KALCHAS
a Dynamic Full-Text XML Search Engine

A Thesis Submitted to Aalborg University

in Partial Fulfillment of the Regulations
for the Degree of M.Sc. in Computer Science

by DENNIS ALEXANDER N@RGAARD
RASMUS CHRISTIAN KAAE
Duy THANH NGUYEN

This document is typeset usilJiX 2¢ with fonts Times, Platino, Courier, and
generated by at ex, bi bt ex, anddvi pdf. The figures are drawn using
MEeTAPOST, SmartDraw Xfig, Gnuplot and the pseudocode is typeset using

thenewal g package.

http://www.tug.org/metapost.html
http://www.smartdraw.com
http://www.xfig.org
http://www.gnuplot.info/

Faculty of Engineering and Science

Aalborg University

(8

Department of Computer Science, Fredrik Bajers Vej 7E, DK-220 Aalborg

TITLE: KALCHAS: a Dynamic Full-Text XML

Search Engine

PROJECT PERIOD:
February1*t, 2005 —
Junel5*”, 2005

TERM:
DAT6

PROJECT GROUP:
d635a (room E4-119)

GROUP MEMBERS:
Dennis Alexander Ngrgaard
Rasmus Christian Kaae
Duy Thanh Nguya

SUPERVISOR:

Albrecht Rudolf Schmidt
NUMBER OF COPIES: 7 (+ 1 online)
REPORT PAGES: 91
APPENDIX PAGES: 8
TOTAL PAGES: 102

SYNOPSIS:

This report documents our work on engineerin

dynamic XML full-text index, usable for querying

structured XML documents with simple syntax.
focus primarily on designing an index structure f

0a

Ve
ea-

sible for incremental updates while also discussing
associated maintenance strategies for efficigntly

migrating data from an in-memory index into di

sk

based B-trees. The proposed index structurg is
designed as a series of cascading inverted ind¢xes:
One index kept in main memory containing the

working set of documents, one incrementally b

uilt

disk based B-tree containing documents recently

ruled out of the former index, and finally one stdt

C

disk based B-tree containing documents that have

remained static in a period long time.

The efficiency of minimizing the amount of ddta

stored in the indexes is researched. We eval
on various compression schemes in the conte

uate
t of

compressing entire inverted lists vs. single postings.

In extension, we propose a customized variable

byte

length encoding scheme for storing Dewey paths

efficiently.

We facilitate the concept ofmeet operator in

order to filter search results and return the most

relevant XML elements. We refine our previou
proposed algorithm for theneetoperator in orde
to increase the relevance of result sets.

sly

In conclusion we conduct empirical tests,

showing that the implemented system perfo
reasonably within the intended environment.

ms

Preface

This report serves as documentation of the second part ontster thesis project
conducted by group D635A (E4-119) during the Spring 2005. e Pphoject was
developed under supervision by Albrecht Rudolf Schmidt te Database and
Programming Technologies Unidtt the Department of Computer Sciencaalborg
University, Denmark.

The work presented in this project originates from work byor&cht Rudolf
Schmidt and previous projects conveyed by fellow studentthe Database and
Programming Technologies Unit. Our primary goal for thigjpct is to implement
a working full-text indexing service over XML documents fese in desktops or small
networks. We show how the concept of theetoperator is used to gather information
on how query results could be ranked and displayed.

Citations are marked with square brackets with an integaicating the actual
source which can be looked up in the bibliography sectiohisfreport. An electronic
version of this thesis is availablefat t p: / / ww. cs. auc. dk/ i brary/.

Acknowledgements

First, we would like to thank Albrecht Rudolf Schmidt, Ph.BRssistant Professor,
for his supervision and for providing the initial code baseifmplementing thaneet
operator.

Moreover, we would also like to acknowledge the creatorghadollowing brands
as registered trademarks for using their respective pted&eepycat Berkeley DB,
Microsoft Visual Studio .NET, Microsoft Windows XP, DoxyggTortoiseCVS, Boost
C++, CommonC++, Basic Compression Library, Expat, ApaghieR, BX/IATEX 2¢,
SmartDraw, METAPOST, Xfig, and Gnuplot.

Duy Thanh Nguyd | duy@cs.aau.dk
Rasmus Christian Kaae | ka@es.aau.dk
Dennis Alexander Ngrgaard | @cs.aau.dk

http://www.cs.auc.dk/research/DP/
http://www.cs.aau.dk
http://www.aau.dk
http://www.cs.auc.dk/library/

Summary

The amount of data stored on desktop computers is growiny @éag, therefore, the
capability of conveniently searching documents based eir tontent and getting
search results presented at a fine granularity is becomirrg mportant to users.
Realizing this fact, many companies suchCapernic Google Apple, Microsoft, and
Yahoo!have put effort to develop full-text desktop search tecbgigs, and recently
they have launched their respective desktop search apptisa

To be able to search for every word occurring in the conterdgawh file, afull-
text indexis needed. A full-text index is somewhat like a referencelhodhere the
location of most terms can be looked up. The concept of haaifigl-text index is
taken from information retrieval systems, where applaradiare built in a client-server
environment. In such environments, disk space is not amtirgatter, and thus the
disk size of the inverted indexes is often sacrificed in fafdast query evaluation.

This project focuses on the development oflgnamic full-text search engine
targeted at desktop computers (and LANS), with particutapleasis on designing an
efficient index structure. Working with desktop comput@tsaduces new challenges,
as compared to working with server applications which angabée of evaluating
millions of queries per second. Some of the most interestiradjenges when designing
the index structure are: (i) how to efficiently index new dam@&nts and how to
dynamically update the index to reflect changes on the irdlémeuments in the index,
(i) how to organize and represent data in the index to redtscsize, and (iii) how to
efficiently query XML documents and present query resultsfate granularity.

The aforementioned questions have been addressed in exrstrdcture design by
employing a range of techniques to optimize the overallgrernce of the frequently
updated index. One of the employed techniquesndex partitioning This is
accomplished by having a cascade of three indexes, compgsedn-memory cached
index, a small dynamic index and a large static index, imstgfaa single database
index. Doing so, we are able to reflect updated files in-plak at the same time,
avoid frequent full index reconstructions. In-place indgxmeans whenever new
documents are added or existing documents are modifietédeleey will be indexed
without re-building the entire index, thus providing upeate information access for
users. When the cached index becomes full, a batch of dodamd&hbe moved to
the dynamic index, and the dynamic index will occasiona#ynrerged with the static
index. In addition to index partitioning, we also usschingand a number of strategies
for moving data from the cached index to disk to optimize indpdates.

Furthermore, we have utilizddewey encodingndVariable Byte Length encoding
to encode postings, consisting of terms and their respedtivation, to be stored
in the underlying indexes. Additionally, other codecs liRein Length Encoding,
Huffman coding, Rice, Lempel Ziv (LZ77), Burrows-Wheelamamsform and Unary
have also been experimented with and compared in order todisk requirements at

http://www.copernic.com/
http://www.google.com/
http://www.apple.com/
http://www.microsoft.com/
http://www.yahoo.com

a minimum.

We have primarily focused on indexing XML documents and ottierarchically
structured data. In order to index non-structured datat afsplugins that extracts
meta-data and generates valid XML documents have beenrimepiied.

In this project we want to facilitateontent-based searchn a collection of
XML documents witharbitrary schemasi.e., when users formulate queries on XML
documents which contain potentially relevant informatitimeey need not to know
about the mark-up structure that is used. To support thid &insearch, we exploit
the hierarchical structure of XML and its inherent fine granity, so that keyword
searches do not always return entire documents, but camreéeply nested XML
elements containing the desired keywords.

When presenting query results, a number of challengessarige how should
one result element be ranked over another, (ii) how shouldi@nuof two result sets
associated with different terms be ranked, and (iii) howusthghe resulting XML
elements be displayed (considering we allow arbitrary s@®, etc. To address these
challenges we usmeetoperator which was originally introduced by Schredal.

In conlcussion, tests have been conducted to show the pwmfme and the
functionalities of the system developed.

Contents

Contents

List of Figures

List of Tables

Listings

1

Introduction

11

1.2
13

Problem Analysis.
1.1.1 Full-TextIndexing.
1.1.2 Updating Full-TextIndexes.
1.1.3 Encoding Datain Full-TextIndexes.
1.1.4 Content-Based Keyword Search.
1.1.5 Retrospective
ProjectObjectives
ThesisOutline

Preliminaries

2.1
2.2
2.3

XMLDataModel.
Building Full-TextIndexes.
PersistentStorage. e

Dewey Encoding and Compression

3.1
3.2

3.3

Dewey Encoding.
Compression. e e
3.2.1 \Variable Byte LengthCodec

3.2.1.1 VBLEncoding

3.21.2 VBLDecoding
3.22 OtherCodecs ittt
SUMMAIY . . . o o e e e e e e e e e e

Meet Operator

4.1
4.2
4.3

4.4

Definitions.
Naive Algorithm
Scan-Based Algorithm. L . .
4.3.1 RankingSearchResults
4.3.2 Scan-Based Meet Algorithm.
SUMMANY . . . o e e e e e

=

oA ®Wwn N

CONTENTS

5 System Architecture
5.1 KALCHAS Architecture.
5.2 Embedding ELCHAS e
5.3 Applications Using KLCHAS
5.3.1 KalchasConsole
5.3.2 KalchasExplorer
5.4 Extending MALCHAS i e
5.4.1 File Supportinterface.
5.4.2 ExampleExtensions,
Index Structures
6.1 TheCachedIndex.
6.1.1 DataOrganization.
6.1.2 CI-to-DI MigrationPolicy
6.1.3 Summary. e
6.2 TheDynamiclndex,
6.2.1 AccessMethods.
6.2.2 Index Maintenance Strategies.
6.2.3 Supporting IncrementalUpdates
6.2.4 Summary. e
6.3 TheStaticIindex
6.3.1 DataOrganization.
6.3.2 Reducing Storage Requirements
6.3.3 Index Maintenance Strategies.
6.3.4 Summary. e
Supported Operations
7.1 DatabaseSchema.
7.2 AddingFiles
7.21 Implementation
7211 Shredding.,
7.21.2 Patching.,
7.2.1.3 GettingDocID. L
7.21.4 StOring.
7.2.1.5 File ConsistencyCheck.
7.2.2 DatabaseUsage.
7.3 DeletingFiles.
7.3.1 Implementation
7.3.2 DatabaseUsage.
7.4 UpdatingIndexes
7.4.1 Implementation
7.4.2 DatabaseUsage.
75 KeywordSearch.
7.5.1 Implementation

7.5.2 DatabaseUsage.

CONTENTS

8 Tests and Evaluation

8.1 TestStrategies. v i e
8.2 FileAdding. e
821 Test. e

8.32 Evaluation.
8.4 MergingDlandSIl.
841 Test:Merge
8.4.2 Evaluation.

85.1 Test:Postings.

8.5.3 Evaluation.
8.6 KeywordSearch.,

8.6.1 Test: QualityofResults.

8.2.2 Evaluation.
8.3 ClI-to-DI Migration
8.3.1 Test: Migration.
8.5 Compression Schemes.
8.5.2 Test: Inverted Lists
8.6.2 Test: Performance

8.6.3 Evaluation.

9 Conclusion

9.1 Conclusion. o e e
9.2 FutureWork. e e

ches.

9.2.4 Refining theneetOperator.

9.25 Auditing
9.2.6 DisplayingResults. oo L.
9.2.7 Internationalization

9.2.1 Refactoring the Code. . .
9.2.2 Constructing the Index . .
9.2.3 Supporting Advanced Sear
9.2.8 Distributed Searches . . .

9.2.9 HandheldDevices.

A Source Code

A.l Using KALCHASAPI e e

A.2 Example Plugin: PGP File Suppart

A3 meetOperator. e e

A.4 Shredding Using the Expat Parser

Bibliography

Vi

70
70
71
71
71
72
72
73
74
74
74
77
77
78
80
81

81
83
83

85
85
86

86
87
87
87
88
88
89
90
90

91
91
92
94
96

99

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

3.4
3.5

4.1

51
5.2
5.3
5.4
55
5.6

6.1
6.2
6.3
6.4

6.5

6.6
6.7

6.8

Documenttree of Listing2.1 8
Invertedindex 9
The process of building an invertedindex. 10
A labelled documenttree of Listing2.1 13
Document tree of Listing 2.1 using a Dewey global ordgrin. . . . 14
Byte format: the first 6 bits used to represent data vathedast 2 bits
usedassignalfields., 15
VBLencoding 16
VBLdecoding 17
Scan-basegieetalgorithm oL 24
The KALCHAS architecture. 26
Kalchas Console screenshot. 29
Kalchas Explorerscreenshot. 30
Kalchas Web Interface screenshot. 30
Kalchas Explorerstructure 31
XML Explorerscreenshot. 31
Indexstructure.o 36
Insertion of a new documentinthecache. 38
Zipf’s law applied to a document collection. 39

The cached index contains a working set of documentsbéefwf the
documents in working set also constitute the batch set,iwtoatains

all documents that will be written to disk during the next maigon. . 40
Two leaf pages stored on disk blocks. Records within Bdage are
physically organized according to their key value and leajgs are

link in such a way that no record in one page has a key valudemal
than any record in any previouspage.. 42
The storage schemeusedinDL 45
A fragment of a B-tree, consisting of a single internal page and a
single leaf page, prior to inserting a record with the tevimmas key

A fragment of a Berkeley DB B-tree, consisting of a single internal
page and two leaf pages, after having inserted a record tétherm
wimaskeyvalue. 47

LIST OF FIGURES viii

6.9

6.10
6.11

6.12

7.1
7.2
7.3
7.4

7.5
7.6
7.7

8.1
8.2
8.3

8.4

8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1

A fragment of a standard'Btree, consisting of a single internal pages
and two leaf pages, after having inserted a record with time vé¢ mas

keyvalue.. e 47
The storage schemewusedinSL 51
Number of occurrences of the 200 most frequently usedisvin

Shakespeareldamlet 52

Merge algorithm:L, L’ represent two inverted lists of DI or Sl to be
merged, respectivelyR represents the merged result. Theand >
operators indicate lexical comparison! indicates joins (preserving
sort order) and indicates removal of a subtree without reordering. 54

Storage scheme forrecordsinthetables. 58
The process of addingfiles. 59
Parsingprocess 61

Representation of thevcat i on field: (a) A set of Dewey paths along
with a generated DoclID value 44; (b) All Dewey paths are pneleel
with DoclD; (c) Dewey number of the document rooé. the leading

number in Dewey paths, are substituted with DocID.. 63
The process of deletingfiles 65
The process of updatingindexes. 66
The process of keywordsearch 68
Results of the shreddertest. 71
Cl-to-DI migration performance 73
Overall performance of indexing XML collections whiledifying the

sizeof DI o e 75

Average time spent on indexing and merging XML colletsio

measured a%ﬁf‘q’:s 76

Postings: Compression test of random generated data.. 78
Postings: Compression test of Shakespeareplays. 79
Inverted lists: Compression test of syntheticdata.. 79
Inverted Lists: Compression test of Shakespeare plays. 80
The keyword search for “rasmus dennis” returns plaesigults. . . 82

Querying for “to be or not to be” in Hamlet yeilds an empegult set 82
If an empty result set is returned byrIKCHAS the PHP script suggests
alternative searchterms. 83

An example of a Vietnamese text taken from an onlinealety. . . 89

List of Tables

3.1
3.2

51
5.2

6.1

7.2
7.3
7.4
7.5

7.6

Dewey paths of the labelled documenttree. 13
VBLbytesizes. 15
KALCHAS APL . . . o 28
Kalchas File Supportinterface 33
The most commonly used words itamlet MacBeth and The Old
TestamentTerms in boldface are non-stopwords. 53
Example output from the shredtool 61
Database tables modified by theédFi | e operation. 65
Database tables modified by el et eFi | e operation. 66
Database tables modified by thipdat eFi | e operation. Indirect
cases are marked with parentheses.. 67

Database tables used by (deer yRet r i eve operation. 69

Listings

2.1
51
Al
A.2
A.3
A4

Astructured XML document 8
Portionofthe original XML 28
An example of using KLCHAS APl 91
Example plugin — PGP filesupport. 92
C++ implementation of the MET-SCAN meetoperator. 94

C++ implementation of the shredder function. 96

Chapter 1

Introduction

Presenting data in both a human readable and machine et way has been a
challenge for developers in decades. As a result of theganmgses, a wide range of
data formats has emerged. The root of most of these human aoklime readable
formats is theStandard Generalized Markup Langua¢®GML) [1]. Being one
of the initial specified formats within its area, SGML waselabutpaced by more
modern formats such asdyper-Text Markup Languag@HTML) [2]. HTML is the
original format for exchanging displayable data on the \Wakide Web and later has
become what common people often call the “Internet”. In theent years, a new
format Extensible Markup Language (XMLJ][has emerged. XML is well suited for
storing/exchanging database data and other structurachdatnally used in business
applications. In comparison to HTML, XML offers the capaétyilof keeping the
presentation part and the data part of a document separdide HTML merges these
into one document.

Traditional database management systems (DBMS) genéiallybeen the choice
for persistent storage of structured data. Moreover titadil DBMSs provide efficient
mechanisms for modifying and retrieving data. Howeverythave a number of
drawbacks when it comes to exchange of data as compared ta Kivit, the stored
data is tightly coupled with the database schemas and datedifinitions, rendering
data exchange difficult. In XML, on the other hand, this imfation is self-contained,
and the presence of tags makes the documents self-docugnerti a schema need
not be consulted to understand the meaning of the text. Sedana exported from
a DBMS is often in a proprietary format, whereas the XML fotrigabased on an
international standard and is widely supported.

The increasing popularity of XML is partly due to the limitats of the other two
major technologies for representing structured and sémétsired documents. HTML
provides a fixed, predefined set of tags; these tags are nfairpyesentation purposes
and do not bear useful semantics. SGML is an internationabstrd for the definition
of device- and system-independent methods of represetgiign electronic form.
SGML differs from HTML in its emphasis on the semantics of dment content
(with user-definable, self-describing mark-ups) rathemtipresentation. However,
the original SGML specification is too complex to be usefulniany commercial
applications {].

1.1. PROBLEM ANALYSIS 2

XML documents are textual documents both human and mackgable. An
XML document has a strict syntax, making parsing simple, #&adhierarchical
structure makes it suitable for many types of documents h®wlbwnside, the verbose
and redundant nature of the XML representation introdunesvarhead which makes
XML unsuitable as a general storage scheme.

Originally, XML was designed to meet the challenges of lasgele electronic
publishing, but it is now also playing an important role iretxchange of a wide
variety of data €.g, text, sound, images, etc.) on the Web. It is particularbfuisas
a data format when one application needs to communicateanitther application, or
integrate information from external sources. Since it§dhfecommendationd] was
published by th&v3Cin 1998, XML has now become the de facto standard format for
web publishing and data transportation. This general daoep can be attributed to
two of the XML's core characteristics, namely flexibility@axtensibility. Just as SQL
is the dominantanguagefor querying relational data, XML is becoming the dominant
formatfor data exchange.

Furthermore, researchers in the field reckon that XML pdadéntwill yield
(i) more precise search by providing additional informatia the elements, (ii) a
better integrated search of documents from heterogenenuses, (iii) a powerful
search paradigm using structural as well as content spetoifiits, and (iv) data
and information exchange to share resources and to suppapecative searcho.
Interestingly, Microsoft has recently announced that théy adopt the industry-
standard XML technology for the default file formats in thexneersion of Microsoft
Office editions (currently code-named Office 12) to “give tonsers improved data
interoperability and dramatically smaller file sizeg].[

The remainder of this chapter is organized as follows. Inrthgt section we
analyze the problem of developing a dynamic XML full-textaggh engine. In
Sectionl.2we formulate project objectives, and finally an outline @& thport is given.

1.1 Problem Analysis

The widespread use of XML in digital libraries, product ¢atmes, scientific data
repositories and across the Web arises the need for effiti@nagement and retrieval
of XML documents. In order to obtain adequate performareeXtML data need to be
organized (indexed) in a way that facilitates efficientiesal of the desired data from
large repositories of XML documents. Without indexes, théatlase may be forced
to conduct a full scan to locate the desired data records;hwtan be a lengthy and
inefficient process. In this project we focus on the develephof adynamic full-text
search engingargeted at desktop computers, with particular emphasitesigning an
efficient index structure.

1.1.1 Full-Text Indexing

At the core of most search engines lieRili-text index[8]. In short, a full-text index
is an index containing all words occurring in a collectiordotumentge.g, the World
Wide Web, and a reference to each of these occurrences. Aektlindex can be
compared to the index in a book; however, the latter is ndtafsithe index does not

http://w3c.org/

1.1. PROBLEM ANALYSIS 3

contain all words written in the book nor is each occurrentca word referenced.
Signature files, forward index and inverted index are thre#-known kinds of full-

text indexes; however, the underlying index structure foshiKML search engines is
the inverted indexq, 9] and the technique of choice for most Web search engisies [

1.1.2 Updating Full-Text Indexes

When operating in a dynamic environment, XML documents algext to frequent
changes. In some applications, documents arrive at a htghaad even within the
context of a single desktop machine, a naive update strétegjgonsumes lots of CPU
cycles and disk accesses would not be of value. Therefoepikg inverted indexes
always up-to-date with the content of documents at the XMio&nt's granularity is a
challenge. When designing a dynamic full-text index stutest one must consider the
index update problem.

1.1.3 Encoding Data in Full-Text Indexes

Inverted indexes are generally large, ranging between 19886% of the size of the
indexed document colloction, and often require severadlgyte of storagelo, 11],
thus the data stored in inverted indexes must be encoded sumpact representation.
In this project, the problem of data encoding and decodingtine considered.

1.1.4 Content-Based Keyword Search

Having data stored in XML documents rather than records iatatshse requires new
approaches for querying. As a result many query systems$) ascXQuery 12],
XRANK [13], XXL [14] and XQL [15 have been developed. However, like their
counterparts in the field of relational databases SQL, tlsgstems are declarative
languages relying on data schemas, thusaapriori knowledge of the document
schemas is necessary in order to perform queries on the XMurdents. While this
approach ensures accurate results, a search howeveristegstpo collections of XML
documents of the same schema.

Database schemas are used to constrain what and how infonncan be stored
in the database and to constrain the data types of the stafi@thiation. In constrast,
XML documents by default can be created without any assetisthema, that is, an
element may have any number (or type) of subelement or atitrili hedocument type
definition(DTD) is a schema mechanism, included as part of the XML stethfi 6].
The DTD, however, is only an optional part of an XML documeértte main purpose
of a DTD is much like that of a schema: to constrain the infdramapresent in the
document. However, the DTD in fact does not constrain typethé sense of basic
types like integer or string. Instead, it constrains theespance of subelements and
attributes within an element. Document schemas are notangern as the intention
behind our XML search engine is to provide a schema-less/ingefacility that works
solely on the hierarchical structure. This means that we disgard all DTDs and
focus on the actual content of the XML documents when pracgseyword searches.

Evaluating keyword search queries over hierarchical XMktutoents introduces

1.1. PROBLEM ANALYSIS 4

new challenges. First, XML keyword search queries do noagéareturn entire
documents, but may return deeply nested XML elements thatago the desired
keywords. Second, the nested structure of XML implies thatrtotion of ranking is
no longer at the granularity of a document, but at the graitylaf an XML element.
Finally, the notion of keyword proximity is quite complex the hierarchical XML
data model 13]. Traditional database methods for searching datasets) disil-text
indexes have been focusing on finding exact hits, whereas negent system(g,
[13] and [L4]) rely on the XML hierarchy in order to find collections of esant data.

As web search techniques can be employed to handle colisaifdlat documents,
such as HTML, the assumption that they can be applied to @atmh of XML
documents seems reasonable since the former type can baseespecial case of
the latter. The hierarchical structure of XML documentswheer, suggests finer
granularity for indexing and retrieval, thus indexing amdrieval could be done on
the basis of XML elements rather than documents. Searchieg(ML documents
by translating XML elements into HTML format is not a plausitsolution since it
imposes a large computation overhead and leaves the protessplaying search
results rather difficult]3].

In this project we want to facilitateontent-based keyword seartha collection
of XML documents witharbitrary schemasj.e.,, when users formulate queries on
XML documents which contain potentially relevant inforioat they need not to know
about the mark-up structure that is used. To support thid &insearch, we exploit
the hierarchical structure of XML and its inherent fine granity, so that keyword
searches do not always return entire documents, but camreéeply nested XML
elements containing the desired keywords. In the case aiewef a single term,
result extraction from the document collection is easy; &y, ranking queries with
multiple terms introduces several challenges. Theseagdls are met in the system
to be devoloped by employing thmeetoperator which was originally introduced by
Schmidtet al.[17, 18].

1.1.5 Retrospective

In our previously conducted worl §] within the field of XML full-text search engine
developement, we have experienced a range of critical $s&ube addressed in this
project. The issues include optimization techniques, ephal changes, and ideas for
extending the search engine. Through the development ofralsengine, we will
address the following issues:

Optimizations. We want to experiment witbechniques for minimizing the storage
space requirementsf our databases by coupling related data originally spanni
multiple database records into single database recordse Mwportantly, we
want to implement @aching functionalityto handle the problem of frequently
modified files. The caching mechanism should focus on keepiognt files in
memory to avoid disk 1/0. Accompanying this caching meckaniwe must
increase the use of the internal Berkeley DB cache, whiclsésl dor building
and maintaining disk-based B-trees.

Conceptual changesWe want to redesign the implementation with naodular
structure in mind. The modular design will make it possible to replace

1.2. PROJECT OBJECTIVES 5

essential components without loosing functionality. Whikdesigning the
system architecturequlti-threadingcould be introduced in order to process files
without interferring the user sitting in front of the PC.

Extensions. The system to be developed is intented for use in desktopamments,
thus the need for integrating with third party applicatiarsses. Instead of
writing a multitude of scripts interacting with, for insteey MS Office products,
we propose to integrate our system directly into the opsgatiystem. In
addition, we want to develop a plugin structure to allowdiparty developers to
develop file shredders for non-XML documents.

After having analyzed the problem area we are now in a positioformulate the
project objectives.

1.2 Project Objectives

Based on the research results conducted in the previousgprtjis project continues
the processs of developingdynamic full-text search enginealled KaLcHAS 1,
targeted at desktop computers, with particular emphasislasigning an efficient
index structure. Furthermore, we want to build from scraackdynamic full-text
search engine, facilitating content-based keyword séagcim collections of XML
documents. In this context, the system to be developed dlaaldress the following
issues:

1. Architecture design. When designing the system architecture, the emphasis
should be put on high modularity and extensibility. Furthbe system should
be made embeddable in other applications, accomplisheddwdmng a simple
API to allow easy integation for third party applications.

2. Index structure. When designing a dynamic full-text index structure, thaufoc
should primarly be put on handling updates of indexed filegnrefficient way.
Moreover, the system should be able to handle both frequeratified files as
well as static files.

3. Index compression.In order to minimize the data stored in the indexes, we want
to experiment with different compression schemes to find#st candidate.

4. Keyword search. Our system is intended for searching in medium-sized
collections of XML documents residing on typical desktopsR@th arbitrary
schemas; that is, when users search for XML documents cimggpotentially
relevant information, they need not to know about the marlstnucture used.
To facilitate this kind of search and, moreover, to obtasuits at the element
granularity offered by the structure of the XML format, welwitilize the meet
operator proposed by Schmittal. [17, 1§].

In addition, we will reconsider and address the issues meati previously in
Sectionl.1.5

lhttp://kal chas. dk/

http://kalchas.dk/

1.3. THESIS OUTLINE 6

1.3 Thesis Outline

The remainder of the report is organized as follows:

Preliminaries (Chapter) provides the reader a basic technical insight of the prable
domain by introducing terminologies.

Dewey Encoding and CompressionChapter 3) first introduces a method for
capturing the hierarchical structure of XML documents.efftards, we describe
the encoding scheme that is used and other codecs that hawekgerimented
with.

meet Operator (Chapterd) describes theneetoperator that will be used for content-
based keyword searches.

System Architecture (Chapter 5) describes the overall system architecture of
KALCHAS. Further, we describe how to embedKCHAS in applications, and
we present two applications having embedded.

Index Structures (Chapter6) describes the structures used for storing inverted
indexes and techniques used to maintain these.

Supported Operations (Chapter 7) describes the operations provided by the
KALCHAS API. Here, we explain in details how the operations have been
designed and implemented.

Tests and Evaluation (Chapter8) describes the tests of the system, especially its
performance. At the same time, we evaluate the tests of atersy

Conclusions (Chapter9) concludes the report and evaluates our work. Furthermore,
we will discuss topics to be investigated in the future work.

Chapter 2

Preliminaries

This chapter is intended to provide the reader with a basicnieal insight into the
problem domain by presenting terminologies and, at the séme discuss some
of the previous work directly related to ours. First, we pridsthe XML data
model (Sectior2.1). Second, we explain how a full-text index building process
executed (SectioR.?). Finally, we discuss how to efficiently store the invertedeéxes
(Section2.3).

2.1 XML Data Model

An XML documenis a hierarchical structure consisting of nested elemehtshncan
be assigned attributes and values. All the XML documentd stith a single root
element that may contain any number of nested elementsMeoyedements cannot be
interleaved. In addition, elements may contain data and brislelimited by a start
and an end tag. Attributes, however, can only contain data;they cannot contain
elements nor have attributes. Child elements (or subelesheha parent element are
ordered whereas its attributes are not ordered. For a fatefadition of the XML data
model, the reader is referred to the XML specificatigfi [which describes precisely
the XML data model through the XML language grammar.

Listing 2.1 shows an example XML document representing a small cotleatf
scientific papers. Thebi bl i ogr aphy> element is the root element, and it has
<paper >, <titl e>, <aut hor >, and<year > subelements nested under it. In this
project we do not consider pointers pointing to internaexal XML elements and
external XML documents.

By convention an XML document is modeled asree with a single root, where
each element is mapped into a node, thus calleib@ment tree Textual content
is assumed to be only in the leaf nodes, and internal nodessemt the structural
relationships between elements. We formally define an XMtudioent tree as follows:

2.1. XML DATA MODEL 8

<bi bl i ogr aphy>
<paper >
<title>The Anatomy of a LargeScale Hypertextual
Web Search Engine«itle>
<aut hor >Sergey Brin, Lawrence Pageaut hor>
<year >2000 <kear >
</paper >
<paper >
<title>Building a Distributed Full-Text Index
for the Web<title>
<aut hor >Sergey Melnik, Sriram Raghavan,
Beverly Yang, Hector GarciaMolina </aut hor >
<year >2001 <kear >
</paper >
</bi bl i ogr aphy>
Listing 2.1 : A structured XML document

Definition 2.1 (XML Document Tree). An XML document can be represented as a rooted
treeT = (V, E,r) where

e V =V,.UV,q is aset of nodes represented in the XML documevits; arevalue
nodescontaining actual data, arid;. areelement nodegor structural nodes),e.,
nodes containing nested nodes but no data.

e r € V is theroot nodeof the document, and
o E = {(vi,vj)|vi,v; €V Aparent(vj) = v;}.

Figure 2.1 depicts the document tree of Listing.1. Here, the nodes
<bi bl i ogr aphy> and <paper > are the element nodes, wheregsi t| e>,
<aut hor >, and<year > are the value nodes. Throughout this report the terms
“element” and “node” will be used interchangeably.

<bibliography>

/\

<paper> <paper>
<title> <author> <year> <title> <author> <year>
Figure 2.1 : Document tree of Listing.1

The HTML data model can also be perceived as a special vethi@nXML
data model: An HTML document is an XML document with only twalwe nodes
'w = {head,body}, one element nod&),, = {zhtml} and two edged’ =

val

{(zhtml, head), (xhtml, body)}, and its document tree & = (V', E', zhitml).

Furthermore, a collection of XML documents can be defineahavis:

Definition 2.2 (XML Collections). A collection of XML documents is a forest.e., an
unordered set of XML document trees.

2.2. BUILDING FULL-TEXT INDEXES 9

2.2 Building Full-Text Indexes

In the spirit of other search engines we choose to employrtegteindex as the
underlying index structure for our XML search engine.iAverted indexs a collection

of inverted lists, where each list is associated with a paldr term. Aninverted
list for a given term is a collection of Unified Resource Identfi¢uURI) [21] of
those documents that contain that term. If the position ofrentoccurrence in a
document is needed, each entry in the inverted list alsocagmta location offset.
Positional information of terms is needed for proximity gas and query result
ranking, and omitting this information in the inverted indenposes limitationsZ2).
An entry in an inverted list is also called@osting and as a minimum it encodes
the(term | ocati on) information wherd ocat i on is a URI. We illustrate the
structure of an inverted index in FiguPe2, and the definition of these terms is shown
Definition 2.3 and is used seamless in this report. A survey on indexing oL XM
documents can be found ifi][

| Term | Inverted list |
termy loc. .., loc,loc
terms loc,loc, . . . loc

termn,_1 | loc,loc, ...
termy, loc,loc,. ..

Figure 2.2 : Inverted index

Definition 2.3 (Terminology of inverted indexes). The following definitions will be used

throughout the remainder of this report:

Term is a single word defined as a sequence of alpha-numericahatieas. In full-text
index almost all terms are subject to be indexed, except afdeivial terms, e.g,
“the”, “and”, “or”, “but”, etc. They are often referred to asop words

Location is used to describe the position of a specific term.
Posting is a pair(t er m | ocat i on) describing a single occurrence of a term.
Inverted list of a given term is a list of locations describing all the ocences of that term.

Inverted index is a collection of inverted lists, where each list is assedawith a
particular term.

Building an inverted index generally happens as followsveBia collection of
XML documents to be indexed, the parser scans one documentiae in order to
strip all the metadata, such as XML tags, and extracts terom the document to
produce a set dft er m | ocat i on) postings. After that, thét erm | ocat i on)
postings will be passed to the indexer which then insersetipestings into an inverted
index. This process is repeated until the entire colledimsbeen indexed as illustrated
in Figure2.3.

2.3. PERSISTENT STORAGE 10

XML
documents

Inverted
index

Postings

Indexer

Figure 2.3 : The process of building an inverted index

2.3 Persistent Storage

Inverted indexes are generally large, ranging between 1880% of the size of the
indexed document collection, and often require severabtge of storagell0, 11].
Due to the massive storage requirements, inverted indexastdusually fit into main
memory, but are kept partly on secondary storage. Addiligrauilding an inverted
index is generally rather resource expensive in terms of @Rildisk usage. In this
section we discuss the storage scheme that has been empbogtate the inverted
indexes.

When opting for a persistent storage system, one of two msecan be taken;
either implementing a special purpose, custom made systeosing an existing
database management system (DBMS). Using an existing DBA43He advantage
of making it possible to leverage on high level query langsagvell-established data
models, and advanced logical storage schemes; howevas ihb downside of having
a large footprint in terms of resource usage. A running DBMt8roconsists of a
single process and multiple threads which are partly inddget of the applications
accessing the DBMS. In order to handle queries expressedymlével languages
(e.g, SQL), the DBMS applies advanced techniques such as quesingand query
optimization. Custom implementations, on the other haad, lee tailored, making it
possible to apply very specific optimizations; howeves tipproach may increase the
overall complexity of the system as well as development {igdh

Somewhere in between existing DBMSs and specialized custqplementations
lie embedded databasesch as Berkeley DB?M]. An embedded database is a library
that links directly into the application providing basictaldase functionalities, and as
a result both database and application run in the same adsjvase, avoiding network
and inter-process communicaticify.

Constructing databases for use in Berkeley DB requiresléwt information of
the database store, since Berkeley DB does not employ ssheinatead, it only
supports records consisting pkey, dat a) pairs, and compared to most database
systems only a few simple operations are offered, namelgrinslelete, retrieve
and update. However, due to the nature of Berkeley DB, thdsfigl records can
contain any type of low-level data, such as C structs, maikipgssible to store more
advanced data structures. Additionally, b&#y anddat a fields can be of variable
length, rendering efficient use of secondary storage plessiss Berkeley DB does
not make use of schemas, it is unaware of the type and steuofudata stored in
records; it simply recognizes keys and considers data faddsimple payload. As a
result, the stored data is tightly coupled with the appitatcreating and accessing
it. Additionally, since Berkeley DB does not offer any irferes to the end user,
all functionalities related to inserting, deleting and afidg data on the logical level
must be implemented by an application programmer, makiegl#tabase an obvious

2.3. PERSISTENT STORAGE 11

choice in scenarios where only a few specialized and pradetqueries are needed,
e.g.simple key lookups.

Chapter 3

Dewey Encoding and
Compression

In order to represent the exact location of a term, we needfin@a way of serializing
XML documents. Several approaches suiting this purposmadyr exists (seed]).
One way of defining the location of a term is on a per-documasis) treating XML
documents as flat documents and disregarding the hieratatiacture of XML; this
method is often used in Web search engines such as Gdglglé\hother approach

is to treat each XML document as a document tree as defined finifim 2.1 on
page8. However, b, 13] mention that the perception of XML documents being trees
is not entirely correct, since facilities such as XPath, ¥dLand XPointer introduce
graph-like scenarios.

In this project, we have chosen the latter approach andedila so-calle@ewey
encodingwhich is a node ordering method used to serialize the hikigatstructure
of XML documents. Using this method we are able to specifatmns in a flat format
without loosing structural information. Our use of Deweyceding is described in
detail in Sectior8.1

As a result of Dewey encoding, a set of Dewey paths is gercerddewey paths
make up the largest part of inverted indexes; thus it is dbkrto represent them
in a compact way. In addition to the reduced space utilipatissing an efficient
compression scheme results in faster processing time wioeimgs and retrieving
postings in the indexe®p]. Compression of Dewey paths is described in details in
Section3.2

3.1 Dewey Encoding

Dewey encoding26] is a node ordering method used to serialize the hierarthica
structure of XML documents. This is accomplished by encg@iach node’s position

in an XML document as a data value; each node is assigned arvepresenting the
Dewey pathfrom the document’s root to the node. We distinguish betw&mwey
number” being a single integer value assigned to a specifie,nand “Dewey path”

3.1. DEWEY ENCODING 13

being a specific path from the document root to a given element

We formally define Dewey paths as follows:

Definition 3.1 (Dewey Paths).Given a functiomid : V' — N to generate a Dewey number
for every node. For any node € V, letpath(v) = (nid(r), ..., nid(v)) be the Dewey
path ofv, where(r, ..., v) is the sequence of nodes found on the unique path from the
document root to v.

In this project Dewey paths are used as URI to desctibeat i on of the
(terml ocati on) postings, wherd ocat i on uniquely identifies the absolute
location of a specific XML element in whigher moccurs.

Figure3.1shows a document tree of the sample XML document (from Lgs2iri)
labelled with node position values, and TaBlé enumerates all the Dewey paths of
leaf nodes in a flat representation form. Such a representatiDewey paths is fairly
easy to store since each Dewey number is local to its pataerg,the Dewey number
values are normally quite small and need only few bytes toepeesented. The use
of Dewey paths is crucial in our project; without Dewey patfeswould not be able
to translate the hierarchy of XML documents into a flat formestdy for storing in a
database.

<bibliography>
1
<paper> <paper>
1 2

e

<title> <author> <year> <title> <author> <year>
1 2 3 1 2 3

Figure 3.1 : A labelled document tree of Listing 1

| Dewey path | Corresponding leaf node]

[1/1/1 <title>
[1/1/2 <aut hor >
/1/1/3 <year >
[1/2/1 <title>
[1/2]2 <aut hor >
[1/2/3 <year >

Table 3.1 : Dewey paths of the labelled document tree

There are two major schemes to assign Dewey numbers to ngldési ordering
scheme and local ordering scheme. In ti@bal ordering schemeeach element is
assigned a globally unique Dewey number (see Figue As opposed to this scheme,
in local ordering schemeonly siblings should have unique Dewey numbers, thus quite
a few elements could have the same Dewey number (see Figi)re The former
one has the drawback of requiring more storage space thalatdreone, because

3.2. COMPRESSION 14

in the global ordering scheme the value of assigned Deweybeumsnmay be very
large. For this reason we employ the local ordering schenesplle each individual
Dewey number assigned to the elements is non-unique, tbelasdd Dewey paths are
always uniquei.e., no two elements in the same document have the same Dewey path
In addition, Zobelet al. [27] claim that using the local ordering scheme indirectly
improves the overall compression rate of succeeding cossjme codecs.

<bibliography>
1
<paper> <paper>
2 6

e

<title> <author> <year> <title> <author> <year>
3 4 5 7 8 9

Figure 3.2 : Document tree of Listing.1 using a Dewey global ordering

Computing Dewey paths according to the local ordering seéhsnearried out as
follows. Since XML elements do not overlap, a stack struettain be used to keep
track of them and compute current Dewey path. Once an XML &tgiis encountered,
the Dewey number stored in the top element is incrementechbyand a new element
is pushed onto the stack. Once an XML end tag is encountdredpp element is
simply popped. At any given time, the Dewey numbers storetherstack represent
the Dewey path for the current XML element. When encoungeaimew start tag, a
new Dewey number must be pushed onto the stack. In our impiatien, computing
Dewey paths is done at the same time as document shreddingegi® For more
information about computing Dewey paths the reader is refigio Sectiory.2.1.1

3.2 Compression

Once the Dewey paths are computed they are meant to be staitider main memory
or on disk. In the first case, compression is not an issue sirgcenly store small
amounts of data. However, the data stored on disk needs torbpressed efficiently
in order to save disk space and thus increase the overatirpgahce of the system.

Looking at the integral values of Dewey numbers within Dewaths, we observe
that the range of values decreases proportionally with gstimg level in the XML
documents. This means that a Dewey number associated wikmydnested XML
element will be assigned a lower value than XML elements giéri nesting levels.
Observing Listing?2.1, we see that (i) document ID of the XML document may range
very high value in accordance with the number of indexed dwmts in the collection,
(ii) a high number ofpaper > nodes will result in high Dewey numbers, and (iii)
inside a<paper > element the number of children decreases. This behaviawisetl
by the data-centric definitior2p] of the XML file shown in Listing2.1

Reflecting on this we see that Dewey paths are generally mpad# few large
Dewey numbers and many small Dewey numbers. In order to cesaghese Dewey
paths efficiently we must then be able to handle both high andihtegral values.

3.2. COMPRESSION 15

The most time and space efficient way of doing so is by using @ahbie Byte
Length (VBL) [25, 29 compression scheme; this has been tested and is described
in Section8.50n pager7.

Compressing inverted indexes is a well-investigated fieldyered by many
conference papers. However, most of the approaches deddrif29, 30, 31] are
targeted at collections of flat documents. The cotlatesscribed in these papers
rely on the ability to sort locations in a monotonically iraesing order, which is
straightforward since their locations are described usirgingle integer value, but
not a sequence as inAKCHAS.

3.2.1 Variable Byte Length Codec

Our variant of a/ariable Byte LengtlvBL) codec is built on the idea of dividing a data
value into a minimum of bytes, such that a minimum number eéswill be allocated
for representing a specific data value. FigBr&illustrates that in our implementation,
for each byte, the first 6 bits are used to represatd value(indicated by D) and the
last 2 bits asignal bits(indicated by E and F). Here, E is used to indicate if the arre
byte is the last byte used to serially encode a Dewey numbéii-as used to indicate
if the current Dewey number is the ending entry of a Dewey pélte value ranges of
Dewey numbers mapped to the size in bytes is shown in TaBle

DD DD/ D/ D|E|F
112345678

Figure 3.3 : Byte format: the first 6 bits used to represent data valueslatt 2 bits used
as signal fields

| Min. value | Max. value || No. bytes needed
0 6320 _1) 1 Byte
64 4.095 @2 — 1) 2 Bytes
4.096| 262.1432'8 — 1) 3 Bytes
262.144| 16.777.216%2* — 1) 4 Bytes

Table 3.2 : VBL byte sizes

Example 1. Given a Dewey path 5000/ 700/ 63/ consisting of three Dewey
numbers, 6 bytes must be allocated to represent the Dewlyipity VBL encoding,
because three bytes are needed to encode 5000, two byteotteef00, and one byte
to encode 63. Now we analyze the value of signal bits in thaltixated bytes:

Byte 1-3. E is not seti(e. 0) in the first and second bytes, but is set.(1) in the
third byte to indicate that the current byte is the last byged.to serially encode
Dewey number 5000. F is O in all of these bytes because 5006titha last
entry of the Dewey path.

Byte 4-5. E is 0 in byte 4, but 1 in byte 5. Fis 0 in all of these bytes beeal@0 is
not the last entry of the Dewey path.

1A codec is a set of routines for compression and decompressio

3.2. COMPRESSION 16

Byte 6. Both E and F is 1, because byte 6 is the last byte used to repi@3eand the
Dewey number 63 is also the last entry of the Dewey path.

The VBL codec is éyte wisecodec which encodes in an 8 bit aligned fashion,
making encoding and decoding optimized for standard CPUWser@neans of codecs
relies onbit wise encoding and decoding, resulting in better compressidosraind
longer execution times. The slow down of bit wise codecs issed by missing
alignments, since standard CPUs read data in 8-bit alighedks (8 bits, 16 bits,
32 bits, etc.) 5.

3.2.1.1 VBL Encoding

Pseudocode for encoding one Dewey number using the VBL c@lagven in
Figure3.4. Encoding whole Dewey paths is done by sequentially encpetich Dewey
number in the Dewey path and appending the data to the ouggatafream. The
parameter is the Dewey number to encode, ahdst DeweyNumber is a Boolean
value indicating ifn is the final Dewey number in the Dewey path. Notice thag
the output data stream, aneis an overloaded operator used to append data.>Fhe
operator is an ordinary right shift, and we access bits awv&¢.e. referring to the 6
lower bits ofv is writtenv[1..6] and a single bit is referred to ag], i € [1..8].

VBL-ENCODEn, Last Dewey Number)

r—0

ven

while (v > 25 — 1) do

r— 71+ (v[1..6])

v—v>6

if (LastDeweyNumber = true) then
v[8] +— 1

v[7] — 1

r—r+wv

return r

QWO ~NOOD»WNPE

[EY

Figure 3.4 : VBL encoding

3.2.1.2 VBL Decoding

Pseudocode for decoding one encoded Dewey number usinggthd&toding is given
in Figure3.5. Decoding of a whole Dewey path is done by sequentially decpelach
Dewey number in the Dewey path, and the VBLE@oDE function will report when
the end of a Dewey path has been reached.

3.2. COMPRESSION 17

VBL-DECODH?b, i)

r«—0

s—0

while (b;[7] # 1 AND b;[8] # 1) do
re—r+ (b <s)

s—s+6

t—1+1

re—r+ (b Ks)

t—1+1

return (r,b;[8] = 1)

O©oOoO~NOOTh, WNPE

Figure 3.5 : VBL decoding

3.2.2 Other Codecs

In addition to VBL, we will now introduce a set of compressiand decompression
schemes utilized in this project. In the tradition of othartp of the implementation,
we have included an external library, the Basic Compreskibrary (BCL) [32],
implementing a number of common codecs, sucRas Length Encodindgduffman
Rice and Lempel Ziv These codecs are all standard compression codecs.
addition to the BCL, we have implemented two customized ced@urrows-Wheeler
Transform[33] codec, andJnary codec. All of the above codecs are lossfeasd
thus no information is lost in the process. In the following will briefly discuss the
differences between the mentioned compression schemes:

Run Length Encoding (RLE). The RLE codec is a general purpose codec usgd
in JPEG compression. RLE encoding is done by reducing segsaf repeating
values into a single value and a number indicating the lendtthe original
sequence. RLE is efficient in cases where repeating segsianeéong, this is
often the case in very deep XML documents where each XML naéains
very few children.

Huffman. The Huffman codec is one of the most common codecs and is more

advanced than RLE. The basic principle behind Huffman cesgon is to
perform a statistical analysis of the uncompressed datatl@a represent
common values with a low amount of bits and not so common galith a
high amount of bits. In order to decode the compressed datdwffman codec
stores a symbol tree, built by generating a histogram fodath values in the
uncompressed data set. In the case of the BCL implementattidre Huffman
codec, the tree is at most 384 bytes in the compressed datesiZénof the tree
is crucial for choosing when to use this codeg. Huffman is not suited for data
less than 500 bytes.

Rice. The Rice codec is much similar to the Huffman codec and thesto fit as many
words into as few bits as possible. Unlike the Huffman codiecRice codec
will not build an expensive histogram for each value, butdnd try to encode

2nhttp://en. w ki pedi a. or g/ wi ki / Cat egory: Lossl ess_conpr essi on_al gori t hms

http://en.wikipedia.org/wiki/Category:Lossless_compression_algorithms

3.3. SUMMARY 18

lower values with fewer bits and higher values with “enougl. This can be
seen as a static Huffman tree. In comparison to the Huffmalecthe main
advantage of Rice is that Rice uses a static tree where Hoffimidds a dynamic
tree (which is expensive to build in some cases). In reldtidbewey paths, and
the way KaLCHAS generates them, the theory dictates that Rice would be well-
suited since most Dewey paths will have all Dewey numberg t@latively low,
except for the document ID at the beginning of the Dewey path.

Lempel Ziv (LZ77). Along with the Huffman codec, the LZ77 codec is one of the
most used codecs. The implementation provided by BCL isthas¢he original
Lempel Ziv 1977 implementation. LZ77 is an extension to teensimple RLE
codec and thus seeks to replace sequences of repeating vatheewer bits.

In addition to the RLE codec, LZ77 references previous sece® of the same
repeating values and thus is able to compress better tharirRidine cases.

Burrows-Wheeler Transform (BWT). The BWT codec is also known as a “block
sorting algorithm”. BWT works by performing a number of hritetic
operations leaving data in a more structured order. Engodirdata is done
by first writing down all possible permutations and subsetjyesorting the
permutations lexically. This results in a matrix where tight most column
comprises the final BWT code. Decoding is done by iterativeerting the
encoded data as the left most column of the matrix whilesgrthfter the final
iteration the decoded data is located at the column staatinbending with the
allocated delimiter symbol. As can be read from above thgsrithm improves
the overall compression ratio, however it also introducesti&ceable penalty in
terms of execution time.

Unary. Unary coding is a way of representing non negative intedraltheir ordinal
values,i.e. the number is represented akl11. Representing values by their
unary coding makes it easier for succeeding codecs to canpine data since
the codes are highly redundant. A drawback of the unary gpidirthat high
values consumes large amounts of storage,232 is represented bg3? bits
amounting to a totab36.870.912 bytes while the same value easily could be
represented by a 32 bit integer consuming a mere 4 bytes obnyem

The API documentation of BCL suggests to try out variatioissequential
compressiong.g. first encode using RLE, then LZ77 and finally Huffman. In
Section8.5 on page77 we will test and evaluate which of the above codecs, and
sequences of codecs should be used wL&HAS for optimal performance. An
important fact about the above codecs is that they are atieftiat decoding which is
crucial for the query performancgq, 30.

3.3 Summary

Dewey encoding is a generic way of serializing hierarchycsiructured data. We
consider two types of Dewey encoding, namely the global iimdeand the local

ordering. The latter has been chosen in order to reduce thgral values of the
generated Dewey numbers, and thus increasing the perfeamainthe subsequent
compression.

3.3. SUMMARY 19

Compression of Dewey numbers is divided in to two speciaksasamely the
case of single postings (as seen in DI) and the case of cosipgdssts of postings
(as seen in Sl). Compressing single postings needs spededigned algorithms for
encoding and decoding (such as the customized VBL codetg}Vidts of postings hold
more data, which make it feasible to apply more generic cesgion schemes, such
as Huffman, LZ77, and RLE. Test and evaluation of the aforgiored compression
schemes are shown in Secti®on pager7.

Chapter 4

Meet Operator

This chapter will define the concept of “meet” (Sectiof) and provide algorithms for
meet computation (Sectiods2—4.3).

4.1 Definitions

Having the basic concepts of the XML data model (Secfiol) and Dewey paths
(Section3.1) defined, we are now in a position to introduce theetoperator, which
is the underlying algorithm of our keyword search procegsifihe idea of theneet
operator was originally introduced by Schmittal. [17, 18]. Basically, themeet
operator is a graph function that operates on a set of Dewtlg p@acompute the most
“interesting” node containing specific search terms (keylsh Working with XML
elements represented as nodes in the XML document tree, wetwaank specific
nodes by their relevance. Given a non-empty set of nodesntst interesting node
in the set is the node shared by the majority of nodes in thek&ting paths in the
document trees defined using Dewey paths we see that findéngriion of Dewey
paths is a special case of the more general problem of congptlingest common
prefixes”.

Before defining the concept of “meet” we now define the conagptiongest
common prefixes”.

Definition 4.1 (Longest Common Prefixes).Given two Dewey pathg = [do, ..., dx]
andp’ = [d), . .., d.,], the prefix functiorlcp computes théongest common prefof p, p’
as follows:

le(p,pl) = [dO, 600 7dl],

wherel = max{i|(do = dy) A (d1 =dy) A ... A(d; =d;),0 < i < min(n,m)}.

Based on the above definition, the concept of “meet” is defasefbllows:

4.2. NAIVE ALGORITHM 21

Definition 4.2 (The Concept of “Meet”). Given two Dewey pathg = path(v) andp’ =
path(v'), v,v" € V, themeetof p, p’ is the longest common prefix of p’; that is,

meet(p,p’) = lep(path(v), path(v')).

As can be seen from Definitigh2, themeetperator computes thengest common
prefix between two Dewey paths. Translating this problem into ih@ain of XML
document trees, we find that theeetoperator calculates tHewest common ancestor

Ranking in themeetoperator is executed on the theory that a deeply nested node
containing many search terms is more important than a deegsiied node containing
few search terms. This idea of ranking using the concept ef‘bwest common
ancestor” is also conducted in XRANKLY]. However, most traditional indexes
provide ranking by means of global statistics for the index (DF). In fact, Melnik
et al. [10] argue that it is a necessity in any modern inverted index. t&sts, and the
following example, demonstrate that ranking based on thetfonality of themeet
operator and the structural hierarchy of the XML documenffices and provides
accurate results.

Example 2. We search for the terms “Engine” and “Sergey” in an invertedek of
the document shown in Listing.1. Initially, the index will return exact match on
all search terms as postingss. <Engi ne, / 0/ 0/ 0> and<Ser gey, / 0/ 0/ 1>.
Computing thdongest common prefiof Dewey pathg 0/ 0/ 0 and/ 0/ 0/ 1 we get

/ 0/ 0. Therefore, the returned resultis thar t i cl e> element (left sub-tree), since
<arti cl e>is associated with the Dewey pdth/ 0 and<art i cl e>is the deepest
node in the document tree that contains both search termee, He<arti cl e>
element is said to be tHewest common ancestor

Note that the character is only used to separate the Dewey numbers from eac
other when they need to be displayed. Internally, in the @m@ntation Dewey paths
are represented as a vectouosigned integerdVhile defining thaneetterminologies
above we implicitly introduced what this project defines asults from ourmeet
operator.

4.2 Naive Algorithm

Meets are computed by means of theeetoperator. Finding meets using the
meetoperator actually amounts to finding the longest commonym@sfof the input
Dewey paths set, as stated previously. The problem of fintingest common
prefixes B4, 35] is a general class of problem, thus having numerous ways of
solving. In the DATS5 project, we have evaluated three défgimplementations of the
meetoperator (based on the naive algorithm, graph-based #igorand line-based
algorithm) [L9, Chapter 3]. Previous tests have additionally shown thatite-based
(now called “scan-based”) algorithm is the most efficieng.ofo introduce the reader

to the implementation of theeetoperator we have included both the Naive Algorithm
and the optimized Scan-Based Algorithm.

One way to implement thmeetoperator is to compute “all” meets of an input set of
Dewey paths, select and output only the most important noides pseudocode of this

4.3. SCAN-BASED ALGORITHM 22

algorithm is shown in Definitiod.3. MEET-TwoO takes as input two Dewey pathsp’
and outputs the longest common prefixpop’ as defined in Definitiod.1on page0.
MEET-SET takes as input a set of Dewey patAsbuilds all possible combinations of
meets using MET-TwoO and outputs them. If the number of input Dewey paths,is
the number of meets returnedis.

Definition 4.3 (Initial meet algorithm). Given two Dewey pathg; andp; we define the
meetbetween them as follows:

e MEET-TWO(pi, p;) = lcp(pi, p;)
Given a set of Dewey pathB we define theneetof the set as follows:
e MEET-SET(P)={MEET-TWO(p;, p;)|pi,p; € P}

Given a set of Dewey pathB and a constant we define thaneetof P with relevancek as
follows:

o MEET-K(P, k) = {p|(p € MEET-SET(P) A lengthp] > k}

To prevent the document ID of XML documents to be returneccisahmeets, we
have implemented the BET-K procedure to only return meets whose depth is greater
thank. Selecting which “meets” should be returned in the outptiss#one by a simple
selection ruldength[p] > k. Due to the encoding format of Dewey paths described in
Section3.1and Sectiory.2.1.2we definek = 1.

The time complexity of MET-TwO is O(1) wherel = min(length[p], length[p'])
since comparing two Dewey pathsp’ takes linear time. Computation of MT-SET
takesO(hn?) because each Dewey path of the input set must be compareeadth
other, hencei?, andh = max{length[p]lp € P} is the generic upper bound on all
individual path comparisons.

This approach is rather naive and not suitable for pragticgboses since its time
complexity is quadratic and its memory usage is linear ingize of the input. To
compute meets, all nodes A need to be loaded into main memory and compared
with each other to find all meets, thus resulting in a huge amofiduplicates in the
result set and rendering performance penalty. In additiothé inefficient memory
utilization, no ranking is performed on the result set.

4.3 Scan-Based Algorithm

To eliminate the shortages of the algorithm presented gbeeeintroduce another
algorithm that is able to perform ranking and, at the samesticompute meets.
However, before presenting the scan-based algorithm we toediscuss the problem
of ranking.

4.3.1 Ranking Search Results

After being computed, the query result set must be rankedlapdayed in a way that
is relevant to users. Ranking is not within the scope of thigget, however, we will

4.3. SCAN-BASED ALGORITHM 23

now try to outline some of the general ideas of ranking. Whspldying the result set
we want: (i) all hits in the result set must belevantto the query at hand, and (ii) the
search result must be displayed in an understandable andrieselly way [36]. To
meet these requirements we opted to rank XML elements okthdtrset according to
the principle shown in Definitiod.4.

Definition 4.4 (Ranking principles). The ranking functionality embodied by thaeet
operator complies with the following rules:

Specific nodes first. Rank deepest nodes in document higher than nodes higherthp in
document tree since in most cases they are more specific.

Short distance first. Rank XML elements by the node proximityd., the distancein the
document).

The concept of “proximity” of keywords is defined in Definitid..5.

Definition 4.5 (Node Proximity). Proximity of two nodegroz(v,v’) in the tree is defined
as the length of the path between the nodes through theistawenmon ancester

prox(v,v’) = (length[v] — lengthlc]) + (length[v'] — length[c]),

wherelength[v;] returns the number of edges found on the path from therrtmnodev;.

For more advanced ranking the reader is referred3folp]. In the extreme case
we would have to implement a static rank analyzer, as prapasdhe XRANK
system [L3].

4.3.2 Scan-Based Meet Algorithm

Since the submission o1 §] the need for a better implementation of ieetoperator
has shown. In result of this we have fine-tuned the rankinghaw@ism, which
calculated real time, for better query results. The newrdtlym is shown in Figuréd. L
MEET-SCAN takes as input a set of postings ordered by Dewey paths (uirér.7).
The algorithm visits each posting exactly once, compam@Dewey paths with each
other to compute the current meet and outputting whenevepbthe following rules
is satisfied:

Rule 1: Output the current meet if the Dewey path loaded from thetisptioriginates
from another document.

Rule 2: Output the current meet if the meet betweesindp’ has a depth shorter than
k. This happens when two nodes have nothing else in commorihlibanot and
the document ID.

Rule 3: To provide basic ranking we calculate how many entities ftheinput set
are intersected by the current meeg}, ¢his is done by increasing thétcounter
component ofv. If the term of the newly loaded Dewey path is not already
contained inv we increase théitcounter by 10 otherwise we increase hly

4.3. SCAN-BASED ALGORITHM

MEET-SCAN(P)
1 R0

2 v« P.PeekTop()

3 while (P # 0) do

4 w«— P.PopTop()

5 d«— proz(U,V)

6 v« lep(U,V)

7 Rule 1:

8 if (d = —o0)then

9 R+— RA{v}

10 V—u

11 Rule 2:

12 if (d < k) then

13 R— RU{v}

14 V— U

15 Rule 3:

16 if (d > k) then

17 if (Uterm N Wserm = (D) then

18 Vterm <— Uterm U Uterm

19 Vrank — Urank + 10

20 if ('Uterm N Uterm ?é (D) then

21 Urank < Urank + 1

22 Rule 4:

23 if (vrank > 10) then

24 R~ RU{v}

25 v—u

26 return R

Figure 4.1 : Scan-basetheetalgorithm

4.4. SUMMARY 25

This is done to rank nodes that contain many terms highermtbédas containing
few terms.

Rule 4: When we have a sufficient amount of elements of the current (ageave
output it and promote to our new working meet.

Figure 4.1 shows the pseudocode for the revised implementation ofiihet
operator. The algorithm works by iterating through theebrhput sef” until reaching
the end (lines 3—-25). During each iteration, the next pgstimead ;) and a temporary
meet(v) is calculated. Whenever one of the rules applies to the eeanpmeet(v), v is
added to the result s@&. After addingw to the result set, we copy the valuewinto v
and the iteration continues. By computimgetin this way, we incrementally identify
relevant elements, by traversing from the most specific efém(those returned by
the inverted index) up to more generally elements (comgimhultiple occurrences
of terms). Source code for theEET-SCAN meetoperator is given in Listingh\.3 on
page94.

The time complexity of MET-SCAN is O(n) wheren is the number of elements
in the input set.

4.4 Summary

The meetoperator is a graph function intended for finding the “mo#tvant” nodes
within a given set of Dewey paths. In theory, it works by cédting the lowest
common ancestoirin the context of XML, the lowest common ancestor betweem tw
XML elements is promoted as being more relevant than the tivih Xlements alone.
Computing themeetis done using our proposeddT-SCAN algorithm. In addition
to finding the lowest common ancestors of a set of XML elemenatsing the search
results according to the computed relevance with respeitteaser-specified query
has also been incorporated in tineetoperator.

Chapter 5

System Architecture

This chapter primarily focuses on the design principlesirmbithe KaLCHAS
architecture. First, we describe the overall system archite of KALCHAS
(Section5.1). Second, we describe how to embedUlCHAS in applications
(Section 5.2), and we describe two applications havingallCHAS embedded
(Section5.3). Finally, we describe how developers can create pluginsrable
KALCHAS to support specific file formats (Sectiér).

5.1 KALCHAS Architecture

The design of the KLCHAS architecture has laid stress on high modularity and
extensibility. This has resulted in a layered system dessgshown in Figuré.1 This
shows that the system is divided into three layers, each layaware of the layer on
top of it. The layering is reflected directly in the sourceead individual namespaces.

Kalchas Kalchas Web
Console Explorer Interface

[Plugins H KALCHAS Kernel J

l_l

[System Libraries: Expat, Berkeley DB, Boost,]

Other

MS Windows API, CommonC++, etc.

Figure 5.1 : The KaLCHAS architecture

Starting from the bottom we find the Operating System Layar. this layer,

5.2. EMBEDDING KALCHAS 27

all system libraries are contained, includiMjcrosoft Windows AP] Expat[37],
Berkeley DB[38], Boost C++ librarie§39], and GNU CommonC+440] which are
used directly in the KLCHAS kernel.

In the middle is the Kernel Layer containing the maimuCHAS kernel and
auxiliary plugins. The KLCHAS kernel is the KALCHAS core system itself
that can be embedded in external applications (see Sebtidn The auxiliary
plugins are introduced to allow third party developers td #ueir own file format
handlers/shredders to theaKCHAS system (see Sectidh4). The implementation of
the middle layer is separated into two namespaces, nakatlghas_ker nel and
kal chas_pl ugi ns.

At the top of the layered architecture is the Application ayln this layer we
have all applications that embed th@ KCHAS kernel. Examples of such applications
are Kalchas Console, the web-based PHP interface, and &alexplorer. In the
implementation all the functionalities provided byanKCHAS to external applications
are wrapped in thkal chas_api namespace.

Developing the KKLCHAS kernel has taken place in object-oriented C++, with no
strict coupling to the object-oriented analysis and desWya have utilized the object-
oriented aspect of C++ to group functions and data strustilyefunctionality rather
than simulating real-life phenomena. This has been donertgnizing classes in
namespaces.

Building the system as modular as possible allows easy tmdgugs for new
technigues without tampering with the functionality of trest of the code. To do
that we have additionally designed a set of generic intedfgeirtual abstract classes)
to be implemented.

5.2 Embedding KALCHAS

The KaLcHAS kernel has been designed and compiled as a dynamic linknjibra
kal chas. dl | to allow an easy application integration. Tkel chas. dl | library
file provides an API (as shown in Tabtel) for third party application developers at
the Application Layer level. For a detailed description a€le function in the API, the
interested reader is referred to Chaptend/or the KKLCHAS APl Documentation in
http://kal chas. dk/.

To demonstrate the ease of embeddingLBHAS into third party applications,
a code example is given in AppendiX.1 on page9l This code example
illustrates how to (i) import KLCHAS into the application, (i) add the file
bi bl i ography. xm , and (iii) execute a query for the terms “Engine” and “Sefgey
Thebi bl i ogr aphy. xni file in the example is the same file shown in Listiag,
and the query result after being processed byrtieetoperator is as explained in
Example2 on page?l.

Since the file is a standard XML document, the internal XMLestder will be used
to produce the formatted query result as shown in Lisfiig The listing illustrates that
meta information to the query results is added. Each indadidesult is packed into
a<kal chas_resul t > XML element. Within this element are the generated meta
information, including the<fi | enane>, <keywor ds> and<val ue> tag. The

http://msdn.microsoft.com/library/en-us/winprog/winprog/windows_api_start_page.asp
http://expat.sourceforge.net
http://www.sleepycat.com/products/db.shtml
http://www.boost.org/
http://cplusplus.sourceforge.net/
http://kalchas.dk/

5.3. APPLICATIONS USING KALCHAS 28

| Functions | Description |

AddFi | e Add a file to the index.

Del eteFile Delete a file from the index and make sure that any fujure
gueries will not return results in the given file until it |s
added again.

UpdateFil e Notify the index that a certain file is updated. If the file
has not changed on disk the file is not re-indexed.

QueryRetrieve Query the index for a sequence of search terms jand
return a list results in XML format.

For ceCronj ob Allow K ALCHAS to perform maintenance jobs, such jas

index merges, index clean up, etc. This function shquld
in general not be used, asaKCHAS is equipped with
a mechanism to automatically detect when maintenance
should be executed.
Error CodeToStri ng | Translate one of the defined eKalchasErrorCode enu-
meration values into human readable text.

Table 5.1 : KALCHAS API

<kal chas_resul t >
<filename>bibliography .xml<fil enane>
<keywor ds>Engine Sergey «eywor ds>
<val ue>
<paper id="1">
<titl e>The Anatomy of a LargeScale Hypertextual
Web Search Engine «itle>
<aut hor>Sergey Brin, Lawrence Pageauthor>
<year >2000 <kear >
</paper >
</val ue>
</kal chas_resul t>

Listing 5.1 : Portion of the original XML

content of the<val ue> tag in this case is generated by the internal XML shredder,
and as such is a verbatim copy of the original XML elementrretd by themeet
operatot.

5.3 Applications Using KALCHAS

In this project, a set of applications embedding theLKHAS kernel has been
implemented,e.g. Kalchas Console and Kalchas Explorer. These applications
demonstrate the majority of the functionality presentedtbg API. The most
significant application is Kalchas Explorer which is a state¢he-art desktop search
engine comparable to prominent systems such as CoperniktdpeSearch 41],
Google Desktop42], Apple Spotlight i3], MSN Search Toolbar44], and Yahoo!

1External plugins for other file formats may choose to retutrepkinds of data in the value field

5.3. APPLICATIONS USING KALCHAS 29

Desktop Searchip].

5.3.1 Kalchas Console

A simple example of employing KLCHAS is the Kalchas Console (see Figlie).
This is a small text-based query application that serves @®lato get immediate
access in order to testA{CHAS’ functionality.

Kalchas command line. Write “help’ for instructions.
H>add papers.xml

Adding: 'papers.xml’

Chredding papers.xml<{br>

Done shredding papers.xml<hr>

Duration: 28 ms.

H>add papers.xml

Adding: 'papers.xml’

HKalchas: File already indexed
Egratiun: B ms.

Figure 5.2 : Kalchas Console screenshot

5.3.2 Kalchas Explorer

In addition, another application is also provided to dentr@ats an advanced scenario
of employing KALCHAS. Kalchas Explorer is our desktop search engine for Microsof
Windows with real-time dynamic updates. This applicatiacilftates all of the
functionality provided by KiLCHAS. If using the default search mechanism that is
shipped with Microsoft Windows, one is often presented virthccurate results and
long search time. This is due to the lack of proper index mamamt. Whenever one
starts a new search for a given query, the MS Windows desldapck will traverse
the whole file system while opening all files to test for reles& according to the
query. Instead, using theACcHAS kernel we have been able to build a system that
manages to execute searches in reasonable time while prgeiccurate results ranked
by relevance. Figur&.3shows a screenshot of Kalchas Explorer running for the first
time.

The structure of Kalchas Explorer is shown in Figuse, and each of the
components shown in the figure is described below:

Kalchas Explorer;: Once the system is installed the program Kalchas Explorér wi
have its own folder in the Start Menu and additionally stagrg time Windows
is booted.

XML Explorer: We have placed a small query field within the graphical user
interface. Once a query has been processed, the querywd@sbke shown in a
new window — the Kalchas Explorer XML (see Figuie)

Disk Crawler: Disk Crawler is used to traverse the entire file system winiteeking
all known file formats. This function is intended to be execlat install time.

File System Integration: After the disk has been crawled using Disk Crawler, all new
or added files will be indexed automatically. This is done bgking Windows

5.3. APPLICATIONS USING KALCHAS

B Kalchas Explorer u [‘E

Files ©ptions Help

—Daemon messages

— Filesyster messages
Ready for inkerception,

—Query

Search ... |

Figure 5.3 : Kalchas Explorer screenshot

KaIChaS |kalchas false break | [Search

Separate search terms with spaces

Kalchas & 2004-2005

Search results: kalchas false break.

PHP Source Code
PHE Source Code

white (true) §

thuffar = $this-=Internalfead();
if (stroos{thuffer, "<iiaichas_result=")1== false) break;
F

B i kalchas\outputyphphclass kalchas.php - Download - Similar docurments
PHP Source Code
B i kalchas\outputyphphclass kalchas.php - Download - Similar docurments
PHP Source Code
B i kalchas\outputyphphclass kalchas.php - Download - Similar docurments

PHP Source Code

B i kalchas\outputyphphclass kalchas.php - Download - Similar docurments

Figure 5.4 : Kalchas Web Interface screenshot

30

5.3. APPLICATIONS USING KALCHAS

Disk Crawl File System Web Other
15k Lrawier Integration Interface Applications
[é(alchas] [XML Explorer] [Server Daemon
xplorer
[KALCHAS Kernel

Figure 5.5 : Kalchas Explorer structure

Kalchas Explorer XML

Result browser ConkentYalue

kalchas_result e Architecking an =ML Search Engine with the Meet-Cperator
filenarne
keywords

=

kalchas_result
filenarne
keswiords
= value
—| paper
tikle
authar
SUMMary

Statistics
Seatch terms: search engine

Figure 5.6 : XML Explorer screenshot

5.4. EXTENDING KALCHAS 32

Shell Notifications. These notifications are sent out whenevfile has been
added to the file system, deleted from the file system, mowed the file system,
etc.

Server Daemon: In order to enable other applications to use the index géeeizy
the Kalchas Explorer we have implemented a tiny TCP/IP setaemon using a
home made textual protocol. The daemon is started on poft 8@y on every
start up.

Web Interface: If the destination desktop system has a web server inst@leth as
Apache with PHP), one is able to install the provided wehrfate for querying
the index. This web interface provides a cleaner and moretive way of
browsing results of a query. The server-side PHP scriptiisnconicating with
the server daemon in order to query for results. Figu#eshows how the web
interface is designed.

Other Applications: Using the textual protocol to communicate with the server
daemon, external developers are able to interact with thehida Explorer. This
could be used to build advanced search mechanism such adeGdesgktop
which combines online web search with desktop search dlaitag. from a
web browser.

5.4 Extending KALCHAS

The basic functionality of KLCHAS is to implement a dynamic XML search
index. Additionally, one may also want to index other filespecially in cases like
Kalchas Explorer. In order to support as many file formatsassiple in KALCHAS,
we have developed a plugin framework, in which any thirdydgveloper is allowed
to create shredders for any known file formats. Internal o &HAS is the XML
shredder that handles all files identified. The data outumfihe XML shredder are
tokens based on the actual text found in the document. Howetleer file formats
may contain no indexable content and thus need to have m&tegdaeratede.qg,
JPEG or MP3 files mainly consist of binary data unsuitabléridexing. Support for
such files should be implemented asllCHAS file support plugins. The idea of using
external plugins, and thus allowing third party develogerextend the functionality
of the search engine, is a fairly new turn in desktop seargimerdevelopment and has
only been officially announced in Apple Spotlighty] (and KALCHAS).

5.4.1 File Support Interface

All file support plugins written for KiLCHAS must implement the predefined
cKal chasFi | eSupport interface located in thkal chas_pl ugi n namespace.
The interface is virtual and abstract and thus all functi®ted must be implemented
by the plugin developer. A description of the interface carseen in Tabl®.2and a
technical description can be found in the code documemtatio

An example file plugin is shown in Listing.2. The example uses all the functions
mentioned in the interface shown in Talll&. In order to use the code, it should be
compiled using Microsoft Visual Studio C++ with an apprapei work space. The

5.4. EXTENDING KALCHAS 33

| Functions | Description |
Initialize Initialize the processing of a given file.
Process Start processing the initialized file. Postings shopld
be buffered and be available uritiéi ni ti al i ze
is called.
Get Next Once the call td’r ocess is done KaLCHAS will

iterate through the postings by calling this functipn
and retrieve postings one by one.

Deinitialize Release any resources allocated since the call to
Initialize.

Get NunExt ensi ons Return the number of file format extensions
supported by this plugin.

Get Ext ensi on Retrieve a textual representation of the suppoited
file format.

Retri eveXML Retrieve the XML associated with a given input

Dewey path. This function is called whenever a
query return hits within a file format supported by
an external plugin.
Destroyl nst ance Release any resources allocated by the plugin. This
is called once in the shut down phase ofIlCHAS.

Table 5.2 : Kalchas File Support Interface

output PLUG N_PGP. DLL should be placed in the same folder as theLBKHAS
DLLs. When KaLcHAS kernel invoked, it will scan the folder for any files matching
the PLUG N_*. DLL pattern and attempt to load them. For each pluginL&HAS
will query the plugin for its supported extensions and keapk of those using a string
map. If two pluginsa andb, are supporting the same file format/formats andas
loaded beford only the latter will be used for shredding. Using these pisga third
party developer is able to rewrite our internal XML shreddehich uses Standard
Template Library (STL)46] and Expat B7], to something that may suit his purpose
better than our general purpose shredder.

5.4.2 Example Extensions

To provide example on how to extend the file support kKLKHAS we have developed
the following plugins:

Plain text The pluginPLUG N_TXT. DLL is developed to be able to index simple
plain text formats (.txt files). In order to index the tokemsrectly, the plugin
introduces meta data. This meta data is seen by the locatitregostings
outputted by the plain text plugin. All locations in the outpostings arg42/1
t oken where42 is the document ID from KLCHAS.

Source codeOur plugin to handle C/C++ source code, C/C++ header file®, filbls,
Ct#filesis located in theLUQ N_SRC. DLL plugin. Normally source code files
would be indexed as plain text files, however our exampleiplslgows how to
index source code files down to semantic structures. Thisdinaularity is

5.4. EXTENDING KALCHAS 34

implemented by shredding the source code as XML files fvittigns indicating
an XML start tag €t ag>) and} -signs indicating XML end tags. Searching
for keywords within source code results in structural chohkode,i.e., if a
search query returns hits within a given function the whatection source code

is shown in the output.

Audio. Audio files, MP3 only, are indexed using their ID3v2 tags ardeyated meta
data in thePLUG N_MP3. DLL. The content of the ID3v2 tags is basically
indexed as plain text and on top of that we extract meta datatabe audio file
(i.e., stereo/mono, bit rate, etc).

Chapter 6

Index Structures

This chapter describes the structures used for storingriherted indexes and the
approaches used for maintaining these. Moreover, we préseitechniques used for
keeping the indexes up-to-date while distributing the obsipdates.

XML documents in the repository may be subject to frequerdnges €.9,
updating, addition and deletion of documents), thus theerted index should
simultaneously reflect these changes in order to providesis® up-to-date access
to the information. This is, however, a challenging tasksifrequent updates on the
inverted index cause high workload.

In this project we have employed a range of techniques torapdiindex updating.
The first technique isndex partitioning This is accomplished by having a cascade
of three indexes — composed of an in-memory cached indexa#l dgmamic index,
and a large static index — instead of a single one. Doing soamgeable to index
newly arrived or changed documents in-place and, at the emaeavoid frequent full
index reconstructions. In-place indexing means wheneger gdocuments are added
or existing documents are modified/deleted they will be xedenvhen re-building the
entire index, thus providing up-to-date information ascies users. When the cached
index becomes full, a batch of old documents will be flushéd the dynamic index,
and the dynamic index will occasionally be merged with tlaistndex. The reason
why we do this is mainly to reduce disk I/O accesses. An @ahperiment on three
alternative strategies for index updates (in-place updadex merging, and complete
re-build) conducted by Lesteat al. [47] has also shown that merging is the fastest
approach for large numbers of updates. A similar technigsedfiso been proposed by
Tomasicet al. [22]. To address the problem of incremental updates of inveisés)
they propose a new dual-structure index which is able to aycelly separate long and
short inverted lists.

In addition to index partitioning, we also usachingand a number of strategies for
moving posting from the cached index to disk to optimize indedates. Recently, Lim
et al. [9] have proposed a new technique to update the inverted iratepréviously
indexed documents whose contents have changed. Theirigeehases the idea of
using landmarks together with the diff algorithm to detdwt differences between
documents to reduce the number of postings in the invertdexithat need to be
updated. Further, to underpin this research direction, mbau of algorithms to

6.1. THE CACHED INDEX 36

detect changes in XML data has also been develop&dip]. However, a repository
containing old versions of documents is a prerequisite fafahese techniques, and
thus they do not apply for KLCHAS.

%]
Cached Index =

-

FileLog FileLogAccess FileLogDel

Memory Disk

Figure 6.1 : Index structure

In general, the overall index structure ofAKCHAS is designed as a series
of cascading indexes, where each index has a specific pyrpo»@ding distinct
properties and trade-offs. Postings enter the system iniratex and slowly seeps
through to the next one, as illustrated in Figlird. This approach allows flexible
fine-tuning a various parameters which directly effectsgbdormance of the system,
especially update performance. Tdached indexCl) is an in-memory inverted index,
serving as a working set containing recently processedssand thus yielding better
index update performance on frequently modified documeitike CI, thedynamic
index(DI) andstatic index(Sl) are rather large, therefore they are kept on disk. Both
the DI and Sl are used to support persistent storage of tkeetewindexes. The former,
however, has an additional special purpose, namely suppgancremental updates.

6.1 The Cached Index

The dual index structure proposed in the previous projeg;tfee pp.48] contained two
indexes: a small dynamic indeixd. DYNDIL) and a large static index.e. STATDIL).
This scheme allowed incremental updates and outperforngesingle index structure;
however, while performing well on bulk insertion of docungnit did not handle
frequently modified documents efficiently, which was protdgic given the intended
environment. Often, desktop user work on a relative smabiies at any given time,
but this set is frequently modified. For instance, when waglon spreadsheets users
often save the contents periodically (or it is auto-sav@die problem, in the context
of the dual index structure, was caused by only using diskd#&strees for storing
postingsj.e. when a document had been processed the postings would imtelgdie
written to disk. In the context of frequently modified docunts this approach has the
disadvantage that data is likely to be modified shortly dfteas been written to disk,
thereby causing two problems: (i) the data initially writtey disk is rendered stale
(while still occupying space in the B-tree), and (ii) all déat the modified document
must be written to disk again. Thus, the approach resultedeifficient use of both

6.1. THE CACHED INDEX 37

disk access and the B-tree. To handle these problarasteed indexCl) is introduced
in KALCHAS.

Cl is provided as an in-memory inverted index containingtipgs from the most
recently created or modified documents. The advantage of & @vofold: (i)
utilization of disk /0O and handling of the disk based B-tiseimproved, and (ii)
the general responsiveness of the system can be enhanceastppming disk /O
operations. The imposed increase in performance is depgmdi the strategy used
for writing the contents of the cache to disk. Having CI alevith the other indexes,
however, has raised a number of questions. For instance:

Organization. How should the generated postings be stored and organiZ&icaifter
being shredded?

Migration. How should the cached documents be moved from CI to DI in cimler
minimize disk I/O accesses?

Each of these questions will be discussed in the followirigseations.

6.1.1 Data Organization

When a document has been shredded by Expdt 4nd tokenized, we create an
inverted index representing the postings extracted froendbicument. In order to
achieve high performance, we store these postings aceptalitheir term in a search
tree. Definition6.1 formally defines the organization of postings shredded feom
given document. A search tree could be implemented as alaet-bearch tree which
guarantees efficient insertion, deletion and retrieval.

Definition 6.1 (Organization of postings in Cl). The search tre& for a given document
D is organized as follows:

e N is the set of nodes i’ covering all unique terms found iR

® [Licrm,; = (loco, ..., locy) is the inverted list of locations associated with
term; € D

e N[term;] is the node i’ whereN [term;] = ILicrm,
sorted on term, so that

e term; < term; iff term; is lexicographically less than or equalt@-m;

In the C++ implementation of KLCHAS we have chosen to use the Standard
Template Library’snap data structure which is a sorted associative container. An
associative containeis a variable sized container that supports efficient neafief
elements (values) based on keys. It supports insertion emdwval of elements, but
differs from a sequence in that it does not provide a mechafisinserting an element
at a specific position. Additionallysorted associative containersse an ordering
relation on their keys; two keys are considered to be eqeitdl neither one is less than
the other. This sorting order in the context of shreddedsésrahown in Definitiors. 1.
Sorted associative containers guarantee that the complexmost operations is never

6.1. THE CACHED INDEX 38

worse than logarithmic, and they also guarantee that th&inents are always sorted
in ascending order by keytf]. The map container is implemented as a (red-black)
search tree, thus common operations like insertion, @elgtind search are supported.
Put shortly, a document stored in Cl is represented as atstarcordered by indexed
terms where the nodes contain inverted lists for the astwatiarm.

In order to store several documents in Cl, we use a doubledifikt containing all
the shredded data. This is done to allow fast insertion amdval of documents. When
inserting a new document in the cache, we simply place thelséaee containing the
shredded data into the linked list (as seen in Figu# A consequence of this design
is that our inverted lists are not interleaved in memory,rattier grouped by DoclD.
This has the advantage that cached documents can easilyveel fnom CI to DI.

Newly shredded postings

Document trees in the cache

Figure 6.2 : Insertion of a new document in the cache

While a multitude of research projects concludes that cesging inverted lists can
increase the overall performance of an inverted index, we f@aund that compressing
the inverted lists stored in Cl introduces an unnecessash@ad in terms of execution
time. This is due to the fact that documents stored in the €lsabject to frequent
updates and compression would only prolong the time of upglahe overall index.
Additionally, compressing data stored in Cl would introdweccomputation overhead
when migrating data from CI to DI due to different storageesuks. However, we do
apply compression on single postings stored in thei.€l, postings are compressed
individually and not sequentially. Compressing singletipas has two advantages: (i)
compressed postings consume less RAM than uncompresskgi)anigration from
Cl to Dl is faster. As described in Chaptela customized VBL codec is used when
compressing single postings.

6.1. THE CACHED INDEX 39

6.1.2 ClI-to-DI Migration Policy

As the main purpose of Cl is to avoid writing unnecessarilglisk by postponing write
operations, the memory allocated to Cl should be able to aalarking set of files.
By “working set” we mean the set of files which is likely to be difted multiple times
within a certain time frame. We assume that of all the presfipmodified documents,
the document most likely to be modified next is the one mosrég modified, and
based on this assumption a LRU (Least Recently Used) pdiaysed for moving
documents from the cache. Although this is a somewhat dieglassumption, we
believe it catches the essence of general desktop useribehalere users normally
work on only a few documents at a time. This assumption is srpg by the widely
used Zipf’s law p0]. Figure6.3shows the relationship between specific documents and
their frequency of update. Using Zipf's law we observe thdya subset of documents
are subject to frequent updates which is the scenario weostitpough the ClI.

160 T T T T

Ziplfs Law —

140

120

100

Frequency of use

60 |-

20

0 1 1 1 1 1
0 100 200 300 400 500 600

Specific documents

Figure 6.3 : Zipf's law applied to a document collection

As the size of the working set can vary from user to user ana ftay to day, it is
difficult to point out an universal appropriate size. If themmry allocated to Cl is too
small to hold the working set, it will at some point be neceg$a write data to disk,
which is likely to be modified again within a certain time frarmnausing additional
disk I/O. On the other hand, if too much memory is allocate€tomemory would
simply be wasted. It should be noted that this problem is abvesl by dynamically
allocating memory to ClI, since such an approach simply esstirat the allocated
memory contains data. However, from the drawback descréiiede it should be
clear that allocating more memory than necessary to Cl iflemkle as compared to
allocating too little memory.

6.1. THE CACHED INDEX 40

In KALCHAS the amount of memory allocated to Cl is controlled manuafigre
specifically, it is possible to control the maximum numbepos$ting which at any time
can be in the cache. As both the term and location field of pgsttan be of variable
length, it is not possible to control the exact amount ofdted memory.

When new documents are loaded into memory Cl may becometfulf some
cached documents must be moved from the volatile memoryecaxth a persistent
storage i(e. dynamic index). In this context, the LRU policy is employeaganing
that (some of) the documents which have been least receptlified are selected as
candidates for being written to DI. As postings always are@ddrom CI to DI on a
per-document basis, postings are clustered in memory olDoc

When migrating the cached documents from ClI into DI, thegrenince aspects
must be taken into consideration. One way is to move one dentiai a time from ClI
to DI. By using such a strategy we can make good use of the dgchestponing write
operations for as long as possible, but unfortunately mgitinly relative few postings
to disk at a time does not make efficient use of disk I/O. Howefenore than one
document is moved at a time, chances are that a higher defydéskd/O utilization
can be achieved. Unfortunately, this can also affect caelfepnance negatively, since
write operations are not postponed for as long as possilbis. problem is solved by
increasing the size of Cl, so that the cache can store theimgpslet and additionally a
batch set as illustrated by Figuses.

Working set Batch set

/N

|
Cached Index

Most recently used ————» Least recently use

Figure 6.4 : The cached index contains a working set of documents. A sufshe
documents in working set also constitute the batch set,iwtontains all documents that
will be written to disk during the next migration.

The batch set contains documents that will be written to diskng the next
migration, and as can be seen from Fig@rit overlaps with the working set. While
all documents in the batch set are candidates for beinganrtitt disk, it is still desirable
to be able to modify them while they still are in memory. Batghdocuments to be
migrated from ClI to DI also has the advantage of increasiagtissibility of common
terms. This means that when moving several documents froim B, the probability
of the migrating documents sharing one or more terms is highif two documents
contain the word “the”, the inverted lists would be writteagsentially to disk rather
and thus increase performance. The probability of colfjderms in two documents
is described using Zipf's law, which is assumed to apply tstmatural languages,
e.g. the play “Hamlet” by Shakespeare follows the Zipfian disttibn in terms of
frequency of words (the word “the” appears 27921 times wtadlauser” appears 1
time).

6.2. THE DYNAMIC INDEX 41

In Section8.3 the performance of Cl with respect to cache size is tested and
evaluated.

6.1.3 Summary

Cl is the in-memory index, intended for maintaining a wotkiset of documents.
Storing postings in Cl, as opposed to storing them in a disketééndex, is introduced
in order to reflect frequent updates in-place. Additiona@ly allows migration of

consecutive postings in local sort order, which improvesghnalty of moving data
from Cl to DI.

6.2 The Dynamic Index

In this section we describe tlidynamic indexDI, which is the first disk based inverted
index in the index chain of KLCHAS. Being the first index after ClI, DI is updated
as documents are migrated from the former. As Cl is only ciepafstoring relative
few documents, DI must frequently be updated, hence up@atermance is essential.
Thus, we are willing to trade in low disk space consumptidficient storage and
retrieval of inverted lists in order to perform these updatean efficient manner.

6.2.1 Access Methods

Berkeley DB offers four access methods: Queue, Recno, HaghBatreé. While
the two primer methods use logical record number as primasy the two latter
support custom primary keys making both suitable acceshatstas it is necessary
to perform lookups on terms in a full text index. However, vi@se the B-tree access
method for two reasons: first, according @3] B-trees are likely to render better
performance for applications using variable length respsdcond, as the records in a
B-tree are logically ordered on the kéye. term in our case, the Berkeley DB B-tree
implementation can apply prefix omission in order to redbhessimount of data needed
to uniquely identify each key item.

A BT-tree consists of internal pages contain{rigey, poi nt er) pairs pointing
to other pages, and leaf pages contair(ik@y, val ue) pairs,i.e. records (we will
use the terms “record” an@lkey, val ue) pair interchangeably). It is generally
shallow, thus only a few disk accesses are usually needeetrieve a record and,
furthermore, frequently used pages can easily be cachedit@e the number of disk
accesses even more. Both internal and leaf pages are stodéskdolocks, but whereas
the former stores pointers, the latter can also store datking the B-tree not only an
indexing method, but also a file organization of records. sTtusing Berkeley DB'’s
B-tree it is possible to store both index term and assoclatations. Records and leaf
pages are ordered as described by Definitid2sand 6.3 respectively and illustrated
by Figure6.5.

1Although the access method is labeled B-tree it is mostlikeB -tree implementation (se€24)).

6.2. THE DYNAMIC INDEX 42

LPage,

_____ » | Recordy, o | Recordy, 1 Recordn, |

Link from
Internal page

LPags,

Record, o | Record, 1 Record, ; |r---- -

Link from
Internal page

Y

Figure 6.5 : Two leaf pages stored on disk blocks. Records within a legé jpae physically
organized according to their key value and leaf pages akérlinuch a way that no record
in one page has a key value smaller than any record in anyquepiage.

Definition 6.2 (Order of records in a leaf page). The set of record®,,, in a leaf page,,
forms a listRL,,, where:

e P isthe set of all leaf pages

e 7, istheithrecord inp,, € P

o keym,; is the key ofry, ;

® i < 1 iff keym,i < keyn,j
so that

© RLy = {[rm,0,Tm 1. Tmyl|Tm,i < Pmit1Vm,s € ZT}

Definition 6.3 (Order of leaf pages in a B-tree). The set of leaf pageB in a B-tree forms
alist LPL where, giverp,, andp,, € P:

® P < ppiff Py <70 jV7mi € P ATnj € PnyPm € P Apn € P
so that
e LPL ={[po,p1...Pm;Pn-..0:]|pm < pnVm < n}.

Above definitions will serve as a basis for the B-tree relalestussions in the
remainder of this chapter. While both definitions descrhxelbgical organization of
records and leaf pages, the former definition also desctiteephysical organization
of records on leaf pages; thus, if data is inserted into aeB-in key order, records
can simply be written sequentially to disk blocks, avoidmegrrangements on disk
blocks. Inserting or deleting records will eventually lefdrearrangement of the
internal pages of a B-tree, but since this generally woultbbalized to a few pages,
i.e. disk blocks, the operations are fairly inexpensive (in &mwf Big-Oh notation
the operations might be expensive, but in the context oklal@ta structures that do
not fit into main memory avoiding disk 1/O is often more im@ott than general time

6.2. THE DYNAMIC INDEX 43

complexity considerations). In the case of massive increéateipdates, however, the
reorganization of both internal and leaf pages can becomedisk I/O intensive due
to pages becoming over- or underfull and potentially effecbther pages, thereby
making further reorganization necessary. Finally, siteeléaf pages are ordered and
linked as defined in Definitiof.2and Definition6.3and illustrated by Figuré.5, both
equality queries and range queries are supported.

6.2.2 Index Maintenance Strategies

Some systems which use inverted indexes to support fullseerch apply a re-build
strategy for maintaining the index. Using such a stratdéwgyiridex is notincrementally
updated, rather it is frequently re-built from scratch byestding the documents and
extracting postings. The postings are then often sortegtmdd in intermediate data
structures, referred to aorted runs before they are finally processed into inverted
lists [10]. Using a re-build strategy and sorted runs allows for gfiexibility when
storing the postings in inverted lists. As incremental upgare not applied to the
index, the cost of modifying inverted lists can simply bedged, making it possible to
use a record storage scheme which is equivalent to the logpoaept of an inverted
list. Hence, an inverted list maps directly to a record; #rnt associated with the
inverted list is stored in the key field and the sorted listawfdtions is stored in the
data field. This has the advantage of rendering relative giégldspace utilization as
overhead introduced by the database system for keeping infetaation for each
record is kept relatively low, since the number of recordsgaivalent to the number
of unique terms, cf. the equivalent mapping between inddités and records. As
Berkeley DB uses a 5 bytes overhead to store a key or data iteenpage, storing
only 10 bytes (5 bytes for the key item and 5 bytes for the dizta)i per unique
term rather than 10 bytes per term occurrence reduces thieaa significantls.
Unfortunately, keeping the index up-to-date by applyinguild strategy is often
very expensive in terms of CPU and disk usage due to the fatttle entire process
of shredding, extracting, sorting, and storing must beaiggaefor each re-build. Thus,
the strategy is seldom employed on a per-document-ba#iigrréne process is often
repeated with time intervals. Finally, the re-build stggtdas the disadvantage of
requiring additionally disk space since a copy of the oldeithust be kept during the
index re-build process in order to handle queries.

As opposed to the index re-build strategy, an index maimesaatrategy based on
incremental updates does not re-build the index from Seritceach update, rather
only changes made to the indexed document collection betaecessive updates are
“inserted” into the index. This includes newly created doemts, modified documents,
and deleted documents. Although this is likely to rendeeindpdates on a per-
document-basis at a lower cost, than when using an indexite-$trategy, applying
an incremental update strategy is not as straightforwaedasmentioned.

The overall principles for adding new documents are faiiyde: documents are
shredded, postings extracted, sorted and inserted inestew lists. However, when
using an incremental update strategy the extracted psséirgintended to augment
the existing ones rather than replace these, and thus teéngxinverted lists must
be patched with the extracted postings and therefore theofarodifying inverted

2http://ww. sl eepycat . cond docs/ ref/am i sc/ di skspace. ht ni

http://www.sleepycat.com/docs/ref/am_misc/diskspace.html

6.2. THE DYNAMIC INDEX 44

lists must be considered. Especially, care must be takemwhsigning the storage
scheme for the inverted lists as these are subject to fréeqpeiates. In particular, the
equivalent mapping between inverted lists and recordsessrithed above, would not
be optimal. If, for instance, a new occurrence of a term isgodflected in the index,
it would be necessary to retrieve the entire inverted listtits term from disk (causing
disk 1/0), insert the new posting in sort order into the itgddist (causing CPU usage),
and finally the modified inverted list must be written to disigéin causing disk 1/O).
For very large inverted lists, which can be several kilobyaege and spanning multiple
disk blocks, this can become prohibitively resource dermandvhich is additionally
offset by the fact that each new document easily containerablhundred distinct
terms.

Handling modified and deleted documents is somewhat mdiieudifwhen using

an incremental update strategy than when using a re-buitdegly. In essence,
the problem is how to update the inverted lists by removintations associated
with deleted occurrences of a term (due to documents beindjfisd or deleted).
While this is relatively simple in repository-based systesuch as most Web search
engines, it is somewhat more challenging in a system whi&s et have access to
previous versions of documeng][In such systems, identifying and updating inverted
lists containing stale information.¢., locations) associated with modified or deleted
documents requires a complete scan of all inverted listghvhoses heavy disk 1/0
loads on the system and could not be employed on a per-dodtbasis. Alternatively,
a forward index could be used to identify the relevant iregilists, but unfortunately
this also adds a significant performance overhead to themsystue to the fact that for
each incremental update both the inverted and forward intiest be updated, again
causing heavy disk I/O loads.

6.2.3 Supporting Incremental Updates

In KALCHAS, we wish to make new or modified data available for queryinguaskly
as possible by keeping the inverted index fresh, and thus eesl to employ an
index maintenance strategy which allows us to apply updatea per-document-
basis while not seizing all system resources. Althoughnkex re-build strategy has
desirable benefits, such as straightforwardness and effitigk space utilization, it is
mainly applicable in contexts where index maintenance fsniggered by document
modifications but rather time intervals, as is the case witdb\Wearch engines, due
to the massive CPU and disk usage associated with eachIce-btor this reason,
the index re-build strategy is not used imKCHAS, rather the employed maintenance
strategy is based on incremental updates and index mehgea(ter will be described
in Section6.3).

As described previously, applying incremental updates roireverted index
introduces challenges, which must be addressed in ordeelt good performance.
More specifically, the following topics must be addressed:

Storage scheme Storage schemes for storing the inverted lists must be Srestde”.
However, a trade-off must often be made between disk spat®iogption and
update performance.

Stale postings. Stale postings must be removed from the inverted index witho

6.2. THE DYNAMIC INDEX 45

Term | Location

termy | locations
termy | locationy

termy | locationy7r
termso | locationy
terms | locations

terms | locationasy

term,, | location;

Figure 6.6 : The storage scheme used in DI

frequently seizing a substantial part of system resources.

Quality of service. Some quality of service assurance (QoS) should be appligd wi
respect to the cost of incremental updates. As the perfazenahupdates on a
B-tree is inverse proportionally the size of the tree, tha&t obinserting, deleting,
or modifying a single record increases as the tree growslé/ithis not possible
to provide a strict upper bound on the cost of indexing a sinlgicument (due
to the fact that the cost heavily depends on the number ofstetored in the
document), we will instead employ an index maintenanceegiyawhich allows
us to control and limit the cost of updating a record in the {is=e Sectiof.3.3.

As pointed out in Sectior.2.2 a trade-off often exists between general update
performance and storage consumption with respect to imddigts. On the one hand
we do not want the system use excessive amounts of disk spateré the inverted
lists, and on the other hand we want to optimize incremergehtes of the inverted
lists. Since we wish to perform index updates on a per-dooiHbasis, it is reasonable
to expect rather frequent updates, and thus DI has beemeeligith an emphasis on
update performance, mapping a posting directly to a recoiitlatrated by Figuré.6.

This storage scheme is very similar to thiegle payloadscheme suggested by
Melnik et al. [10] and in terms of advantages and disadvantages they are alike
However, for historical reasons a composite key contaitiath term and location
was used in the latter scheme in order to support orderingamirds on both term and
locatior?.

As illustrated by Figures.6 DI is likely to contain records with duplicate keys,
which is handled by leveraging on Berkeley DB'’s built-in popt for handling multiple
data items for a single key item. By default duplicate items @ot supported and
successive store operations will overwrite previous degims for a given key item.
However, Berkeley DB can be set up to provide basic suppordiplicates. This is
performed by Berkeley DB by only storing the key item once praviding a pointer to
an off-tree duplicate page storing the data items ordened€bault) by insertion-order.

30lder version of Berkeley DB did not support custom orderifignultiple data items associated to a
single key item. By using a composite key and supplying aotndtey comparison function records could
be ordered on both term and location.

6.2. THE DYNAMIC INDEX 46

In order to retrieve all data items for a given key it is neaeegso use Berkeley DB’s
cursor interface and iterate through the data items, agaheard lookup method only
retrieves the first data item for a key item. Thus, the conoéph inverted list is not
directly supported by this storage scheme, rather it musinpdemented at a higher
level by using the approach described above. However, tos#ike of simplicity we
will in the remainder of this chapter refer to an single keyitwith an associated list of
data items as an “inverted list”. Finally, it should be natieat VBL encoding discussed
in Section3.2.1is applied to value field of records in DI in order to reduce stz of
these. Due to the small size of data stored in these fieldyiagpiore elaborate
compression is generally not beneficial as the compresatamwould generally be to
poor to justify the computational overhead.

Usually, the locations in inverted list are stored in asdéegdocation order,
but we have chosen to use the standard insertion-order inuBltd performance
considerations: (i) Encoding schemes requiring locatioatered locations,e.g.
numerical difference and prefix omissidri], are not applied to data items, and (ii) all
locations must be sorted prior to being processed bynibetoperator. As the locations
may be associated with different terms, it would be necgdsgrerform a (merge) sort
of the locations, even if every inverted list contained tamas in location order. Thus,
sorting the locations do not add any benefits. Rather, it hégén add an unnecessary
disk I/O overhead; when using location-ordered invertstdilnserting a single location
can potentially push another location off-page, makingeitessary to read and write
one more page (this in turn can cause more locations to pugtagé). Thus, for
long lists inserting locations at the front can lead to maaggs being modified. By
using insertion-order rather than location-order it isgilole append locations to the
inverted list, making it possible only to modify the pagersig the tail on the inverted
list. It should be noted, this if real inverted lists were digeather than linked lists of
duplicates) this optimization would not be possible, as ifiyath a long inverted list
spanning multiple disk block would require all blocks todeand written - not just the
page containing the modification.

However, inserting records in insertion-order has the equence that selective,
partial retrieval of inverted lists is not supported inlkCHAS “. This can be explained
by considering the SQL query below:

SELECT | ocati on
FROM I nvert edLi sts
VWHERE term = $TERM AND | ocati on < $MAX_LOCATI ON

In our case, the only index on tablevertedList is on the attributéerm and no
additional indexing or sorting is performed. The equalitygicate in th&\HERE clause
can efficiently be handled due to the indextemnm, however the inequality predicate
would require examination of every row satisfying the prirpeedicatej.e. due to
lack of additional indexing or sorting there is no way to extd rows satisfying the
equality predicate without examining them. If, howevewsavere sorted additionally
with respect to the attributercation, no further rows would have to examined once
the inequality predicate was evaluated false.

4Some systems optimize query performance when a singlect§e@rm is highly selectivei,e. has a
short inverted list, by performing zig-zag joins.

6.2. THE DYNAMIC INDEX a7

While this would be a serious performance issue for systesmslling high rates
of queries,e.g. Web search engines, it is less important for a system whegeyqu
processing performance is not paramoumy. in single user environments with
standard desktop computers. Additionally, it must be takmaccount that we trade
in this feature in exchange of better update performance.

Figure6.9illustrate what aforementioned'Btree would look like after inserting
a record with the terrni mas key value, using the Berkeley DB implementation of a
BT-tree and a standard'Btree implementation respectively.

[lan I]

an |feugait| ipsum| Iorem| mel | no | nostni»

wim

Figure 6.7 : A fragment of a B -tree, consisting of a single internal page and a single leaf
page, prior to inserting a record with the tewnmas key value.

[lan)] wim []

|

| .

‘ wim _| | | | | | |
|

|

|

| . .
w 4>| an |feuga|t| |psum| Iorem| mel | no | nostrJ{
|

|

|

1

Figure 6.8 : A fragment of a Berkeley DB B-tree, consisting of a single internal page and
two leaf pages, after having inserted a record with the tgirmas key value.

[mer [

Q
=}

mel | no | nostr0| wim | | | |

4>| an | feugait| ipsum| Iorem| | | |

Figure 6.9 : A fragment of a standard Btree, consisting of a single internal pages and
two leaf pages, after having inserted a record with the tgirmas key value.

In addition to considering the storage scheme of recordytttier in which records

6.2. THE DYNAMIC INDEX 48

are inserted into the inverted index must also be taken iotount. As mentioned
previously, inserting records in key order makes it possiblwrite them sequentially
to disk without having to rearrange disk blocks. Howeves th a special property of
the Berkeley DB implementation of a B-tree, as illustratgdHgure6.7, Figure6.8,
and Figures.9.

Figure6.7illustrates a fragment of a Btree, consisting of an internal page with
a key value containing the terem and a pointer to a leaf page, which contains seven
records. When used as an file organization of records, the leaf pdgeBd-tree store
bothkey anddat a values, but for the sake of clarity, the data field of recoralgeh
been omitted in all the figures. Figuse3 and

As can be seen from the two latter figures, the difference &etvthe Berkeley DB
and the standard Btree implementation lies in how pages are split when beagmi
overfull. In the general case (as illustrated by Fig@r@ approximately half of all
records/pointers are moved to the subsequent page, batrsicards are inserted in key
order, the gap left behind will never be filled. This rendessippage space utilization,
thus increasing the height of the tree and thereby also the#auof pages accessed
in order to retrieve a record. In the Berkeley DB B-tree imnpémtation, however,
insertion in key order is considered “best case” and resultear-full pages; looking
at Figure6.8subsequent records, which, due to key order insertionpak l key with
a lexicographical value of at least mwill be inserted to the “right” of the record with
the currently highest key value, leaving no gaps behind.

Unfortunately, it is not possible to fully exploit the ad¥ages related to key order
insertion when inserting records into DI. As stated presiguthe index is intended
for handling incremental updates on a per-document-basiglaus posting are also
extracted, sorted, and inserted on a per-document-baalinqit possible only to
insert in locally sorted order rather than globally sortedes. Hence, incremental
updates have an inherently negative effect on both pageafitof and well as disk
access pattern. Although globally ordered key insertiodeo cannot be achieved,
records should still be pre-ordered prior to inserted inBsteee:

e General time complexity of insertion into a B-tree is notdeable compared to
other sorting algorithms.

e Expensive reorganisation of the B-tree may be needed. Whsamting the i'th
record it may become necessary to push one or more of theopsdyiinserted
i-1 records off-page, either directly or indirectly, retug in an I/O penalty.

To lessen the negative effects of incremental updates, ®bban augmented with
another disk based inverted index, Sl, which is also basea Barkeley DB B-tree.
Splitting the disk based inverted index up into two parteyéiny making it possible to
reduce the size of DI, has a number of advantages:

Reduced storage space overheads explained previously Berkeley DB uses meta
data for keeping track dfkey, poi nt er) and(key, val ue) pairs. Hence,
reducing the number ofkey, val ue) pairs in DI also reduces the storage
space needed to hold meta data.

SAsillustrated by the dotted lines the internal page costaitditional key values and pointers, which for
purpose of illustration have been left out.

6.2. THE DYNAMIC INDEX 49

Improved B-tree update performance Since the performance of incremental up-
dates performed on a B-tree deteriorates as the tree gredis;ing the number
of (key, val ue) pairs improves performance.

Globally ordered key order insertion By applying a re-merge index maintenance
strategy on Sl(key, val ue) pairs can be inserted in globally ordered key
order into Sl, making high page space utilization and rougelquential disk
access feasible.

SI will be covered in detail in Sectiof.3, and for the moment we only note that
postings at some point are moved from DI to Sl, resulting inesige of the two.

Finally, in addition to tuning DI for handling incrementgbdates, stale postings
most also be removed without causing unnecessary heavy ld&ls. As no
information which makes it possible to locate stale postirggprovided, identifying
stale information requires a complete scan of(&lky, val ue) pairs, which under
normal circumstances will seize a substantial part of alkdiO and effect general
responsiveness. As a consequence, records are not dyplieieted from the B-
tree. Rather, during the merge process where postings arechiiom DI to Sl stale
information can be filtered by only introducing additiond@\C usage; as all postings
and inverted lists must be read from disk in order to perfdrerherge operation, stale
information can simple be filtered by examining the docuniraf every location and
comparing it to an in-memory list of invalid document IDs amy location containing
an invalid document ID is simply discarded.

6.2.4 Summary

Dl is a disk based inverted index which relies on a simpleagferscheme for postings
in order to efficiently provide support for incremental upeta In general, the main
purpose of DI, with respect to the disk based part e KHAS’ inverted index, is to
distribute the cost of updates, mainly at the expense ofeffistorage space utilization
and sequential disk access.

To sum up DI provides distinct properties and trade-off stetl below:

Pros e Postings can efficiently be added to the index without hatingetrieve
inverted lists, insert the locations, and finally write thedified inverted
lists back to disk, potentially causing several blocks todsel and written
back to disk for each inverted list.

Cons e Afairly large storage space overhead is imposed by Berkekylue the
storage scheme. As the meta data is added for each key andetata
storing each location as a single data item, rather thernetiog locations
in inverted lists, increases the overhead significantly.

e Asrecords are inserted in locally sorted order, the pagrdéitbr is effected
negatively, making it difficult to achieve 100% page spadéation. This
increases the height of the tree and thus the number of pagemtist be
read in order to retrieve a record. Additionally, as BerkdDB uses 26
bytes of meta data per page, having a low page fill factor dfsats the
storage space overhead.

6.3. THE STATIC INDEX 50

e The locally sorted order also effects the disk access pattausing more
random access.

Although DI seems to provide more drawback than advantagissimportant to
note that these drawbacks are inevitably linked to the stgpmcremental updates. In
Chapter8, a number of tests and evaluations describing the perfarenahKALCHAS
with respect to migration policies are provided.

6.3 The Static Index

The second disk based inverted index IRUCHAS is thestatic indexSI). As indicated
by the name the contents of Sl is relative static as compardtet other inverted
indexes, Cl and DI. Additionally, the vast majority of datared in KALCHAS resides
inside SI.

The main purpose of Sl is to provide for means of reducing tst of performing
incremental updates on DI by distributing the cost of thegdates. As described
previously the update performance of a B-tree is espedi@pendent on two factors:
insertion order and size of the tree. By using only a sings& thased inverted index
it would not be possible to control these factors; postimgmfdocuments could only
be inserted in locally sorted order and the tree would gromase documents were
indexed. However, once the inverted index is split into tviskdased B-trees it is
possible to reduce the size of one index, making it feasiblperform incremental
updates at a reasonable cost, and insert in global ordethieteecond.

In this section, we describe Sl in detail. We present andugsthe data structures
used for storing term and location related information axglan how Sl is managed.

6.3.1 Data Organization

The index structure in KLCHAS is designed as a series of indexes (see Figute
where data enters the system in one index and slowly seepggtinto the next one. If
the documents, to which data is associated, remain unmadifie data will eventually
be inserted into SI which thus contains the least frequantidified data, hence the
name. Assuming that the modification frequency of indexdbleuments on desktop
computers at any given time follows a Zipf distributidcs0], most documents would
be indexed in SI. Based on this assumption, the storage chsed for storing term
and location related information in SI must be designed ilticular emphasis on
this property. Especially, the storage overhead of eactingpshould be kept as low.
Additionally, as Sl is maintained by applying a re-mergat&gy (see Sectiof.3.3
the cost of performing incrementally updates need not tmbsidered, thus the design
should be quite different from that of DI.

Like DI, Sl is also based on a Berkeley DB B-tree, which makpsessible for Sl to
contain variable length records with custom keys. Addibn records can easily and
relatively efficiently be accessed in key order, which isesial for the maintenance
strategy used in SI.

Disk space consumption is minimized by applying a storagese identical to

6.3. THE STATIC INDEX 51

| Term [Locations

termy | locations, locationy. . .locationirr
terms | locationy, locations. . .locationssy

term,, | location;

Figure 6.10 : The storage scheme used in Sl

the full list scheme suggested by Melnét al. [10] where a term and an associated
inverted list maps directly to@key, val ue) pair as illustrated by Figur@ 10 From
the figure it can be seen that the index contains a sifigiy, val ue) pair for each
unigue term; the term is stored in the key field while the lisbocurrences of the
term is stored in the value field. As Berkeley DB uses 5 bytesiefa data to keep
track of each key item and each data item and 26 bytes per {regaverall size of the
inverted index can be heavily reduced by using this storaljerae as compared to the
scheme used in DI, where the numbe(&fey, val ue) pairs is equal to the number
of postings.

As the concept of an inverted list is directly supported by storage scheme, it is
possible to retrieve an entire inverted list in a single Béi DB operation. It should
be noted that although retrieval of inverted lists only ta&esingle operation, multiple
disk blocks may be required to be read (apart from travensiadree) due to variable
length value fields.e. if the list is very long, it may span multiple pages. Managing
very large key and data items in Berkeley DB is handled byuhicing overflow pages,
which are stored off-tree and require additional disk I/h#accessed. By default,
Berkeley DB stores at a minimum twikey, val ue) pairs per page. Therefore, if
a key item or data item is more than one quarter of the page thieegpair is moved
off-tree to an overflow page.

6.3.2 Reducing Storage Requirements

KALCHAS is designed to handle both text- and data-centric documetish means
that the lengths of the inverted lists can vary dramaticabguming that the frequency
distribution of terms in natural language text follows Zgpkaw®. This is illustrated

in Figure 6.11which shows the distribution of the 200 most commonly useddso
in Shakespeare’slamlet As illustrated by the figure only a relative small number
of words are very frequently useHlamletcontains more than 30.000 words of which
more than 4000 are unique, and the 20 most commonly used wocdsnearly 10.000
time, i.e. roughly 0.5% of the (unique) words constitutes 33% of théremext.

Assuming that (i) this type of distribution is commonly seintext centric
documents and (ii) documents often share a large part aof thest commonly used
words, it becomes evident that some inverted lists are prorggow very long. In
the context of a storage scheme mapping inverted lists tlliréz records, some
records will grow so large, that they must be kept off-treeowarflow pages, which
unfortunately both increases the size of the index as wettass time for these lists.
This would be unacceptable in systems that spend a largemiage of processing time

6http://en. w ki pedi a. org/ wi ki / Zi pf %27s_Law

http://en.wikipedia.org/wiki/Zipf%27s_Law

6.3. THE STATIC INDEX 52

Zipf Distribution
1200 T T T T T T T T

1000

800

600

Occurrences

400

200

0 1 1 1 1
20 40 60 80 100 120 140 160 180 200

Ranked frequency

Figure 6.11 : Number of occurrences of the 200 most frequently used wonds i
Shakespeareldamlet

on handling queries, but asaKcHAS is mainly intended for desktop environments the
cost of having to perform additional disk 1/0O for some qusigacceptable, although
not desirable.

Nevertheless, sincgtop wordsare used in KLCHAS to prevent some terms from
being indexed, the number of overflow pages is reduced. Hemvévis is not done
with an emphasis on reducing the number of overflow pagefhieRatome terms tend
to be too general to aid in reducing the number of results figr keyword search.
Hence, the indexing process can be optimized by omittingetléthout affecting the
quality of results. This is illustrated in Tabk1 which lists the 20 most commonly
used words irHamlet MacBeth and theOld TestamentTerms considered non-stop
words in KALCHAS are in boldface. Looking at Table.1 it is worth noticing the
considerable overlap of commonly used words in the thres.té#ith the exception
of a few, most words are nouns, pronouns, verbs, and prepwsithat are used in
virtually any English, natural language text, and inclggihem in the inverted index
would rarely help produce more specific search results.

Rank Document
Hamlet | MacBeth| Old Testament
1 the the the
2 and and and
3 to to of
4 of i to
5 i of in
6 you macbeth | that
7 a a shall
8 my that he

6.3. THE STATIC INDEX 53

Rank Document
Hamlet | MacBeth | Old Testament
9 hamlet | in lord
10 | in you his
11 | it my for
12 | that is i
13 | is not unto
14 | not with a
15 | lord it they
16 | this his be
17 his be it
18 | but he is
19 | with have them
20 | for but with

Table 6.1 : The most commonly used words Htamlet MacBeth andThe Old
TestamentTerms in boldface are non-stop words.

Although overflow pages are not generally considered proati in KALCHAS it
is desirable to minimize the number, as this reduces thagtorequirements. Apart
from employing stop words, increasing the page size canraldoce the number, but
unfortunately this approach has a number of drawbacks. AkeBsy DB provides
locking of page as the finest level of granularity when usingdgs, increasing the
page size can degrade performance with respect to concyrasrihe risk of blocking
is increased. The /O efficiency is also likely to be affectate the minimum amount
of data which can be read or written in a single access is ase For instance, if
most inverted lists can be stored on a single 4 KB page, vatgeone of these would
require reading one disk block (assuming a disk block siz&6B)’. If the page size
was increased to 8 KB to accommaodate very long lists, the saemario would require
reading and writing the double amount of data, even if bothatiginal and modified
inverted list could easily be stored on a 4 KB page. HowevVeiata generally is read
and written in chunks larger than the standard disk bloakgasing the page size can
result in a performance gain, since (i) the chunks are l&s$ylio be fragmented, (ii)
most operating systems uses pre-fetch when accessingdikinally (iii) the fan-out
is improved thereby reducing the height of the tree.

Since the level of concurrency inACCHAS is low, increasing the page size is not
likely to affect performance in this area. However, anaigzhow disk 1/O efficiency
is affected is not as straightforward as the answer is degrgrwh a several factors.
First, assuming that the frequency distribution of ternilefes Zipf's law, so does the
length of the inverted lists. The “steepness” of the distiitn indicates the percentage
of inverted lists which are considerably larger than therage length. The steeper
distribution, the fewer lists will be affected by using a $ipage size. Second, the size
of the indexed document collection also plays an imporiaiet since the inverted lists
inevitably will grow as the collection grows, hence the deodf page size should also
be based on this parameter. Finally, it should be noted iagwa page size smaller
than the block size of the file system is generally not reconded, as the operating
system must retrieve at least an entire disk block for evperation, regardless of the

’In the example we ignore the cost of traversing the tree ttoparlookup.

6.3. THE STATIC INDEX 54

page size.

In KALCHAS we are using the default Berkeley DB B-tree page size, whsch i
based on the block size of the file system storing the B-treth/s size is sufficient
for storing the inverted lists of a medium sized documeniectibn without having a
high percentage of overflow pages, the result is a reasodafgtee disk 1/0 efficiency

6.3.3 Index Maintenance Strategies

Since the task of handling modifications to a document ctiie@n a per-document
basis is mainly done by DI, many of the inherently associatedblems need not be
addressed in Sl. This allows for greater flexibility when mtaining Sl as random
access modifications can be avoided altogether. In ordeistobdite the cost of
expensive incremental updates, however, data stored inhBuld periodically be
migrated to Sl, thereby limiting the growth of DI and redugithe amount of page
reorganization due to updates.

MERGHL, L")
1 R0
2 while (L # 0) A (L' # 0) do
3 if (L =0)then
4 R« RU{L,.0t}
5 L' — L \ {L'In,ezt}
6 elseif(L’ = 0) then
7 R — RU{Lnexst}
8 L — L\ {Lnest}
9 elseif (Lnext = Lieq:) then
10 R« RU{Lnext} U{LLext}
11 L — L\ {Lnest}
12 L' — L'\ {L}cxt}
13 elseif (Lnest < Lieq:) then
14 while (L # 0) A (Lnext < Lipeqy) dO
15 R «— RU{Lneat}
16 L — L\ {Lnest}
17 else while(L’ # 0) A (Lnext > Llyegt) do
18 R— RU{L}cst}
19 L' — L'\ {L} et }
20 return R

Figure 6.12 : Merge algorithm:L, L’ represent two inverted lists of DI or Sl to be merged,
respectively. R represents the merged result. Theand > operators indicate lexical
comparisonU indicates joins (preserving sort order) anéhdicates removal of a subtree
without reordering.

A simple, but obviously inefficient, approach of migratingsgings from DI to SI
would be to occasionally take postings from the former aiséiinthem into the latter.
However, not much could be gained from using such an appmsttte postings would
be inserted in locally sorted order, making the risk of hgvia perform expensive

6.3. THE STATIC INDEX 55

reorganizations of the pages of Sl very likely. Rather, wéaceothat both DI and

S| contains similar records and the contents of both indexeordered and can be
accessed relatively efficiently. The basic steps of merBirend Sl consist of scanning
the leaf pages of both indexes, comparing records pairavidénserting the lesser into

a new disk based B-tree’Slielding globally sorted insertion order. Once the merge
operation terminates S$ubstitutes the old Sl and DI is reset. Pseudocode desgribin
the basic steeps of the merge operation is provided i Figur2

It should be noted that when generally assessing the effigiehany algorithm in
terms of Big-Oh notation, all operations are assumed to balBoexpensivee.g.any
arithmetic operation is as expensive as accessing an elémamarray and moreover
accessing elementof an array is assumed to as expensive as accessing elgment
However, this assumption is only true for accessing RAM ¢eghe “random access”),
not disk. In addition to all disk access patterns not takiggat amounts of time,
accessing data on disk is often several magnitudes morensixpethan performing
some instruction on the CPU. However, with this in mind megddl and Sl is still an
attractive approach as compared to incrementally updatiagge B-tree. Performing
a merge of two disk based indexes is expensive in terms offfislsince both indexes
would have to read from disk and an (almost) equal amount @af wauld have to be
written to disk to produce the merged index. Thus, the regmérdex maintenance
strategy is only advantageous to apply when DI is sufficjetstige. This can be
described by a simple cost/benefit analysis. The benefitaior, gan be thought of
as being the amount of data which is added to S| and the cdseiarhount of disk
traffic needed to achieve the gain. We will illustrate thishativo simplified examples
in which we do not consider a realistic workload with livea#iat might become stale.

Example 3. Assume DI is 10 MB and Sl is 100 MB. To merge the two indexes 110
MB would have to be read and 110 MB would have to be written. sTi220 MB of
disk traffic would render a 10 MB increase of SI, meaning tbaelvery 1 MB Sl was
increased, a total of 22 MB had to read and written.

Example 4. Assume DI is 50 MB and Sl is 100 MB. To merge the two indexes 150
MB would have to be read and 150 MB would have to be written. sTI300 MB of
disk traffic would render a 50 MB increase of SI, meaning tbaefery 1 MB S| was
increased, a total 6 MB had to be read and written.

Comparing the two examples, it becomes clear that incrgaisensize of DI gives a
better cost/benefit rati6nSo, from the perspective of the re-merge index maintenance
strategy, DI should be relative large when merging. Unfaately, from the perspective
of the incremental update index maintenance strategy, @lldtbe kept relative small.
Hence, there is a trade-off between the two strategies hwiws also indicated irlLp)],
and by giving preference to one of them it is possible to eitimprove performance
of incremental updates or overall indexing time. On the omed if the size limit of
Dl is kept static, incremental updates would take a fixed maxn amount of time, but
the performance of the merge operation will at some pointatbgas the document
collection grows and become the dominant factor of the dvieidexing time. On the
other hand, if the size limit of DI is kept proportional to thige of S, the cost/benefit

8In a more realistic scenario, the amount of data in DI whicly patentially become stale increases with
the size of DI. Additionally, due to different storage schesnand compression, migratimgoytes from DI
to Sl would unlikely result in am bytes increase in Sl file size. However, the amount of validrination
moved from DI and inserted into Sl is nevertheless equal

6.3. THE STATIC INDEX 56

of merge operations would remain fixed, making it possibladbieve better overall
indexing time, but the performance of incremental updatggates as the document
collection grows. Hence, the combination of maintenaneeesies used in KLCHAS
does not scale well for large document collections, butlierintended environment,
i.e. desktop computers, this is unlikely to be an problem.

Apart from making index updates on a per-document basisibleasthe
combination of incremental updates and re-merge also gesva number of other
desirable properties. Since records and pages in both Dbbauek ordered as described
in Definition6.2and Definition6.3records can be read in key order by scanning the leaf
nodes. As Sl always is written in “one go” its leaf pages amgy ligely to be written
on sequential disk blocks, making the merge operation lgewinighly sequential disk
access pattern. Additionally, most operating systems andldisks also use some type
of pre-fetch/buffering, the performance for this type ofess is likely to be improved
further.

In addition to the sequential disk access pattern, the paefnce of merge is further
improved by having a more storage efficient representatfodata. The compact
representation of data is achieved in three ways: (i) by miiring the number of
pages, (i) by applying a storage scheme which renders leta data overhead, and
(iii) by applying compression to inverted lists:

e In Figure6.7, Figure6.8, and Figures.9we illustrated how a high page fill factor
can be achieved by inserting in key order into a Berkeley DBe®- Since the
merge operation basically consists of inserting recoroi®fbl and Sl into S|,
SI" will always be built in key order and have a high page fill facto

e The storage scheme of SI maps a term and an associated |staifons to
a record, hence a single record contains information fromymmostings. In
contrast, the storage scheme of DI maps a single postingetocad. Therefore,
Sl has a significantly better average “meta data per postatg than DI.

e The value field is compressed in both DI and Sl. However, siagge chunks
of data generally renders better compression ratios thaflenchunks, the list
of locations stored in the value field of records in Sl yielé$tér compression
ratio than the single location stored in the value field obrds in DI. For this
reason, it make sense only to apply more CPU expensive tyfpampression
to records in Sl, explaining why only VBL encoding is used Birand VBL
encoding and Huffman for Sl.

As the performance of the merge operation is directly depetan the amount of
disk 1/0 needed to read DI and Sl and writ€,Sinproving storage space efficiency
translates directly into a reduction of the amount of di§k heeded to read and write
the indexes.

6.3.4 Summary

Slis the final inverted index in the chain of indexes used m.8HAS. As incremental
updates are handled by DI, the associated problems of meiaegen of pages and
low page fill factor need not be addressed in Sl. Rather, the parpose of Sl is

6.3. THE STATIC INDEX 57

to make it possible to reduce the size of DI in order to perfaranemental updates
more efficiently by occasionally migrating postings to Shislis done by applying a
re-merge strategy. In essence, the approach of this sgristegerge the records of DI
with those of Sl, yielding a new index, ‘'SBoth of the old indexes are discarded after
merging.

From the perspective of incremental updates, DI should beretatively small in
order to apply incremental updates efficiently, but from pleespective of re-merging
DI should be kept large due to cost/benefit ratio, hence adfidust be made between
strategies; at one extreme indexing time of documents camp®ved by keeping DI
small, and at another extreme overall indexing time can h@ored by maintaining
some relationship between the size of DI and SI.

Since the majority of documents are likely to indexed in Siasirable to improve
its storage space efficiency. First, preventing the system taking up considerable
disk space is desirable on a standard desktop computem&aod more importantly,
having a high storage space efficiency also makes it lesd/fiskxpensive to perform
merges, as the cost of these are directly dependent on thenafadisk 1/0.

To sum up, Sl provides the following advantages and disadgas:

Pros e Distributing the cost of incremental updates is made péssiy
occasionally migrating data from DI to SI.

¢ A high degree of storage space efficiency is achieved by inigea high
page fill factor, (ii) using an efficient storage scheme, aifjccbmpressing
inverted lists.

e The index maintenance allows for high degree of sequerntklatcess.
Cons e During merges disk space must be allocated to Since Slis the union

of postings/inverted lists of DI and SI, the disk space alted to Slis
roughly the sum of disk space allocated to DI and Sl.

In Chapter8, we provide a number of tests and evaluations describing the
performance of KLCHAS with respect to migration policies.

Chapter 7

Supported Operations

This chapter describes each of the operations providedei{ahcHAs API. We will
explain how KaLCHAS adds files (Section.2), deletes files (Sectiof.3), updates
indexes (Sectiof.4), and performs keyword searches (Secfids), respectively.

7.1 Database Schema

In addition to the three inverted indexes introduced in Gy the operations featured

in KALCHAS rely heavily on the following underlying database tablee(Bigurer . 1).
These tables are used to maintain information about thex@welocuments:(a)
FileLog is used to keep track of the indexed filéb) FileLogAccesss a secondary
index ofFileLog; (c) FileLogDelis used to keep track of the deleted files. The attributes
DoclD, TimeStamp, and AuditTime are represented by integéres, and the URI
attribute is represented by strings. All of them can be ofalde length. However, the
IsPersistent and IsFreelD attributes contain a Booleareval

| DocID | URI | TimeStamp| AuditTime | IsPersistent

(a) FileLog table

| URI [DocID] | DoclID | IsFreelD]
(b) (c) FileLogDeltable
FileLogAccess
table

Figure 7.1 : Storage scheme for records in the tables

In the following sections, we will describe how the operatian the KALCHAS
API are designed, and explain how they interact with the altalbles and the indexes
described in Chaptes.

7.2. ADDING FILES 59

7.2 Adding Files

In order to add files to the index, one simply invoke #adFi | e function. In the
following subsections, we will describe the working prace$AddFi | e and discuss
issues related to the implementation of this function.

7.2.1 Implementation

The working process oiddFi | e is illustrated by a flowchart in Figuré.2.

File
supported?

n
Set file info
yes

Eny

/
Store Postings with Patch postings Get free
DocID with DocID DocID

Figure 7.2 : The process of adding files

This operation takes a file name as input. First, the file i<kba whether it is
already indexed. If so, nothing is to be done and the add psdeeminates; otherwise,
file information should be set.g, TimeStamp is set to last update time of the file,
AuditTime is set to the current system time, IsPersisteseisto false and IsFreelD
is set to false. The purpose of having the attributes Auni€Tand IsPersistent is to
provide file consistency check support (described in Seatid.1.5 and IsFreelD is to
support DoclD reuse (see Sectior.1.3.

Afterwards, the file should be checked for file type supporkiay. cHAS. If the
file type is not supported, nothing should be done and the adceps terminates;
otherwise, KaLCHAS starts shredding the file (elaborated further in Sectichl.])
and returns as output a set of postings. Next, we generatekelaborated further
in Section7.2.1.3. KALCHAS patches these postings with this DocID (elaborated
further in Sectiory.2.1.). Finally, KALCHAS stores these DocID patched postings in
Cl (elaborated further in Sectioh2.1.9.

7.2. ADDING FILES 60

7.2.1.1 Shredding

The first step when building a full-text index is to processhedocument by removing

all XML tags and extracting information relevant to the ftékt index, as described in

Section2.2on paged. While some system(g.[8]) collect various meta-information

(such as positions of words within documents, encodings dize, and date of updates,
etc.), the information stored in the index should at a mimmaontain postings with a

term and a location computed by means of Dewey paths.

Shredding an XML document is done by extracting all termsnfrilve source
document and combining them with locations. This is doneolisvis: Read through
the whole document while extracting terms and outputifiger m | ocat i on)
pairs. In the case of flat documentise. HTML or TXT files, generating the
(term | ocati on) pairs are straightforward since thecat i on partis simply the
document itself. However, since we want to index XML docuisex the granularity
of document elements, we facilitate Dewey paths for addrgd$sdividual elements.

Computing a Dewey path is a simple task. As described in @8til, the Dewey
path of any given element within an XML document can be comgibty recording all
the Dewey numbers of the encountered elements (generatibe layixiliary function
ni d) found on the path from the document’s root element (cf. Diidim 3.1).

In practice, parsing XML files is conducted using the exteEhgat library [37].
Expat is a stream-oriented XML parser library written in Qioigh we use a
C++ wrapper). Shredding is done by parsing the XML documeith Expat.
Communication from the parser to the shredded is condudsied gallback functions,
i.e. function handling start tags, end tags and character data.

The main idea of using Expat callback handlers to parse XMtudwents is
illustrated in Figure7.3. After reading the content of XML file into a buffer, Expat
invokes theOnSt ar t El enent handler when it encounters an XML start tag, and
the OnEndEl enent handler when it encounters an XML end tag. The start and
end tag handlers are in our system used for calculating theefppath. In our C++
implementation, the stack data structure (implemented\asiable length vector of
integers) is used to to keep track of the current Dewey patsindJa stack, we can
push and pop Dewey numbers when @St ar t El enent andOnEndEl enent
handlers, respectively, are called.

Whenever the parser encounters a character data elemestnGhar act er Dat a
function is invoked, and this function will then extract &dkens from the element.
Before a token can be represented trer m | ocat i on) posting format, a number
of conditions should be checked: (i) if the read token is aipimeric, all characters of
the token is converted to lowercase; (ii) if the read tokewisa stop word, the token is
set to be a term associated with a Dewey pa¢ghas a(t er m | ocat i on) posting.
After that, the posting will be inserted inta@p container. This container is organized
in the same way as a document in ClI (as described in Segtiohon page37), which
means that for each term we associate an inverted list. Teotsrring more than
once within the same document are therefore handled by dppeto the associated
inverted list. Table7.2 shows an example of the output generated by the shredding
process.

As can be seen from Table2 all letters are converted into lowercase. The reason

7.2. ADDING FILES

no ‘ Start u Character B End Last

data? token?

Figure 7.3 : Parsing process

| Term | Dewey path |
anat ony /1/1/1
| ar ge /1/1/1
scal e /1/1/1
hypertextual |/1/1/1
web [1/1/1/1/2/1
search /111
engi ne /1/1/1
ser gey [1/1/2/11/2/2
brin /1/1/2
| awr ence /1/1/2
page /1/1/2
2000 /1/1/3
bui | di ng /1/2/1
distributed |/1/2/1
full 11/2/1
t ext /1/2/1
i ndex /1/2/1
nmel ni k [1/2/2
sriram [1/2/2
raghavan 1/ 22
beverly 1/ 22
yang 1/ 22
hect or [1/2/2
garcia /11212
nmol i na 1/ 22

Table 7.2 : Example output from the shred tool

61

7.2. ADDING FILES 62

for this is twofold. First, it makes the algorithms for retral much simpler and more
efficient, since query terms are turned into lowercase anthed against the keys
in the index. Second, storing everything in lowercase redube number of keys in
the index, which both has an impact on the size of the indexedisas retrieval time.
Additionally, in order to reduce the size of the index we asing a stop word filter.
Currently, the collection of stop words includes Englisbrmuns and adverbs.

7.2.1.2 Patching

Shredding documents as described above introduces an isteegroblem of
distinguishing postings of one document from postings oftlaer document. A quick
example is, for instance, whasopy fil e. xml is an exact copy ofil e. xnl .
Therefore, shredding documents may result in a set of pysstirith the same values
in both thet er mand| ocat i on fields. In order to distinguish a set of postings of
one document from another, we introduce a document ideatific, called DoclD. To
save space we have chosen to represent DoclD ihdloat i on. A straightforward
way to do this is, once a file has been shredded, we generatig@eunoclD value
(elaborated further in Sectioh2.1.3, and this value will then be pre-pended to all of
the Dewey paths of this document (see Fighgb).

However, in our implementation, a slight improvement hasrbmade; we simply
substitute the Dewey number of the document root with DoBl€calling that the local
ordering scheme (see Sectidn) always assigns the document root Dewey number 1
after shredding. Instead of having this value replicatedlirpostings, we choose to
substitute this value with DoclD. In this way a number of auteges is achieved: (i)
the length of location becomes shortere, (ii) less memoneided to store, and (iii)
response time will be slightly enhanced.

7.2.1.3 Getting DoclD

DoclD is an integer value, represented by bi t unsi gned i nt. Whenever a
document is added to the index, it is assigned a unique gieieclD value that is
one larger than the previously assigned value. AssigningfDto documents in this
way, the DoclD values may be exhausted at some point, be¢guge always need
to add new documents, thus new DocID values must contindngstjenerated, and (ii)
the documents that have been deleted still occupy theirDwalues.

To handle this situation, we need to reuse the DoclID of thetddldocuments.
This is done by looking up in thEileLogDeltable (see Figur&.1(c)on page58) and
selecting the smallest DoclD value, because whenever antieraiis deleted from the
index, its DoclID and URI is registered in tikdeLogDeltable (see Section.3). Note
that whenever a DoclID frorRileLogDelis reused, this DoclID entry must be deleted.
If there is no free DoclD irFileLogDel a new DocID is generated. In ordinary SQL
this would be expressed as follows:

SELECT Docl D FROM Fi | eLogDel
WHERE | sFree = TRUE

ORDER BY Docl D ASC

LIMT 1

7.2. ADDING FILES

| DocID || Dewey path| | lTocation | |location]
22 7171/ 1 TA4T 171/ 1| | J44/ 1/ 1
44 11/1/1 144/1/1/1 | | 1441171
44 1111/ 2 [a411/1/2 | | 144112
44 11/ 1/ 2 14411/1/2 | | 14411/ 2
44 /1/1/3 144/1/1/3 | | /44/1/3
44 /1211 [a4/1/2/1 | | 144/2/1
44 11/2/1 1a4/1/2/1 | | 44l2/1
44 1112/ 2 144117212 | | 14412/2
44 11/ 2/2 144117212 | | 1441212

(a) Before patching

(b) Prepending

(©

Substitution

63

Figure 7.4 : Representation of theocat i on field: (a) A set of Dewey paths along with

a generated DoclD value 44) All Dewey paths are prepended with Docl@) Dewey

number of the document roote. the leading number in Dewey paths, are substituted with

DoclID.

7.2.1.4 Storing

Once the data has been processed, the extracted postindi$lsbstored in an inverted
index, more specific Cl, where the valuetofr mis stored in thekey field of the

database antocat i on in the dat a field. This approach is chosen instead of a
forward index, in which the Dewey path of a given element isduas key, while all
terms are stored in the data fielde(location order vs. term order as defined in
Definition7.2.1.9.

Shredding documents and constructing Dewey paths are @gpestially, which
implies that the extracted postings are in location ordeméler, Cl expects data to be
in term order. Storing postings in Cl in term order makesstéato query the indexes
by terms. Further, it is more space efficient in that the nurob&erms is normally less
than that of locations.

7.2. ADDING FILES 64

Definition 7.1 (Ordering). Given an XML document there are two sort orders:

e Location order: Given a set of posting$loc;,term;), we sort by location as
follows:
{(loco, termo), (locy, terma), ...} andVi, j € ZT with i < j = loc; < loc;.

e Term order: Given a set of postingdoc;, term;), we sort by terms as follows:
{< termo, (locgo,1), --) >, ...} WhereVi, j € ZT withi < j = term; < term;
andd : N x N — N is the auxiliary function that finds the locations associatéth
the given term.

7.2.1.5 File Consistency Check

Before storing postings into ClI, file information is regigte in the FileLog and
FileLogAccesgables (see Figurg.1 on page58). The FileLog table is provided to
keep track of the indexed files. In this table we store a nurobaitributese.g.DoclD,
URI, TimeStamp, AuditTime, IsPersistent, and IsFreelDergDocID is the primary
key (see Figurg.1(a).

e DoclD is a unique identifier of a document.

e URI describes the physical location of a documemtg(file.xml or
www. exanpl e. conf exanpl e. xm)

e TimeStamp indicates the time of last update, as reporteldfile system.

¢ AuditTime indicates the last system time whersU€HAS touched the filei(e.
time of indexing).

¢ |sPersistent is a Boolean value indicating if the postingsoaiated with the
document are stored in persistent storage (DI or Sl) or iatilelstorage (Cl).

e IsFreelD is a Boolean value used to indicate if the DocID isupéed by any
“live” documents (see Section2.1.3.

When engineering a full-text index, one should carefullygider the possible
issues of consistency. Having data stored in volatile iedefxe. CI) runs the risk
of rendering invalid data in the index. This can be shown kieking a document,
storing it in ClI, and then turn off the power to PC, all datadasy in Cl will get lost
and must be reconstructed to turn the index to a valid state.

To accommodate such inconsistencies we have introducésRbesistent attribute
in FileLog. By default, all documents are initially stored in Cl and &énas prone
to be inconsistent. To indicate that shredded documentmahds state, we set the
IsPersistent to “false”. As soon as shredded documentsigrated from ClI to DI, the
attribute will be set to “true”.

7.2.2 Database Usage

Recapturing the above, we see that adding documents to dex itonsists of the
following processes: (i) shredding documents to obtairiitad lists for the documents,

www.example.com/example.xml

7.3. DELETING FILES 65

(ii) generating a unique DoclD for associating postingswaitspecific document (and
URI) and finally (iii) storing the inverted lists in the undigng indexes. Operations on
the tables caused AddFi | e are shown in Tabl&.3.

| | Read | Write | Delete |
FileLog Always | Occasionally Never
FileLogAccess| Never | Occasionally Never
FileLogDel Never Never Occasionally

Table 7.3 : Database tables modified by tAddFi | e operation

7.3 Deleting Files

Working in a desktop setting, some files are prone to be dklelbis could happen
when the user runs out of disk space or whenever a documenplggsically deleted.
To cope with the situation we have implemented fle¢ et eFi | e in the KALCHAS
API.

7.3.1 Implementation
The working process obel et eFi | e is illustrated by the flowchart in Figuré.5.

This operation takes a URI as input. First, it is verified & thocument is indexed. If
not, nothing will be done and the file deletion process teatais; otherwise, the file

should be deleted from the index.

no

Figure 7.5 : The process of deleting files

Deleting a document from the index is done in two steps. Thedtep assures that
postings from the document is omitted from query resultd,the second step removes
the actual postings from the indexes. Asserting that obsdiecuments are omitted in
queries is done by deleting the entriefileLogandFileLogAccesassociated with the
DoclD for the current document. Removing the postings froenihdexes is postponed
until the next index merge. This is done by inserting a newyeint the FileLogDel
Once a merge occurs the entry associated with the DoclID iatagddand IsFreelD is
set to “true”.

We will elaborate on the document omission from queries @ discription of
Quer yRet ri eve. The description of the merge function is found in Figar&2on
page54.

7.4. UPDATING INDEXES 66

7.3.2 Database Usage

Deleting a single document from the index is reflected immiedly in terms of query
results and in terms of database entries internally m.&HAS. The tables used by
Del et eFi | e is shown in Table .4.

| | Read | Write | Delete |
FileLog Always Never Occasionally
FileLogAccesg| Never Never Occasionally
FileLogDel Never | Occasionally Never

Table 7.4 : Database tables modified by tBel et eFi | e operation

7.4 Updating Indexes

Utilizing the file system integration introduces the dem#ordan update functionality
in the index. As an example, imagine a user writing a shorehiova word processor
with auto-save enabled. Every time the auto-save writessiq the file system notifies
KALCHAS about the change. This change is handled byuieat eFi | e function.

7.4.1 Implementation

The inverted index needs to be updated in order to reflectiraalchanges in the file
system. In order to update filesAKCHAS provides thdJpdat eFi | e function. The
working process obflpdat eFi | e is illustrated by a flowchart in Figuré.6.

v
Indexed? Changed? Delete }—[Add]—'@
]

Figure 7.6 : The process of updating indexes

This operation takes a file name as input. First, the file ickda whether it has
been already indexed. If the file has not been indexed, theviildbe added using
AddFi | e function. If the file is indexed and has changed (checkedyusia attribute
TimeStamp ofileLogand the file system’s time stamp), the file is deleted (Segtign
from the index and then re-inserted. If the file is not indexkd file is simply added
(Section7.2). This process is illustrated in Figures.

7.5. KEYWORD SEARCH 67

This file update strategy is straightforward to implement] & seems quite simple.
However, it has a main drawback. Let us consider the follgwase. Suppose that only
a few words (says, a single word) in an indexed file are now didééeted/changed.
To update this file, every postings associated with this Bedto be deleted and added
again in any cases, even though some of the postings need betupdated at all.
Updating files in this way may result in lots of redundant diskds and rewrites if
files are large. Therefore, this file update strategy is ek HO efficient. However, if
a file is completely changed ., every(t erm | ocati on) postings are changed)
then using the delete-(re)add strategy seems to be fine.

7.4.2 Database Usage

The described update strategy has only few direct accesshe tlatabase. However,
the calls toAddFi | e andDel et eFi | e introduce more database use. Tablé
shows the tables involved in updating a file; indirect casesrarked with parentheses.

| | Read | Write | Delete |
FileLog Always | (Occasionally)| (Occasionally)
FileLogAccess| Never | (Occasionally)| (Occasionally)
FileLogDel Never | (Occasionally)| (Occasionally)

Table 7.5 : Database tables modified by thipdat eFi | e operation. Indirect cases are
marked with parentheses.

7.5 Keyword Search

Having a full-text index makes no sense without a searchtiomality. The KALCHAS
API search functionality is a keyword search, as describeskictionl.1.4 This sec-
tion will describe the implementation of the search furmdility (Quer yRet ri eve).

7.5.1 Implementation

When performing keyword search, we need to query the inddrtdexes, retrieve
relevant postings, and compute meets. To do so, we us€ubeyRetrieve
function. The working process @uer yRet ri eve is illustrated by a flowchart in
Figure7.7.

Generally, keyword searches proceed as follows. Firstsigéomit search term(s)
into the system. There are provided three interaction aptio

e Kalchas Console (see Figuse?),
e Kalchas Web Interface (see Figusel), or

e Kalchas Explorer, a graphical user interface (see Fi§e

7.5. KEYWORD SEARCH

Remove stop
words

Any search
terms left?

Look up
indexes

Ranked search
results

Order by
Dewey paths

Meet Operator

All
detected?

Postings

Filter detected

Figure 7.7 : The process of keyword search

68

7.5. KEYWORD SEARCH 69

When search terms are submitted, the system then checksjfowerds and removes
them if encounted. Afterwards,ALCHAS checks for the existence of search terms. If
there are no valid search terms, the system issues a messagers and terminates;
otherwise, KALCHAS looks up in the cached, dynamic, and static indexes to wetrie

all the postings associated with the search term(s). Asudtyesset of selected but
unsorted postings is returned. These postings will then beyed and ordered by

| ocat i on. Next, these postings will then be passed to a filter to filtértioe deleted
files. Afterwards, theneetoperator takes these sorted postings as input and computes
(and at the same time ranks) meets between them. Finallgetdaeh results will be
returned and displayed on the chosen interface.

7.5.2 Database Usage

In general, the search functionality does not need to usefie supplied databases.
However, in order to filter out results originating from delg documents and translate
DoclD’s of the results into file names require lookups in thtathases. The use of the
database is shown in Table6.

| [Read | Write | Delete]

FileLog Never | Never | Never
FileLogAccess| Always | Never | Never
FileLogDel Always | Never | Never

Table 7.6 : Database tables used by @eer yRet r i eve operation

Chapter 8

Tests and Evaluation

8.1 Test Strategies

To ensure that the system works as expected several tegban conducted. Our
tests can be classified in two categories: functionalitrtgsand performance testing.
In functionality testing the aim is to test the operationparted by KALCHAS. In
performance testing the focus has been to verify the behatihe system by tuning
different parameters, and to validate the relationshigvben different factors. In this
context we focus on testing the performance of shreddingmients, migrating data
from Cl into DI, and merging DI with SI. Furthermore, we alssttthe compression
ratio of different codecs.

The test has been conducted on both real and synthetic degbd&a is taken from
a collection of Shakespeare plays presented by Jon Bé6&hwhile the synthetic data
is generated using XMark5p] and xmlgenz. We have used a desktop Intel Pentium
1,3 GHz CPU, with 512 MB RAM and a 40 GB harddisk (IDE, 5400 RMdifhgle
partition) as test system. This is a 2005 substandard desk&iem, chosen in order
to generate realistic results in terms of machines availathe average household.

Each test is structured with an introduction to the problérhand, followed by
specific test cases and finally an evaluation is given. Arireutf this chapter is given
below:

File Adding. Profiling of the components involved in adding new documdnts
the index. This is done in Sectigh?2 and relates to the discussion held in
Section7.2.1.1on pages0.

CI-to-DI Migration. Supplementing the discussion in Sectiér? on page4l, we
evaluate different parameters involved in migrating pagifrom the volatile
in-memory CI to the disk based Berkeley DB managed DI.

Merging DI and SI. Section SectioB.4evaluates on the different strategies available
when DI and S| should be merged. The test supports the ardgargamn in
Section6.3 on pages0.

Ixmigenz is a custom made tool for generating Zipfian disteiiudocuments.

8.2. FILE ADDING 71

Compression SchemesA wide range of compression schemes is profiled, in order to
discus which codec would be more appropriate in DI and whiohld’/be more
appropriate in Sl. The test can be found in Sectidhand concludes on issues
brought up in Sectio.2on pagel4.

Keyword Search. Implementing a full-text index embodying keyword searcteds
that the function also must be evaluated. Section Se&i6ademonstrates the
techniques described in Chapter

8.2 File Adding

The process of adding a document or file to the index is donedpyentially shredding
and indexing the content of the file. This section will tesd aaluate on the techniques
implemented in KKLCHAS for adding files or documents to the index.

8.2.1 Test

Profiling the performance of shredding, in terms of executimes, is depending on

a variety of parameters.¢. the distribution of words, size of the documents, system
work load, etc.). We have chosen to test the shredder usapliowing setup:

Test Data I. 600 small XML files in the range 5 KB - 45 KB.

Test Data Il. 40 XML files in the range 45 KB - 500 KB.

Test Data Ill. Shakespeare plays in the range of 100 KB - 500 KB. All caseshas

overall size of 10 MB.

Conducting the above tests gave the results shown in F&jlre

| Case| No. files| No. bytes| Executiontime | KB/sec | Avg. unique terms |

[600 | 9.118.131 5.948 ms.| 1497,05 31
i 40 | 10.536.595 12.969ms.| 793,40 8362
iii 50 | 10.474.072 7.871ms.| 1299,53 3404

Figure 8.1 : Results of the shredder test

8.2.2 Evaluation

Looking at Figure3.1we see that the throughput of the shredder module seems ko wor
faster on small files than on large filase(the avg. throughput is remarkably low in
case (ii) compared to (i)). This behaviour is due to the itistron of words within

the documents: The fewer unique indexed term a documewdintes, the faster the
shredder will process the file. Looking at case (iii) we sext the average throughput,
on human readable text, is acceptable whereas XMark gededatta imposes poor
execution times. The slow down occurs when a document hastato utilization,.e.

8.3. CI-TO-DI MIGRATION 72

the same term rarely occurs more than once in the documpog gie intermediately
store all shredded data in a sorted tree that needs expeedatancing every now and
then. Inserting duplicate occurrences of terms is cheapgdhe tree does not need
re-balancing (the node is already in the tree) and inseitirtge linked list is done in
O(1). Aninteresting observation is, that small files getextdy XMarki.e. files from
case (i), consists of almost 80% structural informatioar(sind end tags) and almost
no textual content.

8.3 ClI-to-DI Migration

As mentioned in Chapte8, the cached index is temporary storage for shredded
documents waiting either to be updated by the user or migraten CI to the disk
based DI. This section will underline the necessity of ammiemory storage and
demonstrate the increased performance in terms of exectitie. In the existing
implementation of KLCHAS we have used multi-threading to gain performance when
performing bulk insertions: KLCHAS spawns a worker thread for migrating postings
from ClI to DI while allowing KALCHAS to continue indexing in the main thread. This
multi-threading has been disabled while testing the CBtanigration performance,
since it would obfuscate the results. Additionally, we haleo disabled the DI-to-SI
merge operation, which will be evaluated separately iniSe& 4.

8.3.1 Test: Migration

Once a file has been shredded, postings are moved from a terptorage into the
actual indexing structure. The following tests will meastine performance of the
implemented index infrastructure, as discussed in Chapter

Our tests is conducted with the Zipfian distribution law imdhi meaning that we
perform the tests by simulating expected desktop user li@mhae. documents are
modified in a way that follows a Zipfian distribution. Additially, we also test how
performance is influenced by a random pattern of modificatiofhe two types of
behaviors are captured in the following test cases:

Test Case |. Loading the XML collection and iteratively updating filesrandom.

Test Case Il. Loading the XML collection and iteratively updating filescacding to
a Zipfian distribution.

Case Il simulates a Zipfian distribution while case | simegata uniform
distribution. In order to implement the above test, we haazlithe following statistical
functions:

Definition 8.1 (Uniform and Zipfian probability functions). The probability of choosing
a specific filef; from a given collection of file§” whereF' = { fo, ..., fn}.

e Uniform: P(i) = 1
e Zipfian: P(i) = L witha > 1

8.3. CI-TO-DI MIGRATION 73

450000 T T T T T

éase: Uniforlm —_—
Case: Zipfian

400000 [+ |
350000 || .
300000 |- | -

250000 |- | i

Duration ms.

200000 | .
150000 - -
100000 -

50000 |- 7

0 1 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000 140000 160000

Cache size in no. of postings

Figure 8.2 : Cl-to-DI migration performance

8.3.2 Evaluation

Figure 8.2 shows a graph indicating the duration in ms. when executiegabove
mentioned test cases. From Fig@& we observe that having a low cache size has
crucial impact on indexing timeg.g. when having no cachd.¢. a cache size of
0 postings) it takes nearly 450.000 ms. to index the XML cditet The figure
also shows that the chosen cache replacement policy (LRporels very well to
the assumption that users follow Zip’s law when updatingsfilee. updates some
files regularly while others remain untouched. It should beed that as the cache
size increases, the importance of having a cache replatgroéey with a high hit
ratio decreases; when only having limited amount cachemipeitance of “guessing”
right when replacing postings is essential. Increasingctiehe size to comprehend
all postings extracted from the collection does naturadlyult in equal performance
of the two test cases. However, storing the whole index in orgris not a desired
feature when implementing a full-text search engine foktgsuse, as this scheme
could cause unreasonable amount of main memory to allotat€dL cHAS thereby
impacting general system responsiveness. Finally, chgasicache size that fits all
users is not possible as the number of files, users frequaratify, and the size of
these vary from user to user. HowevealkCHAS is implemented with a default cache
size 0f20.000 postings.

8.4. MERGING DI AND SI 74

8.4 Merging DI and Sl

As mentioned in Chapté, Sl is the static storage of AL CHAS and postings located
in this index originates from files left untouched on the hdrigte for a long period of
time. As a consequence Sl is the least frequently updatexkirtdowever, in order to
test the performance of Sl with respect to different merdeij@s, we make a number
of simplifications making it possible to frequently migratestings from DI to Sl. In
this context, a merge police is simply a trigger indicatingew a merge of DI and Sl
should be performed, and based on experience fr@8} § merge policy describes a
maximum ratio between DI and Sl. The tests are conducted lyidmding XML files
into KALCHAS, thereby causing both Cl and DI to become full more often tinaan
every day use scenario. Furthermore, this synthetic watkibffers from normal usage
in that documents are not modified. However, for the purpésvaluating different
merge policies these simplifications are valid.

As discussed in Sectiofi.3.3the performance of both the incremental update
strategy and the re-merge strategy depend on the size ofiDihj bontradicting ways.
By using different merge policies it is possible to eitherdiar the former or latter
strategy, thereby affecting overall indexing time as wellredexing performance with
respect to a single file.

8.4.1 Test: Merge

In order to test the performance of different merge poliei@60 MB large XML data
set was generated with XMark. Five tests were conductedjusarging policies with
ratios of 100%, 50%, 33%, 25% and 20% respectively. Eachatastconducted by
initially resetting both DI and Sl and then bulk loading thX document collection.
The Cl was setup to hold a maximum of 20.000 postings, meahatgpnce this limit
was exceeded a set of postings were migrated to DI. If thendhgber of postings in
DI exceeded the merge policy ration, DI and Sl would be mefigure8.3illustrates
the overall indexing time as a function of the collectiorediar the five merge policies.
Figure8.4illustrates the average merge duration as a function ofdledtion size.

8.4.2 Evaluation

Looking at figure Figure3.3, we notice that with respect to the overall indexing time
of a 260 MB document collection, there is less than a 1000ms#scdifference between
the duration of the best performing policy and the worst @aning policy. While
this could be interpreted as merge policies having littltuence on performance,
the figure only shows one property of the system, namely thiadexing time for a
small/mid-sized document collect. As opposed to the olieiddxing time, the average
indexing time is often equally or even more important in aktigs environment, since
often users are not concerned with overall efficiency, bileesystem responsiveness.
Hence, from the perspective of a desktop user it is often rdesirable to have fast
incremental updates than good cost/benefit ratios for mapgeations. This property
is illustrated by Figure3.4, which illustrates the average merge duration as a function

8.4. MERGING DI AND SI 75

18000 T T T T T
Ratio 1:1

Ratio 1:2 g

Ratio 1:3 ------»
16000 - Ratio 1:4 /‘

Ratio: 1:5

14000

12000 -

10000

8000

6000 |- L i

4000 /‘? :

Duration in seconds

2000 | e -

(= 1 1 1 1 1
0 50 100 150 200 250

Collection size MB

Figure 8.3 : Overall performance of indexing XML collections while médng the size
of DI

of the collection siz& Focusing on this property, the 1:5 ratio policy is by far mor
desirable than the 1:1 ratio policy, as the average timetgpeincremental updates and
resource demanding merge operations is significantly smalhlthough the overall
indexing time is the same. Thus, there is a trade-off betwssnfiorming a few
expensive operations and many reasonably cheap operations

Returning to Figur&.3we notice that for small collection sizes the 1:1 ratio pplic
performs best, however as the collection exceeds 160 MBeittopnance degrades.
This can be explained by the conflicting interests of thexnuaintenance strategies
as discussed in Sectidgh3.3 For collections size less than 160 MB and using the
1:1 ratio policy, the size of DI does not exceed the point, netincremental update
become prohibitively expensive due to page reorganizakiorvever, passing the 160
MB collection size, this pointis exceeded and performirggémental updates becomes
the dominant factor. In general, the problem is that the obgierforming merges is
linear to the input sizei.e. DI + SlI), while the cost of incremental updates grows in
the size of the tree. Hence, regardless the merge poliay, theé cost of incremental
updates will at some point become more expensive than neergin

Using the low ratio merge policies, however, preferencévemgto the incremental
update strategy. By using a 1:5 or 1:4 ratio policy the grokatie of DI is limited as
postings are frequently migrated from DI to Sl, thereby mgkpage reorganizations

2Note, the duration covers two properties: 1) Performing yremall merges results in better average
merge duration than fewer larger merges - naturally. 2)dperihg frequent merges results in a limited
growth of DI which in turn renders better incremental updzsegormance.

8.4. MERGING DI AND SI

76

2500 T T T T - T
Ratio 1:1
Ratio 1:2
Ratio 1:3 -----
Ratio 1:4
Ratio 1:
2000
1]
=l
c
o
(5]
[}
2]
£ 1500
(]
2
[}
S
9]
s -
% 1000 | e
5 7
© //
=) /
z ~
500
Y
7/
o y 1 1 1 1 1
0 50 100 150 200 250

Collection size MB

Figure 8.4 : Average time spent on indexing and merging XML collectiorsasured as

Duration
No.merges

8.5. COMPRESSION SCHEMES 77

less expensive when performing incremental updates. Hemves illustrated by
Figure 8.3, using such policies does not result in overall best indgxime. Rather,
poor cost/benefit ratios now become the dominant factor.

The tests demonstrate that it is difficult to point out a stnglerge policy as being
best. Rather, any policy is only “best” for a certain colientsize and a preferred
system behavioi,e. good incremental update performance or good overall imdgexi
time.

8.5 Compression Schemes

In this section we will look into the different aspects of @@bmpression that have
been utilized in our project. In order to reduce the amourdaif stored in both DI
and SI, we have tested a range of specialized data compnesssategies. Our findings
have been that we need to divide our compression schemesvmtmajor groups: (i)
compression of individual locations, and (ii) compressblists of locations. Case (i)
is a direct consequence of having DI which is updated fretyesile (i) is associated
with S| which is updated rarely. In (i) we must be able to coessrand decompress
efficiently without adding a size overhead to the data whijex{ay favor compressed
data size over compression time.

8.5.1 Test: Postings

A crucial property of single locations, as stored in DI, i flact that the number of
bytes used for the internal representation is relativelglsnThe size of the raw data

is dependant on the depth of the XML documerd, if a given Dewey path is of
length5 the internal representation would requ@bytes. Looking at the previously
mentioned codecs (see SectbA) we see that model-based codecs, such as Huffman,
Rice and LZ77 adds too much overhead to the compressed datéhasm cannot be
used.

The test was been conducted on both real and synthetic datd.dBta was taken
from a small collection of Shakespeare plays as presentelbbyBosak $1] while
the synthetic data was generated randomly and thus bring wotst case scenario of
postings.

Synthetic Data. Encoding of the synthetic data is shown in Fig@&. The figure
is generated as a frequency graph where the property of pegduany small
compressed locations and only a few large compresseddosat preferable.
As expected, writing raw data (in this case 4 byte per Dewaybmr) is the
least efficient way to encode a Dewey path followed by the yigading (no
matter if RLE is applied or not). Using our customized VBL ecdhe coded
data is around 40% of the original raw representation. Aalcktly, the VBL
codec is the only compression scheme which clearly prodanBsfew very
large compressed locations.

Real Data. After having tested the selected codecs on synthetic datavilveow
demonstrate the efficiency of the VBL compared on a collactibreal data.

8.5. COMPRESSION SCHEMES 78

7000 T T
VBL —
RAW 32Bit Integer
Unary --------
6000 L Unary + RLE
5000 B
z 4000 X 8
5 A
3 \\ //\/\\//\ /\ el T TN
o \V N
0 ‘ N
& 3000 R E
2000 -
1000 | g
\\\ -
- Il — \7 Il Il Il \
5 10 15 20 25 30 35
Size in bytes

Figure 8.5 : Postings: Compression test of random generated data.

A frequency graph of the test is shown in Fig8ré. Once again we observe that
the RAW data is unusable without further compression agplie contradiction
with the results of the unary coding on synthetic data we esinat the unary
notation appears to be useful on real data. However, onddheuwery careful
when using unary coding, since it may perform very well oni@les and very
poorly on high values. Adding an RLE compression to the uigade reduces
the output size remarkably and the overall compressioo imiomparable with
the VBL compression, which again proves to be most efficient.

8.5.2 Test: Inverted Lists

Moving on to S| and compression of the data stored in SI, wemesthat the data
sizes are remarkably larger than those of DI. This is causethé storage scheme
of Sl, which collapses all locations associated with a gitegm into one entry in the
index. The increase in data size introduces the need anitbifea$or more advanced
compression techniques than those applied in Seétibr. It is beyond the scope of
this project to invent new compression codecs; however, ave lested a variety of
different standard codecs (see Sectioh.2. As with the compression test for DI, the
compression test for Sl is conducted on both synthetic asidiega.

Synthetic Data. The results of encoding the synthetic data set using theechsst
of compression codecs is shown in Fig&r& The most efficient compression
scheme in the test is the combination of the BWT and RLE cod&bg next
best combination of codes is VBL and Huffman. As expectedrtve data
representation is unusable and VBL encoding alone is inefiic Comparing

8.5. COMPRESSION SCHEMES

Frequency

Size In Bytes

79

60000 T . T T T
VBL ——
RAW 32Bit Integer
Unary --------
Unary + RLE
50000 g
40000 | g
I\
I\
I\
I\
[
||
30000 || g
|
[
| \
|
20000 [.
[
| \
| \
| \
| \
[
10000 | | | .
| \
4
/\ ,,,,,
0 1 | L L el iebbetebebeletetetebutetetutate RELE E
5 10 15 20 25 30
Size in bytes
Figure 8.6 : Postings: Compression test of Shakespeare plays.
45000 T T T T T —T
RAW 32bit data
VBL -
40000 |- VBL ¥ Huffman, - .
35000 g
//
—
30000 ////// B
/
25000 .
20000 E
15000 - e
10000 g
5000 g
0 1 1 1 1 1 1
200 400 600 800 1000 1200 1400

Number Of Postings

Figure 8.7 : Inverted lists: Compression test of synthetic data.

8.5. COMPRESSION SCHEMES 80

the combination of the BWT and RLE codecs with the raw dataesgntation
we see that we are able to compress data down to 28%.

Real Data. After having tested the codecs on synthetic, generated,watwill now

Size In Bytes

see how the codecs perform when applied to real data. Onae thgareal data
is provided by the Shakespeare plays Othello, Mac Beth amdiéta Output
of the compression test is shown in FigBe3. In general the figure is as
expected; however in this case the two best compressiomashkas swapped
places, meaning that the combination of VBL and Huffman csds to prefer
over the combination of BWT and RLE. This is due to the natdrthe XML
representation of these Shakespeare plays, where the dattmee is wide and
shallow {.e. the Dewey paths are short with very little overlap among thérhe
VBL codec encodes the lists of Dewey paths into very “noisgtagd which the
Huffman codec is able to compress very efficient. Additibntde combination
of BWT and RLE works best on longer Dewey paths with higheursthncy
of Dewey numbersie. XML documents with a narrow and high document
tree). Looking at Figur&.8it is worth mentioning that the noise occurring in
the bottom of the graphs is caused by the associated postiagteeply nested
in the XML document, which makes the accompanying Deweygadhatively
long.

RAW 32bit data —
14000 | VBL i
VBL + Huffman ~~-----
BWTJr}E
12000 | / g
10000 | / -
/
8000 e -
e -
7
6000 | // _
4000 | / i
ﬁ /
| e
2000 HM’\“{/H -
U
A
0 i I I I I I I
0 200 400 600 800 1000 1200 1400

Number Of Postings

Figure 8.8 : Inverted Lists: Compression test of Shakespeare plays.

8.5.3 Evaluation

Based on the shown tests we are now in a position to evaluatéhimh compression
codecs, or sequences of codecs, is preferable in Sl and Bleloase of compressing
single postingsi(e. in DI); the Variable Byte Length codec proved its worth on

8.6. KEYWORD SEARCH 81

both synthetic and real data. However, there are certaiat&ins where the unary
codec may be preferred -e-g. in indexes with very few documents where all of the
documents span over narrow and low document trees.

When compressing inverted lists, it is inefficient to encodéy using the VBL
codec. A combination of VBL and Huffman or BWT and RLE is mot&active,
depending on the situation. In general, the combination B£\and Huffman is
preferred, however the BWT and RLE combination should béepred in cases where
one is certain that documents have high document trees withndancy of Dewey
numbers.

8.6 Keyword Search

Test and evaluation on the keyword search functionality m.&HASs should be seen
as an extension to the results found i9]] These tests established the fact that the
scan-based algorithm (previously mentioned as the lirsedbalgorithm) is by far the
most efficient implementation. However, while this alglomit was the most efficient
one its initial implementation returned inaccurate reselty. querying a collection of
Shakespeare plays for the terms “thunder” and “lightningtuid return hits ranking
multiple occurrences of either term higher than the hitsewest the two terms were
present. As a result of this the scan-based algorithm hasesl/introducing new
design objectives and improvements of results.

8.6.1 Test: Quality of Results

A small test setup consisting of a 10 MB collection of XML doeents has been
indexed by KALCHAS in order to test the keyword search functionality. In pate,
we have indexed a XML file generated from the bibliographydisehis report.

Testing the quality of results of search engines is alwaffdit, since quality of
results is a matter of subjective opinions and thus no foewaluation is possibleg]
13]. Utilizing the meetoperator we have indirectly defined whahKCHAS perceives
as plausible results (Definitiof.4 on page23): (i) rank specific nodes over general
nodes and (ii) rank by node proximity.

Query Results. Executing a query ofasmusand dennisreturns the<aut hor >
node containing “Dennis Alexander Ngrgaard and Rasmus Ki&iem the
bibliography entry referring to the DAT5 reporL{]. This is illustrated in
Figure8.9. Returning to the problem of ranking multiple occurrencgsingle
terms higher than single occurrences of multiple terms; @eethat Figure3.9
takes care of this. Notice how the element containing bo#srfrus” and
“dennis” is ranked higher than elements containing onlgrinas” or “dennis”.

Stop Word Filtering. Introducing stop word filtering, as described in Defini-
tion 2.3 on paged, has caused new issues to arise. Searching for the sentence
“to be or not to be” in Hamlet returns an empty set, as showniguirie 8.10
This is caused by the fact that each individual term is a stopdwHowever,
looking at Google we see similar problems. The Google seaerdine is

8.6. KEYWORD SEARCH 82

Search results: rasmus dennis.

Dennis Alexander Nergaard, Rasmus Christian Kaae

K:\kalchas\output\papers.><m| - Downlozd - Similar documents
To come (Dennis})

K:\kalchas\uutput\pauers.><rn| - Download - Similar documents

Summary by Yui and Dennis

K:\kalchas\output\papers.><m| - Download - Similar documents

Slides by Rasmus Kaae

K:\kalchas\output\papers.><m| - Download - Similar documents

Technical paper describing how inverted indexes can be

K:\kalchas\output\papers.><m| - Downlozd - Similar documents

Technical paper describing various methods of

Figure 8.9 : The keyword search for “rasmus dennis” returns plausitdalte

confused by the query string, “to be or not to be”, and suggesecuting a
Boolean query with the OR-operator. In order to retrievevaht results on
Google one has to formulate a quoted query (which seems toblécitly done
when querying Yahoo! for the exact same un-quoted quergtedd of simply
leaving the user with an empty result set, the web interfaex CHAS suggests
alternative search terms. This is done by looking up (p@#yt misspelled
words in the online Merriam-Webstedictionary. The suggestions proposed by
the dictionary is presented to the user as shown in Figurg

Search results: to be or not to be.

Mo fits
Try replacing 'to" with ...
* Sorry, no suggestions available

Try replacing 'be’ with ...
+ Sorry, no suggestions available

Try replacing "or' with ...
* Sorry, no suggestions available

Try replacing 'not’ with ...
+ Sorry, no suggestions available

Try replacing "to* with ...
+ Sorry, no suggestions available

Try replacing 'be’ with ...
& Sorry, ho suggestions available

Figure 8.10 : Querying for “to be or not to be” in Hamlet yeilds an empty réset

Shttp: // ww. m w. com

http://www.m-w.com

8.6. KEYWORD SEARCH 83

Search results: sreach engnie.

Mo hits

Try replacing ‘sreach” with ...
* search
Zurich
Zurich

L B BN B B L B BN B

Try replacing ‘engnie’ with ...
ngin

Anyan

Anglia

annoyin

Anglia
ngr:
nnesin

aeonian

anion

L

it

[

L BN BN B BN B BN B

Figure 8.11 : If an empty result set is returned byaKcHAS the PHP script suggests
alternative search terms

8.6.2 Test: Performance

Having established that ttreeetoperator, in combination with the underlying inverted
index, returns plausible results, we will now look into therfermance of querying.

Query and Retrieve. Executing a query can be split up into three significant
processes: (i) retrieving postings from the index, (ii)kiag nodes withmeet
and (iii) presenting the results in a nice presentable ways e&plained in
[19], (i) and (ii) is executed in less than a second on querieshivg more
than 80.000 postings, but the Kalchas Explorer and the Welbfaiwe reacts
somewhat slower. This behaviour is caused by the way we pressults to
the user. In terms of Kalchas Explorer and Web Interface we ltiosen to
present the results in a user friendly manner, heavily respby Google and
other search engines. However, generating this outpus ekegnificant amount
of time, due to the fact that we do not index the actual costehdocuments but
only the search-able terms. We have previously suggestad asparse index
for presenting query results faster, however optimizaticdisplaying results are
not within the scope of this project. Instead we have chosgeherate the user
friendly representation of the query results in real timhbjalv is possible since
we do not expect to handle high rates of queries in a deskizpogment.

8.6.3 Evaluation

Even though our system suffers a significant time penaltyeaslt of not having
the document contents indexed, the implemented systenstsfough to respond

8.6. KEYWORD SEARCH 84

to queries within a reasonable amount of time on a sub-stdndd GHz machine.
Adding newer/better hardware will result in faster quenalaation. However,
facilitating themeetoperator enables us to refrain from having statistical datzh

as term frequency in a particular document (IDF) and termueacy for the indexed
collection (TF) [L3, 14, 27]. Adding such statistics could be done on the expense of
either disk space or query time:

Term frequency — whole collection TF information is already available at query
time, since the results returned from querying the indexds Dl and Sl) is
an invert list containing all indexed locations of a term.

Term frequency — single elementIDF information for individual indexed elements is
available at the time of indexing, and could simply be stamagkther with the
term and location in the index.

According to other projectslg, 14], refining the ranking function by involving TF,
IDF and TF*IDF values, along with lowest common ancestocualais, yields more
precise query results. While this may be the case, we havidatbto focus on the
meetoperator as the primary ranking function and save both ¢iake and time spent
on executing queries.

Chapter 9

Conclusion

We will now evaluate and conclude the work conducted in thggort. Moreover, we
will conclude by looking at the initial objectives set up metbeginning of the report
and evaluate the results found. Additionally, we will giviisaof ideas for future work.

9.1 Conclusion

This project has addressed issues related to the develoghardynamic full-text
search engindargeted at desktop PCs, with particular focus on implemgran
efficient index structure. To sum up the work conducted is project, we will now
evaluate on the issues listed in Sectiof

1. Architecture design. In order to design and implement an efficient index
structure, we have redesigned the code framework founciprvious project.
This is caused by a natural refactoring, moving from a candmdsed and
imperative implementation to a modular object orientednieavork, suitable
for experimenting with a range of equivalent modules withmosing the
overall functionality of the system. Additionally, the fn@work described in
Chapters complies with the need for integration with third-party dpations,
by integrating KaLCHAS’ functionality directly in the file system.

2. Index structure. To accommodate the Zipfian pattern assumed to be the default
user behaviorife. frequency of file updates follows Zipf's law), we have
implemented an efficient cascading inverted index strectaonsisting of (i)
an in-memory cached index holding the current working dgta(disk based
B-tree holding documents migrated from ClI, and finally @ijlisk based B-tree
holding documents assumed to be static.

Empirical tests have proved that having the in-memory Clssful. This is
seen as a consequence of the working set, which consiste ofidst recently
used documents. Migrating documents from Cl introducesalpein terms of
in-responsiveness at the user end, since documents haeentoved onto disk
based storage. However, migrating documents from CI to lse likely to

improve performance as incremental updates become lesgagi¥p, resulting in

9.2. FUTURE WORK 86

improved responsiveness. This behaviour is demonstriateddh the empirical
tests found in Sectio®.3. Additionally, seeing that insertion of documents
in DI is done via incremental updates, DI will over time be@imcreasingly
expensive to update. This is caused by the growth of the &-tiace inserting
data into a large tree is slower than inserting into a smedl.tkWhen incremental
updates get too expensive, DI and Sl can be merged.

Merging the two disk based B-trees (DI and Sl) is 1/0-bound #mus very
time consuming (as illustrated by the tests found in Secki@gh However, a
merge yields a more efficient system in terms of both quergimdjupdating the
indexes. This is caused by a higher page fill factor and bstibeage utilization,
as compared to DI, which was indicated in our previous repat working
on minimizing the storage space requirements would makentexes more
efficient. Additionally, when merging, the content of DI ioued to Sl rendering
DI empty and thus incremental updates can be performedvediatast.

3. Index compression. Postings in DI are stored individuallyie. as
<term | ocat i on> pairs. Compressing single postings using the customized
VBL encoder has shown to be more efficient than any of thedesteecs, as
can be seen from the tests shown in Secfidnl

Looking at the storage scheme for SlI, Secti®g introduces the need for
additional compression schemes. Compressing inverteddiered as records
in the B-tree using a combination of the VBL encoder and a gertuffman
codec entail the most efficient compression ratio, as shgwenipirical tests in
Section8.5.2

4. Keyword search. As with the previous project, this project embodies a full-
text index endorsing keywords searches. These searchasigperted by the
aforementioned underlying inverted indexes. Executingarah for a given
search string yields relevant results at the granularitXiL elements. This
is facilitated by themeetoperator, implemented as described in Sectiah
The empirical tests conducted in SectiBrb indicate that the search results
are plausible for most cases; however, there are still rammmniprovement by
adding statistical information to the ranking functiomali

9.2 Future Work

In this section we will evaluate our work and discuss topagé investigated in the
future work.

9.2.1 Refactoring the Code

Due to the emphasis on modularity and extensibility the emtrrdesign and
implementation of KKLCHAS is not fully optimized with respect to performance issue
such as efficient/fast code and memory usage and re-fagtanithredesigning the code

is assumed to increase the overall performance. Moving thenmighly experimental,

and low-level, implementation made earli€r9] to the highly structured and very
flexible design of KKLCHAS, has introduced an overhead caused by code abstractions.

9.2. FUTURE WORK 87

All parts of KALCHAS is modular, and thus can be replaced with a single line of code
while this has proved useful while writing this thesis, itnist as efficient as a more
strict and narrow design could be.

Using the experience gained in this project and the previoos will help
identifying key design issues for future versions ofUCHAS.

9.2.2 Constructing the Index

Constructing the initial index for KLCHAS has not been addressed in this project, but
tests conducted in Secti@i3and sec:test-eval:Merging indicate that the initial dorat

of the indexes could benefit from applying other stratedghes) those used in every day
usage. For instance, it would be relevant to evaluate hovinthex building process
employed by many search engines would perform when injtakating the indexes;
using such strategies the document collection is crawletrdther than immediately
inserting postings directly into one of the ordinary indexgostings could be stored
in sorted runs. Once the entire collection has been proge#ise sorted runs could
be merged into Sl by using a modified version of the merge algordiscussed in
Section6.3.3

9.2.3 Supporting Advanced Searches

Query handling is disjunctive with the current implemeiatatof the meetoperator.
Although ranking gives preference to more specific resaltg, results containing all
search terms as described in Sectof) it would be useful to add support for explicit,
conjunctive queries as well.

Most web search engines support quoted search. As this cambilered a special
case of conjunctive search, itis currently not supportd€iAnCHAS. In order to do so,
it would be necessary to extend the scheme used for repiegéntations with term
offset within elements. Additionally, theaeetoperator would need to be extended to
handle this types of query.

9.2.4 Refining themeet Operator

Querying the inverted index facilitating threeetoperator to rank results by relevance
is generally a good idea. It brings forth relevant, specifesults without adding
additional overhead to the data stored in the index. As é@xgdain Section8.6.3
implementing TF, IDF and TF*IDF style ranking would be nesay to increase
the level of relevance in search results. In previous ptej§ts, 19, 53], more
simplistic approaches to thmeetoperator have been conducted, which all seem to
entail reasonable results but yet not as accurate as thoed fo commercial search
engines such as Google or Yahoo!. Adding statistical infdiom, as described in
Section8.6.3 could be taken into consideration in a scenario similah&t of Guoet

al. [13]. However, this method of ranking using statistical infation stored in the
database could be adopted in a revision ofrtteetoperator. While doing so we would
be able to present better query results and still maintaiacamt size of the indexes
stored on disk.

9.2. FUTURE WORK 88

9.2.5 Auditing

In Section7.1, we introduce thé-ileLog table which features the AuditTime attribute.
However, this attribute is currently in-accessible from KnLCHAS API. This attribute
can be used to indicate the time of indexing of a documentcéstsa with a DoclD.
This functionality could be used to retrieve useful infotima in the application layer,
i.e. to answer the question “Which documents have been indered #ie last query?”
In SQL this could be expressed as follows:

SELECT Docl D
FROM Fi | eLog
WHERE Audit Ti me > $LAST_QUERY_TI ME

Adding support for AuditTime queries enables third partyalepers to implement
caching mechanism of search results into their application if the mentioned SQL
returns O rows, then the cached result is still relevant.

Additionally, it would also be able to verify that changesigiven file is updated
in KALCHAS. Thisis illustrated in SQL as follows:

SELECT Docl D
FROM Fi | eLog
VWHERE Audi t Ti me > $LAST_AUDI T_TI ME AND URI = $FI LE_UR

As can be seen from the two SQL examples, this informatiorbesaxtracted from the
current system; however, we have not had the time or needitteuhese functions in
the implemented applications described in Secfidh

9.2.6 Displaying Results

As described in Sectiof.6.2 the current approach of displaying results is not very
efficient. For each result, the document containing thelrésue-shredded in order
to extract the relevant element. Thus, increasing the alysl result set or displaying
results located at the end of a large file is expensive in tefrdsk 1/0.

A more efficient way of displaying results would be to incluateindex, mapping
locations toe.g. byte offsets in files. For every document added to the system,
entries in the index could be created while shredding. A& sucindex also requires
maintenance, it would be preferable to keep expenses lawgehtine index could be
sparse, containing only a fefl ocat i on, byt eof f set) entries for every file. By
distributing these entries evenly across the documenitidvbe possible to display
elements by only performing a limited amount of parsiagy. if a 10 MB document
was indexed by only adding a entry to this index for 1 MB, it \ebbe possible to
extract an elements from this document by only parsing 0.5dd& on average.

9.2. FUTURE WORK 89

9.2.7 Internationalization

We have observed that our current keyword search is mosibdaifor synthetié
languages, as compared d@nalytic languages. Most of the Europ€alanguages
are syntheticé.g. English, German, Danish), whereas most of the Asian langgiag
are analytic é.g. Vietnames& Chinesé). In the European languages, most words
are represented as a single token, and only few span raaye;in addition”, “for
instance”. In contrast, the number of words representedMaydr more tokens in
Chinese, Vietnamese, Korean and Japanese are considEnagy(see Figuré.l).
Thus, the ability to efficiently search a sequence of ternrgguguotes is desirable for
most Asian languages. Our current system does not suppentiseg a sequence
of terms using quotes. When entering more than one term h#osystem, the
system will search for the occurrence of each in differentutioents, and return
the element/document that contains one of these terms. &wrmgh the current
implementation does not directly supparialyticlanguages, the current system will
search for any random permutation of the tokens comprisiwgra from ananalytic
language.

The explanation of search

search
[s=t]]

+ danh tr
o sir nhin dé tim, su sir dé fim; sur
kham xét, sur luc soat
m right of search
{phap) quyén kham tau
m search of a house
sLr kham nha
o s diéu tra, st nghién clru, su tim
toi
® 0 be in search of
something/somebody
tim kiém ai/cai gi
» {0 make a search for
someone
di tim ai
+ ngoal dong o
o nhin dé& tim, s¢ dé tim; kham xét, luc
soat
= {0 search the house for

WEAD0Ns
kham nha tim wil khi

Figure 9.1 : An example of a Vietnamese text taken from an online dictipna

lhttp://en. w ki pedi a. or g/ wi ki / Synt heti c_| anguage
2http://en. w ki pedi a. org/ wi ki / Anal yti c_| anguage
Shttp://en. w ki pedi a. or g/ wi ki / Eur opean_| anguages
4htt p: //en. wi ki pedi a. org/ wi ki / Vi et namese_| anguage
Shttp://en. w ki pedi a. or g/ wi ki / Chi nese_| anguage

http://en.wikipedia.org/wiki/Synthetic_language
http://en.wikipedia.org/wiki/Analytic_language
http://en.wikipedia.org/wiki/European_languages
http://en.wikipedia.org/wiki/Vietnamese_language
http://en.wikipedia.org/wiki/Chinese_language

9.2. FUTURE WORK 90

The current stop word filter implemented inAKCHAS relates to the English
language. Extending the project to include documentsenvritt other native languages
would introduce new challenges: (i) How to identify the laage used within the
document, (ii) How to construct reasonable lists of stopdsdor the filter, (iii) Is it
feasible to construct a stop words for all languages?

The XML standard recommends that all documents includerinédion about
the character encoding usee.d. UTF-8, UTF-16, 1SO-8859-1, etc). While this
determines the character encoding, it does not reveal tigeidaye used in the content.
However, even if we were able to determine the language of@ngiocument, not
all languages are suited for stop word filteriegg. analytidanguages as described in
Sectior.2.3contain words spanning multiple tokens in contrastyiothetidanguages
where a majority of words consists of a single token. Thigati@ristic ofanalytic
languages makes it impossible to have stop word filteringfidanguages; however,
the keyword search in KLCHAS does not support searching for composite terms, as
observed iranalyticlanguages.

Performing term frequent analysis on documents resultsistograms usable
for identifying important terms. An interesting topic foutfire work would be to
experiment with a dynamic stop word filtering, based on thedvilequencies obtained
from individual documents, and only index the tokens odogrrarely within the
indexed document.

9.2.8 Distributed Searches

Working in a small office settings, we imagine thatkCcHAS could be used for
searching the whole office for specific documents. This cdaddmplemented by
allowing Kalchas Explorer to perform searches on desktapsmected to the LAN,
in somewhat the same way as common peer-to-peer file shadgggms.

9.2.9 Handheld Devices

Following the idea of distributed searches, we could imagiorting KALCHAS to
BlueTooth or W-LAN enabled handheld devices. A scenaridctbe that, entering a
building would allow one to query other handheld devicesimsame building.

Appendix A

Source Code

The following sections provide the source code for the ntdstrésting operations and
algorithms discussed earlier in the reprort.

A.1 Using KALCHAS API

The following source code demonstrates how to implementrmeplsi application
embedding the KLCHAS API.

Listing A.1 : An example of using KLCHAS API

/!l Include the Kalchas API header file
#i ncl ude <kal chas.h>

#i ncl ude <li st>

#i ncl ude <string>

/Il Open the Kalchas APl namespace
usi ng nanespace kal chas_api ;
usi ng nanmespace std;

int main(int argc, char xxargv) {
/!l Instantiate Kalchas
cKal chasAPlI kal chasl nst ance;
/!l An error value variable
eKal chasError Code retVal ;

cout << "Adding:" <<endl;
// Add a file into the index
retVal = kal chasl nstance.AddFi | e("bi bl i ography. xm ");

// Output the status message from Kalchas
cerr << cKal chasAPI ::ErrorCodeToString(retVal) << endl ;

cout << "Querying" <<endl ;

I/l Create the query as a list of terms

A.2. EXAMPLE PLUGIN: PGP FILE SUPPORT 92

list<string> query;
query .push_back (" Engi ne");
query .push_back (" Ser gey");

/Il Declare a result pointer variable
t Kal chasQueryResult xresult ;

/I Query the index
retVal = kal chasl nstance.QueryRetrieve(query, &result);

/!l Output the status message from Kalchas
cerr << cKal chasAPI ::ErrorCodeToString(retVal) << endl ;
return O;

A.2 Example Plugin: PGP File Support

The following source code demonstrates how to implemeneastipport plugin for
KALCHAS. The plugin is able to index PGP files by simply reporting thatfile is a

PGP file; this is the only indexable data in PGP which consitthecksums for PGP
encryption.

Listing A.2 : Example plugin — PGP file support
I/l Include the Kalchas File Support Header
#i ncl ude <Kal chasFi | eSupport .h>
/l Include the STL string library
#i ncl ude <string>
I/l Include the STL list library
#i ncl ude <l ist>
/l Open the std namespace
usi ng nanespace std;
I/l Associate our plugin with the other plugins
nanespace kal chas_pl ugi ns {
/Il Define our class as an implementation of the
/I cKalchasFileSupport interface
class cPlugi nPGP : public cKal chasFil eSupport {
protected:
[/l Current file name
string mFilenane;
/I List of tokens generated from the file
list<string> m Tokens;
/] lterator in m_Tokens
list<string>::iterator mlterator;
/1 Last XML
string m Last XM_;
I/l Tokenizes a string and pushes all tokens
// onto the m_Tokens list
voi d Tokeni zeFiel d(string field) {
string buffer = "";
for (unsigned int i =0;i<field.length(); i ++) {
char ch = field[i];

A.2. EXAMPLE PLUGIN: PGP FILE SUPPORT

i f (KALCHAS_TOKEN CHAR(ch))
buf f er += KALCHAS FORMAT CHAR(ch);

el se {
if (buffer !'= "") mTokens.push_back(buffer);
buffer = ""
}
}
if (buffer !'= "") mTokens.push_back(buffer);
}
public:

// Empty constructor
cPlugi nMP3() {}
// Setup processing of a new file
virtual bool Initialize(const char xp_Fil enane) {
m Fi | ename = p_Fil enane;
m Tokens .cl ear ();
}
// Extract tokens from the opened file
virtual bool Process() {
Tokeni zeFi el d("Pretty_Good_Privacy PGP _File");
m lterator = m Tokens.begin();
return true;
}
I/l Retrieve postings
virtual bool GetNext (char x p_Dest Token,
unsi gned int &p_Dest TokenLengt h,
unsi gned int x p_Dest Dewey,
unsi gned int &p_Dest DeweyLength) {
// Return false if the end is reached
if (mlterator == m Tokens.end()) return fal se;
el se {
/I Copy the token string
strcpy (p_Dest Token, (smlterator).c_str ());
p_Dest TokenLength = (xmIterator).length());
// Setup a dummy location
p_Dest Dewey [0] = 1;
p_DestDewey[1l] = 1;
p_Dest DeweylLength = 2;
/! Advance the iterator
mlterator ++;
[/l Signal that we have not reached the end
return true;

}
}

/I Release any intermediate memory allocated
virtual bool Deinitialize() {

m Tokens .cl ear ();

m Fi |l ename = "";
}
/!l Return the number of extensions supported
virtual const int GetNumExtensions() {

return 1;
}

// Return the string of the current supported extension

93

A.3. MEET OPERATOR 94

virtual const char x Get Extension(const int p_Wich) {
return " PGP ;
}
/I Release all data (none)
virtual void Destroylnstance() {}
/I Tranform a Dewey Path into readable XML, this is
/l stored in the "<value >" tag of the output
virtual const char x RetrieveXM.(const int xp_DeweyPath,
const int p_DeweyPat hLength,
const char xp_Filenane) {
m Last XML = "<fil etype>Pretty_Good_Privacy_File_ - _ PGP</filetype>";
return mlLastXM..c_str ();
}
I
/I Macro that takes care of the export functions for the plagi
KALCHAS_EXPORT_DLL (cPl ugi nPGP);
I

A.3 meet Operator

KALCHAS' implementation of the MET-SCAN meet operator, as proposed in
Section 4.3 on page?22, is shown in the following source code. The code
relies on a range of non-standard functions, suchLasgest ConmonPr ef i x
andLongest ConmonPr ef i xLengt h from thekal chas_ker nel namespace.
cMeet Oper at or : : Pr ocess takes a linked list of postings as input and computes
the results using a sorted container.

Listing A.3 : C++ implementation of the MET-SCAN meetoperator
#i ncl ude <neet oper at or .h>

nanespace kal chas_kernel {
/x Implementation of the Meet operatok/
voi d cMeet Oper at or ::Process (t DeweyLi st &pl nput ,
t Resul t Set &pResul t Set)

{
[%
Check if the input set is empty
*/
if (plnput.size() < 1) return;
[
Check if the input set only has one element
x/

if (plnput.size() == 1) {
pResul t Set .push_back (x(pl nput .begin()));
return;

}

[*
Create an iterator
*/

A.3. MEET OPERATOR 95

t DeweylLi st ::iterator i = plnput .begin();
[
Set the current working meet to the first element
*/
cDewey current _neet = xi ;
[%
Counter for measuring unions of multiple occurrences and
multiple terms in the same meet
*/
int hitcounter = 0;
[%
Should the last calculated meet be added to the result
*/

bool pushLast = fal se;

[%
Iterate through the whole set
*/
while (i!=plnput.end()) {
cDewey & current_dewey = xi ;
pushLast = fal se;

// RULE 4
if (hitcounter > 20) {
pResul t Set [hi t count er]. push_back(current_neet);
hitcounter = 0;
current_neet = current_dewey;
pushLast = true;
} else {
// RULE 1
if (current_neet .Get Docunent | D() !=
current _dewey.Get Docunent I D()) {
pResul t Set [hi t count er]. push_back (current _neet);
hitcounter = 0;
current_neet = current_dewey;
pushLast = true;
} else {
int lca_length =
current _neet .
Longest CormonPr ef i xLengt h(current _dewey);

/!l RULE 2
if (lca_length < 2) {
pResul t Set [hi t count er].push_back(current _neet);
hi tcounter = 0;
current _meet = current_dewey;
pushLast = true;
} else {
cDewey new neet =
current _meet .

A.4. SHREDDING USING THE EXPAT PARSER 96

Longest CommonPr efi x(current _dewey);
new_neet .Set Keywor d(current _neet .Get Keyword ());

/' RULE 3
i f (new_neet .Get Keyword ().
find(current _dewey.CGet Keyword()) ==
string::npos) {
new_neet .Set Keywor d (new_neet .Get Keyword () + " " +
current _dewey.Get Keyword());
hitcounter += 10;

} else {
hi t counter ++;
}
current _nmeet = new_neet ;
}
}
}
i ++

i f (pushLast)
pResul t Set [hi t count er].push_back(current _neet);

A.4 Shredding Using the Expat Parser

In the following we give the source code for the shredders;lasherited from a C++
LibExpat wrapper. The key functions a@St ar t El enent, OnEndEl enent ,
andOnChar act er Dat a. ThecShr edder Expat class is used to create an Expat
instance to shred a given XML document while tokenizing ehts and calculating
<term | ocati on> postings.

Listing A.4 : C++ implementation of the shredder function

nanmespace kal chas_kernel {
cl ass cShredder Expat : public cExpat <cShredder Expat > {
protected:
t Or der dedDeweylLi st «m Posti ngs;
t DeweyPat h m Wor ki ngDewey ;
public:
%
Instantiate the shredded and setting default values.
*/
cShr edder Expat (t Or der dedDeweylLi st «pDest Posti ngs)
. m_Postings(pDest Postings) {
// make room for Document ID / Document Root
m Wor ki ngDewey .push_back (0);
}

%
Return the number of shredded postings from the current

A.4. SHREDDING USING THE EXPAT PARSER 97

XML document
*/
i nt NunPostings () {
return (int)mPostings—>size();

}

% %
Retrieve all postings as a list of Dewey Paths
tDeweyList a list of <term, location > postings sorted by
location .

*/

t Or der dedDeweylLi st x Get Postings () {
return m Postings;

}

% x
Setup the Start, End and Character handlers of Expat
*/
voi d OnPostCreate() {
Enabl eSt art El enent Handl er ();
Enabl eEndEl ement Handl er ();
Enabl eChar act er Dat aHandl er ();

}

% %

Process the start of an element e.g. <element>
x/
voi d OnStart El enent (const XM._Char xpszNane,

const XM__Char xxpapszAttrs){

m Wor ki ngDewey .back () ++;

m Wor ki ngDewey .push_back (0);
}

% %

Process the end of an element e.g. </element>
*/
voi d OnEndEl enent (const XM._Char xpszNane) {

m Wor ki ngDewey .pop_back ();

}
%
Returns true if the given input is allowable
(alphanumeric)
*/
bool inline TokenChar (const char &p_I nput) {
return (p_lnput >="a" && p_lnput <="2z") ||
(p_lnput >="A && p_lnput <="27") ||
(p_lnput >="0" && p_lnput <='9");
}
%
Process the character data within the current XML Element
*/

voi d OnChar act er Dat a(const XM__Char xpszData,

A.4. SHREDDING USING THE EXPAT PARSER

i nt nLength)

if (nLength < 2) return;
cDewey dewey (m Wor ki ngDewey) ;

char token_str [512];
int token_length = 0;

int idx = 0;
while (idx < nLength) {
int startldx = idx;

token_length = 0;

/I 1f the token read is alphanumeric

whi | e (TokenChar (pszData[i dx]) && idx < nLength) {
/I convert to lowercase
char ch = pszDatalidx];

if (ch >="A & & ch <="Z") ch = A -'a';
t oken_str[token_length ++] = ch;
i dx++;

}

if (idx !'= startldx) {
string token(token_str, token_|length);
if (!StopWords—>l sASt opWor d(t oken)) {
(xm_Postings)[token] = dewey;
}
}

i dx++;

98

Bibliography

[1] “Overview of SGML Resources.”
htt p: //ww. w3. or g/ Mar kUp/ SGW/ .

[2] “HyperText Markup Language (HTML).”
http://ww. w3. or g/ Mar kUp/ .

[3] “eXtensible Markup Language (XML).”
http://w3.org/ XM/ .

[4] H. Jiang,Efficient Structural Query Processing in XML Databas@$D thesis,
The Hong Kong University of Science and Technology, May 1820

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “eXtelesMarkup Language
(XML) 1.0,” recommendation, W3C, February 10 1998.
http://ww. w3. org/ TR/ 1998/ REC- xnl - 19980210.

[6] R. W. Luk, H. V. Leong, T. S. Dillon, A. T. Chan, W. B. Crofgnd J. Allan, “A
Survey in Indexing and Searching XML Documentdgurnal of the American
Society for Information Science and Technology (JASM®I)53, no. 6, pp. 415—
437, 2002.

[7] P. 1. for Journalists, “MicrosoftCcf fi ce 12 XML File Formats to Give
Customers Improved Data Interoperability and Dramatycaihaller File Sizes.”
http://ww. m crosoft.conl presspass/ press/ 2005/ un05/ 06- 01O fi ceXM_For mat PR. s

[8] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypsdrttal Web Search
Engine,”Computer Networksvol. 30, pp. 107-117, April 1 1998.

[9] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. AgdywDynamic
Maintenance of Web Indexes Using Landmarks,Pioc. 12¢" Int'l Conf. World
Wide Web (WWW'03pp. 102-111, ACM Press, May 20-24 2003.

[10] S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Moliruilding a Distributed
Full-Text Index for the Web,ACM Transactions on Information Systemal. 19,
no. 3, pp. 217-241, 2001.

[11] G. Linoff and C. Stanfill, “Compression of Indexes withulF Positional
Information in Very Large Text Databases,” Rroc. 16t* Annual Int'l ACM-
SIGIR Conf. Research and Development in Information Retti¢SIGIR'93)
(R. Korfhage, E. M. Rasmussen, and P. Willett, eds.), pp9838ACM, June
27 - July 1 1993.

http://www.w3.org/MarkUp/SGML/
http://www.w3.org/MarkUp/
http://w3.org/XML/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.microsoft.com/presspass/press/2005/jun05/06-01OfficeXMLFormatPR.mspx

BIBLIOGRAPHY 100

[12] S. Boag, D. Chamberlin, M. F. Fernandez, D. FlorescRabie, and J. Siméon,
“XQuery 1.0: An XML Query Language,” working draft, World & Web
Consortium (W3C), February 11 2005.
http://ww. w3. or g/ TR/ xquery/ .

[13] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, ™MRARanked
Keyword Search over XML Documents,” iRroc. 2003 ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD’Q8p. 16—27, ACM, June 9-12 2003.

[14] A. Theobald and G. Weikum, “The Index-Based XXL Searchgiae for
Querying XML Data With Relevance Ranking,”Rroc. 8" Int’l Conf. Extending
Database Technology (EDBT’0@p. 477—495, Springer-Verlag, June 2002.

[15] “XQL FAG”
http://wwv. ibiblio.org/xqgl/.

[16] T.Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, Bndergeau, “eXtensible
Markup Language (XML) 1.0,” recommendation, W3C, Februa4y004.
http://ww. w3. org/ TR REC- xm /.

[17] A. Schmidt, M. L. Kersten, and M. Windhouwer, “QueryiddML Documents
Made Easy: Nearest Concept Queries,” Rioc. 17" Intl Conf. Data
Engineering (ICDE’01,)pp. 321-329, IEEE Computer Society, April 2-6 2001.

[18] A. Schmidt, “Architecting an XML Search Engine with thdeet-Operator.”
Unpublished draft, September 21 2004.

[19] D. A. Ngrgaard and R. C. Kaae, “Engineering an XML FufxTIndex,” Master’s
thesis, Aalborg University, January 2005. First part ofeesters thesis.

[20] J. Boyer, “Canonical XML v1.0,” recommendation, W3Cahkéh 15 2001.
http://ww. w3. or g/ TR/ xml - c14n.

[21] M. Mealling and R. Denenberg, “RFC 3305 — URIs, URLs, &RINs,” request
for comments: 3305, W3C, August 2002.
http://ww.ietf.org/rfc/rfc3305.txt.

[22] A. Tomasic, H. Garcia-Molina, and K. Shoens, “Increradilpdates of Inverted
Lists for Text Document Retrieval,” iffroc. 1994 ACM SIGMOD Int'l Conf.
Management of Data (SIGMOD’94)p. 289-300, ACM Press, May 24-27 1994,

[23] Sleepycat Software, IndBerkeley DB Reference Guide3.27 ed., 2004.
http://ww. sl eepycat.com docs/ref/toc. htnl.

[24] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley DB,” idroc. 1999 USENIX
Annual Technical Confpp. 183—-192, June 6-11 1999.
Seehtt p: // www. useni x. or g/ event s/ useni x99/ ol son. ht m .

[25] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel, t@gression of inverted
indexes for fast query evaluation.,” 8I1GIR pp. 222—-229, 2002.

[26] M. Dewey, “Dewey Decimal ClassificationGutenberg.org2004.
http://ww. gutenberg.org/dirs/1/2/5/1/12513/.

http://www.w3.org/TR/xquery/
http://www.ibiblio.org/xql/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xml-c14n
http://www.ietf.org/rfc/rfc3305.txt
http://www.sleepycat.com/docs/ref/toc.html
http://www.usenix.org/events/usenix99/olson.html
http://www.gutenberg.org/dirs/1/2/5/1/12513/

BIBLIOGRAPHY 101

[27] J. Zobel, A. Moffat, and R. Sacks-Davis, “An Efficientdexing Technique for
Full-Text Database Systems,” Proc. 18" Int'| Conf. Very Large Data Bases
(VLDB'92), pp. 352—-362, Morgan Kaufmann, August, 1992.

[28] B. B. Yao, M. T. Ozsu, and N. Khandelwal, “XBench Benchiaand
Performance Testing of XML DBMSs,” inProc. 20*" Intl Conf. Data
Engineering (ICDE’04) pp. 621-633, IEEE Computer Society, March-April,
2004.

[29] A. Trotman, “Compressing Inverted Filedfiformation Retrievalvol. 6, pp. 5—
19, January 2003.

[30] A. N. Vo and A. Moffat, “Compressed Inverted Files witre@®iced Decoding
Overheads,” inProc. 21 Annual Intl| ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR'9§)p. 290-297, ACM Press,
1998.

[31] J. Zobel and A. Moffat, “Adding Compression to a Fulkt&etrieval System,”
Softw., Pract. Expervol. 25, no. 8, pp. 891-903, 1995.

[32] M. Geelnard, “Basic Compression Library, v1.1.”
http://bcl.sourceforge. net/.

[33] M. Nelson, “Data Compression with the Burrows-Whedlensform,” 1996.

[34] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, fieiar-Time Longest-
Common-Prefix Computation in Suffix Arrays and Its Applicats,” in Proc.
12" Annual Symposium on Combinatorial Pattern Matching (CPM,@p. 181—
192, Springer-Verlag, July 1-4 2001.

[35] D. Kunkle, “Empirical Complexities of Longest Commonul&equence
Algorithms,” June 12, 2002.

[36] H. Chu and M. Rosenthal, “Search Engines For The WorlddéVWeb:
A Comparative Study And Evaluation Methodology,” Proc. ASIS Annual
ConferenceOctober 19-24 1996.

[37] J. Clark, “The Expat XML Parser, v1.95.8."
http://expat. sourceforge. net/.

[38] “Berkeley DB v4.3.27."
http://ww. sl eepycat. coni products/db. shtm .

[39] “C++ Boost Libraries, v1.32.0,” 2004.
http://boost. org.

[40] “GNU Common C++."
http://cpl uspl us. sourceforge. net/.

[41] “Copernic Desktop Search.”
http://ww. coperni c.com

[42] “Google Desktop.”
http://desktop. googl e. com

http://bcl.sourceforge.net/
http://expat.sourceforge.net/
http://www.sleepycat.com/products/db.shtml
http://boost.org
http://cplusplus.sourceforge.net/
http://www.copernic.com
http://desktop.google.com

BIBLIOGRAPHY 102

[43] “Spotlight - Find Anything On Your Mac Instantly,” 2005
http://ww. appl e. conl nacosx/ f eat ures/spotlight/.

[44] “MSN Toolbar.”
http://tool bar. nsn. com

[45] “Yahoo! Desktop Search.”
http://deskt op. yahoo. com

[46] “Standard Template Library Programmer’s Guide.”
http://ww. sgi.comtech/stl/.

[47] N. Lester, J. Zobel, and H. E. Williams, “In-place vessBe-build versus Re-
merge: Index Maintenance Strategies for Text Retrievalte®ys,” in Proc.
27" Australasian Computer Science Conf. (ACSC;Q#)). 15-23, Australian
Computer Society, Inc., January 2004.

[48] G. Cobéna, S. Abiteboul, and A. Marian, “Detecting Ches in XML
Documents,” inProc. 18" Int’l Conf. Data Engineering (ICDE’02)pp. 41-52,
IEEE Computer Society, February 26—March 1 2002.

[49] Y. Wang, D. J. DeWitt, and J.-Y. Cai, “X-Diff: An Effecte Change Detection
Algorithm for XML Documents,” inProc. 19*" Int'| Conf. Data Engineering
(ICDE’03), pp. 519-530, IEEE Computer Society, March 5-8 2003.

[50] G. K. Zipf, Human Behaviour and the Principle of Least-Effort: An lhnztion
to Human EcologyAddison-Wesley, Cambridge, MA, 1949.
See also http://en.w kipedia.org/wiki/Zipf's law and
http://wwv.iridis.comZpf’'s_ |aw.

[51] Jon Bosak, “The Plays of Shakespeare in XML.”
htt p: //ww. oasi s- open. or g/ cover/ bosakShakespear e200. ht m .

[52] “XMark — An XML Benchmark Project,” 2003.
www. xm - benchmar k. or g.

[53] C. Andersen, T. Boesen, and D. Pedersen, “Querying XMingi the Meet
operator,” 2004.

http://www.apple.com/macosx/features/spotlight/
http://toolbar.msn.com
http://desktop.yahoo.com
http://www.sgi.com/tech/stl/
http://en.wikipedia.org/wiki/Zipf's_law
http://www.iridis.com/Zipf's_law
http://www.oasis-open.org/cover/bosakShakespeare200.html
www.xml-benchmark.org

	Front Page
	Title Page
	Preface
	Summary
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Problem Analysis
	1.1.1 Full-Text Indexing
	1.1.2 Updating Full-Text Indexes
	1.1.3 Encoding Data in Full-Text Indexes
	1.1.4 Content-Based Keyword Search
	1.1.5 Retrospective

	1.2 Project Objectives
	1.3 Thesis Outline

	2 Preliminaries
	2.1 XML Data Model
	2.2 Building Full-Text Indexes
	2.3 Persistent Storage

	3 Dewey Encoding and Compression
	3.1 Dewey Encoding
	3.2 Compression
	3.2.1 Variable Byte Length Codec
	3.2.1.1 VBL Encoding
	3.2.1.2 VBL Decoding

	3.2.2 Other Codecs

	3.3 Summary

	4 Meet Operator
	4.1 Definitions
	4.2 Naïve Algorithm
	4.3 Scan-Based Algorithm
	4.3.1 Ranking Search Results
	4.3.2 Scan-Based Meet Algorithm

	4.4 Summary

	5 System Architecture
	5.1 Kalchas Architecture
	5.2 Embedding Kalchas
	5.3 Applications Using Kalchas
	5.3.1 Kalchas Console
	5.3.2 Kalchas Explorer

	5.4 Extending Kalchas
	5.4.1 File Support Interface
	5.4.2 Example Extensions

	6 Index Structures
	6.1 The Cached Index
	6.1.1 Data Organization
	6.1.2 CI-to-DI Migration Policy
	6.1.3 Summary

	6.2 The Dynamic Index
	6.2.1 Access Methods
	6.2.2 Index Maintenance Strategies
	6.2.3 Supporting Incremental Updates
	6.2.4 Summary

	6.3 The Static Index
	6.3.1 Data Organization
	6.3.2 Reducing Storage Requirements
	6.3.3 Index Maintenance Strategies
	6.3.4 Summary

	7 Supported Operations
	7.1 Database Schema
	7.2 Adding Files
	7.2.1 Implementation
	7.2.1.1 Shredding
	7.2.1.2 Patching
	7.2.1.3 Getting DocID
	7.2.1.4 Storing
	7.2.1.5 File Consistency Check

	7.2.2 Database Usage

	7.3 Deleting Files
	7.3.1 Implementation
	7.3.2 Database Usage

	7.4 Updating Indexes
	7.4.1 Implementation
	7.4.2 Database Usage

	7.5 Keyword Search
	7.5.1 Implementation
	7.5.2 Database Usage

	8 Tests and Evaluation
	8.1 Test Strategies
	8.2 File Adding
	8.2.1 Test
	8.2.2 Evaluation

	8.3 CI-to-DI Migration
	8.3.1 Test: Migration
	8.3.2 Evaluation

	8.4 Merging DI and SI
	8.4.1 Test: Merge
	8.4.2 Evaluation

	8.5 Compression Schemes
	8.5.1 Test: Postings
	8.5.2 Test: Inverted Lists
	8.5.3 Evaluation

	8.6 Keyword Search
	8.6.1 Test: Quality of Results
	8.6.2 Test: Performance
	8.6.3 Evaluation

	9 Conclusion
	9.1 Conclusion
	9.2 Future Work
	9.2.1 Refactoring the Code
	9.2.2 Constructing the Index
	9.2.3 Supporting Advanced Searches
	9.2.4 Refining the meet Operator
	9.2.5 Auditing
	9.2.6 Displaying Results
	9.2.7 Internationalization
	9.2.8 Distributed Searches
	9.2.9 Handheld Devices

	A Source Code
	A.1 Using Kalchas API
	A.2 Example Plugin: PGP File Support
	A.3 meet Operator
	A.4 Shredding Using the Expat Parser

	Bibliography

