DAT®6 project
Aalborg University
Spring 2004

B i I a
B [

AV =

(second edition)

Group members: Trien Huy Ly | jianfai@cs.auc.dk
Jacob Mogensen | jacobm@cs.auc.dk
Kristian Reesen Skouboe | atommax@cs.auc.dk

Faculty of Engineering and Science ﬂ

Aalborg University

Department of Computer Science

TITLE:

Building a Business Intelligence
System for AUB (second edition)

PROJECT PERIOD:
DAT®,

February 1st -
June 11th, 2004

PROJECT GROUP:
E3-117

GROUP MEMBERS:
Trien Huy Ly
Jacob Mogensen
Kristian Reesen Skouboe

SUPERVISOR:

Torben Bach Pedersen
NUMBER OF COPIES: 6
REPORT PAGES: 144
APPENDIX PAGES: 19
TOTAL PAGES: 163

SYNOPSIS:

This report describes the development
of a business intelligence (BI) system
for AUB. The foundation of the BI sys-
tem is a data warehouse. It can be
used for finding association rules, get-
ting statistics, and finding book recom-
mendations.

At first, AUB’s requirements are de-
scribed. Based on the requirements the
data warehouse for AUB is developed.

We have implemented our own al-
gorithm (LIQ) for finding association
rules. Furthermore, we have made an
hybrid out of LIQ and Apriori to im-
prove performance by benefiting the
strengths of both worlds.

In addition, we have implemented a
recommendation service based on both
an item-based and a content-based ap-
proach in order to improve the quality
of the recommendations.

The implementations for both associ-
ation rule mining and the recommen-
dation service are described along with
performance tests of the implementa-
tions.

Finally, in order to demonstrate the
statistical features, association rule
mining, and recommendation service,
we have implemented a data access web
tool for this purpose.

Authors

Trien Huy Ly

Jacob Mogensen

Kristian Reesen Skouboe

Preface

We would like to thank AUB for providing us with sample data and answering
our questions during the course of building the BI system.

The source code for the BI system along with a Java API can be found at:
http://www.cs.auc.dk/ " jianfai/BISystem.zip

The online data access tool developed for AUB is available at:
http://multirac.aub.auc.dk:8080/myapp/

Username: aub
Password: aub110604

CONTENTS Page 9 of 163

Contents

1 Introduction 13
2 Requirements 17
2.1 Existing Serviceso 18
2.2 Existing System Architecture 18
2.3 System Architecture Extension 19
24 Platformo 22
241 DBMS 22

242 Web Server 24

2.4.3 Platform Experiences 25

2.5 Privacy 25
2.6 System Criteria o 27
3 Data Warehouse 29
3.1 Data Warehouse Design 30
3.1.1 The Four Steps, 30

3.1.2 Data Warehouse Components 32

3.2 Implementation oL, 42
3.2.1 Extractiono oo 44

3.2.2 Transformation 44

323 Loading 48

3.24 Logging 49

3.2.5 Maintenanceo 49

CONTENTS

Page 10 of 163 CONTENTS

3.3 Performance Lo 51
3.3.1 Comparing the Implementations 52
3.3.2 Scalability o oo 53
3.3.3 Evaluation of Execution Time 54
3.3.4 Evaluation of Memory Usage 55

34 Future Work 57

4 Association Rule Mining 59

4.1 Association Rules L. 60
4.1.1 Association Rule Example 60
4.1.2 Association Rules terms 61
4.1.3 Generalized Association Rules 62
4.1.4 Association Rules Constraints 63

4.2 Finding Large Itemsets 63
421 Apriori. 64
422 LIQ 64
423 LIQHybrid 65
424 LIQ2 o 65
425 FPGrowth o 66

4.3 Implementationo L. 68
4.3.1 Large Itemset Query 70
432 LIQ2 72

4.4 Performanceo 74
4.4.1 Comparing Apriori, LIQ, and LIQ2 75
4.4.2 Finding the Switching Point 77
443 LIQHybrid 78
4.4.4 Scalability of LIQ Hybrid vs. FPGrowth 79

4.5 Extension of FPGrowth 81
4.5.1 SQL Based Frequent Pattern Mining with FPGrowth . 81

4.6 Future Work Lo 82

CONTENTS

CONTENTS Page 11 of 163

4.6.1 New Hybrid between LIQ and FPGrowth 83
4.6.2 Privacy Preserving Mining of Association Rules 83
4.6.3 Sequential Patternso 85

5 Recommendation 87
5.1 Recommendation Lo oL 88
5.1.1 Item-based Collaborative Filtering 88
5.1.2 Content-based Recommendation 92

5.2 Implementation oL 97
5.2.1 TItem-based CF 98
5.2.2 Content-based Recommendation 103
5.2.3 Recommendation 0L 106

5.3 Performanceo 109
5.3.1 Execution Time 109
5.3.2 Scalability oo L 109
533 Online oL 111

54 Evaluationo 115
54.1 Ttem-based CF 115
5.4.2 Content-based Recommendation 116
5.4.3 Improving the Quality 118

5.5 Related work oL oo 119
5.5.1 User-based Collaborative Filtering. 119
5.5.2 Amazon’s Collaborative Filtering System 119

5.6 Future Worko 122
6 The Data Access Tools 125
6.1 The Librarian Service 125
6.2 Recommendation Service 131
6.3 Using the System 133
6.4 Feedback o 133
6.5 Future Work oo 134

CONTENTS

Page 12 of 163 CONTENTS

6.5.1 QOLAP 134

6.5.2 Graphical overviews 136

6.5.3 Help and Support 136

6.5.4 Aggregate Navigator 137

7 Conclusion 139
A Sample Data 145
B Data Warehouse 147
B.1 Dimensions and Fact Table Definitions 147
B.2 Table Definitions for Aggregate Tables 149

C Association Rules 153
C.1 Loan Table 153
C.2 UDK Table o 154
C.3 StatusType Table 154

D Recommendation 155
E Bibliography 159

CONTENTS

Page 13 of 163

Introduction

The library of Aalborg University (Danish: Aalborg Universitetsbibliotek,
AUB) wants an extension of their current system that can recommend rel-
evant books to the borrowers when they search for books on their web site.
Furthermore, the extension should deliver additional information from AUB’s
current system that can assist in optimizing the support from the librarians,
minimizing the expenses on irrelevant books, and targeting the purchase of
popular books.

The type of system extension that AUB wants is called a business intelligence
(BI) [29] system. BI is a broad category of applications and technologies for
gathering, storing, analyzing, and providing access to data to help enterprise
users make better business decisions.

AUB is a public research library for the city of Aalborg and its neighbors.
Its primary task is to support research and education for Aalborg Univer-
sity (AAU) by having relevant information available. AAU has about 2,000
employees and about 11,000 borrowers. AUB is placed geographically to-
gether with AAU, with a small department in Esbjerg. The library has
about 300,000 editions of books available for borrowing.

The BI system consists of two applications; one for the business users and
another for the borrowers. The business users are in particular the librarians.
The application for the librarians, the librarian service, provides so-called as-
sociation rules, which is information about which books have been borrowed
together with which other books. Furthermore, the librarian service provides
statistical data where the librarians among other things can see statistics
about loan data. For the borrowers a recommendation service has been im-
plemented in order to recommend relevant books, when they search for books

CHAPTER 1. INTRODUCTION

Page 14 of 163

on AUB’s web site. We have developed a data warehouse for AUB in order to
be able to make statistical queries, association rules, and recommendations.

The recommendation service does, as the name suggests, recommend books to
borrowers. Based on the similarity of books a list of similar and presumably
relevant books is presented for the borrower, whenever a particular book
has been selected by the borrower. For instance, we could have a borrower
who has just found the book The Hobbit, the recommendation service will
then recommend a list of books, which are similar to The Hobbit. This
recommendation is based on the likings of the community of users which
have also borrowed The Hobbit. A list of recommended books could for
instance contain The Lord of the Ring, The Silmarillion, and The Atlas of
Middle-Earth. We have implemented an item-based collaborative filtering
algorithm from [10] that makes use of our data warehouse. Initially, it is
difficult to come up with enough recommendations due to the sparse amount
of loan history. In order to cope with this kind of cold-start problem, we have
implemented a content-based algorithm to compensate for the initial lack of
recommendations.

The librarian service for mining association rules gives the librarians a list
of rules stating which books are associated with each other. An example of
an association rule could be Hound of the Baskervilles associated with The
Dead Zone, which means that when borrowers borrow the book Hound of
the Baskervilles, they also tend to borrow the book The Dead Zone. We
have implemented our own algorithm called LIQ) and made a performance
test of it together with the classic Apriori algorithm. From the test result
an appropriate hybrid of the two algorithms was created in order to test its
scalability against FP-Growth, which is known to scale well.

We have made a web site that collects statistics and association rules from
the data warehouse. Therefore, the librarian service also provides statisti-
cal data by giving a level-wise presentation of the data. For instance it is
possible to see the distribution of loans over years, months, weeks, and days.
Furthermore, it is possible to get a list of most popular books and most active
borrowers.

All the services access the data from the data warehouse, which is the very
core of the system. Data from AUB’s operational system is extracted, trans-
formed and loaded into the data warehouse on a regular basis. The data
warehouse uses PostgreSQL as the DBMS.

The structure of the report is as follows. Chapter 2 covers AUB’s require-
ments and the choice of platform on which the system is built. Based on
the requirements Chapter 3 explains the different components in the data

CHAPTER 1. INTRODUCTION

Page 15 of 163

warehouse. In Chapter 4, we get into association rule mining, where we im-
plement our own general algorithm LIQ, Large Itemset Query, and improves
on it to better the performance. Chapter 5 concerns the implementation of
the recommendation system. Chapter 6 presents our data access tools. Fi-
nally, Chapter 7 concludes on the report. Furthermore, the report includes
appendices about the sample data from AUB, the Data Warehouse, Associ-
ation Rules, and Collaborative Filtering.

This report is a continuation of the previous one [33]. In the following the
new contributions are briefly outlined. The individual chapters will further
elaborate on the subjects:

e The performance of the ETL process has been significantly improved.
The execution time has dropped from 4 - 5 hours to approximately 2
minutes for 10 months of loan data.

e The data warehouse design has been modified such that two mini-
dimensions have emerged from the edition and borrower dimensions in
order to make it easier to present the data hierarchically as described
in Chapter 3, where the data warehouse design is discussed.

e Our own algorithm, LIQ, has been modified such that it is capable of
finding large itemsets constrained on the status and type of the bor-
rower. For instance, it is possible to mine association rules for borrowers
from a certain field of study and semester. Furthermore, a level-wise
view of association rules is also possible. In an attempt to minimize
the risk for unique identification of borrowers of rarely borrowed books
a minimum threshold for support has been added.

e The performance of the item-based implementations has been signif-
icantly improved. The execution time has dropped from a couple of
hours based on 10 months of loan data to approximately 3 minutes.
Furthermore, a content-based approach has been implemented to com-
pensate for cold-start problems due to an initially sparse amount of
loan data.

CHAPTER 1. INTRODUCTION

Page 17 of 163

Requirements

AUB would like to recommend relevant books to the borrowers when they
search for books on their web site. A borrower’s current usage scenario is to
browse onto AUB’s web site, input some specific keywords for the books the
borrower is searching for, let AUB’s system search for books matching the
keywords and then the borrower browses through the result and the borrower
can then choose to reserve some of the books for borrowing.

The borrowers should be supported in the search of relevant books since
studies have shown that borrowers generally do bad searches. [18] describes
how 50% of all searches are done using only 2 search terms or less and 80%
of all searches do not contain any operators. All of these searches results in
many matching books, which the borrower then has to scan through manually
in order to find the most relevant. This is not very effective and the borrower
might skip highly relevant books.

Furthermore, the system should deliver additional information from AUB’s
current system that can assist in optimizing the support from the librarians,
minimizing the expenses on irrelevant books, and targeting the purchase of
popular books.

The following sections will present the current system running at AUB, what
the requirements for the new system are, and which criteria for designing the
system are important to AUB.

CHAPTER 2. REQUIREMENTS

Page 18 of 163 2.1. EXISTING SERVICES

2.1 Existing Services

AUB is a research library and their web site is open to the public. The web
site of AUB offers different services, among others are the below mentioned
services?.

e An online catalog called Auboline, which makes it possible to have
access to books, journals, electronical journals, notes, and CDs available
in the library.

e A books delivery service, which makes it possible to have books de-
livered at the borrowers home, if you are living outside Aalborg and
Esbjerg.

e A suggest new books feature, where it is possible to suggest what new
books should be bought by AUB.

e General information is available on the web site to new students.

e A newsletter service, that gives information about new services that
AUB offers by sending an email to subscribers.

e A support service, where users can get support from the library via
e-mail.

Figure 2.1 shows an example of AUB’s current system which is called Aubo-
line. It is possible to search for books given a title, author, or UDK number
and then information about the books can be shown. It is when the infor-
mation for a specific book is shown that it should be possible to see a list of
recommendations for other books.

2.2 Existing System Architecture

AUB’s web site system runs on a Tomcat server which is a web and applica-
tion server. The systems runs on the following operating systems: Microsoft
Windows 2000 Professional for the client part of the system and Solaris 8 or
9 running on the SPARC or x86 platforms for the server part of the system.

On the frontend, all queries are received by an Apache 1.3.28 server with
a set of XML/XSLT tools, which are used in other contexts. The backend

Thttp://www.aub.auc.dk/portal /js_pane/forside/article/60

CHAPTER 2. REQUIREMENTS

2.3. SYSTEM ARCHITECTURE EXTENSION Page 19 of 163

7} AUBOLINE - Fuldt format - Microsoft Internet Explorer =100 x|
Fle Edk view Favorles Tods Help E
ok - = - (@ [2] | search [Favorkes GPreda (B | BN S5 =1 15
Adress [] hutps/fiumbo20:6080/myapplaubjrecommend1 70363 fp | e
AUBOLINE -
Log ind| Afslut forbindelse | L&neroplysninger | Vis-formater| Valg base |Send Feed-back |Bestil Fjernlé&n| Hjelp |AUB
| Skan | S@g |Resultatliste | S@gehistorie | Gemte poster |In English |

Send til gemte poster | Send som email
Fuldt format

vaelg vis-format: Standard Beskrivende felter MARC formst
Post 1 ud af 1

opstilling OLAN : Stue : Beger 82(489) (Pro)

Titel OProsa fra B0'erme 4l 90'erme / redigeret af Anne-Maris Mai

Impressum valby : Borgen, 1994

Fys.beskr. 295 s,

Medforf./redaktar @Mai, Anne-Maris

ISBN ©5721000352 o
8372100352

Bestil Alle eksemplarer.

Bestil (4r) Item (no year)

Hovedklass. @62(469) Litteraturvidenskah, danmark
®Ljtterer tekstanalyse @Hesselholdt, Christing @Helle, Merete Pryds ®Hultherg, Peer @Hgeq, Peter ®@Skou,

Emneord Christian ®Ejmas, A.M. @¥ilumsen, Darrit ®Michael, Ib @Grenfeldt, vibeke ®Bjeke, Henrik ®Erksen, Jens-

Martin @Preisler, Juliane ®Hammann, Kirsten @palle, Solvej ®Madsen, Sven Sge @Thaorup, Kirsten

= O B,

Figure 2.1: Auboline’s Web page for a Book.

is an Apache server that has a Java connector, which connects parts of the
catalogs on their site with a Tomcat 4.1.18 LE server, which runs the actual
portal application.

AUB’s portal is run by the Apache Jakarta Jetspeed Portal software, which
is based on the XML data format. XML data is being delivered using web
services to an Apache Axis web service concentrator.

The whole content foundation in the portal is stored in a MySQL database.
Data within it is normalized according to the XML syntax, but because
MySQL is not a web service, Axis takes care of this and thereby enables
MySQL to function as a web service. Using the same procedure other
databases are also connected to a web service using Axis.

2.3 System Architecture Extension

The services mentioned in the beginning of the Existing Services section is
common to many library web sites. AUB is interested in using their existing
data to further provide new and better services for the borrowers and business
users, i.e., the librarians.

AUB would like to base the new system on open source applications in order
to cut costs, i.e., mainly to save license costs. Open source applications such

CHAPTER 2. REQUIREMENTS

Page 20 of 163 2.3. SYSTEM ARCHITECTURE EXTENSION

&

Borrowers

Jetspeed
Portal

Sourca systam
(Oracle)

Figure 2.2: AUB’s Current System Architecture.

CHAPTER 2. REQUIREMENTS

2.3. SYSTEM ARCHITECTURE EXTENSION Page 21 of 163

88

Borrowers

Jakarta
Tomcat
Jetspeed ..|_______________*_-
Portal XML

Business Users

/ {Librarans)

Data Warehousa
(PostgreSQL)

Website content
(MySQL)
(Cracle)

%.Q/

AUB's current system The Extension

Figure 2.3: AUB’s new System.

as Tomcat and PostgreSQL have also matured over the years. Today, they
can be used to provide a reliable web application system thus Tomcat and
PostgreSQL have been chosen to be used.

The new system extension will consist of three parts:

e A data warehouse.

e A recommendation service that can be integrated in Auboline and be
available to the borrowers.

e A librarian service that provides statistics and association rules through
a web site to the business users.

On Figure 2.3 the new system architecture for AUB is shown. It consists
of the above three parts. The ETL extracts and transforms data from the
source system that runs on an Oracle DBMS in AUB’s current system. Then
the ETL loads the data into the data warehouse that runs on a PostgreSQL
DBMS in our system extension. The recommendation and librarian services

CHAPTER 2. REQUIREMENTS

Page 22 of 163 2.4. PLATFORM

use the data warehouse for providing data to the Jakarta Tomcat web and ap-
plication server. Tomcat provides statistics and association rules to the busi-
ness users. Furthermore Tomcat provides recommendations to the Jetspeed
Portal using XML. The Jetspeed Portal can then provide recommendations
to the borrowers using Auboline.

The users of the system are the business users and the borrowers. The system
will add new services to AUB’s existing system and we will now go through
these services.

The new services in the system can be divided into two main parts:

1. The Recommendation Service:

Recommendation of books. A recommendation of books assists
the borrower in focusing on related books more conveniently.
This concept of a recommendation list is inspired by Amazon.

2. The Librarian Service:

Relation between co-borrowed books for the business users.
The system tells which books are often borrowed together. This
is done by finding association rules using an algorithm. This
makes it possible for AUB to, e.g., make book collections that
consist of books that are often being borrowed together.

Statistics for the business users. It should possible to see
statistics over time, e.g., number of books being borrowed per
day, month, quarter, week, and year. Statistics about the
categories for the books are also available.

2.4 Platform

AUB’s requirements described in this chapter place some constraints on plat-
form choices. This section will describe the chosen DBMS and web server
meeting the constraints.

2.4.1 DBMS

The DBMS should adhere to the following criteria:

CHAPTER 2. REQUIREMENTS

2.4. PLATFORM Page 23 of 163

e Meet the SQLI2 standard. Among other features it should enable the
possibilities for transactions, materialized views, and referential integri-
ties.

e Provide support for Java.

e Free to use.

PostgreSQL

PostgreSQL complies to the above mentioned criteria and has thus been
chosen. PostgreSQL [26] is an enhancement of the Postgres [12] database
management system, which is a next generation DBMS research prototype.
PostgreSQL has the same data model as Postgres, which is relational, but
it replaces the PostQuel [11] query language with an extended subset of the
Structured Query Language (SQL).

PostgreSQL presently conforms to most of the Entry-level SQL92 standard,
as well as many of the Intermediate- and Full-level features. Additionally,
many of the features new in SQL99 are quite similar to the object-relational
concepts pioneered by PostgreSQL (arrays, functions, and inheritance). It
has the same features as most commercial DBMSs, like transactions, sub-
selects, triggers, views, foreign key referential integrity, different types of
indexing, row locking, and stored procedures. However materialized views
are as yet not supported. A workaround is to manually apply the "CREATE
TABLE AS” command to represent a materialized view. Furthermore, Post-
greSQL is free and open source. It runs on most UNIX platforms, but it is
portable to, e.g., Microsoft Windows by using the Cygwin application, which
is the Cygnus Unix/NT porting library?.

The speed of PostgreSQL varies according to its documentation. However,
it is in some ways faster than, e.g., MySQL when having multiple users,
complex queries, and a read/write query load. On the other hand, MySQL
is faster than PostgreSQL when doing simple SELECT queries by few users
[26]. Furthermore, PostgreSQL is considered to be very stable and well tested
according to its documentation. If support is needed a large groups of devel-
opers and users can help in resolving the problems.

In general, most Unix-compatible platforms with modern libraries should be
able to run PostgreSQL and it requires at least 8 MB of memory and at least
45 MB of disk space to hold the source, binaries, and user databases.

http:/ /www.cygwin.com

CHAPTER 2. REQUIREMENTS

Page 24 of 163 2.4. PLATFORM

HTTP Request

web client Connector Container
P
HTTF Response

Figure 2.4: Figure showing the Catalina servlet container functionality.

2.4.2 Web Server

The web server should adhere to the following criteria:

e It should provide an easy way to deploy web applications.

e The client should be able to easily access the services via an Internet
browser.

e It should be free.

Tomcat 4.1

The choice fell on Apache Tomcat 4 by Apache Software Foundation [15] as
it fulfills the above mentioned criteria. The product is a standalone Web
server that supports Java Servlet and JavaServer Pages technologies (JSP)
[21]. Tomcat is the Jakarta Project’s [16] open-source servlet container and
is released under the Apache Software License [17].

Figure 2.4 illustrates how the servlet container works in Tomcat. As illus-
trated, a client sends a web request to the Apache Tomcat Server. Tomcat
then directs the request to the appropriate servlet container. The servlet
container computes result and sends it back to the client via Tomcat.

In order to develop software for Tomcat you need to install the Java pro-
gramming language and use some kind of development software, e.g., Borland
JBuilder Personal Edition, which is available for free. However, it is possible
to develop the software just using the Java Compiler, which is available free
of charge.

A user browsing a web site using Tomcat does not need any extra software
except a browser in order to see the web pages.

CHAPTER 2. REQUIREMENTS

2.5. PRIVACY Page 25 of 163

2.4.3 Platform Experiences

When using PostgreSQL on a Windows 2000 Professional machine, you need
to have Cygwin installed. This have an impact on the system and tends
to slow down the DBMS, because a lot of I/O activity is used by Cygwin.
However, PostgreSQL has a lot of advanced features, and is available for free.
When deploying the system in a production environment, we intend to use
PostgreSQL on a UNIX-based operating system, thus avoiding the overhead
of having Cygwin to emulate a UNIX-like environment on Windows. It is
also important that the PostgreSQL is configured for UNICODE in order to
handle the international characters in the AUB data.

Regarding Tomcat it was easy to set it up on a Windows machine. However,
Java Virtual Machine[25] needs to be installed since it is used by Tomcat. In
order to ease the use of Tomcat you also need to install an application called
Ant. Ant is also used by Tomcat in order to be able to update the JSP web
pages and compile the classes more easily. Without Ant you would need to
do a lot of manual work in order to get your code to run on Tomcat. Ant
provide an easy way to deploy the web applications.

2.5 Privacy

When releasing data such as the information collected by the AUB business
intelligence system, it is important to protect the anonymity of the individual
borrowers. It is important that specific borrowers cannot be identified from
the information made available from the AUB business intelligence system.
It should also be impossible to link other sources of data to the information
from the AUB business intelligence system and thereby indirectly identify
specific borrowers. A person with access to the association rules should,
e.g., not be able to link knowledge of what books a borrower has borrowed
to other books borrowed by the same borrower. The privacy ensures that
any persons can freely borrow books without the loan history being used for
political reasons or sold for profit.

Several techniques have been developed with respect to preserving privacy.
Some of the techniques consist of adding noise, swapping values, etc., while
still maintaining an overall statistical property. These techniques leads to
distorted data, which is not always useful when doing data mining [31]. [31]
describes two techniques called suppression and generalization, which pro-
vide privacy protection while maintaining the integrity of the data. The
techniques make use of the following common terms:

CHAPTER 2. REQUIREMENTS

Page 26 of 163 2.5. PRIVACY

1. Quasi-identifiers
Attributes that can be exploited for linking, i.e., used to link with
attributes in external data sources for identifying borrowers.

2. K-anonymity
Describes the degree of protection of data with respect to inference by
linking. Using an external data source the linking could, e.g., map to
three borrowers and then 3-anonymity would be upheld.

Suppression and generalization as described in [31] ensures k-anonymity for
some given k value. Suppression achieves k-anonymity by removing tuples.
Generalization is a technique that uses, e.g., dimensional hierarchies in or-
der to archive k-anonymity. The values are made less informative in order
to ensure k-anonymity. The best technique is to use both suppression and
generalization.

A technique proposed by [7] and even further improved by [5] modifies the
values of a field using:

1. Value-Class Membership
Partition the values into a set of disjoint, mutually-exhaustive classes
and return the class into which the true value z; falls.

2. Value Distortion
Return a value z; + r instead of z;, where r is a random value drawn
from some distribution.

3. Amplification
Make it possible to guarantee limits on privacy breaches without any
knowledge of the distribution of the original data.

Values-Class Membership, Value Distortion and Amplification ensures that
Data Mining is possible while still preserving Privacy. The techniques alters
the original data in such a way that it is not possible to accurately estimate
original values.

However, by using a novel reconstruction procedure to estimate the distri-
bution of the original values, it is possible to do Data Mining, e.g., using
Decision-tree classifiers or Association Rule Mining algorithms. The clas-
sifiers’ accuracy is comparable to the accuracy of classifiers built with the
original data. As proven in [7] it is possible to be within 5% to 15% (abso-
lute) of the original accuracy, even when the privacy is 100%. 100% privacy

CHAPTER 2. REQUIREMENTS

2.6. SYSTEM CRITERIA Page 27 of 163

means that the true value cannot be estimated any closer than an interval of
width which is the entire range for the corresponding attribute.

Though, in order to implement privacy-preserving Data Mining as proposed
by [7] or [5], we will need to change, e.g., their algorithms. The reason for
this is that the algorithms have been designed for Decision-Tree classification.
Therefore, it would require a deeper understanding of the algorithms and
we have chosen to give higher priority to other things. However, another
technique proposed by [6] shows how to do privacy preserving mining of
association rules.

The AUB business intelligence system must be developed with regards to
quasi-identifiers and k-anonymity in order to ensure a minimum level of pri-
vacy. No techniques such as suppression and generalization have to be applied
since no complete tables of data are released to the public. The data is only
accessed through tools, which can ensure the privacy. For more information
about what we have implemented see 4.6.2.

2.6 System Criteria

Summing up this chapter, the criteria for designing the different parts of the
system are the following:

General:

e The system should be able to run on AUB’s existing platforms and
hardware.

e The system has to use open source applications in order to save license
costs.

e The Java programming language is used.
Data Warehouse:

e The data warehouse should seamlessly synchronize with the source sys-
tem. It should harvest useful information from existing data that is
not already known, for instance which books are borrowed together. It
should also reflect updates in already loaded data.

CHAPTER 2. REQUIREMENTS

Page 28 of 163 2.6. SYSTEM CRITERIA

e The Danish law of privacy® has to be obeyed, e.g., the users identity
have to be protected in the system in order to uphold anonymity. It is
not legal to monitor a user.

e The system has to use the PostgreSQL system as a DBMS server and
Tomcat as a web and application server.

Librarian Service (Business Users):

e The system should show statistics.
e The system should also show association rules.

e Help should be available to the business users.
Recommendation Service (Borrowers):

e The recommendation service should run as a recommendation service
meaning that it produces XML output.

e It should be easy to integrate the recommendation service in Auboline
by being able to make use of the data from the recommendation service.
The Auboline system is already using different Web Services and XML.

3http://www.datatilsynet.dk/include/show.article.asp
?art_id=443&sub_url=/lovgivning/indhold.asp

CHAPTER 2. REQUIREMENTS

Page 29 of 163

Data Warehouse

AUB has a system for handling the different daily tasks at the library. Such
a system is called an operational system. For the operational system the
main priorities are processing time and availability. The queries only deal
with one or a few rows at a time. The business users, i.e. librarians, use
the operational system to add books, borrowers, and register loans. Thus
most of the queries to the operational system are of the same type just with
different values. There is, e.g., a query for registering a loan. This is a single
query, which is used with different values depending on borrower, book, and
time. This query is done several times each day. An operational system also
has to handle a large amount of updates.

BI services do not deal with single rows. Instead the services have queries
that deal with several million rows. The queries often change since they arise
from the questions that the business users might ask. The business users
might, e.g., be interested in loan overviews by month. The information that
they get from this overview might then lead to the need of overviews by
week, day, and hour. These changing queries requires a flexible system that
is simple so that the business users can understand and use it.

The requirements from the BI services and the requirements listed in Chapter
2 can be met by implementing a data warehouse for AUB. The data ware-
house is robust meaning that it can easily be adjusted to support new queries
and it can easily be changed. The data warehouse consists of several data
marts where each has associated a collection of dimensions [29]. A data mart
is a simple system for decision support since it focuses on a single business
process as, e.g., book loans. The simplicity is important in order to get the
business users to accept and use the data warehouse.

CHAPTER 3. DATA WAREHOUSE

Page 30 of 163 3.1. DATA WAREHOUSE DESIGN

The following sections describes how a data mart for the AUB data ware-
house is designed, how it is implemented, the performance of the different
implementations, and future work.

3.1 Data Warehouse Design

The design for the AUB data warehouse is described in this section following
a description of the different components.

3.1.1 The Four Steps

According to Ralph Kimball et. al. [29] there are four steps for developing a
data warehouse design. These four steps ensure that overall design decisions
are made first before deciding on the details. The four steps are:

1. Select the business process
A business process is the selected process at the business organization
that is to be modeled by a data mart in the data warehouse. This can,
e.g., be managing employees or book loans at AUB.

The business process is selected by considering the business require-
ments from AUB and the available data in the source system at AUB.
As described in Chapter 2 AUB wants to analyze the different rela-
tions regarding how the books are borrowed by using the data that is
captured by the current source system.

The business process that is to be modeled for AUB is the process
of book loans by borrowers. The model will allow AUB to analyze
the relations between loans, borrowers, books, time of day, and which
books are borrowed together. The analysis of which books are borrowed
together requires the loans to be grouped. The books that are borrowed
together by the same user are grouped, just like market basket data in
a data warehouse for a retail business.

The selected business process for the data mart is very much like the
traditional retail example where the business process is the point of sale,
see [29] chapter 2. Here the business users want to analyze customer
purchases in a store by doing market basket data analysis and look-
ing at the relations between purchases, customers, products and time.
The market basket analysis is discovering information about products
bought together. The most famous result from market basket analysis

CHAPTER 3. DATA WAREHOUSE

3.1. DATA WAREHOUSE DESIGN Page 31 of 163

was the discovery of a relation between diapers and beers. The relation
showed that the customers buying diapers also had a tendency to buy
beers.

2. Declare the grain

Declaring the grain is selecting the level of data detail that is to be
stored in the fact tables. The level of grain is set to the process of
a book loan meaning that each level represents the process of a book
loan with the milestones loan and return date. The fact table type
used is an accumulative snapshot. It provides a clear picture of the
duration between the main events, i.e, loan and returnal of a book.
In a transaction fact table a process of a book loan would consist of
two rows, one for loan and one for returnal, and the duration would
therefore not be clear from a single row. The only difference of the two
types of fact tables in the case of the AUB data warehouse is that the
accumulative fact table contains extra date keys in order to represent
milestones.

3. Choose the dimensions

The dimensions are found by looking at the selected business process.
When registering book loans the descriptive dimensions are Date, Time
of day, Borrower, Status Type, Edition, UDK, and Transaction. These
dimensions represent the time of day and date of the loan, borrower,
edition, UDK, and the status and type of the borrower which borrowed
an edition of a book. UDK is the Universal Decimal Classification
(Danish: Universelle Decimal-Klassifikation, UDK) for an edition and
denotes where the edition of a book is placed in the library. The Trans-
action and Borrower dimension are both a degenerate dimension (DD)
[29] since the associated dimension table is empty because the infor-
mation regarding the transaction or borrower is already located in the
other dimensions. The Transaction dimension is only used for grouping
loans into transactions.

4. Identify the facts
The fact table is a factless fact table since there are no measurable
facts. The fact table models a loan history, i.e., the process of a book
being borrowed and returned. The fact table models two events, and
events are often modeled as a factless fact table since they rarely have
any obvious numeric facts associated with them.

The rows in a factless fact table represent a process by making a relation
between the foreign keys of the dimensions. The foreign keys are often

CHAPTER 3. DATA WAREHOUSE

Page 32 of 163 3.1. DATA WAREHOUSE DESIGN

a collection of different dates when the fact table is an accumulative
snapshot. The relation in the fact table captures the loan history by a
specific edition, borrower including date and time for each milestone.

3.1.2 Data Warehouse Components

The data warehouse consists of four components, which are developed in
accordance to the design. Data is extracted from the operational system.
The extracted data is transformed by a data staging. The transformed data
is loaded into the data presentation area. The business users access the
data in the presentation area through the data access tools. The specific
components of the AUB data warehouse are described next and they are also
illustrated in Figure 3.1.

Operational

Data Data Data
Source . .
. Staging Presentation Access
m
yste Area Area Tools
@ Extract - Cleansing Load - Dimension tables Access - Statistic
- Group loans - Fact tables - Association
into transactions rule mining
- Assign data - Recommendation
warehouse keys

Figure 3.1: The AUB Data Warehouse Components.

Operational System

The operational system at AUB consists of an Oracle DBMS running a
database containing several tables. The complete documentation contain-
ing the detailed schemas cannot be disclosed as AUB consider it as classified
documentation. The tables used from the operational system is therefore
only partly described in this section.

The four main tables from the operational system and the important at-
tributes from the tables are listed in the diagram in Figure 3.2. The main
tables are:

e 713 contains information about each book and is therefore mentioned
in the following sections as the book source table.

e 730 contains information about each edition and is mentioned as the
edition source table.

CHAPTER 3. DATA WAREHOUSE

3.1. DATA WAREHOUSE DESIGN Page 33 of 163

e Z36H contains the loan history and is mentioned as the loan source
table. Loan history is added to this table when a book is returned.

e 7303 contains information about each borrower and is mentioned as
the borrower source table.

DOC-NUMBER =FK=

2303

[n]

STATUS

TYPE
UPDATE-DATE

DOC-NUMBER =FK=

LPDATE-DATE

Figure 3.2: Diagram of the Main Tables from the Source System.

The primary key for the loan source table is the REC-KEY. The value of
this attribute can be split into a DOC-NUMBER. and ITEM-SEQUENCE.
The DOC-NUMBER refers to a book in the book source table while DOC-
NUMBER and ITEM-SEQUENCE are composite foreign keys referring to
an edition in the edition source table. Since rows are only added to the loan
source table when a book is returned, the accumulative snapshot in the AUB
data warehouse does not need to be updated. Each date for every milestone
is already registered when updating the data warehouse.

The date format used in the source system is YYYYMMDD, e.g., 20030125
while the time format is HHMM.

The CALL-NO attribute in the edition source table is the UDK for the specific
edition and denotes where the edition of a book is placed in the library. An
example of an UDK is 543.422.25 where 543 denotes chemistry, 422 denotes
absorption analysis, and 25 denotes NMR, spectroscopy.

Data Staging Area

One of the requirements from AUB was that the data warehouse should use
the existing source system. These requirements lead to a data staging area

CHAPTER 3. DATA WAREHOUSE

Page 34 of 163 3.1. DATA WAREHOUSE DESIGN

Source Attribute Description

Z36H-REC-KEY An administrative system number
consisting of a DOC-NUMBER
and ITEM-SEQUENCE.

Z36H-1D A foreign key referring to borrower.
Z36H-LOAN-DATE The date of the loan.
Z36H-LOAN-HOUR The time of the loan.
Z36H-DUE-DATE The date the book has to be returned.
Z36H-DUE-HOUR The time the book has to be returned.

Z36H-RETURNED-DATE | The date the book was returned.
7Z36H-RETURNED-HOUR | The time the book was returned.

Figure 3.3: Attributes from the loan source Table.
that has the following extract-transformation-load (ETL) processes:

1. Extraction

The data is extracted from the loan source table and borrower source
table. The tables and the attributes that are used for extracting data
are described in Figure 3.3 and Figure 3.4. The UPDATE-DATE at-
tribute in the borrower source table and the LOAN-DATE attribute
in the loan source table are used in order to extract only the new and
updated rows. The rest of the attributes including LOAN-DATE are
extracted and used for loading into the presentation area.

Data from the edition source table and book source table is not extracted
directly from the source tables but instead a view is defined using the
attributes from the edition source table and book source. The two tables
are listed in Figure 3.5 and Figure 3.6. The view combines the edition
source table and book source table in order to support the loading of
data into the presentation area. This way the view is updated whenever
either the edition or book data is updated.

2. Transformation

The transformation cleans the data, groups the loans into transactions,
assigns data warehouse keys, and handles the issue of reflecting the
updates of already loaded data from the source system.

CHAPTER 3. DATA WAREHOUSE

3.1. DATA WAREHOUSE DESIGN Page 35 of 163

Source Attribute Description

7303-1D The primary key.
7303-BOR-STATUS The status of the borrower.
7303-BOR-TYPE The type of the borrower.
7303-UPDATE-DATE | The update date for the row.

Figure 3.4: Attributes from the borrower source Table.

Source Attribute Description

7Z30-DOC-NUMBER A foreign key referring to the book source table.

Z30-ITEM-SEQUENCE | Is along with the DOC-NUMBER the primary key.

Z30-CALL-NO The UDK for the edition.

7Z30-UPDATE-DATE The update date for the row.

Figure 3.5: Attributes from the edition source Table.

Source Attribute | Description

Z13-DOC-NUMBER | The primary key of the book source table.
Z13-AUTHOR The author of the book.

Z13-TITLE The title of the book.
7Z13-UPDATE-DATE | The update date for the row.

Figure 3.6: Attributes from the book source Table.

CHAPTER 3. DATA WAREHOUSE

Page 36 of 163 3.1. DATA WAREHOUSE DESIGN

Attribute Description
Surrogate Dimension Key | The assigned key that is used in
the data warehouse.

Operational Key The operational key associated
with surrogate dimension key.
Checksum A checksum of the data from

the operational system.

Figure 3.7: The Master Dimension Cross-Reference Table.

The cleansing consists of trimming the text for starting and ending
blanks, spell checking, and handling special symbols. The special sym-
bols that have to be handled are, e.g., the apostrophe in ”O " Connor”
and removing escape characters. The apostrophe has to be handled in
order to build SQL queries. Removing escape characters, blanks, and
spell checking is necessary for not getting different author names for
the same author simply because of spelling errors, blanks, or escape
characters. Pattern matching is also used in order to combine author
names and titles where only a few letters differ.

The transactions are defined as loans by the same borrower at the same
day. So if a borrower, e.g., borrows five books on a specific day then
these loans will be grouped together by having the same transaction
ID. This leads to transactions that are not very fine grained but most
borrowers only borrow books once per day. If the transactions, e.g., are
defined to be loans within the same hour and by the same borrower then
there will only be a few more transactions. It is also more interesting
to have larger transactions when doing data mining such as association
rule mining. With larger transactions it is easier to find patterns.

The data warehouse keys are assigned by storing operational keys along
with the associated surrogate dimension key in three Master Dimension
Cross-Reference Tables [29]: A table for the Borrower, Edition, and
StatusType dimensions. There is also stored a checksum along with
each operational key for the Edition dimension. The checksum for an
edition covers author, title, and the UDK levels. The checksum is used
for checking whether the data from the operational system has been
updated. The design does not only rely on the update date in the
edition source table since the update might have been of attributes of
no interest for the ETL process. The schema for the Master Dimension
Cross-Reference Tables are listed in Figure 3.7.

CHAPTER 3. DATA WAREHOUSE

3.1.

DATA WAREHOUSE DESIGN Page 37 of 163

The updates of already loaded data from the edition source tables in
the operational system are handled by doing the following procedure
described in pseudo code:

1 for each extracted row from loan source

2 if new operational key for edition

3 assign data warehouse key

4 make checksum of the attributes: Author, Title

5 store operational key, data warehouse key, and checksum
6 load row into presentation area using data warehouse key
7 if old operational key and new checksum

8 make checksum of attributes from source system

9 update row in presentation area

10 store new checksum for edition
11 if old operational key and old checksum
12 skip

An operational key is assigned a data warehouse key when the row
containing it is extracted for the first time. It is called a new operational
key in the above pseudo code. A new checksum is created when a row
has been loaded and assigned an operational key but the attributes
have changed. The assigned data warehouse keys and checksums are
stored in the Master Dimension Cross-Reference Tables for the Edition
dimension.

The update of status and type for a borrower and UDK for an edition
are handled through the use of a mini dimensions [29] in the presen-
tation area. This is done in order to ensure that the loan history for
status and type of the borrowers and UDK of editions are represented
correctly over time. Updating would lead to misleading history. The
status and type values for the borrowers would, e.g., only be the current
values. Updates are used in the case of updates of already loaded edi-
tion data since these updates often are a matter of correcting spelling
errors.

. Load

After extracting and transforming the data it is loaded into the pre-
sentation area. The data is stored in the dimensions and relations are
created in the fact table. Rows for the Date and Time of day dimen-
sions are not extracted from the source system but are generated in
advance. This means that rows covering a day are loaded initially into
the Time of day dimension and rows covering ten years are loaded into
the Date dimension. The aggregate tables created for the AUB data
warehouse are also updated during the load process.

CHAPTER 3. DATA WAREHOUSE

Page 38 of 163 3.1. DATA WAREHOUSE DESIGN

Data Presentation Area

The business users can access the data stored in the presentation area. The
data therefore has to be organized so that the business users can understand
and use the data. The simplicity of the data model is achieved by using multi-
dimensional modeling [29]. A multidimensional model consists of dimensions
and facts. Dimensions provides context for the facts by having descriptive
attributes. The facts represent the events and associated measures that are
to be analyzed.

Figure 3.8 is a relational representation of the multidimensional model for
the AUB data warehouse. The tables are illustrated by listing the fact and
dimension tables. The schema definitions used for the PostgreSQL database
are listed in Appendix B.

o Loan 5

MionuL:te TransactionID (D) Statushame
—_— BarrawerID (DD} Typehlams
m StatusTypelD (FK)

" LoanDakelD (FK)

m LoanTimeID {FK) m

Openlate ReturnDakelD {FK) m

IssueDate ReturnTimelD (FK) ‘fear

BookID (DD} DueDakelD (FE) IMonith

EditionMumber DueTimeID (FK) Day

Title: EdtionID {F) Wieekday

Aukhor UDKID {FK) Quarker
- - DayMonthvear

Dayionth

m Monkh'ear
3] ‘YearQuarter

LIDKLeveU ‘YearMonthDay

UDKLewveliName Dayhlumber

UDKLevelz weekhumber

UDKLevel2kame MonthMurnber

UDKLewvel3 schoolear
UDKLewvel3hame Semester
UDKDepartment Exam
— ProjectDeadline

Figure 3.8: Relational Representation of the Multidimensional Schema.

Dimensions The Date and TimeOfDay dimensions are used for register-
ing loans over time and for representing the different milestones. The Sta-
tusType, Edition, and UDK dimensions are used for registering the editions
and the status and type of the borrowers. The specific loan is registered by
the Loan fact table. Both StatusType and UDK dimensions [29] are mini

CHAPTER 3. DATA WAREHOUSE

3.1. DATA WAREHOUSE DESIGN Page 39 of 163

dimensions and their purpose is described below:

The StatusType mini dimension contains every single occurrence of sta-
tus and type. The type and status for a borrower is then represented
by a foreign key in the Loan fact. This leads to a design that reflects
the status and type for the borrowers correctly over time. If a borrower
gets a new status or type then a new foreign key is used leaving the
borrower’s ID unchanged. This is why we have chosen not to have an
explicit borrower dimension. The mini dimension is also a good entry
point for doing selection on status and type.

The UDK mini dimension is used for registering the loan history for chang-
ing UDKs for editions. If the UDK of an edition is changed then new
rows representing a loan of the edition in the Loan fact table just con-
tain the new UDK foreign key. This way the loan history is not changed
when an edition is assigned a new UDK. Furthermore, storing all known
combinations of UDK levels provides role-up and drill-down features ef-
ficiently.

The Date, Time of day, StatusType, and Edition dimensions contain hierar-
chies that can be used for roll-up/drill-down operations. Drill down is, e.g.,
when a business user has a list of number of loans by UDK level 1 and then
chooses to add more details by adding an UDK level. Roll up is when a
business user has a list of number of loans by UDK level 1 and 2 and then
chooses to only look at UDK level 1. This is simply moving up and down
the hierarchy that is in the Edition dimension. The hierarchy in the Edition
dimension is illustrated in Figure 3.11.

Hierarchies The hierarchy for the Date dimension is listed with a hierarchy
schema in Figure 3.9 (a) and is illustrated by an example in Figure 3.9 (b). T
represents all of the dimension and the dotted lines in the example represents
the rest of the elements from the dimension that belong to the hierarchy. The
hierarchy for the Date dimension consists of the levels year, quarter, month,
week, and day.

The Time dimension hierarchy contains the levels hour and minute and is
listed with a hierarchy schema in Figure 3.10 (a). An example of the Time
dimension hierarchy is illustrated in Figure 3.10 (b).

The hierarchy in the Edition dimension consists of the three UDK levels, a
book level, and an edition level. The schema for the hierarchy is illustrated
in Figure 3.11 (a). An example of the hierarchy is illustrated in Figure 3.11

CHAPTER 3. DATA WAREHOUSE

Page 40 of 163 3.1. DATA WAREHOUSE DESIGN

T T
| /‘
Year 2003
Quarter Week o1 \
| AN
March Week 1
Month \ /
AN ’ 1
Day

(@) (b)

Figure 3.9: Date Hierarchy.

T T
Hour 00
Minute o1 02

(@) (b)

Figure 3.10: Time of Day Hierarchy.

(b). In the example the levels for UDK 543.422.25 are illustrated along with
one book and edition from this specific UDK.

The StatusType hierarchy contains the levels status and type. The schema
for the hierarchy is listed in Figure 3.12 (a). An example of the StatusType
hierarchy is illustrated in Figure 3.12 (b). In the example of the hierarchy
the types are social science and natural science and the status are PhD and
Employee.

Schema Type The multidimensional model that we use is represented in
the form of a star schema. A star schema is used in order to keep the design
simple and to have a better performance than if a snowflake schema was
used. The performance of a star schema is good because it is denormalized
which leads to fewer joins when doing queries. Denormalization also leads to

CHAPTER 3. DATA WAREHOUSE

3.1. DATA WAREHOUSE DESIGN Page 41 of 163

T J
|
UDKLevell 543 - Chemistry
| /-
UDKLevel2 422 - Absorption Analysis
| =
UDKLevel3 25 - NMR Spectroscopy
| [~
Book BookID = 10, Paudler, William W : Nuclear Magnetic R.
| B
Edition

EditionID = 1, Issue date = 2002-12-20

(a) (b)

Figure 3.11: Edition Hierarchy.

T T
Status PHD Employee
Type Social Tech./Natural
(a) (b)

Figure 3.12: StatusType Hierarchy.

a more simple model [29].

A snowflake schema could have been chosen in order to save disk space by
using normalization and thereby not having any redundancy. The snowflake
schema ensures that updates only have to alter a single row while several rows
have to be updated in a star schema. If, e.g., an author name is updated
then only a single row is affected in a snowflake schema while the update will
cover many rows if a star schema is used.

The snowflake schema is not used because it introduces more joins and it
makes the design more complex. The rows in the data warehouse are very
seldom updated so there is little overhead of having to update several rows
instead of one row. The disk space saved by using the snowflake schema is
also insignificant. This is due to the fact that disk space savings gained by
using snowflake schemas are typically less than 1 percent of the total disk

CHAPTER 3. DATA WAREHOUSE

Page 42 of 163 3.2. IMPLEMENTATION

space needed for the overall schema, see [29] Chapter 2.

Data Access Tools

The data access tools are the front end of the data warehouse. It is through
these tools that the business users access the data in the presentation area
and these tools are also used for servicing the borrowers by doing book rec-
ommendation.

The data access tools can be canned, data mining, and OLAP applications.
Canned applications contain prebuilt queries where the users can only set
some parameters, e.g., the size of the result set and the sorting order. Data
mining applications can, e.g., find patterns in the data, recommend books to
borrowers, and predict future values. OLAP applications are used for viewing
the data in cubes and for doing online analysis by slicing, dicing, and drilling
down and up.

We have implemented a librarian service for supporting decision support for
business users, i.e. librarian. The librarian service can, e.g., show an overview
of loans by years, months, weeks, and days. It can also show associations
between borrowed books. The implemented librarian service is described in
Chapter 6 where also screen shots are listed.

We have also implemented a recommendation service that is used for rec-
ommending books to borrowers on AUB’s web site. The recommendation
service simply recommends a list of similar books given a specific book.

The association rule mining and recommendation are two data mining appli-
cations and they are described in Chapter 4 and 5.

3.2 Implementation

The implementation of the ETL processes is divided into three separate re-
sponsibilities, as the acronym suggests. This is also depicted in Figure 3.13.
For each extracted row the data is transformed. The transformation consists
of data cleansing and data warehouse key assignment. When the transfor-
mation of all rows from the operational system has been carried out, the
transformed data is loaded into the data warehouse.

We have four implementations for the ETL processes. Only the best perform-
ing implementation will be described in this section. The next Section 3.3
Performance will compare the execution times of the four implementations.

CHAPTER 3. DATA WAREHOUSE

3.2.

IMPLEMENTATION Page 43 of 163

data

Extract L

Geat
transaction, borrower, edition
latest keys

haster Cross Reference Data Structure

data
Transform -
"y

statustype

¥

'Eztf udk
. each +

extracted
data adition

¥

loan
w

data

Load l

Copy data into DEMS

Save;

- lag
- Master Cross Referance Data Structure

Figure 3.13: The ETL Processes.

CHAPTER 3. DATA WAREHOUSE

Page 44 of 163 3.2. IMPLEMENTATION

3.2.1 Extraction

We have an overall method responsible for extracting the rows containing
loan data from the operational system. The extraction takes outset in the
timestamp of when a row was added or updated to the loan source table and
the extracted rows are sorted by the timestamp. Only newly added loans
are extracted by storing the timestamp of the last extracted row in a special
table containing log information about the ETL runs. At an extraction the
latest timestamp is fetched from the log table and only the newly added loans
are thereby extracted. Using the timestamp in order to partition the data
enables the extraction to be run at any frequency as, e.g., an hourly, daily,
or weekly routine.

3.2.2 Transformation

Only TimeOfDay and Date dimensions are left untouched as they are pre-
loaded during the construction of the multi-dimensional schema. We assign
data warehouse keys to each unique edition and borrower by mapping from
their corresponding operational key as described in Section 3.1. Furthermore,
each known combination of status and type and UDK is also mapped to a
data warehouse key.

Java’s HashMap is used to provide the data structure for the mapping pro-
cess. This is the implementation version of the master cross-reference table
mentioned earlier in Section 3.1.2. The mapping process happens in-memory,
which is more efficient than if we query the DBMS, as we avoid the overhead
of invoking the query planner, which first have to parse the query in order
to build an efficient execution plan. We do a look-up in the appropriate
HashMap to retrieve the data warehouse key. If one of the dimension mem-
bers does not exist in the appropriate HashMap a new data warehouse key is
created. The mapping between the dimension member and the created data
warehouse key is added to the HashMap. In order to provide an efficient way
to look-up data warehouse keys in Date and TimeOfDay dimensions they are
stored in separate HashMaps.

Furthermore, we delay adding dimension and fact data to the end of the trans-
formations. All the new data for the dimension and fact tables is buffered
separately, i.e., we have a buffer file for each of the dimension and fact tables.

In the following sections the transformation of editions, UDKs, borrowers,
status and types, and loans are described.

CHAPTER 3. DATA WAREHOUSE

3.2. IMPLEMENTATION Page 45 of 163

Edition Transformation

Figure 3.14 depicts the process of transforming editions data. The raw edition
data from the source system is initially cleansed. In order to check whether
this edition already exists in the data warehouse a look-up in the edition
HashMap is carried out.

If a data warehouse key is found, we check whether the changeable attributes,
i.e., title and author, have been changed by comparing checksums. Each
existing edition has a CRC32 [2] checksum value computed on the changeable
attributes. The data warehouse key of the existing edition is then mapped
to the checksum value. We, then, compute a checksum value of the newly
cleansed edition and look-up the stored checksum value based on the data
warehouse key. If there is a difference in the checksum value we assume that
at least one of the changeable attributes has been altered and the edition
must be updated accordingly. Otherwise, the newly cleansed edition data
will not be further processed as no changes has been made.

On the other hand, if the look-up in the edition HashMap thus not return
a data warehouse key, we have a new edition, which need to be transformed
appropriately. At first we need to establish whether the edition belongs to
a new or already existing book. We have a book HashMap for this task.
If a data warehouse key of the book does not exist in the book HashMap
a new one is created. Otherwise, the existing book data warehouse key is
retrieved. In any case, the returned book data warehouse key along with the
new edition data warehouse key and the transformed edition data should be
added to the edition buffer.

UDK Transformation

Each edition is allocated into certain UDK levels. The original representa-
tion of UDK levels is a string containing numbers separated by a dot. The
string is split around the first three dots we encounter, thus forming three
UDK levels. Again, we utilize HashMap to map each UDK to different data
warehouse keys. As UDK levels are represented numerically, they are not
very user-friendly for ordinary users to read. After the ETL processes have
finished their execution we assign names to the various UDK levels to make
it understandable for ordinary users. AUB provided us with a list of UDK
level names in a separate file.

CHAPTER 3. DATA WAREHOUSE

Page 46 of 163 3.2. IMPLEMENTATION

Cleansing

|
get
*

Data Warehouse

Split into book + Book Data does not MNew Data
edition get Warehouse key | exist | VWarehouse key

v exisls

Transform into

et < ¥_Edition & book data

Update edition

|
Add

v

New edition s
craated

Mo processing

Processed

|
Process
completed

Frocessed

— ¥

Figure 3.14: Edition Transformation Process.

CHAPTER 3. DATA WAREHOUSE

3.2. IMPLEMENTATION Page 47 of 163

Init

Check transaction ol

Get DWkeys ————— e bnan

&

¥

Assign TID
new |

#| MNew transaction Loan stored

Figure 3.15: Loan Transformation Process.

Borrower and StatusType Transformation

When a borrower’s data warehouse key is added to the fact table, the ap-
propriate status and type data warehouse key is also added to the fact table.
This makes it possible to track the course of change of each borrower’s status
and type. Furthermore, it will also make it more efficient to provide role-up
and drill-down features.

Loan Transformation

Figure 3.15 depicts the process of transforming loan data. For each loan we
need to check whether it belongs to an existing transaction or forms a new
one. A transaction is defined as a combination of borrower data warehouse
key and loan date data warehouse key. This combination is mapped to a
transaction data warehouse key and the mapping is stored in a HashMap.
This way we ensure that a transaction corresponds to a set of loans by the
same borrower on the same day. If no transaction data warehouse key exists
in the HashMap for the loan, a new transaction data warehouse key is created.
Otherwise the existing transaction data warehouse key is retrieved. In any
case, the returned transaction data warehouse key is added to the loan buffer
along with the loan data, which consists of data warehouse keys for edition,
UDK, borrower, status and type, date and time of day.

It is important to first map the data warehouse keys for edition, borrower,

CHAPTER 3. DATA WAREHOUSE

Page 48 of 163 3.2. IMPLEMENTATION

status and type, and UDK before adding the loan to the fact table as it
depends on the mentioned data warehouse keys. This is also illustrated by the
order of borrower, edition, status and type, UDK, and loan transformation
in Figure 3.13.

Saving the HashMaps

When the transformation process is ended, the HashMaps for Edition, Bor-
rower, StatusType, UDK, TimeOfDay, and Date keys are stored in separate
BLOBs in the database. The HashMaps are only stored if the transforma-
tion process completes without any errors. The next invocation of the ETL
processes will restore the BLOBs from the database.

The Buffered Files

During the transformation process, the data which ought to be added to
the respective dimensions and fact table, is stored into files until the whole
transformation process has ended. At the start of the transformation process
the data files are emptied in order to ensure that the files do not contain
corrupted data. Buffered files are used in order to limit the I/O. After com-
pleting the transformation process the stored data is loaded from the files
into the data warehouse.

3.2.3 Loading

The data is loaded into the data warehouse using the COPY command of
PostgreSQL. The COPY command copies data to and from a table in a
database in PostgreSQL. When using the COPY command with a filename,
it instructs the PostgreSQL backend to directly read from or write to a file.
All the insertions made by the COPY command are considered as one trans-
action.

In order to cope with sudden errors occurring during the loading process
we take an "all or nothing” approach, i.e., either all the transformed data
is properly loaded into the data warehouse or no data is loaded at all. On
failure the ETL processes need to be re-started. We consider the loadings
of edition, UDK, status/type, and loan data as one atomic transaction, i.e.,
we commit at the end of the loadings. Below is depicted the idea of "all or
nothing” in pseudocode:

CHAPTER 3. DATA WAREHOUSE

3.2. IMPLEMENTATION Page 49 of 163

1 BEGIN

2 COPY new editions into data warehouse.

3 COPY new status/types into data warehouse.
4 COPY new UDKs into the data warehouse.

5 COPY new loans into data warehouse.

6 UPDATE changed editions.
7 COMMIT

The load process also updates the aggregate tables in the data warehouse by
adding new rows into the aggregate tables representing the newly added data.
The aggregate tables are all listed in Appendix B. They have been chosen
for the AUB data warehouse in order to support the most of the queries in
the data access web tool.

We have attempted to drop the indices of the dimensions and fact table prior
to copying and afterwards creating the indices again. The result was a 2
seconds gain in execution time for 10 months of loan data. This indicates
that we need to bulk load large amount of loan data before we can out-weight
the cost in time for dropping and creating indices. As AUB plans to invoke
the ETL processes frequently we cannot out-weight the cost and thus will
not attempt to drop the indices before bulk loading and afterwards create
them again.

3.2.4 Logging

After having executed the ETL processes, the application logs the number
of borrowers, editions, UDKs, and loans inserted into the data warehouse.
An example of an entry in the log is given in Figure 3.16. The execution
time in milliseconds is logged as well as the number of new transactions that
the loans were grouped into. Each loan contains an end time, which is a
timestamp indicating when it was added to the loan source table. The most
recent of the end times of the present ETL processes is also logged. The end
time is used the next time the application is run so only the new data is
extracted from the source system.

3.2.5 Maintenance

AUB can run the Java application for ETL in a daily routine by setting up
a Cron job on a Unix or Linux system. Getting the Java application to run
in a daily basis is done by adding it to the Cron configuration file. When
the Cron job is set the Java application for ETL is run automatically after a
specified periodic interval and the administrator is sent an email containing

CHAPTER 3. DATA WAREHOUSE

Page 50 of 163 3.2. IMPLEMENTATION

Log Value

Loans 64371

Borrowers 8758

Editions 43685
Transactions 29373

Execution Time (ms) | 122737

End Time 200310031146566

Figure 3.16: An Example of an Entry in the ETL Log.

the output if there are any errors. For further information regarding setting
up a Cron job see [13].

A Cron job can also be applied to database maintenance activity for reclaim-
ing unused disk space. Every time an UPDATE or DELETE statement is
issued the affected tuple is not removed and thus not available for re-use.
To avoid infinite growth of disk space requirements it is recommendable to
reclaim the unused space. This is done by using PostgreSQL’s VACUUM
command [4].

When loading data into our data warehouse we primarily makes use of the
COPY command. In this case there would be no unused space to be released.
However, we also use UPDATE statements when changes occur for an existing
edition, which is already in the data warehouse. An UPDATE statement of a
row does not immediately remove the old version of the row. This approach is
necessary to gain the benefits of multi version concurrency control. The row
must not be deleted while it is still potentially visible to other transactions.
Eventually, the old row version is of no interest to any transactions and the
space it occupies should be reclaimed using the VACUUM command.

PostgreSQL use statistics of table contents to choose the most appropriate
query planner in order to speed up query processing. When major changes
have been made to the content of the data warehouse dimensions, it is rec-
ommendable to update the statistics of table contents. For this purpose the
ANALYZE command can be used [4].

An advisable approach for maintenance could be to run both VACUUM and
ANALYZE when ETL processes have ended. VACUUM is a time, processor,
and disk intensive activity, thus it should be run at a time of day, where the
load of the server is low, typically at night. Running ANALYZE is a matter
of seconds and should be run immediately after VACUUM.

CHAPTER 3. DATA WAREHOUSE

3.3. PERFORMANCE Page 51 of 163

3.3 Performance

In this section, we will look at the performance of four different ETL im-
plementations. We have tried to optimize the implementation of the ETL
processes in order to achieve the fastest execution time possible. Therefore,
we developed different ETL implementations and tested the execution time
of these.

We have applied four methods to improve the execution time of the ETL
processes. The execution times of the four methods is illustrated in Figure
3.17. We have named the four methods after the technique forming the main
reason for their level of execution time. The first method is the one we took
outset in. Each following method contains improvements compared to their
predecessors:

Index is the method which we took outset in. We have placed single column
indices on the dimension and fact table attributes, which we select and
constrain upon. For each loan extracted from the operational system
we send several queries to the master cross-reference tables in order
to check whether the borrower or the edition already exist in our data
warehouse. If they exist, they are not added to our data warehouse,
otherwise they are added. Finally, the loan is inserted into the loan
fact table.

All in all, we send SELECT queries to test for the existence of edition,
book, UDK, borrower, status, and type. Furthermore, six additional
SELECT queries are issued to retrieve the data warehouse key for loan,
return and due date and time, respectively. In addition, data warehouse
keys for date and time of day are also queried for each loan. Each time
a loan has been processed, the appropriate insertions are made to the
data warehouse dimensions and fact table by doing INSERT queries.
The multiple select queries result in as many parses followed by invoking
the query planner to figure out an efficient way to carry out the queries.
We hypothesize that this is the main reason why the execution time is
higher than the three other implementations.

The number of statements in the Index implementation can be de-
creased by using a join in order to find the data warehouse keys. The
main idea of the approach is to first load the loan data into a temporary
loan fact table containing operational keys. The data warehouse keys
are then found and added to the real loan fact table by doing a join
between the temporary loan fact table and the master cross-reference

CHAPTER 3. DATA WAREHOUSE

Page 52 of 163 3.3. PERFORMANCE

tables. The join simply maps the operational keys to data warehouse
keys and the resulting rows are then added to the loan fact table.

Copy introduces a significant improvement to the ETL processes as we re-
duced the number of times which our application communicated with
the DBMS. Previously, each loan data extracted from the operational
system resulted in one immediate INSERT query to the DBMS. Here,
we defer this action by buffering the insertion statements in buffered
files until the end of the ETL processes, where we do a bulk load into
the DBMS using the COPY command of PostgreSQL.

PL/pgSQL function also uses the COPY command of PostgreSQL. What
it does differently than the previous method is that the assignment of
data warehouse key is done in the DBMS using a PL/pgSQL function.
The technique is first to copy the raw data into a temporary table in
the DBMS. Next, the PL/pgSQL function is executed in order to split
the raw data into different temporary tables, e.g. edition and loan,
assign data warehouse keys to each tuple in each table, and update the
relations between the tuples. Lastly, the PL/pgSQL function appends
the temporary tables to the real data warehouse tables and drops the
temporary tables.

HashMap is based on the idea of significantly reducing the CPU load by the
DBMS. A new data warehouse key is mapped to each new operational
key of borrowers, editions, books, and status/type. The mapping data
structure used is Java’s HashMap. Instead of sending several queries
to the DBMS for each loan, which was the case in Indez, we "query”
the relevant HashMap in memory, which significantly reduces the ex-
ecution time. The new data warehouse data are still buffered to the
end of the ETL processes, where the COPY command is used. Fur-
thermore, the HashMaps are stored in the database as BLOBs until the
next invocation of the ETL processes where they will be retrieved into
Iemory.

3.3.1 Comparing the Implementations

In order to be able to make a fair comparison of using HashMaps stored in
memory and using the DBMS, we have to optimize the memory usage of the
DBMS [20]. The PostgreSQL DBMS has settings stored in a configuration
file that specifies how much memory the DBMS is allowed to use. One

CHAPTER 3. DATA WAREHOUSE

3.3. PERFORMANCE Page 53 of 163

ETL Execution Time

2300

2000 -
® ——Index
E 1500 Copy
a
i —ai— PLMpgS0L function
e 1000
/ —s— Hashhap
S00

T =

o
10 20 30 40 a0 G0
Loans (in 1,000}

Figure 3.17: ETL Execution Time for all Four Methods.

setting is a buffer size. PostgreSQL uses a shared memory segment among
its sub-threads to buffer data in memory. The PostgreSQL DBMS standard
settings defaults to use about 1,000 shared buffer blocks. One buffer block
is 8 kilobytes. We have therefore increased the amount of buffers to 20,000
which when monitoring the memory usage of PostgreSQL corresponds to
using 300 megabytes of RAM.

The implementation of the four methods follows two fundamentally different
strategies, which is expressed in Figure 3.17 where PL/pgSQL function and
HashMap performs equally well and much better than Index and Copy. The
difference lies in the number of times the query planner is invoked. PL/pgSQL
function and HashMap reduce this to a minimum as the assignment of data
warehouse keys happens either entirely in the DBMS or our Java Application.
However, this is not the case for Inder and Copy as they query the DBMS
each time they need to assign a data warehouse key. The query planner is
the bottleneck which is reflected in the difference in execution time shown in
Figure 3.17.

3.3.2 Scalability

All four methods scale almost linearly. The execution time does not grow pro-
portional to the increase of loans. Though the execution time does increase
as more loans are processed. Instead they seem to perform better the more
loans they have to process because much less time is spent on populating the

CHAPTER 3. DATA WAREHOUSE

Page 54 of 163 3.3. PERFORMANCE

master cross-reference tables or its equivalent, HashMaps. The heavy work
is done in the initial 10,000 loans where almost each loan consists of either
a new edition or borrower, which needs to be added to the HashMaps. As
more and more loans are processed we encounter still fewer new editions and
borrowers. This is expressed by the decrease of the slope of the graphs as we
get farther to the right side of the x-axis. Figure 3.17 does not clearly express
this characteristic for HashMap because it performs so much better than the
three other methods and thus is pushed to the bottom of the graph. In order
to show that HashMap has the same characteristics, we have depicted it in
a separate graph, which can be seen in Figure 3.18.

ETL Execution time

120 ‘r(/—//

100 /
2 60
g / —e— Hashhap
BB —
@

40

20

0 T T T T T

10 20 eli] 40 a0 G0

Loans {in 1,000y

Figure 3.18: ETL Execution Time for HashMap.

3.3.3 Evaluation of Execution Time

Figure 3.19 illustrates how much faster HashMap executes compared to the
three other methods with a load of 60,000 loans, which equals to approxi-
mately 10 months of loan data. Not surprisingly, HashMap is the winner. It
runs the ETL processes 28 times faster than both Copy, and 55 times faster
than Inder. However, the PL/pgSQL function performs almost as good as
HashMap. The reason why HashMap runs that much faster is because it
minimizes the number of queries. we only need to communicate with the
DBMS at the beginning and end of the ETL processes. The reason for this
is the storing of the data warehouse keys for the edition, book, borrower,
status/type, and date dimensions in BLOBs. The data warehouse keys are
then stored in memory when the ETL processes are initialized. In the begin-
ning, we need to establish a connection to the operational system in order

CHAPTER 3. DATA WAREHOUSE

3.3. PERFORMANCE Page 55 of 163

to retrieve new loan data. Furthermore, the Blobs containing the mapping
between operational and data warehouse keys need to be retrieved. Once all
the processing has been carried out, we do a bulk load of the transformed
data into our data warehouse, as described in the Implementation section.

ETL Execution Time of 60,000 Loans

2500

2021 06 1939 056

2000

&
& 1500
c

8
Z 1000

S00

186,669 118,341
il : : :]
Incex Copy PLAy=GL function HashMap
Method Hames

Figure 3.19: ETL Execution Time for all Four Methods with 60,000 Loans.

3.3.4 Evaluation of Memory Usage

The memory usage of the fastest ETL processes is shown in Figure 3.20. The
amount of megabytes used for creating the HashMaps increases proportional
with the amount of loans to be processed.

The space usage of the serialized HashMaps is shown in Figure 3.21. The
amount of space used is connected with the amount of memory used when
the ETL processes executes. For example if the serialized HashMaps of the
keys and the data totally uses about 13 megabytes on the hard drive then
the memory usage will be about 32 megabytes. The reason for the larger
amount of memory used than the disk space used is the use of, e.g., keys and
hash codes in Java.

The data that is going to be sent to the DBMS with a COPY command is
also stored temporarily in memory in a File Buffer. However, this does not
increase the amount of memory used by the ETL processes because of data
being written to disk when the File Buffer is full.

When looking at the memory sizes of the HashMaps, we can see that the
biggest HashMaps are editionCRC, editionKeys, bookKeys, and transaction-
WareHouseKeys. The reason for the editionCRC being the biggest HashMap

CHAPTER 3. DATA WAREHOUSE

Page 56 of 163 3.3. PERFORMANCE

a0

25 —

20

0| o

10 i a0 40 50 G0 fid
Lozns (im1000)

Figure 3.20: ETL Memory Usage.

is because of the stored CRC values, which is 32 bit in length for each edition
(CRC32).

One can actually estimate the amount of memory used when processing a
given number of loans. This can be done using linear regression. The formula
calculated using linear regression for the ETL Memory Usage statistics is
shown in Equation 3.1.

The Equation 3.1 takes the number of transactions to be processed (z), and
returns the amount of memory in megabytes that is going to be used worst-
case by the ETL-processes.

f(r) = 1.93%107*x2z +13.912 (3.1)

The amount of memory used by the ETL processes will not be critical when
processing small chunks of data. This is because the process only need to load
the hash keys from the previous processed data and then only process the
new chunk of data. Furthermore, the possibility for getting new data that
needs to be stored in the hash maps decreases as more data is processed.
This is because of, e.g., loans referring to books that are already given an 1D
in the corresponding HashMap.

However, processing large amounts of data, say more than 2,500,000 trans-
actions, in one round of ETL-processes is not recommended because of high

CHAPTER 3. DATA WAREHOUSE

3.4. FUTURE WORK Page 57 of 163

ME

—b— Kays

/ﬂ_ " —=— Data

10 i 30 40 1] G0 64
Loare [in1000)

= = kR D A h - 0 WO

Figure 3.21: ETL File Sizes for Hashmaps.

memory usage. The amount of memory used for processing 2,500,000 transac-
tions is about 496 megabytes using Equation 3.1. However, 2,500,000 trans-
actions corresponds to about 25 years of transactions. Though, it is still
recommended to process data in chunks in separate rounds of ETL-processes
in order to reduce the memory usage. Another solution could be to use the
PL/pgSQL function instead, because it relies on the DBMS to take care of
the data processing.

3.4 Future Work

Not every feature listed in the design for the data staging area has been
implemented due to time constraints and limited access to data from AUB.
The following has not been implemented:

e Extraction of data directly from the base tables in the operational sys-
tem.

e Pattern matching.
e Further optimizations of the DBMS

e PL/pgSQL function alternative implementation

CHAPTER 3. DATA WAREHOUSE

Page 58 of 163 3.4. FUTURE WORK

The data must be extracted from the base tables in the operational system
in order to make the data warehouse work properly. This part was not
implemented because of only having access to a sample set of loan history.
The details of the sample set can be found in Appendix A.

Pattern matching could be done by, e.g., combining author names where only
a few characters differ.

Further optimizations of the DBMS can be done by tweaking the settings of
the PostgreSQL configuration files. This can decrease the execution time of
implementations using PL/pgSQL functions, indices and/or COPY.

An alternative implementation to the HashMap could be done by using the
PL/pgSQL function. This would solve the problem with high memory usage
when processing many transactions, because the PL/pgSQL function makes
use of buffer and query capabilities of the DBMS.

CHAPTER 3. DATA WAREHOUSE

Page 59 of 163

Association
Rule Mining

Association rule mining is a part of the data mining area and is used for
finding new information from existing data, e.g., stored in a database. The
information discovered by association rule mining is rules from a large col-
lection of data. The collection of data consists of transactions and each
transaction is a set of items. The rules show which set of items that coex-
ists in the different transactions. These co-existing items are also known as
intra-transaction patterns [30], i.e., patterns within the transactions in the
database.

The association rule mining can be used with the AUB data warehouse as
a foundation and thereby add further information to the AUB data ware-
house. The transactions in the AUB data warehouse are collections of books
borrowed together by the borrowers. The association rules mined from the
AUB data warehouse then show the patterns of books, i.e, the set of books
that are often borrowed together.

In the following sections association rules are introduced, different approaches
for mining association rules are explained along with an implementation, and
the performance of the association rule mining implementation is shown. This
chapter wraps up with two sections regarding related and future work.

CHAPTER 4. ASSOCIATION RULE MINING

Page 60 of 163 4.1. ASSOCIATION RULES

4.1 Association Rules

A short introduction to association rule mining is given in this section. As-
sociation rules are explained by an example, terms are introduced, and two
advanced approaches to mining association rules are explained.

4.1.1 Association Rule Example

Every day a library lends several number of books and each loan is registered
in the library database. It would be interesting to explore associations of
books that have been borrowed together. The process of finding such sets
of books is called Association Rule Mining. To be specific, imagine that we
have a borrower who is interested in thriller and adventure literature. The
borrower goes to the library and finds five books, which the borrower would
like to borrow. These are:

Lord of the Ring (LR)

The Dead Zone (DZ)

Harry Potter (HP)

e Hound of the Baskervilles (HB)

The Eyes of the Dragon (ED)

The capitalized letters in the parentheses are abbreviations of their corre-
sponding book titles. After the books have been registered for loan, the
borrower is issued a receipt on which those five books are listed along with
the time of return.

It is only interesting to know about those books which are often borrowed
together, thus association rule mining takes outset from two conditions: min-
imum support and minimum confidence. These two conditions serves to limit
the number of association rules found. A specific association rule is shown
below in order to explain by example:

HB = DZ

The left-hand side is known as the antecedent and the right-hand side is
the consequent. Minimum support states how many times a given set of

CHAPTER 4. ASSOCIATION RULE MINING

4.1. ASSOCIATION RULES Page 61 of 163

books should at least be borrowed together. Minimum confidence expresses
the strength of the rule and states how often the book on the right-hand
side should at least be borrowed whenever the book on the left-hand side is
borrowed. If the above support of the association rule is 20 and confidence is
75% it means that HB and DZ is borrowed together 20 times, and whenever
HB has been borrowed, then 3 out of 4 times DZ is also borrowed together
with it.

Often those association rules with the highest support and confidence are
indeed very obvious, thus it is often those association rules further down the
top list, which are of particular interest because they might not be that much
obvious and though still have a high support and confidence. To understand
why, it helps to draw a parallel to the daily shopping at the supermarket. In
this domain the items in an association rule are products. For instance, milk
and bread form an association rule with a very high support and confidence.
This rule is as such not interesting because it is an expected fact. Those
products which are not obviously correlated with each other and have high
support and confidence form the interesting association rules. This is also the
case with books. For instance, we presented association rules with the highest
support and confidence found during a meeting with AUB. They were not
surprised to see that library related books lie on top of the association rules
because those books are part of a set of books which is being borrowed each
semester by students from the library school. The interesting association
rules came further down the top list.

4.1.2 Association Rules terms

After having introduced association rules by example we will in the following
explain the terms, which are often used when talking about association rules.

Item equals to a single book.
Itemset equals to a set of books, which are borrowed together.

Candidate itemset is an itemset, where the number of occurrences of books
in the database has not yet been counted, thus it is unknown whether
it meets the minimum support.

Large itemset is an itemset, which meets the given minimum support.

Transaction is an event where a set of books are borrowed together on the
same day by the same borrower. What constitutes a transaction is a
transaction ID along with an itemset.

CHAPTER 4. ASSOCIATION RULE MINING

Page 62 of 163 4.1. ASSOCIATION RULES

Association rule Given a set of items I = {I, I, ..., I,,} and a database of
transactions D = {t1, %o, ..., t,} where t; = {I;1, Ija, ..., it} and I;; € I,
an association rule is an implication of the form X = Y where X, Y C I
are itemsets and X NY = 0.

Support of an item or (set of items) is the percentage of transactions in
which that item (or items) occurs.

support(ly) = count(Iy, D) (4.1)

count (I, D) is the number of transactions in which the itemset I oc-
curs in the database D.

Confidence for an association rule X = Y is the ratio of the number of
transactions that contain X U Y to the number of transactions that
contain X.

support(X UY)

confidence(X = Y) = support(X)

(4.2)

Hierarchy defines different levels for which association rule mining can be
applied.

Constraints are used in order to select subsets of transactions that should
be used for association rule mining.

The process of mining association rules consists of two main activities. First,
large itemsets meeting the specified minimum support must be found. Sec-
ond, based on these itemsets association rules meeting the specified confi-
dence are extracted.

4.1.3 Generalized Association Rules

There are very often hierarchies over the items used for association rule min-
ing. Hierarchies which apply to books were introduced in the Data Warehouse
chapter. An example of a hierarchy is the Edition hierarchy in Figure 3.11
on page 41. In the figure the example shows that a specific edition is a book,
a book belongs to a specific UDK level 3, UDK level 3 belongs to specific
UDK level 2, which belongs to a specific UDK level 1.

The hierarchies over the items can also be used when mining association
rules. This approach was introduced by Agrawal et. al. in [9]. Using this

CHAPTER 4. ASSOCIATION RULE MINING

4.2. FINDING LARGE ITEMSETS Page 63 of 163

approach the association rule mining is not restricted to finding associations
between leaf-level items in a hierarchy. The association rules can with this
approach be rules covering higher levels in the hierarchy. This is valuable
since rules at lower levels might not have minimum support and using the
higher levels might then lead to the discovery of new interesting rules that
have minimum support and thereby stronger rules.

4.1.4 Association Rules Constraints

Constraints can be used when mining for association rules. The association
rules can, e.g., be mined from a subset of loans. The subset can be specified
by supplying constraints such as a specific status and type of borrowers. The
status and type can, e.g, be Ph.D and Social Studies. Then all the loans
registered with this status and type are used for association rule mining.
Other constraints can be loans from a specific UDK or from a specific date
or time range.

Using constraints for association rule mining makes the association rules more
focused. The librarians can, e.g., with the constraints find the loan trends
of different groups of borrowers instead of the more general association rules
that cover all the borrowers. It is also possible to compare association rules
over time and by UDK. With constraints association rules can be discovered
that otherwise might have been hard to discover. For example, interesting
association rules can be difficult to discover when finding association rules for
all the books. However, if time constraints are used, an association rule can
be found within a given period. This could, e.g., be when Aalborg University
starts a new semester that different association rules would occur instead of
finding association rules for a whole year.

4.2 Finding Large Itemsets

When searching for association rules we need to find all sets of itemsets that
occur frequently in the data. Such itemsets are also known as large itemsets.
The sets of large itemsets form the foundation for mining association rules.

Large itemsets can be found by using different algorithms. The general idea
of the algorithms is to scan the database for each set of candidate itemsets
with a certain cardinality found in order to count their support.

CHAPTER 4. ASSOCIATION RULE MINING

Page 64 of 163 4.2. FINDING LARGE ITEMSETS

Figure 4.1: Any Large Itemsets must have Subsets that are also Large.

4.2.1 Apriori

The widely known algorithm for finding large itemsets is called Apriori, which
was presented by Agrawal and Srikant [8]. Apriori does not count all itemsets
that can be constructed from every single transaction in the database, instead
it tries to reduce the number of itemsets to be counted. The algorithm is built
on the fact that any large itemset must have subsets that are also large as
illustrated in Figure 4.1. If the itemset AC'D is large then all its subsets are
also large. Reversely, it will suffice only to construct new itemsets from those
already known to be large. These constructed itemsets are called candidate
itemsets. Those candidate itemsets for which their subsets are not large can
be discarded without counting their support in the database. This process is
known as pruning. The rest of the candidate itemsets are potentially large,
thus they need to be checked for being large by scanning the database once
to verify whether the minimum support is met.

4.2.2 LIQ

In the process of generating association rules the most time-consuming part
is finding the large itemsets. It is especially during the processes of counting
the candidate itemsets for each transaction in order to find L; and L, that
the time complexity for counting C; and, in particular, Cs is very high. We
have therefore investigated in retrieving L.; and L, by querying the database,
thus leaving the heavy job to the DBMS. We call our implementation for

CHAPTER 4. ASSOCIATION RULE MINING

4.2. FINDING LARGE ITEMSETS Page 65 of 163

Large Itemset Query (LIQ).

The bottleneck of Apriori is in particular the candidate generation followed
by the scanning of candidate itemsets in C5. For each transaction from the
database every single candidate itemset must be matched in order to update
their support count, which is a quite time consuming task. Here, the efficiency
is limited by how many rows are fetched from the database at a time. LIQ
circumvents this communication overhead of row fetching from the database
to the Java application by by keeping the candidate generation and pruning
task in the database such that only large itemsets are returned.

4.2.3 LIQ Hybrid

LIQ Hybrid combines the strengths of the Apriori algorithm and the LIQ
algorithm. Our previous research results proved that the execution time for
our sample data in pass 2 when running Apriori is very high. This is due
to the large number of candidate itemsets in Cy to be scanned as mentioned
above. We found out that the execution time for Apriori is very high in the
initial passes while the execution time of LIQ is very low in the beginning
and increases for each pass. However, the execution time for LIQ increases
for each pass. This is because each new pass introduces an extra join of data.

The LIQ Hybrid algorithm uses these facts to decrease the execution time.
Therefore, LIQ Hybrid switches from LIQ to Apriori right after pass 2, be-
cause if Lo is small then the pruning process of Apriori might reduce the
number of candidate itemsets significantly yielding an execution time much
less than the time it takes to join the data three times.

4.2.4 LIQ2

The biggest problem of LIQ is the multiple joins of data, which consists of all
transactions. For each pass yet another join is introduced in the execution
of LIQ, thus increasing the processing time significantly.

We have developed an algorithm LIQ2, which reduces the table size. This
reduces the processing time of the multiple joins. Instead of joining a table
containing all transactions with itself another approach is to gradually reduce
the number of transactions in the table. The size of the tables used for the
joins are reduced in size by creating new temporary tables containing all the
transactions of a specific minimum size. New tables are created since it is
faster than deleting from old tables. The approach finds L; from the original

CHAPTER 4. ASSOCIATION RULE MINING

Page 66 of 163 4.2. FINDING LARGE ITEMSETS

TID | Item (Ordered) | Frequent Items
1 |LR HP.DZ LR HP

9 | LR,HP LR, HP

3 HP HP

4 | LR HP LR, HP

Figure 4.2: Example for AUB.

transaction database while, e.g., L, is found from joining a copy of the original
transaction database containing all the transactions with minimum length 2.
The temporary tables are reduced in size for each pass and the reduction is
increased for each pass since a large amount of transactions have minimum
length 2 and fewer transactions have minimum length 3 etc.

4.2.5 FPGrowth

We also wanted to test the current fastest algorithm for finding large itemsets
against our algorithms. As mentioned in our previous report the FPGrowth
algorithm was the fastest algorithm for finding large itemsets when analyz-
ing large amounts of data. We therefore tested an implementation of the
FPGrowth algorithm made by [22].

The FPGrowth algorithm from Han, Pei, and Yin [22] uses another technique
than Apriori in order to retrieve the frequent itemsets from a database. FP-
Growth avoids generating a huge set of candidates which is a major bottleneck
as stated by [22]. Instead it makes use of an effective data structure to hold
items having minimum support. FPGrowth makes use of a Frequent Pattern
Tree (FP-tree), which is built from the data in the database.

There are three processes in the algorithm. These are shortly described here:

1. FPGrowth constructs a FP-tree by storing information about frequent
patterns in the data. An example of data from AUB is shown in Figure
4.2.

The FP-tree in Figure 4.3 shows the frequent patterns in the transaction
data. It shows that LR occurs three times indicated by the nodes
containing LR : 3. Furthermore, there are two sub nodes: one sub
node where HP occurs three times with LR and another sub node
where HP occurs alone.

CHAPTER 4. ASSOCIATION RULE MINING

4.2. FINDING LARGE ITEMSETS Page 67 of 163

Figure 4.3: FP-Tree Example.

2. FPGrowth uses an FP-tree-based pattern mining method called "FP-
Growth”. The method starts from a frequent length-1 pattern, con-
structs its own conditional FP-tree and performs mining recursively
with such a tree.

3. FPGrowth does the searching in a partitioning-based and divide-and-
conquer method instead of the Apriori bottom-up generation of fre-
quent itemsets.

The benefit of producing a frequent pattern tree is that we make a compressed
copy of the patterns of the data in the database, and thereby avoids going
through the whole database in order to find the frequent patterns. Instead,
we only need to scan the database once in order to generate the frequent
pattern tree, and afterwards we can use the FP-tree to find the frequent
patterns we need given a specific support value.

In the following we point out the main weaknesses and strengths as explained
in [22]. Interested readers are encouraged to read the article.

Weaknesses The FP-tree in the algorithm needs two scans of a transaction
database and this may represent a nontrivial overhead. The first scan
collects the set of frequent items, and the second constructs the FP-tree,
which comprises the largest overhead. Furthermore, FP-tree needs to

CHAPTER 4. ASSOCIATION RULE MINING

Page 68 of 163 4.3. IMPLEMENTATION

be in memory in order to scan it fast, though you could construct a disk-
resident FP-tree. However, another disadvantage of using FPGrowth
is that you cannot always fit the FP-tree into memory.

Strengths FPGrowth scales well because it only needs to generate a fre-
quent pattern tree. The Apriori algorithm has to scan the whole
database when finding frequent itemsets and it cannot avoid generating
and testing candidates. The reason that FPGrowth scales very well is
that when the support threshold goes down the number as well as the
length of frequent itemsets increase dramatically. Apriori must han-
dle large amounts of candidates and the processing of these candidates
becomes very expensive. This also holds when the data amount in-
creases, because then Apriori needs to generate more candidates, while
FPGrowth only needs to update its FP-tree with frequent patterns
counts. Other advantages of using FPGrowth are that the FP-tree
is much smaller than the original database and thereby saves memory
and database scanning. It also uses a pattern growth method where the
major operations are prefix count adjustment, counting, and pattern
fragment concatenation. Lastly, it makes uses of a divide-and-conquer
technique that reduces the size of subsequent conditional pattern bases
and the conditional FP-trees.

There are currently two approaches for implementing the FPGrowth algo-
rithm. The first is to make use of a loose-coupling approach where the FP-
Growth algorithm is run in, e.g., Java code that is connected with a database.
The second is to implement a SQL-based FPGrowth algorithm, which runs
in the DBMS and makes use of the query processing facilities. The imple-
mentation we use relies on the loose-coupling approach.

4.3 Implementation

The association rule mining uses the transactions defined in the data staging
area, see Section 3.1.2. This leads to a minor complication since the same
book can exist more than once in a single transaction. This is due to the
fact that a borrower can borrow more than one edition of the same book
in a single transaction. In order to avoid having duplicates the association
rule mining creates a temporary table defined on the loan fact table and the
edition dimension table. This way we focus on a higher level of abstraction.

Instead of finding association rules for the individual editions we go up one
level to find association rules for books to avoid many association rules with

CHAPTER 4. ASSOCIATION RULE MINING

4.3. IMPLEMENTATION Page 69 of 163

low support. For instance we could have a number of association rules where
several editions of one book associates with several editions of another book.
Focusing on the book level will give us one association rule, which tells us
that the first set of books associate with the second set of books. The support
will also be higher because we have aggregated the editions.

Here is shown the general query for creating the temporary table containing
transactions and books:

CREATE TABLE

1

2 loanUnique

3 AS

4

5 SELECT

6 edition . bookID,

7 loan. transactionID
8 FROM

9 loan,

10 edition

11 WHERE

12 loan. editionID = edition.ID
13 GROUP BY

14 loan. transactionID,
15 edition . bookID

16)

Generalization- and Constraint-based mining

As stated above the temporary table is named loan Unique because each trans-
action contains distinct books due to the GROUP BY-clause. Here, the gran-
ularity is books but it is also possible to have an higher level of abstraction.
Instead of grouping by bookID, we could group by udkID. Based on the found
large itemsets, we will be able to mine association rules across UDKs instead
of books. Yet another possibility is to mine association rules conditioned by
a given status and type combination of the borrowers in order to see which
books certain borrowers, e.g., psychologist students at the 5th semester, tend
to borrow. Again, we can look at an higher level of abstraction and consider
which classes of books, i.e. UDK, certain borrowers tend to borrow. These
two additional variations calls for a total of three different kinds of temporary
tables, which can be found in Appendix C. All variations have been imple-
mented. In our description we focus on finding association rules for books.
It is only a matter of replacing the above loanUnique with one of the other
variations to find other kinds of association rules.

Section 4.3.1 explains how the large itemsets are found. Section 4.3.2 explains

CHAPTER 4. ASSOCIATION RULE MINING

Page 70 of 163 4.3. IMPLEMENTATION

how LIQ may be improved by making a LIQ2 implementation that might
improve the performance.

4.3.1 Large Itemset Query

We will in the following explain how our implementation of LIQ works. The
next two sections explain how to retrieve L; and L, from the database fol-
lowed by a section generalizing the queries such that LIQ can be used to
retrieve any size of large itemsets.

Retrieving L, from database

LIQ query L; from the database. The query is as follows, where the min-
Support is the specified minimum support:
1 SELECT
2 11.bookID AS item]1,
3 COUNT(11.bookID) AS weight
4+ FROM
5 loanUnique AS 11
¢ GROUP BY
7 11. bookID
s HAVING
9 COUNT(11.bookID) >= minSupport

The query only selects those items, which occur at least the number of times
specified by the minimum support.

Retrieving L, from database

The lower we specify the minimum support the more large itemsets can be
found. It is especially computationally expensive when finding L, while the
minimum support is set very low. This is because |Cy| is huge. If e.g. |L4|
is 500 then |Cy| will be 124,750 ((500 * 499) / 2). In order to find Ly using
the classic Apriori algorithm, we need to store all the candidates in C5 in the
hash tree, scan the database and update the weights in the hash tree given
each transaction. This yields a significant performance slowdown due to the
communication overhead between the DBMS and our Java application.

Instead, we can query Lo from the database. The query used is the following,
where minSupport is the minimum support:

CHAPTER 4. ASSOCIATION RULE MINING

4.3. IMPLEMENTATION Page 71 of 163

SELECT
11.bookID AS iteml,
12.bookID AS item2,
COUNT(12.bookID) AS weight
FROM
loanUnique AS 11,
loanUnique AS 12
WHERE
11 . transactionID = 12.transactionID AND
11.bookID > 12.bookID
GROUP BY
11.bookID,
12. bookID
HAVING
COUNT(12.bookID) >= minSupport

© 00 N 3 oA W N

e e e e =
TR W N = O

Line 2 - 4 select pairs of items and their number of co-occurrences. This is
done by joining the view loanUnique with itself as indicated in line 6 and 7.
The join is conditioned in line 9 - 10 such that two items should have the
same transactionlD and we only want the occurrence of two items to appear
once in our selection. The rows are grouped by the bookID of the two items
in line 12 - 13. In line 15 we specify that we only want those pairs of items
that meet the minimum support.

Generalizing the retrieval of Lx

When matching the queries of L; and Ly, we can see a pattern emerge.

e In the SELECT clause we only select the number of items of interest
and their number of occurrences.

e The FROM clause joins the view loanUnique with itself as many times
as the number of items in the SELEC'T clause.

e In order to ensure that the selected items are different from each other
we have the WHERE clause, which is divided into two parts.

1. Ensure that the items occurs in the same transaction, thus the
equality between transactionlDs.

2. Ensure that the set of items are only selected together once, thus
the greater than sign between bookIDs.

The WHERFE clause is only needed in order to ensure correct joins

of the view loanUnique with itself, thus the query for L; contains no
WHERF clause.

CHAPTER 4. ASSOCIATION RULE MINING

Page 72 of 163 4.3. IMPLEMENTATION

e The found rows are grouped by the bookID of the item(s).

e The HAVING clause ensures that we only get those itemsets that meet
a given minimum support.

This pattern enables us to generalize the retrieval of L; and Ly such that it is
possible to retrieve large itemsets of any size, Lx, from the database without
the previous overhead. The pseudo query is as follows, where X is the size of
the large itemsets to be found:

SELECT
11.bookID AS item],
12.bookID AS item2,

IX bookID AS itemX,

COUNT (tX.bookID) AS weight
FROM

loanUnique AS 11,

loanUnique AS 12,

© 0 N O ;oA W N e

-
o

loanUnique 1X
WHERE
(11.transactionID = 12.transactionID = ... = 1X.transactionID) AND
(11.bookID > 12.bookID > ... > 1X.bookID)
GROUP BY
11.bookID,
12. bookID,

e e o e
® N o W N =

1X.bookID
HAVING
COUNT(1X.bookID) >= minSupport

NN
= O ©

The strengths and weaknesses for LIQ are the following:

Weaknesses Multiple joins are being made for each pass, and complete set
of transactions is used for each join. Therefore, it does not scale well.

Strengths The DBMS efficiently generate and prune the candidate itemsets
and returns large itemsets. The DBMS is used and we therefore make
use of the powerful query processing facilities.

4.3.2 LIQ2

The biggest problem of LIQ is the multiple joins of loanUnique, which con-
sists of all transactions. For each pass yet another join is introduced in the
execution of LIQ, thus increasing the processing time significantly.

CHAPTER 4. ASSOCIATION RULE MINING

4.3. IMPLEMENTATION Page 73 of 163

By reducing the size of loanUnique we might reduce the processing time of
the multiple joins. Instead of joining a table containing all transactions with
itself we gradually reduce the number of transactions. To be specific, in
the first pass L; is found by querying loanUnique. Then the following Ly,
X > 1, are found be querying temporary tables containing transactions with
minimum length X. The process of table reduction continues until no more
large itemsets are found.

The below pseudo query demonstrates how the temporary tables are created
for each pass:

1 CREATE TABLE tempTableX AS

2 SELECT

3 tempTable(X—1).editionid,

4 tempTable(X—1).transactionid
5 FROM

s (SELECT

7 transactionid

8 FROM

9 tempTable(X—1)

10 GROUP BY

11 transactionid

12 HAVING

13 count(transactionid) >= X

14) AS q,

15 tempTable(X—1)

16 WHERE

17 g-transactionid = tempTable(X—1).transactionid;

We insert the transactions from the prior transaction database having mini-
mum length X into the new temporary table.

Generally, the size of the table containing the transactions is only reduced
slightly after the first pass because many transactions contain more than 2
items. Already after the second pass the size is reduced because much fewer
transaction contains 3 items. This kind of table reduction continues as we
proceed through the pass numbers, i.e., searching for large itemsets of higher
and higher cardinality.

The strengths and weaknesses for LIQ2 are the following:

Weaknesses Multiple joins are still being made for each pass, therefore it
scales not so good. There is a overhead when creating the temporary
tables, because of I/O time.

Strengths The DBMS efficiently generate and prune the candidate itemsets
and returns large itemsets. The DBMS is used and we therefore make

CHAPTER 4. ASSOCIATION RULE MINING

Page 74 of 163 4.4. PERFORMANCE

use of the powerful query processing facilities. We also reduce the
number of transactions for each pass.

4.4 Performance

To compare the relative performance of the algorithms we carried out several
test cases. The configuration of the test machine was the following:

e AMD Athlon, 32-bit processor, running at 1333 Mhz.

512 MB RAM.

MS Windows 2000 Professional SP4 with 4 GB of swapfile.

Java Virtual Machine version 1.4.

The DBMS was running on the same machine and used the PostgreSQL
DBMS using Cygwin.

It should be noted that PostgreSQL does not support Windows but UNIX-
based systems, thus we used Cygwin which acts as a Linux emulation layer
to access the PostgreSQL DBMS. This adds more processing time to the
performance tests.

We compare the performance of Apriori, LIQ, and LIQ2 based on the test
data set from 4.4 and introduce a new hybrid implementation in the following
sections called LIQ Hybrid. LIQ Hybrid is a combination of Apriori and the
best of LIQ and LIQ2.

The test data set from 4.5 is used to test the scalability of the found LIQ
Hybrid against FPGrowth, which is a more efficient algorithm for finding
large itemsets. We do this to see whether our implementation scales as well
as FPGrowth, which is known to scale well with an increasing number of
transactions [22].

The abbreviations of the table headers is explained in the following:

e |D|: Number of transactions.
e |T4|: Average transactions size.

o |L4|: Average large itemsets size.

CHAPTER 4. ASSOCIATION RULE MINING

4.4. PERFORMANCE Page 75 of 163

DI | [Tal | [Lal | 1|
25,000 | 3 | 3 12,500

Figure 4.4: Performance Test Data Set.

ID| | |Tal | [La] | [T
100,000 | 7 | 3 | 50,000
150,000 | 7 | 3 | 50,000
200,000 | 7 | 3 | 50,000
250,000 | 7 | 3 | 50,000
300,000 | 7 | 3 |50,000
350,000 | 7 | 3 | 50,000
400,000 | 7 | 3 |50,000

Figure 4.5: Scalability Test Data Set.

e |I|: Number of items.

We are using a synthetic data generator which is built by ARMiner [14]. It
makes use of the algorithm for generating synthetic databases described by
Agrawal and Srikant [8]. The algorithm starts with building a potential set
of large itemsets, which is later used for generating the actual transactions
using a correlation parameter and corruption parameter. The correlation is
used for the large itemsets and the corruption is used for corrupting the large
itemsets added to a transaction.

In our tests we choose to set the number of potential large itemsets to 100,000.
Furthermore, we kept the default values for the correlation and corruption
parameters.

4.4.1 Comparing Apriori, LIQ, and LIQ2

The execution time of Apriori and LIQ will be discussed in the following based
on a minimum support set from 26 down to 20. The interval of minimum
support is chosen because it gives a reasonable amount of large itemsets.

CHAPTER 4. ASSOCIATION RULE MINING

Page 76 of 163 4.4. PERFORMANCE

Comparing Apriori, LIC}, and L1G2

10000

1000

£ —e— Apriori
Ry S N _ ;,/ e L0
0] ——LI02
10
1 T T T T T T
25 25 24 23 22 21 20
Support

Figure 4.6: Execution Time of Apriori, LIQ, and LIQ2.

Apriori

The execution time of Apriori is proportional to the decrease in minimum
support. The lower support the more candidate itemsets are generated which
is reflected in the increase of execution time of Apriori in Figure 4.6. Note
that a logarithmic scale has been used. With a lower minimum support the
size of Ljy_1 gets larger, which results in an even larger Cy. Actually, the
number of candidate itemsets before pruning is:

(Ll * ([Lga| = 1)
2

|Ck| = (4.3)
In Equation 4.3, k£ is the pass number. The pruning yields a smaller C}
except when & = 2 because each subset of the candidate itemsets of size 2 is
large.

LIQ

The bottleneck of Apriori is the candidate itemsets generation and the up-
dating of the hash tree storing the candidate itemsets. LIQ does not spend
time in candidate generation as it queries the DBMS for large itemsets. Its
execution time is relatively stable primarily depending on the time it takes

CHAPTER 4. ASSOCIATION RULE MINING

4.4. PERFORMANCE Page 77 of 163

Execution time at support 20

10000000

1000000 /\
100000 /
‘E‘ 10000 /'M —e— Apriar
E '/f \‘\ -
1000
g —— L

Figure 4.7: Execution Time of Apriori, LIQ and LIQ2 at Support 20.

to join k loanUnique views with itself. The stability in execution time is
clearly expressed in Figure 4.6 using a logarithmic scale:

e Support 21-26 yield at most L3 with a relatively constant execution
time of approximately 80 seconds.

e Support 20 yields at most Ls. The execution time increases to approx-
imately 170 seconds.

For each pass k, LIQ queries the DBMS to find L. It stops when the returned
Ly, is empty or the size of Ly is 1, thus LIQ does one more (k + 1) pass
than the cardinality of the largest large itemset.

LIQ2

We tried to increase the performance of LIQ by making use of temporary
tables for finding large itemsets. However, LIQ2 as shown in Figure 4.6 does
not perform any better than LIQ. Actually, LIQ2 performs worse than LIQ.
The reason for the increase in execution time is the I/O time needed for
creating the temporary tables in the DBMS.

4.4.2 Finding the Switching Point

In Figure 4.7 the execution time of Apriori, LIQ and LIQ2 is listed with
logarithmic scale for each pass given a minimum support of 20. It would be
interesting to see when it will pay off to switch from LIQ or LIQ2 to Apriori.
Such a hybrid might keep the overall execution time low.

CHAPTER 4. ASSOCIATION RULE MINING

Page 78 of 163 4.4. PERFORMANCE

The execution time for pass 2 when running Apriori is very high. This is
because there are 2,416 itemsets in L; yielding 2,917,320 candidate itemsets
in Oy according to Equation 4.3. All the candidate itemsets in Cy have to
be stored in the hash tree since pruning is not applicable. The hash tree is
then updated for each transaction in the database during the scanning. The
time it takes to update the hash tree depends on how many of the candidate
itemsets also are in the transaction. The execution time after pass 2 decreases
for Apriori since the number of large itemsets decreases. The number of large
itemsets in Lo is 50, which is significantly less than the number of itemsets
in Ll-

The execution times for LIQ and LIQ2 increase for each pass. This is because
each new pass introduces an extra join of the loanUnique as described in
Section 4.3.1. Apriori is very time consuming in the initial passes while the
execution time of LIQ is very low in the beginning and increases for each
pass. LIQ2 takes a little more execution time because of the extra overhead
for creating the tables in each pass. The overhead happens because of the
I/O time the DBMS uses for copying the data, and it is not being sufficiently
compensated by the joins of smaller tables, thus we have decided to make an
hybrid out of LIQ and Apriori.

As illustrated in Figure 4.7 the execution time of Apriori and LIQ are fairly
equal in pass 3, which suggests to either use Apriori or LIQ in this pass.
We have chosen to make the switch from LIQ to Apriori right after pass 2,
because if Lo is small then the pruning process of Apriori might reduce the
number of candidate itemsets significantly yielding an execution time much
less than the time it takes to join loanUnique three times.

4.4.3 LIQ Hybrid

Below we have the algorithm for LIQ Hybrid:

LIQHybrid(I,D,S)
L =0

Run LIQ to find Lyand Ls;
L=LULy;
L=LULy;

while |Lj| > 1, where k > 2
Run Apriori to find Lyy1;
L= LU Li;
k=k+1;

© 0 N O G s W N =

e e =
w N = O

return L;

CHAPTER 4. ASSOCIATION RULE MINING

4.4. PERFORMANCE Page 79 of 163

LIQ vs. Hybrid

180

160 d

140

120

100 —— L0
a0 — — ——— —a— Hyhrid

60

Seconds

40

20

26 25 24 23 22 21 20
Support

Figure 4.8: Execution Time of LIQ and LIQ Hybrid.

LIQ Hybrid achieves the fastest execution time, as it combines the strengths
of the two algorithms. This is clearly depicted in Figure 4.8, where the per-
formance of LIQ and LIQ Hybrid is compared. As the difference in execution
time of LIQ and LIQ Hybrid is not as significant as it was the case with LIQ
and Apriori, we have switched from a logarithmic scale to normal scale.

LIQ Hybrid outperforms LIQ for all supports from 26 down to 20. From
support 26 down to 21 the largest large itemset has cardinality three. At
support 20 the execution time of LIQ increases because now the cardinality
of the largest large itemset has increased by one, which means an extra join
of loanUnique view has been introduced. The execution time of LIQ Hybrid
is kept constant from support 26 down to 22. Hereafter, the execution time
increases with merely 5 seconds. Presumably, this is due to a small increase
in the number of itemsets to be scanned.

4.4.4 Scalability of LIQ Hybrid vs. FPGrowth

As LIQ Hybrid outperforms LIQ it would be interesting to see how well LIQ
Hybrid scales. For this purpose we have used the test data from Figure 4.5.
Furthermore, we also utilized the FPGrowth algorithm using the source code
from [14]. The source code was changed in order to be able to connect to our
dataset in a database instead of using files. We wanted to test the scalability
of the FPGrowth algorithm and compare it to LIQHybrid. However, the
implementation of the FPGrowth algorithm from [14] is only using the loose-
coupling approach.

CHAPTER 4. ASSOCIATION RULE MINING

Page 80 of 163 4.4. PERFORMANCE

Scalability for Transactions

1800

1600 W
1400 /
1200
0 ot)
~ 1000 —— LIQHybrid
@
.E 800 // —— FP-growth (loose-coupling)
600
400 //
200
0 /

100 150 200 250 300 350 400

Number of transactions {in thousands)

Figure 4.9: Scalability of LIQ Hybrid and FPGrowth.

The result of the scalability test is depicted on Figure 4.9. It seems that
the execution time of LIQ Hybrid is faster than FPGrowth until about
225,000 transactions. However, as the number of transactions increases be-
yond 225,000 transactions the performance of LIQ Hybrid decreases and FP-
Growth becomes faster than LIQ Hybrid.

In figure 4.10 the support scalability for LIQ Hybrid and FPGrowth is shown.
The set of test data for these tests is the one in Figure 4.4. The support was
decreased from 10 to 5 in order to show the strengths and weaknesses of both
algorithm. LIQ Hybrid is faster than FPGrowth when the support value is
high. However, as the support decreases LIQ Hybrid has to make joins of
larger tables and possibly more joins if we get larger large itemsets. This
will result in an increase in the amount of itemsets being returned to the
Apriori algorithm leading to an increase in execution time. However, when
using FPGrowth the execution time scales more linearly because FPGrowth
builds its FP-tree on the number of transactions every time it is run. The
extra overhead in the FPGrowth algorithm is because of the extraction of
large itemsets from the FP-tree.

Therefore, the LIQ Hybrid algorithm is faster when computing large item-
sets for small amounts of data, and FPGrowth is better for computing large
itemsets for large amounts of data. With the current amount of loans per
year from AUB LIQ Hybrid could be used for 6-7 years of loan data before
FPGrowth is faster.

CHAPTER 4. ASSOCIATION RULE MINING

4.5. EXTENSION OF FPGROWTH Page 81 of 163

Scalability for Support

600

500 %

400

—e— LIQHybrid
—a— FP-Growth (loose-coupling)

Time (s)
g
I

200

100 ﬁ?“\‘\

Support

Figure 4.10: Support Scalability of LIQ Hybrid and FPGrowth.

4.5 Extension of FPGrowth

In this section, we will describe an extension of the FPGrowth algorithm
for finding large itemsets. We will include a description of a SQL based
FPGrowth approach that uses the same idea as LIQ such that performance
can be increased when running the algorithm using the DBMS.

4.5.1 SQL Based Frequent Pattern Mining with FP-
Growth

Another approach when implementing the FPGrowth algorithm is to make
use of a DBMS as in [32], which describes how to get an efficient performance
by the utilization of SQL based frequent pattern mining using the FPGrowth
approach.

One weakness of the FPGrowth algorithm is the memory usage. This is
because the algorithm has to keep an overview over the database in memory
in order to find the Frequent Patterns. Another weakness is that every time
the algorithm is run it has to scan all the transactions in order to find the
itemsets that are usable given the minimum support.

These two weaknesses can be handled more efficiently when using a DBMS.
The DBMS can select the transactions in an efficient way by making use
of indices and efficient execution algorithms. Furthermore, it is possible
to store the FP-tree, which is the overview over the data, in the DBMS.
Two approaches are possible. The first is to insert all frequent itemsets into

CHAPTER 4. ASSOCIATION RULE MINING

Page 82 of 163 4.6. FUTURE WORK

another table one by one. The second is to make use of a temporary table,
which includes extra information about the itemsets in the transaction table.
This makes it possible to avoid testing each frequent itemset and instead
make use of the query processing capabilities of the DBMS.

The FPGrowth algorithm consists of two processes. First, a FP table is
constructed. Second, the Frequent Patterns are extracted from the FP table.
In the SQL based FPGrowth approach the implementation is done using three
algorithms in the DBMS. The first algorithm creates a new table consisting of
frequent transactions that are sorted in descending order by frequency. The
second algorithm constructs the FP table using the FPGrowth algorithm.
The third algorithm mines the FP table for frequent patterns also using the
idea in the FPGrowth algorithm.

The performance of the SQL-based FPGrowth algorithm shows that it has
better performance than the loose-coupling approach of the FPGrowth and
the Apriori algorithm. Furthermore, the SQL-based FPGrowth algorithm
can scale much better than the two other algorithms.

Weaknesses This algorithm still has the same weaknesses as the original
FPGrowth algorithm. However, the algorithm can run more efficiently
because of being executed in a DBMS and because of making use of
the query processing of the DBMS.

Strengths The memory limitations are not a problem anymore because of
using disk space for storing the FP-tree instead. Furthermore, when
running the FPGrowth in a DBMS it is possible to make use of the
powerful query processing capabilities in the DBMS. The DBMS also
makes it possible to use memory buffers in order to increase the perfor-
mance of the queries. The SQL-based FPGrowth algorithm has better
performance and scalability than the loose-coupling approach of the
original FPGrowth.

4.6 Future Work

In this section we will go through the different improvements that can be
made to the algorithms for finding association rules.

CHAPTER 4. ASSOCIATION RULE MINING

4.6. FUTURE WORK Page 83 of 163

4.6.1 New Hybrid between LIQ and FPGrowth

One way to increase the performance of LIQ and FPGrowth could be to de-
velop a hybrid between the two algorithms. The hybrid could then make use
of the strengths of LIQ when computing small amounts of data. When the
amount of data increases a switch can be made to make use of the SQL based
FPGrowth algorithm. Furthermore, one could develop a dynamic switching
technique that makes use of different parameters for choosing the most op-
timal switching point. As an example the parameters could be the support
value and amount of data being processed in order to choose whether LIQ
or FPGrowth should be used.

The new hybrid would combine the strengths of the two algorithms. This
hybrid algorithm could be used when the amount of data from AUB increases
even more. As seen in the experiments, the FPGrowth algorithm is slower
than LIQ Hybrid when the support value increases and this could be another
reason for using the hybrid algorithm.

4.6.2 Privacy Preserving Mining of Association Rules

As we have written in Chapter 2, the Danish law of privacy must be obeyed.
This means that we must protect a user’s identity in the system in order to
uphold anonymity. It is therefore important that we do privacy preserving
mining of association rules. This makes it possible to still find association
rules and at the same time makes it possible to protect the users’ identities.

We have therefore looked at an approach proposed by [6] that proposes a
technique where the data is randomized to preserve privacy of individual
transactions. However, we have chosen not to implement the algorithm be-
cause we wanted to prioritize other things such as optimization of our existing
algorithms higher.

[6] have analyzed the nature of privacy breaches and proposed a class of
randomization operators that are more effective than uniform randomization
in limiting the breaches. They derive a formulae for an unbiased support
estimator and its variance, which allows them to recover itemset supports
from randomized datasets. The technique proposed can be incorporated into
our association rule mining algorithm. However, a deeper understanding of
the technique is needed.

We will now give a short overview over the technique that [6] proposes:

The task is to find all frequent itemsets, while preserving the privacy of

CHAPTER 4. ASSOCIATION RULE MINING

Page 84 of 163 4.6. FUTURE WORK

t= [abchijme]

t= [bhim|[=aBLweEnvh. .|

Figure 4.11: Privacy Preserving Association Rules Mining: Cut and Paste
Randomization.

individual transaction. We solve the problem by:

e Inserting many false items into each transaction.

e Hiding true itemsets among false ones.

The technique can also be called "Cut and Paste Randomization”. The gen-
eral algorithm constructs a new transaction ¢’ from a given transaction ¢ of
size m.

The algorithm does the following:

e Choose a number j between 0 and K, (cutoff);
e Insert j items of ¢ into ¢';

e Each randomized item is included into ¢’ with probability p,,.

The choice of K,, and p,, is based on the desired level of privacy.
An example could be as the one shown on Figure 4.11.

Then, in order to recover the original support of an itemset, we need ran-
domized supports of its subsets. The original support can then be estimate
using a Partial Support formula and a Transition matrix as proposed in [6].

The last thing to do is to choose how many items that need to be added to
be protect privacy enough. This can be calculated using a formula that relies
on a privacy breach analysis.

It is then possible to preserve privacy and still find frequent itemsets. How-
ever, the technique proposed by [6] will give false positives and false drops.
False positives are itemsets that are not true, and false drops are true item-
sets that are removed by the technique. Though, this relies on the privacy
breach level. A balance between the privacy breach level and the number of
false drops and false positives must be chosen.

CHAPTER 4. ASSOCIATION RULE MINING

4.6. FUTURE WORK Page 85 of 163

4.6.3 Sequential Patterns

Beside mining association rules it is also informative to mine sequential pat-
terns. Association rules are intra-transaction patterns while the sequential
patterns are inter-transaction patterns [30]. This means that the sequential
patterns show the relations between the transactions instead of just the pat-
terns within the transactions. A sequential pattern could, e.g., be "5% of
the borrowers borrowed ”Lord of the Ring”, then "The Dead Zone”, and then
"Harry Potter”. This information can help the librarian understand how the
borrowers tend to borrow books not just within transactions but also over a
longer periods covering several transactions.

In [30] an algorithm is described for finding sequential patterns. This algo-
rithm can also be applied for the AUB data by ordering the transactions by
time. Before applying an algorithm for sequential pattern mining more loan
history must be added then is available in the sample data set from AUB.
This is due to the fact that the sample data set only contains 10 months of
loan history and therefore likely only contains few sequential patterns with
high support.

CHAPTER 4. ASSOCIATION RULE MINING

Page 87 of 163

Recommendation

In Chapter 4 we explored association rule mining, which concerned the books
that are borrowed together in the same transactions based on a given min-
imum support and minimum confidence. This chapter further investigates
the relationships between books based on ratings given by borrowers over
time and the contents of the books. Before getting into too much detail, an
example will be introduced, which the rest of this chapter refers to.

Imagine that we have the same borrower from Chapter 4, who would like to
read some thrillers and decides to search for such books. The borrower finds
the book The Dead Zone, which suits the borrower’s taste. At this point it
would be interesting to be able to offer him a list of books similar to The
Dead Zone, which he has not borrowed before. This list could be ordered in
such a way that those on top of the list are those which most likely suits his
taste.

In order to provide such a service, some data analysis techniques have to be
applied. These techniques are within the field of Collaborative Filtering (CF)
[10]. In general, CF recommendation systems apply data analysis techniques
in order to recommend relevant items for a particular user for instance in
the shape of a top list. For AUB, items are books and users are borrowers.
The basic idea is to provide book recommendations based on the opinions of
other borrowers.

Seen from a business point of view, e.g. Amazon, the key motivation of using
CF algorithms is to make more money. This is achieved by pushing relevant
books to the customers, thus making it easier and more comfortable to find
interesting books. With such a service the business organization can achieve
customer loyalty and preferences, which increases the possibility that the

CHAPTER 5. RECOMMENDATION

Page 88 of 163 5.1. RECOMMENDATION

customer will return to buy more books and increase the average number of
books per order.

AUB is a free public research library and as such has no intention of making
money out of their borrowers. However, the more loans they can accom-
plish the easier it will be to request for more funds. Nevertheless, their main
objective is to provide better service by making it easier for borrowers to
borrow more books and those books which are borrowed have a high rele-
vancy. To support their goal we have implemented a recommendation system
similar to those discussed in [10], which argues for the item-based approach
rather than the user-based approach. We will not get into detail of either
approaches. Interested readers are encouraged to read the article. However,
the item-based approach needs large amount of data to work satisfactory.
The sample data which we have been provided by AUB is not enough data
for the item-based approach to work at best, thus we have implemented a
content-based approach in order to compensate for this case.

The next section formally describes the techniques used, followed by a sec-
tion regarding our implementations, performance and evaluation of these, a
section about related work, and finally, a section about future works, where
improvements are suggested.

5.1 Recommendation

In the following two subsections we will describe two approaches for finding
similar books. The first approach is item-based and is based on the rating
of books performed by the community of borrowers. The second approach is
content-based and is based on the equality of the attributes describing the
books.

5.1.1 Item-based Collaborative Filtering

The starting point is a borrower-book matrix as depicted in Figure 5.1, where
we along the rows have a list of borrowers U = {Andrew, Betty, Chandler,
Denise, Edward, Francise} and along the columns have a list of books I =
{DZ, LR, HP, HB, ED, It}, which are abbreviations for The Dead Zone, Lord
of the Ring, Harry Potter, Hound of the Baskervilles, Eyes of the Dragon and
It, respectively. A value in a cell expresses the rating given by a particular
borrower on a particular book. The rating can be of either implicit or explicit
nature. Explicit rating is when a borrower explicitly has rated a book for

CHAPTER 5. RECOMMENDATION

5.1. RECOMMENDATION Page 89 of 163

DZ | LR HP | HB | ED It
Andrew 2 3 1
Betty 1 3 2
Chandler
Denise 1 5 1 1
Edward
Francise 4 2 4 4

Figure 5.1: Borrower-book Matrix with Rating Scores.

i1 |29 | -+ zn
Ui 3 5
U9 5
Um | 2 | 4

Figure 5.2: User-item Matrix with Rating Scores.

instance by assigning a numeric score between 1 and 5, where 1 is very
bad and 5 is very good. An implicit rating can be obtained by deducing a
borrower’s behavior for instance based on the borrower’s browsing pattern
telling which books the borrower has browsed through and the number of
revisits of each page. As we can see from Figure 5.1 Betty has rated DZ with
a rating score of 1 and Francise has rated It with a rating score of 4.

The borrower-book matrix in Figure 5.1 can be formally expressed as in
Figure 5.2, where we along the rows have a list of m users U = uy, uo, . . ., U,
and along the columns have a list of n items I = 41,49, ...,%,. Each user u;
has a list of items I, which the user has rated. Furthermore, I,, C I, and
I,,; can be empty, if the user has not rated any items.

The task of CF algorithms is to find item likeliness for an active user u, € U.
The likeliness is expressed in two forms:

Prediction is a numerical value, F, ;, expressing the predicted likeliness of
item 4; not belonging to I,,, for the active user u,. This predicted value
is within the same scale as the rating scores provided by u,.

Recommendation is a list of IV items, I, C I, that the active user will
probably like the most, where I, N I,, = .

CHAPTER 5. RECOMMENDATION

Page 90 of 163 5.1. RECOMMENDATION

Most similar items
DZ LR, HP, HB
LR DZ, HP, HB

Figure 5.3: Conceptual View of Stored Similar Items.

In the following similarity and prediction computations are explained.

Similarity Computation

Prediction computation are based on item similarity values. We use the
adjusted cosine similarity formula from [10], which basically computes the
cosine value of the angle between two vectors, where each vector represents
an item and the elements of the vector is the rating scores from each user. It
is adjusted because the average rating is subtracted from each rating score.
The closer the two vectors are to each other, i.e., high cosine value, the more
similar they are. The adjusted cosine similarity from Equation 5.1 contains
the following variables not previously explained. R, ; is the rating given by
user u on item i. R, ; is the rating given by user u on item j. R, is the
average of the u-th user’s ratings.

sim(i,) = —— Zuev(Fui = Bu) (R = o)
Vet (Rui — R)*/ Suev (Ruj — Ru)?

(5.1)

The similarity values are precomputed offline and for each item j its corre-
sponding k£ most similar items are stored, where k¥ < n. k is termed the
model size. The k most similar items are used to do prediction computation.
A conceptual view of the stored similar items is depicted in Figure 5.3.

It should be noted that when the user-item matrix is extremely sparse, say
99%, many of the similarity values are either 1, 0 or -1, which does not give
a true picture of the relation between those implicated items. With such a
sparse matrix, a similarity value of 0 occurs when users, who have rated both
item ¢ and 7, have rated in such a way that the rating for either item ¢ or
j equals their average rating score R,. However, the probability for this to
happen decreases as the matrix becomes more and more populated. Take
for instance the similarity computation for items DZ and LR based on the
formula from Equation 5.1 and the borrower-book matrix from Figure 5.1,

CHAPTER 5. RECOMMENDATION

5.1. RECOMMENDATION Page 91 of 163

where the borrowers are Andrew and Betty. As the result of the similarity
computation is undefined () we regard this as being 0, see Formula 5.2. The
closer the similarity value for item ¢ and j approaches 0, the less correlated
they are.

sim(DZ,LR) = 2-2)3-2)+B-3)0-3) =0 (52)

V2=22+(3-3)2/(3-2)2+ (1 -3)2

For the similarity value to be 1 both item ¢ and j must have received the
same rating from each user, see Formula 5.3. It means that item ¢ and j have
a perfect correlation, i.e., they are perfectly alike. However, this is unlikely
as the matrix becomes more and more populated but very likely with an
extremely sparse matrix. Consider the similarity computation for items ED
and It, where the only borrowers are Denise and Francise as can be seen from
Figure 5.1.

(1—2)(1—2)+ (4—3.5)(4— 3.5)

B 1) = V(=224 (4-35)%/(1-2)? + (4 - 35)

=1 (5.3)

The opposite of a perfect correlation is a perfect negative correlation, i.e.,
whenever item % get a high rating item j will get the opposite low rating,
see Formula 5.4. Consider the similarity computation for items HP and HB,
where only Denise and Francise have borrowed both books.

(1-2)(5-2)+(4-35)(2-35) _
V=22 + (4-35)%/(5—2)2+ (2 - 3.5)2

sim(HP,HB) = -1 (5.4)

The more user ratings backing up a similarity value the more trust we can
place in the similarity value. Consequently, we ought to devalue our confi-
dence in similarity value, which is only backed up by a few number of users.
As recommended by [23] we use a significance weighting factor of £ to de-
value the similarity value if it is only backed up by fewer than 50 users,
where n is the number of users. The threshold is 50 and if n is larger than
the threshold the similarity value is left untouched.

Prediction Computation

The prediction value of item ¢ for user u, P, ;, can be computed when simi-
larity values have been computed. This is done by weighting each ratings by

CHAPTER 5. RECOMMENDATION

Page 92 of 163 5.1. RECOMMENDATION

the corresponding similarity s; ; between item 7 and j based on items similar
to i. The following formula from [10] is used:

P . = Eall,szmzlar,ztems,N(s N ,N) (55)

u,g

Eall_similar_items,N (| Si,N ‘)

Here, all_similar_items is the set of items which are similar to item .

A recommendation top list is generated by repetitively applying the predic-
tion formula to those items that are similar to the one, which the user is
currently looking at.

To be specific, imagine that a borrower has found the book LR at Amazon.
In order to generate a recommendation top list the system retrieves precom-
puted similarity values of books that are similar to LR from the database.
According to Figure 5.3 the following books are the similar ones: DZ, HP,
HB. Those books for which the borrower has already rated is of no interest
and should not occur in the recommendation top list, thus it is omitted from
the prediction computation. The prediction formula is applied for each of
the books for which the user has not yet rated.

The prediction values for DZ, HP, and HB are computed and ordered in
descending order such that the book with the highest prediction value is on
top hence forming a top list recommendation for the borrower. In order to
compute the prediction value for, e.g., DZ we have to look up its similar
books. According to Figure 5.3 we can see that these books are LR, HP,
and HB. We apply Equation 5.5 to compute the prediction value of DZ for
the particular borrower. We repeat the prediction computation for both HP
and HB to find their prediction values. Once the prediction values have
been found they are ordered in descending order to produce the top list
recommendation.

5.1.2 Content-based Recommendation

When doing Collaborative Filtering it is important to be able to make rec-
ommendations for, e.g. all books. However, this is not always possible when
only using item-based collaborative filtering. There exists two fundamental
problems as proposed in [28] namely the sparsity problem and the first-rater
problem.

Sparsity is a problem that occurs when users are not rating all the items in
a database. For AUB it means that each borrower borrows much less than
one percent of all the books because when calculating the sparsity of 6 years

CHAPTER 5. RECOMMENDATION

5.1. RECOMMENDATION Page 93 of 163

of transactions from AUB the sparsity is 99,996%. This results in a sparse
borrower-book matrix. We will later show how we calculated the sparsity (in
Formula 5.8). The sparsity problem makes it impossible for the item-based
CF approach to find items that are similar because of not being able to find
any borrowers that have borrowed the books.

The other problem is the first-rater problem which says that an item cannot
be recommended unless a user has rated it before. For AUB the problem
can be seen when a new book is bought. It will not be recommended by the
item-based approach because no transactions exist where the new book have
been been borrowed.

A more serious problem is when users are borrowing books that have no
relevance with each other, or if the majority of the users are borrowing books
of low professional quality. This means that the recommendations made by
the item-based approach cannot be used, because the recommendations made
are of low quality and therefore useless.

Another problem is the self-perpetuating effect that raises when users are only
borrowing books that are being recommended by the item-based approach.
This means that the same books are being recommended by the item-based
approach every time. Books that are not recommended by the item-based
approach have lesser chances to appear in a recommendation. It is wise to
combine the item-based approach with another approach that can handle
the problems in a fairly good way. One such approach is the content-based
approach. The content-based approach makes use of the data describing the
items to find matches between the items and thereby making recommen-
dations. However, one must not rely only on the content-based approach
because the quality of the recommendations is only based on the description
of each item. Therefore, it is ideal to make a hybrid approach between the
item-based and content-based approach in order to make recommendations
for all items.

Content-boosting

We have currently looked at two ways to implement the content-based ap-
proach and thereby making use of content-boosting. Content-boosting makes
use of the item-based approach combined with a content-based approach
that relies on classes of keywords that have been rated by different users.
The classes of keywords are then used to rate each book. The first approach
to do content-boosted collaborative filtering is described in [28]. The second
way to do content-boosting is to do content-based book recommending us-

CHAPTER 5. RECOMMENDATION

Page 94 of 163 5.1. RECOMMENDATION

ing learning for text categorization as described by [27] and then combine
the result with the item-based approach in some other way. The reader is
advised to read the two articles in order to get an understanding of how the
two approaches work.

However, there still exists one problem with the two proposed approaches,
namely that user ratings of classes of words are needed in order to do the
recommendation using the content-based approaches. This means that if no
user ratings exist for the classes of words the approaches cannot be trained.
Moreover, no algorithm such as, e.g., Naive Bayes which is used in [28], can
be used for computing similarities for the items.

Naive CBPM

We therefore developed a new approach to make the content-based recom-
mendations. It is inspired by the approach for making Text Categorization
using the Naive Bayes algorithm. The Naive Bayes algorithm uses an ap-
proach that trains some classifiers on different kinds of data samples. Then
some new data are tested by the model that has been built in order to find
out how to categorize the unknown data. The Naive Bayes algorithm is also
currently used, e.g., for finding spam emails like proposed in [24] and this
is done with quite a good result as written in the article. However, our ap-
proach does not make use of the Bayes rule, because the number of classes
that have to be trained would be equal to the number of books. The reason
for this is that in order to be able to find the probability for a book being
equal to another book, the book has to be compared with the class the other
book is in. It would then not be possible to calculate the probability because
the number of classes is too big for the Bayes formula. Instead it makes use
of another idea in the algorithm namely that the placement and repetition
of words are not important for classifying words.

We combine the idea of the Naive Bayes algorithm with information ex-
traction and pattern matching, and thereby, create a new algorithm, called
Naive CBPM, Naive Content-Based Pattern Matching. The content-based
approach is shown in Figure 5.4. We will give a short description of the
algorithm.

CHAPTER 5. RECOMMENDATION

5.1.

RECOMMENDATION

Page 95 of 163

External Components

Recommendation Service Components

Content-based CF

Pattern matching &
Recommendation
process

Offline table generation
Process

Build mode!
process

Altribule & Book Model
Data Structure

Book-to-Books Ratings
{Top 10) Data Structure

Books and Book
Descrptions

= Transaciions
- [tem rating
- Book salectio

Figure 5.4: Illustration of AUB’s Content-based Recommendation System.

CHAPTER 5. RECOMMENDATION

Page 96 of 163 5.1. RECOMMENDATION

Naive CBPM:

© 0 N O ok W N =

W W W W W W W NN NN NNNNNNR B R R R e e e e
DA W N R O O 0N AW N HE O © N3 U W NN = O

The

buildWordList()
while (more books)
for the current book

extract all words from title
extract all words from author
remove words that are in the stopList
store new words in wordSet

return the whole wordSet or a top—N wordSet

getPattern(wordSet)
for each word in wordSet
put the word in a bitSet where corresponding bitIndex maps to a word
return the bitSet (General Pattern)

buildModel(bitSet)
while (more books)
for the current book
compare the book with the bitSet
store the bits that are set in data structure set of bookIDToPattern
store the bits that are set in data structure set of attributeToBookIDs
return the bookIDtoPattern and patternToBookIDs data structures

buildRecommendations(set of bookIDtoPattern and set of attributeToBookIDs)
while (more books)
for the currentBook
get the pattern from the set of bookIDtoPattern
for each attribute in the pattern
get the bookIDs from the set of attributeToBookIDs
for each bookID not equal to currentBook
check whether the book pair (currentBook, bookID) —
exists in item—based similarity table
if not true
increase the rating for bookID in the set of bookSimilarties
sort the bookSimilarties
store the top—N bookRatings in a datastructure or file
continue to next book

algorithm consists of three parts:

. The first part is the information extraction pass.

This consists of the buildWordList() and getPattern(wordSet) methods.

. The second part is the model building pass.

This consists of the buildModel(bitSet) method.

. The third part is the similarity or recommendation building

pass.

CHAPTER 5. RECOMMENDATION

5.2. IMPLEMENTATION Page 97 of 163

This consists of the buildRecommendations(set of bookIDtoPattern and
set of attribute ToBookIDs) method.

As seen in the algorithm it makes a number of passes over the items and
their descriptions. Furthermore, it makes the pattern matching of the items
iterative. However, because the algorithm can be implemented to make use
of HashMaps in memory, the performance is quite good.

Two parameters are available for adjusting the algorithm for both quality of
the recommendations and the speed of the algorithm. The first parameter
is the pattern size. If the size is increased, the quality of recommendations
should become better because more words are included for comparing the
items. However, the speed is decreased because of the size increase of the
pattern. The second parameter is the number of items to be analyzed by
the algorithm. This also have an impact on both the speed and quality of
the algorithm. It is important here to mention that quality is equal to the
number of matches of words between two items.

We have chosen to set the pattern size to include all words and the item
size to include all books. This is done in order to be able to compare books
that have the same words with each other, which means that we compare "an
apple with an apple”. A description of a book is currently only consisting of
the title and authors of the book, because we do not have the keywords for
the books.

The benefit of using the algorithm is that the computation of the content-
based recommendation is fully automated and it is based on the description of
the items that should include some semantics about the item. The argument
for this is that the descriptions of each item has been made by users describing
the item. Therefore, the idea is that two books are considered similar when
the description of the two books has a high correlation.

5.2 Implementation

After having elaborated on the item-based and content-based approach for
recommendation generation, the following sections focuses on the implemen-
tation of the approaches and the recommendation service. We have combined
the content-based approach with the item-based approach in order to imple-
ment the recommendation service. This is illustrated in Figure 5.5. All the
table definitions used in the implementation are listed in Appendix D.

CHAPTER 5. RECOMMENDATION

Page 98 of 163 5.2. IMPLEMENTATION

External Components
Internet
= Service C:
szl]

|| Web Server

Item-based CF Content-based CF

Pattern matching &
Recommendation
process

i
s
0”‘ Offline table generation Offiine table generaticn
S 1 o ek
S
&
; -

Build model
process

/
’ \
/ \
; \ Altribute & Book Model
Data Structure
llem Similar ilems

/
7/ Item-itemn mappings \

A A AB .
B BA BB Book-1o-Books Raings
(Top 10) Data Structure
N ltems——
r

Books and Beak
Descriptions

Borrowings
(Transactions)

Figure 5.5: Illustration of AUB’s Recommendation Service.

5.2.1 Item-based CF

Item-based CF has been implemented in a recommendation service in order
to enable AUB’s web site to recommend books. The implementation requires
that AUB registers the borrowers’ ID when a book is borrowed. The borrower
ID is needed in order to do the similarity computation as described in Section
5.1.1. Without the borrower IDs the item-based CF would not be possible
to implement. Due to legal issues, the borrower IDs have been encrypted in
order to not be able to identify a particular user but still be able to distinguish
the users from each other.

An item-based CF implementation consists of the following parts as shown
in Figure 5.5: A table mapping books to similar books is generated offline by
using the loan history from the database. A recommendation process which
fetches the similar books for a particular book and the books of known in-
terest for a borrower, which the recommendation service must make a rec-
ommendation for. The recommendation service is accessed by the borrowers
either through Auboline or at terminals at AUB. The books of known interest
for a particular borrower is not used in the implementation for AUB. This is
explained in more detail in Section 5.2.1, Prediction.

In order to carry out the similarity computation for each pairs of co-borrowed
books we need some data from two tables. The first one is called loanCount

CHAPTER 5. RECOMMENDATION

5.2. IMPLEMENTATION Page 99 of 163

and reflects how many times each borrower has borrowed a given book. The
second one is called borrower2Books and allows us to conveniently retrieve a
list of borrowers, which have borrowed the same two books. Once similarity
values for pairs of co-borrowed books have been calculated they are stored
in a stmilarity table along with the value.

If we have n books, we might have up to w pairs of co-borrowed books.

Each similarity computation for such a pair makes several queries to the
DBMS for the needed data. For each query the query planner is invoked
in order to optimize it. This amounts to a great number of query planner
invocations, thus very time consuming. Instead, we have chosen to represent
loanCount and borrower2Books by two data structures in memory. This way
we can "query” for the data in-memory and avoid spending time on the query
planner. The next section describes the two data structures representing the
two tables.

In-memory Data Structures

The loanCount table is represented by the data structure shown in Figure
5.6. It consists of an outer HashMap, which maps each borrower ID to
another HashMap. Each of the other HashMap consists of a set of book IDs
representing the books, which the borrower has borrowed. Each of the book
ID maps to an integer named count representing the number of times the
borrower has borrowed this book.

The borrower2Books table is represented by the data structure shown in
Figure 5.7. It consists of an outer HashMap, which maps a book ID to
another HashMap. Each of the other HashMap consists of a list of book IDs
representing the books, which have been borrowed together with the book in
the outer HashMap. Each of the book ID maps to an ArrayList of borrower
IDs. This way we can for each pair of co-borrowed books retrieve a list of
borrowers.

Ratings

The item-based CF for AUB makes use of the implicit rating from the bor-
rowers by keeping score of how many times each borrower has borrowed
different books. The implicit rating is used in order not to depend on bor-
rowers rating enough books before the system will be able to recommend any
books. Instead the ratings are extracted from the loanCount data structure
by first getting the number of loans a borrower has had of a specific book.

CHAPTER 5. RECOMMENDATION

Page 100 of 163 5.2. IMPLEMENTATION

Borrower HashMap

A

Figure 5.6: loanCount Data Structure.
Book HashMap

|
!

Borrower
ArraylList

Co-borrowed
book HashMap

Figure 5.7: borrower2Books Data Structure.

CHAPTER 5. RECOMMENDATION

5.2. IMPLEMENTATION Page 101 of 163

This number is then taken to the ratio of the maximum number of loans of
any book in the loanCount table. By doing this all the ratings are within the
same scale and the books that have been frequently borrowed by the same
borrower get a higher score. A formula describing the rating calculation is
listed here:

count, ;

R,; (5.6)

B Mazx(countyer)
If, e.g., a borrower has borrowed a book 3 times and the maximum number
any books have been borrowed is 20 then the borrower’s rating of the book
is 2 = 0.15. In this case count,; is 3, Maz(countyey) is 20, and R, is 0.15.

Similarity

The similarity is calculated for each pair of co-borrowed books. An overview
of the similarity computation is given in the following pseudo code:

1 For each pair of co—borrowed books
2 Calculate similarity value

The similarity value is calculated using the adjusted cosine formula from
Equation 5.1 by doing the following steps:

1. Finding the borrowers
By iterating over the borrower2Books data structure we are able to re-
trieve lists of borrowers who have borrowed pairs of co-borrowed books.

2. Finding R,; and R, ;
We need to find the ratings of the co-borrowed books given by each of
the borrowers. This is done by querying the loanCount data structure
to find the number of times a given borrower has borrowed a particular
book and then apply the rating formula from Equation 5.6 to calculate
the implicit rating. This calculation is done for each borrower of each
of the co-borrowed books.

3. Finding R,
The average rating for each borrower is found the first time we query
the loanCount data structure for that particular borrower. As we have
the HashMap of books for that borrower, we iterate over the count
values in order to calculate the average number of books this borrower
borrows each time. The average number is then applied to the rating
formula from Equation 5.6. This idea is shown in Figure 5.6.

CHAPTER 5. RECOMMENDATION

Page 102 of 163 5.2, IMPLEMENTATION

4. Calculating similarity
A similarity value can be computed when the above steps have been
carried out.

The similarity values are all stored in a simularity table. The similarity table
represents the similarity relationship between two books and contains the
foreign keys of two books along with the relation attribute value, which is
the similarity value of the two books. The foreign keys of the two books
do not include references to the same book in a single row since similarity
between the same book is not calculated.

The borrower2Books data structure is serialized at the end of the process
of computing the similarity values. This is done because the content-based
prediction process needs it to find recommendations for books, which is not
already contained in borrower2Books. Furthermore, for each similarity com-
putation two book IDs together with the corresponding similarity value is
written to file such that the data can be copied into the similarity table at
the end of all similarity computations.

Prediction

Prediction could have been used in order to do recommendation. The rec-
ommendation would have been done by doing the following:

1. Find the top-N similarity values for a specific book.

2. Compute the prediction value for each book associated with a specific
similarity in the list of top-N similarity values.

3. Sort the prediction values in descending order.

4. Present the top-N books with the highest prediction values.

We have chosen not to use prediction in order to do recommendation. This
is due to the fact that the borrower-book matrix is very sparse and because
of the Danish privacy law prohibiting the direct tracking of user behaviors.

The sparsity [10] of the borrower-books matrix is calculated using the follow-
ing formula:

nonzeroentries

sparsity = 1 — (5.7)

totalentries

CHAPTER 5. RECOMMENDATION

5.2. IMPLEMENTATION Page 103 of 163

If, e.g., we were to represent the borrower-book matrix with the loans from
the sample data set from AUB A the sparsity would be:

60,875
37,022 % 8, 758

= 99,996% (5.8)

The example in Formula 5.8 is a borrower-book matrix covering 10 months
of loan history consisting of 64,371 loans, a total number of 8,758 borrowers,
and 37,022 books. The number of ratings is smaller than the number of loans
since a book can be borrowed more than once by the same borrower. A book
borrowed several times by the same borrower is only represented with a single
rating in the borrower-book matrix.

The high sparsity level is due to the fact that there are many books but
each borrower often only borrows few books every year. This is a problem
when calculating the prediction, since the similarity value is multiplied by
the borrowers’ ratings, but if a borrower has not rated any of the similar
books then there are no applicable prediction values.

In order to do recommendation by using prediction the system also has to
know for which borrower the recommendation is in order to fetch the bor-
rower’s ratings. This would require the borrower to login in order to identify
the borrower. Due to legal issues AUB is not allowed to make a connection
between a borrower login and the encrypted borrower ID in the borrower-
book matrix.

By only using the similarity values the recommendation can be done without
any need of borrower login and the recommendation can even be done for
new borrowers without any ratings. Furthermore, we must obey the Danish
law of privacy.

5.2.2 Content-based Recommendation

We have implemented the content-based recommendation approach using
the algorithm we developed, and the approach has the system architecture
shown on Figure 5.4. The implementation is done in Java and makes use
of HashMaps in order to speed up the pattern matching. Furthermore, we
fetch the books and the descriptions of each book from the DBMS. The
implementation of the algorithm is illustrated in figures for each pass.

The first pass is information extraction and the second pass is building the
model. This is implemented as shown in Figure 5.8. It shows how the
algorithm is implemented in Java and how it makes use of HashMaps in order

CHAPTER 5. RECOMMENDATION

Page 104 of 163

5.2, IMPLEMENTATION

Input
Pattem Size N

Call public Build Model method

Books &
Books Descriptions
(DB}

Information Extraction

Extract and count

all words (DB)

Avoid counting
words in Stoplist

Build pat][ern using
the Top N words
with highest count

!

Far each book build
a pattern using the
Ganeral Fattem

|

Store each Book's
Pattemn in two
HashMaps

'

Call Building Model methad %
using Pattern of size N
1 Build Madel

/

BooklDs-to-Pattern
HashMap

Pattem-to-BooklDs
HashMap

Stoplist
(Danish and
English words)

Wordlist
{sorted with count
descending)

| word1] wordz2 wordN

i

General Pattern of attributes (Words)

Content-based CF: Building the Model

Figure 5.8: Information Extraction and Building the Model.

CHAPTER 5. RECOMMENDATION

5.2.

IMPLEMENTATION

Page 105 of 163

BooklDs hashmap
§, Altributes that matches pattem
- [
-5 1 ? | ! I i & | T i hashkeys
=5 R —
BookID: | i
| o] Attribute
U : % d:l T J i valles
| =] nteger
Title: | b5 !'f \\ (1t N}
|'Elements of : | g
it IAtiributeld: | Atiributeld: |
: athematics’ | |1 o0 : :200 :
| |]
lAuthor: Word: Word:
ez = — rd: | ord:]
!_LEEEIE Eaing &l = :Disctste | :Mathemelics]
E | [I
o (Count | [Count: I
=
"] 2000 | 10000 I
hashmap T T T T T T mmmem—s -

BooklDs-to-Pattem

Figure 5.9: HashMap for BookIDs-to-Pattern.

______ = Patterm of
:Aﬂrlhuheln H N atiributes hashmap
IIUD : E' ; BooklDs
word: [r L9 [2 [¢ | hesties
IDlscre\le 1 -
1 -
|
(Count 1 z Bookip ~ values
1 fed
o0 ! A5 1 I intager
______] —_———— e
IatiributolD Haa = Emmn: | :ankl[}‘ |
2o ¥ ! 1111 I
1 1 |
word: : 1 El'ille: I |Title: |
Mathematics 1 L | ['Elements of I "An Introduction ta |
| I = [Discrete |Discrete |
Count: 1 £ Mathematics™ | Mathematics” !
foooo 1 s 1 1 '
= lAuthor: : lAuthor: :
psimap [Ghing tang”_| [Remen Siver__|
Fattem-to-BooklDs

Figure 5.10: HashMap for Pattern-to-BookIDs.

CHAPTER 5.

RECOMMENDATION

Page 106 of 163 5.2. IMPLEMENTATION

to store stoplist, wordlist, the bookIDs-to-pattern HashMap and the pattern-
to-bookIDs HashMap. The data structure of the two HashMaps are shown in
Figure 5.9 and Figure 5.10. The bookIDs-to-pattern HashMap data structure
stores the item mapping to the attributes that matches. The pattern-to-
bookIDs HashMap data structure stores each attribute mapping to a series
of items that match the attribute.

The third pass is the building of the similarities of the books that are stored
in the patternsim table in the DBMS. This pass finds the similarities by
counting the number of matches between the book that recommendations are
wanted for and all the other books. This is shown in Figure 5.11. However,
recommendations are only made for book pairs that are not in the item-
based similarity table. This is done in order to avoid having duplicates
of recommendations. As a side note the book with the highest number of
matches is of course the book itself, because when comparing the book with
itself it is equal.

The result of the algorithm is shown in Figure 5.12. It shows a HashMap
consisting of all the books, where each book maps to a HashMap consisting
of books sorted in highest rating order that matches the current book.

5.2.3 Recommendation

The recommendation can be done online by using the results from the offline
computations for item-based CF and content-based recommendation. The
results are the similarity mappings which are stored in the tables similarity
and patternsim. How the two implementations are integrated is illustrated
in Figure 5.13.

Having the similarity table it is only a matter of doing a lookup in order to
do a recommendation given a specific book. This can be done by finding all
the pairs that the specific book participates in, then sort by the similarity
values, and list the, e.g., top 10 similarity values along with the author name
and title for each book.

The recommendation might not find enough mappings in the similarity table
to do a top 10 recommendation. The patternsim table is used in order to
compensate for the missing mappings in the similarity table. The recom-
mendation is implemented by first fetching maximum 10 mappings from the
similarity table and the actual number of mapping is counted while writing
the recommendation output. If the number of mappings is under 10 then the
rest of the recommendation is fetched from the patternsim table.

CHAPTER 5. RECOMMENDATION

5.2. IMPLEMENTATION

Page 107 of 163

The BooklDs for
hich the similarities

The number of
Top-M Ratings

should be build wanted

Build Similanties

For each book

Find the Book's
pattern in
[Book|Ds-to-Pattern

¥

For each matching Attribute in
Pattern

¥

Find the other matching Books
in Pattemn-to-BooklDs
except those already in ltem-
based Ratings

¥

For each matching Book count
the match

A 4
QuickSort the
Book count
matches

|

Store the Top-N book
matches in BookiDs-to-
BocklDs Top-N Ratings

Book|Ds-to-BooklDs Top-N
Ratings (count)

Book|Ds-to-Pattern

Pattern-to-BookiDs

ltem-based Ratings

Content-based CF: Building the Similarities

Figure 5.11: Building the Content-Based Similarities (Recommendations) for

each Book.

CHAPTER 5. RECOMMENDATION

Page 108 of 163 5.2. IMPLEMENTATION
ooklD: 1BookiD: |

I1 11 : .222 :

:THia: 1 :TI'Ila: I

(An Introduction to | [Implementing 1

|Discrete | Discrete |

Mathematics” : Mathematics® :

]]

IAuthar: : IAuthor: :

I'Roman Steven” 1 I'Skiene Steven” 1

f 7
BooklDs | s
R ! ¥
it VE:OI(IDS
dAa—— ¢ | ¢ | ¢ [¢ |restow
o

sem——=5 | H I
PSS E 1 CJ O [R
|) (count)
I I ! ! integer
Title: I f I
| Elements of I —_ ! !
|Discrete : jf I"
:Matherﬂatu:s i - . = -
|Author: ! || I |
I'Liu Chung Laung” I ?allng: | 1Ratlr’:g: |
it ot oot A G I I 2 I

[

fa

PattermSimikarity

Figure 5.12: The Result of the Algorithm - the Book Recommendations.

he BooklD for which the
Top-10 recommendations
should be returned

Recommendation Service | I

Build TOP-10
Recommendation list

Query item-based Ratings
table for max. 10 BookIDs with

high similarities

2

If number of item-based
tings are
<=10

Query content-based Ratings
table for enough BookiDs with

high similarities to build the

Retum the Top-N
BookiDs.
(recommendations)

Recommendation Service: Combining tem-based and Content-based CF

table

Figure 5.13: The Recommendation System.

CHAPTER 5. RECOMMENDATION

5.3. PERFORMANCE Page 109 of 163

The recommendation is produced by a recommendation service which out-
puts XML. The XML can easily be parsed at the Auboline web site, which
already uses XML services. An example of the XML output is listed in
Appendix D. An example of how AUB can implement the XML recommen-
dation service is illustrated with screen shots in Chapter 6. Two results of
the recommendation service are listed and evaluated in Section 5.4.

5.3 Performance

In this section the performance of item-based CF and content-based recom-
mendation is examined by looking at the execution time and memory usage.
The performance is examined in order to see how well the two implemen-
tations scale according to the number of similarity values computed. The
performance of the online recommendation is also examined by looking at
the query plan for the queries used in the online recommendation service.

5.3.1 Execution Time

The execution time of item-based CF and content-based recommendation is
listed in Figure 5.14 and 5.15. Both approaches seem almost to scale linearly
with the execution time and the similarity found. However, there seems to be
an exception regarding the execution time for item-based CF as it takes rela-
tively more time to process the last 4,373 transactions. One of the reasons is
the need of increasing either the loanCount or the borrower2Books HashMap
resulting in rehashing either of one or both of the HashMaps, which is a time
consuming process [3]. Another reason is that the sum of PostgreSQL’s and
Java’s memory usage exceeds the available main memory capacity. Conse-
quently swap file is used to compensate for lack of memory.

5.3.2 Scalability

The memory usage of item-based CF and content-based recommendation
is listed in Figure 5.16 and 5.17. In both implementations the size of the
tables in the database containing the similarity mappings increase with the
number of books or transactions. The item-based CF implementation uses
more main memory as more similarity values are computed as illustrated in
Figure 5.16. The increase in main memory usage is caused by the HashMaps
data structures which increase in size since they contain more loan history,

CHAPTER 5. RECOMMENDATION

Page 110 of 163 5.3. PERFORMANCE

Recommendation Scalability (Time)
GO0 800
=00 ++ 700 S
T 600 =
- 400 1 + 500 2 :
- @ |—=—Time (ms)
E3EII]-- 4 400 .= T
= s —+— Mumber of Similarities
200 + 1™ T
T 200 &
100 Lo *
1] ; ; : : ; a
5 10 15 20 25 29373
Transactions [Thousands)

Figure 5.14: The Execution Time of the [tem-based CF Implementation.

Recommendation Scalability (Time)
120 300
100 + + 2580 o
=2
S
= 80 + + 200 ‘;
o gl 1 150 E —=—Time (ms) .
E 5 —e— Count recommendations
40 + + 100 g
#n
20 + +50 *
0 t t t t t 0
5 10 15 20 25 30 35
Books (Thousanids)

Figure 5.15: The Execution Time of the Content-based Recommendation
Implementation.

CHAPTER 5. RECOMMENDATION

5.3. PERFORMANCE Page 111 of 163

Recommendation Scalability {Memory)

300 g0o
-+ 700
- 600
- 500
-+ 400
-+ 300
-+ 200

.7__’—._’_’—._’_’—._’__4./—. -+ 100
f t t t t 0
5 10 15 20 25 28373

Transactions (Thousands)

o)
[45]
[

)
=
[

—m—Tahle Size
—a— Java Memary

—a— Murmber of similarities

-y
=
=

Memory Us age (MB)
o
[}

Similarities in 1,000

[
[

=

Figure 5.16: The Memory Usage of the Item-based CF Implementation.

which leads to extra similarity values. Furthermore, the computed similarity
values are buffered in memory until the similarity computation is done. The
main memory usage of the content-based recommendation implementation is
constant as illustrated in Figure 5.17. The main memory usage is constant
since the HashMaps are reused for each book computation. However, memory
is also reserved for the model.

5.3.3 Omnline

The online recommendation consists of simple SQL queries to the DBMS
that run through a XML Service. The XML Service receives the results from
the queries and the web page is displayed using the Tomcat Web Server. We
have therefore looked at the performance of the SQL queries in order to find
out how much time it takes for the query to be executed by the DBMS.

In the PostgreSQL DBMS it is possible to get a query plan for the current
query, an estimated execution time, and a real execution time of the current
query. We have used these results to find out the time it takes to execute a
query for one recommendation.

CHAPTER 5. RECOMMENDATION

Page 112 of 163 5.3. PERFORMANCE

Recommendation Scalability (Memory)

)
=
[}

300

fux)
o

+ 250

o o
[} [}
|

+ 200

)
[}
I

—e— Java Memary

-+ 1580 —m—Table Size

—&— Count recommendations

fux)
o
|

+ 100

Memory Us age (MB)
o =]
(] (=]

Similarities in 1,000

o
[}
|

T 50

=)
[}
|

\

f t t t t t 0
4 10 15 20 25 30 35

Boo ks (Thousan ds)

Figure 5.17: The Memory Usage of the Content-based Recommendation Im-
plementation.

Item-based Query

The following query will retrieve books that are similar to a current book,
which can be either ¢ or jin each data row. Each book will have a similarity
value that has been precomputed using the item-based CF approach. There
are a total of 672,129 similarities that is made from 29,373 transactions.

The result of the query plan is:
The Query is:

SELECT
i, j, value
FROM
similarity
WHERE
j = 148347 OR i = 148347
ORDER BY
value DESC
LIMIT 10

© 0 N O Ut ok W N =

CHAPTER 5. RECOMMENDATION

5.3. PERFORMANCE Page 113 of 163

The query plan and execution time returned from the DBMS:
QUERY PLAN

Limit
(cost=471.20..471.22 rows=10 width=16)
(actual time=14.000..14.000 rows=10 loops=1)
—> Sort
(cost=471.20..471.51 rows=124 width=16)
(actual time=14.000..14.000 rows=10 loops=1)
Sort Key: value
—> Index Scan using s_j index, ps_iindex on similarity
(cost=0.00..466.89 rows=124 width=16)
(actual time=7.000..14.000 rows=26 loops=1)
Index Cond: ((j = 148347) OR (i = 148347))

© 00 N O oA W N

e e =
AW N H O

15 Total runtime: 15.000 ms

The query fetches the top 10 item-based similarity values for a book from
the similarity table. Indices have been created for each attribute. The actual
runtime is measured on a 1 GHz Intel 32-bit processor with 512 MB of RAM.

As seen in the actual runtime it takes about 1 ms in order to execute the
query and return the results. Furthermore, if we take a look at the query
plan, we can see the cost for executing the query. The cost is measured as the
estimated statement execution cost. This is the planner’s guess at how long
it will take to run the statement (measured in units of disk page fetches).
Actually two numbers are shown: the start-up time before the first row can
be returned, and the total time to return all the rows.

If we take a look at the line beneath LIMIT we can find out what the total
cost of the entire query is by looking at the start-up time and the total-time
values of the line. This is because the LIMIT command is executed after
all lines beneath it has been executed. Therefore, the number of disk page
fetches is totally 471.22 to return all 10 rows of similarities from the DBMS.

By analyzing the whole query plan, we can find the sub query that takes the
longest time is the Index Scan where the DBMS searches for the book with
ID 148347 using Btree indexing. However, because indices are created, the
DBMS makes use of these as seen in the query. Therefore, the number of
disk page fetches is 466.89 because it needs to fetch 124 rows with a width of
16 from the table at the position in the index where ¢ or jis equal to 148347.
The next sub query that takes time to execute is the sorting of the ratings
so that the book recommendations come in descending order. However, this
only takes 471.51 — 466.89 = 4.62 disk page fetches. The last sub query is
to make the numbers ¢ and j unique and the total number of disk fetches is
therefore 471.22.

CHAPTER 5. RECOMMENDATION

Page 114 of 163 5.3. PERFORMANCE

Content-based Query

The following query will retrieve all the books that are similar to the current

book, which is bookidl. Each book has an ID (bookid2) and a similarity
value (value). The books are sorted in the table so that books with high
similarity come before books with lower similarity. There are a total of
271,621 similarities that is made from 37,022 books. More information about
AUB Sample Data can be found in Appendix A.

Here is the query plan for fetching book recommendations from the content-
based recommendation table:

The Query is:

1 SELECT

2 bookid2, count
3 FROM

4 patternsim
5 WHERE

6 bookidl = 148347
7 LIMIT 10

The Query Plan and Actual Execution Time returned from the DBMS:
QUERY PLAN

Limit
(cost=0.00..2.86 rows=10 width==8)
(actual time=19.000..19.000 rows=1 loops=1)
—> Index Scan using ps_bookid1_index on patternsim
(cost=0.00..3.15 rows=11 width=8)
(actual time=19.000..19.000 rows=1 loops=1)
Index Cond: (bookidl = 148347)

© 0 N O Utk W N =

-
[=]

Total runtime: 11.000 ms

-
-

The query is run on a patternsim table that consists of the book recommen-
dations for a given book with ID 148344. The estimated cost of executing
this query is totally 2.86 disk page fetches.

On the basis of the analyzes of the query plans from the DBMS it is now
possible to find out how many users can make use of the web site before
the server is overloaded. Unfortunately, we do not have any technical details
about the server that the system will reside on.

In order to get a good overview of the performance of the server and the
online system real life tests must be done. A simple experiment can be
setup by creating multiple clients running in threads on a single machine
that retrieves data from the web site. This would make it possible to make

CHAPTER 5. RECOMMENDATION

5.4. EVALUATION Page 115 of 163

a test that would emulate a real life scenario with multiple requests that are
being sent to the DBMS. We could then find out what the throughput of
the system is when it is run on a normal server that only needs to run our
system.

5.4 Evaluation

The item-based CF and content-based recommendations are evaluated in this
section. The evaluation is not a full evaluation due to lack of time. How a
full evaluation should be done as described in the Future Work section.

We have used the item-based CF and content-based recommendation for
doing recommendation using a sample set of loan history from AUB. The
loan history consists of 64,371 loans from 10 months in the year 2003. The
64,371 loans cover the loans of 37,022 books so each book is borrowed around

two times on average. More details of the loan history is listed in Appendix
A.

5.4.1 Item-based CF

The item-based CF implementation run on the sample loan history results
in a stmilarity table with 672,129 rows meaning that similarity is computed
for 672,129 different book pairs. All the book pairs in the similarity table
consist of 36,122 distinct books. This leads to 900 books for which there are
no similar books. The lack of similar books is due to the fact that a book
has to be borrowed by one borrower, which has also borrowed other books,
in order to have a similarity computation and thereby map to similar books.
Some of the books also only map to one similar book.

Most of the similarity values in the similarity table have the value 0. There
are 216,577 similarity values of 0. The many 0 similarity values are due to
the small amount of loan history. As described in Section 5.1.1 the similarity
computation often gives 0 when the computation is based upon a very sparse
borrower-book matrix. The 0 values is kept in the table because the similarity
values are between -1 and 1 and 0 is not the same as not having any value.

All the recommendation can be done for each of the 36,122 books in the
similarity table. An example of a recommendation is listed in Figure 5.18.
The book used for recommendation is the book Lering written by Knud
Illeris.

CHAPTER 5. RECOMMENDATION

Page 116 of 163 5.4. EVALUATION

Author Name Book Title Similarity Value
Knud Illeris (red.) Tekster om laering 1
Jens Bjerg (red.) Paedagogik 1
Helle Alrg (red.) Videoobservation 1
Helle Alrg Personlig kommunikation 1
og formidling
Oluf Danielsen Laering og multimedier 1
Erik Damberg Padagogik og perspektiv 1
Else Hiim Undervisningsplanlaegning | 1
for faglaerere
Poul Bitsch Olsen Problemorienteret 0.67
projektarbejde
Kjeld Fredens Liv og laering 0.67
Niels Akerstrgm Andersen | Diskursive analysestrategier | 0.67

Figure 5.18: Item-based Recommendations for the Book Lering.

The books in the recommendation list from the example in Figure 5.18 seem
to be very similar to the book Lering, which is a good indication for high
relevancy. One of the books is by the same author and all within the same
topic.

5.4.2 Content-based Recommendation

The content-based recommendation implementation run on the same sample
loan history results in a patternsim table with 271,621 rows, containing 28,804
distinct books meaning that 8,218 books do not have any mappings.

When the content-based recommendation implementation is run with 10
months of book transactions and only using the title and author name of
books as item descriptions it can produce recommendations such as in Fig-
ure 5.19 for the book called Elements of Discrete Mathematics by Liu Chung
Laung

Other unwanted recommendations such as those shown in Figure 5.20 can
also be produced, and this is because of the algorithm only having the title
and author name to compare the books with each other.

CHAPTER 5. RECOMMENDATION

5.4. EVALUATION Page 117 of 163

TOP-N | Recommended Book Title Rating

1. An Introduction to Discrete Mathematics 2
by Steven Roman

2. Implementing Discrete Mathematics by 2
Steven Skiene

3. Handbook of Discrete and Combinatorial 2
Mathematics by Kenneth H. Rosen (ed.)

4. Discrete Mathematics with Graph Theory 1
by Goodaire E.G.

Figure 5.19: Example for the Book Recommendations for Discrete Mathe-
matics by Liu Chung Laung.

TOP-N | Recommended Book Title Rating
5. Estimation, Control, and the Discrete 1
Kalman filter by Catlin Donald E.
6. Chaos in Discrete Dynamic Systems by 1
Ralph H. Abraham
7. A first Cource in Discrete Dynamical Sys- 1
tems by Richard A. Holmgren

Figure 5.20: Example for Book Recommendations for Discrete Mathematics
by Liu Chung Laung.

CHAPTER 5. RECOMMENDATION

Page 118 of 163 5.4. EVALUATION

37.022

/

Item-based (

Content-based

\'.
\\

Figure 5.21: The Number of Books without Recommendations.

5.4.3 Improving the Quality

Combining the item-based CF and content-based recommendation leads to
a recommendation service that only has 188 books that do not have any rec-
ommendations. These 188 books are not contained in either the similarity
or patternsim table. The 188 books are the intersection between the books
without recommendations in either item-based CF or content-based recom-
mendation. This is illustrated in figure 5.21 where the 8.218 books without
recommendations from content-based recommendation and 900 books with-
out recommendations from item-based CF are represented along with the
intersection consisting of 188 books.

The number of books in the similarity table can be increased by having more
loan history for the similarity computation. This would also decrease the
large amount of similarity values being 0.

The examples for content-based recommendation clearly illustrates that title
and author name are very little text in order to find recommendations. The
quality of the content-based recommendations can be improved by adding
more text to each book. The extra text could, e.g., be keywords. This would
most likely lead to a recommendation with higher quality and recommenda-
tions for more books.

With more loan history and keywords for the books the recommendation
service should be able to do recommendations for all the books at AUB. This
would most likely eliminate the last 188 books without recommendations.

CHAPTER 5. RECOMMENDATION

5.5. RELATED WORK Page 119 of 163

5.5 Related work

In this section we will describe how the collaborative filtering can be done
using the user-based method. We will also look at an article written by the
employees at Amazon which describes their implementation of the item-based
method.

5.5.1 User-based Collaborative Filtering

The goal of user-based CF [10] is the same as the goal of item-based CF;
namely to suggest new books or to predict the utility of a certain book for a
particular user based on the user’s previous likings and the opinions of other
like-minded users.

The task of the CF algorithm is to find an item’s likeliness that can be of
two forms as in item-based CF, namely prediction and recommendation.

When comparing the user-based CF with the item-based CF, the main dif-
ferences are that user-based CF has no model that is built offline and that
user-based CF focuses on user-similarities rather than item-similarities.

The algorithms for user-based CF are called memory-based, because they
make use of the entire user-item database in order to generate a prediction.
The algorithms make use of techniques such as a nearest-neighbor algorithm
in order to find a set of users that have historically similar preferences, which
is also known as neighbors. The correlations could, e.g., consist of implicit
or explicit ratings.

User-based CF has been used very much in the past [10]. However, it suffers
from two major challenges. The first challenge is the sparsity, which is the
problem of having only a small amount of ratings from users and a lot of items
that have not been rated by any users. The second challenge is the scalability
of the system because the nearest-neighbor algorithms require computation
time and space that grows with the number of items and number of users.

5.5.2 Amazon’s Collaborative Filtering System

Amazon [19] makes use of collaborative filtering system, which makes it pos-
sible to make recommendations for a customer and letting them rate books.
Amazon uses a recommendation algorithm in order to personalize their online
store for each customer. The store shows information based on the customer’s
previous purchases and the items in the shopping cart. We encourage the

CHAPTER 5. RECOMMENDATION

Page 120 of 163 5.5. RELATED WORK

Figure 5.22: The Shopping Cart in the Amazon.com Website.

reader to study the article written by Amazon [19] which describes how their
algorithm is designed.

Amazon has developed their web site so that when a customer searches for,
e.g., books they will get a recommendation for other books that have his-
torically similar preferences. Each customer on the web site has a "Your
Recommendations” feature where the customer can sort recommendations
and add new product ratings.

Furthermore, when a customer has items in the shopping cart, the system
will add shopping cart recommendations based on the customer’s cart and
previous customer’s alike shopping carts as shown in Figure 5.22. Amazon
has about 29 million customers and a couple of million items. This means
that they have to run the computation of the similar-items table offline. The
lookup of the similar items for the customer’s purchases and ratings can be
run online. However, it is also very important that the system is able to scale
in order to be let the customers be able to retrieve recommendations.

We will in the following section compare Amazon and AUB’s algorithms.

Amazon versus AUB

When we compare the Amazon algorithm with the AUB algorithm we found
a number of differences.

CHAPTER 5. RECOMMENDATION

5.5. RELATED WORK Page 121 of 163

Implicit Ratings The main difference between the CF systems is that
Amazon makes use of user ratings based on both the bought items and what
the customer has rated for the items. In AUB’s CF system it is not possi-
ble to rate for a particular book and get references based on the particular
borrower’s ratings.

In order to do a more precise recommendation for the customer, Amazon has
developed a weighting formula. The formula calculates a weight based on
indicia of the customer’s affinity for, or current interest in, the corresponding
items of known interest.

AUB cannot make full use of the weighting formula, because the formula uses
the borrower’s explicit ratings for a given item and the purchase date of the
item, if the values exist. It could be possible for AUB to make partly use
of the formula by only giving the borrower’s implicit ratings, loan date and
how many borrowers have borrowed it in the last couple of weeks. Though
this would decrease the usability of the formula.

The recommendations in the Amazon CF system are generated using the
following:

e A table mapping items to a list of similar items.
e The items which the customer has recently purchased.
e The customer’s purchase histories.

e The content-based similarities extracted from item descriptions.

Shopping Cart Amazon makes use of a shopping cart function that stores
what the customer has currently selected and historical data about the cus-
tomer’s previous purchases. Based on this, Amazon’s CF system finds similar
items for the particular customer. In AUB’s current system we can only show
similar items based on a selected item. We do not have the possibility to base
the similar items on the current borrower’s historical data, because the bor-
rower is not known to the system in order to uphold the Danish privacy
law.

A useful feature of Amazon’s CF system could be the possibility of having
multiple shopping carts. In AUB’s CF system a borrower could have an
option that, e.g., specifies that only children books are shown on the recom-
mendation list.

It could also be a possibility to define different search queries in AUB’s system

CHAPTER 5. RECOMMENDATION

Page 122 of 163 5.6. FUTURE WORK

and then base the recommendations on the items found using the search
queries.

It could be usable for AUB to base the recommendations on a borrower’s
interest. However, the process of identifying popular items can be used and
is used in AUB’s CF system. Although Amazon’s formula for calculating the
similarity between items is not used, instead the adjusted cosine similarity
formula has been used.

Explicit Ratings Figure 5.5 on page 98 shows how AUB’s CF system is
designed as in Chapter 2. The main difference between Amazon’s and AUB’s
CF system is that in AUB’s CF system you do not have any BookMatcher
service which uses the users explicit ratings. The BookMatcher is described
in detail in U.S. Appl. No. 09/040,171 filed March 17, 1998. The service
allows users to interactively rate individual books on a scale of 1-5 to create
personal item ratings profiles, and applies collaborative filtering techniques
to these profiles to generate personal recommendations. The ratings data
collected by the BookMatcher service and similar services is incorporated
into the recommendation process of Amazon’s invention.

Data Removal In AUB’s CF system a borrower is never removed from the
similar items table, meaning that the calculations over time will be based on
both old and new data. Furthermore, the size of the table will increase
because of new borrowers being added to the table.

Regarding Amazon’s CF system it is assumed that when a customer is deleted
in the main system, the customer is also removed from the CF system and
not used in the calculations for building the similar items table anymore.
This is done in order to save space in the database and computation time
when building the similar items table. Unfortunately, AUB does not have as
much data as Amazon, therefore the removal of data may not be usable for
AUB’s CF system.

5.6 Future Work

As listed in the Section 5.4, keywords must be included in the content-based
recommendation for each book. This way the content-based recommendation
is based on more text which leads to more recommendations and recommen-
dations of higher quality. Without the keywords the basis for content-based
recommendation is too small.

CHAPTER 5. RECOMMENDATION

5.6. FUTURE WORK Page 123 of 163

One could question the quality of the present way to present recommen-
dations, as it implies that the quality of the item-based recommendations
always are superior to the content-based recommendations. Another ap-
proach is to group the recommendation top list such that books with 90%
word-similarities should appear at the top. Item-based recommendations
surpassing a minimum similarity value should appear next followed by books
having between 70% and 90% word-similarity. Word-similarity is expressed
as the number of attributes of the recommended book matching the one in
question:

recommended_book_attributes

word_similarity = (5.9)

book_attributes

The three threshold values could be determined by imperical runs on a large
set of loan history. A third approach is to convert the word-similarity per-
centages into similarity values like those used in the item-based approach.
It would then be possible to do a merge of book recommendations between
both approaches.

A full evaluation should also be done by trying to compare the item-based CF
approach with the content-based recommendation approach in order to find
out what the quality of each approach is. Furthermore, it would be interesting
to find out if the recommendations are the same in both approaches and to
see what the quality of the recommendations is. One question to raise is
whether the recommendations actually are usable for the users of the library.
It is also important to involve the librarians and borrowers in the evaluation.
The librarians can explain whether the recommendations seems reasonable
while the borrowers can tell whether the recommendations actually helped.

The implementation of the item-based recommendation approach holds all
the data in memory, which poses a limitation. Once the loan history data
surpasses the size of the available physical memory, swapping will be uti-
lized which significantly slows down the performance. Once this threshold
is reached, it would be advisable to take a DBMS approach like our first
implementation of the item-based recommendation [33]. Instead of multiple
queries to the DBMS for each similarity calculation, it might be possible to
merge these set of queries into one or more large queries. This way we can
significantly reduce the number of query planner invocations resulting in a
much more efficient execution of the queries.

The implementation of the content-based recommendation approach can be
optimized further by using a HashSet instead of a HashMap in order to
fetch bookIDs for a given attribute in the pattern. When using a HashSet

CHAPTER 5. RECOMMENDATION

Page 124 of 163 5.6. FUTURE WORK

instead of a HashMap the amount of memory used is decreased because the
HashSet can be used as an iterator to retrieve the values in the HashSet.
In a HashMap it is not possible to iterate through each HashKey instead
each HashKey much have an associated object which should be the bookid
Integer. It is then possible to iterate through the values of every HashKey
in the HashMap, however memory is used for storing the bookIDs both as
HashKeys and Integers.

Another type of improvement to add is recommendation using the "shopping
cart”, which is implemented in AUB’s web site. The ”shopping cart” is used
for adding books that a borrower might want to reserve later on. The books in
the “shopping cart” can be used for making a recommendation which is based
on a collection of books. This is simply done by fetching all the similarity
values for all the books, sort the values in descending order, and list the top-
N books. Word-similarity values from the content-based approach need to be
converted into similarity values like those used in the item-based approach
as mentioned earlier.

CHAPTER 5. RECOMMENDATION

Page 125 of 163

The Data
Access Tools

The librarian service can be used for retrieving information about the data
warehouse and association rules. Furthermore, it is possible to try out the
book recommendations. The librarian service is available to the librarians.

The borrowers will use the recommendation service, which should be im-
plemented in the Auboline system. The recommendation service makes it
possible for the borrowers to see recommendations inside the Auboline sys-
tem.

We will now go through the following three parts:
e Statistics (the librarian service)
e Association Rules (the librarian service)

e Recommendations (the recommendation service)

6.1 The Librarian Service

The statistics for the data is divided into four groups, which the following
four sections elaborate on. The first part regards extracting statistics about
the data.

Top-10 presents the most popular books, most active days, most popular
authors and the most active borrowers.

CHAPTER 6. THE DATA ACCESS TOOLS

Page 126 of 163 6.1. THE LIBRARIAN SERVICE

[el
ok - 5 - D [0| Qe

Address [&] htep:/f127.0.0.1:8080/myapp top

aaaaaaaa Gedn (3|5 & A 2
oWer.jsp j WGD |
=

5

e —| Forfattere - Top 10

| Lanere

Eksermnplarel
I Ugedage
BUND 10
|- Forfattere
I Lanere

|

I Dage
Eksemplarel

%#

I Ugedage
OVERSIGT
A

| UDK
GENNEMSNIT
Eksermnplarel
I Lanere
|- Transaktioner
| Trans. leengde
Ass, regler

|

I UDK

I Lanere

|- Avanceret
DIVERSE

- snbefalinger a
e

N

Figure 6.1: The Most Popular Authors.

Top-10
Forfattere This page shows the most popular authors. See Figure 6.1.

Lanere This page shows the borrowers that borrow the largest number
of books.

Bdger This page shows which books are borrowed the most.

Dage This page shows the 10 days where the largest number of books
have been borrowed.

Eksemplarer This page shows the editions that have been borrowed
the most.

Ugedage This page shows which weekdays the books are being bor-
rowed the most.

Bund-10 shows an inverse view of the Top-10 pages. It is important here
to mention that the Bund-10 statistics are based upon the books that have
been borrowed. This is because of the limited amount of data we have got
from AUB and because the data was based on loans. In order to get correct
statistics we need to have all the book data from AUB thereby including
books that have not been borrowed at all. See the Appendix A for more
information about the data sample from AUB.

CHAPTER 6. THE DATA ACCESS TOOLS

6.1. THE LIBRARIAN SERVICE Page 127 of 163

| Forfattere Lﬁ nere - Bund 10

I Lnere
[Beger Bemazrk: Listen indeholder de 10 mindst aktive |&n. Boger, der ikke er
| Dage blevet 1&nt, teller ikke med i statistikken

|- Eksemplarer
I Ugedage

TOP 10

L

Liner Status Type Antal udidn
ETD A0 121668 TEK/NAT 1
121681 Eshjerg Eksterne Inere ivrigt 1
121740 Studerende TEK/NAT 1
aqe 121797 Studerende SAM 1
| Eksemplarer 121798 Studerende HUM; ben uddannelse 1
1
1
1
1
1

[Eorfattere
| Lénere

FEE

I Ugedage 121920 Studerende TEK/NAT
OVERSIGT 122694 Studerende TEK/NAT
I Ec 123718 VI TEK/NAT, Institution 4

| LUDK 125761 Studerende TEK/NAT

[GENNEMSNIT | 156774 studerende SAM

[Eksemplaref

| Léanere

- Transaktioner

|- Trans. leenade
Ass. regler

j

[[[intemet

N

Figure 6.2: The Borrowers Borrowing the Smallest Number of Books.

Bund-10
Forfattere This page shows which authors are least borrowed.

Lanere This page shows which borrowers borrow the least number of
books a year etc. See Figure 6.2.

Bgger This page shows which books the borrowers borrow the least
number of times.

Dage This page shows the 10 days where the least number of books
have been borrowed.

Eksemplarer This page shows the editions that have been borrowed
the least.

Ugedage This page shows which weekdays the books are being bor-
rowed the least.

The Lan QOwversigt pages show the number of loans on each day, week, month,
and year. The overview pages also show the number of loans per UDK level.
It is possible to drill up and down on UDK number level-wise.

Lan Oversigt

Ar It is possible to drill down to a specific month, say January, and
see the total number of loans that month, see Figure 6.3. The

CHAPTER 6. THE DATA ACCESS TOOLS

Page 128 of 163 6.1. THE LIBRARIAN SERVICE

Tools telp
B 4| @oesrh (airvorees Geda B | BN b oA =
Adiess [&) htp:(]127.0.0.1:3050/myapp top 10borrower.Jsp =] oo |
=
Fy\=
TOP 10 -
Formattere Oversigt for 2003
I Lanere
i %@g Udidn for januar 7952 Se uge Se dage
| B e Udli3n for februar: 12022 52 uge Se dage
L ﬁedaae UdliSn for marts; 13744 52 uge Se dage
BUND 10 Udln for april 11625 Se uge Se dage
Forfatters Udl3n for maj 8305 2 uge Sedage
| Lanere Udli3n for juni 4938 92 uge Se dage
I Boger UdI8n for juli 1860 Seuge Se dage
I Dage Udl&n for august: 2184 Se uge Se dage
| Eksemnplarer UdiSn for september: 1715 Se uge Se dage
[Ugedage Udian for oktober: 26 Se uge Se dage
OVERSIGT | gian for november: 0 Se uge Se dage
| b Udin for december: 0 Se uge Se dage
GENNEMSNIT
[Eksernplarer
I Lanere
| Transaktioner
| Trans. leengde
Ass, regler
|- Boiger
I UDK
I Lanere
| Avanceret
DIVERSE
- snbefalinger a
e
[l
[[[@ memet é

Figure 6.3: An Overview of Loan by Months.

total number of loans per week in the current month and the total
number of loans for each day in the current month can be seen by
further drilling down.

UDK Level 1 This overview makes it possible to see the number of
borrowers per UDK on the top level. A UDK consists of several
levels and it is possible in the GUI to drill down to level 2, explore
the sub-topics on this level, and further drill down to level 3 for
a given sub-topic. You can see an example of a UDK overview in
Figure 6.4.

The final statistics shows the following:

Gennemsnit

Eksemplarer This page shows the average number of editions per
month, per week, and per day.

Lanere This page shows the number of borrowers per month, per week,
and per day, see Figure 6.5.

Transaktioner This page makes it possible to retrieve information
about how many transactions in average have been registered per
month, per week, and per day.

CHAPTER 6. THE DATA ACCESS TOOLS

6.1. THE LIBRARIAN SERVICE Page 129 of 163

ook Help

g;ﬂ’@mm GilFavorites @vedia (3 [E5- S &A 5

a080/nyapaltopldborroner =l o |

Oversigt over UDK Niveau 1

UDKniveau1 Antaludidn Navn Filial
I Dage 301 7284 Sociologi, alment
| Eksemplarer 658 3878 Driftsakonormi
r Ligedage 150 3664 ukendt
F FO?FL;L\JSEIO 004 2265 Datalogi og datateknik
| Cnere 327 2102 International politk, alment
| Bager 65: 1964 virksomhedsarganisation
| Dace o7 1545 Multimedie
| Eksermplarer 800: 1437 Sproguidenskab, alment
I Ugedage 37 1431 Padagogik, almen
OVERSIGT 331 1383 Arbejdsmarked
I Ec 330 1298 Nationalgkonomi, alment

| UDK 323
GENNEMSNIT | 52001
[Eksemplaref
| Léanere
- Transaktioner
|- Trans. leenade
Ass. regler

5}

Politiske grupper
Litteraturvidenskab -og historie, almen
Filosofiens histarie

I

%

19:
621
321,
130:

2

Maskinlzre
ukendt
Bevidsthedsfilosof

R

5

[Boger 338 899 Ukendt
L UDK 347 844 Borgerlig rat
I Lanere 330. 791 Handel og internat. gkon. forhold
| Avanceret 621 103 Maskirlzre
DIVERSE 519 608 ukendt
I anbefalinger aff aso 573 ukendt
bager

[[[intemet

N

Figure 6.4: An Overview of Loan by UDK.

Transaktionsleengde This page shows information about the average
transaction length by calculating the number of books per number
of transactions a year.

We have made aggregate tables in order to speed up the displaying of the
statistics. The following web pages make use of aggregate tables:

e Overview for Loan Days

e Overview for Loan Months

Overview for Loan Weeks

Overview for Loan Year

Overview for UDK Level 1
Overview for UDK Level 2

Overview for UDK Level 3

The second part of the librarian service displays association rules that the
system has generated based on the current data from the data warehouse, see
the Appendix A. LIQ Hybrid runs offline in order to compute the association

CHAPTER 6. THE DATA ACCESS TOOLS

Page 130 of 163 6.1. THE LIBRARIAN SERVICE

N e \
ek - o - @ [0 A @oearh G 3| & =
Adross [tp:127.0.0. 080 myepptop I oharromer jip o oe |

=

PyV=S
Forfattere Gennemsnitlige antal Ldnere

|- Eksernplarer

I Ugedage
BUND 10

|- Forfattere

I Lanere

i

a0e
Eksemplarel
I Ugedage

OVERSIGT
F2r

L

| UDK
GENNEMSNIT
Eksermnplarel
I Lanere
|- Transaktioner
| Trans. leengde
Ass, regler

|

I UDK

I Lanere

|- Avanceret
DIVERSE

- snbefalinger a

boger

IR

[[[@ memet

Figure 6.5: The Average Number of Borrowers.

rules and save the results in a table. When the librarian chooses to see the
association rules the corresponding table is queried and the results are shown
on the web site.

It is also possible to display association rules using constraints and general-
izations. As an example the user can choose an UDK level or a StatusType
in order to display association rules within an UDK level or an StatusType.
An advanced edition of the association rules can also be run through the web
interface. The advanced edition makes it possible to choose both an UDK
and StatusType and to run the association rule mining algorithm online.

The illustration on Figure 6.6 shows an example of retrieved association rules
from the librarian service. The business user of the librarian service can
choose to set the minimum support and confidence values on the JSP page
in order to get the corresponding association rules.

We have implemented a privacy constraint on the association rules when the
rules are displayed on the web page. This means that we make use of end-
suppression in order to remove association rules for books that have not got
enough borrowers. The reason for this is that if an association rule has too
few borrowers, it is possible for an user of the web site to find out who the
borrowers are, and this must not be possible according to the Danish law of
privacy.

CHAPTER 6. THE DATA ACCESS TOOLS

6.2. RECOMMENDATION SERVICE Page 131 of 163

ook Help

o > - @ B G| Qe Grevons @ @B @ B

s [] htg: 1127.0.0.1:0080]myepeltoptsbarrower Jsp = ow |
3\ AUB DATA WAREHOUSE
TOP 10 - -
Fortartere Associationsregler
Lénere
| Bager
| Dage valg min. support: [~-=- =] Valg min. confidence: [~-----—- -
I Eksedm larer Associationsregel Support Confidence
I Ugedage o
g standard for danske biblioteker)
BUND 10 g 13 6.666664%
| Eorfattere (danMARC2) => (Katalogiseringsregler og bibliografisk standard for i 1255
|- Lanere danske biblioteker)
L %gger (DKS) => (danMaRC2) . 63.636364%
L ‘CLEES:W larer (Organisation og forandringy => (Den~lirende organisation) 7 £8.333332%
[Exsemplarer
| Ucedage (Den~lirende organisation) => (Organisation og forandring) 7 46.666668%
OVERSIGT (danMARC2) => (DKS) 7 43.75%
[Ar (Katalogiseringsregler og bibliografisk standard for danske biblioteker) , 6 100.0%
L ODK. (DKS) => (danMARC2)
GENNEMSNIT | (danMARC2) , (DKS) => (Katalogiseringsregler og bibliografisk standard
[GENNEMSNIT | s 95.714209%
F Elserplarer for danske biblioteker)
| Lanere (DKS) => (Katalogiseringsregler og bisliografisk standard for danske ¢ 4545456
| Transaktioner | bibliotsker)
| Trans. leengde (DKS) == (Katalogiseringsregler og bibliografisk standard for danske
Ass. regler biblioteker) , (danMARC2) s 54.545456%
FBacer (Katalogissringsregler og bibliografisk standard for dansks biblioteker) ,
L UDK (danMARC2) =2 (DKS) ° 46.153847%
I Lanere (Katalogiseringsregler og bibliografisk standard for danske biblioteker) 40.0%
| Avanceret => (danMaRC2) , (OKS)
DIVERSE og Standard for danske biblteker) 0%
I Anbefalinger af => (DKS)
bager
|
[[[@ et v

Figure 6.6: Association Rules.

6.2 Recommendation Service

The recommendation part is available through the recommendation service.
It enables the borrower to see the results from the recommendation imple-
mentation. A borrower can choose any book available in the Auboline system
and see what recommendations are available for the book.

The recommendation service must be implemented in Auboline’s system so
that it is possible to see recommendations about a book when choosing a
book in Auboline. On Figure 6.7 it is shown how Auboline’s system looks like
and Figure 6.8 shows how the recommendation service could be implemented
inside Auboline in order to show the recommendations. See the Appendix A
for details on the data sample from AUB.

It is possible to implement the recommendation service inside Auboline be-
cause the recommendation service makes the recommendation data available
to Auboline using XML. See the Appendix D for an example of the XML
data.

CHAPTER 6. THE DATA ACCESS TOOLS

Page 132 of 163

3 AUBOLINE - Fuldt format - Microsoft Intetnet Explorer

-10) x|
e Edt ten s Took e |
ek - S - (@[3 A} | Doearch [Favortes @veda F | B S = 5
Address [] hitp:/fjumboz0:8080/myapp/aubjrecommend1 70369, 5p | pa
AUBOLINE
Log ind] Afslut forbi [IX i | | veelgbase |send Feed-back|Bestil Fiernldn| Hjelp |auB
| Skan | Sgg |Resultatliste | Segehistorie | Gemte poster |In English|
Send til gemte poster | Send som email

Fuldt format

vaslg vis-format: Standard Beskrivende felter MARC format
Post 1udaf 1

®LAN : Stue : Boger 82(483) (Bro)

Titel ®prosa fra B0'erme w1 90'erne / redigeret af Anne-Marie Mai

Impressum Valby : Borgen, 1994

Fys.beskr. 2955,

Medforf./redaktar @i, Anne-tarie

15BN ®8721000352 =
®872100352

Bestil Alle eksemplarer.

Bestil (4r) Item (no year)

©82(489) Litteraturvidenskab, danmark

oLitterar ®hesselholdt, Christina ®Helle, Merete Pryds @Hultherg, Peer ®Hgeg, Peter ®Skoy
Christian ®Ejmes, A.M. @Wilumsen, Dorrit @Michael, b ®Granfeldt, Vibeke ®Bjelke, Henrik @Eriksen, Jens-
Martin ®Preisler, Juliane ®Hammann, Kirsten ®Balle, Solve] ®Madsen, Sven Age ®Thorup, Kirsten

Emneord

I |
Z

Localintranet

Figure 6.7: Auboline’s Web page for a Book.

- DR Y| Qe (arwoss Gneds 3| BN o = 5

Acdthess [€] htps/fumbo20:8080jmyapplaublrecommend 170363.i5p B

©52(489) Litteraturvidenskab, danmark
oLitterzr ®Hesselholdt, Christing @Helle, Merete Pryds ®Huitherg, Peer OHpeg, Peter ®Skov,

Emneord Christian Ejmzs, A.M. ®Willuimsen, Dorrit @Michael, b @Granfeldt, vibeke @Bjelke, Henrik OEriksen, Jen
Martin @Preisler, Julisne ®Hammann, Kirsten OBalle, Solvej ®Madsen, Sven Ege ®Thorup, Kirsten

Bakke Marit Spillet om kulturen

Hojbjerg Lennard Reception af levende billeder
Hojbjerg Lennard Fortolleteo
Hojbjerg Lennard Reception af levende billeder

Bondebjerg Ih Elektroniske fiktioner
Drotner Kirsten Medier for fremtiden
Fibiger Johannes Litteraturens veje
Adamsen Billy Tu-valg & Tu-volger

Tufte Birgitte (red.) Bornekultur
Mortensen Frands Mediehondbogen

Afslut forbindelse - Indstillnger - Kommentarer - Hj=lp - Fiernldn - SKAN - Sgg - Resultatliste - Sagehistorie - Valg base - Gemte.
poster

Aalborg Universitetsbibliotek, Langagerve; 2, 9220 Aalborg, Telefonnummer: 96 353400, email:aub@aub.aue.dk

A

Localintranet

el

Figure 6.8: Auboline with Book Recommendations.

6.2. RECOMMENDATION SERVICE

CHAPTER 6. THE DATA ACCESS TOOLS

6.3. USING THE SYSTEM Page 133 of 163

6.3 Using the System

The data access tools are only prototypes for showing the possibilities avail-
able in the recommendation service and librarian service we have developed.
It has been presented for AUB in order to discuss the features available in
business intelligence and in order to find out what they would like to make
use of.

The idea with the data access tools is that statistics, the association rules,
and recommendations should be available for the librarians. The reason
for this is that AUB can use this kind of data to increase their knowledge
about their users. Furthermore, it is possible for AUB to, e.g., make book
collections available for borrowing that are made from the association rules.
These book collections could have different main subjects, e.g., fiction books,
and the books could be chosen by finding the association rules that support
these choices. The recommendations from the data access tool enable the
librarians to check the quality.

The idea with the recommendation service is to let it be available to borrowers
on AUB’s web site. This makes it possible for borrowers to choose a book on
the web site and see what recommendations there are for other books. The
recommendations will be based on the community of users borrowing books.

6.4 Feedback

We have presented the data access tools to AUB and at a conference. We
showed them how they can get statistics for the books, borrowers and authors
available in the database, get overviews over the UDK-levels, and the number
of loans per UDK. We also showed them how they could get overviews over
the loans per day, week, month, and year. Furthermore, we presented the
librarian service, which they liked very much.

At the conference it was said that a more serious problem with the system is
when users are borrowing books that have no relevance with each other, or
if the majority of the users are borrowing books of low professional quality.
Another problem is the self-perpetuating effect that raises when users are only
borrowing books that are being recommended by the item-based approach. It
was said at the conference that the recommendations are a better alternative
to the searching capabilities of the current system. Currently, many users
cannot find books that are relevant to them and they often do not use more
than one word when searching for books. With the recommendation system

CHAPTER 6. THE DATA ACCESS TOOLS

Page 134 of 163 6.5. FUTURE WORK

books that are linked to each other are shown to the user, this was considered
to be more usable to the users.

We also presented the recommendation system both to AUB and to the con-
ference. We showed them examples on books, e.g., Organisation og foran-
dring and which other books that was borrowed together with the current
book, e.g., Den lerende organisation. AUB and people at the conference
were very interested in this and they could see the possibilities in using this
feature in their existing web site. They therefore asked us to expand the
system with a recommendation service that makes it possible to exchange
data using XML, so that their web site can retrieve data from our system
using XML. They also wanted us to setup a test-system, thereby making it
possible for their librarians to test the data access tools.

Regarding personalized recommendations they expressed that it would prob-
ably be ages before it is possible to implement predictions in the system.
This would make it possible to see recommendations for a book based on the
current user’s loan history. The reason for this is the Danish privacy law,
that makes user monitoring illegal.

The last feedback we were given from them, were that all information about
their current system must be held confidential. It is therefore not possible
for us to include the table description in our appendix.

In all it looks like the library is very favorable for the system extension we
have developed.

6.5 Future Work

In this section we will go through the possible improvements of the data
access tools. Some of the improvements can, e.g., be choosing an OLAP
application for analyzing the data, making better graphical overviews on the
web site, and add help and support to the web site.

We will now show some examples of the improvements that can be made and
also try to suggest what kind of inspections would have to be made when
improving the system.

6.5.1 OLAP

Online analytical processing (OLAP), are being used by organizations to dis-
cover valuable business trends from data marts and data warehouses. OLAP

CHAPTER 6. THE DATA ACCESS TOOLS

6.5. FUTURE WORK Page 135 of 163

provides an online statistical overview of data, which can, e.g., be a historical
view of loans.

One could instead of using the librarian service find an already existing OLAP
application in order to make the statistics part.

When finding an OLAP application there are a number of things we need to
consider. Some of them are listed here:

Platform Choice The first step is to make a list of OLAP vendors that
have software that are compatible with the platform that AUB is us-
ing. In this case it is UNIX. However, some vendors tend to be only
Microsoft centric or have products that are better supported on a par-
ticular platform. So this must be analyzed first. We would also need
to find out if there are any free and open source OLAP applications
available.

Vendor History There are many new OLAP vendors that have popped up
since the mid-nineties. Some of the newer companies have rewarding
and rich OLAP tools that can be cost effective. It is a good idea to
find out the reputation of a vendor.

Consulting It is wise to find out how much consulting would be required
to install the product. Also, if changes are needed after installation, it
is wise to find out if it will require the need of external consultants.

Integration to Database We should find out how tightly integrated the
OLAP tool is to our database.

Price Finally, it is often challenging to gauge the additional hidden cost
from the actual purchase price. Some of the points above can help
make a good financial forecast. We need to consider what tool is the
best given the number of features and the price for it.

The OLAP application has to be compatible with PostgreSQL because the
system is using this DBMS.

Here is given a sample list of OLAP vendors: Oracle, Targit, Microsoft, SAS,
IBM, Business Object and Hyperion. For more information see the web site!.

Thttp://www.olapreport.com

CHAPTER 6. THE DATA ACCESS TOOLS

Page 136 of 163 6.5. FUTURE WORK

Overview for Loans 2003

6000 =

5000

4000

books 3000

OLoan

2000

1000

a T T T T T T T T
jan feb mar apr may jun jul aug sep okt nov dec
month

Figure 6.9: Example of Diagram for Loan Per Month Overview.

6.5.2 Graphical overviews

The librarian service can be expanded with the possibility of showing the
statistics in different graphical overviews, such as diagrams.

In Figure 6.9 is shown an example of how the overview for loan per month
could be made graphically and thereby give a much clearer view over what
the data is meaning. The figure shows that we have a lot of loans in the first
half year, however because we are missing data from the last half year, the
last bars in the diagram are empty.

6.5.3 Help and Support

The librarian service could be improved by implementing help and support
features. This would make it possible for the business users to find help
within the web site and to search for guides, e.g., regarding how to use the
association rules or to find out what support or confidence means.

The help and support could be used to guide the business users to use the web
site. In order to develop a help system we could make a test of the system
together with different business users in order to find out what information
the business users want to have in the help system and also find out how the
general user interface should look like.

CHAPTER 6. THE DATA ACCESS TOOLS

6.5. FUTURE WORK Page 137 of 163

6.5.4 Aggregate Navigator

Another optimization is directed at efficiently providing results based on SQL
queries for aggregated data. If for instance we want to query for the number
of books borrowed by computer science students in March 2003, it would be
much faster to get a result from an aggregated table containing number of
loans by month, year, and status as opposed to aggregating a large fact table
containing millions of rows every time such a query was wanted. We all know
that we need to "cheat” and calculate some values in advance, such as totals,
and store them in the database in order to improve performance. What we
suggest is to build aggregate tables that can be used with the most queries
in the system. Every time business users send SQL queries there must be an
intermediate application to parse them and find out whether one or more of
the aggregate tables can be applied in order to increase performance. Such
an intermediate application is known as an Aggregate Navigator [1]. The
Aggregate Navigator rewrites the query if possible and uses the aggregated
tables in the rewrited queries.

CHAPTER 6. THE DATA ACCESS TOOLS

Page 139 of 163

Conclusion

AUB wants to increase their level of service to their borrowers, which should
be accomplished by extending their current system with the possibilities of
recommending books. This should lead to more loans due to relevant rec-
ommendations of books. Furthermore, the librarians should also be aided
in the form of a decision support system, which enables them to make more
efficient business decisions. The bottom line is to cut costs, get more funds,
and increase level of service.

We have built a BI system, which is based upon a data warehouse. The
ETL processes have the responsibility of populating the data warehouse.
Previously this exercise took 4-5 hours to complete for 10 months of loan
data. It now only takes 2 minutes. The librarian and recommendation service
use the data warehouse.

The librarian service is aimed towards the business users. Through a web
site they are given access to association rules and statistics.

Regarding the association rule mining we have implemented Apriori, LIQ),
and LIQ Hybrid in order to find out both the frequency and tendency of
books being borrowed together. We have carried out a performance test on all
three implementations resulting with LIQ Hybrid as the one with the lowest
execution time. Afterwards, a scalability test has been carried out between
LIQ Hybrid and FP-Growth. It seems that LIQ Hybrid is faster while we
have less than 225,000 transactions or 3-4 years of loan history. Once we
surpass this threshold, FP-Growth is superior to LIQ Hybrid. Beside being
able to find associations between all books it is also possible to constrain the
search on borrower status and type. Furthermore, association rules can be
mined across UDKs.

CHAPTER 7. CONCLUSION

Page 140 of 163

The recommendation service is aimed towards borrowers and produces XML
data that can be used by AUB’s current system, Auboline. The XML data
contains recommendation of books based on books which are similar to the
one the borrower has selected. A content-based approach has been imple-
mented in order to compensate the lack of recommendations from the item-
based approach and improve the quality of the recommendations. The lack
of recommendations in the item-based approach is due to cold-start prob-
lems. The performance for both implementations is also very satisfactory
as each of them only take a couple of minutes to be executed offline for 10
months of loan data. The actual recommendations can then be done online.
Compared with the previous implementation of the item-based approach, we
have achieved a significant improvement on its offline execution time as it
previously took 2 hours to complete the same amount of loan data.

The requirements stated in Section 2.6 has been fulfilled except from being
able to synchronize seamlessly with the source system and providing online
help. The synchronization process is not possible as we are not allowed to
access the source data directly but will receive them in flat files instead.
We have built a BI system that can run on AUB’s existing platforms and
hardware. Another requirement was to use open source applications in order
to save license costs. This has been met as we use Tomcat as a web and
application server. Furthermore, the data warehouse uses the PostgreSQL
DBMS. Both applications are open source. Finally, the Danish law of privacy
prohibits any information that can lead to an identification of a particular
user. As we only have access to the borrower ID, which is encrypted, and
no other personal information, we believe to have uphold the law. This has
been done by suppressing the association rules from the data access web tool,
which are below a certain threshold.

Future work has to be done in order to get a integrated BI system that AUB
can use. The ETL processes have to extract data directly from the origi-
nal source tables. The librarian service should be extended with graphical
overviews or an existing OLAP tool should be integrated. Online help should
also be available in order to ease the understanding of the librarian service.

AUB and other libraries see big possibilities in using the recommendation
service and association rule mining. Therefore, they would like to have a full
implementation of the system. In order to accomplish this the data should be
extracted directly from the source system of the library into the data ware-
house. Furthermore the recommendation service needs to be implemented in
the web site service of the library.

AUB wants to test the librarian service by doing different acceptance tests

CHAPTER 7. CONCLUSION

Page 141 of 163

in order to make sure it meets the librarians’ needs. The full implementation
will make it possible for the borrowers to receive recommendations from the
Auboline system and for the business users to find useful association rules
and statistics.

To conclude, it looks like AUB and other libraries are very favorable for the
system extension that we have developed.

CHAPTER 7. CONCLUSION

Page 143 of 163

Appendices

CHAPTER 7. CONCLUSION

Page 145 of 163

Sample Data

The development of the BI system for AUB was based on an extraction
of data from the operational source system at AUB. The extraction caused
several limitations because of the limited amount of data and access to data.

The extraction only consists of loan data from January to October 2003.
There are a total of 64,371 loans in the extraction and it is only book loans
meaning that loans of articles, audio CDs etc. have been excluded. The
attributes that are covered by the extraction are listed in Figure A.1. Infor-
mation regarding the loan data covered by the extraction is listed in Figure
A.2. A transaction corresponds to loans grouped by the same user on the
same day.

The limitations of the sample data are that we only get the books that are
borrowed and the borrowers that borrow books. This fact makes it impossible
for the business users to get a view of the books that have not been borrowed
nor a view of the borrowers who have not borrowed any books. The number
of attributes are also very limited. It could, e.g., have been interesting to
have had a loan time in order to try different transaction definitions and see
the different number of transactions. In addition, if key words describing
the books were included the quality of the content-based recommendation
could be improved. The extraction also limited the implementation of the
ETL since the extraction could not be done from the base tables in the
operational source system.

APPENDIX A. SAMPLE DATA

Page 146 of 163

Attribute | Source Attribute Description

A 7Z36H-REC-KEY An administrative system number consisting
of a DOC-NUMBER and ITEM-SEQUENCE.

B 7Z13-DOC-NUMBER A foreign key referring to the Z13 table.

C 7Z36H-ID The ID of the borrower.

D 736-LOAN-DATE The date of the loan.

E 7Z36-RETURNED-DATE | The date the book was returned.

F Z36H-BOR-STATUS The status of the borrower.

G Z36H-BOR-TYPE The type of the borrower.

H Z36H-NO-RENEWAL Number of renewals.

I Z36H-TIME A timestamp of when this row was added.

J Z30-ITEM-STATUS The status of the material.

K 7Z30-OPEN-DATE The date of creation of the edition.

L 730-CALL-NO The UDK for the edition.

M 7Z13-AUTHOR The author of the book.

N Z13-TITLE The title of the book.

O Z13-YEAR When the book was published.

Figure A.1: Attributes from Extraction.

Description Number
Loans 64,371
Transactions 29,373
Books 37,022
Authors 28,392
Borrowers 8,758
Borrower Types 51
Borrower Status 10

Figure A.2: The Extraction Data Set.

APPENDIX A. SAMPLE DATA

Page 147 of 163

Data Warehouse

This appendix covers the definitions for tables used for the dimension tables,
fact table, and the aggregate tables. Furthermore, indices have been created
on attributes used for selection in the librarian service.

B.1 Dimensions and Fact Table Definitions

The following is the schemas for the dimensions and fact tables:

CREATE TABLE edition
(
id int4,
open_date int4,
issue_date int4,
editionnumber varchar(6),
title varchar(200),
bookid int4,
authorname varchar(100),
CONSTRAINT edition_pkey PRIMARY KEY (id)

)

© 0 N O ;s W N

=
= o

There is created an index in the Edition dimension table for the id attributes.

1 CREATE TABLE statustype
2
(
3 id int4,
4 status varchar(200),
5 type varchar(200),
6 statusname varchar(50),
7 typename varchar(50)
8

APPENDIX B. DATA WAREHOUSE

Page 148 of 163 B.1. DIMENSIONS AND FACT TABLE DEFINITIONS

There is created an index in the Status Type dimension table for ID attribute.

CREATE TABLE udk

(
id int4,
udklevell varchar(30),
udklevellname varchar(200),
udklevel2 varchar(30),
udklevel2name varchar(200),
udklevel3 varchar(30),
udklevel3name varchar(200),
udkdepartment varchar(200)

)

There are created indices in the UDK dimension table for each of the following
attributes: id, udklevell, udklevel2, and udklevel3.

CREATE TABLE time

© 0 N O Ut W N =

=
= o

id int4 NOT NULL,

hour varchar(2),

minute varchar(2),

CONSTRAINT time_pkey PRIMARY KEY (id)
)

N O A W N

There is created an index for the id attribute in the T%me dimension table.
CREATE TABLE date

weekday varchar(10),
quarter int4,
daymonthyear varchar(10),
daymonth varchar(5),
monthyear varchar(7),
yearquarter varchar(8),
yearmonthday varchar(8),
daynumber int4,
weeknumber int4,
monthnumber int4,
schoolyear varchar(9),
period varchar(100),
weekdaynumber int4,
CONSTRAINT date_pkey PRIMARY KEY (id)
)

1

)

3 id int4 NOT NULL,
4 year int4,

5 month varchar(10),

6 day int4,

7

8

9

R R R I i e
H O © 00 N O oA W N~ O

There is created an index for the id attribute in the Date dimension table.

APPENDIX B. DATA WAREHOUSE

B.2.

TABLE DEFINITIONS FOR AGGREGATE TABLES Page 149 of 163

© 00 N 3 s W N

e e e e =
D s W N = O

CREATE TABLE loan

(
id int4 NOT NULL,
transactionid int4,
borrowerid int4,
loandate int4,
loantime int4,
returndate int4,
returntime int4,
duedate int4,
duetime int4,
editionid int4,
udkid int4,
statustypeid int4,
CONSTRAINT loan_pkey PRIMARY KEY (id)

)

There are indices on every attribute as they are used to join between the
dimension tables.

B.2 Table Definitions for Aggregate Tables

The following are the schemas for the aggregate tables:

© 00 N O oA W N =

CREATE TABLE loanoverviewday
(

year int4,

monthnumber int4,

day int4,

weekday varchar(10),

weeknumber int4,

count int8

)

There are created composite indices in the loanoverviewday aggregate ta-
ble for each of the following attributes: (year, monthnumber) and (year,
weeknumber).

N O Ot W N =

CREATE TABLE loanoverviewmonth
(

year int4,

month varchar(10),

monthnumber int4,

count int8

)

There is created an index in the loanoverviewmonth aggregate table for at-
tribute year.

APPENDIX B. DATA WAREHOUSE

Page 150 of 163 B.2. TABLE DEFINITIONS FOR AGGREGATE TABLES

N O oA W N =

CREATE TABLE loanoverviewweek
(

year int4,

monthnumber int4,

weeknumber int4,

count int8

)

There is created a composite index in the loanoverviewweek aggregate table
for the following attributes: (year, monthnumber).

Dt W N =

CREATE TABLE loanoverviewyear
(

year int4,
count int8

)

There has been created no index in the loanoverviewyear aggregate table.

N O oA W N =

CREATE TABLE udkloverview
(
count int§,
udklevell varchar(30),
udklevellname varchar(200),
udkdepartment varchar(200)

)

There are created no index in the udkloverview aggregate table.

0w N O oA W N

CREATE TABLE udk2overview
(
count int§,
udklevell varchar(30),
udklevel2 varchar(30),
udklevel2name varchar(200),
udkdepartment varchar(200)

)

There is created an index in the udk2overview aggregate table for attribute
udklevell.

© 0 N O U A W N =

CREATE TABLE udk3overview
(
count int8,
udklevell varchar(30),
udklevel2 varchar(30),
udklevel3 varchar(30),
udklevel3name varchar(200),
udkdepartment varchar(200)

)

APPENDIX B. DATA WAREHOUSE

B.2. TABLE DEFINITIONS FOR AGGREGATE TABLES Page 151 of 163

There is created a composite index in the udk3overview aggregate table cov-
ering the following attributes: (udklevell, udklevel2).

APPENDIX B. DATA WAREHOUSE

Page 153 of 163

Association Rules

The tables used for association rules mining in LIQ) and Apriori are listed in
the following.

C.1 Loan Table

The following query is used to create the table containing transactions and
books. This table is used for mining association rules across books.

CREATE TABLE
loanUnique
AS

SELECT
loan. transactionID
edition . bookID,

© 0 N O s W N

FROM
loan,

10 edition
11 WHERE
12 loan. editionID = edition.ID
13 GROUP BY
14 loan. transactionID,
15 edition . bookID

6)

APPENDIX C. ASSOCIATION RULES

Page 154 of 163

C.2. UDK TABLE

C.2 UDK Table

The following query is used to create the table containing transactions and
UDKSs. This table is used for mining association rules across UDKSs.

CREATE TABLE
loanUnique_udk
AS

SELECT
loan. transactionID
loan. udkID,

FROM
loan

GROUP BY
loan. transactionID,
loan. udkID

© 00 N O Ut A W N =

e
No= O

—
w
~—'

C.3 StatusType Table

The following query is used to create the table containing transactions and
status types. This table is used for mining association rules across the bor-

rowers’ status and type.

CREATE TABLE
loanUnique_statustype
AS

SELECT
loan. transactionID
loan. statustypelD
FROM
loan
GROUP BY
loan. transactionID,
loan. statustypelD

© 00 N e U W N -

= e
No= O

[
w
~—

APPENDIX C. ASSOCIATION RULES

Page 155 of 163

Recommendation

The following covers the tables that are used in the implementation of item-
based CF and content-based recommendation. Lastly, there is listed an ex-
ample of the XML output from the recommendation service.

The table used for fetching a borrower’s number of loans of a book:

CREATE TABLE loanCount AS
(
SELECT
1. borrowerid AS borrowerid,
e. bookid AS bookid,
COUNT(e.id) AS count
FROM
loan AS 1,
edition ASe
WHERE
1. editionID = e.id
GROUP BY
1. borrowerID,
e. bookID

© 0 N O s W N =

e e e =
(S N I e

)

There are indices in the loanCount table for the following attributes: bor-
rowerid and bookid.

APPENDIX D. RECOMMENDATION

Page 156 of 163

The table used for finding all the borrowers who have borrowed a specific
pair of books:

CREATE TABLE borrower2Books AS

1

2

3 SELECT

4 lcl. borrowerid AS borrowerid,
5 lcl.bookid AS bookid,

6 lc2.bookid AS bookid2

7 FROM

8 loanCount AS Icl,

9 loanCount AS 1c2

10 WHERE

11 lIcl. borrowerid = 1¢2.borrowerid AND
12 Icl.bookid '= 1c2.bookid AND
13 lcl.bookid > lc2.bookid

14)

There is created a composite index in the borrower2Books table for the fol-
lowing attributes: (bookid, bookid2).

The table used for storing the computed item-based similarity values:

value float8

1 CREATE TABLE similarity
2

3 i INTEGER,

4 j INTEGER,

5

6

)

There are created indices in the similarity table for the following attributes:
iand j.
The table used for storing the computed content-based similarity values:
CREATE TABLE patternsim

bookid1 int4,

bookid2 int4,
count int4

)

There is created an index in the patternsim table for attribute bookidl.

DTt s W N =

APPENDIX D. RECOMMENDATION

Page 157 of 163

The recommendation service outputs XML that can be parsed at the Aubo-
line web site at AUB. An example of the XML containing recommendations
for the book Lering written by Knud Illeris is listed here:

© 0 N O s W N

R R R R R W W W W W W W W W W N NN NN NN NN N e e e e e e e
Gk W N H O © 0N O A W N O © 00T WY = O © O W N = O

<?xml version="1.0" encoding="utf—8” 7>
<Recommendation xmlns:xsd="http://www.w3.org/2001 /XMLSchema”
xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance”
xmlns="http://www.aub.auc.dk /webservices/”>
<Book>
<Author>Knud Illeris (red.)</Author>
< Title>Tekster om elring< /Title>
< /Book>
<Book>
<Author>Jens Bjerg (red.)</Author>
< Title>xPdagogik< /Title>
< /Book>
<Book>
<Author>Helle gAlr (red.)</Author>
< Title>Videoobservation< /Title>
< /Book>
<Book>
<Author>Helle gAlr</Author>
<Title>Personlig kommunikation og formidling< /Title>
< /Book>
<Book>
<Author>Oluf Danielsen< /Author>
<Title>#Lring og multimedier< /Title>
< /Book>
<Book>
<Author>Erik Damberg< /Author>
<Title>®Pdagogik og perspektiv</Title>
< /Book>
<Book>
<Author>Else Hiim< /Author>
<Title>&Undervisningsplanlgning for sfaglrere</Title>
< /Book>
<Book>
<Author>Poul Bitsch Olsen</Author>
<Title>Problemorienteret projektarbejde</Title>
< /Book>
<Book>
<Author>Kjeld Fredens</Author>
<Title>Liv og elring< /Title>
< /Book>
<Book> i
<Author>NielsA gkerstrm Andersen</Author>
<Title>Diskursive analysestrategier</Title>
< /Book>
< /Recommendation>

APPENDIX D. RECOMMENDATION

Page 159 of 163

Bibliography

APPENDIX E. BIBLIOGRAPHY

BIBLIOGRAPHY Page 161 of 163

Bibliography

[1] The aggregate navigator.
http://www.fortunecity.com/skyscraper/oracle/699/orahtml/dbmsmag/9511d05.html,
1995.

[2] Crc32 - java api.
http://java.sun.com/j2se/1.4.2/docs/api/java/util/zip/CRC32.html,
2004.

[3] Hashmap - java api.
http://java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html,
2004.

[4] Routine database maintenance tasks.
http://www.postgresql.org/docs/7.4/interactive/maintenance.html,
2004.

[6] J. Gehrke A. Evfimievski and R. Srikant. Limiting privacy breaches in
privacy preserving data mining. 2003.

[6] R. Agrawal A. Evfimievski, R. Srikant and J. Gehrke. Privacy
preserving mining of association rules. 2002.

[7] R. Agrawal and R. Srikant. Privacy-preserving data mining. 2000.

[8] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules. 1994.

[9] Rakesh Agrawal and Ramakrishnan Srikant. Mining generalized
association rules. 1995.

[10] Joseph Konstan Badrul, George Karypis and John Riedl. Item-based
collaborative filtering recommendation algorithms. 2001.

BIBLIOGRAPHY

Page 162 of 163 BIBLIOGRAPHY

[11] Prof. Michael Stonebraker U. C. Berkeley. POSTGRES QUERy
Language. http://s2k-ftp.cs.berkeley.edu:8000/postgres/postgres.html,
1994.

[12] Prof. Michael Stonebraker U. C. Berkeley. University POSTGRES 4.2.
http://s2k-ftp.cs.berkeley.edu:8000/postgres/postgres.html, 1994.

[13] Aaron Brazell. Introducing cron.
http://www.sitepoint.com/article/1196/1, 2003.

[14] Laurentiu Cristofor. Arminer project.
http://www.cs.umb.edu/ laur/ARMiner/, 2000.

[15] Apache Software Foundation. The Jakarta Site - Apache Tomcat.
http://jakarta.apache.org/tomcat/, 01-11-03.

[16] Apache Software Foundation. Jakarta Apache.
http://jakarta.apache.org/, 2003.

[17] The Apache Software Foundation. Apache.
http://www.apache.org/licenses, 2003.

[18] Alan Gilchrist. The case for tazonomies in Information Architecture.
http://www.cs.auc.dk/ jacobm/aub/Taxonomies.ppt, 09-03-2004.

[19] Brent Smith Greg Linden and Jeremy York. Amazon.com
recommendations - item-to-item collaborative filtering. 2003.

[20] The PostgreSQL Global Development Group. PostgreSQL 7.3.3
Documentation. http://www.us.postgresql.org/postgresql-7.3.3/, 2003.

[21] Marty Hall. Using Tomcat 4.
http://www.moreservlets.com/Using-Tomcat-4.html, 2003.

[22] Jian Pei Jiawei Han and Yiwen Yin. Mining frequent patterns without
candidate generation. 2000.

[23] Al Borchers Jonathan L. Herlocker, Joseph A. Konstan and John Riedl.
An algorithmic framework for performing collaborative filtering. 1999.

[24] David Heckermann Mehran Sahami, Susan Dumais and Eric Horvitz.
A bayesian approach to filtering junk e-mail. 1998.

[25] Sun Microsystems. Java Virtual Machine. http://www.java.com, 2004.

BIBLIOGRAPHY

BIBLIOGRAPHY Page 163 of 163

[26] Bruce Momjian. PostgreSQL FAQ.
http://www.postgresql.org/docs/faqs/FAQ.html, 04-11-2003.

[27] Raymond J. Mooney and Loriene Roy. Content-based book
recommending using learning for text categorization. 2000.

[28] Raymond J. Mooney Prem Melville and Ramadass Nagarajan.
Content-boosted collaborative filtering. 2001.

[29] Margy Ross Ralph Kimball. The Complete Guide to Dimensional
Modeling. Wiley Computer Publishing, 2002. ISBN: 0-471-20024-7.

[30] Rakesh Agrawal Ramakrishnan Srikant. Mining sequential patterns.
1995.

[31] Pierangela Samarati and Latanya Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement through
generalization and supression. 1998.

[32] Sattler Kai-Uwe Shang Xuequn and Geist Ingolf. Sql based frequent
pattern mining with fp-growth. 2004.

[33] Kristian Skouboe Reesen Trien Huy Ly, Jacob Mogensen. Building a
Business Intelligent System for AUB. 18-12-2003.

BIBLIOGRAPHY

