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Abstract:

This report is examining theoretical issues
of data streams. Data streams are a way
of describing data. In contrast to rela-
tional database systems, stream data are
in�nite and arriving continuously. Some
researchers have proclaimed streams as a
new paradigm of data even though streams
by other may be seen as modi�ed relations.
By examining the data models and query
languages of existing stream systems, it is
evaluated how streams are di�erent from
relations. It is concluded that certain prop-
erties of streams make them special. How-
ever, the di�erences of streams and rela-
tions are not greater than, that streams
may be implemented on existing database
systems.





Preface

This report is the product of the second and �nal part of my master's the-
sis. The �rst part [5] was written in collaboration with three other students.
The �rst project was also about data streams, but with a broader focus in-
cluding the application of streams in a speci�c context. This project shall
not be considered as an extension of the previous project but rather as a
project inspired by some of the topics from the �rst project. In particular
it is inspired by the stream query language that was designed for a running
prototype. Even though the language was functional there was some theo-
retical issues that was only super�cially considered. This project has been
motivated by the desire to investigate some of these issue more in dept.

Before reading the entire report it is possible to get a brief overview of
the content of the report by reading the summary in Chapter 6.
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Chapter 1

Introduction

This chapter introduces the problem of this project and how the report is
organized. The project topics are data models and query languages for data
streams. By examining these topics it will be evaluated how data streams
di�erentiate from traditional ways of storing data. Section 1.1 describes dif-
ferent data paradigms and how data streams match these paradigms. Section
1.2 gives an overview of the research in data streams and how it has devel-
oped over time. Section 1.3 describes what the goals of the project are and
what methods that are used.

1.1 Data Streams

During the last decades a few major paradigms have dominated the area
of data storage. The relational data model was �rst introduced in 1970
[8]. Later this model has gained so much popularity that it has become the
dominant model for market-leading DBMSs like, e.g., Oracle, IBM DB2 and
Microsoft SQL Server. Originated in the success of the object-oriented pro-
gramming languages, the object-oriented and object-relational data models
have likewise become popular models that are available in many DBMSs.
Some of the strengths of the relational and object databases are the abili-
ties to store and update data with complex internal relations and to execute
complex queries on these data.

Within the last few year new data extensive applications have appeared
that do not �t well with the existing database systems. These applications
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are for example monitoring and logging services and are characterized by the
fact that they produce a (partly or completely) continuous stream of data.
Traditional DBMSs are not to prefer for such applications because of two
reasons that regards storage and querying. Because the data rate of a stream
may be high a DBMS is typical not able to store data in the same speed with
which data arrives. Users of monitoring and logging services require fast
response when certain conditions are observed, and this is di�cult to obtain
with the one-time queries of DBMSs. When running queries on streams, the
queries must therefore be long-running and continuously produce results.
Because query updates are returned continuously it is not necessary that the
entire streams are persistently stored in a database.

Database systems that are designed for managing streams are called
datastream management systems (DSMSs). A typical DSMS consist of a
storage, a query processor, and a repository for holding long-running queries.
The input to a DSMS is streams of elements, and the output of the long-
running queries also streams.

1.2 Research of Stream Systems

By the paper of 1992 describing the stream system Tapestry [12], it is ar-
gued that one-time queries in relational DBMSs are insu�cient when using
continuous data streams. For the �rst time continuous queries are proposed
as a technique for executing queries on streams. Since the introduction
of continuous queries in Tapestry, most stream systems have adopted that
type of queries. Tapestry, however, was still build on traditional DBMSs
and Tapestry queries were translated into SQL queries before they were ex-
ecuted on a database. A present stream system like Telegraph [7] is also
implemented on a (modi�ed) DBMS, PostgreSQL.

Later on stream systems like STREAM [1] and Aurora [6] have not only
adopted the continuous query model but also designed speci�c models that
moves away from the relational models in favour of stream speci�c models.
The designers of these systems believe that the relational data model, which
most major DBMSs build on, are unsuitable for handling streams. However,
there is still much disagreements on what exactly a data stream is and how
the data model is to be designed. As an example some systems are designed
with streams as the only data type while other allow to combine both streams
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and updateable relations.
While Tapestry was designed to use the build-in SQL language of DSMSs,

stream systems have later introduced new query languages. The languages
are motivated by the need of new or extended operators because of the fact
that streams are di�erent from relations and because the are other demands
to continuous queries than to one-time queries. For example because a stream
may be in�nite it is often desirable to query in only a subset of the stream.
Like the data models there is also no agreement on an ideal query language
to be used. Query languages of systems like Tribeca [11] and Aurora [6]
are total di�erent from the ones known from traditional databases, while
a language like CQL from the STREAM system [1] is an extended SQL
language.

While stream systems like Telegraph and Tapestry build upon existing
DBMSs some stream systems reject DBMSs and builds new DSMSs from
scratch. The objectives of DSMS are e�cient processing of data and fast
responses to long-running queries rather than persistent storage and handling
of complex queries.

To summarize, the di�erences between traditional database systems and
stream database systems may be considered at mainly three levels: data
model, query language and management system. From a database point
of view the major databases rely on the relational model while streams may
demand more stream speci�c models. Likewise the design of query languages
requires special needs for querying in streams. From a software point of
view traditional data are often stored in DBMSs while DSMSs are developed
speci�c for handling streams.

1.3 Project Goals

As described in the previous section some believe that the nature of data
streams makes existing DBMSs inappropriate for handling streams with re-
spect to storage and querying. Nevertheless the stream research has a great
subset in the traditional database community and commercial database soft-
ware systems. From Section 1.2 it also appears, however, that the distinc-
tion between these �two world� are indeterminated and varies from system to
system. Many research papers on streams give statements that claim, that
data streams are completely in opposite to the traditional databases and that
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these two world are incompatible. As an example the following is written in
a paper about Aurora [6]: �For these reasons, monitoring applications are

di�cult to implement using traditional DBMS technology. To do better, all

the basic mechanisms in current DBMSs must be rethought.�
This project will examine the distinction between traditional databases

and stream databases further and seek to answer whether the distinction is
legitimate or if streams just are special cases of traditional relational data
that can be handled by existing DBMSs.

The way it will be answered how streams are di�erent from relations
is �rst to examine the data models used for storing streams to see if and
how they vary from the relational model. Important properties that existing
systems emphasize as important will be examined further. Next the query
languages that are used for extracting data stored using the models just
described will be examined. The most important property of stream queries
is the fact that they are continuous but many languages do also contain extra
or extended operators compared to relational operators. It will be evaluated
what these extra functionalities are and how they are motivated.

The basis of the work just described are, beyond from database literature,
a few selected stream systems described in Chapter 2. For further readings
about streams in general the survey paper by Golab and Özsu [9] covers
many issues of data stream management, including data models and query
languages of data streams. Another survey paper by Babcock et al. [4] is
written by researchers of the comprehensive STREAM project. The paper
covers likewise data stream management with special e�ort on data models
and query languages based on own experiences.
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Chapter 2

Related Stream Systems and

Query Languages

The basis of the analysis of data streams in this report is a few stream systems
brie�y described in this chapter. All systems are developed as academic
projects with running prototypes.

2.1 Tapestry and TQL

Tapestry [12] is a system for managing streams of electronic documents, and
is the system that introduced continuous queries. It runs upon any append-
only RDBMS with SQL as query language. Even though the system is
several years old, the system is described because some fundamental issues
of Tapestry are still valid and referred in recent papers about continuous
queries.

Queries in Tapestry are written in a language called TQL (Tapestry
Query Language). In [12] it is considered how continuous queries could be
executed simply by running an ordinary query multiple times. The major
drawback of this approach is, that the query results are non-deterministic:
if the same query is issued at two di�erent clock-times, two di�erent result
sets are returned. As a consequence, the query semantics must be time
independent, and therefore the query must be executed at every time instant,
where a time instant is the smallest unit of time in the system.

It may seem that executing a query at every time instant is very ine�cient
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and maybe practical impossible. Tapestry solves this problem by converting
non-monotonic queries to monotonic ones. Thereby only newly arrived data
needs to be evaluated. Before a monotonic query is executed it is optimized
and �nally translated to SQL.

2.2 Aurora

Aurora [2, 6] is a research project and protype system with people from
Brandeis University, Brown University, and MIT. The system is focusing on
the group of monitoring applications by using streams.

Aurora is a stream-only system supporting continuous queries (both pre-
de�ned and ad-hoc) and views. Queries in Aurora are speci�ed very untra-
ditional as work�ow diagrams in a graphical user interface by using boxes
and arcs. A box is one of the 8 primitive operators which accepts one or
more input streams and returns a single output stream. The arcs speci�es
the data�ow between the boxes. The operators are very distinct compared
to the widely-used relational algebra language. The operators includes win-
dowing techniques.

2.3 Tribeca

Tribeca [11] is a system for analyzing network tra�c. It operates only on
streams, which can be live network feeds, disks, and tapes. A query speci�es
the input stream, a number of intermediate operators, and one or more
result streams. Like relational algebra, the data �ow between each operator
is explicitly expressed in the query. The result of one operator can be input to
more than one operator. This means that di�erent queries can be combined
into a single query. Remark the limitation in only a single stream as input
to a query.

There is three simple operators in Tribeca which are very alike to certain
relational algebra operators: quali�cation, projection, and aggregate. The
quali�cation operator applies a �lter to a stream. For each stream element
a condition needs to evaluate true if the element will pass the �lter. The
projection operator preserves only the speci�ed attributes from each stream
element. The aggregate operator calculates a single value from the entire
stream.
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The following example reads weather statistics from file1 and writes
the number of days with temperature over 30 degrees to file2:

source_stream s1 is {file file1 Weather}

result_stream r1 is {file file2}

stream_proj {{s1.Temperature}} p1

stream_qual {{p1.Temperature.gte 30}} p2

stream_agg {p2.Temperature.count} r1

The demultiplexing and multiplexing operators are used to partition a
stream into multiple substreams, and after some intermediate operator(s),
recombine them into one stream. If the intermediate operator is the ag-
gregate operator, the same behavior as the group by operator from SQL is
obtained. However, the intermediate operator can be of any type, which
makes demultiplexing more powerful than SQL. The multiplexing operator
can also be used to combine two or more separate streams of the same data
type.

2.4 TelegraphCQ

TelegraphCQ [10, 7] is a system for processing continuous queries over data
streams. It is developed as part of the Telegraph research project at UC
Berkeley.

The TelegraphCQ system supports both unbounded data streams and
tables. The syntax is based on SQL with an extension for specifying windows.
In [7] a low-level language for continuous queries is given with particular focus
on windowing mechanisms. It is argued that traditional windows, such as
landmark and sliding windows, are insu�cient for expressing many types of
queries. This includes e.g. additional �lters than just the two endpoints and
reversed traversal.

If a continuous query contains a reference to one or more stream windows,
a conditional loop is added to the query. Every loop traverse corresponds
to a relatively increase or decrease in time and for each window the two
endpoints are updated.

As an example, the following continuous query returns for every week
between day 100 and day 200, the average temperature of the preceding
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week (the second and third parameter of the WindowIs function is the left
end and right end marks of the stream):

SELECT AVG(Temperature)

FROM Weather

for (t = 100; t <= 200; t++) {

WindowIs(Weather, t - 7, t);

}

Every time the loop is traversed the window (or windows) is updated
with the new end point(s) and the query is executed on the tuples in that
window. The result of an execution of a loop traversal is a set of tuples
associated with the time t. The result of the entire continuous query is
therefore a sequence of timestamped sets. Remark that a timestamp can
both be logical and physical.

In [10] a more concrete language is described when using the prototype
system. The language is a subset of SQL with addition of the windows clause,
which is used to specify time-based sliding windows.

2.5 STREAM and CQL

STREAM [1] (STanford StREam DatA Manager) is a project at Stanford
University that includes the design and implementation of a prototype DSMS.
The query language of STREAM is CQL [3] (Continuous Query Language)
which is a declarative and all-purpose continuous query language. CQL is
build on an abstract semantics for continuous queries, where CQL is an
example of a concrete language build on that semantics.

CQL supports two data types: streams and updateable relations. Both
data types are de�ned in such a way that either type may easily be converted
to the other type. Furthermore manipulation of data is only possible on re-
lations (because relations are the only �nite data type). All operators belong
to one of the following three classes: relation-to-stream, stream-to-relation,
and relation-to-relation. The �rst two classes of operators are used for con-
vertion between the two data types. Special care is needed when converting
from streams to relations, because streams are in�nite while relations are
�nite. This is solved by applying windows to the streams. The last class of
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operators is the data manipulation operators and is equal to the operators
from relational algebra. The syntax of CQL queries is based on SQL.
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Chapter 3

Stream Data Models

Examining data models is the �rst step in understanding the theoretic foun-
dation of stream systems. Data streams can be seen in di�erent ways depend-
ing on the background of the people seeing it and the applications streams
are intended for. A data model contributes with a formal understanding of
streams which is the foundation for the semantic description of continuous
queries.

Many reseach projects have contributed to de�ne data models for stream
systems, e.g. [6][1]. Even though the di�erent models have much in common
there are still many general as detailed issues that divides the contributions.
A reason may be that some models are attached very speci�c applications.
Also the fact that the modern stream systems (e.g. [6][1][7][11]) �rst ap-
peared in the 1990-ies and therefore are relatively young is an important
reason.

This chapter will serve to describe the most fundamental issues when
de�ning stream data models and discuss how certain stream systems are
related to these models. The dominant data model of present DSMSs�the
relation-based model�is described in Section 3.1. The model is described by
taking a starting point in the relational data model, which is used by major
DBMSs, and considering the special needs for models in a stream environ-
ment. By using the strengths of the relational model and by considering the
requirements to a stream model, a general stream model is designed step-by-
step. The developed model shall not be considered as the ideal model but
rather as a general and abstract model that covers the most fundamental
requirements of most stream systems.
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One important requirement to most streams is that a stream must be or-
dered. A stream is usally in�nite and it is therefore important to distinguish
newer elements from older ones. In Section 3.2 the motivation for ordering is
described and a data model that is ordered is developed. It is also discussed
how the systems in Chapter 2 support ordering.

An extended class of the relation-based models (Section 3.1) is the rela-
tion supporting models. While still designed for stream applications these
models also support updateable relations. This class of models is described
in Section 3.3.

Because streams are append-only they are often considered as non up-
dateable. However, it is described in Section 3.4 how a data model also may
support updateable streams.

3.1 Relation-Based Stream Models

The relational data model was introduced in 1970 [8] and has later been the
dominant model in major commercial DBMSs. One of reasons why it has
gained so much popularity is because of the simplicity of the model. Many
stream systems that have developed own data models have used models that
are, at some level, based on the relational model (e.g. Aurora [6], STREAM
[1], and Tribeca [11]). Because of the simplicity of the relational model it
is easier to adopt and modify it to special requirements. When combining
streams with relations it is also easier if both models are close to each other.
Another important reason for using a relation-based model is with respect
to query languages. The SQL language is the primary query language of
most DBMSs and known by almost any database user. If it is possible to
implement a SQL-like language in a stream system, the system is more likely
to gain popularity by users because the language is well-known. Of course it
is less problematic to implement a SQL-like language if the underlying data
model is close to the relational model.

In order to clarfy how a data model may be applicable for streams and
still be close to the relational model, a relation-based stream data model

will be developed in this section. The model will be related to existing data
models for streams and compared if it is far or close to these models. In order
to evaluate whether a model speci�c for streams is necessary or super�uous
(according to the project goal) the stream model will be designed as close to
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the relational model as possible.
In the �rst attempt to de�ne a data model for streams, the de�nition of

a relation is considered:
De�nition 3.1 (Relation). A relation R is a subset of the Cartesian prod-
uct of the domains D1, D2, · · · , Dn.

At �rst glance this de�nition expresses a fundamental way of describing
data that may also be suitable for streams: A stream source, e.g. a network
or tra�c monitor, records and streams data elements that usally are de-
scribed over same same domains. There is, however, still some requirements
to data streams that makes a relation insu�cient for describing streams.
The following de�nition is based on a relation but with additional expressive
power which will be described afterwards (partly inspired by [3]):
De�nition 3.2 (Relation-based stream). A stream S is a �nite or in�nite
multiset of k-tuples (stream elements), where exactly one of the k-tuple
elements is a tupel belonging to the same schema.

Comparing a relation from De�nition 3.1 and a stream from De�nition
3.2 shows that any relation can be expressed as a stream while only some
streams are expressive as relations.

A stream is de�ned as �nite or in�nite in contrast to �nite relations. In
most applications, however, streams are in�nite. When querying data on
in�nite streams (described in Chapter 4), the fact that a stream may be
in�nite is important to deal with.

While a relation is de�ned as a set, a stream is a multiset. This is a
consequence of the property of in�nity. Even though the domains may be
�nite a set will have a maximum size and therefore not in�nite. Multisets
are also more e�cient to implement and are consequently also used by most
relational systems.

According to the de�nition stream elements consist of at least the schema
data and optionally also additional data. The schema data shall be consid-
ered as user or application data while the additional data is considered as
meta-data that describes the schema tuples. The most obvious example of
such meta-data is a timestamp for ordering the stream. Of course a times-
tamp, and other meta-data, can also be expressed direct as part of the tuple.
However, because such data only are used by the stream operators it is most
suitable that this data is separated from the schema data.
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Some stream models allows streams to be sequences of elements, because
a sequence is an ordered set and order is an important property of streams.
Sequences are obmitted because sets are just as powerfull as sequences using
this model. This is because order can be easily made with an extra variable
in the k-tuple of a set. The importance of order is disuccesed in Section 3.2.

Finally it shall be noticed, that the just described model only supports
streams (even though a stream may contain relational data it is still de�ned
as a stream data). Some systems consider relations just as important as
streams in a stream data model. This issue is discussed further in Section
3.3.

3.1.1 Related Models

In order to evaluate how representative the stream model from De�nition 3.2
is, it will be compared to data models of the systems described in Chapter
2. The relation-based stream from De�nition 3.2 will hereafter be denoted
the RB stream.

Aurora and STREAM
The data models of Aurora and STREAM are formally and detailed de�ned.
Both models are relation-based and therefore relevant for comparison with
the RB stream. The de�nitions of streams in Aurora and STREAM are:
De�nition 3.3 (Aurora stream [6]). �A stream is a potentially in�nite set
of tuples ordered by index values (such as timestamps or integer positions).
More formally, a stream, S, is a set of (index value, tuple) pairs (stream
elements):

S = {(i1, t1), (i2, t2), . . . , (in, tn), . . .}

such that index values, ij , belong to an index type (below), and all tuples,
tj , belong to the same schema.�
De�nition 3.4 (STREAM stream [3]). �A stream S is a (possibly in�-
nite) bag (multiset) of elements 〈s, τ〉, where s is a tuple belonging to the
schema of S and τ ∈ T is the timestamp of the element.�

By comparing the STREAM and Aurora streams with the RB stream
it is clear that STREAM and Aurora streams are special cases of the RB
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System Container Stream-only Boundary Meta-data
RB stream Multiset Yes (In)�nite Optional
Aurora Set Yes (In)�nite Index
STREAM Multiset Also relations (In)�nite Timestamp

Table 3.1: Relation-based stream data models

stream. A STREAM and Aurora stream is characterized by mandatory
ordering of elements and allows no possibility for extra element meta-data
like a RB stream makes. The mandatory order is required because the data
models are used in a system where queries depends on ordered elements (e.g.
queries with window speci�cations). The STREAM order is more strict than
the Aurora order because the STREAM order domain must be timestamps.
Finally remark that Aurora streams are sets while STREAM and RB streams
are multisets. This does not con�ict with that fact that a RB stream is the
most general one because a set is a special case of a multiset.

Table 3.1 summarizes some of the important properties of the models
just described.

Other Systems
The data models of TelegraphCQ and Tapestry are not formally de�ned
and it is therefore di�cult to compare them to the RB stream. However,
both systems are build upon RDBMSs (TelegraphCQ is implemented on
PostgreSQL) and it can therefore be concluded that the models are at least
relation-based.

3.2 Ordering

Even though a RB stream is not de�ned as ordered, streams are often ordered
in practice because it is required by some types of queries. Each system may
has its own reasons for demanding streams to be ordered and in Section
3.2.1 two very common reasons are described. In Section 3.2.2 an order
semantics is proposed which builds on the relation-based models. Some order
implementation issues described in Section 3.2.3 does not direct in�uence the
data models but are still important to consider when discussing stream order.
In Section 3.2.4 it is described how di�erent stream systems deal with order.
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3.2.1 Motivation

The requirement of streams beeing ordered is often primary motivated by
window speci�cations (as the case with e.g. CQL [3] and Aurora [6]). In
the next section this issue is described in more details. At a more abstract
level the issue also becomes clear when comparing streams to relations. In
a traditional relational database, data is updated and replaced by new data
when the old data get outdated. The result of a query on such databases
re�ects always the updated data. Stream elements, however, do never get
replaced by newer ones. New data is just added to the stream. The result
of a continuous query over streams therefore re�ects all data seen, valid
as outdated. Because of this di�erence in result sets it may be important
to maintain an order of stream elements so newer elements can be easily
selected.

Another important reason for streams to be ordered becomes clear when
using models with both streams and relations. In short when a stream
element is joined with a relation, the element shall not be joined with the
most recent relation but with the relation that existed at the time the element
was streamed. This requires a mapping between streams and relations. The
issue is discussed in details in Section 3.3.

3.2.2 Order Semantics

This section extends the unordered RB stream model to provide ordered
streams. There is at least two approaches on how to order the stream el-
ements: Either rede�ning the stream as a sequence or applying an order
attribute to the stream elements.

The �rst choice excludes elements to be e.g. time ordered which makes
it little expressive. The last choice allows any domain as the order attribute
(however there are certain demands to the domain which will be discussed
later in this section). The following stream So is an example of a stream,
obeying De�nition 3.2, that is ordered on an order attribute. Formally So is
de�ned as the set of pairs of a data tuple si and an order attribute oi:

So = {(s1, o1), (s2, o2), . . . , (sn, on)}

If window operators are applied to the ordered streams, there are certain
demands to the ordering set, o (from [6]). A typical window is a chained
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subset of a stream and o must therefore be totally ordered. To understand
that think of a window containing the most recent i tuples from stream So.
In this case the ≥ relation is used to ensure that any of the recent i tuples
are greater than or equal to the remaining tuples that are not among the
recent i tuples. Finally window models like time-based require distances to
be calculated over the order elements. A minimum unit, e.g. seconds, will
be the base of such calulations. To understand that think of a window where
the distance between the two endpoints must be exactly 1 hour or a window
where one endpoint is the current time while the other is current time minus
1 hour. A minimum unit, in these cases for example seconds, must be used
to calulate when 1 hour is reached. As an example of two sets that are valid
as ordering attribute is the natural numbers and time (with e.g. seconds as
the minimum distance unit).

3.2.3 Order Implementation

A stream ordering can be categorized in many ways. Some of them listed here
do not in�uence the data model but are included for the sake of compleness.

• Implicit or explicit ordering. When explicit ordered, the order appears
as part of the stream data. Implicit order means order handled by the
system implementation.

• Valid or transaction time (if timed). If data is ordered by time there
are two di�erent types of times. A valid time is when the associated
event occured in reality. A transaction time is when the data was
entering the database system.

• Ordered or unordered arrival of elements. If data are ordered before
entering the database system it may be ordered (e.g. with valid time)
or unordered on arrival.

• Tuple or element stamped. With respect to De�nition 3.2 an explicit
order attribute can be part of the schema tuple or the encapsulated
element tuple.
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3.2.4 Related Models

Because the data models of a Aurora and STREAM are formally de�ned
they will be described here with respect to ordering. Refer to Section 3.1.1
for the de�nitions of the two models. Both Aurora and STREAM uses
ordered streams and both models uses order attributes. The order attribute
in STREAM is limited to timestamps. The order attribute of Aurora is more
general and may be any type of domain as long it is totally ordered and it
can be used to calulate distances.

3.3 Relation Supporting Models

Some stream models allow only streams to be input and output of the sup-
ported operators. An example of a stream-only model is the one in De�nition
3.2. Other models, often relation-based models, support both streams and
updateable relations. When reviewing existing systems it seems that there
are very di�erent opinions on which model to include. Of course for certain
applications there is no need for relations at all. As an example Tribeca sup-
ports only relations because it is developed for network tra�c monitoring
where only the raw network data is of interest for analysis. Maybe the dis-
agreement is, however, also due to the fact that the data models of streams
and relations are not that far from each other (recall that according to the
de�nitions in Section 3.1 any relation can be expressed as a stream).

There may be various arguments and motivations for combining streams
with relations. Here is some of them:

• Some data in a stream system may need to be stored persistent (e.g.
meta-data). Streams are virtual of nature and possible in�nite and
therefore not suited for persistent storage. In contrast relations are
very suited for persistent storage.

• While streams are append-only (only insert), relations are updateable
(insert, update, and delete). Even though relations are not more ex-
pressive of this reasons, the di�erence may still be important for certain
applications.

• Because stream elements may be unlimited in numbers and arrive at
high rates, approximate query answers (e.g. windows) are often re-
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turned. In contrast the query answers to relations are always preceise
which may sometimes be preferable.

• By supporting relations some of the operators and languages from re-
lational databases may be applied with only minor modi�cations. As
an example CQL allows only data manipulation of relations.

Extending the relation-based model in Section 3.1 with relations requires
a de�nition of a relation. The naive approach is to use relations as they are
implemented in DBMSs. That is, a relation is updateable and at any time
exactly one instance of a relation is accessible. When de�ning a continuous
query semantics (in Chapter 4) this approach, however, will be insu�cient.
Consider the following example:
Example 3.1. A stock market monitoring system holds a stream, S, for
changes in share prices and a relation, R, for meta-data of each share. The
continuous query CQ returns a continuous stream of changes in any share
price on the market. Each element in CQ is a join of a share price from S

and the corresponding meta-data from R. At time ti share x is delisted from
the market and the meta-data of x is therefore deleted from R. At time ti+1

the query semantics will face a problem: there is no related meta-data in R

to join with the share prices of x before it got delisted.
The example clari�es the problem of the naive approach: When up-

dating a relation, there may still be old stream elements refering to the
replaced tuple(s). One way of solving this problem is to allow only mono-
tonic relations�that is, relations where tuples cannot be deleted or updated.
For most applications, however, it is unsuitable not being able to delete or
update tuples, and therefore this solution is not preferable.

As proposed in [3] a relation must be considered as a set of relation
instances. In other words a (stream) relation is a set of (traditional) relations.
The domain of a relation must be the same domain used to order the streams.
Assuming that the order set is time, any stream relation has a mapping from
every time instant to a relation instance. The relation instance of relation
R at time t is the instance that was valid at time t.

When combining a stream with a relation in a query, e.g. in a join, two
data sets are used: at time t the stream data used are all tuples no greater
than t and the relation data are the relation instance at time t.
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3.4 Updateable Streams

While most stream systems consider streams as append-only (in contrast
to e.g. database tables), updateable streams are proposed in [13]. In this
model, a stream element consists of an identi�er, a body, and a type. The
identi�er uniquely identi�es each element. The body contains the element
data. The type can be positive, neutral, or negative. A positive element
adds the element to the stream. A neutral element updates the body of
that element with the same identi�er as the neutral one. A negative element
removes that element with the same identi�er as the negative one.

In many applications, for example monitoring services, it is natural that
streams are append-only�when an event is observed and streamed, that
fact will never change. On the other hand stream only systems (with no up-
dateable relations) may be more powerfull with updateable streams because
meta-data can be stream and later updated if necessary.

3.5 Conclusion

This chapter have contributed to describe what a stream data model is, how
it is related to the relational data model, and how it is related to existing
stream models. The method for describing these issues has been to develop
a stream model, RB stream, which includes some of the main properties of
streams.

The question is if such a speci�c model for streams are required at all or
if the existing relational model is su�cient for holding stream data. There is
at least two major issues that limit relations for stream data. The �rst is the
fact that many streams are in�nite which contradicts by the �nite nature of
relations. Secondly core relations are only capable of holding schema data
and not additional meta-data that describes the schema data. There is at
least one important case where additional meta-data may be required to
describe stream data: when streams are required to be ordered there must
be an order attribute.

It is argued that standard relations are too limited for holding streams.
However, when comparing the de�nitions of relations and streams from Def-
initions 3.1 and 3.2, one may argue that a stream is in fact nothing more
than a simple extended relation. While the di�erence in data models there-
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fore may seem small, the di�erence of streams and relations should instead
be focused more on the nature of data. For example stream data is typically
more extensive in amounts and stream data is often approximate while rela-
tions are precise. The consequences of such facts regard the data processing
rather than the data model.
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Chapter 4

Stream Query Languages and

Semantics

In the preceding chapter it is examined what a stream data model is and how
it is distinct from the relational model. The conclusion is, that, a stream
has some fundamental requirements that a standard relation cannot meet
with. However, a it is shown that a stream model can be developed that in
its basic structure is very similar to a relation.

In this chapter it will be examined if the application of streams requires
notable di�erences between traditional relational query languages and query
languages for streams. In other words�it the data models of streams and
relations are closely de�ned, will query languages like relational algebra and
SQL consequently also be working on streams? If this is not the case it will
be examined why this is not true and how a stream query language may be
designed.

The most important distinction between traditional queries and stream
queries is, that stream queries are continuous. In Section 4.1 it is explained
what continuous queries are and what they are motivated by. Without going
into detail of the query operators an overall semantics of continuous queries
is given in Section 4.2. Di�erent aspects of query languages for streams are
described in Section 4.3 and in Section 4.4 details and characteristics of some
of the most important operators are given.
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4.1 Continuous Queries

The obvious contrast to continuous queries is one-time queries which are
the standard way of querying in traditional database systems. A one-time
query is executed once, the result is passed back to the querying user, and
�nally the query is destroyed. The query result set hereafter remains static
even though the database data may change. The fact that the querying user
only gets a single static result raises some problems when querying streams.
These issues is discussed next.

The �rst issue regards the stream data model. Recall from Chapter 3 that
streams are de�ned as potentially in�nite (sometimes denoted unlimited).
From a theoretical point of view this entails that it is impossible to get a
�nal result set of an query over an in�nite stream. If a traditional one-time
query is executed on such a stream the query may block (no tuples will be
returned at all) or at least run in in�nity. To overcome this problem the
query must continuously return an approximate result of the data so far
seen.

Another issue regards the fact that streams are virtual and not totally
stored in database system. When data are disposed only short time after
arrival it is useless to run a one-time query because the database will contain
no or only a small subset of a stream. Therefore a query must be submitted
and stand in the database so it can respond as soon new data arrives. In
other words data waits for one-time queries while continuous queries wait
for data.

The last issue regards the responsibility of database systems and users
of these systems. As described in [6] a traditional DBMS operates with the
Human-Active, DBMS-Passive (HADP) model. This means data are stored
in a database and the users are the active part querying data. The model
does not �t very well to stream application, especially monitoring applica-
tions. Here users are waiting passive (on a continuous query) for changes in
the monitored domain while the DBMS streams changes of interest, hence
denoted the DBMS-Active, Human-Passive (DAHP) model.

Because streams most often are non-persistent the elements are only
available to queries on the arrival and a short time after. When queries are
referring back in time (which most windows do) recently submitted queries
will have trouble in obtaining data for the result. Such queries are named
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ad hoc queries because they may be submitted at any time. Some systems,
however, allow only queries to be submitted before the involved streams
are initiated, that is, before the �rst element is appended to the stream.
These queries are named prede�ned queries. The design of the operators
for continuous queries depends on which of these two query types that are
allowed.

4.2 Continuous Query Seamantics

Later in this chapter detailed semantics is discussed that describes on low-
est level the result of continuous queries. This section discusses abstract
semantics of continuous queries. It can be considered as black box seman-
tics because it gives some abstract requirements without dictating concrete
design.

One naive approach to evaluate continuous queries is to execute the
queries periodically and return the query results to the users after each exe-
cution. This strategy may be both simple and e�cient. It is simple because
it can easily be implemented on a traditional DBMS. If the execution inter-
vals are relatively long and the sizes of the result sets are relatively small,
the strategy is also e�cient because the DSMS query processor will be idle
for most time.

From the following example, inspired from [12], periodic evaluation, how-
ever, may lead to nondeterministic result sets:
Example 4.1 (Nondeterministic query). Let Message be a stream of
messages where a message consists of an id and a reply reference to a message
id if the message is a reply to another message. The schema is:
Message = (id, reply)
At time 0 the stream is empty. A new message is appended to the stream
at time 5 and a reply to that message is appended at time 15. The stream
contains the following elements at time 5 and 15:
Message(5) = {(100, null)}
Message(15) = {(100, null), (.., 100)}
The following query, Q, is executed by two users, a and b, every 20th time
instant and the �nal results, Qa and Qb, is the union of each execution of Q:
SELECT id FROM Message WHERE reply = null

For user a the query is executed at time instants 0, 20, 40, ... and user b at
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time instants 10, 30, 50, ....
The two users �nal result sets after the last element append are:
Qa = {}
Qb = {(100)}

To summarize, the query is asking for messages with no replies, and the
only time where this was true was between time 5 and 15. Because b was the
only user running the query between these two times (more speci�c at time
10), user a and b experience two di�erent results even though they have run
the same query on the same stream.

To overcome this problem the semantics of continuous queries must be
time-independent. So instead of running a query with time intervals the
query must be executed at every time instant. A time instant is the smallest
discrete time unit a stream systems registers.

Formally the result of the continuous query Qc run at time t is the union
of the results when running the query Q at any time instant from 0 to t [9]:

Qc(t) =
t⋃

s=0

Q(s) (4.1)

Note that the result of running query Q at time t means the set of tuples
(or whatever data representation used) that is returned by the database at
the state the database was in at time t.

Running query Q from Example 4.1 continuously as in Equation 4.1
yields the following result set (where t ≥ 15):

Qc(t) = Q(0) ∪ ... ∪Q(5) ∪ ... ∪Q(15) ∪ ... ∪Q(t) = {(100)}

As seen no matter who is running the query the same result set is obtained
assumed it is possible to calculate the result of query Q at any time up to
time instant 15.

Equation 4.1 can be further optimized if a certain property of Q is valid,
namely that of monotonicy which is de�ned as:
De�nition 4.1 (Monotonic query). Let Q(t) be the result of running
query Q at time t. Then Q is monotonic if and only if Q(t1) ⊆ Q(t2)
whenever t1 ≤ t2.

If a continuous query is monotonic it is su�cient to evaluate over the new
tuples arrived since last time instant. If the query is nonmonotonic all tuples
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should be evaluated at every time instant as in Equation 4.1. Formally the
result of the monotonic continuous query Qc runned at time t is [9]:

Qc(t) =
t⋃

s=1

(
Q(s)−Q(s− 1)

)
∪Q(0) (4.2)

Continuous queries which update or delete tuples that have previously
been in the result of the query is non-monotonic. Queries executed on
append-only databases is intuitive monotonic. However in certain cases such
queries can also be non-monotonic. This includes queries with call to time
functions and �not exists� constructions. In [12] it is described how to convert
nonmonotonic queries to monotonic.

4.3 Language Strategies

This section describes some of the important issues that impacts how a
stream language is designed. In Section 4.3.1 it described how the require-
ment of continuity in�uences the result of a query. While most DBMSs
use SQL as primary query language it is very di�erent from various stream
systems. In Section 4.3.2 it is described which language syntax stream lan-
guages use. In Section 4.3.3 it is described how di�erent characteristics of
streams may in�uence the operator design.

4.3.1 Continuity

The fact that streams are in�nite require queries to be continuous in order
to continuously return updates in the input elements seen so far. The result
of a continuous query can be presented in di�erent ways. Because the result
is continuously modi�ed it can be considered as a regular stream which,
e.g., may be input to other continuous queries. Even though the output of
stream queries are often streams, they can also be presented in other ways.
In Aurora a query result can be returned as a view. In contrast to streams
which is directed to a speci�c application, a view has no receiver and may be
accessed be any application. CQL operates with both streams and relations,
and both types can be speci�ed in the query to be the result type.

As described in Section 4.2, if a query is monotonic, it is su�cient to
execute the query only over new arrived data. Whether to use non-monotonic
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query semantics (Equation 4.1) or monotonic query semantics (Equation 4.2)
has great impact on performance and leads to two di�erent result set for the
same query over the same stream. CQL takes this idea a step further by
providing three types of output streams: insert, delete, and relation streams.
When applied as the outermost operator the insert stream operator provides
the semantics of Equation 4.2 and the relation stream operator provides the
semantics of Equation 4.1. The delete stream operator acts opposite to the
insert stream operator, and returns elements that is deleted from the query
result. Which CQL stream operator to use is user speci�ed in each query.

4.3.2 Language Syntax

Comparing di�erent stream systems shows that there is no agreement in
using a speci�c syntax for stream query languages. Some languages are
declarative while other are procedural, and some are very close to SQL while
other have no SQL like syntax at all.

The advantage of using a procedural language is clear: the data�ow be-
tween operators in a query can be controlled entirely by a user. Stream
applications like sensor and network tra�c monitoring operate with heavy
amounts of data and the data�ow between operators therefore has a great im-
pact on the performance. Moreover some stream operators require more ar-
guments than relational operators and a nonprocedural syntax would there-
fore be quite complex.

The Tribeca query language is procedural and a query is a list of oper-
ators. The output of an operator is named with an identi�er which may be
referred as input to any other operator.

An Aurora query is also procedural but is expressed in a graphical user
interface. An operator is represented as a graphical box and the data�ow
may be directed from one operator to another using a graphical line between
two boxes.

As described in Chapter 3 many stream data models are de�ned with a
subset in the relational data model. Consequently many streams systems use
SQL in a more or less adapted version as the query language. An advantage
of using SQL is that the language is known by almost every user familiar
with querying in databases. Whether people like the declarative syntax of
SQL or not, it is a fact that it is has much in common of expressing data in
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human language. Another advantage of using SQL is that the language has
been implemented on various database systems and much experience may
be reused that way.

Stream systems like Tapestry and Telegraph are implemented on DBMSs
and the query language is therefore SQL, though Telegraph has minor addi-
tions, e.g. windows.

All operators in CQL, except these that convert between streams and
relations, must be operated on relations. This clearly makes it easy to use
SQL as querying language even though the semantics does not make any
assumptions on which syntax to use.

4.3.3 Operator Requirements

In Section 4.4 some basic operators are described in details. One of the
reasons why these operators distinct from relational operators is because
of some general characteristics of streams. In the following sections two
important characteristics are described.

Blocking
When executing certain operators on sets where the entire set may not be
fully available once (e.g. when a stream is in�nite) it is possible to end up
in a state where an operator is blocked. This means that no tuple will be
produced before the entire set has been seen. Examples of blocking operators
are certain aggregate and join operators. In contrast, for example projec-
tion and �ltering operators are usually non-blocking. Of course no operator
semantics must be blocking so that is why e.g. windows speci�cations are
applied in many situations. In Sections 4.4.2 and 4.4.3 examples on operators
that are blocking are given.

Order
Some systems have operators that require streams to be ordered, or at least
an order within some bounds. The problem of unordered streams occurs
when there is requirements (according to the query) to the order of the
input data to an operator. By order means the order stated by the order
attribute of the data elements (e.g. timestamps) and not the order of which
the elements are appended to the stream. As an example of a problem
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with unordered streams, consider the operator that returns, every hour, the
average value of the last hour of elements on an unordered stream. The
operator will face a problem: if just a single element arrives late, for some
reasons, the average over the window may �rst be computed when the last
element has arrived (and this may take hours or days) or it may be skiped
(which is not desirable).

One way of solving this problem is to use transaction time when ordering
tuples (as described in Section 3.2.3 in Chapter 3). If valid times are used the
DSMS or operator semantics must try to deal with the late arriving tuples.

In Aurora elements may arrive unordered and to catch late arriving
tuples, all order required operators have an additional order speci�cation:
Order (On A, Slack n, GroupBy B1, ... , Bm). Such a speci�cation tells
an operator that elements may arrive at least n elements out of order with
respect to the order attribute A grouped on the attributes B1 to Bm. With
a �nite bu�er of a size depending on n, this speci�cation allows operators to
process almost sorted data.

4.4 Query Operators

Four di�erent query operators will be examined further in this section be-
cause they all, in some way, are examples on operators that add expressive
power to stream queries or solve problems that always appear when querying
on streams.

The partitioning operator (Section 4.4.1) is an example of an extra op-
erator that is only useful for streams because append-only streams alwalys
contain history data. The functionality of the oprator can also be obtained
by relational algebra but it will lead to much more complex queries then.

The aggregation (Section 4.4.2) and join (Section 4.4.3) operators are
two examples on operators from relational algebra that may not be applied
to streams with their original semantics. In the case of these operators they
will make a query blocking and it is discussed how to avoid that.

Window speci�cations (Section 4.4.4) are an example of operators that
are so expressive that it has become almost standard for query languages.
Windows both solve problems like blocking operators and add additional
expressive power because users may specify to query in only a subset of
streams.
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4.4.1 Partitioning

Issuing continuous queries over data streams require special needs for parti-
tioning data. When a stream element gets outdated it is not replaced by a
newer one as in DBMSs. Instead new elements are continuously appended to
the stream while the old elements remain. A stream therefore contains sev-
eral versions of single identities which it may be desirable to query advanced
operations on. Consider as an example a stock market. Of course a DBMS
may also register the history of share prices but it is very obvious to maintain
only one tuple for each stock with its most recent price. For streams the old
share prices will always remain on the stream. It may therefore be desirable
to make advanced calculations on each share identity.

Even though the aggregation operator, G, from relational algebra and
the GROUP BY clause from SQL allows some kind of grouping function-
ality, they are too limited for certain stream applications. The aggregation
operator only allows aggregate functions to be executed on each group of
tuples.

Tribeca introduces demultiplexing and remultiplexing of streams which is
used for partitioning streams. The demultipexing operator (demux) parti-
tions a stream into multiple substreams. The demultiplexed substreams are
named with an identi�er and they are referred by that identi�er until they
are remultiplexed. A demultiplexed stream can be given as input to opera-
tors just like ordinary streams. The multiplexing operator (mux) combines
a set of partitioned streams to a single stream that contains all tuples from
all substreams.

Returning to the example of the stock market system it will be easy to
separate the share price history of each share from each other by demulti-
plexing on the share identity. This allows advanced operations, also other
than aggregate functions, to be applied on each share´s price history and
�nally combining all results with the remultiplexing operator.

4.4.2 Aggregation

Aggregation operators are problematic to perform on unlimited streams be-
cause they need to see the entire stream before they can return a concrete
result. One simple approach to overcome this problem is to continuously run
the aggregate function over all tuples from the stream up to the execution

39



time. In that way temporary results will continuously be returned and based
on the data seen so far. For the �ve common SQL aggregate functions only
�nite space is required for this approach while other functions may require
in�nite space (e.g. the function that returns the middle value because it
must know the value of all so far seen tuples). For prede�ned queries an
aggregate over the entire stream may be desirable for certain application. If
ad hoc queries, however, are allowed, the result of a query is nondetermin-
istic because it is di�erent how much each query has reached to see of the
beginning of the stream.

Consider a stream where data has been appended for days, maybe months.
How useful is it to get an aggregate over the entire stream if you can only
say that the aggregate covers data from �when the stream was initiated� to
present time? For most situations it is more desirable to have bounds on the
data to the aggregate function, so queries like �the average of the last week�
can be issued.

In Tribeca the aggregation operator returns the aggregate value of a
stream when all elements have been processed. To avoid ending up in a
blocking state the stream must be �nite or the operator must be used to-
gether with windows.

Aggregation in CQL is made just like in SQL. To make an aggregation
over an in�nite stream a relation in terms of a �nite window must be con-
structed from the stream. For every time instant such a relation is created
and the aggregate value on that relation is return to the query issuer.

Sliding windows are de�ned as part of the aggregation operator in Au-
rora. For an aggregation the size and how to advance must be speci�ed for
the related window. As an example a window speci�cation can be tuples
from the last three hours, sliding every hour. The aggrigate function is one
of the SQL functions or a user de�ned function. Aggregation can, like in
relational algebra, be grouped on several attributes. Furthermore tuples are
not required to be delivered in order. Therefore it is possible to specify a
number of tuples to look forward before a �nal aggregate on a window is
computed.

To conclude aggregation on streams is often made by requiring a window
speci�cation on the data that enters the aggrigation operator. In Aurora
window speci�cations are part of the aggrigation operator while Tribeca and
CQL require windows applied explicitly.
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4.4.3 Join

Joining two or more in�nite streams are problematic because a complete
result set cannot be returned before the complete streams are known. Con-
sider the join of stream s1 and s2, where s2 is in�nite. Initially the �rst tuple
of s1 is joined with every tuple of s2. However, because s2 is in�nite, this
process will never terminate, and the other tuples of s1 will therefore never
be joined. As with many other stream operators, a join is at least required
to be executed on a �nite subset of a stream, obtained e.g. with a window
speci�cation.

All joins in Aurora are performed on two streams. An order attribute
is speci�ed for both streams, and for two tuples to be joined, the distance
between the two order attributes must to be beyond a speci�ed value. Fur-
thermore, because tuples do not need to arrive in order, the operator can
look forward a speci�ed number of tuples in the stream to see, if other tuples
are beyond the di�erence. A basic join in Aurora is the Cartesian product
of two streams. A user speci�ed predicate allows advanced types of joins.

Tribeca does not support traditional joins because of performance rea-
sons. However, a sort of join is possible by using window �lters that combines
a stream with a sliding window. Each stream element is compared, by a list
of user speci�ed predicates, to all elements in the present window.

Because join operators in CQL only are allowed on relations, which are
�nite, it is without problems to query a join on two relations.

4.4.4 Windows

Windows are an important part of many stream system data models. The
main responsibility of windows is to give approximate answers to continuous
queries. This is motivate by both a need to overcome technical limitations
when executing certain operators and to provide users with more �exible
querying techniques. Remember that data streams are usually character-
ized by heavy amounts of data relatively compared to traditional relational
databases.

Consider how the projection and selection operators can be implemented
to support unlimited data streams: when one stream element (or tuple)
enters one of the operators, it is possible to give a result based on that single
element. A aggregation operator, however, is �rst able to give a result when
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all elements have been processed. The same is true for join operators. Due
to limitations in memory, it is di�cult to implement such blocking operators
on unlimited data streams. Instead, windows can be used to bound a limited
part of the streams, to which the operators are to be executed on.

In some situations it is desirable for users to query in only a subset of
data streams. If a data stream contains data for a long period of time, users
may want to query in only the most recent data. Another situation is data
streams where new data are recorded very often. Here users may want only
to query in, for example only every tenth element. Such requirements can
easily be speci�ed in continuous queries when using windows.

Endpoints and Measurement Units
Various window models have been proposed in di�erent stream systems. A
common way of de�ning windows is in terms of direction of movement and
measurement unit of the two window endpoints. A �xed endpoint is a point
on a element that is never changed, while a sliding endpoint is a point that
moves in one the two directions (moving to either newer or older elements).
A �xed window has two �xed endpoints, a sliding window has two sliding
endpoints, and a landmark has both a �xed and a sliding endpoint. The unit
used to de�ned endpoints is usually physical (time-based) or logical (tuple-
or count-based).
Example 4.2 (Physical �xed window). Window wf , which contains all
daytime elements, is a physical �xed window. The left endpoint is �xed at
timestamp 12.00 and the right endpoint is �xed at timestamp 18.00.
Example 4.3 (Logical sliding window). Window ws, which contains the
last 100 elements, is a logical right moving sliding window. The left endpoint
is the total number of tuples minus 100 and therefore moving right when new
elements arrives. The right endpoint is the newest element and therefore also
moving right.
Example 4.4 (Physical landmark window). Window wl, which contains
all elements newer than timestamp 8.00, is a physical landmark window. The
left endpoint is �xed at timestamp 8.00 and the right endpoint is moving right
at the newest element.
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Note that even though an operator is executed on a data stream window
rather than the entire stream, the result will always be deterministic. This
means that two identically window queries will always return the exact same
result if they are executed at the same time.

Related Window Models
CQL Window speci�cations are supported by CQL. The abstract seman-
tics allows various window types while three concrete types are part of CQL.
Windows are produced by the stream-to-relation operators because this class
of operators converts the in�nite (or �nite) streams to �nite relations. The
two other classes of operators work on �nite sets and therefore they do not
need to use windows.

The three window speci�cations of CQL are chained right sliding win-
dows and they work on single streams. The right endpoints are locked at
the newest element in the corresponding stream (with respect to the order
domain). The left endpoints are user speci�ed as physical or logical relative
to the right endpoints.

Time-based windows are all elements from a stream with timestamp no
older than a user speci�ed timestamp. Tuple-based windows are the N

elements from a stream with most recent timestamps, where N is user speci-
�ed. Partitioned windows are similar to tuple-based windows except that N

is with respect to one or more attributes instead of the entire stream (this is
similar to the GROUP BY operator in SQL).

Tapestry Tapestry does not support window speci�cations. The system
is implemented on a RDBMS with �nite relations and some of the problems
that motivate windows are therefore not present.

TelegraphCQ The window speci�cations in TelegraphCQ are very expres-
sive. A window is de�ned by a stream and a two endpoints. For every time
instant the window is updated according to its two endpoints. The window
de�nition is contained in a for-loop where every loop traverse corresponds to
an increment of time instant. The endpoints may be �xed time instants or
de�ned relatively to the loop attribute. Refer to Chapter 1 for an example
of a TelegraphCQ window speci�cation.
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By allowing users to control the values of both endpoints for every time
instant make TelegraphCQ windows very expressive. For example it is pos-
sible de�ne windows that slide backward and windows that jumps, that is,
only include every x'th element from a stream.

4.5 Conclusion

This chapter has taken a step further from the preceding chapter and ex-
amined how it is possible to query data stored using a stream data model.
Even though the relational and stream data models may be de�ned very
closely it is somewhat more di�cult to answer how stream query languages
distinct from relational query languages. This is because a language may be
constructed in many di�erent ways depending on the application of streams.
As examples, some users prefer precise answers while other prefer approx-
imate answers, some users require real-time continuous results while other
are satis�ed with periodical results. It is therefore di�cult to design an ideal
language syntax and semantics that most stream researchers would agree on.
Rather it is possible to say something about properties of streams that de-
mands special care when designing a stream language. Even though stream
languages may seem very distinct from each other, there is constructions
which are adopted by most languages and some of these and described in
the following.

The most conspicuous property of stream languages in general is that
of continuity which is commonly not available in relational languages. The
reason of why only queries on streams are continuous is because of the ap-
plication of streams. The question is then: shall relational languages con-
sequently be rejected as query languages of streams? The question may be
answered by considering Equation 4.1 which says that a continuous query is
in fact just a traditional query executed many times. Of course a traditional
DBMS is not geared for running the same query every smallest time unit. A
DBMS must therefore be adjusted to be able to handle continuous queries.

With respect to the language syntax and operator semantics of query
languages, it is, with the stream model from Chapter 3, possible to get a
long way by using relational languages like SQL and relational algebra as
stream query language. In fact systems like STREAM and Telegraph have
proved that SQL may be used as a functional stream language with some
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modi�cations. Also if basing the underlying operators on the relational alge-
bra operators, it requires no or only some modi�cations in order to operate
them on streams. As an example on a required modi�cation is that of non-
blocking operators. It is a requirement for certain operators that compute its
result from more than one tuple that it does not block because it is waiting
for future data. This is most often solved with windows which are included
by most stream languages.

To summarize there may be very di�erent requirements to stream queries
which leads to di�erent languages, each seeking to provide the most simple
and intuitive way of expressing data results. It is therefore not reasonable
to state that any stream language that do not build on SQL or relational
algebra do not has a legitimacy. However, it is not fair to reject relational
languages as query languages for streams because the demands to stream
languages are not that di�erent from relational languages.
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Chapter 5

Conclusion

As described in Chapter 1 data streams are a way of conceiving data where
data is seen as a continuous stream rather than single discrete data elements.
Over more than a decade much research has been made to understand how
we may consider such continuous streams and how systems may be designed
to handle them. There is, however, very di�erent opinions on how to consider
streams and how closely they are related to the dominating relational model.
This project has focused on examining data models and query languages for
stream systems and evaluating how streams are di�erentiated from relations.
It is important to know this di�erence when deciding if streams may be
managed by modifying existing relational database systems or if new systems
need to be build from scratch to handle that data type.

In Chapter 3 a stream data model was designed with the most important
properties of a stream model and it was related to existing models. The
conclusion was that the standard relational model is insu�cient for storing
streams but by extending the model with e.g. in�nity and meta-data, it is
possible for such a model to support both streams and relations.

So if the distinctions do not seem big at the level of data models, what
about the languages that query on streams? This was examined in Chapter
4 by describing what requirements query languages for streams have. A
major di�erence of relational languages and stream languages is the fact
that queries on streams must be continuous because the stream itself also is
continuous. There is di�erent approaches on how to make queries continuous
but in an overall perspective a continuous query is a repeated execution of
ordinary queries. This means that, even though continuous queries are far
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from equal to one-time queries, it is possible for a traditional database system
to support continuous queries by some modi�cations.

It was also examined how the syntax and operator semantics of relational
languages may be applied to a stream query language. In fact SQL and
relational algebra do not require much adjustments when applied to streams.
Some language constructions, such as windows, are however necessary to
incorporate in a stream language because there are fundamental di�erences
between streams and relations.

5.1 Levels of Di�erences

To summarize I have examined some of the theoretical foundation of data
streams, namely data models and query languages. When considering a
database system, e.g. a DBMS or DSMS, these two topics may be seen as
the basis of the system. The data model describes the data and because data
is what database are about, a data model is the �rst level of a database. Be-
cause data, most often, are modi�able we use data manipulation languages
to retrieve and change data. Because streams are append-only and the in-
sertions are simpler compared to relational insertions, querying is the most
interesting part of these languages. Query languages may therefore be con-
sidered as the second level of a database. At the next level, which this project
not has reached, we �nd the data processing. As described in Section 1 the
input and output of a DSMS are streams. This level manages to process the
incoming data and generating data as result of queries.

As described in Chapter 1 certain people believe that streams are totally
di�erent from relations and consequently that DBMS are incapable of han-
dling streams at all. In this project I have examined this claim with respect
to the �rst two levels of database systems just described. My conclusion is
that at the �rst level, data models, there is little di�erences between the re-
lational data model and the stream data models. At the second level, query
languages, I have found some di�erences. However, the di�erences are not
greater than that the fundamental requirements to a stream query language
and a relational query language are not far from each other.

As described, this project has not examined the third level, data pro-
cessing. However, I believe, that if notable di�erences between streams and
relations and their corresponding database systems exist, they must be valid
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at this level, rather than the two �rst levels. As described in Chapter 1 it
is a fact that stream applications are characterized by high data rates and
requirements to fast query responses. These issues make great requirements
to the data processing of database systems.
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Chapter 6

Summary

The topic of this project is data models and query languages for data streams.
In short a data stream is a continuous and possible in�nite sequence of data
elements. A stream may be compared to the dominating model of DBMSs,
the relational model, where a relation is �nite and data is changed by discrete
insertions, updates or deletions rather than streaming the updates as new
elements. Because streams are continuous and in�nite queries on streams
are also continuous and long-running.

Some research project have developed prototype database systems that
handle streams. Where some systems are developed as an extension to ex-
isting DBMSs some researchers claim that streams are so di�erent from rela-
tional data that new data models and database systems must be developed
for streams. This project has examined closer if this claim is legitimate by
reviewing existing stream systems. There is two conclusions which have been
obtained by examining data models and query languages.

Most stream models are inspired by the relational model and they are
therefore denoted relation-based stream models. It is shown how a stream
model may be designed that is based on relation but has some additional
power. This includes e.g. in�nity and element meta-data. Another group of
models is also described that combines both streams and relations�denoted
relation supporting models. Because streams are in�nite it is useful when
the elements are ordered and it is described how this may be build into a
model. It is concluded that it is possible to design a stream model that is
very close to a relation.

Stream queries are continuous and it is described what this means and
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how it impacts the query languages. A concrete semantics is given that de-
scribes what the result of a continuous query is. Di�erent language strategies
is described with respect to language syntax and operator semantics. It is
concluded that the relational languages like relational algebra and SQL may
also be applied on streams but it requires some adjustments. For example it
is very common to use window speci�cations in stream queries that makes
a bound on which part of the stream to query on. Even though it is not re-
quired some stream languages have extended or additional operators because
it makes queries simpler and more intuitive, and some of these operators are
described.
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