
Virtual Phototgraphic Relighting

Jakob Skov-Pedersen

June 13, 2005

AALBORG UNIVERSITY

Department of Computer Science

Title: Virtual Phototgraphic Relighting

Theme: Interactive computer graphics and computer vision

Project period: September 2nd 2004 - June 13th, 2005

Term: F9-10S 2004-2005

Group: d541a/d641a

Author:
Jakob Skov-Pedersen

Supervisors:
Claus Brøndgaard Madsen
Olav Bangsø

Number printed: 7

Report pages: 53

Appendix pages: 7

Total page count: 61

Ended: June 13th, 2005

Abstract:

This thesis explores relighting of a single photo-
graph using a computer.
The method explored is a three step process.
The first step attempts to reproduce the origi-
nal illumination, which is then used to neutralize
the illumination of the photograph. The modu-
lated photograph now represent the texture of the
scene.
After neutralization of the original lighting a new
illumination is computed, and the final step mod-
ulates the texture photograph using this new il-
lumination.
Input to the system is the geometry of the scene,
and an High Dynamic Range(HDR)photo.
The first step is processed using a global illumi-
nation simulation. This simulator can be in the
form of a ray tracer or a radiosity solver. Several
approaches to handling lighting is tried in this
step.
Finally a new illumination is rendered using
graphics hardware, and used to modulate the tex-
ture photo in real-time. The user can then inter-
actively modify light-sources.

AALBORG UNIVERSITET

Institut for Datalogi

Titel: Virtual Phototgraphic Relighting

Tema: Interaktiv computer grafik og computer vision

Projektperiode: 2. september 2004 - 13. juni 2005

Semester: F9-10S 2003

Gruppe: d541a/d641a

Forfatter:
Jakob Skov-Pedersen

Vejledere:
Claus Brøndgaard Madsen
Olav Bangsø

Oplagstal: 7

Rapportens sideantal: 53

Appendiks sideantal: 7

Total sideantal: 61

Afsluttet: 13. juni 2005

Synopsis:

Dette speciale omhandler relighting af et fotografi
via en computer. Den brugte metode har tre
steps.
Det første step forsøger at beregne den origi-
nale belysning, som derefter er brugt til at fjerne
belysningen i billedet. Det modulerede billede in-
deholder nu kun overfladeegenskaberne fra sce-
nen.
Efter Den originale belysning er fjernet beregner
det sidste step en ny belysning og kombinerer den
og overfladeegenskaberne til et nyt billede med en
ny belysning.
Systemets input er scenes geometri og et High Dy-
namic Range(HDR) foto. Det første step bliver
beregnet via Global Illumination simulering i
form af en raytracer eller radiosity solver. Der
er brugt flere forskellige metoder til at h̊andtere
belysningen i dette step.
Den nye belysning er beregnet i real-time ved
hjælp af grafikkortet. Brugeren kan derfor inter-
aktivt ændre p̊a lys-kildernes placering.

Preface

This thesis is the result of a project running from september 2nd, 2004 to june 13th. 2005. It
is submitted for approval for the degree of M. Sc. In engineering, software.

The purpose of the master thesis is to independently complete a project detailing empirical
and/or theoretic treatment of problems in connection with the chosen theme on a scientiffic
level. The theme for this project is “Interactive computer graphics and computer vision”.

While working with the project detailed in this thesis I was visiting University Of California,
San Diego. I would like to thank Henrik Wann Jensen, and the staff of the pixel lab at UCSD
for help and ideas during my visit. Further I would like to thank my girlfriend Jeanette for
help in finishing this thesis, and for putting up with the long work hours.

In the report all literature references have been composed with author and year in square
brackets - e.g. [Kaj86]. References to books also has a page range for easy location. The
position of the reference determines which specific part the reference relates to. If the reference
is positioned before a period, it relates to the previous sentence, otherwise if the reference is
positioned after a period the reference related to the previous section.

The enclosed CD contains source code for the software developed during this project. Also
for reference a pdf of the report along with copies of all the images is also included.

The focus of the report is the analysis and design of the problem in preference to the
implementation, according to the study regulations.

Aalborg, June 13th, 2005

Jakob Skov-Pedersen

Jakob Skov-Pedersen i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Mixed reality . 2

1.3 Image based methods . 4

1.4 Illumination . 5

1.5 Problem description . 8

2 Initial Analysis 9

2.1 3D computer visualization . 9

2.2 Local illumination . 13

2.3 Global illumination . 14

2.4 Virtual Photographics Relighting . 15

2.5 Mesh subdivision . 18

2.6 Interactive illumination design . 19

3 Analyzing initial illumination 21

3.1 Model analysis . 21

3.2 A radiosity simulation . 22

3.3 A raytracer simulation . 23

3.4 Light probes in simulation . 23

3.5 Experiments . 23

3.6 Results . 25

3.7 Summary . 28

4 Mesh subdivision 31

4.1 Mesh datastructure . 31

4.2 Image based adaptive surface refinement . 32

4.3 Clipping . 37

4.4 Mesh relaxation . 37

ii Jakob Skov-Pedersen CONTENTS

CONTENTS iii

5 Interactive render of new illumination 43

6 User interface 45

6.1 The users . 45

6.2 The main form . 45

6.3 functionality . 46

7 Conclusion 49

Appendix 55

A Data fitting for lines in soft shadows 57

A.1 Penumbra . 57

A.2 Umbra to unshadowed . 59

Jakob Skov-Pedersen

Chapter 1

Introduction

This chapter provides an introduction to relighting and mixed reality, which is the main theme
of the project. In addition important aspects that tie into relighting are introduced.

1.1 Motivation

Relighting is the process of modifying image data by modification of the illumination param-
eters. Using relighting to alter photographs was originally used in darkrooms by shadowing
parts of the picture for periods during exposure of a copy [Wil]. This technique allows lightning
or darkening areas of a photograph to make sure everything is within visible contrast. In this
context darkening is also referred to as dodging, and lightening as burning. This technique has
since been extended for use in digital systems, which will usually give much finer control over
the process .

The dodge and burn processes give the artist the ability to lighten or darken parts of the
image, but they will not account for the physical nature of light. This means that the artist
must have some knowledge of how to alter the image so that the image is still believable to
the viewer. Because of this the method is mostly used as a retouching technique to bring out
details which where not otherwise visible. If what is desired is a total alteration of the lighting
scheme for instance adding a spotlight, then it becomes more important that the methods
adheres to light physical nature. Here the computer comes more to play, since it can be used
to simulate the way light interacts with a scene through renderings, it can be used to alter the
lighting scheme of a scene in a physically based manner.

Physically based relighting has applications in e.g. lighting scheme design, filming, or
augmented reality. When designing a lighting scheme for a house it is beneficial to use photos
of the house, and then realistically insert different lamps. In filming, and augmented reality
relighting is often used to ensure seamless integration of virtual and real elements.

Using a computer for relighting falls within the sphere of mixed reality, which encompass
methods that involve both real and computer synthesized elements.

Jakob Skov-Pedersen 1

2 Introduction

1.2 Mixed reality

Mixed reality is used to refer to any visualization combining computer synthesized graphics,
and real-world recorded imagery. The ultimate goal of mixed reality systems is to make the
integration of synthetic and real data so seamless that it is impossible to tell what is real and
what is synthetic. Altering of illumination in a photograph using a computer is an area of this
field.

1.2.1 The mixed reality continuum

A common taxonomy used for classifying mixed reality methods is the mixed reality continuum
[MK94]. Figure 1.1 shows a simplified scale for the continuum, where the two extreme cases
are totally real and totally synthetic. Towards the synthetic end of the spectrum methods are
often referred to as augmented virtuality. Methods nearer the real end are commonly referred
to as augmented reality.

M ixe d R e ality

R e al Synth e tic

Ph oto

te xture

Blue

scre e n

Conte xt

data

Obje ct

inse rtion

A
R

A
V

Figure 1.1: The mixed reality continuum. Left side is augmented reality, right is augmented virtuality.

An example of augmented virtuality (AV) is such methods as using photographs for textures
in a virtual environment. Such a world will be predominantly synthetic, but some surfaces will
be extracted from recorded real data. Another example is blue-screen work where acting is
recorded an introduced to a synthetic world.

Under augmented reality (AR) are such systems as insertion of a virtual object into a
real scene, as often used in the film industry. Or superimposing of contextual data as e.g.
stock quotes in a newscast. Generally these effects use predominantly the data recorded, and
make additions or modulations. Photographic relighting using a computer also belongs to this
category, since it is mainly a modulation of input data.

1.2.2 Relighting

Photographic relighting is the general process of taking one image, and transforming this image
into another by altering the composition of lights. There are three major categories of relighting
methods.

Empirical relighting: The user empirically lightens and darkens an image in select regions
to achieve the desired look of the image. See also section 1.1. This type of relighting
also encompass relighting where a non-physical model is used either for analysis or com-
puting new lighting. For example [OCDD01] assume repetitive surfacetextures, and thus
separate anything that is not part of the pattern as the initial illumination.

Physically based relighting: Using the physical properties of the scene a new illumination
is solved by the computer. This attempts to simulate what would have happened had the

Jakob Skov-Pedersen

Mixed reality 3

original photograph been taken with the different lighting. See also section 1.1. Research
that have followed this approach: [YDMH99], [LDR00], and [GHH01].

Interpolative relighting: By taking a series of pictures with different lighting conditions,
and perhaps different views, it is possible to produce new images using an interpolation
between the recorded data. This method will combine the input images so as to produce
images with new lighting conditions.

This thesis is predominantly about physically based photographic relighting, and as such the
remainder will treat relighting as only being physically based. In a physically based relighting
situation the image is relighted while accounting for the physical properties of the original scene
in the motive.

The physical properties of the scene must either be recorded when the image is captured, or
inferred by the relighting program. The image recording process will place some constraints on
what data can be inferred, i.e. inferring some data will exclude other data from being inferred.
For example if only a single photograph is captured, then it is not possible to distinguish
between a specular highlight and a white spot on the surface of the object. Because of this
either multiple images are needed or some constraint must be placed on surfaces, e.g. any
surface must have homogeneous material parameters, or all surfaces are considered diffuse.

The general process used for physically based relighting can be separated into the phases
seen in figure 1.2.

R e tre ive

im age

R e cove r

ge om e try

Analyze initial

ligh ting

Com pute ne w

ligh ting

Com bine

re sult

Im age Im age

+

Ge om e try

Te xture

+

Ge om e try

Te xture

+

Ge om e try

+

Illum ination

Figure 1.2: Block diagram for a general relighting system.

Retrieve Image. During this phase the image is retrieved from the motive. It could e.g. be
recorded using a digital camera, or scanned from negatives or prints. Most relighting systems
requires high dynamic range images because the relative itensity of each pixel is important.
This process is well understood and treated by [DM97].

Recover geometry. In the second phase the geometry is recovered either from the recorded
images[DTM96], or by a separate process such as a geometry scanner[Wikc]. This phase is
beyond the scope of this thesis, and the geometry must thus be supplied by the user.

Analyze initial lighting. Here the distribution of light in the scene is analyzed and calcu-
lated. This is treated in chapter 3 on page 21 and 4.

Compute new lighting. Using a renderer a new distribution of light in the scene is calcu-
lated. This is treated in chapter 5 on page 43.

Jakob Skov-Pedersen

4 Introduction

Combine result. Finally the geometry, the old lighting, the new lighting, and the original
photograph is combined to yield a new image in which the lighting conditions have been altered.
Some methods have this step implicitly included in the other steps for efficiency or convenience
reasons. This is treated as a compositing problem[Wikb] in chapter 5 on page 43.

1.3 Image based methods

Image based methods use a 2d grid of values as a seed for a computation. In computer graphics
image based methods exist both for modeling, lighting, and rendering.

Most mixed reality systems employ some form of image based methods. This comes from
the mixed reality being a combination of captured data and synthetic data. Also whenever an
image based method is applied to real data, the result will be within mixed reality. A such
these concepts are tightly bound.

When rendering realistic computer graphics, three properties of the scene must be described
(see figure 1.3). The first property is the geometry in the scene, this is a 3d description of the
objects represented. Because objects are only visible when being illuminated by some light
source the second property is a description of lightsources in the scene. Lastly the reason
light illuminates an object, is because it interacts with the material of the object. Therefore a
description is also required of how the material interacts with light.

Ge om e try M ate rials Ligh t

R e nde re rM ode lle r

Figure 1.3: A renderer and the three types of input data.

It can be quite a challenge for a user to provide all the data required for synthesizing
a realistic image. Image based methods help this problem by using photographic images to
provide some of this data. A way to classify image based methods is by which of the three
data-requirements they fulfill.

Image based modeling is used to recover geometry and texture from one or more images
of a scene. For example [DTM96] uses a sparse set of architectural photographs to recover
models with textures of buildings.

Image based lighting is using an image to illuminate an object in a scene. An often
used method is capturing a light-probe by photographing a sphere. This light probe can tell
something about the light arriving at a point from all directions. By combining the light probe

Jakob Skov-Pedersen

Illumination 5

with the material properties of the object, a very realistic effect can be simulated. This method
is often used when seamlessly composing synthetic objects into real scenes. This method is the
basis of [Deb98].

Image based rendering methods aim at capturing all three data categories from images.
This approach is e.g. used in interpolative relighting systems, where a series of images with
different illumination is used to interpolate the new illumination as e.g. in [MDA02].

1.3.1 Image based methods and relighting

Because relighting always starts with an image, which requires an alteration of the lighting, it
quite naturally relies upon image based methods. Figure 1.4 shows how image based methods
can possibly be integrated into a relighting system. The lower text shows methods that can be
applied to the relighting steps.

R e tre ive
im age

R e cove r
ge om e try

Analyze initial
ligh ting

Com pute ne w
ligh ting

Com bine
re sult

Im age base d
m ode lling

Im age base d
ligh ting

Possibly im age
base d re nd e ring

Im age base d
m e sh optim izing

Figure 1.4: Image based methods in a relighting system.

It is possible to use Image based modeling as a method for recovering the geometry of
the scene, and image based lighting for analysing the initial lighting. After finding the initial
lighting Image based mesh optimation can be used to optimize the recovered mesh for better
results. Image based rendering is a method for computing new lighting of the scene. This
shows that Image based methods are naturaly intregrated in a relighting system.

1.4 Illumination

An illumination is what arises when a light-source is introduced to a scene. The light source
will illuminate the scene, and surfaces in the scene becomes lit. The steady state distribution
of light in a scene is the illumination distribution. An illumination distribution is defined by a
number of light sources and a scene with which the sources interact.

In a physically based relighting system two illumination distributions are of special im-
portance. The first one is the initial illumination distribution, which is formed by the lights
affecting the scene as it was acquired, is usually analyzed from the original image which is
desired re-lit. The second important illumination distribution is the new illumination distribu-
tion, which is found to reflect some modification of light sources affecting the scene.

Illumination systems often differentiate two forms of illumination, local and global illumi-
nation. Local illumination is the direct result of a number of light sources shining on a single
geometric point in space. The remaining geometry is possibly used for shadows but nothing

Jakob Skov-Pedersen

6 Introduction

else. Global illumination systems also account for light that hits one surface, and bounces onto
another.

A renderer can be used to simulate the illumination distribution. The concept of a ren-
derer has been shown to accurately reproduce a synthetic representation of the steady state
distribution of light in a scene.

1.4.1 Renderers

A renderer is used to produce an image of a scene from a camera view. A scene has three
important properties: The geometric description, material properties, and light-sources. In
photographic relighting the type of renderer that is desired, is a renderer which will produce
images based on physical properties. Some common physically based renderers are:

• Radiosity solvers

• Ray tracers

• Pipeline engines

Radiosity renderers are based on the mathematical finite element method. The scene is
split into a number of finite elements, and an averaged illumination distribution is calculated
for each element. By using elements which have a well defined relationship with regard to the
property analyzed the solution may be evaluated at discrete intervals instead of as a continuous
calculation over the scene. In computer illumination problems a patch is used as the basic
element. A patch is a flat surface in 3d space with three or more edges. The solution obtained
from a radiosity renderer is the outgoing illumination of each patch in any direction, this means
that only view independent effects can be simulated. The view independence also means that
two different camera definitions can utilize the same solution. The geometric input for a
radiosity renderer must be in the form of a mesh of patches.

Ray tracers attempt to simulate the way rays of light is bounced in a scene. A ray tracer
will trace a ray from the camera, and when this ray hits something determine how this point
is affected by the lights in the scene. A local illumination ray tracer will directly calculate how
each light source affects the illumination at that point, while a global illumination ray tracer
attempts to determine also how illumination bouncing of other surfaces affect the current point,
usually through a stochastic sampling. Ray tracers will function with any type of geometry
where the intersection with a line in 3d space can be calculated. Unlike radiosity ray tracing
is view dependent, and as such will allow effects like e.g. mirrors.

Pipeline engines are used for rendering graphics interactively to a computer screen. Pipeline
engines use a mesh usually made from triangles. The basic components of the input mesh are
called primitives. Primitives are processed one by one by the pipeline, and as such only local
illumination is rendered. Because of the simplicity of the pipeline render engine it is used in
real-time graphics. Also the design makes sure that it can be implemented smartly in graph-
ics hardware, and as such allows acceleration. While many important behavioral aspects of
light are not simulated with a pipeline engine, its speed enables interactive evaluation of the
illumination, and as such is used when visually designing 3d scenes.

Jakob Skov-Pedersen

Illumination 7

Many renderers are also based on a combination of these basic techniques. For instance
some games precompute a radiosity solution for its view independent properties, and use this
as a basis for illumination the scene during play.

For any renderer the complexity of the geometry will affect the time needed to render an
image. Opposite of this some methods will produce more accurate solutions if the complexity of
the mesh. Generally it is desirable to keep the complexity of the mesh as low as possible while
still attaining a solution that is sufficiently accurate. Also using a method such as radiosity
the requirements for accuracy will be different in different parts of the image.

1.4.2 Re-meshing for increased renderer accuracy

As per the last section methods such as radiosity use a mesh which must be sufficiently complex
as to represent the required accuracy. However since regions where there is a shift between light
and shadow require increased accuracy with such systems, the mesh used is initially created
rough, and adaptively subdivided to fit requirements where needed.

Shadowing in the geometry must be paid specifically attention to when subdividing the
mesh. A shadow will result in a discontinuity in the illumination solution.

A method for refining a mesh is hierarchical subdivision[HSA91]. Here, for each patch, the
error introduced by the patch size is evaluated, and if the error exceeds some user threshold the
mesh is divided into a number of new patches. Subdivided patches are stored using a tree hier-
archy, where each level represents a subdivision. Figure 1.5 shows a hierarchical subdivision of
a quad patch, and the corresponding tree structure. When computing the solution evaluations
can be performed at any level in the hierarchy to achieve the most efficient calculations.

Figure 1.5: A heirarchical subdivision and the corresponding data tree.

A situation that arises in some relighting systems is only using a single viewpoint, and
disregarding unseen geometry. In such situations it is desirable to only increase the complexity
of the meshing that is visible, since the rest will have little effect on the outcome. Further
some methods expect the acquired geometry to be incomplete, and as such will disregard any
non-visible geometry. For such methods it is possible to clip the mesh before refining it to
further decrease the amount of needed work.

Jakob Skov-Pedersen

8 Introduction

1.4.3 Image based meshing

When refining a mesh for which there is a recorded image - a situation that arises often in
mixed reality systems - it is possible to use this image to control the refining of the mesh. This
method becomes an image based meshing.

The advantage of image based meshing is that a solution is already known in the recorded
image. This solution will give hints as to where discontinuities in the illumination arise as
a result of e.g. shadows. When attempting to use a mesh-based method to analyze the
illumination in the recorded image, it is important that the mesh is fitted to the discontinuities
in the image.

Image based meshing works by reading data from the image, and on the basis of that
determine whether to subdivide the geometry. The geometry is adaptively refined where the
image indicates a need for increased accuracy. This means the mesh can be refined to something
resembling discontinuity meshing from section 1.4.2, but without the high complexity. This is
possible because prior knowledge exists about the placement of shadows.

1.5 Problem description

The project is centered around relighting of a photograph. The input is a geometric model of
the scene, the photograph, and a number of light probes at different locations. Since mate-
rial parameters are complicated to retrieve the system will note require any such description.
Materials will therefore be treated as being purely diffuse.

Because many renders are dependent on the resolution of the mesh, this project is also
about producing a mesh that will allow for a good renderings in connection with photographic
relighting. For this end image based methods for refining a mesh will be studied.

To facilitate interactive lighting design using the relighting method the project address
real time rendering techniques especially in combination with computing a new illumination
solution for relighting a photograph.

Jakob Skov-Pedersen

Chapter 2

Initial Analysis

This chapter starts with a treatment of Computer Generated Imagery, because it lies as a basis
for virtual photographic relighting. After this the relighting process is defined.

2.1 3D computer visualization

Humans are accustomed to observe and manipulate three dimensional objects. This means
for instance that if a human is to comprehend and contextualize complicated datasets a very
effective visualization method is 3D renderings.

An example of the effectiveness of visualization in three dimensions is architectural design.
Architectural drawings are often produced i 2d. While such drawings are good at conveying
exactly how the house is to be built, it is very hard e.g. to discern whether a room feels
spacious, or whether enough light enters the room through the window. Since such questions
are three dimensional in their nature, they are best analyzed through such a representation.

2.1.1 Trends in 3D graphics

Engineering science relies heavily on 3D visualization systems to convey new designs and ideas.
CAD systems have become the defacto method for designing new components.

A large part of the current drive for research in 3D graphics comes from the entertainment
industry. At one end the video and movie industry is pushing for more realism in offline
rendering systems. At the other end the gaming industry is pushing for more possibilities with
interactive hardware renderings.

In the beginning of computer graphics these to industry sectors were pushing opposite
directions, and creating two separate branches of research, namely photo-realistic and real-time,
see figure 2.1 on the following page. However as algorithms have improved today, these two
branches are starting to merge. This means that technologies are starting to migrate between
the two branches. In the future these branches may even converge to a single Accelerated
interactive realism branch.

Both of these branches of computer graphics influence relighting systems. A physically
relighting system has two separate rendering stages, the first one is an offline step which

Jakob Skov-Pedersen 9

10 Initial Analysis

Com pute r

graph ics

Inte ractive

branch

Ph otore alistic

branch

Acce le rate d

inte ractive

re alism ?

Tim e line

Figure 2.1: Branching in 3D graphics research.

requires a renderer which is as physically correct as possible. The other rendering stage is
when computing a new lighting. This stage relies on simultaneous user interaction, and as such
follows the real-time branch.

2.1.2 Interactive graphics: The rendering pipeline

A interactive rendering pipeline is composed of the following main stages [AMH02]:

Application → Geometry → Rasterizer

Most current implementations of the rendering pipeline have the geometry and rasterizer
implemented in dedicated acceleration hardware. Acceleration hardware is either fixed-function
or programmable, where the latter gives the user algorithmic control over the geometry and
rasterrizing stages.

Setting up the scene (Application stage)

The application stage encompass what is performed by the application the user is interacting
with. The application will setup the viewpoint, and send the geometry to the remaining
sections of the pipeline. The geometry must be split into simple units for the remainder of the
pipeline to accept. A simple geometry unit is called a primitive. Primitives are sent through
the pipeline one by one to be rendered.

Preparing for viewing (Geometry stage)

The geometry stage will receive primitives from the application, and process these so the
geometry becomes ready to be displayed on the screen. The geometry is transformed from the
model-space of the application stage into screen-space needed for rasterizing. Also the geometry
is clipped to fit within the desired view. Most calculations that are performed per vertex in the
geometry is performed in this step. Fixed-function real-time implementations of the pipeline
will calculate the lighting per vertex in this step as well. Later more powerful programmable
pipeline implementations have enabled per pixel lighting which delays this calculation till the
rasterizer.

Jakob Skov-Pedersen

3D computer visualization 11

Drawing to screen (Rasterizer stage)

This stage will handle drawing of each pixel occupied by a polygon in the frame-buffer of the
rendered image. The value of each pixel is calculated individually as polygons are rendered. In
the fixed-function pipeline values are simply interpolations of the values calculated per-vertex
in the geometry stage. A programmable pipeline will allow application-defined calculations for
each pixel, for instance lighting calculations.

2.1.3 Realistic synthesis: Photo-realistic renderers

Any physically based renderer tries to solve the rendering equation. The rendering equation
describes the nature of light transport, i.e. how to find light leaving a surface from the light
hitting the surface. It was derived in [Kaj86] as a common factor in most previous image
synthesis work. The physical framework for describing the rendering equation comes from
radiometry, which is the study of measuring light [Ash].

A basic component of light measurement is radiant flux (Φ). This is a measure of light
flowing, and is energy over time (eqn. (2.1)).

Φ =
dQ

dt
(2.1)

Having a small surface area the radiant flux becomes radiant flux density, which is radiant
flux per unit area. Figure 2.2 shows the radiant flux density leaving a surface (eqn. (2.3)),
which is called radiant exitance (M). The radiant flux density arriving at a surface (eqn. (2.2))
is called irradiance (E).

dA

dΦ

Figure 2.2: Radiant The radiant flux (dΦ) leaving a surface area (dA).

E =
dΦ
dA

(2.2)

M =
dΦ
dA

(2.3)

The light leaving or arriving at a surface point does so on a hemisphere formed above the
surface. This means that all the light arriving at a surface point is exactly the light that hits
the area of this hemisphere. Therefore measuring all the radiant flux inbound on the surface is
done by integrating over the area of the hemisphere. For this purpose a portion of the directions
is called a solid angle, and is shown in figure 2.3 on the following page as dθ.

Jakob Skov-Pedersen

12 Initial Analysis

dA

dω

n

θ

L

Figure 2.3: Geometric definition of radiance.

The radiant flux to or from a surface area through a solid angle is called radiance (L). This
quantity is calculated as in eqn. (2.4) and shown in figure 2.3.

L =
d2Φ

dA(dωcosθ)
(2.4)

The rendering equation details the transport of light. The light leaving or arriving at a
surface is the radiance. So the rendering equation details the relation between radiance leaving
the surface and radiance arriving at the surface. The exitant radiance is a combination of the
incoming radiance and the emitted radiance (eqn. (2.5) and (2.6)).

Outgoing radiance = emitted radiance + reflected radiance (2.5)
Lo = Le + Lr (2.6)

The reflected radiance is depending on the surfaces ability to reflect light. To this end
the Bidirectional Reflectance Distribution Function(BRDF) is used. The BRDF is a relation
between incoming light from one direction, and outgoing light. More description of the BRDF
is in section 2.2.2 on the facing page. For now it is just the function fr(x, ωi, ωo). By integrating
over all incoming directions (Ω) the rendering equation for a particular outgoing direction (ω)
becomes as in eqn. (2.7).

Lo(x, ω) = Le(x, ω) +
∫

Ω
fr(x, ω′, ω)Li(x, ω′)(ω′ · n)dω′ (2.7)

Classification of light-paths

To categorize the capabilities of rendering systems [Hec90] details a system for describing a
light-path. A light-path details how light travels from a light source to the eye (or camera). In
the system these are denoted by respectively an L and an E. Objects in the scene can result
in either a predominantly diffuse reflection (D) or a predominantly specular reflection (S). E.g.
seeing a diffuse sphere in a mirror results in this light-path: “LDSE”.

Jakob Skov-Pedersen

Local illumination 13

By combining the light-path system with regular expressions it is possible to detail the
capabilities of a particular rendering system. For example a system capable of rendering mirrors
will support LDS*E paths, and a system capable of rendering caustics supports LS*DE paths.
In this context the most general renderer capable of rendering any illumination will support
L(D|S)*E paths. A “*” means any number of the preceding element, and a “|” means either
the left or the right element.

2.2 Local illumination

Local illumination describes the light that is reflected at a point directly from a lightsource.
The shading in such a system is only dependent on the lightsources and the surface parameters
of items in the scene. Even though the shading is independent of other geometry, visibility
cannot be since shadows are by nature a global effect in the scene.

2.2.1 Direct illumination

Direct illumination is the local response of a lightsource bouncing off a surface. Only single
bounces are possible under this model, and lightpaths supported are thus L(S|D)?E.

Direct illumination is often simulated by defining a number of lightsource objects, and
for each visible surface in the simulated image calculate how much each of these lightsources
contribute to the overall shading of this point.

2.2.2 Surface parameters

When simulating light interactiion with an object, it is necessary to qantify in what measure
the light is reflected of the objects surface. This is in most computer graphics represented by
a function called the BRDF. The BRDF is a function of the incomming illumination direction,
the exitant illumination direction, and the surface point, see eqn. 2.8. [OHHM02, pp. 15–44]

fr(x, ωi, ωo) =
dL(x, ωo)
dE(x, ωi)

(2.8)

Different meterials reflect light in different ways which affect the apearence of the materials.
Some materials are diffuse while others are specular or something inbetween. Diffuse surfaces
reflect light uniformely in all directions, while specular surfaces reflect light mostly in directions
which are close to the mirror direction of the incomming direction with respect to the surface
normal.

Lambertian reflection is the simplest surface model. It describes the view independent
properties of most surfaces. The best way to observe teh lambertian property is to look at
a diffuse cylinder. The light reflected upon such a cylinder is most intense where the surface
recieves the most direct light. In fact labertian reflection is determined by the dot-product of
the surface normal, and the vector towards the light. Thus the side of the cylinder closest to
the light-source reflects the most light. Lambertian reflection is also often referred to as diffuse
reflection, because of its soft gradual appearance. The dot-product of lambertian reflection is

Jakob Skov-Pedersen

14 Initial Analysis

already built into the rendering equation, meaning the BRDF for a diffuse reflector is constant
for a particular point (2.9)

fr(x) = π(x) (2.9)

Phong reflection. The phong model builds upon Lambertian reflection by adding a specular
lobe. The model is not based on any physical principle, but is rather designed to look nice.
Because the model is very simple many realtime systems use a derivation of this model.

2.3 Global illumination

When rendering synthetic images many effects cannot be simulated by looking only at a single
geometry point in space such as when simulating local illumination. Visualization systems that
simulates such phenomena are refered to as global illumination renderers.

2.3.1 Diffuse indirect illumination

Diffuse indirect illumiantion is the result of a simplification of the full rendering equation. By
assuming that all surfaces reflect light diffusely, radiance measure can be reduced to radiosity,
which just represents diffusely reflected illumiantion. The light-paths simulated are of the form
LD*E.

Radiosity is view-independent, and as such a point in space is transmitting the same amount
of light to any other point visible. Thus radiosity can be defined for a patch as opposed to
being defined for points like radiance. this means the rendering equation can be simplified
to the radiosity formulation in eqn. (2.10). This defines teh radiosity leaving a patch x in
any direction is the emittance (Be) of x plus the light that is recieved from all other patches
and reflected. V is the visibility function between patches x and x′, and G is the geometric
relationship.

B(x) = Be(x) +
ρ(x)
π

∫
S

B(x′)V (x, x′)G(x, x′)dA′ (2.10)

Making the radiosity equation work over a finite number of surfaces, it can be reformulated
as the linear system of equations in eqn. (2.11).

Bi = Ei + ρi

n∑
j

FijBj (2.11)

Fij is called the form factor, and represents how much light can be transportet from one
patch to another. It is defined as in eqn. (2.12).

Fij =
1
Ai

∫
Ai

∫
Aj

V (x, x′)G(x, x′)
π

dAjdAi (2.12)

Since the formfactor is a nontrivial integral, many radiosity renderers simply sample it by
sending random rays between the two patches.

Jakob Skov-Pedersen

Virtual Photographics Relighting 15

2.3.2 Full global illumination

A full global illumiantion renderer simulates general light-paths of the form L(D—S)*E. There-
fore the light can bounce of any number of surfaces travelling from a light-source to the eye.

2.4 Virtual Photographics Relighting

Virtual Photographics Relighting(VPR)is the process of altering the illumination in a recorded
photograph using a computer.

This process has applications in e.g. lighting design, or common illumination systems1.
Current methods fall in three categories: Inverse rendering, Relighting after light removal[JL04],
and Illumination interpolation.

The following sections are a description of methods within each category.

2.4.1 Inverse rendering

Inverse rendering methods tries to fit the original data to a rendering model. Such systems
return the material parameters of surfaces in the scene, which can be used to render new
images.

The inverse global illumination method from [YDMH99] uses the ward BRDF [War92]
as model basis. The specialized rendering equation in eqn. (2.13), which is a generalisation of
ward brdf, is solve to find diffuse albedo (ρd), specular reflectance (ρs), and specular roughness
(α).

LCvPi = ECvPi + ρd

∑
j

LPiAjFPiAj + ρs

∑
j

LPiAjK(α, Θ)CvPiAj (2.13)

This represents the radiance seen by a camera Cv from a point Pi. Aj is another patch
in the scene, F is the analytical point-to-patch form-factor, and K is the specular term of the
ward brdf. Using a combination of iterative refinement and least sqares fitting the parameters
(ρd, ρs, and α) are recovered. The iterative part of the system is used to find the effect of
specularities on the global illumination solution.

By making reasonable assumptions about specular highligts this system can recover diffuse
albedo texture maps from a relatively small number of images.

Inverse rendering from a single image. Another approach is that of [BG01] and [BG02].
Here only a single image is required to recover the material properties of the scene. Geometry
and placements of lights are supplied by the user. The methods uses a guessing approach, where
eacch surface is initially considered purely diffuse, and an error in rendering compared to the
original image is calculated. While the error exceeds some limit the model is progressively
made more complicated.

Again the materials are fitted to the ward BRDF model. A generic global illumination
renderer is used to compute the image used for error estimation. Because only a single image
is used the constraint from section 1.2.2 on page 2 that not all preperties can be recovered

1Systems that attempt to match the illumination of a physical scene, and inserted synthetic objects

Jakob Skov-Pedersen

16 Initial Analysis

from a single applies. This means either surfaces have a complicated BRDF and homogenous
material properties, or they have a diffuse BRDF and an albedo map.

2.4.2 Relighting after light removal

By removing illumiantion from an image the resulting image contains the diffuse albedo maps
of the geometry. Methods in this category try to produce a plausible new illumiantion by using
these albedo maps.

The light removal process will analyze the inital illumiantion with some assumptions. Meth-
ods can make assumptions on either the transport of light, or the properties of a texture. An
example of an assumption on the transport of light is only diffuse reflection occurs. A property
of a texture might be that the texture consists of a spacially repeating pattern.

Interactive virtual relighting. In [LDR00] a radiosity renderer is used to remove the
lighting from the original images leaving unoccluded illumination textures (textures without
the effect of shadows). The radiosity is based on hierarchical refinement [HSA91], but uses a
texture driven subdivision scheme. To relight the image a radiosity calculation is performed
for the desired change, and the unoccluded textures are modulated by this value.

(a) (b) (c)

Figure 2.4: (a) Original texture. (b) The resulting texture Tinter, with real occluded illumination removed,
mapped onto the geometry of the real scene. (c) The final texture Tfinal after the texture-based correction
(source: [LDR00]).

The use of a radiosity modulation means the acuracy of the initial illumination calculated
is not crucial, only that any change to the illumination is consitently based on the original.

The hierarchical data structure is a tree where nodes are patches, and lower hierarchy
nodes are subdivisions. The structure also maintains links between branches to signify radiance
transfer. The radiosity algorithm used is a version extended to facilitate interactive updates
[DS97]. When moving an object the only part of the hierarchy which needs to be updated is
the part that the moved object mevs through. That means that by maintaing a shaft for each
link in the hierarchy, and testing for intersection of this shaft and the move, it is possible to
determine which parts of the hierarchy is to be updated. For a further treatment of hierarchical
datastructure in radiosity see section 2.5.1 on page 18.

Because of the use of radiosity surfaces are considered diffuse.

Radiance modulation. This method has been proposed by [ML04]. It is a three-step pro-
cess; where first step is rendering a radiance image using what is known about the geometry and
lighting of the scene. And the second step creating a modulation radiance image which reflects
a new illumination distribution. The last step is applying modulating the original image using

Jakob Skov-Pedersen

Virtual Photographics Relighting 17

these two radiance images. When computing the radiance images all surfaces are perfectly
white diffuse reflectors. Usign purely white refectors is possible since only the modulation of
the initial and relighting radiance is needed.

Rendering the two radiance images can be performed by any available renderer, however
most scenes should use a global illumination renderer to compute the initial illumiantion.
The global illumination effect of colorbleeding is not regarded because of the white reflector
assumption.

Texture-illuminance decoupling The approach for creating textures without illumination
in [OCDD01] is based on empirical texture filtering. The assumption is that small scale changes
(high spatial frequency changes) in the image are because of the texture, while large scale (low
special frequency) changes are from lighting. This assumption comes from shadows often
looking like big splotches in an image, while texture is fine details.

The separation is made using a plane spatial highpass filter. The filter compensates for
geometric perspective to make sure that what is considered large/small scale is dependant on
distance to viewer.

2.4.3 Illumination interpolation

By capturing multiple basis images of the same scene under different illumination, this can
serve as a space in which new illumination distributions can be interpolated.

The free-form light stage. In [MDA02] the basis images are captured by pointing a fixed
camera at an object, and manually holding a lightsource above the object in different positions
while taking the pictures. To interpolate bewtween the different illuminations the position
of the lightsource for each image must be known. The estimation of light-source positions is
performed by plpacing four diffusely white spheres around the object. The shading of these
spheres is used to determine light-source orientation.

To interpolate the lighting, an angular Vorini diagram [Wei] is used to segment the hemi-
sphere of incomming light according to the light-source positions. Now the lightprobe, that is
to be used for a relighting, is sampled in accordance with this diagram. Figure 2.5 shows how
the angular voroni diagram is produced from the estimated light-source positions.

Figure 2.5: Construction of the Voronoi diagram in on the hemisphere, based on the estimated illuminant
directions (source: [MDA02]).

Jakob Skov-Pedersen

18 Initial Analysis

2.5 Mesh subdivision

When calculating the initial lighting environment with a mesh-based technique, it is essential
that the mesh used reflect discontinuities in the original radiance. Mesh-based techniques
such as radiosity will only compute irradiance at discrete points determined by the underlying
mesh. Since shadow boundaries will produce sharp changes in the initial radiance, but not
in the geometry, some method is required to subdivide the geometry into a mesh, which will
capture these edges.

There are two goals for the resolution of the mesh, first the total resolution of the mesh
will impact the performance of any calculations performed. And second, where the incomming
light changes for a surface (e.g. near shadow boundaries) it is essential that the resolution is
high to allow an accurate solution. A method othen used in the area of computer science to
balance these two goals is to adatively refine the solution locally where increased acuracy is
required.

A very popular method for subdividing meshes in radiosity systems is hierarchical refine-
ment, and many other methods are based upon this method.

2.5.1 Hierarchical refinement

Hierarchical refinement radiosity builds a tree hierarchy of the patches in the scene to be
rendered, where each layer represents a subdivision of the mesh. An element in the mesh is
normally called a patch in hierarchical subdivision radiosity.

Light transport in the hierarchy can be performed on either of the levels. That is patches
that are far away will use the top level of the subdivision, so as to decrease the number of
calculations. To attain this property the structure maintains a number of links across the
hierarchy, which will singnify paths which radiosity can be transferred.

The algorithm starts with top-level links between full patches. Then for each link the form-
factor is estimated. If the patches interact such that an estimation of the formfactors is not
possible the patches are split, and the links moved a level down. A form-factor can beestimated
when the distance between to patches is large compared to their sizes.

[HSA91]

2.5.2 Texture based refinement

An adaptation of hierarchical refinement radiosity specifically for use in relighting system is
the scheme used by [LDR00]. A relighting system has prior knowledge about the radiance
distribution in the form of a solution, which is the initial image. Therefore the approach is
driven by the captured image.

Instead of looking at the form-factor to determine if a patch needs to be subdivided, the
idea is to look at the original image. The idea is that neighboring patches with similar color
in the image should also have similar visibility, and neighboring patches with dissimilar color
should also have dissimilar visibilty. When determining visibility the system looks at visibility
towards a few number of light-sources. Also a patch which is partially visible - one where there
is a shadow boundary - is subdivided.

This method must have some way to determine the similarity of colors. In [LDR00] the
colors are compared in CIELAB [GW02, pp. 322–323] color-space by their euclidean color

Jakob Skov-Pedersen

Interactive illumination design 19

distance.

2.6 Interactive illumination design

When making lighting design it is important to know what light sources are available and how
to use them. Examples of light sources are: spotlights, point lights, sphere lights and area
lights. Spotlights are used to add focus on important items in the scene. Point lights, e.g.
non-diffused thread bulbs, can be used for lighting larger items like tables or other furniture.
Sphere lights, e.g. normal diffused light bulbs are good at hanging from the ceiling and lighting
the entire room with a soft light. Area lights, like tube lights, work well when an even lighting
is wanted over a defined area. For the light designer it is important to make all these light
sources come together for the best lighting design.

Jakob Skov-Pedersen

Chapter 3

Analyzing initial illumination

Common illumination methods call for some analysis of the original illumination distribution
in the seeding image. In this chapter the illumination analysis approaches is described

3.1 Model analysis

Generally analysis of captured data involves relating it to some modelanalysis!model.

When using computers to analyze a problem, the model is a mathematical formulation of
the systems behavior. Examples are newtons equations for analyzing a falling object, or the
rendering equation for analyzing illumination problems.

3.1.1 Analysis methods

When analysing captured data there are a number of approaches. numerical methods uses
the computers ability to process numbers for finding approximate numerical solutions. A
simulation can be applied to simplified data, and then the difference recorded data and the
simulation is the result. Generally the difference between the two is a conceptual difference of
how the problem is attacked.

3.1.2 Numerical analysis

Numerical analysis tries to fit the recorded data to the model. Fitting is performed by extracting
values for model-parameters, which will yeild the recorded data. For example in [YDMH99]
the model that the data is fitted against is the ward BRDF[War92]. The fitting is performed
by least squares estimation. This tries to minimize an error estimate by tuning the desired
parameters.

Jakob Skov-Pedersen 21

22 Analyzing initial illumination

3.1.3 Simulation

In a simulation scenario, a simulation is started with starting conditions as close to what
produced the recorded data as possible. The idea is then that the difference between the
recorded data and the simulation result is a result of the unknown parameters of the problem.
The data used to run the simulation is called the context for the analysis. The context could
be things like scene geometry, or light-probes.

This is the method used in [LDR00] and [ML04]. Both uses what is known about the
context to simulate an estimate of the conditions in the captured data. This estimate is used
to neutralize the original conditions, so that new effects can be applied.

The next sections works with methods for performing this simulation.

3.2 A radiosity simulation

A radiosity renderer simulates the difuse inter-reflection in a scene. This means a radiosity
renderer only works on diffuse bounces of lights in a scene. Radiosity renderers as such try to
solve the radiosity equation from section 2.3.1 on page 14. A radiosity renderer will separate
the scene into a finite number of elements. Light is transported between elements as per eqn.
(3.1). The formfactor (Fij) describes the actual geometric relationship between two elements,
and also the visibility between them.

Bi = Ei + ρi

n∑
j

FijBj (3.1)

Because the calculation of the form-factors, and because the linear system becomes quite
large many radiosity systems now attempt to iteratively solve the linear system without ex-
plicitly storing the matrix. Such methods use the idea of keeping calculation on a mesh-level
granularity, but uses sampling instead of a linear system to come up with a solution. On such
radiosity renderer is a hemicube gathering renderer.

3.2.1 Hemicube gathering

The hemicube algorithm was originally devised to calculate the formfactors of a radiosity
system. However it lends itself to creating altered radiosity methods. The idea of the hemicube
algorithm is to start by selecting a patch. Now for this patch all other surfaces are rendered to
a hemicube resting on top of the current patch. This combines the geometric and visibility of
the form-factors in a simple rendering. If the surfaces are rendered to the hemicube using the
current solutions, this gives an estimate for the amount of light hitting the current surface.

By iteratively gathering a new solution from the previous this algorithm progressively con-
verges to a solution. Now because the hemicube is just rendered as any other rendering of
patches it is posssible to account for texturing, just by applying the texture to the surface.
[Eli]

It is important to use High Dynamic Range(HDR) renderings when rendering the hemicube
because the difference between e.g. a lamp, and a shoadow. Thus the hemicube henderings
will us HDR to ensure that no illumination is lost.

The hemicube rendering is just a simple rendering of the patches in the scene from a special
viewport. Thus a way to accelerate radiosity calculations is to use hardware to perform the

Jakob Skov-Pedersen

A raytracer simulation 23

rendering.

3.2.2 Using hardware for hemicube rendering

Using hardware to render a radiosity solution without textures is normally done by rendering
patch indices to the framebuffer, and then after a readback count the number of pixels with
each index [Eli]. The reason for doing this is because the framebuffer does not allow for HDR
floating point renderings. This way the hardware will not support textures in the renderer.

Newer graphical hardware has been extended to function with floating point framebuffers
[Nvi]. This means that the index method is not necessarily needed, and textures can be
rendered like any onther primitives.

3.3 A raytracer simulation

A raytracer works by tracing from the viewer, and trying to determine what the user sees. A
raytracer works in the reverse direction of the light flowing, and as such attempts to determine
where the illumiantion seen by the viewer might have come from. [PH04, pp. 4–16]

A raytracer can simulate global illumination effects by stochastically sampling directions
from each surface point that needs to be rendered. This is called the monte-carlo method for
solving the rendering equation. [DBB03, pp. 105–139]

Raytracers are not bound by geometry complexity nor material complexity, and can give
enough time solve any global illumination effects.

3.4 Light probes in simulation

Light-probes are an important image-based tool used in relighting and common illumination
systems. By capturing an image of a small mirror reflective sphere this will show light from
all incoming directions at the location of the sphere. This is a good tool in relighting systems
based on simulation analysis. This comes from the fact that it can capture a very complicated
illumination including both intensity and color.

Using a light-probe in the rendering process involves sampling the image, and multiplying
by the BRDF of the surface point.

With the hemicube gatherer described in section 3.2.1 on the preceding page it is possible
to use light-probes for radiosity renderers. And ray-tracers can trivially be made to render
with light-probes. This means using light-probes is possible with both renderer types.

The hemicube radiosity gatherer will treat a light-probe as a texture that is to be applied
to the background. While a ray-tracer will usually handle light-probes by sending a number of
random sampler-rays towards the probe.

3.5 Experiments

Two experiments are performed, one with a virtual scene, and one with a synthetic scene. The
real scene consists of a book and two rubber balls in a bookcase. The synthetic is an outdoor

Jakob Skov-Pedersen

24 Analyzing initial illumination

scene with two blocks, between two rows of columns. The two initial images are shown in
figure 3.1.

(a) The bookcase real scene. (b) The outdoor virtual scene.

Figure 3.1: The image used as a input for the system.

The geometry for both scene is modelled using blender 3d graphics suite [Fou]. A view of
the geometry can be seen in figure 3.2

(a) The bookcase real scene. (b) The outdoor virtual scene.

Figure 3.2: Geometry of the two scenes used for experiments.

The experiment is to try to use a raytracer to simulate the initial illumination, but using
different strategies for illuminating the scene. First by using a light-probe (figure 3.3 on the
facing page). Then by using an estimation of the original illumination source. And last by a
combination of the lightprobe capture, and an estimation of the principal illumination. The
raytracer is used since it directly supports all these lighting methods.

Jakob Skov-Pedersen

Results 25

(a) A lightprobe sphere in real scene. (b) A lightprobe rendering in the virtual
scene.

Figure 3.3: Lightprobe captures in the two experiments.

3.6 Results

Rendering the synthetic scene with purely white surfaces results in figures 3.5 on the next
page, 3.6 on the following page, and 3.7 on page 27. The renderings shows a blue color-tint
because of the sky, and sharp shadows from the single predominant light-source.

Figure 3.4: The textures of the synthetic sceen mapped onto the geometry.

Synthetic scene — Generally. Generally all the rendering methods does not capture the
color-bleeding from the dominant green floor to the scene objects. Color-bleeding is a global
illumiantion effect where the light reflected of a surface is so bright that it colors the nearby
surfaces. This is seen by a general gren tint in the textures, which should have been removed if
the green interreflected light from the ground could effect the other objects. The color-bleeding

Jakob Skov-Pedersen

26 Analyzing initial illumination

(a) Initial illumination
estimate

(b) Unlit textures (c) Difference to tex-
ture reference

Figure 3.5: Initial analysis through probe estimation.

(a) Initial illumination
estimate

(b) Unlit textures (c) Difference to tex-
ture reference

Figure 3.6: Initial analysis through original illumination.

problem is most predominant when using only the original lighting, sinc the light-probe does
capture a small part of the green area. Because the entire scene is synthetic materials were
known, and a comparison of the recovered texture and the texture originallly used is calculated.
The used texture is shown in figure 3.4 on the preceding page

Synthetic scene — Light probe. Rendering with the captured lightprobe shows decreased
quality of the shadows in the image (figure 3.5(a)). This is because sampling of a lightprobe
does not represent the lightsources very precisely. Since the ligt-source is less defined, so will
the shadows be. A second problem here is that the light-probe generally is only valid for a
certain location in the scene, and as such does not give an accurate result for the entire scene.

Synthetic scene — Original light estimation. In the synthetic scene the original light is
already known, and just used directly instead of an estimation. Using this technique the shape
of the shadows are captured quite precisely, but the fact that reflectivity is unaccounted for in
the global illumiantion solution means that regions in shadow from the lightsources especially
is missing the green color-bleeding from the ground.

Synthetic scene — Combination probe and principal illumination. Attempting to
combine the knowledge of a probe with a principal lighting, this shows a little less of the
color-bleeding problem while still maintaining the fine shadow boundaries. The error is spread

Jakob Skov-Pedersen

Results 27

(a) Initial illumination
estimate

(b) Unlit textures (c) Difference to tex-
ture reference

Figure 3.7: Initial analysis through combination of probe estimation and original illumination.

more generally over the image that with the other two methods, and shows an averaging of the
effects of the approximations. Also the errors are generally not so obvious in this image, and
as such is the perceptually nicest method (figure 3.7(b)).

The real scene rendered with pure white diffuse reflectors is shown in figures 3.8, 3.9 on the
next page, and 3.10 on the following page.

(a) Initial illumination estimate. (b) Unlit textures.

Figure 3.8: Initial analysis through probe estimation.

Real scene — Light probe. With the real scene the light-probe render shows the same
shadow artifacts as the synthetic scene (figure 3.8(a)). In fact the light in the real scene is closer
than it was in the virtual scene, so the shadows are more misshaped. Also looking at the area
near the light-source in the upper left corner the area is brighter in the original photograph
because of its proximity to the light-source (figure 3.8(b)). This is not captured because when
using a light-probe the distance to the light-source is not accounted for as the light-probe does
not change over space.

Real scene — Primary light-source estimation. By estimating the position of the light-
source using the placement of shadows as a reference the shadows can be neutralized far more
effectively (figure 3.9(b) on the following page). This rendering however has problems with
matching of the environment color. The color of the regions with shadow has a slight tint.
This happens for two reasons, first it is hard for the user to adjust the background value cor-
rectly since it is a slow trial and error process. Secondly the original probe (figure 3.3(a)) shows

Jakob Skov-Pedersen

28 Analyzing initial illumination

(a) Initial illumination estimate. (b) Unlit textures.

Figure 3.9: Initial analysis through original illumination.

(a) Initial illumination estimate. (b) Unlit textures.

Figure 3.10: Initial analysis through combination of probe estimation and original illumination.

parts of the environment being much darker, and of a different color. This is not captured in
the simple one-color background used here.

Real scene — Combination probe and principal illumination. Using the probe does
help significantly with the wrong colors in the shadows, but does also introduce another issue.
As seen in the probe rendering the lightsource appears to be at a wrong location because of
the poor handling of local lights using light-probes. This also affects this rendering, and the
fake shadows are clearly visible.

3.7 Summary

The aspect of color-bleeding must be handled for scenes with large areas of a single color, like
the ground in the virtual scene. This might be handled by an iterative approach where the
estimated textures are used to generate an approximate color for each surface, and the initial
render is repeated. Because the surfaces rendered are no longer pure white it also becomes
important to remove the approximated surface color from the new texture estimate.

The approach which produces the best results with minimal user intervention seems to
be the one based on using the principal light-sources to help a probe estimate. This method

Jakob Skov-Pedersen

Summary 29

produces shadows which more accurate than just a light-probe, and uses a good estimate
for environment radiance. However this system would require som method for removing the
principal light-source from the probe to avoid dual-shadows.

Another technique that would help the renderings is importance sampling. In the exper-
iments the light-source was only a tiny part of the entire probe, but ,becuase it is so much
brighter than the rest, has a large impact upon the final result. By driving the sampling of
the light-probe to sample the region with the light-source more than the rest will give better
results. There exists methods which can be used to improve the sampling of an light-probe for
example [CJAMJ05] and [ARBJ03].

A reverse way to look at the importance sampling problem is to make sure that the illu-
mination is sampled more accurately in parts of the image where shadows are expected to be.
The next chapter details how this can be achieved by adapting a sampling-mesh which serves
as a reference for where higher fidelity is needed in the shadows.

Jakob Skov-Pedersen

Chapter 4

Mesh subdivision

This chapter is about methods for subdividing the mesh of the scene for use as a sampling-grid
which will help improve the render of the initial illumination distribution. First methods to
adaptively subdivide a mesh in regions of image change are discussed. Then the possibility
of using a mesh-relaxation technique to improve the performance of the adaptive subdivision
scheme is explored.

As per section 2.5 the mesh initially recoved from the input data must be adapted to reflect
the shadow placements. This is because with a finite mesh based method the resolution of the
mesh will greatly impact the calculation of a radiance distribution. And for methods which
does not rely on the mesh it can still serve as a guide for where to kconcentrate sampling efforts.

While calculating the initial illumination distribution there is the advantage of having a
solution readilly at hand. The image captured already has the information from the initial
illumination included. This means it also carries information about shadows and where shadow
edges are. Therefore an image based method can be used to refine the mesh from the original
photograph.

4.1 Mesh datastructure

The datatructure used for the mesh must handle the subdivision and relaxation operations.
Subdivision operations splits lines in the mesh one by one to attain a mesh that follows the
illumination distribution. Relaxation operations adjust vertices to improve mesh structure. So
the two major operations that must be supported are:

Edge split: A new vertex is created on the edge that is to be split. Each triangle containing
the edge must also be split into two triangles. Figure 4.1 shows an example of an edge
split.

Vertex move: A vertex can be displaced. To avoid getting reversed triangles constraints are
placed on the vertex not crossing the opposite edge in a triangle where it is a corner.

Jakob Skov-Pedersen 31

32 Mesh subdivision

Figure 4.1: Example of an edge being split.

The minimum connectivity in in a mesh dictates that each triangle in the mesh must have
knowledge of the three vertices making its corners. A mesh with this connectivity will support
rendering the mesh, however by increasing the connectivity the mesh the operations described
above can become more time effective.

To support the vertex move each vertex should have knowledge of triangles in which it is
a corner. Then when making sure constraints are kept it is just a search of each connected
triangle, to see whether the move crosses any opposing edges.

By having a structure for edges it becomes possible to directely relate vertex-pairs which
are connected. This becomes important when splitting the edges, where each edge must be
examined to determine if it should be split. By creating a explicit edge this can be done without
having to search through all triangles. Edges should be connected to the vertices at each end.

Each edge has information about triangles using it. This is used when splitting the edge,
because this split must also split the triangles. Instead of having to search each triangle using
the vertices at each end this becomes a simple lookup.

The above extra connectivity results in a datastructure defined by these collections:

• Vertex (v): Index ↪→ (x, y, z, {triangles})

• Triangle (t): Index ↪→ (v1, v2, v3)

• Edge (e): Index ↪→ (v1, v2, tleft, tright)

4.2 Image based adaptive surface refinement

To increase the resolution of the lighting mesh where the lighting is changing, the mesh is adap-
tively subdivided by examining the original photograph. Each edge in the mesh is examined
to determine if it crosses a shadow boundary. If the edge crosses a boundary, then it is divided
into two edges, and so are the two triangles that share the edge. Figure 4.2, 4.3, and 4.4 shows
steps through this algorithm. Green lines signify lines that are sufficiently subdivided, while
blue lines still needs to be subdivided. In this figure the mesh is a simple planar camera aligned
mesh. This must also be the case for the subdivision system while sampling, but the result
should still be a 3D mesh, the handling of these two representations is described in section
4.2.4.

Jakob Skov-Pedersen

Image based adaptive surface refinement 33

Figure 4.2: Initial mesh before any subdivision.

Figure 4.3: Subdivision 1 step.

Jakob Skov-Pedersen

34 Mesh subdivision

Figure 4.4: Subdivision 2 steps.

4.2.1 Determining edge boundary cross

When determining if an edge crosses a boundary, it is important to reference the interpolation
of colors across a triangle from its vertices. Since this interpolation should match up with what
is shown in the picture at the triangles location. Figure 4.5 shows how colors are interpolated
across a triangle with two different vertex colors.

Figure 4.5: Interpolation across a two color triangle.

This interpolation across a triangle becomes important since this is what the final renderer
is able to simulate. This means that even though the gradients of lighting in a real image may
not follow this interpolation it must be simulated using this in the virtual scene, and therefor
the geometry must allow for this interpretation. However a examination of a simple shadow

Jakob Skov-Pedersen

Image based adaptive surface refinement 35

does indeed reveal this property. Appendix A shows measurements performed on a Shadow
boundary revealing the linear interpolation to be observable.

Possible strategies for determining shadow cross:

Analyze line: By sampling each pixel under the line, an estimate of the actual changes in
the photograph over the line can be measured. This will capture any change that crosses the
boundary, but will require an examination of the entire line.

Compare points: Just comparing pixels at the endpoints of the line will capture mesh edges
where one point is in shadow, and one point is not. However this method may fail to capture
sharp corners in the shadow correctly (see figure 4.6).

Figure 4.6: A shadow stabbing an edge is not captured by point comparison..

4.2.2 Analyze line

Lines are analyzed by integrating over the line in the image. Integration over a line involves
finding all pixels which lie on this line, and is therefor the same problem as drawing a line.
A fast method for rendering lines to a pixel device is the Bresenham line-drawing algorithm
[Wika].This method can be adapted to integrate over a line by substituting the pixel write-out
for a pixel read.

4.2.3 Definition of a changing line

To distinguish lines that cross a shadow boundary from lines that do not, there must be some
measure for how close the line is to the linear interpolation of section 4.2.1 on the preceding
page.

A measure for intensity change over a line is the standard deviation of the samples. Standard

Jakob Skov-Pedersen

36 Mesh subdivision

deviation comes from statistics, and is calculated as eqn. (4.1). [Wikd]

σ2 =
N

∑N
i=1 x2

i −
(∑N

i=1 xi

)2

N2
(4.1)

Where each xi is a sample on the integrated line.

Standard deviation is however not affected by order, and requires some form of preprocessing
to correctly determine the linear gradients in the interpolation. Another option is to assume
the points form a line when plotted in a line-distance/intensity graph. Figure 4.7(a) shows
how a satisfactory line looks in this context. Looking at figure 4.7(b) it is not possible to fit
a linear line through these points. So with this method the decision value is how much these
points deviate from the linear gradient. Appendix A on page 57 shows further data for lines
measured on the same shadow.

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0 10 20 30 40 50 60 70

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000714715*x + 0.0223263

(a) Linear gradient line.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000286659*x + -0.0148546

(b) Line crossing shadow
boundary.

Figure 4.7: Graphs of intensities on lines in a photograph the green line is a least squares fit of a linear line.

A method for finding the linear line through the points is Least squares fitting . This method
tries to minimize the squared error between the fitted line, and the actual points. The square
error for a linear line is calculated as in equation 4.2. (xj , yj) are samples, and a and b are
parameters of the line. The error is the vertical error, or, for intensity lines, the intensity error.
[Kre99, pp. 914–915]

q =
n∑

j=1

(yj − a − bxj)2 (4.2)

a and b can be found by solving the linear system in equation 4.3.

an + b
∑

xj =
∑

yj (4.3)

a
∑

xj + b
∑

x2
j =

∑
xjyj (4.4)

When using this linear gradient fit method, a possibility is using the same data used for
fitting the line to determine the optimum place to split the edge. Finding the pixel which
exhibits the greatest error compared to the fitted line will yield an estimated optimum position
to split. In figure 4.7(b) this would mean splitting twice, once at the lower break, and once at
the top. Care must be taken however to ensure that the line is not split at the endpoints as a
result of the line-fitting. ie. looking at the figure there is quite a difference between the first
sample and the fitted line, but a split here is not desirable.

Jakob Skov-Pedersen

Clipping 37

4.2.4 3D mesh and planar subdivision

As stated the image-based subdivision is performed in planar screen-oriented space. But since
the subdivided mesh should still be a 3D mesh, the transformation is performed for each edge-
test. The transformation to the planar space means that when splitting an edge the new vertex
must be created from the original coordinates to be usable in the original mesh.

By this the algorithm for testing a line for subdivision becomes:

1. Transform endpoints of edge into screen-space.

2. Use line read to determine fitness of current line.

3. If line is determined to cross shadow boundary:

(a) Calculate position of new vertex between edge end-points in untransformed space.

(b) Split edge.

(c) Split neighboring triangles.

(d) Add new edges to list of edges to be examined for subdivision.

4.3 Clipping

Because only the mesh within the image is needed for the subdivision the mesh is first clipped
to within the screen area. This is feasible because only a single image is used, and the aim is
to only reproduce the original view with a new illumination. Thus this mesh can also be used
when rendering a new illumination.

4.3.1 Triangles

Since the entire system works from triangles it is reasonable to only work with clipping of such
primitives. In the rendering pipeline clipping is performed per triangle individually. This is a
good approach when the clipped triangles are just needed for rendering to the screen. However
since this clipping in the remeshing part of the system is followed by other mesh operations, it
becomes important that the mesh retains its connectivity as described in section 4.1. A way to
obtain this property is by splitting edges instead of clipping triangles. When the edge is split
traingles outside the clipping region can be discarded.

By clipping each boundary individually the possible scenarios that require splitting is two,
see figure 4.8 on the following page. As the figure shows each of these scenarios can be handled
by splitting both lines crossing the boundary one by one. Therefore clipping the entire mesh
can be accomplished by splitting each edge one by one.

4.4 Mesh relaxation

Mesh relaxation can be applied to the vertices of the mesh while performing the subdivision.
Thereby a better fit may be obtained, and possibly some subdivision avoided. Relaxation
works by moving each vertex so that it will better fit to the shadow boundaries in the original
photograph. The following describes a method for relaxing a mesh, which use a technique
called VPR.

Jakob Skov-Pedersen

38 Mesh subdivision

Split 1

Split 2

Split 1

Split 2

Figure 4.8: Clipping scenarios with a single boundary and a triangle.

4.4.1 Uphill Maximum Gradient Path

VPR is used to find local maxima in the changing in an image. The dual of VPR, downhill
maximum gradient path [MVSM95], is often used in image segmentation, since it connects each
pixel with its least changing surrounding area. VPR however allows a point distribution to be
transformed into another distribution wich better captures changes in the image. VPR works
with a gradient image. A gradient image coresponds to the derivative of the original image,
and captures edges in the image. Figure 4.9 shows an example of an image and its gradient
magnitude image.

Figure 4.9: Original photo (left), and resulting gradient image (right).

When performing VPR the gradient image is virtually considered as a landscape, where
regions of great change are mountains, and regions of little change are valleys. The dual of
VPR (downhill MGP) will now let a droplet of water fall from each desired point, and the
path of this droplet is the downhill maximum gradient path. Computationally the path of
the waterdroplet is simulated by allways selecting the next pixel which has the least gradient
intensity. Now for VPR the gravity is virtually inverted, so that the droplet will find the locally
highest peak instead of the locally lowest valley. Another way to simulate this is to use the
inverted gradient image. Figure 4.10 on the facing page shows the image from figure 4.9 as

Jakob Skov-Pedersen

Mesh relaxation 39

an inverse landscape, where image changes are valleys.

Figure 4.10: Example landscape for vertex mesh relaxation, right is magnified portion.

Figure 4.12 on page 41 shows a simulation of waterdroplets falling in a landscape produced
by sweeping a sinuscurve in two dimensions. A number of random waterdroplets have been
started, and allowed to flow down the slopes of the landscape. The algorithm for producing a
flow-path from a starting pixel is outlined in the algorithm in figure 4.11 on the next page. At
each step this algorithm finds the pixel in the surrounding area to the current pixel which has
the smallest intensity, and chooses this as the next pixel in the path.

4.4.2 Using VPR for vertex mesh relaxation

By utilizing the water flow-paths from VPR it is possible to apply a relaxation to vertices in a
mesh. By allowing each vertex of the mesh be relaxed in the direction of the water flow-path
the mesh will dynamically adapt to the contours of the image.

Looking at the method used to create the gradient image, a possible optimization can be
implemented since the system is used to move points, and not to find paths. Normally the
gradient image is produced by calculating the horizontal and vertical derivatives, and then
calculating the magnitude of this vector. Since the idea in the mesh relaxation is to displace
points this might just as well be performed in the direction of the derivative, than by normal
VPR.

When a point is moved some care must be taken in preserving the orientation of the
triangles. That is if a point crosses the opposing edge of any triangle it belongs to, that
triangle is flipped, an event that disrupts the mesh. Therefor when moving a vertex it is
important to check that it does not cross any of the edges in the adjoining triangles. A method
for testing this property is to examine for each edge whether the move will cross the edge.
Either by calculating to which side of the edge the point will finally be, or by determining if
the vector corresponding to the move is intersecting the edge. Figure 4.13 sumarize the two
methods. Testing the intersection of the move and edge is an instance of segment to segment
intersection [SE03, pp. 241–245]. While testing the before, and after points of the move for
edge cross can be performed by testing which side of the edge the points are on, which is the
same test used in polygon inclusion tests [SE03, pp. 695–697].

Jakob Skov-Pedersen

40 Mesh subdivision

Is point N
labeled

Start

Point N given

Stop

Save coordinates
for N in path

P = Point with the
lowest gradient in

neighbourhood
incl. N

Is point P
labeled

Is point P =
point N

Point N = Point P

Yes

No

No

Assign the label of
P to path

Assign path next
free label

No

Yes

Yes

Stop

Stop

Figure 4.11: Flowchart showing the algorithm for Downhill MGP.

Jakob Skov-Pedersen

Mesh relaxation 41

Figure 4.12: Waterdroplet simulation, black lines are droplet paths.

 M ove
d ire ction

Opposing
 e dge

M ove
inte rse ction
te st

Pbe fore

Pafte r

Polygon
inclusion
te st

Opposing
 e dge

Figure 4.13: Methods to test the validity of a relaxation move..

Jakob Skov-Pedersen

Chapter 5

Interactive render of new
illumination

This chapter details rendering of a new novel illumination. The system must perform this in
real-time, so that it can be used in interactive illumination design.

A relighting system requires a phase for calculating the new illumination. To allow the user
to interactively play with a new lighting scheme this step uses the interactive pipeline render
model (see section 2.1.2 on page 10).

The idea is to render the new illumination to the frame-buffer while using the unlit image
as a texture. A feature of the rendering pipeline is used to calculate texture coordinates in
screen aligned space automatically [SWND04, pp. 422–432]. A shadow map is used to render
shadows onto the image [AMH02, pp. 269–275].

Figure 5.1(a) shows a new illumination rendered with the interactive application. The real
scene from section 3.5 on page 23 is used as the basis. For reference figure 5.1(b) shows the
same scene using another new illumination, but this time rendered with a ray tracer.

(a) Real-time application. (b) Raytraced.

Figure 5.1: Renders of the real scene using new illuminations.

Jakob Skov-Pedersen 43

Chapter 6

User interface

This chapter looks at the user interface for the interactive relighting part of the system.

6.1 The users

The application is ment for use when designing illumination of a scene. A typical user is
the editor of a movie who wants to change the ligthing of the movie and investigate which
illumination design yields the best result. The user can also be a photographer who wants to
investigate where his lights should be for the perfect photo. In general the user is a visual
oriented person with some tecnical expertice and as such the user interface is designed with
this in mind.

The input of the application is a picture of a scene and a representation of the geometry in
this scene.

6.2 The main form

The main form has two areas. The left area is for information about the added ligths. In the
right area the scene is shown with the new lights added. The design of the form can be seen
on figure 6.1. and the dialog for adding new light-sources in figure 6.2.

6.2.1 The left area:

At the top is a representation of the geometry of the scene. On this the added lighs are
represended as dots. The dots have different colors according to their status.

red: The currently selected light source.

blue: A shown light source that is not active.

yellow: A deactivated light source.

Jakob Skov-Pedersen 45

46 User interface

Description

Description

Description

Description

Geographic view

Scene

ChangeDeleteNew

Direction

Description
Color
Position

Type

Figure 6.1: Main form.

Below the geometry wiew is a list of all the lights added represented by a short description.
In front of each list item is a small checkbox with an eye icon. This is used to deactivate the
light source but still keep it for later use.

Under the list is information about the selected light. This is the direction, color and
position of the light source.

6.2.2 The right area:

The scene is shown in the right area. The effects of the inserted light sources are shown here.

There are 3 buttons at the bottom of the main form ”New”, ”Change” and ”Delete”.

6.3 functionality

This section is about design of the user interface. It describes the functionality of the finished
application. However the user interface has not been implemented, but the functionality is
described as if it was. A finished application will have the following main functions:

Add a new light source

When adding a light source a new dialog box will appear. This allows the user to state a
description, color, position and direction of the added light source. The description is what is
shown in the light source list. Color is given in hex format. Position is given as 3D coordinates,

Jakob Skov-Pedersen

functionality 47

Description

Type

Color

Direction

Position

Figure 6.2: Dialog for adding new light-source.

Jakob Skov-Pedersen

48 User interface

and so is direction indication a vector. The type of light can also be selected. There are the
following types available: Spotlight, point-light, area-light.

Selecting a light source

The user has 2 ways to select a light source. Clicking on it in the geometric view or selection
it on the list. When a light source is selected it appears red in the geometric view. A selected
light source can be moved, changed or deleted.

Moving a light source

Moving a light source can be done in two ways. By the arrow keys or by changing its position by
clicking the change button. The up and down key moves the light up or down in the geometric
view. The left and right keys move the light source to the sides. Home and End moves the
light source forwards or backwards in the geometric view. Pressing SHIFT while moving the
light alow it to be moved a longer distance at a time.

changing a light source

The user can change the settings of a light source by clicking the ”Change” button. the settings
are description, color, position, direction and type. This will bring out the same dialog that is
shown when adding a light source.

Removing a light source

A light source can be removed both temporary and permanently. Permanently by pressing the
”Delete” button or the DEL key and temporary by clicking the box with the eye icon on the
light source list. When the icon is clicked the light source will no longer appear on the scene
and the light source will appear in yellow in the geometric view. If the user want to show
temporarely removed light source again, he must reclick the icon on the list.

Jakob Skov-Pedersen

Chapter 7

Conclusion

The thesis describes details about a system for relighting a photograph. The system consists
of three phases: analyzing initial illumination, render new illumination, and combine results.
The two last phases are combined in an interactive application for light experimentation.

Analyzing initial illumination Analysis of the initial illumination is performed by simu-
lation. Analysis by simulation is a technique in which as much of the context of the original
capture as possible is used to simulate a new result. Then the difference between the capture
and this new result is caused by the unknown parameters.

Three different approaches for capturing the lighting of the scene was tested on virtual and
real user provided data. The results show that the most accurate removal of the illumination
is possible by estimating the position and types of light-sources affecting the scene. However
using light-probes gives a better matching of ambient illumination, and ultimately means an
image where the color appears most correct.

A method for improving the solution is proposed and analyzed. This method uses image-
based techniques to create a mesh that captures the composition of shadows in the original
scene. Both by subdivision and relaxation.

Render new illumination An application for interactively calculating and displaying a new
illumination was coded. In this application the user can move a light-source to experiment with
different illuminations.

Jakob Skov-Pedersen 49

Bibliography

[AMH02] Thomas Akenine-Möller and Eric Haines. Real-time rendering. A K Peters, 2
edition, 2002. 10, 43

[ARBJ03] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Henrik Wann Jensen.
Structured importance sampling of environment maps. ACM Trans. Graph.,
22(3):605–612, 2003. 29

[Ash] Ian Ashdown. Photometry and radiometry. webpage:
http://www.ledalite.com/download/white/photomet.doc. Valid as of June
4th, 2005. 11

[BG01] Samuel Boivin and André Gagalowicz. Image-based rendering of diffuse, specular
and glossy surfaces from a single image. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and interactive techniques, pages
107–116, New York, NY, USA, 2001. ACM Press. 15

[BG02] Samuel Boivin and André Gagalowicz. Inverse rendering from a single image.
In IS&T’s First Europ. Conf. on Color in Graphics, Images and Vision, pages
268–277, Poitiers, France, April 2002. 15

[CJAMJ05] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Henrik Wann
Jensen. Wavelet importance sampling: Efficiently evaluating products of com-
plex functions. In Proceedings of ACM SIGGRAPH 2005. ACM Press, 2005. 29

[DBB03] Philip Dutré, Philippe Bekaert, and Kavita Bala. Advanced global illumination. A
K Peters Ltd., 2003. 23

[Deb98] Paul Debevec. Rendering synthetic objects into real scenes: bridging traditional
and image-based graphics with global illumination and high dynamic range pho-
tography. In SIGGRAPH ’98: Proceedings of the 25th annual conference on Com-
puter graphics and interactive techniques, pages 189–198, New York, NY, USA,
1998. ACM Press. 5

[DM97] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance
maps from photographs. In SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, pages 369–378, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. 3

[DS97] George Drettakis and François X. Sillion. Interactive update of global illumination
using a line-space hierarchy. In SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, pages 57–64, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co. 16

50 Jakob Skov-Pedersen BIBLIOGRAPHY

BIBLIOGRAPHY 51

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering
architecture from photographs: a hybrid geometry- and image-based approach. In
SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 11–20, New York, NY, USA, 1996. ACM Press.
3, 4

[Eli] Hugo Elias. Radiosity. webpage: http://freespace.virgin.net/hugo.elias/radiosity/radiosity.htm.
Valid as of June 13th, 2005. 22, 23

[Fou] The Blender Foundation. blender3d.org :: Home. webpage:
http://www.blender3d.com/. Valid as of June 11th, 2005. 24

[GHH01] Simon Gibson, Toby Howard, and Roger Hubbold. Flexible image-based photo-
metric reconstruction using virtual light sources. 20(3):296–305, September 2001.
3

[GW02] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice-
Hall, Inc., 2 edition, 2002. 18

[Hec90] Paul S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. In
SIGGRAPH ’90: Proceedings of the 17th annual conference on Computer graphics
and interactive techniques, pages 145–154, New York, NY, USA, 1990. ACM Press.
12

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity
algorithm. SIGGRAPH Comput. Graph., 25(4):197–206, 1991. 7, 16, 18

[JL04] Katrien Jacobs and Céline Loscos. Classification of illumination methods for mixed
reality. In State of the Art Reports, pages 95–118. Eurographics, 2004. 15

[Kaj86] James T. Kajiya. The rendering equation. In SIGGRAPH ’86: Proceedings of the
13th annual conference on Computer graphics and interactive techniques, pages
143–150. ACM Press, 1986. i, 11

[Kre99] Erwin Kreyszig. Advanced engineering mathematics. John Wiley & Sons, Inc., 8
edition, 1999. 36

[LDR00] Céline Loscos, George Drettakis, and Luc Robert. Interactive virtual relight-
ing of real scenes. IEEE Transactions on Visualization and Computer Graphics,
6(4):289–305, 2000. 3, 16, 18, 22

[MDA02] Vincent Masselus, Philip Dutré, and Frederik Anrys. The free-form light stage. In
EGRW ’02: Proceedings of the 13th Eurographics workshop on Rendering, pages
247–256, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.
5, 17

[MK94] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual displays.
IEICE Transactions on Information Systems, E77-D(12), December 1994. 2

[ML04] Claus .B. Madsen and Rune Laursen. Image relighting: Getting the sun to set in
an image taken at noon. In 13th Danish Conference on Pattern Recognition and
Image Analysis, pages 13–20, Copenhagen, Denmark, August 2004. 16, 22

Jakob Skov-Pedersen

52 BIBLIOGRAPHY

[MVSM95] Frederik Maes, Dirk Vandermeulen, Paul Suetens, and Guy Marchal. Computer-
aided interactive object delineation using an intelligent paintbrush technique. In
CVRMed ’95: Proceedings of the First International Conference on Computer
Vision, Virtual Reality and Robotics in Medicine, pages 77–83, London, UK, 1995.
Springer-Verlag. 38

[Nvi] Nvidia. High dynamic range rendering on the geforce 6800. webpage:
http://developer.nvidia.com/object/hdr on 6800.html. Valid as of June 13th,
2005. 23

[OCDD01] Byong Mok Oh, Max Chen, Julie Dorsey, and Frédo Durand. Image-based model-
ing and photo editing. In SIGGRAPH ’01: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, pages 433–442, New York,
NY, USA, 2001. ACM Press. 2, 17

[OHHM02] Marc Olano, John C. Hart, Wolfgang Heidrich, and Michael McCool. Real-Time
Shading. A K Peters, 2002. 13

[PH04] Matt Pharr and Greg Humphreys. Physically based rendering: From theory to
implementation. Morgan Kufmann, 2004. 23

[SE03] Phillip J. Schneider and David H. Eberly. Geometric tools for computer graphics.
The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling.
Morgan Kaufmann, 2003. 39

[SWND04] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming
Guide. Addison Wesley, 4 edition, 2004. 43

[War92] Gregory J. Ward. Measuring and modeling anisotropic reflection. In SIGGRAPH
’92: Proceedings of the 19th annual conference on Computer graphics and inter-
active techniques, pages 265–272, New York, NY, USA, 1992. ACM Press. 15,
21

[Wei] Eric W. Weisstein. Voronoi diagram — from mathworld. Webpage:
http://mathworld.wolfram.com/VoronoiDiagram.html. Valid as of June 10th,
2005. 17

[Wika] Wikipedia. Bresenham’s line algorithm. webpage:
http://en.wikipedia.org/wiki/Bresenham’s line algorithm. Valid as of June
12th, 2005. 35

[Wikb] Wikipedia. Compositing. webpage: http://en.wikipedia.org/wiki/Compositing.
Valid as of June 4th, 2005. 4

[Wikc] Wikipedia. Laser range scanner. webpage: http://en.wikipedia.org/wiki/Laser -
range scanner. Valid as of June 4th, 2005. 3

[Wikd] Wikipedia. Standard deviation. webpage:
http://en.wikipedia.org/wiki/Standard deviation. Valid as of June 13th,
2005. 36

[Wil] Keith Wills. Dodge and burn project. webpage:
http://www.scphoto.com/html/dodge burn.html. Valid as of June 4th, 2005. 1

Jakob Skov-Pedersen

BIBLIOGRAPHY 53

[YDMH99] Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. Inverse global il-
lumination: recovering reflectance models of real scenes from photographs. In
SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graph-
ics and interactive techniques, pages 215–224, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co. 3, 15, 21

Jakob Skov-Pedersen

Appendices

Appendix A

Data fitting for lines in soft shadows

These are data fit result obtained by taking pictures of a shadow. Each left image shows
intensities over the line, and a least sqaures fit to a linear function. The right image shows
from which part of the shadow the line is sampled. The first 17 images are of lines within
the penumbra of the shadow. The last 17 are of lines passing from the umbra through the
penumbra to unshadowed.

A.1 Penumbra

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0 10 20 30 40 50 60 70

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000714715*x + 0.0223263

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 10 20 30 40 50 60 70 80

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000700822*x + 0.0192899

Jakob Skov-Pedersen 57

58 Data fitting for lines in soft shadows

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 20 40 60 80 100 120 140 160

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000376117*x + 0.0188529

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000251884*x + 0.0191953

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250 300 350

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000192435*x + 0.0197723

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000157174*x + 0.0191005

Jakob Skov-Pedersen

Umbra to unshadowed 59

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 50 100 150 200 250 300 350 400 450 500

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000125042*x + 0.0204884

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 100 200 300 400 500 600

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000107744*x + 0.0208323

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 100 200 300 400 500 600 700

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
9.02213e-05*x + 0.0216093

A.2 Umbra to unshadowed

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000286659*x + -0.0148546

Jakob Skov-Pedersen

60 Data fitting for lines in soft shadows

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000297323*x + -0.0157196

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000300177*x + -0.015689

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000305742*x + -0.0159955

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000303594*x + -0.0155026

Jakob Skov-Pedersen

Umbra to unshadowed 61

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000308266*x + -0.0158784

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350 400 450 500

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000258054*x + -0.0160095

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000217828*x + -0.0154802

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600 700

Lu
m

in
an

ce

Pixel #

"temp.dat" u 1:2
0.000189585*x + -0.0149764

Jakob Skov-Pedersen

	Introduction
	Motivation
	Mixed reality
	Image based methods
	Illumination
	Problem description

	Initial Analysis
	3D computer visualization
	Local illumination
	Global illumination
	Virtual Photographics Relighting
	Mesh subdivision
	Interactive illumination design

	Analyzing initial illumination
	Model analysis
	A radiosity simulation
	A raytracer simulation
	Light probes in simulation
	Experiments
	Results
	Summary

	Mesh subdivision
	Mesh datastructure
	Image based adaptive surface refinement
	Clipping
	Mesh relaxation

	Interactive render of new illumination
	User interface
	The users
	The main form
	functionality

	Conclusion
	Appendix
	Data fitting for lines in soft shadows
	Penumbra
	Umbra to unshadowed

