
Master’s Thesis

A New Grid Manager for NorduGrid

– A Transitional Path

Thomas Christensen
Rasmus Aslak Kjær

June 2nd, 2005
Aalborg University

Aalborg University
Department of Computer Science, Frederik Bajers Vej 7E, DK 9220 Aalborg Øst

Title:

A New Grid Manager for NorduGrid –
A Transitional Path

Project period:
DAT6, Feb. 1st – Jun. 2nd, 2005

Project group:
D607A / B2-201

Group members:
Thomas Christensen,
thomas@cs.aau.dk

Rasmus Aslak Kjær,
rak@cs.aau.dk

Supervisor:
Gerd Behrmann

Number of copies: 6

Total number of pages: 93

Abstract
This thesis describes the design, implemen-
tation and evaluation of a new grid manager
for the NorduGrid middleware. NorduGrid is
among of the most successful grid computing
projects with more than 50 clusters and 5000
CPUs participating. The current NorduGrid
grid manager is rigid and difficult to extend
with new functionality.

This motivates the design of a new plugin-
based event-driven architecture for grid
managers. The architecture is implemented
in the Python programming language and
used as the basis for a new prototype drop-in
replacement for the current NorduGrid grid
manager. The new grid manager is developed
as a drop-in replacement to ease the transition
toward supporting novel grid features.

To evaluate the extensibility of the new
grid manager, several advanced use cases
for the grid manager are examined and
approaches for achieving them in the new
grid manager are presented. The evaluation
shows that the new grid manager is extensi-
ble, efficient and customisable. Approaches
to improve the fault-tolerance of the new
grid manager are presented to improve the
resilience to system failures.

ii

Preface

This master’s thesis documents the work on improving the NorduGrid middleware done by
group D607A during the spring semester of 2005. The thesis is written as part of the DAT6-term
at the Department of Computer Science at Aalborg University.

We would like to thank Henrik Thostrup Jensen for assisting us with installing and configuring
the NorduGrid ARC software, for him letting us use pyRSL, along with his many bright ideas
regarding improvements to NorduGrid. We would also like to thank Josva Kleist for inspiration
and response on the new grid manager design.

Aalborg, June 2005.

Thomas Christensen

thomas@cs.aau.dk

Rasmus Aslak Kjær

rak@cs.aau.dk

Contents

1 Introduction 3

1.1 Computational Grids . 3

1.2 A Generic Grid Model . 5

1.3 Project Goals . 7

1.4 Summary . 9

2 NorduGrid Advanced Resource Connector 11

2.1 History of the Project . 11

2.2 The Job Concept . 12

2.3 Architecture and Design . 15

2.4 Identified Problems . 22

2.5 Summary . 24

3 The Design of a New Architecture 27

3.1 Modus Operandi . 27

3.2 The New Architecture . 28

3.3 Implementation . 30

3.4 Trust, Plug-ins and Configuration . 35

3.5 Summary . 35

4 A New Grid Manager 37

4.1 Jobs . 37

4.2 Reused Components . 38

4.3 Handlers . 39

4.4 The Monitors . 44

4.5 Summary . 44

iii

CONTENTS 1

5 Advanced Use Cases 45

5.1 Advance Reservations . 45

5.2 An Advanced IO Subsystem . 47

5.3 Live Upgrades of the Grid Manager . 56

5.4 Distributing the Grid Manager . 57

6 Evaluation 59

6.1 Efficiency . 59

6.2 Extensibility . 61

6.3 Customisability . 61

6.4 Fault-tolerance . 61

6.5 The Outlook for NorduGrid . 62

6.6 Summary . 63

7 Conclusion 65

7.1 Project Summary . 65

7.2 Future Work . 66

A Source Code For Grid Manager Implementation 69

A.1 Job Submission Script . 69

A.2 Monitor . 70

A.3 Job Description Parser . 71

A.4 Notify User . 73

A.5 Data Staging . 74

A.6 Wraper Creation . 78

A.7 LRMS Submission . 82

A.8 Job Expiry . 83

CONTENTS

2 CONTENTS

CONTENTS

1
Introduction

This thesis describes the design, development and evaluation of grid middleware for Nor-
duGrid, a Scandinavian based computational grid. The concept of a computational grid is still
rather new and therefore the problem domain addressed by grid middleware is subject to con-
stant changes, due to the emergence of new use cases and experiences with running grids which
combined poses new challenges. This has inspired the development of a software architecture
for grid middleware capable of evolving and adapting to the changing requirements that novel
use cases of computational grids incur.

In this chapter the concept of a computational grid is presented, followed by a generic model
for the software used to realise computational grids, namely grid middleware. Finally, the mid-
dleware of NorduGrid is outlined in brief followed by a specification of design requirements to
the middleware developed in this project.

1.1 Computational Grids

There is some controversy over what constitutes a computational grid, and the term has been
much hyped in recent years. In the following, we adopt this definition by Rajkumar Buyya [1]:

Grid is a type of parallel and distributed system that enables the sharing, selec-
tion, and aggregation of geographically distributed “autonomous” resources dy-
namically at runtime depending on their availability, capability, performance, cost,
and users’ quality-of-service requirements.

The term is a reference to the power grid [2]. The users of the power grid are oblivious to the
exact nature of the grid and simply plug in their appliances, expecting that the appropriate
amount of electrical current is delivered to them. Furthermore, producers in the power grid

3

4 CHAPTER 1. INTRODUCTION

grid

instrument resource

grid user

(for monitoring)

(e.g. telescope)

web server

storage resource

grid user

storage resource

computational resource

cluster resource

Figure 1.1: A conceptual view of a grid with resources and users.

range from a farmer with a small windmill in his field to large national power plants. Potentially
anyone can participate in the power grid as a producer or consumer.

This concept has given birth to the idea of computational grids, i.e. that computers from di-
verse locations are interconnected to let users share the resources. The idea is illustrated in
Figure 1.1. Users should be able to connect to the grid and submit tasks without having to
concern themselves with where the tasks are run (unless they want to), and resources should
be able to connect to the grid and receive tasks that are appropriate for them. Resources can
be computational resources or storage, or even access to specialised equipment such as mea-
surement instruments. The goal is to have better utilisation and wider access to resources, even
across traditional organisational boundaries.

Despite the original idea of a single world-wide computational grid, as presented in [2], the
present distribution seems to bear similarities to that of power grids. Several computational
grids co-exist in diverse communities, covering academic, country level and multi institutional
efforts. Currently, most computational grids are either geared towards utilising high-performance
computing clusters as resources, or screen saver science where ordinary desktop machines work
on a small part of a problem when the processor is idle.

Since a grid by nature is a large distributed system that spans many organisations, there are
several challenges that must be overcome in the design of a grid:

• Security. The security model must be flexible enough to support modelling the diverse
conditions in the various organisations – the local resource policies must be respected –
and modelling of virtual organisations [3] spanning multiple organisation for resource
sharing. This problem includes authentication and authorisation of users and resources,
and enforcement of access control.

• Fault-tolerance. A large grid will continually suffer hardware failures and must be able
to cope gracefully with them and at the same time stay up. It should also take precautions
against losing jobs and data.

• Flexibility. Much is expected of grid technology, so a grid design should preferably be
flexible enough to be able to support future use cases.

1.1. COMPUTATIONAL GRIDS

1.2. A GENERIC GRID MODEL 5

• Ease of use. A successful grid relies on many parties adopting the idea, reaching a critical
mass, so it must not be too difficult or cumbersome to use or setup a resource for the grid.

• Scalability. A grid must be able to scale to a large number of users and resources. This
affects both administration of the grid and the operation of the software itself – e.g. it is
not possible for a design that relies on a central authority to scale to something the size of
the Internet.

• Privacy. Protecting the privacy of information when submitting jobs to the grid. Jobs can
work on valuable data sets, and situations can arise where it is unacceptable that these
data can be intercepted and read by anyone other than the job itself and the submitter.

• Accounting. High performance computing resources are not cheap to acquire and main-
tain. So as it is the case with the power grid, accounting of resources spent by consumers
is needed if the grid is not to be operated gratis. This can be imagined to evolve into
grid economy where resources receive micro-payments from job submitters in return for
running jobs.

• Heterogeneity. The portability of the grid software is also important. Ideally there should
be no technical boundary preventing resources from participating in the grid. But even if
the grid software itself is portable, the problem of making the job software run on diverse
architectures remains.

None of these issues are trivially solved. The current grid designs have mostly dealt successfully
with only a subset of them. A single design that is flexible enough to cover all grid use cases
and at the same time proves to solve the above issues has yet to reveal itself.

1.2 A Generic Grid Model

At a conceptual level the responsibility of a computational grid is to tie users, jobs and re-
sources seamlessly together. The glue that ties these entities together is called middleware;
a software layer between client and server processes that provides translation, conversion or
extra functionality. At present, several computational grids are running their own grid middle-
ware. These grids vary greatly with respect to purpose, architecture, design and implementa-
tion. Even though different in many respects, practically all grids share a common foundation
of components necessary to realise their middleware. [4]

• Grid Fabric. This consists of all the globally distributed resources that are accessible from
anywhere on the Internet. These resources could be computers running a variety of oper-
ating systems, storage devices, databases and special scientific instruments.

• Core grid middleware. This offers core services such as remote process management, co-
allocation of resources, storage access, information registration and discovery and aspects
of Quality of Service (QoS) such as resource reservation and trading.

• User-level grid middleware. This includes application development environments, pro-
gramming tools and resource brokers for managing resources and scheduling application
tasks for execution on global resources.

CHAPTER 1. INTRODUCTION

6 CHAPTER 1. INTRODUCTION

Figure 1.2: A generic model for a grid architecture. The depicted components are necessary in some for in order to
create a computational grid. [4]

• Grid applications and portals. Grid applications are often developed using grid-enabled
languages and utilities such as HPC++ or MPI. An example application, e.g. a parameter
simulation, would require computational power, access to remote data sets and may need
to interact with scientific instruments. Grid portals offer web enabled application services,
where users can submit and collect results for their jobs on remote resource.

A generic model of software components for a computational grid is depicted in Figure 1.2.

Furthermore, to facilitate the collaboration of multiple organisations running diverse autonomous
heterogeneous resources the following basic principles should be adhered to when designing
middleware for computational grids. The middleware should:

• not interfere with the existing site administration or autonomy.

• not compromise existing security of users or remote sites.

• provide a reliable and fault tolerant infrastructure with no single point of failure.

• provide support for heterogeneous components.

• use standards, and existing technologies, and facilitate interoperability with legacy appli-
cations.

1.2. A GENERIC GRID MODEL

1.3. PROJECT GOALS 7

Organization

 Virtual

Organization

 Virtual

The Grid

Physical Institution

Physical Institution

Physical Institution

Figure 1.3: Virtual organisations allow for a logical partitioning of interrelated grid participants. Institutions and
individuals can be part of several virtual organisations concurrently.

The primary benefit of computational grids is the enhanced possibility to share resources. How-
ever, alongside resource sharing comes a host of issues regarding fair sharing, security, user
management and other implications. To embrace these concerns [3] defines the concept of vir-
tual organisations (VO) as a set of individuals and/or institutions governed by the same sharing
rules.

A VO is a number of individuals and/or institutions that have decided to share resources among
each other. Thus, a VO represents a notion of trust between the involved parties. Furthermore,
in the context of computational grids, the participants in the VO have to use the same set of tools
to both use and share their resources in the VO. These tools are referred to as the middleware in
the generic model of a computational grid as illustrated in Figure 1.2 on this page.

The VO concept is essential for computational grids as it addresses two fundamental issues,
namely those of user management and means of managing resource sharing. It seems only
fair to expect that any grid should support the VO concept and that any grid must provide the
necessary infrastructure to allow for VO’s.

1.3 Project Goals

There exists several grid toolkits for aiding the implementation of grid middleware and work
has also been done to form standards for grid architectures. The Globus Alliance is developing
a toolkit for building a grid, including frameworks for building information systems for regis-
tration of resources and user authentication, replica location systems for management of data,
and direct interfaces to resources. The Globus Toolkit has recently been released in a fourth
version, where the major focus is on standardising communication as web services [5].

Parts of the Globus Toolkit have been used as the basis for several grid solutions, both in na-
tional grids and international efforts. One of the larger currently operating grids is NorduGrid.
Other large globus-based grids include the Large Hadron Collider Grid Computing Project [6]
at CERN, the Grid Physics Network (GriPhyN) [7] and Teragrid [8] (which are both developed
and run by American universities).

CHAPTER 1. INTRODUCTION

8 CHAPTER 1. INTRODUCTION

Referring to the generic model from Section 1.2 on page 5, the core grid middleware of Nor-
duGrid is comprised of a grid manager and an information system, while the user level mid-
dleware consists of a user interface. The grid manager runs on every resource in NorduGrid,
enabling the resource to receive jobs from users, submitted via the NorduGrid user interface.
From a users point of view, the only interaction is with the NorduGrid user interface. From
a grid point of view the user interface looks up available resources in the information system,
using it as the “yellow pages” on the grid, in order to locate suitable and available resources.
After finding, perhaps several, suitable and available resources, the user interface submits the
job to the grid manager running at one of these resources. When a grid manager, at a resource,
receives a job it is responsible for executing it. This generally includes downloading necessary
input data, executing the job program itself, handling any failures that might occur. This is a
simplified outline of the middleware of NorduGrid, the NorduGrid Advanced Resource Con-
nector (ARC), as the middleware is called, is discussed in further detail in Chapter 2 on page 11.

At the time NorduGrid was conceived the primary objective for the developers was rapid de-
ployment. The middleware for NorduGrid should be deployed as fast as possible with the least
possible effort. Four years later the middleware, and NorduGrid in general, has proven to be
a success. The grid has obtained critical mass in terms of day-to-day users, and furthermore it
is part of a major European grid initiative for processing massive amounts of data from exper-
iments in high energy physics. Therefore, the future of NorduGrid seems promising to some
extent.

However, new grid middleware is being developed concurrently and the NorduGrid grid man-
ager, currently version 0.4.5, is still in its infancy. As new use cases for computational grids
emerge, so does the need for new features in the grid manager. Furthermore, the continuous
use of NorduGrid has revealed the need to customise and adapt the grid manager to the envi-
ronment in which it is used. As an example, recall that the grid is responsible for downloading
input data for the jobs it receives. This task has surprisingly proven to be one of the most de-
manding for the computer running the grid manager. If NorduGrid is to maintain its position
as a leader in the current field of middleware for computational grids, the grid manager needs
to be designed to cope with future demands.

The purpose of this project is to design and implement a drop-in replacement grid manager for
NorduGrid, i.e. a backwards compatible grid manager able to co-exist with the existing grid
manager running at other grid sites. The replacement grid manager should be designed for
change, embracing the inherent need to customise, extend and adapt the grid middleware in re-
sponse to altered functionality and/or performance requirements. Naturally, the replacement
grid manager should be designed to process jobs efficiently. The exact meaning of these require-
ments in this context is elaborated below:

• Efficiency. The grid manager should, whenever possible, employ the solution which best
balances low latency and high throughput when processing jobs, e.g. avoid file-based
communication and polling in general.

• Extensibility. Covers the ease with which it is possible to extend the functionality of the
grid manager, e.g. implementing any of the advanced features mentioned below.

• Customisability. Covers the possibilities of tweaking existing functionality in the grid
manager to better suit local demands or requirements. For instance changing the way
jobs are monitored in LRMS, changing job states due to local policies or ideas.

1.3. PROJECT GOALS

1.4. SUMMARY 9

• Fault-Tolerance. Covers the dependability of the grid manager. It is absolutely vital that
the grid manager provides all reasonable measures to ensure that jobs and data are not
lost, even in the case of system crashes.

Furthermore, the grid manager should facilitate the implementation of advanced features re-
quired by modern grid middleware. The following present the requirements of advanced fea-
tures.

• Advance reservations. This feature allows for a user to reserve a resource for later use.
For this feature to be implemented the grid manager must be able to provide operations
allowing such reservations. [9] has already shown how to accomplish without using the
grid manager but instead using a rather awkward extension to parts of the Globus Toolkit.

• Separation of the input/output component. Based on the experiences with the current
grid manager implementation in NorduGrid, the design of the input/output component
should allow for it to be separated from the core of the grid manager, that is the part that
handles incoming job submissions and job management in general.

• Live upgrades of the grid manager. A truly customisable and extensible grid manager
should provide mechanisms to allow a running grid manager to be completely reconfig-
ured on-the-fly, i.e. no service failures are perceivable from the users point of view during
the upgrade.

• Distributing the grid manager for high availability. Distributing the components of the
grid manager onto separate systems could be useful to provide fail-over functionality and
load balancing in the grid middleware.

The choice to improve the grid middleware specifically for NorduGrid has been influenced by
our experiences with this middleware from an earlier project[10]. Furthermore, the fact that
the NorduGrid middleware is actually running at Aalborg University allows for easy access to
testing the developed software in the NorduGrid infrastructure.

1.4 Summary

The concept of computational grids have been established as a type of parallel and distributed
system that enables the sharing of resources. Computational grids bears some resemblance with
the well known power grids that our world depends on, but of course the analogy has some
limitations, e.g. the fact that computational resources can not be preserved over time as electric
current can.

A generic model for designing grid middleware, including generic requirements to such mid-
dleware, has been presented. The model defines four basic components of grid middleware,
namely fabric, core grid middleware, user-level grid middleware and grid applications and
portals.

To outline the goals of this project, several requirements to the design of a replacement grid
manager for NorduGrid has been defined. The requirements fits into two different categories;
general design requirements, and specific feature requirements. The general requirements im-
proves the quality of the design, while the feature requirements ensures that the designed grid
manager is able to support the features of tomorrows computational grid.

CHAPTER 1. INTRODUCTION

10 CHAPTER 1. INTRODUCTION

To learn from existing experiences with the design of a grid manager, a thorough examination of
the current middleware in NorduGrid is necessary. Furthermore, such examination will outline
how a new drop-in replacement grid manager can be designed to integrate seamlessly into
the existing middleware, and also how such a grid manager should be designed to meet the
requirements stated in the above.

The rest of the thesis is structured as follows. In Chapter 2 on this page the current middleware
of NorduGrid is examined in detail. In Chapter 3 on page 27 the design of the architecture
implementing a grid manager for NorduGrid is presented. In Chapter 4 on page 37 a prototype
drop-in replacement for the current NorduGrid grid manager, based on the new architecture, is
presented. In Chapter 5 on page 45 the extensibility of the new grid manager is established by
illustrating the possibilities of adding new advanced features. Chapter 6 on page 59 contains
an evaluation of the new architecture and prototype grid manager implementation. Finally
Chapter 7 on page 65 presents a conclusion for the project.

1.4. SUMMARY

2
NorduGrid Advanced Resource Connector

This chapter presents a thorough examination of the NorduGrid middleware and its constituents.
The middleware is called the NorduGrid Advanced Resource Connector, or simply the Nor-
duGrid ARC. Initially, the history, purpose and present state of NorduGrid is presented, fol-
lowed by a description of the job concept. The architecture of the middleware is introduced by
following the task flow of a job submission into the NorduGrid grid manager. After presenting
the design, the problems identified by examining NorduGrid is discussed, and related to the
design requirements set forth in Chapter 1 on page 3. The identified problems and their rela-
tion to these requirements motivates the decision to design an architecture on which to build
the new grid manager.

2.1 History of the Project

The NorduGrid project started in May 2001 as a collaborative effort between research centres in
Denmark, Norway, Sweden and Finland. The project was initially named the Nordic Testbed
for Wide Area Computing and Data Handling [11]. Continuous development and challenges
have matured the project beyond the state of a testbed and into a widely deployed production
grid. At present the grid development, resources and usage are administered by the Nordic
Data Grid Facility (NDGF), which is part of the North European Grid Consortium. The grid,
however, is still referred to as NorduGrid.

The purpose of the NorduGrid project was to create a testbed for a Nordic grid infrastructure
and eventually to develop a grid that meets the requirements for participating in the ATLAS
experiment [11]. ATLAS, A Toroidal LHC ApparatuS, is a detector for conducting high-energy
particle physics experiments that involve head-on collisions of protons with very high energy.
The protons will be accelerated in the Large Hadron Collider, an underground accelerator ring
27 kilometres in circumference at the CERN Laboratory in Switzerland. The ATLAS experi-
ments have around 1800 physicists participating from more than 150 universities in 34 coun-
tries; the actual experiments are planned to begin in 2007 [12].

11

12 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

The experiments are expected to generate 12-14 petabytes data per year that needs to be anal-
ysed. To prepare the participating entities for these massive amounts of data, the ATLAS Data
Challenges have been posed. The first of these data challenges ran throughout 2002 and was
completed in 2003. NorduGrid was the Scandinavian contribution to this challenge [13].

During the initial phase of designing the grid, the fundamental idea was that NorduGrid should
be built on existing pieces of working grid middleware and the amount of software develop-
ment within the project kept at a minimum. Once the basic functionality was in place the mid-
dleware was to be further extended, gradually turning the testbed into a production grid. And
at the start of the NorduGrid project in May 2001 a general design philosophy was formulated
as follows:

• Start with simple things that work and proceed from there

• Avoid architectural single points of failure

• Should be scalable

• Resource owners retain full control of their resources

• As few site requirements as possible

– No dictation of cluster configuration or install method

– No dependence on a particular operating system or version

• Reuse existing system installations as much as possible

• The NorduGrid middleware is only required on a front-end machine

• Computational resources are not required to be on a public network

• Clusters need not be dedicated to grid jobs

Existing toolkits were then examined to decide on which to base the NorduGrid middleware.
The available possibilities were narrowed down to two alternatives; the Globus Toolkit and the
software developed by the European DataGrid project (EDG). But the initial idea to use only
existing middleware components, and not having to develop any software in the project soon
proved impossible to realise. Since then, much software has been developed to take NorduGrid
into its current state as a fully fledged computational grid. In the following we describe the
NorduGrid software. [11]

2.2 The Job Concept

The purpose of a computational grid is to provide means for executing large scale jobs. A
fundamental design decision is thus how a job should be represented in the grid. NorduGrid
has decided to base their job representation on the Resource Specification Language (RSL) from
the Globus Toolkit.

2.2. THE JOB CONCEPT

2.2. THE JOB CONCEPT 13

1 & (executable=hellogrid.sh)
2 (jobname=hellogrid)
3 (stdout=hello.out)
4 (stderr=hello.err)
5 (gmlog=gridlog)
6 (architecture=i686)
7 (cputime=10)
8 (memory=32)
9 (disk=1)

Figure 2.1: XRSL job description specifying a simple job.

2.2.1 Resource Specification Language

As the name implies, RSL is meant as a language for specifying resources over jobs. However,
the actual use of RSL is to specify which resource is requested along with a description of the job
to be executed. In this way any brokering facility employed by the grid is able to find relevant
matches for an RSL specification. Hence, RSL is used to specify not only how a job is composed,
but also which resources are needed to execute the job.

RSL corresponds to a dictionary of attribute-value pairs, only that the set of available attributes
is given by the specification. To enable additional attributes, NorduGrid has developed an
extended version; appropriately named eXtended RSL, or simply XRSL. In brief, most of the
extensions provided by the extended version facilitates the use of clusters as the unit of compu-
tation in NorduGrid, in contrast to the single machine unit of computation targeted by the orig-
inal RSL. XRSL also specifies two different versions of RSL, namely user-side RSL and gm-side
RSL. Users only has acquaint themselves with user-side RSL. Gm-side RSL is used internally in
the grid manager only. For a complete reference of XRSL the reader is deferred to [14].

Figure 2.1 shows an example of an XRSL job description, using only simple constructs from
the language. The first few lines (1 to 5) specifies which file is to be executed, what name
the job should have in queues etc, the standard output and error pipes, and finally specifies
that all job-related messages from the grid manager should be stored in a file called gridlog.
The last four lines (6 to 9) provides help to the grid middleware by specifying some simple
job characteristics. In Figure 2.1 the job requires an i686 architecture, is expected to run for
approximately 10 seconds, and requires only 32Mb of RAM and 1Mb of disk space.

2.2.2 Job Management

To manage jobs in NorduGrid, the grid manager employs a state transition system. This system
includes 11 states for managed jobs, including 3 pending states, and a number of transitions to
link these states. Figure 2.2 on the following page shows the states along with possible transi-
tions. The pending states are included because the grid manager can be configured with limits
on the number of jobs in certain states, namely: PREPARING, SUBMITTING, FINISHING. Thus,
if a job is temporarily denied a transition to a state due to these limitations, e.g. PREPARING, it
is placed in a pending state called PENDING:PREPARING. Below is a short description of each
“strict” state, i.e. excluding the pending states, and how they are used in NorduGrid version
0.4.x. [15]

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

14 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

Figure 2.2: An overview of the job states in the current NorduGrid ARC grid manager and the possible transitions.
It consists of 8 strict states plus 3 additional “pending” states. [15]

• ACCEPTED. In this state the job has been submitted to the grid manager and the job de-
scription is analysed. If the job description cannot be processed successfully the job will
move to state FINISHING, otherwise to state PREPARING.

• PREPARING. In this state the grid manager is downloading the input data specified in the
job description. As data can also be uploaded from the submitting UI, the grid manager
must also wait for these transfers to complete. In the case that the grid manager is unable
to download any of the specified input files or an upload from UI takes too long time, the
job will move to state FINISHING, otherwise to state SUBMITTING.

• SUBMITTING. In this state the job is submitted to the LRMS. If the submission is successful
the job moves to state INLRMS, otherwise it moves to state FINISHING.

• INLRMS. In this state the job is either in the queue of the LRMS or being executed at a
number of nodes in the LRMS. The information system clarifies this by calling the state
either INLRMS:Q or INLRMS:R. The grid manager waits for job execution to terminate,
either successfully or failed - in both cases the job transitions to state FINISHING. If the
grid manager receives a request to cancel the job, from e.g. a user, the job will transition
to state CANCELLING.

• CANCELLING. In this state the grid manager takes necessary actions to cancel the job in
the LRMS. From here the job transitions to state FINISHING.

• FINISHING. In this state the output data is being transported to the destinations specified
in the job description, if the job terminated successfully. Thus the data is being uploaded
to storage elements and possibly registered with replica catalogues. In the case of failed
job execution no data are transfered. All files not specified as output are removed from
the session directory of the job. From here the job transitions to state FINISHED.

• FINISHED. At this state the session directory is kept available for the user to download
the output data. The job is in this state for typically 1 week before transitioning to the
DELETED state.

2.2. THE JOB CONCEPT

2.3. ARCHITECTURE AND DESIGN 15

• DELETED. At this state the job’s session directory is deleted and only minimal information
about the job kept at the grid manager.

The above states are relevant only for the current release of NorduGrid, namely version 0.4.x.
According to the documentation already available on version 0.6 of the NorduGrid ARC, the
grid manager will employ a richer state transition system to embrace the increasing number
of supported LRMS flavours. Consequently, the INLRMS state will contain several sub-states
besides the current INLRMS:Q and INLRMS:R. A new UNKNOWN state will also be added in
version 0.6 to handle situations where the grid manager has become temporarily unavailable.

In version 0.6 of the NorduGrid ARC each state will furthermore have two different represen-
tations, namely an internal and an external. The internal representation will be used only in the
grid manager when processing jobs, while the external representation will be used in the infor-
mation system and the grid monitor. The reason for these different representations is to make
the job concept more feasible to users, while enhancing the power of the job concept internally.

2.3 Architecture and Design

The NorduGrid tools are designed to handle every aspect of using, maintaining and adminis-
trating a grid. This includes job submission and management, user management, data man-
agement and monitoring. It should be noted that the supported computational resources in
NorduGrid currently only include clusters running batch systems, e.g. PBS.

The three most important parts of the NorduGrid ARC architecture are:

• A client-server architecture for the resources, where each cluster runs a grid manager
which is contacted directly by users of the grid that wish to submit jobs.

• A hierarchically distributed system, the information service, for indexing resources so that
the users can discover, browse and use them.

• A client-server architecture for the data distribution in the form of file servers that are
accessed with an extended version of FTP[16], GridFTP[17].

We first illustrate the architecture with an example of the task flow when submitting a job and
afterwards describe the primary components of the design.

2.3.1 Job Submission Task Flow

A job submission scenario is depicted in Figure 2.3 where the numbers indicate the order of the
tasks involved in submitting a job.

1. To enter NorduGrid, a cluster (or resource in general) must run three distinct services; a
grid manager, an information service and a GridFTP server. These services are required to
run on an Internet accessible front-end to the cluster. The information service collects local
information and, as illustrated by the first arrow, registers itself with the index service to
signal its participation as a resource in the grid.

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

16 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

(2)

(6)

(5)

(3)

(4)

Storage Element

GridFTP
server

Grid Manager

Local Information

Service

Replica
Catalog

Index
Service

Interface
User

Front−end

(1) Grid Enabled Cluster

Figure 2.3: An overview of the NorduGrid ARC architecture. The bold lines indicate the flow of control and data in
the operation of the grid. The dashed lines indicate optional data flow depending on job specific properties.

2. The user prepares a job description and submits it through the user interface. Before
actually submitting the job, the user interface performs resource selection by matching
the resource requirements specified in the job description with existing clusters in the
grid. Any cluster that matches the requirements are eligible for processing the job and the
user interface selects one based on scheduling policies.

3. Upon selecting the destination cluster where the job will run, the user interface uploads
the job description to the selected cluster by means of the GridFTP server running at the
front-end of that cluster. The processing and transferring of input data for a job will sub-
sequently be referred to as staging input data.

4. The uploaded job description is detected and subsequently parsed by the grid manager
running at the receiving cluster. The grid manager creates a session directory where all
information and data pertaining to the job will eventually be stored. Depending on the job
description the input data for a job is either fetched from a remote location, as illustrated
by the fourth arrow, or uploaded along with the job description (step 3).

5. When all input data for a job is available in the session directory, the grid manager at the
site submits the job to the local resource management system for execution. Currently
NorduGrid supports a variety of such systems, e.g. OpenPBS, PBSPro, TORQUE, Condor
and Sun N1 Grid Engine [18].

6. When a job has completed successfully the grid manager processes the output data ac-
cording to the job description and transfers the result to a remote location, as illustrated
by the sixth arrow, or simply leaves the output data in the session directory. The pro-
cessing and transferring of output data will subsequently be referred to as staging output
data. Finally, if requested by the user, the grid manager sends out a notification about the
completion of the job, e.g. by email.

2.3. ARCHITECTURE AND DESIGN

2.3. ARCHITECTURE AND DESIGN 17

2.3.2 Grid Manager

The grid manager is the primary interface between the grid and the local resource. It runs on
the front-end machine of every cluster in NorduGrid and handles incoming job submissions,
including the pre- and post-processing of data related to the jobs.

The grid manager is implemented as a layer on top of the Globus Toolkit libraries and services.
The grid manager provides the features missing from the Globus Toolkit for use in NorduGrid,
such as integrated support for replica catalogues, sharing of cached files among multiple users,
staging of input/output data, etc.

The grid manager software also contributes a job-plug-in to the GridFTP server in the Globus
Toolkit. For each job the job-plug-in creates a session directory to hold all data pertaining to
specific job, i.e. input files, output files and general job data such as exit status etc. Since the
gathering of job and input data is performed by the cluster front-end in combination with a
specific user interface, there is no single point that all jobs have to pass through in NorduGrid.

Users can either upload files directly to the grid manager or it can be instructed to download
them on its own using a variety of protocols, such as HTTP(S), FTP, GridFTP, etc. When all input
files are present in the session directory for a given job the grid manager creates an execution
script that, besides executing the job, handles required configuration of environments for third
party software and/or libraries. This script is submitted to the LRMS, e.g. OpenPBS, where it
the job is queued and ultimately selected for execution at a subset of the nodes in the cluster.

After a job has finished executing, output files can be transferred to remote locations by speci-
fying it in the job description, or alternatively, be left in the session directory for later retrieval
by the user. The grid manager is also able to register files with replica catalogues should the job
description request it.

2.3.3 Replica Catalogue

The replica catalogue in NorduGrid is used for registering and locating data sources. It is based
on the replica catalogue provided by the Globus Toolkit with a few minor changes for enhanced
functionality.

The changes primarily improves the ability to handle the staging of large amounts of input and
output data for jobs and the adds the ability to perform authenticated communication based
on the Globus Security Infrastructure mechanism. Objects in the replica catalogue are created
and maintained by the grid managers running at each resource in NorduGrid, but can also be
accessed by the user interface for resource selection.

2.3.4 Information System

The NorduGrid ARC implements a distributed information system which is created by extend-
ing the Monitoring and Discovery Services (MDS) provided by the Globus Toolkit. In Nor-
duGrid there is an MDS-based service on each resource and each of these is responsible for
collecting information on the resource on which it is running.

The MDS is a framework for creating grid information systems on top of the OpenLDAP soft-
ware. An MDS-based information system consists of the following:

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

18 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

• An information model defined as an LDAP schema.

• Local information providers.

• Local databases.

• Soft-state registration mechanisms.

• Index services.

We describe each in turn in the following.

The information model employed by the original MDS is oriented toward single machines as
the unit of computation and as such not well suited to describe the cluster-based approach
of NorduGrid. The NorduGrid information model is a mirror of the architecture and hence de-
scribes its principal elements, i.e. clusters, users and jobs. The information about these elements
is mapped onto an LDAP tree, creating a hierarchical structure where every user and every job
has an entry. Replica managers and storage elements are also described in the information
system although only in a simplistic manner.

Local information providers are small programs that generates LDAP entries as replies to
search requests. The NorduGrid information model requires that NorduGrid specific informa-
tion providers are present on the front-end of each cluster. The information providers interfaces
with the local batch system and the grid manager to collect information about grid jobs, users
and the queueing system of the grid. The collected information is used to populate the local
databases.

The local databases are responsible for implementing the first-level caching of the LDAP entries
generated by the information providers. Furthermore, they are responsible for providing the
requested grid information used for replying to queries through the LDAP protocol. Globus
includes an LDAP back-end called the Grid Resource Information Service (GRIS). NorduGrid
uses this back-end as its local information database. The local databases in NorduGrid are
configured to cache the output of the information providers for a limited period.

The local databases are registered as soft-state in the index services, which in turn can use soft-
state registration in other higher-level index services. Soft-state dictates that resources must
keep registering themselves periodically to avoid being purged from the information system.

The index service of NorduGrid is used to maintain dynamic lists of available resources. A
record in the index service contains the LDAP contact URL for a soft-state registered resource.
A user must then query the local databases at the resources for further information which re-
duces the overall load on the information system. The Globus developed back-end for the index
service, the Grid Information Index Service (GIIS), uses a hierarchical topology for the indices,
as illustrated in Figure 2.4, where local information providers register with higher level GIIS
services which in turn register with the highest level GIIS services.

2.3.5 User Interface and Resource Selection

Users of NorduGrid interact with the grid through the user interface which has commands for
submitting jobs, for querying the status of jobs and clusters and for killing jobs. Commands for
managing input and output data on storage elements and replica catalogues are also included.

The user interface is also responsible for scheduling the job by choosing an appropriate cluster
to run it on.

2.3. ARCHITECTURE AND DESIGN

2.3. ARCHITECTURE AND DESIGN 19

GIIS GIIS

Local Site GIIS

Top Level GIIS

Country Level GIIS

Figure 2.4: The hierarchical structure of the information system in NorduGrid. Higher level GIIS hosts should be
replicated to avoid a single point of failure in the information system.

2.3.6 GridFTP and Storage Elements

GridFTP is the transfer protocol used for all data transfers in the NorduGrid ARC even for job
submission. GridFTP is a modified FTP server provided by the Globus Toolkit as described
in [17]. NorduGrid also provides a modified implementation which allows for access control
based on user certificates.

A storage element is a separate service responsible for storing data in the grid. In its current
incarnation storage elements are mere GridFTP servers, but recently effort has been put into ex-
tending the capabilities of the storage element service. The NorduGrid Smart Storage Element
(SSE) is supposed to be a replacement of the current storage element, will be based on standard
protocols such as HTTPS, Globus GSI and SOAP, and will provide flexible access control, data
integrity between resources and support for autonomous and reliable data replication [19]. A
job description can specify that input data should be downloaded from a storage element.

2.3.7 Monitoring

NorduGrid provides a web-based monitoring tool for browsing the grid information system. It
allows users of the grid to view all published information about the currently active resources.

The structure of the monitoring tool corresponds to the hierarchical structure of the information
system itself. Hence, the initial screen of provides an overview of the entire grid, e.g. the
number resources in terms of CPUs, the length of queues etc. The user can browse deeper into
the hierarchy and at the lowest level inspect the queues, available software, hardware platform
and so forth on a selected resource.

The web server that provides the grid monitoring tool runs on a machine independent from the
grid itself. However, the web interface refreshes its information every 30 seconds by performing
LDAP queries, which ultimately burdens the information system.

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

20 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

Figure 2.5: The initial window of the NorduGrid monitoring web site.

2.3. ARCHITECTURE AND DESIGN

2.3. ARCHITECTURE AND DESIGN 21

2.3.8 Security

The NorduGrid ARC uses the Grid Security Infrastructure (GSI) [20], available through the
Globus Toolkit, as its security framework. GSI employs asymmetric cryptography as the basis
for its functionality, and provides:

• Secure communication between elements in NorduGrid.

• Security mechanisms across organisational and institutional boundaries to ensure a con-
sistent security scheme in NorduGrid as a whole.

• Single sign-on for users of NorduGrid via certificate proxies, allowing computations in-
volving multiple resources and/or sites.

A central concept in GSI authentication is a certificate. Every entity in NorduGrid, e.g. a user,
resource or a service, is identified via a certificate containing sufficient information to identify
and authenticate the owner. GSI certificates are encoded in X.509 format [21], established by the
Internet Engineering Task Force (IETF). The standardised format allows for the certificates to
be used with other software employing asymmetric cryptography, such as web browsers, email
clients, etc. A GSI certificate includes four primary pieces of information used for authentication
purposes:

• The name of the subject for this certificate. Identifies the name of the user or object that
this certificate represents.

• The public key belonging to the subject.

• The identity of the Certificate Authority (CA) that has signed the certificate. The CA is
trusted and certifies that the public key does belong to the given public key.

• The digital signature of the named CA.

For further information about asymmetric cryptography, certificates, digital signatures and au-
thentication the reader is deferred to [22].

GSI provides a delegation capability: an extension of the standard SSL protocol which reduces
the number of times a user is required to enter his pass phrase. This is especially useful in the
context of a computational grid as jobs can require multiple resources at possibly multiple sites.
The delegation capability is provided via the use of proxies.

Proxies in GSI are certificates signed by a user, or by another proxy, to avoid providing a pass-
word in order to submit a job. They are primarily intended for short-term use, e.g. when the
user is submitting many jobs and cannot be troubled to repeat his password for every job. In
NorduGrid a user is required to create a proxy in order to submit jobs.

A proxy consists of a new certificate with a new public and private key. The new certificate is
signed by the user that created it instead of the CA, which establishes a chain of trust from the
CA to the proxy through the owner, as illustrated in Figure 2.6 on the next page. The subject
of a proxy certificate is the same as the subject of the certificate that signed it, with ’proxy’
added to the name. The grid manager will accept any job submitted by an authorised user, as
well as any proxies he has created.

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

22 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

CA

signature

User

signature signature signature

signs
signs

signs

ProxynProxy1

Figure 2.6: Delegation of trust through proxies.

Proxies provide the single sign-on feature, a convenient alternative to constantly entering pass-
words, but they are also less secure. Therefore, they are kept as user-readable only, and deleted
after they are no longer needed (or after they expire). To create a proxy in NorduGrid a user
simply runs the command ’grid-proxy-init’. The expiration of the proxy can be regulated
by specifying for how many hours the proxy should be valid.

2.4 Identified Problems

In the following, we summarise the identified problems in the current implementation of the
NorduGrid ARC grid manager. To simplify discussion the problems have been divided into
four categories, namely core, data moving, LRMS and GridFTP.

2.4.1 Core Specific Problems

The core component of the grid manager in NorduGrid is the primary driver for most grid
services running at participating sites. As explained in Section 2.3 on page 15, the grid manager
initiates the staging of input data upon detecting an incoming job description. When the job and
its required input data are in place at the site the grid manager is responsible for executing the
job, by submitting it to an LRMS. Finally, when a job completes, the grid manager is responsible
for staging the output data appropriately.

In the process of job-handling the grid manager interfaces with many components of the Nor-
duGrid architecture. The means to communicate with these components are fixed to either file
based communication, e.g. checking for the existence of a certain file, parsing of log-files to
extract information or simply regular method invocation. The current grid manager provides
no means to tailor the means of communication between components to site specific needs, e.g.
to allow for the grid manager to run distributed on multiple hosts by using some sort of RPC
for communicating between components. Not essentially a problem, the lack of customisation
inhibits the use of the grid manager unnecessarily.

With the current grid manager it is not possible to customise job phases/states, staging of job
related data or customise the handling of jobs in other regards. Hence it is not possible to tailor
the grid manager to site specific needs, e.g. to allow for specialised logging of jobs, to adapt the
grid manager to local resources, bandwidth etc.

In general, the core component of the grid manager, in its current implementation, does not al-
low for customisation and extending the grid manager with extra features is not at all straight-
forward.

2.4. IDENTIFIED PROBLEMS

2.4. IDENTIFIED PROBLEMS 23

2.4.2 Data Moving Specific Problems

The data moving component is responsible for downloading and uploading data when re-
quested by the grid manager. The data moving component supports several protocols: GridFTP,
FTP, HTTP(S), HTTPg1.

The data moving component employs a caching scheme to minimise the number of necessary
downloads. Hence, if a request for a cached file is received, the cached copy will be used,
instead of downloading the data again. If the request was for a writable file the cached file is
copied to the requested destination, otherwise the data moving component creates a symbolic
link to the file. [15, 23]

The data movement component is controlled by the grid manager. The grid manager can be
configured to only allow for a maximum number of active data movement processes [24]. A
data movement process uses several threads to perform and monitor the transfer. The number
of threads can degrade performance, presumably due to excessive context switching between
the data transfer threads and the other services provided by the front-end machine. An alterna-
tive to the current GridFTP solution exists for the data moving component, namely an Apache
http-server with a Curl module. According to [25], this approach performs significantly better
by sustaining both more stable and generally higher throughput.

The caching scheme employed by the data moving component only honours completed down-
loads. This means that if a data moving process is actively downloading a file, a, and is not
yet completed, and another data moving process is about to download the same file a, then the
new process will start from scratch to download the file.

2.4.3 LRMS Specific Problems

When the grid manager has prepared the input data for a job successfully it is ready to start the
job. The working nodes in NorduGrid are running as part of a cluster and to manage jobs for
that cluster an LRMS is used, e.g. PBS. For the grid manager to run a job it needs to know how
to submit a job with the LRMS, e.g. know the appropriate commands for submitting a job.

The LRMS component provides an interface to the various LRMS flavours supported by Nor-
duGrid, e.g PBS and Condor. The component provides a set of scripts for interfacing with the
relevant LRMS. The following commands are provided for PBS, Condor and the simple fork
which simply forks the job as a new process (i.e. the asterisk can be replaced with either PBS,
Condor or fork):

• submit-*-job.sh
Used to submit a job to the LRMS.

• cancel-*-job.sh
Used to cancel a job that has already been submitted to the LRMS.

• scan-*-job.sh
For gathering information about jobs, e.g. queue status, exit status, etc.

1HTTP over Globus GSI

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

24 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

The current implementation of the LRMS scripts is specialised toward various LRMS types. No
code reuse or modularisation has been employed in developing the LRMS component. Hence,
if a new LRMS is to be supported, new scripts for that LRMS have to be written completely
from scratch.

As an example, consider the existing scan-*-job.sh script. This script parses log-files from
the LRMS system to determine the exit status of a job. Consequently, the coupling between
NorduGrid and the supported LRMS becomes so tight that a new version of e.g PBS, with
different log-file formatting, will render the LRMS scripts to PBS unusable. Decoupling the grid
manager from the various LRMS flavours does not seem possible at present, but a more robust
solution is needed.

2.4.4 Job Submission Specific Problems

The GridFTP component handles incoming job submissions. The GridFTP server running at all
NorduGrid front-ends has a job-plug-in installed to detect incoming jobs.

The job-plugin of the GridFTP server does not communicate directly with the grid manager,
instead file communication is used, i.e when the GridFTP detects that an uploaded file is a job de-
scription it creates a session directory, and puts a status file containing the text “ACCEPTED”. The
grid manager continually polls the control directory to discover submitted jobs, i.e. a newly cre-
ated status file containing “ACCEPTED”. This polling is ineffective and introduces a significant
delay from the job has been uploaded, until the grid manager discovers the newly uploaded
job.

2.5 Summary

We have presented the current middleware of NorduGrid, comprising three major components;
the grid manager, the user interface and the information system. This has provided insight into
how these components interact and how a drop-in replacement of the grid manager can be re-
alised. Furthermore, the identified problems in the present middleware have been presented
and discussed. This section summarises these problems and relates them to the design require-
ments from Chapter 1 on page 3. Some of the problems directly violates the requirements, while
others merely indicates dubious design decisions.

The existing implementation of the grid manager in NorduGrid is indeed usable, but many is-
sues remain that needs to be addressed to attract more resources, developers and users to Nor-
duGrid. For instance, several components in the current implementation of the grid manager
employ a high latency communication scheme, typically file based communication, log parsing
and polling. This directly violates the design requirement of efficiency, which dictates that an-
other communication scheme should be employed. The overall performance characteristics of
the grid manager, and the grid as a whole, can be improved by solving this.

The present version of the Globus Toolkit used in the NorduGrid ARC is a customised Nor-
duGrid version, namely 2.4.3-16ng, a ∼ 150 MB sized binary distribution. The Globus Toolkit
aims to be a complete foundation for grid middleware, which unfortunately has resulted in a
heavy-weighted distribution which is unsuitable for customisation [26]. This is especially un-
fortunate when the Globus dependency propagates to client utilities, i.e. the tools for submit-
ting and querying the grid, as it is often very cumbersome to install in most client environments.
This could be severely alleviated by moving from a GridFTP based submission interface.

2.5. SUMMARY

2.5. SUMMARY 25

Currently, the only way to submit jobs to the NorduGrid ARC is through the GridFTP server.
Clearly FTP is designed for transferring files and therefore does not pose a very suitable in-
terface for job submissions. No form of negotiation is currently possible between the resource
broker, in the user interface, and the grid manager. Substituting GridFTP as job submission
interface with some form of RPC would facilitate advanced possibilities for the grid while re-
moving the Globus dependency from the client side. The use of GridFTP for job submission
furthermore hinders implementation of the advance reservation feature requirement as it requires
non-standard GridFTP commands to be supported.

The major problem with the current grid manager software is easily discovered when attempt-
ing to introduce new features or customising the current functionality. The present level of
extensibility in the NorduGrid ARC is negligible. To extend or improve the grid manager in-
volves re-writing a huge amount of code, with complicated interdependencies with the Globus
Toolkit or other NorduGrid ARC code. Clearly, the NorduGrid ARC has been designed to be
a final solution and is inherently unsuited for modification or plugging in extensions. This
violates the design requirements of extensibility and customisation.

To facilitate an extensible NorduGrid ARC, and thus grid manager, it is necessary to enforce
clearly defined interfaces for all interaction between components. In adhering to clearly de-
fined interfaces components are allowed to be loosely coupled and concerns can be separated
to responsible components only.

As a whole, the current implementation of the grid manager is inherently difficult to extend
or modify, and the prospect of reconstructing the implementation seems to be a daunting task.
Instead, we have chosen an alternative solution, namely that of designing an architecture from
scratch that is capable of hosting the implementation of a new grid manager. This might appear
as an even greater task than simply reconstructing the existing implementation, but the inherent
violations of the design requirements in the current grid manager makes this stand out as the
most viable solution. Another point, from the classic computer science, made by Parnas in [27]
is that:

It is essential to recognize the identification of usable subsets as part of the pre-
liminaries to software design. Flexibility cannot be an afterthought.

In the following chapter we present an architecture designed to facilitate a grid manager imple-
mentation that satisfies the design requirements from Chapter 1 on page 3.

CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

26 CHAPTER 2. NORDUGRID ADVANCED RESOURCE CONNECTOR

2.5. SUMMARY

3
The Design of a New Architecture

This chapter documents the design of an architecture to enable a grid manager implementation
that complies with the design requirements set forth in Section 1.3 on page 7. Initially we refresh
the general pattern for the tasks that a grid manager must be able to perform. The general
patterns motivate the fundamental concepts employed by the architecture.

After presenting the overall design of the architecture, the implementation is documented. The
design elaborates on the components of the architecture and their interrelations, e.g. how they
communicate etc. The section on the implementation of the architecture clarifies the subtleties
of the architecture along with relevant decisions not strictly dictated by the architecture, e.g. the
choice of programming language. Finally, issues of the architecture regarding trust are briefly
outlined.

3.1 Modus Operandi

The general pattern for a grid manager is to have jobs submitted, facilitate the execution of the
job and ultimately make the results of this execution available for the user that submitted the
job.

The central concept is surely jobs. The information pertaining to the job must be encapsulated
nicely while ensuring the persistence of the job, e.g. across a grid manager crash, power outage
or similar. This also calls for a method to determine the current state of the job, to correctly
recover and track its progress through the system. The processing of jobs, from one job state
to another, should be customisable and each step in the process should be contained in sep-
arate module, preferably a plug-in. It should be possible to introduce custom steps into the
processing, that perform site specific tasks.

The architecture should not dictate the method of job submission, neither protocol nor job de-
scription format. This calls for a way to customise the method whereby the grid manager re-

27

28 CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

ceives external stimuli, or simply the way that external components communicate with the grid
manager.

A grid should also provide information about the job processing, e.g. job state and queue posi-
tion. This is typically stored in an information system. A grid manager should provide a way
for this information system to interface with grid manager, in order to provide users with the
needed job information.

3.2 The New Architecture

The architecture is a flexible and customisable event-driven framework based on plug-ins to
perform the processing of jobs and monitoring of events. The architecture is centred around
these concepts: events, monitors, jobs, informers, handlers, and driver.

• An event is used to contain a single occurrence in the system. Each event has a type and a
data container to describe the event. An example would be a job submission event, its type
is clearly job submission and the data associated with it could be a textual job description.

• Monitors create events in the system. They act as adaptors translating external occurrences
into events. An example could be a job submission monitor that acts as the interface for
job submission and introduces “job submission” events.

• Jobs is the central concept of the system, encapsulating a job description and current state
of the job. Each job has a well defined state at any time and job state changes result in
events.

• Informers provide the interface between the information system in the job information
stored in the grid manager.

• A handler performs a well defined processing operation on a job, e.g. staging in the nec-
essary data for a job. The entire job processing of a grid manager will consist of several
handlers, each performing a portion of the job processing. Handlers can change the state
of jobs as the processing of a job progresses. A handler will register to be launched on spe-
cific events. For instance a handler performing the initial processing of a job will register
to be launched whenever a “job submission” event occurs.

• The driver is the “driving force” of the system. It receives the events from monitors and
state changes and launches the appropriate handlers as a response.

In the following an example of a job submission using the architecture is presented. See Fig-
ure 3.1 on this page for an overview of the steps involved. The example shows an job submission
in a simplified grid manager using the new architecture.

1. The external event of a job submission by a user, is detected by the submission monitor.
The monitor creates a job submission event based on the job submitted by the user.

2. The driver is notified of the job submission event by the submission monitor. The driver
has knowledge of the various handlers registered in the system and finds two handlers
registered for the job submission event, namely “Parse JD” that processes the job descrip-
tion and “Authorise User” that decides if the user is authorised to run the particular job at
this grid site.

3.2. THE NEW ARCHITECTURE

3.2. THE NEW ARCHITECTURE 29

Figure 3.1: Example of a job submission in the architecture. Monitors, driver and handlers are known from the
architecture. External represents components external to the system, that produce external events.

3. The driver executes the first handler. This handler reads the job description from the
event.

4. The first handler terminates successfully and the execution of the second handler is begun.
This handler verifies that the submitting user has the appropriate rights to execute the
given job at the grid site.

5. The second handler terminates and the driver proceeds to handle the next unhandled
event.

The architecture is tied together by a central component, the driver. The driver initiates the
system, loading the monitors and handlers as plug-ins. When loading handlers the driver gains
knowledge of which events that trigger the respective handlers. When the entire system is
initialised the driver will get events regarding jobs from monitors and state changes, and trigger
the appropriate handlers.

Given that multiple handlers can register for the same event, a system wide ranking of handlers
for each event must be employed. The ranking dictates the ordering in which handlers are
launched. Handlers with low ranks are run first and handlers with equal ranks for an event are
disallowed.

Each event has a numeric priority that is used by the driver to handle multiple concurrent
events on the same job. The driver receives an event e1 that concerns job j, the priority of this
event is p1. Handlers h1 and h2 are registered to respond to event e1. The driver responds by
running the handler with the lowest ranking, in this case h1. The driver now receives a new
event e2 with priority p2 that also concerns job j. However, the first handler h1 is still running
and h2 has not even begun yet. This is a case of simultaneous events for the same job, and the
driver resolves this by comparing the priorities of the events.

• p1 ≤ p2: The priority of the second event is greater than the priority of the first. In this
case handler h1 is allowed to complete, however h2 is not run. Instead the driver stops
further actions in response to event e1 and begins responding to e2.

• p1 > p2: The second event has a lower priority than the first event. Here the driver
completes responding to event e1, running both handlers h1 and h2 , before responding to
event e2.

CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

30 CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

3.3 Implementation

The following sections will document the implementation of the different components in the
architecture.

3.3.1 Choice of Programming Language

Any implementation is of course done in a programming language, choosing the proper pro-
gramming language is a crucial decision in a software development project. This project clearly
calls for a high-level programming language, where performance has a lower priority than
readability of source code. The reasoning behind this is that readability of both plug-in and
architecture code has a high priority in aiding the extensibility and degree of customisation.
Whereas the tasks performed by the grid manager is not expected to be a bottleneck in the
processing jobs, rather the choice of mechanism for interaction with external components.

The considered languages are based on the implementors previous experiences, and constitutes
the following: C++, Ruby, Python. The readability of C++ code is very varying and depending
on the programmers understanding and use of the powerful template feature and the Standard
Template Library. However using Globus from C++ is easy as the software is primarily written
in C/C++. Ruby and Python are considered for their high readability, and one could easily
argue that they can be viewed as competitors in the category “best object-oriented interpreted
scripting language”, if there ever were such a category. Which of the two languages comes out
as the winner is clearly subjective and depends on the task at hand. However the availability
of the pyGlobus1 project with no known equivalent for Ruby, clearly favours Python when
developing for NorduGrid that is heavily based on Globus software.

Python is the language chosen. Ruby lacks good Globus bindings and C++ can easily become
too complex and has inferior readability when compared to the other alternatives.

3.3.2 Structure

A UML diagram of the implementation is shown in Figure 3.2 on this page. The driver is the
central object that instantiates objects of the other classes, and thus initiates the system. All
configuration of the architecture is stored in XML format, thus writing utilities that visualise,
generate and manipulate configuration is simplified significantly.

3.3.3 Driver and Workers

The driver is central object that initiates the system. It starts the system by loading states, han-
dlers, monitors and jobs from disk. Which handlers and monitors to load, along with the valid
states for the system, is specified in the configuration file of the driver. The jobs loaded from
disk are jobs already under the control of the grid manager, i.e. jobs already submitted and
persistent from a previous invocation of the system.

After startup, the responsibility of the driver is to respond to incoming events by running the
appropriate handlers. To accomplish this the driver has a pool of workers available. Workers

1Bindings to Globus API from Python

3.3. IMPLEMENTATION

3.3. IMPLEMENTATION 31

Figure 3.2: The class diagram for the architecture implementation.

are continuous threads that perform the actual running of handlers. The driver gets an idle
worker from the worker pool, to which it assigns a workload. A workload consists of an event,
an ordered list of handlers and a job object on which to perform the handlers. The driver can
cancel the workload currently assigned to a worker, according to the priority rules, or append
additional workloads to be performed.

The configuration file of the driver specifies the number of workers in the job pool, and thus
the maximal number of concurrently running handlers in the system. An example of a driver
configuration file can be seen in Figure 3.3 on the following page.

3.3.4 Jobs

Jobs are encapsulated in the Job class. The responsibility of the class is to represent the infor-
mation given in the job description, record the current state of the job and ensure persistence
of the job onto disk. Ensuring persistence of the job is crucial to the grid manager, as the grid
manager must be able to handle failures. The job description is stored in a dictionary, mapping
attributes to values, where values can be a single value, a list of values or even a dictionary.
This structure can easily match the structure of e.g. an xRSL document as used in NorduGrid,
see Section 2.2 on page 12.

The state of a job is stored in the property variable of the same name. Getting and setting is au-
tomatically guarded by mutexes, and setting invokes the persist()method. The persist()
method provides the mechanism for ensuring persistence of the job by storing a string represen-
tation of the job object to file. The representation is created by the pickle and unpickle function-
ality of python, that serialises and deserialises objects into string representations. When saving
a new job representation to disk, it is first stored in a temporary file. When the writing of the
temporary file is complete, the temporary file is renamed to the filename of the now outdated
job file. This ensures that in the event of failure, a valid job description always exists as the
renaming of the temporary file is considered an atomic operation on modern file system.

CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

32 CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

1 <driver workers="5">
2 <handlers>
3 <dir>standard/</dir>
4 <file>specific/custom.xml</file>
5 </handlers>

7 <monitors>
8 <dir>monitors/</dir>
9 <file>special/stuffy.py</file>

10 </monitors>

12 <informers>
13 <file>snow/informer.py</py>
14 </informers>

16 <states>
17 <state>
18 COMING
19 </state>
20 <state>
21 GOING
22 </state>
23 </states>

25 </driver>

Figure 3.3: An example of a driver configuration file. This file specifies that the worker pool consists of
5 workers, and that the driver should load all handlers in the directory standard/ and a single han-
dler from specific/custom.xml. Similarly it loads monitors from the directory monitors/, the file
special/stuffy.py and an informer from the file snow/informer.py. Finally, it specifies the valid state
names COMING and GOING.

3.3. IMPLEMENTATION

3.3. IMPLEMENTATION 33

3.3.5 Job Pool and Informers

The job pool is a simple container that keeps references to all known jobs in the grid manager.
Handlers have a reference to the job pool to allow handlers to submit new jobs into the system
by creating a job object and insert it into the job pool. It is also possible to retrieve jobs from the
job pool by job id.

Informers provide a way for the information system to interface with the grid manager to obtain
information about jobs. An informer is a plug-in loaded by the driver at startup, it is started as
a new thread with a reference to the job pool. An implementation should override the run()
method, where it can setup communication with the information system and respond to queries
by using the job pool.

The get_state_to_jobid_map()method supplies the informers with job information of all
known jobs, the method is available on the job pool. The result is a mapping from state names to
job ids, that informers can use to get a list of job ids of jobs in the various states. To get specific
information of a job, the informers can call the get_job(jobid) method which returns the
job object with the given job id.

3.3.6 States

To provide an environment where local grid managers is allowed to have custom job states
while still retaining compatibility with the grid they are part of, it is necessary to introduce
three types of job state in the system. Namely: external states, internal states and handler states.
The external states are states for jobs in the entire grid context, e.g. valid NorduGrid job states.
Internal states are job state names that are local to the specific grid manager. Handler states are
symbolic names for states used by each handler and may differ from handler to handler, e.g.
SUCCESS and FAILURE.

Handler states decouple handlers from the internal states employed by the grid manager. This
makes it possible to introduce new internal states for jobs or to perform an entire renaming of
the internal state names, while remaining compatible with the other participants in the grid and
reusing handlers with little effort.

There exists a mapping between the internal states of the grid manager to the external states of
the grid, to decouple the two state types. Similarly each handler has a mapping from its own
symbolic handler states, to the internal states of the grid manager. For a visualisation of these
mappings see Figure 3.4 on the following page.

As an example of how the mapping can be used, consider a mapping from the handler state
SUCCESS to the internal state STAGED_IN. The STAGED_IN state is mapped to the external
state READY_TO_EXECUTE. Hence, a handler that has successfully staged the input data for a
job sets the state of the job to be SUCCESS. The grid manager then picks up the event that a job
has changed state, and perceives the job to be in the STAGED_IN state. If the grid manager is
asked by an external entity, e.g. the information system, to report the state of the job it will reply
with the external state of the job, namely READY_TO_EXECUTE.

The external states should be agreed upon by all grid managers in the grid, however the internal
states as well as the handler states can be modified and adapted to suit local preferences and
requirements.

CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

34 CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

Figure 3.4: The three types of states in the system, an arrow indicates a mapping from origin to the head of the arrow.

1 <handler>

3 <events>
4 <event rank="3">STATE_LRMS</event>
5 <event rank="4">EXT_LRMS_FAIL</event>
6 </events>

8 <statemap>
9 <state internal="IN_LRMS">SUCCESS</state>

10 <state internal="CANCEL">FAILURE</state>
11 </statemap>

13 </handler>

Figure 3.5: An example handler manifest file. It specifies two events to which the handler should respond, namely
STATE_LRMS and EXT_LRMS_FAILwith system-wide ranks 3 and 4, respectively. It also specifies a state mapping
from handler states SUCCESS and FAILURE to internal states IN_LRMS and CANCEL, respectively.

3.3.7 Handlers

A handler consists of two things, a class inheriting from the abstract Handler class and a
manifest file. The class implements the desired behaviour of the handler by overriding the
handle_job() method. The arguments accepted by this method are the event that triggered
the handler, the corresponding job object and finally a reference to the job pool. Most handlers
will be handling jobs already in the system, this is the reasoning behind passing the job object
along to the handle_job() method. However some handler must perform the actual submis-
sion of the job into the system, this handler will be given an empty reference to a job and must
instead create a job object, from a job description, to be inserted into the job pool.

The manifest describes the characteristics of the handler, e.g. events that will activate the han-
dler, the ranking of these events, and a mapping of handler states to internal states. This separa-
tion of behaviour and specification makes it easy to customise the system, e.g. reusing standard
handlers in a system with custom states. An example manifest file can be seen in Figure 3.5.

3.3.8 Monitors

A monitor consist of a class inheriting from the abstract Monitor class, which inherits from
threading.Thread. The implementing monitor has to override the run() method, in which
it can setup the monitoring of events. To notify the system of an event, the monitor calls the
notify() method, implemented in the Monitor class, with an event object.

Monitors are free to define the mechanism whereby they perceive the external events they wish
to notify the system of. This could for instance be binding to network sockets and receiving

3.3. IMPLEMENTATION

3.4. TRUST, PLUG-INS AND CONFIGURATION 35

notification of external events through some network protocol, e.g. XML-RPC, SOAP or simply
pure HTTP(S). Another monitor could be watching the contents of a file or directory in a file-
system notifying the system of changes. However, to avoid performance problems with such a
monitor event based IO should be employed above polling whenever possible. Most operating
systems provide mechanisms for event based IO, e.g. Linux provides select which listens for
IO events in the kernel.

3.4 Trust, Plug-ins and Configuration

Given that the architecture is heavily extensible and customisable it is very possible to construct
plug-ins that exhibit unwanted behaviour, either deliberately or unintentional. The power of
monitors and handlers is so great that the plug-ins have to be trusted before being put to use
at a grid site. It is the responsibility of the site administrator to gain this trust, e.g. by code
review or similar. Unwanted behaviour can also be experienced with unfortunate configuration
of the grid manager. It is also the responsibility of the site administrator to verify that the
configuration, i.e. combination of handlers, events and monitors, performs as intended. This
can be aided by using tools that visualise the event and job flow in the system, generated from
the manifest and configuration files. Development of such tools would be an important step
toward a successful deployment of the architecture.

3.5 Summary

This chapter has presented a software architecture for implementing a grid manager. Further-
more, a Python implementation of the architecture has been presented that further elaborates
on the design. The implemented architecture embraces the need to design an efficient, extensi-
ble and customisable grid manager. The flexibility has been achieved by employing simple, yet
powerful, decoupled components in the form of monitors, handlers and informers. The flow
of the architecture is driven by events. Finally aspects regarding the trust and configuration
dilemmas involved with the using architecture have been discussed.

The following chapter documents the design of an actual grid manager based on this new ar-
chitecture. The grid manager is designed as a drop-in replacement for the current grid manager
software of NorduGrid. This new grid manager demonstrates the power of the architecture.

CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

36 CHAPTER 3. THE DESIGN OF A NEW ARCHITECTURE

3.5. SUMMARY

4
A New Grid Manager

This chapter presents a prototype for a drop-in replacement grid manager for NorduGrid, im-
plemented in the architecture presented in Chapter 3 on page 27. The grid manager is designed
from a specification of a state-transition system defining the task flow for jobs. The core func-
tionality of the new grid manager is contained in multiple handlers and two monitors.

Certain parts of the NorduGrid ARC software have been reused. This includes the user in-
terface, the GridFTP server and job submission interface, and finally the local information
providers, documented in Section 2.3.4 on page 17. The reuse of the information providers
enables the new grid manager to be plugged into NorduGrid.

Initially we present the state-transition system to describe the job states in the new grid man-
ager. The state-transition system is followed by a documentation of the design and implemen-
tation the handlers and monitors. In summary, we conclude the design of the new grid manager
by reviewing its the functionality from a users the point of view and its ability to integrate with
the current NorduGrid ARC.

4.1 Jobs

The job concept in terms of states and transitions currently employed by the NorduGrid grid
manager needs a slight adaptation to suit the new architecture. However, experienced Nor-
duGrid users should still be able to recognise the state of their jobs, even though it is being
handled by the new grid manager. Hence, we propose new states and transitions for jobs to
suit the architecture. The current states and corresponding transitions in NorduGrid are de-
scribed in Section 2.2 on page 12.

The semantics of a state is to be modified from the existing states found in NorduGrid. In the
current incarnation of the grid manager, job states are used to describe processes above actual
states. As an example of the current state names of the NorduGrid grid manager, consider the

37

38 CHAPTER 4. A NEW GRID MANAGER

state PREPARING which describes that input data are currently being staged for the job. In the
new grid manager states are used in a more conventional manner, i.e. a state describes a stable
situation. As an example the state StagedIn describes that all input data has been staged for
the job. The transition system illustrating the states and possible transitions of the emulated
NorduGrid grid manager is illustrated in Figure 4.1.

For the purpose of providing information to users it is still useful to describe the active process-
ing of a job. Hence, the name of each job state can be postfixed with the name of the currently
active handler. As an example, StagedIn:LRMSSubmitHandler would describe that all in-
put data has been staged for the job, and that the job is currently being processed by a handler
called LRMSSubmit.

Figure 4.1: The job states of the new grid manager for NorduGrid. SD is an abbreviation of session directory, and
JD is an abbreviation of job description.

• Received. At this state the user submitting the job has been authenticated and autho-
rised to allocate resources at the corresponding site. The session directory has been created
and the job description uploaded.

• Accepted. This state describes that the job description, located in the session directory,
has been parsed successfully.

• StagedIn. A job reaches this state when all its input data has been downloaded and
processed.

• InLRMS. The job has now been submitted to the LRMS running at the site.

• Finished. This state describes that the job has now finished executing inside the LRMS,
either because it exited successfully or some error occurred. Note that this state acts
also as a failure handler, i.e. if some failure occurs in any legal transition between states
Accepted, Prepared, StagedIn, InLRMS, the job will transition to this state.

• StagedOut. A job reaches this state when all output data has been staged out.

• Cleaned. This state describes that the session directory pertaining to this job has been
deleted.

4.2 Reused Components

In implementing the new grid manager both GridFTP and the implemented tools for the MDS-
based information system from the current NorduGrid grid manager have been reused. It is

4.2. REUSED COMPONENTS

4.3. HANDLERS 39

possible to re-implement these components within the architecture presented in Chapter 3 on
page 27, but in order to maintain backward compatibility with the NorduGrid user interface
and information system these components have been reused.

Reusing GridFTP and especially the NorduGrid job-plug-in for GridFTP dictates the data and
directory structure of the grid manager, as well as the file based approach. This essentially
means that the emulating grid manager will be based on job descriptions in the XRSL language,
employ a session directory and a control directory for storing job related data.

• The session directory. Contains all executable programs, input and output files related to
a job. The executables and the input files are transfered either from the submitting host,
via the user interface, or from a storage element somewhere in the grid. The output files
are typically generated during execution of the job.

• The control directory. Contains all information about a job relevant to the grid manager
only. In practice this involves four files. The control directory must be writable for the
user who starts the driver.

– Description. Contains the XRSL job description.

– Local. Contains local batch system specific information for this job.

– Proxy. Contains the proxy certificate used for submitting the job.

– Status. Contains only the name of the current state of the job.

Reusing GridFTP furthermore has the benefit that authentication and authorisation is handled
in this plug-in through the NorduGrid CA certificates and the grid-map file, which are used to
authenticate users connecting to the GridFTP server. Hence, if the user submitting a job is not
authorised to allocate resources at the site at which the the grid manager is running, he is never
allowed to upload a job description.

The GridFTP job-plug-in developed as part of the NorduGrid ARC has been slightly modified to
make the job submission process more effective. Specifically, the job-plug-in has been modified
to send an event to the grid manager via XML-RPC in order to signal that a job submission has
taken place. This is in contrast to the actual NorduGrid grid manager which scans the control
directory for the existence of new status files to detect new job submissions. This modification
is motivated by the requirement to avoid polling in the new grid manager.

Reusing the tools for registering the grid manager, and the associated LRMS, in the NorduGrid
information system alleviates the need for developing a new LDAP client to handle this task.
The tools consists of a set of Perl scripts extracting cluster info, queue info and job info by
using the available commands in the LRMS or by scanning log files. The tools have been reused
without modifications. The new grid manager appears in the NorduGrid web monitor interface
along with all other sites running the original grid manager software and is eligible for job
submissions from authorised users.

4.3 Handlers

In the following, the design of the handlers providing the core functionality in the new grid
manager is documented. Each handler corresponds to a transition in Figure 4.1 on this page, or
a part of a transition, and is described via the following template:

CHAPTER 4. A NEW GRID MANAGER

40 CHAPTER 4. A NEW GRID MANAGER

• Events: A description of which event(s) will trigger the activation of this handler.

• Preconditions: The conditions that must be satisfied for this handler to function properly.

• Effect: A description of the outcome of this handler, success or failure, along with poten-
tial side-effects.

• Rank: Describes the rank of this handler. Recall from Section 3.2 on page 29, that rank
determines the order in which handlers registered for the same event are run.

Parse Job Description

This handler manages the submitted job description and extracts all necessary information in
order to process the job, e.g. setup relevant environments, stage input and output data, etc.

• Events: A job made a transition to the Received state.

• Preconditions: A valid job object with a job id and the xRSL job description must be
contained in the event.

• Effect: Success leads to the job transitioning to the Accepted state. Failure leads to a
transition to the Finished state for this job.

• Rank. This handler should be the first one executed when a job enters the Received state
in order to annotate the job with correct(attribute, value) pairs. Hence it is assigned rank
1.

To extract the job description this handler uses pyRSL, a yet to be released RSL parser, based on
SPARK[28], written by Henrik Thostrup Jensen. The RSL parser has been slightly modified to
support the extended attributes of both client-side and gm-side XRSL as specified in [14].

Stage Input Data

This handler provides functionality for downloading executables and input data for a job in the
new grid manager by using the ngcopy tool from NorduGrid. In a complete implementation
of the grid manager this handler should merely dispatch transfer requests to a separate IO
subsystem. An example of a framework for such a subsystem will be presented in Section 5.2 on
page 47.

• Events: A job made a transition to the Accepted state.

• Preconditions: A valid job object with a job id and a map of XRSL (attribute, value) pairs
must be contained in the event.

• Effect: Success leads to the job transitioning to the StagedIn state. Upon failure this job
transitions to the Finished state.

• Rank. Handlers performing pre-processing of the staged input data would wish to be run
after this handler. Hence, this handler is assigned a rank 10, allowing other handlers to
have both higher and lower rank.

4.3. HANDLERS

4.3. HANDLERS 41

Initially this handler ensures that all files specified as executables in the job description are
in the session directory, and are indeed executable. In order to download the input files, the
existing NorduGrid tool ngcopy is used. For each file to download the ngcopy tool is spawned
as a subprocess of the handler, with source file and destination file as arguments. Hence, this
handler supports the same protocols as ngcopy.

The ngcopy tool is part of the NorduGrid user interface and does not support specifying a
proxy certificate to be used by GSI for the transfer. Instead, the environment variableX509_USER_CERT
is used for every transfer. Fortunately, the proxy certificate of the user who submitted the job
is located in the control directory, and thus handler simply points X509_USER_CERT to this
proxy certificate.

Currently, this handler does not employ any of the advanced schemes required by a full fledged
stagein handler. Thus no caching, scheduling, performance measuring etc. is implemented, as
well as no limits on the number of concurrent downloads are enforced.

Generate Job Wrapper

This handler generates a wrapper based on the job description. The generated wrapper initiates
all necessary means of communicating from the computing node to any monitors running at the
site. Furthermore, the job description can request special environments and/or libraries to be
available during run-time, the generated wrapper should see to fulfil such requests also.

• Events: A job made a transition to the StagedIn state.

• Preconditions: A valid job object with a job id and a map of XRSL (attribute, value) pairs
must be contained in the event.

• Effect: Success in generating the job wrapper does nothing, but allows subsequent han-
dlers to be activated. Upon failure this job makes a transition into the Finished state.

• Rank. This handler should be the first one executed for a job in the StagedIn state, hence
it is assigned rank 1.

The wrapper is created as a Python program, that sets up necessary runtime environments, and
spawns the job executable with appropriate arguments in a subprocess. The wrapper measures
the running time and exit code of the executable. When the executable has completed, the
wrapper sends an event containing the running time, exit code and the id of the completed job,
using XML-RPC to the primary monitor. Thus, the handler requires that the host running the
monitor is reachable from the computing nodes.

In the case that there is no connection from the computing nodes to the primary monitor, the
communication can be based on file communication. The wrapper script should place the job
execution information in the file. A monitor could poll the session directories of running jobs to
discover that the job has terminated.

Submit to LRMS

This handler manages submission of the wrapper to the LRMS running at the grid site. Nor-
duGrid currently supports several such LRMS flavours, however for the prototype of the new
grid manager, supporting only PBS variants will suffice.

CHAPTER 4. A NEW GRID MANAGER

42 CHAPTER 4. A NEW GRID MANAGER

• Events: A job made a transition to the StagedIn state.

• Preconditions: An executable python program named wrapper.py must be present in
the session directory.

• Effect: Success leads to the job transitioning to the InLRMS state. Failure leads this job to
the Finished state.

• Rank. This handler should be the last to be executed for a job in the StagedIn state.
Hence it us assigned a rather high rank, 100.

This handler assumes that the wrapper program is in session directory of the job. The wrapper
program is submitted by spawning the PBS submission command, qsub, as a subprocess.

Once submitted to PBS, this handler does nothing to monitor the job. In a full fledged imple-
mentation a monitor should be developed to support this task. The PBS command qstat is
typically used to show the status of jobs in queue and would be useful for such purpose.

Stage Output Data

This handler provides functionality for uploading the output data from a job to storage elements
by using the ngcopy tool from NorduGrid. In a complete implementation of the grid manager
this handler should merely dispatch transfer requests to a separate IO subsystem. An example
of a framework for such a subsystem will be presented in Section 5.2 on page 47.

• Events: A job made a transition to the Finished state.

• Preconditions: A valid job with a job id and a map of XRSL (attribute, value) pairs must
be contained in the event.

• Effect: Both success and failure leads to the job transitioning to the StagedOut state.

• Rank. The rank of this handler should allow for other handlers post-processing the output
data before stageout. Hence this handler is assigned rank 10.

Initially this handler ensures that all files specified as output files in the job description are
present in the session directory, and that the protocols and URL’s are indeed valid. In order to
upload the output files, the existing NorduGrid tool ngcopy is used. For each file to upload,
the ngcopy tool is spawned as a subprocess of the handler, with source file and destination file
as arguments. Hence, this handler supports the same protocols as ngcopy.

The handler employs the same method of changing proxy certificate for transfers as the stagein
handler described in the above.

Currently, this handler does not employ any of the advanced schemes required by a full fledged
stageout handler. Thus no caching, scheduling, performance measuring etc. is implemented, as
well as no limits on the number of concurrent uploads are enforced.

4.3. HANDLERS

4.3. HANDLERS 43

Job Expiry

This handler is responsible for registering the session directory to be deleted after expiry of the
job. The lifetime of a job is configurable, but is one week by default.

• Events: A job made a transition to the StagedOut state or the Tick event is received
from the timer monitor.

• Preconditions: A valid job object with a job id must be contained in the event.

• Effect: Success, nor failure, has any immediate effect on the job. However, failure results
in an error message to the site administrator, signalling that the expiry of the job could not
be registered.

• Rank. This handler should be the last one to be executed for a job in the StagedOut state,
hence it is assigned rank 100.

This handler register jobs that reach the StagedOut state for deletion, and receive Tick events
from the timer monitor with a certain interval, typically 24 hours. A Tick event prompts the
handler to check for expired jobs in its registry and deletes the session directory of these jobs.
The registry of jobs in StagedOut is persisted onto disk, so that registrations remain in the case
of crashes.

Notify User

This handler manages user notification. As currently practised in NorduGrid, users can request
to be notified by email when their job reaches certain states. This is done by setting the at-
tribute notify to an email address along with flags to indicate the states to notify in, in the job
description.

• Events: A job made a transition to any state.

• Preconditions: A valid job object with a job id and a map of XRSL (attribute, value) pairs
must be contained in the event.

• Effect: Both success and failure leads to the job transitioning to the StagedOut state.

• Rank. This handler should be one of the first to be executed when a job reaches a new
state, hence it is assigned rank 2.

This handler connects to an SMTP server and sends an email notifying the user that a job with
the appropriate job id has made a transition to its present state if it is one of those requested to
be notified on by the user, e.g. Finished. Valid states to request notifications on are all those
described in Figure 4.1 on page 38.

CHAPTER 4. A NEW GRID MANAGER

44 CHAPTER 4. A NEW GRID MANAGER

4.4 The Monitors

Primary Monitor

The primary monitor in the simplistic grid manager constitutes the external interface of the
grid manager. It is implemented as an XML-RPC server acting on the following two types of
incoming messages.

• job_submit_from_GridFTP.This message is sent from the modified GridFTP job-
plug-in when a job has been submitted. Upon receiving this message the monitor fires
an event to the driver signalling that a job has entered the Received state. The event
contains the appropriate job id, the job description and path to the session and control
directory respectively.

• wrapper_finished.This message is sent by the wrapper program from a computing
node in the LRMS. Upon receiving this message the monitor fires an event to the driver
signalling that a job has entered the Finished state. The event contains the appropriate
job id.

These two types of messages all rely on an XML-RPC server being available, and thus they are
all implemented in a single monitor. However, the architecture does allow for several monitors
to be registered concurrently in the driver, thus enabling complex monitors to be developed as
separate modules.

Timer Monitor

This is extremely simple monitor that simply fires a Tick event with a regular interval, in the
standard configuration every 24 hours. The event is used to trigger job expiry handler to check
for expired jobs, and thus the precision is in no way critical to the operation of the system.

4.5 Summary

This chapter has documented the design of a drop-in replacement grid manager for NorduGrid.
The new grid manager is based on the architecture presented in Chapter 3 on page 27. The grid
manager is only a prototype of a production grid manager, with the most basic functionality
implemented. The grid manager is able to receive jobs submitted with the ngsub command
from the NorduGrid user interface, and eventually submit them to the LRMS. Furthermore,
stagein and stageout of job related data is supported via the ngcopy command. Finally, the
user interface command ngclean is supported to enable the cleaning of a job upon a users
request. Jobs controlled by the new grid manager can be monitored via the web-interface to the
NorduGrid information system.

Section 1.3 on page 7 specifies that the new grid manager should facilitate the implementation of
a set of advanced features. These features are all difficult to implement in the current NorduGrid
ARC grid manager. To demonstrate the power of the architecture the following chapter presents
how these features can be realised in the new grid manager.

4.4. THE MONITORS

5
Advanced Use Cases

5.1 Advance Reservations

This section will outline an approach of implementing advance reservations in the new grid
manager. Advance reservations makes it possible for users to reserve resources in advance in
the grid environment. This opens up for more advanced use cases for the grid, e.g. interactive
use of resources, but can also provide a more predictable grid, where resource brokers can
provide guarantees of job execution times. Co-allocation, i.e. reservation of several separated
grid resources at the same point in time, is also made possible.

This approach is based on the work of [9], that shows how to implement advance reservations
in the current NorduGrid ARC.

5.1.1 Previous Work

In [9] performing an advance reservation and submitting a job using the reservation is two
separate steps. Reservations are performed using a reservation protocol implemented at the
GridFTP server and client performing the reservation. Two commands “get reservation” and
“release reservation”, GERE and RERE are the FTP commands respectively, are available:

• The first command, “get reservation” or GERE, takes the arguments: nodes, duration and
start time, with an optional argument project. Nodes is the number of CPUs requested,
duration the length of the reservation, start time is the start time of the reservation and
project is an account to charge for the reservation.
The result of the command has three possible cases:

– res_id start time: the reservation request was successful, returns the reservation id
identifying the reservation at the LRMS.

45

46 CHAPTER 5. ADVANCED USE CASES

– failed next start: the reservation failed, but next start is the next possible time at
which the LRMS can hold the reservation.

– failed 0: the reservation failed and is never possible.

• The second command, “release reservation” or RERE, will release or cancel a reservation
already reserved at the LRMS. The command takes a single argument res_id, which the
identifier of the reservation to be released. The result of the command is one of two possi-
ble: “Reservation released” or “No such reservation”, either the reservation was released
or the identifier was unknown to the system.

A reservation is performed by querying the LRMS of whether it is able to guarantee the reser-
vation. Thus advance reservations at a grid site require the use of a LRMS that supports this
feature, e.g. OpenPBS with MAUI.

After the reservation is performed the user submits a job via GridFTP with an attribute in the
job description specifying the reservation identifier from the “get reservation” command. The
grid manager has two places where it needs to treat jobs with advance reservations specially,
namely when the job changes state to SUBMITTING and FINISHING.

• When changing to SUBMITTING the grid manager checks that the reservation identifier
is indeed valid and that the reservation has been performed by the user submitting the
job, and while submitting to LRMS associate the job with the reservation identifier of the
LRMS.

• When changing jobs to state FINISHING and submitted with a reservation, the reserva-
tion is cleaned at the grid manager and released at the LRMS. This is to guarantee that
that a user can only use a reservation for one job.

5.1.2 Using Remote Procedure Calls

Extending the procedure of performing advance reservation from [9] to the new architecture,
opens up new possibilities of interfacing when performing reservations. Generally the use of
GridFTP for job submission and indeed performing advance reservations can be considered an
awkward interface. Instead the use of remote procedure calls (RPC) is a much better suited
interface. This is easily accomplished in the new architecture, where creating a monitor that
acts as an RPC interface for the grid manager is trivial. Choosing a specific RPC solution is not
a priority, as the solution should just support procedure calling and returning of results while
performing marshaling, which can be considered the very essence of RPC.

There are at least three alternatives for creating the reservation at the LRMS:

1. Let the reservation be handled by a process external to the grid manager. This process
would handle the negotiation from client to LRMS via RPC. When a reservation is suc-
cessfully performed the process will notify the grid manager of this, associating a grid
identity to the reservation ticket of the LRMS.

2. Let the reservation be handled by a monitor in the grid manager. No well defined com-
munication path exists for letting handlers respond to monitors, and a reservation request

5.1. ADVANCE RESERVATIONS

5.2. AN ADVANCED IO SUBSYSTEM 47

needs a response. Thus it is not optimal letting the monitor notify events for these meth-
ods and having the requests handled by a handler. The monitor must then perform or
cancel the reservation with the LRMS, and respond the result as the returned value of the
RPC.

3. Let the reservation be on par with a regular job in the grid manager, i.e. a job always
leads to a reservation at the LRMS. Thus the job submitter will always have the start time
of submitted jobs returned when submitting. This solution will probably have handlers
performing the reservation and communicating with the submission monitor to provide
the result to the user. This solution requires a major restructuring of the grid manager and
is possibly the best solution.

For this use case it is chosen to go with the second alternative, it shows how to integrate ad-
vance reservations with the architecture in a proof-of-concept fashion. The approach to adding
advance reservation to the grid manager thus involves adding reservation methods to the RPC
monitor, assuming that such a monitor exists. To create a mapping to the approach from [9] two
methods are added, namely get_reservation() and release_reservation().

It is now possible performing and cancelling reservations with the LRMS at the grid site, how-
ever the grid manager does not know how to handle jobs with reservations. Three changes are
needed to achieve similar functionality as [9]. Namely a job with a reservation needs to have
the reservation verified (1), the submission to LRMS needs to know of the reservation (2) and
finally the cleanup after the job has run needs to clear the reservation (3). The following will
present a solution to achieving this in the grid manager presented in Chapter 4 on page 37:

1. Verifying the reservation can be accomplished by creating a new handler, to be launched
after the “parse job description” handler. The “verify reservation” handler will check
the job for a reservation reference, if one is found it must be verified. In the case that
the reservation can be verified, or one was not present in the job description, the job is
transitioned to the next state. If the reservation cannot be verified, the job is cancelled, i.e.
transitioned to the Finishing state.

2. Making LRMS aware of the reservation when submitting. This can be accomplished by
modifying the “submit to LRMS” handler to add the necessary information when submit-
ting.

3. Cleaning up after the reservation. This can be accomplished by adding a new handler to
the “Finished” state. The new handler must check the job for a reservation reference, if one
is present it will release the reservation at the LRMS and clean up additional information
recording the reservation at the grid manager.

This concludes the outline of a method for adding advance reservations to the grid manager
presented in Chapter 4 on page 37. Functionality similar to [9] is achieved while extending this
by supplying a RPC interface as an alternative to the awkward GridFTP reservation protocol.

5.2 An Advanced IO Subsystem

This section outlines the design of an architecture for an input/output subsystem to be used
with a grid manager based on the architecture designed in Chapter 3 on page 27. The design of

CHAPTER 5. ADVANCED USE CASES

48 CHAPTER 5. ADVANCED USE CASES

an IO architecture does not immediately qualify as an advanced use case of the grid manager
architecture, however, it serves as an illustration of how such a system can be realised to support
the architecture. Input/Output will henceforth be abbreviated IO.

The utilities currently available in NorduGrid for transferring input and output data consists of
the DataMove API and the ngcopy command. The NorduGrid grid manager does not employ
a separate service to manage how jobs stage their input and output data as they are embedded
within the grid manager. The current grid manager of NorduGrid provides caching, replica
management and control of the maximum number of allowed downloads.

5.2.1 Specification and Requirements

A versatile and efficient data management system for a grid manager should be able to cope
with different needs that a grid enabled site might have. The designed IO architecture should be
able to support generic data management needs and furthermore facilitate the implementation
of an IO subsystem accommodating the following requirements.

• Fault tolerance. In a grid environment, many types of failure is to be expected, e.g. failed
network connections and crashing clients, servers and/or storage systems. It cannot be
expected of grid applications to handle all of these failure gracefully, instead care must
be taken to hide these failures from the applications. An example could be to employ a
kill-and-restart mechanism to avoid halted data transfers to hang forever, blocking other
applications from using the IO subsystem.

• Overload prevention. A useful IO subsystem should allow for administrators to control
the number of concurrent transfers from/to any storage system. Furthermore, space al-
locations and deallocations could be employed to ensure that necessary storage space is
available before transfers are initiated.

• Runtime adaptation. Given the unforeseeable nature of failures in the grid, an IO archi-
tecture should provide means for the IO subsystem to adapt to failure of storage servers
and performance variations during runtime. This can be achieved by allowing the subsys-
tem to reconsider the choice of protocol and/or server, if alternatives are available, under
conditions where data transfers fails repeatedly or performs poorly.

• Support for heterogeneous resources. It can not be assumed the all storage systems in a
grid support the same set of protocols and communication mechanisms. The mechanism
that applications use to access the IO subsystem should be independent of the type of both
data source and destination, e.g. whether it is an FTP server, a file system or perhaps even
a database.

• Extensibility. The IO architecture should facilitate the implementation of an IO subsystem
that is easily extended to support new protocols and storage systems.

The above categories of data management needs as well as the features required by an IO sub-
system constitutes the requirements to the designed IO architecture.

It is assumed that the IO architecture should provide a framework for an IO subsystem capable
of transferring files between three different types of spaces, namely gmspace, extspace and
uspace. Where:

5.2. AN ADVANCED IO SUBSYSTEM

5.2. AN ADVANCED IO SUBSYSTEM 49

• gmspace. Covers data locations that are available internal to the grid manager only, such
as a cache.

• extspace. Covers data locations external to the grid manager, such as remote storage
servers.

• uspace. Covers data locations local to the user, such as the session directory, or a work-
station local to the user.

In a future IO architecture, possible extensions to this model could be considered, e.g. a DSM
based IO architecture. But at the time of writing this sort of IO architecture still seems years
away from appearing.

5.2.2 The Globus XIO Framework

Since version 3.2, the extensible Input Output framework (XIO) has been part of the Globus
Toolkit. XIO is a simple and intuitive API for IO implementations, with integrated support for
pluggable protocols, modularised file processing, integrated error handling and many more of
the features that an IO architecture should ultimately support. The XIO framework has recently
been used to extend Globus with support for multicast transmissions by Jaecle et. al. [29]. In
the following we present the fundamental design of the XIO framework from [30].

The Globus XIO framework manages IO operation requests that an application makes via the
user API. The framework does no work to deliver the data in an IO operation nor does it manip-
ulate the data. All of that work is done by the drivers. The job of the framework is to manage
requests and map them to the drivers interface.

Drivers

A driver is the component of Globus XIO that is responsible for manipulating and transport-
ing the users data. There are two types of drivers, transform and transport. Transform drivers
manipulate the data buffers passed to it via the user API and the XIO framework. Transport
drivers are capable of sending/receiving data over a wire.

Drivers are grouped into stacks, i.e. one driver on top of another. When an IO operation is
requested, the Globus XIO framework passes the operation request to every driver in the order
which they are stacked. When the bottom level driver (the transport driver) finishes transferring
the data, it passes the data request back to the XIO framework. Globus XIO will then deliver the
request back up the stack in this manner until it reaches the top, at which point the application
will be notified that the request is completed. The cooperation between the framework and the
drivers is illustrated by the arrows in Figure 5.1 on the next page.

The transport driver is the one responsible for sending or receiving the data. Once this type of
operation is performed it makes no sense to pass the request down the stack, as the data has just
been transfered. Hence, there can be only one transport driver in a stack. When the transport
driver has been run, and the data transferred, the operation is transferred back up the stack.

A transform driver is one that can manipulate the requested operations as they pass. In contrast
with the single allowed transport driver, there can be many transform drivers in a driver stack.
Some good examples of transform drivers are security wrappers and compression operations.

CHAPTER 5. ADVANCED USE CASES

50 CHAPTER 5. ADVANCED USE CASES

Figure 5.1: Overview of the XIO framework. Figure 5.2: A real driver stack.

However, a transform driver can also be one that adds additional protocol. For example a stack
could consist of a TCP transport driver and an HTTP transform driver. The HTTP driver would
be responsible for marshaling the HTTP protocol and the TCP driver would be responsible for
shipping that protocol over the wire.

Example

Imagine that a user has built a stack consisting of two transform drivers and, of course, a single
transport driver. The transport driver is a TCP stack, and as required for all transport modules
it is at the bottom of the stack. Above the TCP driver is the GSI transform driver which per-
forms necessary messaging to authenticate the user and verify integrity of the data transmitted
data. At the top of the stack there is a gzip transform driver, which compresses the file to be
transfered. Figure 5.2 illustrates how the driver stack is constructed.

The first thing the user application will do after building the stack is call the XIO user API
function globus_xio_open(). The Globus XIO framework will create internal data structures for
tracking the operation and then pass the operation request to the driver at the top of the stack,
namely the driver for gzip compression. The gzip driver needs a handle to a GSI connection to
function, and therefore forwards the request to the next driver in the stack. The GSI driver has
nothing to do either before the underlying stack has opened a handle so it simply passes the
request down the stack. The request is thereby passed to the TCP driver. The TCP driver will
then execute the socket level transport code contained within it to establish a connection to the
given contact string.

Once the TCP connection has been established the TCP driver will notify the XIO framework
that it has completed its request and thereby the GSI driver will be notified that the open oper-
ation it had previously passed down the stack has now been honoured. At this point the GSI
driver will start the authentication processes (note that at this point the user does not yet have
an open handle). The GSI driver now has an open handle to the TCP connection and performs
several sends and receives to authenticate the connection. If the GSI driver is not satisfied with
the authentication process it closes the handle it has to the stack below it and tells the XIO
framework that it has completed the open request with an error. If it is satisfied it simply tells
the XIO framework that it has completed the open operation. The gzip driver is now given a
handle to the open GSI connection, if the GSI driver did not fail, and is able to initialise a gzip

5.2. AN ADVANCED IO SUBSYSTEM

5.2. AN ADVANCED IO SUBSYSTEM 51

stream through that connection. Finally, the user is notified that the open operation completed,
and if it was successful the user now have an open handle.

Other operations work in much the same way. When a user posts a write request, it is first
delivered to the gzip driver, the gzip driver will wrap the buffer and pass it down the stack.
The GSI driver will once again wrap the buffer and pass it down the stack. The framework will
then deliver the read request with the newly doubly modified buffer to the TCP driver. The TCP
driver will write the data across the socket mapped to this handle. When it finishes it notifies
the framework, which notifies the GSI driver and subsequently the gzip driver. Neither driver
has anything more to do so they notify the framework that the operation is complete and the
framework then notifies the user.

Evaluation

Globus XIO is an extensible framework facilitating the implementation of new protocols in a
pluggable fashion. However, it falls short of devising any means to achieve overload preven-
tion and runtime adaptation. Furthermore, the approach of implementing low level transfer
mechanisms, separated from higher level protocols, seems to be superfluous in a grid setting
where a TCP connection is expected to be the superior choice in most cases.

5.2.3 Stork

In the following we briefly review the design of Stork, a scheduler for data placement activities
in grids. For a complete reference on Stork the reader is deferred to [31, 32]. The declared goal
of Stork is to make data placement a first class citizen in the grid, meaning that in Stork, data
placement tasks are treated as if they were actual grid jobs. This does not imply that Stork does
not distinguish regular jobs from data jobs, however, the latter is queued, scheduled, monitored
and managed in a fashion similar to that of regular jobs.

As with regular jobs in a computational grid, Stork jobs are specified by a job description. Stork
job descriptions are written in the ClassAd Language[33], and encapsulates more than just mov-
ing data between two locations. A Stork job is a combination of the following kinds of tasks.

• Reserve. The job description of a data placement job allows a user to specify how much
storage space is needed for input data to a computational job. If the job description con-
tains such a specification the reserve task is run preliminary to the staging of input data.
This guarantees that enough space is available at the site of execution before any down-
loading is performed. Only some storage systems support this mechanism.

• Release. This task is executed when reserved storage space is no longer needed.

• Transfer. Any data placement job in Stork requires the transfer of data from one location
to another. This task is used to perform data transfers between a remote site and a local
site.

• Locate. If supported by the storage system, this task can be used to locate a specific file.

• Stage. This task is similar to the transfer task, except that it is used to move data between
two remote sites.

CHAPTER 5. ADVANCED USE CASES

52 CHAPTER 5. ADVANCED USE CASES

Figure 5.3: An example of a DAG based on a typical grid job. The grey boxes represents data related tasks while the
white box represents job related tasks.

Listing 5.1: A Stork task specified in the ClassAd language.

1 [
2 dap_type = "transfer";
3 src_url = "file://$HOME/data/foo.dat";
4 dest_url = "ftp://tender.grid.aau.dk/tmp/bar.dat";
5]

Stork is not a self contained IO framework. To be fully functional it depends on several com-
ponents from the Condor project, namely the Directed Acyclic Graph Manager (DAGMan),
MatchMaker and the ClassAd language. The Condor project is an effort to develop, implement,
deploy and evaluate mechanisms and policies for High Throughput Computing (HTC)[34].

The DAGMan is used by Stork to represent a job as a directed acyclic task graph. An example of
a Stork job, represented as a DAG, is shown in Figure 5.3. The MatchMaker component is used
by Stork to decide which transfers to schedule, and especially between which sites to transfer
data – if multiple possibilities exist. Storage servers and Stork jobs are both specified using the
ClassAd language. The MatchMaker knows the storage servers in the grid and it receives job
descriptions from Stork, and is therefore able to match servers with appropriate data placement
jobs.

Listing 5.1 shows an example of a Stork task specified in the ClassAd language. Performing the
task transfers the local file foo.dat to tender.grid.aau.dk where it is stored as foo.dat.

Evaluation

The Stork scheduler is an interesting framework for an IO subsystem. The design decision of
considering data transfers as regular jobs is compelling in a grid context because a multitude
of mechanisms for queueing, scheduling and executing such jobs already exists. Stork embrace
the fundamental characteristics of data transfers, and illustrates how most of the requirements
to the IO architecture can be taken into consideration. However, as a negative point, the Stork
framework has been designed as part of the Condor project and thus depends on several com-
ponents from Condor.

5.2. AN ADVANCED IO SUBSYSTEM

5.2. AN ADVANCED IO SUBSYSTEM 53

Figure 5.4: An overview of the IO architecture. The arrows indicate the communication interfaces between compo-
nents.

5.2.4 The New Architecture

In Subsection 5.2.1 on page 48 several requirements for the IO architecture was set forth. Re-
viewing two existing technologies, the Globus XIO library and the Stork IO scheduler, has clar-
ified how some of these requirements can be implemented.

In designing an IO architecture the choice is now whether to reuse the design of the reviewed
frameworks or to design a new IO architecture using them merely as inspiration. Reusing the
available frameworks is appealing as it minimises the effort necessary to design and implement
the new architecture. However, designing a new IO architecture, using the available technolo-
gies merely as inspiration, allows for a completely customised IO architecture that integrates
seamlessly with the grid manager architecture proposed in Chapter 3 on page 27.

Reusing Globus XIO is ruled out as the framework it does not provide enough functionality
to warrant making the IO architecture Globus dependent. It does however illustrate the use
of pluggable protocol handlers which would enhance the extensibility of the IO architecture.
Reusing the Stork seems compelling. However, the framework depends on Condor components
and dictates the use of the ClassAd language to describe data transfers, reducing the ability to
support heterogeneous resources.

Based on these considerations we choose to design a new IO architecture based on the speci-
fication of requirements in Subsection 5.2.1 on page 48, using the Globus XIO library and the
Stork framework as inspiration.

An overview of the designed IO architecture can be seen in Figure 5.4. The architecture consists
of multiple components, facilitating the required functionality, which will be elaborated in the
following. At the top of the architecture resides the IO manager, which is the internal interface
of the architecture. The external interface is configurable, like the grid manager architecture
was, through the use of monitors. Recall that monitors are part of the grid manager architecture
presented in Chapter 3 on page 27.

Upon receiving a request to download a file, the IO manager looks up the file by interfacing
with the cache component. If the file is found in the cache, the file is copied to its destination
immediately. The benefit of this is that requests pertaining to cached files are honoured imme-
diately. It is expected that the majority of download requests require only readable permissions
to the file in question and therefore merely linking to the cached file will suffice.

CHAPTER 5. ADVANCED USE CASES

54 CHAPTER 5. ADVANCED USE CASES

Figure 5.5: A rudimentary UML design for IOTask and IORequest.

If the file is not cached, the download request is added to the registry. This introduces a new
concept into the IO architecture, namely an IO task. The purpose of an IO task is primarily
to encapsulate transfer requests, and of course other information useful to the registry. The
registry contains only IO tasks. Upon receiving a request the registry tries to find an IO task
encapsulating a similar request. If such a request is found in an IO task the new request is
added to that same IO task. A rudimentary UML diagram, illustrating the design of an IO task
and an IO request, can be seen in Figure 5.5.

The mapping between an IO task and multiple transfer requests allows for the IO architecture
to avoid multiple concurrent downloads of the same file. When an IO task has completed,
the IO manager is notified via an event and consequently marks all corresponding requests as
completed. When a request is completed some sort of notification must be sent to the entity
from which the request emanated in the first place, signalling the completion of the request.

To perform the actual IO operations, and download the requested file, the architecture employs
a set of executors collected in an executor pool. Whenever an executor is available, the IO manager
requests an IO task from the registry by interfacing with the policy. The primary responsibility of
the policy is to choose an IO task from the registry. The policy has a list of currently executing
IO tasks, a list of pending IO tasks and a quantifier available to assist it in making qualified
decisions about which IO task to start.

The quantifier is a component assigning a numerical value to a URL. The value represents a fit-
ness function for the URL. The numerical value can be based on several measures regarding the
URL, or several URL’s, of an IO request. Such measures could be based on e.g. the distributed
coordinate system Vivaldi [35], or more simple measures such as the registered bandwidth,
round-trip time (RTT) and so forth.

Finally, when an executor is available to the IO manager, along with an IO task, as selected by
the policy, the executor performs the data transfer by using a transporter.

Transporters can be considered a higher level of abstraction of protocols. They utilise one or
several protocols to send/receive data between two uniform resource locators, possibly manip-
ulating the data. The protocols supported by a transporter are specified in its corresponding
manifest. When an executor is about to perform a transfer it selects an appropriate transporter
by comparing these protocols with the ones specified in the IO task at hand. Transporters fur-
thermore contain a set of inspector capabilities. Recall that an IO task contains a dictionary of
thresholds, which specifies that e.g. the speed of a transfer should not drop below 50 kilobytes
pr. second. The inspector capabilities of a transporter indicates exactly which type of thresholds
it is able to inspect. Most transporters will be able to support inspecting the speed of a transfer,

5.2. AN ADVANCED IO SUBSYSTEM

5.2. AN ADVANCED IO SUBSYSTEM 55

while other thresholds might be limited to certain specialised transporters, e.g. the number of
records downloaded pr. second will probably be limited to transporters working on databases.
The inspector capabilities of a transporter is specified in its manifest.

5.2.5 Summary

This section has documented the design of an IO architecture to be used with a grid manager
implemented in the architecture proposed in Chapter 3 on page 27. Initially, a specification of
an IO architecture was presented along with requirements to such an architecture. To draw on
experiences from similar projects the design of the Globus XIO framework and the Stork data
placement framework was reviewed. Finally, the resulting architecture was presented.

We conclude the design by evaluating how the architecture accommodates the initial require-
ments.

• Fault tolerance. This requirement is accommodated by the architecture by allowing the
registry to store both IO tasks and IO requests onto disk using the persist() method
on the IO task. Hiding failures from applications is the responsibility of the transporters.
The inspector capabilities of these can be exploited to support automatic restart of failed
or halted transfers.

• Overload prevention. The policy enables an IO subsystem based on the designed archi-
tecture to control the terms and conditions under which data transfers are started, stopped
or restarted/resumed. Furthermore, the number of executors in the executor pool pro-
vides a means to control the number of active data transfers.

• Runtime adaptation. The inspector capabilities of the transporters enables an IO sub-
system based on the designed architecture to adapt during runtime by monitoring active
transfers and respond accordingly. Furthermore, if multiple protocols or storage resources
are specified for an IO task, failure using one of the protocols or storage resources can be
responded to by changing to another protocol or storage resource. The quantifier, assign-
ing numeric values to URL’s, furthermore allows the policy to adapt to current perfor-
mance conditions.

• Extensibility. The extensibility of the design is illustrated by the transporters. The trans-
porters are implemented as plug-ins to the architecture.

• Support for heterogeneous resources. The architecture does not directly employ any
means to support heterogeneous resources, but neither dictates anything that diminishes
this support.

The above evaluation of the designed IO architecture is based purely on the design of the ar-
chitecture. An actual implementation of an IO subsystem, based on this architecture, will most
certainly result in a design that does not accommodate the initial requirements as well as the
good intentions behind the architecture.

CHAPTER 5. ADVANCED USE CASES

56 CHAPTER 5. ADVANCED USE CASES

5.3 Live Upgrades of the Grid Manager

This section outlines a method for upgrading a running grid manager on-the-flywith no down-
time experienced from users, known as live upgrading. Live upgrading is useful for increasing
the availability of a grid site. The alternative of shutting down the grid site when making
changes to the grid manager software, leads to an unreliable grid service.

Live upgrading is divided into two cases that are handled differently, namely minor and major
changes in the grid manager. Minor changes are:

• Reloading a plug-in. E.g. handlers and monitors. This could be desirable in the case
where a new version of a plug-in is available with similar functionality, fixing errors or
performance problems.

• Loading a new plug-in. For instance introducing a new monitor for handling job submis-
sion.

• Disabling a running monitor. This could be desirable if the grid site is performing a
scheduled shutdown and thus wants to disable the submission of new jobs for a period of
time.

• Changing certain parameters of the system. E.g. changing the number of workers or
ranking of handlers for certain events.

All the listed minor changes are possible to achieve while the grid manager continues to process
events and jobs. However a mechanism for achieving this in the current implementation of the
new grid manager is not yet available.

Examples of major changes are:

• Changing to a new version the grid manager software. This could be a new version that
introduces bug-fixes or new functionality to the grid manager.

• Changes to the fundamental structure of the grid manager. E.g. a migration to a incom-
patible setup of states, handlers and monitors.

Major changes cannot be achieved in the same way as minor changes, the grid manager process
must be stopped at one point while another is started, to ensure consistent handling of jobs.
The following will present an approach for reloading the grid manager software at a grid site
without users experiencing the transition, e.g. no downtime and no change in the job processing
from users perspective. The scenario is the following, a running grid manager gm1 is about to
be replaced with a new gm2.

• The job submission monitor of gm1 is brought down while bringing up gm2 which will
handle all new job submissions to the grid site. Similarly the informers of gm1 are shut-
down and replaced by the informers of gm2.

• The jobs already being processed by gm1 are allowed to be processed to a final state within
the setup of gm1, to ensure that they are handled consistently.

5.3. LIVE UPGRADES OF THE GRID MANAGER

5.4. DISTRIBUTING THE GRID MANAGER 57

However care must be taken with shared resources between the two grid managers. Shared
resources include the LRMS, previous job information but also unsharable resources on the
computer system running the grid managers, e.g. network ports etc. Thus monitors binding
to network ports have to be coordinated between the two running grid managers, which can
prove to be quite the conundrum. The sharing of previous job information, i.e. persisted jobs
and informers feeding the information system needs to be handled by the grid manager.

The informers of gm2 will replace the informers of gm1, and the system will proceed with two
job pools for the duration that gm1 continues to execute. The job pool of gm1 will continue to
“own” the jobs currently and previously processed at gm1, however this does not prevent the
job pool and informers of gm2 to provide information to the information system. The job pool
instances simply brand each persisted job file with the process ID of the grid manager and a
unique version number. The version number is used to identify the format of the persisted job
data, in the case that changes to the format are made. New versions of the software need to
provide functionality to read the formats of previous versions. When the job pool of gm2 loads
persisted jobs from files, it notes the ones not “owned” by gm2. These jobs not “owned” by gm2

are treated differently, as they are always loaded from disk when informers needs to supply the
information system, possibly employing some caching scheme to enhance performance. Recall
that any changes to the information pertaining to a job are immediately stored onto disk in a
manner that is considered atomic. Thus the information displayed by informers at gm2 about
jobs currently processed at gm1 will be up to date. The jobs “owned” by gm1 will only be
modified by handlers at gm1.

This concludes the outline of an approach to achieving live upgrades to the new grid manager.
The problem is transformed into the task of coordinating the execution of two concurrent grid
managers on a single system.

5.4 Distributing the Grid Manager

This section will present the reasoning behind distributing the grid manager and a possible
solution for achieving this with the new architecture.

At a grid site with a huge body of computing nodes, it can be very expensive if the computing
nodes are not utilised maximally corresponding to the extent of available user jobs. This could
easily become the case if the grid manager fails, either due to software or hardware failure,
which results in no grid jobs being run at the cluster or resource. Thus it is a desirable feature to
distribute the grid manager onto several independent computer systems, which would provide
a grid manager service that is resistant to failures at some of the systems. The motivation for this
distribution of the grid manager functionality is to increase the availability of the grid manager
service.

An example of the distributed architecture is shown in Figure 5.6 on the following page. It is
based on the idea of distributing jobs to semi-independent grid manager instances running at
different computer systems. The grid managers share some resources, namely the IO subsys-
tem, LRMS and a file system. In order for the IO subsystem to perform successful scheduling
of the network resources available at the system, it should be kept as a separate service shared
by the grid managers.

The load balancing is performed on a network level, i.e. load balancing functionality of a switch
or a round-robin DNS approach. This means that clients are oblivious to the fact that job sub-
missions or information system requests are distributed to the available grid managers.

CHAPTER 5. ADVANCED USE CASES

58 CHAPTER 5. ADVANCED USE CASES

Figure 5.6: The distributed grid manager, consisting of three systems running the grid manager. IO subsystem and
LRMS are still centralised components. User requests are load balanced by a specialised component, e.g. round-robin
DNS or similar.

The grid managers operate on a shared file system for storing persisted job data. This makes
it possible for informers running at any of the grid managers to reply to information system
queries, by making the job pool query persistent jobs in the file system. This is similar to the
approach for handling multiple grid managers when performing live upgrades in Section 5.3 on
page 56.

5.4. DISTRIBUTING THE GRID MANAGER

6
Evaluation

This chapter will present an evaluation of the new grid manager for the NorduGrid ARC and
the architecture it is based upon. Following the evaluation is a discussion of the future outlook
for NorduGrid with the addition of the new grid manager.

Recall the requirements for the new grid manager listed in Section 1.3 on page 7, namely that
the grid manager should be efficient, extensible, customisable and fault-tolerant. These four terms
will be used to evaluate the new grid manager and architecture.

From this point on, the current NorduGrid grid manager is abbreviated CGM and the new grid
manager NGM.

6.1 Efficiency

The efficiency requirement states that the grid manager should whenever reasonably employ
the best performing approaches when processing jobs. To evaluate the efficiency of the grid
manager, a performance test of the current NorduGrid ARC grid manager and the new grid
manager is performed.

The performance test is designed to measure the minimal overhead added by the two different
grid managers. No files are to be transfered during stagein or stageout, i.e. the test shows the
minimal processing time for the most simple job in both grid managers respectively. The setup
used for the tests is the following:

• The job is the execution of /bin/date, i.e. the standard UNIX command for displaying
the current time of a system. The output acts as a witness to the execution time of the
command.

59

60 CHAPTER 6. EVALUATION

CGM NGM

S → R 38.4 s 1.0 s
S → F 130.4 s 1.0 s

Table 6.1: Results for 1 submitted job. S → R is the time from job submission until the job is run by LRMS. S → F

is the time from job submission until the job reaches the Finished state in the grid manager. The granularity of
the test was 1 second and all tests were repeated 5 times, the results are the average of the 5 test runs.

• The jobs are submitted to a system running GridFTP from NorduGrid ARC version 0.4.5
and the CGM used is also from this distribution. The LRMS system used is TORQUE
version 1.2.0p3, the only node in the “cluster” is the system itself. The operating system
used is Debian Linux 3.1 running in a Xen[36] domain with 640 MB memory. The system
sports an Intel Pentium 4 CPU running at 2.80GHz.

• The job is submitted from the system running the grid manager. This simplifies the mea-
surement of time, compared to submitting from a different system, and also reduces the
overhead of network communication for GridFTP.

• The system is otherwise idle, no other jobs are resident in the grid manager or the LRMS.

• The test is performed for a single job and for a simultaneous submission of 25 identical
jobs.

The results for a single job submission are shown in Table 6.1. In all test-runs the elapsed time
from submission to execution, and from execution until the job reaches the Finished state,
were measured to be 1 second for NGM. However, the granularity of the test was also 1 second,
thus to achieve a more precise measurement of NGM a finer granularity is needed. The results
of the tests are nevertheless extremely clear, the average time from submission to execution of
the job is 38 times greater for the CGM and 130 times greater from submission to the Finished
state. This is undoubtedly due to the use of polling in CGM, this conclusion is further supported
by the variance of the results of CGM. The elapsed time from submission to execution was in
the interval [2, 85] seconds, and from submission to the Finished state in the interval [55, 205]
seconds.

The elapsed time for the simultaneous submission of 25 identical jobs was 59 and 535 seconds
for NGM and CGM respectively, measured from submission of the first job until the last job
reached the Finished state. The elapsed time is not, as one might expect, simply 25 times
that of a single job submission, in fact it seems that CGM is scaling better than previously, as
it is only ∼ 9 times slower on this test. This could be explained by the polling employed by
CGM which, under pressure, is able to pick up multiple jobs for each poll, as opposed to the
test involving only a single job submission. The results are influenced by the 25 concurrent
GridFTP connections which induce load onto the system and the performance of the LRMS also
influence the test results. However, these influences affect the tests of both grid managers.

A more exhaustive performance test would be interesting to conduct, however this has not been
possible within the time-frame of this project. The conducted tests, however simple, clearly
indicates that NGM is performing many times (9 − 130) faster than CGM when comparing the
minimal overhead. This shows that NGM has eliminated some of the performance nuisances
found in CGM, and furthermore that it accommodates the efficiency requirement.

6.1. EFFICIENCY

6.2. EXTENSIBILITY 61

6.2 Extensibility

The extensibility of the system is measured by the ability to add new features and functionality
to the grid manager. This is motivated by the rigidness of CGM that does not provide any ap-
parent ways of achieving many of the extended features mentioned in Section 1.3 on page 7. In
Chapter 5 on page 45, feasible approaches to achieving these features in NGM were presented.
Thus NGM is considered extensible.

6.3 Customisability

A customisable grid manager is one that provides the power of easily tweaking the behaviour of
the grid manager, for instance for a grid site administrator to modify the way jobs are monitored
in LRMS or the way files are made available to the computing nodes. The meaning of tweaking
is thus making small adjustments to the functionality of the grid manager.

The power to customise the NGM stems from two aspects, namely the chosen architecture and
the chosen programming language. The architecture provides many ways of customising the
behaviour of the grid manager. Changing much of the behaviour of the grid manager is possible
without actually touching any code, by simply modifying the configuration and manifest files
of the appropriate handler. This provides the power to change state names and modify the
ordering of handlers. However, the power is further increased by the simplicity of modifying
and creating new handlers. This is provided by the Python programming language, and the
handler and monitor concepts of the architecture. For the source code of the handlers and
monitors in the new grid manager please refer to Appendix A.

It should be clear that tweaking the behaviour of the grid manager can be quite simple, due
to the loosely coupled components, the readability and possibilities added by the Python pro-
gramming language and extensive library.

6.4 Fault-tolerance

The fault-tolerance of the new grid manager relates to the way the system handles crashes.
Crashes can occur at any point in time and the system must be able to recover from such a crash
to a correct meaningful state, without losing job information, in order to exhibit fault-tolerant
behaviour.

Informal tests have been conducted to test the fault-tolerance of the new grid manager. They
show that once a job object has been successfully created in the system it is mirrored onto a
string representation persistent on disk. The job pool logic is able to reload all persistent jobs
into the system. However, if the system crashes while performing the initial writing of data
to the job file, the job will be lost. This can be remedied by also persisting the received and
unhandled events, as they are lost when the system crashes in the current implementation.

This also concerns the monitors of the architecture. Two cases exist for monitors to guarantee
that external events are not lost, monitors that are able to acknowledge the reception of an
external event and those that do not have this possibility.

CHAPTER 6. EVALUATION

62 CHAPTER 6. EVALUATION

• If monitors have the possibility of acknowledging received events, this should be done but
not until the event has been persisted. In case a client to the monitor does not receive this
acknowledgement, a protocol must be established between monitor and client in order to
guarantee the reception of the external event.

• Monitors without this possibility must be able to guarantee that they can rediscover un-
persisted events, if the system is to guarantee that external events are not lost.

Similarly, a guarantee of fault-tolerance also depends on the handlers being idempotent or re-
runnable, i.e. the result of one execution of the handler on a given job should be similar to any
number of executions. This property is necessary in the case where the system crashes while
executing a particular handler, the operation of the handler is not completed and the event is
unhandled. Thus, when the system is restarted the driver will relaunch the handlers registered
for the unhandled event, and the handlers must be able to handle this gracefully.

This shows that fault-tolerance is not guaranteed in the current architecture implementation,
and furthermore that a guarantee also depends on contracts between the architecture and the
implemented monitors and handlers. This is clearly a subject of further work to achieve a
mature and fault-tolerant grid manager and architecture.

6.5 The Outlook for NorduGrid

In this section the future outlook for NorduGrid with the addition of the new grid manager is
discussed, under the assumption that the advanced use cases listed in Chapter 5 on page 45
are implemented successfully. The basic principles of a generic grid middleware design from
Section 1.2 on page 5, will provide the basis for a comparison between the current NorduGrid
middleware and the possible future middleware.

The grid middleware should:

• not interfere with the existing site administration or autonomy:
This relates to the flexibility to adapt the grid manager for special environments and se-
tups, where it was not originally designed to operate. The current grid manager is rather
inflexible and requires a rather wholesome array of software requirements that can be
difficult for site administrators to accept. Among these are:

– The ∼ 150MB sized binary installation can prove a huge mouthful for site adminis-
trators, e.g. reviewing the untrusted code seems an impossible task. The bulk instal-
lation of the Globus toolkit is necessary to use the CGM. Wishes to replace the Globus
toolkit with other, standard and proved technologies have been ushered. The new
grid manager architecture provides a possible transition path toward fulfilling this
request by the extensibility and flexibility inherent in the architecture. And thus cut-
ting down on the size of the binary footprint.

– The current NorduGrid requires several communication channels to function cor-
rectly, among these are the MDS system and GridFTP server. Certain site policies
may prohibit the opening of a firewall to allow for these channels, effectively re-
straining these sites from participating in NorduGrid. It would be desirable to de-
velop alternative protocols to allow for the participation of these sites. The new grid
manager makes this possible by allowing a transition from the current protocols, to-
ward new alternatives.

6.5. THE OUTLOOK FOR NORDUGRID

6.6. SUMMARY 63

• not compromise existing security of users or remote sites:
The current NorduGrid security system does adhere to this principle.

• provide a reliable and fault tolerant infrastructure with no single point of failure:
The current grid middleware employs services that can be considered single points of
failure. Among these are the index servers of the information service, where the crash of
a single machine could mean that an entire nation disappears from the grid. This does
clearly not adhere to this principle. However this does not seem to be an urgent problem
as the information service does allow for the use of fail-over servers. This is however not
currently done.
The reliability of the grid service is greatly increased by the introduction of live upgrades
and the ability to distribute the NGM compared to the functionality of CGM.

• provide support for heterogeneous components:
Currently the supported resource type in NorduGrid are computing nodes in clusters.
For this to change, and allow for more specialised resources, e.g. telescopes and super
computers, will require a restructuring of the information system and job description lan-
guage. Again, a gradual transition path is provided by the new grid manager, by not
dictating neither the type of information system or job description language. The NGM
can ultimately lead to the support for truly heterogeneous resources.

• use standards, and existing technologies, and facilitate interoperability with legacy appli-
cations:
The NGM employs the use of XML throughout the configuration and XML-RPC is the
current RPC mechanism of choice. Both are good examples of standard technologies. The
use of GridFTP as a job submission interface is clearly a poor choice, and work should be
done to replace this with a more natural job submission interface, e.g. some form of RPC.
The use of GridFTP for data transmission protocol can furthermore be criticised. [25]
shows that and HTTP(S) protocol served by Apache2, with a curl based client, performs
more steadily compared to a GridFTP. Replacing the data transportation protocol can be
accomplished as a gradual transition in NGM.
Replacing the current job description language of NorduGrid, XRSL, with an XML based
language, e.g. JSDL, would further aid in adhering to this principle. The ability of NGM to
provide a transitional path can facilitate the adaptation of a new job description language.

6.6 Summary

The evaluation concludes that the new grid manager does live up to three of the four listed
demands. However the handling of fault-tolerance does not guarantee that jobs or events are
not lost in the case of a system failure. The proposed solution provides the basis of future work
to provide this guarantee.

The outlook for NorduGrid shows many possible improvements to NorduGrid by way of the
new grid manager and architecture. The ability of functioning as a transitional path, supporting
both old and new technologies is a major force of the new grid manager, that can greatly aid the
replacement of tired technologies in the current middleware.

CHAPTER 6. EVALUATION

64 CHAPTER 6. EVALUATION

6.6. SUMMARY

7
Conclusion

This chapter concludes the thesis. First a project summary is presented, followed by suggestions
for future work relating to the new grid manager.

7.1 Project Summary

This thesis documents the efforts of designing, implementing and evaluating a new grid man-
ager for the NorduGrid ARC.

In Chapter 1 on page 3 the concept of computational grids is introduced along with a generic
model for grid middleware. The grid middleware of NorduGrid is briefly outlined and the
general requirements for a new grid manager are specified.

This leads to a more thorough examination of the NorduGrid ARC middleware in Chapter 2 on
page 11. The history, purpose and current state of NorduGrid is presented. The job concept
is introduced followed by the task flow involved with a job submission to the NorduGrid grid
manager. Following this, several identified problems with the current NorduGrid middleware
are presented and compared to the requirements from Chapter 1 on page 3.

This motivates the design of a new architecture for grid managers, which is presented in Chap-
ter 3 on page 27. The chapter initially presents the general modus operandi of grid managers,
which leads to the introduction of the central concepts of the new grid manager architecture.
The architecture is a plug-in-based event-driven architecture, which aims to provide an exten-
sible and customisable foundation for creating grid managers. The design and implementation
of the architecture is presented to conclude the chapter.

Chapter 4 on page 37 presents the design of a prototype drop-in replacement for the current
NorduGrid ARC grid manager. The new grid manager is based on the architecture previously
introduced. First the chosen job state transition system is presented, followed by a description

65

66 CHAPTER 7. CONCLUSION

of the components reused from the current NorduGrid middleware. The designed handlers
and monitors are then presented, before finally providing an evaluation of the designed grid
manager.

Obtaining an easily extensible grid manager is one of the primary reasons for developing the
new grid manager. Chapter 5 on page 45 presents several advanced use cases for the NorduGrid
middleware along with ways to implement them in the new grid manager.

An evaluation of the new grid manager is presented in Chapter 6 on page 59. The grid manager
and architecture are related to the demands set forth in Chapter 1 on page 3, namely: efficiency,
extensibility, customisability and fault-tolerance. While evaluating the efficiency of the grid
manager it is compared to the current NorduGrid grid manager. The new grid manager proves
to be between 9 and 130 times faster, when measuring the minimum overhead from job sub-
mission to termination of processing in the grid manager. It is found to be both extensible and
customisable. However, evaluating the fault-tolerance of the new grid manager does reveal
some unresolved issues regarding this requirement. The new grid manager does not guarantee
the persistence of events and jobs in some cases of system failure.

To conclude this thesis we point to issues that requires future work if the new architecture and
grid manager is to be successful. The subjects for future are based on the current functionality
of the implementation.

7.2 Future Work

This section suggests subjects for future work based on the current state of the implementation
of the new grid manager. The implementation is currently what can be considered a functioning
prototype for a drop-in replacement for the current NorduGrid grid manager. The prototype
furthermore constitutes a proof-of-concept of the architecture.

The current implementation is able to:

• Submit jobs via the NorduGrid client utility ngsub. Ideally over time this should be
transitioned to another protocol than GridFTP. Ideal alternatives would be some form
of RPC, for instance XML-RPC over HTTPS, which is directly supported by the monitor
concept. This would remove the Globus dependency from the client utilities and provide
a much more natural interface for negotiating job submissions.

• Have the appropriate data downloaded and uploaded via GridFTP, HTTP(S) and FTP.
Currently there is no support for replica catalogues and caching of files. However a non-
prototype implementation should ideally employ an implementation of the IO subsystem
described in Section 5.2 on page 47.

• Have the job submitted to LRMS. Currently only PBS and variants are supported, i.e.
those providing a qsub command with similar functionality of PBS. This should be ex-
tended to contain at least the LRMS flavours currently supported by NorduGrid and sup-
port monitoring of jobs queued at the LRMS.

• Be notified of job termination at LRMS. The implementation assumes a direct network
connection from the system running the grid manager to the computing nodes of the
cluster, in order for the wrapper script to perform the notification of job completion. Al-
ternatives to this approach should be provided to support sites where this is not possible.

7.2. FUTURE WORK

7.2. FUTURE WORK 67

Also a method for discovering job termination at the computing nodes when the grid
manager is not running, e.g. if it has crashed, is needed.

• Send notification mails when jobs reach certain states. Notification could possibly be ex-
tended to other protocols than email, for instance instant messaging, e.g. the Jabber pro-
tocol.

• Clean session directory after a specific amount of time.

The implementation also lacks some features:

• Work is needed to ensure that the grid manager is indeed fault-tolerant, as mentioned in
Section 6.4 on page 61.

• Security in the grid manager is an almost untouched area. Providing ways to change the
user id of submitted jobs, i.e. adhering to the gridmap file of NorduGrid is not supported.
A sane security advice is to let the grid manager run with the least amount of privileges
needed, and escalating the privileges temporarily when needed. Sand-boxing of handlers,
i.e. letting handlers run with limited privileges, should also be examined in this context.

• A well-defined means of communication between a handler and the monitor that created
the event currently processed by the handler. This could be useful in cases where the
monitor needs to reply to a client, but delegates the work of creating such a reply to a
handler. The functionality could be implemented by creating a protected communication
object that is placed on the event when it is notified to the driver. This object would be
shared by the monitor and the handler processing the event, and could thus be used as a
means of communication.

• Work should be done to implement some of the advanced features discussed in Chap-
ter 5 on page 45. Particularly the IO subsystem and the possibility of changing and up-
grading a live grid manager are essential features to provide a highly available and reliable
grid service.
Providing support for advance reservations will almost certainly result in more specialised
use-cases for resource sharing on the grid. It enables support for co-allocation, i.e. allo-
cating multiple resources at different sites simultaneously. Interactive use of resources is
also made possible, something that is very bothersome without advance reservations.

• Some way of configuring the handlers. Most handlers have some parameters that can be
modified, for instance the email address where notification emails should originate from
and which SMTP server should be used to send them. There needs to be a way to specify
these parameters in the manifest file of a handler.

Working with the grid manager and architecture has also given inspiration to more exotic sug-
gestions for improvements:

• Providing ways of interactively managing and monitoring the grid manager through a
user interface, i.e. not simply using log files and signals. Such an interface could allow
for the administrator to enable and disable handlers or monitors at runtime by the click
of a mouse. This could possibly be achieved through a specialised monitor that would
interface with the driver and naturally a program acting as user interface.

• Providing better support for testing new functionality of handlers and monitors, i.e. ways
to monitor and debug plug-ins at runtime.

CHAPTER 7. CONCLUSION

68 CHAPTER 7. CONCLUSION

7.2. FUTURE WORK

A
Source Code For Grid Manager

Implementation

A.1 Job Submission Script

Listing A.1: Source code for the job submit script called from the GridFTP job plugin.

1 #!/usr/bin/env python

3 import sys, os
4 from xmlrpclib import ServerProxy
5 import socket

7 import logging
8 logger = logging.getLogger(’job_plugin_submit’)
9 hdlr = logging.FileHandler(’job_plugin_submit.log’) # FIXME: from config

10 formatter = logging.Formatter(’%(asctime)s %(levelname)s %(message)s’)
11 hdlr.setFormatter(formatter)
12 logger.addHandler(hdlr)
13 logger.setLevel(logging.WARNING)

15 if len(sys.argv) != 4:
16 print ’’’usage:
17 %s controldir sessionroot jobid

19 where:
20 controldir is the path to controldir of job
21 sessionroot is the path to the root of the session dirs
22 jobid is the id of the job to be submitted’’’ % sys.argv[0]
23 sys.exit(os.EX_USAGE)

69

70 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

25 controldir = sys.argv[1]
26 sessionroot = sys.argv[2]
27 try:
28 jobid = str(int(sys.argv[3]))
29 # looks stupid, but nordugrid jobids are longer ints than supported by xmlrpc
30 except ValueError:
31 logger.error(’Integer conversion of jobid failed, aborting’)
32 sys.exit(os.EX_DATAERR)

34 server = ServerProxy("http://localhost:9000") # local server
35 logger.info(’submitting controldir: %s sessionroot: %s jobid: %s’
36 % (controldir, sessionroot, jobid))

38 try:
39 res = server.submit_job_from_gridftp(controldir, sessionroot, jobid)
40 except socket.error, errval:
41 errno, errstr = errval
42 logger.error(’Error code %d: %s ... aborting’ % (errno, errstr))
43 sys.exit(os.EX_IOERR)

45 if not res:
46 sys.exit(os.EX_IOERR)

A.2 Monitor

Listing A.2: Source code for the job submission and job termination monitor.

1 from monitor import Monitor
2 from event import Event

4 import SimpleXMLRPCServer, SocketServer, threading

6 class ThreadingXMLRPCServer(SocketServer.ThreadingMixIn,
7 SimpleXMLRPCServer.SimpleXMLRPCServer):
8 pass

10 class ng_monitor(Monitor):
11 def run(self):
12 server = ThreadingXMLRPCServer(("localhost", 9000))
13 self.server = server
14 # register functions
15 server.register_function(self.submit_job_from_gridftp)
16 server.register_function(self.wrapper_finished)
17 self.logger.info("ng_monitor is a threading xmlrpc server, serving forever ←֓

...")
18 server.serve_forever()

20 def shutdown(self):
21 self.server.socket.close()

23 def submit_job_from_gridftp(self, controldir, sessionroot, jobid):

A.2. MONITOR

A.3. JOB DESCRIPTION PARSER 71

24 jd_path = controldir+’/job.’+jobid+’.description’
25 self.logger.info("ng_monitor opening jd: %s" % jd_path)
26 self.logger.info("ng_monitor sessionroot: %s" % sessionroot)
27 description = open(jd_path, ’r’)
28 rsl = ’’
29 for line in description.readlines():
30 rsl = rsl + line

32 event = Event(’RECEIVED’, 5, jobid)
33 event.dict[’rsl’] = rsl
34 event.dict[’controldir’] = controldir
35 event.dict[’sessionroot’] = sessionroot
36 event.dict[’sessiondir’] = sessionroot+’/’+jobid

38 self.notify(event)

40 return True

42 def wrapper_finished(self, jobid):
43 self.logger.info("got wrapper finished for jobid: %s" % jobid)
44 event = Event(’FINISHED’, 5, jobid)
45 self.notify(event)
46 return True

A.3 Job Description Parser

Listing A.3: Manifest for the job description parsing handler.

1 <handler>
2 <events>
3 <event rank="1">RECEIVED</event>
4 </events>

6 <statemap>
7 <state internal="ACCEPTED">SUCCESS</state>
8 <state internal="FINISHED">FAILURE</state>
9 </statemap>

10 </handler>

Listing A.4: Source code for the job description parsing handler.

1 from handler import Handler
2 from job import Job
3 from ext.pyrsl import rsl

5 class parse_jd(Handler):
6 """ responsible for parsing job description in event and attaching it to
7 the appropriate job.
8 """
9 def handle_job(self, event, job, jobpool):

10 # event: create the new job

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

72 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

11 assert job == None
12 job = Job(event.jobid, ’INITIAL’)

14 rsl_jd = event.dict[’rsl’]
15 ##print ’ORIGINAL:’,rsl_jd
16 spec = rsl.build_spec(rsl_jd, debug = False)
17 rsl_map = self.spec_to_map(spec)

19 # for each key, add the key->value pair to JD of the job
20 for key in rsl_map.keys():
21 if rsl_map.has_key(key) and (rsl_map[key] != ""):
22 job.set_jd_attr(key, rsl_map[key])

24 # fix the clientxrsl if it is there -- FIXME: the parser can’t do this yet
25 if rsl_map.has_key(’clientxrsl’):
26 clientxrsl = ""
27 for i in rsl_map[’clientxrsl’]:
28 clientxrsl += i

30 #remove leading and trailing " marks
31 clientxrsl = clientxrsl[1:-1]

33 # create a map of clientxrsl and replace the broke entry in job.JD
34 self.logger.info(’Fixing clientxrsl: %s’ % clientxrsl)
35 spec = rsl.build_spec(clientxrsl, debug = False)
36 clientmap = self.spec_to_map(spec)
37 job.set_jd_attr(’clientxrsl’, clientmap)

39 # set remaining needed attributes in job
40 event_to_jd = [’controldir’, ’sessionroot’, ’sessiondir’]
41 for ev in event_to_jd:
42 job.set_jd_attr(ev, event.dict[ev])

44 self.logger.info(’parsed job description for job %s’ % job.jobid)

46 # the job has now been created, add it to the pool of jobs
47 jobpool.insert_job(job)
48 job.state = self.statemap[’SUCCESS’]

50 def spec_to_map(self, spec):
51 """ Converts a pyrsl specification to a pythonised version in a map. """
52 result = {}
53 rsl_tuples = rsl.pythonize(spec)

55 # pr is a tuple of (key, relation) e.g. (jobname, (jobname=/bin/ls))
56 # where relation.name = jobname AND relation.value_sequence = /bin/ls
57 for tuple in rsl_tuples:
58 for key, relation in tuple.items():
59 assert key == relation.name
60 result[relation.name] = relation.value_sequence
61 # considering the parser being alpha, we should perhaps handle errors?

63 return result

A.3. JOB DESCRIPTION PARSER

A.4. NOTIFY USER 73

65 def map_print(self, msg, map):
66 """ Prints a map. Useful for debugging, and not much else. """
67 print msg
68 for key in map.keys():
69 print ’\t’,key, ’--->\t’, map[key]

A.4 Notify User

Listing A.5: Manifest for the notify user handler.

1 <handler>
2 <events>
3 <event rank="1">ACCEPTED</event>
4 <event rank="1">QUEUED</event>
5 <event rank="1">FINISHED</event>
6 <event rank="1">STAGEDOUT</event>
7 <event rank="1">CLEANED</event>
8 </events>
9 </handler>

Listing A.6: Source code for the notify user handler.

1 from handler import Handler
2 from job import Job

4 import smtplib
5 from email.MIMEText import MIMEText
6 from datetime import datetime
7 import time

9 SMTPSERVER = ’smtp.cs.aau.dk’ # FIXME: retrieve from configuration
10 SENDER = ’grid@tender.grid.aau.dk’ # FIXME: retrieve from configuration

12 class notify_user(Handler):
13 """ Notify users of events on job by sending emails
14 """
15 def handle_job(self, event, job, jobpool):

17 notify = job.get_jd_attr(’notify’)
18 if notify == None:
19 # No notify found in job description
20 return

22 # decide which flag this event represents
23 # b begin (PREPARING)
24 # q queued (INLRMS)
25 # f finalizing (FINISHING)
26 # e end (FINISHED)
27 # c cancellation (CANCELLED)
28 # d deleted (DELETED)

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

74 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

29 eventtype_to_flag = {
30 ’ACCEPTED’ : ’b’,
31 ’QUEUED’ : ’q’,
32 ’FINISHED’ : ’f’,
33 ’STAGEDOUT’: ’e’,
34 ’CLEANED’ : ’d’ }

36 if not eventtype_to_flag.has_key(event.type):
37 # not an event we notify for
38 return

40 sent = False

42 for notify_string in notify:
43 notify_split = notify_string.split(’ ’)

45 if len(notify_split) != 2:
46 # does not match the format, go to next
47 continue

49 flag = notify_split[0]
50 recipient = notify_split[1]

52 current_event_flag = eventtype_to_flag[event.type]

54 # assume first element is notification flags
55 if not current_event_flag in flag:
56 # user did not specify notification for this event
57 continue

59 # construct message and create connection to smtp
60 msg = MIMEText(’job %s has now received event %s.’ % (job.jobid, event. ←֓

type))
61 msg[’From’] = SENDER
62 msg[’Subject’] = ’[GRID] Job %s event recieved’ % job.jobid
63 msg[’Date’] = datetime.now().ctime()

65 session = smtplib.SMTP(SMTPSERVER, 25)

67 # assume remaining elements are email addresses to receive notification
68 msg[’To’] = recipient
69 smtpresult = session.sendmail(SENDER, recipient, msg.as_string())
70 sent = True

72 session.quit()

74 if sent: self.logger.info(’%s has completed. Email supposedly sent.’ % job. ←֓
jobid)

A.5 Data Staging

A.5. DATA STAGING

A.5. DATA STAGING 75

Listing A.7: Manifest for the data staging handler.

1 <handler>
2 <events>
3 <event rank="100">ACCEPTED</event>
4 <event rank="100">FINISHED</event>
5 </events>

7 <statemap>
8 <state internal="STAGEDIN">STAGEDIN</state>
9 <state internal="STAGEDOUT">STAGEDOUT</state>

10 </statemap>
11 </handler>

Listing A.8: Source code for the data staging handler.

1 from handler import Handler
2 from job import Job
3 from urlparse import urlparse

5 FILECHECK_INTERVAL = 1 # seconds to sleep before re-checking for stagein files
6 TEMP_EXTENSION = ’.tmp’

8 class dummy_stager(Handler):

10 def handle_job(self, event, job, jobpool):

12 state = job.state

14 # some useful variables
15 sessiondir = job.get_jd_attr(’sessiondir’)
16 controldir = job.get_jd_attr(’controldir’)
17 sessionurl = ’file://’ + sessiondir
18 userproxy = controldir + ’/job.’ + str(job.jobid) + ’.proxy’

20 if event.type == ’ACCEPTED’:
21 # just check that all executables are in place (slow slow gridftpd)
22 if job.get_jd_attr(’executables’) != None:
23 executables = []

25 for filename in job.get_jd_attr(’executables’):
26 if not filename[0] == ’/’:
27 executables.append(sessiondir + ’/’ + filename)

29 self.wait_for_files(executables)

31 # make sure the executables are executable
32 for filename in job.get_jd_attr(’executables’):
33 if not filename[0] == ’/’:
34 self.logger.info(’changing permissions for %s’ % filename)
35 import os
36 os.chmod(sessiondir + ’/’ + filename, 0500)

38 #### DOWNLOAD ####

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

76 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

39 ## now the executables are in place, let’s download inputfiles
40 if job.get_jd_attr(’inputfiles’) != None:

42 self.logger.info(’Found some inputfiles to get, please wait a bit.’)

44 ## files we need to be in place before we change state
45 watchlist = []

47 for urls in job.get_jd_attr(’inputfiles’):
48 # download files sequentially
49 # remove any unnecessary " marks from the URL’s
50 src_url = urls[1].strip(’"’)
51 dest_url = sessionurl + ’/’ + urls[0].strip(’"’)

53 # use ngcopy
54 self.ngcopy(src_url, dest_url, userproxy)

56 # FIXME: should we only add this if protocol supported?
57 watchlist.append(sessiondir + ’/’ + urls[0].strip(’"’))

59 # block until all files are in place
60 self.wait_for_files(watchlist)
61 self.logger.info(’Done downloading, lets move on to STAGEDIN’)

63 new_state = self.statemap[’STAGEDIN’]
64 self.update_status_file(controldir, job.jobid, new_state)
65 job.state = new_state
66 return

68 #### UPLOAD ####
69 if event.type == ’FINISHED’:

71 ## the job has finished, now we should upload the outputfiles
72 if job.get_jd_attr(’outputfiles’) != None:

74 self.logger.info(’Found some outputfiles to upload, please wait a bit.’)

76 # upload each file sequentially
77 for urls in job.get_jd_attr(’outputfiles’):

79 # remove any unnecessary " marks from the URL’s
80 src_url = sessionurl + ’/’ + urls[0].strip(’"’)
81 dest_url = urls[1].strip(’"’)

83 # use ngcopy
84 self.ngcopy(src_url, dest_url, userproxy)

86 # FIXME: we should wait here until all uploads have completed
87 self.logger.info(’Started all uploaders, lets move on to STAGEDOUT’)

89 new_state = self.statemap[’STAGEDOUT’]
90 self.update_status_file(controldir, job.jobid, new_state)
91 job.state = new_state

A.5. DATA STAGING

A.5. DATA STAGING 77

92 return

94 def ngcopy(self, src_url, dest_url, userproxy):
95 """
96 Executes:
97 sh -c "export X509_USER_CERT=#userproxy#; ngcopy #src_url# #dest_url#"

99 - src_url and dest_url must be fully qualified URLs
100 - userproxy must be a complete path to a proxy certificate file

102 Examples of tested fully qualified URLs:
103 - gsiftp://tender.grid.aau.dk:2811/storage/stdout.txt
104 - file:///home/grid/data/samples.data

106 If both source and dest ends with ’/’ ngcopy copies the source folder
107 recursivly.

109 See man ngcopy for more info
110 """
111 # check if we support the specified protocols
112 supported_protocols = [’gsiftp’,’file’]
113 src_protocol = urlparse(src_url)[0]
114 dest_protocol = urlparse(dest_url)[0]

116 if src_url == "": src_url = ’EMPTY’
117 if dest_url == "": dest_url = ’EMPTY’
118 if src_protocol == "": src_protocol = ’EMPTY’
119 if dest_protocol == "": dest_protocol = ’EMPTY’

121 if (not self.supported(src_protocol) or not self.supported(dest_protocol)):
122 return

124 # use ngcopy to transfer file
125 args = { "proxy":userproxy, "src":src_url, "dest":dest_url }
126 cmd = (’sh -c "export X509_USER_CERT=%(proxy)s; ngcopy -d1 %(src)s %(dest)s ←֓

&>ngcopy.log"’ % (args))

128 import os
129 os.popen2(cmd)

131 self.logger.info("Started transferring %s to %s" % (src_url, dest_url))

133 def supported(self, test_prot):
134 """ returns True if protocol is currently supported, False otherwise. """

136 # return False if no protocol is specified
137 if test_prot == "":
138 return False

140 # return True if we find a match
141 supported_protocols = [’gsiftp’,’file’]
142 for supported in supported_protocols:
143 if test_prot == supported: return True

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

78 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

145 # no match --> return false
146 return False

148 def update_status_file(self, controldir, jobid, new_state):
149 """ write the status of the job to the statusfile """

151 status_fn = controldir + ’/’ + ’job.’ + jobid + ’.status’

153 file = open(status_fn + TEMP_EXTENSION, "w")
154 file.write(new_state + ’\n’)

156 import os
157 os.rename(status_fn + TEMP_EXTENSION, status_fn)

159 def wait_for_files(self, filelist):
160 """
161 blocks until all files in filelist exists.
162 - filelist must be either xrsl.inputfiles or xrsl.outputfiles
163 """
164 import os.path

166 if len(filelist) < 1: return

168 while True:

170 missing = False

172 for filename in filelist:
173 if not os.path.exists(filename) and not os.path.isdir(filename):
174 missing = True
175 self.logger.info(’%s is missing, sleeping and rechecking later’ % ←֓

filename)

177 if not missing:
178 self.logger.info(’All files are in place, stop blocking’)
179 return
180 else:
181 # missing files, sleep and check again
182 from time import sleep
183 sleep(FILECHECK_INTERVAL)

A.6 Wraper Creation

Listing A.9: Manifest for the handler that produces the wrapper script to be submitted to LRMS.

1 <handler>
2 <events>
3 <event rank="1">STAGEDIN</event>
4 </events>

A.6. WRAPER CREATION

A.6. WRAPER CREATION 79

6 <statemap>
7 <state internal="FINISHED">FAILURE</state>
8 </statemap>
9 </handler>

Listing A.10: Source code for the handler that produces the wrapper script to be submitted to LRMS.

1 from handler import Handler
2 from job import Job

4 class create_wrapper(Handler):
5 """ Responsible for generating a job wrapper. The wrapper is what will
6 actually be running inside the LRMS. Hence, the wrapper should setup some
7 environment, and basically just start the job.

9 NOTE: ldap backends could use this for getting job info
10 NOTE: we can send event from the wrapper
11 """
12 def handle_job(self, event, job, jobpool):
13 ## event: job transitioned to StagedIn

15 w = Wrapper(job)

17 fn = job.get_jd_attr(’sessiondir’)+’/wrapper.py’
18 wf = file(fn, ’w’)
19 wf.write(w.script)
20 wf.close()

22 from os import chmod
23 chmod(fn, 0700)

25 self.logger.info(’wrote wrapper to fn’)

27 class Wrapper:
28 """
29 Just some stupid wrapper. Currently, only cmd and args is configurable.
30 Needs to be tweaked if it is supposed to be able to run on Condor, PBS,
31 fork, Torque, and other LRMS types.
32 """

34 def __init__(self, job):
35 self.job = job
36 self.script = ""
37 self.script += self.python_env()
38 self.script += self.setup()
39 self.script += self.pbs_config()
40 self.script += self.jobinfo()
41 self.script += self.setupjob()
42 self.script += self.running()
43 self.script += self.epilogue()

45 def python_env(self):
46 return ’#!/usr/bin/env python’

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

80 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

48 def setup(self):
49 return ’’’
50 import socket, datetime, os, logging

52 jobid = "’’’+self.job.jobid+’’’"
53 os.chdir("’’’+self.job.get_jd_attr(’sessiondir’)+’’’")

55 logger = logging.getLogger(’wrapper_’+jobid)
56 hdlr = logging.FileHandler(’wrapper.log’)
57 formatter = logging.Formatter(’%(asctime)s %(levelname)s %(message)s’)
58 hdlr.setFormatter(formatter)
59 logger.addHandler(hdlr)
60 logger.setLevel(logging.INFO)

62 ’’’

64 def pbs_config(self):
65 return ’’’
66 ### Job name
67 #PBS -N wrapper

69 ### Declare job non-rerunable
70 #PBS -r n

72 ### Output files
73 #PBS -e wrapper.err
74 #PBS -o wrapper.out

76 ### Queue name (default, batch, small, medium, long, verylong)
77 #PBS -q default

79 ### Number of nodes
80 #PBS -l nodes=1
81 ’’’

83 def jobinfo(self):
84 return ’’’
85 # print simple info
86 logger.info("Running on host %s" % socket.gethostname())
87 ’’’

89 def setupjob(self):
90 return ’’’
91 # Setup job command and arguments
92 path = "%s"
93 cmd = "%s"
94 args = %s
95 ’’’ % (self.job.get_jd_attr(’sessiondir’),
96 self.job.get_jd_attr(’arguments’)[0],
97 self.job.get_jd_attr(’arguments’)[1:])

99 def running(self):
100 res = ’’’

A.6. WRAPER CREATION

A.6. WRAPER CREATION 81

101 # Run the executable as:
102 # sh -c ’cmd arg1 ... argN > stdout 2> stderr < stdin’
103 sharg = ’’
104 for e in [cmd]+args:
105 sharg = sharg + e + ’ ’

107 ’’’
108 stdin = self.job.get_jd_attr(’stdin’)
109 stdout = self.job.get_jd_attr(’stdout’)
110 stderr = self.job.get_jd_attr(’stderr’)

112 if stdin != None:
113 res = res +’’’
114 sharg = sharg+’< %s ’
115 ’’’ % stdin[0]
116 if stdout != None:
117 res = res+’’’
118 sharg = sharg+’> %s ’
119 ’’’ % stdout[0]
120 if stderr != None:
121 res = res+’’’
122 sharg = sharg+’2> %s ’
123 ’’’ % stderr[0]

125 res = res+’’’
126 from time import time
127 start_time = time()
128 result = os.spawnvp(os.P_WAIT, ’sh’, [’sh’,’-c’, sharg])
129 end_time = time()
130 ’’’
131 return res

133 def epilogue(self):
134 return ’’’
135 logger.info(’Runtime: %f’ % (end_time - start_time))
136 logger.info(’Return code: %d’ % result)

138 from xmlrpclib import ServerProxy
139 import socket

141 server = ServerProxy("http://localhost:9000")
142 try:
143 res = server.wrapper_finished(jobid)
144 except socket.error, errval:
145 errno, errstr = errval
146 logger.error(’Could not signal wrapper finished. Error %d: %s’ % (errno, ←֓

errstr))

148 ’’’

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

82 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

A.7 LRMS Submission

Listing A.11: Manifest for the handler that submits jobs to LRMS.

1 <handler>
2 <events>
3 <event rank="10">STAGEDIN</event>
4 </events>

6 <statemap>
7 <state internal="QUEUED">SUCCESS</state>
8 <state internal="FINISHED">FAILURE</state>
9 </statemap>

10 </handler>

Listing A.12: Source code for the handler that submits jobs to LRMS.

1 from handler import Handler
2 from job import Job

4 LRMS_TYPE = ’pbs’
5 TEMP_EXTENSION = ’.tmp’

7 class lrms_submit(Handler):
8 """ Responsible for generating a job wrapper. The wrapper is what will
9 actually be running inside the LRMS. Hence, the wrapper should setup some

10 environment, and basically just start the job.
11 """
12 def handle_job(self, event, job, jobpool):
13 # event: wrapper ready for job

15 import os
16 sessiondir = job.get_jd_attr(’sessiondir’)
17 controldir = job.get_jd_attr(’controldir’)
18 wrapper_fn = sessiondir + ’/wrapper.py’

20 if LRMS_TYPE == ’fork’:
21 os.spawnvp(os.P_NOWAIT, wrapper_fn, [’wrapper.py’])
22 elif LRMS_TYPE == ’pbs’:
23 sh_cmd = ’(cd %s; qsub %s)’ % (sessiondir, wrapper_fn)
24 os.spawnvp(os.P_WAIT, ’sh’, [’sh’, ’-c’, sh_cmd])

26 # now the job has been submitted to lrms
27 self.logger.info(’submitted job %s to lrms (type %s)’ % (job.jobid, ←֓

LRMS_TYPE))

29 # FIXME: what if lrms or fork submit fails?

31 new_state = self.statemap[’SUCCESS’]
32 self.update_status_file(controldir, job.jobid, new_state)
33 job.state = new_state

35 def update_status_file(self, controldir, jobid, new_state):

A.7. LRMS SUBMISSION

A.8. JOB EXPIRY 83

36 """ write the status of the job to the statusfile """

38 status_fn = controldir + ’/’ + ’job.’ + jobid + ’.status’

40 file = open(status_fn + TEMP_EXTENSION, "w")
41 file.write(new_state + ’\n’)

43 import os
44 os.rename(status_fn + TEMP_EXTENSION, status_fn)

A.8 Job Expiry

Listing A.13: Source code for the monitor that sends tick events, used for cleaning jobs at regular intervals.

1 from monitor import Monitor
2 from event import Event

4 EVENT_DELTA = 24 * 60 * 60 # seconds between each TICK

6 class timer(Monitor):
7 def run(self):
8 from time import sleep

10 self.logger.info(’sending ticks each %d seconds’ % EVENT_DELTA)

12 while True:
13 event = Event(’TICK’, 5, 0)
14 self.notify(event)

16 sleep(EVENT_DELTA)

18 def shutdown(self):
19 pass

Listing A.14: Manifest for for the handler that handles job cleaning.

1 <handler>
2 <events>
3 <event rank="100">STAGEDOUT</event>
4 <event rank="1">TICK</event>
5 </events>
6 <statemap>
7 <state internal="CLEANED">SUCCESS</state>
8 <state internal="TICK">TIME_EVENT</state>
9 <state internal="STAGEDOUT">STAGEDOUT_EVENT</state>

10 </statemap>
11 </handler>

Listing A.15: Source code for the handler that handles job cleaning.

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

84 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

1 from handler import Handler
2 from job import Job

4 REGISTRY_FILENAME = ’job_expiry_registry’
5 DEFAULT_LIFETIME = 7 * 24 * 60 * 60 # default lifetime in seconds
6 MAX_LIFETIME = 2 * DEFAULT_LIFETIME

8 class job_expiry(Handler):
9 """ Registers jobs for deletion.

10 Wakes up with TICK events and checks if any limits have exceeded, meaning a
11 job has to be deleted.
12 """

14 def handle_job(self, event, job, jobpool):

16 if event.type == self.statemap[’TIME_EVENT’]:
17 self.tick(jobpool)
18 return

20 if event.type == self.statemap[’STAGEDOUT_EVENT’]:
21 self.register_job(job)
22 return

24 def tick(self, jobpool):
25 """ handle the tick event """
26 from time import time

28 current_time = time()

30 registry = self.get_registry()
31 for entry in registry:
32 (expiry_time, jobid) = entry
33 if expiry_time <= current_time:
34 registry.remove(entry)

36 job = jobpool.get_job(jobid)
37 if job == None:
38 self.logger.info(’attempted to delete an unknown job %s, ignoring’ % jobid ←֓

)
39 continue

41 self.clean_job(job)

43 self.logger.info(’cleaned jobid: %s’ % jobid)

45 self.put_registry(registry)

47 def register_job(self, job):
48 """ register the job for deletion """
49 # lifetime is given in seconds on the gmside xrsl
50 lifetime = job.get_jd_attr(’lifeTime’)

52 if lifetime == None:

A.8. JOB EXPIRY

A.8. JOB EXPIRY 85

53 lifetime = DEFAULT_LIFETIME
54 else:
55 lifetime = int(lifetime)

57 if lifetime > MAX_LIFETIME:
58 lifetime = MAX_LIFETIME

60 import time
61 current_time = time.time()

63 expiry_time = current_time + lifetime

65 registry = self.get_registry()
66 registry.append((expiry_time, job.jobid))
67 self.put_registry(registry)

69 self.logger.info(’registered job %s for deletion not before %s’ % (job.jobid ←֓
, time.asctime(time.localtime(expiry_time))))

71 def get_registry(self):
72 """ return the registry from file """

74 # provide locking, assuring only one handler working with registry
75 from threading import Lock
76 if not self.__dict__.has_key(’reg_lock’):
77 print "no lock"
78 self.reg_lock = Lock()

80 self.reg_lock.acquire()
81 import pickle

83 # load the registry from pickled state
84 register = None
85 try:
86 register = pickle.load(file(REGISTRY_FILENAME))
87 except IOError:
88 self.logger.info("No job expiry registry found in %s, creating a fresh" % ←֓

REGISTRY_FILENAME)
89 register = []

91 return register

93 def put_registry(self, registry):
94 import pickle
95 assert registry != None # attempt to put None registry

97 # write file to temporary
98 TEMP_EXTENSION = ’.tmp’
99 f = file(REGISTRY_FILENAME+TEMP_EXTENSION, ’w’)

100 pickle.dump(registry, f)
101 f.close()

103 import os

APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

86 APPENDIX A. SOURCE CODE FOR GRID MANAGER IMPLEMENTATION

104 os.rename(REGISTRY_FILENAME+TEMP_EXTENSION, REGISTRY_FILENAME)

106 # release lock
107 from threading import Lock
108 self.reg_lock.release()

110 def clean_job(self, job):
111 """ cleans a job, currently removes the session directory of a job """
112 sessiondir = job.get_jd_attr(’sessiondir’)

114 import os
115 from os.path import join
116 for root, dirs, files in os.walk(sessiondir, topdown=False):
117 for name in files:
118 os.remove(join(root, name))
119 for name in dirs:
120 os.rmdir(join(root, name))
121 # sessiondir should be ready for rmdir’ing
122 os.rmdir(sessiondir)

A.8. JOB EXPIRY

Bibliography

[1] R. Buyya, “Grid computing info centre FAQ.”
http://www.gridcomputing.com/gridfaq.html .

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, ch. 2.
Morgan-Kaufmann, 1998.

[3] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” Lecture Notes in Computer Science, vol. 2150, 2001.

[4] M. Baker, R. Buyya, and D. Laforenza, “Grids and grid technologies for wide-area dis-
tributed computing,” International Journal of Software: Practice and Experience (SPE), vol. 32,
pp. 1437–1466, 2002.

[5] “The Globus Alliance.”
http://www.globus.org/ .

[6] “The LHC Grid Computing Project.”
http://lcg.web.cern.ch/LCG/ .

[7] P. Avery and I. Foster, “GriPhyN Annual Report for 2003–2004,” August 2004.

[8] C. Catlett, “The TeraGrid: A Primer,” September 2002.

[9] J. Tordsson, “Resource Brokering for Grid Environments,” Master’s thesis, Umeå Univer-
sity, June 2004.
http://www.nordugrid.org/documents/tordsson-thesis.pdf .

[10] T. Christensen and R. A. K. et. al., “Nubis: A decentralised, flexible, fault-tolerant and
scalable foundation for computational grids,” tech. rep., Aalborg University, Dec. 2004.

[11] P. Eerola, B. Konya, and O. S. et. al., “The NorduGrid Architecture and Tools,” in Computing
in High Energy and Nuclear Physics, 2003.
http://www.nordugrid.org/documents/MOAT003.pdf .

[12] “The ATLAS Experiment.”
http://atlasexperiment.org/ .

[13] P. Eerola, B. Konya, and O. S. et. al., “ATLAS Data-Challenge 1 on NorduGrid,” in Comput-
ing in High Energy and Nuclear Physics, 2003.
http://www.nordugrid.org/documents/MOCT011.pdf .

[14] “XRSL (Extended Resource Specification Language).”
http://www.nordugrid.org/documents/xrsl.pdf .

87

88 BIBLIOGRAPHY

[15] A. Konstantinov, “The NorduGrid Grid Manager And GridFTP Server: Description And
Administrators Manual.”
http://www.nordugrid.org/documents/GM.pdf .

[16] “RFC 959: File Transfer Protocol.”
http://www.w3.org/Protocols/rfc959/ .

[17] The University of Chicago and The University of Southern Califonia, “GridFTP: Universal
Data Transfer for the Grid,” September 2000.

[18] B. Kónya, “NorduGrid server installation instructions.”
http://www.nordugrid.org/documents/ng-server-install.html .

[19] “NorduGrid middleware, the Advanced Resource Connector.”
http://www.nordugrid.org/middleware/ .

[20] “GSI: Key Concepts.”
http://www-unix.globus.org/toolkit/docs/3.2/gsi/key/index.html .

[21] “Internet X.509 Public Key Infrastructure Certificate and CRL Profile.”
http://www.ietf.org/rfc/rfc2459.txt .

[22] “Handbook of Applied Cryptography.”
http://www.cacr.math.uwaterloo.ca/hac/ .

[23] A. Konstantinov, “The HTTP(s,g) And SOAP Framework.”
http://www.nordugrid.org/documents/HTTP_SOAP.pdf .

[24] A. Konstantinov, “ARC::DataMove Reference Manual.”
http://www.nordugrid.org/documents/datamove.pdf .

[25] A. McNab, “HTTP as a data protocol and HTTP-Downgrade.”
http://www.gridlock.org.uk/20040726113603.html .

[26] J. Chin and P. V. Coveney, “Towards tractable toolkits for the grid: a plea for lightweight,
usable middleware,” tech. rep., University of London, Feb. 2004.

[27] D. L. Parnas, “Designing Software for Ease of Extension and Contraction,” in Proceedings
of the International Conference on Software Engineering, pp. 264–277, May 1978.

[28] J. Aycock, “Compiling Little Languages in Python,” in 7th International Python Conference,
1998.
http://pages.cpsc.ucalgary.ca/ aycock/spark/paper.pdf .

[29] K. Jeacle and J. Crowcroft, “Extending Globus to support Multicast Transmissions,” in
Proceedings of the UK e-Science All Hands Meeting, (Nottingham, UK), September 2004.

[30] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, “The Globus eXtensible Input/Out-
put System (XIO): A Protocol Independent IO System for the Grid,” in 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium, (Denver, Colorado), March 2005.

[31] T. Kosar and M. Livny, “Stork: Making Data Placement a First Class Citizen in the Grid,” in
In Proceedings of the 24th IEEE Int. Conference on Distributed Computing Systems (ICDCS2004),
(Tokyo, Japan), March 2004.

BIBLIOGRAPHY

BIBLIOGRAPHY 89

[32] T. Kosar, “Stork: Making Data Placement a First Class Citizen in the Grid,” 2004.
http://www.cs.wisc.edu/condor/stork/talks/talk_cern_may04.ppt .

[33] R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed Resource Management
for High Throughput Computing,” in Proceedings of the Seventh IEEE International Sympo-
sium on High Performance Distributed Computing, (Chicago, IL), July 1998.

[34] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the grid,” inGrid Computing: Making
the Global Infrastructure a Reality (F. Berman, G. Fox, and T. Hey, eds.), John Wiley & Sons
Inc., December 2002.

[35] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: a decentralized network coordinate
system,” in SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, (New York, NY, USA), pp. 15–26,
ACM Press, 2004.

[36] “The Xen virtual machine monitor,” 2005.
http://xen.sf.net .

BIBLIOGRAPHY

