
AALBORG UNIVERSITY 

FALCULTY OF ENGINEERING AND SCIENCE 

DEPARTMENT OF COMPUTER SCIENCE 

 

Fredrik Bejers Vej 7E , DK-9220 Aalborg 

 

 

INTEGRATING 

NORDUGRID SYSTEM 

WITH 

UPPALL  

VERIFICATION TOOL 
 

 

 

Project group B1-207 

SSE4 

June 2004



Integrating NorduGrid system with Uppaal verification tool 

 1

 

 

Preface 

 
 

 

This report is our Master Thesis in Computer Science at Aalborg University, 

Department of Computer Science, Distributed Systems and Semantic Unit. 

 

Since our 3rd semester, our project has dealt with D-Uppaal and NorduGrid. During 

our last semester, we implemented own experiments running Distributed version of 

Uppaal on NorduGrid to verify large systems. With the experience from last semester, we 

could conclude that NorduGrid is a scientific method to implement verifying large 

systems, which deal with huge resources. 

 

And in this semester, we have continued our work towards providing a convenient 

user interface for the users to implement verifying large systems.  

 



Integrating NorduGrid system with Uppaal verification tool 

 2

 

 

Acknowledgement: 

 
 

 

We are grateful to Josva Kleist for supervising our project throughout our semesters 

of investigating NorduGrid, and for many inspiring and constructive discussion about the 

concepts of NorduGrid and its advantages.  

And, in addition, we would like to thank Gerd Behrmann, Ulrik Larsen for their help 

with Distributed Uppaal. 

 

 

 

 

 

 

Aalborg University, June 2004. 

 

 

 

 

 

 

--------------------------------------                           ------------------------------------------- 

Dong Liu                                                                                  Hoang Thi Thu Huong 



Integrating NorduGrid system with Uppaal verification tool 

 3

Contents 

 

CHAPTER 1: INTRODUCTION.............................................................................................. 5 

CHAPTER 2: TECHNOLOGIES ............................................................................................. 8 

2.1 GRID.................................................................................................................................. 9 
2.2 NORDUGRID .................................................................................................................... 11 

2.2.1 grid-proxy-init ........................................................................................................ 11 
2.2.2 grid-proxy-destroy .................................................................................................. 12 
2.2.3 xRSL file................................................................................................................. 12 
2.2.4 ngsub...................................................................................................................... 13 
2.2.5 ngstat ..................................................................................................................... 14 
2.2.6 ngget ...................................................................................................................... 15 
2.2.7 ngkill ...................................................................................................................... 16 

2.3 UPPAAL ........................................................................................................................... 18 
2.4 D-UPPAAL ....................................................................................................................... 20 

CHAPTER 3: REQUIREMENTS ANALYSIS....................................................................... 22 

3.1 NO COMMANDS SYSTEM ................................................................................................... 23 
3.2 USING MORE CPUS........................................................................................................... 25 
3.3 IMPLEMENT MANY TASKS IN THE SAME TIME ..................................................................... 26 
3.4 SECURITY ........................................................................................................................ 27 
3.5 ADVANCE FEATURE … ..................................................................................................... 28 

CHAPTER 4: DESIGN............................................................................................................ 29 

4.1 SYSTEM ARCHITECTURE.................................................................................................... 30 
4.2 USER INTERFACE .............................................................................................................. 32 

4.2.1 Verifier user interface ............................................................................................. 32 
4.2.2 Check NorduGrid user password ............................................................................ 33 
4.2.3 Grid monitor and xRSL file parameters................................................................... 34 

4.3 SYSTEM PROCESS ............................................................................................................. 37 
4.4 CLASSES DESIGN .............................................................................................................. 40 

4.4.1 Uppaal code analysis.............................................................................................. 42 
4.4.2 Idea to program for new system .............................................................................. 43 
4.4.3 New classes called by VerificationGrid ................................................................... 44 
4.4.4 Classes for Grid Monitor ........................................................................................ 46 



Integrating NorduGrid system with Uppaal verification tool 

 4

4.4.5 Class for Parameters .............................................................................................. 47 

CHAPTER 5: IMPLEMENTATION...................................................................................... 49 

5.1 STRUCTURE OF UPPAAL .................................................................................................... 50 
5.2 THE WORKING FLOW OF CLASSES AND INVOCATION RELATIONSHIP..................................... 53 
5.3 DETAILED DESCRIPTION OF MAIN CLASSES......................................................................... 61 

5.3.1 SystemInspector...................................................................................................... 61 
5.3.2 VerificationGrid ..................................................................................................... 62 
5.3.3 CheckTimeOut........................................................................................................ 65 
5.3.4 GraphProxy............................................................................................................ 66 
5.3.5 SinglePanel ............................................................................................................ 67 

CHAPTER 6: EVALUATION ................................................................................................ 72 

6.1 OUR WORKS ..................................................................................................................... 72 
6.2 IMPLEMENTATION EVALUATION ........................................................................................ 73 

CHAPTER 7: CONCLUSION ................................................................................................ 74 

CHAPTER 8: FIGURES-LIST ............................................................................................... 75 

CHAPTER 9: REFERENCES................................................................................................. 77 



Integrating NorduGrid system with Uppaal verification tool 

 5

 

 

 

 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

 

Nowadays, when application systems are bigger and more complex, they require 

extra computing power including resources (hardware and software) to solve huge 

problems; however clusters are expensive to acquire and run, especially if one only needs 

the computing power from time to time. New technology called Grid with its architecture 

opens a new approach to bring a lot of computing power to the desktop. With one 

computer connecting to Grid system, it can be easy to extend more resource including 

software and hardware from many other clusters in many others locations not only local, 

implement some works that deal before with using local resources. 

 

So what is Grid? How can it bring more computing power to the desktop? What is 

different between Grid and other current technologies? Can we use any current 

technology to extend resource, not Grid? And how users interact with a grid system? 

These questions will be answered in the next chapter – Background – when we introduce 

about Grid technology more detail. 

 



Integrating NorduGrid system with Uppaal verification tool 

 6

However, besides the advantage – easily extend resource, current Grid systems are 

still difficult for any new Grid user because of command line system that requires the 

users must have intimate knowledge about the usages of the grid system. Alternatively, 

Grid system is independent with application, then, with the ordinary application users, 

using Grid system is not as simple as they expected. It will be more efficient if Grid 

technology is integrated with the application as one utility of application, automatically 

run some steps, reduce complexity and bring more comfort to the users. 

 

Imagine, when we integrate application with grid systems, the users only need to 

choose on utility on application, application will automatic connect with Grid, do some 

tasks (which before, users must run on commands system), and return the last result. The 

new system will bring more comfort to end-users, instead by the current system, in which 

the users must be trained some knowledge to use Grid with a quite complex commands 

from connect to Grid system to get back the results from system. So, if grid technology is 

to be used by ordinary application users then it must be expected to integrate with the 

application as a replacement for two independent systems. 

 

Based on this idea, in this project, we try to integrate Grid with one application 

named model checking using Uppaal, which is a tool suite for validation and symbolic 

model-checking of real-time systems based on timed automata and it is developed jointly 

by Uppsala University and Aalborg University. The problem of Uppaal is deal with 

lacking of huge resources when verifying larger systems. This can be solved by Grid 

system – it is demonstrated by our last semester project: Grid can help us to verify large 

systems [01].  

 

In the previous work, we did some experiments to prove usefulness of Grid systems 

in looking for available resources for verifying large systems using D-Uppaal (distributed 

version of Uppaal) on NorduGrid, which is a lightweight Grid solution. From the results 

of experiments, we concluded that Grid could help us to verify large systems. On the 

other hand, during the time we worked with Grid, all the steps from connect to 

NorduGrid to get results from system had been executed by using command system. This 



Integrating NorduGrid system with Uppaal verification tool 

 7

proceedings suggested us integrate application with Grid system then it is easier for end-

user in using. 

 

So, in sum, the motivation of our semester project is integrate D-Uppaal (the 

distributed version of verification system Uppaal) with NorduGrid. The new system 

allows the users to verify large systems using NorduGrid resources and this task can be 

done by Uppaal user interface, by one button click, not by commands system as before. 

 

The basic definition, architecture and user guide of NorduGrid, Uppaal and D-

Uppaal will be also described in the next chapter, in which we explain clearly why we 

choose these systems for our experiment. From this knowledge, users have one general 

view about the essential of integrating application with Grid technology. 



Integrating NorduGrid system with Uppaal verification tool 

 8

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: TECHNOLOGIES 

 

 

In this chapter, we present about some technologies, which we use to implement 

experiment on this project. That is some general information about Grid, NorduGrid, 

Uppaal and D-Uppaal verification systems.  

 

In addition, we will explain why we choose them, how to work with these 

technologies. This chapter is the background for designer and programmer for integrating 

NorduGrid and Uppaal user together. 



Integrating NorduGrid system with Uppaal verification tool 

 9

 

2.1 Grid 
 

As we concerned in Introduction, Grid can help us to extend resource for 

applications that deal with huge resource requirement. So the first question is “What is 

Grid?”  

 

------------------------------------------------------------------------------------------------------------ 

Grid refers to technologies and infrastructure that enable coordinate resource 

sharing and problem solving in dynamic, multi-institution virtual organization [02]. 

------------------------------------------------------------------------------------------------------------ 

 

With Grid system, we can use own computer not only to look for the data without 

taking care where the data is stored as Web technology but also to get back from system 

the results, which can be done by any other available cluster on Grid system. 

 

To bring these above features, Grid technologies comprise protocols, services and 

tools include: 

− Security solution to ensure virtual organization sharing rules. 

− Resource management protocols and services that support when looking for 

resources to solve problems. 

− Information query protocols and services provide attributes about resources, 

organizations and services. 

 

But can we use any current technology to extend resource, not Grid? Based on 

theory, Web also can help us to provide a global distributed system allowing sharing 

resources. Why we need new technology as Grid? 

 

Even the current Web technologies address communication and information 

exchange among computers but it does not provide integrating approaches to the 



Integrating NorduGrid system with Uppaal verification tool 

 10

coordinated use of resources at multiple sites for computation. This is one of real 

advantage of using Grid and we try to promote in this project. 

 

In this report, we would like to insist on advantage of Grid through on the business 

view: As we know, resource, which includes hardware and software, is expensive and 

scarce. To solve one big problem, which deal with resource as memory, software we can 

go out and order a new computer that has already required software, but, after solving 

problem, we will not use all of its power even the price to buy this computer is not cheap. 

That is not the best way to save money, when economic is the important goal.  

 

On the other side, if we have one computer, which connect to Grid system, even that 

computer is not strong; we still can resolve huge problems by submitting job to Grid. 

This Grid technology allows system automatically looks for available resource to crack 

your problems and return results. That is really what we would like to be done. 

 

So, with Grid system, it is easy to access to huge resource that satisfy the request 

criteria, use every capability of resources. 

 

However, Grid is independent system with application. The users, who want to 

submit job on Grid system, must have some knowledge about it, especially the command 

system from connect to Grid to get back the results. That is not quite easy processing as 

the users expected. In the next part, we will describe some basic commands to do these 

tasks.  

 

In this project, we choose NorduGrid to work with. In the next part, we will describe 

some information about it and how users interact with it. 

   



Integrating NorduGrid system with Uppaal verification tool 

 11

 

2.2 NorduGrid 

 
In this project, we will work with NorduGrid, and with NorduGrid, the computing 

resources that can be accessed through different sizes clusters from many different 

locations in the world.  

 

In this project, we only need to learn about how the users interact with NorduGrid 

system. So, we will introduce the basic command system to interact with NorduGrid, 

from submitting job to getting back results from NorduGrid system. 

 

To start working with NorduGrid, firstly, the user must be NorduGrid user. This can 

be done by install NorduGrid Client and get authentication to access Grid resources. We 

assume that the user has been NorduGrid user already. So the last thing the user needs to 

know when working with NorduGrid is commands system to submit job and get back 

result from this system.  

 

2.2.1 grid-proxy-init 

 

To start grid proxy, we use grid-proxy-init command. After start grid-proxy, user can 

submit job on NorduGrid during the default time is one day.  

 

When running this command, user must input his NorduGrid password. System will 

check username and password, if the user is NorduGrid user, and password is right, then, 

system connected to NorduGrid, otherwise, system will display error for user. 

 

Options: 

-help, -usage              Displays usage 

-version                   Displays version 

    -debug                     Enables extra debug output 



Integrating NorduGrid system with Uppaal verification tool 

 12

     -q                         Quiet mode, minimal output 

     -verify                    Verifies certificate to make proxy for 

     -pwstdin                   Allows passphrase from stdin 

     -limited                   Creates a limited globus proxy 

     -independent               Creates a independent globus proxy 

     -old                       Creates a legacy globus proxy 

     -valid <h:m>               Proxy is valid for h hours and m minutes  

     -hours <hours>             Deprecated support of hours option 

     -cert     <certfile>       Non-standard location of user certificate 

     -key      <keyfile>        Non-standard location of user key 

     -certdir  <certdir>        Non-standard location of trusted cert dir 

    -out      <proxyfile>      Non-standard location of new proxy cert 

 

2.2.2 grid-proxy-destroy 

 

After working with NorduGrid, user can disconnect by this command. It will destroy 

grid-proxy and user cannot submit any job on NorduGrid except he connects again by 

grid-proxy-init command. 

 

Options: 

     -help, -usage             Displays usage 

     -version                   Displays version 

     -debug                     Display debugging information 

     -dryrun                    Prints what files would have been destroyed 

     -default                  Destroys file at default proxy location 

 

2.2.3 xRSL file 

 

To submit jobs on NorduGrid, the user must write an xRSL (extended Resource 

Specification Language) file, in which specify job requirements and parameters for 

submission. The constructor of xRSL file is similar to scripts for local queuing systems, 



Integrating NorduGrid system with Uppaal verification tool 

 13

but includes some additional attributes as job name, executable location and parameters, 

location of input and output files of the job, architecture, memory, disk and CPU time 

requirements... 

 

This is one xRSL example (with minimum necessary parameters) 

 

 

However, besides those basic parameters, in xRSL file can have more parameters, 

which influence to the efficient of processing job as number of CPUs, Runtime 

Environments. 

 

2.2.4 ngsub 

 

With xRSL file, users can submit job on NorduGrid: 

Syntax:  ngsub [option] [xrsl] 

Example:  ngsub –f test.xrsl (submit job in test.xrsl file on NorduGrid) 

 

Options: 

   -c, -cluster   [-]name        explicity select or reject a specific cluster 

   -C, -clustlist [-]filename    list of clusters to select or reject 

   -g, -giisurl   url            url to a central GIIS 

   -G, -giislist  filename      list of GIIS urls 

   -f, -file      filename       xrslfile describing the job to be submitted 

   -o, -joblist   filename       file where the jobids will be stored 

File test.xrsl: 

  &  (executable = test.sh) 

        (jobname = test) 

        (stdout = test.out) 

        (stderr = test.err) 



Integrating NorduGrid system with Uppaal verification tool 

 14

       -dryrun                   add dryrun option to the xrsl 

       -dumpxrsl                 do not submit - dump transformed xrsl to stdout 

  -t, -timeout   time           timeout for MDS queries in seconds (default 40) 

   -d, -debug       debuglevel     

   -x, -anonymous                use anonymous bind for MDS queries (default) 

   -X, -gsi                      use gsi-gssapi bind for MDS queries 

   -v, -version                  print version information 

   -h, -help                     print this help 

 

2.2.5 ngstat 

 

To obtain the status of all jobs, we use ngstat command 

Syntax:  ngstat [option] [job] 

Example  ngstat –a (obtain status of all user’s job) 

 

Options:  -a, -all                      all jobs 

   -i, -joblist     filename       file containing a list of jobids 

   -c, -cluster   [-]name        explicity select or reject a specific cluster 

   -C, -clustlist [-]filename    list of clusters to select or reject 

   -s, -status    statusstr      only select jobs whose status is statusstr 

   -g, -giisurl   url            url to a central GIIS 

   -G, -giislist  filename       list of GIIS urls 

   -q, -queues                   show information about clusters and queues 

   -l, -long                     long format (more information) 

   -t, -timeout   time           timeout for MDS queries in seconds (default 40) 

   -d, -debug     debuglevel    0 = none, 1 = some, 2 = more, 3 = a lot 

   -x, -anonymous                use anonymous bind for MDS queries (default) 

   -X, -gsi                      use gsi-gssapi bind for MDS queries 

   -v, -version                  print version information 

   -h, -help                     print this help 

 



Integrating NorduGrid system with Uppaal verification tool 

 15

The status of job will be listed as follow: 

Accepted: job submitted but not yet processed 

Preparing: input files are being retrieved 

Submitting: interaction with LRMS ongoing 

Finishing: output files are being transferred 

Finished: job is finished 

Canceling: job is being cancelled 

Deleted:  job is removed due to expiration time 

 

2.2.6 ngget 

 

After finishing job, if users would like to get back the results from NorduGrid 

system, they can use ngget command. 

Syntax:  ngget [option] [job]  

Example: ngget –a (see all result of all jobs, which user submitted on 

NorduGrid) 

 

Options: 

   -a, -all                      all jobs 

   -i, -joblist   filename       file containing a list of jobids 

   -c, -cluster   [-]name        explicity select or reject a specific cluster 

   -C, -clustlist [-]filename    list of clusters to select or reject 

   -s, -status    statusstr      only select jobs whose status is statusstr 

       -dir                      download directory  

   -j, -usejobname               use the jobname instead of the short ID  

-keep                     keep files on gatekeeper (do not clean) 

   -t, -timeout   time           timeout for MDS queries in seconds (default 40) 

   -d, -debug     debuglevel     0 = none, 1 = some, 2 = more, 3 = a lot 

   -x, -anonymous                use anonymous bind for MDS queries (default) 

   -X, -gsi                      use gsi-gssapi bind for MDS queries 

   -v, -version                  print version information 



Integrating NorduGrid system with Uppaal verification tool 

 16

   -h, -help                     print this help 

 

2.2.7 ngkill 

 

When user wants to cancel his jobs, running this command can do it. 

Syntax:  ngkill [option] [job] 

Example: ngkill –a (cancel all user’s job on NorduGrid) 

 

Options: 

   -a, -all                      all jobs 

   -i, -joblist   filename       file containing a list of jobids 

   -c, -cluster   [-]name        explicity select or reject a specific cluster 

   -C, -clustlist [-]filename    list of clusters to select or reject 

   -s, -status    statusstr      only select jobs whose status is statusstr 

       -keep                     keep files on gatekeeper (do not clean) 

   -t, -timeout   time           timeout for MDS queries in seconds (default 40) 

   -d, -debug     debuglevel     0 = none, 1 = some, 2 = more, 3 = a lot 

   -x, -anonymous                use anonymous bind for MDS queries (default) 

   -X, -gsi                      use gsi-gssapi bind for MDS queries 

   -v, -version                  print version information 

   -h, -help                     print this help 

 

That is some basic commands, which the users usually use to submit jobs and get 

back results from NorduGrid. Besides that, NorduGrid supports more commands as 

Capturing job status (ngcat), Re-submitting jobs (ngresub), Cleaning up after jobs 

(ngclean). 

 

As we can see, it is not simple to submit job on NorduGrid, from connecting 

NorduGrid system, writing xRSL file, submitting job to getting back results. All of these 

steps will be easier for the end-users if it is automatically. And, that is also the motivation 

of this our project. 



Integrating NorduGrid system with Uppaal verification tool 

 17

 



Integrating NorduGrid system with Uppaal verification tool 

 18

 

2.3 Uppaal 

 
The fundamental idea behind the verification tool Uppaal is to model a system as a 

network of timed automata and test the model for invariant and reachability properties. 

The tool is appropriate for systems that can be modelled as a network of communicating 

processes. 

 

Uppaal consists three main elements as following: 

− System Editor: allows the user to describe and edit the timed-automata system. 

The system timed automata consists of global declarations, a timed-automaton 

templates, process assignment and system definition sections. 

− The Simulator allows the user to virtually interact with the system described. The 

simulator shows the system state by displaying the states of compound automata 

and the values of variables. The simulator allows the user to choose enabled 

transitions manually or randomly. It also has a feature of displaying the history of 

events in sequence chart. 

− The Verifier accepts the user formulated properties to be verified on a particular 

timed automata model, and displays the result of verification: true or false 

depending on whether the property was satisfied or not, and an event trace 

example if the property proof requires one.  

 

There are two ways to use Uppaal: the graphical user interface or the command line 

program verifyTA. Input of Uppaal is the system specification, which consists of a 

network of processes that are composed of location. The simulation will run interactively 

the system to check that it works as intended. Then we can ask the verifier to check 

reachability properties, i.e., if a certain state is reachable or not [03]. 

 

However, as many other verification tools, the current version of UPPAAL deals 

with explosion problem (the size if state-space grows exponentially in the number of 



Integrating NorduGrid system with Uppaal verification tool 

 19

concurrent components in the model). D-Uppaal (distributed version of Uppaal) is one 

interesting method that can help the users to improve this weakness of Uppaal when 

verifying large system. 

 

So why can D-Uppaal do such thing? This question will be clarified in the next part, 

and that is why we choose D-Uppaal engine for our new system. 

 



Integrating NorduGrid system with Uppaal verification tool 

 20

 

2.4 D-Uppaal 

 
When verifying systems, the verification system must do a lot of calculations data. A 

faster computer can calculate more data than a slower computer in the same time. But, 

another solution is connecting many slow computers and makes them calculate the data 

together and this solution also can reduce time. The interest in parallel and distributed 

algorithm of D-Uppaal allows us to run on one cluster and we can verify larger systems 

more than using Uppaal. 

 

The real advantage of using NorduGrid is that the users can get access to clusters 

having compute power larger than a single workstation, but the power can only utilized if 

the users run a parallel version of Uppaal because the users can get as much processing 

power as expected from Grid system. This feature helps us to use every capability of Grid 

system. 

 

That is also the reason why we choose running D-Uppaal engine (dvserver) on 

NorduGrid, not Uppaal engine (verifyTA). 

 

Current version of D-Uppaal is working as following: 

− Using Uppaal user interface for modelling system, and input all queries, save in 

two files: .xml and .q file. 

− Using convert program (independent with Uppaal) to convert two Uppaal files 

(.xml and .q file) to three D-Uppaal input files (model.xml, status.xml and 

job.xml) 

− Create a new models.list file, which contains name of model.xml and job.xml 

files. 

− Using D-Uppaal engine (dvserver) to verify systems. 

 



Integrating NorduGrid system with Uppaal verification tool 

 21

The new version of D-Uppaal will get 2 input files as Uppaal files (.xml and .q file) 

and the way it works will be the same with verifyTA. That means: 

− Using Uppaal user interface for modelling system, and input all queries, save in 

two files: .xml and .q file. 

− Using D-Uppaal engine (dvserver) to verify systems with two parameters is two 

above files. After that, we will get results directly from system, not in status.xml 

file as current version of D-Uppaal. 

 

In this project, we design a new system, which uses D-Uppaal new version engine, 

not current version.  

 



Integrating NorduGrid system with Uppaal verification tool 

 22

 

 

 

 

 

 

 

 

 

 

CHAPTER 3: REQUIREMENTS 

ANALYSIS 

 

 

From the idea that is bringing more comfort to the users when using application on 

NorduGrid system to use maximum resources power, in this project, we try to implement 

D-Uppaal on NorduGrid to verify large systems but not as prior project. We modify 

current Uppaal source code to allow user run our utility directly from the user interface. 

Before designing and programming, we must analyze requirements, based on which we 

can design the new system that provides the best utilities for users. 

 



Integrating NorduGrid system with Uppaal verification tool 

 23

 

3.1 No commands system 

 
To start imagining how new system works; we view how the current system works to 

verify large systems using D-Uppaal engine (dvserver) and NorduGrid (as we did in the 

last semester project). Here, we assume to use new version of D-Uppaal. The new version 

of D-Uppaal engine will execute as the current Uppaal engine, get two file .xml and .q 

file as parameters. 

 

First, we need to use the Uppaal verification tool to construct a formal model of 

system that represents its possible behavior. After that, to validate the properties of that 

system, we input the queries. Two above tasks are done by Uppaal user interface. They 

must be saved in two files: .xml file and .q file.  

 

After that, to submit verifying jobs on NorduGrid, we must go to commands system, 

create a new xRSL file, which describes jobs to be submitted with executable file is 

dvserver, input files is .xml and .q file. And if the users wonder to prove the efficient of 

jobs processing, they need to declare some more parameters (that we concerned in xRSL 

structure in NorduGrid, last Technologies chapter).  

 

Now, the users are ready to submit jobs on NorduGrid, this work can be done by 

some more commands from connecting to NorduGrid (grid-proxy-init), submit jobs 

(ngsub) to get result back (ngget). These commands have many options, which are not 

easy to remember all. And, not all the time, submitting jobs is successful. When the users 

write xRSL files not right format, they must do it again.  

 

Compare with current Uppaal, to verify one property, the user choose and click on 

'Model Check' button on the user interface. Uppaal will return result in a while. We can 

see how complicate to verify large system using D-Uppaal on NorduGrid, the users must 

work with many commands. With this disadvantage, the users prefer to integrate new 



Integrating NorduGrid system with Uppaal verification tool 

 24

utility, which allows them to submit verifying job on NorduGrid and all processing will 

not by command system as now, but through the new user interface. 

 

Now, we can describe the new system as the users expected: The new system allows 

users to verify large system from Uppaal user interface. After modeling and input 

queries, user can choose one query to verify. After a while, the new system will return 

results on user interface, too. So, users will not work with command system any more. 

 

With the programmer view, this requirement can be analyzed as: To verify large 

system, we can use D-Uppaal engine (dvserver) and NorduGrid resource. But, the users 

do not want to work with command system, only on the user interface, then, all jobs 

processing (connect to Nordugrid, generate xRSL, submit job) will run automatically and 

in the background. What the users can see is the last result on the user interface. 

 



Integrating NorduGrid system with Uppaal verification tool 

 25

 

3.2 Using more CPUs 

 
As we know, when verifying large systems, the verification tool requires a lot of 

resource. And clearly, using two CPUs will bring more processor power and memory 

than one CPU. It will finish the verification job faster.  

 

Users always expect that their job will return results as soon as possible, so we can 

do it by increase the number CPUs to process this job. How to do it when submitting job? 

 

In xRSL file, there is one parameter - 'Count'. With value of this parameter, system 

will use the number of CPUs as the value of 'Count' parameter for job processing. Is it 

right that this number as big as possible then the job efficient will be better? 

 

In Grid systems, when the user requires a number of CPUs for job, system will look 

for any cluster that has enough CPUs as required. Not every time, it can be successful at 

once, job would be queue. During waiting time, if the users choose smaller number of 

CPUs, job might be processed by another cluster and return results to the users. However, 

if the number of CPUs is too small, verification task can waste time for get back result.  

 

If we do not control this value for 'Count' parameter, system will default this value is 

one. With this value, that can be too small for almost verification tasks of large system. 

 

So, with this analysis, that is better if we can control this parameter value. In the new 

system, xRSL files will be generated automatically and we cannot fix this value (as above 

problems when it is too big or too small).  Therefore, we need to program one function, 

which allows changing this parameter value before submitting job on NorduGrid.  

 



Integrating NorduGrid system with Uppaal verification tool 

 26

 

3.3 Implement many tasks in the same time 

 
Verifying some properties in the same time is what users often do in Uppaal system, 

so, when developing the new system, users also expect to be able to verify two or more 

properties simultaneously.  

 

Instead of waiting the results of verification tasks, the users can choose others 

properties to submit verifying job at that time. When programming and testing, we need 

to be sure that the new system will not lock after submitting one job. If that, users cannot 

do others verification in a long time (if verification task takes a long time). 

 



Integrating NorduGrid system with Uppaal verification tool 

 27

 

3.4 Security 

 
Only the NorduGrid users can be submit job on NorduGrid. This feature of 

NorduGrid requires the users must be login before submitting job to NorduGrid. In the 

first time submitting job, system will ask the users to input NorduGrid password. This 

function of the new system must be done by user interface in Uppaal, not by command 

system. So, we must program new function check whether user login to NorduGrid or 

not. If not, then, require the users input password to connect to NorduGrid. If user has 

connected, he can submit job after that. 

 

But, when the users close application, new system must disconnect to NorduGrid 

automatically, then other user cannot open application and submit job on NorduGrid. 

 

With this requirement, when the user closes application, we must check status of 

grid-proxy. If system disconnected to NorduGrid, then, we no need to do anything. 

Otherwise, system must be disconnected to NorduGrid automatically.  

 



Integrating NorduGrid system with Uppaal verification tool 

 28

 

3.5 Advance feature … 
 

Not only number CPUs impact to submitting jobs on NorduGrid, but also these other 

values and parameters as cluster, disk, runtime environment, architecture. If new the 

system can provide function that support for the users to change value of those 

parameters for promoting all power of NorduGrid, that will be very nice for the users, 

who has knowledge about those system variables. 

 

This requirement suggests us to program one new independent function in current 

Uppaal, this function allows users change value of those parameters, which can impact to 

efficient of jobs processing as above. From this function, advance users easily control 

these parameters by the user interface. So, all interact with NorduGrid system can be 

done not by command system as before, but by user interface. We hope this system will 

be nice as users expected. 

 



Integrating NorduGrid system with Uppaal verification tool 

 29

 

 

 

 

 

 

 

 

 

 

CHAPTER 4: DESIGN 

 

 

After analyzing all user requirements, we will start designing the new system based 

on the idea of the last chapter. This chapter will describe the design of the new system 

including system architecture, user interface, system process and classes. 

 

From the first user requirement, as in the last chapter, we analyzed is that new 

system will have one more function, which allows the user to verify large system using 

D-Uppaal engine (dvserver) and NorduGrid resources. As a result, we get the following 

the new system architecture as follow: 

 



Integrating NorduGrid system with Uppaal verification tool 

 30

 

4.1 System architecture 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description:  

 

New function here is verifying large system on NorduGrid and use D-Uppaal engine 

(dvserver). This function will be added to the user interface of Uppaal, so users can 

choose it for verifying large systems. 

 

After the users choose this function, system will submit jobs on NorduGrid, use 

NorduGrid resources to execute and download results from NorduGrid. The results 

returned will be the same when using current Uppaal to verify other systems. It will 

return message ‘Property is satisfied’ or ‘Property is not satisfied’. In case the processing 

has error, the system will display error for the users. 

 

 

Uppaal 
Verify systems 

on NorduGrid

Result of verifying systems Message error 

Figure DES-01: System architecture 

New function



Integrating NorduGrid system with Uppaal verification tool 

 31

All the rest of processing with NorduGrid as generating xRSL file, running 

commands to submit jobs, check whether jobs have finished yet to download results will 

be done automatically in the background. Then, the users will not work with NorduGrid 

through command system any more. 

 

That is general view outside of the new system. The detail of working interface and 

process will be described in the following: 

 



Integrating NorduGrid system with Uppaal verification tool 

 32

 

4.2 User interface 
 

The current Uppaal allows user to check properties of a model by choosing ‘Model 

Check’ button on the user interface. Now, we will add one more option for users to verify 

large systems using D-Uppaal engine (dvserver) on NorduGrid (as the first user 

requirement) and this function will display on Uppaal user interface.  

 

So, with user’s view, this function will work the same way as with ‘Model Check’ 

function, gets system model and query, and displays result on user interface after 

processing.  

 

With this view, we will create one new button named ‘Grid Check’ for the new 

function. When users click on this button, all the process of interacting with NorduGrid 

will be run on the background and after getting back results; it will display this result on 

user interface. 

 

When the users work with NorduGrid, they must be NorduGrid users. System will 

check it by require user input NorduGrid password. In the new system, this checking will 

be done by user interface, too. So, base on this analysis, in the new system, we have to 

change Uppaal source code to satisfy. 

 

4.2.1 Verifier user interface 

 

In tab Verifier of current Uppaal version, we will add one button is ‘Grid Check’ as 

button ‘Model Check’ and when user clicks this button; the processing that allows user to 

verify large systems on NorduGrid will be invoked. 

 

In the current Uppaal user interface, in Verifier tab, there are four buttons: Model 

Check, Insert, Remove and Comments. As we talk above, we will add one button labeled 



Integrating NorduGrid system with Uppaal verification tool 

 33

Grid Check, on which when the users click, the new system allows submitting verifying 

job on NorduGrid. 

 

After submitting job, processing job, system will return result to user interface, in 

Status text box. This result will be the same when using Uppaal to verifying, it will 

display message ‘Property is satisfied’ or ‘Property is not satisfied’. 

 

4.2.2 Check NorduGrid user password 

 

When one user submits jobs on NorduGrid, the new system will check the 

authentication of the user (check the status of user proxy certificate). If the grid-proxy has 

not been created yet or it has expired, the system will ask NorduGrid password. This is 

the user interface to ask for NorduGrid password: 

 

 

 

 

 

 

 

 

 

Description: 

 

− When starting, the new system will check NorduGrid proxy-status; if it has 

expired or not created then system will display message “Your proxy is expired 

or not created. Please, login again” 

− After message, display interface which is allows user to input password. 

− User inputs password to text box and push OK button, this password will be 

displayed with format as the “*” character. 

Password  

OK Cancel 

Figure DES-02: Check NorduGrid user interface 



Integrating NorduGrid system with Uppaal verification tool 

 34

− System checks password. If password is valid then message the time proxy valid 

until and start submitting jobs on NorduGrid, otherwise, display error “User has 

no authentication to work with NorduGrid or Password is not valid”. After that, 

re-display the interface to allow user re-login. 

− If user pushes on Cancel button, then close program. 

 

4.2.3 Grid monitor and xRSL file parameters 

 

In the user requirements analysis, to improve the efficient of job processing, we need 

to add some more parameters in xRSL file as number of CPUs, cluster, memory, disk In 

some special application, we need to specify Runtime Environment (to run D-Uppaal in 

NorduGrid, we need Runtime Environment is MPICH). So, for some users, it is 

necessary to have a function that they can change value of these parameters. To satisfy 

this requirement, we will add one more function on Uppaal user interface for this task. 

 

This utility will be added to menu of current Uppaal user interface. So, in the menu 

of system, we will add one more column is ‘Grid’. It will have two functions: Grid 

monitor show all information about clusters on NorduGrid and Grid parameters allow 

users change parameters to specify cluster, number of CPU, memory … before 

submitting jobs. 

4.2.3.1 Grid monitor 

 

When user choose Grid monitor, the new system will display information about all 

cluster on NorduGrid. The information as alias, location, host certificate, architecture, 

number of jobs, number of CPUs, middleware, runtime environment… will be displayed 

as following: 

 

Cluster benedict.aau.dk … … … 

Alias Aalborg Grid Gateway … … … 

Number of CPUs 46 … … … 



Integrating NorduGrid system with Uppaal verification tool 

 35

Number of used CPUs 19 … … … 

Number of running jobs 19 … … … 

Number of queue jobs 10 … … … 

Runtime environments efd-1.0.0.1 

localdisk-2.0.0.1 

lam-7.0.0.0 

mpich-1.2.5.0 

atlas-8.0.1.0 

… … … 

Architecture i686 … … … 

Middleware nordugrid-0.4.1.0 

globus-2.4.3.9 

… … … 

Memory on each node 1024 MB … … … 

 

 

 

From this information, the users will know more detail about system, from that, they 

can choose specific cluster or some other information for submitting jobs.  

 

4.2.3.2 Parameters 

 

As we describe above, this function will allow users changes the parameters when 

submitting jobs on NorduGrid: 

 

User interface of this function will be as follow: 

 

Cluster (List all cluster) 

Number of CPUs  

Rerun Yes/ No 

Start Time  

 

Figure DES-03: NorduGrid’s cluster information 

Figure DES-04: Parameters 



Integrating NorduGrid system with Uppaal verification tool 

 36

Description: 

 

− The cluster will be listed and one more option is ‘No specify’. When users 

choose specific cluster, display number of CPUs of this cluster. User can change 

this number. Runtime environment will list all options of this cluster, then user 

can choose (or choose No Specify option). 

− When job submit is failed, if user want to submit it again, choose Rerun option is 

‘Yes’. Otherwise, choose ‘No’. 

− ‘Start Time’ option allow user submit job at anytime, may be, not now. Option 

‘No Specify’ means jobs will be submitted at current time. 

 

These are two changes on current Uppaal user interface. The next part we describe 

the system process, from that, we can view how the new system work. 



Integrating NorduGrid system with Uppaal verification tool 

 37

 

4.3 System process 
 

This part will describe the processing flow of new system, which allows users 

verifying large systems on NorduGrid.  

 

With this processing flow, the programmer can see clearly how the new system will 

work, and from that we can design detail classes. 



Integrating NorduGrid system with Uppaal verification tool 

 38

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

Check

grid-proxy

Start grid-proxy Re-login or exit program

Figure DES-05: System process 

Input (the system modeling and the queries are 

saved as in the temporary .xml and .q files) 

Yes No 

Expired or

not started yet 

Valid 

Finished 

not finished yet 

Exit 

Continue 

Check 

grid-user 

Create xRSL file 

Check xRSL 

parameters

Submit job on NorduGrid Satisfy

Check 

job-status 

Cannot find any cluster or job must be queued

Display result 

Exit 

Message and ask for 

change value of xRSL 

parameters

No change

Change

Display all the xRSL parameter 

for user to change value 



Integrating NorduGrid system with Uppaal verification tool 

 39

Description: 

 

− The new system gets input and saves in temporary files are .xml file and .q file in 

the working folder. 

− Check grid proxy, if it is valid then allow submitting job, otherwise, if it has 

expired or not been created yet, and then ask user permission to init grid-proxy. 

If the user is not the NorduGrid user, then message error or required to re-login, 

otherwise, start grid-proxy to submit job. 

− Create xRSL file. 

− Check cluster and CPUs number required, amount of memory to run verifying 

job. Here, there are two cases will be happen: 

o One user could potentially choose a number of CPUs larger than the 

number of CPUs in the cluster. In this case, this should be forbidden, 

as the job will not be able to run on the cluster. So, system will 

display error for users to change the number of CPUs. After user 

changes it, system will check again. 

o The second case is user might also choose a number of CPUs larger 

than the number of CPUs free. System will display to ask whether 

user want to change number of CPUs or waiting in queue. If users 

accept waiting, then submit job on NorduGrid. If not, display 

Parameter user interface and user can change parameter here. 

− If cluster has enough CPUs then submit jobs on NorduGrid. 

− During the processing of jobs, check job-status, display job-status on screen. If 

the status if FINISHED, then display verifying result. 

− After displaying results of jobs, allow user choose exit program or continue 

verifying other systems (submit other jobs on NorduGrid). 

  



Integrating NorduGrid system with Uppaal verification tool 

 40

 

4.4 Classes design 

 

From system architecture, user interface, system process that we design above, now, 

we will design the classes for programming the new system. Before that, we will analyze 

what we will do? 

 

As in the system architecture, we will add one more function on current Uppaal user 

interface. This function will be called when user click on one new button named ‘Grid 

Check’. To add one more button on Uppaal user interface, we need to find out, which 

class draws this interface. In this class, we will program new source code, which draw 

‘Grid Check’ button as ‘Model Check’ button. And, when user clicks on this button, it 

will invoke one new class, which allows verifying system on NorduGrid. 

 

Therefore, we have to do: 

− Find out which class in Uppaal source code, which draws Uppaal user interface. 

− Create a new button in user interface as current ‘Model Check’ button. 

− When click on this button, it will invoke new class named GridVerification to 

verify system on NorduGrid. This new class will be designed and programmed to 

run on the background, hidden from the user. 

 

To check NorduGrid user authentication, we must program one user interface for 

user to input password.  

 

To implement as description in user interface design, we have to do: 

− In new GridVerification class, invoke another class call CheckTimeOut, which 

check status of grid-proxy. 

− In this class, run grid-proxy-info with option –timeleft to check how long time 

grid-proxy is valid.  



Integrating NorduGrid system with Uppaal verification tool 

 41

− If grid-proxy is valid then invoke class named SinglePanel that implements 

submitting job task on NorduGrid. 

−  If grid-proxy is not existed or expired then message and display interface for 

user to input password. 

− Get passwords input string as ‘*’ string on user interface. 

− Get passwords from stdin and run grid-proxy-init with option –pwstdin. This 

option allows sending password to NorduGrid system directly from stdin then 

password will not kept in anyplace on computer to ensure security. 

− Check grid-proxy again, if it is valid then invoke class that implements 

submitting job on NorduGrid. 

− Otherwise, message and repeat all steps for user to re-login. 

 

And to add new utility that is Grid monitor and xRSL parameters, we have to do: 

− Look for the class draw the menu in Uppaal user interface source code. From 

that, add more column in menu, that is Grid and it has two small function is Grid 

monitor and xRSL parameters. 

− When get user activation, invoke new class name GridMonitor and 

ParameterValue.  

− GridMonitor class will get all information (this task can be done by command 

ngstat –q-l in NorduGrid command system) about cluster on NorduGrid and 

display as in user interface design. 

− After getting all information of clusters, system will display on user interface by 

ClusterInforTable class that is invoked in GridMonitor class. 

− ParameterValue class will get the value of xRSL parameter in one temporary 

file call parameter.tmp and display on the user interface. These values are saved 

from the last time, when the user changes them. If this is the first time, file 

parameter.tmp does not exist, system displays all value as ‘No specify’. 

− After getting values from file, ParameterValue class invokes new class name 

ParaValueTable, which draw table to display as user interface design. The new 

class allows user to change value of parameters. When user change cluster, 

system will check whether this cluster exist or not. If not, display error ‘this 



Integrating NorduGrid system with Uppaal verification tool 

 42

cluster does not exist. Please choose another cluster, or choose Grid Monitor to 

see clusters information’. When the user finish changing parameters values, 

system will save these parameters values in parameter.tmp file. 

 

That is all the idea to change and create new classes on current Uppaal source code. 

Now, we will analyze Uppaal source code and from that, we have classes interface for 

new the systems. 

 

4.4.1 Uppaal code analysis 

 

In Uppaal, there is SystemInspector class, in which create the action for ‘Model 

Check’ button in Verifier tab on Uppaal user interface.  

 

 

 

 

 

 

 

 

 

 

 

 
− In SystemInspector class, it invokes GUIAction class to draw ‘Model Check’ 

button and invokes VerificationTask class when get action event to implement 

verifying task by Uppaal. 

− As we analyze above, we have to change in SystemInspector class. 

 

SystemInspector 

VerificationTask

Figure DES-06: SystemInspector class and Model Check action 

Model Check 



Integrating NorduGrid system with Uppaal verification tool 

 43

4.4.2 Idea to program for new system 

 

− Add a new button ‘Grid Check’ button on verifier page in the Uppaal GUI. 

− Add a new class named VerificationGrid to deal with the verifying job when get 

action event from user interface (When user clicks on ‘Grid Check’ button, then 

invoke this class to verify system using D-Uppaal engine and NorduGrid). 

− Program new classes to do the detailed functions after submitting grid jobs as 

check status of grid-proxy, submit job, check status of job and when job is 

finished, display results to user interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SystemInspector 

VerificationTask

Figure DES-07: The flow of New SystemInspector class 

Model Check Grid Check 

VerificationGrid 



Integrating NorduGrid system with Uppaal verification tool 

 44

4.4.3 New classes called by VerificationGrid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description: 

 

Three classes are invoked by method in VerificationGrid class during the procedure. 

They are CheckTimeOut, GraphProxy and SinglePanel. 

 

− CheckTimeOut class checks whether the grid-proxy status is valid or not when 

he submit job on NorduGrid. If the proxy is invalid or expired, then call user 

interface that allows user input password to init grid-proxy. 

 

Detail: 

o Run grid-proxy-info with option –timeleft to know current status of grid-

proxy. 

CheckTimeOut 

Time Out?

SinglePane 

GraphProxy 

End 

Figure DES-08: New classes flow chart 

No 

Yes



Integrating NorduGrid system with Uppaal verification tool 

 45

o If system returns value -1 then grid-proxy is expired, else if it returns 

message error then grid-proxy has not been initialized yet, else if value is 

bigger than 0 then grid-proxy is still valid. 

o In cases of grid-proxy is expired or invalid, invoke class GraphProxy and 

allow user input grid password. Otherwise, invoke SinglePanel class.

  

− GraphProxy class will display user interface to get the NorduGrid user’s 

password to run grid-proxy-init. If the password is not accepted then message 

error, otherwise, user can commit job to NorduGrid by clicking the “Grid 

Check” again. 

 

Detail: 

o User interface as in Figure DES-03 

o When user input password, change the display format to string of ‘*’ 

characters. 

o Run grid-proxy-init with option –pwstdin. 

o Check the status of grid-proxy as the above class, if it is valid, then 

returns, otherwise, message error that user has no authentication or 

invalid password. 

 

− SinglePanel class will do all the rest of work to submit job on NorduGrid and 

download result to display into user interface: 

 

Detail: 

o Save as model system and query as temporary files in working folder. 

o Create xRSL file, the parameters will take from the system parameters. 

o Submit job on NorduGrid. 

o Check job status. When status of job is FINISHED then download result 

and display to the user interface. 

o Delete all temporary files. 

 



Integrating NorduGrid system with Uppaal verification tool 

 46

4.4.4 Classes for Grid Monitor 

Following are the classes’ specification of Grid Monitor  

 

− GridMonitorWindow 

This class has two main functions. First, it generates a window for survey nordugrid 

cluster information. Secondly, it invokes the method of CollectClusterData class 

periodically to collect grid status information. 

 

− CollectClustersData 

This class not only calls the system command "ngstat -q -l", but also provides other 

methods to analyze the data, which is achieved by former command. Follows are the 

details of these methods. 

 

− CollectClusterInfo 

This method gets and stores the information contains name of cluster, alias of cluster, 

location of cluster and architecture. Because there are many clusters are working in the 

NorduGrid at the same time, the method need to distinguish every cluster and remember 

their names. Based on these names, it calls following methods to get the data of every 

cluster. 

 

− CpuData 

This method gets and stores the information contains type of CPU, number of CPU, 

number of used CPU. It achieves the number of available CPU by subtracting the used 

CPU number from total CPU number. 

 

− JobData 

This method gets and stores the information contains number of running jobs, 

number of queued jobs. If the cluster provides the maximum number of running jobs and 

queued jobs, the method can achieve the number of available running jobs and available 

queued jobs. If the cluster provides the max number of running jobs per local user, it also 

stores this datum. 



Integrating NorduGrid system with Uppaal verification tool 

 47

 

− MemoryData 

This method gets and stores the size of memory in each node of the specific cluster. 

 

− ScratchData 

This method gets and stores the information of scratch directory such as size and free 

space in scratch directory in one cluster if it provides. 

 

− CacheData 

This method gets and stores the information of cache such as size and free space in 

cache directory in one cluster if it provides. 

 

− RuntimeEnvironmentData 

This method gets and stores the items of runtime environment of the cluster. 

 

− MidwareData 

This method collects the items of installed middleware of the cluster. 

 

4.4.5 Class for Parameters 

Follows are the class specification of parameters 

 

− ClusterSetupWindow 

This class has two main functions. One is to figure out the window of setting up 

cluster parameter, the other is to list the dialog box of the parameters will be set up. To 

get the precise value of some parameters, the class needs to invoke the method of 

ReadClusterData. Some parameters such as rerun times and start time only need wait for 

user's input. 

 

− ReadClusterData 

This method invokes the method of CollectClustersData class in the back end. It 

gets the data from CollectClustersData, displays the range of available number in the 



Integrating NorduGrid system with Uppaal verification tool 

 48

dialog box. After that, it calls the CheckInput method. If there is no an alarm flag, it calls 

the SaveParameter method. Else, it sends out a warning message to tell user where is 

wrong in his setting and give him related advice and the chance to reset. 

 

− CheckInput 

This method reads users' input parameters and compares them with the data such as 

the CPU numbers achieved from CollectClustersData. If the user doesn’t input the 

parameters the method will set the default values. If all the parameters are compatible 

with the collected data, it returns without the alarm flag. If not, the method will save the 

conflict items and return with an alarm flag. 

 

− SetReRun 

This method accepts user's setting of number of rerun and saves it. 

 

− SetStartTime 

This method accepts user's setting of start time and saves it. 

 

− SaveParameter 

It saves the customer's setting into a temporary space. When the task is to be 

submitted, the content of that temporary space will be added into the xRSL script. 

 

 

 

 

 

 

 



Integrating NorduGrid system with Uppaal verification tool 

 49

 

 

 

 

 

 

 

 

 

 

CHAPTER 5: IMPLEMENTATION 

 

 

In this chapter we introduce our program detail after general design, includes Uppaal 

source code investigation, we will show what we change and add new in Uppaal source 

code to have a new system as user expected. But, due the time, we did not finish all the 

system requirements, then, we will concern about evaluation in the next chapter – 

Evaluation. 

 

In design, we are going to program with the new version of D-Uppaal engine 

(dvserver). But, till this time, this D-Uppaal new version has not finished yet. Besides 

that, the input files of D-Uppaal will be the same with the input files of current Uppaal. 

Then in this Implementation, we use Uppaal engine (verifyTA) instead of D-Uppaal 

engine (dvserver). 

 

To modify current Uppaal system, firstly, we need to understand the constructor and 

some important classes in Uppaal source code. So, the first part in this chapter, we will 

write about Uppaal source code. 



Integrating NorduGrid system with Uppaal verification tool 

 50

 

5.1 Structure of Uppaal 
 

 

The source codes of Uppaal GUI are stored in GUI folder and five subdirectories of 

GUI. There is one important class that we emphasize on: System Inspector. 

 

The SystemInspector provides the graphic interface, which includes buttons and 

windows in original Uppaal. For example, it provides the button of Model Check and the 

status window to show the result of local verification. When the Model Check button is 

pressed, the SystemInspector will invoke the method in VerificationTask class to 

perform the actual verifying and show the result on status window. 

 

 
 

 
Figure IMP-01: The SystemInspector class starts the verification after users click 

the Model Check button. 



Integrating NorduGrid system with Uppaal verification tool 

 51

Because the SystemInspector class is stored in GUI folder, the VerificationTask 

class is in GUI/verifier folder, we need to modify or add new programs in GUI and 

GUI/verifier directories. For example, we add three new classes in GUI fold, one in 

GUI/verifier. 

 

Follows display the new classes in GUI and GUI/verifier. 

 

 
 

 

 

 

Figure IMP-02: One modified class (SystemInspector) and three new classes 

(CheckTimeOut, GraphProxy, SinglePanel ) in folder of GUI. 



Integrating NorduGrid system with Uppaal verification tool 

 52

 
 

 

 

 

Figure IMP-03: In folder of GUI/verifier, there is a new class named 

VerificationGrid 



Integrating NorduGrid system with Uppaal verification tool 

 53

 

5.2 The working flow of classes and invocation relationship 
 

 

The SystemInspector provides the graphic interface, which includes buttons and 

windows in original Uppaal. The new version of it adds the "Grid Check" button. When 

users click the button, the property, which the users choose is stored as a temporary query 

file in the working directory, a model file (.xml) is also stored in the working directory. 

Here, the query file uses the same prefix as the model file.  

 

 
 

 

 

 

After that, the method in VerificationGrid class grasps the control stick. It receives 

the parameters, which contain the name of temporary query file and the name of model 

Figure IMP-04: “Grid Check” button in the Uppaal GUI 

This button is defined in SystemInspector class 



Integrating NorduGrid system with Uppaal verification tool 

 54

file. Then it invokes the constructor in CheckTimeOut class to do the job. After 

CheckTimeOut constructor writes the job result into a specific file, the method in 

VerificationGrid reads it and displays the content on the Uppaal graphic interface. Here 

is a problem. Because it takes several minutes to verify the job and get back the result 

from the grid, we have to wait for a long time to submit other jobs. To resolve this 

problem, the thread mechanism is used to guarantee the submit jobs parallel. The thread 

is used to guarantee the jobs can be submitted while other jobs are performing. 

 

 
 

 

 

 

The CheckTimeOut checks whether a user can use the grid system more than two 

minutes. Such an operation is necessary because the grid system distributes every user a 

fixed period to use the grid after he logs on. Grid always checks users’ privilege while 

users submit the jobs.   If the grid finds the user has no valid permission any longer, the 

user’s job will not be submitted to grid. Therefore, we design this mechanism in initial 

Figure IMP-05: Property “P1” is chosen. When the user submits it, 

CheckTimeOut finds his time is out 



Integrating NorduGrid system with Uppaal verification tool 

 55

phase to help users avoid meeting this interruption from Nordugrid suddenly.  If the 

result of time check is more than two minutes, the user’s job can be forward to 

SinglePanel class. In other words, Nordugrid processes the job directly. If it is not, user 

must provide his password to Nordugrid. The GraphProxy is invoked. After he passes 

the authentication check, he needs to submit his job again. 

 

 
 

 

 

GraphProxy opens a window and regards the user's input as password. In the 

beginning, we tried to run the command of "echo password | grid-proxy-init -pwstdin" 

(grid-proxy-init -pwstdin is the command of check user password in Nordugrid) in Java 

Program like we ran it under unix shell. This command was successful under unix shell, 

but it failed in java implementation: The program always stopped at the first part of "echo 

password". To resolve it, we change the design: we dispatch an Inputstream for the 

"echo password" and an Outputstream for the "grid-proxy-init". The input string for 

Figure IMP-06: GraphProxy asks user’s grid password 



Integrating NorduGrid system with Uppaal verification tool 

 56

"echo password" is stored in "in" Inputstream, then all the content of "in" is written to 

"out". It means the "grid-proxy-init" deals with the password in back end. After that, the 

"in" Inputstream is dispatched for "grid-proxy-init" to get the response information of 

grid security check. This time, all of message projects onto a popup dialog window. 

 

 
 

 
Figure IMP-07: The user doesn’t pass the authentication check 



Integrating NorduGrid system with Uppaal verification tool 

 57

 
 

 

 

SinglePanel receives the parameters (names of the model file and the query file), 

which are delivered by CheckTimeOut at first. According to the file names, it creates the 

.xrsl script in the working space. The .xrsl file has the same prefix as the query file and 

the model file. It specifies the model file and query file which are used by dvserver in 

Nordugrid. It also includes the file name of job result no matter how the result is satisfied. 

Then SinglePanel submits the job onto Nordugrid. Besides, this class opens an invisible 

window as a pool to hold the returned message from Nordugrid. Every time the content 

updates, the SinglePanel checks the data to look for the desired string. If it found, 

relevant operation will start. For example, after the job is submitted, SinglePanel 

periodically checks the Nordugrid status information in the pool to search the string of 

"IS FINISHED". If it appears, it means Nordugrid finishes the job. SinglePanel can 

perform latter tasks. Finally, the SinglePanel downloads the job result from Nordugrid 

and store it in a specific directory. 

 

Figure IMP-08: The user passes the authentication check 



Integrating NorduGrid system with Uppaal verification tool 

 58

 
 

 

 

The result displays in the status window of Uppaal GUI: If the result is positive, the 

last line of status information specifies the property is satisfied. Else it specifies the 

property is not satisfied. 

 

 

Figure IMP-09: The SinglePanel begins to process the job. 



Integrating NorduGrid system with Uppaal verification tool 

 59

  
 

 

 

Figure IMP-10: The result displays on the status window.  

The last line means the result is positive. 



Integrating NorduGrid system with Uppaal verification tool 

 60

 
 Figure IMP-11: The result displays on the status window.  

The last line means the result is negative. 



Integrating NorduGrid system with Uppaal verification tool 

 61

 

5.3 Detailed description of main classes 
 

5.3.1 SystemInspector   

 

As we known, it provides the “Grid Check” button on the panel. When the user 

chooses property to verify on grid, it encapsulates the property as the query file and 

delivers it with model file to VerificationGrid. 

 

To acquire this function, we add three new methods in existed SystemInspector 

class. They are gridCheckAction, gridReceived and setGridCheckActionEnable. 

 

The gridCheckAction is an instance of GUIAction class, which has been defined in 

original Uppaal.  It defines the “Grid Check” button. When the user clicks this button, a 

boolean variable gridFlag is assigned a true value. This variable will be used later to 

prevent the control flow entering the “Model Check” which means verifying system in 

local machine. Besides, the property he chooses in “overview” window is selected and 

stored as query file in the working directory. Below is the code of gridCheckAction. 

 

------------------------------------------------------------------------------------------------------------ 

gridCheckAction = new GUIAction( "Grid Check" ) { 

     public void actionPerformed(ActionEvent e) { 

  gridFlag = true;   

  verify(verifier.getQueries()); 

     } 

 }; 

------------------------------------------------------------------------------------------------------------ 

 

The function of gridReceived(vector) method  is to read the content of vector and 

show them on the status window of Uppaal GUI. 



Integrating NorduGrid system with Uppaal verification tool 

 62

setGridCheckActionEnable(boolean) makes sure the “Grid Check” button is not 

available temporarily when the user’s job is submitting.  

 

Following code checks whether gridFlag is true. If so, the method in 

VerificationGrid is invoked to deal with the user’s job. The variable ‘props’ is the 

property, which is chosen by the user. It is stored in working directory as a query file. 

The jobName is the model file name. After the invocation of VerificationGrid, the 

gridFlag is set to false since the user may do some local verifying job in next turn. If the 

gridFlag is false, as former mentioned, the method in original VerificationTask is 

invoked to verify the job in local machine. 

 

------------------------------------------------------------------------------------------------------------ 

if (gridFlag == true) { 

String jobName = 

loadFile.getName().substring(0,loadFile.getName().lastIndexOf(".xml")); 

theGdtask = new VerificationGrid(props,1000,jobName, theListener); 

theGdtask.run(); 

gridFlag = false;     

} 

else { 

// Start the background task 

theTask = new VerificationTask((UppaalSystem)system.dereference(), engine, props, 

1000, theListener); 

 theTask.run(); 

}; 

------------------------------------------------------------------------------------------------------------ 

 

5.3.2 VerificationGrid  

 



Integrating NorduGrid system with Uppaal verification tool 

 63

This class locates in GUI/verifier fold. It receives the property and model filename 

from the upper class SystemInspector then it invokes CheckTimeOut to submit the job, 

after the job result is downloaded from grid, display it.  

 

In the following definition of VerificationGrid constructor, we see it deals with the 

property props and the model filename jobName. 

 

------------------------------------------------------------------------------------------------------------ 

public VerificationGrid(Vector props, int delay, String jobName, 

       VerificationListener listener)  

    { 

 this.props = props; 

 this.delay = delay; 

 this.jobName = jobName; 

 …… 

    } 

------------------------------------------------------------------------------------------------------------ 

 

 The run method uses thread mechanism to control multiple jobs can run at the same 

time. The loop method deals with the actual job in the thread. So after the thread starts, 

the user doesn’t need to worry about the processing job blocks following tasks. 

 

------------------------------------------------------------------------------------------------------------ 

    public void run() { 

 if (thread == null) { 

     thread = new Thread() { 

  public void run() { 

      listener.gridReceived(loop()); 

  } 

     }; 

     thread.start(); 



Integrating NorduGrid system with Uppaal verification tool 

 64

 } 

    } 

------------------------------------------------------------------------------------------------------------ 

 

The loop method finishes three tasks in turn. Firstly, it stores the content of props in 

the working directory with the same previous name with model filename (see the clause 

with black bold). Secondly, loop calls the method in CheckTimeOut class with jobName 

as the parameter. Finally, the loop calls readFile method to put the content of 

downloaded job result into buffer. 

 

------------------------------------------------------------------------------------------------------------ 

private Vector loop() { 

 String downldir =""; 

 String downldfile =""; 

 Vector vof = new Vector();  

 File fq =  new File(jobName +".q"); 

 try { 

 PrintWriter pw = new PrintWriter (new FileOutputStream (fq)); 

 pw.print((String)props.lastElement()); 

 pw.close(); 

 } catch (IOException e1) { 

 System.out.println("Problem in creating query file."); 

 } 

 …… 

 CheckTimeOut ct = new CheckTimeOut(jobName); 

 downldir = System.getProperty("DOWNLDIR"); 

 downldfile = System.getProperty("DOWNLDFILE"); 

 …… 

 try { 

 readFile(downldfile, vof);  

 } catch  (IOException e1) { 



Integrating NorduGrid system with Uppaal verification tool 

 65

 System.out.println("Problems in read "+ downldfile); 

 }  

 …… 

} 

------------------------------------------------------------------------------------------------------------ 

 

The main idea of readFile method is to copy the content from a file (job result) to a 

vector.  Considering it is better to show the original property with its verification result, 

we design it to add the property into the vector before read the job result file. 

 

------------------------------------------------------------------------------------------------------------ 

public Vector readFile(String fileName,Vector vof) throws IOException { 

BufferedReader istream = new BufferedReader(new 

InputStreamReader(new FileInputStream(fileName))); 

 String text = ""; 

 vof.addElement(props.lastElement()); 

 while((text = istream.readLine()) != null) { 

  vof.addElement(text); 

 } 

 return vof;  

     } 

------------------------------------------------------------------------------------------------------------ 

 

5.3.3 CheckTimeOut 

 

It invokes the “grid-proxy-info -timeleft” system command to get the information of 

user’s valid time. The output is saved in the timeValue variable. If the timeValue is less 

than 120 seconds, the warning message of time out appears and GraphProxy will check 

user’s password. Otherwise, user’s job will be submitted directly by constructor of 

SinglePanel class. 

 



Integrating NorduGrid system with Uppaal verification tool 

 66

------------------------------------------------------------------------------------------------------------ 

…… 

Process ctprc = rt.exec("grid-proxy-info -timeleft"); 

DataInputStream in = new DataInputStream(ctprc.getInputStream()); 

try { 

while ((timestring = in.readLine()) != null) { 

 timeValue = Integer.valueOf(timestring).intValue(); 

 }  

 } catch (IOException e) {  

  System.exit(0); 

 } 

    

if (timeValue < 120 ) { 

JFrame jframe = new JFrame(); 

JOptionPane.showMessageDialog(jframe,"Time is expired, Login will 

start.","",JOptionPane.PLAIN_MESSAGE); 

GraphProxy gp = new GraphProxy(); 

gp.setVisible(true); 

 } 

 else { 

SinglePanel sp = new SinglePanel(jname); 

 } 

 …… 

------------------------------------------------------------------------------------------------------------ 

 

5.3.4 GraphProxy  

 

It pops up a window, reads and checks the input password, masks it with star 

characters. The process wxpr performs the echo password command and variable in 

accepts the actual input of user’s password. When the process tpr performs the grid-

proxy-init –pwstdin command, the content of in is delivered to out which is the output 



Integrating NorduGrid system with Uppaal verification tool 

 67

stream of tpr. Actually, the output stream of tpr is the input password, which is fed to 

grid-proxy-init command. The output of grid password check is put into in again. The 

msgOut achieves the content of in to be showed on a dialog window actuated by 

GraphProxy. 

 

------------------------------------------------------------------------------------------------------------ 

Process wxpr= rt.exec("echo "+passwd); 

 in = wxpr.getInputStream(); 

 

Process tpr = rt.exec("grid-proxy-init -pwstdin");  

 OutputStream out =tpr.getOutputStream(); 

 int b; 

 while((b = in.read()) != -1 ) { 

  out.write(b); 

 } 

 wxpr.waitFor(); 

 in.close(); 

 out.close(); 

 in = tpr.getInputStream(); 

 String guiOut = null; 

 String msgOut = ""; 

BufferedReader msgBr = new BufferedReader(new 

InputStreamReader(in)); 

 while((guiOut = msgBr.readLine()) != null) { 

msgOut = msgOut + guiOut +"\n";  

  } 

------------------------------------------------------------------------------------------------------------ 

 

5.3.5 SinglePanel  

 



Integrating NorduGrid system with Uppaal verification tool 

 68

It invokes an invisible window, creates the xRSL, submits the job and gets the status 

data from the grid. It also checks the data to find out the desired string, downloads the job 

result from Nordugrid. 

 

The main methods in SinglePanel class are createXrsl(jobname), runAuto() and 

systemCall(command). After createXrsl method returns the true value, the runAuto 

method starts. It calls several systemCall during the job procedure. 

 

------------------------------------------------------------------------------------------------------------ 

if (createXrsl(jobname)) { 

 xrslName = jobname; 

 runAuto(); 

 } 

 …… 

 } 

------------------------------------------------------------------------------------------------------------ 

 

The createXrsl creates the xrsl script according to the given jobname. It writes the 

necessary parameters such as executable filename, input files name and standard output 

file name into the xrsl script. If the file operation finishes successfully, the method 

returns true, else it returns false. The SinglePanel depends on this Boolean value to 

decide whether submits the job to Nordugrid because the correct xrsl script is a necessary 

component of Nordugrid job. 

 

------------------------------------------------------------------------------------------------------------ 

public boolean createXrsl (String objectFilename) throws IOException { 

 File fQ = new File(objectFilename +".q");  

 boolean jobflag = false; 

 if(fQ.exists()) { 

 File f = new File(objectFilename+".xrsl"); 

 PrintWriter pw = new PrintWriter (new FileOutputStream (f)); 



Integrating NorduGrid system with Uppaal verification tool 

 69

 pw.print ("&\n"); 

 pw.print ("(executable=\"bin-Linux/verifyta\")\n"); 

pw.print ("(arguments= "+objectFilename+".xml 

"+objectFilename+".q)\n"); 

pw.print ("(inputFiles= ("+ objectFilename +".xml"+" 

\"/user/dongliu/uppaal-3.4.5/demo/"+objectFilename +".xml"+"\") ("+ 

objectFilename +".q"+" \"\"))\n"); 

 pw.print ("(stdout= "+objectFilename+".dat)\n"); 

 pw.print ("(join=\"yes\")\n"); 

             pw.close ();        

 JFrame jframe = new JFrame(); 

JOptionPane.showMessageDialog(jframe,"OK, Please wait for the 

response from Grid. \n","",JOptionPane.PLAIN_MESSAGE); 

 jobflag = true; 

  } 

 else { 

 JFrame jframe = new JFrame(); 

JOptionPane.showMessageDialog(jframe,"Insufficient files. Can't create 

the xRSL file. \n","",JOptionPane.ERROR_MESSAGE); 

 jobflag = false; 

  } 

 return jobflag; 

 } 

------------------------------------------------------------------------------------------------------------ 

 

The autoRun method is the key of SinglePanel class. It performs submitting job, 

periodically checks job status until the finished flag appears. It also downloads the job 

result at the end. 

 

When the job is submitted, the grid status message is stored in an invisible pool 

named msgArea. autoRun regards the “IS FINISHED” string as the signal of normal 



Integrating NorduGrid system with Uppaal verification tool 

 70

termination. It checks the msgArea every ten seconds. To reduce the unnecessary 

workload, autoRun always remembers the accurate identify number of current job 

process named jobid, which is assigned by Nordugrid. When the autoRun needs to 

download the job, it only downloads the job exactly. So the latter process can simply 

finds and opens the download file without worry about making a wrong choice. The 

downldir and downldfile specify the position of download file. The readFile method in 

VerificationGrid class will use these two values when it opens the download file and 

reads the content. 

------------------------------------------------------------------------------------------------------------ 

public void runAuto() { 

 

String testString; 

systemCall("ngsub -x" +" -f "+ xrslName + ".xrsl"); 

testString = msgArea.getText(); 

if (search(testString,JOB_SUBMITTED_LABEL) == true) { 

jobid = testString.substring(testString.lastIndexOf(JOB_SUBMITTED_LABEL)); 

jobid = jobid.replaceFirst(JOB_SUBMITTED_LABEL,""); 

jobid = jobid.trim(); 

}  

systemCall("ngstat " + jobid); 

testString = msgArea.getText(); 

if (search(testString,"ngstat: No jobs") == false) { 

while (search(testString, JOB_FINISHED_LABEL) == false ) { 

testString = msgArea.getText(); 

systemCall("ngstat " + jobid); 

try {   // To delay ten seconds. 

 Thread.currentThread().sleep(10000); 

} catch (InterruptedException e1) {}; 

} 

systemCall("ngcat " + jobid); 

 systemCall("ngget " + jobid); 



Integrating NorduGrid system with Uppaal verification tool 

 71

 testString = msgArea.getText(); 

if (search(testString,NGGET_FINISHED_LABEL) == true) { 

 localdir = System.getProperty("user.dir"); 

 downldir = testString.substring(testString.lastIndexOf(localdir)); 

 downldir = downldir.replaceFirst(localdir + "/",""); 

 downldir = downldir.replaceFirst("\n" + UNUSEFUL_STRING + "\n",""); 

 downldir = downldir.trim(); 

 } 

} 

} 

 else { 

msgArea.setText(""); 

  } 

} 

------------------------------------------------------------------------------------------------------------ 

 

 

 



Integrating NorduGrid system with Uppaal verification tool 

 72

 

 

 

 

 

 

 

 

 

 

CHAPTER 6: EVALUATION 

 

 

In this chapter, we first sum up the major results of our work and then we evaluate 

the implementation of our new system, which we have programmed. Finally, we use the 

experience from this and prior projects to make suggestion for the future works. 

 

6.1 Our works 
 

The works we have done in this project can roughly divided into three main tasks: 

− Analyzed problems and users requirements. 

− Designed a system that satisfies users. 

− Programmed. 

 

In first task, from the experience in prior project last semester, we analyzed problems 

when running verify large systems using D-Uppaal engine and NorduGrid resource. This 

analysis is based on end-users expectation. 

 



Integrating NorduGrid system with Uppaal verification tool 

 73

From these user requirements, we start designing to modify current system to have a 

new system. This design gave us general view what we need to do, and why we choose 

that way. Beside that, we think about some problems will be happen when using new 

system to prove the efficient of it. 

 

Due the time, we could not program all as we designed. In Implementation, we only 

wrote about what we did and evaluate it.  

 

The next part, we will evaluate our new system and implementation, future works 

that can make system will be nicer with users. 

 

6.2 Implementation evaluation 
 

Until now, our system can allow s users to submit job on NorduGrid, usingD-Uppaal 

engine (dvserver) to verify large systems. Besides that, it ensures about security and users 

can do many tasks in the same time.  

 

However, we did not have enough time to develop a smart system, which can be 

more efficient in job processing as allowing users choose number of CPUs or other 

parameters in xRSL file. 

 



Integrating NorduGrid system with Uppaal verification tool 

 74

 

 

 

 

 

 

 

 

 

 

CHAPTER 7: CONCLUSION 

  

 

We did not finish implementing a new system as design, but current new system is 

an evidence to conclude that integrating application with Grid system will bring more 

comfort for the users. 

 

Besides that, in this experiment, we implement with specific application and 

NorduGrid system. Alternative, NorduGrid is only one specific system of Grid systems. 

But, through the result of this project, we can program all the function in design and find 

out how to make integration easier. That can be a future work for anyone who interested 

on this approach. 

 

Through this project, we understand more about Grid advantage in extending 

resource and solve big problems with parallel processing. Especially, we know how to 

integrate this advantage to application, make it more efficient and comfort. We hope in 

the future work, we can use our knowledge that we collect from these projects to our new 

projects, when we use another applications that require lot money for extending resource. 



Integrating NorduGrid system with Uppaal verification tool 

 75

 

 

 

 

 

 

 

 

 

 

CHAPTER 8: FIGURES-LIST 

 

 

Figure DES-01: System architecture 

Figure DES-02: Check NorduGrid user interface 

Figure DES-03: NorduGrid’s cluster information 

Figure DES-04: Parameters 

Figure DES-05: System process 

Figure DES-06: SystemInspector class and Model Check action 

Figure DES-07: The flow of New SystemInspector class 

Figure DES-8: New classes flow chart 

 

Figure IMP-01: The SystemInspector class starts the verification after users click 

the Model Check button. 

Figure IMP-02: One modified class (SystemInspector) and three new classes 

(CheckTimeOut, GraphProxy, SinglePanel ) in folder of GUI. 

Figure IMP-03: In folder of GUI/verifier, there is a new class named 

VerificationGrid 



Integrating NorduGrid system with Uppaal verification tool 

 76

Figure IMP-04: “Grid Check” button in the Uppaal GUI. This button is defined in 

SystemInspector class 

Figure IMP-05: Property “P1” is chosen. When the user submits it, CheckTimeOut 

finds his time is out 

Figure IMP-06: GraphProxy asks user’s grid password 

Figure IMP-07: The user doesn’t pass the authentication check 

Figure IMP-08: The user passes the authentication check 

Figure IMP-09: The SinglePanel begins to process the job. 

Figure IMP-10: The result displays on the status window. The last line means the 

result is positive. 

Figure IMP-11: The result displays on the status window. The last line means the 

result is negative. 

 



Integrating NorduGrid system with Uppaal verification tool 

 77

 

 

 

 

 

 

 

 

 

 

CHAPTER 9: REFERENCES 

[01] Huong H.T.T, Dong Liu, - Can Grid help us to verify large systems – Allborg 

university, Denmark (2003) 

[02] I. Foster, C. Kesselman, eds. - The Grid: Blue Print for a New Computing 

Infrastructure - Morgan Kaufmann, San Francisco, Calif. (1999). 

[03] Alexandre David, Tobias Amnell – Uppaal 2k: Small tutorial -2002 

 


