
Incorporating Trust and

Trickery Management in

First Person Shooters

E1-121

Master Thesis

June 2004

Department of Computer Science
Aalborg University
Fredrik Bajersvej 7E
DK–9220 Aalborg
DENMARK

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:

Incorporating Trust and Trickery
Management in First Person Shoot-
ers

PROJECT PERIOD:

DAT6,
January 2nd 2004 –
June 11th 2004

PROJECT GROUP:

E1-121

GROUP MEMBERS:

Niels Christian Nielsen
Henrik Oddershede
Jacob Larsen

SUPERVISOR:

Olav Bangsø

NUMBER OF COPIES: 8

REPORT PAGES: 80

APPENDIX PAGES: 12

TOTAL PAGES: 92

SYNOPSIS:

This report describes how human character
traits can be incorporated into computer
controlled characters (bots) in team based
First Person Shooter (FPS) type computer
games. The well known FPS Counter-
Strike was chosen for use as a test envi-
ronment.
Initially a model of a bot which is exclu-
sively based on the success of the team is
devised.
This model is extended into one that al-
lows for two kinds of personalities in a bot:
a trickster personality, that lies about in-
formation in order to receive personal gain,
and a team based personality that, regard-
less of its own gain, does what it believes
is best for the team as a whole.
Detecting tricksters on a team is ac-
complished through incorporation of trust
management. In short this means that
each bot maintains trust values for all other
bots. The personal trust values and the
trust values received from other bots (repu-
tation) are combined to determine whether
or not any specific bot can be trusted
to provide correct information. Applying
trust management to a group of bots which
must make group based decisions instead of
only individual ones is not a trivial matter.
Therefore these issues are also discussed.

Concludingly, issues about how trickster

type bots may overcome the trust manage-

ment implementation in their team mates

are discussed. We call this Trickery Man-

agement. This extension means a trickster

tries to guess threshold values in the trust

management implementation of its team

mates, calculating when to try to trick and

when not to.

Acknowledgments

This report was written by group E1-121 on the DAT6 semester of Computer
Science at Aalborg University and is to be evaluated June 2004.

The group would like to thank Hugin Expert for providing us with access
to a full version of their tool Hugin free of charge.

The relevant code can be accessed on the following website:

http://www.cs.auc.dk/∼henrik/dat6/

Jacob Larsen

Niels Christian NielsenHenrik Oddershede

Contents

I Domain Analysis 1

1 Introduction 3

1.1 Problem Definition . 4

2 Related Work 7

2.1 Intelligent Bots in FPS’s . 7
2.2 Learning Models of Other Agents Using Influence Diagrams . 9
2.3 Learning Trust . 10
2.4 Central and Decentral Approach to Group Decisions 11

3 Bayesian Networks and Influence Diagrams 13

3.1 Definition of Bayesian Networks 13
3.2 Example of a Bayesian Network 13
3.3 d-separation . 14
3.4 Divorcing . 16
3.5 Adaptation . 17
3.6 Influence Diagrams . 19
3.7 Example of an Influence Diagram 20

4 Counter-Strike 21

4.1 What is Counter-Strike . 21
4.2 Mission Types . 22
4.3 Equipment . 25
4.4 Teamwork . 28
4.5 Interfacing Counter-Strike . 28

5 Existing Bots 29

5.1 The HPB Bot . 30
5.2 The PODBot . 30
5.3 Other Bots . 31

vii

viii CONTENTS

II CO-Bot 33

6 Basis for Modeling CO-Bot 35

6.1 An Incremental Approach to Modeling. 35
6.2 Attack Strategies . 36
6.3 Test Environment . 37

7 The Cooperative Model 41

7.1 Motivation . 41
7.2 Cooperative Model Design . 41
7.3 Testing the Cooperative Model 45

8 The Personalized Model 47

8.1 Motivation . 47
8.2 Conceptual Design Issues Associated with Extending the Co-

operative Model . 48
8.3 Personalized Model Design 49
8.4 Integration of the Personalized Model Into Counter-Strike . . 52
8.5 Testing the Personalized Model 53

9 Extending CO-Bot with Trust Management 55

9.1 Motivation . 55
9.2 Basics of Trust Management 55
9.3 The CO-Bot Trust Management System 59
9.4 Testing CO-Bot With Trust Management 64

10 Trickery Management 67

10.1 Motivation . 67
10.2 Tricking Trust Managing Group Mates 68
10.3 Testing CO-Bot With Trickery Management 71

11 Conclusion and Future Work 75

11.1 Conclusion . 75
11.2 Future Work . 77

III Appendix 81

A Tests 83

A.1 Transcript . 83

Part I

Domain Analysis

1

Chapter 1

Introduction

In recent years graphics and sound in computer games have improved
tremendously. While it is still possible to sell games based mostly on im-
pressive graphics, players do seem to demand more in form of aspects like a
story line or advanced Artificial Intelligence (AI) depending on the type of
game. The term AI is not meant to describe the general form of artificial
intelligence often researched, but is rather used to describe the actions of a
computer controlled character, so even a scripted sequence of actions carried
out by any computer controlled character can be considered to be AI. The
use of the term AI is mostly due to historical reasons. AI in computer games
has been greatly improved in the later years. [17] discusses different types of
AI used in commercial games, and [7] mentions different kinds of computer
games. This project focuses on the development of a cooperative AI in a
First Person Shooter (FPS) game. In FPSs, computer controlled characters
are called bots.

While board-type games have properties that open for the possibility of
creating efficient search methods for ”solving” a game, this is not the case
in FPSs. According to [6], one can not rely on search techniques to find the
best possible action at a given time, as is the case in most board-type games
researched thus far. FPSs have the following more advanced properties:

1. A player in a FPS does not have access to the complete game state as
does a player in e.g. chess or checkers.

2. The choice for action of a player in a FPS unfold continuously as time
passes. At any time, the player can move, turn, shoot, jump, or just
stay in one place. There is a breadth of possible actions that make
search intractable and require more knowledge about which actions
might be useful.

The problem with board-type games is that they are not interesting
enough that people actually play them against computer controlled oppo-
nents - at least not to the extent they play FPSs. This project aims to

3

4 CHAPTER 1. INTRODUCTION

research AI for popular games, even if they do not have the same properties
as board-type games. According to [10], the game Counter-Strike is one of
the most popular FPSs ever created, and thus it was chosen for implemen-
tation and test purposes.

1.1 Problem Definition

The research described in this report focuses on contributing to the develop-
ment of a trust management system for FPSs, where the complete state of
the game is not known and where actions unfold continuously as time passes.
In order to make this contribution and render probable the applicability of
it, an implementation of a cooperative bot called CO-Bot is carried out.
CO-Bot has the following properties:

• CO-Bot is group aware and cooperative.

• CO-Bots have different personalities, some of which are selfish.

A CO-Bot with a selfish personality is called a trickster.

• Tricksters attempt to trick team mates into taking actions to the ben-
efit of the trickster.

• Tricksters as well as non-tricksters try to detect tricksters. They do so
by maintaining and utilizing a trust management system.

• Tricksters try to go unnoticed about their trickery, in order to stay
trusted and thus maximizing their influence to their own benefit. This
is conducted utilizing trickery management.

The above properties are developed in an incremental order. First, a
simple decision model is developed, that enables CO-Bot to play the game
of Counter-Strike in that it provides basic playing strategies. Furthermore,
it provides CO-Bot with group awareness and a flexible cooperative ability,
so that it tries to optimize the success rate of the group through cooperation.
This cooperative decision model is tested against an (externally developed)
existing bot, to show whether CO-Bots and their ability to cooperate are
superior to existing bots.

Next an extended decision model provides CO-Bot with human-like char-
acteristics, in that each CO-Bot is given personalities, making some bots
tricksters. Again the personalized decision model is tested against an exist-
ing bot. Compared to the first test, this test is expected to provide results
that are less optimal. This expectation is due to the selfishness of trick-
sters. Keep in mind that the reason for developing tricksters is not to create
an optimal bot, but to incorporate human characteristics into CO-Bot and
thereby increase the interest in playing FPSs against bots.

1.1. PROBLEM DEFINITION 5

By contributing to the development of a trust management system, the
goal of increased interest in FPSs is assumed to have been reached, in that it
is expected that human players joining a team of CO-Bots experience more
interesting behavior than they would joining optimized bots. The trust
management system extends CO-Bot with the ability to detect tricksters
and to keep tricksters’ influence at a minimum while at the same time being
able to cooperate. Trust managing CO-Bots are tested against an existing
bot and they are expected to do better than CO-Bots that do not incorporate
a trust management system.

Finally a system is developed, that provide tricksters with the ability to
optimize their trickery. This is meant as a countermeasure to trust manage-
ment. It is expected that tests will show a slight decrease in success rate
for the group as a whole against existing bots, compared to the case of hav-
ing tricksters that do not optimize their trickery because the tricksters are
harder to detect now. This contribution is expected to increase the interest
in playing FPSs even further.

Chapter 2

Related Work

This chapter is concerned with related work on bot AI in FPSs. It provides
a background and an incentive for implementing the group based model.

2.1 Intelligent Bots in FPS’s

Previously some work has been done on making intelligent agents for death-
match type First Person Shooters.

SOAR Quakebot

[6] explains a framework for incorporating anticipation in a bot for the game
Quake II.

The bot (called Quakebot) uses the SOAR architecture. This architec-
ture uses basic objects called operators. Each operator consists of primitive
actions (in other contexts normally referred to as atomic actions), internal
actions, and abstract actions. Primitive actions are actions like move, turn,
and shoot. Primitive in this case means they cannot be divided into smaller
actions. Internal actions are entities like remembering the last known po-
sition of the enemy. Abstract actions are high-level actions which must be
dynamically decomposed into primitive actions at the bottom level. Exam-
ples of abstract actions could be goals like get-item or wander.

Figure 2.1 shows a partial operator hierarchy for the SOAR architecture.
Only a small fraction of the architecture is shown in the figure but it clearly
shows the general idea.

7

8 CHAPTER 2. RELATED WORK

Go−through−door

Get−item

Goto−item

Attack Wander Collect−powerups Explore

Notice−item−missingMove−to−itemFace−item Stop−moving

Figure 2.1: Partial operator hierarchy for the SOAR architecture. The most
abstract actions are at the top level.

SOAR does not use any predefined ordering to determine which operators
to select and apply. Proposition, selection, and application of operators are
implemented using if-then rules. The rules are fired in parallel if they match
the working memory of the SOAR implementation. The working memory
holds all the bots’ information about the current situation. Firing a rule
alters the working memory by adding or deleting information.

The Quakebot is equipped with artificial intelligence through anticipa-
tion/prediction. This is used when the enemy is facing away from the bot
and is done through maintaining an internal representation of the enemy
bot’s state. The Quakebot assumes the actions for the enemy is the same
as its own and the prediction is done by contemplating what the bot would
do itself if it was in the enemy’s situation. The prediction stops if the bot
comes to a point where uncertainty appears.

Influence Diagrams in FPS AI Module

[8] shows how to implement a deathmatch style bot using influence diagrams.
The focus in the work is to learn to predict the outcome of an encounter
with an enemy and use this information to choose the best decision in any
given situation. The danger level of each area (part of the map/game world)
is learned in order to avoid or seek an encounter in a specific situation. Any
time a bot decides not to try to engage the enemy it will try to improve its
state by picking up weapons and health packs scattered around the game
world. Improving the bots internal state will make it more likely to win
an encounter with an enemy and thus make the decisions taken by the bot

2.2. LEARNING MODELS OF OTHER AGENTS USING INFLUENCE DIAGRAMS9

more aggressive.
Figure 2.2 shows the final influence diagram for making decisions about

which tactic to chose in a given situation.

Tactic

Action
Meet along

path
Outcome

Situation Esituation

Calc1 Calc2

Nth Area2nd Area1st Area (N-1)th Area

Calc(N-2)

Figure 2.2: Influence diagram for bot decision making. Each area node
represents the danger level of that area.

The decisions to consider both contain decisions about seeking an en-
counter and about trying to improve the bot’s situation later on in the
game by deciding to pick up items. Decisions, which are combinations of
the two (like trying to pick up an item at the end of a dangerous route),
are also available. The decision making is as one would expect based on the
highest expected utility of the decisions in the influence diagram.

2.2 Learning Models of Other Agents Using Influ-

ence Diagrams

Influence diagrams have previously been used in a Multi Agent System
(MAS). [12] shows how to model one other agent in an anti-air defense
scenario using influence diagrams. Two bases (the agents) have a common
goal of defending the ground from incoming missile attacks. Two missiles
are launched at the ground at once and the bases must try to minimize the
damage by intercepting the missiles before they hit the ground. Each base
may launch just one interceptor. The idea is to minimize the damage to the
ground when there is no communication between the bases.

The influence diagrams are used by each base to model the other. Uti-
lizing this a base can to some extent predict the behavior of the other base
and react accordingly. The influence diagram for deciding the best action of
Base 2 (B2) is shown in Figure 2.3.

10 CHAPTER 2. RELATED WORK

M1’s speed

B1’s distance to M1

B1’s cost for

interceptability
M1’s

M1’s
interceptability

by B1

B1’s interceptor
to M1

Damage due to M1

B1’s action

B2’s action

U

B2’s angle to M1

Damage

M1’s size

B1’s angle to M1

intercepting M1

B2’s cost for
intercepting M1

B2’s distance to M1
B2’s interceptor

M1’s

to M1

interceptability
by B2

B1’s distance to M2

B1’s cost for

interceptability
M2’s

M2’s
interceptability

by B1

B1’s interceptor
to M2

Damage due to M2 M2’s speed

M2’s size

B1’s angle to M2

intercepting M2

B2’s cost for
intercepting M2

B2’s distance to M2
B2’s interceptor

M2’s

to M2

interceptability
by B2

B2’s angle to M2

Figure 2.3: Decision model of defense unit B2. It includes a model of B1.

The authors of the article mentions what inaccuracies might occur when
updating the influence diagrams because of a changing environment.

• The utility function of an agent might change. The new utility function
has to be learned.

• Probability distributions in the model may be inaccurate. The correct
probability distribution must be learned.

• The structure of the influence diagram may be wrong. A new structure
that fits the observation data must be learned.

2.3 Learning Trust

[1] shows how to make bots choose to perform actions that reveal the trust-
worthiness of another bot. The article states there are three components to
the model building process:

• Adopting an a priori or initial model.

• Engaging or observing the other agent in informative interactions.

• Updating the initial model based on such interactions.

Each of these components involve significant time and computational
cost commitments by the modeling agent. The general idea is to estimate the

2.4. CENTRAL AND DECENTRAL APPROACH TO GROUP DECISIONS11

nature of other agents in as few iterations as possible. The article presents
a way of deciding on which actions to take to maximize the information
revealed by the action the other agent chooses to take. This is possible
because the other agent is expected to choose an action based on whatever
action it sees other bots take. All this means it could learn the states of
other agents more accurately and quickly.

2.4 Central and Decentral Approach to Group De-

cisions

[15] explains advantages and disadvantages of the central and the decentral
approach to group based decision making. A decentralized approach is one
where the agents exchange requests and intentions among themselves and
the artificial intelligence is distributed equally among the group members.
In a centralized approach the group has a leader which receives information
and issues commands to other group members. Here the leader knows more
about the game state than the other group members.

Chapter 3

Bayesian Networks and

Influence Diagrams

This chapter is concerned with the theory of Bayesian networks which is
used when constructing CO-Bot. The chapter is based on [4].

3.1 Definition of Bayesian Networks

Definition 1 A Bayesian network consists of the following

• A set of variables and a set of directed edges between the variables.

• Each variable has a finite set of mutually exclusive states.

• The variables and the directed edges form a Directed Acyclic Graph
(DAG) (A directed graph is said to be acyclic if there is no directed
path A1 → . . . An such that A1 = An.)

• A conditional probability table P (A|B1, . . . , Bn) is attached to each
variable A with parents B1, . . . , Bn.

• A variable A which has no parents has a initial probability table P (A)
attached.

A variable is in exactly one state, but there may be uncertainty about
which state.

3.2 Example of a Bayesian Network

Figure 3.1 shows an example of a Bayesian network with four nodes. The
probability tables to specify are P(B), P(D), P(A|B), and P(C|B,D).

13

14CHAPTER 3. BAYESIAN NETWORKS AND INFLUENCE DIAGRAMS

CA

B D

Figure 3.1: An example of a Bayesian network. The probability tables to
specify are P(B), P(D), P(A|B), and P(C|B,D).

3.3 d-separation

One of the core elements in Bayesian networks is that the certainty of one
variable can influence the certainty of other variables and vice versa. This
leads to different types of connections. In the explanations of connections
the term evidence will be used. Evidence on a variable is a statement of
the certainty of its state. There are two kinds of evidence, hard and soft
evidence. Hard evidence means that the exact state of a particular variable
is known. In this case the variable is said to be instantiated. Soft evidence
is evidence received from instantiated variables or from other variables con-
taining soft evidence.

d-separation is a concept used when examining whether variables can
influence each other. Two variables are said to be d-connected if evidence
on one variable influences the other variable. If evidence on one variable
cannot influence the other, the variables are said to be d-separated.

Serial Connections

A B C

Figure 3.2: Serial connection. A and C are d-separated given B.

Figure 3.2 shows the concept of a serial connection. If there is evidence on
the variable A, this has an influence on the certainty of B and then on C
through B. Similarly, evidence on C will change the certainty of A through
B. However, if B is instantiated then variables A and C cannot influence
each other. It is said that A and C are d-separated given B.

3.3. D-SEPARATION 15

Diverging Connections

An example of a diverging connection is shown in Figure 3.3. This construc-
tion makes it possible for variables A and C to communicate information.
This communication between children is only possible if the parent variable
is not instantiated. If the state of B is known, the children are said to be
d-separated.

B

CA

Figure 3.3: Diverging connection. A and C are d-separated given B.

Converging Connections

The last possible construction using three variables is converging connec-
tions. This concept is illustrated in Figure 3.4. The variables B and C are
d-separated if neither variable A or one of its descendants of A has received
hard evidence.

A

CB

Figure 3.4: Converging connection. B and C are d-separated given A or one
of A’s decendants.

Example of d-separation

Figure 3.5 shows an example of a Bayesian network. This network will be
examined to explain propagation of evidence in Bayesian networks.

16CHAPTER 3. BAYESIAN NETWORKS AND INFLUENCE DIAGRAMS

A

C

Fe e G

D

B

E

H

I

Figure 3.5: An example of d-separation. The variables A and I are d-
connected.

Consider the situation where we want to examine whether variables A
and I are d-connected or d-separated. The variables F and G are instanti-
ated in this example. Evidence may propagate from A to D because it is a
converging connection and a child of C (namely the variable F) is instanti-
ated. Evidence may not flow from C to I through F because it is a serial
connection and the middle variable (again F) is instantiated. No propaga-
tion from D to H may happen through G for the same reason. This means
the last possibility is for evidence to propagate through the variable B to E.
This is possible because this is a diverging connection where the parent (B)
of the two variables has not received evidence. The connection from E to I
through H is a serial connection without instantiated intermediate variable
which makes it possible for evidence to propagate to the variable I. This
means that the variables A and I are d-connected.

3.4 Divorcing

Consider the situation in Figure 3.6. If the variables A, B, C and D have
five states each, the conditional probability table of variable E will have a
total of 54 · n entries where n is the number of states in variable E itself. If
n = 5, the table in E will have a size of 54 · 5 = 55 = 3125 cells. This huge
amount of cells may be very troublesome to handle for anyone working with

3.5. ADAPTATION 17

the network.

E

B C DA

Figure 3.6: Network before divorcing variables A and B.

A way of reducing the effect of this problem is shown in Figure 3.7. The
idea is to introduce a mediating variable thereby reducing the number of
edges going directly towards the variable E. In this case the variable F is
introduced and“collects” information from variables A and B in for instance
5 states. This technique is known as divorcing. In this case the new number
of cells in E’s table will be 53 · 5 = 625. Of course the table of the newly
inserted variable F has a number of cells too but this is only 52 · 5 = 125
which still makes for far fewer cells in total. This all means that when a
situation occurs where variables (in this case A and B) represent something
which can be collected into a single variable, considering divorcing is a good
idea.

E

B C D

F

A

Figure 3.7: Network after divorcing variables A and B into a new node F.

3.5 Adaptation

When constructing a Bayesian network there are several ways of choosing
the conditional probabilities for a model. However, there will almost always
be a degree of uncertainty about the correctness of the probabilities chosen.
This is called second-order uncertainty, and it raises an interesting question:
Is it possible to reduce the second-order uncertainty in a systematic way?
When a system is running new cases, it would be nice if the model could

18CHAPTER 3. BAYESIAN NETWORKS AND INFLUENCE DIAGRAMS

gain experience from these. In the following, a statistical approach will be
described.

Fractional Updating

The task is to modify the parameters gradually with the new cases entered.
To make this feasible, two simplifying assumptions must be made:

• Global independence: The second-order uncertainty for variables are
independent of each other. This means that the conditional probabil-
ities for the variables can be modified independently.

• Local independence: For each variable the second-order uncertainty of
the distributions for different parent configurations is independent. In
other words, given three variables A, B and C, where A is the child
of both B and C, and given two configurations (bi, cj) and (b′

i, c
′

j);
then the second-order uncertainty of P (A|bi, cj) is independent of the
second-order uncertainty of P (A|b′

i, c
′

j), so the two distributions can
be modified independently.

Now consider P (A|B,C) and let all the variables be ternary. Under the
assumptions given, P (A|bi, cj) = (x1, x2, x3) can be considered as a distribu-
tion established from a number of previous cases where (B,C) was in state
(bi, cj). This makes it possible to express the certainty of the distribution by
a fictitious sample size s. The larger the sample size the smaller the second-
order uncertainty, which leads to working with a set of counts (n1, n2, n3)
and a sample size s such that s = n1 + n2 + n3 and

P (A|bi, cj) = (
n1

s
,
n2

s
,
n3

s
).

This idea is called fractional updating. Updating is best explained
through an example. Consider the example where a case is received with
evidence e = {A = a1, B = bi, C = cj}. In this situation the probabilities
are updated as follows:

x1 :=
(n1 + 1)

(s + 1)
;x2 :=

(n2)

(s + 1)
;x3 :=

(n3)

(s + 1)

Now, we get a case e with B = bi and C = cj and for A only a probability
distribution P (A|e) = P (A|bi, cj , e) = (y1, y2, y3). In this case it is not
possible to work with integer counts and updates are done as such: nk :=
nk + yk and s := s + 1. This means xk is updated as follows:

xk :=
(nk + yk)

(s + 1)

3.6. INFLUENCE DIAGRAMS 19

In general, a case is given which looks like P (bi, cj |e) = z. Then s := s+z.
The distribution P (A|bi, cj , e) = (y1, y2, y3) is used to update the counts.
The sample size is increased by z and thus nk := nk + zyk. This leads to

xk :=
(nk + zyk)

(s + z)

Unfortunately, fractional updating has one major drawback as it tends
to overestimate the count of s, thereby overestimating the certainty of the
distribution. As an example assume that e = {B = bi, C = cj}. This
case tells nothing about P (A|bi, cj), but fractional updating will still add
one to the count of s, and thereby take it as a confirmation of the current
distribution.

3.6 Influence Diagrams

Definition 2 An influence diagram consists of a DAG over chance nodes,
decision nodes and utility nodes with the following structural properties:

• There is a directed path comprising all decision nodes.

• The utility nodes have no children.

For the quantitative specification, we require that:

• The decision nodes and the chance nodes have finite set of mutually
exclusive states.

• The utility nodes have no states.

• To each node, A, a conditional probability table P (A|pa(A)) is at-
tached. pa(A) is called the parent set of A and consists of all parent
nodes to node A.

• To each utility node U a real-valued function over pa(U) is attached.

Any link from a chance node into a decision node is called an information

link and indicates that the state of the parent is known prior to the decision
being made. A network is equipped with an information link from a chance
node, C, to a decision node, D, if C is observed prior to D but after any
decision made before D.

Links between decisions are called precedence links. These are present to
express in which order decisions are made.

Links between chance nodes are called functional links and are similar
to the ones found in Bayesian networks. Links from chance nodes to utility
nodes are named the same.

20CHAPTER 3. BAYESIAN NETWORKS AND INFLUENCE DIAGRAMS

3.7 Example of an Influence Diagram

To explain what an influence diagram is, consider an example. This semester
a student is going to have four different courses. At the start of the semester
he must decide how to distribute his work effort among them. He may work
normally in each course but may also work harder in one or more courses
at the expense of one or more of the other courses. Halfway through the
semester he must choose for which three of the courses he wishes to take
the exam. His grade will depend on how difficult the courses are (something
that he will not know at the start of the semester), how much work effort
he has put into them and, of course, for which he actually takes the exam.

This situation can be represented as a Bayesian network extended with
decision and utility nodes, this can be seen in Figure 3.8.

Work effort

Exams

UGrade

Difficulty

Figure 3.8: Bayesian Network extended with decision and utility nodes for
the school problem.

To represent the order of decisions the network is extended with prece-
dence links. In the example this means that a link should be drawn from the
decision Work Effort to the decision Exams. This can be seen in Figure 3.9,
which is called an influence diagram, where the chance node Difficulty is
observed before the decision Exams is made.

Exams

UGrade

Difficulty

Work effort

Figure 3.9: Influence diagram for the school problem.

Note that a precedence link between a decision node, D1, and another
decision node, D2, is redundant and can be removed if there is a another
directed path from D1 to D2.

Chapter 4

Counter-Strike

This chapter provides a description of the various aspects of Counter-Strike.
Weapons, equipment and the different kinds of missions available are ex-
plained. The chapter is concluded by a description of how to interface
Counter-Strike. The information in this chapter has been collected from
[14].

4.1 What is Counter-Strike

Counter-Strike is a team based First Person Shooter modification for the
game Half-Life by Valve Software. It is set in a Terrorists vs. Counter-
Terrorists environment and is based on a somewhat realistic game world.

A game consists of several rounds on the same game map where the two
teams each try to accomplish a certain goal. After an amount of time set by
the server administrator the map is changed. The goal depends on the type
of game (map) chosen and will be explained later in this chapter. After each
round the players are awarded credits which can be used to buy equipment
at the beginning of each round. The amount of credits earned in a round is
dependent on many factors but basically the winning team are awarded the
most credits.

If a player survives a round she keeps any equipment currently in her
possession. The player is still awarded credits and may choose to buy better
equipment or perhaps buy nothing and save the credits for use in a later
round. The equipment is always lost if the player dies or a new game map
is loaded.

A big part of Counter-Strike is the in-game stats. This is a kind of
score board containing both information about the kills/deaths of individual
players as well as wins/losses of rounds for each team. Figure 4.1 shows a
screen shot of the in-game stat page.

21

22 CHAPTER 4. COUNTER-STRIKE

Figure 4.1: A screen shot of the in-game stats page.

The individual stats are the main reason for some players acting selfish
and doing what is best for themselves and not what is best for the team as
a whole. Some players play for the team and other play for themselves.

4.2 Mission Types

In the game there are several mission types to choose from. Each of these
has a very different gameplay and thus different tactics. All mission types
are described in this section.

Assassination

In this game type one of the counter-terrorists is chosen at random to be
a VIP (Very Important Person). The VIP is only equipped with a knife,
a handgun, and ample body armor at the start of each round and cannot
buy any weapons or equipment (this includes ammo). Furthermore it is not
possible for the VIP to pick up items. The goal of this mission is for the VIP
to reach a certain destination on the map within a predetermined time limit
for the counter-terrorists to win the round. The only other option for the
counter-terrorists to win is to kill all terrorists on the map. All teammates

4.2. MISSION TYPES 23

of the VIP may buy equipment as usual and it is their assignment to protect
the VIP from the terrorists who wish to kill him. The terrorists win if the
VIP is killed or the destination is not reached within the time limit.

Figure 4.2 shows a screen shot from an assassination mission from the
counter-terrorists point of view. The nearest team mate in the picture is the
VIP.

Figure 4.2: A screen shot from an assassination type mission. The nearest
team mate in the picture is the VIP.

Bomb Defusal

In this mission type the terrorists are the ones under pressure to accomplish a
task. They must plant an explosive device in one of several possible locations
and see that it is not disarmed by the counter-terrorists. Furthermore they
do not wish to be too close to the bomb when it explodes because this will
kill them and cause them to lose their current equipment. If the bomb
is detonated within time or the entire counter-terrorist team is killed the
terrorist team wins. The game only contains one bomb and it is assigned to
a random terrorist at the start of a round. If it is dropped (either by purpose
by the player herself or because the carrier is killed) it may be picked up by
any player on the terrorist team.

The counter-terrorists must either kill all terrorists before the bomb is

24 CHAPTER 4. COUNTER-STRIKE

placed, disarm the bomb after it has been planted or let the time run out to
win the game.

Figure 4.3 shows a terrorist planting the bomb at a bomb site.

Figure 4.3: A terrorist planting the bomb at one of the bomb sites.

Hostage Rescue

The hostage rescue type missions are set in a scenario where the terrorists
have taken a number of people hostage. The counter-terrorists must either
kill all terrorists or rescue the hostages by bringing them to the hostage
rescue zone within the time limit to win the round. Otherwise the terrorists
win.

If a player (regardless of team) kills a hostage, credits are deducted from
the players account. Counter-terrorists earn extra credits rescuing hostages
because it is not an easy task first reaching the hostages and then bringing
them to the rescue zone without being killed.

An example of what a hostage character who must be rescued by the
counter-terrorists might look like is shown in Figure 4.4.

4.3. EQUIPMENT 25

Figure 4.4: A hostage being held captive by the terrorists in a dark room.

4.3 Equipment

In Counter-Strike you are able to carry only a limited amount of weapons.
You always start with a knife and a handgun (secondary/back-up weapon).
Which handgun you start with depends on the team selection. Furthermore
you may carry one large gun (your primary weapon) if you desire and have
the credits to buy one or are able to pick a discarded or lost one up from
the ground. Any weapon bought can not be sold again and if the player
wants to replace the weapon she may throw it on the ground to make room
for another. This also means it is possible for a player to buy weapons for
a team mate by first buying one for the team mate, throw it on the ground
and then buy another for herself.

Besides these items you may have extra equipment like grenades and
armor to help you out.

Weapons

All the different kinds of weapons and other in-game items are described in
this section.

26 CHAPTER 4. COUNTER-STRIKE

Knife

All players are equipped with a knife at the beginning of each round. This
weapon can be used only at really close range, and is mostly useful when
you are out of ammo for any other weapon.

Hand guns

The hand guns are not very accurate, powerful, or fast but they are cheap
and can be carried alongside a bigger weapon. A player is given a handgun
at the start of each round. Which gun depends on which team the player
belongs to.

Shotguns

Shotguns are excellent short range weapons. On longer ranges however their
damage is minimal.

SMG’s

Sub Machine Guns (SMG’s) are good in close quarter combat. They are not
expensive and deliver quite a punch in short time. On longer ranges they
are not great because their accuracy is inferior to the bigger automatic rifles.

Machine Guns

The machine gun is a powerful high ammo capacity weapon but very inac-
curate. Because of this inaccuracy it is mostly useful for laying suppressing
fire. Because of the high price of this weapon compared to its utility it is
not a frequently used one.

Rifles

There are essentially two kinds of rifles. The automatic rifles which can be
regarded somewhat the same as the SMG’s only more powerful and accurate,
is one class of rifle. The other class is sniper rifles which are slow firing but
deliver a powerful punch when they hit. Some automatic rifles and all sniper
rifles are equipped with scopes which makes aiming easier. In the case of
sniper rifles aiming without the scope is nearly impossible.

Other Items

Bomb Defusal Kit

The bomb defusal kit is needed only in bomb defusal missions. It decreases
the time used to disarm a bomb by half and may thus mean the difference
between making it in time or die trying.

4.3. EQUIPMENT 27

Kevlar Vest

The kevlar vest protects the person wearing it from bullets to some extent.
It covers the torso area which is the largest and also an area where a hit
causes a high degree of damage.

Kevlar Vest and Helmet

This combined set of armor consists of a kevlar vest and a helmet. The
helmet protects the head area which is the most vulnerable body part on
the player. The vest is the same as before.

Smoke grenade

The smoke grenade is used to provide cover. When thrown it expels into the
surrounding environment a thick grey smoke which makes for great cover to
escape from or advance on the enemy.

HE Grenade

The HE grenade (High Explosive Grenade) is a regular hand grenade. It
explodes within a few seconds of being thrown and causes damage to anyone
within the surrounding area. Like all other grenades it can be thrown over
objects and bounce off walls to hit the target.

Flashbang

The last kind of grenade. When this explode it does not cause damage
but rather blinds anyone looking at the explosion. This blindness occurs
for a period of time (seconds) gradually getting better. The more directly
any person looks at the explosion the longer the blindness will last. These
grenades are mainly used for blinding enemies in a room before entering.
Sometimes flashbangs backfire because an enemy is able to turn around
before it explodes and not get severely affected. This way the enemy is ready
for an oncoming assault where the one who threw the flashbang thinks the
enemy is blinded.

Night Vision

In dark areas the enemy may hide and be hard to spot. Using night vision
goggles makes the enemy visible even in dark environments. This article is
not useful on all maps but in certain situations it gives the wearer a distinct
advantage.

28 CHAPTER 4. COUNTER-STRIKE

Flashlight

The flashlight allows players to see in dark places. Unlike the night vision
goggles the flashlight is also visible to other players. This for example means
an enemy is able to see if a flashlight is used by the opposing team to examine
the nearby area. This item is free and part of the standard equipment pack.

4.4 Teamwork

A big part of Counter-Strike is teamwork. The player has access to a radar
showing the location of all team mates. Besides this, radio messages may
be used to communicate with all living team mates. They may communi-
cate messages like ”Storm the front”, ”Stick together team”, ”Follow me”,
”Negative”, ”affirmative” and much more.

In Counter-Strike any player can see stats when desired. This means
it is always known to any player which players are still alive on any of the
two teams regardless of which team the player is on. This is important
information for selecting the correct tactic.

4.5 Interfacing Counter-Strike

Half Life was designed to be modified by upcoming game programmers and
other enthusiasts. It comes with a complete standard developer kit (SDK) to
interface the functionality of the Half Life engine. As already stated, counter
strike is such a modification. However, counter strike does not support
computer controlled characters or bots, and unfortunately, no source code
exists that allows modifications of counter strike itself. Therefore, creating
a bot normally requires making a new modification for the Half Life engine
using the SDK provided. Ultimately, this amounts to creating a completely
new game.

Since creating an entirely new game in the course of one semester is im-
possible, the solution (as proposed by Botman [2]) is to create an intervening
dynamically linked library (dll). An intervening dll is a piece of software that
captures all function calls from the Half Life engine to Counter Strike and
vice versa. This intervention happens without the knowledge of either -
that is, to the Half Life engine, the intervening dll is just another modifica-
tion and to Counter Strike the intervening dll acts like the Half Life engine.
Indeed one could filter out or add functionality before communicating the
original function call back and forth between the two. In this way bots are
spawned in the game as any other player, except they are controlled by an
AI that resides in the intervening dll. Thereby bots have exactly the same
possibilities as human players.

Chapter 5

Existing Bots

This chapter investigates some of the existing Counter-Strike bots in order
to reveal weaknesses that should be remedied in this project. Two of the
most prominent bots will be investigated: The HPB Bot [2] and the PODBot
[5].

As a common denominator, these bots rely heavily on the existence of
waypoints in the game level placed by a human. A waypoint marks an
interesting spot in the game level, e.g. a camping spot, a doorway or just
somewhere in the game level that the bots should cover now and then.
Figure 5.1 shows a screen shot from Counter-Strike with waypoints marked
by sticks of different colors. Green sticks mark “normal” waypoints that
bots should cover now and then, the red stick marks a waypoint that is
especially important to terrorist, and the small light-blue stick marks a
camping waypoint where the bot should crouch. There are several other
types of waypoints that are not shown in the figure.

Without waypoints, bots have no means of navigating through the world
except for the raw image of the rendered world. Since performing thorough
image analysis is a very time-consuming and error prone task with no real
advantage compared to using waypoints, this method is not used by any
well-known bots.

29

30 CHAPTER 5. EXISTING BOTS

Figure 5.1: Waypoints in Counter-Strike. Each type of waypoint has its own
color.

5.1 The HPB Bot

As described in Section 4.5 Jeffrey Broome pioneered a method for creating
bots for mods like Counter-Strike. His creation, the HPB Bot, is meant as a
basis for creating other bots and the source code is therefore available at no
expense. It mainly consists of template code pointing out where future bot
developers should focus. As a consequence, the HPB Bot in itself is not an
interesting adversary, as the bots basically stick to themselves, almost never
engaging in combat. Thus HPB Bot functions as a shortcut to interfacing
Counter-Strike.

5.2 The PODBot

PODBot is, as all other well-known Counter-Strike bots, based on the HPB
Bot. PODBots are able to perform Counter-Strike specific actions such as
purchasing weapons, placing a bomb in the bomb defusal missions, rescuing
hostages and so forth. The PODBot is unable to perform sophisticated plans
that regard the team as a whole. It is limited to recognize e.g. that in a
specific situation it might be sensible to support another team member in
his plan. Otherwise, most decisions are only regarding the bot itself.

Furthermore, most of the decisions are scripted. Listing 5.1 shows a
typical example of the scripting of the bot. In the example, the bot stumbles

5.3. OTHER BOTS 31

upon a camping waypoint and considers whether to camp. The code dictates
that if the bot has the primary weapon and it has not camped there for a
long time, then it should camp there now. With this type of scripting, the
bot does not learn e.g. whether it was a good choice to camp with this type
of primary weapon.

1 // Reached Waypoint is a Camp Waypoint
2 if (paths[pBot−>curr wpt index]−>flags & W FL CAMP) { // Check if Bot
3 has got a primary weapon and hasn’t camped before
4 if ((BotHasPrimaryWeapon(pBot)) &&
5 (pBot−>fTimeCamping+10.0<gpGlobals−>time)) { //[...] //Perform
6 camping

Listing 5.1: A piece of code from PODBot that determines whether or not
to camp.

Another example of the scripted decision making can be seen in List-
ing 5.2 which is a part of a function returning the type of waypoint, the bot
chooses to pursue. iRandomPick has been assigned a random value between
0 and 100. As can be seen from line 1, 3 and 5, the probability for the bot to
choose a certain waypoint is set by hand. The bot is not able to learn that
e.g. there should be a higher probability of pursuing the camp waypoint.

1 if (iRandomPick<30)
2 return(g rgiGoalWaypoints[RANDOM LONG(0,g iNumGoalPoints)]);
3 else if (iRandomPick<60)
4 return(g rgiTerrorWaypoints[RANDOM LONG(0,g iNumTerrorPoints)]);
5 else if (iRandomPick<90)
6 return(g rgiCampWaypoints[RANDOM LONG(0,g iNumCampPoints)]);
7 else

8 return(g rgiCTWaypoints[RANDOM LONG(0,g iNumCTPoints)]);

Listing 5.2: Script from PODBot to determine which waypoint to pursue.

5.3 Other Bots

Lots of other bots for Counter-Strike exist, but a common characteristic
for all of them is that they focus on refining the scripts that perform the
decisions made instead of refining the actual decision making. [2] provides
a number of links to bot development projects.

Part II

CO-Bot

33

Chapter 6

Basis for Modeling CO-Bot

This chapter concerns itself with explaining the basic elements of designing
CO-Bot and furthermore explains the test environment which is common to
all iterations of the CO-Bot implementation.

6.1 An Incremental Approach to Modeling.

This next four chapters comprise the incremental development of a coop-
erative multiplayer bot called CO-Bot which is a terrorist-only bot for
Counter-Strike. Initially a cooperative decision model is developed through-
out Chapter 7. This decision model enables a group of CO-Bots to make the
best possible decisions for the group as a whole. In order to make CO-Bot
more human-like, an urge of tricking team mates for personal gain, using
phony information, is introduced in Chapter 8. CO-Bot must now consider
not only what is optimal for the group as a whole but also whether a given
individual goal is fulfilled optimally. Chapter 9 extends CO-Bot with the
ability to detect tricksters to some extent, and finally Chapter 10 extends
the capabilities of tricksters to be able to trick other bots in a sophisticated
manner and thereby exploit trickery to the limit.

Common to all decision models, is the ability to distribute roles among
CO-Bots to apply a strategy. The following defines the terms “role” and
“strategy” more precisely.

Definition 3 A specific task that is part of a cooperative plan is called a
role.

Definition 4 A set of roles used to fulfill a cooperative goal is called a
strategy.

Note that any CO-Bot can take on any role even if the CO-Bot is unfit
to do so. For instance, if the role is to provide for sniper cover, a CO-Bot

35

36 CHAPTER 6. BASIS FOR MODELING CO-BOT

that does not posses a sniper rifle can still take on this role. In that case
the sniper cover is less likely to actually provide adequate cover.

6.2 Attack Strategies

When a group of CO-Bots wish to attack, a set of different strategies for
doing so should be considered. Each strategy has distinct tasks which must
be carried out. This means different strategy-specific roles must be assigned
to the bots. For each possible group size, a number of different strategies are
available. Table 6.1 shows the different strategies available for each possible
group size. The group size is limited to 3 bots for test purposes to minimize
the number of cases which must be collected and the number and complexity
of the influence diagrams used in the implementation.

Group size Possible strategies

1 bot - Storm
- Hold back

2 bots - 2 bots storm
- 1 bot storms and 1 bot lays down suppressing fire
- The 2 bots both suppress

3 bots - 3 bots storm
- 2 bots storm and 1 bot holds back providing suppressing
fire
- 1 bot storms while the other two lays down suppressing
fire
- The 3 bots all suppress

Table 6.1: Possible strategies for different group sizes.

[9] shows an example of how a Special Weapons And Tactics (SWAT)
team operates when entering a room possibly occupied by the enemy. The
group is organized in a line by the doorway and the first SWAT officer throws
a grenade (a flashbang) inside the room. The group now enters the room as
quickly as possible to clear the room of any enemies.

The tactics mentioned in Table 6.1 are not in total compliance with the
general idea of [9] when storming an enemy stronghold because the roles
of team mates are quite similar and Counter-Strike is not a game based
on exclusively realistic situations like the Rainbow six series of games (see
[3]). The idea of most strategies having quite different roles to choose from
makes the choice of which role to choose more interesting than if the roles
were more similar. Even if the strategies are not comparable to real life
strategies they are still interesting from a theoretical point of view. The
differences in danger level associated with and expected utility of each role
should make for an interesting series of choices for each bot.

6.3. TEST ENVIRONMENT 37

6.3 Test Environment

The test environment is the defusal map de dust depicted in Figure 6.1.

Figure 6.1: Overview of the de dust map. Terrorists start in the lower right
corner and counter-terrorists start in the mid left

The map contains two bomb sites and numerous ways to reach them
from the terrorist’s starting point. Figure 6.2 shows 19 points used to build
the different routes the terrorists may take from their starting point in order
to reach either one of the two bomb sites.

38 CHAPTER 6. BASIS FOR MODELING CO-BOT

Figure 6.2: Points used to construct routes to the two bomb sites on the
de dust map.

Please note that the points in the figure are not equivalent to the way-
points actually used in the implementation but are only for explanatory pur-
poses. The real number of waypoints used in the implementation is about
500.

There are a total of 10 routes to choose from, some being more ”sneaky”
than others and some being more fast and direct. This diversity in routes
makes it virtually impossible for the counter-terrorist team to determine
where the terrorist team will emerge next. This is the case even if the
counter-terrorist team has human players on it. The route is chosen using
a weighted random function as this is not the focus of the project. For
information on how to implement and design a route decision model and
more, consult our previous work on the topic (see [8]).

Table 6.2 shows the different routes implemented in the game on the
de dust map, by connecting the points from Figure 6.2. Some routes which
are possible to construct in the map are not available as they are simply
not considered feasible and a number of 10 routes is surely adequate for a
sensible test environment.

Bomb site 1 is the one located near point number 6 and bomb site 2 is the

6.3. TEST ENVIRONMENT 39

one located near point 16 just by the position where the counter-terrorists
start.

Destination Route

Bomb Site 1 - 1-2-3-4-5-6
- 1-2-3-4-7-6
- 1-2-3-8-9-7-6
- 10-11-12-13-7-6

Bomb Site 2 - 1-2-3-8-9-14-15-16
- 10-11-12-13-14-15-16
- 1-2-3-4-7-14-15-16
- 1-2-3-4-7-14-17-18-19-16
- 10-11-12-13-14-17-18-19-16
- 1-2-3-8-9-14-17-18-19-16

Table 6.2: Implemented routes for CO-Bots in de dust.

Chapter 7

The Cooperative Model

This chapter is concerned with the creation of a cooperative decision model.
It is based on influence diagrams, and optimizes decisions taken by a group
without consideration to any individual bot’s needs and thus optimizes the
group’s behavior.

7.1 Motivation

The motivation for modeling the decision process of any bot by the use of
influence diagrams is to let the artificial intelligence of the bots go beyond the
scopes of ordinary scripting. Using influence diagrams in an implementation
makes the bots perform actions based on the learned values, and modeled
correctly they can adapt to any player type. Another motivation is that
incorporation of team work makes for much more interesting opponents.

7.2 Cooperative Model Design

This section describes a simple decision model, which enables CO-Bot to se-
lect the best strategy and the best combination of roles to fulfill the selected
strategy.

Figure 7.1 illustrates the model for selecting the best strategy. The figure
can only select the best strategy for a team of three bots. This is reflected
several times in the model: One example, is the decision node, Strategy,
which contains the states described in Table 6.1 under 3 bots. Another is
the three decision nodes Weapon 1, Weapon 2 and Weapon 3.

As illustrated in the figure, the selection of a strategy is ultimately based
upon an assessment of the fighting capabilities of the enemy group versus
the fighting capabilities of the friendly group. In order to assess a group,
the nodes Avg health and Avg armor, are calculated programmatically as an
average of all its members. For instance, a group’s Avg health is calculated

41

42 CHAPTER 7. THE COOPERATIVE MODEL

as
healthBot1 + healthBot2 + ... + healthBotN

N

These two nodes both have three states; 1-33, 34-66 and 67-100,
and together with the number of individuals in the group, repre-
sented by Friendly number of group members, they constitute the com-
bined Friendly danger level of the group. The states of the node
Friendly number of group members are: 1, 2 and 3 and the states of the node
Friendly danger level are: low, medium and high. The nodes Avg health and
Avg armor are easily combined because they both correspond to an exact
in-game representation – namely a number between 0 and 100.

After having chosen a strategy, the bots must be distributed on a number
of roles. The best distribution depends on the number of bots in the group.
In fact the number of roles that needs to be occupied corresponds exactly
to the number of bots in the group. Therefore, there are several influence
diagrams for distributing the roles among them. For each strategy, there
is one influence diagram for each possible number of bots. That is, if the
number of bots is limited to five and the number of strategies is limited to
three, there are fifteen different influence diagrams for distributing the roles
among them.

Figure 7.1: Desired influence diagram for selecting a cooperative strategy.

Figure 7.2 suggests a possible model for distributing three roles. Instead
of combining the friendly group’s nodes (as was the case in Figure 7.1), each
individual bot’s nodes are now considered. It is worth noticing, that the
utilities in the utility node U still optimizes the group’s chances for success

7.2. COOPERATIVE MODEL DESIGN 43

and never favors a particular bot.
As can be seen in Figure 7.2, the utility node depends on eleven

nodes each with three states: Four probability nodes: danger level 1,
danger level 2, danger level 3, and enemy danger level all with states low,
medium and high, three decision nodes: Storm 1, Storm 2 and Suppress with
states Bot1, Bot2 and Bot3, three probability nodes: weapon 1, weapon 2

and weapon 3 with states short range, medium range and long range and
finally the probability node Friendly number of group members with states
1, 2 and 3. This amounts to 177147 different utilities that need to be set –
either by hand or through a utility-learning technique (see [11]). The former
is a completely impossible task, while the techniques for the latter is still
undergoing heavy development. Even if the techniques were fully developed,
they would undoubtably require an unacceptably large number of cases in
order to achieve a meaningful result.

Common to both models is the divorcing of health and armor into dan-

ger level. One could argue, that weapon nodes should also be divorced into
a group’s danger level. However, it was chosen to keep explicit control over
utilities on a per-weapon basis while health and armor were deemed more
coherent.

Figure 7.2: Desired influence diagram for selecting a distribution of roles.

Since the utility nodes of Figures 7.1 and 7.2 contain many entries, set-

44 CHAPTER 7. THE COOPERATIVE MODEL

ting these utilities by hand would require a great deal of work and un-
derstanding of each situation. The structures of Figures 7.3 and 7.4 are
approximations that remedy this situation.

Figure 7.3: Approximation of the original desired network. An outcome has
been introduced, in order to allow fractional updating.

7.3. TESTING THE COOPERATIVE MODEL 45

Figure 7.4: Approximation of the original desired model for distributing
roles. An outcome has been introduced, in order to allow fractional updat-
ing.

The difference is the replacement of the utility nodes with chance nodes
which contain a set of states representing outcomes of an encounter. The
”outcome” chance node has a utility node attached to it giving each pos-
sible outcome a utility. This approximation makes it possible to learn the
networks using fractional updating as described in [4].

7.3 Testing the Cooperative Model

The purpose of testing the cooperative model is to determine if the concept
of bots working together as a team in order to solve a common goal is
superior to just having bots follow their own preferences. The test setup
consists of three CO-Bots on the terrorist team and three PODBots on the
counter-terrorist team.

Learning Values During Game Play

The learning scenario ran over 724 rounds where the CO-Bots won the 416
rounds and the PODBots won the remaining 308 rounds.

Learning the networks during game play led to an interesting observation
regarding the dependencies in Counter-Strike. When engaging in combat it
seems that variables other than weapon and distance have only little or

46 CHAPTER 7. THE COOPERATIVE MODEL

no influence on the outcome of the encounter. This means they can be
eliminated in future models without causing a degeneration in the usefulness
of the model.

Testing Using Prelearned Values

Clearly the probability node outcome in both of the influence diagrams of
Figures 7.3 and 7.4 contains too many entries to be learned during the course
of any single game. Before conducting additional tests, a team of learning
CO-Bots played approximately 1000 rounds against a team of PODBots.
Although not enough to completely learn how PODBots play, it was enough
to reveal a tendency. The tendency was assumed to continue and thus it
was intensified through a huge number of similar cases generated by a small
program.

A new test was conducted, using these prelearned values. The aim of the
test is to determine whether the cooperative CO-Bots given sensible values
in their influence diagrams beats the non-cooperative PODBots and to use
the test result for comparison in later tests.

In the test, the CO-Bots have been prelearned and do not learn further
during game play as this is not important for the topic in question. Further-
more the fact that probabilities are static eliminates any uncertainties in the
test results caused by changes in the distribution of probabilities during the
execution of the test.

The test was conducted over 1014 rounds. The PODBot team won 132
rounds and the CO-Bots won the remaining 882 rounds. Whether the su-
periority is due to the cooperative nature and attention to a common goal
incorporated in the CO-Bots or due to their ability to learn accurately or
both is not important. What is important is the fact that CO-Bots are far
superior to the bots commonly used today.

PODBot Performance

In both tests the PODBot team performs quite badly against the CO-Bot
team. Given the circumstances this is quite understandable as the cooper-
ative nature of the CO-Bot is clearly more similar to the way experienced
teams of players in Counter-Strike plays than the non-cooperative nature
of the PODBots is. Any non-cooperative team facing a cooperative one
is bound to have a disadvantage regardless of the fact that the individual
abilities of the players might be the same.

Test Environment

Counter-Strike is not as tactically based a game as first believed, as only
weapon and distance determines the role a bot should take, regardless of
how any team mates behave during the encounter.

Chapter 8

The Personalized Model

In this chapter an extension to CO-Bot is devised. This extension provides
CO-Bot with a personality and the ability to trick other bots on the same
team into taking actions that are to the benefit of itself. CO-Bots that ex-
hibit a tricking personality are called tricksters. Modeling such a trickster is
interesting because in a real life game, having bots with human-like abilities
makes the bots far more interesting for players to interact with. The per-
sonalized model presented in this chapter is based on the cooperative model
described in Chapter 7.

After describing the motivation for this chapter, the concept of commu-
nication is introduced and a conceptual comparison of the cooperative and
the personalized model is provided. After this the personalized model is
presented, and a comparison of the two designs is provided. Later on it is
explained in detail how the personalized model is integrated into Counter-
Strike. Finally the chapter is concluded by presenting relevant test scenarios
and test results.

8.1 Motivation

A human player in Counter-Strike is quite different from a bot based on
the cooperative model, in that the bots have only one purpose: To ensure
the victory of the group, regardless of the price to the bot itself. Humans,
on the other hand, are sometimes selfish and as a consequence they are
not always willing to sacrifice their life, even if they know that the overall
benefit of the group is great. Actually, some human players would provide
false information to their group mates in order to trick them into performing
certain actions that optimize the players’ situation instead of the group as
a whole.

Consider a human player on a team of three. The player spots three
enemies, but instead of telling his group mates the actual number of enemies,
he says that there is only one. That way, the group mates think that they

47

48 CHAPTER 8. THE PERSONALIZED MODEL

can easily overcome the adversaries, and hence they choose to storm the
enemy. The deceitful human knows that the actual risk is much higher, and
therefore stays back and provides suppression fire, which is a less dangerous
task in that situation. The result is that the deceitful human survives more
combats than his group mates.

A natural extension to the cooperative model is to add personalities
to CO-Bot, such that it mimics the human behavior exemplified above.
For that to be worthwhile, teams mixed with both CO-Bots and humans
should be introduced, since CO-Bots tricking each other is not interesting
from the point of view of human players. CO-Bots could communicate with
the human players through text messages, whereas the communication in
the opposite direction, could be facilitated by some predefined messages,
available in a quickly accessible menu system.

8.2 Conceptual Design Issues Associated with Ex-

tending the Cooperative Model

In order to extend the cooperative model described in Chapter 7 to incorpo-
rate trickery, several design issues must be considered. This section discusses
these issues by comparing the cooperative and the personalized model at a
conceptual level. Before doing so, however, the concept of communication
is introduced.

A Word On Communication

CO-Bot is assumed to have perfect communication abilities.

Definition 5 If all sent messages are received by the correct recipient, pre-
serving the order in which they were sent, the communication is perfect.

This is not an unreasonable assumption compared to human capabilities.
Consider a team of human players engaged in a game of Counter-Strike.
Most likely they will have some sort of communication device (e.g. a head-
set) that provides for instantaneous communication. In general humans do
not transmit every single piece of relevant information, since this would be
an extremely time consuming task. Thus only the most relevant informa-
tion is transmitted. However, usually humans are able to infer any missing
information. And even if this is not the case, they can easily request elabo-
ration. Any reasonable team of human players will develop a language that
allows them to easily distinguish one recipient from another. Any normal
messaging device ensures that messages are received in the order they were
sent. Therefore communication between human players is next to perfect.
It is assumed that CO-Bot must have possibilities no less than humans, and
as a consequence CO-Bot communicates perfectly.

8.3. PERSONALIZED MODEL DESIGN 49

Conceptual Comparison

Conceptually all CO-Bots share the same goal in the cooperative model,
namely to optimize the group’s situation. Furthermore, they communicate
perfectly. Therefore, all CO-Bots share the same information at all times
and agree on all actions given any information. Thus they need not have a
separate instance of the influence diagram and instead they share a single
instance.

In contrast, CO-Bots utilizing the personalized model do not share the
same goal. A trickster’s first priority is to ensure its own survival, whereas
a non-trickster’s first priority is to ensure the well-being of the group. Thus
all CO-Bots may not agree on all actions given the same information and
no CO-Bots share instances of influence diagrams; instead they maintain a
private instance of the influence diagrams of the personalized model with
their own probability distributions learned from cases in which the bot has
taken part. Furthermore the use of private instances of influence diagrams
ensures that CO-Bots can easily circulate among several groups and bring
their own experiences to that group. In this context it is possible for a
trickster to lie about the cases it has collected. That is – it may suggest a role
division far from the role divisions suggested by non-tricksters. While (naive)
non-tricksters believe the different role divisions to be due to difference in
collected cases, they are in fact due to difference in goals and ultimately due
to differences in personalities.

8.3 Personalized Model Design

This section discusses the design of the personalized model. There is one
major change in the personalized model compared to the cooperative one.
The cooperative model was built upon two influence diagrams: One for
selecting a strategy and one for distributing the roles given by the selected
strategy. In the personalized model there is just one influence diagram.
Instead of distributing the roles given by a strategy, the influence diagram is
used to directly distribute roles among all bots in the group. This approach
implies a strategy.

There is one influence diagram for each possible group size. The influ-
ence diagram used when a group consists of only one bot can be simplified
compared to other group sizes. This is because the extension aims toward
bots tricking other bots into taking actions from which the trickster ben-
efits and the single bot in groups consisting of only one bot can not trick
anyone. Therefore, two influence diagrams are discussed: The influence di-
agram for groups consisting of only one bot, and the influence diagram for
groups consisting of three bots.

Figure 8.1 depicts the influence diagram for groups consisting of three
bots. The most prominent difference compared to the influence diagram of

50 CHAPTER 8. THE PERSONALIZED MODEL

UBot total loss partial loss partial win total win

-90 -45 45 90

UGroup total loss partial loss partial win total win

-10 -5 5 10

Table 8.1: Utilities of a trickster. The trickster is almost indifferent to group
losses

UBot total loss partial loss partial win total win

-10 -5 5 10

UGroup total loss partial loss partial win total win

-90 -45 45 90

Table 8.2: Utilities of a non-trickster. The non-trickster is almost indifferent
to its own losses.

the cooperative model is the introduction of a second outcome – now there
is a group outcome and a bot outcome. group outcome has states total loss,
partial loss, partial win and total win. total loss represents the entire group
being killed without killing any enemies, partial loss represents the group
killing all enemies but with losses, partial win represents the entire group
being killed, but not before killing some of the enemies, and total win rep-
resents killing all enemies with no losses. bot outcome has states total loss,
partial loss, partial win, and total win. To a particular bot, total loss, rep-
resents the bot being killed without having killed an enemy, partial loss

represents it being killed, but not before having killed at least one enemy,
partial win represents a bot that has not been killed, but that did not kill
an enemy either, and total win represents a bot that has killed at least one
enemy and that has not been killed itself.

The two outcomes each have a utility attached, UBot and UGroup, re-
spectively. The outcome nodes introduce the same type of approximation
as described in Section 7.2 to remedy not being able to set all utilities in a
large utility node. Utilities are influenced by a personality with states trick-

ster and non-trickster in such a way that a trickster is almost indifferent to
group losses and non-tricksters are almost indifferent to its own losses. More
precisely this is done by setting the utilities of a trickster to those specified
in Table 8.1 and the utilities of a non-trickster to those specified in Table
8.2.

As explained in Section 7.3 testing the cooperative model revealed that
in this particular test domain (Counter-Strike) factors such as health and
armor was of little or no importance. Thus all that is important to a par-
ticular outcome are the friendly team’s combination of weapons represented
by the probability nodes weapon 1, weapon 2 and weapon 3, the friendly
group’s distance to the enemy (avg enemy distance) and the enemies av-

8.3. PERSONALIZED MODEL DESIGN 51

erage weapon strength (avg enemy weapon). avg enemy weapon has states
short range, medium range, long range and mixed. Avg enemy distance has
states nearby and far away and the three weapon nodes all have states
short range, medium range and long range.

The influence diagram can be used to decide a distribution of roles for a
team size of three bots. Therefore there are three decision nodes, bot 1 role,
bot 2 role, and bot 3 role each with states attack and suppress.

Figure 8.1: Influence diagram for three bots. There is both a group outcome
and a bot outcome, each with a utility node attached.

Figure 8.2 depicts the influence diagram of the personalized model for
groups consisting of only one bot. The single bot has only itself to consider
and thus does not have a group outcome. There is no difference between a
trickster and a non-trickster and therefore there is no need for a personality.

52 CHAPTER 8. THE PERSONALIZED MODEL

Figure 8.2: Influence diagram for one bot. There is no group outcome node
or personality node.

Calculating Decisions

The influence diagrams used in this chapter and in the preceding are all of
a nature that permit the calculation of decisions to be done only once, as
described in [4], and then use the calculated table to look up utility values
later. This increases speed greatly as a simple table look-up is very fast
compared to calculating a new table every time. Consider the influence dia-
gram handling only one bot, as depicted in Figure 8.2, the nodes weapon 1,
avg enemy distance and avg enemy weapon have all been instantiated. As
a consequence, it is sufficient to look only at one column of the conditional
probability table of the bot outcome node, and thus no propagation of evi-
dence is necessary when a calculated table is already present.

The same principle holds for the networks handling two and three bots
- the only difference is that there are more instantiated nodes, and two
outcome nodes.

8.4 Integration of the Personalized Model Into

Counter-Strike

Up until now bots have been given the ability to calculate the best distribu-
tion of roles in accordance to their individual goals. However, this ability is
just part of the complete decision process. As already explained, compared
to the cooperative model, bots no longer necessarily agree on a distribu-
tion of roles, and thus they must negotiate and agree on an acceptable one.
To support this, a communication system and a negotiation protocol must
be developed and used in conjunction with an influence diagram to form a
complete decision process.

8.5. TESTING THE PERSONALIZED MODEL 53

The Decision Process Using the Personalized Model

When faced with a specific combat situation, a team of bots have a chance
to share opinions on how to distribute roles. Using an appropriate influence
diagram (depending on the number of team mates), they each decide what
they believe to be the best distribution.

A list consisting of expected utilities of each possible combination of
distribution of roles is communicated from all bots to all other bots in the
group. When a bot has received the lists from its team mates, a combined
expected utility of each combination is calculated by summation, and the
combination with the highest combined expected utility is chosen. Using
the above decision process, all bots arrive at the same conclusion about the
distribution of roles.

A trickster may provide false expected utilities for any combination.
Providing high expected utilities for combinations deemed good for itself
and low expected utilities for undesirable combinations, may trick the team
mates into choosing a combination that is more desirable to the trickster.

As an example consider a situation with three bots: B1, B2, and B3. B1

and B2 are cooperative bots while B3 is a trickster. Say there are 4 different
distributions of roles to choose from, D1, D2, D3, and D4. The cooperative
bot B1 sends out a list of expected utilities calculated using its private
influence diagram. The values are {D1 = 60, D2 = 53, D3 = 20, D4 = 87}.
B2 being a cooperative bot as well has quite similar values namely {D1 =
58, D2 = 51, D3 = 23, D4 = 88}. B3 on the other hand is a trickster. The
values sent by B3 are {D1 = −100, D2 = −100, D3 = 100, D4 = −100}.
This is because B3 wants D3 to be chosen as the distribution of roles. The
combined expected utilities for the distributions are reached by summation
and is {D1 = 18, D2 = 4, D3 = 143, D4 = 75}. Thus the two cooperative
bots, B1 and B2, were tricked into choosing D3 as the best distribution of
roles even though they individually clearly considered it to be the worst
choice for the group.

8.5 Testing the Personalized Model

The test of the personalized model is performed in the same environment as
the test of the cooperative model. The terrorist team consists of three bots
where one of them is a trickster and the rest are regular, naive bots. As with
the cooperative model, the bots have been prelearned such that they know,
for example, that storming the enemy with a sniper rifle does not pay off.

The differences between the cooperative model and the personalized
model are expected to affect the result of the match. First, the trickster
is expected to survive more often than its non-trickster team mates, since
it insists on laying suppression fire while it manipulates the team mates to
storm the enemy. Second, since some team mates can be tricked into storm-

54 CHAPTER 8. THE PERSONALIZED MODEL

ing the enemy with an unsuitable weapon (e.g. a sniper rifle), they will have
difficulties making a kill. Therefore, non-tricksters are expected to kill less
opponents than tricksters. Finally, the overall performance of the team is
expected to degrade compared to the performance of the team using the
cooperative model, as the personalized model does not provide for optimal
cooperation from the point of view of the team.

To be able to accurately compare a game containing a trickster to a
game without one, a test for both of these situations was conducted. The
tests were conducted over approximately 1000 rounds. The result of the test
without a trickster can be seen in Table 8.3. As can be seen in the table,
the results are close to those obtained in the test of the cooperative model
as shown in Section 7.3.

In Table 8.4 the test result of the personalized model with a trickster, is
depicted. The result matches the expectations.

Score Kills Deaths

Counter Terrorists(CT) 111

CT bot1 117 802

CT bot2 109 822

CT bot3 98 831

Terrorists(T) 876

T bot1 830 101

T bot2 817 108

T bot3 808 115

Table 8.3: Results of the test of the personalized model without a trickster.
987 rounds were played.

Score Kills Deaths

Counter Terrorists(CT) 206

CT bot1 187 817

CT bot2 171 840

CT bot3 166 843

Terrorists(T) 825

Trickster 1077 120

T bot2 730 197

T bot3 693 207

Table 8.4: Results of the test of the personalized model with a trickster.
1031 rounds were played.

Chapter 9

Extending CO-Bot with

Trust Management

As described in Chapter 8, extending CO-Bots with personalities, making
some of them more selfish and thus more human-like, caused the group as a
whole to function less optimal. The test results of Section 8.5 showed that
non-tricksters were tricked by tricksters into taken actions that they would
normally not. In that test, of course, the non-tricksters were completely
naive and had no way of detecting tricksters. This chapter concentrates on
the development of a counter-measure to tricksters - namely the development
of a trust management system. Implementing such a feature will provide the
bots with the ability to detect tricksters to some extent and disregard their
information when determining which roles should be chosen for which bots.

9.1 Motivation

Incorporating trust management into CO-Bot makes it aware of untrustwor-
thy players and bots. The suspension of disbelief is assumed to decrease if a
player consistently succeeds in tricking bots into doing what he wants them
to. Based on this assumption, incorporating trust management into CO-Bot
is expected to render the bots more interesting opponents and team mates.

9.2 Basics of Trust Management

[16] discusses several issues concerning trust management. In the realm of
trust management, there are two key concepts: Trust and Reputation.

Definition 6 A bot’s belief in attributes such as reliability and honesty of
another, based on previous interactions, is called the trust in the other bot.

55

56CHAPTER 9. EXTENDING CO-BOT WITH TRUST MANAGEMENT

Definition 7 The expectation about another bot’s behavior based on prior
observations reported from other bots, is called the reputation of the other
bot.

These concepts are used to determine whether a bot is trustworthy to
interact with. Consider the situation where there are two bots, bot A and
bot B. If bot A does not have any direct interaction with bot B to build its
assessment of trust on, it may make decisions based on the reputation of bot
B. Once bot A have interactions with bot B on which to develop its trust
in it, it may do so according to its level of satisfaction with the interactions
and use this trust assessment to make decisions for future interactions.

Centralized versus Decentralized Trust Management

A trust management system can be implemented using either a centralized
or a decentralized structure.

Centralized systems are mainly used in the area of e-commerce, such as
the rating system used on eBay. In such a system, one could imagine a
search-agent or a shopping-agent, acting on behalf of a user, as is the case in
[16]. In this case the trust and reputation mechanisms are relatively simple.
Common characteristics in these systems are listed below.

• A centralized node acts as the system manager responsible for collect-
ing ratings from both sides involved in an interaction.

• Agents’ reputations are public and global. The reputation of an agent
is visible to all the other agents.

• Agents’ reputations are built by the system. There is no explicit trust
model between agents.

• Less communication is required between agents. An agent only com-
municates with the centralized node to know other agents’ reputations.

A problem using a centralized structure for trust management could be
that agents are reluctant to give negative ratings because the receiving party
can see the rating and thus might give another negative rating as payback.

Another problem is that an agent in an e-commerce context may discard
its old identity at any time and make another identity with an empty rating
history.

A third problem is that an agent may create fake identities (and thereby
fake agents) and make these new agents give itself high ratings to artificially
increase its reputation.

In the context of FPS gaming these issues might not be as apparent as
they are in the context of e-commerce.

9.2. BASICS OF TRUST MANAGEMENT 57

The mechanisms used for dealing with trust and reputation in decentral-
ized systems, like cooperative FPSs, are more complex than the ones used
in centralized systems.

• There is no centralized manager to govern trust and reputation.

• Subjective trust is explicitly developed by each bot. Each bot is re-
sponsible for developing its own trust in other bots based on their
direct interaction.

• No global or public reputation exists. If bot A wants to know bot B’s
reputation, it has to proactively ask other bots for their evaluations of
B’s reputation. The reputation of bot B developed by A is personalized
because bot A can choose which bots it will ask for evaluations of B, its
trustworthy friends or all known bots. Bot A decides how to combine
the collected evaluations to get bot B’s reputation. For example, it
can combine the evaluations coming from trusted bots, exclusively.
Or it can put different weights on the evaluations from trusted bots,
unknown bots, and even untrustworthy bots when it combines them.

• A lot of communications is required between bots to exchange their
evaluations.

In decentralized systems it is hard for a bot to increase its reputation
artificially because a bot (A) gets the reputation of any other bot (B) by
basing the calculation on its own knowledge on the truthfulness of the other
bots that make recommendations for bot B. Using this structure bots can ex-
press their true feelings about other bots without having to fear for revenge,
because only the bot who requests the information is able to see it. The
tradeoff of using a decentralized approach as opposed to a centralized one
is a substantial increase in the amount of communication and computation
needed for each bot.

In this project a decentralized approach was chosen as the foundation
for the trust management design and implementation for two reasons. First,
it is the most interesting from a theoretical point of view, as bots mimic the
human approach to cooperation by letting each bot contain its own specific
information about any other bots. Second, if human players are to join a
team of trust managing bots, the bots must be able to cope with the fact
that human players always maintain their own trust and reputation values
anyway.

Design and Implementation Issues

When implementing a trust management system some issues have to be
addressed. Although originally written in a peer-to-peer file sharing network

58CHAPTER 9. EXTENDING CO-BOT WITH TRUST MANAGEMENT

context, these issues have been modified from [16] to better fit an FPS
context.

• How is an interaction to be evaluated? Trust is built on a bot’s direct
interactions with other bots. For each interaction, a bot’s degree of
satisfaction of the interaction will directly influence its trust in the
other bot involved in the interaction. Sometimes, an interaction has
multiple aspects and can be judged from different points of view.

• How does a bot update its trust in another bot?

• When will a bot ask for recommendations about another bot that it
is going to interact with?

• How does a bot combine the recommendations for a given bot com-
ing from different references? Since the recommendations might come
from trusted bots, non-trusted bots or strangers, a bot has to decide
how to deal with them.

• How does a bot decide if another bot is trustworthy enough to interact
with, according to its direct experiences or reputation, or both?

• How does a bot develop and update its trust in a reference that makes
recommendations?

In addition to the above mentioned list, modified from [16], some other
design issues are relevant in this context:

• Humans evaluate a statement set forth by a certain other person by
consulting their own previous experiences with that person (their trust
in that person), by consulting other people, be it trusted, untrusted
or complete strangers (reputation) and finally they evaluate the state-
ment itself. Therefore completely untrusted people can still earn some
trust if the statement they put forth is sensible to the person evaluating
them.

• In real life, trust is an asymmetric concept, in that it is harder to earn
trust than it is loosing it. To see this, consider the situation where a
salesman has sold a buyer a completely useless product. Unless the
salesman has former satisfying sales, either directly to the buyer or to
friends of the buyer, the buyer is not likely to buy anything from the
salesman again. Even if the salesman gets another chance, the buyer
will pay even more attention to the degree of satisfaction of the sale.

• The degree of satisfaction with an interaction does not depend on the
quality of the interaction alone. In a decentralized system, bots have
different perceptions of the world and thereby different perceptions

9.3. THE CO-BOT TRUST MANAGEMENT SYSTEM 59

of the truthfulness of a statement. Returning to the example with
the salesman, the salesman can actually believe a sold product to be
the best product in the world, while at the same time the buyer is
unsatisfied with the product.

The extension to the design issues, set forth by [16], consists of evaluating
the actual contents of the statements and not just the trust and reputation
values of the reputation provider. Furthermore, to mimic human behavior,
trust is considered asymmetric.

9.3 The CO-Bot Trust Management System

As already stated, when faced with a specific combat situation, bots receive
information from all other bots. They must each decide who they can trust
and who they can not. In the following, we present a trust management
system as a solution to this problem that takes into account some of the de-
sign issues described in Section 9.2. Other works, such as [16], has suggested
solutions to creating such a trust management system. However they are
specifically designed for different domains than that described in Chapter 4.

The basis of any implementation is the exchange and processing of in-
formation between bots. Precisely what information is exchanged and how
it is processed will be clarified momentarily. A method is presented that
can detect tricksters by evaluating interactions. The method mimics human
behavior in that it is based on trust, reputation and an evaluation of the
information itself. In most domains that require trust management, a par-
ticular agent needs only make a particular decision for itself. This is the
case in [16] where agents decide for themselves (on behalf of a user) which
other agents are trustworthy. This domain is different in that it requires
bots to agree on a single group decision. To ensure this, a voting algorithm
is suggested. Finally test results are presented as produced using the test
environment described in Section 6.3.

Decision Process Overview

When faced with a combat situation, bots exchange opinions. Each bot
sends out a list to all other bots, consisting of expected utilities of each
possible combination of distribution of roles (see Figure 9.1). This list needs
not be the same for all receiving bots.

Upon receiving such lists, each receiving bot decides whether it trusts
each sending bot by evaluating them according to trust and reputation.
Furthermore, the receiving bot may decide that an (otherwise trusted) bot
is untrustworthy based on the contents of the list that was received, and
disregard the list. In both cases, the trust in that particular bot is updated
accordingly.

60CHAPTER 9. EXTENDING CO-BOT WITH TRUST MANAGEMENT

The receiving bot then combines all trusted lists (including its own) into
a single list which is normalized in order for the values not to be dependent
on the number of trusted bots. This revised list represents a bot’s revised
opinion.

Again each bot sends out a list - this time, the newly constructed revised
list. The list no longer contains expected utilities, but scores of each possible
combination of distribution of roles.

Normally, in a decentralized system, each bot needs only to decide for
itself the best distribution of roles, based on trust and reputation. However,
in this situation, upon receiving the revised lists, the bots must agree on
a (final) single distribution of roles. This issue is new to the field of trust
management theory and requires an innovative solution.

We suggest a voting system to solve this problem. The voting system
represents the group excluding single bots who are collectively deemed un-
trustworthy.

All bots must cast votes on all other bots, based on their trust in each
bot and based on an evaluation of the contents of the original list sent out
by each bot. They vote either in or out. If a particular bot has fewer in-
votes than a certain threshold, they are excluded from influence on the final
cooperative decision.

It is assumed that all bots submit to the rules of the voting system.
When the votes have been cast and the revised lists have been sent from
all bots to all other bots, everybody - even untrusted bots - combines the
revised lists correctly (everybody excludes untrusted bots from influence)
and takes on the role dictated by the resulting distribution of roles. The
resulting distribution of roles is the combination of roles with the highest
score.

Using the voting system in this way is completely decentralized as bots
get to decide for themselves who will influence their private decision, before
the group deems any bots untrustworthy. In this way a bot, even though it
has been deemed untrustworthy by the group, may already have influenced
the final distribution of roles through individual bots that do trust it. This
is not a problem for the group because a single bot that is influenced too
many times or too much by tricksters will itself become untrustworthy over
time, or it too will detect that the tricking bot is in fact a trickster.

The voting system can be used earlier in the process to create a more
restricted and idiot-proof solution.

In this solution, each bot votes out untrusted bots, before it combines
the remaining (trusted) bots’ lists into a single revised list. No bots that
have been deemed untrustworthy by the group can ever influence the final
cooperative distribution of roles through any single (naive) bot. However,
although the group has deemed a particular bot trustworthy, other, less
tolerant, bots do not have to trust it. Thus by using the voting system
prior to combining lists into revised lists the entire process has become more

9.3. THE CO-BOT TRUST MANAGEMENT SYSTEM 61

restricted and fewer tricksters are allowed influence.
The first solution was chosen for test and implementation purposes be-

cause it is more decentralized in that bots with a naive personality are no
longer protected by a group censorship. This is in consistency with how
human players act, in that some humans have naive personalities.

Calculating Trust

Section 9.2 discusses several design issues. In particular humans evaluate
each other by means of trust, reputation and evaluation of the information
that has been received. To mimic the human behavior, a similar approach
to creating a trust management system is used in the following.

Each bot maintains a level of trust, T , of all other bots. Botk’s trust in
Boti, Tk,i, is based on the total number of interactions with Boti, Ik,i, and
the number of times Boti was deemed trustworthy, TWk,i. The relationship
is the following:

Tk,i =
TWk,i

Ik,i

(9.1)

Note that Tk,i is the trust of Botk in Boti. It is not based on reputation,
which is all other bots’ trust in Boti. Note also that it is a number between
0 and 1.

CTk,i is k’s collected trust in Boti calculated from use of trust and rep-
utation. It is defined as,

CTk,i =
N

∑

j=1

(Tj,i · T
′

k,j) (9.2)

where N is the number of bots. In order for Botk to calculate its collected
trust in Boti, CTk,i, it consults all bots in the group (itself included). Each
bot, Botj, sends back its trust value in Boti, Tj,i. To Botk this is known as
reputation. At some point Botk collects the trust value Tk,i. To Botk this
is known as trust (its own trust in Boti). The information received from
each Botj (and Tk,i) is weighted by a function T ′

k,j calculated using the trust
value Botk has in Botj, as follows

T ′

k,j =

{

0 if Tk,j < h

Tk,j else
(9.3)

where h is a threshold. Formula 9.3 discards untrusted bots. The reason
for doing so is that without it, even though a bot is considered untrustwor-
thy, it can still have tremendous impact simply by sending sufficiently huge
positive or negative numbers in Li. Note that the trust value Tk,k is always
1 and thus the function T ′

k,k always becomes 1.
Each bot sends out a list, Li, consisting of expected utilities of each

possible combination of distribution of roles. A new list, Lnew, which is Li

62CHAPTER 9. EXTENDING CO-BOT WITH TRUST MANAGEMENT

modified according to trust, reputation and an evaluation of Li, is calculated
as follows

Lnew =

∑N
i=1(Li · CTk,i ·Eval(Li))

∑N
i=1(TBCk,i · Eval(Li))

1 (9.4)

where N is the number of bots and Eval(Li) is an evaluation of Li.
In consistency with the design issues discussed in Section 9.2, Eval(Li)

is an evaluation of the contents of Li. First, it detects whether too many
elements are to be considered untrustworthy, by evaluating the number of
untrustworthy elements against a threshold-function H1. Second, it detects
whether a single element is obscure enough, that it would single handedly
obscure the result, by evaluating each element against a threshold oh.

Eval(Li) is defined as

Eval(Li) =

{

0 if
(
∑R

m=1(Element(Li[m])) > H1)∨
(∃q : |Li[q]− Lk[q]| > oh ∧ 1 ≤ q ≤ R)

1 else

(9.5)

where Li[m] is the m’th element in Li and R is the number of elements in
Li. Eval(Li) uses Element(Li[m]) to evaluate whether a single element is
untrustworthy. This is conducted by taking the difference between the ele-
ment in Li and the corresponding element in Lk (Botk’s list) and evaluating
this difference against a threshold-function, H2, as in the following

Element(Li[m]) =

{

1 if |Li[m]− Lk[m]| > H2

0 else
(9.6)

∑R
m=1(Element(Li[m])) > H1 in 9.5 ensures that no more than a certain

number of elements in Li, depending on the function H1, can be obscure.
∃q : |Li[q] − Lk[q]| > oh ∧ 1 ≤ q ≤ R in 9.5 ensures that no single

element in Li can ever be too obscure by checking the difference between
each element in Li and the corresponding element in Lk against oh.

H1 is a function that determines the threshold for discarding elements
according to Botk’s trust in Boti, defined as

H1 = Tk,i · h1 (9.7)

where h1 is some threshold for Botk, as defined by Botk’s personality.
Weighting h1 by Tk,i adjusts Botk’s error tolerance towards Boti according
to Botk’s trust in Boti. This is similar to human behavior in that a person

1A multiplication of a list and a number is conducted by multiplying all elements in
the list by the number. A division of a list with a number is conducted by dividing all
elements in the list by the number. Two lists are summed by summing each element in
the first list with the corresponding element in the second list.

9.3. THE CO-BOT TRUST MANAGEMENT SYSTEM 63

is more willing to accept information, on which he is uncertain, if it comes
from a trusted associate.

H2 in 9.8 is similar to H1:

H2 = Tk,i · h2

Utility of the
first combination

Utility of the
last combination

2575 75 25

Figure 9.1: An example list of expected utilities.

In Formula 9.4 the list calculated in the numerator is divided by the
number of trusted bots that tell the truth,

N
∑

i=1

(TBCk,i ·Eval(Li))

where

TBCk,i =

{

0 if CTk,i = 0
1 else

(9.8)

This is done in order to make sure Lnew in Formula 9.4 is normalized.
The denominator counts the number of trusted bots in this calculation using
Eval and TBC. TBC is the Trusted Bot Count, which counts trusted bots
based on collected trust values. If this normalization is not done a bot which
trust many team mates will have larger values in Lnew than a bot which
believes there are fewer trustworthy team mates thus giving the former a
larger influence.

Updating Trust

Eval(Li) forms the basis of evaluating interactions with other bots and is
thereby applied when updating Tk,i in 9.1. A bot is deemed trustworthy if
Eval(Li) becomes 1 and then TWk,i and Ik,i are both incremented by 1.
Otherwise only Ik,i is incremented.

Recall from Section 9.2 that trust is asymmetric. If it was not, Ik,i

would be incremented by 1 when Eval(Li) becomes 0 - that is, when Boti

64CHAPTER 9. EXTENDING CO-BOT WITH TRUST MANAGEMENT

is deemed untrustworthy. To facilitate asymmetric trust, when Eval(Li)
becomes 0, Ik,i is instead incremented by an arbitrary number depending
on Botk’s personality. The higher the number, the harder it is for Boti to
regain lost trust.

The Voting System

Botk’s vote on Boti, VBotk,i
, is

VBotk,i
=

{

0 if Tk,i ≤ h ∨Eval(Li) = 0
1 else

(9.9)

VBotk,i
taking on the value 1 represents Botk voting in Boti and VBotk,i

taking on the value 0 represents Botk voting out Boti.
Boti is excluded from influence, if

N
∑

k=1

VBotk,i
≤ gvh (9.10)

where gvh is a group voting threshold

9.4 Testing CO-Bot With Trust Management

In order to verify that the trust management system works as intended, a
test is performed. The following test setup is used: The counter-terrorist
team consists of three PODBots and the terrorist team consists of three
CO-bots, all of the latter equipped with trust management, where one of
them is a trickster. All the CO-Bots have been prelearned just as in earlier
iterations. Since the setup is very similar to the one used in earlier tests,
the test results are assumed to be comparable.

The trust management system is expected to have a profound influence
on the test results, since the tricksters, as described thus far, does not per-
form sophisticated tricking. Instead they exaggerate the lies to such an
extent that it is easy for the trust managing bots to detect the tricksters
and vote them out accordingly. As a consequence, the tricksters will have
no influence, and thus only the expected utility of true group-minded bots
are considered. Therefore, the test results are expected to be similar to the
results of testing the personalized model with tricksters, to be found in Table
8.3.

9.4. TESTING CO-BOT WITH TRUST MANAGEMENT 65

Score Kills Deaths

Counter Terrorists(CT) 91

CT bot1 101 940

CT bot2 88 958

CT bot3 84 970

Terrorists(T) 956

T bot2 968 96

Trickster 957 95

T bot3 943 82

Table 9.1: Results of the test of the CO-Bot with trust management. 1047
rounds were played.

As can be seen from Table 9.1, the PODBot looses a bit more than in
the initial test described in Section 8.5. This difference is expected to be
caused by statistical inaccuracy.

In Figure 9.2 a graph shows two bots’ trust value over a number of
encounters. As can be seen, the trickster’s trust in the non-trickster quickly
climbs to a high value, whereas the opposite is the case for the non-trickster’s
trust in the trickster. When the non-trickster occasionally is deemed more
trustworthy, as in encounter 9 and 10, it is because the two bots agree on
the best distribution of roles.

66CHAPTER 9. EXTENDING CO-BOT WITH TRUST MANAGEMENT

Figure 9.2: Two bot’s trust in each other over a number of encounters. The
graph shows that it takes only a small number of encounters for a trickster
to be deemed untrustworthy.

All in all the test results match the expectations, and thus it is concluded
that the trust management module works as intended.

Chapter 10

Trickery Management

As seen in Chapter 9 the addition of trust management enables CO-Bot to
detect tricksters. This chapter focuses on improvements to the CO-Bot in
order to make it perform better against bots containing trust management.

10.1 Motivation

In the preceding chapter, CO-Bot has been equipped with a mechanism for
detecting deceitful group mates. This renders a trickster bot almost useless
as it has no clever strategy of tricking: It consistently exaggerates the lies to
an extent that makes it trivial for the trust managing bots to detect. Apart
from being useless for tricking, it is also very far from human behavior.
The next natural step in the development of CO-Bot is to add trickery
management, such that it will try to trick others in a more sophisticated
manner.

As an example of trickery management, consider two human players –
let us call them Skinken and Potter. Skinken is a trickster without any
prior knowledge of Potter. Skinken wants to find out how naive Potter is,
so when he lies to Potter, he makes sure to exaggerate the lie more and
more. When Potter finds out that Skinken lies, he will ignore the false
information – something that Skinken detects. Thereby Skinken has found
an estimate of how naive Potter is. Surely, Potter trusts Skinken less than
before, but if Skinken consistently tells truths for a while, Potter’s trust
in Skinken will eventually be restored. Skinken may now use the estimate
of how naive Potter is to determine how much to lie. In this situation,
Skinken’s exploitation of Potter is at its maximum, for the drawback of the
group as a whole, as well as for Potter, but for the benefit of Skinken.

67

68 CHAPTER 10. TRICKERY MANAGEMENT

10.2 Tricking Trust Managing Group Mates

Being detected as deceitful makes it harder for a trickster to influence the
choices about distribution of roles made by team mates. Providing selfish
information when it is evident that it will be detected as being deceitful and
thus discarded is of no use to the trickster and will only add to the belief of
the bot in fact being a trickster, making the situation for the trickster even
worse.

The challenge for the sophisticated trickster is to determine the threshold
values introduced in Formula 9.5 (h1 and oh). If the trickster succeeds in
determining these values, it can make qualified guesses on when a lie of a
certain size will pass unnoticed and when it will not. Based on this, it can
make qualified guesses on whether it will succeed in influencing team mates
into choosing a certain distribution of roles - one that it will benefit from.
Consider Formula 9.4 from Section 9.3:

Lnew =

∑N
i=1(Li · CTk,i · Eval(Li))

∑N
i=1(TBCk,i · Eval(Li))

This is where any received lists are combined into a single list, and thus
where some lists are rejected. As is evident from the formula, there are just
two reasons for a bot, Bots, being rejected by another bot, Botr: Either
Botr does not trust Bots and thus CTr,s becomes 0 or Botr believes Bots’s
particular list to be an attempt to lie and then Eval(Ls) becomes 0 (or
both). If Bots has no prior knowledge of Botr, determining which of the
two is the reason for its potential rejection is almost impossible. However,
Bots is not without prior knowledge. In fact it is Bots that decides when
to tell a lie and when not to. And thus Bots can control Botr’s collected
trust in itself to some extent, simply by telling the truth to all bots in the
group. The only uncertainty is in the difference in world perception of each
bot, a world perception based on individually gathered cases. Under the
assumption that all bots will gather somewhat similar cases over time, this
is not an issue.

The procedure is for Bots to eliminate the possibility of Botr not trusting
it, and thus leave only the possibility of being rejected due to an evaluation
of the list Bots sends to Botr. That is, Bots leaves only the possibility of
being rejected due to Eval(Ls) becoming 0. It may do so by telling the
truth for a while, to raise its trust. When Bots registers that Botr votes
it in (i.e. when V Botr,s becomes 1), Bots is certain that neither the trust
of Botr in Bots nor the list sent by Bots to Botr caused a rejection. In
other words, Bots knows that Botr trusts it (and furthermore that telling
the truth did not exceed Botr’s threshold). Since Bots is trusted, the next
potential rejection must be caused by Botr’s threshold being exceeded.

Now consider the function Eval(Ls) (Formula 9.5 from Section 9.3):

10.2. TRICKING TRUST MANAGING GROUP MATES 69

Eval(Ls) =

{

0 if
(
∑R

m=1(Element(Ls[m])) > H1)∨
(∃q : |Ls[q]− Lr[q]| > oh ∧ 1 ≤ q ≤ R)

1 else

There are two reasons for Eval(Ls) becoming 0. Either the threshold oh

is exceeded or the value returned by the function H1 is exceeded. H1 (for
Botr) depends on Tr,s and h1, however Bots assumes (as before) Tr,s to be
under its control, and thus it can only be that the threshold h1 is exceeded.
The following presents a method for Bots to determine the threshold values
of Botr.

Determining Threshold Values

Bots will guess the threshold values oh and h1 of Botr one at a time, starting
with the threshold, oh, for detecting obscure single elements in the received
list. Later it will be clear why this threshold has to be determined first.

Determining oh

The strategy for determining oh is to send a list, solely consisting of sane
expected utilities except for one, which is somewhat higher. If Botr votes
Bots trustworthy (i.e. when V Botr,s becomes 1 in the voting system, as
described in Section 9.3), then Bots knows that Botr’s oh has not yet been
exceeded. As a consequence, Bots chooses a higher expected utility the next
time. This is repeated until V Botr,s becomes 0, thus revealing to Bots the
approximate value of oh.

Several ways of deciding on which false expected utility to send, can
be applied. Inspired by the mechanism of avoiding congestion control on
computer networks, Bots applies a slow-start approach as described in [13].
The problem is similar in that a maximum value for sending packets while
avoiding congestion, has to be found. The principle is that as long as an
exceeding false expected utility has not been found, the expected utility
is doubled, thus making it grow exponentially. When an exceeding false
expected utility has been found, that value is halved and from that point it
continues to grow linearly instead of exponentially. When the false expected
utility exceeds again, the search for oh ends.

Determining h1

When the value of oh has been determined, it is possible to determine h1.
This threshold determines how many minor lies will pass unnoticed. As can
be seen in Formula 9.7, H1 is a function of trust and the actual threshold,
h1. The task is to guess the latter. The approach is to start lying about

70 CHAPTER 10. TRICKERY MANAGEMENT

one expected utility, and if this passes unnoticed, twice as many expected
utilities are lied about, thus utilizing the slow start approach once again.
This continues until Botr votes Bots out, at which time the search continues
in a linear fasion. The completion of the linear search marks the end of the
search for h1.

In the process of finding h1, it is important for Bots to choose false
expected utilities that it is certain that Botr sees only as minor deviations
and not huge lies (lies which exceed oh). Therefore the false expected utility
is set just below the value of oh. This is the reason why oh has to be
determined first.

Using the Threshold Values

Having found the threshold values h1 and oh, Bots is fit to perform sophis-
ticated trickery. From this point, Bots tries to trick all other bots every
time a decision upon distribution of roles has to be made. Since it does not
expect to be caught lying, it can only benefit from it.

The first step in tricking is for Bots to settle for a distribution that it
wants to be chosen. This would be the distribution that has the highest
expected utility. Bots’s goal is to increase the probability that this distribu-
tion is picked and decrease the probability of all others. It tries to fulfill this
goal by calculating the number of utilities, n, Botr would accept a minor
deviation on, using Formula 9.7. This is possible since the constituents of
Formula 9.7, h1 and Tr,s, are known.

If n = 1 (i.e. only one element can be changed), the expected utility
of the desired distribution is incremented by Botr’s oh. If n > 1 then,
apart from increasing one expected utility, Bots has the opportunity to
dampen n − 1 utilities. The question is which distributions to dampen.
In order to find out, Bots calculates the expected utilities of all decisions
about distributions from a non-trickster’s point of view (this is done by
altering the state of the personality node as depicted in Figure 8.1). The
n − 1 highest expected utilities, except for those representing distributions
of roles also desired by Bots, are decremented by Botr’s oh. Thereby Bots
has maximized its trickery of Botr. The same is carried out for all other
bots.

As a clarifying example consider a situation where Bots is to trick Botr.
All threshold values of Botr have been determined by Bots. h1 = 4, oh = 50
and Tr,s = 0.5. Bots settles for a desired distribution by calculating all
expected utilities. Say the distribution Suppress, storm has the highest
expected utility and thus is the desired. Next, the number of utilities, n,
Botr will accept a minor deviation on, is calculated: n = Tr,s · h1. This
amounts to two, which means that Bots can increment the utility of the
desired distribution by oh and decrement one of the utilities of the undesired
distributions also by oh. As described above, Bots calculates all expected

10.3. TESTING CO-BOT WITH TRICKERY MANAGEMENT 71

utilities from a non-trickster’s point of view. These can be viewed in Table
10.1. As can be seen in the table, the distribution Storm, storm has the
highest expected utility (80), and since it is not Bots’s desired distribution its
utility is decremented by oh giving the value 80−50 = 30. The utility of the
desired distribution (15) is incremented by oh giving the value 15+50 = 65.
All calculations have now ended and Bots’s list of utilities sent to Botr is
depicted in Table 10.2.

Distribution Utility

Storm, storm 80

Storm, suppress 23

Suppress, storm 15

Suppress, suppress 1

Table 10.1: Expected utilities from a non-trickster’s point of view, calculated
by Bots

Distribution Utility

Storm, storm 30

Storm, suppress 23

Suppress, storm 65

Suppress, suppress 1

Table 10.2: The final list of utilities sent from Bots to Botr. The utility of
the distribution Suppress, storm has been artificially increased, whereas the
utility of Storm, storm has been artificially decreased.

10.3 Testing CO-Bot With Trickery Management

In order to verify that the trickery management system works as intended,
tests of the implementation are conducted. The test setup is as in the earlier
tests (see e.g. Section 9.4), except the CO-Bots are now equipped with
trickery management. Two tests have been conducted, each with different
threshold values for the trust managing bots. Besides the usual test results
(i.e. the score for each team and each team member), the number of times
the team chooses the trickster’s desired distribution of roles is recorded.

In the first test, oh was set to 20 and h1 was set to one. This corresponds
to bots that are very hard to trick. The team chose the trickster’s desired
distribution 11.7 % of the total number of decisions about distributions.
Note that this does not mean that the trickster bot succeeded in tricking
the group mates in 11.7 % of the decisions – sometimes the group mates
actually agree with the trickster.

In the second test, oh was set to 80 and h1 was set to four. This renders

72 CHAPTER 10. TRICKERY MANAGEMENT

the trust managing bots easier to trick. The test showed that the team chose
the trickster’s desired distribution 89.6 % of the total number of decisions.

Figure 10.1 shows how successful the trickster is in a part of the test
run, with one plot for each test with different threshold values for trust
managing bots. In the 44th encounter (in the plot for the high threshold)
the trickster has determined all threshold values and therefore begins to
perform trickery, with frequent success. An occasional glitch is caused by
difference in experience between the bots.

Table 10.3 and Table 10.4 shows the end scores for each of the two tests.
The results of the test where non-tricksters have low thresholds are quite
similar to the test results of the trust managing bots with one naive trickster
(see Section 9.4). The reason is that even though the tricking bot is now
more sophisticated, the victims are very hard to influence using trickery,
as a consequence of their small threshold values. The results of the test
where non-tricksters have high thresholds are close to the test results of
the personalized model as shown in Table 8.4. This is because the trust
managing bots are quite naive, due to their relatively high threshold values.

10.3. TESTING CO-BOT WITH TRICKERY MANAGEMENT 73

Figure 10.1: Graph showing how many times the trickster got the desired
distribution. The two plots mark tests with different threshold values for
trust managing bots. In the 44th encounter (in the plot for high threshold),
the trickster bot has finished determining the threshold for fellow bots, and
in the subsequent decisions it performs sophisticated trickery with success.

Score Kills Deaths

Counter Terrorists(CT) 105

CT bot1 111 825

CT bot2 106 834

CT bot3 98 837

Terrorists(T) 916

T bot2 847 99

Trickster 828 105

T bot3 821 111

Table 10.3: Results of the first test of the CO-Bot with trickery management.
The trust managing bots (T bot 2 and T bot 3) are hard to cheat because
the threshold values are low. 1021 rounds were played.

74 CHAPTER 10. TRICKERY MANAGEMENT

Score Kills Deaths

Counter Terrorists(CT) 185

CT bot1 191 801

CT bot2 183 816

CT bot3 181 822

Terrorists(T) 853

Trickster 895 138

T bot2 788 213

T bot3 756 204

Table 10.4: Results of the second test of the CO-Bot with trickery manage-
ment. The trust managing bots (T bot 2 and T bot 3) are easier to cheat
because of the higher threshold values. 1038 rounds were played.

Chapter 11

Conclusion and Future Work

This chapter concludes on the project described in this report by review-
ing what was accomplished in terms of contributions to the theory of trust
management and by putting these into perspective. Closingly some ideas
for relevant future work is presented.

11.1 Conclusion

In the later years, trust management has become a hot topic within the
decision support systems community. It is usually discussed in an Internet
context, where shopping or download agents use trust management to govern
particular interests of a person by automatically deciding which other agents
to trust in the context of these interests. Although usually discussed in an
Internet context, the project described in this report seeks to apply trust
management to cooperative multiplayer FPSs.

In doing so, problems arise that are new to the theory of trust man-
agement. Due to the group oriented nature of cooperative FPSs, they de-
mand a single cooperative decision to be reached. When discussed in other
contexts, trust management governs the interests of a single person. For
example, trust management is applied to protect a user of an email service
by filtering received emails, to sort peers in peer-to-peer systems, to choose
the fastest source of download or to find the most trusted online store for a
particular product. FPSs are different in that trust management does not
exist to protect anyone. It exists to increase the suspension of disbelief, by
adding human-like character traits to bots. In fact, to stress this, a con-
cept new to the theory of trust management is introduced - namely trickery
management. Trickery management is the diametrically opposite of trust
management. While trust management seeks to minimize the trickery of
tricksters, trickery management seeks to optimize it.

Normally trust management is applied to a number of services, where it
is natural to base a filtering of the service providers on trust and reputa-

75

76 CHAPTER 11. CONCLUSION AND FUTURE WORK

tion. However, the introduction of trickery management implies that false
information can be communicated from one to another. To mimic human
behavior, trust management is extended to include an assessment of the
soundness of what is actually communicated.

Many times before have human players been astonished by the creativity
and resourcefulness of game developers, usually due to impressive graphics,
sounds, ideas or overly dynamic virtual worlds that allow for a virtually un-
limited number of paths through a game. Although in many cases deceitful
and intolerant themselves, human players of FPSs have grown accustomed
to bots that do not imitate human behavior by being deceitful or intolerant.
While hard to measure, bots with deceitful and intolerant personalities are
assumed to increase the suspension of disbelief of human players. Based
on this assumption the report at hand documents the development of a co-
operative bot for the popular FPS Counter-Strike. The bot called CO-Bot
demonstrates and renders probable the applicability of trust and trickery
management as a means to incorporate deceitful and intolerant personali-
ties into FPSs.

Before implementing personalities or trust and trickery management,
basic cooperative abilities and game strategic knowledge were incorporated
into CO-Bot through a cooperative decision model. In a test setup, where a
team of CO-Bots played against a team of PODBots, tests showed that CO-
Bot by far outperformed the PODBot which does not utilize cooperation to
the same extent.

Built on the cooperative model, the personalized model added personal-
ities to CO-Bot. Thus tricksters were introduced, in an effort to make the
bots more human-like, as team mates with a hidden agenda to be awarded
specific roles no matter if this was the best decision for the team. As ex-
pected, tests of the implementation of tricksters showed that CO-Bot was
naive and vulnerable to trickery at this stage. Furthermore, the tests showed
that tricksters benefit in terms of in-game stats from their trickery.

The cooperative and the personalized decision model alike is based on
influence diagrams. Being that CO-Bot is relatively simplistic and made
for demonstration purposes only, creating bots for commercial use, possibly
incorporating a whole range of personalities, is expected to entail a consider-
able increase in complexity. Given the requirement of FPSs for virtually in-
stant decision making, the inherent complexity of solving influence diagrams
and considering the simplicity of the influence diagrams constructed for sup-
porting CO-Bot’s decision process, it is recommended that other methods
than influence diagrams are researched.

In response to trickster bot’s deceitful nature, CO-Bot was subsequently
equipped with a trust management system that rendered it capable of de-
tecting tricksters. Inspired by human nature, the trust management system
was designed to take trust, reputation and an assessment of the soundness
of the statement to be evaluated into account. With this extension CO-Bot

11.2. FUTURE WORK 77

was able to detect tricksters and, by deploying a voting system, prevent
these from affecting the single cooperative decision required by cooperative
FPSs. As expected, tests revealed that tricksters were easily detected and
excluded from influence. This of course, is due to the consistently exagger-
ated lies of tricksters. In terms of human behavior, such lies are considered
unrealistic.

To redeem the situation, CO-Bot was equipped with trickery manage-
ment. Trickery management is applied to determine threshold values of
trust managing CO-Bots, revealing to what extent it is feasible to lie about
expected utilities of outcomes. Threshold values are found by varying the
number and severity of the lies being sent and then evaluating the result. The
newly found threshold values are used to construct future lies making sure
the receiving CO-Bot does not detect the trickster’s trickery. As expected,
tests showed a substantial increase in tricksters’ influence on the coopera-
tive decision when trickery management was used against team mates using
trust management.

Contrary to influence diagrams, trust and trickery management, as it
is presented here, is not inherently complex. It can easily accommodate
the strict requirements of commercial FPSs, and if applied to trick human
players teaming with CO-Bot, sophisticated trickery through trickery man-
agement is expected to increase the suspension of disbelief considerably.

11.2 Future Work

Central statistics server

The usefulness of influence diagrams, in an FPS context, is inhibited by lack
of statistics on which to train the networks. A way of solving this problem
would be to implement a central statistics server which collects information
(cases) from every computer which runs the bot code and distributes the new
probability among all the participating computers. This implementation
would entail general security issues but could also contain influence diagrams
(or some other element of Decision Support Theory) itself. These elements
could be useful for classifying players giving the statistics for each player
different weights and maybe using specific statistics only in specific contexts.
The server could of course itself make use of trust management theory to
discard information received from suspicious sources.

Support for human team players

The work explained in this report focuses on adding human-like behavior to
bots. The theory of trust management could be expanded to model humans,
and thereby detect untrustworthy players in larger online game communities.
This may be used by other humans to determine trustworthiness of others,

78 CHAPTER 11. CONCLUSION AND FUTURE WORK

and by bots to make the interaction between these and humans playing the
game more interesting.

Trust management in large online game communities

In this project trust management was used to distinguish tricksters from
group oriented bots in predefined groups, in order to discard the information
coming from the selfish bots when choosing roles. It would be interesting to
examine the use of trust management in a large online game communities
where bots could choose with whom to form groups from a large set of agents
using a combination of trust and reputation values.

Trickery Alliances

Since more than one bot on a team may be a trickster, one could imag-
ine some form of collaboration between these in order to make their own
situation better. The bots would not have the same goal, as they would
each only want to increase their own chances for survival, but providing
false positive recommendation through reputation about each other to non-
tricksters could make them both look more trustworthy thus bettering both
their situations. If a number of tricksters could take part in such a trickery
alliance it would take longer for them to be deemed untrustworthy by their
non-trickster team mates.

Consider the situation illustrated in Figure 11.1.

Bot

1
Bot

3
Bot

Bot
2 4

Figure 11.1: An example of a trickery alliance. Bot 1 and Bot 2 are tricksters.
Bot 1 tricks Bot 4 and Bot 2 tricks Bot 3.

There is a total of 4 bots. Bots numbered 1 and 2 are tricksters and
bots numbered 3 and 4 are non-tricksters. The arrows represent which bots

11.2. FUTURE WORK 79

trick which other bots. Bot 1 tricks Bot 4 and Bot 2 tricks Bot 3. The two
tricksters are in a trickery alliance where they each trick only one of the
two non-tricksters. Furthermore they provide each other with false positive
recommendation through reputation when asked and provide false negative
recommendation of Bot 3 and Bot 4.

In this way Bot 3 has good experience with Bot 1 and thus provides
positive recommendations of Bot 1 to Bot 4. Bot 2 is a trickster and thus
provides false positive recommendations of Bot 1 to Bot 4 and negative
recommendation of Bot 3 and Bot 4 to all others. Now Bot 4 has two
sources which have both provided positive recommendations for Bot 1. This
will impact Bot 4’s trust value in Bot 1 in a positive direction, even if Bot
4 already has had bad experience with bot 1.

As illustrated in the example above, an alliance of tricksters equal in size
compared to non-tricksters, can completely dominate the non- tricksters by
providing false positive or negative recommendations.

Now, when Bot 4 learns it is being tricked by Bot 1 in this situation,
it decreases its trust in Bot 1. If trust values in the trust management
implementation are updated based on the reputation provided, both Bot 2
and Bot 3 are percieved as being untrustworthy because both gave a good
recommendation of Bot 1 even though it turned out to be a trickster. In this
case Bot 3 is actually being mistreated as it gave a true recommendation
based on its actual values.

The problem of discovering trickery alliances is not a trivial one and
would require a great deal of examination of the problems described.

Trickery using false actions

As a final thought on future work one could imagine a trickster which does
not only lie about what distribution of roles is most preferable but also does
not perform the action it is told to by the group. This brings up a whole new
set of problems about how the group should react to the behavior of such a
bot and how its preferences and desires should be taken into consideration
when distributing roles.

Part III

Appendix

81

Appendix A

Tests

A.1 Transcript

This is a transcript that exemplifies a scenario where Bot0 is a trickster and
Bot1 and Bot2 are non-tricksters.
This first encounter shows how the trickster tries to determine thresholds,
by exaggerating the expected utilities.

*** NEW ENCOUNTER ***

Trying to determine thresholds

Li_bot0[0]: 96

Li_bot0[1]: 131

Li_bot0[2]: 131

Li_bot0[3]: 196

Li_bot0[4]: 81

Li_bot0[5]: 146

Li_bot0[6]: 146

Li_bot0[7]: 211

Li_bot1[0]: 66

Li_bot1[1]: 131

Li_bot1[2]: 131

Li_bot1[3]: 196

Li_bot1[4]: 81

Li_bot1[5]: 146

Li_bot1[6]: 146

Li_bot1[7]: 211

Li_bot2[0]: 69

Li_bot2[1]: 128

Li_bot2[2]: 121

83

84 APPENDIX A. TESTS

Li_bot2[3]: 189

Li_bot2[4]: 85

Li_bot2[5]: 151

Li_bot2[6]: 153

Li_bot2[7]: 200

The trickery of Bot0 is not yet detected, so Bot0 is voted IN by both Bot1
and Bot2.

** VOTES START **

Bot0 votes Bot1 IN

Bot0 votes Bot2 IN

Bot1 votes Bot0 IN

Bot1 votes Bot2 IN

Bot2 votes Bot0 IN

Bot2 votes Bot1 IN

** VOTES END **

Trust is updated accordingly.

** TRUST START **

** Bot0’s trust in Bot1: 0.600000 **

** Bot0’s trust in Bot2: 0.600000 **

** Bot1’s trust in Bot0: 0.600000 **

** Bot1’s trust in Bot2: 0.600000 **

** Bot2’s trust in Bot0: 0.600000 **

** Bot2’s trust in Bot1: 0.600000 **

** TRUST END **

Final utilities:

Lfinal[0]: 95

Lfinal[1]: 164

Lfinal[2]: 164

Lfinal[3]: 245

Lfinal[4]: 101

Lfinal[5]: 182

Lfinal[6]: 182

Lfinal[7]: 264

Chosen distribution of roles: Suppress, suppress, suppress

A.1. TRANSCRIPT 85

*** ENCOUNTER ENDED ***

In the second encounter, the trickster exaggerates even more.

*** NEW ENCOUNTER ***

Trying to determine thresholds

Li_bot0[0]: 126

Li_bot0[1]: 131

Li_bot0[2]: 131

Li_bot0[3]: 196

Li_bot0[4]: 81

Li_bot0[5]: 146

Li_bot0[6]: 146

Li_bot0[7]: 211

Li_bot1[0]: 66

Li_bot1[1]: 131

Li_bot1[2]: 131

Li_bot1[3]: 196

Li_bot1[4]: 81

Li_bot1[5]: 146

Li_bot1[6]: 146

Li_bot1[7]: 211

Li_bot2[0]: 69

Li_bot2[1]: 128

Li_bot2[2]: 121

Li_bot2[3]: 189

Li_bot2[4]: 85

Li_bot2[5]: 151

Li_bot2[6]: 153

Li_bot2[7]: 200

** VOTES START **

Bot0 votes Bot1 IN

Bot0 votes Bot2 IN

Bot1 votes Bot0 IN

Bot1 votes Bot2 IN

Bot2 votes Bot0 IN

Bot2 votes Bot1 IN

** VOTES END **

86 APPENDIX A. TESTS

** TRUST START **

** Bot0’s trust in Bot1: 0.666667 **

** Bot0’s trust in Bot2: 0.666667 **

** Bot1’s trust in Bot0: 0.666667 **

** Bot1’s trust in Bot2: 0.666667 **

** Bot2’s trust in Bot0: 0.666667 **

** Bot2’s trust in Bot1: 0.666667 **

** TRUST END **

Final utilities:

Lfinal[0]: 125

Lfinal[1]: 191

Lfinal[2]: 191

Lfinal[3]: 286

Lfinal[4]: 118

Lfinal[5]: 213

Lfinal[6]: 213

Lfinal[7]: 295

Chosen distribution of roles: Suppress, suppress, suppress

*** ENCOUNTER ENDED ***

In this encounter, the trickster exaggerates even more.

*** NEW ENCOUNTER ***

Trying to determine thresholds

Li_bot0[0]: 156

Li_bot0[1]: 136

Li_bot0[2]: 198

Li_bot0[3]: 198

Li_bot0[4]: 141

Li_bot0[5]: 141

Li_bot0[6]: 203

Li_bot0[7]: 203

Li_bot1[0]: 74

Li_bot1[1]: 126

Li_bot1[2]: 126

Li_bot1[3]: 179

Li_bot1[4]: 77

A.1. TRANSCRIPT 87

Li_bot1[5]: 130

Li_bot1[6]: 130

Li_bot1[7]: 183

Li_bot2[0]: 77

Li_bot2[1]: 132

Li_bot2[2]: 120

Li_bot2[3]: 171

Li_bot2[4]: 72

Li_bot2[5]: 138

Li_bot2[6]: 136

Li_bot2[7]: 189

This time the trickster is detected and voted out.

** VOTES START **

Bot0 votes Bot1 IN

Bot0 votes Bot2 IN

Bot1 votes Bot0 OUT

Bot1 votes Bot2 IN

Bot2 votes Bot0 OUT

Bot2 votes Bot1 IN

** VOTES END **

** TRUST START **

** Bot0’s trust in Bot1: 0.714286 **

** Bot0’s trust in Bot2: 0.714286 **

** Bot1’s trust in Bot0: 0.444444 **

** Bot1’s trust in Bot2: 0.714286 **

** Bot2’s trust in Bot0: 0.285714 **

** Bot2’s trust in Bot1: 0.714286 **

** TRUST END **

Final utilities:

Lfinal[0]: 73

Lfinal[1]: 124

Lfinal[2]: 124

Lfinal[3]: 180

Lfinal[4]: 76

Lfinal[5]: 128

Lfinal[6]: 128

Lfinal[7]: 176

88 APPENDIX A. TESTS

The trickster has lost its influence and in this case it gets the worst imagin-
able distribution of roles.

Chosen distribution of roles: Storm, suppress, suppress

*** ENCOUNTER ENDED ***

*** NEW ENCOUNTER ***

Trying to determine thresholds

Li_bot0[0]: 162

Li_bot0[1]: 126

Li_bot0[2]: 180

Li_bot0[3]: 183

Li_bot0[4]: 126

Li_bot0[5]: 129

Li_bot0[6]: 183

Li_bot0[7]: 187

Li_bot1[0]: 66

Li_bot1[1]: 131

Li_bot1[2]: 131

Li_bot1[3]: 196

Li_bot1[4]: 81

Li_bot1[5]: 146

Li_bot1[6]: 146

Li_bot1[7]: 211

Li_bot2[0]: 69

Li_bot2[1]: 128

Li_bot2[2]: 121

Li_bot2[3]: 189

Li_bot2[4]: 85

Li_bot2[5]: 151

Li_bot2[6]: 153

Li_bot2[7]: 200

** VOTES START **

Bot0 votes Bot1 IN

Bot0 votes Bot2 IN

Bot1 votes Bot0 OUT

Bot1 votes Bot2 IN

Bot2 votes Bot0 OUT

Bot2 votes Bot1 IN

A.1. TRANSCRIPT 89

** VOTES END **

** TRUST START **

** Bot0’s trust in Bot1: 0.750000 **

** Bot0’s trust in Bot2: 0.750000 **

** Bot1’s trust in Bot0: 0.333333 **

** Bot1’s trust in Bot2: 0.750000 **

** Bot2’s trust in Bot0: 0.200000 **

** Bot2’s trust in Bot1: 0.666667 **

** TRUST END **

Final utilities:

Lfinal[0]: 63

Lfinal[1]: 126

Lfinal[2]: 126

Lfinal[3]: 188

Lfinal[4]: 78

Lfinal[5]: 140

Lfinal[6]: 140

Lfinal[7]: 202

Chosen distribution of roles: Suppress, suppress, suppress

*** ENCOUNTER ENDED ***

Bibliography

[1] Bikramjit Banerjee, Anish Biswas, Manisha Mundhe, Sandip Debnath,
and Sandip Sen. Using bayesian networks to model agent relationships.
2001.

[2] Jeffrey Broome. Botman’s bots. http://www.planethalflife.com/botman/,
2004.

[3] Tom Clancy. Tom clancy games.
http://www.tomclancygames.ubi.com/main.php, 2001.

[4] Finn Verner Jensen. Bayesian Networks and Decision Graphs. Springer-
Verlag, 2001.

[5] Markus Klinge. Podbot. http://podbot.nuclearbox.com/, 2004.

[6] John E. Laird. It knows what you’re going to do: Adding anticipation
to a quakebot. In Proceedings of the fifth international conference on

Autonomous agents, pages 385–392. University of Michigan, ACM Press
New York NY, USA, 2001.

[7] John E. Laird and Michael van Lent. Human-level ai’s killer applica-
tion interactive computer games. Article from AI Magazine Summer
2001:15-25, 2001.

[8] Niels Christian Nielsen, Henrik Oddershede, Martin Thomsen, Alex
Ringgaard, and Jacob Larsen. Advanced ai in computer games.
http://www.cs.auc.dk/library/files/rapbibfiles1/1073308615.ps, 2004.

[9] Major NME. Swat tactics. http://www.nme.de/cgi-shl/nme/swat.cfm,
2001.

[10] Raymond Padilla. Counter-strike. http://archive.gamespy.com/e32003/
preview/xbox/1001699/, 2004.

[11] Gabriela Serban. A new reinforcement learning algoritm. 2003.

91

92 BIBLIOGRAPHY

[12] Dicky Suryadi and Piotr J. Gmytrasiewicz. Learning models of other
agents using influence diagrams. In Proceedings of the seventh inter-

national conference on User modeling, pages 223–232. Department of
Computer Science and Engineering, University of Texas at Arlington,
Springer-Verlag New York, Inc, 1999.

[13] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[14] The CS Team. Counter strike official website. http://www.counter-
strike.net/, 2003.

[15] William van der Sterren. Squad tactics: Team ai and emergent maneu-
vers. In Rabin, S., editor, AI Programming Wisdom, chapter 5 Tactical
Issues and Intelligent Group Movement, pages 233-259. Charles River
Media, inc., first edition., 2001.

[16] Yao Wang. Bayesian networks-based trust model in peer-to-peer net-
works. 2003.

[17] Steven M. Woodcock. The game ai page. http://www.gameai.com,
2004.

