
RELATIONAL DATA MINING

USING

PROBABILISTIC

RELATIONAL MODELS
DESIGN, IMPLEMENTATION AND TEST

Aalborg University
Department of Computer Science, Frederik Bajers Vej 7E, DK 9220 Aalborg Øst

Title:

Relational Data Mining Using Proba-

bilistic Relational Models – Design, Im-

plementation and Test

Project period:

Master’s Thesis

DAT6, Feb. 14th 2005 – Jun. 9th 2005

Project group:

d640a

Members of the group:

Morten Gade

Michael Gade Nielsen

Supervisor:

Manfred Jaeger

Number of copies: 5

Report – number of pages: 85

Total amount of pages: 85

Abstract

This thesis documents the design, implemen-

tation and test of Probabilistic Relational Mod-

els (PRMs). PRMs are a graphical statistical

approach to modeling relational data using

the Relational Language. PRMs consist of two

components; the dependency structure and the

parameters.

Our design is based on simplicity, flexibil-

ity, and performance. We explain the search

over possible structures, using a notation of

potential parents. The potential parents are

used in four different search algorithms; one

greedy, two random, and a hybrid between

greedy and random. Also, we explicitly ex-

plain learning the parameters using sufficient

statistics, by considering internal and external

dependencies and how to keep track of the

context.

We perform five different tests, showing

that the penalty term of the score function can

be tweaked to control the trade off between

maximum likelihood and complexity. Also,

our limited scalability test shows that our im-

plementation scales near linear, although our

implementation could be further optimized.

The search test of the four algorithms show

that introducing randomness is beneficial if

combined with a greedy approach. The results

also show, that although greedy finds the best

model, the hybrid approach comes close in less

time.

In comparison with our prior work, it is

clear that PRMs are a very good alternative to

propositional data mining in terms of descrip-

tiveness.

Preface

This thesis documents the design, implementation and test of Probabilistic Re-

lational Models (PRMs). The thesis has been written during DAT6 (8. semester)

at Aalborg University, Denmark.

The reader should be familiar with our prior work [10]. A short summary

of this, is provided for convince in the introductory parts of the thesis.

A special thanks to Manfred Jaeger for his guidance and assistance during

the project.

Aalborg University, June 2005

Morten Gade Michael Gade Nielsen

3

Contents

1 Introduction 7

1.1 Introduction . 7

1.2 Relational Data Mining . 8

1.2.1 Inductive Logical Programming 8

1.2.2 Statistical Graphical Models 10

1.3 Objective . 11

1.4 Summary of Prior Work . 12

2 PRMs 15

2.1 Relational Language . 15

2.1.1 Schema . 15

2.1.2 Instance . 16

2.1.3 Cardinality . 16

2.2 Probabilistic Relational Models 17

2.2.1 Dependency Structure . 17

2.2.2 Parameters . 18

2.3 Bayesian Networks and PRMs . 19

3 Learning PRMs 21

3.1 Parameter Estimation . 21

3.2 Structure . 22

3.2.1 Hypothesis Space . 22

3.2.2 Evaluating a Structure . 23

3.2.3 Structure Search . 24

4 Design 27

4.1 Design Criteria . 27

4.2 Overview and Classes . 27

4.3 Dependency Structure Search . 29

4.4 Search Algorithms . 32

4.4.1 Greedy . 32

4.4.2 Random Search . 34

4.4.3 Hybrid Search . 36

5

CONTENTS

4.5 Computing Sufficient Statistics 36

4.5.1 Internal Dependencies . 37

4.5.2 External Dependencies, Single-Valued 37

4.5.3 Tracking Context . 38

4.5.4 External Dependencies, Multi-Valued 41

4.6 Calculating the Probabilities . 43

5 Implementation 45

5.1 Specifying a Database Schema . 45

5.2 The Learning Procedure . 46

6 Databases 49

6.1 Relational Daycare Database . 49

6.1.1 Daycare Admission of Children 49

6.1.2 Database Schema . 50

6.2 Relational Movie Database . 52

6.2.1 Converting to a Useful Relational Schema 52

7 Tests 57

7.1 Complexity Penalty Test . 57

7.1.1 Results and Evaluation . 57

7.2 Search Test . 61

7.2.1 Greedy Search Result . 61

7.2.2 Random Search . 62

7.2.3 Hybrid Search Result . 63

7.2.4 Evaluation . 63

7.3 Scalability Test . 67

7.3.1 Test and Evaluation . 67

7.4 Profile Test . 69

7.4.1 Result and Evaluation . 69

7.5 Structure Evaluation Test . 69

7.5.1 Daycare Structure . 71

7.5.2 Movie Structure . 72

8 Conclusion 77

8.1 Conclusion . 77

8.2 Future Work . 79

9 Appendix A - Summary 81

6

Chapter 1

Introduction

1.1 Introduction

Data mining has been, implicitly, synonymous with propositional data mining

for decades. In propositional data mining, we only work with a single homoge-

neous table representation of the data. The term data set is often used about this

propositional representation format. Most of today’s data are, however, stored

in relational databases, which is a heterogeneous data representation with rela-

tions between entities. Propositional data mining techniques cannot be directly

applied to a relational database, nor utilize the relational structure. Instead the

database must be flattened into a data set. A database is flattened by merging

tables of interest into a single table representation. This process, see Figure 1.2,

has two main disadvantages:

• Flattening a relational database often results in duplicated information,

thus leading to statistical incorrectness since the data is skewed and

does not represent the true distribution. Flattening the database in Figure

1.1(a), results in two entries in the propositional data set if a parent has

two children, see Figure 1.2. Thus the information of the parent would be

duplicated.

• Before flattening, the attributes of the propositional data set must be

determined. This reduces the ability to explore newdependencies among

relations, since we must determine which relations to explore. E.g.

– If we flatten a relational database with a recursive relation, such as

a parent and its children modeled by a generic person table, see Fig-

ure 1.1(b). What attributes should be included, the attribute of the

child, its parents, and their parents etc. how far should the relational

structure be extended?

– If we flatten the relational database in Figure 1.1(a), we may include

the attributes of a child’s siblings, since these may be correlated.

7

Chapter 1. Introduction

However, this is suboptimal since we introduce duplicate informa-

tion and null values, see Figure 1.2.

Parent

 Age

 Sex

 Married

 Income

Child

 Parent

 Age

 Sex

 Subsidy

1

*

(a)

Person

 Parent

 Age

 Sex

 Income

(b)

Figure 1.1: (a) A database with two tables, Parent and Child where a child has one parent.

(b) A database with a parent-child relation modeled as a recursive relation.

flattening

Parent

ID Age Sex Married Income

1 40 Male Yes 400,000

2 59 Female No 200,000

Child

ID Parent Sex Subsidy

1 1 Male ES

2 1 Female NO

3 2 Female RE

ChildParent

ID Sex Subsidy PAge PSex PMarried PIncome S1Sex S1Subsidy SNSex SNSubsidy

1 Male ES 40 Male Yes 400,000 Female NO NULL NULL

2 Female NO 40 Male Yes 400,000 Male ES NULL NULL

3 Female RE 59 Female No 200,000 NULL NULL NULL NULL

Figure 1.2: The result of flattening the database in 1.1(a). The figure shows how the database

structure and its data are merged into a single table. In the single table, we can encounter

duplicate information, null values, and we must anticipate which relations to explore. Also

how should we determine the number of n siblings?

Inmany cases a propositional datamining algorithm is sufficient. Although

in cases where the above disadvantages are not acceptable, we must resort to

relational data mining (RDM), which also considers the relational structure.

RDM has become a very widespread research topic, as more and more data are

being stored in relational databases and a demand for knowledge extraction

methods has emerged.

The next section describes two different approaches to RDM.

1.2 Relational Data Mining

1.2.1 Inductive Logical Programming

Just as many of today’s datamining algorithms come from the field of machine

learning, many of the RDM algorithms come from the field of inductive logic

programming (ILP). In the ILP setting the relational data are expressed as logic

8

Chapter 1. Introduction

programs using clauses, predicates and facts, where predicates corresponds to

relations in a relational database. E.g the predicate lives_in(X,Y), is a relation

between a person(X) and a city(Y).

Currently ILP covers the whole spectrum of data mining tasks, such as clas-

sification, regression, association rules and clustering [8]. ILP problems deal-

ing with classification tasks typically search the space of possible clauses by

using a general-to-specific search. The search is conducted by initially using a

very general rule (covering all training examples) and stepwise refine it to only

cover the positives training examples (completeness and consistency prop-

erty). When one such clause is found the search stops. Figure 1.3 shows the

search for a set of clauses which is complete and consistent with regard to the

training examples. The training examples states whether a child receives an

economical subsidy or not.

At first the rule at the root, Subsidy(X,Y) ←, is true for all training exam-

ples, hence not complete and consistent with the training examples. The search

continues in a breadth/depth first manner, until a clause is met, which only

classifies positives instances correctly. One such is found at node Subsidy(X,Y)←

Parent(Z,X) ∧ Income(Z, low).

Subsidy(X,Y) <--

Subsidy(mary,ES) +

Subsidy(eve,ES) +
Subsidy(tom,ES) -
Subsidy(ian,ES) -
Subsidy(steve,ES) -

Parent(ann,mary)
Parent(john,tom)
Parent(peter,eve)
Parent(john,ian)

Income(ann,low)
Income(peter,low)
Income(john,high)
Income(joe,low)

Training Examples Background knowledge

Subsidy(X,Y) <--
Parent(Z,X)

Subsidy(X,Y) <--
Income(Z,low)

Subsidy(X,Y) <--
Income(Z,med)

... ...

... ...
...

...
Subsidy(X,Y) <--
Parent(Z,X) Income(Z,low) ^

Figure 1.3: The search for a clause which is complete and consistent. The edges in the figure

represent different paths in the search tree (the hypothesis space of possible ILP expressions)

and nodes are ILP clauses. A+ indicates positive training examples, which is the case when

Subsidy(X,Y)← Parent(Z,X) ∧ Income(Z, low)

Several well known learning algorithms have been implemented in the ILP

setting and modified for handling relational data structures, e.g. TILDE [3] is

an "upgrade" of C4.5 [27] and SCART [19] of CART [4]. The ILP setting seems

a feasible approach to RDM, however it has some shortcomings. The most im-

portant disadvantage is a higher time and space complexity than other stan-

dard machine learning approaches. Traditional search methods in ILP explore

9

Chapter 1. Introduction

the search space in, as shown previously, a general-to-specific or a specific-

to-general fashion. More sophisticated search methods have to be derived in

order to make ILP efficient when performing data mining on large relational

databases [29].

Another weakness, which occurred in the earlier ILP settings, is that a con-

version of the original data into equivalent logic expressions has to be made.

Thereby the learning is not applied directly on the relational database, but on

an extraction and conversion of it. However in today’s settings, front-ends are

used that cope with this problem.

Although ILP is the most widely studied approach to relational data min-

ing, it is not the only one. Another approach is based on statistical graphical

models, which is described below.

1.2.2 Statistical Graphical Models

Statistical graphical modeling of relational data has receivedmuch attention, in

the last years, especially following the work by D. Koller [18]. In 1998, D. Koller

and A. Pfeffer introduced the concept of Probabilistic Frame-Based Systems,

which was revised by L. Getoor et. al. in 1999 as Probabilistic Relational Models

(PRMs) [9]. PRMs extend the relational model—a commonly used representa-

tion for the structure of a database—by introducing concepts from Bayesian

networks and learning. Thus, PRMs are a graphical language for modeling

dependencies among relational data, just as Bayesian networks is for propo-

sitional data.

D. Heckerman provides a survey [14] (2004) of PRMs, plate models, and in-

troduces a third language which is more expressive. Plate models [5] were de-

veloped by W. L. Buntine, as a language for compact representation of graph-

ical models in which there are repeated measurements. In a plate model, each

entity class is modeled as a plate which can intersect or overlap with other

plates. An intersection amounts to a relationship between two or more plates.

The third language by D. Heckerman, is the Directed Acyclic Probabilis-

tic Entity-Relationship (DAPER) model [14]. The model is an extension of the

entity-relationship model, another common model for the abstract represen-

tation of a database structure. The DAPER model is closely related to plate

models and PRMs. However, the DAPER model is more expressive than both

existing models, and also helps to demonstrate their similarities. As a conse-

quence, D. Heckerman describes a mapping between DAPER and PRMs, and

between DAPER and platemodels. Since DAPERs is more expressive, the map-

ping occurs by omitting the features of DAPER that is not covered in the two

other models. The superset of features, is for instance the ability to assign con-

straints in ILP, such as disjunction, conjunction and existence, to dependencies.

Other approaches to statistical modeling of relational data include: Rela-

tional Bayesian networks by M. Jaeger [16], and Relational Dependency Net-

10

Chapter 1. Introduction

(a) (b) (c)

Figure 1.4: Three equivalent models, of three nonequivalent languages for describing prob-

abilistic dependencies of relational data. (a) A Plate, (b) A PRM, and (c) A DAPER model

showing the dependency between the citizenship of a child and the marital status of its

parent.

works [22], Relational Probability Tress [23], and Relational Simple Bayes Clas-

sifier [24], by D. Jensen and J. Neville et. al. These models, are based on con-

cepts from QGRPAH [2] which is a visual language for querying and updating

graph databases, also by D. Jensen et. al. Further graph-based relational learn-

ing has been researched by L. B. Holder and D. J. Cook [15]—who also explores

current and future directions—and by T. Washio and H. Motoda [30].

1.3 Objective

Statistical modeling of relational data, as described in the previous section, is

an interesting topic. Although, plate models; PRMS; DAPER; extensions and

related subjects have been widely studied, there exists no detailed documen-

tation of implementing these models, which account for some of the novel

and subtle concepts. Consequently, the objective of this project—motivated by

our prior work [10]—is to implement PRMs and learning them from relational

data. We choose PRMs, since they have been widely studied and described in

the context of learning [9].

Our objective is as follows:

1. Design an implementation of probabilistic relationalmodels [9], that sup-

ports learning the dependency structure and the parameters.

2. Provide a relational database structure of the problem relating to sub-

sidies and institutions in Herning Kommune, by M. Gade and M. G.

Nielsen [10], suitable for relational learning.

3. Prepare the UCI Movie Database [1] for relational learning, this include

prepossessing and cleaning.

11

Chapter 1. Introduction

4. Perform tests that examine different aspects of the model on the two re-

lational databases, such as execution time, scalability, tweak-ability etc.

This direction of PRMs is motivated by our prior work, which is summa-

rized in the next section.

1.4 Summary of Prior Work

In our prior work, we took a descriptive approach to data mining of children

daycare subsidies and institutions in Herning Kommune. The objectives were

related to cutting the cost of subsides, and alleviating an institution capacity

problem in Herning Kommune. In particular, the objective was to character-

ize the families who receive various types of subsides and their choice of in-

stitution. Furthermore, we introduced a spatial aspect by retrieving the UTM

coordinates of the residents in Herning Kommune. Consequently, we could

examine if people in different parts of Herning Kommune were more likely to

receive a subsidy, and if parents would choose a near-by institution for their

children.

c_age

p1_income

c_age

c_livingcond.

 <= 0

> 12

> 1

<= 12

 NO

 (5864 / 404)

c_age

 > 0

<= 1

NOP

 (4 / 1)

 NO f_children

 (421 / 1)

 NO

> 0 <= 0

 RE

 (393 / 196)

<= 1 > 1

(a)

 6.18e+06

 6.2e+06

 6.22e+06

 6.24e+06

 6.26e+06

 6.28e+06

 440000 450000 460000 470000 480000 490000 500000 510000 520000 530000

N

E

Economical subsidy
Children subsidy

(b)

Figure 1.5: (a) A partial classification tree using the subsides as the class label. The tree

revealed that certain attributes such as income, martial status, living condition were cor-

related. Unexpectedly, neither citizenship nor the UTM coordinates proved valuable in the

classification. (b) The concentration of subsidies in Herning Kommune proved not to be,

particular, correlated with the different people in Herning Kommune.

Before the objectives could be investigated, we had to flatten the relational

database, provided by Herning Kommune. The database contained informa-

tion about the children in Herning Kommune, their parents e.g. income, mar-

tial status, citizenship and age; which subsides the children had received; and

which institution they attend. The databasewas flattened, and during this pro-

cess several new attribute were generated, among these were the UTM coordi-

nates and residential taxation values. The data set was subject to classification

and clustering, by using different sets of attribute and class labels with differ-

ent levels of detail. The classification tree was examined, see Figure 1.5(a), and

12

Chapter 1. Introduction

the results were later confirmed by clustering and by simple data exploration,

see Figure 1.5(b).

The result of the objectives were limited. No major discovery was done, al-

though various minor discoveries emerged, which confirmed previous beliefs

and assumptions by Herning Kommune. For further details, please see “Data

Mining for Descriptive Modeling: of Children Daycare Subsidies and Institu-

tions in Herning Kommune” [10].

13

Chapter 2

PRMs

In this chapter, we describe Probabilistic Relational Models (PRM). Most of the

material is based on and inspired by the work of D. Koller and L. Getoor et al.

[9; 11; 12].

2.1 Relational Language

The relational language allows us to specify the classes, i.e. the different kinds

of objects, in our domain by means of a schema.

2.1.1 Schema

(a) A Schema

Parent:

Age:

Sex:

Citizenship:

Married:

Income:

Residential value:

Parent:

Age:

Sex:

Citizenship:

Married:

Income:

Residential value:

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

 John

 5

 Male

 Denmark

 LT

 ES

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

 John

 5

 Male

 Denmark

 LT

 ES

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

 John

 5

 Male

 Denmark

 LT

 ES

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

 Jane

 32

 Female

 Denmark

 MA

 200,000

 550,000

Parent:

Age:

Sex:

Citizenship:

Married:

Income:

Residential value:

 20405

 14

 25

 4

 3

 5

Institution:

Type:

No. of children:

No. of foreign children:

No. of subsidies:

No. of foreign subsidies:

(b) An Instance

Figure 2.1: (a) A relational schema for the daycare domain [10]. The schema consists of four

classes: Child, Parent, Institution and Employment. A child has two parents, a mother

and a father who are employed at a company, and the child attends an institution. (b) Shows

an instance of the scheme, though omitting the Employment class, with three parents, four

children who all attend the same institution. Two of the children have a mother and a father,

while the remaining two only have a single parent.

A relational schema consists of a set of classes, X = {X1, . . . ,Xn}. In our

15

Chapter 2. PRMs

recurring example of Figure 2.1(a) the classes are Child, Parent, Institution and

Employment. Each class X has a set of attributes, denoted A(X). Attribute A

of class X is denoted X.A, and its range of values is denoted V(X.A). We as-

sume that the range is finite. The value range e.g. of attribute Child.Subsidy is

{SS, ES,CS,DS}which represents a social, economical, children, and a disabil-

ity subsidy, respectively.

Each class X is associated with a set of (reference) slots, denoted R(X). A

slot represents a relation between two classes, such as the relation between a

Parent and a Child. We use X.p to denote the slot p of X. Hence the class Child

has three slots, Child.Mother, Child.Father, and Child.Institution, see Figure

2.1(a) where the slots are underlined. A slot is typed i.e. for each slot ρ in X,

Domain(ρ) = X and Range(ρ) = Y, where X,Y ∈ X . For instance, the slot

Child.Mother has Child as its domain type and Parent as its range type. Fur-

thermore, each slot ρ has an inverse slot ρ−1 such that if Domain(ρ) = X and

Range(ρ) = Y then Domain(ρ−1) = Y and Range(ρ−1) = X. For instance, the

inverse slot of Child.Mother is Parent.MotherO f .

Finally, a slot chain is a combination of slots ρ1, . . . , ρk (inverse or other-

wise) such that Range(ρi) = Domain(ρi+1). A slot chain τ describes a set of

objects from a class, these objects are called tau-relatives. E.g. the slot chain

Parent.MotherO f .Institution denotes the institution of a mother’s child. Gen-

erally, we will use O f or At to denote the name of an inverse slot ρ−1, such as

MotherO f , InstitutionO f , and EmployedAt etc.

2.1.2 Instance

An instance I of a schema specifies the set of objects, I(X), for each class X; a

value for each attribute x.A for each object x; and a value y for each slot x.ρ,

which is an object in the appropriate range type, i.e. y ∈ Range(ρ). We use x.A

as opposed to X.A when x is an object of X. For each object x in the instance,

and for each of its attributes A, Ix.A denotes the value of x.A in I . Figure 2.1(b)

shows an instance of the relational scheme in Figure 2.1(a).

2.1.3 Cardinality

A slot X.ρ has a cardinality which specifies if object x has multiple related ob-

jects y of class Range(X.ρ). The cardinality of a slot and its inverse is either

one-to-one or one-to-many, and is domain specific, thus the user must input

this information. For instance, the cardinality of slot Employed in Employment

is one-to-one whereas the cardinality of its inverse, EmployedAt in Parent, is

one-to-many. See Figure 2.1(a) (inverse slots are not shown).

A slot chain τ also has a cardinality, which is determined by its slots ρi ∈ τ.

If all the slots are one-to-one, then the cardinality of the slot chain is also one-

to-one, however, if the cardinality of one slot ρi is one-to-many, then the car-

dinality of the slot chain is also one-to-many. To appreciate the latter, consider

16

Chapter 2. PRMs

the following slot chain: A.B.C.Dwhere B is one-to-many, and A,C,D are one-

to-one. Hence the slot chain A.B.C.D leads to multiple objects, since A.B leads

to multiple objects and each of these leads to one object in C.D.

The importance of cardinality will become apparent, in the next section

when we introduce PRMs.

2.2 Probabilistic Relational Models

APRMdefines a probability distribution over a set of instances of a schema.We

assume that the set of objects and the relations between them are fixed. These

constraints are specified in a relational skeleton, which is a partial specification

of an instance of a schema. The skeleton distinguishes between two kinds of at-

tributes, fixed and descriptive, and it only gives the values for the fixed attributes

but leaves the values of the descriptive attributes unspecified, see Figure 2.2(a).

Wewant to specify a probability distribution over the descriptive attributes, i.e.

over all possible instances of a schema.

Definition 1 (A Relational Skeleton, σr) Is a partial specification of an instance of

a schema. It specifies the set of objects σr(Xi) for each class Xi, the values of the fixed

attributes, and the relations that hold between the objects. However, it leaves the values

of the descriptive attributes unspecified.

Parent:

Age:

Sex:

Citizenship:

Married:

Income:

Residential value:

Parent:

Age:

Sex:

Citizenship:

Married:

Income:

Residential value:

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

 John

 5

 Male

 Denmark

 LT

 ES

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

Child:

Age:

Sex:

Citizenship:

Livning conditi

Subsidy:

 John

 ???

 ???

 ???

 ???

 ???

Child:

Age:

Sex:

Citizenship:

Livning condition:

Subsidy:

 Jane

 ???

 ???

 ???

 ???

 ???

 ???

Parent:

Age:

Sex:

Citizenship:

Married:

Income:

Residential value:

 20405

 ???

 ???

 ???

 ???

 ???

Institution:

Type:

No. of children:

No. of foreign children:

No. of subsidies:

No. of foreign subsidies:

(a) A Skeleton (b) A Dependency Structure

Figure 2.2: (a) A relational skeleton and (b) the PRM dependency structure for the daycare

domain, the slot chains are specified next to its corresponding parent (edge).

A PRM consists of two components, the dependency structure S and the

parameters θS associated with it.

2.2.1 Dependency Structure

The dependency structure is defined by associating each descriptive attribute

with a set of formal parents, Pa(X.A). The formal parents Pa(X.A) are attributes

that have a direct influence on X.A. The formal parents will be instantiated in

17

Chapter 2. PRMs

different ways for different objects in X, and there are two different types of

formal parents:

Internal dependencies, where an attributeX.A depends on another attribute

X.B, of the same class, which is denoted X.B → X.A. Hence, for any object

x ∈ σr(X), x.A will depend probabilistic on x.B. For instance, an internal de-

pendency could be Child.Age → Child.Subsidy, such that Child.Age has an

influence on Child.Subsidy.

External dependencies, where an attribute X.A depends on attributes of

related object(s), which is denoted X.τ.B → X.A where τ is a slot chain. The

slot chain τ must point to a class Y where B ∈ A(Y). For instance, an exter-

nal dependency could be Child.Mother.Employ.Salary→ Child.Subsidy where

Mother.Employ is the slot chain leading to Employment.Salary from Child. Ex-

ternal dependencies are further divided into single-valued and multi-valued

dependencies.

• A single-valued dependency is where the τ-relatives only consist of one

object. For instance, if a parent is only employed at one company.

• In a multi-valued dependency, the τ-relatives consist of more than one

object, i.e. the slot chain leads to more than one object. For instance, if a

parent is employed at more than one company, he would have two object

salaries; companyA.Salary and companyB.Salary. Thus, if the slot chain

is multi-valued we must specify the probabilistic dependency of x.A on

the multi-set {y.B | y ∈ x.τ}.

One approach is to specify the probabilistic dependency of each object y.B

in the multi-set, however with many objects this solution becomes intractable.

Instead, we need a compact representation of the multi-set, which aggrega-

tion from database theory facilitates. Thus x.A will depend probabilistically

on some aggregation of the multi-set of τ-relatives. Formally, the aggregator

γ(X.τ.B) returns a summary of the attribute B of the τ-relatives. Hence, the

attribute X.A can have γ(X.τ.B) as a parent such that for any x ∈ X, x.A will

depend on the value of γ(X.τ.B). There are several useful aggregation func-

tions, such as the mode of a set, average, minimum and maximum etc. For

instance, a child’s subsidy could depend on the average income salary of its

mother, γavg(Child.Mother.Employ.Salary)→ Child.Subsidy.

A dependency structure is shown in Figure 2.2(b).

2.2.2 Parameters

The parameters are a local probability model for an descriptive attribute X.A.

The local probability model is defined, given the parents Pa(X.A), by associat-

ing a conditional probability table (CPT) that specifies P(X.A | Pa(X.A)). Let

U = Pa(X.A) where each of these parents Ui—either an attribute or an ag-

gregated value of τ-relatives—have a set of values V(U). For each n-tuple of

18

Chapter 2. PRMs

values u ∈ V(U), where n = |Pa(X.A)| is the number of parents, we specify a

distribution P(X.A | u) over V(X.A). This entire set of parameters comprises

θS. For instance, we would need to associate a CPT with Child.Subsidy that

specifies P(Child.Subsidy | γavg(Child.Mother.Employ.Salary)).

In summary, these two components leads us to a definition of a PRM.

Definition 2 (A Probabilistic Relation Model,Π) For each class X ∈ X and each

descriptive attribute A ∈ A(X), in a relational schema R, we have:

• A set of parents Pa(X.A) = {U1, . . . ,Un}, where each Ui has the form X.B or

γ(X.τ.B), where τ is a slot chain and γ is an aggregation of X.τ.B.

• A conditional probability table (CPT), P(X.A | Pa(X.A)).

2.3 Bayesian Networks and PRMs

As mentioned, PRMs define a probability distribution over possible instances

of a schema, by using a relational skeleton. The direct correlationwith Bayesian

networks occurs when we consider the objects, in the relational skeleton, and

their attributes. With these, we can "compile" a Bayesian network, or in other

words; for a skeleton σr the PRM structure induces a ground Bayesian network

over the random variables x.A. The compilation consists of:

• Creating a random variable x.A for every descriptive attribute A ∈ A(X)

of every object x ∈ σr(X), for each class X ∈ X .

• Making x.A depend probabilistically on internal x.B and external x.τ.B

parents. If the slot chain τ of x.τ.B is multi-valued, then the parent y.B is

the aggregation, γ(x.τ.B), of the set of random variables {y | y ∈ x.τ}.

• Associating the CPT, P(X.A | Pa(X.A) with each object x.A.

Figure 2.3 is a compilation of a PRMwith two external dependencies; Child

.Parent.Employed.Salary→ Child.Subsidy and Child.Parent.Citizenship→

Child.Subsidy. There are three Employment objects, companyA, companyB and

companyC; one Parent object, john; and one Child object, jane. In Figure 2.3(a)

we need to specify the probability P(jane.Subsidy | companyA.Salary, companyB

.Salary, companyC.Salary, john.Citizenship). In Figure 2.3(b) we apply the av-

erage aggregator to the Employment objects, such that we only need to specify

the probability P(jane.Subsidy | avg(companyA.Salary, companyB.Salary,

companyC.Salary), john.Citizenship). The average of the salaries, is inserted as

an intermediate deterministic function in Figure 2.3(b) to visualize that aggregate

functions, such as average, facilitates a compact representation of a multi-set.

Hence, the intermediate function need not be learned and facilities that learn-

ing the parameters is tractable.

19

Chapter 2. PRMs

(a) (b)

Figure 2.3: (a) The Bayesian network induced by the structure of a PRM and a relational

skeleton of three employment objects, a parent and a child object. Without a compact rep-

resentation of the Employment.Salary objects, we would need to specify the probability of

each object. (b) The Bayesian network with a intermediate aggregation object of the salaries.

20

Chapter 3

Learning PRMs

In this chapter, we describe how the parameters and the structure of PRMs

are learned. Again, most of the material presented is based on and inspired by

[9; 11; 12].

3.1 Parameter Estimation

We begin with estimating the parameters θS when the dependency structure

S is known. Our task is to learn the CPTs for each attribute X.A with parents

Pa(X.A). Estimating the parameters is based on a complete instance I , which

amounts to our training data, and the likelihood of the parameters given the

training data, L(θS | I , σ, S) = P(I | σ, S, θS). We work with the log of this

function:

l(θS|I , σ, S) = log P(I|σ, S, θS) = ∑
Xi

∑
A∈A(Xi)

∑
x∈Oσ(Xi)

log P(Ix.A | IPa(x.A))

(3.1)

This equation is very similar to the log-likelihood of the training data given

the parameters for a Bayesian network [13]. Actually, Eq. 3.1 is the likelihood

function of the ground Bayesian network (ignoring the intermediate functions

in Section 2.3, since they are deterministic) induced by the structure S given

the skeleton σr, see Section 2.3. The only difference is that the parameters for

different random variables in the network are forced to be identical, thus the

parameters for objects x.A of the same class X are identical. To appreciate this,

review Section 2.3 which states that we associate the CPT P(X.A | Pa(X.A))

with each object x.A. Also the learned parameters can then be used to reason

about other skeletons, which induce completely different Bayesian networks.

As a consequence of this similarity, we can apply the well-known tech-

niques of Bayesian network learning. Such as maximum likelihood estima-

tion, where the goal is to find the parameters θS that maximizes the likelihood

21

Chapter 3. Learning PRMs

L(θS | I , σ, S). This estimation can be done via sufficient statistics that aim to

summarize the underlying distribution of the data. In the case of multinomi-

nal CPTs this amounts to frequency counting, which is also used in Bayesian

network learning. We let CX.A(v,U) denote the number of times we jointly

observe IX.A = v and IPa(X.A) = U in the training data.

Using the counts of the sufficient statistics and assuming multinominal

CPTs, the maximum likelihood parameter setting θ̂S is

P(X.A = v|Pa(X.A) = U) =
CX.A(v,U)

∑v′ CX.A(v
′,U)

. (3.2)

Another approach to parameter estimation, is a Bayesian approach that al-

leviates the main problem with maximum likelihood, namely over fitting. The

Bayesian approach uses a prior distribution over the parameters to smooth

the irregularities in the training data, making it more robust to noisy or un-

observed data. The concept of smoothing is also applicable to maximum like-

lihood, where we simply add a constant count which represents unobserved

data.

3.2 Structure

When the structure is not known prior to parameter estimation, we must first

learn the structure and then learn the parameters. Structure learning consists

of:

1. Defining the hypothesis space of legal candidate structures.

2. Evaluating different candidate structures, such thatwemay qualifywhich

structure fits the data best.

3. Searching the hypothesis space for a good structure.

We describe the three aspects in the following sections.

3.2.1 Hypothesis Space

The hypothesis space [9] is defined by structures that are acyclic, such that no

attribute X.A:

• Depends directly on itself X.A→ X.A or X.τ.A→ X.A

• Or indirectly on itself X.A→ X1.A1 → X2.A2 → X.A.

If the structure (at the class-level) is acyclic, then the ground Bayesian net-

work (at the object-level) is also acyclic. However, if the structure is cyclic then

the ground Bayesian network may not be, see Figure 3.1.

22

Chapter 3. Learning PRMs

(a) Cyclic Dependency

Structure

(b) Acyclic Ground Network

Figure 3.1: (a) The cyclic dependency structure which specifies that a person’s age depends

on the age of its parent, (b) the ground Bayesian network that resolves the cyclicity, since a

parent cannot be a parent of itself.

Although, the cyclicity may be resolved at the object-level of the ground

Bayesian network, we will ignore this issue in our design and implementa-

tion due to complexity. Since we have no way of knowing if the cyclicity re-

solves itself—different skeletons may introduce a cycle and others may not—

we would need to allow the user to enter domain specify information, e.g. that

no parent can be a parent of itself as in Figure 3.1, this is referred to as guaran-

teed acyclic slots by L. Getoor [9]. Instead, we will simply define the hypothesis

space as structure that are DAGs. Also, the relaxation of guaranteed acyclic

slots does not seem to expand the search space of the relational databases in

Section 6, as none of these have recursive relations.

3.2.2 Evaluating a Structure

Once the hypothesis space of legal candidate structures has been determined,

we need a measure for evaluating candidate structures. A candidate structure

Sk is evaluated with regard to how well it fits the data and its complexity. We

adopt the Bayesian Information Criteria (BIC)

SBIC(Sk, θS, I , σ) = −l(θS|I , σ, Sk) + dk log n, (3.3)

where dk is the number of parameters and n = |I| is the size of the database.

The first term, −l(θS|I , σ, Sk), is the negative log-likelihood of Eq. 3.1. The

second term, penalizes the complexity of the model using the number of pa-

rameters.

Another score function, used by L. Getoor [9] is the marginal likelihood. The

marginal likelihood is a complex quantity, also computational wise, and one

problem is that it requires a prior probability distribution over the structures.

This is complicated by the fact that there exists infinitely many structures, in

23

Chapter 3. Learning PRMs

the presence of a recursive relation. Thus, we will settle for our more simple

BIC inspired score function, and refer to L. Getoor [9] for further information

on other scoring functions.

3.2.3 Structure Search

With the score function in place, we can evaluate which candidate structures

in the hypothesis space fit the data best, i.e. we can find an optimal structure.

However, it is intractable to consider every candidate structure using a exhaus-

tive search. Finding the optimal structure of a PRM is at least NP-Hard, since

a Bayesian network is simply a PRM with one class and no external relations,

and for Bayesian networks the optimal structure search is NP-Hard [7].

Consequently, we must resort to search heuristics and rely on them to find

a good structure. The most straightforward method is a greedy search (hill-

climbing), where a current candidate structure is maintained and iteratively

modified to improve the structure score. There are two basic operations that

modifies the structure, remove dependency and add dependency. A third oper-

ation reverse dependency can be derived from these two. The structure score is

used as a metric, and the search is e.g. terminated once the score decreases. A

random restart could be applied to escape local minima.

When modifying the structure by adding dependencies, we need to know

which dependencies to consider. The potential parents Potk(X.A) of an attribute

X.A are the attributes that can be reached by a slot chain of length k. With

length 0 only the attributeswithin the same class are considered, i.e. Pot0(X.A) =

A(X)\X.A where X.A is excluded as not to introduce a cycle. Given length k

the attributes following a slot chain of length less than or equal to k are in-

cluded, see Figure 3.2.3.

See the Chapter 4 for further details about the search algorithms, potential

parents etc.

24

Chapter 3. Learning PRMs

Figure 3.2: The potential parents of Parent.Married, Potk(Parent.Married) with k = 0,

k = 1, and k = 2, using a subset of the Daycare relational database. Each box represents a

class, a node represents an attribute, and edges represents potential parents.

25

Chapter 4

Design

The previous chapters described the theory behind Probabilistic RelationalMod-

els. In this chapter, we present the design of PRMs as described in Chapter 2

and 3. As a consequence, this chapter describes further details, which is neces-

sary for an implementation.

4.1 Design Criteria

In this section, we will shortly discuss the design criteria that are important (in

order of priority).

1. Simplicity of the design is very important, since we do not want to in-

crease the complexity of an already complex model, although we need to

address certain design issues that may seem insignificant.

2. Flexibility of the design is important since several extensions to PRMs

have been described, such as structural uncertainty [11] and hierarchical

models [12; 25], and we want our design to be flexible to these extensions.

3. Performance is important, since we wish to use PRMs to perform rela-

tional data mining. Thus, our learning procedure needs to perform well.

Also it must be able to handle large amounts of data efficiency, i.e. it must

be scalable.

The next section describes the components and classes.

4.2 Overview and Classes

The design is based on the different elements of a PRM, as introduced in Chap-

ter 2. Hence many of the elements of the relational language and PRMs are

mapped into a corresponding class. The class diagram in Figure 4.1 shows the

27

Chapter 4. Design

various inter-dependencies of the classes, differing between aggregation, inher-

itance, and association. The classes are clustered together in coherent compo-

nents, and the following describes the components and classes.

The first component represents the basic PRM structure outlined in Chapter

2:

Prm: This class represents a PRM with a Graph as its dependency structure

and associated parameters, alongwith the Classes in the relational scheme.

Class: Represents a class X with fixed (FixedAtt) and descriptive (DescAtt)

attributes A(X), and Slots R(X). A class has a Name property, which

is used to specify the corresponding table in the database.

Slot: Represents a slot ρ between two classes X and Y. The primary and for-

eign key of the slot are modeled by two FixedAtts. A slot has a cardi-

nality, see Section 2.1.3, which is retrieved with the Cardinality property.

Furthermore it has aName,Domain, and Range property as explained in

Section 2.1.

SlotChain: Represents a slot chain τ that contains a sequence of Slots. A slot

chain also has a Cardinality property that returns the cardinality of its

slots, see Section 2.1.3, which are used to determine which chains are

multi-valued. The sufficient statistics needs a unique identification of a

slot chain, thus a slot chain has a UniqueName property, see Section 4.5.

Att: Represents a generic attribute, which belongs to a Class. An Att has a

Name property which specifies a column in the table. It also has a Range

property which specifies the range type, which is either discreet or con-

tinuous. Continuous attributes must be discretized as we cannot handle

continuous attributes.

DescAtt: Represents a descriptive attribute with a conditional probabil-

ity table Cpt, and a number of parents modeled as Edges.

FixedAtt: Represents a fixed attribute. It does not have a Cpt nor any

parents, however it can be the parent of a DescAtt.

Graph: Represents the dependency structure with dependencies between at-

tributes.

Edge: Represents an internal or external dependency between a DescAtt and

its parents. An Edge has a slot chain if it is external, and an aggregator if

the external dependency is multi-valued.

Cpt: Represents the conditional probability table with CptEntrys.

CptEntry: Represents an entry of the Cptwith valuesX.A = v and Pa(X.A) =

U, probability P(X.A = v| Pa(X.A) = U), and count CX.A(v,U).

28

Chapter 4. Design

The second component represents an instance of a relational scheme, i.e.

the database.

Database: Provides the database interface, which facilitates executing SQL queries.

It has two functions,Connect which establishes a connection to the database,

and GetTable which retrieves the internal data structure of the Cpt from

the database.

Statistics: Provides an interface for computing the sufficient statistics for the

values of an attribute and its parents. It has two function, Count which

counts the number of joint values, and CreateView which creates a view

used to calculate the aggregated values in a multi-valued slot chain, see

Section 4.5.

DataGrouping: Represents an abstract class for data grouping.

EWD: Represents data grouping as Equal Width Discretization [32].

EFD: Represents data grouping as Equal Frequency Discretization [32].

The third component represents learning the PRMs, thus most of the classes

are purely functional objects.

StrucureLearner : Is responsible for learning the structure of a PRM.

ParameterLearner : Is responsible for learning the parameters of a PRM.

Search: Represents an abstract class for structure search.

Greedy: Represents a greedy approach for searching.

Random: Represents a random approach for searching.

Hybrid: Represents a hybrid approach for searching.

4.3 Dependency Structure Search

The dependency structure S of a PRM is represented by a Graph that contains

the attributes Att and the Edge dependencies between them, see Figure 4.2.

Each Edge represents a parent which has a SlotChain. If the slot chain is

multi-valued, it has one of the following discretized aggregators γ:

• γmax, which returns the maximum numerical value of the multi-set.

• γmin, which returns the minimum numerical value of the multi-set.

• γsum, which returns the sum of all the numerical values in the multi-set.

• γavg, which returns the average of all the numerical values in the multi-

set.

29

Chapter 4. Design

DataPRM

Graph Cpt

Edge

 Aggregator

Prm

 Name

Class

 Name

Att

 Name

 Range

DescAttFixedAtt

Slot

 Name

 Cardinality

 Domain

 Range

SlotChain

 Cardinality

 UniqueName

Database

 Connect()

 GetTable(SQL)

Statistics

 Count(DescAtt)

 CreateView(DescAtt,Map)

*

1

1

*

1

*

1

11

*

1

1

2
1

1

1 1

DataGrouping

EFD EWD

1
1

LPRM

Search

GreedySearch RandomSearch

StructureLearner

ParameterLearner

CptEntry

 Values

 Probability

 Counts

1

*

1

*

Inverse

Parents

HybridSearch

Figure 4.1: The class diagram divided into three clusters: LPRM, PRM and Data. There are

three inter-dependencies aggregation, inheritance and association.

• γmod, which returns the most frequent nominal value (mode) of the multi-

set .

Only the γmod aggregator works on nominal values, the others are restricted to

numerical values.

The potential parents, as briefly explained in Section 3.2.3, is actually a search

over possible slot chains and aggregators. Since, the potential parents Potk(X.A)

are decided by the slots that can be reached from X.A within length k. We can

now define a potential parent, which comprises the dependency search space:

Definition 3 (Potential Parent) The triple (Y.B, τ, γ) is a potential parent to X.A

if Y is reached by following τ from X, and γ is the aggregator if τ is multi-valued.

τ = ∅ if Y = X.

A potential parent is represented by an Edge in our design.

The slot chain search is performed by using either a breadth-first or a depth-

first inspired search, however, we need to impose some restrictions to avoid

cycle slot chains e.g. such as Institution.InstitutionO f .Institution etc. (recall

30

Chapter 4. Design

Figure 4.2: An attribute X.A with parents X1.A1,X2.A2, . . . ,Xn.An. Each external de-

pendency is routed through a chain of slots, τ. τ = ∅ if the dependency is internal.

the slots with the postfix O f and At are inverse slots). Consequently, the solu-

tion is to only allow forward movement of the slot chain search, such that for a

slot chain we will not allow it to revisit classes. See Listing 4.1 for algorithmic

details of the breadth-first slot chain search, SlotBFSk(X.A). Hence, if Father

is our current slot chain, starting from the class Child, the only option for ex-

panding Father is by slot Employed since we cannot revisit the class Parent.

The result of e.g. SlotBFS2(Child.Subsidy) of Listings 4.1 is the following slot

chains {Institution, Father,Mother, Father.EmployedAt,Mother.EmployedAt},

see Figure 4.3 and Figure 2.1(a) for the database schema.

MotherFather

Employed

Institution

EmployedAt

MotherOf FatherOf

Parent

Child

Institution

InstitutionOf

Employment

(a) k = 0

MotherFather

Employed

Institution

EmployedAt

MotherOf FatherOf

Parent

Child

Institution

InstitutionOf

Employment

(b) k = 1

MotherFather

Employed

Institution

EmployedAt

MotherOf FatherOf

Parent

Child

Institution

InstitutionOf

Employment

(c) k = 2

Figure 4.3: A slot chain search from Child, with (a) k = 0, (b) k = 1, and

(c) k = 2. A white box represents unvisited classes, whereas a black box rep-

resents a visited classes of the breadth-first search. Dashed edges represents possi-

ble steps in the slot chain search. The result of e.g. SlotBFS2(Child.Subsidy) =

{Institution,Father,Mother, Father.EmployedAt,Mother.EmployedAt}.

The slot chains of the search, need to be transformed into potential par-

ents, which Potk(X.A) is responsible for, see Listing 4.2. Potk(X.A) consid-

ers each slot chain τ, from SlotBFSk(X.A), and follows τ to its last class i.e.

Range(ρl) where l = |τ|. E.g. the last class of slot chain Mother.EmployedAt

31

Chapter 4. Design

Listing 4.1: SlotBFSk(X.A) – the slot chain search for X.A

1 chains = ∅

2 queue =<>

3 for each ρ ∈ R(X) / / s l o t s in c l a s s X

4 τ = ρ / / c r e a t e a s l o t c h a in with a s i n g l e s l o t

5 queue . enqueue (τ)

6

7 while |queue| > 0

8 τ = queue . dequeue ()

9 ρl = l a s t s l o t of τ

10

11 i f |τ| > k

12 break

13 chains = chains ∪ τ

14

15 for each ρi ∈ R(Range(ρl))

16 i f ρi r e su l t s in forward movement from ρl
17 τ = τ.ρi / / expand τ with ρi
18 queue . enqueue (τ)

19 return chains

is the class Employment. At Employment the algorithm adds each attribute

B ∈ A(Employment) to the list of potential parents. If the slot chain is multi-

valued, we explicitly add each parent four times due to the aggregators, to

facilitate the search over aggregators (line 9-10 in Listing 4.2).

Potk(X.A) initiates the search for potential parents, which uses the result

of the slot chain search SlotBFSk(X.A). The potential parents are used in the

search algorithms for adding dependencies (Edges). This is the topic of the

next section.

4.4 Search Algorithms

The following sections describe the various search algorithms we have applied

in our PRM setting.

4.4.1 Greedy

This is the most straight forward algorithm. A current candidate structure is

maintained, and dependencies are iteratively added in order to improve the

structure score. In each iteration the best dependency is added. The pseudo

code for the greedy algorithm is shown in Figure 4.3.

32

Chapter 4. Design

Listing 4.2: Potk(X.A) – the potential parents of X.A

1 pot = ∅

2 τX.A = SlotBFSk(X.A)

3 for each τ ∈ τX.A / / e x t e r n a l d e p e n d e n c i e s

4 Y = Range(ρl) where l = |τ| / / l a s t c l a s s o f τ

5

6 for each Y.B ∈ A(Y)

7 i f τ i s multi−valued / / mult i−va lu ed d e p e n d e n c i e s

8 i f τ conta ins numerical values

9 pot = pot ∪ {(Y.B, τ, γmax), (Y.B, τ, γmin),

10 (Y.B, τ, γavg), (Y.B, τ, γsum)}

11

12 e lse

13 pot = pot ∪ {(Y.B, τ, γmod)}

14 e lse / / s i n g l e−va lu ed d e p e n d e n c i e s

15 pot = pot ∪ {(Y.B, τ, γnone)}

16

17 for each X.B ∈ A(X)\X.A / / i n t e r n a l d e p e n d e n c i e s

18 pot = pot ∪ {X.B,∅, γnone}

19

20 return pot

33

Chapter 4. Design

Listing 4.3: GreedySearch(Prm)

1 m = 0 / / The c u r r en t ch a in l e ng t h

2 bestStructureScore / / The b e s t s t r u c t u r e s c o r e a c h i e v e d

3 bestCandidate / / The b e s t c a n d i d a t e with c u r r en t ch a in l e ng t h .

4 currentScore / / Current s c o r e o f t h e Prm

5 while (doSearch)

6 for each de s c r ip t i v e a t t r i b u t e X.A

7 for each po t en t i a l parent Y.B ∈ Potm(X.A)

8 add edge from Y.B to X.A

9 currentScore = ScoreS t ruc ture (Prm)

10 remove edge from Y.B to X.A

11 i f (currentScore > bestCandidate)

12 bestCandidate = currentScore

13 i f (bestCandidate > bes tS t ruc tureScore)

14 bes tS t ruc tureScore = bestCandidate

15 add the best edge to Prm

16 e lse

17 doSearch = f a l s e

18 m++

19 return bes tS t ruc tureScore

The search stops when adding further dependencies does not improve the

current structure score. However, a serious disadvantage of this approach, is

that the search can be caught in a local maximum and stops.

In our test setting we are trying to overcome this disadvantage by using

the following approach. Instead of terminating when no dependency addition

increase the score, see Listing 4.3, it is allowed to add k dependencies in order

to see if these can improve the score. This is however not shown in the listing.

If an improvement can be obtained within k number of steps, the algo-

rithm continues as the one describe above, otherwise it terminates. By using

this strategy a local maximum can be avoided, but not guaranteed. However,

the value of k are difficult to determine and must be determined using heuris-

tics.

4.4.2 Random Search

In order to cope with the difficulties of local maxima, we also want to address

algorithms that may perform better than greedy.

34

Chapter 4. Design

Subset Random

This algorithm is very simple and can be seen as a subset of greedy. It selects

a random attribute X.A and m number of potential parents Potm(X.A) and

adds, if legal, the best dependency to the current structure. The number m is

currently set to 10% of the potential parents. The optimal value of m has to be

found using heuristics. If no dependency increases the structure score, it tries

m new dependencies. This is allowed for k tries. If still no dependency is found

which increases the score, the algorithm terminates.

Because there is a reduced number of score calculation and parameter esti-

mation involved in this search, this algorithm is superior in speed.

Normalized Random

This algorithm uses information about how good the different dependencies

are. By recording the structure score that we would obtain by introducing a

dependency from Y.B → X.A we get this information. This is done for all

possible legal dependencies of a given chain length i. The structure scores are

normalized and the normalized value become the probability of choosing that

dependency.

However there might be some issues with this approach. There are two

main issues that we briefly will discuss.

1. Score Function

An optimal structure score in our setting is zero. This effects that the

worst dependencies are having larger normalized probabilities. The so-

lution is to record the increment in the structure score when introducing

a new dependency, and use these increments in order to normalize. This

ensures that we have a higher probability of selecting the best dependen-

cies.

2. Number of possible edges

Assume a dependencyY.B→ X.Awhich has a score increase (approaches

zero) that is more than a tenfold higher than any other possible score that

can be induced by any dependency of the same chain length. Then this

dependency is an obvious choice, but this obvious choice can be sup-

pressed by the number of possible dependencies. Assuming that there

are 1000 possible dependencies, and the sum of all scores is ten times

larger than the score of the dependency Y.B → X.A. Now there is only

10% chance of selecting the best dependency, even though it is more than

tenfold better than any other dependency. So this algorithm can suffer by

the fact of many possible dependencies.

The solution is to only consider the k best dependencies when calculating

the normalized probability.

35

Chapter 4. Design

Listing 4.4: HybridSearch(Prm)

1 randomStepProb = 0 . 7 / / c h anc e o f t a k i ng a random s t e p

2 randomStepRate = 0 . 5 / / d e c r e a s e random p r o b a b i l i t y r a t e

3 maxRandomSteps = 3 / / s t e p s b e f o r e d e c r e a s i n g randomStepProb

4 while (doSearch)

5 r = random number between 0 and 1

6 for (i n t i = 0 ; i < maxRandomSteps ; i ++)

7 i f (r < randomStepProb)

8 makeRandomStep () ;

9 e lse

10 bestCandidate = makeBestStep () ;

11 i f (bestCandidate > bes tS t ruc tureScore)

12 bes tS t ruc tureScore = bestCandidate

13 e lse

14 doSearch = f a l s e

15 randomStepProb ∗= randomStepRate / / d e c r e a s e randSt epProb

16 return Bes tS t ruc tureScore

4.4.3 Hybrid Search

This algorithm tries to combine the nature of greedy search and random search

strategies. It is inspired by the Random Subset Search (RSS)[12] algorithm.

In each iteration of the algorithm, it is possible to take a random step. As

the number of iterations increases the possibility of taking a random step de-

creases. This is done in order to say that our starting point is less important,

but as the search continues we trust more and more in our best steps. Hope-

fully this would lead us to a global maximum instead of a local one.

The pseudo code for this algorithm is shown in Listing 4.4. The function

makeRandomStep() adds an arbitrary dependency,whereasmakeBestStep() adds

the best possible dependency.

Several other hybrid algorithms exist, one of the more noticeable is men-

tioned by J. D. Nielsen et. al. [26], where a constant k determines the degree of

greediness in the algorithm.

4.5 Computing Sufficient Statistics

Learning the parameters θS of a structure S, involves querying the database

to count the frequency of the joint values of an attribute X.A and its parents

Pa(X.A). The count is denoted CX.A[v,U] which counts the joint frequency of

the value v of X.A and the value tuple U of its parents. This was briefly ex-

plained in Section 3.1. However, due to efficiency we will simply count the

entire sufficient statistics for an attribute X.A, i.e CX.A. Next, we need to com-

36

Chapter 4. Design

pose the actual SQL query that computes the count CX.A from the relational

database. First, we only consider internal dependencies, then single valued ex-

ternal dependencies, and show how to keep track of the context. Lastly, we

show how to handle multi valued external dependencies.

4.5.1 Internal Dependencies

First, we only consider the case where all dependencies are internal, i.e. X.B→

X.A. In this case, we only need to select the attribute X.A and its parents,

Pa(X.A) = {X.A1,X.A2, . . . ,X.An}. Also, we need to group equal values to-

gether such that we can count the frequency. The following SQL query com-

putes the count CX.A, see Figure 4.4. Note that X is omitted, since each attribute

has this as a prefix.

SELECT A, A1, . . . , An, count(∗) FROM X

GROUP BY A, A1, An

(a) (b)

Figure 4.4: (a) A dependency structure that only contains internal dependencies,

X.B → X.A. (b) An example of an internal dependency structure, with a dependency

Parent.Citizenship→ Parent.Married and Parent.Sex→ Parent.Married.

The example in Figure 4.4(b), amounts to the SQL query below, which counts

the frequency of CParent.Married.

SELECT Married,Citizenship, Sex, count(∗) FROM Parent

GROUP BY Married,Citizenship, Sex

4.5.2 External Dependencies, Single-Valued

Next, we move on to the more challenging problem of considering external

dependencies such as X.τ.B → X.A, where τ is single-valued. In this case, we

need to include the class name in the query, and also perform joins across the

various classes (tables) that occur in the dependency of X.A. A dependency is

routed through a slot chain τ, thus we must join the slots that occur in τ to

reach attribute B. To facilitate this, we use τ∗(X.A) = {τ1, τ2, . . . , τn} to denote

37

Chapter 4. Design

all the slot chains of X.A’s parents, see Figure 4.5. We use ρ∗(X.A) to denote

an ordered set of all the slots in τ∗(X.A), i.e. ρ∗ decomposes all the slot chains

into slots, while maintaining the ordering such that if τ∗(X.A) = {ρ1.ρ2, ρ3.ρ4}

then ρ∗(X.A) = (ρ1, ρ2, ρ3, ρ4). We let m = |ρ∗(X.A)| denote the number of

elements in ρ∗.

Furthermore, we need to be able to retrieve the destination class of a slot ρ

and its foreign and primary key. These are necessary, since we need two keys to

join on. We use Range(ρ) to denote the destination class Y of ρ, see Section 2.1.

The primary and foreign key of ρ is denoted pkey(ρ) and fkey(ρ), respectively.

We need to perform a join operation for each slot ρ ∈ ρ∗(X.A), such that the

range and the domain of X.A is joined with regard to the primary and foreign

key. Thus, the SQL query for CX.A becomes:

SELECT X.A,X1.A1,X2.A2, . . . ,Xn.An, count(∗) FROM X

LEFT JOIN Range(ρ1) ON Range(ρ1).pkey(ρ1) = Domain(ρ1). fkey(ρ1)

LEFT JOIN Range(ρ2) ON Range(ρ2).pkey(ρ2) = Domain(ρ2). fkey(ρ2)
...

...
...

...

LEFT JOIN Range(ρm) ON Range(ρm).pkey(ρm) = Domain(ρm). fkey(ρm)

GROUP BY X.A,X1.A1, . . . ,Xn.An

Where ρi ∈ ρ∗(X.A) and Xj.Aj ∈ Pa(X.A). The following shows the SQL

query for the structure shown in Figure 4.5(b).

SELECT Child.Subsidy, Institution.Children, Employment.Salary, count(∗) FROM Child

LEFT JOIN Institution ON Institution.id = Child.institution

LEFT JOIN Parent ON Parent.id = Child.mother

LEFT JOIN EmploymentON Employment.id = Parent.id

GROUP BY Child.Subsidy, Institution.Children, Employment.Salary

In the example there are two dependencies, both with Child.Subsidy as the

child, thus τ∗(Child.Subsidy) = {Institution,Mother.EmployedAt} and ρ∗(Child.Subsidy) =

{Institution,Mother, EmployedAt}.

The joins facilitate that the dependencies are routed through the correct

slots, such that the context in which an attribute appears is correct. Although,

in some cases we need to keep track of dependencies that may end at the same

attribute but is routed through different slots. The next section explains this

issue.

4.5.3 Tracking Context

If we try to use the SQL query presented in Section 4.5.2 on the dependency

structure in Figure 4.6, we get the following result.

38

Chapter 4. Design

(a) (b)

Figure 4.5: (a) A dependency structure that contains external depen-

dencies Xn.τ.An. → X.A (b) An example of a dependency struc-

ture, where Child.Mother.Employment.Duration → Child.Subsidy and

Child.Institution.Children→ Child.Subsidy.

Child.
Citizenship

Employment.
Duration

Employment.
Salary

TT1 2
= Mother.EmployedAt= Father.EmployedAt

Figure 4.6: A dependency structure where we must be aware of the context of the dependen-

cies, in order to distinguish between the mother and father.

SELECT Child.Subsidy, Employment.Salary, Employment.Duration, count(∗) FROM Child

LEFT JOIN Parent ON Parent.id = Child.mother

LEFT JOIN Parent ON Parent.id = Child. f ather

LEFT JOIN EmploymentON Employment.id = Parent.id

GROUP BY Child.Subsidy, Parent.Age, Employment.Duration

This SQL query, poses two related problems. The query is ambiguous and

thus its syntax is illegal. The problem is that, there is only one join on the class

Employment, but what does Parent.id referrer to? Since Parent is seen in two

different contexts, a Father and a Mother as determined by the slots. Thus, we

must be aware of which parent (slot) we are looking through to make a correct

join using the Employment class, otherwise we cannot distinguish between the

employment data of the father and mother. The different contexts of a join can

be assigned an alias using the SQL keyword AS. This facilitates that different

joins can be distinguish by a unique identifier, hence the correct SQL query of

the example is shown below:

39

Chapter 4. Design

SELECT Child.Subsidy, FE.Salary,ME.Duration, count(∗) FROM Child

LEFT JOIN Parent AS M ON M.id = Child.mother

LEFT JOIN Parent AS F ON ON F.id = Child. f ather

LEFT JOIN Employment AS ME ON ME.id = M.id

LEFT JOIN Employment AS FE ON FE.id = F.id

GROUP BY Child.Subsidy, FE.Salary,ME.Duration

Now, the two joins on both Parent and EmployedAt are performed accord-

ing to the correct context, and the attributes of the select statement are changed

to FE.Salary and ME.Duration. Still, we need to establish a naming conven-

tion for the aliases of the joins. We use µ(ρ) to denote the unique identifier

associated with the slot ρ.

Definition 4 (Unique Slot Identifier, µ(ρ)) A slot ρi ∈ τ is uniquely identified by

µ(ρi), which is the concatenation of all predecessor slots ρj ∈ τ, i.e. the concatenation

ρ0ρ1 . . . ρi−1ρi.

For instance, µ(Mother.EmployedAt) = MotherEmployedAt, or simply ME

is our short notation in the above SQL query. If |τ| = 1 then µ = ρ0. This

facilities that the joins use the appropriate identifier and the correct context.

However, we also need to know µ of a class X1,X2, . . . ,Xm, such that the select

and group-by statements match the joins.

Definition 5 (Unique Class Identifier, µ(X)) A class Xi where Xi.Ai ∈ Pa(X.A)

is uniquely identified by µ(X), which is the concatenation of all slots ρ in its slot chain

τ, which is equal to µ(ρl) where ρl ∈ τ and l = |τ|.

Recall, that each parent/dependency is routed through a slot chain, hence

µ(Employment).Salary = FatherEmployedAt.Salary or simply FE.Salary in our

short notation. The previous unique slot identifier, µ−1(ρi), is defined as the

unique identifier of the previous slot ρi−1, thus µ−1(ρi) = µ(ρi−1). The previ-

ous unique identifier of the first slot ρ0 in a slot chain τ is X, i.e. µ−1(ρ0) = X.

Lastly, we have the final SQL query that considers internal and external de-

pendencies while maintaining the context:

SELECT X.A, µ(X1).A1, µ(X2).A2, . . . , µ(Xn).An, count(∗) FROM X

LEFT JOIN Range(ρ1) AS µ(ρ1) ON µ(ρ1).pkey(ρ1) = µ−1(ρ1). fkey(ρ1)

LEFT JOIN Range(ρ2) AS µ(ρ2) ON µ(ρ2).pkey(ρ2) = µ−1(ρ2). fkey(ρ2)
...

...
...

...

LEFT JOIN Range(ρm) AS µ(ρn) ON µ(ρm).pkey(ρm) = µ−1(ρm). fkey(ρm)

GROUP BY X.A, µ(X1).A1, . . . , µ(Xn).An

This naming convention guarantees unique identifiers, hence it is trivial to

see, that if we apply this naming convention to the example in Figure 4.6, we

will get the correct SQL query.

40

Chapter 4. Design

Lastly, if slots in different slot chains are equal with regard to their context,

only one should be included in ρ∗. For instance, if we have the two dependen-

cies Child.Mother.EmployedAt.Duration→ Child.Subsidy and Child.Mother

.EmployedAt.Salary→ Child.Subsidy, then τ∗(Child.Subsidy) = {Mother

.EmployedAt,Mother.EmployedAt}and ρ∗(Child.Subsidy) = {Mother, EmployedAt},

because of slot contextual equality.

Definition 6 (Slot Contextual Equality in ρ∗) Two slots ρi and ρj is contextual

equal if µ(ρi) = µ(ρj).

This facilitates that we do not perform unnecessary joins.

4.5.4 External Dependencies, Multi-Valued

In Section 4.5.2, we outlined the SQL query for external dependencies that

are single-valued. Recall that we differ between two kinds of external depen-

dencies, see Section 2.2.1. In the case of multi-valued external dependencies,

γ(X.τ.B) → X.A, we need to apply the aggregation γ to the objects {y.B | y ∈

x.τ}, while applying the concepts in Section 2.2.1 and 4.5.3. The aggregate func-

tions are applied in the select and group by parts of the SQL statement (the joins

are omitted, since they are unchanged):

SELECT X.A, γ(µ(X1).A1), . . . , γ(µ(Xn).An), count(∗) FROM X
...

...
...

GROUP BY X.A, γ(µ(X1).A1), . . . , γ(µ(Xn).An)

Unfortunately, this SQL query is not valid, since it is not allowed to group

by an aggregated function γ(µ(Xn).An). Consequently, such a query must be

split into two queries by using a sub-query, a view or a temporary table. The

first query computes the aggregate functions of the external multi-valued par-

ents, the second query performs the joins and grouping, by using the aggre-

gated values of the first query. Views seems to be the most straightforward

solution, since we do not have to tackle complex embedded sub-queries. With

views, only the joins need to be adjusted, such that they use the aggregated

value in the view instead of the multi-valued entries in the original table. Basi-

cally the views collapse the multi-valued entries into an aggregated value.

The query that creates the view for Figure 4.8 is shown below:

CREATE VIEW v1 AS

SELECT parent_id, avg(Duration)AS avg_dur, avg(Salary) AS avg_salary

FROM Employment

GROUP BY parent_id

The result of the view is shown in Table 4.9(a). When creating the views we

must group by the foreign key fkey(ρ) of the last slot ρ in the slot chain τ. In

the example, it is fkey(EmployedAt) in Parent.EmployedAt which is parent_id.

41

Chapter 4. Design

id parent_id subsidy

1 1 ES

2 2 ES

3 3 DS
(a) Child Table

id age sex

1 45 M

2 50 M

3 30 F
(b) Parent Table

id parent_id years salary

1 1 10 40000

2 1 10 20000

3 2 10 30000
(c) Employment Table

Figure 4.7: (a) The child table has one slot Child.Parent, (b) the parent table has two in-

verse slots Parent.ChildO f and Parent.EmployedAt, (c) the employment table has one

slot Employment.Employed.

y(Employment.
Salary)

y(Employment.
Duration)

Parent.
Sex

Child.
Subsidy

ParentParent.EmployedAt

Figure 4.8: The parents of Child.Subsidy. Two multi-valued dependencies

γ(Employment.Salary) and γ(Employment.Duration) both through slot chain

Parent.EmployedAt. Parent.Sex is a single-valued dependency through slot Parent.

These slots are reflected in the primary and foreign keys of the tables in Figure 4.7.

42

Chapter 4. Design

If the multi-valued dependencies are not from the same class, we would need

additional views (one for each class).

The SQL query that computes the sufficient statistics is as in Section 2.2.1,

however the views are applied instead of the original tables of themulti-valued

parents, see the result in Table 4.9(b):

SELECT Child.Subsidy, PE.avg_years, PE.avg_salary

P.Sex, count(∗) AS Count FROM Child

LEFT JOIN Parent AS P ON P.id = Child.parent_id

LEFT JOIN v1 AS PE ON PE.parent = P.id

GROUP BY Child.Subsidy, PE.avg_emp, PE.avg_sal, P.Sex

parent_id avg_yea avg_sal

1 10 30, 000

2 10 30.000
(a) The Aggregated View

Child.Subsidy PE.avg_yea PE.avg_sal P.Sex Count

ES 10 30.000 M 2

DS NULL NULL F 1
(b) CChild.Subsidy

Figure 4.9: (a) The view containing the aggregated values of the tables in Figure 4.7, (b) the

result of the count CChild.Subsidy.

An interesting aspect is how objects in amulti-valued slot chain are counted.

Figure 4.10 depicts two different scenarios; Figure 4.10(a) where four objects

point to four different objects, and Figure 4.10(b) where four objects point to

the same object. In the first case, it is clear that we count the objects reached

by following the slot chain as distinct objects, thus the count is four. However,

in the second case it is not clear whether we get a count of one or four. Indeed

the count is four, since the SQL query returns a bag of objects, thus we get four

“copies” of the same object although we are not aware of this. Actually, this is

quite reasonable since the four objects have one parent each, which just happen

to be the same object.

4.6 Calculating the Probabilities

In the previous section the joins which produce the sufficient statistics were

described, however we still need to specify how to calculate the probabilities

in a CPT. The result of executing a query is shown in Table 4.0(a), and is stored

in main memory. The number of rows in the result from the query, is the cross

product of V(X.A)×V(X1.A1)×V(X2.A2)× . . .×V(Xn.An).

We also need to calculate the frequency of the joint values that the parents

43

Chapter 4. Design

(a) Different Objects

(b) Same Object

Figure 4.10: The nodes represent objects and the edges represent relations between objects.

(a) The objects b1, b2, b3 and b4 point to four different c objects, (b) the objects b1, b2, b3
and b4 point to one object c1.

(a) Result of Executing a Query

X.A X1.A1 X2.A2 · · · Xn.An Count

· · · · · · · · · · · · · · · · · ·

(b) Calculating the Sum

Child.Subsidy Parent.Married Parent.Citizenship Child.Age Count Sum

ES MA Denmark 3 6 10

ES WI Sri Lanka 6 3 3

RE MA Denmark 3 4 10

Table 4.1: Result of Executing a Query

can take. This is equal to the denominator in Equation 3.2 on page 22. Since

our table is already grouped as a result of the join, we simply sum the count

column where the rows of X1.A1 to Xn.An are equal. This value is stored in a

new column called sum. An example is shown in Table 4.1.

The probability is computed in each row by using the two columns count

and sum, P(X.A | Pa(X.A)) = count
sum .

44

Chapter 5

Implementation

Our design has been implemented on the .NET platform using the language

C# with 4 327 lines of code. A screenshot of the application is shown in Figure

5.1.

The next sections shows how to specify a database schema and starting the

learning procedure, using our implementation.

5.1 Specifying a Database Schema

A subset of the code that specifies the schema for the movie database is shown

in Listing 5.1. The slots and their cardinality have to be entered explicitly. This

also implies specifying the cardinality of inverse slots.

Listing 5.1: Specifying the Database Schema

Prm p = new Prm(" imdb ") ;

Class movie = new Class (" movies " , p) ;

Class d i r e c to r = new Class (" d i r e c to r " ,p) ;

Class d i r e c to r = new Class (" s tud io " , p) ;

FixedAtt primaryDirectorID = new FixedAtt (" d i r e c t o r i d " , d i r e c to r , p) ;

FixedAtt primaryStudioID = new FixedAtt (" name " , s tudio , p) ;

FixedAtt primaryMovieID = new FixedAtt (" f i lmid " ,movie , p) ;

FixedAtt fore ignDirec tor ID = new FixedAtt (" d i r id " ,movie , p) ;

FixedAtt fore ignS tud io ID = new FixedAtt (" s tud io " ,movie , p) ;

DescAtt m_year = new DescAtt (" year " ,movie , RangeType . Continuous) ;

DescAtt m_award = new DescAtt (" awtype " ,movie , RangeType . D i s c r e t e) ;

S l o t s l o t _d i r e c t o r = movie . AddSlot (" Direc tor " , primaryDirectorID , fore ignDirec tor ID ,

Card ina l i ty . OneToOne, Card ina l i ty .OneToMany) ;

S l o t s l o t _ s tud io = movie . AddSlot (" Studio " , primaryStudioID , foreignStudioID ,

Card ina l i ty .OneToOne, Card ina l i ty .OneToMany) ;

45

Chapter 5. Implementation

The method Class.AddSlot is shown in Listing 5.2.

Listing 5.2: Creating ASlot

publ i c S l o t AddSlot (s t r i n g name , FixedAtt primaryKey , FixedAtt foreignKey ,

Card ina l i ty car , Card ina l i ty inverseCar)

{

S l o t s l o t = new S lo t (name , primaryKey , foreignKey , car , inverseCar) ;

s l o t . Create Inverse () ;

foreignKey . Class . S l o t s [s l o t .Name] = s l o t ;

primaryKey . Class . S l o t s [s l o t . Inverse .Name] = s l o t . Inverse ;

re turn s l o t ;

}

A new slot is created by assigning a name, a primary key, a foreign key, the

cardinality, and the inverse cardinality. The slot is created on the class of the

foreign key. Once a slot has been created, we automatically create the inverse

slot, on the class which contains the primary key, see Listings 5.3.

Listing 5.3: Creating An Inverse Slot

publ i c void Create Inverse ()

{

inverse = new S lo t (name + "Of " , to , from) ;

inverse . Inverse = t h i s ;

inverse . i s I nve r s e = true ;

inverse . Card ina l i ty = t h i s . tmpCardinal i ty ;

}

Notice, that we add the postfix Of to inverse slots, and also that ρ−1
−1

= ρ,

since we set inverse.Inverse to the current object.

5.2 The Learning Procedure

Once the database schema has been established, the learning procedure can be

initiated, see Listing 5.4.

Listing 5.4: The Search Procedure

Prm p = Schema .IMDB () ;

S t ruc tureLearner s t ruc tu re = p . S t ruc tureLearner ;

s t ruc tu re . Method = SearchMethod . Greedy ;

Search search = s t ruc tu re . Search ;

search . Mult = 3 ;

s t ruc tu re . Learn () ;

First, a schema is chosen and the appropriate settings of the search, e.g. the

penalty multiplier is assigned in search.Mult = 3. structure.Learn() initiates

the search for a dependency structure.

46

Chapter 5. Implementation

Figure 5.1: A screenshot of our application. The box to the right shows the CPT for the

attribute Child.Citizenship. The slot chain is also shown, which indicates that the depen-

dency uses the Mother slot. Notice that this screenshot is from a small sample database,

otherwise the CPT would be too large.

47

Chapter 6

Databases

6.1 Relational Daycare Database

This database originates from daycare admission of children, in Herning Kom-

mune, Denmark. The database contains information about children, their par-

ents and which institution the children attend. The database was the subject of

data mining in our earlier work [10].This database is a revised version of the

database presented, see [10] for further information.

The following section briefly introduces the domain and background for

the data.

6.1.1 Daycare Admission of Children

Herning Kommune, along with other municipalities in Denmark, coordinates

a number of institutions that provide daycare activities for children e.g. nurs-

ery, kindergarten etc. These institutions offer a number of available seats for

children, which parents can apply for. Once an application has been processed,

the child either receives a seat at an institution or is placed on a waiting list if

the municipality has capacity problems.

A seat costs a monthly fee, which is payed by the parents. This type of seat

is known as a regular seat, RE. There exist subsidies for these regular seats,

such that the municipality pays a percentage of the parentsmonthly institution

fee. In the following we describe the different kinds of subsidies given by the

municipality.

Economical Subsidy (ES): Parents with a low income is eligible for an eco-

nomical subsidy. The assessment is based on income intervals, with a

corresponding percentage price cut.

Social Subsidy (SS): Parents with children who have social problems, due to

difficulties at home or at school, may be eligible for a social subsidy. The

assessment is based on a subjective evaluation by a social worker.

49

Chapter 6. Databases

Disability Subsidy (DS): Parents with disabled children is eligible for a dis-

ability subsidy. The assessment is based on documentation of the child’s

disability.

Children Subsidy (CS): Parent with more than two children attending day-

care is eligible for a children subsidy. The subsidy is given automatically.

In the following section a brief documentation of database schema is given.

Notice, the Employment table is missing, since this only is included in order to

address important theoretical issues.

6.1.2 Database Schema

Figure 6.1 shows the schema and keys of the relational daycare database.

Child

 Id: Primary Key

 Age

 Sex

 Citizenship

 Living Condition

 Subsidy

 Mother: Foreign Key

 Father: Foreign Key

 Institution: Foreign Key

Parent

 Id: Primary Key

 Age

 Sex

 Citizenship

 Married

 Income

 Residential Value

Institution

 Id: Primary Key

 Type

 Number of Children

 Number of Foreign Children

 Number of Subsidies

1

1

*
*
*

Institution

Mother

Father

Figure 6.1: Schema for the daycare database

Child Table

The child table contains three slots, five attributes, and has 14 295 rows.

Slots:

Mother: The mother of the child (one-to-one).

Father: The father of the child (one-to-one).

Institution: The institution of the child (one-to-one).

Attributes:

50

Chapter 6. Databases

Age: The age of the child (numeric).

Sex: The sex of the child (nominal, binary).

Citizenship: The citizenship of the child e.g. Denmark, Swe-

den etc. (nominal, 48 states).

LivingCondition: The living condition of the child e.g. liven-

ing together, only with father, only with mother etc. (nom-

inal, 6 states).

Subsidy: The type of subsidy granted e.g. no subsidy, social

subsidy, see Section 6.1.1 (nominal, 6 states).

Parent Table

The parent table has five attributes, two slots, and 15 249 rows.

Slots:

MotherO f : The children of the mother (one-to-many).

FatherO f : The children of the father (one-to-many).

Attributes:

Age: The age of the parent (numeric).

Citizenship: The citizenship of the parent e.g. Denmark, Swe-

den etc. (nominal, 68 states).

Married: The marital status of the parent e.g. Married,Widow

etc. (nominal, 5 states).

Income: The average income of the parent (numeric).

ResidentialValue: The Residential value of the parent (numeric).

Institution Table

The institution table has three attributes, one slot and 69 rows.

Slots:

InstitutionO f : The children of the institution (one-to-many).

Attributes:

Type: The type of institution e.g. kindergarten, daycare, inte-

grated etc. (nominal, 7 states).

Children: The number of children in the institution (numeric).

ForeignChildren: The number of foreign children in the insti-

tution (numeric).

Subsidies: The number of subsidies granted in the institution

(numeric).

51

Chapter 6. Databases

6.2 Relational Movie Database

This database contains information about movies and their relations. The main

table is movies and related data such as information about studios, actors and

directors can be reached by following relations from themovie table. The schema

is shown in Figure 6.2.

This relational database fromUCI Knowledge Discovery in Databases (KDD)[1]

has been well studied for several different tasks, such as: classification, regres-

sion and clustering. David Jensen and Jennifer Neville gives a survey of classi-

fication using this database [17].

6.2.1 Converting to a Useful Relational Schema

Unfortunately the condition of the database from the website is not a standard

file that can be downloaded, but expressed in XML and HTML language. This

means that a conversion from HTML or XML to relational database form is

needed. However the information about the database structure from the UCI

website can easily be misinterpreted. This results in difference databases when

made by different people, so a directly comparison is difficult.

We have followed the original description of the database given by Gio

Wiederhold [31] in order to construct themost correct relational database.How-

ever there are some flaws in the documentation, with regard to types and du-

plicates in data tables and issues that easily be questioned. We have cleared the

database of any duplicates, such it now only contains non-redundant informa-

tion.

Several improvements has been made in order to correct the design, this

includes:

Primary keys: No duplicates are allowed. The XML and HTML pages are not

always consistent with regard to this restriction.

Indexes: Indexes are made on all foreign keys such that any join on these

columns is improved.

Belows is only shown the attributes that we use in our setting,although the

database contains much more information about movies, actors and directors.

Information such as movie title, actors first name, actors family name etc. are

omitted.

For a full description please see [31].

Director Table

The director table has one slot, seven attributes, and 3 471 rows.

Slots:

DirectorO f : The movies of the director (one-to-many).

52

Chapter 6. Databases

Attributes:

Pcode: Indicates which type of director e.g. director, producer,

writer etc. (nominal, 127 states).

CareerStart: Year the director started (numeric).

DirectorStart: Year the director produced the first movie (nu-

meric).

CareerEnd: Year the director stopped (numeric).

DateO f Birth: Year of birth (numeric).

Dateo f Death: Year of death (numeric).

Background: The country the director comes from e.g. USA,

England etc. (nominal, 88 states).

Movie Table

The movie table has three slots, three attributes, and 12 046 rows.

Slots:

Director: The director of the movie (one-to-one).

Studio: The studio that produced the movie (one-to-one).

MovieO f : The cast of the movie (one-to-many).

Attributes:

Year: Year the film was produced (numeric).

AwardType: Type of award e.g. Oscar (nominal, 42 states).

Author : michael: The author of themanuscript (nominal, 1060

states).

Studio Table

The studio table has five attributes, one slot, and 186 rows.

Slots:

StudioO f : The name of the studio (one-to-many).

Attributes:

City: The city in which the studio resides e.g. New York, Lon-

don etc. (nominal, 56 states).

Country: The country e.g. USA, England etc. (nominal, 20 states).

Founder: The name of the founder of the studio (nominal, 27

states).

FirstYear: The first year a film was made in this studio (nu-

meric).

LastYear: The year for the recent film produced in this studio

(numeric).

53

Chapter 6. Databases

Casts Table

The casts table has two slots, only one attribute, and 11 731 rows. The table

serves as a many-to-many relation between the movie and actor table.

Slots:

Movie: The movie of the cast (one-to-one).

Actor: The actor of the cast (one-to-one).

Attribute:

Genre: The genre of the movie e.g action, comedy, etc. (nomi-

nal, 45 states).

Actor Table

The actor table has one slot, nine attributes, and 6 714 rows.

Slots:

ActorO f : The cast of the actor (one-to-many).

Attribute:

Start: The year the actor started performing (numeric).

End: The year the actor ended acting (numeric).

Sex: The sex of the actor (nominal, binary).

DateO f Birth: Year the actor was born (numeric).

DateO fDeath: Year the actor died (numeric).

Origin: The citizenship of the actor (numeric).

54

Chapter 6. Databases

Movie

 Filmid: Primary Key

 Dirid: Foreign Key

 Year

 Studio: Foreign Key

 AwardType

 Author

Casts

 FilmId: foreign Key

 Actor: foreign Key

 Genre

Actor

 Stage name : Primary Key

 Start

 End

 Sex

 DateOfBirth

 DateOfDeath

 Origin

Studio

 Name: Primary Key

 City

 Country

 Founder

 First Year

 Last Year

Director

 DirectorId: Primary Key

 Name

 Pcode

 CareerStart

 DirectorStart

 CareerEnd

 DateOfBirth

 DateOfDeath

 Background

1

1

*
*

1

*

1

*

Director

Studio

Movie

Actor

Figure 6.2: Schema for the movie database

55

Chapter 7

Tests

This chapter describes the various experimental tests that were applied to our

implementation.

An important note, is that the running time of tests across sections are not

comparable, e.g. Section 7.1 and Section 7.2, since they were run on different

machines.

7.1 Complexity Penalty Test

The penalty term, dk log n, of the score function in Eq. 3.3, can be adjusted by

inserting a multiplier factor α, such that the penalty term becomes α dk log n.

In this test, we will increase the value of α from its default value of 1 to 10, and

see how it affects the search procedure (assuming a greedy search approach).

The expectation is that increasing α will yield:

• Fewer dependencies in the final structure.

• Fewer dependencies searched, thus faster execution time.

As a consequence, the maximum likelihood also decreases as α is increased.

7.1.1 Results and Evaluation

Figure 7.1 shows the test results with the multiplier α paired with the likeli-

hood, number of dependencies, number of dependencies searched, and the ex-

ecution time of the search. The results show that with the daycare database, we

get a lower maximum likelihood, fewer dependencies, and lower search time

as the multiplier increases—as expected. However, with the movie database

the results are, basically, equal from α = 5 and α = 9, which indicates that all

dependencies are so good in terms of improving the likelihood score, that none

can be removed before α = 10.

57

Chapter 7. Tests

The results clearly show that it is a trade off between fewer dependencies and

lower maximum likelihood. Figure 7.1(a) and Figure 7.1(b) show that we can give

up a relative little amount of maximum likelihood, for significantly fewer de-

pendencies. More specifically, we can give up about 3% of the maximum likeli-

hood for about 34% fewer dependencies, between α = 1 and α = 3. Although,

care should be taken when comparing absolute and relative numbers of maxi-

mum likelihood, since it is not as comprehensible as e.g. the number of depen-

dencies.

-90000

-89000

-88000

-87000

-86000

-85000

-84000

-83000

-82000

 1 2 3 4 5 6 7 8 9 10

L
ik

e
lih

o
o

d

Multiplier

movie
daycare

(a) Maximum Likelihood

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

D
e

p
e

n
d

e
n

c
ie

s

Multiplier

movie
daycare

(b) Dependencies

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 1 2 3 4 5 6 7 8 9 10

D
e

p
e

n
d

e
n

c
ie

s
 S

e
a

rc
h

e
d

Multiplier

movie
daycare

(c) Dependencies Searched

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8 9 10

T
im

e
 i
n

 s
e

c

Multiplier

movie
daycare

(d) Search Time

Figure 7.1: The penalty multiplier α and (a) the maximum likelihood, (b) the number of

dependencies in the structure, (c) the number of total dependencies searched, (d) and the

execution time of the search.

Two overlay structures of the 10 different runs on the daycare and themovie

database, are shown in Figure 7.2 and Figure 7.3, respectively. The thickness of

the dependencies represent the threshold to which α had to be increased to,

before that dependency was removed due to penalization. Hence the thickness

can be interpreted as significance. We will evaluate the dependencies of the

structures in Section 7.5.

58

Chapter 7. Tests

Figure 7.2: The overlay structure for the daycare database.

59

Chapter 7. Tests

Figure 7.3: The overlay structure for the movie database.

60

Chapter 7. Tests

Consequently, α is a useful parameter in controlling the search. Although,

there is no all-around good value of α; different values have to be tried in order

to get a model that is satisfiable in terms of complexity, execution time, and

data fit.

7.2 Search Test

The choice of search algorithm for exploring the hypothesis space of legal mod-

els, has a great impact on the structure of our final model. Different algorithms

explore the space in different manners. In order to see the effect of the selected

search algorithm for exploring our hypothesis space, the daycare database has

been tested using the following algorithms, see Section 4.4 on page 32:

• Greedy

• Subset Search

• Normalized Random

• Hybrid

The movie database has been tested using greedy and hybrid, in order to

see if any major difference in search behavior occurs.

The following sections show the results given the different search algo-

rithms. Notice, all tests have been conducted with α = 1.0.

7.2.1 Greedy Search Result

The result of the greedy search is shown in Figure 7.4. It shows that large score

improvements are made in the beginning, but later on the improvements dete-

riorates. This is as expected, hence as time goes we get a more and more com-

plex model, because more dependencies are added and the penalty becomes

larger.

The time taken for learning the structure with greedy search is approxi-

mately 2 900 seconds for the daycare database and 7 800 seconds for the movie

database. These tests were conducted using an Intel Pentium 4, 2.6 GHZ pro-

cessor with 512 MB of RAM.

However we do not know if the models found are the optimal ones in the

hypothesis space of legal structures, since the most greedy step in each itera-

tion does not automatically lead to an optimal structure. Therefore several ran-

domized algorithms have been proposed in Section 4.4 in order to cope with

the problem of local maximas. We expect that some of the most randomized

algorithms are much faster than greedy, even though greedy is reasonable fast.

Other algorithms are slower, but we focus on increment the structure score as

opposed to improving running time. However, the latter we still wish to keep

61

Chapter 7. Tests

as low as possible. These tests have only been conducted using the daycare

database.

-140000

-130000

-120000

-110000

-100000

-90000

-80000

-70000

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
tr

uc
tu

re
 S

co
re

Time in Seconds

movie
daycare

Figure 7.4: Greedy search using a multiplier of 1.0. On the horizontal axis is the time in

seconds and on the vertical axis is the structure score.

7.2.2 Random Search

Since randomness is a factor in these tests, they are restarted several times.

Two different random algorithms are tested; the random subset and normal-

ized random algorithms as described in Section 4.4.2.

In these tests we should expect the normalized algorithm to domuch better

than the subset random one, since there is a higher chance of selecting the best

dependencies using the normalized algorithm. On the other hand, the running

time of the subset search should be much faster than the normalized one, since

much less computation is needed.

Subset Random Result

The search has been restarted 5 times and the result is shown in Figure 7.5(a).

The random subset approach results in large score improvements very fast, but

unfortunately the search stalls very quickly and from that point in time only

small improvements are made, if any at all. We can see in Figure 7.5(a), that

in run 3 the algorithm terminates quite fast, and does not seem to try different

subsets as intended. This is because when the subset is selected, all possible

dependencies are considered and one is chosen. Then a check is made in or to

see if the dependency introduce cycles. If not, it is include in the set, otherwise

it is dropped. As the search continues the probability of selecting dependencies

that are illegal increases, and the subset of useful dependencies decreases. If

no dependency within the subset is legal the search is terminated. This e.g.

happened in run 3. We could make the acyclic check before the dependency is

considered to be included in the subset. Then it must be reconsidered when the

search should terminate, since the risk for a large increase in time is present, if

62

Chapter 7. Tests

we are to try all possible dependencies by selecting them randomly among all

dependencies.

The subset search algorithm performs very badly compared to greedy search

in terms of the final structure score. So this very fast approach is not further

pursued.

Normalized Random Result

The result using this search algorithm is shown in Figure 7.5(b). Here we see,

as expected, a much better structure score is obtained. It is actually almost as

good as the greedy search. However we would like to get a better structure

score in order to see if a better approach than greedy exists, and disregard the

increment in running time.

The results could suffer from the second statement in Section 4.4.2, where

the normalization screws the probability of selecting very good dependencies,

if many possible dependencies are present. However, preliminary tests have

shown that even though we only considering the 20 best dependencies before

normalizing it does not give any better results. The only difference is that the

slope in the beginning increases more, but the best structure score does not

improve and does not become better than greedy.

An improvement, which could be pursued, is to allow dependencies that

decreases the structure score. It could be done like the k tries of m steps in the

subset random algorithm. This has though not been explored.

7.2.3 Hybrid Search Result

When applying the hybrid search algorithm we actually get quite good results

when speaking in terms of both speed and structure score. This holds for both

the daycare and movie database. The search trace for 5 runs is shown in Figure

7.6. Herewe see that in the beginning random steps are taken, and the structure

score improves rapidly, but as time progresses they all, more or less, take the

best step all the time and the improvements deteriorates. The final structure

score is very similar in all test runs. However on the movie database, in Figure

7.6(b), we see a larger difference between the runs.

It is worth noticing that the running time of this search algorithm is slightly

better than both greedy search and normalized random, the latter with a factor

of two. The reason is straight forward; by introducing random steps, fewer

calculations are needed.

7.2.4 Evaluation

Figure 7.7 shows a comparison of the four search algorithms on the daycare

database. The best test run for the three random algorithms; subset, normalized

and hybrid is shown together with greedy search.

63

Chapter 7. Tests

-140000

-135000

-130000

-125000

-120000

-115000

-110000

-105000

-100000

 0 100 200 300 400 500 600 700 800

S
tr

uc
tu

re
 s

co
re

Time in Seconds

run 1
run 2
run 3
run 4
run 5

(a) Subset Random Search on the daycare database

-140000

-135000

-130000

-125000

-120000

-115000

-110000

-105000

-100000

-95000

-90000

-85000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
tr

uc
tu

re
 s

co
re

Time in Seconds

run 1
run 2
run 3
run 4
run 5

(b) Normalized Random Search on the daycare database

Figure 7.5: (a) On the vertical axis is the final structure score and on the horizontal axis

the running time in seconds. It is easy to see that the best dependencies are only selected in

some, but far from all, cases.(b) The axis’ are the same as in a). By using this normalized

algorithm we get a better search, in terms of structure score, than using the random subset

approach.

64

Chapter 7. Tests

-140000

-135000

-130000

-125000

-120000

-115000

-110000

-105000

-100000

-95000

-90000

-85000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
tr

uc
tu

re
 S

co
re

Time in Seconds

run 1
run 2
run 3
run 4
run 5

(a) Hybrid search on the daycare database

-105000

-100000

-95000

-90000

-85000

-80000

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
tr

uc
tu

re
 S

co
re

Time in Seconds

run 1
run 2
run 3
run 4
run 5

(b) Hybrid search on the movie database

Figure 7.6: (a) The hybrid search on the daycare database. All runs are almost identical with

respect to score and running time.(b) The hybrid search on the movie database. There is a

larger differences between the runs than in the daycare database.

The tests shows that no algorithm finds a better structure than greedy does,

but the hybrid get the same structure score in less time. The normalized algo-

rithm takes twice the time for an almost identical score.

In Figure 7.8, greedy and the hybrid search have been run on both databases.

As mentioned earlier there is not much difference between hybrid and greedy

on the daycare database. However on the movie database the hybrid search

find an almost identical score to greedy in half the time. So on this database hy-

brid is very superior in speed, but does not find a better structure than greedy.

However it must be mentioned that the standard deviations from greedy are

larger on the movie database than the daycare database, so more tests are

needed in order to ensure consistency.

So according to our tests, greedy performs best in terms of structure score.

Hence, greedy is in our setting a reasonable choice, but other approaches could

be tried, which may yield a better score, although with a much higher running

time. Different algorithms could be tried as e.g Best First Search which is sim-

ilar to hill climbing, but is exhaustive in its search, so it would eventually try

all possibilities.

In order to get more different search results between greedy and hybrid in

our tests, the variables deciding the degree of randomness can be tweaked in

the hybrid approach, see Listing 4.4 on page 36. This tweaking of the variables

could result in a structure with score improvement and could be guided by

the approach mentioned in [26], where a constant k is used to determine the

degree of randomness. Results from this paper shows that a degree of random-

ness outperforms, in terms of score, the greedy approach in 66% of all cases.

However we have not experienced similar results.

65

Chapter 7. Tests

-140000

-135000

-130000

-125000

-120000

-115000

-110000

-105000

-100000

-95000

-90000

-85000

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
tr

uc
tu

re
 s

co
re

Time in Seconds

Subset Random
Normalized Random

Hybrid Random
Greedy Search

Figure 7.7: Comparison of four search algorithms. There is no search algorithm that per-

forms better in score than greedy, but notice that the hybrid approach get accurate the same

score as the greedy algorithm in less time.

-140000

-130000

-120000

-110000

-100000

-90000

-80000

-70000

-60000

 0 1000 2000 3000 4000 5000 6000 7000 8000

S
tr

uc
tu

re
 s

co
re

Time in Seconds

Hybrid daycare
Greedy daycare

Hybrid movie
Greedy movie

Figure 7.8: Greedy and random search on the two different databases. On the daycare

database more equal results are obtained, whereas in the movie domain the difference is

more noticeable.

66

Chapter 7. Tests

7.3 Scalability Test

The scalability of the search for the best structure is of great importance when

working on large databases. Therefore we test the scalability of our design and

implementation. The scalability of our implementation is measured in time taken

for learning the structure that fits the data best. Usually we can create several

sample sets of different sizes in order to measure the scalability of a model, by

simply notice the increment in running time. This is often done in propositional

data mining. Similar sample sets can be made from a relational database, using

a slightly different approach. By selecting instances from one table and follow-

ing all relations we get a subset of the relations contained in the real database.

However this is not always quite so easy. We must accept some flaws such as

sample incorrectness and omitting related data.

1. Sample Incorrectness

When taking a small subset of children from our daycare database, we

statistically also want a small subset of the institutions. But because of the

large number of children compared to the number of institutions, we get

a screwed subset when following the relation from child to institution.

Suppose we want 10% of the children, then there is a great chance of

getting more than 10% of the institutions. It is more likely to get 90% of

the institutions.

2. Omitting Related Data

We want to create small data samples, which contain a fixed number, k,

of children from our daycare database. Besides determining the value of

k, we must determine when to omit some relations

In our samples, we take k children and following the relation tomother, f ather

and institution. However we not guaranteed that siblings to specific chil-

dren are automatically included in the sample set, which amounts to

omitting related data.

The same happens in the movie database, when following all relations

from movies.

7.3.1 Test and Evaluation

Keeping these obstacles in mind, we have created subsets of the daycare and

the movie database, in order to evaluate the scalability of our implementation.

The sample sizes are 3 000, 6 000, 9 000, 12 000 and 15 000. The result is shown

in Figure 7.9. The figure shows that the scalability of our implementation is

almost linear in the number of training examples when looking at the daycare

database. A small increment in the running time is noticeable as the sample

size increases.

67

Chapter 7. Tests

However when looking at the movie database we see a quite different re-

sult. Here there is a large increase in running time from the two first samples,

and from the second to the third an improvement in running time is made.

This could indicate that our samples have not been constructed with equal re-

lations. The improvement in running time could be because there are many

useful relations in the additional 3000 samples when going from 6000 to 9000

samples such that the search finds an optimal model more quickly. The dif-

ference in time taken for the same sample size on the two database can not

directly be compared, since it is on two different databases. However it could

indicate that there are many multi-valued slot chains, and longer chains in the

movie database.

These results show, as expected, that the approach shown in Figure 7.9 is

very limited. Hence things, asmentioned above, have an impact on the running

time and hence must be investigated.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1500012000900060003000

T
im

e
in

 S
ec

on
ds

Sample size

 Time Vs. sample size

movie
daycare

Figure 7.9: A very general scalability tests of our model.

• Slot Chain Length

The maximum length of slot chains that can be constructed may have a

high impact on the scalability of our implementation. That is, when re-

trieving data following a slot chain τ with k different classes, we need to

do k joins in order to retrieve the correct information. This is computa-

tional heavy, and the impact of |τ| has to be studied further.

• Evaluating Queries

When working on data that contain multi-valued slot chains the running

time increases, since many objects have to be aggregated. A problem is,

like in Bayesian networks, that an descriptive attribute can have many

parents. If all attributes are good indicates for the same attribute, except

the attribute itself, the running time would increase significantly, espe-

cially if multi-valued slot chains are present.

68

Chapter 7. Tests

7.4 Profile Test

The purpose of the profile test is to uncover potential performance bottlenecks,

i.e., which components that slow down the overall performance while learning

PRMs. The profiler [21] shows the total percentage of time used in and under a

method. It does, however, not record the time since profiling can add a factor

of 20 to the running time.

Our exceptation is that the majority of the time will be spend on querying

the database.

7.4.1 Result and Evaluation

Figure 7.10 and Figure 7.11 show the result of profiling the structure learning

procedure with greedy search. The results are depicted as call graphs, with

method name and percentage. Figure 7.10 shows the call graph for the daycare

database, whereas Figure 7.11 shows the call graph for the movie database.

The figures show three interesting results:

• The majority of the total time, about 99% are used in scoring the candi-

date models (learning the parameters), as expected.

• About 86− 89% are used in maintaing the internal structure of the CPTs.

• 9− 13% are used in database querying. Actually, this is quite unexpected.

It is unexpected that only about 9 − 13% are used in database querying,

which is a consequence of the large percentage used in maintaining the CPTs.

Section 4.6 described how the CPTs were constructed, and the reason for the

large percentage of MakeStatistics is, apparently, that we perform un-indexed

in-memory data queries using a select statement. Hence, the queries perform

poorly while selecting the values of X.As parents. One approach of alleviat-

ing this problem, is to create the appropriate indices. This also takes time, but

vastly outweighs selecting on un-indexed columns. However, the indices must

be repeatedly created during search, when new dependencies are added. We

may have to look else where for a possible optimal solution.

Also, the memory footprint of the implementation is very small; depending

on the size of the CPTs. In our tests on the daycare and movie database, the

footprint was only about 20− 30 megabytes. Which suggests, that we can use

more memory for speed optimizations, such as creating indices.

7.5 Structure Evaluation Test

In the following two sections, we discuss the various dependencies in the learned

structure of the daycare and movie database.

69

Chapter 7. Tests

GreedySearch.Start() - 100%

ParameterLearner.Learn() - 99% Cpt.Clone() - 1%

Statistics.MakeStatistics(Cpt) - 89% Cpt.Init() - 10%

Statistics.UpdateRows(...) - 2% Statistics.Count(DescAtt) - 9%

Database.GetTable(SQLString) - 9%

Figure 7.10: The call graph of the structure learning procedure on the daycare database.

Methods of the .NET framework are not included.

GreedySearch.Start() - 100%

ParameterLearner.Learn() - 99% Cpt.Clone() - 1%

Statistics.MakeStatistics(Cpt) - 86% Cpt.Init() - 13%

Statistics.UpdateRows(...) - 5% Statistics.Count(DescAtt) - 13%

Database.GetTable(SQLString) - 9% Statistics.CreateView(...) - 3%

Figure 7.11: The call graph of the structure learning procedure on the movie database. Meth-

ods of the .NET framework are not included.

70

Chapter 7. Tests

P(Child.Subsidy

|Parent.Income) -1 1 2 3 4 5

CS 0.108 0.315 0.106 0.045 0.026 0.188

DS 0.005 0.037 0.008 0 0 0.004

ES 0.218 0.111 0.357 0.455 0.349 0.003

SS 0.020 0.037 0.022 0.031 0.019 0.003

NO 0.422 0.185 0.322 0.393 0.550 0.495

RE 0.228 0.315 0.184 0.076 0.056 0.307

Table 7.1: The P(Child.Subsidy | Parent.Income) with 5 bins, where −1 indicates a miss-

ing relation, 1 is a low income, and 5 is a high income.

In the daycare structure, we expect to find a superset of the correlated

propositional attributes presented in our prior work [10]. In the movie struc-

ture, no previous references are available. Although, the movie domain is well-

studied, the lack of consistence between applied databases makes it difficult to

correlate different results. Consequently, we simple expect to find reasonable

dependencies in the movie structure.

7.5.1 Daycare Structure

The daycare structure, see Figure 7.12, is constructed with greedy search and

α = 6, since we get a reasonable number of dependencies and likelihood.

In the following we discuss some of the dependencies which seems reason-

able.

Child.Age depends on Institution.Type, because the different institution types

have different age ranges, such that kindergarten is for middle age chil-

dren between 2 and 6 years old. Also it depends on Parent.Age viaMother

which suggests that the mother’s age is better at predicting the age of the

child, than the father’s age.

Child.Subsidy depends on the number of children in the child’s institution,

Institution.Children, which makes sense since a lower number of chil-

dren decreases the change of getting a child with a subsidy. It also de-

pends on Parent.Income through Mother, since the income usually is reg-

istered on the mother in a marriage.

The CPT for P(Child.Subsidy | Parent.Income) with Institution.Children

marginalized and 5 bins in Parent.Income, is shown in Table 7.5.1. The

probabilities for DS and SS are very small due to few instances in the

database, which was also the case for our prior work. Also, the proba-

bilities for ES is very low if the income is high (5), which also correlates

which our prior findings.

71

Chapter 7. Tests

Child.Livingcondition depends on Parent.Married and Parent.Income, because

the marital status is reflected in the living condition of the child and the

income of the parent, apparently, also has a influence.

Parent.Married depends on Parent.Age which indicates that there may be cer-

tain age groups that have more frequent marital statuses, than other age

groups.

Parent.Income depends on Parent.ResidentialValue, because the income often

determines the size and price of the resident. Also, it depends on Child.Sex

which is probability an indirect dependency on Parent.Sex, since the sex

of the parent usually has influence on the income.

Parent.Citizenship depends on Parent.ResidentialValue and Parent.Married, since

e.g. Somalians often have a low residential value and are always married

in the database.

Parent.Sex depends on Child.Sex through two inverse slots, MotherO f and

FatherO f . At first glance, thismay seem as an odd dependency. But Child.Sex

is a good indicator for Parent.Sex, since if we follow the slot Father from

child we will always have Parent.Sex = Male and for the slot Mother,

Parent.Sex = Female. Likewise following the inverse slot FatherO f or

MotherO f , we will always end up with a child or an undefined value

(null) if the father or mother have no children.

The above only contains a subset of the dependencies in Figure 7.12, which

we found interesting. We did find a superset of dependencies of our prior

work, although it could be interesting to perform inference in the ground Bayesian

network, we will leave this as future work.

7.5.2 Movie Structure

The final structure of the movie database is shown in Figure 7.13 with α = 3.

Generally, there are many dependencies connecting attributes that contain

information about years, e.g. Studio.Firstyear depends on Movie.Year and

Director.Directorstart depends on Movies.Year. These dependencies are trivial

and not surprising, but however indicates that our implementation is working

correctly and that the final structure is reasonable.

In the following we discuss some of the dependencies which we find most

interesting.

Movies.Year depends on Casts.Genre, which makes sense since in different

decades different genres becomes popular.

Director.Directorstart depends on Casts.Genre, which also strengthen our be-

lief that different movie genres are more popular in some decades.

72

Chapter 7. Tests

P(Director.Background

|Movies.Year) -1 1 2 3 4 5

American 0.424 0.496 0.0.512 0.568 0.476 0.621

British 0.060 0.076 0.112 0.091 0.071 0.040

Italian 0.064 0.106 0.058 0.061 0.124 0.105

France 0.031 0.047 0.059 0.044 0.072 0.030

Table 7.2: The P(Director.Background | Movies.Year) with 5 bins, where −1 indicates a

missing relation, 1 indicates an old movie, and 5 indicates a recent movie.

Casts.Genre depends on Actor.Sexwhich could be plausible since more female

actors would be casted to romance and comedy movies. The other way

around with action movies.

Director.Background depends on Studio.Country, which seems correct since

both attributes express information about citizenship. It is likely that a

director often chooses a studio in the same country he comes from. It also

depends on Movies.Year, which could indicate that in different decades

different nationalities where more attractive. However this dependency

seems not so trustworthy as the other, so a fraction of the CPT is shown

in Table 7.5.2. Parts of the CPT has been omitted, since there are almost

50 different values of Director.Background. Only the four largest entries

are shown.

It shows that in all values of Movies.Year an American director is most

likely. This do not seem surprising. The dependency from Movies.Year to

Director.Background could be because the proportion of American direc-

tors is different in the different time periods. If the valueswere equal in all

periods then this dependencywould bewrong, sinceDirector.Background

would be independent of Movies.Year.

Studio.City depends on Studio.Country, which is trivial since different cities

resides in different countries. It further depends on Studio.Lastyearwhich

indicates that over time different studios located in different cities be-

came attractive.

Movies.Awtype depends onMovies.Year, because in different time periods dif-

ferent awards were given. It could be the fact that the different awards

wear out over time.

The structure of the movie database indeed contains reasonable dependen-

cies and confirms prior beliefs about the movie domain.

73

C
h
ap
ter
7.
T
ests

child.sex

parent.sex

MotherOf : modFatherOf : mod

parent.income_bin5

FatherOf : mod

parent.residentvalue_bin5

parent.married

parent.citizenship child.livingcondition

Father

child.subsidy

Mother

Mother

parent.age_bin5

child.age_bin5

Mother

child.citizenship

Mother

institution.foreignchildren_bin5

Institution

institution.type

Institution

institution.subsidies_bin5

Institution

institution.children_bin5

Institution

F
igu
re
7.12:

T
he
depen

den
cy
stru
ctu
re
of
the
relation

al
daycare

database
w
ith

α
=
6.

7
4

C
h
ap
ter
7.
T
ests

movies.year_bin5

director.careerstart_bin5

DirectorOf : min

director.directorstart_bin5

DirectorOf : max

director.careerend_bin5

DirectorOf : max

director.dateofdeath_bin5

DirectorOf : max

director.dateofbirth_bin5

DirectorOf : avg director.background

DirectorOf : max

movies.awtype studio.firstyear_bin5

StudioOf : max

casts.genre

MovieOf : mod

DirectorOf.MovieOf : mod studio.country

DirectorOf.Studio : mod

studio.city

actor.end_bin5

actor.start_bin5 actor.originactor.dateofbirth_bin5

actor.dateofdeath_bin5

actor.sex

actor

studio.lastyear_bin5

F
igu
re
7.13:

T
he
depen

den
cy
stru
ctu
re
of
the
relation

al
m
ovie
database

w
ith

α
=
3.

7
5

Chapter 8

Conclusion

This chapter presents the conclusion of our work, and presents some areas of

future work.

8.1 Conclusion

Our design of PRMs, which supported learning the parameters and the depen-

dency structure, had three design criteria:

Simplicity: The object-oriented design is very simple, we only introduced classes

directly correlated with the syntax of the relational language and enti-

ties in PRMs, and functional classes for database querying and learning

PRMs.

Flexibility: The flexibility of the design is yet to be determined, however, since

the design is simple it should only be a matter of extending the classes

through inheritance. This facilitates, that it should be relative easy to ex-

tend the design with e.g. link uncertainty [11].

Performance: Performance considerations, resulted e.g. in local structure change

and only querying the database once per attribute, see Chapter 5. Al-

though, these optimizations came short while profiling the implemen-

tation, which showed a significant design flaw, performance wise, see

Section 7.4. However, since we prioritized simplicity over performance

we settled with the current design, and left any further optimizations as

further work.

Testing our design, uncovered the following aspects:

Complexity Penalty Test: Showed that by introducing a penalty multiplier, α,

we could tweak the search procedure by deciding the trade off between

likelihood and complexity. Hence, α also influences the running time of

searching for a structure using a greedy approach. See Section 7.1.

77

Chapter 8. Conclusion

Search Test: The search test showed that introducing randomness was benefi-

cially, although the pure random algorithms did not perform satisfiable.

Hence, the hybrid search algorithm is a good alternative to greedy, al-

though it did not surpass greedy in achieving a better model (though

close), it did surpass it in speed. A best-first approach could be applied,

if a higher score could be archived since the learning procedure is rela-

tive fast. With about one hour for learning the daycare database, and two

hours for learning the movie database.

Scalability Test: The limited scalability test showed a near linear scalability on

samples of the daycare database. The scalability of the movie database,

showed that it is not always the case that increased data leads to higher

running time, see Section 7.3.

Profile Test: The profile test, showed a design flawwhich greatly increased the

running time of our implementation, which would be redeemed by using

indicies. Otherwise, the profiler showed a very small memory footprint

at about 20-30 megabytes. See Section 7.4.

Structure Evaluation Test: We found a superset of the correlated daycare propo-

sitional attributes of our prior work. An interesting new dependency

was the impact of the residential value, which was not present in our

prior work. The structure of the movie database showed many plausi-

ble dependencies, also through longer slot chains, which provided much

knowledge about the movie domain e.g. that the genre of casts depends

on the actors in it. See Section 7.5.

In summary, our contributions are:

• A simple design and implementation of PRMs. The design specifies the

search for potential parents, four algorithms for finding a good depen-

dency structure, and explicitly shows how to compute the sufficient statis-

tics for learning the parameters.

• Two relational databases which PRMs can be directly applied.

• Tests that show aspects of the dependency structure search, tweaking the

score function, scalability, performance usage of our implementation, and

structure evaluation.

• Dependencies of the movie and daycare databases, which may be re-

ferred by other literature on relational data mining.

Overall, PRMs seems to be a very good alternative to propositional data

mining, instead of applying flattening.

78

Chapter 8. Conclusion

8.2 Future Work

Our design and tests could be expanded in various ways:

• Using PRMs with link uncertainty [11] facilitates that we can specify the

probability that certain objects are linked. Instead of explicitly specifying

the probabilities, the approach relies on certain attribute partitions such

as the type of a movie, and then specifies the probabilities over these

attribute partitions that certain objects are linked. Our design could sup-

port this, by creating the classes PRMLink.PartitionAtt, PRMLink.

DescAtt,PRMLink.PartititonAtt etc. where PRMLink is the names-

pace.

• The importance of numeric values in relational databasesmakes discretiza-

tion a necessity. Instead of applying a fixed discretization method, the

search for potential parents could be expanded to include this, hence a

potential parentwould be (Y.B, τ, γ, λ)where λ is a discretizationmethod.

• Synthetic relational data would allow us to assess the validity of our

learning procedure, by sampling data according to the specified proba-

bilities and dependencies. This "gold standard" would then be compared

with the learned dependencies and parameters of our learning proce-

dure. Also, this would allow us to perform further scalability tests.

• A domain especially suited for relational data mining, is social networks.

Social networks have a recursive nature, where a friend is a friend of a

friend etc. Extensive studies with propositional and relational techniques

[6; 28] have been applied, it could be interesting to apply PRMs to this

domain, with e.g. data from Orkut [20].

• Compiling a PRM to a ground Bayesian network, would allow us to per-

form inference in the ground network. The compilation would result in

a quite large Bayesian network, which might require approximate infer-

ence instead of exact inference.

79

Chapter 9

Appendix A - Summary

When propositional data mining techniques, applied to relational databases, is

not adequate because of the disadvantage of flattening, relational data mining

is an alternative. Flattening is the process of transforming a relational database

to a propositional data set.We presented two disadvantage of flattening, namely,

statistical incorrectness and attributes must be fixed. These disadvantages can

be avoided by using relational mining techniques such as ILP or statistical

graphical models.

We presented Probabilistic Relational Models (PRMs), a statistical graphi-

cal model, in Chapter 2. PRMs extend the concept of Bayesian networks with

the relational language, such that is considers relations between objects. As in

a Bayesian network, PRMs consists of two components; the dependency struc-

ture and its parameters. The dependency structure consists of internal and ex-

ternal dependencies, where the latter is either single-valued or multi-valued.

The parameters are the conditional probabilities of an attribute given its de-

pendencies. The multi-valued external dependencies would result in many de-

pendencies, thus, we explained how a compact representation based on aggre-

gation could be used to specify the probabilities of these multi-valued depen-

dencies.

Chapter 3, further explained PRMs by introducing the concept of learning

the structure and parameters of a PRM. We presented a simple approach based

on maximum likelihood for learning the parameters of a PRM, using sufficient

statistics. In learning the dependency structure, we defined three concepts; that

define the legal structure, how to evaluate them, and finally the search heuris-

tics. We defined a legal structure as a DAG, although this condition can be

relaxed. Our score function for evaluating a structure, was based the Bayesian

Information Criteria, and the search heuristics use a notation of potential par-

ents.

The design, in Chapter 4, presented a simple design of PRMs with four dif-

ferent search algorithms for finding a good dependency structure. In our de-

sign the dependency structure is based on potential parents, which we defined

81

Chapter 9. Appendix A - Summary

as a triple containing an attribute, a slot chain, and an aggregator. Furthermore,

we presented algorithmic details of the search for potential parents and a de-

pendency structure. Lastly, the chapter explicitly described how to compute

the sufficient statistics using SQL queries to the relational database.

In Chapter 5, we presented two relational databases; the daycare database

and movie database. The schema for each, were outlined after we had selected

the attributes of interest and applied prepossessing.

The implementation, in Chapter 6, were submitted to five different tests,

in Chapter 7, ranging from scalability to model evaluation. The scalability test

showed a near linear scalability on sampled databases, although further tests

would be necessary to say anything conclusive about scalability. The four dif-

ferent search algorithms were applied and both greedy and a hybrid approach

gave good results. Using the search algorithms, we evaluated the learned struc-

tures of the daycare and movie database. Both structure provided important

insight into the two domains.

We concluded that PRMs seemed to be a very good alternative to proposi-

tional data mining, instead of applying flattening.

82

Bibliography

[1] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,

1998.

[2] H. Blau, N. Immerman, and D. Jensen. A visual language for querying

and updating graphs. Technical Report 2002-037.

[3] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order

logical decision trees. Artificial Intelligence, 101(1-2):285–297, 1998.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and regresion trees, 1984.

[5] Wray L. Buntine. Operations for learning with graphical models. Journal

of Artificial Intelligence Research, 2:159–225, 1994.

[6] C. Butts. Network inference, error, and informat (in)accuracy: a bayesian

approach, social networks. 2003.

[7] D. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian Networks

is NP-Hard. MSR-TR-94-17, Microsoft Research.

[8] Sas̆o Dz̆eroski. Multi-relational data mining: an introduction. SIGKDD

Explor. Newsl., 5(1):1–16, 2003.

[9] Nir Friedman, Lise Getoor, Daphne Koller, andAvi Pfeffer. Learning prob-

abilistic relational models. In IJCAI, pages 1300–1309, 1999.

[10] Morten Gade and Michael Gade Nielsen. Data mining for descriptive

modeling: Daycare subsides and institutions in herning kommune, 2005.

[11] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic

models of link structure, 2002.

[12] Lise Getoor. Learning Statistical Models from Relational Data. Ph.D disserta-

tion. Computer Science Department, Stanford University, 2002.

[13] David Heckerman. A tutorial on learning with bayesian networks.

83

BIBLIOGRAPHY

[14] David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic

models for relational data. Technical Report MSR-TR-2004-30.

[15] Lawrence B. Holder and Diane J. Cook. Graph-based relational learning:

current and future directions. SIGKDD Explor. Newsl., 5(1):90–93, 2003.

[16] Manfred Jaeger. Relational Bayesian networks. In Morgan Kaufmann, ed-

itor, Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence,

pages 266–273, 1997.

[17] D. Jensen and J.Neville. Correlation and sampling in relational datamin-

ing. In Proceedings of the 33rd Symposium on the Interface of Computing Sci-

ence and Statistics, 2001.

[18] Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In

AAAI/IAAI, pages 580–587, 1998.

[19] S. Kramer and G. Widmer. Inducing classification and regression trees in

first order logic.

[20] Orkut.com LLC. Orkut – the social network. http://www.orkut.com.

[21] M. Mastracii. Nprof: The .net profiler application and api.

http://nprof.sourceforge.net/Site/SiteHomeNews.html.

[22] J. Neville and D. Jensen. Collective classification with relational depen-

dency networks. In Proceedings of the 2nd Multi-Relational Data Mining

Workshop, 9th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, 2003.

[23] J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational proba-

bility trees. In Proceedings of the 9th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2003.

[24] J. Nevillea, D. Jensen, and B. Gallagher. Simple estimators for relational

bayesian classifers. In Proceedings of The Third IEEE International Conference

on Data Mining, 2003.

[25] J. Newton and R. Greiner. Hierarchical probabilistic relational models for

collaborative filtering. xx, 0:00, 00.

[26] Jens D. Nielsen, Tomás̆ Koc̆ka, and Jose M. Peña. On local optima in learn-

ing bayesian networks. In Proceedings of the Nineteenth Conference on Un-

certainty in Artificial Intelligence (UAI), 2003.

[27] J. R. Quinlan. C4.5: programs for Machine Learning. Morgan Kaufmann,

1993.

[28] P. Smyth. Statistical modeling of graph and network data. Information and

Computer Science, University of California, Irvine.

84

http://www.orkut.com
http://nprof.sourceforge.net/Site/SiteHomeNews.html

BIBLIOGRAPHY

[29] Lappoon R. Tang. Statement of research summary and current directions.

[30] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data

mining. SIGKDD Explor. Newsl., 5(1):59–68, 2003.

[31] Gio Wiederhold. Movies database documentation.

http://kdd.ics.uci.edu/databases/movies/doc.html.

[32] Ying Yang and Geoffrey I. Webb. A comparative study of discretization

methods for naive-bayes classifiers.

85

http://kdd.ics.uci.edu/databases/movies/doc.html

	Introduction
	Introduction
	Relational Data Mining
	Inductive Logical Programming
	Statistical Graphical Models

	Objective
	Summary of Prior Work

	PRMs
	Relational Language
	Schema
	Instance
	Cardinality
	Probabilistic Relational Models
	Dependency Structure
	Parameters

	Bayesian Networks and PRMs

	Learning PRMs
	Parameter Estimation
	Structure
	Hypothesis Space
	Evaluating a Structure
	Structure Search

	Design
	Design Criteria
	Overview and Classes
	Dependency Structure Search
	Search Algorithms
	Greedy
	Random Search
	Hybrid Search
	Computing Sufficient Statistics
	Internal Dependencies
	External Dependencies, Single-Valued
	Tracking Context
	External Dependencies, Multi-Valued

	Calculating the Probabilities
	Implementation
	Specifying a Database Schema
	The Learning Procedure
	Databases
	Relational Daycare Database
	Daycare Admission of Children
	Database Schema
	Relational Movie Database
	Converting to a Useful Relational Schema

	Tests
	Complexity Penalty Test
	Results and Evaluation
	Search Test
	Greedy Search Result
	Random Search
	Hybrid Search Result
	Evaluation

	Scalability Test
	Test and Evaluation

	Profile Test
	Result and Evaluation

	Structure Evaluation Test
	Daycare Structure
	Movie Structure

	Conclusion
	Conclusion
	Future Work

	Appendix A - Summary

