
Henrik Thostrup Jensen
Jesper Ryge Leth

A Job Manager for the
NorduGrid ARC

Dat6 Project
February 2004 - June 2004

To be evaluated June 28th 2004

Department of Computer Science
Aalborg University
Fredrik Bajersvej 7E
DK–9220 Aalborg
DENMARK

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:

A Job Manager for the
NorduGrid ARC

PROJECT PERIOD:
Dat6,
1st February 2004 -
14th June 2004

PROJECT GROUP:
B2-201/d603a

GROUP MEMBERS:
Henrik Thostrup Jensen
Jesper Ryge Leth

SUPERVISOR:
Josva Kleist

NUMBER OF COPIES: 6

REPORT PAGES: 102

APPENDIX PAGES: 18

TOTAL PAGES: 120

SYNOPSIS:

This report describes the development of a sys-
tem capable of managing jobs in NorduGrid. The
project is a continuation of a former project, in
which a daemon capable of resubmitting jobs were
developed.

The report starts by giving an introduction to grids,
what they are, and how resource sharing is orga-
nized by creating virtual organizations. Hereafter
a general grid model is presented, along with ex-
amples of three different grid architectures. The
NorduGrid project is then described with regards to
its political structure and architecture of the toolkit.

After the description of the NorduGrid project, our
initial considerations for the project is described.
The need for a job manager is analyzed, our de-
sign philosophy is presented and features of the Job
Manager discussed.

Hereafter an overview of the Job Manager is pre-
sented, where after the small modules in the Job
Manager are discussed. The next chapter describes
how Job Management is done by separating book-
keeping of jobs and actions into different modules,
making it possible to redefine the way jobs are dealt
with. It is then described how to avoid the Job Man-
ager becoming a single point of failure, by making
other Job Managers acting as failover. Lastly a fu-
ture work chapter presents further ideas.

Finally we conclude that the Job Manager delivers
a framework for production systems while also pro-
viding applications with a simple interface to access
the grid.

Project Summary

This report describes the development of system capable of managing jobs in computa-
tional grids running the NorduGrid Advanced Resource Connector (NorduGrid ARC)
middleware.

Computational grids are a way of interconnecting high performance computational
(HPC) resources, in order to be able to solve larger problems.The general idea is based
on an analogy to the electric power grid, and that it should bepossible to connect to the
grid to use computational power. However grid technology isa rather new technology
and there is a long way to go before it will mature it into such atransparent system.

Most modern grids reminds of the batch systems from the timesof yore, where a
job is submitted to a queue and executed, without interaction on the part of the user.
Upon completion the user collects the output from the job. There are however systems
that tries to implement a grid that are more similar to the concept of a supercomputer.

On of the most popular toolkits for constructing grids are the Globus toolkit and the
NorduGrid ARC is build on top of Globus extending and replaces some of the Globus
components. The main elements of NorduGrid ARC is the Information System, the
Grid Manager and the User Interface. The Information Systemmakes it possible to
monitor the grid and query the resources for information about the resources. The Grid
Manager runs on the frontend of the resources managing the interaction between the
grid and the local resources and adheres to policies set locally. The User Interface is a
command line interface for the standard Unix shell; it makesit possible to submit batch
jobs to the resources connected to the grid and retrieve data.

When a job is submitted it is possible to check the status through a command line
interface or through a web portal. However in its current form the user interface does
not deliver any means of automatically responding to changes in the state of the grid or
jobs without user intervention and neither does it provide an interface for applications
to interact with. It is these problems this project addresses.

The decision to develop a Job Manager was based on experiencefrom a set of
experiments to evaluate if grids connected by the NorduGridARC was mature enough
to be used for processing and analyzing data from the Large Hadron Collider, which
is being build at the European research center for high energy physics (CERN). In
this experiment a lot of time was spent monitoring jobs and resubmitting failed jobs
manually.

The job manager developed in this project delivers a tool that monitors the grid and
responds to changes in the jobs and resources. It is the continued development of a
former project, also developed by us, where we made a daemon that could monitor and
automatically resubmit jobs if the failed.

The goal of the project is to create a complete Job Manager, that automates tedious
tasks, is extensible, and delivers a clean interface makingit easier for application de-
velopers to take advantage of the underlying grid infrastructure. In addition the Job

iv

Manager provides failover and supports caching and user defined handlers (plug-ins)
The Job manager is constructed as a layer between the application and the grid.

It runs continuously, making it capable of monitoring jobs and reacting to changes in
the grid. The Job Manager delivers the necessary functions for the application to use
the grid through an XML-RPC protocol, which lays on top of OpenSSL. The standard
NorduGrid credentials, i.e., X.509 proxy certificates, arefor authentication.

To use the Job Manager, the application submits a job, in the form of an xRSL
description, over XML-RPC. The Job Manager performs the necessary steps to submit
the job to a cluster fitting the description.

The NorduGrid ARC is single execution oriented, and each time a job is submitted
it is assigned a unique jobid, as identifier. This means that there are no way of tracking
a job through several executions. For the Job Manager to work, this had to be changed
and the concept of a job tag was introduced, in addition to theexisting job id. The job
tag does not change and is used by the Job Manager as a consistent way to keep track
of the job. Furthermore a lot of meta data is collected about ajob, e.g., resubmission
attempts, failed executions, and successful executions.

In addition to the basic features of the Job Manager, it has support for handlers,
which are plug-ins that extend or change the way the manager handles jobs. An exam-
ple of this is that it is possible to change the default scheduler, with a scheduler written
by the user.

Since grids are highly distributed and dynamic systems and it is not desirable to
have single points of failure. In order to prevent the Job Manager from becoming
such, it is possible to start several managers to act as failover managers taking over the
management of the users jobs, if one should fail.

The Job Manager was developed in the programming language Python for two pur-
poses; to make it platform independent and to speed up the development process. Most
of the NorduGrid ARC is developed in either C or C++, breakingwith this tradition
meant that time was spent writing wrappers and generating bindings to the existing
NorduGrid ARC code base.

The project has focused on the development of the Job Manager, but there are some
changes to the NorduGrid ARC that are necessary for the manager to function properly
in a production grid. Among these are; the Information System should be changed to
integrate the Job Manager like other resources in the grid making it possible to identify
and locate Job Manager running. The description of jobs in the Information System
should likewise be extended to support job tags. It would also be preferable to have
the Job Manager support multiple users, but due to Globus dependencies, this would
require a massive reworking to make possible.

The project has showed that it is possible to provide more advanced jobs control
for the NorduGrid ARC without many changes. Should the Job Manager be used in
a production system, some of the changes should be considered. Furthermore the Job
Manager makes it simpler to develop applications for the grid, due to the choice of a
protocol that is supported on a multitude of platforms and languages. The possibility of
using handlers with the Job Manager also makes it an excellent platform for performing
experiments with grid middleware, e.g., the performance ofdifferent schedulers.

Contents

1 Introduction 1
1.1 Experiences From NG Proxy . 2
1.2 Scope of the project . 3

2 Computational Grids 5
2.1 Why The World Need Computational Grids 6
2.2 Resource Sharing and Virtual Organizations 7
2.3 Grid Architectures . 8
2.4 The need for Interoperability .10
2.5 A Generic Model for a Grid Architecture 10
2.6 Grid Environments . 12
2.7 Summary . 16

3 The NorduGrid Advanced Resource Connector 19
3.1 The NorduGrid Design Philosophy 20
3.2 Task Flow in the NorduGrid ARC 20
3.3 NorduGrid Middleware Components 23
3.4 The Future of the NorduGrid ARC 28

4 Initial Considerations 31
4.1 The Need for a Job Manager . 32
4.2 Design Philosophy . 33
4.3 Features of the Job Manager . 34
4.4 Language Choice . 37
4.5 Other Considerations . 37
4.6 Summary . 38

5 The Job Manager 39
5.1 Job Manager Overview . 40
5.2 External Job Manager Dependencies42

6 Job Manager Modules 45
6.1 Configuration and Session Management45
6.2 Logger . 48
6.3 RPC Server . 49
6.4 Information System . 52
6.5 Data Management . 55
6.6 Summary . 55

vi CONTENTS

7 Managing Jobs 57
7.1 Considerations . 57
7.2 Introducing Job Tags . 60
7.3 Job Control . 63
7.4 Scheduling . 65
7.5 Handlers . 66
7.6 Job Management . 69
7.7 Summary . 72

8 Distributing the Job Manager 73
8.1 Issues . 73
8.2 Models for Distribution . 74
8.3 Job Information and Job Data . 77
8.4 Discovery Methods . 81
8.5 Model for Distributing the Job Manager 83
8.6 Implementation . 88
8.7 Summary . 89

9 Future Work 91

10 Conclusion 93
10.1 Achieving the Goals . 93
10.2 Extending the NorduGrid ARC . 94
10.3 Caching . 95
10.4 Language Choice . 95
10.5 In Conclusion . 96

A Proposal for a new User Interface in the NorduGrid Toolkit 97
A.1 Introduction . 97
A.2 The Existing User Interface . 97
A.3 Goals and Requirements . 98
A.4 New User Interface . 99
A.5 Road map . 100

B The NorduGrid Command Line Interface 101

C Generating SWIG Wrappers 103
C.1 Using Swig . 103
C.2 Wrapper Functions . 105

D NorduGrid Wrapper Interface 107

E Application Protocol 109
E.1 Resource Management . 109
E.2 Information Services . 110
E.3 Data Management . 111

F Analysis of deadlock when using Globus concurrently 113

Preface

This report is a master thesis written at The Department of Computer Science at Aal-
borg University. The main topic of study is distributed systems and the project is con-
cerned about the development of an automatic job managementtool for the NorduGrid
Advanced Resource Connector (ARC).

The project is a continuation of work initiated in a previousproject, and builds upon
experience gained from this. Even though this project is a continuation, knowledge of
the previous project is not a prerequisite, as the relevant concepts and ideas will be
introduced and explained in this report as well. Readers whohave already read the first
report can skip Chapter 2 and Chapter 3.

The reader is presumed to have knowledge of distributed systems and computer
science in general. Knowledge of computational grids or NorduGrid ARC is not nec-
essary, as the concepts are explained in the report as they appear.

The project is written under the supervision of Associate Professor Josva Kleist,
and we would like to thank him for input and constructive criticism as well as making
it possible to meet the developers of the NorduGrid ARC. In addition we would like
to thank Niels Elgaard Larsen, Jakob Langaard Nielsen and Anders Wäänänen for be-
ing of valuable assistance and providing us with input, as well, as the people on the
nordugrid-dicuss mailing list for assisting us and answering questions regarding the
middleware.

Henrik Thostrup Jensen Jesper Ryge Leth

Chapter 1

Introduction

This project is in some respect a continuation of a projectAutomatic Job Resubmission
in the NorduGrid Middleware[40], which was completed in January 2004. That project
serves as the preliminary work to this project. In the previous project a client which
handled resubmission in theNorduGrid Advanced Resource Connector(NorduGrid
ARC), was developed and tested. This was mainly done as a proof-of-concept, setting
the stage for the development of a more advanced job management tool. This project
describes the design and development of a full featured toolcapable of managing jobs
running on a grid, providing extended functionality and jobcontrol to the user.

The NorduGrid ARC is a middleware used for connecting high performance com-
puting resources to form a grid. By connecting resources into a grid, the entire range
of resources resembles a giant batch system. This makes it possible to take advantage
of all the resources by enabling the user to submit jobs, to the resources connected to
the grid, through a uniform interface. Computational gridsare a rather new technology
being used in the roughly same areas as traditional super computing, but other areas
are starting to appear. A more in depth discussion of these aspects as well as grid
technologies and the NorduGrid ARC can be found in Chapter 2 and Chapter 3.

The NorduGrid ARC is primarily being developed to be used in the area of high
energy physics and NorduGrid is one of several projects thattries to meet the challenge
of creating an infrastructure, to analyze data from the Large Hadron Collider being
build at CERN1. In order to test the different middlewares being developed, a series
of test-scenarios, known as The Atlas Data Challenge, have been devised [24]. Two
of these, Atlas Data Challenge 0 and Atlas Data Challenge 1, have been completed. It
was the experience from this experiment that demonstrated the need for an automatic
production management system [49].

The problems found by the users of NorduGrid ARC was, that it was the respon-
sibility of the user to monitor the jobs running on the grid. In case of failure or other
abnormal circumstances, it is the users responsibility to take the appropriate action [49].
During NorduGrids participation in the Atlas Data Challenge 1, a lot of time was spent
manually keeping track of jobs, especially which jobs that had failed, and resubmit-
ting them. This is a task that should not require human intervention and should be
automated.

Using this problem as a basis for our work in the previous project, we developed a
daemon, NG Proxy2, that was able to monitor jobs and automatically resubmit them in

1The European research center for high energy physics
2Later renamed to NG Job Manager, due the general confusion about the word proxy in grid terminology.

2 Introduction

case of failure. The project and the development process is described in [40].

1.1 Experiences From NG Proxy

The development of NG Proxy, provided us with experience regarding the software,
and the usage of grid systems, especially the NorduGrid ARC.These lessons can help
us and since we do not have to learn the basics of grid and the NorduGrid ARC; we
can use the time to focus on creating a more usable solution.

If grid computing is to have success it needs users, after allwithout users, their is
no interest in the grid. therefore no grid. Easy access to thegrid is necessary for wide
adoption of the technology by the end users. The problem is that users does not appear
simply because the technology is there, even though they maybenefit from it. They
need some incentive or easy access in order for them to try it out and determine if it is
useful to them.

The introduction of a automatic production system on which the applications and
users can rely for easy access to the grid, would bring the users a step closer to the
grid. The need for this type of production system is also to prove useful in many other
application areas than high energy physics. Also it allows application developers to
“gridify” their applications faster, as a clean interface (simple protocol and API) to
the grid is provided, delivering a higher abstraction layer. The general idea of such a
production management system is shown on Figure 1.1. The newsystem should be a

Figure 1.1: The Job Manager introduces an abstraction layer between thegrid and the applica-
tion, providing a clean interface to the application programmer and ease the development of grid
applications by providing easy access to common functionality.

supplement to the existing user interface and not force a more complex system upon
uses who have no need for it.

This approach of providing a tool working as a tier between the application an
the grid software have been proposed and used with varying features and degrees of
success by other grid projects such as PROGRESS [9], Nimrod/G [1], and the EDG
Resource broker [21].

As previously discussed, NG Proxy was only developed as a proof-of-concept and
thus there are some concerns regarding the further development on it, since it is not
geared for this. Therefore an implementation should start from scratch. The need to
start from scratch is also made apparent by the fact that during the development of
NG Proxy, the list of wanted features grew; from conversations with people on the
NorduGrid discussion mailing list. The list of features grew from a simple question of
resubmission, to more intricate aspects of job control. Thelist also included features

1.2 Scope of the project 3

such as controlling NG Proxy remotely and handling different kinds of failure. How-
ever, NG Proxy was created primarily as a proof-of-concept and thus it is not designed
to handle the implementation of the features on the list.

1.2 Scope of the project

The project was started with a meeting with, the Danish part of the NorduGrid ARC
developers. The ideas and thoughts from this meeting was written as a proposal for
a Job Manager for the NorduGrid ARC, see Appendix A, and posted to the Nordu-
Grid discussion mailing list for further ideas and comments. The feedback from this
posting made it clear, that there was different expectations and use patterns for an au-
tomatic production system, but it helped determining the most important features and
requirement imposed on such a system.

The overall idea of the design and implementation presentedin this report is to pro-
vide a better interface to the NorduGrid Toolkit for applications to use and providing
extended functionality for them. Currently applications must use a suite of simple com-
mand line tools, described in Appendix B, to interact with the NorduGrid ARC. This
approach have several advantages due to its simplicity, butit also imposes significant
limitations on the task, a user without any programming skills is able to perform. It is
in light of this discussion, that we determine the scope and focus of this project:

“To design and implement a general way of managing jobs and automa-
tizing control over them and provide a clean and simple interface for ap-
plications to use for interaction with the NorduGrid ARC. Additionally the
Job Manager should provide extended functionality along with automation
of trivial tasks, and provide assisting functionality to applications (clients)
wherever possible.”

Having determining the scope of the project, a introductionto the concept of computa-
tional grids, and a tour of the NorduGrid ARC is given in the next chapters. Following
this, the design and implementation of the Job Manager is explained and discussed.

Chapter 2

Computational Grids

This report is focused on the concept of computational grids, and in this chapter we will
clarify and explain the main concepts and ideas, one may find during an exploration of
the jungle of computational grids and industry buzzwords.

At the moment it is quite possible that the word grid means something different to
everyone. Over the last couple of years it has been hyped, andeverybody seems to
have their own idea or understanding of what grids are. Theredoes seem to be some
consensus, though, that is has something to do with technology that utilizes distributed
and/or parallel computing. For instance, when Sun Microsystems talks about grid, they
primarily mean clustering and load balancing [46, 47]. Likewise Oracle mainly mean
distributed databases [15, 48]. Because of this discrepancy it will be explained what
we mean when talking about grids.

The term grid was coined in 1998, in the book “The Grid: Blueprint for a New
Computing Infrastructure” by Ian Foster and Carl Kesselman, and it was used to de-
scribe a new computing infrastructure [31]. At the time the Grid was defined as:

“A computational grid is a hardware and software infrastructure that pro-
vides dependable, consistent, pervasive, and inexpensiveaccess to high
end computational capabilities.”[29]

This was the beginning of the idea of “The Grid” a supercomputer made up of every
computer on the Internet. An idea which still lurks in the head of a some people.

The name grid came from an analogy to the electric power grid,and the idea was to
consider computational power as a resource, that could be traded in the same manner
as electric power. On a historical note we observe that it wasnot the discovery of
electricity, but the invention of the power grid that launched the electrical revolution
and made electrical devices for everyone to own. The power grid enabled everybody to
get as much power as they needed without having to pay large sums of money for their
own generator.

A power grid is a dynamic heterogeneous infrastructure which consists of a network
with a lot of different producers and consumers connected. The producers are power
plants which vary with respect to price and contribution – from a nuclear power plant
to a farmer with a single windmill in his back yard. The producers and consumers can
appear and disappear from the grid without notice. When a producer disappears others
take over, without disruption in the service from the consumers point of view. The
power grid serves all types of consumers, from private households to million dollar
corporations. All the consumers are connected to the same power grid, and uses as

6 Computational Grids

much of power they need, and only pay for the amount being used. This is one of the
key points to the success of the power grid; even though a power plant is very expensive
and a large investment, the power is still relatively cheap to the consumer [30].

The original vision was to view super computers (computational cycles) and other
expensive equipment such as analytical and special equipment as resources which ev-
eryone could have access to, by subscribing to the grid. Thisgrid would consist of ev-
ery computer connected to the Internet, essentially actingas one supercomputer which
everyone could connect to, in order to use or contribute resources. By running soft-
ware on the grid, CPU cycles and other resources can be tradedjust like power, and
consumers are being billed for what they use, and producers are being paid for what
they contribute.

But – analogies can be a dangerous thing, and computational power is not electric-
ity, as they differ in several respects [30]. This is important to note this for a number of
reasons. First computational power is a highly volatile resource and it cannot be stored
for future use as electricity. This is partly true for some types of electricity as well, e.g.,
wind mills which produce power when the wind is blowing, but often the production
of electricity can be reduced by delaying conversion of energy (e.g., coal and oil), until
needed. This cannot be done for CPU cycles that are lost if they are not used immedi-
ately. This serves as a large incitement for developing waysto trade idle computational
power, but also speaks against the analogy to electricity. The analogy to the grid is also
not accurate in other aspects as there can be a number of different resources connected
to the grid, not just computational power, but at wide range of different equipment.

Despite the difference, this was the vision of the people behind the idea of com-
putational grids. Grid technology today is “a work in progress” and there are issues
regarding distribution, security, scheduling, scalability, and almost every other problem
imaginable when dealing with distributed systems on a largescale that has to be solved
to implement the vision of “The Grid”. Because of the the focus have shifted today,
from trying to create one large grid toward constructing smaller and more specialized
grids. An example of this is sharing of resources among smaller groups collaborating,
but spread geographically, to try to solve a subset of the problems and make a grid that
works, even though it is on a smaller scale and with a specific purpose in mind. Some
predict that we will have a working grid, with these issues solved, in a matter of a few
years, while others are not so optimistic.

2.1 Why The World Need Computational Grids

Under this rather pretentious heading, we will explain why we think that grids serves
a purpose and are not just “hot air”. We will do this by departing from the idea of a
global supercomputer, and look at computational grids froma more pragmatic point of
view.

The ordinary home user does not need a lot of computational power very often, and
they have no real need for high performance computing facilities most of the time. In
fact 70% of the time, a typical workstation in a corporate environment are idle [30].
However, in some situations even the ordinary user may need access to a lot of comput-
ing power, e.g., when checking his or her stock portfolio, ora similar demanding task,
a lot of CPU time is needed to make more precise predictions ofthe rate of change.
Here a subscription to a grid would come in handy by supplyingon-demand compu-
tational power. Looking beyond the ordinary home user, the traditional users of high
performance computing (HPC), would benefit from the added computational power of

2.2 Resource Sharing and Virtual Organizations 7

a grid. This benefit comes from the grid enabling the sharing of expensive equipment
between groups and organizations, for instance scientistslocated around the world to
ease collaboration and lower costs. Below we have summarized what seems to be the
main reasons for developing computational grids.

• We have bigger problems– The computational problems that needs to be solved
have become bigger, or the idea of solving problems computationally has become
more wide spread leading to problems which needs more resources to be solved.
Even though we have bigger problems, our own resources are not always fully
used, but costs almost the same amount of money to operate even when idle.

• We need to save money– HPC resources are expensive, and the acquisition and
operation costs can be brought down by sharing these resources in a grid. The
use of grid technology also enables users to solve problems faster than before,
due to extended use of resources. If institutions with similar problems is given
the ability to pool their resources they can solve a given problem faster.

• We do not always have computational power at hand– PDAs and other em-
bedded devices have become more widespread during the past years, and this
trend seems to continue. However PDAs still has limited computing power, and
having an infrastructure that enables access to HPC resources from a PDA would
be beneficial and enable pervasive use of high performance computing.

One of the requirements for these areas are the sharing of resources and we will look
further into the concept of virtual organizations. A way to enable corporation and
sharing of resources.

2.2 Resource Sharing and Virtual Organizations

The vision of creating an infrastructure that would bind together every computer on the
Internet into a single giant supercomputer is ambitious. From an administrative point
it raises a number of issues regarding security and sharing of resources. Not only do
we need to share our resources, but we also needs to allow foreign code to run on our
machines without a chance to review it. Not everyone would grant everyone access to
their computational resources, and controlling access in asingle giant grid can become
troublesome, due to disagreement of who will get access and to what. This concern was
addressed by Ian Foster and Steven Tuecke [31] and they modified the grid definition
to take political and social issues into account.

“The sharing that we are concerned with is not primarily file exchange
but rather direct access to computers, software, data, and other resources,
as is required by a range of collaborative problem solving and resource-
brokering strategies emerging in industry, science, and engineering. This
sharing is necessarily, highly controlled, with resource providers and con-
sumers defining clearly and carefully just what is shared, who is allowed
to share, and the conditions under which the sharing occurs.A set of in-
dividuals and/or institutions defined by such sharing rulesform what we
call a virtual organization.” [29]

This definition introduces the concept of a virtual organization, which has become a
fundamental concept of resource sharing in modern grids.

8 Computational Grids

A virtual organization is a group of institutions and users,who have decided to
share resources with each other. To do so they form a virtual organization, thereby es-
tablishing a relation of trust between the users and organizations, forming a grid. The
users in the organization is able to use resources shared in this virtual organization.
An institution, user or resource is not necessarily tied to asingle virtual organization,
since an institution may choose be a part of several virtual organizations, sharing some
resources to one, some to another, and some resources too more than one virtual orga-
nization [31]. This is illustrated on Figure 2.1.

Trust

Figure 2.1: A virtual organization consists of users an resources from several organizations, that
may not have anything in common on the organizational level,apart from belonging to the same
virtual organization.

A running grid will have resources disappearing (e.g., hardware failure or resource
withdrawal), and appearing. The situation is the same for users, since users can get
access to a grid, and have it revoked as well. This means that grids will have users
and resources appearing and disappearing, yielding a highly dynamic structure. Some
virtual organizations will be more dynamic than others, e.g., a group of scientists may
form a grid to analyze data. The duration of such a virtual organization could last for
years, and only have a few users entering or leaving, while other virtual organizations
may be far more dynamic, e.g., a virtual organization could grant access to every stu-
dent at a certain institute. This dynamic nature imposes certain requirements upon the
infrastructure. It must support an easy and automated way ofregistering new users and
resources, while being able to cope with disappearance of users and resources.

Virtual organizations will most certainly play an important role in the future of
grids, since they concern two of the most important things ingrids: Users and the
sharing of resources. Making virtual organizations easy tocreate and maintain are an
important aspect, among many, to have in a grid infrastructure, if they are to become
widely spread.

From this short explanation of a line of fundamental computational grid concepts,
we now examine the fundamental architecture of computational grids.

2.3 Grid Architectures

This section discuss various grid architectures and considerations that arise when build-
ing grids. We start by looking at a general model of a grid architecture and move on to

2.3 Grid Architectures 9

issues that must be considered when building a grid. We finishby giving examples of
existing grid environments. The discussion in this sectionis based on the discussion in
the previous chapter along with the models and discussions presented in [30, 31, 35]. It
outlines a set of basic properties and capabilities that a grid architecture must provide.

One of the things to be aware of when designing a grid architecture, is the entities
in a grid environment. In principle the main entities of interest in a grid are users,
resources, and jobs. These entities have characteristics and requirements which must
be taken into considerations.

• Users – are geographically spread, they are in complex sharing relationships
with organizations and other users. They require ease-of-use, authorization, au-
thentication, trust, and needs access to several grids, assured a certain quality of
service.

• Resources– are heterogeneous, dynamic, and geographically spread. They are
not necessarily dedicated to grid jobs and requires fine grained access control.

• Jobs– belongs to different users and may consist of mobile code, foreign to the
computing element. They may have secret content imposing security needs and
may need specific runtime environments to be installed.

The above list is only some of the characteristics and needs,of the entities involved in
a running computational grid, but they illustrate the complexity of such a system.

Looking at the definitions from the previous chapter, it is obvious that some of the
key elements in a grid is sharing, decentralization of control, and heterogeneous re-
sources. As an example of the problems and complexities whenrunning in a grid envi-
ronment, a thing as the simple operation of executing a program on a grid is nontrivial,
as the input, output, and data has to be set up prior to the execution [35]. Fundamental
requirements for computational grids are.

• Scalable– The fundamental idea behind computational grids are that they are,
or at least will become very large. Thus it is important that the architecture and
technology upon which grids are build scale very well.

• Robust– As for other distributed systems the architecture must be robust. A grid
must be fault tolerant and cope gracefully with network and resource failures,
providing consistent and dependable quality of service.

• Secure– A grid architecture raises almost any security issue conceivable. Since
a grid has no central control, and may span over several administrative domains,
the security requirements upon the architecture are important. This is empha-
sized by the fact that the resource owners allows users to execute foreign code
their resources.

• Pervasive access– This covers several issues of grid access. Access must be
easy, with respect to user credentials (e.g., single sign on). Access must be pro-
vided from a wide range of computational devices and must be inexpensive.

• Accounting – There must be a reliable accounting system keeping track ofre-
source usage, making it possible to charge the users. This includes accounting
with respect to resource usage and contribution. Accounting and payment raises
issues about quality of service, and a grid should facilitate a way to measure and
assure this.

10 Computational Grids

These are only some of the issues and list goes on, other important issues are: control,
interoperability, open protocols, consistency of service, and scheduling policies.

The main purpose for the architecture are to conceal the heterogeneity and com-
plexity of the underlying resources. Foster and Kesselman [30] points out that a grid
architecture is first and foremost a protocol architecture and its goal is to ensure in-
teroperability. Furthermore the architecture must facilitate fine grained access control
over the sharing of resources. There are discussions [31, 35] of whether new program-
ming models is needed and if these should be implemented in therms of basic grid
protocols.

2.4 The need for Interoperability

Since users and resources can be members of several virtual organizations, there is a
clear need to have common protocols [31]. Having separate protocols for each grid
middleware is not a feasible option if virtual organizations are to be created quickly
and maintained easily. Furthermore a user or resource couldbe member of several
virtual organization, making interoperability almost impossible without common pro-
tocols. Additionally these protocols should be standardized such that different grid
middlewares can be created, while still being able to talk together; much like the IP
protocol works today.

Writing such a middleware is not an easy task, so most grid users will use an ex-
isting middleware to create their grid application. Some users probably want to extend
their middleware, with some specialized services or accessto uncommon resources.
Such users should not have to create their own middleware, but rather extend existing
middleware to fit their needs. This means that the code, for atleast some middlewares,
should be open.

Given that there will exist several middlewares for grid applications, these should
be accessible in a uniform way. This means that they should provide a similar API to
the application programmer. However, as described above, middlewares will differ in
functionality. Due to these differences it would be impractical for all middlewares to
provide the same API. Instead they should aim to provide the basic API. This would
mean that grid applications could be ported between different middlewares, without
too much effort. This may not be a realistic goal since there are many different ways
of solving the grid problems as we will see in the next chapter. However standards are
being developed which should ensure interoperability.

2.5 A Generic Model for a Grid Architecture

To address the issues just described, a grid environment canbe described as a set of
abstract levels. These can roughly be divided into three parts: Core grid, services and
user interface [35]. The core grid consists of the resourcesand applications running on
the resources. The services provides a homogeneous interface to the resources, as well
as facilitating discovery and resource brokering. The userinterface supplies the user
with a way to interact with the grid services. This interaction can be facilitated in many
ways, ranging from a standard Unix shell augmented to support the functionality of the
grid, to a web portal interfacing to the grid services. Furthermore a grid environment
should fulfill two main functions: Provide user-side programming and control the user
interaction.

2.5 A Generic Model for a Grid Architecture 11

We will now take a look at a more detailed model of a grid architecture, and identify
the features necessary at the different levels. The model was originally presented in the
article “The Anatomy of the grid” [31] and can be seen on Figure 2.5. This model is

Fabric

Connectivity

Resource

Collective

Application

Figure 2.2: A generic model of a grid architecture showing the differentabstraction layers
common for many grid architectures.

made up of a set of abstraction levels as previously discussed. Starting at the bottom we
have the Fabric. This is the level that interfaces with the local resources and provides
shared access. The resources in this level may be either a physical or a logical entity,
e.g., a cluster or distributed file system. The fabric level supports local resource specific
operations which are dependent on the operations of the higher levels of the model.
There is a trade off concerning functionality on this level.A richer set of functionality
may make advanced sharing functionalities available for the higher level, but at the
same time making deployment of new resources more complex. As a minimum, this
level should support a mechanism enabling discovery of services and capabilities and a
resource management mechanism delivering some control over the quality of service.

The connectivity layer defines the grid related protocols providing the necessary
grid specific functionality like communication and authentication protocols. The com-
munication protocols should enable exchange of data between fabric resources, in-
cluding routing, naming, and transport. Much of this can be achieved trough existing
protocols, e.g., TCP/IP, and DNS. The authentications protocols should also, due to
complexity and security issues, rely on existing protocolsand provide support for vir-
tual organizations, supporting single sign on, trust relationships, and delegation. The
authentication protocols should integrate well with existing protocols and systems.

The resource layer is relying on the connectivity layer supplying protocols for ne-
gotiation, monitoring, control, and accounting operations on the individual resources.
The functionality of this layer can be split into two classes; information protocol and
management protocol. The protocol layers form a bottleneckin the model and should
therefore be kept as small and simple as possible while stillsupplying the needed func-
tionality.

The collective layer are focused on the global resource viewand contains services
and protocols not associated with any single resource. The collective deals with rela-
tionships and interactions between resources. This layer implements services, includ-
ing directory services, scheduling, monitoring, and accounting. These protocols are
general in nature and rely on the services of the underlying layers to implement the

12 Computational Grids

needed functionality with respect to the individual resources. The functions in this
layer can be implemented as services with associated protocols, or as software devel-
opment kits with associated APIs. The collective can be developed for specific use
(e.g., specific VO requirements) or for a more general purpose

The application layer is the applications that run within a specific VO environment
and applications at this level makes use of the services of the lower levels by means of
well defined protocols and APIs. We can now specify what we mean when we use the
term grid, we mean:

An infrastructure that enables controlled sharing of computational re-
sources across sites and trust boundaries. Between users from different
organizations and institutions which may be geographically spread. The
resources belongs to the institutions and users who remain in control of
their own resources. The users of the grid have the possibility to securely
run jobs on the shared resources and the resource owners has the ability
to charge the users for usage of the resources.

Ultimately all of these requirements are needed in order to be talking about grid, How-
ever if a fairly large subset are met, e.g., support for accounting could be absent, we still
use the term grid. This is reasonable because not many – if any– grid environments
support all the requirement mentioned.

2.6 Grid Environments

This section examines existing types of grid toolkits that are in use today. We have
selected examples among the many that exists today. The reason for selecting the ones
described in this section is, that they represent some of themajor different approaches
for constructing grids. For a more extensive list and a description of the grid environ-
ments available today, we refer to [35].

Before discussing the various environments, we start by briefly describing the Open
Grid Server Architecture. Even though there are much discussion about standards for
computational grid protocol, there are surprisingly few. One of them is the Open Grid
Service Architecture (OGSA), which is an attempt to establish a common standard
for grid architectures. OGSA is based on web services and thegrid services provided
by OGSA follows the Open Grid Service Infrastructure (OGSI)[74], meaning that
every service is a web service1. Many projects seems to embrace the standard and
develop their toolkits accordingly [48, 56]. The newest in this family is theWeb Service
Resource Framework(WRSF) which has just recently been proposed, it should be seen
as a successor to OGSA/OGSI, but the specifications has yet tobe finished.

2.6.1 The Globus Alliance

The Globus Alliance is a research and development project with participation by seve-
ral universities and large companies around the world [57].They do not produce a grid
environment, but instead the main focus of the project is to develop fundamental grid
technologies needed to build a grid. The result of the project is a grid toolkit called the

1Web services provide a standard means of inter operating between different software applications, run-
ning on a variety of platforms and/or frameworks. The interaction is made possible by using protocols and
technologies such as SOAP and XML [13].

2.6 Grid Environments 13

Globus Toolkit. This toolkit is a set of building blocks for creating grid middleware,
meaning that it is not a complete grid solution, but rather a framework for building grid
applications and solutions.

At the time of writing, there exists two major versions of theGlobus Toolkit; ver-
sion 2 and 3. Lately a fourth version has been announced, but it has yet to reach a
stable incarnation [3]. The toolkits and the code for them are freely available on The
Globus Alliance web page2. In the following sections, the different version of the
Globus Toolkits is described.

2.6.2 The Globus Toolkit 2

The Globus Toolkit 2 was a continuation of version 1, and it has had major revisions in
several areas [56]. The toolkit defines its own set of communication protocols, meaning
that it cannot easy communicate with other grid middleware.However over the past
six years the Globus Toolkit 2, has evolved into becoming thede facto standard for
computational grids [29]. This is likely due the large number of institutions which has
build their grid solutions on the Globus Toolkit and today itis one of the most mature
grid toolkits. The reasons for basing a grid solution on the Globus Toolkit are, that
the toolkit can be downloaded for free, and that the code is freely available, making it
possible to tailor it to suit your needs.

The toolkit it build of three major parts [59]: Resource management, information
services and data management. Resource management is concerned with allocation and
management of resources. Information services is the part that provides information
about the resources in a grid, making it possible to query theinformation needed. The
last part, data management, is concerned with access and management of data. As of
this writing the Globus Toolkit 2, is in version 2.4.3, whichwas released September
11th, 2003.

2.6.3 The Globus Toolkit 3

The Globus Toolkit 3 is relatively new as its first release wasin July 2003. This ver-
sion is a major redesign of the previous Globus Toolkit. It was redesigned to create
an implementation compliant with OGSA standard [28]. The functionality of the ser-
vices provided by Globus Toolkit 3 corresponds to the services provided by the Globus
Toolkit 2, but they are implemented as web services in order to comply with the stan-
dard. The reason for implementing grid services as web services are extensibility and
manageability in contrast to the services in Globus Toolkit2, which are separated and
independent. This means that it takes a significant amount ofwork to implement a new
service or change an existing one. The Globus Toolkit 3 provides a framework for this,
so existing OGSI services can be modified more easily and new services can be cre-
ated faster [58]. Furthermore using and managing grid services has become uniform
through the use of web services.

To accommodate migration from Globus Toolkit 2, several steps has been taken.
Globus Toolkit 3 contains the same components as version 2, and has API compatibil-
ity and the same form of authentication is used3. This makes it possible for existing
authentication and authorization mechanisms and credentials to be used.

2Homepage at http://www.globus.org
3X.509A certificates, which is a widely used certificate standard. [27]

14 Computational Grids

Globus Toolkit 3, is currently in version 3.2. The additionsof this release compared
to 3.0 is bug fixes, performance improvements, new features and a new documentation
structure [4].

Even though Globus Toolkit 3 has been released, there is a continued development
on Globus Toolkit 2. This is due to the many existing projectswhich has been based on
version 2, and that version 3 is still relatively new. However the links to Globus Toolkit
2, on the Globus homepage, are becoming increasingly difficult to find, indicating a
desire to move people from Globus Toolkit 2 to Globus Toolkit3 (or more likely;
Globus Toolkit 4).

2.6.4 The Globus Toolkit 4

On January 20th, 2004, the WS-Resource Framework (WSRF) was introduced [3].
WSRF is basically a refactored version of OGSI, an addition of some new features in
web services [26]. Furthermore the specification has been split into six parts, where
drafts exist for three of them [6]. Although WSRF is heavily inspired by OGSI it is not
compatible with it [6]. The Globus Alliance has not yet produced a working toolkit for
the WSRF, but work is underway to port the Globus Toolkit 3 from OGSI to WSRF. We
believe that the introduction of WS-Resource Framework will keep grid projects away
from using the Globus Toolkit 3, since OGSI is essentially dead after the introduction
of WSRF, although the Globus Alliance says that this is not the case [6].

Whether or not grid computing will converge to web services,using OGSI, WSRF
or a third possibility, still remains an open question. However, if the Globus Alliance
wants their Toolkit to succeed they will surely need to settle on a standard and produce
a stable toolkit.

2.6.5 Enabling Grids for E-science in Europe

Enabling Grids for E-science in Europe4 (EGEE) is the successor of the European Data-
grid (EDG), which is an example of a grid environment based onthe Globus Toolkit
2. EDG was an initiative, doing research in building a commonEuropean grid solu-
tion. It was funded by the European union and has a budget in the range of 10 million
euro. EDG was led by CERN, and it was a collaborative effort with several Euro-
pean research agencies including the European Space Agencyand national agencies
from several European countries [21]. EDG was trying to construct, not just a toolkit,
but a complete grid suite and did work on applications in several areas. The devel-
opment was divided into four major areas: Testbed and Infrastructure, Applications,
Computational and Data Grid Middleware, and Management andDissemination. The
application areas that EDG was aiming at is High Energy Physics, Biology and Medical
Image processing, and Earth Observations.

The EDG project was finished as of March 2004 and many of the technologies have
passed to EGEE, who are creating a grid infrastructure to support the research area. The
EGEE solution is not based on any existing middleware and relies on a SOAP interface
defined by the EGEE.

4www.eu-egee.org

2.6 Grid Environments 15

2.6.6 The NorduGrid ARC

The NorduGrid Advanced Resource Connector5 (NorduGrid ARC) will be examined
in detail in the next chapter, but for the sake of completeness a short description fol-
lows. The NorduGrid ARC is a grid solution based on Globus Toolkit 2. It is the result
of a collaboration between the Scandinavian countries to create and operate a Nordic
computational grid. The purpose of the NorduGrid project was to create a testbed for a
Nordic grid infrastructure and is a collaborative effort with participating research cen-
ters from Denmark, Norway, Sweden, and Finland. The focus was to create an infras-
tructure for future high energy physics experiments, but this goal has been expanded
over time. Even though the main focus still is high energy physics, the possibility of
running other applications on NorduGrid is being examined.At the time of writing
NorduGrid consists of clusters located at the participating organizations, but more and
more sites and countries are participating. Since the summer of 2003 up till today the
number of CPUs on the grid monitor has gone up from below 1000 to more than 2400.
In this time frame, NorduGrid has moved from being a testbed to a production grid.

The NorduGrid approach is to base the toolkit on Globus Toolkit 2, reusing as many
components as possible. However it has been necessary to extend some of the Globus
components and replace others in order to get the desired functionality. Contrary to
many other grid toolkits in existence NorduGrid is not planning a move to Globus 3,
although it has been discussed.

Due to the collaboration and the creation of the NorduGrid ARC, the local grid
research centers in the Nordic countries, including DanishCenter for Grid Computing
(DCGC) and Swedish National Computational Resources (SweGRID), are basing their
research and work on the NorduGrid ARC. This has an impact on our choice of toolkit,
making NorduGrid the natural choice, since we can get accessto resources running the
NorduGrid ARC through DCGC.

After having looked at Globus and two toolkits based upon it,we move on to look-
ing at Legion, representing a radically different approachto building a grid .

2.6.7 Legion

Legion6 is described as a world wide virtual computer. The Legion project is based at
the University of Virginia; the goal of the project is:

“Users working on their home machines see the illusion of a single com-
puter, with access to all kinds of data and physical resources, such as
digital libraries, physical simulations, cameras, linearaccelerators, and
video streams. Groups of users can construct shared virtualwork spaces,
to collaborate research and exchange information.”

This is very much in accordance with the original vision of The Grid, making many
computers act as one supercomputer. As opposed to Globus, Legion is trying to created
an integrated solution and does not use preexisting services and technologies. Instead
Legion are using an object oriented philosophy toward designing and constructing a
grid. Legion is build on top of a unified object model developed specifically for Le-
gion [54]. In Legion everything is an object, and Legion defines the message format
and high-level protocol for object interaction, but not theprogramming language or

5NorduGrid ARC was formerly known as the NorduGrid Toolkit, but it was feared that this name would
prevent it from getting acceptance outside Scandinavia.

6Homepage at http://legion.virginia.edu.

16 Computational Grids

the communications protocols. It is possible for users to provide their own classes,
since the common services are implemented by core objects. Additionally Legion of-
fers PVM and MPI libraries which applications can be compiled against in order for
the application to take advance of the infrastructure.

The main objectives of the Legion project has a lot in common with other grid
projects. The aim is to create a scalable and fault tolerant architecture that takes care
of the management and utilization of resource heterogeneity. When running Legion
the user has, what Legion refers to, as a context space in which all applications, be-
longing to that user is executed. That, along with a virtual file system and a resource
management system allows the user to run processes on the grid. Legion does this by
extending the basic capabilities of the Unix shell to work with the distributed object
file system [35].

The project lists a set of constraints under which the Legionsoftware must run.
These are very common for grid projects. For instance the host operating systems
cannot be replaced, as well as changes to the interconnection network cannot be legis-
lated by Legion. Furthermore Legion cannot be required to have superuser privileges
and Legion should work while keeping site autonomy and ensure security for users
and resource owners. Legion works on top of the users operations system and negoti-
ates security and scheduling policies with the different sites according to their policies.
These requirements ensures that site autonomy are kept by maintaining and adhering
to the local policies, whether it is being security, resource, or other policies.

These objectives and constraints are very similar to many most grid projects, and
when examining NorduGrid design philosophy in section 3.1 we will see that many of
the same objectives and constraints are valid for NorduGridas well. The main diffe-
rence is that the approach to solving the problems that differs and not the fundamental
goals as many of these goals are paramount when dealing with distributed systems that
cross trust boundaries.

2.7 Summary

We have been looking at several different grid environmentsand toolkits. They each
use different approaches trying to solve “the grid problem”. These approaches has
their advantages and disadvantages. One of the main differences between Globus 2
and Legion is that Globus 2 does not have an underlying component architecture [53].
This approach yields advantages as well as disadvantages.

The main problem with the Legion approach is that every pieceof software ever
to run on Legion must be build specifically for Legion or otherwise ported and linked
against specific Legion libraries. Legion tries to accommodate this by providing special
Legion enabled versions of a number of well know APIs such as MPI. However hav-
ing a unified name space and resource abstraction where everything is an object makes
grid specific application development easier. It also serves as a basis for tighter inte-
gration between the applications, and the grid middleware making this approach closer
to becoming “The Grid”. This closer integration should alsomake the construction of
interactive grid applications possible. A thing that is very difficult within Globus based
grid environments, however this comes at the price of more complex deployment.

The Globus Toolkit however, is not without advantages. Looking at NorduGrid it it
in principle a very large batch system and resource broker. This batch like behavior is
enough for a number of applications, especially in the area of traditional high perfor-
mance computing, where the problems and applications can easily be distributed, e.g.,

2.7 Summary 17

parameter studies. These types of applications does not need human interaction, but
raw computational power. In this case the advantage is, thatonce the job is submitted
to the grid, no extra communication is needed, and the communication overhead in
tighter integrated system is reduced. Additionally a lot ofexisting applications can be
brought to run on this type of grid without significant modifications.

Thirdly there is the web service model as introduced by OGSA and used in Globus
Toolkit 3 and 4. This model can in some way be considered the middle ground between
the two other toolkit models. It offers tighter integrationthan Globus 2, by supplying an
object model. This model is not as tightly integrated as Legion, because the interactions
between the components is defined on a lower level using standard protocols (SOAP)
and common data descriptions (XML). The looser integrationcompared to Legion can
be seen by, e.g., the lack of a distributed file system and lackof a uniform name space.

It is hard to say if there are a “right” way to build grids, and we believe that the
world is big enough for all three types of models, especiallysince they address different
type of user and application needs. In this project we work with NorduGrid ARC due
to reasons already explained. Therefore we will describe this toolkit in further detail in
the next chapter.

Chapter 3

The NorduGrid Advanced
Resource Connector

This section takes a deeper look into the NorduGrid AdvancedResource Connector
(ARC), and examines the individual components, in order to get a better understanding
of how the toolkit works.

The NorduGrid ARC was first known as theNordic Testbed for Wide Area Com-
puting and Data Handling, or the shorter name NorduGrid. The toolkit developed
by NorduGrid, the NorduGrid ARC, is the grid middleware, which we have chosen
as the basis for our work in this project. NorduGrid started as a testbed, but have
since gone through reorganization of the organizational structure in order to become
a production grid rather than a testbed. The NorduGrid organization has changed its
name to Nordic Data Grid Facility (NDGF) and the NorduGrid Toolkit has changed its
name to NorduGrid Advanced Resource Connector (NorduGrid ARC). NDGF is part
of North European Grid Consortium, its job is to coordinate connection and usage of
the Nordic grid, and control the agreements with organizations who wish to use the
Nordic grid [11]. Internally NDGF coordinates the contributions to the Nordic grid by
the various national grid facilities and serve as certification authority handling authen-
tication, authorization, and accounting issues. The groupmaintaining and developing
ARC is still be called NorduGrid [52].

The purpose of the NorduGrid project was to create a testbed for a Nordic grid
infrastructure, and is a collaborative effort with participating research centers from
Denmark, Norway, Sweden, and Finland. At the time of writingNorduGrid consists of
clusters located at the participating organizations in thedifferent countries. The main
purpose was to create an infrastructure able to handle and analyze data from high-
energy physics experiments.

The NorduGrid project was started in May 2001, in response tothe ATLAS Data
Challenge. The ATLAS Data Challenge (DC) is the name of the first Large Hadron
Collider (LHC) application to be executed in a computational grid environment. It is a
series of challenges to test the computing infrastructure.The ATLAS Data Challenge
was created in order to prepare for the intaking of data from the LHC being build at
CERN, when it goes into commission in April 2007. The LHC being build at CERN
is the largest of it’s kind and sets new standards for the amount of data generated by
high-energy physics experiments. When operational the LHCis expected to generate
data in the magnitude from 100 Mb to 1 Gb/sec adding up to more than 1 Pb/year [50].

20 The NorduGrid Advanced Resource Connector

The first two parts, the ATLAS DC0 and DC1, have already been completed. DC1
was initiated in July 2002 and ran through the first part of 2003. During this time more
than 2 TB input data was processed and more than 2.5 TB output data was produced by
more than 4750 grid jobs [24]. DC2 have been delayed but it is at the time of writing
in preparation and expected to start during June 2004.

3.1 The NorduGrid Design Philosophy

We start by outlining the fundamental design philosophy behind NorduGrid, as it was
formulated when the project was started. NorduGrid should start out by being build
on tools and technologies that actually works and proceed from there, in an effort to
construct a scalable grid architecture, without single points of failure. For NorduGrid
to be dynamic in creation of VOs, and to run on sites that is notdedicated to grid
jobs, it is important that the owners of the respective resources retains full control over
their own resources, local policies and configurations. To achieve this, the NorduGrid
middleware should impose as few site requirements as possible, i.e., there should be
no dictation of cluster configuration or install method. Furthermore no dependencies
on particular hardware should exist and NorduGrid should reuse the existing system
installation as much as possible. The computational unit ofchoice in NorduGrid is the
cluster. The NorduGrid ARC software should only be requiredon front end machines
and the computing nodes nodes should not be required to be on apublic accessible
network [50]. To summarize the goals.

• Avoid single points of failure.

• The architecture should be scalable and able to cope with a highly dynamic re-
source pool.

• Resource owners should retain full control over their resources.

In the initial phase of the project, existing grid middleware packages was examined.
The two main candidates where Globus Toolkit 2 and EDGs Data Grid. These were
analyzed further, and both of them found to be inadequate. The Globus Toolkit 2 did
not support resource brokering, and it also lacked the middleware for staging large
input and output data files. The EU Data Grid seemed to addressthese issues, but
was at the time (early 2002) considered to premature to be thebasis for NorduGrid.
In addition it had a centralized resource broker which was seen as a bottleneck and a
single point of failure.

In light of the result of the analysis it was decided to build the grid infrastructure
from scratch. In practice the developers have been using theGlobus Toolkit 2 as the
basis of the development, addressing the various issues, and adding components that
either replace, extends, or complement existing Globus components.

3.2 Task Flow in the NorduGrid ARC

This section describes how the NorduGrid ARC is usually operated from the users
perspective. This is done to give the reader a “feel” for how the toolkit works. We will
go through the preparation, submission, and retrieval of jobs and job data. The first
section goes quickly through the usage of the NorduGrid ARC,without explaining in

3.2 Task Flow in the NorduGrid ARC 21

detail how the elements work. This is done later in this chapter. Even though we will
not go through the installation procedure, we will note thatthe installation of the entire
Globus Toolkit is necessary for the NorduGrid user interface to work.

3.2.1 Job Preparation

The first thing needed in order to submit a job to the grid, is tohave access to one or
more resources, i.e., the user must be a member of a virtual organization with access
to a set of resources. The access is based on a user certificateissued by the certificate
authority.

In order to execute a job to a cluster connected by the NorduGrid ARC middleware,
the user must first prepare a job description. This description supplies information to
the user interface, which is used to locate a cluster on whichto execute the job. The
description contains information needed to run the job on a cluster, including name
of the executable, input data, location of input data, filenames, and location of output
data, as well as other requirements, e.g., libraries required to run the job. The descrip-
tion is created in a language, the Extended Resource Specification Language (xRSL),
designed for describing grid jobs. Since there are no screenor terminal to display input
or output, when executing the job on the grid, all input files must be specified as files,
and all output must be redirected to files. The job description specifies the input files
and to which files the output must be redirected.

3.2.2 Job Submission

Before submitting a job to the grid, the user interface needsaccess to the proxy certifi-
cate, to be able to authenticate the users against the different grid services. This is done
by running the programgrid-proxy-init . Contrary to what may be suspected by
the name, it does not start a program (a proxy), but generatesan X.509 proxy certificate
which expires after a predefined amount of time. The proxy certificate is used to sign
the job description to determine the identity, and credentials of the user. By using a
time limited certificate the severity of a compromised certificate is lessened, because it
will eventually expire. The job is submitted via a command line user interface, which
locates a suitable cluster for the job, i.e., one which fulfills the jobs requirements, and
where the user has the privileges to execute jobs. When a cluster is found, the job is
submitted. The submission process consist of uploading thejob description and any
local input files, and the user interfaces terminates.

3.2.3 Job Processing

Once the job description is uploaded to the cluster, the GridManager checks every two
minutes (default) for the arrival of new jobs. The grid manager submits the job to the
Local Resource Management System (LRMS), and waits for it tofinish. When a job
is completed or failed, the user can choose to be notified by email, or can check the
status of the job manually, either through the grid monitor on the NorduGrid website, or
through the command line interface, which queries the information system. When the
job is completed, the grid manager does the post processing of the job data according
to the job description and optionally moves the output files to a storage element for
later retrieval by the user. The task flow in the job submission process is as follows:

1. The user creates a job description in xRSL.

22 The NorduGrid Advanced Resource Connector

2. The User Interface interprets the job description in order to perform resource
brokering. It queries the information system to locate a resource to which the
job can be submitted.

3. The job description is submitted to the grid manager on thechosen cluster via
GridFTP.

4. The grid manager creates a session directory for the job data on the cluster.

5. The grid manager handles the preprocessing of the job data. If the job descrip-
tion states that data should be fetched from a storage element, the grid manager
fetches the data, and makes them available within the session directory.

6. The job is submitted to the local resource management system (LRMS) for exe-
cution.

7. The grid manager performs post processing of the output data. The grid manager
can optionally register the data with a Replica Manager. Upon job completion
the user can be notified by email.

8. The user downloads the data from the cluster, using the User Interface or by
GridFTP.

9. The grid manager deletes the job within a given time frame,if the user has not
removed it.

On Figure 3.1 task flown and the various protocols in the communications in the Nordu-
Grid ARC are illustrated. Along with the protocols used for the different task. The
details of the components will be discussed in detail in the rest of this chapter.

Figure 3.1: The communication and the various protocols handling the communication in
NorduGrid. GRRP is the protocol used by resources for registering contact information with
the information system (MDS), and GRIP is the protocol used for querying resources for status
information. GridFTP is used for both transfer of job data, and the job description itself.

3.3 NorduGrid Middleware Components 23

3.3 NorduGrid Middleware Components

In this section the components of the NorduGrid toolkit is explained. This is done in
the same order as they show up in the task flow just described. We begin by looking at
the extended resource specification language.

3.3.1 Extended Resource Specification Language

Extended Resource Specification Language (xRSL) is an extension to the Resource
Specification Language supplied by Globus. It has been extended for use with Nordu-
Grid and not all Globus attributes are supported. This mostly pertains to attributes
concerning Globus Resource Allocation Manager (GRAM), which is replaced in the
NorduGrid ARC with the Grid Manager. The language is dividedinto two levels:
User-side xRSL and grid manager-side xRSL [68]. The user side part of the language
is the description which is prepared by the user and send to the user interface. This
part describes the job and its attributes. An example of sucha description can be seen
below.

&(executable=/bin/uname)
(arguments=-a)
(stdout="out.txt")
(stderr="err.txt")
(outputfiles=

("out.txt" "")
("err.txt" ""))

This description shows a very simple job, executing the Unixcommanduname that
prints various information about the node it is executed on.The first attribute is the
name of the executable, and the second is the parameters it should be executed with.
If the executable is not native to the cluster and has to be transferred, this can also be
specified. The next two attributes states where the output from the program should
be redirected and the last two are the files that the user wouldretrieve after the job
is finished, or optionally that the Grid Manager should upload to a storage element or
register with a replica catalog. Apart from the attributes in the example, other attributes
concerning disk space, runtime environment, middleware version, cluster, and many
other attributes can be described [68].

The grid manager side of xRSL is used internally when the userinterface submits
the job to a cluster. It specifies attributes pertaining to the network, the submitting
user, etc. Some of these attributes can also be specified by the user, though, this is not
advised.

3.3.2 The User Interface

The User Interface is the major new component added by the NorduGrid ARC. It de-
livers the high level functionality needed by NorduGrid, but which is not supplied by
Globus. The user supplies functionality for handling resource discovery, resource bro-
kering, job submission, status querying, retrieval of job data, job control, and other
necessary functions for interacting with the grid. When a job is submitted through the
user interface, it parses the accompanying xRSL job description in order to locate a
suitable cluster to submit the job to. After retrieving a list of available clusters from the

24 The NorduGrid Advanced Resource Connector

information system, the user interface queries the information system, to check if the
user are allowed to submit a job to the cluster and if the cluster fits the job requirements.
Then the user interface determines which cluster to submit the job to, using an internal
scheduling algorithm, based on the number of total and free CPUs on the clusters.

When a suitable cluster is found, the xRSL job description isstripped for user inter-
face information, and Grid Manager-side information is added to the description. After
this, the job is uploaded to the cluster using GridFTP. Thereis no need for additional
services in order for resource brokering to work. Optionally extra data can be uploaded
by the user interface, or it can be left to the Grid Manager to fetch it from a storage
element, by writing this in the job description.

3.3.3 Information System

For a system as complex as the NorduGrid ARC to work, it is important to have a
robust, scalable and reliable information system, to storeinformation about users, re-
sources, and jobs. The information system in NorduGrid is implemented as a dis-
tributed service, serving information to the other NorduGrid services and components.
It is build upon the Monitoring and Discovery Service (MDS),an information system
framework supplied by the Globus Toolkit. The information system is essential to the
NorduGrid ARC, and it takes care of all information related tasks. MDS is an exten-
sible framework, provided by Globus, for creating grid information systems based on
OpenLDAP. The information system consists of the following.

• An information model described by a LDAP schema.

• Local information providers.

• Local databases.

• Soft registration mechanisms.

• Information indicies.

The information model supplied by Globus is single machine oriented, and not
suited to describe clusters very well1, so an information model was created specially
for NorduGrid. The NorduGrid information model is a mirror of the architecture, and
it describes the main components of the grid, i.e., clusters, jobs, and users. These
elements are mapped onto an LDAP tree that forms a hierarchical structure of queues
where every user and every job has an entry. Replica managersand storage elements
are described similar, but in a simplistic manner.

The Information System consist of a dynamic set of distributed databases which are
coupled to information providers residing on the clusters.In NorduGrid a single MDS
service is run per resource, and the task of this service is toprovide status information
about the specific resource on which it is located. Each resource operates its own
Grid Resource Information Service (GRIS). These resourcescan be grouped together
in order to form a virtual organization. This VO structure iscalled an MDS-tree and it
is the actual mapping of the resources in the grid onto the information service.

The information providers are small programs that generates LDAP entries in the
database upon search request. The NorduGrid ARC provides its own information

1The EDG information model was also considered, because it was better at describing clusters, but there
were doubts about its practical use.

3.3 NorduGrid Middleware Components 25

providers. They serve as interfaces to local systems, collecting information about the
status of a job from the clusters LRMS and the grid manager. This information can be
used to find information about the resource, such as available CPUs, disk space, and
effective queue length. NorduGrid provides access to two queues: NorduGrid-authuser
and NorduGrid-jobs. Authuser contains information about the CPUs available for the
user, disk space and effective queue length. The job queue describes the jobs submitted
to the cluster, i.e., status, job id, certificate, and owner.An example of an MDS tree
containing information about users and jobs queues is depicted on Figure 3.2.

Figure 3.2: The organization of a LDAP MDS-subtree for a cluster, showing different queues of
a cluster.

The information is gathered via LDAP queries, either through the NorduGrid Web
Interface2 or the user interface, this information is used to serve the necessary infor-
mation to the brokering functions of the user interface. Therequested information is
generated locally on the resources, but it can optionally becached for subsequent use.

NorduGrid has an indexing service, used to get the contact information for the
resources in the grid. Even though, Globus provides higher levels of caching, this
function is not used in the NorduGrid ARC, where the indexingservice consists of
simple dynamic link catalogs. The main function of these lists is to reduce the overall
load on the information system. The resource information isordered, in a topology,
according to their national and geographical locations. This structure is depicted on
Figure 3.3.

The last part of the information system is the soft state registration mechanism
which is used by the local resources to register their contact information. Soft state
is necessary because the amount of resources are not constant and thus no constant
database of resources can exist. The resources must register themselves with the service
as they appear on the grid, and they must subsequently keep registering themselves
continually, otherwise the monitoring system purges the contact information.

2located at http://www.nordugrid.org

26 The NorduGrid Advanced Resource Connector

Figure 3.3: The structure of the GIIS topology in the NorduGrid ARC. The local information
providers (GRIS) on the clusters registers with the countrylevel indexing service (GIIS) which
in turn registers the information with the top level indexing services.

3.3.4 Grid Manager

The Grid Manager is the gatekeeper on the local resource. It runs on the front-end of a
cluster where it handles incoming job submissions and handles the interaction between
the grid and the local resource management system. The Grid Manager is implemented
as a layer above the Globus toolkit. It replaces GRAM delivered with Globus in order to
provide additional functionality which were not supportedby GRAM. This is primarily
job and data pre- and post-staging functionality but also integrated support for Replica
Catalogs and sharing of cached files among users.

The main responsibility of the grid manager is to process input and output data from
jobs and submit the jobs to the local batch system. Figure 3.4shows the interaction
between the Grid Manager and the cluster software, which is described in the following.
When a job is submitted to a cluster, a session directory is created. This directory holds
all the files associated with the job. The grid manager checksthe session directories, at
a certain interval, to see if new jobs have been uploaded. If new jobs have arrived, the
job description is parsed to see if any additional data is needed. It is the responsibility
of the grid manager to gather all the data necessary for the job to be executed. This
data can be uploaded by the user or downloaded from a storage element, by the grid
manager. When the needed data is downloaded, it is placed in the session directory for
the job. Optionally any downloaded data can be registered with a replica catalog.

When all input data is collected the grid manager submits thejob to the LRMS
running on the cluster3. Once submitted, the grid manager, periodically checks to see if
the job has finished. When the job is finished, the grid managercollects the output data.
The user is notified by email if this is stated in the job description, otherwise the job
status can be monitored by using the user interface or the webinterface. Furthermore
data can automatically be uploaded to a storage element and registered with a replica
catalog. When a job is submitted to a cluster it can be in one ofseveral states [44].

3Currently the NorduGrid ARC only supports the batch systemsOpen PBS, Scalable PBS, and PBS Pro,
but support for others are being planned.

3.3 NorduGrid Middleware Components 27

Cluster

Node 2

Storage Element

Replica Catalog

Networked

FS

Information

Provider
GRIS

GRIP

GRRP

UI

GIIS(VO)

GridFTP

Auth. modules

LRMS

Grid Manager

Session Directory 1

Session Directory 2

Session Directory nControl

Directory

Node 1

Node 3

Node n

Figure 3.4: Closeup of the front end and nodes of a cluster, and how the middleware interacts.
When the job description is uploaded by GridFTP, it is placedin the control directory. The
grid manager reads the job description, an creates a sessiondirectory, and downloads any data
needed. The job is then submitted to the LRMS and executed on the nodes, which have access
to the session directory through a distributed file system. The information providers collects
information, about the jobs, from the LRMS and session directories.

• ACCEPTED - The job has been submitted and accepted, but no processing have
been done.

• PREPARING - The Grid Manager is collecting the data needed for the job to
run.

• SUBMITTING - The job is being submitted to the local batch system.

• InLRMS - The job is submitted to the Local Resource Management System.
When the job is in the LRMS it can be in a number of sub-states such as queued
or running.

• FINISHING - The output data is being processed and optionally moved to a
storage element or registered with a replica catalog.

• FINISHED - The job is finished and the user can download the data. The data
are deleted after a certain amount of time.

The Grid Manager handles jobs by creating a separate directory where it stores the
input files. There is no single point where all jobs in the gridhas to pass and thus no
single point of failure.

3.3.5 GridFTP Server

A job is submitted by uploading the job description to a cluster using GridFTP which
is used for almost all data transfer within the NorduGrid ARC. GridFTP is a modified
FTP server provided by the Globus Toolkit, however there is also a special NorduGrid
implementation of the software that has been extended for better interoperability with
NorduGrid.

28 The NorduGrid Advanced Resource Connector

The main differences compared to the Globus supplied GridFTP software is that it
supports a virtual directory tree, that can be configured peruser and that local access
is implemented through plug-ins. These plug-ins come in twotypes: A local files
system access plug-in and a job submission plug-in that has an interface for submission.
Additionally there is support for GACL, a scratch area for temporary data accessible
through GridFTP via a plug-in.

3.3.6 Computational Cluster

A cluster is the main computational element in the NorduGridarchitecture, even though
other computational resources can run on the grid, as log as they run a batch system4.
A cluster consist of several machines, where one is the front-end dividing the work
between the other computational nodes, often through a batch system. In NorduGrid
all clusters run some flavor of Linux5.

In order to add a cluster to the grid, the NorduGrid software has to be installed on
the front end machine and have permission to interact with the local batch system. It is
not necessary for the other nodes to run the NorduGrid software, but there must exist
some form of distributed file system within the cluster in order for the nodes to get the
job data. This goes a long way of making NorduGrid an add-on system and it respects
local security and configuration policies.

3.3.7 Storage Element

A Storage Element is, as the name states, an element that stores data in the grid. A
job description can specify that some data for the job shouldbe fetched from a storage
element. It is implemented as a GridFTP server; either as theGridFTP server delivered
as part of The Globus Toolkit or as the GridFTP server supplied by NorduGrid.

At the moment, a smart storage element is being developed. This type of storage
element is planned to support of data replication, automatic registration of incoming
content, automatic up and download of data, and failure recovery [43].

3.3.8 Replica Catalog

The Replica Catalog is used for registering and locating data sources. NorduGrid uses
the replica catalog supplied by the Globus Toolkit, but withminor changes to improve
functionality. The information contained in the replica catalog is primarily used and
maintained by the grid managers, but it can also be used by theuser interface for the
purpose of resource brokering. The replica catalog is basedon OpenLDAP and is used
without modifications, other than patching it to better copewith transferring of large
files and adding the possibility to perform securely authenticated connections based on
the Globus Security Infrastructure (GSI).

3.4 The Future of the NorduGrid ARC

On the NorduGrid website, is a list of things that the developers of the NorduGrid ARC
would like to see implemented. Several of these tasks are already being developed

4There is actually a VCR on the grid, where jobs can be submitted to record TV-programs, which can the
be downloaded.

5Support for other Unixes is underway.

3.4 The Future of the NorduGrid ARC 29

while others are just suggestions. From this list it is obvious that there is still a lot of
work to be done in order for the NorduGrid ARC to be “complete”, even though, it is
considered ready for production by the developers. It has been used with success in the
first ATLAS data challenge, where it completed up to 15% of thetotal jobs completed,
even though the participating NorduGrid sites only supplied 4.7% of the total CPU time
in the second data challenge [49]. This demonstrates that NorduGrid works well, but
DC1 also showed some problems with NorduGrid ARC. The main lesson was that a
lot of time was spent babysitting jobs and resubmitting failed jobs to ensure that all the
jobs completed correctly. This was done manually by the developers and physicists,
giving to a lot of extra work. This lead to the conclusion thatthe NorduGrid ARC need
a way of providing more automated control of the entire job submission and execution
process to scale to the level needed by high energy physics. It also demonstrates the
need for an automated production system for all the grids contributing to the ATLAS
Data Challenge.

At the 6th NorduGrid Workshop, a talk was given by Brian Vinter about the future
usage of NorduGrid. A discussion of how to get users to the embrace the toolkit was
initiated. At the moment there are initiatives to get applications other than HPC appli-
cations to run on the toolkit. These are applications in the areas of biology, chemistry,
and visualizations. Even if the applications are developedto run on the grid, one of the
challenges NorduGrid faces, is the problem of getting usersto adapt the middleware.
There are several reasons for this:

• The middleware is not necessarily compatible with the usersexisting systems.

• At the moment the users are not getting anything from using the NorduGrid
middleware, which they do not already have. And why install some middle-
ware which could have an impact on the stability of their production system. A
lightweight front end is being developed for non Linux/PBS systems to accom-
modate this problem.

• There is no real HPC resources available on the grid run by NDGF. Even though
there are two former top 500 machines on the grid, inspectionreveals that only a
limited number of CPUs are available to NorduGrid.

• It is only possible to run the grid manager as a root user, and each job runs as the
same local user; having an impact on both security and secrecy and scares the
security aware system administrator.

• Accounting, Accommodation, and Authentication, are stated as the three most
important requirements in order to get new users to the toolkit. Accounting are
still missing, so the grid is basically “paid” for by the resource owners who
contribute it.

To get users interested in grid, the plan is to “gridify” someapplications which could
benefit from computational grids. Examples of applicationsbeing ported to the Nordu-
Grid ARC are: Dalton, a chemistry tool creating huge jobs. The Povray raytracer as an
example of something that is easy to explain to people not knowing anything about grid
and HPC in general. Finally BLAST, a genome sequencing application, which has a lot
of security requirements as it is dealing with datasets thatis worth a lot of money and
thus secrecy is a must. These examples are not only relevant in a NorduGrid context,
but for most of the grid research today.

Chapter 4

Initial Considerations

We have already been looking at some of the reasons for developing a production sys-
tem for the NorduGrid ARC. This chapter provides a deeper discussion of what an
actual production system should provide. Concepts and ideas surrounding a produc-
tion system are introduced by identifying the necessary features such a system should
provide. This chapter also provides considerations regarding the design and implemen-
tation. We start by looking at the general aspects of the system we are developing.

The main function of the system proposed and developed in theproject, is to pro-
vide tools to enhance the management of jobs being executed on the grid, thus we
choose the name Job Manager for the system.

The idea of creating a job manager is not new. In the introduction three projects
that have some parallels of the system we are proposing, was mentioned. We will look
closer on these projects to get inspiration and to steer clear of common pitfalls.

The PROGRESS project is a Polish grid project aiming at creating a complete grid
solution. It is build on Globus and the grid engine from SUN [8]. The method for
interacting with the grid is through portals. These portal communicate with the grid
through a Grid Service Provider, which mediates between theportal and the grid [9]. It
does not provide the autonomous job control functions that the Job Manager does. The
common goal between PROGRESS and this project is the goal of creating more flexible
user interfaces for the grid by introducing an extra layer tointo the grid architecture.

Nimrod is a tool for parametric modeling1. Nimrod/G is a grid enabled version of
Nimrod, and it addresses issues related with running Nimrodin grid environments, e.g.,
coping with a dynamic resource pool and access to a multitudeof grid environments
(Globus, Legion, and Condor). Nimrod/G is a layer in top of the grid middleware
and it is similar to our Job Manager in some aspects. They bothsit on top of the
grid middleware, where it manages the access, dispatch, andexecution of jobs on the
underlying grid toolkits. However Nimrod/G is limited to parametric modeling, and
therefore not as flexible as the Job Manager. Nimrod runs on the workstation where
pre- and post-processing of the jobs are handled. Nimrod/G also works as a resource
broker and supports different schedulers and accounting [1].

Lastly we will look at the EDG. The EDG middleware had had a central resource
broker, in order to handle scheduling better. Furthermore it was hiding the underlying
protocols, providing a well defined interface to program against. The problem was that
the central resource broker was a point where all jobs and data should pass through

1An application which is run several times, but with different input parameters.

32 Initial Considerations

when being submitted. This was a bottleneck in the submission process and did never
fully work2 and should be avoided in the Job Manager.

The difference is that the above mentioned applications allare made with a specific
purpose in mind. Either for a specific application or it is nota job manager in the sense
we use it in this project.

4.1 The Need for a Job Manager

In the introduction, Chapter 1, some of the reasons for developing a more advanced
application interface to the grid, where outlined. This section takes a deeper look
into the most important reasons for creating a Job Manager which provides such an
interface.

The current user interface in the NorduGrid ARC is a suite of command line tools
called from a standard Unix shell. These commands are described in Appendix B.
This interface along with the grid monitor on the web is used to interface with the grid.
However this interface is difficult to use internally in the applications and applications
that are intended to use the grid has to do so by calling the command line interface.
This approach is not suitable for application use and makes it hard for applications
to use internally. An example of this is; when submitting a job usingngsuban error
code, indicating whether the job submission was successfulor not, is returned. If the
application wants to know the job id of the submitted job, it will have to parse the output
of ngsub, which is rather inelegant. Some applications using this technique have been
developed for NorduGrid ARC. One of these is a frontend for the well known raytracer
Povray3 but it primarily used to demonstrate the possibilities of running different types
of software on the NorduGrid ARC.

The existing user interface fills the need for a simple interface that can be used to
quickly submit jobs from the command line, but it became apparent during the first
Atlas Data Challenge that it lacks the capabilities needed of a large scale production
system. One of the things missing is the ability to monitor changes in the job. Funda-
mentally there is a need to monitor the entities in the grid and react to changes when
they occur.

There are several reasons for creating the Job Manager. One of them is, as just
described, to extend the functionality of the interaction with the grid for users and
applications. To reduce the complexity of grid usage there is also a need to automate
trivial tasks and provide functionality to assist the user or application with complicated
tasks. By providing these functions the usage and development becomes simpler and
should facilitate a faster adoption of grid technology. There are several trivial tasks
concerning job preparation that could be automated in orderto ease the usage of the
grid for the user/application.

Another reason is that of high level control over the execution of jobs on the grid.
Examples of this, is resubmission or movement of jobs, support for different sched-
ulers, and data management. This said, the problem is not only to have easy access to
the grid. The problems must also be suitable to a grid solution, i.e., it must be able to
parallelize them and they must be solvable without to much user interaction.

The Job Manager is being designed as a separate application,opposed to a soft-
ware development kit with libraries to link against. The main reason for this choice is

2This claim has been discussed on the NorduGrid discussion mailing list and there seem to be consensus
about this (http://mail.nordugrid.org/mailman/private/nordugrid-discuss/2004q1/012396.html).

3Homepage at http://www.povray.org/

4.2 Design Philosophy 33

flexibility. There are of course advantages of both approaches, and it may be that the
functionality of the Job Manager should also be provided as alibrary for developers to
develop against. Software development kits have the disadvantage of being bound to
one particular language in contrast to a client-server model with a specified protocol
can be used by several languages4.

The flexibility of having the Job Manager as a separate application manifests itself
in different areas. From an application programmers perspective it is difficult to im-
plement grid functionality into the applications since no software development kit for
NorduGrid ARC exists. Development of a SDK does not solve allthe problems since
many applications would have to implement the same functions for job control leading
to duplicate program logic across applications. Another important aspect of the sep-
aration of the Job Manager from the application, is that it makes it easier to adapt to
changes in the underlying grid software without having to change the application. This
is important as development for grid is somewhat a moving target although NorduGrid
is more stable than most. The fact that grid development is a moving target is obvious
from the number of changes in names and technology during thelatest years, but this
will probably change in the future as the grid technologies matures and gets adopted
by a larger base of users.

From a user perspective embedding the job control in the application leads to other
problems. In order to do resubmission and other tasks, it would require that the work-
station running the application should be kept turned on, and have the application run-
ning, as long as jobs are running. In many cases this may not bedesirable. The sepa-
ration of job management into a separate application, wouldmake it possible to access
the jobs from different workstations and in different ways,e.g., through an application
or a web portal. It also makes it possible to start managed jobs from foreign computers,
e.g., from a web cafe or through a portal and have them managedby a Job Manager
running remotely.

4.2 Design Philosophy

When creating NG Proxy one of our goals was to change as littleas possible in the
NorduGrid code, and only to extend the functionality. The Job Manager is not just
an extension, although backward compatibility is retained, but is a new interface for
applications to use.

In the development of the Job Manager we intend to create a complete design. The
focus of the implementation should be on the Job Manager and not to change major
components of the NorduGrid ARC. This is to help adaptation of the Job Manager in
the NorduGrid ARC, for previewing and testing purposes. Thereason is that it will
make it harder to get acceptance of the Job Manager if it can only be used on sites that
run a modified version of the NorduGrid ARC. This is only a preliminary requirement
and the necessary changes should be made to the NorduGrid ARCif the Job Manager
proves to be a success. Keeping this focus will hopefully yield a general Job Manager,
which may be less difficult to adapt to changes in the NorduGrid ARC in the future.
This is important since the NorduGrid ARC is in a state of active development. To
further accommodate this, the design of the Job Manager should be as modular and
extensible as possible, limiting the assumptions and restrictions and dependencies on
other components in the middleware.

4In theory this has the same implications as with an SDK, but byleveraging an widely adopted protocol
we do not have to implement it in several languages.

34 Initial Considerations

With this in mind, we start by considering the features the Job Manager should have
and in the next section, the necessary features, components, their design, and intended
functionality, are discussed.

4.3 Features of the Job Manager

To design the Job Manager we need to determine what features the Job Manager should
provide. One way to go about this is to examine the current user interface to see what
functionality it provides. It is important for the adaptionof the Job Manager, that it is
able to perform all of the tasks the existing user interface is capable of, along with the
added functionality.

The existing user interface, i.e., the ng family, along withGridFTP is currently the
only way which the user currently can interact with the grid5. The functionality of the
existing user interface is listed in Appendix B. These functions can roughly be divided
into three categories: Job control, information querying,and data management. The
Job Manager must provide a set of capabilities, in which these categories are repre-
sented. Those sets are presented below:

• Job control – The functions in this section deals with submission of a job,it
must be possible to specify cluster and queue. Furthermore it must be possible
to cancel and clean jobs.

• Information querying and retrieval – This has more to do with the grid as a
whole, i.e., new and departing clusters, storage elements,replica catalogs. Clus-
ter specific information, i.e., cluster load, queue length and information about a
specific job, e.g., status.

• Data management –The transfer of data to and from local machine and between
storage elements but also registering files at replica catalogs and deleting files.

The list is used as the basis for identifying the basic functionality of the Job Man-
ager. However the Job Manager will provide more functionality than is provided by
the existing user interface tools. This functionality should be used as a basis for the
protocol designed to support applications use.

4.3.1 Application Interface

We have already discussed the implications of choosing different types of interfaces
between an application and the Job Manager. The Job Manager separates the function-
ality of the user interface and the grid, by creating a protocol between the two. This
makes it possible to have several frontends using the same Job Manager and function-
ality without having to implement it themselves. In turn this should make it easier to
develop several frontends, e.g., a portal, or an application.

An example of a better application interface forngsubwould be to return the job
id, or raise an exception if an error occurs during the job submission. However not
all languages supports exceptions, and languages each havetheir quirks and way of
doing things. Making an API that is consistent between all languages is therefore not
a very feasible option. Preferable a protocol between the Job Manager and application
is a better solution and it allows the Job Manager and application to be at different

5There is also the grid monitor, but it delivers only information and does provide any means of interaction

4.3 Features of the Job Manager 35

machines. What is needed for the application protocol, and what technologies should
it be used is discussed later in this report, see Section 6.3.

4.3.2 Extended Features

Some of the features wanted for NG Proxy, e.g., the ability toautomatically fetch
output files from a finished a job to the machine on which the JobManager is running
on, does not have any direct relevance for an automatic production system. However it
is a desirable feature for a scientist to have on his or her workstation. One can imagine
other domain specific extensions could be desirable as well,from a users point of view.

Extended functionality is possible since the Job Manager has the ability to contin-
uously monitor the grid and most importantly, react to changes in it. The ability to
autonomously react to changes, e.g., the status of a job, is what enables the Job Man-
ager to automatize tasks for the user. This is not limited to resubmitting jobs if they
fail or to automatically retrieve output data upon job completion. Another example of
functionality is to move a job, if a new and better suited cluster appear.

Having the ability to continuously monitor the grid allows the Job Manager to react
statefully because the Job Manager has knowledge about about the job which is not
known by the existing interface. An example is the ability tokeep track of jobs through
a series of submissions and resubmissions.

As we have already discussed other areas than high energy physics applications
may benefit from the grid. One of the reasons that high energy physics is one of the
areas where grid has been adopted is because it is an area thatare used to using HPC
resources and the shift to grids are not that a big step. In order to attract new users to
grid - and in this case, NorduGrid - the complexity of writingapplications and running
jobs on the grid must be reduced. The difference in user needsand application types,
gives rise to new issues. Since grid is a complex topic it is not possible to predict
every users need. In order to prevent imposing limitations on the user, the Job Manager
should be extensible, by providing some form of plug-in structure that allows users to
customize the behavior of the Job Manager if this is needed. An important aspect is
that users can use not only the existing plug-ins in the Job Manager, but is able to write
their own, and extend the Job Manager. Examples of plug-ins are job resubmission in
the case of failure or fetching output files from finished jobs.

4.3.3 Failure Handling

In order to prevent the Job Manager becoming a single point offailure, measures to
prevent a crashed Job Manager leading to failure must be taken. These measures could
range from a cron job monitoring the Job Manager and restart it if it fails, to making
a distributed system of Job Managers managing the jobs, thereby making it possible is
to have Several Job Managers working together managing jobs. This feature is mostly
geared toward production systems where large portions of jobs are handled, and failure
of a Job Manager would result in jobs not being submitted or not being monitored.
Making it possible for Job Managers to take over from each other can greatly reduce
human intervention in the case of a crash.

The first solution is a bad idea as it does not help if the host onwhich the Job Man-
ager is running on crashes. The last solution of distributing the Job Manager provides
a much more fault tolerant system, and is discussed in detailin Chapter 8.

36 Initial Considerations

4.3.4 Multi User Job Manager

It should be possible for the Job Manager to support multipleusers. This makes it
possible to run a Job Manager, managing the jobs for several users. Having the Job
Manager to run on behalf of several users would be a nice addition, since it could
dramatically reduce the number of Job Managers running, because users can share
them.

This features is however hard to obtain for two reasons. The first is that it would
become hard for users to write their own plug-ins and extending the Job Manager. This
would mean that they could possibly have access to information about other peoples job
and could also jeopardize the stability of the Job Manager byusing their own plug-ins,
making it harder for people to expect that the Job Manager would just work.

The other reason is that the Globus and NorduGrid Toolkit is not geared toward
shifting users at runtime. Usually the toolkits look for thefile /tmp/x509up_uUID ,
whereUID is the users Unix user id [42] as the proxy certificate. Alternatively the user
can specify the location by setting the X509_USER_PROXY environment variable.
However when the user proxy certificate has first been selected, it is being used implic-
itly, and there are no direct way of changing it. Even if it could be changed at runtime
it would only be possible to submit jobs from one user at a time, since submitting jobs
on behalf of another user would require a change of proxy certificates. Changing the
toolkits to allow changing user proxy certificates or being able to handle several of them
simultaneously would require a significant amount of changes to Globus. Due to the
these two obstacles, we have chosen not to make Job Manager support multiple users
per instance, but if the dependency upon Globus would be removed, the possibility of
a multiuser Job Manager should be investigated further.

4.3.5 Feature List

The examination of the current user interface, along with the other features and needs
previously discussed, have lead to the following list of features.

• Provide interface to applications –Deliver a clean and easy to use interface to
application developers.

• Provide the same possibilities as the old user interface –This is important as
the functions are necessary when using the NorduGrid ARC. Furthermore it is
also important if we want users to start using the Job Manager.

• Automatize tasks for the user/application –To automate tasks that do not need
user interaction, like fetch data, prepare jobs.

• Extend the Job Manager –Making it possible to extend the functionality using
plug-ins.

• Provide high availability – Implement mechanisms to prevent the Job Manager
to become a single point of failure.

• Multiuser – make it possible for several users to use the same Job Managerto
monitor jobs without giving access to other users jobs on themanager.

This list is the basis for the design of the Job Manager. Another question is whether
to continue the development of NG Proxy, or to start over. It is possible that NG Proxy

4.4 Language Choice 37

could be extended, but integrating all these features into it would quickly turn it into
a giant mess because NG Proxy was never designed with this purpose in mind. As a
consequence it is better to start over and rethink the whole design. Needless to say,
things which are working in NG Proxy should be reused when possible, but the focus
should be on a complete design and not the extension of NG Proxy to support the new
features.

4.4 Language Choice

After having implemented NG Proxy in C++ [69], our experience was that a lot of
development time had gone into investigating bugs and dealing with interesting perks
of the language. While C++ is certainly a powerful language,we found development
in it rather cumbersome and unnecessarily complex for the task. Therefore it was
decided to implement the Job Manager in a high level language. By implementing the
Job Manager in a high level language we expect to reduce the development time and
making it easier to modify and for other to understand.

When implementing in high level languages speed is often a concern6. The data
and data structures on which the Job Manager should work on are expected to be rela-
tive simple, and the performance requirements on the Job Manager are relatively small.
Furthermore the Job Manager will primarily be I/O bound, i.e., waiting for network and
not be CPU bound. This means that the Job Manager will spend most of its time wait-
ing for events to happen, since none of its tasks include anything CPU intensive. As
performance is not an issue we have the luxury of being able todecide the implemen-
tation language freely. The only constraint is that is must be possible to use C and C++
code; either directly or through bindings, otherwise we would not be able to use the
existing NorduGrid ARC code base, meaning that we would havere-implement a lot
of functionality, which should not be necessary.

For our implementation language we decided to use Python [32] to create the Job
Manager. Python is a interpreted high-level object oriented language, supporting mul-
tiple paradigms. The language is known for combining remarkable power with very
clear syntax [34]. It it possible for Python to interface with C and C++, by creating
wrappers, as will be explained in section 5.2.3. Code written Python usually runs on
all the platforms on which the Python interpreter runs, making it highly portable. Porta-
bility is a desirable feature in a grid environment, since itis easier to support and create
heterogeneous grids. Finally development in Python is usually magnitudes faster than
developing in low level languages such as C and C++.

4.5 Other Considerations

There may also be problems introducing a new layer, as it addsto the overall com-
plexity, but by making it optional, this can somewhat be circumvented. It follows
the modularity of the rest of the grid. Another concern couldbe the impact that the
Job Manager have on the rest of the NorduGrid ARC components in terms of added
communication and queries. However, this should not be a problem if we rely on the
information system for the distribution of information. But it demonstrates that the
communication introduced by the Job Manager should be kept on a minimum and the
possibility of caching should be explored.

6Although this concern is usually more cultural than technical.

38 Initial Considerations

4.6 Summary

This chapter has presented the considerations made before the construction of the Job
Manager. Figure 4.1 illustrates how we envision the Job Manager would work in a
grid, giving the reader a feel for the Job Manager in the big picture, before presenting
an overview of the Job Manager in the next chapter.

Laptop

Portal

Work Station

Job Manager
(failover)

Job Manager

Cluster

Cluster

Super Computer

Storage
Element

Job Manager

Figure 4.1: How the Job Manager interacts with the grid, acting as middlelayer between appli-
cation and the grid. Here a Job Manager acts a backend for a portal, one as a production system
for a work system, with a fail over Job Manager.

Chapter 5

The Job Manager

The chapter describes the Job Manager. It starts by giving anintroduction to the Job
Manager, outlining the concept of it. Hereafter an overviewof the construction and
which modules it contains is given. After this the dependencies and modules will be
briefly described; giving the reader a feel for the workings of the Job Manager.

As described in Chapter 1 the Job Manager introduces an additional layer between
the grid middleware and applications using the grid. This isillustrated in Figure 5.1.
The purpose of this layer is to hide the complexity of using the grid by providing the
application with a clean API to facilitate the use of the grid, while also removing grid
code from the applications.

Resources
(e.g. cluster)

Resources
(e.g. cluster)

Grid
Middleware

Grid
Middleware

Application

Job Manager

Application

Figure 5.1: The Job Manager introduces an extra layer between the grid middleware and appli-
cation, hiding complexity of grid usage from the application.

Besides providing easier access to the grid the Job Manager can also aid the ap-
plication by assisting it with various tasks, such as building jobs and automatically
retrieving output data from finished jobs.

The Job Manager can also simplify the use of the grid and aiding the application
in solving tasks on the grid. It also features handlers, which are plug-ins that allows
the user to change the functionality of the Job Manager. Finally it has the ability to
communicate with other Job Managers, making it able to handle fail over, in the case
of a crashed Job Manager. This feature is desirable to have inproduction systems
where a crash would often result in manual reconstructing ofa list containing which
jobs that had finished, failed, or still running.

40 The Job Manager

5.1 Job Manager Overview

On Figure 5.2 an overview of the Job Manager is depicted. The functionality has been
divided into logical modules illustrated as boxes within the Job Manager. Each of
these modules covers a specific aspect of the Job Manager, andwill be discussed in
the following chapters. To make the figure less complicated no effort has been made
to illustrate dependencies or information flow within the modules. The figure merely
serves as a reference point for the further discussion of themodules and their function.

Starting from the bottom, the Job Manager has several dependencies, for which it
relies for its functionality. The two major dependencies are the NorduGrid ARC [10]
and Globus 2 [59] toolkits. Since the NorduGrid ARC is dependent on the Globus
Toolkit, it lays on top of Globus. The Globus and NorduGrid ARC are written in
C [41] and C++ respectively, whereas the Job Manager is written Python. As Python
does not interface directly with these languages, wrappershas to be created. Fortu-
nately we only needed wrappers to the NorduGrid ARC, since the Job Manager does
not access the Globus library directly. The creation of these wrappers is described in
Section 5.2.3, later in this chapter, and in Appendix C. Alsothe Job Manager depends
on M2Crypto [66] for its RPC server. Moving up the Job Managerit consists of several
modules, each representing a functionality aspect. In the following, each module will
be briefly described, starting with the information system.

The information system module deals with querying the grid for information, usu-
ally getting cluster lists from the top GIIS servers, or getting information from clusters.
Additionally it is able to cache the information it retrieves for a certain time interval.
Data management handles data related tasks such as the movement of data to and from
storage elements, and registration data with replica catalogs. The RPC server is the
module which talks to applications. It does authenticationand authorization of incom-
ing requests, and translates messages into function calls.Submission, cancellation and
other job manipulation is done from the job management module. This module also
deals with scheduling of jobs and is able to help the application build jobs. The JM
communication module handles the communication with otherJob Managers, i.e., it
coordinates the replication, and handover of jobs, so if a Job Manager fails the jobs
will continue being monitored by another Job Manager. Even though a Job Manager is
meant to be run continuously, it must also be able to save its configuration and session
data; the last being list of jobs being monitored. This is necessary if the Job Manager
must be shutdown and started again. This saving and restoring is done by the con-
figuration and session management module. The Job Manager also features a logging
capability, whereto it logs its events, decisions, and so. Finally the handler module
deals with configuration and plugging in any handlers which the user plugs in the Job
Manager.

Some of the modules are self contained, while other rely on other modules to com-
plete their functionality. The RPC server, data managementand informations system
are self contained, i.e, they do not rely on any other modules. The job control module
is dependent on the information system to find the resources it need, and furthermore
needs the data management module to move data. To report to other Job Managers
the JM communication needs to gather information from the job management module,
and it needs the data management module to transfer data. To save the configuration
and session, the configuration and session management module is dependent on all the
other modules, even though it does not rely on them for its functionality. The logging
module is independent of any other modules, but requires theConfiguration module to
be started. Finally the handler module is dependent on the configuration and session

5.1 Job Manager Overview 41

Job Manager

Application
(example)

Web Portal
(example)

Application RPC Protocol

H
a
n
d
l
e
r

A
P
I

Scheduler
(example)

Configuration
 and Session
 Management
Logging

Resubmitter
(example)

Handler Manager
 Configuration

Job Management
 Submission
 Cancelation
 Building
 Scheduling

Data Management
 Data Movement
 RC registration
 Scratch area

JM communication
 Replication
 Handover
 Failover
 Capability Discovery

M2Crypto

Globus 2

NG Bindings

NorduGrid

Job Manager
(example)

RPC Server
 Authentication
 Authorization

Information System
 MDS Querying
 State Cache

Figure 5.2: Overview of the Job Manager showing the different modules itconsists of, the
placement of applications and handlers, and external dependencies.

42 The Job Manager

management, but not directly dependent on any other modules. They will however use
other modules since they are plug-ins and need access to someof the Job Manager
internal functions to perform work.

5.2 External Job Manager Dependencies

The Job Manager depends on the functionality on other software packages. On Figure
5.2 the dependencies of the Job Manager is displayed below it. The most notable de-
pendency is the NorduGrid ARC, from which the Job Manager uses much functionality
for its basic operations. The NorduGrid ARC again depends onthe Globus Toolkit for
much of its functionality.

This next section describes the external dependencies of the Job Manager, starting
with M2Crypto. Hereafter the dependency of the NorduGrid ARC is described, and
finally the wrappers for this.

5.2.1 M2Crypto

The Job Manager needs a way to authenticate its clients, i.e., establish their identity.
In NorduGrid ARC this is done using using X.509 certificates [27]. To make the Job
Manager easy to use, it should also be capable of doing authentication using these cer-
tificates. Fortunately X.509 certificates is a widely used standard, and is supported by
the SSL protocol [36]. The OpenSSL [61] library is an implementation of the SSL pro-
tocol, supports X.509 certificates and comes with most Linuxdistributions. Therefore
it was a natural choice to use for authentication protocol. Unfortunately Python did
not have direct support OpenSSL, and therefore no support for using X.509 certificates
for authentication. Fortunately the M2Crypto project delivers these [66]. M2Crypto
delivers an object oriented interface to most of the OpenSSLAPI, including the ability
to do authentication using X.509 certificates. Therefore M2Crypto is a dependency on
the Job Manager, as it is needed for our authentication scheme. The use of M2Crypto
is covered in Section 6.3.

5.2.2 The NorduGrid ARC

The Job Manager uses much of the functionality from the existing the user interface
in the NorduGrid ARC. As mentioned in Section 4.3, the user interface functionality
can roughly be divided into three parts: Job control, information retrieval and data
management. The Job Manager uses functionality from all these parts, to build its own
enhanced functionality, which it provides to applications.

5.2.3 Wrappers

Since the user interface in NorduGrid is written in C++, wrappers must be created for
interfacing with it from Python. Wrappers for the ng commands already exist, and
are used by the NorduGrid Executor1. However since the Job Manager provides an
API which surpasses the ng commands, access to the internal API in the NorduGrid
ARC is needed. Therefore it is necessary to create bindings for functionality needed in
NorduGrid. Writing such wrappers by hand is relatively easy, but tedious for a large

1No reference for this exists, it is part of the production system for the Atlas Data Challenges

5.2 External Job Manager Dependencies 43

amount of code, as much of it is of a repetitive nature and consists mostly of type and
error checking.

Hence we decided to auto generate the wrappers needed for theJob Manager. For
this we choose the Simplified Wrapper and Interface Generator (SWIG) [25]. The rea-
son for using SWIG is that it is able to generate wrappers for functions and classes
for C++ classes, making it possible to instantiate objects from C++ classes in Python.
Furthermore it is possible define templates so that vectors and other C/C++ data struc-
tures can be accesses from within Python. This gives some inelegant interfaces around
calls to the NorduGrid ARC functionality, but wrappers to better interfaces are easily
created in Python. For an in depth explanations of how to create SWIG bindings see
Appendix C.

Having given an overview of the Job Manager and its external dependencies, the
next chapter will describe the small modules in the Job Manager.

Chapter 6

Job Manager Modules

This chapter describes the smaller modules in the Job Manager, i.e., the modules which
are not big or complex enough to justify giving them a separate chapter. These modules
also form the the basis of much the functionality in the Job Manager. The modules that
will be described in the chapter are, in order: Configurationand session management,
Logging, RPC server, Information system, and Data management.

6.1 Configuration and Session Management

This module handles the loading and saving of configuration and session during startup
and shutdown of the Job Manager. Configuration management deals with saving and
loading configuration options, e.g., which port to use for the listener. Session manage-
ment handles saving and restoring of job information, so theJob Manager can continue
monitoring jobs after having been shut down and started.

While configuration and session management are somewhat orthogonal topics, as
they handle the settings of the Job Manager and its internal state. they make it possible
for the Job Manager to regain it previous state when restarted. Configuration change is
not a common event, so it can be saved each time a change is made. For session man-
agement saving the session each time a change occurs is a moredaunting task, since
the status of jobs can change quite often. It is not necessaryto save the session every
time a status change occur, since this information can be queried from the information
system. The only time when it is necessary to save the sessionis when a client submits
a new job to the Job Manager, since this information cannot befound elsewhere. In
addition the session should be saved at a regular interval sochanges to the meta data of
a job is not lost.

The next two sections describes how the configuration and session works, presents
their API, and how they are used.

6.1.1 Configuration

The configuration module, handles the user defined settings for the Job Manager and is
similar to configuration handling in other applications. The main purpose is to read and
write changes to the configuration and settings of the Job Manager. The user must be
able to change the settings by changing the configuration file, as well as change some
settings through the application interface.

46 Job Manager Modules

The configuration consists of several sections each specifying settings for various
areas of the Job Manager. The configuration file has a series ofsections which holds the
configuration for the different areas of the Job Manager. Thesettings which it should
be able to change are the following.

• User settings– Username and credentials (password or certificate) and if it
should be possible to poll the Job Manager for information anonymously (useful
for portals).

• Connection settings– The port on which the Job Manager should listen.

• Job Manager Group – Group which the manager belongs to. Needed to find
failover managers

• Logging and paths– Location of log file and log level. Paths to session direc-
tory.

• Handlers – Which handlers should be enabled along with handler specific con-
figuration. The configuration should contain sections that holds individual set-
tings for the handlers.

• Miscellaneous– Settings that does not fit anywhere else, e.g., what should be
done with jobs on shutdown.

• Internal settings – Settings that the user may not need to change, but may be
necessary to change for debugging purposes or for future adaption to changes.
Examples are: Local timeouts and bind attempts, what methodto use when en-
countering duplicate jobs.

Apart from reading and writing the configuration there should be methods for updating
the configuration system wide. This is used when the Job Manager starts and all the
modules should be configured, but it is also necessary if the user needs to have the
configuration reloaded without stopping the Job Manager.

The module itself is based on the Python moduleConfigParser 1 which provides
basic configuration handling. There are other modules that provide this, but Config-
Parser is part of the Python standard library and should be present on most installations.
The module is implemented by extending the ConfigParser to handle Job Manager spe-
cific functions.

When the Job Manager starts, the first module to be activated is the configuration
module. When initializing it tries to locate the configuration file in the following order.
First it checks if the location has been explicitly specifiedon the command line. If this
is not the case it reads the environment variables for the variable $JM_HOMEfor the
location of the configuration file, if this variable is not setthen$HOMEis consulted and
the default location$HOME/.jm . If no configuration file can be found in the locations
above, a default configuration file is created and the user warned. If none of the loca-
tions or environment variables above is found, the Job Manager fails, and the user must
correct the situation in order to start it again.

When the configuration file is located it is possible to set up and start the logger,
as the location of the log file can read from the configuration file, or it can be placed
in the default location. In order for the configuration module to function properly, it is
necessary to add some additional functions to the ConfigParser interface.

1http://docs.python.org/lib/module-ConfigParser.html

6.1 Configuration and Session Management 47

• __init__(filename = None)

Initializes the configuration module and tries to read the configuration from the
configuration file and sets up logging.

• reload_config()

This function is called if the Job Manager receives a call to reload its configura-
tion and restart. This is typical behavior in Unix if the signal SIGHUPis received.

• set_defaults()

When called this function sets some reasonable defaults forthe configuration. It
is used for generating a new configuration file if it does not exist.

A part from these methods, the standard methods and data structures fromConfigParser

is used for the other modules to read the configuration from the respective sections. If
the Job Manager receives a signal to reread the configuration, the main thread must
make sure thatreload_config is called, and that all modules call the configuration
module and reads the new configuration settings.

6.1.2 Session

The session module keeps track of the state of the Job Manager. It is the responsibility
of the session module to return the Job Manager to a consistent state after a shutdown
or a crash. If it is not possible to return to a consistent state, the manager should be
started as a new manager, forgetting about its id and previously managed jobs, in order
to prevent jobs from becoming orphans, see the discussion inSection 8.5.

In order to restore a session, there are some data that must besaved to nonvolatile
storage. This includes information about: The id of the Job Manager, the jobs currently
being managed, and meta data associated with the jobs. The rest of the information is
static and could be taken from the configuration file. This canlead to problems in the
case where the user edits the configuration before restarting the Job Manager. But only
a few options can have and impact on the session, and therefore it is the responsibility
of the user to exhibit caution when editing the configurationbetween executions. For
this reason it should be possible for the user to start the JobManager without restoring
the previous setting.

In order to prevent jobs from disappearing in case of a failure, job information must
be written to disk before the information is propagated to the failover managers. All
the information should be written to a session directory.

The session handler is implemented as a simple module capable of storing the job
data structure, along with the data structures of the Job Manager communication mod-
ule. It is called when a new job is submitted to the Job Managerbut before it is regis-
tered at the failover managers. The interface to the Sessionmodule is rather simple, as
it has only two functions:

• update_session()

Updates and saves the session to the session directory.

• restore_session()

Restores the previously saved session.

48 Job Manager Modules

6.2 Logger

Since the Job Manager is a daemon, and runs continuously, is not feasible to have
a human monitor it. Especially if used as a production system, the quantity of jobs
may be large, making it infeasible to supervise it. However at certain times it may be
necessary to inspect the events that has happened and the decisions made, i.e., history
of these must be kept. Usually this is done by writing this history to a file, which can
be inspected if necessary. Therefore the Job Manager must provide a logging function.

The Job Manager features a logging mechanism, whereto it logs information. Ex-
amples of this information could be events such as a job submission, incoming RPC
calls or any errors that could occur. The module uses the logging module that comes
with Python [33], from which all the functionality in the module, except the setup,
comes from. The API to use the logging feature in the Job Manager is:

• SetupLogger(logger_file) This functions sets up the logger. The only ar-
gument is the location of which file to log to, which must be passed along. If not
set, an exception will be raised.

• Logger() Returns a logging object, which can be used for logging events. If
the logger has not yet been setup an exception will be raised.

The logging object returned byLogger() has several methods which can be used
for logging. Each of these methods represents a category which the logged information
should adhere to. Furthermore each of these methods also hasa logging level and when
creating the logger, a desired logging level should be set. Setting this will cause any
logging information below that level to be omitted when logging. The logging module
in the Job Manager outputs all logging information. The logging methods all take an
arbitrary numbers of strings and are as follows:

• debug() Used to emit debug information, such as contents of variables and
entering certain parts of the program, making it possible touse this information
to debug the program with. The debug method has the lowest logging level, i.e.,
the one that will be filtered away first.

• exception() The exception method is used for logging exceptions, and should
only be used within exception handlers. Normally only unhandled exceptions
should be logged since exceptions are a normal part of the program flow in
Python. The method has the same logging level as debug.

• info() Info is used for normal events, such as a successfully job submission
or an incoming connection from a client, i.e, information which represent the
intended behavior of the program. The logging level for infois above debug and
exception.

• warning() Warnings should be issued when an unintended behavior arises,
such as the inability to contact a cluster, but was handled gracefully and the
program can continue working. Warnings are the level above info.

• error() The error logging level should be used for errors which cannot be
handled gracefully, such as assertion errors or unhandled exceptions. The error
level follows the warning level.

6.3 RPC Server 49

• critical() Critical logging events should be used when a fatal condition arises
within the program, that disallows it to continue doing someor all of it work. A
critical logging event would often be followed by an action such as restarting or
quitting part, of, or the whole program.

The above descriptions of how to use the logging levels are subjective to the de-
veloper, e.g., no clear limit exists between issuing warning and error messages, but
consistency should be enforced by logging the same types of events to the same log
level in the entire Job Manager.

Having explained the logging module, the RPC server, i.e., the module which ac-
cepts incoming remote procedure calls to the Job Manager will be explained.

6.3 RPC Server

The Job Manager must feature a way to communicate with applications. Since we
cannot assume that the Job Manager and application are on thesame machine, the
communication must be able to work on a network, and in a secure manner. Secure is a
rather vague definition; in this context is means that the communication must be confi-
dential, integrity must be assured and it must support authentication and authorization.
Confidentiality is that the message is private, i.e., only the receiver can decrypt the con-
tents. Integrity, means that no one can tamper with the message. Authentication is to
establish the identity of the peer and authorization is deciding if the peer should have
access. Furthermore is important the user can authenticateto the Job Manager as other
resources in the also identify themselves. The standard wayto establish the identity
in NorduGrid is to create a X.509 proxy certificate by using a public/private key pair,
where the public key has been signed by a NorduGrid certificate authority. This means
that X.509 certificates should be used for authentication. The protocol used for com-
munication must be standardized, since creating a new protocol, for which no libraries
exists will not help move code out the application. Furthermore the protocol should
support a relatively high level of abstraction; after all, grid use is supposed to become
easier. A common concept for high level protocols is remote procedure calls (RPC),
i.e., communication happens transparently by making a simple procedure call. This
abstraction has proved to be a good way to do high level communication, therefore a
RPC protocol should be used.

To summarize the requirement for the server and the protocolused in the Job Man-
ager:

• It must be secure, i.e., confidentiality, integrity, authenticated and authorization.

• Authentication must be based on the X.509 certificate.

• It should use a standard RPC protocol with a high level of abstraction.

Given the two first requirements it is almost apparent that SSL [36] or something
build on top of it, will have to be used. This is since the SSL isregarded as the stan-
dard for doing secure communication on the Internet and supports authentication using
X.509 certificates. Also it provides a standard BSD socket interface [7], meaning that
it does not dictate the protocol and basically any protocol using TCP can be based upon
it. This gives us freedom to chose the protocol that we want, without having to worry
about security aspects, since these concerns can be separated.

50 Job Manager Modules

6.3.1 RPC-Protocols

For RPC we considered several options. The two notable was XML-RPC [75] and
SOAP [14]. XML-RPC is a simple and lightweight way of doing RPC. As its name
suggest it uses XML for encoding its data. Furthermore it embeds its request and
replies within a HTTP header making it possible to use it through web proxies. What
shines about XML-RPC is that it is really simple. Its specification [75] is seven pages
long; it supports only six basic data types along with structures and arrays. In [63], a
comparison of XML-RPC and SOAP it is said that:

Any competent programmer2 should find no difficulty whatsoever in imple-
menting XML-RPC in their software after reading its spec.

SOAP reminds a lot of XML-RPC, since it also based on XML and iscapable of
doing RPC, however it is really a protocol to transfer objects. The latest SOAP spec-
ification [12], is about 40 pages, and presents a rather complex object system. SOAP
makes it possible for users to define their own types, and includes esoteric features such
as sparse and partial arrays. SOAP is transport independent, meaning that it does not
dictate how the underlaying system should work. This means that a SOAP object can
be transferred over almost anything, e.g., over SMS transfer or embedded into HTTP.
Finally SOAP is a part of web services, which has gained some momentum within
grid software lately (see Section 2.6.3 and 2.6.4). We will not debate on whether web
services it the thing or not for grids, since this out of scopefor this report.

When choosing between XML-RPC and SOAP it is important to look at what one
needs. If there is a need to be able to define data types, SOAP isthe choice. However if
a simple system supporting the most basic stuff is enough, XML-RPC should fulfill the
need. Since our need for the Job Manager was relatively simple, we choose XML-RPC
as our primary candidate for an RPC protocol.

As mentioned we considered primarily XML-RPC and SOAP. Other candidates to
do RPC could Java RMI [70] or CORBA [51]. However as the Job Manager is written
in Python, Java RMI is not really an option, since it is Java specific. CORBA is much
more than just an RPC system, and is everything but lightweight and simple. Therefore
we decided not to go with any of these.

6.3.2 Selecting a Protocol

Even though XML-RPC was our first choice for an RPC protocol, the first RPC server
we used was a SOAP server. The reason for this was that the pyGlobus [39], which
provides a Python interface to Globus, had a SOAP server. TheSOAP server was based
SOAPpy [62] which is a SOAP [14] RPC implementation in Python. The SOAPpy
module in pyGlobus has been augmented with GSI [5] support. GSI is an extension
to SSL making it easier to use in grid contexts, mostly be integrating it into various
application. This meant that we could easily create a SOAP server for the Job Manager
to use, since it was possible to do authenticated RPC calls over SOAP using X.509 [27]
proxy certificates.

Therefore SOAP became our natural choice for doing communication since it in-
tegrated nicely with GSI. Also SOAP is a good abstraction fordoing distributed com-
munication, since it just resembles a normal function call.Unfortunately, during the
development of the Job Manager, we discovered what appearedto be deadlock, when

2Whatever that means.

6.3 RPC Server 51

using callback from Globus. An analysis of this is given in Appendix F. The result
of this was that we either had to throw out NorduGrid ARC or pyGlobus. Dropping
NorduGrid ARC was not really an option, since the Job Manageris highly dependent
on it, so pyGlobus had to go. This meant that we had find anotherway of doing RPC.
However, first we had to find another way to use SSL within Python. There are two li-
braries which provides SSL interfaces to Python: M2Crypto [66] and pyOpenSSL [67].
Both are based on OpenSSL library [61]. Since the last updateto pyOpenSSL was in
2002 [67], we choose to use M2Crypto since this project was actively maintained. For
RPC protocol we selected XML-RPC [75], since this is alreadysupported in Python
and M2Crypto provided the necessary extensions to use XML-RPC over SSL.

Even though M2Crypto has some support for XML-RPC, some workmust be done
to create the server. Most notably one must construct the server and setup the OpenSSL
context [60] oneself. With knowledge of Python the construction of the server is rel-
atively straight forward. Constructing a proper SSL-context however is not trivial,
and requires in-depth knowledge of OpenSSL to set up correctly [76]. Fortunately the
XML-RPC server worked well, after having been setup properly. Switching to XML-
RPC also removed our biggest dependency on pyGlobus, and after having rewritten
some code in the Job Manager we where able to remove the dependency completely.
For the client this means that the Globus libraries are not needed, since GSI is not used.
This means that a client using the Job Manager only needs an XML-RPC client capa-
ble of using SSL as transport. This makes it possible to writeclients to a multitude of
platforms.

The API of the XML-RPC server, is rather large, due to deep inheritance, however
the following methods should explain how to use it, and in normal cases all that is
required.

• __init__(addr, ssl_context)

ăConstructor for the XML-RPC server.addr is the address to bind, specified in a
tuple containing host name and port, e.g.(’localhost’, 9443) . ssl_context

is the SSL context for the server and specifies host certificate, private key, cer-
tificate requirements for client, etc.

• register_function(function)

ăRegisters a function into the server making it available for clients to call. Note
that Python supports the functional paradigm, making it possible to treat func-
tions as data. Everything regarding types and number of arguments is handled by
the introspection3 capabilities of Python. This makes it easy to extend the server
since all that is needed to add an additional function, is a single line telling the
server to make the function available.

• register_instance(object)

Does the same thing asregister_function except that this method takes an
object and makes all of the methods on the object available onthe server.

• register_introspection_methods()

ăThis method makes three additional function available on the server:listMethods ,
methodHelp and

3The ability to “look into” objects at runtime, getting contextual information, such as name of functions
and methods available on an object.

52 Job Manager Modules

methodSignature . These functions allows the client to do some simple intro-
spection of the server, e.g., to get the available functionson the server, giving a
simple form of capability discovery.

• serve_forever_thread()

Starts a new thread, which starts the server. The object representing the thread is
returned to the caller, which regains control after the call, allowing it to continue
working.

Summarizing these calls, a typical use of the RPC server is asfollows:

server = SecureXMLRPCServer((’localhost’, 9443), ssl_co ntext)
server.register_function(submitJob)
server.serve_forever_thread()

After having explained how the XML-RPC server of Job Managerworks, and
which interfaces it has, the focus will shift toward the information system in the Job
Manager.

6.4 Information System

To make decisions such as to which cluster to submit a job to, the Job Manager must
have knowledge about the state of grid. To get this knowledgethe Job Manager, must
query the information system of grid. The information system of NorduGrid is covered
in section 3.3.3. It is the purpose of the information systemmodule to provide an API to
access the information system. In NorduGrid ARC, the information system is consists
of an LDAP [38] server running on each of the clusters. Examples of queries are listing
of jobs which the users is currently running, or retrieving cluster information for job
submission. The information system module must query the clusters and transform the
received data into data structures, making it easy to use theinformation system. These
data structures must represent the information queried. Therefore it makes sense to
map the LDAP schema, depicted on Figure 3.2, on page 25, into objects, which can
be used by the caller of the information system. These objects are: Cluster, queue,
and job, each containing information about their respective entity in the grid. These
objects are then created, packaged together and returned. Fortunately this functionality
is already in the NorduGrid ARC, and the classes has been wrapped to Python, making
them usable by the Job Manager. When the module has returned these it is up the
caller, to do any further abstraction.

The API of the module reminds a lot of the one already existingin the user interface
of the NorduGrid ARC. The main changes are the hiding of the GIIS concept, and the
introduction of caching. The reason for hiding the GIIS away, is that it does not matter,
for the user of the information system how the cluster list isretrieved, just that it is
retrieved. The next section discusses the issues surrounding the cache. The API for the
information system module is:

• GetGiis(use_cache=True) Returns a list of the top GIIS servers. This func-
tion is usually not needed since theGetClusters call retrieves this automati-
cally, hiding the GIIS concept away from the programmer. However if the devel-
oper for some reason need a list of the GIIS servers, it is possible to get it. The
use_cache flag sets whether a cached version should be used. Note that even if
use_cache is set to True, and it has expired, a new list will still be retrieved.

6.4 Information System 53

• GetClusters(mds_filter=’JOB_SUBMISSION’,anonymous=T rue,

timeout=40,debug=0,sn=None,use_cache=True) This returns a list of clus-
ters, each containing a list of queue objects, each of those containing a list of job
objects. Themds_filter flag specifies what kind of query that should be done.
There are four possible values:CUSTER_INFO, JOB_INFO, JOB_SUBMISSION,
and JOB_MANIPULATION. Depending on which value is passed along, differ-
ent information is returned. ForCLUSTER_INFOonly information about the
clusters is retrieved, forJOB_INFO information about jobs are returned. For
JOB_SUBMISSIONrelevant information about clusters and queues for submit-
ting jobs. Finally, forJOB_MANIPULATIONonly jobs that can by manipulated,
i.e., the ones the caller owns, are returned. If an invalid value is passed along,
an exception will be raised. The remaining parameters are more straightforward.
The anonymous flag specifies whether or not to use authenticated queries. Time-
out specifies the maximum interval in which the cluster should respond, before
the query is aborted. Debug increases the verbosity of the function. Thesn argu-
ment specifies the subject name used for certain queries, e.g., job manipulation
where only the jobs of certain user is wanted. Finally theuse_cache flag allows
the caller to bypass the information system cache, which is used by default.

• GetValidTargets(clusters=None,debug=0) Returns a list of targets which
jobs can be submitted too. A target is composed of a cluster and a queue. This is
used as a convenience function when submitting jobs, since we are interested in
targets in that case.

The criteria for a target to be valid is:

– Must have public keys, which are signed by a trusted authority.

– Queue must have active status.

– User must be authorized.

– Queue must be non-full.

– Queue must have CPUs available.

Note that this does not say anything about having enough CPUs, or having the
correct runtime environment for a job. The reason for this isthat such require-
ments are specific from job to job. Creating a list of valid targets, but not wor-
rying about whether it meets a job requirement allows the list to be reused when
dispatching several jobs. It also separates the two things.Filtering targets which
does not meet jobs requirements are of course done, but laterin the process of a
job submission.

• ClearCache() Clears the cache in the information system.

6.4.1 State Cache

Doing queries to all clusters within a grid can take a substantial amount of time since all
the clusters must be contacted. This is especially a problemwhen a lot of information
is updated sequentially, e.g., updating the status of several jobs. A solution to this is to
retrieve the information once and used this for all the updates. This can be done in the
following way (pseudo code).

54 Job Manager Modules

job_info_list = RetriveAllJobInfo()
foreach job_info in job_info_list

i f job_info in job_list
update status f o r job in job_list

Which is good, since it saves a lot of queries. However the resulting code is subop-
timal, since it is not really intuitive; at least not compared to:

foreach job in job_list
job.state = GetState(job.id)

Which is more obvious. However if theGetState function contacts the cluster
each time, such an update can take quite a while. A way to solvethis problem is to let
GetState cache the results for reuse. Doing caching transparently leads to less and
more readable code than doing explicitly.

Caching allows certain things, like sequential job submissions to be done signifi-
cantly faster, but caching is also a delicate task, as there are several issues to take into
account. Not all information about the grid can be cached forthe same amount of time.
E.g., a list of clusters are usually usable for longer amountof time than information
about queue status or jobs. One of downsides of using cache isthat the information
used is older, than if it would be retrieved right before use.However, such retrieval can
take some time, if there are non responsive servers, making the Job Manager wait for
the information. It should be noted that information about the grid will always be a bit
old and inconsistent, since it is not realistically possible to get a consistent snapshot
of the state of the grid, since this would require an enormoussynchronization effort
between the clusters. Since it is not possible to get fully consistent information from
grid, it might as well be cached for a while. What is importantis to make sure that the
information is purged from the cache before it gets too inconsistent.

The Job Manager does transparent caching, as descried in theprevious, thereby
hiding it away from the users of the information system module. The caching is done
on two functions:GetGiis andGetClusters . It is not done onGetValidTargets

since this usesGetClusters to build its list, and doing caching here would lead to
double bookkeeping. Even though there are only cache on two functions, there are five
caches internally in the module. One for theGetGiis , and four forGetClusters .
One for each of themds_filter options.

Cache expiration is done by having different expire times for the two functions. For
the GIIS list it is one hour, and for cluster information 30 seconds. Even though the
information system in NorduGrid has a valid-from and valid-to fields which marks the
validity period of the data, it is not used. In an ideal situation this would be used to
mark the end of life for the information, however it is not easily retrievable through the
NorduGrid interface, so it was decided to use a simple timeout. If necessary the cache
can be cleared manually by calling theClearCache function. If the cache has expired
it is first retrieved when a one of the functions using cachingis called. This decreases
load on the grid, since information is only retrieved when needed, instead of having a
thread retrieve the information at a constant interval.

There are certain downsides of caching information this way. The cache system has
no idea what data the caller want, making this operation moreexpensive than the same
task performed byngstat in some cases. An example is that for retrieving the status
of a single job, will result inJOB_INFO queries to all clusters in the grid. However we
have chosen to do it this way, since it is simpler, and provides a simple API to use.

After having explained the workings of the information system modules, the focus
will shift toward the final module in this chapter; data management.

6.5 Data Management 55

6.5 Data Management

The task of Data Management module is to provide the Job Manager with an API to
handle the transferring of data. Data transfers can happen in several different ways:
From the Job Manager to the grid, from the grid to the Job Manager, and finally from
the grid to the grid. Since the NorduGrid ARC does not providea “copying” service,
copying from a grid location to another must happen by copying the file to the Job
Manager and to the wanted destination. This functionality is basically the same as
ngcopyprovides, i.e., copying from one URL to another, and the module uses the same
functions as this.

Data Management does not have anything to do with moving datato or from the
client. Moving data to or from the client is done over XML-RPCsince the Job Manager
should not force the application to support grid protocols.When transferring files from
the client and to the grid, or the other way around, the Job Manager will work like a
proxy. To avoid overloading the Job Manager only small files should be transferred
this way, since the whole file will be kept in memory in the Job Manager when using
XML-RPC.

As mentioned the Data Management module has the same functionality asngcopy.
Therefore the API reminds a lot of the command. The Data Management module only
supports a single function, displayed here:

• URLCopy(from_url, to_url, confidential = False, blocking = True)

Copies a file from one location to another. It supports several protocols, which
are listed here:

– file:// Local file.

– rc:// Replica catalog.

– rls:// Replica Location Service.

– se:// Storage Element.

– gsiftp:// GridFTP.

– ftp:// FTP.

The copying uses message integrity as default, but is not encrypted. Encryption
can be used by setting theconfidential argument toTrue . Note that using
encrypted transfers will cause a heavy load on the CPU. Furthermore it has the
ability to act as a “copying service” by specifying theblocking parameter to
false. This makes the Job Manager start a new thread and return control to the
application before the copying is done.

The Data Management module does not feature advances features like creating a col-
lection in Replicate catalogs and such. These are not often used, and has therefore been
not implemented.

6.6 Summary

This chapter has presented some of the smaller modules of theJob Manager. These
modules are, regardless of their size, necessary for the JobManager to function prop-
erly, however due their size they did not warrant their own chapter. The two next
chapters describes the modules that did; the managing of jobs and distribution of the
Job Manager.

Chapter 7

Managing Jobs

Managing jobs is the heart of the Job Manager (hence its name). Making management
of jobs robust and flexible is a critical aspect if the Job Manager is to become a usable
tool. This chapter describes the considerations taken, itsdesign and the construction
of job management in the Job Manager. First an overview of therequirements for job
management is presented. Hereafter the different parts of the Job Management module
will be identified.

7.1 Considerations

As explained in Section 5.1, the user of the Job Manager should be able to extend or
override the way jobs are dealt with, by the use of handlers. Even though handlers and
job management are separate modules, as illustrated on Figure 5.2, they are closely
connected, since handlers must be able to decide what happens to a job. Therefore the
modules are closely related, and their interaction should be carefully considered, since
this is an important aspect of the Job Manager. So far the handler concept has been
described as a plug-in concept to the Job Manager, which allows the users to redefine
and extend the way jobs are handled. Although this concept provides the user with
much flexibility and power, it is also vague in its details. Toovercome this we will start
by analyzing how handlers should work and what implicationsthey have on the rest of
the Job Manager.

7.1.1 Handlers and Their Implications

To identify what handlers should be capable of, and how they should work, three ex-
amples of handlers will be analyzed. These three examples are: Another scheduler
when submitting jobs, resubmitting jobs in case of failures, and automatic fetching of
files from a completed job. These three examples all have thatin common that they
should be invoked when a certain state of the job arises. For the submitter it is the
presence of the job in the Job Manager that should trigger it.The two last should be
invoked when the job has finished. Of course the resubmitter should only be invoked
if the job has failed, and the fetcher only if the job has finished successfully. Gener-
alizing this; a handler should be invoked when a certain status of a job arises. For the
handler interface to be as general as possible it should be invoked every time a change
in the state of jobs happens. Since handlers should be invoked when a change occurs

58 Managing Jobs

in the state of the job, something external from the handlerswill have to monitor to
the jobs, and invoke the handlers when necessary. Basicallythere are two changes that
can occur: The application calling the Job Manager or the grid updates information
about the job. The first happens when the application makes anRPC call to the Job
Manager, e.g., a job submission or cancellation. Since the RPC calls are translated into
functions, these will have to invoke the right handler. Updates to the job in grid, will
usually be updated job statuses. Unlike RPC calls, the Job Manager will not be notified
of these updates, it will have to fetch them from the information system. Therefore
the Job Manager should fetch the status of the jobs it is managing at a regular interval
and invoke handlers if those jobs whose status has been updated. Summarizing the
conclusions so far: Handlers are plug-ins that should be invoked when a change in a
job occurs. This change can either be an RPC call from an application or an update to
the status of the job. When one of these are invoked the Job Management modules will
invoke the handler. This is depicted on Figure 7.1.

Job ManagementHandler

Status updater

Handler
Invokation RPC Calls

Submitter

File fetcher

Figure 7.1: Overview of the handler invocation from the Job Management modules. When an
RPC call is received or the status of a job is updated the handler is invoked. The boxes within
the handler are examples.

Since handlers should be able to overwrite the default behavior of the Job Manager,
the default behavior should be implemented as handlers. This will make them easier to
change or overwrite, since they can be overwritten by writing new handlers, or even be
taken out.

For now the focus has been on the interaction between Job Management and han-
dlers and when they should be invoked. Now we will turn towardhow handlers should
be constructed in the Job Manager. Since handlers are plug-ins, we will start by looking
at other plug-in structures. Drawing programs such as Skencil [37] and The Gimp [72]
feature plug-ins allowing the user to create various effects to be applied to the picture.
These plug-ins usually work by either loading the plug-in atstartup or runtime. The
plug-ins are then invoked when requested by the user, and a context is passed along.
This context usually represents the canvas. The plug-in then manipulates the canvas,
and returns control to the caller. Retrofitting this to the Job Manager, the context to
pass along is of course the job description, e.g., an object containing information about
the job, such as jobid and xrsl. Unfortunately this description alone is not enough. The
handler will need to have access to the grid and be able to manipulate instantiations of
job running on the grid. This is the difference between the plug-in structure and han-
dlers, handlers causes side effects on the grid, they do not just operate on a description.
To control job on the grid a library containing functionality for this is needed. As ex-
plained in Section 4.1 there exist no proper API for applications to use the NorduGrid
ARC. Therefore a reimplementation of the job controlling functions is necessary. An-
other reason for such a reimplementation is that it is possible to separate the scheduling

7.1 Considerations 59

from the rest of the job controlling functions. Such a separation makes it far easier to
make a handler which overwrites the submission to use a new scheduler. Therefore this
separation should be done when constructing the new job control library. Creating this
library would allow handlers to manipulate the job, by giving them the necessary tools
to work.

When handlers has the functionality to manipulate jobs, it also means that they
can cause certain side effects when doing this. An example ofthis is a resubmission
handler. Such a handler will resubmit a failed job, and thereby give it a new jobid.
Since the handler has access to the job description it must update the jobid within,
however if other parts of the Job Manager or the application are referring to the job
using the jobid they will not be able locate it. This means that a jobids cannot be
used as a consistent way of identifying jobs, since they are dependent on where the job
is executing. Therefore an alternative way to identify jobsuniquely must be created.
Such a representation are allowed to change during instantiations between jobs. A
consistent way to identify jobs, which are not directly related to anything on the grid,
will allow handlers to manipulate jobs without having to worry about side effects. Such
an identification mechanism is therefore necessary if handlers are to work properly.

The plug-in structure have far reaching consequences as to how the module should
work, and dictates much of how the structure should be in the module. Also a need
to identify jobs consistently between instantiations was introduced. This need will be
addressed shortly; first the parts of the Job Management willbe identified in the next
section. There it will be clarified how the modules interact;clarifying the requirements
and concepts presented in this section.

7.1.2 Identifying Modules

This section will identify the modules that are needed for job management. From the
previous it is already clear that two modules are needed: JobManagement and Han-
dlers. Furthermore a need for a job controlling library was introduced, which consti-
tutes a third module. Finally a separate scheduling module should be created, to keep it
separate from job submission. The job control library and scheduler are both invoked
from the handler module, while handlers are invoked from jobmanagement. Starting
from the bottom, we will explain the modules, starting with the Job Control module.

The task of the Job Control module is to provide job controlling functionality to
handlers, making them able to manipulate jobs on the grid. The Job Control module
will basically be a reimplementation of job control functions in NorduGrid ARC, and
will provide an API instead of a command line interface. The module will provide
functionality such as job submission and cancellation, i.e., functions that performs a
specific actions on a job. The module will not do anything automatically, nor will it do
any kind of bookkeeping, this is entirely left to callers of the modules. The Job Control
module does not do scheduling; this is left to the schedulingmodule.

The reason for separating scheduling from job control is to make it easier for han-
dlers to provide and invoke their own scheduler. Therefore aproper interface for
scheduling will have to be created. It is also our hope that byseparating the sched-
uler, will make it easier to experiment with scheduling. Currently this is rather hard,
because the scheduling functions in NorduGrid ARC are buried deep in the job submis-
sion code. Since the scheduling module will only contain schedulers and perhaps some
helper functions, the module will be relatively small, but provides important function-
ality.

60 Managing Jobs

The handler module will contain several handlers each specialized to perform one
action, e.g, submission, resubmission, or fetching of output files. The handler will
use the Job Control module to control its jobs, while the handlers will be invoked
from the Job Management modules. This makes the handling modules the middle
layer between bookkeeping (Job Management) and the actions(Job Control), and the
handler module ties these layers together. This, combined with the ability to override
or extend the handlers makes this layer very powerful, and critical for the success of the
Job Manager. Updates to jobs are most likely to come in chunks, e.g., the status of all
the jobs has been updated, or the application has submitted aset of jobs. Handling all
these jobs at once may cause the Job Manager, to become heavily loaded for a while,
if dealing with large sets of jobs. Therefore the Handler module should feature some
form of queue making it possible to enqueue work, and allow the handler module to
do the work as it sees fits. Additionally the handler module could form sub-queues for,
e.g., submission or resubmission if needed.

The task of the Job Management module is to do bookkeeping of jobs and to invoke
the handler when an update to a job occurs. The module contains a list of all the jobs
and a description of each jobs. In this description information such as jobid and xRSL
description should be stored. Furthermore since the use of handlers cannot be predicted
each job should have a data structure which handlers may use to store and manipulate
their information in, e.g., resubmission attempts. Such a data structure could be a
dictionary or list.

As mentioned earlier updates to jobs can happen in two ways: By an RPC call from
an application or by an updated status on the grid. Since the Job Manager is only noti-
fied when receiving RPC calls, it will have to pull the status of the jobs it manages at a
regular interval. If any change occurs in the status of the job or an RPC call is received,
the module will invoke the handler, which will threat the jobaccordingly. When in-
voking the handler the job description will need to passed along, and the handler will
need to update it, e.g., if doing a resubmission, a new jobid will have to be set and the
old saved. This means that bookkeeping is not done entirely in this modules, but also
in the handlers. However it is necessary since the Job Management module does not
know what the handlers does.

Summarizing this section, there is the Job Management module which does book-
keeping of jobs. It provides functions for the RPC server andalso updates the status of
the jobs at a regular interval. When a status of a job is updated, the job is pushed into a
queue at the handler, which then goes over each job, checks ifanything must be done
with it, and dispatches the job accordingly, e.g., submits it. To control jobs the Handler
module uses the Job Control and Scheduling Modules. This setting is illustrated on
Figure 7.2.

7.2 Introducing Job Tags

Having explained the modules, we will turn the problem of uniquely identifying jobs
and our solutions to it: Job tags. In NorduGrid terminology ajob represents a single
execution of an executable. Each job is described by an xRSL description which is up-
loaded to the cluster to execute the job. When submitting a job, a unique id is returned
as an identifier of the job, this is called a job id. An example is:

gsiftp://benedict.aau.dk:2811/jobs/2126821746118942 5804

7.2 Introducing Job Tags 61

Handler

Handler Queue

Job ControlScheduling

Scheduler 1
Scheduler 2
DefaultScheduler

Job Management

Jobs Jobs Updater

Submitter Resubmitter

Job Submission
Job Cancelation
Job Cleaning
Job Status retrieval

Status retrievalJob submissionSubmission
Scheduler

RPC Call

Figure 7.2: Overview of the module in job management and their interaction. The ellipses
are jobs, and the circles with arrows threads. It is illustrated how jobs are pushed from Job
Management to the Handler module which manipulates the job on the grid.

From this id, the cluster on which the job is being executed, as well, as the location of
output data can be extracted. This representation works well with the NorduGrid ARC,
however it is less suited within the context of the Job Manager. If a job is resubmitted,
or moved to another cluster, its job id will change, i.e., it loses any reference to the
previous job, even though it is the same job, only in another context.

Therefore, to support the features of the Job Manager, another way of representing
jobs will have to developed. This representation must remain constant during several
executions. In order to do so, the concept of ajob tag is introduced. A job tag is an
unique identifier for a job, which remains constant during instantiations of the job. This
makes communication between the Job Manager and applications more consistent, as
nothing needs to be changed if the job is resubmitted. Remember that an application
can be also be another Job Manager. The job still has the same representation for the
application. If the application needs the jobid of a job, it can retrieve it by doing a call
to the Job Manager. Communication between Job Managers alsohappen using tags,
to identify the jobs that they, e.g., monitor for each other.This communication will be
described in Chapter 8. On Figure 7.3, it is illustrated where the Job Manager uses tags
and ids respectively for communication.

Since a tag must identify a job it is important it is unique. Therefore when creating
a job tag, it should be ensured that it is as unique as possible. To this random and
unique data are collected for entropy. From this data a SHA1 hash [23] is created.
The values used for entropy are: The pid of the job manager, user id of the user which
the job manager runs, the host name of the machine, the current time, and a random
number. Generating a hash that collides with this is statistically very improbable [22].

62 Managing Jobs

Job Manager

Tag

Id

Tag

Application

Fail over
Job Manager

Grid

Figure 7.3: Where the Job Manager uses tags and ids in communication. Tags are used between
Job Managers and application making job representation consistent between job instances. Ids
are used when communicating with grid.

We decided not to embed any information into the tag, since such information
would be likely to change, requiring a change to the tag, as itwould be with, e.g.,
resubmission attempts. It is tempting to include information such as Job Manager con-
tact information into the tag, but since a job can change between Job Managers, e.g,
during a failover, thereby rendering the information wrong. Therefore the best solution
is to simply generate a hash to represent the job. If any additional information must
follow the job, it must be in another way than embedding it into the tag.

The tag must follow each instantiation of the job into the information system, mak-
ing it possible to do external queries to get the tag. Unfortunately the information
system in NorduGrid has no support for tags, or extensions that can be used.

Fortunately there are certain job attributes in the information system that can be set
in the job description when uploading the job. These attributes can be queried through
the information system. This means that there certain fieldsthat can be controlled by
the Job Manager. One of these is the job name, which is suitable for the purpose.
When a Job Manager receives a job, it modifies the name of the job by appending three
and the tag hash generated as mention in the previous. This is the tag of the job. An
example of a tag is listed here:

My_job_name###3dbba9cddce6c55526af4a2353e632a6b126f 660

Setting the tag to be the name of the job, makes it possible to get and query for tag
through the information system. However job ids are still the primary abstraction when
manipulating jobs on the grid, since job names are not guarantied to be be unique in the
information system. However when creating tags as described, hash collisions should
be very unlikely. This does not assure that a tag cannot be re-created since a tag is
just a job name in the information system. Therefore when searching and comparing
tags in the information system, subject name of the submitter should be compared as
well, to ensure that only the jobs of the right users is considered. If this comparison is
not done, it opens the system to “tag poisoning” where jobs with identical job tags are
submitted into the system.

Finally it should be noted that tags are not replacements forjobids, but comple-
ments it. Using only tags it is not possible, e.g., to identify a certain instance of a job,
which is possible using jobids. The argument can be reversedto favor tags. Addi-
tionally an extension to the Information System, where the tag could be kept, could be
considered. However to make it more useful than the name replacement, there would
have to be a guarantee to keep the tag unique for every instantiations of the job. This
would certainly add to the complexity of the information, soit is not fully clear if this
would be an advantage. After having explained tags, the modules in job management
will be discussed; starting with Job Control.

7.3 Job Control 63

7.3 Job Control

The purpose of Job Control is to provide low level control of single jobs. Basically the
module does four things: Job submission, cancellation, cleaning, and retrieval of sta-
tus. This functionality is the same as the command line interface offer for controlling
jobs, and the module is basically a reimplementation of the functionality in this. How-
ever the API has been reworked, making use of, e.g., exceptions for handling failures.
Also, instead of the functions spanning hundreds of lines, they have converted to small
functions, where the different functionality has been split into different functions. An
example of this is that it is easy to replace the scheduler used in a job submission, by
writing a new scheduler in a different function and changinga single line where job
submission is invoked. The scheduler interface will be covered fully in Section 7.4.
Such separation has been done throughout the code to make it more comprehensible
and modular. Hopefully this modularization will make it easier for people new to the
NorduGrid ARC or the Job Manager to understand the code, and make it easier to
replace part of the code, thereby making it easier to do development and experiments.

7.3.1 Job Control API

Since the Job Control module is a reimplementation of code inNorduGrid ARC, jobids
are the primary abstraction. Keeping tags out of the module means that the module can
be used as a replacement for some of the existing code in NorduGrid ARC, provided
that a command line interface is build to use the API of the module. This is strength-
ened by the fact that the module does no bookkeeping; it must be done be the caller.
The design and implementation of the Job Control is relatively straight forward since
it is mostly a reimplementation with the purpose of providing an API for controlling
jobs. The API is:

• SubmitJob(xrsl, scheduler = None, dryrun = False, dumpxrsl =

False, debug = 0)

This is the high level function that submits a job. It takes anxrsl description.
The functions retrieves a list of clusters in the grid, creates a list of valid targets.
Hereafter it usesGetSubmittableTargets to get the targets which fulfills the
requirements of job. HereafterDispatchJob is called with the new target list
and xrsl description. Furthermore thescheduling , dryrun , dumpxrsl and
debug parameters are passed along to it. The meaning of these arguments will
be explained in the following.

– GetSubmittableTargets(target_list, xrsl, timeout = 40,

debug = 0)

Given atarget_list , i.e., targets that have passed the validity test de-
scribed in Section 6.4 and anxrsl object, this function returns a new list
of the targets which fulfills the requirements of the jobs. Examples of re-
quirements are runtime environments, number of CPUs, disk space or a
specific architecture.Timeout is only used in an internal function in the
NorduGrid ARC, which calculates the needed file size, and does querying.
Thedebug parameter make the function more verbose.

– DispatchJob(target_list, xrsl, scheduler = None, dryrun =

False, dumpxrsl = False, debug = 0)

This function takes a list of targets and an xrsl description. The target list

64 Managing Jobs

will then be sorted, either using the scheduler provided or using the default
scheduler if none is provided. After this, submission will be attempted for
each target in the list, halting if the submission succeeds.If submission
fails to all targets an exception is raised. If thedumpxrsl is set, the xrsl to
be uploaded will be printed to standard out. The functionality of dryrun

is explained in the next.

– PrepareSubmissionTarget(target, xrsl, dryrun = False)

Given a target and an xrsl description, this functions creates a new xrsl ob-
ject within the target. This xrsl object is prepared for submission, i.e., the
relevant attributes from the xrsl are added, along with information such as
which queue the job should go to. The reason for creating an xrsl object
for each attempted target is that each target is different and the informa-
tion to embed into the xrsl is different. Modifying the original description
would destroy its state. Ifdryrun is set, an attribute will added to the
xrsl, indicating that the job should not be started when received by the Grid
Manager.

– UploadJob(target, debug = 0)

Uploads an xrsl description to the given target. The xrsl description is in the
target object already. If the upload fails an exception is raised. Figure 7.4
illustrates the calls made to submit a job.

SubmitJob

GetCluster

GetValidTargets

GetSubmittableTargets DispatchJob

Scheduler PrepareSubmissionTarget UploadJob

Figure 7.4: The call graph for SubmitJob, showing the API calls made during a job submission.

• GetJobStatus(jobid, debug = 0)

This function returns a string containing the status of the job, given ajobid . If
debug is set, the function is more verbose. If the job is not found, an exception
is raised.

• CancelJob(jobid, debug = 0)

Given ajobid , the function will cancel the job, i.e., kill it. If the job isnot found
or is no longer running an exception is raised. Note that the job may already
have finished, even though information system says otherwise. Therefore the
exception is merely a notification to the caller. Ifdebug is set, the function is
more verbose.

7.4 Scheduling 65

• CleanJob(jobid, debug = 0)

After a job has finished, its session catalog will contain various files, i.e., output
data. Given ajobid this function will clean up the session catalog of the job,
i.e., remove everything in its session catalog. If the job has not yet finished an
exception is raised (the job is not canceled).Debug make the function more
verbose.

Having discussed the Job Control module and explained its API, we will turn to the
other module used by the handlers; scheduling.

7.4 Scheduling

The scheduling module is the smallest of the four modules in Job Management. Its only
task is to provide a scheduling interface and at least one scheduler, to use as default. In
Section 7.3 it was already outlined how scheduling works. TheDispatchJob function
is provided with a scheduling function as its arguments. This function is called with
the target list as argument, and must return it, where the first target is believed to be
the best and the last the worst.DispatchJob will try each target in this list, starting
with the best. This means that writing a scheduler corresponds to writing a function
that sorts a list of targets in descending order.

7.4.1 A Scheduling Example

The Scheduling module does not have any real API, since it is just a collection of
functions. It must however contain an object calledDefaultScheduler containing
the default scheduling function. Instead of an API, an example of a simple scheduler is
given, i.e., one that sorts the target list after how many free CPUs the target has:

def MostFreeCPUsScheduler(target_list):
def MostFreeCPUs(target1, target2):

cpus_free1 = target1.queue.GetUserFreeCpus()
cpus_free2 = target2.queue.GetUserFreeCpus()

i f cpus_free1 > cpus_free2:
re tu rn -1

e l i f cpus_free1 == cpus_free2:
re tu rn 0

e l s e:
re tu rn 1

target_list.sort(MostFreeCPUs)

DefaultScheduler = MostFreeCPUsScheduler

The example contains a nested function, which is used to compare targets and return
a value indicating which is the best. The built-in sort routine ontarget_list will
then use this function to sort the list. Finally theDefaultScheduler is set to point
at theMostFreeCPUsScheduler function, making it the default scheduler. It might
seem tempting to always use a comparing function like the onein this example since
it is a rather nice way to sort the targets. This however, would limit the flexibility of
the scheduler functions, and we do not wish to dictate how thesorting should work.
Returning toDispatchJob the target list will now be sorted, and job submission can
begin.

66 Managing Jobs

This form of scheduling is only applicable to one job at a time. Therefore when
submitting multiple jobs, the scheduler must be invoked each time a job is submitted.
This is not a problem since an average job submission still takes a lot longer time
than sorting a target list1. It might be tempting to construct a mass scheduler, when
submitting several jobs. However, jobs has different requirements and will therefore
only work when the jobs have similar requirement, i.e, parametric modeling. Instead
of making a scheduler handling several jobs, the current interface can be expanded to
handle multiple submissions in a better way. With the above example the target with
the most free CPUs are always put first, i.e., the best target comes first. However,
remember that the Job Manager uses caching in its information system, and that this
information will be reused when submitting jobs sequentially. Given the scheduler in
the previous example, all the jobs will be submitted to the same target. Therefore a bit
of randomness should be added to a scheduler function. The best target should have
the highest probability of coming first, however other targets should have a chance of
getting first as well. This probability should fit accordingly to how “good” the target
is. Adding this randomness will make a scheduler distributejobs more evenly when
submitting multiple jobs.

Another way of solving this problem is to modify the data to schedule by after
a submission. For instance when submitting a job requiring two CPUs, the target to
which the job gets submitted will have two subtracted from its free CPU count. This
method has two problems. First of all it is hard to do in a consistent manner, since
some CPUs may appear on several targets, making it not obvious which targets to
manipulate. Secondly it only accounts for the submissions done by one self. Other
submissions cannot be accounted for, unless pulling from the information system again.
And when received, the information is still a outdated. Therefore it is doubtful whether
this manipulation can provide something that the previous method cannot. A better
solution would be to monitor the grid, and move jobs between queues as new clusters
appears as queue skew becomes apparent.

Having introduced the scheduler interface, given an example of a scheduler, and
explained for its workings, the focus will shift toward are more complicated matter
within job management; Handlers.

7.5 Handlers

The Handler module is the glue that binds job management together. Beneath it is
the Job Control and Scheduling modules which it it uses to control jobs on the grid.
Over it, sits the Job Management module which invokes the handlers. The task of the
Handler module is to decide what to do, when invoked. An example of this is when
a job appears in the Job Manager, Job Management will invoke the handler, and the
handler will submit the job to the grid.

7.5.1 Handler Invocation

As already mentioned, there are two kind of events that make the Job Management
module invoke the handler: RPC calls and new status of jobs. It was also mentioned
that a status updater was needed, since the Job Manager is notnotified of this; it must
be pulled from the information system. In this section it will by identified how the

1At least as long as the target list remains under a couple of thousand entities.

7.5 Handlers 67

Handler module will work. To do this we will start by looking at the when and how the
Handler should be invoked.

• Updated Job Status –When the updater queries the status of the jobs from the
information system, it should update the status in the job description and then
invoke the handler system with this job. The handler reads the new status of the
job, and handles it accordingly.

• Application RPC call – Whenever an application calls the Job Manager, and the
call manipulates a job, the handler system will need to be invoked. There exists
three such calls, listed here:

– Submit job request –When the Job Manager receives a job submission
request the Job Management module should setup the necessary job de-
scription, and call the handler. The normal case for this request would
be to just submit the job, however if no suitable resources are available,
a handler may decide to postpone the submission until a useful resource
appear.

– Cancel job request –When a job cancellation call is received the Job Man-
ager should cancel the job on grid. This situation is complicated, since the
Job Manager may be doing something else with the job, e.g., resubmitting
it. Also if the job has just been submitted, it may not yet haveappeared
in the information system. If this is the case the Job Managerwill have to
wait for this to happen before canceling the job.

– Clean job request –If the application request that the job should be cleaned,
i.e, have its output files and session catalogs deleted, the handler should be
invoked. Such a request can also be complicated to carry out under certain
conditions, e.g., if a handler is downloading the files from afinished job,
the request would have to wait before being carried out.

At each invocation it is the task of Handler module to decide what should be done
with the job. As mentioned, many of these invocations can lead to race conditions, e.g.,
what happens if a cancellation request arrives before the job was submitted. The im-
plication of this is that the Handler module will have to keeptrack of what is currently
happening to a job, and either cancel that action or wait for the handler to finish, before
performing the requested action. These conditions are likely to be a concern when a
cancel or clean request is received, since the Job Manager will have to stop what it is
doing and perform the request. A job submission call is not prone to this, since it is
not a change to a job, but the creation of one. Related to this is what happens when the
application asks for the state of the job, and the job has not yet been submitted or ap-
peared in the information system. To solve this problem the Job Manager introduces to
new statuses:IN_JOB_MANAGERandSUBMITTED:cluster@queue . The first marks
that the job has entered the Job Manager, but has not yet been submitted. The second
indicates that the job has been submitted, but has not yet appeared in the information
system. Furthermore it displays to which cluster and queue to the job has been sub-
mitted, i.e., a cluster and a queue name. These two states only exists between the Job
Manager and application, no extension to the information system is necessary. This
addition removes the problem of getting a status for a job, which has not yet gotten a
status from the information system, a problem which thengstat command line tool
is suffering from.

68 Managing Jobs

In Section 7.1.2 it was mentioned that a lot of updates or subsequent RPC calls,
would invoke a lot of handlers at once. To solve this problem the concept of a handler
queue was introduced. Having such a queue means the Handler module will have at
least one thread to do work, since it is not directly called byJob Management. Having
such a thread would also allow the caller of Handler module tocontinue without having
to wait for the Handler module to finish. This is a good, since some of the handlers
can potentially take substantial amount of time to complete, e.g., fetching of output
files. Giving the Handler module its own thread might not evenbe enough, since the
thread can only handle the jobs in the queue sequentially. Ifthe Handler module is
to fetch output files from a set of finished jobs, this will probably congest. Therefore
the Handler module should spawn new threads for tasks that may take a significant
amount of time. This will allow to main handler thread to continue its work. It might
also be feasible to create sub-queues within the module, e.g., for submission. However
each thread added, will add to the complexity of the module, so adding threads should
only be done in the case of congestion problems. Even though the module will contain
several threads, simplicity of use should be kept, making the sure that the internal
complexity of the module is not exposed. An example of a handler is illustrated on
Figure 7.5.

Handler

Handler Queue

Submitter ResubmitterFile fetcher

File fetcher

Figure 7.5: The Handler module with a thread handling jobs. Two file fetchers have been started
and two sub queues are started. One for submission and one forresubmission. The ellipses are
jobs, and the circles with arrows threads.

Moving on to the construction of the module we will look at which principles
should be used when constructing the handlers. There are several requirements for
what should be possible:

• Creating new handlers –The user should be able to create his or her own han-
dlers and incorporate them into the module.

• Overriding existing handlers – It should be possible to override the default
handlers with other handlers.

• Selecting between existing handlers –The user should be able to mix and
match the handlers, both the handlers provided with the Job Manager and ex-
ternally provided.

7.6 Job Management 69

Given the two first requirements it is natural suggest that a handler should be imple-
mented as a class. From this class the user can create a new class, which inherits from
the provided class. This makes the user capable of creating anew handler by writing
a method in the class, which are called when a certain type of handler is invoked. It
would also allow to user to overwrite the existing handlers by using polymorphism.
For the third requirement, something more flexible than inheritance and polymorphism
is needed: Mixins2. Mixin allows each handler to be implemented in a separate class,
containing only one method which name corresponds to what will be invoked for a
certain condition, e.g., a job submission. Putting each handler in a separate class, al-
lows the user to select the handlers that should be used by inheriting from the desired
classes into a new class using multiple inheritance. For this to work there needs to be a
super class, which the users class should inherit from. Thisclass should define the in-
terface for Job Management to use, along with setting up the work queue. The methods
provided to the Job Management module should then invoke a method depending on
which action should be taken. The superclass should containempty methods for each
of these actions, since these are the methods meant be overwritten by subclasses, the
real handlers.

After having given an explanation of how the Handler module will be implemented,
the section will be finalized by listing the API of the handlermodule:

• StatusUpdate(job)

Used when a job has received a new status. The status of the jobwill be read and
the handler for this status invoked. Usually called by the updater, after updating
the status of a job, and the job had a different status than last. Should also be
invoked for new jobs, since theirIN_JOB_MANAGERstatus will make them go to
the submitter handler.

• CancelJob(job)

Should be called when a request for job cancellation has beenmade. If the job
is in any if the handler queues it will be removed from there. Handlers running
with this job will either be killed, or the function will waitfor them to complete.

• CleanJob(job)

When invoked the session catalog of the job will be deleted. If any handlers with
the job is running, the method will allow them to finish, sincethey could be using
the session catalog, e.g., downloading from it.

Note that the complexity of handler has been hidden by a smallinterface which should
be simple to use for the caller. Having explained the API of the handler module, we
will turn to the last module in described in this chapter: JobManagement.

7.6 Job Management

The task of the Job Management module is to do bookkeeping of jobs and invoke the
handler module when necessary. Furthermore it provides high level functions concern-
ing jobs, many of them provided directly to the RPC server. This means that the module
binds together RPC calls with the internal data structures representing the jobs. The
module does not decide how to threat the jobs; this is the taskof the handler module.

2Mixins is a concept using multiple inheritance to augment the functionality of other inherited classes;
the difference between regular classes and mixin classes are that mixin classes cannot stand by them selves.

70 Managing Jobs

This section will start by explaining how jobs are describedand how these are kept
track of. Hereafter the job status updater will be described, and finally the API of the
Job Manager will be listed.

7.6.1 Describing Jobs

Previous in this chapter, there has been several hints aboutwhat a job description should
contain. The basic contents of a job description are: job tag, the xrsl description, its
status, and a jobid, if submitted. Furthermore handlers must have a way to store various
informations about the job, e.g., resubmission attempts and previous clusters. Since this
data is related to the object, it should be stored along with it. Therefore a job description
should have a container for handlers to use. Also, a flag indicating whether or not the
job is currently is being handled is needed. As the Job Manager is highly threaded a
lock to protect access to the job is also needed. This lock could also be used to protect
access to the object while it is being handled, however this would cause the lock to be
held for long periods of time. To overcome this it would be necessary to attempt lock
grabbing in a non blocking manner. Doing this would complicate much of the code,
making the Job Manager harder to understand and more prone toerrors. Therefore both
the lock and handled flag should be kept. The description, should naturally be kept in
an object, which ties the data together. The code for the class is listen here:

c l a s s JobInfo:
def __init__(self, tag, xrsl_string, jobid = ""):

self.tag = tag
self.lock = threading.Lock()
self.xrsl_string = xrsl_string
self.xrsl = Xrsl(xrsl_string)

self.jobid = jobid
self.status = NOT_SUBMITTED_STATUS
self.handled = False

self.local_input_files = {}
self.handler_info = {}

The code has a few extra items not mentioned. Since the xrsl job description is send as
a string to the Job Manager3, it converts the string to an xrsl object, and the string is
kept, should be needed later. Also a dictionary4 of input files are created. This is used
when one or more of the input files to the job are local. Since itis the Job Manager that
submits the job, these are needed. Thehandler_info is for the handlers to store infor-
mation in. Finally, note that the status of the job is set to aNOT_SUBMITTED_STATUS.
This makes the handler module submit the job when invoked.

Having a suitable job description is not enough; there must also be kept track of
these descriptions. For this the Job Manager uses a dictionary, where the tags are used
as indexing keys, and a job object as the value. Since access to this is dictionary also
happen concurrently a lock must be acquired before reading or modifying it. Given
that each job and the tag dictionary has a lock, it is clear that some constraints for
doing locking is needed to avoid deadlocks within the Job Manager. These locking
constraints are:

• One must grab the lock of a job / the tag dictionary before reading or modifying

3Remember that XML-RPC does not support user defined types
4An associative array in Python

7.6 Job Management 71

it. This ensures consistency of the object, so that an objectis not modified and
read at the same time or being modified by more than one thread at a time.

• If the handler flag is set, you are allowed to read from the object, but not modify
it, except if you set the flag. The reason for this constraint is that when a handler
is running it has the exclusive rights to the object.

• You are allowed to grab one job lock anytime, however if two ormore job locks
are needed you must drop any job lock holding, grab the tag dictionary lock,
and grab the lock of the jobs. If more than one thread is allowed to grab more
than one job lock at a time without going through tag dictionary lock, the Job
Manager can deadlock. This constraints ensures that it doesnot.

These constraints ensures that the data in the Job Manager remains consistent, and
that the threads does not disturb each other or deadlock. Therefore it is critical that
these constraints are not broken. We will now turn to other big task of the Job Manage-
ment module: Updating the statuses of jobs.

7.6.2 The Status Updater

When a job receives a new status, e.g., it is marked asFINSIHED , the Job Manager
should invoke its handler. However the Job Manager is not notified of these updates, it
must pull them from the information system. These updates must be done at a regular
interval, since the status of jobs is updated continuously in the information system. In
the Job Manager, this updating is done by status updater, which is a part of the Job
Management module. The updater is a thread, which will update the statuses of the
jobs in the Job Manager and sleep for a while. This process is then repeated. It uses
the following procedure for updating the statuses of the jobs:

1. Collect the jobids of the jobs in the Job Manager. If the jobis being handled or
the status of it indicating that is has already finished, the job is skipped.

2. The status of the jobids representing the jobs is fetched from the information
system.

3. The updater will reiterate over the jobs, comparing the jobids of the jobs with the
ones that it fetched statuses from the information systems.This comparison is
necessary since the job lock is not held during the polling from the information
system. If the jobid is exists, the status of the job id updated. A special condition
is for finished jobs, where the status will be set to eitherFINISHED_ERRORand
FINISHED_SUCESSFULLY. These states are necessary for the handler to recog-
nize whether the job was successfully finished or not. Finally if the status is
updated, the handler will be invoked.

Continuing doing this the updater will update the statuses of the jobs, making the Job
Manager able to react to changes regarding the job.

7.6.3 Job Management API

This section explains the API of the Job Management module. Much of this API is
exported directly to the server, and a large part of also usedby the Job Manager com-
munication module. The API is:

72 Managing Jobs

• NewJob(xrsl_string, input_files = None)

This creates a new job descriptions with a new tag. The xrsl description is sent as
a string as explained in Section 7.6.1. Furthermore more theinput files are sent
a long as well. Theinput_file should be a dictionary, with the paths as keys
and the files as values. From this a job description is created, which is inserted
into the tag dictionary and theStatusUpdate method on the handler is called.

• CancelJob(tag)

Given a tag, and that a job instance is running, this job will be canceled. The
job description is not removed. If the tag does not exits or the job has already
finished, an exception is raised.

• ClearJob(tag)

Cleans up after a job on the grid, i.e., removes its session catalog. If the job has
not finished or the tag is invalid an exception is raised.

• InjectJob(job)

This function injects a job into the system, i.e., the job is inserted into the tag
dictionary, but nothing more will be done. The updater will threat this as any
other job though.

• RemoveJob(tag)

Given a tag, the job description representing this tag will be removed and any
running handlers, will be killed or be allowed complete. If the job is running on
the grid, it is not canceled. The job removed will be returned. An exception will
be raised if the tag does not exists.

• GetJobStatus(tag)

Returns the status of a job, given its tag. If the tag does not exist an exception is
raised.

• GetJobidFromTag(tag)

Given a job tag this function returns the jobid, if any, to thecaller. If the tag does
not exist an exceptions is raised.

These functions provide a high level interface for job management for application to
use. While the functions correspond much to those in the NorduGrid ARC command
line interface, the jobs are managed, e.g., they have handler which can resubmit them
if failed.

7.7 Summary

This chapter has described, what is perhaps the most critical part of the Job Manager,
Job Management. Initially an analysis of how handler shouldwork was made. The
result of this analysis was that handlers would dictate mostof how the construction of
the Job Management should be. The analysis made it clear thatthe Job Management
was not just one module, but four: Job Control, Scheduling, Handler, and Job Manage-
ment. This separation works well since it provided much better separation of concern,
and made it easier replacing parts.

Chapter 8

Distributing the Job Manager

This chapter discusses how to make several Job Managers worktogether managing
jobs. The purpose of distributing the Job Manager is the sameas for many other dis-
tributed systems, where the system needs to keep working even when failure occurs.
We need to cope gracefully with failure. Therefore the Job Manager should deliver
failure transparency. A way to achieve failure transparency, is to replicate the data
and/or services in order to avoid a single point of failure [17, 18]. Depending on the
method, distribution of the Job Manager could also lead to improvement in availability.
Ideally total location and failure transparency, from the users/applications perspective,
is preferable, but due to constraints discussed in this chapter this will not be achieved
in full.

To make the Job Manager resilient to failure there should be no single point of
failure. Distributing the Job Manager allows for the user tointroduce redundancy by
starting several Job Managers to manage the jobs. This leadsto several interesting
problems which will be discussed in this chapter. The problems discussed are already
known within the realm of distributed systems so we start by looking at some general
issues.

8.1 Issues

In order to distribute the Job Manager, several questions and issues must be resolved.
The items on the list spring from the requirements and the features of the Job Manager
and they need to be resolved for the Job Manager to function aswanted. The list are,
for the sake of readability, divided into two sections. The first category has to do with
failure, location, and replication transparency.

• Failover – How to make the other managers aware of a failure in one of the
managers, and decide which manager has to take over and how this is achieved,
e.g., election algorithms, discovery, and soft registration. Furthermore a failure
detector is needed and the requirements and type should be determined.

• Handover – The ability to explicit push a job to another Job Manager, for in-
stance, if the load on the manager gets to high or if the Job Manager in question
does not have the capabilities to manage a particular job. Tobe able to hand a
job over to another Job Manager, it must be possible to transfer all information
and data the job needs to execute properly.

74 Distributing the Job Manager

• Availability of data – The data and information necessary to manage a job needs
to be available to all Job Managers, depending on the failover mechanism, for
failover to function properly. A scheme for making this dataavailable has to be
developed.

• Job Manager Discovery– It is necessary to have a mechanism for new Job Man-
agers to locate other Job Managers already running, in orderto locate failover
managers. This concerns the location of data and the arrangement of the Job
Managers, e.g., MDS, hierarchy or P2P, explicit list of managers, user provided
list.

• Unique identification of jobs– It is necessary to be able to identify jobs uniquely
over time, even when job ids change due to resubmission, clusters disappear, etc.
This has already been discussed in Section 7.2.

The rest of the problems are of a more general nature, and several of the pertains to the
integration of the Job Manager into the NorduGrid ARC.

• User authentication and transfer of credentials– Depends on whether mul-
tiple users are able to run on the same Job Manager. If so thereis an explicit
need for credential handling. The issue of transferring credential to a new man-
ager could be explored, as well as the security implicationssuch a scheme would
have.

• Scalability and availability – The solution should be scalable, at least to a cer-
tain degree, depending on the expected usage. If the Job Manager is started
per user, scalability is not a big issue, as most users probably only needs a few
Job Managers to satisfy their need for failover capabilities. If a Job Manager
can serve several users the scalability requirements are larger, as many Job Man-
agers will have several users and handover managers. Thus failure detection may
include any number of Job Managers.

The problems regarding multiple users will be ignored sincethe Job Manager is used
on a per user basis as explained in Section 4.3.4. Furthermore the scalability issues
may not be severe, as it is unlikely that more than a few Job Managers will be started
by each user. However, if Globus is replaced, making it possible for the Job Manager
to handle several identities and manage jobs for several users, then all of the above
mentioned issues becomes concerns regarding the scalability and robustness of the Job
Manager.

All of the issues listed have an impact on the choice of communication protocol
between the Job Managers, and it helps determine the type of communication and
protocol should be used for the different tasks. In the next sections we take a deeper
look at the issues listed in this section.

8.2 Models for Distribution

There are several ways to distribute the Job Manager. In thissection we look at two
general ways of providing failure transparency and discusstheir pros and cons with
respect to the Job Manager.

Every Job Manager holds some information about the jobs which it manages. In
order to make Job Managers work together, this information must be propagated to the

8.2 Models for Distribution 75

other managers. The objective is to determine the best and most simple solution that are
working with the rest of the NorduGrid ARC and delivers the necessary failsafe mech-
anisms. There are several schemes for handling the communication and replication of
data between the Job Managers. Two possible solutions is presented below.

• Active replication – A job is managed collectively by a pool of job managers.
When a request arrives from a client or the job changes its status, the request is
multicast to call managers which handles the request. The application receives
the result from the fastest manager.

• Primary-Backup / Passive Replication– A job is managed by one Job Manager
which remains in control of the job unless the manager fails.This means that
control is only transferred automatically to another Job Manager in the case of
failure.

There are pros and cons for each approach. Common for both of these models are
the need for some form of mechanism to detect if a particular Job Manager has failed.
One type of failure detector is some form of registration protocol with timeouts, a push
model. Another failure detector is a pull model, where the Job Manager asks the other
Job Managers if they are alive. In a asynchronous distributed system like the Internet,
is impossible to implement a reliable failure detector solely by message passing [17].
The choice of failure detector will be discussed further later in this chapter.

8.2.1 Active Replication

Active replication provides a high level of fault toleranceand in addition it also pro-
vides high availability since all the Job Managers can respond to requests from the
client. Basically every request is processed by all managers and in this way a consis-
tent state is maintained in every manager. In order for active replication to work there
is a need for total ordered multicast, to ensure that every manager reaches the same
state [17].

The main argument for using active replication is robustness and availability since
the bottle neck of having one manager to handle all jobs does not exist in this model.
There are two problems with the approach in the context of theJob Manager. First of all
we cannot deliver total ordered multicast since the networkis asynchronous. Thereby
we cannot ensure that all managers agree on a consistent state since the requests can
arrive in a different order at the different managers. Secondly for this approach to
work all operations on jobs would have to be idempotent in order to prevent multi-
ple submissions of jobs from the managers. There are no obvious way to implement
job submission as an idempotent operation in the NorduGrid ARC. Because of these
inherent problems of using this model in our context we look at passive replication
instead.

8.2.2 Passive Replication

A solution using passive replication imposes a ordering between the Job Managers.
One manager is the primary, accepting request and performing the job management. It
is only in the case where it fails, that another Job Manager takes over.

Passive replication is traditionally associated with a relative large overhead, since
data is replicated between the primary and the backup, whereas the active replication
performs the same functions concurrently. The overhead of data replication between

76 Distributing the Job Manager

the primary and the backups, is small because it is only the main job information, e.g.,
the job description, that has to be distributed, and not the data associated with the job.

The small amount of data that needs to be replicated, makes passive replication
preferable. Furthermore it is simpler to implement. The drawback is that this method
does not increase availability as active replication does.However since the Job Man-
ager is expected to spend most of the time sleeping, while jobs are being executed at a
cluster, this is not a major issue.

This model is not free of communication between the backup managers since this
model requires explicit failure detection. If the primary manager fail there is an explicit
need to reach consensus of which manager should take over. Inorder to do this, the
failover managers should continuously be able to check if the master is running. Ad-
ditionally the failover managers should know of each other in order to reach consensus
regarding the new primary manager.

8.2.3 Discussion

The two models just discussed are focused on high availability of data. A lot of the
requirements that makes it difficult to use them in our context stem from this. In the job
managers case a lot of the data are actually stored outside the Job Manager. In addition
to this, is the fact that most of the data stored at the Job Manager does not change once
the job has been submitted. An example of this is the xRSL job description, which does
not change once it has been transferred to the Job Manager. The data that are subject to
changes, are the meta data concerning the job, i.e., resubmission attempts and previous
clusters. Even if the meta data are inconsistent, it is not a catastrophe that prevents the
jobs from being managed1. The important job information such as the current cluster
the job is running on, is accessible through the informationsystem. This means that
the requirements of consistency can be relaxed a bit and thismakes the distribution of
the Job Manager simpler.

8.2.4 Job Manager Failure Considerations

Generally the Job Manager has to cope with two types of failure in this type of sys-
tem: Job Manager failure and network failure. Job Manager failure means that the Job
Manager or the host on which it is running fails or crash.

Networks can fail, e.g., a router can crash causing the network to becomes par-
titioned. In a partitioned network the route between some nodes in disappears. It is
important to note that network failures can be both intransitive and non-commutative
with respect to routes between nodes in the network [17].

A similar problem is network congestion. The network is working but it is very
slow preventing packages from reaching their destination before timeout. Though this
is not an error in the strictest sense, it is impossible to determine if the network is
slow or a host has crashed. This observation illustrates a fundamental problem with
asynchronous distributed systems and explains why there are no way to implement a
reliable failure detector by the means of message passing alone. Even though we use
TCP, which is a reliable transport and the message is almost guaranteed to reach the
manager eventually, because TCP cannot recover from massive network failure [71].
This have an impact on the use of passive replication.

1It may actually not be preferable to merge the meta data if themanagement of jobs have branched, due
to network failure, since the meta data should follow the individual executions.

8.3 Job Information and Job Data 77

Since we cannot prevent failure, we will examine three typesof inconsistent states
failure can result in. The three problems are lost jobs, job duplication, and jobs that are
managed by multiple managers. These will be discussed more in depth in the actual
model used for distributing the Job Manager.

The failure conditions means that additional measures should be implemented to
detect and correct these problems, i.e., there should be some mechanism for detecting
duplicated jobs. Depending on the method, we run the risk of killing all instances of a
job in case of failure. A solution could be to check if the job is already running, before
submitting making job submission somewhat idempotent. A job can be identified by
the job tag, and therefore duplicates can be identified usingthe tag.

The main function is the soft-state registration mechanism. The manager must
register with its failover managers, or the failover managers must check the master,
periodically. Furthermore the master must push any updatesin the jobs meta data to
the failovers. In order for another Job Manager to take over the management of a job,
it needs to have the job information.

In this section we disregard the byzantine failures, causing the Job Manager lies
about the jobs which it is managing. This have we done for two reasons; the mangers
get most of their info from the information system, and thus it is considered correct.
Furthermore, if the Job Manager lies about the job tag, the job cannot be located, and
a manager cannot do anything about jobs it cannot locate. This will result in identical
jobs running under different tags, an undesirable situation but difficult to prevent.

8.3 Job Information and Job Data

This section discusses how to ensure that the information and data associated with a job
is propagated between the managers. For a manager to be able to take control over a
job originating at another Job Manager it must have access tothe job information, i.e.,
job tag, job description (xRSL), and current job id. Furthermore, the manager must
have access to job meta information (submission attempts, etc.) and job data.

The main job data should be available as it has already been discussed, but the
manager also needs the job description, along with the meta data. Strictly speaking the
meta data is not necessary, since it only for information purposes and has no impact on
the possibility to submit jobs. However in the case of failure it would be preferable to
the user if this had been transfered along with the job description.

It is not possible to keep a consistent “state” of the grid [17]. As discussed in Sec-
tion 8.2, the only information in the current information system2 is the job id, and there
are no support for job tags. Furthermore all meta information regarding a job is not
available in the information system either. There are several ways to solve this prob-
lem. The information system could be modified to provide a wayto acquire the needed
information. The main problem with changing the information system, is that the in-
formation system is a core component of NorduGrid ARC, and since NorduGrid is a
production grid, it is unlikely that changes to the information system will be accepted.
This imposes severe restraints on our possibility to test the Job Manager and thus forc-
ing us to consider this during the design phase. One solutionto this predicament is
to let the Job Manager assume the role of information provider outside the scope of
the information system, for the purpose of job specific information. The problem with
this solution is, that it leads to ambiguity with respect to the location of information

2Actually the information is stored on the resources in the grid. The information system merely holds the
contact information of the contending resources

78 Distributing the Job Manager

in NorduGrid, as there are suddenly two places to locate the information. The proper
solution would be to extend the information system, but since this is not possible the
necessary job information should be transferred between the Job Managers by other
means. One way of doing this is to transfer the information upon registration, and then
subsequent push updates to the failover Job Managers upon changes in the jobs meta
data.

If the information was to be included in the information system, an LDAP schema
describing the Job Manager should be developed. As for all other resources in the
NorduGrid ARC, the information system would only hold the contact information and
the Job Manager should implement a service provider to answer queries about the Job
Manager as well as queries about jobs meta data.

8.3.1 Storage of Job Data

Another issue is the storage and availability of data associated with a job. For the Job
Manager to be able to submit a job it needs to have access to theinput data needed
by the job. This has to be ensured. Furthermore since the job is submitted by the Job
Manager all data residing on the client should be transferred to the Job Manager or the
grid before submitting. Several solutions to this problem exists:

• Have a storage area at every Job Manager where job data is stored. Such a storage
area may be necessary anyway for storing temporary data. Additionally the Job
Manager could register itself as a storage element and this way allowing data to
be transferred using the normal operations.

• Use some alternate mean outside the grid for storing data, e.g., Freenet, Pastry,
or Coda.

• Always use SE/RC to store job data, including input and output data, thereby
removing the problem of having the Job Manager manage the data and letting
the Grid Manager fetch the data.

All of these solutions raise some concerns. A storage area atevery Job Manager is
necessary under all circumstances, to store temporary data, when submitting jobs. But
registering it as a storage element and using it when submitting data does not improve
fault tolerance, since other Job Managers are not able to submit the job if the Job
Manager, holding the input files, crash. Also, since applications executed in a grid
environment can have rather large input data sets, it is alsoclear that job data cannot be
distributed between every Job Manager, as it would put unacceptable high load on the
network and require a lot of storage and bandwidth.

By using a storage element to store job data, the Job Manager becomes reliant on
another entity in the grid, thus substituting on single point of failure with another. If the
storage element becomes unavailable, for some reason, the Job Manager is unable to
submit jobs until the storage element is available again. This problem can be countered
by replicating the data on several locations in the grid, at the cost of additional traffic
and space.

The solution of going outside the standard grid element and using a foreign stor-
age partially solves the availability problems are solved.This idea poses yet another
problem, as the grid software becomes dependent on other services, such as a peer to
peer network, like Pastry or the Coda filesystem. It is important to consider quality of
service of the external services, e.g., the two examples both guarantees availability of

8.3 Job Information and Job Data 79

data and upper limits for searches, whereas Freenet does not[17, 64]. But the idea of
doing this outside the grid is not preferable, especially ifexisting grid resources can
already be used.

Replication is already possible in NorduGrid ARC, by means of the replica catalog,
the only drawback is that this method requires the explicit replication of data. However,
work is under way to develop a Smart Storage Element (SSE), which should provide
support for automatic replication [45]. Though the timeframe for the development is
not known.

In our opinion, the best solution is to use a storage element.Doing so prevents
the Job Manager of becoming dependent on other services outside of NorduGrid, es-
pecially since the needed replication is planned. This solution leads to relatively high
availability, but it has a problem since the storage elementbecomes a single point of
failure. This does however not lead to big concerns since most of the storage elements
are high performance computing resources, which have designated administrators, and
therefore the availability can be expected to be high. None the less it is still a single
point of failure and are subject to failure. As already described it is possible to replicate
the data manually on several storage elements using the replica catalog. Furthermore
the advent of the smart storage element delivers a solution to this problem and thus it
would be a waste of resources to solve this problem twice.

This imposes further requirements on the Job Manager, in order for this solution to
work, the Job Manager must check the job description to see ifall the needed data are
located at a storage element. If this is not the case, it is theresponsibility of the Job
Manager to upload the files, if available, and modify the job description accordingly.

8.3.2 Two Models

In this section we examine two models for distributing the Job Manager. The first
model takes some of the ideas described under active replication, though it uses a
primary-backup solution for replicating data.

In this model all Job Managers can handle request from the client. It differs from
the active replication, since the request are not submittedto all the mangers to keep
a consistent state. Instead data are replicated between theJob Managers. This makes
the model more communication intensive and raises concernsabout the consistency
of data, since the data is not replicated instantly, i.e., the Job Managers does not have
a complete picture of the state of the grid. The model illustrated on Figure 8.1, is a
rather “naive” approach and it is unnecessarily ineffective but none the less it serves to
illustrate the basic idea.

This model is rather communication intensive since job metadata of every job must
be propagated to every Job Manager running, every time a change occur. Since the
requests can only be handled by one manager, to prevent jobs being submitted multiple
times, the model requires that the managers coordinate every action performed on a
job. This requires that every Job Manager knows of each otherand they have a way
of reaching consensus. Even though consensus cannot theoretically be reached [17], it
should be possible to implement a satisfactory solution in our case, since the duplicated
jobs can be handled by other mechanisms.

However, this scheme also has problems in larger perspective since it does not scale
well. The problem is that any decision about a job must be coordinated between all the
managers. In addition to the distribution of the job data. The problem with the coordi-
nation of job management may not appear to be a problem since jobs often require no
attention between the time when they are submitted until they are finished. This usage

80 Distributing the Job Manager

Figure 8.1: A naive network of Job Managers. All information about jobs and Job Managers are
shared among all of the nodes in the network, resulting in a unnecessary high network load.

pattern may, however, change, as the introduction of a Job Manager, which provides
more control of the management process. A rise in the actual need for managing jobs
may lead to problems with management overhead.

A way to minimize the data transfer between the Job Managers it to use a model
based on passive replication. Furthermore we can also take advantage of the informa-
tion system. In this model we introduce the concept of a master manger. In this model
the master manger is the only one accepting requests from theclient, it then distributes
the data to the failover managers on the network.

Figure 8.2: The master is the frontend, which the clients contact. The information about the
jobs are propagated to the clients through the information system (some in formation has to be
pushed explicitly, e.g., the xRSL description, in the current information system). The failover
managers checks periodically if the master is alive.

By using the latter scheme, the scalability issues are less severe. Though the repli-
cation is still the same amount, there is only need for coordination if the master fails.
Furthermore, by taking advantage of the information systemthe amount of job infor-
mation that has to be transferred directly between the managers can be brought further
down, by only distributing the most necessary data continuously (e.g., list of managed
jobs), and let the failover get the rest from the informationsystem only when needed.
This model is illustrated on Figure 8.2.

8.4 Discovery Methods 81

There are some problems with the approach of using the information system. The
first is a practical obstacle: The NorduGrid information system does not support all the
information necessary, e.g., there are no support for submission attempts, old clusters,
job tags, and location of data. In order to support this model, the information system
therefore has to be extended. Changing the information system will have a tremendous
impact on the entire NorduGrid, and it will be hard to convince the developers and
users that this change is necessary without having demonstrated that the Job Manager
approach works.

This leaves us in a situation where the information system only hold job names
and current job status. The rest of the information needs to be propagated between
the master and the failover managers. If this scheme is used techniques to reduce the
amount of traffic between the Job Managers, should be used. One possible technique
is to lessen the number of failover managers which a particular master registers with.
This comes at the price of lesser robustness, all though thismay not be noticeable in
practice. This modification brings us closer to the previousmodel.

The fact that the improvements considered brings the modelsclose together, makes
us consider a hybrid model combining the two, could be considered, where a pool of
manages work together following the first scheme. At a higherabstraction level, the
pool is treated as one manager and the second scheme is used, this model could have
the advantages of both models, and make the system more scalable.

8.4 Discovery Methods

In order to achieve location transparency, mechanisms thatsupport automatic location
and discovery of the Job Managers should be in place. This issue have two sides:
Mechanisms for the application to locate a Job Manager when it is started, and methods
for the Job Managers to locate each other.

8.4.1 Application

From the clients perspective, the problem is the bootstrapping process of locating the
first Job Manager. When the first Job Manager is located rest can be automated. Ba-
sically the discovery can be done in two ways, either for the user to explicitly identify
the Job Manager, by address or hostname, or to query the grid resources.

The first approach is by far the simplest and it has some advantages, as well as some
disadvantages. The advantages are that it is likely that theuser know where the Job
Manager is running and therefore it is not a problem. This is of course a disadvantage
if the user do not know where the Job Manager is located, or if the Job Manager has
crashed and the user does not know of any other managers. The user may also have
some explicit knowledge of the capabilities (e.g., handles) of a particular manager,
and thus wants to have the jobs managed by this manager and nothave one selected
automatically.

The disadvantage is that this solution does not provide total location transparency
for neither the user or the application. This problem is not abig issue since the Job
Manager is most likely to be started by the user who uses it andtherefor knows the
location of it. The Job Manager have the mechanisms for automatically locate other
Job Managers, so when the application has located and contacted a Job Manager, a
list of known Job Managers can be fetched the application. This list could be stored
and used subsequently to automatically locate the new master in case of failure. It is

82 Distributing the Job Manager

important that the client locates the master manager, sinceit is the only one which are
able to make decisions about jobs running on the grid.

If the client should be able to locate the first Job Manager automatically, it would
need some way of querying the information system, to locate managers running on
behalf of the user. This solution constitutes a problem since it goes against the idea of
separating the grid functionality from the application by putting it into the Job Manager.
To be able to query the information system, the application becomes highly dependent
on Globus and NorduGrid ARC, which is not desirable. Anothersolution could be
to implement an LDAP module able to talk to the information system and have the
application link against it. The last solution my be feasible, but would require a lot of
work with relatively little gain.

8.4.2 Job Managers

The Job Manager should be able to run without user intervention, and support auto-
matic failover. Therefore it is necessary that Job Managerscan discover and locate
each other automatically.

When a new Job Manager is started, it needs some way to locate other managers
belonging to the user. In Section 8.3 several solutions to the problem of information
sharing was proposed, one was the storing of contact information in the information
system. This solution would solve the problem, as a new Job Manager could query the
information system, getting a list of job managers it could register with.

This solution is not without problems. One of them, the implications of modifying
the information system have already been discussed. Additionally the selection of Job
Manager to register with may have consequences of how failsafe the system becomes.
As an example, it is not a good idea to register with a Job Manager running on the same
host as the registering Job Manager3 but also to have the manager running at different
geographical locations. This illustrates that the networktopology is important, but it
most likely not possible to ensure a geographical distribution automatically. Some sim-
ple heuristics taking domain names and ip-ranges into account could be developed, but
the user should have the possibility of overriding the default behavior of the registration
process.

If the Job Manager is to be used in a production grid, the information system should
be changed to be able to describe the Job Manager. This is not possible for test pur-
poses, but we have been able to place the contact informationin the information system
in a slightly odd way, as we will see in the following.

8.4.3 Job Manager Contact Information

This section describes two things: The contact informationneeded for a Job Manager,
and how we will to use the information system for Job Manager contact information.

To contact a Job Manager the location, in the form of a hostname and a port number,
is needed. This is the least amount of information needed butadditional information
to make selection process simpler should also be provided. This information includes,
the user which is running the Job Manager and which Job Manager group it belongs
to, see Section 8.5, and possibly a list of capabilities. Furthermore some additional
information regarding multiple users and certificates may be necessary in the future.
This includes, the users allowed and the certificate of the Job Manager.

3The idea of running two managers at the same host may seem likea bad idea, but there can be arguments
for doing it, e.g., different capabilities to support special demands of some jobs.

8.5 Model for Distributing the Job Manager 83

If the Job Manager was to be regarded as the other resources inNorduGrid it would
be described in an LDAP schema in the information system. It would serve as a part
of the information system responding to queries and providing contact information to
the information system. Since this is not possible without modifications, we push the
information provider responsibility to the information provider on a random resource.

To do so, we exploit the fact that job information can be queried from the infor-
mation system, until the jobs session directory is cleaned on the cluster. This is done
automatically by the Grid Manager after a specified time, usually 24 hours. By having
the Job Manager submit a “contact job” to the grid as one of thefirst actions it performs
when it is started, the information abut this job is placed onthe cluster to which the
job was submitted and can be queried through the informationsystem. The job itself
does nothing, e.g., sleeps for one second and exits, but in the same way as job tags, see
Section 7.2, the name carries the information needed to contact the Job Manager.

To register with a Job Manager a query is sent to the information system to locate
contact jobs. Since job information can live for a long time,it is important that the
contact jobs are time stamped in order to identify the newestof two or more identical
jobs. Additionally the Job Manager should clean up its old contact information when
possible. This means that old contact jobs should be cleanedwhen shutting down, and
when reregistering after a crash, if possible.

This method is only for testing purposes but should work, as long as the cluster
holding the job information is still on the grid.

8.5 Model for Distributing the Job Manager

We now look at the specific model used for distributing the JobManager. This model
takes the previous discussion into consideration and it uses the information system as
the basis for discovering other Job Managers. The Job Managers are grouped together
and one manager in the group is designated as the master. The master accepts and
handles all request. If the master should fail another Job Manager takes over the man-
agement of the jobs.

Without a reliable failure detector there is a risk of job duplication. As an example,
consider the situation where a manager is suspected to have failed, but it has in fact been
separated from some of the others due to a network partition or congestion preventing
the registration message to reach the failover in due time. We disregard that a sepa-
ration would likely also have separated some the Job Managers from the grid and the
jobs being managed. A network failure can be both intransitive and non-commutative,
causing an election to be called on the one side of the partitioning. This election would
result in a new manager in charge of the jobs. There are two outcomes of this scenario,
see Figure 8.3. Either the same job is being managed by two managers, which can see
the job but not each other. The other situation is that a duplicate job is being spawned
by the new manager, because it cannot locate the job, and it isthus determined to have
failed.

It may be unlikely, but possible that the Job Manager and resource could be sepa-
rated from the other Job Managers. In order for this to happenthere has to be a GIIS
on every side of the network partition. An example could be tohave a Job Manager
running in Sweden and one in Denmark. If the connection between Denmark and Swe-
den breaks down, there is still a GIIS on both sides of the split. The jobs managed by
the manager is duplicated on both sides of the partition. No matter what side the client
runs on it still have access to the job, though one of them havebeen resubmitted.

84 Distributing the Job Manager

(a) Before (b) One job multiple man-
agers

(c) Job duplicated

Figure 8.3: A network partitioning can have different results. (a) shows the initial situation,
where the manages can soft register with each other. In (b) the route between them have disap-
peared, but the job can still be located by both. Manager 2 accidentally thinks manager 1 has
crashed and begins to manage the job. In (c) the information is not available across the partition
and results in the job being duplicated.

8.5.1 Election

If there are several managers, that can take over the management of the jobs belonging
to the failed manager, a mechanism for determining which manager should be elected
is needed. To determine how this should be done we look at standard algorithms for
leader election in distributed system [17]. This is of causedependent on the level of
distribution. If the relationships between the Job Managers are one-to-one, then the
method for eliminating duplicate jobs are pretty straight forward as the manager which
took charge of the management just returns it to the owner on subsequent registra-
tions. In this case the original owner determines if the job was duplicated and kills the
duplicate that has run for the least amount of time.

We look at the “bully” algorithm, since it is fairly simple, it allows managers to
crash during an election, and it can handle concurrent elections. The algorithm is
described in detail in [17]. The algorithm requires that theprocesses knows how to
communicate with all the other mangers. In addition the managers should have a total
ordering and the managers know of this ordering. This ordering should be based on the
Job Manager id.

8.5 Model for Distributing the Job Manager 85

An election algorithm should have two properties, which we will look at briefly [17]:

• Safety– All participating processes eventually agrees on electing the (non-crashed)
process with the highest identifier.

• Liveness– All processes participate and eventually elects a process, or crash.

The algorithm is as follows, if a manager has determined thatthe master has failed it
checks to see which manager has the highest identifier. The manager then sends an
election messages to the managers with higher identifiers. It then waits for acknowl-
edgments from the managers it has just contacted. If the manager receives no replies
before a timeout it assumes that the managers with higher identifiers have failed. It
then elects itself as the new master and sends a coordinator message to all managers
with lower identifiers. If the manager already has the highest identifier, it sends a co-
ordinator message to all the other Job Managers. This ensures the manager with the
highest identifier gets elected and there are no ambiguity4. There is another problem
though, the process cannot guarantee, the safety property,that only the manager with
the highest identifier gets elected. If a new manager is started, it calls an election, if
it has the highest identifier it becomes the master. The algorithm assumes the system
is synchronous because it uses timeouts to detect manager failure, but it has a prob-
lem: If a manager is restarted with the same identifier as replacement for a crashed
one before the end of the election, it may announce itself as the master, but since there
are no ordering in the message delivery, the clients can haveelected different masters.
This problem is similar to the problem with network failure.Especially in the election
process, where a manager is presumed to have failed if it doesnot reply to an election
message.

However, the problems that may arise from failure may be doubly managed jobs
or multiple identical jobs running on the grid. These problems will be handled by the
master manger.

8.5.2 Master Manager

To counter the problem of job duplication we introduce the concept of a master man-
ager. Every job has a master manager assigned to it. If the master manager fails, then
job control is transferred to another as described above, but if the master subsequently
registers again, job control is transferred back to the master chosen by election. This
scheme ensures that there are only one manager5 to make decisions regarding a job.
The situation where the response to an election, did not reach a failover, causing a job
to be managed by two managers, will remedy itself, when the master registers again.
When this happens the failover must call an election to transfers control back to the
master, which is then the sole manager of the job.

If the managers have been separated by a network partition causing a job to be du-
plicated, the duplicated jobs run concurrently until the network gets reconnected. This
can actually be a good thing, since the client can be located on either side, and the
duration of the network partition may be very long. Wheneverthe network partition
disappears, control of the duplicate job is returned to the master – remember that dupli-
cates can be identified since they have identical job tags. Itis now the responsibility of
the master manager to eliminate one of the jobs. The most straight forward heuristic is

4This is true in a synchronous system with known upper bounds for message round trip times.
5A part from the some failure conditions which can result in more than one manager. But we will deal

with these later.

86 Distributing the Job Manager

to cancel the job that have been running for the least amount of time, but other factors
may be taken into account. Due to the complexity of this subject, the behavior of the
Job Manager should be configurable.

Another problem is that a network partition may result in thesubmission of a lot
of jobs. There is currently no way to prevent this, but heuristics to determine the type
of failure may be a solution. However this is not something that time allows us to dig
deeper into, as it is a project in itself6.

The introduction of a master manager does not in itself solveall the problems asso-
ciated with duplicate jobs. Imagine if the failover manager, managing a job on behalf
of a master assumed to have failed. If this manager also fails, and another manager has
to take over the management of the jobs.

The manages periodically polls the information system to see if there are new mem-
bers of the group. Doing so would also make the failover discover if the original master
reappears. If the master reappears the failover (and the master if it was restarted) calls
an election, which should result in the master being elected. Since the information sys-
tem is not changed, the failover has no way of determining if the contact information
is old, or the master never failed. To account for this, the failover must periodically
check if the old master still responds, and if so call an election, to ensure that there is
agreement about which is the master.

Whenever a master is reelected, the failover should transfer the meta data back,
and the master should check duplicates of jobs. If the masterdid not fail, it can safely
discard the meta data, but if it was restarted the meta data should be considered valid.
The process is illustrated on Figure 8.4. This design puts the responsibility on the
master to handle cases of duplication. By putting it on one specific manager makes it
easier to write handlers to specify what to do in different situations. For this scheme to
work, it is important to ensure that the master cannot forgetabout jobs it have managed,
this can be done by the session management7.

As an alternative a list of managed jobs could be piggy backedon acknowledge
messages sent to the failover managers. This requires a lot of unnecessary bandwidth
since the list does not change as often as the manager registers.

The best solution is to make sure the manager does not “forget” about a job. This
means that the master must save the settings before distributing the information about
the job. This makes election of a new master the event that should trigger handling of
duplicate jobs.

If a manager for some reason does not want to be the master of a job anymore, e.g.,
it is shutting down, it should be possible to transfer job control to another manager by
pushing it onto one of its failover managers. To do so, the master calls an election,
by sending an election message to the failover manager with the lowest id. The elec-
tion runs as normal, but the original master does not respondto the election message,
thereby ensuring that another manager gets elected.

8.5.3 Manager Groups

The idea of letting all Job Managers belonging to a user be member of one group is
generally fine, but there are some scalability issues involved if the job data are to be

6Some experiments with benchmarking are being performed [73], and it may provide be a tool to develop
better heuristics for determining which duplicate to kill.

7This is guaranteed even if the session is alway saved prior tosubmitting jobs. It is, however, reasonable
to assume that if a Job Manager fails in a way that destroys thesession, then it has also forgotten about its
prior id, and will be considered a new manager by the others inthe group.

8.5 Model for Distributing the Job Manager 87

(a) (b)

(c) (d)

Figure 8.4: How failure is handled by the Job Managers in a group. The failover managers
periodically checks if the master is responding (a). If it fails an election is called by the failover
that detects it. The election is done by sending an election message to the managers with higher
identifiers (b). If the manager receives an answer from a manager with a higher identifier it waits
for a coordinator message (c). The manager with the highest identifier sends a coordination
message to the managers in the group (d).

replicated on a lot of managers. This is not a problem if a useronly starts a handful
there should be no problem with the messages sent between thejob managers.

Another purpose of groups is to provide a way of separating job managers from
each others, making it possible for the user to start groups of managers with different
capabilities, without disturbing each other.

8.5.4 Other Considerations

For this design to work, there is some requirements to the JobManager contact in-
formation. This information includes the identifier of the Job Manager and the Job
Manager group to which it belongs. The id is generated like a job tag, see Section 7.2.
With a few differences; it is prefixed by three % signs, then the name of the Job Man-
ager group, and lastly a hash to ensure different values for the identifier. The hash
is used as the identifier on which the election is based. In order to be able to dictate
the master, the hash is prefixed by a value. By using a high value as a prefix, it should
be possible to generate the highest identifier in the group, thereby becoming the master.

jm-name%%%jm-group%prefix(hash)

88 Distributing the Job Manager

If the master fails, the application should have some way to contact the failover man-
ager. This means that information about failover managers must be propagated back to
the application. This should be done the first time the clientcontacts the master man-
ager. The contact information should be a list of possible managers to contact if the
master fails. This list should be ordered according to the identifiers, so the application
can query them in turn, to locate the one which is managing thejob.

The communication protocol the managers use internally should also be based on
the XML-RPC server, since it is already implemented in the Job Manager and there is
no need to add to the complexity of the Job Manager.

8.6 Implementation

This section describes some of the implementation details of the Job Manager commu-
nication module. We start by examining the interface to other Job Managers.

• alive()

Used to check if the Job Manager is alive. Returns 08.

• update_status()

Called from the master to explicitly update the job data. If the job is not known
by the callee, then the job is added to the list of jobs to manage if the master fails.

• coordinator(identifier)

When this function is called the manager sets the current coordinator to this. If
the identifier is lower than the managers own identifier, another election is called.

• election(identifier)

When this function is called the manager setsmaster = None and callselection

on managers in the group with higher identifiers. If all the calls to election times
out, the managers are assumed to have failed. In this case themanager sets
master to its own identifier, and callscoordinator() to managers with lower
identifiers. When this is doneremove_duplicates() are called.

The election is based on the timeouts in the XML_RPC, and thistimeout is used to
determine if other managers have failed.

Internally there are functions to perform the tasks of updating the information sys-
tem and monitoring jobs.

• initialize()

Calls the configuration and session modules and updates the internal settings.

• submit_contact_job(target_list = None)

Called when the manager restarts. It creates a job description with name set to
the identifier and submits it to the targets intarget_list . If no targets are
provided it submits a job to a random cluster.

• remove_duplicates()

Called upon election this function queries all jobs belonging to the group and
tests if there are jobs with identical job tags. If this is thecase the one that has
been running for the least amount of time.

8XML-RPC calls are not allowed to return the empty value.

8.7 Summary 89

• start_election()

When this function is called. The manager starts an electionby callingelection

on managers which has a higher identifier than itself.

• locate_managers()

Queries the information system to for contact jobs. Once retrieved, the list is
sorted to hold only managers from the same group as indicatedby jm_group .

• generate_id()

Generated an unique identifier, if master is set in the configuration it tries to
generate a higher identifier than the managers running, by prefixing the hash
with a large value.

• job_info_update()

When this function is called, the Job Manager updates the jobinformation if the
job is known, if not, the the job is added.

The module has internal data structures used to keep track ofthe other managers.

• managers – Holds a list of manager objects ordered by identifiers.

• jmgroup – The group to which the manager belongs.

• master – Variable holding the identifier of the current master manager. If an
election is in progress this variable is set to None.

8.7 Summary

This chapter displays the problems when working with asynchronously distributed sys-
tems. We have seen that, there are no way to prevent jobs from being duplicated or the
loss of management due to byzantine failures. This is not a surprise since it is founded
on well known results of research in distributed systems. However, the scheme we have
proposed improve availability and if it is implemented correct makes it less probable
that a failure will result in lost jobs, but may cause result in duplicated or multiple
managed jobs. This is not as big a problem in the current NorduGrid, but in a grid
with accounting, the risk of occasionally loosing a job, maybe preferable to having
the same job run multiple times. This scheme will be hard to enforce with the current
algorithm since it does not guarantee that only one master iselected.

From this chapter it is clear that the information system should be extended to
support the Job Manager. Furthermore if the Job Manager becomes a resource like
other resources in NorduGrid it is possible to use the information system for failure
detection, since a soft registration mechanism is already implemented here. In this
case the Job Managers would check if its failover managers are still alive by sending a
query to the information system. If the contact informationis present, the Job Manager
has checked in recently and can be considered to be working.

This does not have much impact on the implementation, exceptchanging the regis-
tration mechanism to register with the information system,and implement an additional
check for live managers against the information system. This can be combined with
the discovery of new managers without much trouble.

Chapter 9

Future Work

This chapter presents ideas and suggestions for improving the Job Manager further.
These ideas where either cut out due to time constraints, arrived later in the develope-
ment process or was not considered to be a part of the Job Manager when creating it,
leaving it out. The ideas presented in this chapter is: Usinga database for job infor-
mation, the extensions to NorduGrid ARC to support the Job Manager, multi user Job
Manager and finally meta jobs.

Currently the Job Manager serializes the job list to disk at regular intervals. This is
done as a form of check pointing, making it possible for the Job Manager to recreate
its former state after a crash or restart and recover gracefully. Unfortunately such a
serialization can become invalid if the Job Manager crasheswhile performing it. In-
stead of using this technique to store job data, a database could be used. Most database
systems has what is called ACID properties [65]. The A in ACIDstands for atomicity,
which means that something is either updated or not, no stateexists between the two.
Having this property when writing the session it would always be consistent, ensuring
that the Job Manager would always return to a consistent state. This state would be
relatively new since the job descriptions are kept in the database, and not just serialized
at a certain interval. Using a fully fledged database system will make the Job Manager
quite heavy, so the database system should be light weight. An example of such is the
Zope Object Database [16], which is written in Python, meaning that no wrappers are
necessary, making it a good choice.

As mentioned several times in the report, it would be nice to extend the xRSL
language and the information system to have support for the Job Manager. For the
xRSL language, this would be an extension that makes it possible to carry meta data
with the job, such as previous clusters and submissions attempts. The information sys-
tem should also make this information available; perhaps only through authenticated
queries, since it is not all users that wants job meta data exposed. The information
should also have support for tags, as a way to identify instances of the same job. Fur-
thermore the information system should support the Job Manager as a resource, making
it possible to query the information directly for Job Managers, instead of the current
method, which submits “contact jobs”, for the other Job Managers to query after. This
solutions is hack. For any of these changes to happen, the JobManager would first
have to prove it worth, becoming an integrated part of the NorduGrid ARC, proving its
worth. Even if this would happen it is unlikely that such support would come, unless a
part of the NorduGrid ARC would be redesigned.

It was mentioned in Section 4.3.4 that it was not possible forthe Job Manager to

92 Future Work

support multi user due to constraints in Globus and the NorduGrid ARC. The limita-
tions in NorduGrid ARC are mostly due to the constraints inherited from Globus. If the
NorduGrid ARC was to be leveraged from the Globus dependency, it should be possi-
ble to make the Job Manager work for multiple users. However this would remove the
ability for the users to make their own handler, since would jeopardize the stability of
the Job Manager. However it could be imagined that both single user and multi user
Job Managers could co exits, providing the best of both worlds.

Finally the idea of meta jobs will be presented. The Job Manager already makes
it possible to submit jobs and monitor jobs. If any of these jobs has dependencies on
each other, e.g., some jobs need the output files of other jobsas input files, the user
or application will have to coordinate this. Meta jobs makesit possible to describe
dependencies between jobs. To make meta jobs possible a new language which makes
it possible describing dependencies, and splitting a job into parts automatically would
have to be created. Devising such a language is a major task, and it is not clear for us
how useful this feature is. However Job Managers and meta jobs are a perfect match
since the a Job Manager can continuously monitor jobs and react to them; relieving the
user or application to do this themselves. If this idea is to be realized it should first be
investigated whether or not there is a need for this, since creating such a system is not
simple task.

Besides the specific ideas presented, it is possible that newrequirements may arise
if the Job Manager is used. We hope that the Job Manager can take place in a production
system, where it is used to monitor jobs. If this is the case new requirements will
certainly arise, but we hope that the handler concept will make it easy to extend the
way jobs will be handled.

Chapter 10

Conclusion

In this project we have constructed an advanced flexible job management system. To
create this system we drew from the experience gained when creating NG Proxy. The
main experience from NG Proxy was that it was possible to automate tasks by provid-
ing a daemon. However NG Proxy was very inflexible, and was notgeared to fulfill
the wishes of feature request. Ranging from migration of jobs to automatic data man-
agement. Another problem with NG Proxy was its interface, which was extremely
inflexible. Furthermore NG Proxy was a single point of failure, a feature unwanted in
production systems.

With these issues in mind we designed the Job Manager, to be more flexible than
NG Proxy. Furthermore we wanted to create a way for application to use the grid, since
the existing command line interface is not suited toward this. We decided that the Job
Manager should feature a protocol as its interface. To cope with feature request we
designed the Job Manager to be extensible. Therefore a plug-in structure was created,
making it possible for users to extend the functionality themselves. Finally the possi-
bility of having a failover Job Manager was introduced; avoiding the single point of
failure existing in NG Proxy.

Part of a production system is to automate trivial tasks, butalso to monitor the grid
and react to changes. By making the Job Manager aware of the state of the grid by
collecting information it is possible to make the Job Manager react autonomously.

10.1 Achieving the Goals

One of the main purposes of the Job Manager was to provide a simple, yet powerful
interface to the NorduGrid ARC. The reason for this was to make it more simple for
applications to interact with the grid. We wanted to make something complex simple,
to attract users to the grid.

Making the functions available to applications could be done in two ways, either
through an API or through a protocol to a separate application. We opted for the sec-
ond since it makes it possible to move general grid logic awayfrom the application.
By having the Job Manager deliver an API through a standard protocol, XML-RPC,
applications can use the Job Manager as an interface to grid,reducing the amount of
grid code in application.

Also, the Job Manager can keep running when the application is shut down and in
addition different applications can be used to connect to the same Job Manager, e.g.,

94 Conclusion

an application, a web portal, or a lightweight client for a portable device.
All these features makes the Job Manager a platform for application development

and delivers a simpler view of the grid to the application, making it simpler to develop
applications for the grid.

The Job Manager provides flexibility through handlers, which enables the user to
redefine what actions should be done to a job when a state changes. This makes it
possible to specialize the Job Manager to different types ofjobs and applications, e.g.,
requiring only resubmissions in special cases. This gives new possibilities to users,
since they can tailor the Job Manager to fit any special needs.

In a highly distributed system as grid it is important that there are no single points
of failure that can bring the system down. We have extended this philosophy to also
include the Job Manager. In order to make it resilient to failures it is possible start
several managers and having them work as failover managers.

This introduces some complexity into the design of the Job Manager but it has been
necessary to provide resistance to failure. We chose primary-backup solution because
of its simplicity, and because we believe that it is enough tosupport the needs of most
users. There are scalability issues, but due to the expectedusage we do not foresee this
to be a problem, i.e., most users will only have one or two managers running,

To make the distribution work we have had to make some “hacks”regarding dis-
covery of job managers. This have made the solution more complicated than if the
necessary information had been in the information system. It is necessary to make the
Job Manager integrate better into the NorduGrid ARC if it is to be used for produc-
tion. However we feel that the current solution is adequate to gain some first real life
experience with the Job Manager.

There are still some problems distributing certain information like the job descrip-
tion, and meta data. These data are distributed directly between the Job Manager, but
this may not be preferable in the long run and another way to support this information
may be a good idea.

10.2 Extending the NorduGrid ARC

During the design of the Job Manager it became clear that the NorduGrid ARC had
to be extended in order to make the Job Manager integrate seamlessly into the toolkit.
However instead of rewriting NorduGrid ARC components, we focused on making the
Job Manager work. This has led to ad hoc solutions in some areas where we decided
not to change NorduGrid ARC components. This was done because we felt that the
Job Manager should prove its worth, before making changes tothe NorduGrid ARC. If
so, the developers would have an incentive for integrating it into the toolkit.

There was parts of the NorduGrid ARC that it was necessary to modify in order
for to create the Job Manager. This was mainly minor changes,e.g., adding empty
constructors to classes, in order to be able to create wrappers properly. It should not
pose a problem to integrate these changes into the NorduGridARC.

During the development of the Job Manager, several shortcomings where found
in the NorduGrid ARC with respect to the desired functionality of the Job Manager.
One of them is that there are no way of determining if two running jobs are different
instances of the same job, which the Job Manager need. In order to provide the needed
functionality this had to be possible. Therefore we introduced the concept of job tags to
accommodate this. Tags expand the job concept in NorduGrid,by making it possible
to track a job through several executions from the same job description, since tags

10.3 Caching 95

are persistent between submissions. This stands in contrast to the single instance job
concept in the current NorduGrid architecture. Tags also make the communication
between the Job Manager and the application more consistent, since one identifier can
be used even though the job gets moved or resubmitted.

Another limitation was that it is not possible to introduce new types of resources
to the grid. This became a problem since the Job Manager should be regarded as
a resource, and need to be discoverable. We came up with a solution of submitting
contact jobs. This is not the right solution, but it is enoughfor testing the Job Manager.

If the Job Manager is to be used in a production system, the changes proposed
should be incorporated into the NorduGrid ARC, but this decision is up to the users
and the developers. For the time being the Job Manager will work as it is supposed to
though.

Other changes to the NorduGrid ARC, is that it should be considered to phase out
the Globus dependency, even though some components rely heavily on it. The infor-
mation system might as well be based on standard OpenLDAP andthe authentication
could be achieved through other means. Removing the Globus dependency would be
the first step toward supporting multiple users at a single Job Manager.

10.3 Caching

The Job Manager delivers a simple caching functionality, allowing it to reuse former
queries. The need arose since no caching is done in NorduGrid. Since the Job Manager
can potentially monitor and manipulate large sets of jobs, this might have lead to Job
Manager using large amount of time querying the grid. Therefore we decided to cache
information into the Job Manager.

Caching is by some regarded as a problem, but in a large distributed system caching
is almost necessary for it to be scalable. The Job Manager does not use the valid-
from and valid-from fields in the information system, since these are hard obtain in
the present system. This, however, is not a problem the Job Manager only uses the
information for a short while, before throwing it away. Alsothis fits along with what
we believe is the most common use pattern for information: A lot is needed over short
amounts of time, for then not be needed for a large amount of time.

The the interface to NorduGrid Information System and the cache system in the Job
Manager, may be to simple. The problem is that the module has no way of knowing
what information the caller needs. This makes the modules fetch extensive amounts of
information, which may not be necessary.

10.4 Language Choice

As described we decided to implement the Job Manager in Python. We have been very
satisfied with this choice as development in this language isvery rapid. Python supplies
a great module collection, relieving the developer of implementing basic functionality
and focusing on getting the application to work. It is our belief that such high level
languages offers more compared to low level languages. If speed is a concern, one can
often implement a part of the program in a low level program, create bindings and use
a high level language for the rest.

Some of functionality in NorduGrid ARC has been reimplemented in Python. This
has mostly been the monolithic functions, which where necessary to reimplement to

96 Conclusion

get the desired functionality. This was refactored into more modularized code, mak-
ing it possible to extend certain parts of the NorduGrid codebase. Some of the code
developed for the Job Manager can be used to replace some of the existing NorduGrid
code since it implements the same functionality, but in a more modularized way, e.g.,
pluggable schedulers.

10.5 In Conclusion

The purpose of the Job Manager has been twofold. Firstly the Job Manager addresses
the need for an automated production system, delivering needed functionality to the
users. We have addressed part of the need for a production system and the Job Manager
delivers a framework, or a platform, for a production system. Secondly it addresses
another issue concerning the difficulties of developing applications by making a cleaner
interface working over a standard protocol. We have made theinterfacing with the
NorduGrid ARC more accessible and made it possible to develop applications on a
multitude of platforms.

By providing a simple interface to the grid, the Job Manager delivers a host of new
possibilities for the usage of the grid. If this is enough to “lure” users and applications
to the grid remains to be seen, but hopefully it will attract more applications and users,
as grid technology offers new possibilities in several areas of computing.

Appendix A

Proposal for a new User
Interface in the NorduGrid
Toolkit

A.1 Introduction

This paper presents a proposal for a new design for a user interface and job manager for
the NorduGrid Toolkit. It presents the goals and requirements of the new user interface,
describes what capabilities it should provide, and what advantages it gives compared
to the existing user interface. We start by describing the previous user interface in the
NorduGrid Toolkit. Its features and short comings are described, explaining what it
does and why a new architecture is required.

Hereafter the new design is presented. First an overall description is given, where
after each logic part of the design is explained. An important part of the design is that it
can (and must) co-exist with the existing NorduGrid commandline tools. This criteria
was important during the design, and the design can be considered both a new design
or an extension to the existing. Finally a road map for the implementation is presented.

For those not familiar with the job manager1. The job manager is a daemon, running
on the client side, monitoring jobs and acting on changes on their state. In its current
functionality it is able to resubmit jobs if the fail.

A.2 The Existing User Interface

The existing user interface in the NorduGrid Toolkit is a group of command line tools.
A brief overview of these tools are given in appendix B. Thesetools are invoked by
the user, to submit jobs, query the status of existing jobs etc. It is not possible to
automatize actions like fetching output files after job completion. This is due to the
commands only acts when explicitly told to do so by the user. The NorduGrid Job
Manager has delivered proof-of-concept that an automatized reactions on events are
possible, making the client side in NorduGrid more aware of the state of the grid and
acting on changes in the job status.

1Formerly NG Proxy

98 Proposal for a new User Interface in the NorduGrid Toolkit

Also no sane API for submitting jobs and querying information about them are
available for applications, making it hard for applications to reuse parts of the exist-
ing user interface. This makes development of applicationswhich wishes to actively
integrate with NorduGrid somewhat hard.

All these issues and examples of improvements makes it desirable to develop a new
user interface that facilitates a more feature rich interaction between the user (applica-
tion) and the grid.

A.3 Goals and Requirements

The section describes the motivation for creating a new userinterface. These reasons
can be expressed in the term of goals for a new user interface and are summarized
below.

• Flexible job control - The user interface should support a more fine grained
control over the different aspects of job control (e.g., scheduling, submission,
resubmission, and data management)

• Application interface - It should be possible for applications to access and use
the functionality provided by the user interface and thereby interact more closely
with the grid.

These goals give rise to several requirements which the new user interface must meet in
order to achieve the goals just described. These requirements are summarized below:

• Modular User Interface - To make it possible to extend, or add parts of the
underlying functionality, the current user interface mustbe made more modular,
providing easier access and more flexibility from a developer point of view. This
modularity will, e.g., allow different schedulers to co-exist.

• Providing an API/Protocol to applications Currently the primary way of sub-
mitting jobs is to use the command line toolngsub . This makes it hard for
applications to use the user interface. Giving applicationan API or a protocol
which they can use to communicate will make it easier for applications to use
the NorduGrid Toolkit.

• Back wards compatibility - In order for a new user interface to be used, the
existing command line user interfaces, i.e., ngsub and friends must continue to
work as they did before, while not imposing any new requirements on their users.

• Job Manager - Integrating the Job Manager into the user interface, giving the
user a way to supervise jobs and fetching output files automatically etc.

• Handlers - The user interface should support the possibility of extending or re-
placing existing functionality in the job manager by creating handlers for differ-
ent aspects of job control and using these as modules supplying the user interface
with new or extended functionality.

To meet these requirements we must create a new design. This design will be discussed
in the next section, along with the implications it may have on the existing NorduGrid
implementation.

A.4 New User Interface 99

A.4 New User Interface

Language Bindings

UI functionality
(e.g., submitjob, query, upload, download)

Job Manager

UDS / Net Listener

Protocol

Existing
command line
tools(ngsub)

Application Advanced
User Interface

Application

Figure A.1:Overview of the design.

On figure A.1 an overview over the new design is presented. Thelower layer cor-
responds to the current functionality in the existing user interface, made modular. This
makes it possible to extend or add parts of the user interfacemore easily, while also
making a more fine grained API. Such a change will give applications and the job man-
ager more flexibility, since it can use more fine grained functions, and not monolithic
functions spanning several hundred lines of code.

Above the UI functionality sits the existing command line tools. These will use
the functionality provided by the lower layer. To access theunderlying functionality
language bindings will be created, making the functionality accessible for applications
using a high level language. These bindings should be accessible from several lan-
guages, meaning that generated bindings should be preferred.

A special application will be the job manager, which will be acontinuation of the
existing job manager.The job manager will be probably be rewritten in a high level
language like python, using the language bindings just described. The job manager
should have support for various handlers, that is, reactingon certain events, like job
completion or failure, making it possible to collect outputfiles or resubmit jobs auto-
matically. We aim to make an interface for implementing suchhandlers, so it will be
possible to write new handlers (especially since people have a lot of ides for use of the
job manager) and choose between the existing ones.

The job manager will listen for commands, either on a Unix domain socket and on
a net listener, enabling applications to use the functionality of the job manager. One
of the major problems with the current job manager is that there exist no real protocol
between it and its applications. It is clean that an existingprotocol should be used. The
protocol should support the needed functionelity and be simple to use and program

100 Proposal for a new User Interface in the NorduGrid Toolkit

against. Requirements for the protocol should be examined as well as a way of doing
authentication.

The first application to use the job manager should be a new command line user
interface, which will have the functionality of current user interface, but will also be
able to use the functionality provided the job manager. Other applications building on
top of the job manager could be a web interface / portal. One could also imagine a
WRSF job submission service to run on top of the job manager.

A.4.1 Issues with the design

So far, the design is very general and a lot of details has not been set in stone. A list of
some of the most critical issues are listed.

• InterfacesA lot of interfaces for, e.g., handlers and schedulers has not yet been
defined. This interfaces are important if it is to become possible to plug-in new
schedulers and handlers. Must be flexible and relatively easy to code against.
Feedback on this is very welcome.

• Protocol We have not decided on a protocol yet, but it will probably come down
to XML-RPC or web services. Other options are CORBA and Jabber. CORBA
seems like overkill though. The protocol must support authentication with X.509
certificates. Jabber does not appear to support this. Discovery of capabilities
should also be supported (XML-RPC and web services support this.

• Remote use of Job ManagerA lot of issues arise when using the job manager
remotely. E.g. should upload of files go through the job manager or happen
directly from the submitter to the cluster.

A.5 Road map

The new user interface build on the existing user interface in the toolkit. The user inter-
face currently contains almost 12.000 lines of code; throwing this out, and starting all
over is a daunting task. Instead we aim to change the user interface into something that
meets the requirements, using an evolutionary approach refactoring the components
over time while keeping the old tools and maintaining a certain level of back wards
compatibility.

1. Design (your reading it). Determine the structure of the new user interface, how
it interacts with other components. Locating critical points in the design.

2. Post the document to the nordugrid-discuss mailing list.Hopefully get some
constructive feedback, second opinions and flames :-).

3. Modularize the functionality of existing the user interface, thereby creating (and
determining) an API for the user interface to export.

4. Create bindings for the user interface, making it possible to use the functionality
from other languages.

5. Determine the protocol for the job manager to use.

6. Implement job manager with lots of new features and options. New job manager
will be written in python (most of the new functionality will).

Appendix B

The NorduGrid Command Line
Interface

The command line interface in NorduGrid.

• ngacl Get and set access rules for remote files on gridftp servers with gacl sup-
port.

• ngcatShows output of job

• ngcleanCleans up after a job by removing files on the cluster.

• ngcopyCopy from URL to URL.

• nggetDownloads output files of a job

• ngkill Kills a job on a computing element.

• nglsLists contents and attributes of objects on a rc.

• ngremoveRemove file at URL (replica catalog).

• ngrenewRenews proxy certificates of jobs

• ngresubResubmits a job.

• ngstatObtains status of jobs

• ngsubSubmits jobs

• ngsyncSynchronizes local job list with global list.

Appendix C

Generating SWIG Wrappers

This appendix describe the creation of Python language bindings to the underlying
NorduGrid ARC code. This appendix describes how we have usedthe tool Swig to
create bindings to this.

Basically there are two ways to create binding to another language; either writing
them by hand, or using a tool to automatically generate them.Generally the creation
of bindings require a lot of code, but it is rather simple and can therefor easily be
automatically generated. Since we have no special needs that require that we write the
bindings our selves, we have chosen to generate the necessary code.

There are several tools which can be used for automatic creation of bindings; one
of the most popular are the Simplified Wrapper and Interface Generator (Swig)1. It is
a popular tool for creating C/C++ language bindings to Python 2 which is one of the
reasons for choosing it to create bindings to the NorduGrid and Globus code.

C.1 Using Swig

When using Swig there are two ways of generating bindings to functions classes and
their respective methods, written in C++ file. Either by supplying it with the header file
letting it generate bindings to everything specified in the header file. This approach may
not, as in our case, always be preferable. Either because we do not want bindings to
everything, or because there are some statements in the header file which Swig cannot
handle. Swig have no problem with most of C with some few exceptions concerning the
more esoteric features of the language. It does not behave sowell when it comes to the
features of C++. These features include namespaces, functions passed as arguments.

The other way to create bindings is to create an interface file, written in a language
resembling C, and include the functions, classes, methods,and typedefs to which bind-
ings should be created. The functions that should be wrappedare defined in the same
way as a prototype i a normal C header file, and the interface file are feed to Swig to
create bindings. This is also the method used for wrapping classes, in order for objects
to be passed as parameters between the languages. Swig generates a C file to compile
and a Python file to include in programs that makes use of the bindings. An example
of and interface file is shown below.

1http://www.swig.org
2Swig can in fact be used to create binding to several languages including; C#, Guile, Java, MzScheme,

OCAML, Python, Perl, Ruby, Tcl/Tk, and Tcl

104 Generating SWIG Wrappers

%module ngbindings

%{

inc lude "DateTime.h"
inc lude "MdsQuery.h"
inc lude "CertInfo.h"
inc lude "LdapQuery.h"
inc lude <globus_common.h>
inc lude <globus_rsl.h>
inc lude "MdsQuery.h"
inc lude "Target.h"
inc lude "Xrsl.h"
inc lude "time.h"
inc lude "Preferences.h"

i f d e f HAVE_CONFIG_H
inc lude <config.h>
end i f

inc lude "Environment.h"

inc lude "wrappers.h"

%}

%include "std_string.i"
%include "std_vector.i"
%include "std_map.i"

%include "wrappers.h"

%templa te(string_vector) std::vector<std::string>;
%templa te(giis_vector) std::vector< Giis >;
%templa te(job_vector) std::vector< Job >;
%templa te(cluster_vector) std::vector< Cluster >;
%templa te(queue_vector) std::vector < Queue >;
%templa te(target_vector) std::vector < Target >;

In the interface file, there are two types of includes. The#include directive in the
beginning of the interface file is copied directly to the generated wrapper file and works
in the same way as a normal include. This ensures that it is possible to compile the
generated wrapper file. The%include directive is used to include other Swig interface
files. In our case we use the interface files for the Standard Template Library, and the
file wrapper.h, which contains the classes that needs to be wrapped.

There are things to pay attention to when it comes to using Swig. When it comes
to pointers, Swig will wrap most pointers in C correctly. A pointer is encoded as an
address and type information and it is important to note thatthis representation cannot
be dereferenced in the target language. This may sound odd, but it enables the target
language to pass pointers to other wrapped functions.

Another thing to note is that Swig does not handle composite C++ types natively.
To handle these types, Swig works with a concept called typemaps, which is code that
are wrapped around the C++ code making it possible to create bindings to the types and
use them in the target language. Swig 1.3 delivers typemaps to most of the Standard
Template Library (STL)3. This somewhat solves the problem of dealing with strings in
C (char pointers) as we can use the C++ STL equivalent instead.

When using container classes they too must be defined in orderto access the el-
ements contained in such a class. This is done by defining templates in the interface

3The Standard Template Library, is a library of standard templates and types.

C.2 Wrapper Functions 105

file and defining the types for the functions in the interface file. To create bindings to
STL types containing other STL types e.g., a vector of strings, a template should be
defined in the interface file, in order to get access to the elements of the type (vector)
from within Python. If no template is created the type cannotbe accessed from Python,
but it can still be passed, though Python in the same way as a pointer, as a parameter to
other methods written in C++. An example of this could be a binding to a method re-
turning a vector of objects, this vector may not be accessible in Python in a meaningful
way, but can be passed on to another method written in C++ withthe desired result.

The use of typemaps and templates are important when workingwith the Nordu-
Grid code since it is primarily written in C++ and makes use ofSTL types, pointers,
and objects as parameters and return types of the functions.There are however some
problems that Swig cannot handle satisfactory for our use and in order to counter this
problem some wrapper functions are created.

C.2 Wrapper Functions

The wrapper functions are functions that does not add new functionality to the inter-
face, but it merely “wraps” the functions into a method or function that can more easily
be wrapped by Swig.

To counter these as well as problems with pointer to pointer references and prob-
lems with references as parameters to some of the methods in the NorduGrid code
base, it has been necessary to write wrapper functions to some of the methods in order
to make some of the bindings. The wrapper functions does not add functionality or fea-
tures to the methods, but serves only as an other interface tothe methods in question.
Below is an example of a wrapper function. Notice the conversion between C++ and C
strings.

/* Wrapper for ../grid-manager/ui_uploader.h */

string ui_upload(string resource,
string rsl,
string session_url,
string job_id,
i n t act,
vector<string> filenames,
i n t debug,
i n t timeout) {

char* jobid;
strcpy(jobid,job_id.c_str());

i n t result = ui_uploader(resource.c_str(), rsl.c_str(),
&jobid, session_url.c_str(),
(rsl_action) act, filenames,
debug, timeout);

i f (result == 0) {
re tu rn string(jobid);

}
e l s e {

stringstream ss;
ss << result;
re tu rn ss.str();

}
}

This example also demonstrates, that often it is necessary to access a value returned
as pointer, or to pass a value as an argument. And we have to dereference or reference

106 Generating SWIG Wrappers

the pointers to access the values when passing them between the languages.
One of the problems handled in this way is the passing of functions as a parameter

as well as problems with C++ namespaces. But these problems aside it is generally
fairly easy to use Swig once you have the hang of it.

Appendix D

NorduGrid Wrapper Interface

This appendix describes the NorduGrid ARC interface wrapped to Python. This inter-
face serves a basis for the functionality of the Job Manager.Many of the functions and
classes in NorduGrid ARC and C++ has been directly wrapped toPython. However
it was necessary to write wrappers to some of the functions and methods, mostly due
to the inability to pass pointers to C++ from Python. The interface reminds much of
the one in NorduGrid ARC, and will therefore not be describedextensively. This also
means that methods are not described, since this would take up an extensive amount of
space. The wrapped interface is listed below:

• Shadow classes –Shadow classes are C++ classes wrapped to Python, making it
possible to instantiate objects from C++ classes from within Python. This makes
it easy to operate with C++ classes in Python. The wrapped classes are:

– CertInfo Represent a proxy certificate.

– Giis Represents a GIIS server.

– Cluster Contains information about a cluster. Also contains the queue
objects of the cluster.

– Queue Contains information about a queue. Also contains job objects for
the queue.

– Job Contains information about a job.

– Target Represent a target, i.e., a cluster and queue.

– Xrsl Represent a job description.

• Functions – The functions are the ones wrapped directly from the NorduGrid
ARC without any separate wrapper functions between.

– ActivateGlobus Acticates the Globus modules, making the NorduGrid
ARC and Globus ready to use.

– DeactivateGlobus Deactivate the Globus modules.

– TimeStamp Returns a timestamp.

• Wrapped Functions –These functions are wrapped functions which call sim-
ilar functions in NorduGrid ARC. These functions are created to avoid passing
pointers from Python into C++. Furthermore there are some problems with C++
namespaces that must avoided as well.

108 NorduGrid Wrapper Interface

– ngFindClusterInfo Wrapper for FindClusterInfo.

– ngFindClusters Wrapper for FindClusters

– ngGetGiises Wrapper for GetGiises

– ui_download Wrapper for ui_downloader.

– ui_upload Wrapper for ui_uploader.

– ui_upload_cancel_job Specific wrapper for ui_uploader when using it
to cancel jobs.

– ui_upload_clean_job Specific wrapper for ui_uploader when using it
clean jobs.

– ui_upload_submit_job Specific wrapper for ui_uploader when using it
submit jobs

• Templates –These classes are C++ STL classes wrapped to Python, making it
possible to create these for wrapped functions and methods that need these types
as argument. The only difference between these and shadow classes are these
classes are provided by the STL library (even though they maybe containers for
NorduGrid ARC classes).

– cluster_vector A Vector of Clusters.

– giis_vector A Vector of GIISes.

– job_vector A Vector of Jobs.

– queue_vector A Vector of Queues.

– string_vector A Vector of Strings.

– target_vector A Vector of Targets.

These wrappers provides an API which makes it possible to support the needed fea-
tures for the Job Manager. All the interfaces describes are wrapped using SWIG [25],
which use was explained in Appendix C

Appendix E

Application Protocol

This chapter defines the protocol through which the applications communicates with
the Job Manager. The primary source for determining the protocol can be found by
looking at the NorduGrid command line interface. Also, a lotof requirements emerged
throughout the report, in order to control different aspects of the Job Manager. Since
the application interface is the only way to communicate with the Job Manager (apart
from sending signals to it) the interface must be rich enoughto support every type of
interaction with the manager.

The functions can be divided into three categories, similarto the three pillars of
the Globus Toolkit version 2, resource management, information services, and data
management [2]. All of the calls will raise an XML-RPC fault type if used inproperly,
e.g., if using a tag that does not exist. For brevity it is not described when these are
raised. However some contraints will be mentioned.

E.1 Resource Management

This section presents the functions that have to do with resource management. These
are primarily functions that do with job control:

• buildJob(executable, arguments = “”, input_files = None,

output_files = None)

Builds an xRSL job description for the application. Since xRSL supports a mul-
titude of options only the simplest attributes are supported. Returns a string
containing xRSL job description.

• submitJob(xrsl_string, input_files = None)

Submits a job, provided a proper xrsl description. If the jobhas any local input
files, they must be passed along in an array. A job tag is returned.

• cancelJob(tag)

Cancels a job given its tag. The job must be running to cancel it.

• cleanJob(tag)

Cleans a job given its tag. The job must finished to clean it.

• getJobStatus(tag)

Returns the status of a job given its tag.

110 Application Protocol

• getJobId(tag)

Given a tag, the jobid (if submitted) of the job instance is returned

The Job Manager can also be regarded as resource on the grid and should therefore
be controllable. The functions for this is placed here.

• listManagers()

Returns a list of structs/tuples each containing a hostnameand a port number of
the other Job Managers, that the Job Manager knows.

• getFailOverJobManagers()

Returns a list of structs/types containing the hostnames and ports numbers of the
fail over managmers.

• getMaster()

Returns contact information about the master of the Job Manager.

• isMaster()

Returns true if the Job Manager is master, false otherwise.

• registerManager((hosname, port))

Provides the Job Manager with a contact string to another JobManager.

• handoverJobs((job_manager, port) = None

Hands over the jobs to another Job Manager. A Job Manager can be specified, if
not the Job Manager chooses one of itself.

• shutdown()

Makes the Job Manager shutdown. It does not handover jobs. This must be done
with thehandoverJobs() call first if this is desired.

• restart()

Restarts the Job Manager. Session will be saved before restart.

• renewProxy(proxy)

Sends a new proxy certificate to the Job Manager, overwritingits previous proxy
certificate.

• destroyProxy()

Makes the Job Manager destroy, i.e., delete its proxy certificate. This will cut if
off from the rest of the grid, including the client, since it no longer can be veried
that it runs on behalf of the user.

E.2 Information Services

Functions in information services are pertaining to getting information about the grid,
but also getting information about the Job Manager. The information service functions
are:

• getJobList()

Returns a list tags representing the jobs in the Job Manager

• clearCache()

Clears the information system cache in the Job Manager.

E.3 Data Management 111

• getGlobalJobList()

Get a list of all the jobs of the user running on the grid.

E.3 Data Management

The functions in data managament concerns handling data on the grid. The functions
are mostly related to the movement of files, but also functionality like setting access
control lists are supported.

• downloadFile(url)

Downloads a file to the client, using the Job Manager as Proxy.

• uploadFile(file, url)

Uploads a file to the grid, using the Job Manager as proxy.

• copyFile(from_url, to_url, blocking = True)

Copies a file from one url to antoher. If blocking is set the call will first return
when the copying is done; if set to false the call will return imediately, making
the Job Manager act as copying service.

• deleteFile(url)

Deletes a file on the grid.

• getOutput(tag)

Returns standard output of a job, given its tag.

• getAcl(url)

Returns an access control list from the given url.

• setAcl(url, acl)

Sets an access control list for the url.

Appendix F

Analysis of deadlock when using
Globus concurrently

During the development of the Job Manager, it was discoveredthat under certain cir-
comstances the functionui_uploader in NorduGrid ARC would block, i.e., wait for-
ever and not return. Sinceui_uploader handles job submission, cancelation, clean-
ing and renewal of remote proxy certificates, the function must always work; the Job
Manager is highly dependent on it. Investigating the problem deeper, lead to the dis-
covery thatui_uploader would never block the first time, but usually the second time
it was called, and sometimes the third time. Since the problem was not deterministic,
we believed that the cause of the blocking was a race condition leading to a deadlock,
makingui_uploader block.

A race condition is an unwanted behaviour in concurrent system where the actions
of the threads of processes must happen in a specific order, but this order is not enforced
by the synchronization mechanisms [20]. The result of a racecondition us usually that
data can be modified by two or more threads (or processes) at the same time. Race
conditions can be notoriously hard to find and debug for sincethey often require very
special circumstances to trigger. A deadlock is when one or more threads each have
acquired one or more locks, and are waiting to acquire another lock, which is held
by another thread (this thread may be itself). This causes the waiting thread to sleep
forever, since they are waiting for each other [19]. Strictly speaking a deadlock is
not a race condition, however when a deadlock cannot be provoked deterministically
it has the same charistica of a race condition, and if the datathat must be protected
by the synchronization mechanisms is a set of locks, but these locks are not properly
protected, they can be subject to a race condition, which canlead to a deadlock.

Our initial thoughts concerning the deadlock was thatui_uploader could be trig-
gered to not cleaning up properly after it. However this was not consistent with the
fact thatngsub was able to submit several jobs when callingui_upload iteratively.
Investigating the problem further is was discovered that the problem only existed when
using the SOAP server delivered with pyGlobus for RPC calls.When disabling the
RPC server and using the API of the Job Manager directly everything worked fine.
This turned the attention towards pyGlobus instead. However the pyGlobus library is
used by the Access Grid Project[55], to create their grid middleware. Also we had used
functions in Globus through pyGlobus which worked fine. However when recieving an
RPC call a certain program technique is used heavily: Callback. Callback is method in

114 Analysis of deadlock when using Globus concurrently

which function as passed along to other functions, to be called later. Callbacks are com-
mon for event notification, authorization or connection handling in servers. The last is
used in the SOAP server in pyGlobus, which builds upon a GSI enabled TCP server
in Globus. When this server recives an incoming connection,a handler in pyGlobus is
called, which again call a function in the Job Manager, whichis callsui_uploader

in NorduGrid ARC, which again calls Globus. This is vhere thedeadlock happens. On
Figure F.1 an example of regular calls from the Job Manager topyGlobus and Nordu-
Grid ARC, and down to Globus is depicted. When calls happen this way, everything
works fine. On Figure F.2 the scheme where the deadlock happens is depicted. Here a
callback from Globus results in a new library call to Globus.It is our belief that this is
what is causing the deadlock, i.e., the cause is an error in the Globus library.

Job Manager

pyGlobus NG ARC

Globus

Figure F.1: Noramlly the Job Manager make calls to globus through pyGlobus and the Nordu-
Grid ARC. The scheme works fine.

Job Manager

pyGlobus NG ARC

Globus

Figure F.2: Deadlock when a Globus callback exits the library and calling itself, resulting in a
deadlock.

After having reached this conclusion we decided to leave theuse of pyGlobus and
use XML-RPC [75] over OpenSSL [61] using M2Crypto [66], eventhough this would
require some additional work. The alternatives was to have insecure or non working
RPC, or to fix the Globus framework, and we simply did not have the time to start
debugging pyGlobus and Globus to find deadlocks. Finally leaving pyGlobus would
also allow for much easier deployment for a Job Manager client, since no Globus in-
stallation would be required on the client side.

Bibliography

[1] David Abramson, Jon Giddy, and Lew Kotler. High performance parametric
modeling with nimrod/G: Killer application for the global grid?, 2000.

[2] The Globus Alliance. Guide to globus toolkit 2.0 software.
http://www.globus.org/gt2/install/download-guide.html.

[3] The Globus Alliance. The globus alliance: Ws-resource framework.
http://www.globus.org/wsrf, April 2004.

[4] The Globus Alliance. The globus toolkit. http://www-unix.globus.org/toolkit/,
May 2004.

[5] The Globus Alliance. Grid security infrastructure (gsi).
http://www-unix.globus.org/security/, April 2004.

[6] The Globus Alliance. Ws-resource framework: Frequently asked questions.
http://www.globus.org/wsrf/faq.asp, January 2004.

[7] Lawrence Besaw. Bsd socket reference.
http://www.cs.iastate.edu/∼cs586/f03/notes/Socket_Reference.pdf, January
1991.

[8] Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurek,and Malgorzata
Wolniewicz. Progress – access environment to computational services
performed by cluster of sun systems. http://progress.psnc.pl/English/cgw02.pdf,
December 2002.

[9] Maciej Bogdanski, Michal Kosiedowski, Cezary Mazurek,and Malgorzata
Wolniewicz. Grid service provider: How to improve flexibility of grid user
interfaces? http://progress.psnc.pl/English/petersburg_progress.pdf, June 2003.

[10] The NorduGrid Collaboration. Nordugrid middleware, the advanced resource
connector. http://www.nordugrid.org/middleware/.

[11] The NorduGrid Collaboration. Nordugrid general information.
http://www.nordugrid.org/about.html, May 2004.

[12] World Wide Web Consortium. Soap version 1.2 part 1: Messaging framework.
http://www.w3.org/TR/soap12-part1/, June 2003.

[13] World Wide Web Consortium. Web services architecture.
http://www.w3.org/TR/ws-arch/, August 2003.

116 BIBLIOGRAPHY

[14] World Wide Web Consortium. Soap specifications.
http://www.w3.org/TR/soap/, May 2004.

[15] Oracle Corporation. Oracle grid computing.
http://www.oracle.com/solutions/grid.

[16] Zope Corporation. Zope object database. http://zope.org/Products/ZODB3.2,
June 2004.

[17] George Coulouris, Jean Dollimore, and Tim Kindberg.Distributed Systems -
Concept and Design. Pearson Education Ltd., 3rd edition, 2003.

[18] Jon Crowcroft.Open Distributed Systems. UCL Press Limited, 1st edition, 1996.

[19] Inc. Cunningham & Cunningham. Dead lock. http://c2.com/cgi/wiki?DeadLock,
May 2004.

[20] Inc. Cunningham & Cunningham. Race condition.
http://c2.com/cgi/wiki?RaceCondition, May 2004.

[21] The European Datagrid. The datagrid project.
http://eu-datagrid.web.cern.ch/eu-datagrid.

[22] Philip A. DesAutels. Sha1 version 1.0.
http://www.w3.org/PICS/DSig/SHA1_1_0.html, October 1997.

[23] D. Eastlake and P. Jones. Rfc 3174 - us secure hash algorithm 1 (sha1).
http://www.faqs.org/rfcs/rfc3174.html, September 2001.

[24] P. Eerola, T. Ekelof, M. Ellert, J. R. Hansen, S. Hellman, A. Konstantinov,
B. Konya, T. Myklebust, J. L. Nielsen, F. Ould-Saada, O. Smirnova, and
A. Waananen. Atlas data-challenge 1 on nordugrid.CHEP’03, 2003.

[25] Dave Beazley et al. Simplified wrapper and interface generator.
http://www.swig.org/, April 2004.

[26] Karl Czajkowski et al. From open grid service infrastructure to ws-resource
framework: Refactoring and evolution.
http://www.ibm.com/developerworks/library/wsresource/ogsi_to_wsrf_1.0.pdf,
March 2004.

[27] Internet Engineering Task Force. Internet x.509 public key infrastructure.
http://www.ietf.org/rfc/rfc2459.txt, January 1999.

[28] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration, 2002.

[29] Ian Foster. What is the grid? a three point checklist, July 2002.

[30] Ian Foster and Carl Kesselman.The Grid: Blueprint for a New Computing
Infrastructure, chapter 2. Morgan Kaufmann, 1998.

[31] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the Grid:
Enabling scalable virtual organizations.Lecture Notes in Computer Science,
2001.

BIBLIOGRAPHY 117

[32] Python Software Foundation. Python programming language. http://python.org/,
April 2004.

[33] The Python Software Foundation. logging - logging facility for python.
http://docs.python.org/lib/module-logging.html, December 2003.

[34] The Python Software Foundation. What is python?
http://python.org/doc/Summary.html, May 2004.

[35] G. Fox, M. Pierce, D. Gannon, and M. Thomas. Overview of grid computing
environments, Febuary 2003.

[36] Alan O. Freier, Philip Karlton, and Paul C. Kocher. Ssl 3.0 specification.
http://wp.netscape.com/eng/ssl3/, May 2004.

[37] Bernhard Herzog. Skencil: Homepage. http://sketch.sourceforge.net/, June
2004.

[38] T. Howes, S. Kille, and M. Wahl. Rfc 2251 - lightweight directory access
protocol (v3). http://www.faqs.org/rfcs/rfc2251.html,December 1997.

[39] Keith R. Jackson. Python globus(pyglobus).
http://www-itg.lbl.gov/gtg/projects/pyGlobus/.

[40] Henrik Thostrup Jensen and Jesper Ryge Leth. Automaticjob resubmission in
the nordugrid middleware. http://www.cs.auc.dk/∼htj/nordugrid/dat5_report.ps,
January 2004.

[41] Brian W. Kerninghan and Dennis M. Ritchie.The C Programming Language.
Prentice Hall, 2nd edition, 1988.

[42] Carl Kesselman. Gssapi_ssleay for globus security.
http://www-fp.globus.org/presentations/retreat98/security/, Juli 1998.

[43] A. Konstantinov. The http and soap framework.
http://www.nordugrid.org/documents/HTTP_SOAP.pdf, October 2003.

[44] A. Konstantinov. The nordugrid grid manager and gridftp server - description
and administrators manual. http://www.nordugrid.org/documents/GM.pdf, July
2003.

[45] Alexander Konstantinov. The nordugrid smart storage element.
http://grid.uio.no/cvs/cvsweb.cgi/∼checkout∼/nordugrid/doc/httpsd/SE.pdf,
March 2004.

[46] Sun Microsystems. Grid computing solutions.
http://wwws.sun.com/software/grid.

[47] Sun Microsystems. What is grid computing?
http://www.sun.com/2003-1118/feature/grid.html.

[48] Oracle Technological Network. Oracle grid computing technologies.
http://otn.oracle.com/products/oracle9i/grid_computing/index.html.

[49] Jakob Nielsen and Oxana Smirnova. Nordugrid / data challenges.
http://www.nordugrid.org/slides/20031127-jakob.ppt,November 2003.

118 BIBLIOGRAPHY

[50] Nordugrid. Nordic testbed for wide area computing and data handling
(nordugrid), September 2001.

[51] Inc. Object Management Group. Welcome to the omg’s corba website.
http://www.corba.org/, May 2004.

[52] Farid Ould-Saada. Nordugrid sg meeting.
http://www.nordugrid.org/slides/20031127-farid.sxi,November 2003.

[53] Legion Project. Legion a world wide virtual computer.
http://legion.virginia.edu/.

[54] Legion Project. Legion: Frequently asked questions.
http://legion.virginia.edu/FAQ.html.

[55] The Access Grid Project. Access grid. http://www.accessgrid.org/, May 2004.

[56] The Globus Project. About the globus toolkit.
http://www-unix.globus.org/toolkit/about.html.

[57] The Globus Project. Globus collaborators.
http://www.globus.org/about/collaborators.html.

[58] The Globus Project. Globus toolkit 3.0 fact sheet.
http://www.globus.org/toolkit/gt3-factsheet.html.

[59] The Globus Project. Globus toolkitTM2.4 overview.
http://www.globus.org/gt2.4/overview.html.

[60] The OpenSSL Project. Openssl: Documents ssl(3).
http://www.openssl.org/docs/ssl/ssl.html, May 2004.

[61] The OpenSSL Project. Openssl: The open source toolkit for ssl/tls.
http://www.openssl.org/, May 2004.

[62] The pywebsvcs meta project. Python web services.
http://pywebsvcs.sourceforge.net/.

[63] Kate Rhodes. Xml-rpc vs. soap.
http://weblog.masukomi.org/writings/xml-rpc_vs_soap.htm, May 2004.

[64] Anthony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location and routing for large-scale peer-to-peer systems.
http://research.microsoft.com/∼antr/PAST/pastry.pdf, November 2001.

[65] Abraham Silberschatz, Henry F Korth, and S Sudarshan.Database System
Concepts. McGraw-Hill, 4th edition, 2002.

[66] Ng Pheng Siong. M2crypto - a python crypto and ssl toolkit.
http://sandbox.rulemaker.net/ngps/m2/, May 2004.

[67] Martin Sjögren. pyopenssl - a python interface to the openssl library.
http://pyopenssl.sourceforge.net/, May 2004.

[68] O. Smirnova. Extended resource specification language.
http://www.nordugrid.org/documents/xrsl.pdf, October2003.

BIBLIOGRAPHY 119

[69] Bjarne Stroustrup.The C++ Programming Language (Special Edition).
Addison Wesley, 3rd edition, 1997.

[70] Inc. Sun Microsystems. Java remote method invokation (java rmi).
http://java.sun.com/products/jdk/rmi/, May 2004.

[71] Andrew S. Tanenbaum.Computer Networks. Prentice-Hall Inc., 3rd edition,
1996.

[72] The GIMP Team. Gimp: The gnu image manipulation program.
http://www.gimp.org, June 2004.

[73] Johan Tordsson. Resource brokering for grid environments.
http://www.cs.umu.se/ tordsson/thesis/, May 2004.

[74] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,C. Kesselman,
T. Maguire, T. Sandholm, P. Vanderbilt, and D. Snelling. Open grid services
infrastructure (ogsi) version 1.0, 2003.

[75] Inc UserLand Software. Xml-rpc specification. http://www.xmlrpc.com/spec,
May 2004.

[76] Jon Viega, Matt Messier, and Pravir Chandra.Network Security with OpenSSL.
O’Reilly and Associates, Inc., 1st edition, 2002.

