∅) ∧ (L′ 6= ∅) do
3 if (L = ∅) then
4 R← R ∪ {L′

next}
5 L′ ← L′ \ {L′

next}
6 elseif(L′ = ∅) then
7 R← R ∪ {Lnext}
8 L← L \ {Lnext}
9 elseif(Lnext = L′

next) then
10 R← R ∪ {Lnext} ∪ {L

′

next}
11 L← L \ {Lnext}
12 L′ ← L′ \ {L′

next}
13 elseif(Lnext < L′

next) then
14 while (L 6= ∅) ∧ (Lnext < L′

next) do
15 R← R ∪ {Lnext}
16 L← L \ {Lnext}
17 else while(L′ 6= ∅) ∧ (Lnext ≥ L′

next) do
18 R← R ∪ {L′

next}
19 L′ ← L′ \ {L′

next}
20 return R

Figure 6.12 : Merge algorithm:L, L′ represent two inverted lists of DI or SI to be merged,
respectively. R represents the merged result. The< and≥ operators indicate lexical
comparison.∪ indicates joins (preserving sort order) and\ indicates removal of a subtree
without reordering.

A simple, but obviously inefficient, approach of migrating postings from DI to SI
would be to occasionally take postings from the former and insert them into the latter.
However, not much could be gained from using such an approachas the postings would
be inserted in locally sorted order, making the risk of having to perform expensive
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reorganizations of the pages of SI very likely. Rather, we notice that both DI and
SI contains similar records and the contents of both indexesare ordered and can be
accessed relatively efficiently. The basic steps of mergingDI and SI consist of scanning
the leaf pages of both indexes, comparing records pair-wiseand inserting the lesser into
a new disk based B-tree SI′ yielding globally sorted insertion order. Once the merge
operation terminates SI′ substitutes the old SI and DI is reset. Pseudocode describing
the basic steeps of the merge operation is provided i Figure6.12.

It should be noted that when generally assessing the efficiency of any algorithm in
terms of Big-Oh notation, all operations are assumed to be equally expensive,e.g.any
arithmetic operation is as expensive as accessing an element in an array and moreover
accessing elementi of an array is assumed to as expensive as accessing elementj.
However, this assumption is only true for accessing RAM (hence the “random access”),
not disk. In addition to all disk access patterns not taking equal amounts of time,
accessing data on disk is often several magnitudes more expensive than performing
some instruction on the CPU. However, with this in mind merging DI and SI is still an
attractive approach as compared to incrementally updatinga large B-tree. Performing
a merge of two disk based indexes is expensive in terms of diskI/O, since both indexes
would have to read from disk and an (almost) equal amount of data would have to be
written to disk to produce the merged index. Thus, the re-merge index maintenance
strategy is only advantageous to apply when DI is sufficiently large. This can be
described by a simple cost/benefit analysis. The benefit, or gain, can be thought of
as being the amount of data which is added to SI and the cost is the amount of disk
traffic needed to achieve the gain. We will illustrate this with two simplified examples
in which we do not consider a realistic workload with live data that might become stale.

Example 3. Assume DI is 10 MB and SI is 100 MB. To merge the two indexes 110
MB would have to be read and 110 MB would have to be written. Thus, 220 MB of
disk traffic would render a 10 MB increase of SI, meaning that for every 1 MB SI was
increased, a total of 22 MB had to read and written.

Example 4. Assume DI is 50 MB and SI is 100 MB. To merge the two indexes 150
MB would have to be read and 150 MB would have to be written. Thus, 300 MB of
disk traffic would render a 50 MB increase of SI, meaning that for every 1 MB SI was
increased, a total 6 MB had to be read and written.

Comparing the two examples, it becomes clear that increasing the size of DI gives a
better cost/benefit ration8. So, from the perspective of the re-merge index maintenance
strategy, DI should be relative large when merging. Unfortunately, from the perspective
of the incremental update index maintenance strategy, DI should be kept relative small.
Hence, there is a trade-off between the two strategies, which was also indicated in [19],
and by giving preference to one of them it is possible to either improve performance
of incremental updates or overall indexing time. On the one hand, if the size limit of
DI is kept static, incremental updates would take a fixed maximum amount of time, but
the performance of the merge operation will at some point degrade as the document
collection grows and become the dominant factor of the overall indexing time. On the
other hand, if the size limit of DI is kept proportional to thesize of SI, the cost/benefit

8In a more realistic scenario, the amount of data in DI which may potentially become stale increases with
the size of DI. Additionally, due to different storage schemes and compression, migratingn bytes from DI
to SI would unlikely result in ann bytes increase in SI file size. However, the amount of valid information
moved from DI and inserted into SI is nevertheless equal
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of merge operations would remain fixed, making it possible toachieve better overall
indexing time, but the performance of incremental updates degrades as the document
collection grows. Hence, the combination of maintenance strategies used in KALCHAS

does not scale well for large document collections, but for the intended environment,
i.e. desktop computers, this is unlikely to be an problem.

Apart from making index updates on a per-document basis feasible, the
combination of incremental updates and re-merge also provides a number of other
desirable properties. Since records and pages in both DI andSI are ordered as described
in Definition6.2and Definition6.3records can be read in key order by scanning the leaf
nodes. As SI always is written in “one go” its leaf pages are very likely to be written
on sequential disk blocks, making the merge operation having a highly sequential disk
access pattern. Additionally, most operating systems and hard disks also use some type
of pre-fetch/buffering, the performance for this type of access is likely to be improved
further.

In addition to the sequential disk access pattern, the performance of merge is further
improved by having a more storage efficient representation of data. The compact
representation of data is achieved in three ways: (i) by minimizing the number of
pages, (ii) by applying a storage scheme which renders less meta data overhead, and
(iii) by applying compression to inverted lists:

• In Figure6.7, Figure6.8, and Figure6.9we illustrated how a high page fill factor
can be achieved by inserting in key order into a Berkeley DB B-tree. Since the
merge operation basically consists of inserting records from DI and SI into SI′,
SI′ will always be built in key order and have a high page fill factor.

• The storage scheme of SI maps a term and an associated list of locations to
a record, hence a single record contains information from many postings. In
contrast, the storage scheme of DI maps a single posting to a record. Therefore,
SI has a significantly better average “meta data per posting”ratio than DI.

• The value field is compressed in both DI and SI. However, sincelarge chunks
of data generally renders better compression ratios than smaller chunks, the list
of locations stored in the value field of records in SI yields better compression
ratio than the single location stored in the value field of records in DI. For this
reason, it make sense only to apply more CPU expensive types of compression
to records in SI, explaining why only VBL encoding is used forDI and VBL
encoding and Huffman for SI.

As the performance of the merge operation is directly dependent on the amount of
disk I/O needed to read DI and SI and write SI′, improving storage space efficiency
translates directly into a reduction of the amount of disk I/O needed to read and write
the indexes.

6.3.4 Summary

SI is the final inverted index in the chain of indexes used in KALCHAS. As incremental
updates are handled by DI, the associated problems of reorganization of pages and
low page fill factor need not be addressed in SI. Rather, the main purpose of SI is
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to make it possible to reduce the size of DI in order to performincremental updates
more efficiently by occasionally migrating postings to SI. This is done by applying a
re-merge strategy. In essence, the approach of this strategy is merge the records of DI
with those of SI, yielding a new index, SI′. Both of the old indexes are discarded after
merging.

From the perspective of incremental updates, DI should be kept relatively small in
order to apply incremental updates efficiently, but from theperspective of re-merging
DI should be kept large due to cost/benefit ratio, hence a trad-off must be made between
strategies; at one extreme indexing time of documents can beimproved by keeping DI
small, and at another extreme overall indexing time can be improved by maintaining
some relationship between the size of DI and SI.

Since the majority of documents are likely to indexed in SI isdesirable to improve
its storage space efficiency. First, preventing the system from taking up considerable
disk space is desirable on a standard desktop computer. Second and more importantly,
having a high storage space efficiency also makes it less diskI/O expensive to perform
merges, as the cost of these are directly dependent on the amount of disk I/O.

To sum up, SI provides the following advantages and disadvantages:

Pros • Distributing the cost of incremental updates is made possible by
occasionally migrating data from DI to SI.

• A high degree of storage space efficiency is achieved by (i) having a high
page fill factor, (ii) using an efficient storage scheme, and (iii) compressing
inverted lists.

• The index maintenance allows for high degree of sequential disk access.

Cons • During merges disk space must be allocated to SI′. Since SI′ is the union
of postings/inverted lists of DI and SI, the disk space allocated to SI′ is
roughly the sum of disk space allocated to DI and SI.

In Chapter 8, we provide a number of tests and evaluations describing the
performance of KALCHAS with respect to migration policies.
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Supported Operations

This chapter describes each of the operations provided by the KALCHAS API. We will
explain how KALCHAS adds files (Section7.2), deletes files (Section7.3), updates
indexes (Section7.4), and performs keyword searches (Section7.5), respectively.

7.1 Database Schema

In addition to the three inverted indexes introduced in Chapter6, the operations featured
in KALCHAS rely heavily on the following underlying database tables (see Figure7.1).
These tables are used to maintain information about the indexed documents:(a)
FileLog is used to keep track of the indexed files;(b) FileLogAccessis a secondary
index ofFileLog; (c) FileLogDelis used to keep track of the deleted files. The attributes
DocID, TimeStamp, and AuditTime are represented by integervalues, and the URI
attribute is represented by strings. All of them can be of variable length. However, the
IsPersistent and IsFreeID attributes contain a Boolean value.

DocID URI TimeStamp AuditTime IsPersistent

(a) FileLog table

URI DocID

(b)
FileLogAccess
table

DocID IsFreeID

(c) FileLogDel table

Figure 7.1 : Storage scheme for records in the tables

In the following sections, we will describe how the operations in the KALCHAS

API are designed, and explain how they interact with the above tables and the indexes
described in Chapter6.
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7.2 Adding Files

In order to add files to the index, one simply invoke theAddFile function. In the
following subsections, we will describe the working process ofAddFile and discuss
issues related to the implementation of this function.

7.2.1 Implementation

The working process ofAddFile is illustrated by a flowchart in Figure7.2.
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Figure 7.2 : The process of adding files

This operation takes a file name as input. First, the file is checked whether it is
already indexed. If so, nothing is to be done and the add process terminates; otherwise,
file information should be set,e.g., TimeStamp is set to last update time of the file,
AuditTime is set to the current system time, IsPersistent isset to false and IsFreeID
is set to false. The purpose of having the attributes AuditTime and IsPersistent is to
provide file consistency check support (described in Section 7.2.1.5) and IsFreeID is to
support DocID reuse (see Section7.2.1.3).

Afterwards, the file should be checked for file type support byKALCHAS. If the
file type is not supported, nothing should be done and the add process terminates;
otherwise, KALCHAS starts shredding the file (elaborated further in Section7.2.1.1)
and returns as output a set of postings. Next, we generate a DocID (elaborated further
in Section7.2.1.3). KALCHAS patches these postings with this DocID (elaborated
further in Section7.2.1.2). Finally, KALCHAS stores these DocID patched postings in
CI (elaborated further in Section7.2.1.4).
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7.2.1.1 Shredding

The first step when building a full-text index is to process each document by removing
all XML tags and extracting information relevant to the full-text index, as described in
Section2.2on page9. While some systems (e.g.[8]) collect various meta-information
(such as positions of words within documents, encodings, font size, and date of updates,
etc.), the information stored in the index should at a minimum contain postings with a
term and a location computed by means of Dewey paths.

Shredding an XML document is done by extracting all terms from the source
document and combining them with locations. This is done as follows: Read through
the whole document while extracting terms and outputting(term,location)
pairs. In the case of flat documents,i.e. HTML or TXT files, generating the
(term,location)pairs are straightforward since thelocation part is simply the
document itself. However, since we want to index XML documents at the granularity
of document elements, we facilitate Dewey paths for addressing individual elements.

Computing a Dewey path is a simple task. As described in Section 3.1, the Dewey
path of any given element within an XML document can be computed by recording all
the Dewey numbers of the encountered elements (generated bythe auxiliary function
nid) found on the path from the document’s root element (cf. Definition 3.1).

In practice, parsing XML files is conducted using the external Expat library [37].
Expat is a stream-oriented XML parser library written in C (though we use a
C++ wrapper). Shredding is done by parsing the XML document with Expat.
Communication from the parser to the shredded is conducted using callback functions,
i.e. function handling start tags, end tags and character data.

The main idea of using Expat callback handlers to parse XML documents is
illustrated in Figure7.3. After reading the content of XML file into a buffer, Expat
invokes theOnStartElement handler when it encounters an XML start tag, and
the OnEndElement handler when it encounters an XML end tag. The start and
end tag handlers are in our system used for calculating the Dewey path. In our C++
implementation, the stack data structure (implemented as avariable length vector of
integers) is used to to keep track of the current Dewey path. Using a stack, we can
push and pop Dewey numbers when theOnStartElement andOnEndElement
handlers, respectively, are called.

Whenever the parser encounters a character data element, theOnCharacterData
function is invoked, and this function will then extract alltokens from the element.
Before a token can be represented in(term,location) posting format, a number
of conditions should be checked: (i) if the read token is alphanumeric, all characters of
the token is converted to lowercase; (ii) if the read token isnot a stop word, the token is
set to be a term associated with a Dewey path,i.e. as a(term,location) posting.
After that, the posting will be inserted into amap container. This container is organized
in the same way as a document in CI (as described in Section6.1.1on page37), which
means that for each term we associate an inverted list. Termsoccurring more than
once within the same document are therefore handled by appending to the associated
inverted list. Table7.2 shows an example of the output generated by the shredding
process.

As can be seen from Table7.2all letters are converted into lowercase. The reason
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Figure 7.3 : Parsing process

Term Dewey path

anatomy /1/1/1
large /1/1/1
scale /1/1/1
hypertextual /1/1/1
web /1/1/1 /1/2/1
search /1/1/1
engine /1/1/1
sergey /1/1/2 /1/2/2
brin /1/1/2
lawrence /1/1/2
page /1/1/2
2000 /1/1/3
building /1/2/1
distributed /1/2/1
full /1/2/1
text /1/2/1
index /1/2/1
melnik /1/2/2
sriram /1/2/2
raghavan /1/2/2
beverly /1/2/2
yang /1/2/2
hector /1/2/2
garcia /1/2/2
molina /1/2/2

Table 7.2 : Example output from the shred tool
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for this is twofold. First, it makes the algorithms for retrieval much simpler and more
efficient, since query terms are turned into lowercase and matched against the keys
in the index. Second, storing everything in lowercase reduces the number of keys in
the index, which both has an impact on the size of the index as well as retrieval time.
Additionally, in order to reduce the size of the index we are using a stop word filter.
Currently, the collection of stop words includes English pronouns and adverbs.

7.2.1.2 Patching

Shredding documents as described above introduces an immediate problem of
distinguishing postings of one document from postings of another document. A quick
example is, for instance, whencopy_file.xml is an exact copy offile.xml.
Therefore, shredding documents may result in a set of postings with the same values
in both theterm andlocation fields. In order to distinguish a set of postings of
one document from another, we introduce a document identification, called DocID. To
save space we have chosen to represent DocID in thelocation. A straightforward
way to do this is, once a file has been shredded, we generate a unique DocID value
(elaborated further in Section7.2.1.3), and this value will then be pre-pended to all of
the Dewey paths of this document (see Figure7.4(b)).

However, in our implementation, a slight improvement has been made; we simply
substitute the Dewey number of the document root with DocID.Recalling that the local
ordering scheme (see Section3.1) always assigns the document root Dewey number 1
after shredding. Instead of having this value replicated inall postings, we choose to
substitute this value with DocID. In this way a number of advantages is achieved: (i)
the length of location becomes shortere, (ii) less memory isneeded to store, and (iii)
response time will be slightly enhanced.

7.2.1.3 Getting DocID

DocID is an integer value, represented by a32 bit unsigned int. Whenever a
document is added to the index, it is assigned a unique generated DocID value that is
one larger than the previously assigned value. Assigning DocID to documents in this
way, the DocID values may be exhausted at some point, because(i) we always need
to add new documents, thus new DocID values must continouslybe generated, and (ii)
the documents that have been deleted still occupy their DocID values.

To handle this situation, we need to reuse the DocID of the deleted documents.
This is done by looking up in theFileLogDel table (see Figure7.1(c)on page58) and
selecting the smallest DocID value, because whenever a document is deleted from the
index, its DocID and URI is registered in theFileLogDeltable (see Section7.3). Note
that whenever a DocID fromFileLogDel is reused, this DocID entry must be deleted.
If there is no free DocID inFileLogDel, a new DocID is generated. In ordinary SQL
this would be expressed as follows:

SELECT DocID FROM FileLogDel
WHERE IsFree = TRUE
ORDER BY DocID ASC
LIMIT 1
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DocID Dewey path

44 /1/1/1
...

...
44 /1/1/1
44 /1/1/2
...

...
44 /1/1/2
44 /1/1/3
44 /1/2/1
...

...
44 /1/2/1
44 /1/2/2
...

...
44 /1/2/2

(a) Before patching

location

/44/1/1/1
...

/44/1/1/1
/44/1/1/2

...
/44/1/1/2
/44/1/1/3
/44/1/2/1

...
/44/1/2/1
/44/1/2/2

...
/44/1/2/2

(b) Prepending

location

/44/1/1
...

/44/1/1
/44/1/2

...
/44/1/2
/44/1/3
/44/2/1

...
/44/2/1
/44/2/2

...
/44/2/2

(c)
Substitution

Figure 7.4 : Representation of thelocation field: (a) A set of Dewey paths along with
a generated DocID value 44;(b) All Dewey paths are prepended with DocID;(c) Dewey
number of the document root,i.e. the leading number in Dewey paths, are substituted with
DocID.

7.2.1.4 Storing

Once the data has been processed, the extracted postings should be stored in an inverted
index, more specific CI, where the value ofterm is stored in thekey field of the
database andlocation in the data field. This approach is chosen instead of a
forward index, in which the Dewey path of a given element is used as key, while all
terms are stored in the data fields (i.e. location order vs. term order as defined in
Definition7.2.1.4).

Shredding documents and constructing Dewey paths are done sequentially, which
implies that the extracted postings are in location order. However, CI expects data to be
in term order. Storing postings in CI in term order makes it faster to query the indexes
by terms. Further, it is more space efficient in that the number of terms is normally less
than that of locations.
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Definition 7.1 (Ordering). Given an XML document there are two sort orders:

• Location order: Given a set of postings(locl, terml), we sort by location as
follows:
{(loc0, term0), (loc1, term1), ...} and∀i, j ∈ Z+ with i < j ⇒ loci < locj .

• Term order: Given a set of postings(locl, terml), we sort by terms as follows:
{< term0, (locd(0,1), ..) >, ...} where∀i, j ∈ Z+ with i < j ⇒ termi < termj

andd : N × N 7→ N is the auxiliary function that finds the locations associated with
the given term.

7.2.1.5 File Consistency Check

Before storing postings into CI, file information is registered in theFileLog and
FileLogAccesstables (see Figure7.1 on page58). The FileLog table is provided to
keep track of the indexed files. In this table we store a numberof attributes,e.g.DocID,
URI, TimeStamp, AuditTime, IsPersistent, and IsFreeID, where DocID is the primary
key (see Figure7.1(a)).

• DocID is a unique identifier of a document.

• URI describes the physical location of a document (e.g. file.xml or
www.example.com/example.xml)

• TimeStamp indicates the time of last update, as reported by the file system.

• AuditTime indicates the last system time where KALCHAS touched the file (i.e.
time of indexing).

• IsPersistent is a Boolean value indicating if the postings associated with the
document are stored in persistent storage (DI or SI) or in volatile storage (CI).

• IsFreeID is a Boolean value used to indicate if the DocID is occupied by any
“live” documents (see Section7.2.1.3).

When engineering a full-text index, one should carefully consider the possible
issues of consistency. Having data stored in volatile indexes (i.e. CI) runs the risk
of rendering invalid data in the index. This can be shown by indexing a document,
storing it in CI, and then turn off the power to PC, all data residing in CI will get lost
and must be reconstructed to turn the index to a valid state.

To accommodate such inconsistencies we have introduced theIsPersistent attribute
in FileLog. By default, all documents are initially stored in CI and arethus prone
to be inconsistent. To indicate that shredded documents arein this state, we set the
IsPersistent to “false”. As soon as shredded documents are migrated from CI to DI, the
attribute will be set to “true”.

7.2.2 Database Usage

Recapturing the above, we see that adding documents to the index consists of the
following processes: (i) shredding documents to obtain inverted lists for the documents,

www.example.com/example.xml
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(ii) generating a unique DocID for associating postings with a specific document (and
URI) and finally (iii) storing the inverted lists in the underlying indexes. Operations on
the tables caused byAddFile are shown in Table7.3.

Read Write Delete

FileLog Always Occasionally Never
FileLogAccess Never Occasionally Never
FileLogDel Never Never Occasionally

Table 7.3 : Database tables modified by theAddFile operation

7.3 Deleting Files

Working in a desktop setting, some files are prone to be deleted. This could happen
when the user runs out of disk space or whenever a document gets physically deleted.
To cope with the situation we have implemented theDeleteFile in the KALCHAS

API.

7.3.1 Implementation

The working process ofDeleteFile is illustrated by the flowchart in Figure7.5.
This operation takes a URI as input. First, it is verified if the document is indexed. If
not, nothing will be done and the file deletion process terminates; otherwise, the file
should be deleted from the index.

Start
 End
Delete
File


no


yes

Indexed?


Figure 7.5 : The process of deleting files

Deleting a document from the index is done in two steps. The first step assures that
postings from the document is omitted from query results, and the second step removes
the actual postings from the indexes. Asserting that obsolete documents are omitted in
queries is done by deleting the entries inFileLogandFileLogAccessassociated with the
DocID for the current document. Removing the postings from the indexes is postponed
until the next index merge. This is done by inserting a new entry in the FileLogDel.
Once a merge occurs the entry associated with the DocID is updated and IsFreeID is
set to “true”.

We will elaborate on the document omission from queries in the description of
QueryRetrieve. The description of the merge function is found in Figure6.12on
page54.
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7.3.2 Database Usage

Deleting a single document from the index is reflected immediately in terms of query
results and in terms of database entries internally in KALCHAS. The tables used by
DeleteFile is shown in Table7.4.

Read Write Delete

FileLog Always Never Occasionally
FileLogAccess Never Never Occasionally
FileLogDel Never Occasionally Never

Table 7.4 : Database tables modified by theDeleteFile operation

7.4 Updating Indexes

Utilizing the file system integration introduces the demandfor an update functionality
in the index. As an example, imagine a user writing a short novel in a word processor
with auto-save enabled. Every time the auto-save writes to disk, the file system notifies
KALCHAS about the change. This change is handled by theUpdateFile function.

7.4.1 Implementation

The inverted index needs to be updated in order to reflect real-time changes in the file
system. In order to update files, KALCHAS provides theUpdateFile function. The
working process ofUpdateFile is illustrated by a flowchart in Figure7.6.
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Figure 7.6 : The process of updating indexes

This operation takes a file name as input. First, the file is checked whether it has
been already indexed. If the file has not been indexed, the filewill be added using
AddFile function. If the file is indexed and has changed (checked using the attribute
TimeStamp ofFileLogand the file system’s time stamp), the file is deleted (Section7.3)
from the index and then re-inserted. If the file is not indexed, the file is simply added
(Section7.2). This process is illustrated in Figure7.6.
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This file update strategy is straightforward to implement, and it seems quite simple.
However, it has a main drawback. Let us consider the following case. Suppose that only
a few words (says, a single word) in an indexed file are now added/deleted/changed.
To update this file, every postings associated with this file need to be deleted and added
again in any cases, even though some of the postings need not to be updated at all.
Updating files in this way may result in lots of redundant diskreads and rewrites if
files are large. Therefore, this file update strategy is not disk I/O efficient. However, if
a file is completely changed (i.e., every(term,location) postings are changed)
then using the delete-(re)add strategy seems to be fine.

7.4.2 Database Usage

The described update strategy has only few direct accesses to the database. However,
the calls toAddFile andDeleteFile introduce more database use. Table7.5
shows the tables involved in updating a file; indirect cases are marked with parentheses.

Read Write Delete

FileLog Always (Occasionally) (Occasionally)
FileLogAccess Never (Occasionally) (Occasionally)
FileLogDel Never (Occasionally) (Occasionally)

Table 7.5 : Database tables modified by theUpdateFile operation. Indirect cases are
marked with parentheses.

7.5 Keyword Search

Having a full-text index makes no sense without a search functionality. The KALCHAS

API search functionality is a keyword search, as described in Section1.1.4. This sec-
tion will describe the implementation of the search functionality (QueryRetrieve).

7.5.1 Implementation

When performing keyword search, we need to query the inverted indexes, retrieve
relevant postings, and compute meets. To do so, we use theQueryRetrieve
function. The working process ofQueryRetrieve is illustrated by a flowchart in
Figure7.7.

Generally, keyword searches proceed as follows. First, users submit search term(s)
into the system. There are provided three interaction options:

• Kalchas Console (see Figure5.2),

• Kalchas Web Interface (see Figure5.4), or

• Kalchas Explorer, a graphical user interface (see Figure5.3).
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Figure 7.7 : The process of keyword search
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When search terms are submitted, the system then checks for stop words and removes
them if encounted. Afterwards, KALCHAS checks for the existence of search terms. If
there are no valid search terms, the system issues a message to users and terminates;
otherwise, KALCHAS looks up in the cached, dynamic, and static indexes to retrieve
all the postings associated with the search term(s). As a result, a set of selected but
unsorted postings is returned. These postings will then be merged and ordered by
location. Next, these postings will then be passed to a filter to filter out the deleted
files. Afterwards, themeetoperator takes these sorted postings as input and computes
(and at the same time ranks) meets between them. Finally, thesearch results will be
returned and displayed on the chosen interface.

7.5.2 Database Usage

In general, the search functionality does not need to use anyof the supplied databases.
However, in order to filter out results originating from deleted documents and translate
DocID’s of the results into file names require lookups in the databases. The use of the
database is shown in Table7.6.

Read Write Delete

FileLog Never Never Never
FileLogAccess Always Never Never
FileLogDel Always Never Never

Table 7.6 : Database tables used by theQueryRetrieve operation



Chapter 8

Tests and Evaluation

8.1 Test Strategies

To ensure that the system works as expected several tests have been conducted. Our
tests can be classified in two categories: functionality testing and performance testing.
In functionality testing the aim is to test the operations supported by KALCHAS. In
performance testing the focus has been to verify the behavior of the system by tuning
different parameters, and to validate the relationship between different factors. In this
context we focus on testing the performance of shredding documents, migrating data
from CI into DI, and merging DI with SI. Furthermore, we also test the compression
ratio of different codecs.

The test has been conducted on both real and synthetic data. Real data is taken from
a collection of Shakespeare plays presented by Jon Bosak [51] while the synthetic data
is generated using XMark [52] and xmlgenz1. We have used a desktop Intel Pentium
1,3 GHz CPU, with 512 MB RAM and a 40 GB harddisk (IDE, 5400 RPM,single
partition) as test system. This is a 2005 substandard desktop system, chosen in order
to generate realistic results in terms of machines available in the average household.

Each test is structured with an introduction to the problem at hand, followed by
specific test cases and finally an evaluation is given. An outline of this chapter is given
below:

File Adding. Profiling of the components involved in adding new documentsto
the index. This is done in Section8.2 and relates to the discussion held in
Section7.2.1.1on page60.

CI-to-DI Migration. Supplementing the discussion in Section6.2 on page41, we
evaluate different parameters involved in migrating postings from the volatile
in-memory CI to the disk based Berkeley DB managed DI.

Merging DI and SI. Section Section8.4evaluates on the different strategies available
when DI and SI should be merged. The test supports the arguments given in
Section6.3on page50.

1xmlgenz is a custom made tool for generating Zipfian distributed documents.
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Compression Schemes.A wide range of compression schemes is profiled, in order to
discus which codec would be more appropriate in DI and which would be more
appropriate in SI. The test can be found in Section8.5 and concludes on issues
brought up in Section3.2on page14.

Keyword Search. Implementing a full-text index embodying keyword search entails
that the function also must be evaluated. Section Section8.6 demonstrates the
techniques described in Chapter4.

8.2 File Adding

The process of adding a document or file to the index is done by sequentially shredding
and indexing the content of the file. This section will test and evaluate on the techniques
implemented in KALCHAS for adding files or documents to the index.

8.2.1 Test

Profiling the performance of shredding, in terms of execution times, is depending on
a variety of parameters (i.e. the distribution of words, size of the documents, system
work load, etc.). We have chosen to test the shredder using the following setup:

Test Data I. 600 small XML files in the range 5 KB - 45 KB.

Test Data II. 40 XML files in the range 45 KB - 500 KB.

Test Data III. Shakespeare plays in the range of 100 KB - 500 KB. All cases hasan
overall size of 10 MB.

Conducting the above tests gave the results shown in Figure8.1.

Case No. files No. bytes Execution time KB/sec Avg. unique terms
i 600 9.118.131 5.948 ms. 1497,05 31
ii 40 10.536.595 12.969 ms. 793,40 8362
iii 50 10.474.072 7.871 ms. 1299,53 3404

Figure 8.1 : Results of the shredder test

8.2.2 Evaluation

Looking at Figure8.1we see that the throughput of the shredder module seems to work
faster on small files than on large files (i.e. the avg. throughput is remarkably low in
case (ii) compared to (i)). This behaviour is due to the distribution of words within
the documents: The fewer unique indexed term a document introduces, the faster the
shredder will process the file. Looking at case (iii) we see that the average throughput,
on human readable text, is acceptable whereas XMark generated data imposes poor
execution times. The slow down occurs when a document has a low term utilization,i.e.
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the same term rarely occurs more than once in the document, since we intermediately
store all shredded data in a sorted tree that needs expensivere-balancing every now and
then. Inserting duplicate occurrences of terms is cheap, since the tree does not need
re-balancing (the node is already in the tree) and insertingin the linked list is done in
O(1). An interesting observation is, that small files generated by XMark,i.e. files from
case (i), consists of almost 80% structural information (start and end tags) and almost
no textual content.

8.3 CI-to-DI Migration

As mentioned in Chapter6, the cached index is temporary storage for shredded
documents waiting either to be updated by the user or migrated from CI to the disk
based DI. This section will underline the necessity of an in-memory storage and
demonstrate the increased performance in terms of execution time. In the existing
implementation of KALCHAS we have used multi-threading to gain performance when
performing bulk insertions: KALCHAS spawns a worker thread for migrating postings
from CI to DI while allowing KALCHAS to continue indexing in the main thread. This
multi-threading has been disabled while testing the CI-to-DI migration performance,
since it would obfuscate the results. Additionally, we havealso disabled the DI-to-SI
merge operation, which will be evaluated separately in Section 8.4.

8.3.1 Test: Migration

Once a file has been shredded, postings are moved from a temporary storage into the
actual indexing structure. The following tests will measure the performance of the
implemented index infrastructure, as discussed in Chapter6.

Our tests is conducted with the Zipfian distribution law in mind, meaning that we
perform the tests by simulating expected desktop user behavior, i.e. documents are
modified in a way that follows a Zipfian distribution. Additionally, we also test how
performance is influenced by a random pattern of modifications. The two types of
behaviors are captured in the following test cases:

Test Case I. Loading the XML collection and iteratively updating files atrandom.

Test Case II. Loading the XML collection and iteratively updating files according to
a Zipfian distribution.

Case II simulates a Zipfian distribution while case I simulates a uniform
distribution. In order to implement the above test, we have used the following statistical
functions:

Definition 8.1 (Uniform and Zipfian probability functions). The probability of choosing
a specific filefi from a given collection of filesF whereF = {f0, ..., fn}.

• Uniform: P (i) = 1
n

• Zipfian: P (i) = 1
iα with α > 1
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Figure 8.2 : CI-to-DI migration performance

8.3.2 Evaluation

Figure8.2 shows a graph indicating the duration in ms. when executing the above
mentioned test cases. From Figure8.2 we observe that having a low cache size has
crucial impact on indexing time,e.g. when having no cache (i.e. a cache size of
0 postings) it takes nearly 450.000 ms. to index the XML collection. The figure
also shows that the chosen cache replacement policy (LRU) responds very well to
the assumption that users follow Zip’s law when updating files, i.e. updates some
files regularly while others remain untouched. It should be noted that as the cache
size increases, the importance of having a cache replacement policy with a high hit
ratio decreases; when only having limited amount cache the importance of “guessing”
right when replacing postings is essential. Increasing thecache size to comprehend
all postings extracted from the collection does naturally result in equal performance
of the two test cases. However, storing the whole index in memory is not a desired
feature when implementing a full-text search engine for desktop use, as this scheme
could cause unreasonable amount of main memory to allocatedto KALCHAS thereby
impacting general system responsiveness. Finally, choosing a cache size that fits all
users is not possible as the number of files, users frequentlymodify, and the size of
these vary from user to user. However KALCHAS is implemented with a default cache
size of20.000 postings.
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8.4 Merging DI and SI

As mentioned in Chapter6, SI is the static storage of KALCHAS and postings located
in this index originates from files left untouched on the harddrive for a long period of
time. As a consequence SI is the least frequently updated index. However, in order to
test the performance of SI with respect to different merge policies, we make a number
of simplifications making it possible to frequently migratepostings from DI to SI. In
this context, a merge police is simply a trigger indicating when a merge of DI and SI
should be performed, and based on experience from [19] a merge policy describes a
maximum ratio between DI and SI. The tests are conducted by bulk loading XML files
into KALCHAS, thereby causing both CI and DI to become full more often thanin an
every day use scenario. Furthermore, this synthetic workload differs from normal usage
in that documents are not modified. However, for the purpose of evaluating different
merge policies these simplifications are valid.

As discussed in Section6.3.3 the performance of both the incremental update
strategy and the re-merge strategy depend on the size of DI, but in contradicting ways.
By using different merge policies it is possible to either favour the former or latter
strategy, thereby affecting overall indexing time as well as indexing performance with
respect to a single file.

8.4.1 Test: Merge

In order to test the performance of different merge policiesa 260 MB large XML data
set was generated with XMark. Five tests were conducted using merging policies with
ratios of 100%, 50%, 33%, 25% and 20% respectively. Each testwas conducted by
initially resetting both DI and SI and then bulk loading the XML document collection.
The CI was setup to hold a maximum of 20.000 postings, meaningthat once this limit
was exceeded a set of postings were migrated to DI. If then thenumber of postings in
DI exceeded the merge policy ration, DI and SI would be merge.Figure8.3 illustrates
the overall indexing time as a function of the collection size for the five merge policies.
Figure8.4illustrates the average merge duration as a function of the collection size.

8.4.2 Evaluation

Looking at figure Figure8.3, we notice that with respect to the overall indexing time
of a 260 MB document collection, there is less than a 1000 seconds difference between
the duration of the best performing policy and the worst performing policy. While
this could be interpreted as merge policies having little influence on performance,
the figure only shows one property of the system, namely overall indexing time for a
small/mid-sized document collect. As opposed to the overall indexing time, the average
indexing time is often equally or even more important in a desktop environment, since
often users are not concerned with overall efficiency, but rather system responsiveness.
Hence, from the perspective of a desktop user it is often moredesirable to have fast
incremental updates than good cost/benefit ratios for mergeoperations. This property
is illustrated by Figure8.4, which illustrates the average merge duration as a function
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Figure 8.3 : Overall performance of indexing XML collections while modifying the size
of DI

of the collection size2. Focusing on this property, the 1:5 ratio policy is by far more
desirable than the 1:1 ratio policy, as the average time spent on incremental updates and
resource demanding merge operations is significantly smaller - although the overall
indexing time is the same. Thus, there is a trade-off betweenperforming a few
expensive operations and many reasonably cheap operations.

Returning to Figure8.3we notice that for small collection sizes the 1:1 ratio policy
performs best, however as the collection exceeds 160 MB its performance degrades.
This can be explained by the conflicting interests of the index maintenance strategies
as discussed in Section6.3.3. For collections size less than 160 MB and using the
1:1 ratio policy, the size of DI does not exceed the point, where incremental update
become prohibitively expensive due to page reorganization. However, passing the 160
MB collection size, this point is exceeded and performing incremental updates becomes
the dominant factor. In general, the problem is that the costof performing merges is
linear to the input size (i.e. DI + SI), while the cost of incremental updates grows in
the size of the tree. Hence, regardless the merge policy ratio, the cost of incremental
updates will at some point become more expensive than merging.

Using the low ratio merge policies, however, preference is given to the incremental
update strategy. By using a 1:5 or 1:4 ratio policy the growthrate of DI is limited as
postings are frequently migrated from DI to SI, thereby making page reorganizations

2Note, the duration covers two properties: 1) Performing many small merges results in better average
merge duration than fewer larger merges - naturally. 2) Performing frequent merges results in a limited
growth of DI which in turn renders better incremental updateperformance.
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less expensive when performing incremental updates. However, as illustrated by
Figure8.3, using such policies does not result in overall best indexing time. Rather,
poor cost/benefit ratios now become the dominant factor.

The tests demonstrate that it is difficult to point out a single merge policy as being
best. Rather, any policy is only “best” for a certain collection size and a preferred
system behavior,i.e. good incremental update performance or good overall indexing
time.

8.5 Compression Schemes

In this section we will look into the different aspects of data compression that have
been utilized in our project. In order to reduce the amount ofdata stored in both DI
and SI, we have tested a range of specialized data compression strategies. Our findings
have been that we need to divide our compression schemes intotwo major groups: (i)
compression of individual locations, and (ii) compressionof lists of locations. Case (i)
is a direct consequence of having DI which is updated frequently while (ii) is associated
with SI which is updated rarely. In (i) we must be able to compress and decompress
efficiently without adding a size overhead to the data while (ii) may favor compressed
data size over compression time.

8.5.1 Test: Postings

A crucial property of single locations, as stored in DI, is the fact that the number of
bytes used for the internal representation is relatively small. The size of the raw data
is dependant on the depth of the XML document,i.e. if a given Dewey path is of
length5 the internal representation would require20 bytes. Looking at the previously
mentioned codecs (see Section3.2) we see that model-based codecs, such as Huffman,
Rice and LZ77 adds too much overhead to the compressed data and thus cannot be
used.

The test was been conducted on both real and synthetic data. Real data was taken
from a small collection of Shakespeare plays as presented byJon Bosak [51] while
the synthetic data was generated randomly and thus bring outa worst case scenario of
postings.

Synthetic Data. Encoding of the synthetic data is shown in Figure8.5. The figure
is generated as a frequency graph where the property of produces many small
compressed locations and only a few large compressed locations is preferable.
As expected, writing raw data (in this case 4 byte per Dewey number) is the
least efficient way to encode a Dewey path followed by the unary coding (no
matter if RLE is applied or not). Using our customized VBL codec the coded
data is around 40% of the original raw representation. Additionally, the VBL
codec is the only compression scheme which clearly producesonly few very
large compressed locations.

Real Data. After having tested the selected codecs on synthetic data wewill now
demonstrate the efficiency of the VBL compared on a collection of real data.
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Figure 8.5 : Postings: Compression test of random generated data.

A frequency graph of the test is shown in Figure8.6. Once again we observe that
the RAW data is unusable without further compression applied. In contradiction
with the results of the unary coding on synthetic data we observe that the unary
notation appears to be useful on real data. However, one should be very careful
when using unary coding, since it may perform very well on lowvalues and very
poorly on high values. Adding an RLE compression to the unarycode reduces
the output size remarkably and the overall compression ratio is comparable with
the VBL compression, which again proves to be most efficient.

8.5.2 Test: Inverted Lists

Moving on to SI and compression of the data stored in SI, we observe that the data
sizes are remarkably larger than those of DI. This is caused by the storage scheme
of SI, which collapses all locations associated with a giventerm into one entry in the
index. The increase in data size introduces the need and feasibility for more advanced
compression techniques than those applied in Section8.5.1. It is beyond the scope of
this project to invent new compression codecs; however, we have tested a variety of
different standard codecs (see Section3.2.2). As with the compression test for DI, the
compression test for SI is conducted on both synthetic and real data.

Synthetic Data. The results of encoding the synthetic data set using the chosen set
of compression codecs is shown in Figure8.7. The most efficient compression
scheme in the test is the combination of the BWT and RLE codecs. The next
best combination of codes is VBL and Huffman. As expected theraw data
representation is unusable and VBL encoding alone is inefficient. Comparing
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Figure 8.6 : Postings: Compression test of Shakespeare plays.
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the combination of the BWT and RLE codecs with the raw data representation
we see that we are able to compress data down to 28%.

Real Data. After having tested the codecs on synthetic, generated, data we will now
see how the codecs perform when applied to real data. Once again the real data
is provided by the Shakespeare plays Othello, Mac Beth and Hamlet. Output
of the compression test is shown in Figure8.8. In general the figure is as
expected; however in this case the two best compression schemes has swapped
places, meaning that the combination of VBL and Huffman codecs is to prefer
over the combination of BWT and RLE. This is due to the nature of the XML
representation of these Shakespeare plays, where the document tree is wide and
shallow (i.e. the Dewey paths are short with very little overlap among them). The
VBL codec encodes the lists of Dewey paths into very “noisy” data, which the
Huffman codec is able to compress very efficient. Additionally the combination
of BWT and RLE works best on longer Dewey paths with higher redundancy
of Dewey numbers (i.e. XML documents with a narrow and high document
tree). Looking at Figure8.8 it is worth mentioning that the noise occurring in
the bottom of the graphs is caused by the associated postingsare deeply nested
in the XML document, which makes the accompanying Dewey paths relatively
long.
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8.5.3 Evaluation

Based on the shown tests we are now in a position to evaluate onwhich compression
codecs, or sequences of codecs, is preferable in SI and DI. Inthe case of compressing
single postings (i.e. in DI); the Variable Byte Length codec proved its worth on
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both synthetic and real data. However, there are certain situations where the unary
codec may be preferred —e.g. in indexes with very few documents where all of the
documents span over narrow and low document trees.

When compressing inverted lists, it is inefficient to encodeonly using the VBL
codec. A combination of VBL and Huffman or BWT and RLE is more attractive,
depending on the situation. In general, the combination of VBL and Huffman is
preferred, however the BWT and RLE combination should be preferred in cases where
one is certain that documents have high document trees with redundancy of Dewey
numbers.

8.6 Keyword Search

Test and evaluation on the keyword search functionality in KALCHAS should be seen
as an extension to the results found in [19]. These tests established the fact that the
scan-based algorithm (previously mentioned as the line-based algorithm) is by far the
most efficient implementation. However, while this algorithm was the most efficient
one its initial implementation returned inaccurate results,e.g.querying a collection of
Shakespeare plays for the terms “thunder” and “lightning” would return hits ranking
multiple occurrences of either term higher than the hits were just the two terms were
present. As a result of this the scan-based algorithm has evolved introducing new
design objectives and improvements of results.

8.6.1 Test: Quality of Results

A small test setup consisting of a 10 MB collection of XML documents has been
indexed by KALCHAS in order to test the keyword search functionality. In particular,
we have indexed a XML file generated from the bibliography used in this report.

Testing the quality of results of search engines is always difficult, since quality of
results is a matter of subjective opinions and thus no formalevaluation is possible [8,
13]. Utilizing the meetoperator we have indirectly defined what KALCHAS perceives
as plausible results (Definition4.4 on page23): (i) rank specific nodes over general
nodes and (ii) rank by node proximity.

Query Results. Executing a query ofrasmusand dennis returns the<author>
node containing “Dennis Alexander Nørgaard and Rasmus Kaae” from the
bibliography entry referring to the DAT5 report [19]. This is illustrated in
Figure8.9. Returning to the problem of ranking multiple occurrences of single
terms higher than single occurrences of multiple terms; we see that Figure8.9
takes care of this. Notice how the element containing both “rasmus” and
“dennis” is ranked higher than elements containing only “rasmus” or “dennis”.

Stop Word Filtering. Introducing stop word filtering, as described in Defini-
tion 2.3 on page9, has caused new issues to arise. Searching for the sentence
“to be or not to be” in Hamlet returns an empty set, as shown in Figure 8.10.
This is caused by the fact that each individual term is a stop word. However,
looking at Google we see similar problems. The Google searchengine is
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Figure 8.9 : The keyword search for “rasmus dennis” returns plausible results

confused by the query string, “to be or not to be”, and suggests executing a
Boolean query with the OR-operator. In order to retrieve relevant results on
Google one has to formulate a quoted query (which seems to be implicitly done
when querying Yahoo! for the exact same un-quoted query). Instead of simply
leaving the user with an empty result set, the web interface of K ALCHAS suggests
alternative search terms. This is done by looking up (potentially) misspelled
words in the online Merriam-Webster3 dictionary. The suggestions proposed by
the dictionary is presented to the user as shown in Figure8.11.

Figure 8.10 : Querying for “to be or not to be” in Hamlet yeilds an empty result set

3http://www.m-w.com

http://www.m-w.com
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Figure 8.11 : If an empty result set is returned by KALCHAS the PHP script suggests
alternative search terms

8.6.2 Test: Performance

Having established that themeetoperator, in combination with the underlying inverted
index, returns plausible results, we will now look into the performance of querying.

Query and Retrieve. Executing a query can be split up into three significant
processes: (i) retrieving postings from the index, (ii) ranking nodes withmeet
and (iii) presenting the results in a nice presentable way. As explained in
[19], (i) and (ii) is executed in less than a second on queries involving more
than 80.000 postings, but the Kalchas Explorer and the Web Interface reacts
somewhat slower. This behaviour is caused by the way we present results to
the user. In terms of Kalchas Explorer and Web Interface we have chosen to
present the results in a user friendly manner, heavily inspired by Google and
other search engines. However, generating this output takes a significant amount
of time, due to the fact that we do not index the actual contents of documents but
only the search-able terms. We have previously suggested using asparse index
for presenting query results faster, however optimizationof displaying results are
not within the scope of this project. Instead we have chosen to generate the user
friendly representation of the query results in real time, which is possible since
we do not expect to handle high rates of queries in a desktop environment.

8.6.3 Evaluation

Even though our system suffers a significant time penalty as result of not having
the document contents indexed, the implemented system is fast enough to respond
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to queries within a reasonable amount of time on a sub-standard 1,3 GHz machine.
Adding newer/better hardware will result in faster query evaluation. However,
facilitating themeetoperator enables us to refrain from having statistical datasuch
as term frequency in a particular document (IDF) and term frequency for the indexed
collection (TF) [13, 14, 27]. Adding such statistics could be done on the expense of
either disk space or query time:

Term frequency – whole collectionTF information is already available at query
time, since the results returned from querying the indexes (CI, DI and SI) is
an invert list containing all indexed locations of a term.

Term frequency – single elementIDF information for individual indexed elements is
available at the time of indexing, and could simply be storedtogether with the
term and location in the index.

According to other projects [13, 14], refining the ranking function by involving TF,
IDF and TF*IDF values, along with lowest common ancestor calculus, yields more
precise query results. While this may be the case, we have decided to focus on the
meetoperator as the primary ranking function and save both disk space and time spent
on executing queries.



Chapter 9

Conclusion

We will now evaluate and conclude the work conducted in this report. Moreover, we
will conclude by looking at the initial objectives set up in the beginning of the report
and evaluate the results found. Additionally, we will give alist of ideas for future work.

9.1 Conclusion

This project has addressed issues related to the development of a dynamic full-text
search enginetargeted at desktop PCs, with particular focus on implementing an
efficient index structure. To sum up the work conducted in this project, we will now
evaluate on the issues listed in Section1.2.

1. Architecture design. In order to design and implement an efficient index
structure, we have redesigned the code framework found in the previous project.
This is caused by a natural refactoring, moving from a console based and
imperative implementation to a modular object oriented framework, suitable
for experimenting with a range of equivalent modules without loosing the
overall functionality of the system. Additionally, the framework described in
Chapter5 complies with the need for integration with third-party applications,
by integrating KALCHAS’ functionality directly in the file system.

2. Index structure. To accommodate the Zipfian pattern assumed to be the default
user behavior (i.e. frequency of file updates follows Zipf’s law), we have
implemented an efficient cascading inverted index structure, consisting of (i)
an in-memory cached index holding the current working set, (ii) a disk based
B-tree holding documents migrated from CI, and finally (iii)a disk based B-tree
holding documents assumed to be static.

Empirical tests have proved that having the in-memory CI is useful. This is
seen as a consequence of the working set, which consists of the most recently
used documents. Migrating documents from CI introduces a penalty in terms of
in-responsiveness at the user end, since documents have to be moved onto disk
based storage. However, migrating documents from CI to DI isalso likely to
improve performance as incremental updates become less expensive, resulting in



9.2. FUTURE WORK 86

improved responsiveness. This behaviour is demonstrated through the empirical
tests found in Section8.3. Additionally, seeing that insertion of documents
in DI is done via incremental updates, DI will over time become increasingly
expensive to update. This is caused by the growth of the B-tree, since inserting
data into a large tree is slower than inserting into a small tree. When incremental
updates get too expensive, DI and SI can be merged.

Merging the two disk based B-trees (DI and SI) is I/O-bound and thus very
time consuming (as illustrated by the tests found in Section8.4). However, a
merge yields a more efficient system in terms of both queryingand updating the
indexes. This is caused by a higher page fill factor and betterstorage utilization,
as compared to DI, which was indicated in our previous report; i.e. working
on minimizing the storage space requirements would make theindexes more
efficient. Additionally, when merging, the content of DI is moved to SI rendering
DI empty and thus incremental updates can be performed relatively fast.

3. Index compression. Postings in DI are stored individually,i.e. as
<term,location> pairs. Compressing single postings using the customized
VBL encoder has shown to be more efficient than any of the tested codecs, as
can be seen from the tests shown in Section8.5.1.

Looking at the storage scheme for SI, Section3.2 introduces the need for
additional compression schemes. Compressing inverted lists stored as records
in the B-tree using a combination of the VBL encoder and a generic Huffman
codec entail the most efficient compression ratio, as shown by empirical tests in
Section8.5.2.

4. Keyword search. As with the previous project, this project embodies a full-
text index endorsing keywords searches. These searches aresupported by the
aforementioned underlying inverted indexes. Executing a search for a given
search string yields relevant results at the granularity ofXML elements. This
is facilitated by themeetoperator, implemented as described in Section4.3.
The empirical tests conducted in Section8.6 indicate that the search results
are plausible for most cases; however, there are still room for improvement by
adding statistical information to the ranking functionality.

9.2 Future Work

In this section we will evaluate our work and discuss topics to be investigated in the
future work.

9.2.1 Refactoring the Code

Due to the emphasis on modularity and extensibility the current design and
implementation of KALCHAS is not fully optimized with respect to performance issue
such as efficient/fast code and memory usage and re-factoring and redesigning the code
is assumed to increase the overall performance. Moving fromthe highly experimental,
and low-level, implementation made earlier [19] to the highly structured and very
flexible design of KALCHAS, has introduced an overhead caused by code abstractions.
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All parts of KALCHAS is modular, and thus can be replaced with a single line of code;
while this has proved useful while writing this thesis, it isnot as efficient as a more
strict and narrow design could be.

Using the experience gained in this project and the previousone will help
identifying key design issues for future versions of KALCHAS.

9.2.2 Constructing the Index

Constructing the initial index for KALCHAS has not been addressed in this project, but
tests conducted in Section8.3and sec:test-eval:Merging indicate that the initial creation
of the indexes could benefit from applying other strategies,than those used in every day
usage. For instance, it would be relevant to evaluate how theindex building process
employed by many search engines would perform when initially creating the indexes;
using such strategies the document collection is crawled, but rather than immediately
inserting postings directly into one of the ordinary indexes, postings could be stored
in sorted runs. Once the entire collection has been processed, the sorted runs could
be merged into SI by using a modified version of the merge algorithm discussed in
Section6.3.3.

9.2.3 Supporting Advanced Searches

Query handling is disjunctive with the current implementation of themeetoperator.
Although ranking gives preference to more specific results,e.g. results containing all
search terms as described in Section8.6, it would be useful to add support for explicit,
conjunctive queries as well.

Most web search engines support quoted search. As this can beconsidered a special
case of conjunctive search, it is currently not supported inKALCHAS. In order to do so,
it would be necessary to extend the scheme used for representing locations with term
offset within elements. Additionally, themeetoperator would need to be extended to
handle this types of query.

9.2.4 Refining themeet Operator

Querying the inverted index facilitating themeetoperator to rank results by relevance
is generally a good idea. It brings forth relevant, specific,results without adding
additional overhead to the data stored in the index. As explained in Section8.6.3,
implementing TF, IDF and TF*IDF style ranking would be necessary to increase
the level of relevance in search results. In previous projects [18, 19, 53], more
simplistic approaches to themeetoperator have been conducted, which all seem to
entail reasonable results but yet not as accurate as those found in commercial search
engines such as Google or Yahoo!. Adding statistical information, as described in
Section8.6.3, could be taken into consideration in a scenario similar to that of Guoet
al. [13]. However, this method of ranking using statistical information stored in the
database could be adopted in a revision of themeetoperator. While doing so we would
be able to present better query results and still maintain a decent size of the indexes
stored on disk.
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9.2.5 Auditing

In Section7.1, we introduce theFileLog table which features the AuditTime attribute.
However, this attribute is currently in-accessible from the KALCHAS API. This attribute
can be used to indicate the time of indexing of a document associated with a DocID.
This functionality could be used to retrieve useful information in the application layer,
i.e. to answer the question “Which documents have been indexed since the last query?”
In SQL this could be expressed as follows:

SELECT DocID
FROM FileLog
WHERE AuditTime > $LAST_QUERY_TIME

Adding support for AuditTime queries enables third party developers to implement
caching mechanism of search results into their applications, i.e. if the mentioned SQL
returns 0 rows, then the cached result is still relevant.

Additionally, it would also be able to verify that changes ina given file is updated
in KALCHAS. This is illustrated in SQL as follows:

SELECT DocID
FROM FileLog
WHERE AuditTime > $LAST_AUDIT_TIME AND URI = $FILE_URI

As can be seen from the two SQL examples, this information canbe extracted from the
current system; however, we have not had the time or need to utilize these functions in
the implemented applications described in Section5.2.

9.2.6 Displaying Results

As described in Section8.6.2, the current approach of displaying results is not very
efficient. For each result, the document containing the result is re-shredded in order
to extract the relevant element. Thus, increasing the displayed result set or displaying
results located at the end of a large file is expensive in termsof disk I/O.

A more efficient way of displaying results would be to includean index, mapping
locations toe.g. byte offsets in files. For every document added to the system,
entries in the index could be created while shredding. As such an index also requires
maintenance, it would be preferable to keep expenses low, hence the index could be
sparse, containing only a few(location,byteoffset) entries for every file. By
distributing these entries evenly across the document, it would be possible to display
elements by only performing a limited amount of parsing,e.g. if a 10 MB document
was indexed by only adding a entry to this index for 1 MB, it would be possible to
extract an elements from this document by only parsing 0.5 MBdata on average.
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9.2.7 Internationalization

We have observed that our current keyword search is most suitable for synthetic1

languages, as compared toanalytic2 languages. Most of the European3 languages
are synthetic (e.g. English, German, Danish), whereas most of the Asian languages
are analytic (e.g. Vietnamese4, Chinese5). In the European languages, most words
are represented as a single token, and only few span more,e.g. “in addition”, “for
instance”. In contrast, the number of words represented by two or more tokens in
Chinese, Vietnamese, Korean and Japanese are considerablylarge (see Figure9.1).
Thus, the ability to efficiently search a sequence of terms using quotes is desirable for
most Asian languages. Our current system does not support searching a sequence
of terms using quotes. When entering more than one term into the system, the
system will search for the occurrence of each in different documents, and return
the element/document that contains one of these terms. Eventhough the current
implementation does not directly supportanalytic languages, the current system will
search for any random permutation of the tokens comprising aword from ananalytic
language.

Figure 9.1 : An example of a Vietnamese text taken from an online dictionary

1http://en.wikipedia.org/wiki/Synthetic_language
2http://en.wikipedia.org/wiki/Analytic_language
3http://en.wikipedia.org/wiki/European_languages
4http://en.wikipedia.org/wiki/Vietnamese_language
5http://en.wikipedia.org/wiki/Chinese_language

http://en.wikipedia.org/wiki/Synthetic_language
http://en.wikipedia.org/wiki/Analytic_language
http://en.wikipedia.org/wiki/European_languages
http://en.wikipedia.org/wiki/Vietnamese_language
http://en.wikipedia.org/wiki/Chinese_language
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The current stop word filter implemented in KALCHAS relates to the English
language. Extending the project to include documents written in other native languages
would introduce new challenges: (i) How to identify the language used within the
document, (ii) How to construct reasonable lists of stop words for the filter, (iii) Is it
feasible to construct a stop words for all languages?

The XML standard recommends that all documents include information about
the character encoding used (e.g. UTF-8, UTF-16, ISO-8859-1, etc). While this
determines the character encoding, it does not reveal the language used in the content.
However, even if we were able to determine the language of a given document, not
all languages are suited for stop word filtering;e.g. analyticlanguages as described in
Section9.2.3contain words spanning multiple tokens in contrast tosyntheticlanguages
where a majority of words consists of a single token. This characteristic ofanalytic
languages makes it impossible to have stop word filtering forall languages; however,
the keyword search in KALCHAS does not support searching for composite terms, as
observed inanalyticlanguages.

Performing term frequent analysis on documents results in histograms usable
for identifying important terms. An interesting topic for future work would be to
experiment with a dynamic stop word filtering, based on the word frequencies obtained
from individual documents, and only index the tokens occurring rarely within the
indexed document.

9.2.8 Distributed Searches

Working in a small office settings, we imagine that KALCHAS could be used for
searching the whole office for specific documents. This couldbe implemented by
allowing Kalchas Explorer to perform searches on desktops connected to the LAN,
in somewhat the same way as common peer-to-peer file sharing programs.

9.2.9 Handheld Devices

Following the idea of distributed searches, we could imagine porting KALCHAS to
BlueTooth or W-LAN enabled handheld devices. A scenario could be that, entering a
building would allow one to query other handheld devices in the same building.



Appendix A

Source Code

The following sections provide the source code for the most interesting operations and
algorithms discussed earlier in the reprort.

A.1 Using KALCHAS API

The following source code demonstrates how to implement a simple application
embedding the KALCHAS API.

Listing A.1 : An example of using KALCHAS API

/ / I n c l u d e t h e Kalchas API header f i l e
#include <kalchas .h>
#include <list>
#include <string>

/ / Open t h e Kalchas API namespace
using namespace kalchas_api ;
using namespace std ;

int main (int argc , char ∗∗argv ) {
/ / I n s t a n t i a t e Kalchas
cKalchasAPI kalchasInstance ;
/ / An e r r o r va lue v a r i a b l e
eKalchasErrorCode retVal ;

cout < < "Adding:" < < endl ;
/ / Add a f i l e i n t o t h e index
retVal = kalchasInstance .AddFile ("bibliography.xml" ) ;

/ / Output t h e s t a t u s message from Kalchas
cerr < < cKalchasAPI : : ErrorCodeToString(retVal ) < < endl ;

cout < < "Querying" < < endl ;

/ / Create t h e query as a l i s t o f t e rms
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list<string> query ;
query .push_back ("Engine" ) ;
query .push_back ("Sergey" ) ;

/ / Dec lare a r e s u l t p o i n t e r v a r i a b l e
tKalchasQueryResult ∗result ;

/ / Query t h e index
retVal = kalchasInstance .QueryRetrieve (query , & result ) ;

/ / Output t h e s t a t u s message from Kalchas
cerr < < cKalchasAPI : : ErrorCodeToString(retVal ) < < endl ;
return 0 ;

}

A.2 Example Plugin: PGP File Support

The following source code demonstrates how to implement a file support plugin for
KALCHAS. The plugin is able to index PGP files by simply reporting thatthe file is a
PGP file; this is the only indexable data in PGP which consistsof checksums for PGP
encryption.

Listing A.2 : Example plugin – PGP file support

/ / I n c l u d e t h e Kalchas F i l e Suppor t Header
#include <KalchasFileSupport .h>
/ / I n c l u d e t h e STL s t r i n g l i b r a r y
#include <string>
/ / I n c l u d e t h e STL l i s t l i b r a r y
#include <list>
/ / Open t h e s t d namespace
using namespace std ;
/ / A s s o c i a t e our p l u g i n w i t h t h e o t h e r p l u g i n s
namespace kalchas_plugins {

/ / De f i ne our c l a s s as an i m p l e m e n t a t i o n o f t h e
/ / c K a l c h a s F i l e S u p p o r t i n t e r f a c e
class cPluginPGP : public cKalchasFileSupport {
protected :

/ / Cur ren t f i l e name
string m_Filename ;
/ / L i s t o f t o k e n s genera ted f rom t h e f i l e
list<string> m_Tokens ;
/ / I t e r a t o r i n m_Tokens
list<string> : :iterator m_Iterator ;
/ / L as t XML
string m_LastXML ;
/ / T o k e n i z e s a s t r i n g and pushes a l l t o k e n s
/ / onto t h e m_Tokens l i s t
void TokenizeField(string field ) {

string buffer = "" ;
for ( unsigned int i= 0 ; i<field .length ( ) ; i++) {

char ch = field [ i ] ;
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if ( KALCHAS_TOKEN_CHAR(ch ) )
buffer + = KALCHAS_FORMAT_CHAR(ch ) ;

else {
if ( buffer ! = "" ) m_Tokens .push_back (buffer ) ;
buffer = "" ;

}
}
if ( buffer ! = "" ) m_Tokens .push_back (buffer ) ;

}
public :

/ / Empty c o n s t r u c t o r
cPluginMP3 ( ) { }
/ / Se tup p r o c e s s i n g o f a new f i l e
virtual bool Initialize (const char ∗p_Filename ) {

m_Filename = p_Filename ;
m_Tokens .clear ( ) ;

}
/ / E x t r a c t t o k e n s f rom t h e opened f i l e
virtual bool Process ( ) {

TokenizeField ("Pretty Good Privacy PGP File" ) ;
m_Iterator = m_Tokens .begin ( ) ;
return true ;

}
/ / R e t r i e v e p o s t i n g s
virtual bool GetNext (char ∗ p_DestToken ,

unsigned int &p_DestTokenLength ,
unsigned int ∗ p_DestDewey ,
unsigned int &p_DestDeweyLength ) {

/ / Return f a l s e i f t h e end i s reached
if ( m_Iterator = = m_Tokens .end ( ) ) return false ;
else {

/ / Copy t h e token s t r i n g
strcpy (p_DestToken , ( ∗ m_Iterator ) .c_str ( ) ) ;
p_DestTokenLength = ( ∗ m_Iterator ) .length ( ) ) ;

/ / Se tup a dummy l o c a t i o n
p_DestDewey [ 0 ] = 1 ;
p_DestDewey [ 1 ] = 1 ;
p_DestDeweyLength = 2 ;
/ / Advance t h e i t e r a t o r
m_Iterator + + ;
/ / S i g n a l t h a t we have no t reached t h e end
return true ;

}
}
/ / Re lease any i n t e r m e d i a t e memory a l l o c a t e d
virtual bool Deinitialize ( ) {
m_Tokens .clear ( ) ;
m_Filename = "" ;

}
/ / Return t h e number o f e x t e n s i o n s suppor ted
virtual const int GetNumExtensions ( ) {
return 1 ;

}
/ / Return t h e s t r i n g o f t h e c u r r e n t suppor ted e x t e n s i o n
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virtual const char ∗ GetExtension (const int p_Which ) {
return "PGP" ;

}
/ / Re lease a l l data ( none )
virtual void DestroyInstance ( ) { }
/ / Tranform a Dewey Path i n t o readab le XML , t h i s i s
/ / s t o r e d i n t h e " < va lue >" tag o f t h e o u t p u t
virtual const char ∗ RetrieveXML (const int ∗p_DeweyPath ,

const int p_DeweyPathLength ,
const char ∗p_Filename ) {

m_LastXML = "<filetype>Pretty Good Privacy File - PGP</filetype>" ;
return m_LastXML .c_str ( ) ;

}
} ;
/ / Macro t h a t t a k e s care o f t h e e x p o r t f u n c t i o n s f o r t h e p l u g in
KALCHAS_EXPORT_DLL(cPluginPGP ) ;
} ;

A.3 meet Operator

KALCHAS’ implementation of the MEET-SCAN meet operator, as proposed in
Section 4.3 on page 22, is shown in the following source code. The code
relies on a range of non-standard functions, such asLongestCommonPrefix
andLongestCommonPrefixLength from thekalchas_kernel namespace.
cMeetOperator::Process takes a linked list of postings as input and computes
the results using a sorted container.

Listing A.3 : C++ implementation of the MEET-SCAN meetoperator

#include <meetoperator .h>

namespace kalchas_kernel {
/∗ I m p l e m e n t a t i o n o f t h e Meet o p e r a t o r∗ /
void cMeetOperator : : Process (tDeweyList &pInput ,

tResultSet &pResultSet )
{

/∗
Check i f t h e i n p u t s e t i s empty

∗ /
if ( pInput .size ( ) < 1 ) return ;

/∗
Check i f t h e i n p u t s e t on l y has one e lemen t

∗ /
if ( pInput .size ( ) = = 1 ) {

pResultSet .push_back ( ∗ (pInput .begin ( ) ) ) ;
return ;

}

/∗
Create an i t e r a t o r

∗ /
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tDeweyList : : iterator i = pInput .begin ( ) ;

/∗
S e t t h e c u r r e n t work ing meet t o t h e f i r s t e l emen t

∗ /
cDewey current_meet = ∗i ;

/∗
Counter f o r measur ing un ions o f m u l t i p l e o c c u r r e n c e s and
m u l t i p l e te rms i n t h e same meet

∗ /
int hitcounter = 0 ;

/∗
Should t h e l a s t c a l c u l a t e d meet be added t o t h e r e s u l t

∗ /
bool pushLast = false ;

/∗
I t e r a t e th rough t h e whole s e t

∗ /
while ( i !=pInput .end ( ) ) {

cDewey & current_dewey = ∗i ;
pushLast = false ;

/ / RULE 4
if ( hitcounter > 2 0 ) {

pResultSet [ hitcounter ] . push_back (current_meet ) ;
hitcounter = 0 ;
current_meet = current_dewey ;
pushLast = true ;

} else {
/ / RULE 1
if ( current_meet .GetDocumentID ( ) ! =

current_dewey .GetDocumentID ( ) ) {
pResultSet [hitcounter ] . push_back (current_meet ) ;
hitcounter = 0 ;
current_meet = current_dewey ;
pushLast = true ;

} else {
int lca_length =

current_meet .
LongestCommonPrefixLength(current_dewey ) ;

/ / RULE 2
if ( lca_length < 2 ) {

pResultSet [ hitcounter ] . push_back (current_meet ) ;
hitcounter = 0 ;
current_meet = current_dewey ;
pushLast = true ;

} else {
cDewey new_meet =

current_meet .
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LongestCommonPrefix(current_dewey ) ;

new_meet .SetKeyword (current_meet .GetKeyword ( ) ) ;

/ / RULE 3
if ( new_meet .GetKeyword ( ) .

find (current_dewey .GetKeyword ( ) ) = =
string : : npos ) {

new_meet .SetKeyword (new_meet .GetKeyword ( ) + " " +
current_dewey .GetKeyword ( ) ) ;

hitcounter + = 1 0 ;
} else {
hitcounter + + ;

}
current_meet = new_meet ;

}
}

}
i++;

}
if ( pushLast )

pResultSet [ hitcounter ] . push_back (current_meet ) ;
}

} ;

A.4 Shredding Using the Expat Parser

In the following we give the source code for the shredder class, inherited from a C++
LibExpat wrapper. The key functions areOnStartElement, OnEndElement,
andOnCharacterData. ThecShredderExpat class is used to create an Expat
instance to shred a given XML document while tokenizing all terms and calculating
<term,location> postings.

Listing A.4 : C++ implementation of the shredder function

namespace kalchas_kernel {
class cShredderExpat : public cExpat<cShredderExpat> {
protected :
tOrderdedDeweyList ∗m_Postings ;
tDeweyPath m_WorkingDewey ;

public :
/∗

I n s t a n t i a t e t h e shredded and s e t t i n g d e f a u l t v a l u e s .
∗ /

cShredderExpat (tOrderdedDeweyList ∗pDestPostings )
: m_Postings (pDestPostings ) {
/ / make room f o r Document ID / Document Root
m_WorkingDewey .push_back ( 0 ) ;

}

/∗ ∗
Return t h e number o f shredded p o s t i n g s f rom t h e c u r r e n t



A.4. SHREDDING USING THE EXPAT PARSER 97

XML document
∗ /

int NumPostings ( ) {
return ( int )m_Postings−>size ( ) ;

}

/∗ ∗
R e t r i e v e a l l p o s t i n g s as a l i s t o f Dewey Paths
tDeweyL i s t a l i s t o f < term , l o c a t i o n > p o s t i n g s s o r t e d by
l o c a t i o n .

∗ /
tOrderdedDeweyList ∗ GetPostings ( ) {

return m_Postings ;
}

/∗ ∗
Setup t h e S t a r t , End and Charac te r h a n d l e r s o f Expat

∗ /
void OnPostCreate ( ) {

EnableStartElementHandler ( ) ;
EnableEndElementHandler ( ) ;
EnableCharacterDataHandler ( ) ;

}

/∗ ∗
Process t h e s t a r t o f an e lemen t e . g . < e lement >

∗ /
void OnStartElement(const XML_Char ∗pszName ,

const XML_Char ∗∗papszAttrs ) {
m_WorkingDewey .back ( ) + + ;
m_WorkingDewey .push_back ( 0 ) ;

}

/∗ ∗
Process t h e end o f an e lemen t e . g . < / e lement >

∗ /
void OnEndElement(const XML_Char ∗pszName ) {

m_WorkingDewey .pop_back ( ) ;
}

/∗ ∗
Retu rns t r u e i f t h e g i ven i n p u t i s a l l o w a b l e
( a lphanumer ic )

∗ /
bool inline TokenChar (const char &p_Input ) {

return (p_Input >= ’a’ && p_Input <= ’z’ ) | |
(p_Input >= ’A’ && p_Input <= ’Z’ ) | |
(p_Input >= ’0’ && p_Input <= ’9’ ) ;

}

/∗ ∗
Process t h e c h a r a c t e r data w i t h i n t h e c u r r e n t XML Element

∗ /
void OnCharacterData(const XML_Char ∗pszData ,



A.4. SHREDDING USING THE EXPAT PARSER 98

int nLength )
{
if ( nLength < 2 ) return ;
cDewey dewey (m_WorkingDewey ) ;

char token_str [ 5 1 2 ] ;
int token_length = 0 ;

int idx = 0 ;
while ( idx < nLength ) {

int startIdx = idx ;

token_length = 0 ;
/ / I f t h e token read i s a lphanumer ic
while ( TokenChar (pszData [idx ] ) && idx < nLength ) {

/ / c o n v e r t t o l owercase
char ch = pszData [ idx ] ;
if ( ch >= ’A’ && ch <=’Z’ ) ch −=’A’ − ’a’ ;
token_str [ token_length + + ] = ch ;
idx++;

}

if ( idx ! = startIdx ) {
string token (token_str , token_length ) ;
if ( ! StopWords−>IsAStopWord (token ) ) {

(∗m_Postings ) [ token ] = dewey ;
}

}

idx++;
}

}
} ;

}
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