
The Applied π-calculus:

Type Systems and Expressiveness

♦

Master Thesis

Anders Bloch
Morten V. Frederiksen

Bjørn Haagensen

7th June 2004

♦

Aalborg University
Department of Computer Science · Fredrik Bajers Vej 7E

DK-9220 Aalborg Øst

Aalborg University
The Faculty of Engineering and Science

Department of Computer Science

TITLE:
The Applied π-calculus: Type Systems
and Expressiveness

PROJECT PERIOD:
DAT6,
1st February 2004 to 8th June 2004

PROJECT GROUP:
B1-215B

GROUP MEMBERS:
Anders Bloch, bloch@cs.auc.dk

Morten V. Frederiksen, mortenf@cs.auc.dk

Bjørn Haagensen, bh@cs.auc.dk

SUPERVISOR:
Hans Hüttel, hans@cs.auc.dk

NUMBER OF COPIES: 5

NUMBER OF PAGES: 119

ABSTRACT

In this master thesis we present an encoding
of the applied π-calculus (Appπ) [AF01] in the
π-calculus and it is shown how Appπ can be
instantiated to obtain the spi-calculus [AG97].
Furthermore we define two type systems for
Appπ. One is a basic type system capable of
capturing errors such as arity mismatch and
errounous use of names. The other is a type
system equivalent to the type system for the
spi-calculus presented in [Aba97]. It is shown
that the representation of the spi-calculus
preserves types with respect to this type
system.

The encoding of the spi-calculus in the
instance of Appπ is shown to be sound and
complete with respect to operational corre-
spondence. In order to facilitate the proof of
this result a semantics for the spi-calculus in
the same style as the semantics for Appπis
used, i.e. an early labelled transition relation.
This modified semantics is shown to be
strongly equivalent to that of the original in
[AG97] which uses the notion of abstractions
and concretions.

We do not directly encode the equational the-
ory used in Appπ, rather we rely on well-
known results for transforming such a theory
into a confluent and terminating rewrite sys-
tem on which the encoding is performed. The
encoding is shown to be sound with respect
to operational correspondence. In light of the
sparse amount of work which has followed the
original publication of Appπ, one of the ma-
jor assets of our encoding is that it makes the
vast amount of theoretical and practical tools
developed for the π-calculus available for rea-
soning in Appπ.

Preface

This master thesis documents the results obtained by group B1-215B during the
spring semester of 2004. The report is written as part of the DAT6-term at the
Department of Computer Science at Aalborg University.

The work is done under the distributed systems and semantics group, and the
topic is process calculi, specifically the applied π-calculus.

We have strived to stay as close as possible to the notation standard in the field.
Abbreviations, most notably for the languages we define, are introduced where
the language is first defined. Citations are in bracketed parentheses e.g. [Mil99].

We would like to thank our supervisor Hans Hüttel for providing overview as
well as advice on technical details.

Aalborg, June 2004

Anders Bloch Morten V. Frederiksen

Bjørn Haagensen

iii

Summary

In the π-calculus the only kind of messages that can be communicated are atomic
names and this simplicity is appealing from a theoretical point of view. But for
many purposes one often finds it necessary or convenient to be able to represent,
for instance, data types such as pairs. Various authors have demonstrated that
more complex constructs such as objects, functions, and higher-order processes
can be encoded in the π-calculus.

However, such encodings can be cumbersome and their correctness can be diffi-
cult to establish, and it is not clear whether such encodings can always be estab-
lished. For this reason a plethora of extensions of the π-calculus exist. These are
often aimed at capturing common features and properties of programming lan-
guages. The applied π-calculus (Appπ) [AF01], proposed by Abadi and Fournet,
is a generalization of the π-calculus which captures several of these extensions.
More specifically, messages may be constructed from, not only names, but also
function symbols applied to names and other functions. Furthermore, the cal-
culus includes a let-like construct which serves to capture the knowledge an
environment may have of the values of certain variables.

To our knowledge very little work has succeeded the publication of [AF01] in
spite of the fact that the original article leaves a number of aspects open to
further investigation. This master thesis focuses on a few of these aspects. The
major contributions are the following.

• Definition of type systems for Appπ,

• a representation of the spi-calculus in Appπ,

• an encoding of Appπ in the π-calculus.

We have established a basic type system for Appπ similar to the one in [SW01].
This type system is capable of capturing errors such as arity mismatch and erro-
neous use of channel names. A subject-reduction theorem, which states that the
transition relation preserves typing, has been established for this type system.

As suggested in [AF01] the development of Appπ has been inspired by the desire
to have a calculus in which, among others, the spi-calculus [AG97] can be repre-
sented. We have formalised this correspondence by establishing a representation
of the spi-calculus in an instantiation of Appπ. That is, an instance of Appπ has
been constructed by defining a presentation Π and an encoding of spi-processes
in this language has been defined.

v

vi

The encoding is shown to respect the transition relation with regard to actions
and derivatives, that is if P α−−−→ P ′ then JP K α−−−→≈ JP ′K and vice versa. In
order to facilitate the proof of this result, we have tailored the semantics of the
spi-calculus to be conceptually as close to the semantics of Appπ as possible.
Thus minor changes has been made compared to the semantics originally given
in [AG97]. Specifically, we use an early labelled transition relation with action
labels in the style of a〈M〉 for input and (νq)a〈M〉 for output. This contrasts
to the semantics given in [AG97] which uses the notion of abstractions and
concretions. Furthermore, scope extrusion is handled differently in the original
presentation. In order to ensure that our results hold also for the original spi-
calculus, we have proved that the modified semantics is strongly equivalent to
that of the original.

The encoding of the spi-calculus in Appπ also demonstrates one of the assets of
Appπ. If we where to add hashing to the spi-calculus we would have to change
the syntax and semantics. In Appπ terms are constructed from a signature and
the semantics is extended with an equational theory over the set of terms. The
remaining parts of the syntax and semantics, and consequently entire theory,
is independent of the exact nature of the equational theory. Hence the above
mentioned variations can be captured by merely modifying the signature and
its associated equational theory.

An approach to analysing security protocols in the spi-calculus is by using type
systems and considerable effort has been put into investigating this topic. Most
notably Gordon and Jeffrey has published [Aba97] and [GJ01a] in which secrecy
and authenticity properties of security protocols are analysed using a type sys-
tem for the spi-calculus. We modify our type system for Appπ in order to obtain
a type system for the instantiation of spi in Appπ which is equivalent to the one
Abadi defines in [Aba97]. The changes made account for the specific message
format Abadi defines for messages on secret channels.

The most innovative contribution of this master thesis is an encoding of Appπ
in the π-calculus. Although the π-calculus is well-known to be Turing-complete,
this encoding is non-trivial. The main difficulty lies in the encoding of the equa-
tional theory which is used for comparing terms in Appπ. Our encoding is in-
spired by a recent proposal for an encoding of the spi-calculus in the π-calculus
[BPV03], but differs considerably in the way that terms are encoded. We rely
on well-known results for transforming an equational theory into a terminating
and confluent rewrite system. Moreover the encoding requires the rules of the
rewrite system to be left linear. The idea is that all terms are forced to reduce
to their irreducible form before they can be accessed. Since the rewrite system
is terminating and confluent, equality then reduces to a matter of checking for
syntactic identity. The encoding also imposes a bottom-up evaluation strategy
of terms. The choice of evaluation strategy is inessential for confluent rewrite
systems. We prove soundness of the encoding of terms.

Resumé

I π-kalkylen er det kun atomiske navne, der kan kommunikeres, hvilket giver en
enkelhed, der er appellerende ud fra et teoretisk synspunkt. I mange henseender
er det dog ofte nødvendigt eller ønskeligt at kunne repræsentere for eksempel
data typer som for eksempel par. Flere forfattere har vist, at komplekse kon-
struktioner som objekter, funktioner og højere ordens processer kan kodes i
π-kalkylen.

S̊adanne kodninger kan imidlertid være besværlige at arbejde med, og deres
korrekthed kan ligeledes være svær at fastsl̊a og derudover er det ikke altid
oplagt at s̊adanne kodninger overhovedet eksisterer. P̊a grund af dette er der
dukket adskillige udvidelser af π-kalkylen op. Disse udvidelsers form̊al er ofte at
udtrykke almindelige egenskaber, der er til stede i programmeringssprog. Den
Anvendte π-kalkyle (Appπ) [AF01], som blev foresl̊aet af Abadi og Fournet, er
en generalisering af π-kalkylen, der er i stand til at udtrykke mange forskellige
s̊adanne udvidelser. Mere specifikt kan beskeder ikke blot konstrueres ved hjælp
af navne, men ogs̊a ved hjælp at funktionssymboler, der kan anvendes p̊a navne
og andre funktionssymboler. Derudover har kalkylen en konstruktion, der minder
om let, som kan udtrykke et miljøs viden om visse variablers værdier.

S̊a vidt vi ved, har udgivelsen af [AF01] kun affødt en yderst begrænset mængde
forskning og det p̊a trods af, at den oprindelige artikel foresl̊ar flere åbne prob-
lemer, der kan studeres. Nærværende specialerapport fokuserer p̊a nogle af disse
problemer. Rapportens vigtigste bidrag er følgende.

• Definition af et typesystem for Appπ,

• en repræsentation af spi-kalkylen i Appπ og

• en kodning af Appπ i π-kalkylen.

Vi etablerer et typesystem for Appπ, der p̊a mange m̊ader ligner det typesystem
der defineres i [SW01] for π-kalkylen. Dette typesystem garanterer, at der ikke
opst̊ar aritetsfejl og forhindrer fejlagtig brug af kanalnavne. I denne forbindelse
bevises at transitionsrelationen bevarer veltypethed.

Udviklingen af Appπ har, som det fremhæves i [AF01], været motiveret af et
ønske om at opn̊a en kalkyle hvori blandt andet spi-kalkylen [AG97] kunne
udtrykkes. Vi demonstrerer, at dette m̊al er n̊aet ved at konstruere en instans
af Appπ, hvori spi-kalkylen kan kodes. Dette gøres ved at definere en signatur
indeholdende de nødvendige funktionssymboler samt en mængde af ligninger og
desuden en kodningsfunktion, der koder spi-processer til Appπ-processer.

vii

viii

Kodningen vises s̊a at respektere transitionsrelationen med hensyn til handlinger
og afledte processudtryk. Det vil sige at hvis P α−−−→ P ′ s̊a JP K α−−−→≈ JP ′K og
omvendt. For at lette beviset for denne sætning, defineres en spi-kalkyle med
en semantik, der ligger s̊a tæt op ad semantikken for Appπ som muligt. Dette
indebærer blandt andet at semantikken er tidlig og at transitionerne mærkes
med handlinger af formen a〈M〉 for input og (νq)a〈M〉 for bundet output. I
semantikken for den oprindelige spi-kalkyle, der beskrives i [AG97], bruges i
stedet abstraktioner og konkretiseringer. Desuden behandles virkefeltsudvidelse
anderledes i denne semantik. P̊a grund at disse omstændigheder er det nød-
vendigt at bevise, at de to semantikker er ækvivalente.

Kodningen af af spi-kalkylen i Appπ demonstrerer en af fordelene ved Appπ.
Hvis vi ønskede at tilføje funktionalitet for hashing til spi-kalkylen, ville vi være
nødt til at ændre dens syntaks og semantik. I Appπ kan termer konstrueres ved
hjælp af en signatur og semantikken udvides ved hjælp af en ligningsteori p̊a
mængden af termer. De resterende dele af syntaksen og semantikken forbliver
uændrede s̊aledes at den generelle teori for Appπ ogs̊a forbliver uændret. Den
udvidelse af π-kalkylen, man ønsker, kan s̊aledes beskrives ved en signatur og
en tilhørende ligningsteori.

Typesystemer har i forbindelse med spi-kalkylen været brugt til at analysere
sikkerhedsegenskaber for protokoller og en ikke ubetydelig forskningsindsats er
blevet lagt for dagen i dette henseende. Her bør især fremhæves Gordon og
Jeffreys artikler [Aba97] og [GJ01a], hvori typesystemer til analyse af hem-
meligheds- og autenticitetsegenskaber ved sikkerhedsprotokoller beskrives. Ved
at tilpasse vores generelle typesystem for Appπ er vi i stand at konstruere et
typesystem for instantieringen af spi-kalkylen i Appπ, som er ækvivalent med
Abadis. De nødvendige ændringer vedrører det særlige format Abadi bruger i
forbindelse med kommunikation af beskeder p̊a hemmelige kanaler.

Det væsentligste bidrag i denne specialerapport er en kodning af Appπ i π-
kalkylen. P̊a trods af at π-kalkylen har vist sig at være Turing-fuldstændig,
er denne kodning langt fra triviel. Den største vanskelighed er kodningen lig-
ningsteorien, der bruges til at sammenligne termer i Appπ. Vores kodning er
inspireret af en kodning af spi-kalkylen i π-kalkylen, som blev præsenteret i
den nyligt udgivne artikel [BPV03], men adskiller sig væsentligt herfra ved den
m̊ade termer kodes p̊a. Vi benytter os af velkendte metoder til at transformere
en ligningsteori til et terminerende og konfluent omskrivningssystem, og dertil
fordrer vi at omskrivningssystemet er venstre-lineært. Ideen i kodningen er at
kodede termer reducerer til deres entydigt bestemte normal form, og eftersom
omskrivningssystemet er konfluent er kontrol af lighed mellem termer nu blot
er spørgsm̊al om at afgøre om de er syntaktisk identiske. For at opn̊a dette,
m̊a kodningen først reducere alle undertermer til deres normal form, men da
omskrivningssystemet er konfluent er dette uden betydning. Vi afslutter med at
bevise sundheden af kodningen.

Contents

1 Introduction 1

1.1 The spi-calculus . 1

1.2 The applied π-calculus . 2

1.3 Type systems for the spi-calculus 3

1.4 Topics treated in this thesis . 3

1.5 Encodings in general . 4

1.6 Structure of the thesis . 5

2 The spi-calculus 7

2.1 Syntax of the spi-calculus . 7

2.2 Semantics of the spi-calculus . 9

2.3 Abadi’s semantics . 10

3 The applied π-calculus 13

3.1 Syntax of Appπ . 13

3.2 Operational semantics of Appπ 15

3.3 Equivalences . 18

3.4 A normal form for Appπ-processes 21

4 Typed Appπ 25

4.1 Basic definitions and terminology 25

4.2 A simple type system for Appπ 26

4.3 Subject reduction for typed Appπ 29

4.4 Subtyping . 35

5 Representing the spi-calculus in Appπ 37

5.1 Definition of a presentation . 37

5.2 Encoding of process constructs 38

5.3 Operational correspondence of J·K 40

ix

x CONTENTS

5.4 Abadi’s type rules . 48

5.5 Preservation of types . 50

6 Encoding the Appπ-calculus in the π-calculus 59

6.1 The π-calculus . 59

6.2 The Encoding . 61

6.3 Processes encoded . 62

6.4 The rewrite system encoded . 64

6.5 The rules encoded . 64

6.6 A rewrite system . 68

6.7 Soundness . 69

7 Conclusion 87

7.1 Results . 87

7.2 Future work . 89

A Universal Algebra 93

A.1 Signatures . 93

A.2 Terms . 93

A.3 Provable equations . 94

A.4 Examples . 95

B Rewrite Systems 97

B.1 Basic definitions . 97

B.2 Rewrite system . 98

B.3 Termination and Confluence . 100

B.4 Left linear rewrite systems . 102

C Abadi’s commitment relation 103

D Proofs 105

Chapter 1

Introduction

The majority of the computer technology which we surround ourselves with
every day, contains some elements of concurrency. Although concurrency is a
general concept and not solely a property of computer systems, the study of
concurrency has been driven by the desire to understand and develop computer
technology. In the world of computers, concurrency appears at many levels, for
instance at the hardware level, the operating system level and the network level.

The leap from sequential to concurrent computing is of overwhelming magni-
tude; by making computing entities able to interact, the size of the state space
grows enormously and it is often difficult, or impossible, to predict the behavior
of such a compound system without rigorous methods.

Several formalisms for describing concurrent systems have been proposed and a
well-studied and consequently also well understood formalism is the π-calculus.
The precursor of the π-calculus, the Calculus of Concurrent Systems (CCS)
[Mil80] was limited to synchronisation on named channels between processes.
The ability to describe communication of names on channels, a concept coined
mobility, was introduced in the π-calculus which was developed in the late 1980’s
by Milner, Parrow and Walker [MPW92].

The literature is abound with calculi derived from the π-calculus and most are
motivated by a desire for more high-level primitives and expressive formalism.
Many, however, have turned out to be expressible in the π-calculus and there-
fore the π-calculus is now considered to be a canonical formalism for modelling
concurrency. An example is the spi-calculus which among other things adds
primitives for encryption and decryption. The spi-calculus is expressible in the
π-calculus which was recently proved by Baldamus, Parrow and Victor [BPV03].

1.1 The spi-calculus

The spi-calculus was defined by Gordon and Abadi in [AG97] in 1997. The
calculus is an example of an extension of the π-calculus in which the syntax and
semantics is often modified to suit specific needs. The spi-calculus is tailored
towards being able to verify that certain properties of security protocols are

1

2 Introduction

fulfilled. Hence its syntax and semantics accommodates abstract functionality
for encryption and decryption. The reason for the changes in the syntax and
semantics is that different cryptographic protocols uses different cryptographic
functions, e.g. hashing, shared key encryption and public key encryption. Thus
in one variant which uses shared keys we could have a term {M}k which is a
message M encrypted under the key k. This term can appear in the process

case {M}k of {x}k in P

which reduces to P{ ~M/~x} as the keys match. In another variant with public
and secret keys we could have a message M encrypted under a public key N+,
{|M |}N+ and the process

case {|M |}N+ of {|x|}N− in P

which reduces to P{M/x}. Since the underlying theory of the calculus changes
each time a new cryptographic operation is added to the syntax, it is natural to
ask whether a calculus can be defined which captures such changes in a more
general manner.

1.2 The applied π-calculus

The need for more specialised and perhaps more expressive calculi is evident
from the plethora of variants of the π-calculus that exists. The above mentioned
spi-calculus is one example, but in fact it is often necessary or convenient to
have more complex data structures than the atomic names available in the π-
calculus. An interesting question is therefore whether a more general calculus
can be found in which one can easily model different variants of the π-calculus.
In 2001 Abadi and Fournet came up with the applied π-calculus (Appπ), [AF01].

Appπ is designed to easily be able to represent some of the many variants of
the π-calculus and also many of the various data structures for which encodings
in the π-calculus have been proposed, without changing the underlying theory
of the calculus. To our knowledge only two articles regarding the calculus have
been published. Besides the original presentation in [AF01], Abadi and Fournet
themselves have analysed a protocol for private authentication [AF03] using
Appπ.

The calculus uses ideas from universal algebra. In particular the terms of Appπ
are defined through a signature. Along with the signature a set of equations is
defined, hence obtaining a presentation. To alter the calculus, only the signature
and equations need to be changed. The theory of the calculus is independent
of the actual presentation. As a consequence one data structure can easily be
exchanged with another since such changes only affects the presentation.

As an example consider how pairs can be represented in Appπ. The signature
should include a binary function symbol pair and two unary function symbols
fst and snd. The set of equations should include

fst(pair(x, y)) = x

snd(pair(x, y)) = y.

1.3. Type systems for the spi-calculus 3

As is evident from this example it is rather simple to to represent such data
structures in Appπ, whereas a direct representation of the same structure in the
π-calculus would be significantly more complex.

1.3 Type systems for the spi-calculus

In the spi-calculus protocol properties such as secrecy and authentication can
be formulated as process equivalences [AG97]. However, equivalence in process
calculi, and specifically the spi-calculus, can in most cases not be characterised in
a tractable manner. A solution can be found by utilising types and type systems.
Considerable effort has been put into investigating the use of type systems for
such purposes. Most notably Gordon and Jeffrey have published several papers
[GJ01a, GJ02, GJ01b] on the subject. Perhaps the first paper to appear was
[Aba97], where a type system which ensures secrecy in the spi-calculus is given.

1.4 Topics treated in this thesis

The purpose of this thesis is to further develop the theory of Appπ and relate
it to the theory of the π-calculus and the spi-calculus.

In [AF01] the authors assume that processes are always well-typed. However, to
our knowledge, no detailed treatment of this matter in relation to Appπ exists.
Since type systems for the π-calculus have turned out to be useful for several
purposes [Gay00], one of the objects in this thesis is to investigate this topic in
the framework of Appπ.

The spi-calculus is considered as a quite fundamental process calculus for crypto-
graphic protocols. In the light of the, in [AF01], implied connection between the
spi-calculus and Appπ it is therefore interesting to investigate the exact nature
of this relationship. Given the importance of type systems for the spi-calculus
and the encoding of the spi-calculus, a relevant question is to how can a type
system for Appπ be defined that captures the the system for the spi-calculus in
[GJ01b].

As Appπ has not been thoroughly investigated it is appealing to pursue an en-
coding of Appπ in the π-calculus for several reasons. For instance automated
analysis of Appπ-processes could be performed by first encoding a process and
then use one of the many automated tools that exist for the π-calculus. E.g. the
Mobility Workbench [VM94] developed by Victor and Moller, which is an auto-
mated tool for manipulating and analysing mobile concurrent systems described
in the π-calculus.

The same arguments applies for the substantial amount of theoretical tools that
have been developed for the π-calculus. It should be possible to utilise some
of these theoretical results in order to obtain a better understanding of Appπ.
In fact, due to the generality of Appπ this arguments applies to any calculi
expressible in Appπ. Finally the encoding itself also contributes to a better
understanding of the π-calculus itself.

Moreover many of the extensions proposed for the π-calculus has turned out

4 Introduction

to be expressible in the π-calculus. This is often demonstrated by exhibiting
encodings from the extended language back to the π-calculus. In the light of
the seemingly great generality of Appπ compared to that of the π-calculus, a
fundamental question to be answered is whether it is possible to represent Appπ
in the π-calculus. Indeed the results established in this theses indicate that this
question has a positive answer.

Basic type system

We define a simple type system for Appπ which is capable of catching errors
such as arity mismatch. The type system is similar to existing type systems
for the π-calculus. However there is one fundamental difference. A general type
rule for functions is defined. In this respect the type system is, like the rest of
Appπ, also parameterised by the signature. One of the basic properties of type
systems is that types are preserved by transitions, a property commonly coined
subject-reduction. Whether this can be established for the basic type system
defined herein is one of the topics we investigate.

Encoding the spi-calculus in Appπ

Appπ is a general calculus and is as such, not usable before a concrete pre-
sentation has been defined. We define a presentation aimed at capturing the
cryptographic functionality of the spi-calculus. Thus an instance of Appπ is
obtained in which an encoding of the spi-calculus is given.

The basic type system serves as a basis for the other type system we define.
This modified type system is aimed at capturing the type system for the spi-
calculus defined by Abadi in [Aba97]. We show that the modified type system
and Abadi’s type system are equivalent. The changes made to the basic type
system is primarily due to the specific message formats Abadi defines in [Aba97].

Appπ encoded in the π-calculus

The most innovative contribution of this master thesis is to exhibit an encoding
of Appπ in the π-calculus. This encoding is inspired by the encoding of the
spi-calculus in the π-calculus [BPV03]. However it is significantly different since
we need to handle the equational theory which is a crucial part underlying
the semantics of Appπ. Instead of encoding the equational theory directly an
encoding of a corresponding rewrite systems is performed. This encoding is
necessary for checking equality of terms, i.e. we need to reduce terms to their
irreducible form. The other part of the encoding is relatively simple. Once terms
are reduced, matching becomes a matter of checking for syntactic identity.

1.5 Encodings in general

We use the same notion of representability of a source language in a target
language as Sangiorgi [San92] where three different phases are identified:

1.6. Structure of the thesis 5

(1) Formal definitions of the semantics of the source and target language.

(2) Encoding from the source to the target language.

(3) Proof of correctness.

With respect to (1) we use transition systems with rules that are inductively
defined on the structure of the process expressions. The encoding should be
compositional, i.e. the encoding of an expression should only depend on its
immediate constituents. (3) entails two aspects. On one hand the encoding is
required to respect some equivalence. I.e if two processes P and Q are equivalent
in the source language, then the encoding JP K and JQK should be equivalent in
the target language. We refer to this as soundness since it asserts that whenever
two processes are equal, the encoding preserves this equality. Conversely, if JP K
and JQK are equivalent in the target language, then P and Q should be equiva-
lent in the source language. This we call completeness as it anticipates that all
encoded processes that are equal in the target language were originally equal in
the source language. An encoding which is sound and complete is called fully
abstract. Soundness and completeness with respect to equality does not reveal
the whole truth. The other aspect of (3) is that of operational correspondence
between P and JP K. The simplest formulation of this requirement is that when-
ever P τ−−−→ P ′, then the encoding matches this by going from JP K to JP ′K. This is
soundness with respect to operational correspondence. The converse implication
is called completeness with respect to operational correspondence.

We have chosen barbed bisimilarity [MS92] and its induced congruence as our
preferred equivalence. (Its counterpart in Appπ is called observational equiv-
alence.) This choice is motivated by its applicability across different calculi.
Barbed bisimilarity is very flexible in the sense that it can easily be applied to
different process algebras. The principal cause of this flexibility is the observa-
tion predicate on which it is based. In order to apply it one basically only needs
to come up with a reasonable notion of when a process is to be regarded as
exhibiting visible behavior.

1.6 Structure of the thesis

The thesis is structured as follows. Chapter 2 contains a brief review of the
syntax and semantics of the spi-calculus, including equivalence theorems relating
the semantics we use with that of the original. Chapter 3 introduces Appπ, and
is ended with a section on the normal form which is utilised in the encoding of
Appπ in the π-calculus. These two chapters serves as background material for the
remaining parts of the thesis. In Chapter 4 the topic is the basic type system for
Appπ. Chapter 5 contains the encoding of the spi-calculus in the instantiation of
Appπ created. It also contains a modification of the type system from Chapter
4, which is equivalent to Abadi’s type system in [Aba97]. Chapter 6 treats the
encoding of Appπ in the π-calculus. The chapter starts by briefly going over
the syntax and semantics for the π-calculus. The encoding itself is then defined,
and finally proofs related to the correctness of the encoding is given. Concluding
remarks and indications to possible future work is given in Chapter 7.

6 Introduction

The appendices contains some useful background material. Appendix A reviews
basic terminology related to universal algebra. Appendix B contains background
material on rewrite systems crucial to the encoding of Appπ in the π-calculus.
Appendix C recapitulate Abadi’s original semantics for the spi-calculus. Finally
Appendix D contains proofs which were omitted in Chapter 1.

Chapter 2

The spi-calculus

The spi-calculus was first presented in [AG97] and we present a minor variant
here for reference. The basic principle governing the spi-calculus is the same as
for the π-calculus, namely the idea of communicating information along named
channels. The range of information that can be communicated is extended to
encompass pairs and encrypted messages so primitives are also added for sup-
porting abstract cryptographic functionality. Nevertheless, the expressiveness of
the spi-calculus is not greater than the expressiveness of the π-calculus. This was
established recently in [BPV03] which presents an encoding of the spi-calculus in
the π-calculus that preserves may-testing. In view of this result the motivation
for using the spi-calculus is shifted towards notational convenience.

2.1 Syntax of the spi-calculus

We present the basic spi-calculus that supports symmetric cryptography, though
it can easily be extended to cope with asymmetric cryptography as well as hash-
ing. Furthermore, we opt for a polyadic calculus even though polyadic commu-
nication can easily be encoded using nested pairs. The abstract syntax for the
polyadic spi-calculus is presented below.

Definition 2.1.1 (The polyadic spi-calculus)
The terms of the polyadic spi-calculus are generated by the grammar

M,N ::= terms
a, b, c, . . . name
(M,N) pair
0 zero
suc(M) successor
x, y, z, . . . variable

{ ~M}N encryption

The processes of the polyadic spi-calculus are generated by the grammar

7

8 The spi-calculus

P,Q ::= processes
M〈 ~M〉.P output
M(~x).P input
P | Q composition
(νa)P restriction
!P replication
if M1 = M2 then P match
0 inactive process
let (x, y) = M in P pair splitting
case M of 0 : P suc(x) : Q integer case
case M of {~x}M in P decryption

It should be noted that some syntactically correct processes will be given no
meaning. For example any input or output prefix α such that subj(α) is not a
name or a coname, will cause no transitions.

Free and bound names and variables of processes are defined as usual. The free
names and variables of a term are simply the names and variables appearing
in the term. (Names and variables cannot be bound in a term.) Additionally,
we assume that free and bound names and variables are distinct. Substitution
is defined as usual. We shall consider processes modulo α-conversion, that is, a
process represents the equivalence class with respect to α-conversion of which
it is a member.

We define the syntactical notion of evaluation context and evaluation congruence
below.

Definition 2.1.2 (Evaluation context)
An evaluation context C is generated by the grammar

CE ::= P | CE

∣∣ CE | P
∣∣ (νq)CE

∣∣ [·].

If C is an evaluation context and P is a spi-process then C[P] is the process
obtained by replacing [·] in C with P with name capturing.

Definition 2.1.3
A binary relation R on spi-processes is an evaluation congruence if PRQ implies
C[P]RC[Q] for all evaluation contexts C.

The semantics we define in the following section is a slight variation from Abadi’s
semantics, given in Appendix C, and we wish to prove it equivalent to another
semantics in the literature. For this purpose we will need the following definition.

Definition 2.1.4 (Scope extrusion evaluation congruence)
The relation

ν= is the smallest evaluation congruence which satisfies

(νq)Q | P ν= (νq)(Q | P)

P | (νq)Q ν= (νq)(P | Q)

(νp)(νr)P ν= (νr)(νp)P

for all spi-processes P and Q and names p, q and r such that q /∈ fn(P).

2.2. Semantics of the spi-calculus 9

2.2 Semantics of the spi-calculus

Traditionally, no structural congruence is used in the spi-calculus. Instead a
reduction relation will be convenient when defining the transition relation.

Definition 2.2.1 (Reduction relation on spi-calculus terms)
The reduction relation > on spi-calculus processes is the smallest relation which
satisfy the following

!P > P | !P
if M = M then P > P

let (x, y) = (M,N) in P > P{M/x,N/y}
case 0 of 0 : P suc(x) : Q > P

case suc(M) of 0 : P suc(x) : Q > Q{M/x}
case { ~M}N of {~x}N in P > P{ ~M/~x} if | ~M | = |~x|

The semantics we give is an early labelled transition relation. As actions we con-
sider the silent action τ and input actions a〈 ~M〉, bound output actions (ν~q)a〈 ~M〉
where n(~q) ⊆ fn(~M) and a /∈ n(~q).

Definition 2.2.2 (Semantics of the polyadic spi-calculus)
The labelled transition relation

α−−−→ of the polyadic spi-calculus is the smallest
relation on spi-processe that satisfies the rules

(Output)

a〈 ~M〉.P a〈 ~M〉−−−−→ P

(Input)

a (~x) .P
a〈 ~M〉−−−−→ P{ ~M/~x}

for all ~M such that | ~M | = |~x|

(Restriction)
P

α−−−→ P ′

(νa)P α−−−→ (νa)P ′
if a /∈ n(α)

(Open)
P

(ν~s)a〈 ~M〉−−−−−−−→ P ′

(νq)P
(νq,~s)a〈 ~M〉−−−−−−−−→ P ′

if a, a 6= q and q ∈ fn(~M)

(Reduction)
P > P ′ α−−−→ P ′′

P
α−−−→ P ′′

(Parallel])
P

α−−−→ P ′

P | Q α−−−→ P ′ | Q

(Communication])
P

(ν~q)a〈 ~M〉−−−−−−−→ P ′ Q
a〈 ~M〉−−−−→ Q′

P | Q τ−−−→ (ν~q)(P ′ | Q′)

where the rules marked with] has symmetric counterparts.

10 The spi-calculus

A reduction relation is obtained by considering only transitions labelled with τ
and we denote the reduction relation by τ−−−→. Its weak counterpart is the reflexive
and transitive closure denoted by τ−−−→∗.

As usual a barb is a name or a co-name a. A process P has an a barb, denoted
by P ↓a, if P α−−−→ where a = subj(α). The process P has a weak a barb, denoted
by P ↓∗a, if P τ−−−→∗ ↓a.

Definition 2.2.3 (Strict barbed bisimulation)
A strict barbed bisimulation is a symmetric relation R on spi-processes, such
that PRQ if

(i) P ↓a implies Q ↓a, and

(ii) P
τ−−−→ P ′ implies that there exists Q′ such that Q

τ−−−→ Q′ and P ′RQ′.

If two processes P and Q are related by a strict barbed bisimulation we write
P ∼b Q.

Lemma 2.2.4
Let P and Q be spi-processes, then the following equations hold

P | Q ∼b Q | P
P ∼b P | 0

(νq)P ∼b P if q /∈ n(P)
(νq)(νp)P ∼b (νp)(νq)P
P | (νq)Q ∼b (νq)(P | Q) if q /∈ n(P).

Proof
By induction in the structure of the process.

The notion of testing equivalence is defined in the two definitions below.

Definition 2.2.5 (Test)
A test is a pair (T, a) where T is a spi-process and a is a barb. A spi-process P
passes the test (T, a) if (P | T) ↓∗a

Definition 2.2.6 (Testing equivalence)
Two spi-processes are testing equivalent, denoted by P 't Q if for all tests t, P
passes t if and only if Q passes t.

Testing equivalence is obviously reflexive, transitive and symmetric and hence
it is an equivalence.

2.3 Abadi’s semantics

The early labelled semantics for spi-processes given above differs from the se-
mantics given by Abadi in [Aba97], and also given in Appendix C. The semantics
given here is a commitment relation which is defined in terms of abstractions
and concretions. We want to prove that our semantics is equivalent to the one

2.3. Abadi’s semantics 11

in [Aba97] in terms of reduction and barbs. We denote the commitment relation
and observation predicate in Appendix C by α−−−⇀ and �a in order to distinguish
them from the ones defined in the present report. The reduction relation > is
the same in both semantics.

A particular difference between the two semantics, which complicates an other-
wise straightforward proof, is the way restriction is handled in relation to output
actions. If we consider the process a(x) | (νc)a〈b〉 then the two semantics does
not yield the same derivatives. We get

a(x).P | (νc)a〈b〉.Q τ−−−→ P{b/x} | (νc)Q

and

a(x).P | (νc)a〈b〉.Q τ−−−⇀ (νc)(P{b/x} | Q),

because Abadi’s semantics always extrudes the scope whereas our semantics
only extrudes the scope when required.

To establish the equivalence between the two semantics we establish two oper-
ational correspondences.

Lemma 2.3.1
Let P be a spi-process. Then

(i) if P
(ν~p)a〈 ~M〉−−−−−−−→P ′ then there exists P ′′ and ~q such that P

a−−−⇀(ν~q)〈 ~M〉P ′′ and

P ′ ν= (ν~q \ ~p)P ′′,

(ii) if P
a〈 ~M〉−−−−→P ′ then there exists P ′′ such that P

a−−−⇀(~x)P ′′ and P ′ = P ′′{ ~M/~x},
and

(iii) if P
τ−−−→P ′ then there exists P ′′ such that P

τ−−−⇀P ′′ ν= P ′.

Lemma 2.3.2
Let P be a spi-process. Then

(i) if P
a−−−⇀(ν~p)〈 ~M〉P ′ then there exists P ′′ and ~q such that P

(ν~q)a〈 ~M〉−−−−−−−→P ′′ and

P ′′ ν= (ν~p \ ~q)P ′,

(ii) if P
a−−−⇀(~x)P ′ then P

a〈 ~M〉−−−−→P ′{ ~M/~x} for all ~M such that | ~M | = |~x|,

(iii) if P
τ−−−⇀ P ′ then there exists P ′′ such that P

τ−−−→ P ′′ ν= P ′.

Proofs of the lemmas can be found in Appendix D.

For the rest of this chapter we let ∼A denote Abadi’s definition of strict barbed
bisimulation. This definition uses bisimulation as defined in Definition 2.2.3 but
with every −−−→ replaced by −−−⇀.

We will prove that our semantics and Abadi’s semantics gives rise to the same
strict barbed bisimulation. To this end we need the following lemma.

Lemma 2.3.3
ν= ⊆ ∼b and

ν= ⊆ ∼A.

12 The spi-calculus

Proof
We sketch the proof only. We wish to show that ν= is a strict barbed bisimulation
in both semantics. The proof is as usual a proof by structural induction. First
assume that P ν= Q. Then prove that P ↓a implies Q ↓a and that whenever
P

τ−−−→ P ′ then there exists Q such that Q τ−−−→ Q′ and P ′ ν= Q′. Similarly for
−−−⇀.

Theorem 2.3.4
∼b = ∼A

Proof
To show the equality, we show inclusion in both directions by structural induc-
tion. To prove the inclusion ∼A⊆∼b assume that P ∼b Q.

Assume that P �a. By Lemma 2.3.2 this implies that that P ↓a which in turn, by
definition of strict barbed bisimulation, implies that Q ↓a. Then by Lemma 2.3.1
we have Q �a.

Assume that P τ−−−⇀ P ′. Then by Lemma 2.3.2, P τ−−−→ P̂
ν= P ′. Since P ∼b Q

we have that there exists Q̂ such that Q τ−−−→ Q̂ and P̂ ∼b Q̂. Lemma 2.3.1 then
gives us that Q −−−⇀ Q′ ν= Q̂. From Lemma 2.3.3 now have P ′ ∼b Q

′ and by the
induction hypothesis this implies that P ′ ∼A Q′ which concludes the proof.

The inclusion ∼b⊆∼A is proven similarly.

Chapter 3

The applied π-calculus

Representing various data types and security protocols in the π-calculus can be
quite cumbersome as it requires either an encoding of the data types or even
an extension of the calculus. As an example consider the spi-calculus. Here it
is necessary to define a new syntax and semantics for each cryptographic op-
eration. A contrast to this is the applied π-calculus, denoted by Appπ. This
calculus takes advantage of the notion of presentations from universal algebra
(see Appendix A) from which an equational theory can be defined. With pre-
sentations various data structures can easily be represented without changing
anything but the presentation. As a consequence the theory of the calculus re-
mains unchanged. This makes the Appπ-calculus quite appealing.

Appπ also has strong analogies with the ideas presented in [BDP02]. In this
article a calculus is presented which accommodates for some of the differences
between the π-calculus and the spi-calculus. For instance in spi it is not always
possible to use a name which has been acquired as it e.g. could be encrypted
under a fresh key. Secondly, in the spi-calculus equivalent processes need not
exhibit the same sequence of transitions. Therefore a labelled transition system
is presented where the states are configurations σ�P where P is a process and
σ the current knowledge of the environment. Reasoning about equivalence of
processes then includes reasoning about the environments. As we will see this
corresponds to some of the concepts of Appπ. In particular the environment
σ has analogies with active substitutions and equivalence of environments has
similarities with static equivalence.

This chapter, except Section 3.4, is based on [AF01] in which Appπ was first
defined. The chapter contains a review of the syntax and semantics of Appπ and
a look at some equivalences. In the last section we define a substitution normal
form for Appπ-processes.

3.1 Syntax of Appπ

Presently we define the syntax of Appπ-processes. Syntactically, the major dif-
ference from the π-calculus comes from the introduction of function names, see
Section A.1. These functions names can occur as terms in Appπ-processes which

13

14 The applied π-calculus

are defined as follows.

Definition 3.1.1 (Appπ-terms)
Let Σ = (Ω, α) be a signature. The terms of the Appπ-calculus are defined as

M,N ::= terms

a, b, c, . . . names

x, y, z, . . . variables

f(M1, . . . ,Mn) function applications

where f ranges over Ω.

Note that names and variables are kept distinct and that Appπ-terms do not
necessarily respect the arity of function names. We will use metavariables u, v, . . .
to range over both names and variables. A term is said to be ground if it contains
no free variables. Note that a ground term in the term algebra does not contain
anything but functions. A ground Appπ-term is then a term in TΣ(N), where
N is the set of Appπ names.

With the definition of terms we can now define Appπ-processes.

Definition 3.1.2 (Appπ-processes)
The set PA of Appπ-processes is the set generated by the following grammar

P ::= 0
∣∣ P | P

∣∣ !P
∣∣ (νa)P

∣∣
if M = N then P else P

∣∣ u(~x).P
∣∣ u〈 ~M〉.P.

The intention is that we may exchange arbitrary terms and not just names as in
the π-calculus, and that M = N denotes equality in an equational theory rather
than syntactical identity. Besides that, the operations are quite standard. We will
sometimes omit 0 in for example u(x).0 and we will abbreviate (νa1) · · · (νan)
by (ν~a). Plain processes are extended with active substitutions.

Definition 3.1.3 (Extended processes)
The set A of extended processes is the set generated by the grammar

A ::= P
∣∣ A | A

∣∣ (νa)A
∣∣ (νx)A

∣∣ {M/x}.

The active substitution {M/x} denotes the replacement of the variable x with
the term M . If we consider the extended process P | {M/x} then this corre-
sponds to substituting x for M in P . Thus active substitutions are like “let x =
M in . . .”. However, if we consider another process P | Q | {M/x}, then the
active substitution {M/x} also applies to Q. If we only want the substitution
to occur in P then we need to restrict the variable x as in

(νx)(P | {M/x}) | Q.

This corresponds exactly to (let x = M in P) | Q. We will use {M1/x1, . . . ,Mn/xn}
as shorthand for {M1/x1} | · · · | {Mn/xn}. Furthermore, we write σ, {M/x}
and { ~M/~x} for substitutions and σ(x) for the image of x under σ.

3.2. Operational semantics of Appπ 15

We assume that substitutions are cycle free and that there is at most one sub-
stitution for each variable and exactly one when the variable is restricted.

We let fv(A),bv(A), fn(A) and bn(A) denote the sets of free and bound variables
and names, respectively, of an extended process A. As usual an input u(x) binds
the variable x and restriction can bind both names and variables. We will omit
the inductive definition of these sets, except for active substitutions:

fv({M/x}) def= fv(M) ∪ {x}

fn({M/x}) def= fn(M).

The sets of bound names and variables of an active substitution {M/x} are
defined as the sets of bound names and variables of M , respectively. The set
of all names of an extended process A is denoted by n(A) and the set of all
variables by v(A). An extended process is said to be closed if all variables are
either bound or defined by an active substitution.

We also follow standard assumptions in order to avoid capturing of names and
variables. These assumptions are that the sets of bound and free names and
variables of an extended process are always disjoint, and that substitutions do
not capture names or variables. These assumptions can be made to hold by
α-converting.

At last we need a definition of frames which will become necessary when we
later look at equivalences on Appπ.

Definition 3.1.4 (Frame)
A frame ϕ is an extended process generated by the following grammar

A ::= A | A
∣∣ (νa)A

∣∣ (νx)A
∣∣ {M/x}

∣∣ 0.

The domain of ϕ, dom(ϕ), is the set of variables that ϕ exports, i.e. the variables
that are defined by an active substitution and not under a restriction.

We can define a mapping from extended processes to frames simply by replacing
each plain process with the inactive process 0. If A is an extended process then
ϕ(A) denotes the frame obtained by this mapping. We then define dom(A) to
be dom(ϕ(A)). We define the range of A, ran(A), as the terms M where {M/x}
occurs in ϕ(A) and x ∈ dom(ϕ(A)). We will also write {M/x} ∈ A if {M/x}
occurs in A and x ∈ dom(A).

3.2 Operational semantics of Appπ

In this section we give the operational semantics of Appπ-processes in which a
crucial point is played by the signature Σ. By defining a set Φ of Σ-equations
we obtain a presentation Π = (Σ,Φ) and an equation in a match is defined to
be successful in the semantics if it is an equation in the theory of Π.

Before we can define the reduction relation we need to define contexts and
structural equivalence.

16 The applied π-calculus

Definition 3.2.1 (Appπ-context)
An expression derived from the grammar

C ::= A | C
∣∣ C | A

∣∣ !C
∣∣ (νa)C

if M = N then C else P
∣∣ if M = N then P else C

u(~x).C
∣∣ u〈 ~M〉.C

∣∣ [·]

is called an Appπ-context. If A ∈ A then C[A] denotes C with [·] replaced
literally with A. An evaluation context, denoted by CE , is a context whose hole
is not under a replication, a conditional, an input or an output. A context C
closes A if C[A] is closed.

Definition 3.2.2 (Structural equivalence on Appπ)
The structural equivalence relation ≡ on extended Appπ-processes is the small-
est equivalence on Appπ that is closed by α-conversion on both names and
variables, and closed under evaluation contexts, such that

A | B ≡ B | A (SC-ParCommute)
A | 0 ≡ A (SC-ParInact)

A | (B | C) ≡ (A | B) | C (SC-ParAssoc)
(νa)(A | B) ≡ A | (νa)B if a /∈ fn(A) ∪ fv(A) (SC-ResPar)

(νa)0 ≡ 0 (SC-ResInact)
(νa)(νb)A ≡ (νb)(νa)A (SC-ResCommute)

!P ≡ P | !P (SC-Rep)
(νx){M/x} ≡ 0 (SC-Alias)
{M/x} | A ≡ {M/x} | A{M/x} (SC-Subst)

{M/x} ≡ {N/x} if Φ `Σ M = N (SC-Rewrite)

If A and B are α-convertible, we write A ≡α B.

All axioms, except the last three, are standard. The rule (SC-Alias) makes it
possible to introduce an arbitrary substitution, (SC-Subst) describes how an
active substitution applies to a process which is in parallel with the substitu-
tion and (SC-Rewrite) shows how a substitution can be rewritten using the
equational theory. As shown in [AF01] the substitution A{M/x} is structurally
equivalent to (νx)({M/x} | A) if x /∈ fv(M) and this is justified by the following
equivalences:

A{M/x} ≡ A{M/x} | 0
≡ (νx)({M/x}) | A{M/x}
≡ (νx)({M/x} | A{M/x})
≡ (νx)({M/x} | A). (3.1)

We are now in position to define the reduction relation.

Definition 3.2.3
The reduction relation of Appπ is the smallest relation on A × A closed by

3.2. Operational semantics of Appπ 17

application of evaluation contexts, generated by the following rules

(Comm)
a〈~y〉.P | a(~x).Q −−−→ P | Q{~y/~x}

if |~y| = |~x|

(Then)
if M = M then P else Q −−−→ P

(Else)
if M = N then P else Q −−−→ Q

for ground terms M,N
such that Φ 0Σ M = N

(Struct) A ≡ B −−−→ B′ ≡ A′

A −−−→ A′

We write −−−→∗ for the reflexive and transitive closure of −−−→.

Note that despite the simplicity of the (Comm) rule we do not lose any generality
as shown by the following lemma.

Lemma 3.2.4

a〈 ~M〉.P | a(~x).Q −−−→ P | Q{ ~M/~x}

Proof
Combine the axioms (SC-Alias) and (SC-Subst), as shown by the equiva-
lences in (3.1) for the unary case, to obtain:

a〈 ~M〉.P | a(~x).Q ≡ (ν~y)({ ~M/~y} | a〈~y〉.P | a(~x).Q)

−−−→ (ν~y)({ ~M/~y} | P | Q{~y/~x})
≡ P | Q{ ~M/~x},

where ~y are fresh names. By the (Struct) we obtain the statement in the
lemma.

We also see that the process

if M = N then P else Q

reduces to P if Φ `Σ M = N as justified by the following lemma.

Lemma 3.2.5

if M = N then P else Q −−−→ P
if Φ `Σ M = N

Proof
As in the previous lemma use the axioms (SC-Alias) and (SC-Subst) to
obtain

if M = N then P else Q ≡ (νx)({N/x} | if M = x then P else Q)
≡ (νx)({M/x} | if M = x then P else Q)
≡ if M = M then P else Q.

18 The applied π-calculus

We mentioned in the beginning of the chapter that various data structures and
cryptographic primitives can easily be represented in Appπ. Two examples of
this are given in Sections A.4.1 and A.4.2. If we have a presentation (Ω,Φ),
we can for instance represent pairs simply by having a binary function symbol
pair ∈ Ω and two unary functions fst, snd ∈ Ω and appropriate equations in Φ
for example

fst(pair(x, y)) = x.

Similarly, in order to represent symmetric encryption we just need the func-
tion names enc and dec, representing respectively encryption and decryption
functions, and appropriate equations.

3.3 Equivalences

We now define a few equivalences for Appπ. The first equivalence we consider
is observational equivalence.

3.3.1 Observational equivalence

The weak observation predicate is defined as follows.

Definition 3.3.1 (Weak observation predicate)
We say that an extended process A has a weak barb a, denoted by A ⇓a if

A −−−→∗ CE [a〈 ~M〉.P]

for some evaluation context CE which does not bind a.

Next follows the definition of observation equivalence.

Definition 3.3.2 (Observation equivalence)
Observational equivalence is the largest symmetric relation ≈ between closed
extended processes such that A≈B implies

(i) dom(A) = dom(B).

(ii) A ⇓a implies B ⇓a .

(iii) If A −−−→∗ A′ then B −−−→∗ B′ and A′ ≈ B′.

(iv) CE [A] ≈ CE [B] for all closing evaluation contexts CE .

This definition is a straightforward extension of barbed congruence in the π-
calculus.

One obvious disadvantage of observation equivalence is that the definition con-
tains a universal quantification over evaluation contexts. Therefore we also de-
fine a labelled equivalence. This, however, depends on static equivalence which
follows next.

3.3. Equivalences 19

3.3.2 Static equivalence

Static equivalence regards equivalence of frames when applied to terms. As men-
tioned in Section 3.1 each extended process A can be mapped to a frame ϕ(A).
This frame can be viewed as the static knowledge that A reveals to its environ-
ment, as ϕ(A) contains the active substitutions that the environment can come
into contact with.

The next example serves to motivate and explain Definition 3.3.5 of static equiv-
alence.

Example 3.3.3 ([AF01])
Consider two functions f and g with no equations and the three frames

ϕ0 = (νk){k/x} | (νs){s/y}
ϕ1 = (νk){f(k)/x, g(k)/y}
ϕ2 = (νk){k/x, f(k)/y}

In ϕ0 the two variables x and y are mapped to two unrelated new values. Simi-
larly, for ϕ1 no context can distinguish between f(k) and g(k). Thus a context
that obtains the values for x and y cannot distinguish ϕ0 and ϕ1. However, for
the last frame ϕ2, a context can check the predicate f(x) = y. Thus we would
like to define ϕ0 ≈s ϕ1 6≈s ϕ2, where ≈s denotes static equivalence. 4

A closed frame ϕ is always structurally equivalent to a process of the form

ϕ ≡ (ν~n){ ~M/~x},

where fv(~M) = ∅ and ~n ⊆ fn(~M). The domain of ϕ is ~x.

Definition 3.3.4 (Equality of Appπ-terms)
Two Appπ-terms M and N are said to be equal in the closed frame ϕ ≡ (ν~n)σ,
denoted by (M = N)ϕ, if an only if Mσ = Nσ and ~n ∩ (fn(M) ∪ fn(N)) = ∅.

Now we can define static equivalence.

Definition 3.3.5 (Static equivalence)
Two closed frames ϕ and ψ are statically equivalent when

(i) dom(ϕ) = dom(ψ),

(ii) (M = N)ϕ if and only if (M = N)ψ for all terms M and N .

Two extended processes are statically equivalent when their frames are statically
equivalent.

We write A ≈s B if the two extended processes A and B are statically equivalent.

How difficult it is to find out whether two extended processes are statically
equivalent depends on the signature Σ. One advantage is, however, that it does
not depend on the reductions of the two processes. We restate the following two
lemmas from [AF01].

20 The applied π-calculus

Lemma 3.3.6
Static equivalence is closed by structural equivalence and by reduction.

Lemma 3.3.7
Observational equivalence and static equivalence coincide on frames. Observa-
tional equivalence is strictly finer than static equivalence on extended processes,
i.e. ≈ ⊂ ≈s .

3.3.3 A labelled equivalence

In order to define a labelled equivalence relation we need a transition relation
of A which we define with an early semantics. The set Act contains actions of
the form:

a〈~u〉: Output action; only output of channel names or variables is permitted.

(ν~u)a〈~v〉: Bound output action; output ~v on a, extruding the scope of ~u. It holds
that ~u ⊆ v.

a〈 ~M〉: Input action; input the terms ~M on the channel a.

τ : Internal action.

Notice that terms can not be directly output as in the process a〈 ~M〉.P . Terms
that are not channel names or variables of a base type can only be output by
“reference” as in the process (ν~x)({ ~M/~x} | a〈~x〉.P). Now the transition relation
can be defined by extending the reduction relation from Section 3.2.3.

Definition 3.3.8
The transition relation of A is the smallest relation on A× Act×A generated
by the following rules

(Input)

a(~x).P
a〈 ~M〉−−−−→ P{ ~M/~x}

(Output)
a〈~u〉.P a〈~u〉−−−−→ P

(Open) A
(ν~u)a〈~v〉−−−−−−→ A′

(νw)A
(νw,~u)a〈~v〉−−−−−−−−→ A′

if w 6= a and w ∈ ~v

(Res)
A

α−−−→ A′ u /∈ n(α) ∪ v(α)

(νu)A α−−−→ (νu)A′

(Par) A
α−−−→ A′

A | B α−−−→ A′ | B

(Struct) A ≡ B
α−−−→ B′ ≡ A′

A
α−−−→ A′

3.4. A normal form for Appπ-processes 21

and the rules (Comm), (Then) and (Else) from definition 3.2.3 with −−−→
replaced by

τ−−−→.

Again we write τ−−−→
∗

for the reflexive and transitive closure of τ−−−→ and α−−−→
∗

for
τ−−−→

∗ α−−−→ τ−−−→
∗
.

Definition 3.3.9 (Labelled bisimulation)
Labelled bisimilarity is the largest symmetric relation ≈l between closed ex-
tended processes such that A ≈l B implies

(i) A ≈s B,

(ii) if A
τ−−−→ A′ then B

τ−−−→
∗
B′ and A′ ≈l B

′ and

(iii) if A
α−−−→ A′, fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅ then B

α−−−→
∗
B′ and

A′ ≈l B
′.

In the definition, only condition (i) is non standard. The main result proved
in [AF01, Thm. 1] is that labelled bisimilarity and observational equivalence
coincide.

Theorem 3.3.10
Observational equivalence and labelled bisimilarity coincide, i.e. ≈=≈l .

One of the lemmas needed for proving this theorem says that ≈l is closed un-
der evaluation contexts. Hence labelled bisimilarity permits simpler proofs than
observational equivalence does.

3.4 A normal form for Appπ-processes

In this section we present a normal form for Appπ-processes which we will refer
to as the substitution normal form. This normal form will be particularly useful
when we in Chapter 6 encode Appπ in the π-calculus. The idea is that we factor
terms, other than variables, out of processes by using active substitutions and
furthermore we factor sub-terms out of these active substitutions so that the
parse tree of each term has height one or zero. If a term occurs in the range of
the process it is a part of, the term is not factored out. Instead we replace the
term for the variable occurring in the active substitution it is a part of. We show
how an extended process can be put on substitution normal form by defining an
encoding {||}A, where A is the process encoded. It is necessary to parameterise
the encoding by the process we encode as we need sometimes need to check if
a term M ∈ ran(A). We will say that A ∈ A is on substitution normal form if
{|A|}P = A.

3.4.1 The encoding {||}A

We now define the encoding {||}A which is an encoding from A×A to A and it is
an encoding which produces a process on substitution normal form. First of all
note that we still use the convention that x, y, z, . . . represent variables, a, b, . . .

22 The applied π-calculus

names and u, v, . . . either names or variables. The encoding is homomorphic on
parallel composition, restriction and replication and the identity on the inactive
process, 0. It is also the identity on active substitutions involving terms whose
parse tree already has height one or zero, i.e.

{|{f(z1, . . . , zn)/x}|}A
def= {f(z1, . . . , zn)/x}

{|{u/x}|}A
def= {u/x}.

Similarly, if a prefix only contains variables, then the encoding is also the identity
on the prefix.

{|y(~x).P |}A
def= y(~x).{|P |}A

{|y〈~x〉.P |}A
def= y〈~x〉.{|P |}A

In the following we will write u : var if u is a variable and ¬u : var if u is not a
variable. The encoding on the remaining process constructs is defined as follows.

{|if M = N then P else Q|}A

def=



(νx, y)({|{M/x}|}A | {|{N/y}|}A | if x = y then

{|P |}A else {|Q|}A) if M,N /∈ ran(A)

(νx)({|{M/x}|}A | if x = y then {|P |}A else {|Q|}A)

if M /∈ ran(A) and {N/y} ∈ A
if x = y then {|P |}A else {|Q|}A)

if {M/x}, {N/y} ∈ A

{|u(~x).P |}A
def=


(νy)({u/y} | y(~x).{|P |}A) if ¬u : var and u /∈ ran(A)

y(~x).{|P |}A) if ¬u : var and {u/y} ∈ A
u(~x).{|P |}A if u : var

{|u〈~z,M1, ~M〉.P |}A
def=



(νy)({u/y} | {|y〈~z,M1, ~M〉.P |}A)

if ¬u : var and u /∈ ran(A)

{|y〈~z,M1, ~M〉.P |}A) if ¬u : var and {u/y} ∈ A

(νy)({|{M1/y}|}A | {|u〈~z, y, ~M〉.P |}A)

if u : var and M /∈ ran(A)

{|u〈~z, y, ~M〉.P |}A) if u : var and {M/y} ∈ A

At last we encode active substitutions. We simply factor out the terms, which
are not variables, one at a time.

{|{f(~z,M1, ~M)/x}|}A
def= (νy)({|{M1/y}|}A | {|{f(~z, y, ~M)/x}|}A) if M1 /∈ ran(A)

{|{f(~z,M1, ~M)/x}|}A
def= {|{f(~z, y, ~M)/x}|}A if {M1/y} ∈ A

where, in the encoding of output and active substitutions, we allow the vector
~z to be empty. Next we give an example of how the encoding works.

3.4. A normal form for Appπ-processes 23

Example 3.4.1
Consider the process

A
def= a(x).x〈b〉 | {a/y} | (νz)(y〈z〉 | {b/z}).

Then the encoding of A is

{|A|}A = (νz′)(y(x).x〈z′〉 | {b/z′}) | {a/y} | (νz)(y〈z〉 | {b/z}).

We have that A ≡ {|A|}A which is generally proved by the next lemma. 4

At last we prove that an extended process A and its encoding {|A|}A are struc-
turally equivalent.

Lemma 3.4.2
Let A ∈ A. Then {|A|}A ≡ A.

Proof
The proof is by structural induction. Therefore we go through each of the cases
in the definition of the encoding {||}A. The cases where {||}A is homomorphic or
the identity either follows by applying the induction hypothesis or trivially, thus
these cases are omitted.

The first case we consider is A = if M = N then P else Q.We need to remember
which process we originally encoded, say B, thus we look at {|A|}B . This case is
very similar to the proof of Lemma 3.2.5, i.e. we use that

A{M/x} ≡ (νx)({M/x} | A) (3.2)

as shown by the equivalences in (3.1).

if M = N then P else Q ≡ (νx)({N/x} | if M = x then P else Q)
≡ (νx, y)({N/x} | {M/y} | if y = x then P else Q)

The conclusion follows by the induction hypothesis. This proves the case where
M and N are not in the range of B. If one or both are we use the (SC-Subst)
axiom to obtain the conclusion.

Both input and output are very similar to the previous case so these are omitted.

The last case is when A = {f(z1, . . . , zk,M1, . . . ,Ml)/x}. Again assume that we
originally encoded the process B. Now assume that ¬M1 : var and that M1 is
not in the range of B. Then we use (3.2) again and we get

{f(z1, . . . , zk,M1, . . . ,Ml)/x} ≡ (νy)({M1/y} |
{f(z1, . . . , zk, y,M2, . . .Ml)/x})

We can continue in this way, factoring out all the terms Mi which are not
variables and in the range of B. Then we obtain the statement in the lemma by
applying the induction hypothesis and the (SC-Subst) axiom.

Chapter 4

Typed Appπ

In this chapter we define a simple type system for Appπ. This includes giving
type rules for well-formed environments, for Appπ-terms and for Appπ-processes
and we prove a subject reduction theorem for the type system. The type system
will catch the most elementary errors such as arity errors and matching of terms
of different type. We have also included a rule for subtyping in the type system.
We do not, however, include recursive types so we are not able type processes
such as a〈a〉.P. We start with some basic definitions.

4.1 Basic definitions and terminology

We now introduce some basic terminology related to type systems. The defini-
tions are standard so the reader may want to skip this section.

Definition 4.1.1 (Type assignment)
A type assignment is an assignment of a type T to a name or variable v, denoted
by v : T

Given some type assignments one can form a type environment.

Definition 4.1.2 (Well-formed type environment)
A well-formed type environment Γ is a finite set of type assignments where all
names and variables are distinct.

The domain of Γ is dom(Γ) = {v | ∃T.{v : T} ∈ Γ}. It will sometimes be
necessary to extend a type environment ∆ with another one, Γ.

Definition 4.1.3 (Extension of type environments)
Let Γ and ∆ be type environments. We then say that Γ extends ∆ if the following
holds.

• dom(∆) ⊆ dom(Γ)

• If v ∈ dom(∆) such that {v : T} ∈ ∆, then {v : T} ∈ Γ.

25

26 Typed Appπ

If ∆ = {v1 : T1, . . . , vn : Tn} and Γ = {u1 : S1, . . . , un : Tn} are type environ-
ments we say that we extend ∆ with Γ when taking the union of the two. When
extending an environment Γ with another ∆ we assume that dom(Γ)∩dom(∆) =
∅, and denote the resulting environment by Γ]∆.

Let Γ be a type environment and E an expression which may be either a term,
a process, or an extended process. A type judgment Γ ` E : T is then an
assertion that the expression E has type T under the assumptions given in Γ.
The meaning of the type judgments will be specified in greater detail after we
have introduced types in the next section. If Γ ` E : T we sometimes simply
say that E is well typed if Γ and T are not important.

4.2 A simple type system for Appπ

In this section we describe a simple type system for Appπ. The type system is
a small extension of a type system for the π-calculus as defined in [SW01]. In
addition to the type rules in [SW01] we introduce rules for typing terms and
extended processes.

We distinguish between channel types and value types. Channel types are as-
signed to subjects of prefixes, while value types are assigned to the objects of
prefixes. Value types can be basic types. In order to type processes capable of
mobility it is necessary to allow value types to also be channel types. Given
a value type V , channel types are constructed by the unary type constructor
ch(V).

Let Γ be a type environment and E an expression which may be either a term,
a process, or an extended process. A type judgment Γ ` E : T then asserts the
following depending on E. If E is a term, then T is value type, i.e. a basic type
or a channel type. Thus Γ ` M : V asserts that M has value type under the
assumptions of Γ. For processes we introduce the behavior type X. Γ ` P : X
then asserts that P respects the type assertions in Γ. Similarly for A. Finally the
judgment (` Γ well-formed) means that Γ is a well-formed type environment.
We now define the types system for Appπ, starting with the types.

Definition 4.2.1 (Types)
Let B be a set of basic types. The types for Appπ are generated by the grammar:

S, T ::= V | X (Types)
V ::= L | b1 | · · · | bn (Value types)
L ::= ch(V1, . . . , Vn), (Channel types)

where b1, . . . , bn ∈ B are basic types.

We write ~x : ~T for x1 : T1, . . . , xn : Tn. The syntax for typed Appπ-calculus
remains unchanged from the one for untyped Appπ, see Section 3.1. The reduc-
tion relation for typed Appπ is also defined in the same way as in Section 3.2,
and the transition relation is defined in Section 3.3.3.

Note that a value type can also be a channel type. On the other hand a channel
type is always constructed from value types. This conforms to the intuitive idea

4.2. A simple type system for Appπ 27

that value types are more general than channel types. For instance, one would
not expect a value of basic type to be capable of carrying other values, although
it certainly should be possible to send or receive such a value. The rules for
well-formed environments are as follows.

Definition 4.2.2 (Well-formed environment)

(E-Empty)
` ∅ well-formed

(E-NamVar)
` Γ well-formed u /∈ dom(Γ)

` Γ] u : T well-formed

Being able to form type environments one can define the type rules for the terms.
We do this as follows. For the rest of this chapter fix a presentation Π = (Σ,Φ).

Note the following. If Φ `Σ M = N and P is a process containing M , then
the (SC-rewrite) rule can be applied to rewrite P to a structurally equivalent
process P ′ containing N , and vice versa. Therefore, in order to ensure that
structural equivalence preserves well-typedness, we require that the type system
assigns equal types to terms that are equated by the equational theory. In specific
instances of Appπ using the type system we now give, this can be ensured by
inspection of the rules.

Definition 4.2.3 (Type rules for terms)
Let M be a term, T a type, and Γ a well-formed type environment. Then the
type judgment Γ `M M : T holds if it can be derived by application of the
following rules.

(T-NamVar)
` Γ well-formed {u : T} ∈ Γ

Γ `M u : V

For each function name f ∈ Ω a type rule of the form

(T-Func)
Γ `M M1 : V1 · · ·Γ `M Mn : Vn α(f) = n

Γ `M f(M1, . . . ,Mn) : V

The type rules for processes are standard, we only comment on the rules (T-
Ite), (T-Inp), and (T-Out). In the rule (T-Ite) the types for M and N must
be equal. Furthermore, the two branches P and Q must also be well typed. In
a process v(x).P the value v must have channel type constructed from the type
of x and since x is a binding occurrence in P , it is natural to also require P
to be well typed in Γ appended with a type assignment for x. The last rule we
comment on is (T-Out). In a process v〈M〉.P we require v to have channel
type, capable of carrying values having the type of M and that P is well typed,
all in the same environment Γ. The rules for processes are as following.

Definition 4.2.4 (Type rules for processes)
Let P ∈ A be a process, Γ a well-formed type environment, and X the behavior
type. Then the judgment Γ `A P : X holds if it can be derived by application
of the following rules.

28 Typed Appπ

(T-Nil)
Γ well-formed
Γ `A 0 : X

(T-Par)
Γ `A P : X Γ `A Q : X

Γ `A P | Q : X

(T-Rep)
Γ `A P : X
Γ `A!P : X

(T-Res)
Γ] {u : V } `A P : X

Γ `A (νu)P : X

(T-Ite)
Γ `M M : S Γ `M N : S Γ `A P : X Γ `A Q : X

Γ `A if M = N then P else Q : X

(T-Inp)
Γ] {~x : ~V } `A P : X Γ `M u : ch(~V)

Γ `A u(~x).P : X

(T-Out)
Γ `M ~M : ~V Γ `M u : ch(~V) Γ ` P : X

Γ `A u〈 ~M〉.P : X

In order to type extended processes we extend the rules above with the following
rule for active substitutions.

(T-Subs)
Γ `M M : V Γ `M x : V

Γ `A {M/x} : X

Note that since Γ] {x : T} implies that x /∈ dom(Γ), this again implies, by
the rules (T-Inp) and (T-Res), that bound names are not in Γ. Since it is not
hard to determine which of the judgments `A or `M we are referring to, we will
usually omit the index and simply write `.

We end this section with a few examples.

Example 4.2.5
Consider the following process:

b(y) | a〈b〉 | a(x).x〈c〉.

This process is well-typed under the environment Γ = {b : ch(T), c : T, a :
ch(ch(T)} as is demonstrated by the derivation below.

Γ ` y : T, b : ch(T)
Γ ` b(y) : X

Γ ` b : ch(T), a : ch(ch(T))
Γ ` a〈b〉 : X A

Γ ` b(y) | a〈b〉 | a(x).x〈c〉 : X
,

where A is the inference

Γ] {x : ch(T)} ` x : ch(T), c : T
Γ] {x : ch(T)} ` x〈c〉 Γ ` a : ch(ch(T))

Γ ` a(x).x〈c〉

4.3. Subject reduction for typed Appπ 29

4

Example 4.2.6
Consider the process

a〈b〉 | a(x).x〈c〉 | b(y).y〈c〉.

We show that this process can not be well-typed.

Γ ` a : ch(ch(T)),b :???
Γ ` a〈b〉 : X A B

Γ ` a〈b〉 | a(x).x〈c〉 | b(y).y〈c〉 : X

where A is the inference

Γ] {y : ch(T)} ` y : ch(T), c : T
Γ] {y : ch(T)} ` y〈c〉 : X Γ ` b : ch(ch(T))

Γ ` b(y).y〈c〉 : X

and B is the inference

Γ] {x : ch(T)} ` x : ch(T), c : T
Γ] {x : ch(T)} ` x〈c〉 : X Γ ` a : ch(ch(T))

Γ ` a(x).x〈c〉 : X

Clearly from this inference one sees that there can be no consistent type assign-
ment to the names in this process which make the process well-typed. 4

4.3 Subject reduction for typed Appπ

In this section we prove an important property of the type system commonly
referred to as subject reduction. Type checking is performed by a static analysis
of the source program. However, we often want a typed judgment about a pro-
cess to express something about its dynamic behavior. In other words subject
reduction relates the type rules with the operational semantics.

Before we set out to prove subject reduction, we need a few lemmas whose
statements and proofs are similar to the corresponding ones in [SW01, p.244].

Lemma 4.3.1
Let E be a term or an extended process. If Γ ` E : T and u /∈ dom(Γ). Then
u /∈ fv(E) ∪ fn(E).

Proof
The proof is carried out by induction in the height of the derivation tree of the
type assertion.

Induction basis: We treat the case where the assertion was derived directly
from one of the axioms. If Γ ` E : T was derived using (T-NamVar).
Then the theorem is vacuously true since the assumption that u /∈ dom(Γ)
is not satisfied. In the latter case the theorem is also trivially fulfilled since
fv(0) = ∅ = fn(0).

30 Typed Appπ

Induction hypothesis: Assume the lemma holds for derivations of height n−
1.

Induction step: We prove this step by a case by case analysis of the last rule
used in the derivation. Most of the cases are immediate, so we only give
details for some of them.

(T-Func). Suppose the root of the derivation tree is

Γ `M1 : V1 · · ·Γ `Mn : Vn α(f) = n

Γ ` f(M1, . . . ,Mn) : V
.

By the induction hypothesis we can then assume that if u /∈ dom(Γ), then
u /∈ fv(Mi) ∪ fn(Mi) for all 1 ≤ i ≤ n. But then u /∈ fv(f(M1, . . . ,Mn)) ∪
fn(f(M1, . . . ,Mn)).

Suppose the last rules is (T-Res), and choose v 6= u such that v /∈ dom(Γ).
Then v /∈ dom(Γ] {u : T}) so by the induction hypothesis we conclude
that v /∈ fv(P) ∪ fn(P), which implies that v /∈ fv((νu)P) ∪ fn((νu)P). If
v = u, then clearly v /∈ fv((νu)P) ∪ fn((νu)P).

If the root of the derivation tree was obtained by (T-Ite), then clearly
the result holds. The case for (T-Inp) is similar to the one for (T-Res).
So take v so v /∈ dom(Γ). Since by assumption u(~x).P is well typed, this
implies that u 6= v. Furthermore, if v ∈ ~x, then v /∈ fv(u(x).P). So assume
that v 6= u and v /∈ ~x. Then also v /∈ dom(Γ] {x : T}) is undefined.
So by the induction hypothesis we know that v /∈ fv(P) ∪ fn(P), hence
v /∈ fv(u(x).P) ∪ fn(u(x).P).

For the rule (T-Out). The reasoning is similar to the one above, noting
that if v /∈ dom(Γ), then this implies, by the well typedness of u〈 ~M〉, that
u 6= v. The conclusion then follows by the induction hypothesis.

Finally if the last rule in the derivation is (T-Subs) the lemma follows by
the induction hypothesis and the definition of free names and variables for
an active substitution. That is fv({M/x}) = fv(M)∪{x} and fn({M/x}) =
fn(M).

The proofs of the next three lemmas are similar to the one for the previous
lemma. Therefore we just give a short description of the proof technique for
these lemmas.

Lemma 4.3.2
For every Γ and u there is at most one type T such that Γ ` u : T .

Proof
Induction in the height of the derivation of the judgment.

The next lemma states that one may remove superfluous type assignments from
a type environment, i.e. strengthen the assumptions.

Lemma 4.3.3 (Strengthening)
If Γ] {u : S} ` E : T , and u is not free in E. Then Γ ` E : T .

4.3. Subject reduction for typed Appπ 31

Proof
Induction in the height of the derivation of the judgment.

Conversely, adding type assignments to the type environment does not influence
the well typedness of an expression.

Lemma 4.3.4 (Weakening)
If Γ ` E : T then Γ]{u : S} ` E : T for any type S and u such that u /∈ dom(Γ).

Proof
Induction in the height of the derivation of the judgment.

The strengthening as well as the weakening lemma easily generalize to the
polyadic case. I.e. in strengthening we assume that if Γ] {~u : ~S} ` E : T
and ~u /∈ fv(E), then Γ ` E : T . Similarly the additional assumption in the
weakening lemma is that ~u /∈ dom(Γ).

Lemma 4.3.5
Suppose Γ ` P : X and Γ] ∆ ` (ν~x){ ~M/~x} : X, where dom(∆) = fv(~M) ∪
fn(~M). Then

Γ]∆ ` P | (ν~x){ ~M/~x} : X.

Proof
The statements is obtained by applying weakening.

Thus since type environments only make assertions about the free names in a
process, a consequence of Lemma 4.3.5, and the requirement that (SC-Rewrite)
is sound with respect to typing, is that structural equivalence preserves well typ-
ing.

Lemma 4.3.6 (Substitution lemma)
Suppose the following hold:

(i) Γ ` E : T

(ii) Γ ` x : S

(iii) Γ ` v : S.

Then Γ ` E{v/x} : T .

Proof
The derivation for E{v/x} : T is obtained from the derivation of E : T as
follows. Consider all leaves of the derivation tree of E of the form

{x : S} ∈ ∆] {x : S} ` ∆] {x : S} well-formed
∆] {x : S} ` x : S

, (4.1)

where ∆ ` v : S. For each of these leaves do the following. For each node on the
path from the leaf to the root, both including, replace an occurrence of x to the
right of a ` with v. We prove by induction in the height of the derivation that
this algorithm provides a derivation tree for E{v/x}.

32 Typed Appπ

Induction basis: The only case to consider, besides the (T-Nil) rule which is
trivial, is when the derivation is of the form in (4.1). By assumption we
know that ∆ ` v : S and thus by the Weakening lemma, Lemma 4.3.4, we
have ∆] x : S ` v : S.

Induction hypothesis: Assume the described algorithm works for all deriva-
tions of height n− 1, where n > 1.

Induction step: Consider a derivation of height n. There are eight possible
different roots of the derivation tree. We only prove three of the cases as
they are all quite similar.

First consider the rule (T-Par)

Γ ` P : X Γ ` Q : X
Γ ` P | Q : X

.

The induction hypothesis applies to both P and Q, thus by the (T-Par)
rule we get as desired

Γ ` P{v/x} : X Γ ` Q{v/x} : X
Γ ` P{v/x} | Q{v/x} : X

.

As the second case consider the (T-Out) rule

Γ ` u′ : V Γ ` u : ch(V) Γ ` P : X
Γ ` u〈u′〉.P : X

.

Now if x = u or x = u′ the statement follows by the induction basis
and the induction hypothesis, otherwise only the induction hypothesis is
needed to obtain

Γ ` u′{v/x} : V Γ ` u{v/x} : ch(V) Γ ` P{v/x} : X
Γ ` u{v/x}〈u′{v/x}〉.P{v/x} : X

.

At last consider the (T-Func) rule

Γ `M1 : V1 · · ·Γ `Mn : Vn α(f) = n

Γ ` f(M1, . . . ,Mn) : V
.

Again the induction hypothesis applies to each of the terms M1, . . . ,Mn

and hence we get

Γ `M1{v/x} : V1 · · ·Γ `Mn{v/x} : Vn α(f) = n

Γ ` f(M1{v/x}, . . . ,Mn{v/x}) : V
.

As a corollary to the substitution lemma one gets that the result of the lemma
is also valid for substitutions of the form {~x/~y}.

Lemma 4.3.7
Suppose the following holds:

4.3. Subject reduction for typed Appπ 33

(i) Γ ` E : T

(ii) Γ ` ~x : ~S

(iii) Γ ` ~v : ~S.

Then Γ ` E{~v/~x} : T .

Note that, by strengthening, we also have that the conclusion in the corollary
is valid for a type environment ∆ where ∆] ~x : ~S = Γ.

With these lemmas we are now ready to prove the subject reduction theorem.

Theorem 4.3.8 (Subject reduction)
Suppose Γ ` A : X and A

α−−−→ A′. Then one of the following holds.

(i) If α = τ . Then Γ ` A′ : X.

(ii) If α = a(~M). Then there is ~T such that

(a) Γ ` a : ch(~T).

(b) if Γ ` ~M : ~T then Γ ` A′ : X.

(iii) If α = (ν~u)a〈~v〉 then there exists ~T such that

(a) Γ ` a : ch(~T).

(b) Γ] {~u : ~S} ` ~v : ~T .

(c) Γ] {~u : ~S} ` A′ : X.

Proof
The proof is by induction on the height of the inference of A α−−−→ A′.

Induction basis: We consider the rules (Comm),(Then), (Else), (Input),
and (Output). For the (Comm) rule assume P = a〈~x〉.P1 | a(~y).P2

τ−−−→
P1 | P2{~x/~y} = P ′. We argue that case (i) of the theorem is satisfied.

Γ ` ~x : ~V Γ ` P1 : X
Γ ` a : ch(~V)

Γ ` a〈~x〉.P1 : X
Γ] {~y : ~V } ` P2 : X Γ ` a : ch(~V)

Γ ` a(~y).P2 : X
Γ ` a〈~x〉.P1 | a(~y).P2 : X

Now observe the following. By the above derivation Γ] {~y : ~V } ` P2 :
X and by the weakening lemma we know that Γ] {~y : ~V } ` ~x : ~V ,
and of course Γ] {~y : ~V } ` ~y : ~V . Thus the substitution lemma yields
Γ] {~y : ~V } ` P2{~x/~y} : X. Since ~y /∈ fv(P2{~x/~y}) using strengthening
yields Γ ` P2{~x/~y} : X. Putting it all together, by the derivation above
we know that Γ ` P1 : X, thus an application of the (T-Par) rule yields
Γ ` P1 | P2{~x/~y} : X.

34 Typed Appπ

If P α−−−→ P ′ was derived using (Then) or (Else), case (i) is immediately

satisfied. If P = a(~x).P1
a(~M)−−−−→ P1{ ~M/~x} = P ′ we get.

Γ] {~x : ~T} ` P1 : X Γ ` a : ch(~T)
Γ ` a(~x).P1 : X

We now show that if Γ ` ~M : ~T then Γ ` P1{ ~M/~x} : X. Since ~x /∈ fv(~M),
applying weakening to obtain Γ] {~x : ~T} ` a : ch(~T). Furthermore,
Γ] {~x : ~T} ` P1 : X and Γ] {~x : ~T} ` ~x : ~T . Hence case (ii) is fulfilled by
the substitution lemma. The rule (Output) is proved in a similar manner.

Induction hypothesis: Assume the statement of the theorem holds for shorter
derivations.

Induction step: Consider the rule (Open), so α = (ν~u)a〈~v〉. We show that
case (iii) is fulfilled. Typing (νu1)A yields

Γ] {u1 : S1} ` A : X
Γ ` (νu1)A : X

.

The (Open) rule states the following.

A
(νu2,...,un)a〈~v〉−−−−−−−−−−−→ A′

(νu1)A
(ν~u)a〈~v〉−−−−−−→ A′

.

Since Γ] {u1 : S1} ` A : X the induction hypothesis yields the following.

• Γ] {u1 : S1} ` a : ch(~T)

• Γ] {u1 : S1}] {u2 : S2, . . . , un : Sn} ` ~v : ~T

• Γ] {u1 : S1}] {u2 : S2, . . . , un : Sn} ` A′ : X.

Hence since u 6= a apply strengthening to the first bullet to obtain the
first statement in case (iii). The other cases are clearly fulfilled.

Now assume the last rule is (Res). That is, assume Γ ` (νu)A : X, and
that (νu)A α−−−→ (νu)A′. Then by (T-Res) we know that Γ] {u : T} ` A :
X. Thus consider the following sub-cases depending on α.

• If α = τ , the induction hypothesis yields that Γ] {u : T} ` A′ : X.
Applying (T-Res) now yields that Γ ` (νu)A′ : X.

• If α = a〈~v〉, u /∈ ~v the induction hypothesis yields Γ] {u : T} ` a :
ch(~T), Γ] {u : T} ` ~v : ~T , and Γ] {u : T} ` A′ : X. Since u 6= a we
can apply strengthening to infer Γ ` a : ch(~T), similarly since u /∈ ~v
we obtain Γ ` v : ~T . Finally the (T-Res) rule yields Γ ` (νu)A′ : X.

• If α = a(~M) applying the induction hypothesis yields Γ] {u : T} `
a : ch(~T) and if Γ] {u : T} ` ~v : ~T then Γ] {u : T} ` A′ : X. By the
same reasoning as above we can conclude that Γ ` a : ch(~T) and if
Γ ` v : T then Γ ` (νu)A′ : X.

• If α = (ν~v)a〈~w〉 for ~v ⊆ ~w, the induction hypothesis yields the fol-
lowing

4.4. Subtyping 35

– Γ] {u : T} ` a : ch(~T),
– Γ] {u : T}] {~v : ~S} ` ~w : ~T , and
– Γ] {u : T}] {~v : ~S} ` A′ : X.

Again, since u /∈ n(α), we reason by using strengthening to conclude
that Γ ` a : ch(~T), Γ] {~v : ~S} ` ~w : ~T . And by the (T-Res) rule we
have Γ] {~v : ~T} ` (νu)A′ : X.

Now, suppose the last rule in the derivation is (Struct). The difficult
cases is when the (SC-Alias) or the (SC-Rewrite) axiom has been
used. But by convention the encoding preserves types with respect to the
(SC-Rewrite)-axiom. If the (SC-Alias) axiom was applied directly, the
theorem holds vacuously since neither 0 or (ν~x){ ~M/~x} has any transitions.
The problematic case is when P = P ′ | 0. But by Lemma 4.3.5 the theorem
follows by extending Γ with assignments for the free names in M .

The last rule is the (Par) rule. The proof of this case is carried out by
using the same argument as we did for the (Res) rule, hence the details
are omitted.

4.4 Subtyping

Subtyping is similar to inclusion of sets of values of certain types. For instance
we have that N ⊂ R and one could argue that N is a subtype of R, since if a
function f is well defined on an expression of type R, then specifically it should
be well defined on an expression of type N. It is worth noticing that the reverse
is not always possible, i.e. to replace a value u of type N with a value v of type
R. We could for instance ask for suc(u) which of course is undefined for the
value v.

Now let S and T be types. Then if S ≤ T we say that S is a subtype of T and
that T is a super-type of S. We extend Definition 4.2.3 with the following rule
which captures the intuition described above.

(T-Subsumption)
Γ `M : S S ≤ T

Γ `M : T

With this rule added to Definition 4.2.3 we should of course make sure that the
lemmas and theorem in Section 4.3 are still valid.

Proof (of Lemma 4.3.1)
By the proof of Lemma 4.3.1 it is only necessary to check the case where the
last rule in the derivation is (T-Subsumption), hence suppose the root of the
tree is

Γ `M : S S ≤ T

Γ `M : T
Then by the induction hypothesis we have that x /∈ fv(M) which is what we
wanted.

36 Typed Appπ

Proof (of Lemma 4.3.6)
Suppose the root of the tree is

Γ `M : S S ≤ T

Γ `M : T

By the induction hypothesis and the (T-Subsumption) rule we have

Γ `M{v/x} : S S ≤ T

Γ `M{v/x} : T

as desired.

Subtyping can be used when describing many common programming language
constructs; it is indeed an essential feature in object-oriented languages. We need
little of the vast amount of theory on this topic, but include a short discussion
here on subtyping and input/output types in the π-calculus. These types is a
refinement of the pure channel type which we have introduced. The need for
these types can be illustrated by considering how one could introduce subtyping
on the channel types. This example is taken from [SW01]. A type constructor t
is called covariant if S ≤ T implies that t(S) ≤ t(T) and contravariant if S ≤ T
implies that t(T) ≤ s(T).

Suppose the type constructor ch(T) is covariant, so we have the rule

S ≤ T

ch(S) ≤ ch(T)
,

and the basic types Int and Real with the ordering Int ≤ Real. Let suc(x) be
the successor function on integers. Using this rule and (T-Subsumption) one
can now type the two processes

a(x).b〈suc(x)〉.0 and a〈3.5〉.0

under the same environment Γ = {a : ch(Int), b : ch(Int)}. However by the
(T-Par)-rule the composition of the two processes should also be well-typed.
But this can clearly not be the case since

a(x).b〈suc(x)〉.0 | a〈3.5〉.0 −−−→ b〈suc(3.5)〉.0 | 0.

A similar example can be made if ch(T) is taken to be contravariant. The solution
to this problem is to use input and output types. Then oS is the type of a name
capable only of outputting values of type S, and iS is the type of a name capable
only of inputting values of type S. If o is taken to be contravariant and i is
covariant, the resulting type system will be sound.

We leave this issue for future work. The notion of subtyping we have already
introduced is sufficient for the purpose of this report.

Chapter 5

Representing the
spi-calculus in Appπ

In this chapter we will take a closer look at how the spi-calculus can be repre-
sented in Appπ. The spi-calculus is defined in Chapter 2. We will first define a
presentation to obtain the necessary functions and data structures whereafter we
show how various process constructs such as “case L of {x1, . . . , xn}N in P” can
be encoded. We prove full abstraction with resprect to operational correspon-
dence of this instantiation of spi in Appπ. The encoding we define here is also
aimed at representing the type system for the spi-calculus proposed by Abadi
[Aba97]. The type system for the spi-calculus presented in this article is aimed
at representing security protocols which use shared-key cryptography. The main
theorem states that if a protocol type-checks then the desired secrecy property
of the protocol is guaranteed. In Section 5.4 we give and explain Abadi’s type
system whereafter we modify the type system from the previous chapter in order
to obtain a type system which is equivalent to Abadi’s.

5.1 Definition of a presentation

We now define a presentation Π = (Σ,Φ) where Σ = (Ω, α) is a signature and
Φ is a set of equations. See Appendix A for background on universal algebra.
In [Aba97] Abadi works with three types of data, public, secret, and any where
any is a super type of public and secret. Now the set Ω of function symbols is
constituted by the function symbols in Table 5.1. Note that if f is a function
symbol in Ω then fα denotes the three functions fPub, fSec and fAny. The arity
function α is also listed for each function name.

The fmt and cast functions are actually only needed for representing Abadi’s
type system. fmt is a special kind of tuple and the cast functions extracts the
elements of an fmt tuple. If we only wanted to instantiate spi in Appπ we could
have used the pair, fst and snd instead. Similarly we could have used just one
decryption and encryption function. The need for these functions will become
clear in Section 5.5.

37

38 Representing the spi-calculus in Appπ

suc, α(suc) = 1 pred, α(pred) = 1
fmt, α(fmt) = 4 enc-s, α(enc-s) = 2

enc-p, α(enc-p) = 2 dec-s, α(dec-s) = 2
dec-pα, α(dec-pα) = 2 pair, α(pair) = 2

fst, α(fst) = 1 snd, α(snd) = 1
cast-s, α(cast-s) = 1 cast-a, α(cast-a) = 1
cast-p, α(cast-p) = 1 castα, α(castα) = 1

0, α(0) = 0

Table 5.1: The signature Σ.

Finally we are in position to give the equations. The set Φ of equations are given
in Table 5.2.

pred(suc(x)) = x

dec-pα(enc-p(x, k), k) = x

dec-s(enc-s(x, k), k) = x

fst(pair(x, y)) = x

snd(pair(x, y)) = y

cast-s(fmt(x, y, z, n)) = x

cast-a(fmt(x, y, z, n)) = y

cast-p(fmt(x, y, z, n)) = z

castα(fmt(x, y, z, n)) = n

Table 5.2: The equations Φ.

The equations ensure that for instance the equation suc(pred(M)) = M is only
provable if there exists an N such that M = suc(N). Using Π the next section
describes how to represent spi in Appπ.

5.2 Encoding of process constructs

The syntax for spi-calculus-processes, Definition 2.1.1, contains some constructs
which are not present in the syntax of Appπ-processes. In this section we give
an encoding J·K of spi-calculus processes as Appπ-processes. The encoding also
anticipates that it is utilised in Section 5.5 where Abadi’s type system is repre-
sented in Appπ.

The encoding is a homomorphism on most of the process expressions, for in-
stance JP1 | P2K = JP1K | JP2K. Thus we only give explicit definitions for those
that are not homomorphisms. Using the presentation Π, and in particular the
functions in Ω encoding of terms is as follows:

5.2. Encoding of process constructs 39

J(M,N)K def= pair(JMK, JNK)

Jsuc(M)K def= suc(JMK)

J{M1, . . . ,Mn}N K def= enc-p(pair(JM1K, . . . , JMnK), JNK)

J{M1, . . . ,M4}N K def= enc-s(fmt(JM1K, . . . , JM4K), JNK),

where pair(M1,M2, . . . ,Mn) is shorthand for pair(M1, pair(M2, . . . ,Mn)). Some-
times we will just write J ~MK for this term. Note that we have two definitions
of the encoding of an encrypted message. Again this is needed for representing
Abadi’s type system. For now it should be clear from the context which encoding
to use.

Encoding of names and variables is done with the identity mapping. The pro-
cesses are encoded as shown below.

JM(~x).P K def= JMK(~x).JP K

JM〈 ~N〉.P K def= (ν~x)
(
{J ~NK/~x} | JMK〈~x〉.JP K

)
Jlet (x, y) = M in P K def= if pair(fst(JMK), snd(JMK)) = JMK then

JP K{fst(JMK)/x, snd(JMK)/y} else 0

Jcase M of 0 : P suc(x) : QK def= if JMK = 0 then JP K else if JMK = suc(pred(JMK))
then JQK{pred(JMK)/x} else 0

Jcase L of {~x}N in P K def= if enc-p(dec-pα(JLK, JNK), JNK) = JLK then
JP K{dec-p(JLK, JNK)/~x} else 0

Jcase L of {~x}N in P K def= if enc-s(dec-s(JLK, JNK), JNK) = JLK then
JP K{cast(decs(JLK, JNK))/~x} else 0

where JP K{dec-p(JLK, JNK)/~x} is shorthand for

JP K{fst(dec-pα(JLK, JNK))/x1, fst(fst(dec-pα(JLK, JNK)))/x2, . . . ,

fst(· · · (fst(snd(dec-pα(JLK, JNK)))))/xn},

and furthermore JP K{cast(dec-s(JLK, JNK))/J~xK} is shorthand for

JP K{cast-s(dec-s(JLK, JNK))/x1, cast-a(dec-s(JLK, JNK))/x2,

cast-p(dec-s(JLK, JNK))/x3, castα(dec-s(JLK, JNK))/x4}

In [Aba97] Abadi assumes that processes are checked for certain execution er-
rors at runtime. For instance in let (x, y) = M in P the process is stuck if M
is not a pair. We check for this by using the if-then-else clauses. A consequence
of this runtime check is also that we need two definitions of the encoding of the
decryption case. Output is encoded directly to the format used for communica-
tion in Appπ. The choice is a matter of taste, we could just as well have chosen
to encode the prefix subject, object and process since

(ν~x)
(
{J ~NK/~x} | JMK〈~x〉.JP K

)
≡ JMK〈JNK〉.JP K.

40 Representing the spi-calculus in Appπ

A few final notes on notation. In order to avoid complicating expressions un-
necessarily we will in the rest of the report often omit writing JK when encoding
terms, if its use is clear from the context. For instance in an output prefix we
often assume that M is a name or variable. In this case the encoding is the
identity mapping, in which case we omit writing JK. Furthermore, if the type is
inessential we sometimes write f instead of fα.

5.3 Operational correspondence of J·K

In this section we state and prove an operational correspondence of the encoding
J·K. With respect to soundness we prove that silent transitions can be matched
by a sequence of silent transitions. The reason why we need a sequence of tran-
sitions to match a single transition is that, if a spi-process P reduces to another
spi-process, then the encoding of P will possibly need a τ -transition to match
the reduction, see Lemma 5.3.2. We also prove that if P ↓a then this barb can
be matched by by a JP K α−−−→ transition, subj(α) = a. This formulation is neces-
sary as we only have output barbs in Appπ. With respect to completeness we
prove that if the encoding of a spi-process P has a τ -transitions, then the deriva-
tive is weakly observation equivalent to the encoding of another spi-process Q.
Furthermore, the transition can either be matched or else P and Q are weakly
barbed congruent.

The following is a standard lemma asserting that the encoding is an homo-
morphism with respect to substitution. We only state and prove the lemma for
process expressions, but it also holds for terms. This is a necessary property in
the proof of the lemma, and can easily be verified by a case by case analysis of
the terms.

Lemma 5.3.1 (Substitution)
Let P ∈ S, and let M ∈ S. Then JP K{J ~MK/~x} = JP{ ~M/~x}K.

Proof
The proof is carried out by induction in the structure of P ∈ S.

Induction basis: Suppose P = 0. The theorem follows immediately.

Induction hypothesis: The theorem holds for the immediate constituents of
P .

Induction step: There are nine cases to consider.

• If P def= L〈 ~N〉.Q, then

JL〈 ~N〉.QK{J ~MK/~x} = ((ν~y)({J ~NK/~y} | JLK〈~y〉.JQK)){J ~MK/~x}

= (ν~y)({J ~NK{J ~MK/~x}/~y} |

(JLK〈~y〉){J ~MK/~x}.JQK{J ~MK/~x})

= JL〈 ~N〉.Q{J ~MK/~x}K.

The third equality follows from the induction hypothesis.

5.3. Operational correspondence of J·K 41

• Suppose P def= L(~x).Q. This case is similar to the first recalling that
by convention the names in the substitution are different from the
names in ~x.

• Parallel composition follows immediately since J·K is an homomor-
phism and by applying the induction hypothesis.

• A restriction P def= (νa)Q is similar to the previous case. Again recall
that by convention substitutions avoid bound names.

• If P def= !Q we get J!QK{K ~MJ/~x} = !JQK{J ~MK/~x} =!JQ{ ~M/~x}K =
J!Q{ ~M/~x}K, by an application of the induction hypothesis.

• Now suppose P def= if L = L then Q. We encode and obtain the fol-
lowing

Jif L = L then QK{J ~MK/~x}

= (if JLK = JLK then JQK else 0){J ~MK/~x}

= (if (JLK = JLK){J ~MK/~x} then JQ{ ~M/~x}K else 0)

= J(if L = L then Q){ ~M/~x}K.

Again the second equation is obtained by applying the induction
hypothesis.

• We now consider the case when P is a let construct.

Jlet (z, y) = L in QK{J ~MK/~x}
= (if pair(fst(JLK), snd(JLK)) = JLK then

JQK{fst(JLK)/z, snd(JLK)/y} else 0){J ~MK/~x}

= if (pair(fst(JLK), snd(JLK)) = JLK){J ~MK/~x} then

JQK{fst(JLK)/z, snd(JLK)/y}{J ~MK/~x} else 0.

By applying the induction hypothesis one readily sees that the result
equals the process

J(let (x, y) = L in Q){ ~M/~x}K.

Noting that the names in ~x are different from x and y.

• Suppose now P
def= case L of {~x}N in Q, where we assume secret en-

cryption and decryption.

Jcase L of {~y}N in QK{J ~MK/~y}{J ~MK/~x}
= (if enc-s(dec-s(L,N), N) = L then

JP K{cast(dec-s(L,N))/~y} else 0){J ~MK/~x}.

Again one sees that by applying the induction hypothesis and by the
comments preceding the lemma, the conclusion follows.

The remaining cases are all similar to the above ones, hence the details
are omitted.

42 Representing the spi-calculus in Appπ

Next follows the aforementioned Reduction lemma.

Lemma 5.3.2 (Reduction lemma)
Let P,Q ∈ S. If P > Q then either

(i) there exists Q̂ ∈ P such that JP K τ−−−→ Q̂ ≡ JQK, or

(ii) JP K ≡ JQK.

Proof
We go through each of the reduction rules given in Definition 2.2.1 and prove that
either (i) or (ii) is fulfilled. If case (i) is fulfilled then we just write P τ−−−→≡ JQK
when Q̂ is not important.

!P : Then encoding is a homomorphism on replication and therefore we have

J!P K def=!JP K ≡ JP K | !JP K.

Thus case (ii) is fulfilled.

if M = M then P : The definition of the encoding gives us

Jif M = M then P K def= if JMK = JMK then JP K else 0 τ−−−→ JP K.

let (x, y) = (M,N) in P : If we apply the encoding to this spi-process we get

Jlet (x, y) = (M,N) in P K def= if pair(fst(pair(M,N)), snd(pair(M,N)))
= pair(M,N) then JP K{fst(pair(M,N))/x, snd(pair(M,N))/y} else 0.

This process has a τ -transition to a process which is structurally equivalent
to JP{M/x,N/y}K, by Lemma 5.3.1.

case 0 of 0 : P suc(x) : Q: Again use the definition of the encoding to obtain

Jcase 0 of 0 : P suc(x) : QK def= if 0 = 0 then JP K else if

0 = suc(pred(0)) then JQK{pred(0)/x} else 0 τ−−−→ JP K.

case suc(M) of 0 : P suc(x) : Q: This case is very similar to the previous one.
We have

Jcase suc(M) of 0 : P suc(x) : QK def= if suc(JMK) = 0 then JP K else if
suc(JMK) = suc(pred(suc(JMK))) then

JQK{pred(suc(JMK))/x} else 0 τ−−−→≡ JQK{JMK/x}.

Case (i) is then fulfilled by Lemma 5.3.1.

5.3. Operational correspondence of J·K 43

case { ~M}N of {~x}N in P : There are two definitions of this encoding. First con-
sider the case where enc-p and dec-pα are used.

Jcase { ~M}N of {~x}N in P K def= if enc-p(dec-pα(enc-p(~M,N), N), N)

= enc-p(~M,N) then JP K{dec-pα(enc-p(~M,N), N)/~x} else 0
τ−−−→≡ JP{ ~M/~x}K.

The other case is almost identical and is omitted.

Before we can state the operational correspondence we need a lemma that gen-
eralizes some of the transition rules from Definition 3.3.8 for τ -transitions.

Lemma 5.3.3
For Appπ-processes the following rules hold.

(Res∗)
A

τ−−−→∗A′

(νa)A τ−−−→∗(νa)A′

(Par∗)
A

τ−−−→∗A′

A | B τ−−−→∗A′ | B

(Struct∗)
A ≡ B

τ−−−→∗B′ ≡ A′

A
τ−−−→∗A′

Proof
We prove the rules in order of appearance. Assume that A τ−−−→∗A′. The proof is
by induction in the length n of τ−−−→∗. If n = 1 then the conclusion follows by the
original (Res) rule. Otherwise we can split the transition into two transitions
and then the induction hypothesis applies to both of these transitions:

(νa)A τ−−−→∗(νa)Â τ−−−→∗(νa)A′.

Since τ−−−→∗ is transitive this can also be written as (νa)A τ−−−→∗(νa)A′ which is
what we wanted.

Now again assume that A τ−−−→∗A′. Again the induction basis is fulfilled by the
(Par) rule from Definition 3.3.8. Otherwise we again split the transition into
two transitions each of shorter length

A | B τ−−−→∗Â | B τ−−−→∗A′ | B.

From this we conclude that A | B τ−−−→∗A′ | B.

At last consider the (Struct∗) rule. Again the induction basis is trivially ful-
filled. Otherwise the transition is split into two and we apply the induction
hypothesis:

A ≡ B
τ−−−→∗B̂ ≡ B̂

A
τ−−−→∗B̂

and B̂ ≡ B̂
τ−−−→∗B′ ≡ A′

B̂
τ−−−→∗A′

.

From these two derivations we get that A τ−−−→∗A′.

44 Representing the spi-calculus in Appπ

Proposition 5.3.4
Let P ∈ S and assume that P

τ−−−→ Q. Then there exists Q̂ such that JP K τ−−−→∗Q̂ ≡
JQK.

Proof
The proof is by induction in the height n of the derivation of P τ−−−→ Q. As induc-
tion basis we consider derivations of height one. When the derivation tree has
height one the only possible way P τ−−−→ Q could have been deduced is by using
the two axioms (Input) and (Output) and then one of the (Communication)
rules

a(~x).P1
a〈 ~M〉−−−−→ P1{ ~M/~x} a〈 ~M〉.P2

a〈 ~M〉−−−−→ P2

a(~x).P1 | a〈 ~M〉.P2
τ−−−→ P1{ ~M/~x} | P2

First consider the (Input) axiom. If

a(~x).P1
a〈 ~M〉−−−−→ P1{ ~M/~x},

then

Ja(~x).P1K = a(~x).JP1K
a〈J ~MK〉−−−−−−→ JP1K{J ~MK/~x}.

Next consider the (Output) axiom

a〈 ~M〉.P2
a〈 ~M〉−−−−→ P2.

We use the encoding to obtain

Ja〈 ~M〉.P2K
def= (ν~y)({J ~MK/~y} | a〈~y〉.JP2K)

(ν~y)a〈~y〉−−−−−−→ {J ~MK/~y} | JP2K.

Now as ~y are fresh names variables we can use the (SC-ResPar) axiom

(ν~y)(a(~x).JP1K | {J ~MK/~y} | a〈~y〉.JP2K) ≡ (5.1)

a(~x).JP1K | (ν~y)({J ~MK/~y} | a〈~y〉.JP2K). (5.2)

And we finally deduce the communication:

a(~x).JP1K | a〈~y〉.JP2K
τ−−−→ JP1{~y/~x}K | JP2K

a(~x).JP1K | a〈~y〉.JP2K | {J ~MK/~y} τ−−−→ JP1{~y/~x}K | JP2K | {J ~MK/~y}
(5.1) τ−−−→ (ν~y)(JP1{~y/~x}K | JP2K | {J ~MK/~y})
(5.2) τ−−−→ (ν~y)(JP1{~y/~x}K | JP2K | {J ~MK/~y})

where the derivations follow by the (Comm), (Par), (Res) and (Struct) rules.

Now the conclusion follows by Lemma 5.3.1 and by equivalences similar to those
shown in (3.1):

(ν~y)(JP1{~y/~x}K | JP2K | {J ~MK/~y}) ≡ JP1{ ~M/~x}K | JP2K.

The induction hypothesis is that the theorem holds for all derivations of height
less than n.

5.3. Operational correspondence of J·K 45

The inductive step is actually quite easy. First note that (Open) can not be the
root of the tree as this rule only concerns outputs. If the last rule applied was
the (Restriction) rule:

P
τ−−−→ P ′

(νa)P τ−−−→ (νa)P ′
,

Then by the induction hypothesis we have JP K τ−−−→∗ Q̂ ≡ JP ′K. By the (Res∗)
rule we conclude

JP K τ−−−→∗ Q̂

J(νa)P K def= (νa)JP K τ−−−→∗ (νa)Q̂ ≡ (νa)JP ′K def= J(νa)P ′K
.

The case where (Parallel) is the root of the derivation tree is almost identical
to this as the encoding is also a homomorphism on this operator.

Next assume the last rule applied was (Reduction):

P > P ′ τ−−−→ P ′′

P
τ−−−→ P ′′

The induction hypothesis applies to P ′ τ−−−→ P ′′, thus JP ′K τ−−−→∗ ≡ JP ′′K. By the
Reduction lemma, Lemma 5.3.2 we have that JP K τ−−−→∗ ≡ JP ′K and by applying
the (Struct∗) rule we get

JP K τ−−−→∗ ≡ JP ′′K.

At last suppose the root of the derivation tree is one of the two (Communica-
tion) rules

P
(ν~q)a〈 ~M〉−−−−−−−→ P ′ Q

a〈 ~M〉−−−−→ Q′

P | Q τ−−−→ (ν~q)(P ′ | Q′)
.

We can not obtain the conclusion by simply applying the induction hypothesis to
the premises as, even though we also have an (Open) in the transition relation
for Appπ, bound output actions can not directly interact with inputs. Instead we
apply the axioms for ν in the definition of ≡, Definition 3.2.2, and subsequently
apply (Struct). This completes the proof.

We also have the following lemma regarding barbs.

Lemma 5.3.5
Let P ∈ S. If P ↓a then JP K α−−−→

∗
, where subj(α) = a.

Proof
The lemma can be proven by structural induction. The proof is omitted as
most of it has been proved in the induction basis in the proof of the previous
proposition.

Note that a consequence of the Reduction lemma is that we can not obtain a
stronger result than in Lemma 5.3.5, i.e. if P ↓a then JP K ↓a .

Next we look at completeness of the encoding. First we need a lemma regarding
the derivatives of encoded spi-processes.

46 Representing the spi-calculus in Appπ

Lemma 5.3.6
Let P ∈ S and assume that JP K τ−−−→ Q̂. Then Q ∈ S exists such that Q̂ ≈ JQK.

Proof
By structural induction. The induction basis is when P

def= 0 and since J0K def= 0
the induction basis is proved.

Now P can not be of the form a(~x).P ′ or a〈 ~M〉.P ′ because then no τ -transition
can occur.

Now assume that P def= P1 | P2. If the τ -transition originates from either P1 or
P2 the lemma is fulfilled by the induction hypothesis. Otherwise assume that
P1

def= a(~x).P ′ and P2
def= a〈 ~M〉.P ′′. The encoding of these two processes are

JP1K
def= a(~x).JP ′K

JP2K
def= (ν~y)({ ~M/~y} | a〈~y〉.JP ′′K)

From the transition rules for Appπ we can then deduce

JP1 | P2K
def= JP1K | JP2K

τ−−−→ (ν~y)({ ~M/~y} | JP ′{~y/~x}K | JP ′′K)

≡ JP ′{ ~M/~x} | P ′′K,

where Lemma 5.3.1 was applied.

Next assume that P def= (νx)P ′. We can apply the induction hypothesis and
obtain

JP K def= (νx)JP ′K τ−−−→ (νx)Q̂ ≈ (νx)JQK,

for some Q ∈ S. These case where P def= !P ′ follows by a similar argument.

Next suppose P
def= if M = N then P ′. The conclusion easily follows by the

induction hypothesis as the encoding of P either has a τ -transition to JP ′K or
0.

The case where P def= let (x, y) = M in P ′ also follows easily from the induction
hypothesis.

If P def= case M of 0 : P ′ suc(x) : Q then the encoding of P either has a τ -
transition to JP ′K, in which case the lemma is fulfilled, or to

R
def= if M = suc(pred(M)) then JQK{pred(M)/x} else 0.

We have that either R ≈ JQK{pred(M)/x} or R ≈ 0. The first case occurs pre-
cisely when M = suc(N) for some term N in which case we get R ≈ JQ{N/x}K.

At last the two cases where P def= case L of {~x}N in P ′ follows by the induction
hypothesis by using equational rewriting on the substitutions.

This lemma says that the assumption in the following proposition is reasonable.

Proposition 5.3.7
Let P ∈ S and assume that JP K τ−−−→ Q̂. Then there exists Q ∈ S such that

Q̂ ≈ JQK and either P
τ−−−→ Q or P ≈ Q.

5.3. Operational correspondence of J·K 47

Proof
By structural induction in P . We actually expand the proof given to Lemma
5.3.6. Again the induction basis is trivially fulfilled.

The cases where P def= (νx)P ′ and P
def= !P ′ are again fulfilled by the induction

hypothesis.

If P def= P1 | P2 then if the transition originates from either P1 or P2 we apply the
induction hypothesis to obtain the statement in the theorem. Otherwise again
assume that P1

def= a(~x).P ′ and P2
def= a〈 ~M〉.P ′′. Then

JP1 | P2K
τ−−−→ Q̂ ≈ JP ′{ ~M/~x} | P ′′K

Obviously we also have P1 | P2
τ−−−→ P ′{ ~M/~x} | P ′′.

Now if P def= let (x, y) = M in P ′ then JP K τ−−−→ JP ′K{fst(M)/x, snd(M)/y} if M
is a pair or JP K τ−−−→ 0 if M is not a pair. Now if M = (L,N) then JP K τ−−−→
Q̂ ≡ JP ′{L/x,N/y}K and P > P ′{L/x,N/y}. Otherwise P is deadlocked and
therefore P ≈ 0.

The case where P def= if M = N then P ′ is similar and is omitted.

If P def= case L of {~x}N in P ′ then there are two sub cases to consider as the
encoding of this expression is overloaded. We first consider the case where N
has type Pub

JP K def= if enc-p(dec-pα(L,N), N) = L then JP ′K{dec-pα(L,N)/~x} else 0.

There are two possibilities, depending on whether L = { ~M}N , for some terms
~M , or not. If not then trivially we obtain the statement in the theorem. If it is
then

JP K τ−−−→ JP ′K{dec-pα(enc-p(~M,N))/~x} ≡ JP ′K{ ~M/~x} = JP ′{ ~M/~x}K,

by Lemma 5.3.1. Now for the spi-process P we have P > P ′{ ~M/~x} as desired.

The second sub case is when N has type Sec and the proof becomes much
similar to the previous.

If P def= case M of 0 : P ′ suc(x) : Q then the encoding of P either has a τ -
transition to JP ′K, in which case we have P > P ′ or to

R
def= if M = suc(pred(M)) then JQK{pred(M)/x} else 0.

We have that either R ≈ JQK{pred(M)/x} or R ≈ 0. The first case occurs pre-
cisely when M = suc(N) for some term N in which case we get R ≈ JQ{N/x}K
and furthermore for the spi-process P we have P > Q{N/x}. If the second case
occurs, then P is deadlocked and therefore P ≈ 0.

Lemma 5.3.8
Let P ∈ S. If JP K ↓a then P ↓a .

Proof
By structural in P. We omit the proof.

We restate the two previous propositions in the following operational correspon-
dence theorem.

48 Representing the spi-calculus in Appπ

Theorem 5.3.9 (Operational correspondence)
Let P ∈ S. If P

τ−−−→ Q then there exists Q̂ such that

JP K τ−−−→∗Q̂ ≡ JQK.

Furthermore, if JP K τ−−−→ Q̂ then there exists Q ∈ S such that Q̂ ≈ JQK and
either

P
τ−−−→ Q or P ≈ Q.

5.4 Abadi’s type rules

This section contains a brief review of the type rules for environments, terms
and processes in the spi-calculus given in [Aba97]. Abadi uses three types. These
are Sec, Pub and Any representing respectively Secret, Public and Any where
Any is a super-type of Pub and Sec. As in Chapter 4 the type system consists
of type rules for well formed environments, terms and processes. We first give
the type rules for well formed environments.

(Environment Empty)
` ∅ well-formed

(Environment Variable)
` Γ well-formed x /∈ dom(Γ)

` Γ] x : T well-formed

(Environment Name)

` Γ well-formed n /∈ dom(Γ)
Γ `M1 : T1 · · · Γ `Mk : Tk Γ ` N : S
` Γ] n : T :: {M1, . . . ,Mk, n}N well-formed

.

The rule (Environment Name) is quite complicated. It guarentees that no
confounder can be used for two different messages, because if a variable occurs
in some Mi then it is declared in Γ. We illustrate this by the following example.

Example 5.4.1
Suppose a process can receive a message and use this message in an encrypted

message, with a secret key, i.e. a public message. Therefore let P
def= b(x).Q

and Q
def= a〈{x,M2,M3, n}N 〉.0. Such a process would possibly use the same

confounder for different messages. Let us try to type P , first we type Q.

Γ ` a : Pub

n : T :: {x,M2,M3, n}N ∈ Γ
Γ ` x : Sec,M2 : Any,M3 : Pub,N : Sec

Γ ` {x,M2,M3, n}N : Pub Γ ` 0 : X
Γ ` a〈{x,M2,M3, n}N 〉.0

Since n is not added to Γ in the above derivation it must be the case that n was
in Γ from the beginning. Typing the remaining part of P we obtain.

Γ ` b : T Γ] x : S ` Q : X
Γ ` b(x).Q : X

where we note that both derivations are under the same environment Γ, so this
is not possible since x is already in Γ by (E-Nam). Note that if we modify Q

5.4. Abadi’s type rules 49

in the following way, Q
def= (νn)(a〈{x,M2,M3, n}N 〉.0), then we can type P by

using the (Level Restriction) rule. 4

Abadi assumes that each encrypted message includes a freshly generated name
in a fixed position. This name is called a confounder and it is used to minimize
implicit flow since a protocol that uses confounders will not generate the same
cipher text more than once. The type rule (Environment Name) makes sure
that a confounder can be used for no more than one encrypted message as is
illustrated by Example 5.4.1 on the facing page.

The rules (Level Encryption Secret) and (Level Encryption Public)
uses the idea that if some piece of data is encrypted using a secret key then it
can be sent on a public channel and if it encrypted using a public key then the
type of the encrypted data is the type of the data itself. The other type rules
for terms are straightforward.

(Level Subsumption)
Γ `M : T T ≤ R

Γ `M : R

(Level Variable)
` Γ well-formed Γ(x) = T

Γ ` x : T

(Level Name)
` Γ well-formed Γ(n) = T :: {M1, . . . ,Mk, n}N

Γ ` n : T

(Level Zero)
` Γ well-formed

Γ ` 0 : Pub
(Level Successor)

Γ `M : T
Γ ` suc(M) : T

(Level Pair)
Γ `M : T Γ ` N : T

Γ ` (M,N) : T

(Level Encryption Public)
Γ `M1 : T · · · Γ `Mk : T Γ ` N : Pub

Γ ` {M1, . . .Mk}N : T

(Level Encryption Secret)

Γ `M1 : Sec Γ `M2 : Any Γ `M3 : Pub
Γ ` N : Sec Γ(n) = T :: {M1,M2,M3, n}N

Γ ` {M1,M2,M3, n}N : Pub

Another thing worth noticing about Abadi’s type system is that it adopts a
special format for messages on secret channels or messages which have been en-
crypted using secret keys. Messages on a secret channel have three components.
The first has level Secret, the second level Public and the third level Any. A
message encrypted under a secret key has these three components and a fourth
which is a confounder. Note that this labelling is only important for messages on
secret channels or under secret keys as other messages can only contain Public
data. These special formats appear in, among others, the rules (Level Output
Secret) and (Level Decryption Secret).

50 Representing the spi-calculus in Appπ

(Level Output Public)

Γ `M : Pub Γ ` P : X
Γ `M1 : Pub · · · Γ `Mk : Pub

Γ `M〈M1, . . . ,Mk〉.P : X

(Level Output Secret)

Γ `M : Sec Γ `M1 : Sec
Γ `M2 : Any Γ `M3 : Pub Γ ` P : X

Γ `M〈M1,M2,M3〉.P : X

(Level Input Public)
Γ `M : Pub Γ] x1 : Pub] · · ·] xk : Pub ` P : X

Γ `M(~x).P : X

(Level Input Secret)

Γ `M : Sec
Γ] x1 : Sec] x2 : Any] x3 : Pub ` P : X

Γ `M(x1, x2, x3).P : X

(Level Nil)
` Γ well-formed

Γ ` 0 : X
(Level Restriction)

Γ] n : T :: L ` P : X
Γ ` (νn)P : X

(Level Replication)
Γ ` P : X
Γ ` !P : X

(Level Parallel)
Γ ` P : X Q : X

Γ ` P | Q : X

(Level Match)
Γ `M : T Γ ` N : R Γ ` P : X

Γ ` if M = N then P : X

(Level Pair Splitting)
Γ `M : T Γ] x : T] y : T ` P : X

Γ ` let (x, y) = M in P : X

(Level Integer Case)
Γ `M : T Γ ` P : X Γ] x : T ` Q : X

Γ ` case M of 0 : P suc(x) : Q : X

(Level Decryption Public)

Γ ` L : T Γ ` N : Pub
Γ] x1 : T] · · ·] xk : T ` P : X

Γ ` case L of {x1, . . . , xk}N in P : X

(Level Decryption Secret)

Γ ` L : T Γ ` N : Sec
Γ] x1 : Sec] x2 : Any] x3 : Pub] x4 : Any ` P : X

Γ ` case L of {x1, x2, x3, x4}N in P : X

where, in the last five rules, T and R range over {Pub,Sec}.

5.5 Preservation of types

We have previously seen how the spi-calculus can be represented in Appπ. In
this section we will instantiate of the type system for Appπ, defined in Chapter
4, and show how this can be modified to capture the type system Abadi defines
in [Aba97]. The modifications are necessary as Abadi defines rules which use a
special format. The instantiation is described in the next section.

5.5. Preservation of types 51

5.5.1 Instantiation of the type system

We now instantiate the type system from Section 4.2. We need a definition of
the types and we need to define the type rules for terms.

Definition 5.5.1 (Types)
The types for Appπare generated by the grammar

S ::= V | X (Types)
V ::= Pub | Sec | Any. (Value types)

We only give the type rules for terms involving function names. These are

(T-Suc)
Γ `M : T α(suc) = 1

Γ ` suc(M) : T
(T-Pred)

Γ `M : T α(pred) = 1
Γ ` pred(M) : T

(T-Fmt)

Γ `M1 : Sec Γ `M2 : Any Γ `M3 : Pub
Γ `M4 : T α(fmt) = 4

Γ ` fmt(M1,M2,M3,M4) : Any

(T-Encs)
Γ `M1 : Any Γ `M2 : Sec α(enc-s) = 2

Γ ` enc-s(M1,M2) : Pub

(T-Encp)
Γ `M1 : T Γ `M2 : Pub α(enc-p) = 2

Γ ` enc-p(M1,M2) : Sec

(T-Decs)
Γ `M1 : Pub Γ `M2 : Sec α(dec-s) = 2

Γ ` dec-s(M1,M2) : Any

(T-Decp)
Γ `M1 : Sec M2 : Pub α(dec-pT) = 2

Γ ` dec-pT : T

(T-Pair)
Γ `M1 : T Γ `M2 : T α(pair) = 2

Γ ` pair(M1,M2) : T

(T-Casta)
Γ `M : Any α(cast-a) = 1

Γ ` cast-a(M) : Any

(T-Fst)
Γ `M : T α(fst) = 1

Γ ` fst(M) : T
(T-Casts)

Γ `M : Any α(cast-s) = 1
Γ ` cast-s(M) : Sec

(T-Snd)
Γ `M : T α(snd) = 1

Γ ` snd(M) : T
(T-Cast)

Γ `M : Any α(castT) = 1
Γ ` castT (M) : T

(T-Castp)
Γ `M : Any α(cast-p) = 1

Γ ` cast-p(M) : Pub
(T-Zero)

α(0) = 0
Γ ` 0 : Pub

52 Representing the spi-calculus in Appπ

A term fmt(x, y, z, n) may be thought of as a dedicated kind of tuple representing
the special message format in Abadi [Aba97]. Only terms of this type may
be encrypted with a secret key. We could have chosen the result type of fmt
arbitrarily. The choice of Any is loosely motivated by the type rule for tuples
since the type of a tuple is given the type of its constituents. Thus the most
precise type judgment one can make on a tuple whose elements have different
type, is type Any. The cast functions extract the contents of a fmt term while
at the same time restoring the type information.

5.5.2 The modified type system

In order to account for the special rules described in Section 5.4 we add or
modify some of the rules described in the Chapter 4. First consider the rules for
well-formed environments. We split the rule (E-NamVar) into two rules; one
for variables and one for names.

(E-Var)
` Γ well-formed x /∈ dom(Γ)

` Γ] x : T well-formed

(E-Nam)

` Γ well-formed n /∈ dom(Γ)
Γ `M1 : T1 · · · Γ `Mk : Tk Γ ` N : S
` Γ] n : T :: {M1, . . . ,Mk, n}N well-formed

.

The rule (E-Nam) is a subtle construct. The essential property is the require-
ment that all variables in M1, . . . ,Mn are declared in Γ. This ensures that a
variable can not be instantiated in two different ways, hence preventing the
same confounder from being used in two different messages. This is illustrated
by Example 5.4.1 on page 48.

Regarding the type rules for terms we just split the (T-NamVar) rule in two.

(T-Nam)
` Γ well-formed n : T :: {M1, . . . ,Mk, n}N ∈ Γ

Γ ` n : T

(T-Var)
` Γ well-formed x : T ∈ Γ

Γ ` x : T

For Appπ-processes first consider the (T-Ite) rule. This needs to be modified
so that the two terms can have different types and the rule (T-Res) should be
split into two rules. One for names where the bound name is associated with an
arbitrary term and one for variables which is identical to the old rule.

(T-ResNam)
Γ] a : S :: L ` P : X

Γ ` (νa)P : X

(T-ResVar)
Γ] x : S ` P : X
Γ ` (νx)P : X

(T-Ite)
Γ `M : S Γ ` N : T Γ ` P : X Γ ` Q : X

Γ ` if M = N then P else Q : X

5.5. Preservation of types 53

where in the last rule S, T ∈ {Pub, Sec}. Terms of level Any cannot occur in an
if-then-else clause in order to prevent implicit flow. Furthermore, the reason for
not modifying the (T-ResVar) rule is that a variable under a restriction can
only be used to bind a variable in an active substitution.

Lastly we give four rules which replace (T-Out) and (T-Inp).

(T-OutputPub)
Γ ` u : Pub Γ ` ~M : ~Pub Γ ` P : X

Γ ` u〈 ~M〉.P : X

(T-OutputSec)

Γ ` u : Sec Γ `M1 : Sec
Γ `M2 : Any Γ `M3 : Pub Γ ` P : X

Γ ` u〈M1,M2,M3〉.P : X

(T-InputPub)
Γ ` u : Pub Γ] x1 : Pub] · · ·] xk : Pub ` P : X

Γ ` u(~x).P : X

(T-InputSec)
Γ ` u : Sec Γ] x1 : Sec] x2 : Any] x3 : Pub ` P : X

Γ ` u(x1, x2, x3).P : X
.

Before we present the main theorems we need a lemmas. It states that the
encoding J·K preserves the types of spi-terms.

Lemma 5.5.2
Let M ∈ S be a term. Then Γ `M : T if and only if Γ ` JMK : T.

Proof
We first prove the forward direction. The proof is by induction in the height n of
the type derivation of M. Then as induction basis we consider Abadi’s (Level
Variable), (Level Name) and (Level Zero) rules. These rules are identical
to the (T-Var), (T-Nam) and (T-Zero) rules, respectively, thus the induction
basis is proved since the encoding is the identity on 0, variables and names.

The induction hypothesis is that the theorem holds for terms whose type deriva-
tion has height less than n.

In the inductive step there are five rules to consider.

(Level Subsumption) The induction hypothesis gives us that the premises
hold for the encoding of a term M. Thus by the (T-Subsumption) rule,
we obtain the conclusion.

(Level Successor) Suppose a term JMK has type T in Γ. Then by the (T-Suc)
rule we get

Γ ` JMK : T α(suc) = 1
Γ ` suc(JMK) : T

.

(Level Pair) Follows by a similar argument to the (Level Successor) rule,
using the (T-Pair) rule instead of (T-Suc).

(Level Encryption Public) Similar to the above, using the (T-Encp) rule.

54 Representing the spi-calculus in Appπ

(Level Encryption Secret) Similar to the above, using the (T-Encs).

The other direction is quite similar and is therefore omitted.

In the remainder of this chapter we will sometimes just write M for the encoding
of a spi-term, when it is clear that M is an Appπ-term.

Theorem 5.5.3 (Soundness)
Let P ∈ S and let Γ be a type environment such that Γ ` P : X. Then
Γ ` JP K : X.

Proof
The proof is by induction in the height n of the type derivation of P. In the
induction basis there is only one case to consider. This is the (Level Nil) rule
and it follows by the corresponding (T-Nil) rule.

The induction hypothesis is that the theorem holds for terms whose type deriva-
tion has height less than n.

In the induction step first consider the input and output rules, (Level Output
Public), (Level Output Secret), (Level Input Public) and (Level In-
put Secret). These rules all follow by the added type rules for processes and
by Lemma 5.5.2. Next consider the (Level Parallel) rule. The induction
hypothesis gives us that the encoding of the two processes in the premises are
well typed. Then by the (T-Par) rule we have that the parallel composition
of the encoding of the two processes is well typed. The rules (Level Repli-
cation), (Level Restriction) and (Level Match) follow by similar ar-
guments. Lastly we consider the four rules where we use the definition of the
encoding of spi-calculus processes.

(Level Pair Splitting) Assume that Γ `M : T . By the induction hypothesis
Γ] x : T] y : T ` JP K : X and we need to show that

Γ ` Jlet (x, y) = M in P K def= if pair(fst(M), snd(M)) = M then
JP K{fst(M)/x, snd(M)/y} else 0 : X.

Now by the (T-Fst) and (T-Snd) rules

Γ `M : T α(fst) = 1
Γ ` fst(M) : T

and
Γ `M : T α(snd) = 1

Γ ` snd(M) : T
.

Then by (T-Pair) we then get

Γ ` fst(M) : T Γ ` snd(M) : T α(pair) = 2
Γ ` pair(fst(M), snd(M)) : T

.

Now because Γ] x : T] y : T ` JP K : X, fst(M) : T , snd(M) : T we can
apply the corollary of the substitution lemma, Corollary 4.3.7, and we get

Γ ` JP K{fst(M)/x, snd(M)/y} : X. (5.3)

Lastly we apply (T-Ite)

Γ ` pair(fst(M), snd(M)) : T M : T
Γ ` 0 : X Γ ` JP K{fst(M)/x, snd(M)/y} : X

Γ ` if pair(fst(M), snd(M)) = M then JP K{M/(x, y)} else 0 : X

5.5. Preservation of types 55

where {M/(x, y)} is the substitution in (5.3). In the remaining three cases
we will not give a proof as thorough as for this case. We will just explain
how the proofs can be conducted.

(Level Integer Case) By the induction hypothesis we have that Γ ` M : T ,
Γ ` JP K : X and that Γ] x : T ` JQK : X. We need to show that

Γ `Jcase M of 0 : P suc(x) : QK def= if M = 0 then JP K else if
M = suc(pred(M)) then JQK{pred(M)/x} else 0 : X

This time the conclusion follows from the (T-Ite), (T-Suc) and (T-
Pred) rules and by applying the corollary of the substitution lemma and
the induction hypothesis.

(Level Decryption Public) Now, by the induction hypothesis, we have Γ `
L : T , Γ ` N : Pub and Γ] x1 : T] · · ·] xk : T ` JP K : X. We need to
show

Γ ` Jcase L of {~x}N in P K def= if enc-p(dec-pα(L,N), N) = L

then JP K{dec-pα(L,N)/~x} else 0 : X.

Because of the induction hypothesis and Lemma 5.5.2 we can apply the
rules (T-Encp), (T-Decp) and (T-Ite) and the corollary of the substi-
tution lemma from which we obtain the conclusion.

(Level Decryption Secret) Now assume that Γ ` L : T , Γ ` N : Sec and
that Γ] x1 : Sec] x2 : Any] x3 : Pub] x4 : Any ` JP K : X. We need to
show that

Γ ` Jcase L of {~x}N in P K def= if enc-s(dec-s(L,N), N) = L then
JP K{cast(dec-s(L,N))/~x} else 0 : X.

Again this follows by Lemma 5.5.2 and the rules (T-Encs), (T-Decs),
(T-Casts), (T-Casta), (T-Castp), (T-Cast) and (T-Ite), the corol-
lary of the substitution lemma and the induction hypothesis.

In order to prove completeness of the encoding J·K, with respect to well-typed
processes, we need the following lemma which is a somewhat opposite statement
of the substitution lemma.

Lemma 5.5.4
Let P ∈ A and assume that Γ ` M : T and ` Γ] x : T well-formed. If
Γ ` P{M/x} : X then Γ] x : T ` P : X.

Proof
By Lemma 4.3.5 and because no names which do not occur in dom(Γ) are
introduced by M we have that

Γ ` P{M/x} : X implies Γ ` (νx)({M/x} | P) : X. (5.4)

56 Representing the spi-calculus in Appπ

Now the last rule used to deduce (5.4) can only have been (T-ResVar), there-
fore

Γ] x : T ` {M/x} | P : X
Γ ` (νx)(P{M/x}) : X

Again the process {M/x} | P can only be typed by using (T-Par), thus Γ]x :
T ` P : X.

Corollary 5.5.5
Let P ∈ A and assume that Γ ` ~M : ~T and ` Γ] ~x : ~T well-formed. If

Γ ` P{ ~M/~x} : X then Γ] ~x : ~T ` P : X.

Theorem 5.5.6 (Completeness)
Let P ∈ S and let Γ be a type environment such that Γ ` JP K : X. Then
Γ ` P : X.

Proof
This proof is by structural induction in P . Thus as induction basis we consider
the inactive process 0 and since J0K def= 0 the induction basis is fulfilled by (T-
Nil).

Now suppose that P def= a〈 ~M〉.P ′. Then JP K def= (ν~x)({ ~M/~x} | a〈~x〉.JP ′K). There
are two possible ways to type this process, depending on whether Γ ` a : Pub
or Γ ` a : Sec. If Γ ` a : Pub then by the induction hypothesis and by Lemma
5.5.2 we get that Γ ` ~M : ~Pub and Γ ` P ′ : X as ~M and ~x have identical types.
Then by (Level Output Public)

Γ ` a : Pub Γ ` ~M : ~Pub Γ ` P ′ : X
Γ ` a〈 ~M〉.P ′ : X

.

The case where Γ ` a : Sec is proven similarly. The case where P def= a(~x).P ′ is
also similar to the above and is omitted.

Now suppose P def= R | Q. Then JP K def= JRK | JQK and by the induction hypothesis
Γ ` R : X and Γ ` Q : X. By (Level Parallel) we have

Γ ` R : X Γ ` Q : X
Γ ` R | Q : X

.

The cases where P is a restriction, replication or a match are all just as easy as
this case, because the encoding J·K is a homomorphism on these operators.

Next assume P def= case L of {~x}N in P ′ and that Γ ` N : Sec. Then by defini-
tion of the encoding

JP K def= if enc-s(dec-s(L,N), N) = L then JP ′K{cast(dec-s(L,N))/~x} else 0.

By assumption this process is well-typed in Γ. Therefore we also have Γ `
JP ′K{cast(dec-s(L,N))/~x} : X and Γ ` L : T for T ∈ {Pub, Sec}. Then by
Corollary 5.5.5

Γ] x1 : Sec] x2 : Any] x3 : Pub] x4 : Any ` JP ′K : X.

5.5. Preservation of types 57

The induction hypothesis and the (Level Decryption Secret) rule then
allows us to conclude that

Γ ` case L of {~x}N in P ′ : X.

The case where Γ ` N : Pub follows by similar arguments.

Next assume that P def= let (x, y) = M in P ′ and that Γ `M : T . By inspecting
the encoding of P

JP K def= if pair(fst(M), snd(M)) = M then JP ′K{fst(M)/x, snd(M)/y} else 0,

we see that Γ ` JP K′{fst(M)/x, snd(M)/y} : X. By Corollary 5.5.5 we have
Γ] x : T] y : T ` JP K′ : X. By the induction hypothesis and (Level Pair
Splitting) we then get

Γ ` let (x, y) = M in P ′ : X.

Lastly consider the case where P def= case M of 0 : R suc(x) : Q. Now let Γ `
M : T. From the encoding of P ,

JP K def= if M = 0 then JRK else if M = suc(pred(M)) then
JQK{pred(M)/x} else 0,

it is apparent that, by the induction hypothesis and Lemma 5.5.4, we can deduce
that Γ ` R : X and Γ] x : T ` Q : X. Then by (Level Integer Case) we
obtain the result

Γ ` case M of 0 : R suc(x) : Q : X.

Chapter 6

Encoding the Appπ-calculus
in the π-calculus

Here we investigate an encoding of the Appπ-calculus in the π-calculus. Our
encoding is inspired by the encoding of the spi-calculus into the π-calculus pre-
sented in [BPV03]. In this article spi-terms are represented as objects with a
number of predefined methods. The main idea in our encoding of Appπ in π
is to have an encoding of the rewrite system in parallel with the encoded pro-
cess. The encoding of the rewrite system will reduce encoded terms until they
become the encoding of an irreducible term, which are represented as objects
with a number of predefined methods, e.g. a method for retrieving the principal
function symbol. Given a term M we say that we reduce the encoded term until
it becomes irreducible when it becomes the encoding of an irreducible term. Of
course the encoding of an irreducible term does indeed have reductions when
considered as an Appπ-process. We prove that the encoding is sound with re-
spect to operational correspondence.

Since there exists a plethora of variants of the π-calculus, we start by recalling
the syntax and semantics of the variant we will be using as target language.

6.1 The π-calculus

As our encoding from Appπ to the π-calculus requires operators for match,
mismatch and sum, we shall choose a variant of the π-calculus containing these.
Also we need to choose between early or late semantics. Furthermore, we briefly
look at some equivalences for π-calculus. All definitions are quite standard so
we present them without much explanation. Thorough descriptions of the π-
calculus can found in [Mil99, Mil93, Par01].

6.1.1 Syntax of the π-calculus

We first define the names of the π-calculus. Let N be an infinite set of names
and let N be the set of co-names, i.e. N = {a | a ∈ N}. We will let a, b, . . .

59

60 Encoding the Appπ-calculus in the π-calculus

range over N . We now present the syntax of the π-calculus.

Definition 6.1.1 (π-processes)
The set of prefixes of π-processes is generated by

α ::= a(~x)
∣∣ a〈~b〉

∣∣ τ.

The set P of π-processes is the set generated by the following grammar

P ::= 0
∣∣ P | P

∣∣ P + P
∣∣ !P

∣∣ (νa)P
∣∣

[a = b]P
∣∣ [a 6= b]P

∣∣ α.P.

We will also use the abbreviations listed for Appπ when considering π-processes.
E.g. we omit the inactive process in u(~x).0. Furthermore, we assume that all
free and bound names are distinct and that substitutions do not capture names
or variables. As usual this can be achieved by α-conversion.

6.1.2 Semantics of the π-calculus

As noted earlier we want to present a version of the π-calculus which is as
close to Appπ as possible. Consequently, we give an early semantics of the π-
calculus and we also have a (Struct) rule in the transition relation as opposed
to incorporating these axioms in the transition relation. The definition of the
structural congruence relation now follows.

Definition 6.1.2 (Structural congruence on π)
The structural congruence relation on π is the smallest congruence which satis-
fies the following axioms.

P ≡ Q if P ≡α Q (SC-EquivAlpha)
P | Q ≡ Q | P (SC-ParCommute)
P | 0 ≡ P (SC-ParInact)

P | (Q | R) ≡ (P | Q) | R (SC-ParAssoc)
(νa)(P | Q) ≡ P | (νa)Q if a /∈ fn(P) (SC-ResPar)

(νa)0 ≡ 0 (SC-ResInact)
(νa)(νb)P ≡ (νb)(νa)P (SC-ResCommute)

!P ≡ P | !P (SC-Rep)

We can now define the transition relation for π-processes. The set Act is the
usual set of early actions.

Definition 6.1.3 (Transition relation on π)
The transition relation of P is the relation on P × Act × P generated by the

6.2. The Encoding 61

following rules

(Input)

a(~x).P
a〈~b〉−−−→ P{~b/~x}

(Output)

a〈~b〉.P a〈~b〉−−−→ P

(Comm)
a〈~b〉.P | a(~x).Q τ−−−→ P | Q{~b/~x}

if |~b| = |~x|

(Match)
[a = b]P τ−−−→ P

if a = b

(Mismatch)
[a 6= b]P τ−−−→ P

if a 6= b

(Open) P
(ν~b)a〈~c〉−−−−−−→ P ′

(νb′)A
(νb′,~b)a〈~c〉−−−−−−−−→ A′

if b′ 6= a and b′ ∈ ~c

(Res)
P

α−−−→ P ′ b /∈ n(α)

(νb)P α−−−→ (νb)P ′
(Par) P

α−−−→ P ′

P | Q α−−−→ P ′ | Q

(Sum) P
α−−−→ P ′

P +Q
α−−−→ P ′

(Struct)
P ≡ Q

α−−−→ Q′ ≡ P ′

P
α−−−→ P ′

6.1.3 Barbed bisimulation

In this section we define bisimulation for π. We rely on the notion of barbed
bisimulation [MS92].

The observation predicate P ↓a holds if P α−−−→ and subj(α) = a.

Definition 6.1.4 (Strong barbed bisimulation)
A strong barbed bisimulation is a symmetric relation R ⊆ P2 such that if PRQ
then

(i) if P
τ−−−→ P ′ then ∃Q′. Q

τ−−−→ Q′ and P ′RQ′ and

(ii) if P ↓a then Q ↓a.

We write P ∼̇Q if P and Q are related by a strong barbed bisimulation R and
we let ∼ denote the congruence induced by ∼̇. Weak barbed bisimulation and
congruence are defined by modifying Definition 6.1.4 in the usual way.

6.2 The Encoding

The basic idea is to encode processes and place them in parallel with an encoding
of the rewrite system R (see Appendix B). The encoding of the rewrite system

62 Encoding the Appπ-calculus in the π-calculus

will be a process capable of rewriting terms until they become irreducible. So, if
we encode an Appπ-process P we should end up with JP K | JRK. The encoding
of the rewrite system consists of a parallel composition of processes that we will
call term constructors.

We encode only processes which are on substitution normal form, which means
that all names, terms and subterms are factored out into active substitutions.
This will be very helpful as we can consider an active substitution {M/x} as
the term M located at x and the subterms of M are only variables referencing
the actual subterms.

The encoding of an active substitution {M/x} depends on whether M is a name,
a variable or a term with a principal function name. If M is a name, the active
substitution is encoded as a process which will have certain methods that can
be invoked by sending a request on the location name x. Methods for retrieving
the identity of the name, and sending and receiving on the name in question are
required. Since subjects of prefixes are also factored out they can only be used
indirectly; the subject is only a reference to a process holding the actual subject.
A prefix is then encoded as a process that requests its object to be sent. If M is
a term with a principal function name, the active substitution is encoded as a
process that simply sends its arguments to the term constructors, which in turn
reduces the term until it becomes irreducible. If M is a variable y, the active
substitution is encoded as a link x� y that redirects requests. In the literature
a link is also called a forwarder or a wire [MS98, SW01]. For instance links are
used in by Sangiorgi to obtain a characterisation of barbed congruence in the
Lπ-calculus [MS98].

In order to facilitate rewriting we need to be able to create new terms on the
fly. This is the task of the encoded rewrite system. The encoding of the rewrite
system will be responsible for reducing terms by creating new terms from old
ones according to the rewrite rules. The encoding of the rewrite system consists
of a parallel process for each function name; these processes are the term con-
structors mentioned above. To instantiate a term at some location, a location
name and references to the arguments are sent to one of these term constructors
which in turn reduces the term until it becomes irreducible. This may include
calling other term constructors.

The names and variables of the Appπ-calculus will all be the names of the π-
calculus. Furthermore, we assume that we have reserved distinct names for each
function symbol of the signature and for each method name along with the
names > and ⊥ representing boolean values true and false.

We present the encoding in small fragments and explain how each fragment is
supposed to interact with the rest of the encoded process.

6.3 Processes encoded

For simplicity we show the encoding in a monadic form but extending it to
polyadic form is straightforward. We will use a〈νr〉.P as an abbreviation for
(νr)(a〈r〉.P).

We present the simplest part of the encoding first. This consists of the encoding

6.3. Processes encoded 63

of 0 which is just the identity mapping and of composition, restriction and
replication which are homomorphisms.

J0K def= 0

JP | QK def= JP K | JQK

J(νa)P K def= (νa)JP K

J!P K def= !JP K

Names in active substitutions are encoded as objects having methods for re-
trieving its identity, sending and receiving and matching against another term.

J{a/x}K def= !x(c,m, r).
[c = id]r〈a〉+
[c = send]a〈m〉.r
[c = receive]a(y).r〈y〉
[c = match]m〈id,⊥, νs〉.s(b).

([b = a]r〈>〉+ [b 6= a]r〈⊥〉)

As mentioned in the introduction, subjects of prefixes must be used indirectly.
The encoding of a prefixed process x(y).P must relay the task of receiving to the
process located at x. This is done by invoking the receive method of the process
located at x. If the term is a name, it will receive on its identity name and return
the received name. If the term is not a name, the process will deadlock since
only names implement the receive (and send) method.

Jx〈y〉.P K def= x〈send, y, νr〉.r.JP K

Jx(y).P K def= x〈receive,⊥, νr〉.r(y).JP K

The encoding of a match is not difficult, since it only requires us to invoke the
match method which is implemented by all terms. The result of the match is
then used to decide which branch to take.

Jif x = y then P else QK def= x〈match, y, νr〉.r(m).
([m = >]JP K + [m = ⊥]JQK)

Terms in active substitutions are encoded simply as a process which sends its
desired location, say x, and arguments to the appropriate term constructor
process. The term constructor process will then reduce the term until it becomes
irreducible and locate it at x.

J{f(~y)/x}K def= f〈x, ~y〉.

Active substitutions which contains a variable are just an extra indirection and
are encoded as a link.

J{y/x}K def= x . y.

The link x.y is the process !x(c,m, r).y〈c,m, r〉 which simply receives on x and
resends on y any number of times.

64 Encoding the Appπ-calculus in the π-calculus

6.4 The rewrite system encoded

A rewrite system R over a signature Σ = (Ω, α) is encoded as a parallel com-
position of an encoding of each function symbol, that is

JRK def=
∏
f∈Ω

JfK.

Here the processes JfK are the aforementioned term constructors. The encoding
of function symbols is given by

JfK def= !f(x, ~y).(νs, e)

 ∏
r∈Rf

JrKx,~y,s,e | s | e.e︸ ︷︷ ︸
|Rf |

.Jf(~y)Kx


where Rf is the set of rules in the rewrite system with f as principal function
symbol on the left hand side and |~y| = α(f). The encoding of irreducible terms
is

Jf(~y)Kx
def= !x(c,m, r).

[c = id].r〈f〉+
[c = subterms].r〈~y〉+
[c = match]m〈id,⊥, νt〉.t(h).

[h 6= f]r〈⊥〉+
[h = f]m〈subterms,⊥, t〉.t(~z).

(νs, e)

(|~y|∏
i=1

(
yi〈match, zi, νp〉.p(b).([b = >].s+ [b = ⊥].e)

)

| e.r〈⊥〉 | s.s︸ ︷︷ ︸
|~y|

.r〈>〉

)
.

For proof technical reasons only we need to extend the encoding of irreducible
terms to arbitrary terms. We do this by defining

Jf(~z,N, ~M)Kx
def= (νp)(Jf(~z, p, ~M)Kx | JNKp)

JaKx
def= J{a/x}K,

where ~z and ~M are possibly empty sequences of names and terms respectively
and N is not a variable.

6.5 The rules encoded

The encoding of the rules—although not very difficult to do by hand—are by
far the most complicated and we break it into several parts.

Given a rule (f(g(z1, z2), z3) −−−→ h(z1, z2), z1, z2z3) we want to be able to match
a term such as f(g(a, h(b)), h(b)) against the left hand side of the rule and—
if there is a match—instantiate the right hand side of the rule. The left hand

6.5. The rules encoded 65

side of the rule tells us were the sub-terms are located in the parse tree and
the sequence z1, z2z3 tells us which sub-terms are required to be equal. In this
example there is a match since the two occurrences of h(b) appear in place of
the variables z2 and z3 and the term a does not need to match any other sub-
term. In our encoding we must obtain references to the two occurrences of the
sub-terms h(b) in order to match them.

We identify the following three steps which must be carried out by the encoding
of the rewrite rules:

(i) Fetch and bind appropriate sub-terms,

(ii) check for equality on terms and

(iii) instantiate new term.

If (i) and (ii) a failure should be indicated by synchronizing on a dedicated
channel.

We describe each step separately starting from the bottom of the list.

6.5.1 Instantiating new terms

Instantiating new terms from existing ones is easy in our encoding. Suppose we
have the encoding of terms M1,M2 and M3 located at y1, y2 and y3 and we
want to instantiate the term f(M1,M2,M3) then we simply send the references
to the existing sub-terms on f , that is f〈x, y1, y2, y3〉 where x is the location of
the new term.

If the known terms are nested deeper in the new term as in f(g(M1,M2),M3)
we must instantiate the sub-term g(M1,M2) first and locate it at some new
name. We get (νp)(g〈p, y1, y2〉 | f〈x, p, y3〉).
The general encoding for instantiating terms is easy to write out, since it can
be defined by the composition of two previously defined encodings.

IJMKx
def= J{|{M/x}|}K

where x is the location of the new term and {| · |} is the substitution normal form
encoding form Section 3.4 on page 21. Note that we omit the parameter in the
rest of this chapter.

6.5.2 Checking for equality

Given a sequence ζ of sequences of variables, it is not too difficult to encode
a process which matches each element in ξ for each ξ ∈ ζ. Take for example
the sequence xy, zuv where x and y must be matched and z, u and v likewise.
We add two extra parameters to the encoding, namely a process which must be
started if the all matches are successful and a name e which should be used to
signal failure.

66 Encoding the Appπ-calculus in the π-calculus

A general encoding looks like this

EJP Ke
def= P

EJz, ζ, P Ke
def= EJζ, P Ke

EJz1z2ξ, ζ, P Ke
def= z1〈match, z2, νt〉.t(b).

[b = ⊥]e+
[b = >]EJz2ξ, ζ, P Ke

where the zi’s are variable and ζ is a possibly empty sequence of sequences of
variables and ξ is possibly empty sequence of variables.

6.5.3 Fetch and bind

Given a location of an encoded term we wish to be able to determine whether
the term is of a certain syntactic form and bind sub-terms to certain variables.
If for example want to match the term f(g(M1,M2),M3) against the left hand
side f(g(y1, y2), y3) of some rule, we want to check if the term has the syntactic
form and bind the locations of the sub-terms M1,M2 and M3 to variables y1, y2
and y3. We will write x � L to mean “check whether the term at location x has
the syntactic form given by L and bind actual sub-terms to the corresponding
variables in L.”

The encoding is given by

FJP Ke
def= P

FJx � f(~z), ψ, P Ke
def= x〈id,⊥, νs〉.s(h).

[h 6= f]e+
[h = f]x〈subterms,⊥, s〉.s(~z).
FJψ, P Ke

FJz1 � z2, ψ, P Ke
def= FJψ, P Ke{z1/z2}

FJx � f(M1, . . . ,Mm, ~z), ψ, P Ke
def= FJx � f(M1, . . . ,Mm−1, p, ~z), p �Mm, ψ, P Ke

where z1 and z2 are variables, ~z is a possibly empty sequence of variables andMm

is a term but not a variable and M1, . . . ,Mm−1 are arbitrary terms (including
variables). The new term will be located at x. The name e is for signalling
failure.

6.5.4 Assembling the encoding

We can now compose the three components describe above into an encoding of
the rules of rewrite system.

Let (f(M1, . . . ,Mn) −−−→ R, ζ) be a left-linear rule where f(M1, . . . ,Mn) then
the encoding is given by

J(f(M1, . . . ,Mn) −−−→ R, ζ)Kx,~y,s,e
def= FJy1 �M1, . . . , yn �Mn, EJζ, s.IJRKxKeKe.

6.5. The rules encoded 67

Relating this to the encoding of the function symbols we see that the match on
the principal function symbol is done by sending on the name corresponding to
the function symbol and thus it is not necessary to check the that the principal
function symbol is correct; this has already been done implicitly.

6.5.5 Examples of encoded rules

Consider the rule dec(enc(x, y), y) −−−→ x which we convert to

(dec(enc(z1, z2), z3) −−−→ z1, (z1, z2z3)).

We then have

J(dec(enc(z1, z2), z3) −−−→ z1, (z1, z2z3))Kx,y1,y2,s,e

def= FJy1 � enc(z1, z2), y2 � z3, EJz1, z2z3, s.IJz1KxKeKe

= y1〈id,⊥, νt〉.t(h).
[h 6= enc]e+
[h = enc]y1〈subterms,⊥, t〉.t(z1, z2).
FJy2 � z3, EJz1, z2z3, s.IJz1KxKeKe

= y1〈id,⊥, νt〉.t(h).
[h 6= enc]e+
[h = enc]y1〈subterms,⊥, t〉.t(z1, z2).
FJEJz1, z2y2, s.IJz1KxKeKe

= y1〈id,⊥, νt〉.t(h).
[h 6= enc]e+
[h = enc]y1〈subterms,⊥, t〉.t(z1, z2).
EJz1, z2y2, s.IJz1KxKe

= y1〈id,⊥, νt〉.t(h).
[h 6= enc]e+
[h = enc]y1〈subterms,⊥, t〉.t(z1, z2).
EJz2y2, s.IJz1KxKe

= y1〈id,⊥, νt〉.t(h).
[h 6= enc]e+
[h = enc]y1〈subterms,⊥, t〉.t(z1, z2).
z2〈match, y2, νt〉.t(b)

[b = ⊥]e+
[b = >]EJs.IJz1KxKe

= y1〈id,⊥, νt〉.t(h).
[h 6= enc]e+
[h = enc]y1〈subterms,⊥, t〉.t(z1, z2).
z2〈match, y2, νt〉.t(b)

[b = ⊥]e+
[b = >]s.x . z1

68 Encoding the Appπ-calculus in the π-calculus

6.6 A rewrite system

In the previous section we gave an encoding of Appπ in the π-calculus. We
assumed that the set of equations could be transformed to a terminating and
confluent rewrite system such that equality is decidable, see Appendix B for
background on rewrite systems. In this section we define a rewrite system from
the set of equations Φ used for instantiating spi in Appπ. These equations are
defined in Section 5.1. The rewrite system is created by application of the Knuth-
Bendix procedure. We will also prove that this rewrite system is terminating and
confluent by applying the Knuth-Bendix test.

6.6.1 Definition of RS

As mentioned in Appendix B it is often simple to create a rewrite system from
a set of equations. This is indeed the case for the set of equations Φ. The well
founded ordering > is defined on terms such that L > R if |L| > |R| where |L|
is the length of the string L. From this we get the following rewrite system.

Definition 6.6.1
The rewrite system RS is the following set of rules.

pred(suc(x)) −−−→ x

dec-pα(enc-p(x, k), k) −−−→ x

dec-s(enc-s(x, k), k) −−−→ x

fst(pair(x, y)) −−−→ x

snd(pair(x, y)) −−−→ y

cast-s(fmt(x, y, z, n)) −−−→ x

cast-a(fmt(x, y, z, n)) −−−→ y

cast-p(fmt(x, y, z, n)) −−−→ z

castα(fmt(x, y, z, n)) −−−→ n

Lemma 6.6.2
The rewrite system RS is terminating.

Proof
Since each rule in RS strictly reduces the length of the string of a term, by
Theorem B.3.3, we have that RS is terminating.

Next we will prove that RS is confluent. We do this by applying the Knuth-
Bendix test.

Lemma 6.6.3
The rewrite system RS is confluent.

Proof
Critical pairs may only occur between rules L −−−→ R and L′ −−−→ R′ where the
principal function of L′ occurs in L. Therefore we only have trivial critical pairs.

6.7. Soundness 69

Then by Theorem B.3.7 we get that RS is locally confluent and by Theorem
B.3.4 RS is also confluent.

6.7 Soundness

This section contains the lemmas, propositions and theorems needed to prove
operational soundness of the encoding of Appπ in the π-calculus. Most of them
regards the encoding of the rewrite system. The first lemma shows that matching
works as expected on syntactically equal terms which are irreducible.

Lemma 6.7.1
Let R be a rewrite system over a signature Σ and letX be the set of Appπ-names
and let N ∈ TΣ(X) be an irreducible term. Then

x〈match, x, r〉.P | JNKx
τ−−−→∗ ≈ P | r〈>〉 | JNKx

and

x〈match, y, r〉.P | JNKx | JNKy
τ−−−→∗ ≈ P | r〈>〉 | JNKx | JNKy.

Proof
The proof is by induction in the height of the parse tree of the term N . The
induction basis is the case when N = a and the proof is a simple trace of the
“execution” of the process:

x〈match, x, r〉.P | JNKx
τ−−−→2 P | x〈id,⊥, νs〉.s(b).([b = a]r〈>〉+ [b 6= a]r〈⊥〉) | JNKx
τ−−−→2 P | (νs)(s(b).([b = a]r〈>〉+ [b 6= a]r〈⊥〉) | s〈a〉) | JNKx
τ−−−→2 P | (νs)r〈>〉 | JNKx

≈ P | r〈>〉 | JNKx

Suppose N = f(M1, . . . ,Mn) and observe that

Jf(M1, . . . ,Mn)Kx ≡ (νy1, . . . , yn)(Jf(y1, . . . , yn)Kx | JM1Ky1 | · · · | JMnKyn).

Then we have

x〈match, x, r〉.P | JNKx

τ−−−→2 P | (νy1, . . . , yn)

(
x〈id,⊥, νt〉.t(h).

[h 6= f]r〈⊥〉+
[h = f]x〈subterms,⊥, t〉.t(~z).

(νs, e)

(|~y|∏
i=1

(
yi〈match, zi, νp〉.p(b).([b = >].s+ [b = ⊥].e)

)

| e.r〈⊥〉 | s.s︸ ︷︷ ︸
|~y|

.r〈>〉

)
|

Jf(y1, . . . , yn)Kx | JM1Ky1 | · · · | JMnKyn

)

70 Encoding the Appπ-calculus in the π-calculus

τ−−−→4 P | (νy1, . . . , yn, t)

(
x〈subterms,⊥, t〉.t(~z).

(νs, e)

(|~y|∏
i=1

(
yi〈match, zi, νp〉.p(b).([b = >].s+ [b = ⊥].e)

)

| e.r〈⊥〉 | s.s︸ ︷︷ ︸
|~y|

.r〈>〉

)
|

Jf(y1, . . . , yn)Kx | JM1Ky1 | · · · | JMnKyn

)

τ−−−→3 P | (νy1, . . . , yn, t)

(
(νs, e)

(|~y|∏
i=1

(
yi〈match, yi, νp〉.p(b).([b = >].s+

[b = ⊥].e)
)
| e.r〈⊥〉 | s.s︸ ︷︷ ︸

|~y|

.r〈>〉

)
|

Jf(y1, . . . , yn)Kx | JM1Ky1 | · · · | JMnKyn

)
τ−−−→∗ P | (νy1, . . . , yn, t)((νs, e)

(
e.r〈⊥〉 | r〈>〉) | Jf(y1, . . . , yn)Kx |

JM1Ky1 | · · · | JMnKyn

)
≈b P | r〈>〉) | JNKx

The next lemma shows that match works as expected on distinct irreducible
terms.

Lemma 6.7.2
Let R be a rewrite system over a signature Σ and let X be the set of Appπ-
calculus names and N,N ′ ∈ TΣ(X) be irreducible terms such that N 6= N ′.
Then

x〈match, y, r〉.P | JNKx | JN ′Ky
τ−−−→∗ ≈ P | r〈⊥〉 | JNKx | JN ′Ky

Proof
The proof is similar (in structure and length) to the proof of the previous lemma
and we omit the details. There are a few more cases to check than in the proof
of the previous lemma. The induction basis includes checking that the lemma
holds

• if N and N ′ are distinct names,

• if one of N and N ′ is a name and the other is a function application and

• if both N and N ′ are function applications but with distinct principal
function names.

6.7. Soundness 71

The induction step then consists of checking that the lemma holds if N and N ′

are both function applications with the same principal function names.

The next two lemmas states that the encoding E works as intended.

Lemma 6.7.3
Let R be a rewrite system over a signature Σ and let X be the set of Appπ-
names. Let η be a function from the set of Appπ-variables to the set of irreducible
terms in TΣ(X). Let ξ be a finite, possibly empty, sequence of not necessarily
distinct variables, let ζ be a possibly empty sequence of sequences of variables
and let P be a π-calculus process. If there exist z, z′ ∈ ξ such that η(z) 6= η(z′),
then

EJξ, ζ, P Ke |
∏
x∈ξ

Jη(x)Kx
τ−−−→∗ ≈b e |

∏
x∈ξ

Jη(x)Kx, (6.1)

otherwise

EJξ, ζ, P Ke |
∏
x∈ξ

Jη(x)Kx
τ−−−→∗ ≈b EJζ, P Ke |

∏
x∈ξ

Jη(x)Kx. (6.2)

Proof
We prove (6.2) by induction in the length of ξ. Initially, we note that if ξ has
length 0 or 1 the result holds trivially, since in this case EJξ, ζ, P K = Jζ, P K.
Suppose that (6.2) holds for sequences ξ of length at least two and let ξ = z1z2ξ

′.
By assumption we have that η(z1) = η(z2), so by applying Lemma 6.7.1 and
the induction hypothesis we can obtain

EJz1z2ξ′, ζ, P Ke |
∏
x∈ξ

Jη(x)Kx

= z1〈match, z2, νt〉.t(b).
(
[b = ⊥]e+ [b = >]EJz2ξ′, ζ, P Ke

)
|
∏
x∈ξ′

Jη(x)Kx

τ−−−→∗ ≈b EJz2ξ′, ζ, P Ke |
∏
x∈ξ

Jη(x)Kx

τ−−−→∗ ≈b EJζ, P Ke |
∏
x∈ξ

Jη(x)Kx.

For the proof of (6.1), we define δ = min{i | η(ξi) 6= η(ξi+1)}. The proof is
by induction in δ, so first assume that δ = 1. Then it is not difficult to use
Lemma 6.7.2 to establish the result. The induction step is equally straightfor-
ward

Lemma 6.7.4
Let R be a rewrite system over a signature Σ and let X be the set of Appπ-
names. Let η be a function from the set of Appπ-variables to the set of irreducible
terms in TΣ(X). Let ζ be a finite, possibly empty, sequence of sequences of
variables and let S be the set of variables occurring in the elements of ζ. Let P
be a π-calculus process. If there exist ξ ∈ ζ and z, z′ ∈ ξ such that η(z) 6= η(z′)
then

EJζ, P Ke |
∏
x∈S

Jη(x)Kx
τ−−−→∗ ≈ e |

∏
x∈S

Jη(x)Kx, (6.3)

72 Encoding the Appπ-calculus in the π-calculus

otherwise

EJζ, P Ke |
∏
x∈S

Jη(x)Kx
τ−−−→∗ ≈ P |

∏
x∈S

Jη(x)Kx. (6.4)

Proof
Yet another proof by induction; this time by induction in the length of ζ. As
in the proof of the previous lemma, each of the cases are proven separately. We
omit the proof.

The next lemma states that fetch and bind works correctly on terms that are
substitution instances of one another. We prove that when matching a rule with
a substitution instance of the same rule, F successfully executes resulting in a
process where each variable in the rule is bound to the correct sub-term of its
substitution instance.

Lemma 6.7.5
Let N be a term with variables z1, . . . , zk. Let σ = { ~N/~z} be a substitution,

where | ~N | = k = |~z|, and the terms Ni are irreducible, 1 ≤ i ≤ k, and σ(N) is
irreducible. Then

(ν~y)
(
JN{~y/~z}Kx |

k∏
i=1

JNiKyi
| FJx �N,ψ, P K

)
−−−→∗ (ν~y)

(
JN{~y/~z}Kx |

n∏
i=1

JNiKyi | FJψ, P K{~y/~z}
)
.

Proof
The proof is carried out by induction in N .

Induction basis: Suppose N = f(~z), |~z| = k. Then expanding the encoding
and reducing seven times immediately yields.

(ν~y)
(
Jf(~y)Kx |

k∏
i=1

JNiKyi | FJx � f(~z), ψ, P K
)

−−−→7 (ν~y)
(
Jf(~y)Kx |

n∏
i=1

JNiKyi
| FJψ, P K{~y/~z}

)
,

where |~y| = k.

Induction hypothesis: Given a term f(~t), where |~t| = n assume the lemma
holds for all sub-terms ti, 1 ≤ i ≤ n.

Induction step: SupposeN = f(~t), where v(f(~t)) = {~z} and |~t| = n, and |~z| =
k. We have f(~t){ ~N/~z} = f(M1, . . . ,Mn). Note that since f(~t){ ~N/~z} =
f(t1{ ~N/~z}, . . . , tn{ ~N/~z}), we have

Jf(t1, . . . , tn){ ~N/~z}Kx ≡ (ν~v)
(n∏

i=1

Jti{ ~N/~z}Kvi
| Jf(~v)Kx

)
.

6.7. Soundness 73

We now get:

(ν~v, ~y)
(n∏

i=1

Jti{~y/~z}Kvi | Jf(~v)Kx

)
|

k∏
i=1

JNiKyi | FJx � f(~t), ψ, P K
)

= (ν~v, ~y)
(n∏

i=1

Jti{~y/~z}Kvi
| Jf(~v)Kx

)
|

k∏
i=1

JNiKyi
| FJx � f(~p), ~p � ~t, ψ, P K

)
−−−→∗ (ν~v, ~y)

(n∏
i=1

Jti{~y/~z}Kvi
| Jf(~v)Kx

)
|

k∏
i=1

JNiKyi
| FJ~p � ~t, ψ, P K{~v/~p}

)
= (ν~v, ~y)

(n∏
i=1

Jti{~y/~z}Kvi | Jf(~v)Kx

)
|

n∏
i=1

JNiKyi | FJ~v � ~t, ψ, P K
)
.

Since the induction hypothesis applies to all ti repeated application of the
induction hypothesis yields

−−−→∗ (ν~v, ~y)
(n∏

i=1

Jti{~y/~z}Kvi | Jf(~v)Kx

)
| |

n∏
i=1

JNiKyi | FJψ, P K{~y/~z}
)
.

This concludes the proof of the lemma.

We need a notation for the location of a subterm which occurs in the encoding
of an irreducible term. This is the purpose of the following section.

Definition 6.7.6 (References)
Let Jf(M1, . . . ,Mn)Kx be an encoded irreducible term. Then inductively define
the variable which refers to the term at position ω as follows.

• ref(J{a/x}K|ω) = x if ω = ε

• ref(Jf(M1, . . . ,Mn)Kx|ω) =

{
x if ω = ε

ref(JMiKyi
|ω′) if ω = iω′

If ref(JMKx|ω) = y we say that the sub-term of JMKx at position ω is referenced
by y.

Using references Lemma 6.7.5 has the following corollary.

Corollary 6.7.7
Let N be a term with v(N) = {z1, . . . , zk}, distinct, occurring at positions
ω1, . . . , ωk. Let X be the set of Appπ-names and let N1, . . . , Nk ∈ TΣ(X) be irre-

ducible terms such thatN{ ~N/~z} is irreducible. Assume that ref
(
JN{ ~N/~z}Kx|ωi

)
=

yi for all 1 ≤ i ≤ k. Then

(ν~y)
(
JN{ ~N/~z}Kx | FJx �N,ψ, P K

)
−−−→∗≈ (ν~y)

(
JN{ ~N/~z}Kx | FJψ, P K{~y/~z}

)
,

where

(ν~y)
(
JN{ ~N/~z}Kx | FJx �N,ψ, P K

)
≡ JN{ ~N/~z}Kx | FJx �N,ψ, P K.

74 Encoding the Appπ-calculus in the π-calculus

Proof
We prove this corollary by showing that

JN{ ~N/~z}Kx ≡ (ν~y)
(
JN{~y/~z}Kx |

k∏
i=1

JNiKyi

)
.

The corollary then follows from Lemma 6.7.5. This is shown by induction in the
structure of N .

Induction basis: Suppose N = f(z1, . . . , zk). Since ref
(
Jf(~N)Kx|ωi

)
= yi for

ωi ∈ {1, . . . , k}, we get

(ν~y)
(
Jf(~z){ ~N/~z}Kx

)
= (ν~y)

(
Jf(~y)Kx |

k∏
i=1

JNiKyi

)
.

Induction hypothesis: Let f(t1, . . . , tn) and assume the corollary holds for
all ti, 1 ≤ i ≤ n.

Induction step: Suppose N = f(t1, . . . , tn). By the definition of the rewrite
rules we know that for some sets Zi, v(N) = ∪k

i=1Zi and Zi ∩ Zj = ∅,
when i 6= j. Let ~zi denote the vector of variables in Zi and let ~Ni denote
the set of terms which is being substituted for ~zi. Similarly ~yi denotes
the vector of variables referencing J ~NiK Suppose furthermore that the n
arguments of f(t1, . . . , tn) are factored out on the variables k1, . . . , kn, i.e.
ref
(
Jf(~t)Kx|ω′i

)
= ki, for ω′i ∈ {1, . . . , n}. We then have

(ν~y)
(
Jf(~t){ ~N/~z}Kx

)
= (ν~y,~k)

(
Jf(~k)Kx |

n∏
i=1

Jti{ ~N/~z}Kki

)
≡ (ν~k)

(
Jf(~k)Kx |

n∏
i=1

(ν~yi)
(
Jti{~yi/~zi}Kki

|
|Zi|∏
j=1

J ~NijKyij
)
)

≡ (ν~y1, . . . , ~yn)
(
Jf(~t){~y1, . . . , ~yn/~z1, . . . , ~zn}Kx |

n∏
i=1

|Zi|∏
j=1

J ~NijKyji

)
,

where the second equivalence follows from the induction hypothesis.

The next lemma also concerns the F encoding. It applies when a term does not
have the same syntactic form as the left hand side of the rule it is being matched
against.

Lemma 6.7.8
Let R be a rewrite system and let (f(~t) −−−→ R, ζ) = r′ ∈ R and f(~M) be a
term. Assume that there exists a smallest ω with respect to the lexicographic
ordering such that f(~t)|ω = g(~s) and f(~M)|ω = h(~M ′) and g 6= h. Then

(ν~y)
(n∏

i=1

JMiKyi
| FJy1 � t1, . . . , yn � tn, P Ke

)
τ−−−→

∗
e | (ν~y)

(n∏
i=1

JMiKyi

)
.

6.7. Soundness 75

Proof
The proof is by induction in the height of the parse tree of f(~t). Assume that the
height of f(~t) is two and that ω = j. Assume that the terms ti, i = 1, . . . , j − 1,
have the same principal function symbol as Mi. Then we have

(ν~y)
(n∏

i=1

JMiKyi | FJy1 � t1, . . . , yn � tn, P Ke

)
(6.5)

τ−−−→
∗

(ν~y)
(n∏

i=1

JMiKyi | FJyj � tj , . . . , yn � tn, P Ke{·/·}
)
, (6.6)

where {·/·} denotes some substitution of variables. However, as none of the
variables in the substitution can occur in tj we can ignore this substitution. We
use the definition of the encoding F to get that the process in (6.6) reduces in
three steps to

(ν~y)
(n∏

i=1

JMiKyi

)
| [h 6= g]e+ [h = g]Q τ−−−→ (ν~y)

(n∏
i=1

JMiKyi

)
| e,

where Q is defined as in the F encoding.

For the inductive step assume that ω = i1i2 · · · il. and consider again the process
in (6.5). We can apply lemma 6.7.5 and the process reduces to

(ν~y)
(n∏

i=1

JMiKyi
| FJy2 � t2, . . . , yn � tn, P Ke{·/·}

)
,

where {·/·} again is some unimportant substitution. We continue in this way
until we reach

(ν~y)
(n∏

i=1

JMiKyi | FJyi1 � ti1 , . . . , yn � tn, P Ke{·/·}
)
, (6.7)

Now let ti1 = ĝ(~t′) and Mi1 = ĝ(~N). Furthermore, let

(ν~y)
(n∏

i=1

JMiKyi

)
= (ν~y, ~z)

(∏
j∈{1,...,n}\i1

JMjKyj | Jĝ(~z)Kyi1
|

m∏
j=1

JNjKzj

)
. (6.8)

Then (6.7) reduces to

(6.8) | FJz1 � t′1, . . . , zm � t′m, yi1+1 � ti1+1, . . . yn � tn, P Ke{·/·},

where the scope of the new variables is all of the process. We now apply Corollary
6.7.7 i2 − 1 times and we get

(6.8) | FJzi2 � t′i2 , . . . , zm � t′m, yi1+1 � ti1+1, . . . yn � tn, P Ke{·/·},

where again the scope of ~z is all of the process. Applying the induction hypothesis
then yields

τ−−−→
∗

(6.8) | e

76 Encoding the Appπ-calculus in the π-calculus

which completes the proof.

The next lemma states that if a term is irreducible, then the encoding of the
term in parallel with the encoding of the rewrite system reduces to the encoding
of irreducible terms. The proof uses that, when checking if a term M can be
reduced by a rule (L −−−→ R, ζ), then it suffices to check

• if M and L have the same syntactical form, and

• if for all sequences ξ ∈ ζ, where ξ = x1 · · ·xn and ω1, . . . , ωn are the
positions of these variables in L, we have M |ω1 = · · · = M |ωn

.

Lemma 6.7.9
Let f(M1, . . . ,Mn) be an Appπ-term which is irreducible. Then

J{|{f(~M)/x}|}K | JRK τ−−−→
∗
≈ Jf(~M)Kx | JRK.

Proof
The proof is by induction in the height n of the parse tree of f(~M). We will
denote the height of the parse tree by Υ(f(~M)). As induction basis we consider
the following case.

f(~M) = f(): Because f() is irreducible and is a constant we get that Rf = ∅.
Therefore the encoding gives us

J{f()/x}K |
∏

g∈Ω\{f}

JgK | !f(y).(νs)(s | Jf()Ky)

τ−−−→
∗
≈ Jf()Kx | JRK.

The induction hypothesis is that the lemma holds for all terms f(~M ′), where
Υ(f(~M ′)) < n.

Now assume that

J{|{f(~M)/x}|}K = (ν~y)(
n∏

i=1

J{|{Mi/yi}|}K | J{f(~y)/x}K).

Then by definition of the encoding we get

J{|{f(~M)/x}|}K | JRK τ−−−→ (ν~y)(JRK |
n∏

i=1

J{|{Mi/yi}|}K | (νs, e)(
∏

r∈Rf

JrKx,~y,s,e | s | e. · · · .e.Jf(~y)Kx)).

We can use the induction hypothesis on
∏n

i=1J{|{Mi/yi}|}K | JRK, we get

J{f(~M)/x}K | JRK τ−−−→
∗
≈ (ν~y)(JRK |

n∏
i=1

JMiKyi | (νs, e)(
∏

r∈Rf

JrKx,~y,s,e | s | e. · · · .e.Jf(~y)Kx)). (6.9)

6.7. Soundness 77

Consider a rule r = (L −−−→ R, ζ) ∈ Rf . Now there are two possibilities. If L
and f(~M) have different syntactical forms, then we apply Lemma 6.7.8 and we
can then infer a reduction on e. If the syntactical forms are identical we apply
Corollary 6.7.7 k times.

n∏
i=1

JMiKyi | JL −−−→ R, ζKx,~y,s,e
τ−−−→

∗
≈

n∏
i=1

JMiKyi |

EJζ, s.IJRKxKe{ref(Jf(~M)Kx|ω1)/z1} · · · {ref(Jf(~M)Kx|ωk
)/zk},

where ~z are the k variables in L, occurring at positions ω1, . . . , ωk.We abbreviate
this substitution as {ref(Jf(~M)Kx|~ω)/~z}.
We know that there exists zi, zj ∈ ξ, where ξ ∈ ζ, such that for the terms which
are referenced by ref(Jf(~M)Kx|ωi

) and ref(Jf(~M)Kx|ωj
), say N1 and N2, we have

N1 6= N2. Therefore we can apply Lemma 6.7.4 and infer a e−−−→
∗

transition.

From this we see that for each rule r ∈ R we get a reduction on e. Therefore
(6.9) reduces to something which is weakly barbed congruent to

(νy)(Jf(~y)Kx |
n∏

i=1

JMiKyi | JRK).

Next we look at how the encoding of a term behaves when the term can be
reduced.

Lemma 6.7.10
Let R be a rewrite system and let (L −−−→ R, ζ) ∈ R. Furthermore, let σ be a

substitution and f(~M) a term where ~M are irreducible such that σ(L) = f(~M).
Furthermore, assume that for all ξ ∈ ζ, and for all pairs of variables x1, x2 ∈ ξ
we have σ(x1) = σ(x2). Then

(ν~y, ~u)

(
n∏

i=1

JMiKyi | J{f(~y)/x}K

)
| JRK

τ−−−→
∗
≈ (ν~y, ~u)

(n∏
i=1

JMiKyi | JRK | IJRKx{ref(Jf(~M)Kx|~ω)/~z}
)
, (6.10)

where v(L) = ~z, L|ωi
= zi, i = 1, . . . , k., and ~u = ref(Jf(~M)Kx|~ω)

Proof
We simply use the definition of the encoding of active substitutions and the
rewrite system to infer that

(ν~y, ~u)(
n∏

i=1

JMiKyi | J{f(~y)/x}K) | JRK τ−−−→
∗

(ν~y, ~u)(
n∏

i=1

JMiKyi | JRK |

(νs, e)(
∏

r∈Rf

JrKx,~y,s,e | s | e. · · · .e.Jf(~y)Kx)) (6.11)

78 Encoding the Appπ-calculus in the π-calculus

Now let L = f(~t). Obviously (L −−−→ R, ζ) = r′ ∈ Rf and we consider its
encoding

FJy1 � t1, . . . , yn � tn, EJζ, s.IJRKxKeKe.

From this encoding and Corollary 6.7.7 we get that the process in (6.11) reduces
to

(ν~y, ~u)(
n∏

i=1

JMiKyi | JRK | (νs, e)(
∏

r∈Rf\{r′}

JrKx,~y,s,e | s | e. · · · .e.Jf(~y)Kx |

EJζ, s.IJRKxKe{ref(Jf(~M)Kx|~ω)/~z}))

Now if x1, x2 ∈ ξ, where ξ ∈ ζ and L|ωx1
= x1 and L|ωx2

= x2, then the
two terms referenced by ref(Jf(~M)Kx|ωx1

) and ref(Jf(~M)Kx|ωx2
) are equal as

σ(x1) = σ(x2). Therefore by Lemma 6.7.4 the process again reduces to

(ν~y, ~u)(
n∏

i=1

JMiKyi
| JRK | (νs, e)(

∏
r∈Rf\{r′}

JrKx,~y,s,e | s | e. · · · .e.Jf(~y)Kx |

s.IJRKx{ref(Jf(~M)Kx|~ω)/~z})) τ−−−→

(ν~y, ~u)(
n∏

i=1

JMiKyi | JRK | (νs, e)(
∏

r∈Rf\{r′}

JrKx,~y,s,e | e. · · · .e.Jf(~y)Kx |

IJRKx{ref(Jf(~M)Kx|~ω)/~z})) (6.12)

Now we only need to show that
n∏

i=1

JMiKyi | (νs, e)(
∏

r∈Rf\{r′}

JrKx,~y,s,e | e. · · · .e︸ ︷︷ ︸
|Rf |

.Jf(~y)Kx) τ−−−→
∗
≈

n∏
i=1

JMiKyi .

This follows as for each rule r ∈ R \ {r′} we have that either the syntactic
forms of f(~M) and the left hand side of r are different, in which case we apply
Lemma 6.7.8 and we get a reduction on e, or the syntactic forms are identical.
Also here we have two subcases. Either checking for equality fails. The proof of
this is identical to that given in the proof of Lemma 6.7.9, and also here we get
a reduction on e. Otherwise we repeat the argument from this proof and we see
that the process reduces to

n∏
i=1

JMiKyi
| (νs, e)(s.IJRKx{·/·}) ≈

n∏
i=1

JMiKyi
.

Therefore after reducing all the rules in R \ {r′} we have that the encoding of
irreducible terms Jf(~y)Kx is at least prefixed by one e. Completing the picture
we get

(6.12) τ−−−→
∗
≈ (ν~y, ~u)(

n∏
i=1

JMiKyi | JRK | (νe)(e. · · · .e.Jf(~y)Kx) |

IJRKx{ref(Jf(~M)Kx|~ω)/~z})

≈ (ν~y, ~u)(
n∏

i=1

JMiKyi | JRK | IJRKx{ref(Jf(~M)Kx|~ω)/~z})

6.7. Soundness 79

As a consequence of Lemma 6.7.10 we have the following lemma.

Lemma 6.7.11
LetX be the set of Appπ-names and let f(~M) ∈ TΣ(X), where ~M are irreducible

and | ~M | = n. Then if f(~M) −−−→R N , by applying the rule (L −−−→R R, ζ) ∈ R,
and N is irreducible, it holds that

J{|{f(~M)/x}|}K | JRK τ−−−→
∗
≈ JNKx | JRK.

If N is not irreducible, then

J{|{f(~M)/x}|}K | JRK τ−−−→
∗
≈ K and J{|{N/x}|}K | JRK τ−−−→

∗
≈ K,

where K is

(ν~y, ~u)(
n∏

i=1

JMiKyi
| JRK | IJRKx{~u/~z}),

where ~u = ref(Jf(~M)Kx|~ω) and v(L) = ~z.

Proof
Note that

A
def= J{|{f(~M)/x}|}K | JRK =

n∏
i=1

J{|{Mi/yi}|}K | J{f(~y)/x}K | JRK.

By Lemma 6.7.9 the right-hand process reduces to something which is barbed
congruent to

B
def= (ν~y)(

n∏
i=1

JMiKyi | J{f(~y)/x}K) | JRK.

By Lemma 6.7.10 this process again reduces to a process which is barbed con-
gruent to

C
def= (ν~y, ~u)(

n∏
i=1

JMiKyi
| JRK | IJRKx{ref(Jf(~M)Kx|~ω)/~z}), (6.13)

where ~u = ref(Jf(~M)Kx|~ω). Now since for some A′ and B′ we have that A τ−−−→
∗

A′ ≈ B and B
τ−−−→

∗
B′ ≈ C, we conclude that there must exist some A′′ such

that A′ τ−−−→
∗
A′′ and A′′ ≈ C, hence A τ−−−→

∗
≈ C.

Since ~M are irreducible there must exist some rule (L −−−→ R, ζ) ∈ R such that
σ(L) = f(~M). This implies that N = σ(R).

Suppose v(L) = {z1, . . . , zk} at positions ω1, . . . , ωk. We then have:

σ(z1) = f(~M)|ω1 , . . . , σ(zk) = f(~M)|ωk
.

Assume that v(R) = {zm1 , . . . , zml
}, with multiplicities, where {m1, . . . ,ml} ⊆

{1, . . . , k}. Then σ(R) = R{f(~M)|ωm1
, . . . , f(~M)|ωml

/zm1 , . . . , zml
}. First con-

sider the case when N is irreducible. We show that C τ−−−→
∗
≈ C ′ for some C ′

where
JR{f(~M)|ω~m

/z~m}Kx | JRK ≈ C ′ (6.14)

by induction in the structure of R.

80 Encoding the Appπ-calculus in the π-calculus

Induction basis: Suppose R = z. The left-hand side of Equation (6.14) and
the right-hand side of Equation 6.13 now equals respectively

Jf(~M)|ωKx | JRK and (ν~y, u)
(n∏

i=1

JMiKyi
| JRK | x . u

)
,

where u = ref(Jf(~M)Kx|ω). These processes have the same barbs since all
names except x are restricted. The only possible way for these process to
interact with the environment is by a communication on x. If the second
process receives on x it can only perform a synchronization on u, and be-
comes the encoding of the irreducible term f(~M)|ω, which exactly equals
the left-hand side. Also note that all Mi are irreducible, and that all names
are restricted. Therefore all subterms except Jf(~M)|ωKu are barbed con-
gruent to 0. Hence they are barbed congruent, so in this case equivalence
6.14 follows by taking C = C ′.

The case when R = f(~z) is similar to the above case noting that when
R = f(~z) we have to reduce C in order to arrive at the irreducible form
encoding of f . This encoding is immediately obtained from the left-hand
side of Equation (6.14).

Induction hypothesis: Let R = g(s1, . . . , sr), and assume

(ν~y, ~u)(
n∏

i=1

JMiKyi
| JRK | IJsiKx{ref(Jf(~M)Kx|~ω)/~z}) τ−−−→

∗
≈

Jsi{f(~M)|ω~m
/z~m}Kx | JRK

holds for all subterms si of R.

Induction step: Consider the left-hand side of (6.14).

(ν~k)
(
Jg(~k)Kx |

r∏
i=1

Jsi{f(~M)|ω~m
/z~m}Kki

)
| JRK.

The right-hand side of (6.13) now equals.

(ν~y, ~u)
(n∏

i=1

JMiKyi | (ν~l)
(
(J{g(~l)/x}K |

r∏
i=1

J{|{si/li}|}K)

{ref(f(~M)|ω~m
)/z~m}

)
| JRK

)
, (6.15)

Now apply the induction hypothesis to each J{|{si/li}|}K){ref(f(~M)|ω~m
)/z~m}.

Then (6.15) reduces to a process which is weakly barbed congruent to

(ν~u)
(

(ν~l)(J{g(~l)/x}K |
r∏

i=1

Jsi{f(~M)|ω~m
/z~m}Kli) | JRK

)
τ−−−→

∗
≈ (ν~u)

(
(ν~l)Jg(~s){f(~M)|ω~m

/z~m}Kx | JRK
)
,

6.7. Soundness 81

since N is irreducible. Furthermore, all subterms of Mi that are not being
referenced by variables in f(~M)|ω~m

are barbed congruent to 0. Hence the
right hand side of (6.13) weakly reduces to something which is weakly
barbed congruent to the left hand side of (6.14).

The second case when N is not irreducible is similar to the first case, so we only
give a rough sketch of the proof. Instead of Equivalence (6.14), we show that

J{|{σ(R)/x}|}K | JRK τ−−−→
∗
≈ C.

This is enough by Lemma 6.7.10. Again we may assume that

σ(R) = R{f(~M)|ωm1
, . . . , f(~M)|ωml

/zm1 , . . . , zml
}.

We proceed by induction in R.

Induction basis: Suppose R = g(~y). Then

J{|{σ(R)/x}|}K | JRK = J{|{g(~y){f(~M)|~ω/~y}/x}|}K | JRK

τ−−−→
∗
≈ (ν~k)(J{g(~k)/x}K |

ml∏
i=1

Jf(~M)|ωi
Kki

| JRK),

as ~M are irreducible. Now as the process C equals

(ν~y, ~u)(
n∏

i=1

JMiKyi
| J{g(~y)/x}K{ref(f(~M)|~ω/~y)}),

the conclusion again follows as all subterms not referenced by ~u are weakly
barbed congruent to 0.

Induction hypothesis: Let R = g(s1, . . . , sr), and suppose the claim holds
for s1, . . . , sr.

Induction step: We get

J{|{σ(R)/x}|}K | JRK

= (ν~k)
(
J{g(~k)/x}K |

r∏
i=1

J{|{si{f(~M)|ω~m
/z~m}/ki}|}K | JRK),

which can be seen to be weakly barbed congruent to C by repeatedly using
the induction hypothesis since

IJRK{ref(Jf(~M)|ω~m
Kx)/~z}

= (ν~k)
(
J{g(~k)/x}K |

r∏
i=1

J{|{si/ki}|}K{ref(Jf(~M)Kx|ω~m
)/~z~m}.

At last we have the following proposition which states how reductions in the
rewrite system can be matched.

82 Encoding the Appπ-calculus in the π-calculus

Proposition 6.7.12
Let R be a rewrite system and let M ∈ TΣ(X), where X is the set of Appπ-
names. If M ∗

R N , and N is irreducible, then

J{|{M/x}|}K | JRK τ−−−→
∗
≈ JNKx | JRK.

Proof
Suppose the reduction has length l, i.e.

M = K0
∗
R · · · ∗

R Kl = N.

If l = 1, so K1 = N we consider two cases. The first case applies when ω = 0
and the second case applies when ω = iω′ for some ω′ and i > 0.

If ω = 0 then L must have the syntactic form f(~t), |~t| = n and for some σ and
(L −−−→ R, ζ) ∈ R we have σ(L) = f(~M). Since ~M is irreducible, the theorem
follows by Lemma 6.7.11.

Suppose now that ω = iω′ for some ω′ 6= ε. Now Mi|ω must be of the form f̂(~N)
for some ~N which is irreducible. Suppose ref(JMKx|ω) = y, then the process
J{|{f̂(~N)/y}|}K must occur in J{|{M/x}|}K, i.e.

J{|{M/x}|}K | JRK = · · · | J{|{f̂(~N)/y}|}K | · · · | JRK.

Now let (L′ −−−→ R′, ζ) ∈ R and σ be such that f̂(~N) = σ(L′), and let S = σ(R′).
Since ~N are irreducible we can apply Lemma 6.7.11 to infer the transition.

J{|{f̂(~N)/y}|}K | JRK τ−−−→
∗
≈ JSKy | JRK, (6.16)

By using (Res) and (Par) we can from the right-hand side reconstruct the
process · · · | J{|f̂(~N)/y|}K | · · · | JRK. Applying the same constructs to the
left-hand side and using the congruence property of ≈ we get

· · · | J{|{f̂(~N)/y}|}K | · · · | JRK τ−−−→
∗
≈ · · · | JSKy · · · | JRK.

Since all encoded terms on the right-hand side are now irreducible, and K1 =
K0{σ(R′)/K0|ω} we know by Lemma 6.7.9 that the right hand side reduces to
something which is weakly barbed congruent to JNKx.

If l > 1 we argue as follows. Instead of the reduction in Equation (6.16), we get
by Lemma 6.7.11, the reduction.

J{|{f(~M)/x}|}K | JRK τ−−−→
∗
≈ K and J{|{M1/x}|} | JRK τ−−−→

∗
≈ K. (6.17)

where K is as in Lemma 6.7.11. Suppose M2 is irreducible. We can repeat the
argument for l = 1 and this together with Lemma 6.7.11 yields the following
reduction:

J{|{M1/x}|}K | JRK τ−−−→
∗
K

τ−−−→
∗
≈ JM2Kx | JRK.

This implies that

J{|{f(~M)/x}|}K | JRK τ−−−→
∗
≈ JM2Kx | JRK,

6.7. Soundness 83

which is what we wanted. If the first reduction occurs at some sub-term of f(~M)
we can argue similarly to the case when l = 1 to establish (6.17). The remaining
parts of the proof then follows by exactly the same reasoning as above.

The next four lemmas shows that the encoding is sound with respect to each
axiom in Definition 3.2.2 of the structural equivalence relation for Appπ.

Lemma 6.7.13
Let A,B ∈ A If A ≡ B without use of (SC-Alias), (SC-Subst) and (SC-
Rewrite) then J{|A|}K ≡ J{|B|}K.

Proof
We go through each axiom of Definition 3.2.2. However, as the axioms we con-
sider all have a counterpart in the π-calculus and because the encoding is ho-
momorphic on parallel composition, restriction and replication all cases are rel-
atively easy to prove. Therefore we only go through two of these axioms.

(SC-ParCommute) Let A = A1 | A2. Then B = A2 | A1 and for the encoding
we get

J{|A1 | A2|}K = J{|A1|}K | J{|A2|}K ≡ J{|A2|}K | J{|A1|}K = J{|A2 | A1|}K.

(SC-ParInact) Let A = A1 | 0. Then B = A1 and from the encoding we get

J{|A1 | 0|}K = J{|A1|}K | J{|0|}K = J{|A1|}K | 0 ≡ J{|A1|}K = J{|B|}K.

Lemma 6.7.14
Let A ∈ A and let M be an Appπ-term. Then

J{|A | {M/x}|}K = J{|A{M/x} | {M/x}|}K.

Proof
Simply use the definition of the {||} encoding. The right hand side of the equation
in the lemma equals

J{|A{M/x} | {M/x}|}K = J{|A{x/x} | {M/x}|}K
= J{|A | {M/x}|}K.

Lemma 6.7.15
The encoding is sound with respect to (SC-Alias). I.e.

J{|(νx){M/x}|}K | JRK τ−−−→
∗
≈ (νx)(JNKx) | JRK ≈ JRK,

where N is the irreducible term obtained by reducing M .

Proof
The lemma follows almost immediately from Proposition 6.7.12. We simply use
that the encoding is a homomorphism on restriction and then by the (Res)
rule we can infer the same transition as stated in Proposition 6.7.12. From the
encoding of JNKx it is also immediate that (νx)JNKx ≈ 0.

84 Encoding the Appπ-calculus in the π-calculus

Lemma 6.7.16
The encoding is sound with respect to (SC-Rewrite). I.e. if R is a rewrite
system and M1 and M2 two terms such that Φ `Σ M1 = M2 then

J{|{M1/x}|}K | JRK τ−−−→
∗
≈ JNKx | JRK and

J{|{M2/x}|}K | JRK τ−−−→
∗
≈ JNKx | JRK,

where N is the irreducible term obtained by reducing M1 and M2.

Proof
If Φ `Σ M1 = M2 then M1 and M2 have the same irreducible form and we
simply apply Proposition 6.7.12 to obtain the statement in the lemma.

We are now able to state and prove the main theorem of this section, namely
that the encoding is operationally sound.

Theorem 6.7.17
Let P be an Appπ-process. If there exists Q such that P

τ−−−→ Q, then

J{|P |}K | JRK τ−−−→∗ ≈ J{|Q|}K | JRK.

Proof
Since P τ−−−→ Q there is a derivation tree with this transition at the root, and
containing one of the rules (Comm), (Then) or (Else) at distance d from the
root. The proof is by induction in d and for the induction basis we examine the
rules (Comm), (Then) or (Else).

Comm: If it is the case that the (Comm) rule is at the root of the derivation
tree then

(Comm)
a〈y〉.P | a(x).Q τ−−−→ P | Q{y/x}

,

and then we have

J{|a〈y〉.P | a(x).Q|}K | JRK

≡ (νz1, z2)
(
J{a/z1}K | z1〈send, y, νr〉.r.J{|P |}K |

J{a/z2}K | z2〈receive,⊥, νr′〉.r(x).J{|Q|}K
)
| JRK

τ−−−→∗ (νz1, z2, r, r′)
(
J{a/z1}K | J{|P |}K |

J{a/z2}K | J{|Q|}K{y/x}
)
| JRK

≡ J{|P | Q{y/x}|}K | JRK

Then: If

(Then)
if M = M then P else Q τ−−−→ P

6.7. Soundness 85

is the root of the derivation tree then

J{|if M = M then P else Q|}K | JRK

≡ (νz1, z2)
(
J{|{M/z1}|}K | J{|{M/z2}|}K | z1〈match, z2, νr〉.r(m).

([m = >]J{|P |}K + [m = ⊥]J{|Q|}K)
)
| JRK

τ−−−→∗ ≈ (νz1, z2)
(
JNKz1 | JNKz2 | z1〈match, z2, νr〉.r(m).

([m = >]J{|P |}K + [m = ⊥]J{|Q|}K)
)
| JRK

τ−−−→∗ (νz1, z2)
(
JNKz1 | JNKz2 | J{|P |}K

)
| JRK

≈ J{|P |}K | JRK

whereN is the irreducible form ofM and Proposition 6.7.12 and Lemma 6.7.1
were used.

Else: This case is almost identical to the previous case except Lemma 6.7.2 is
used instead of Lemma 6.7.1.

For the induction step we are required to check the rules (Res) and (Par)
which is just about trivial as the encoding is homomorphic with respect to both
restriction and composition and the rules for restriction and composition are
similar in the π-calculus. The (Struct) rule follows by the Lemmas 6.7.13,
6.7.14, 6.7.15 and 6.7.16 as we get that the encoding of structurally equivalent
processes either are structurally congruent, weakly barbed congruent or reduce
to processes which are weakly barbed congruent.

The last theorem states that the encoding preserves barbs.

Theorem 6.7.18
Let A ∈ A and assume that A ↓a. Then J{|A|}K ⇓a .

Proof
By structural induction in A. Assume A = a〈M〉.P .

J{|a〈M〉.P |}K = (νx, y)(J{a/y}K | J{M/x}K | J{|y〈x〉.P |}K)
= (νx, y)(J{a/y}K | J{M/x}K | y〈send, x, νr〉.r.J{|P |}K

τ−−−→
∗

(νx, y)(J{a/y}K | J{M/x}K | a〈x〉.r | r.J{|P |}K) ↓a .

Next assume A = (νu)A′. Now if A′ α−−−→ where subj(α) = a and u /∈ v(α)∪n(α),
we apply the induction hypothesis and the (Res) rule. Otherwise, if u ∈ v(α)∪
n(α) and u 6= a we apply the induction hypothesis and the (Open) rule to
obtain the conclusion.

The cases where A is a parallel composition, replication or a conditional are
trivial and are omitted.

Chapter 7

Conclusion

In this master thesis various aspects pertaining to Appπ have investigated. We
first recapitulate and discuss some of the most important results obtained and
finally discuss possible future work.

7.1 Results

Appπ was introduced by Abadi and Fournet in [AF01]. The original article
leaves a number of aspects open to further investigation. We have chosen to
concentrate on a few of these aspects. The major contributions of this master
thesis are the following

• Definition of type systems for Appπ.

• A representation of the spi-calculus in Appπ.

• An encoding of Appπ in the π-calculus.

7.1.1 Type systems and representation of the spi-calculus.

A type system for the π-calculus has been defined by Sangiorgi and Walker in
[SW01], but many others exist. We have established a basic type system for
Appπ similar to the one in [SW01], capable of capturing runtime errors such
as arity mismatch and erroneous use of names. A subject-reduction theorem
which states that transitions preserves typing has been established for this type
system.

As suggested in [AF01] the development of Appπ has been inspired by the
spi-calculus [AG97]. We have formalised this correspondence by establishing
a representation of the spi-calculus in an instantiation of Appπ. That is, an
instance of Appπ has been created by defining a presentation Π, and an encoding
of spi-processes in this language has been defined.

This encoding is shown to be fully abstract with respect to operational corre-
spondence. In order to facilitate the proof of this result, the semantics of the

87

88 Conclusion

spi-calculus has been tailored to be conceptually as close to the semantics of
Appπ as possible. Thus minor changes have been made compared to the seman-
tics originally given in [AG97]. Specifically, we use an early labelled transition
relation with action labels in the style of a〈M〉 for input and (νq)a〈M〉 for
output. This contrasts to the semantics given in [AG97] which uses the notion
of abstractions and concretions. Furthermore, scope extrusion is handled dif-
ferently in the original presentation. In order to ensure that our results holds
also for the original spi-calculus, we have proved that the modified semantics is
strongly equivalent to that of the original.

Considerable effort has been put into investigating the use of type systems for
verification of properties related to securety issues in the spi-calculus. In [Aba97]
a type system which ensures secrecy in the spi-calculus is given. In light of our
encoding of the spi-calculus in Appπ we have established a type system for
Appπ similar to the one in [Aba97]. We have proven that the encoding of the
spi-calculus in Appπ is sound and complete with respect to well-typedness. Thus
our encoding captures the spi-calculus in a quite strong sense since the encoding
preserves transitions as well as types.

7.1.2 Encoding of Appπ in the π-calculus

The final major and most innovative contribution of this master thesis is an
encoding of Appπ in the π-calculus. Such an encoding is appealing for several
reasons. It opens the doors for the possibility of applying the vast amount of the-
oretical tools developed for the π-calculus when reasoning in Appπ. Furthermore
a number of tools for automated analysis of π-processes have been developed.
By using the encoding form Appπ to the π-calculus these can also be utilised
for analysis of Appπ-processes.

Although the π-calculus is well-known to be Turing-complete, the existence of
such an encoding is not immediate, and indeed the encoding is non-trivial. The
main difficulty lies in the encoding of the equational theory which is used for
comparing terms in Appπ. Our encoding is inspired by a recent proposal for an
encoding of the spi-calculus in the π-calculus [BPV03], but differs considerably in
the way that terms are encoded. We rely on well-known results for transforming
an equational theory into a terminating and confluent rewrite system. In fact
this transformation can be done by using the Knuth-Bendix procedure [KB70].
Moreover the encoding requires the rules of the rewrite system to be left linear.

The general idea is that all terms are forced to reduce to their irreducible form
before they can be accessed by the remaining parts of the system. This is done by
initially encoding the terms in paralell with the encoding of the rewrite system
which reduces the terms until they become irreducible. When on irreducible form
the term becomes an object-like process with a number of predefined methods,
including methods for comparing syntactically against another term. Since the
rewrite system is terminating and confluent checking for equality then becomes
a matter of checking for syntactic identity. The encoding also imposes a bottom-
up evaluation strategy of terms. The choice of evaluation strategy is inessential
for confluent rewrite systems. We prove soundness of this encoding with respect
to operational correspondence.

7.2. Future work 89

7.2 Future work

As is often the case the amount of work that needs to be done has exceeded the
amount of work that we were able perform within the given period of time. Thus
there are a number of open issues which could be further investigated. Some of
these issues are outlined in this section.

• Further investigation of different type systems for Appπ.

• Full abstraction for the encoding of the spi-calculus in Appπ with respect
to some suitable equivalence.

• Further development of the theory of the encoding of Appπ in the π-
calculus.

7.2.1 Type systems

The general type system we have defined for Appπ is quite basic. More advanced
type systems for the π-calculus have been developed, and we believe that such
systems can also be defined for Appπ. In the style of [SW01], a possible extension
is to introduce recursive types which make it possible to type processes such as
a〈a〉.0. More generally recursive types are essential in order to avoid loosing ex-
pressive power in the typed version of Appπ compared to the untyped. Another
possible extension is to introduce input/output types which separate names that
can be used for input from those that can be used for output. Such a refinement
of the channel types is useful for several reasons. One example of its use is in
the programming language Pict [PT97], which is a typed programming language
based on the π-calculus. The argument for including input/output types in Pict
is that in practice it turns out that it is rare that a channel is used for both
input and output. Hence if a channel is being used for both purposes, it is fair to
assume that this is due to a programming error, which the type system should
be able to catch.

Input/output types are certainly also useful also from a theoretical point of
view. The arch example of this in the setting of the π-calculus is maybe to be
found in Pierce and Sangiorgis treatment [PS93] of the more efficient of Milners
two encodings of the call-by-value λ-calculus in the π-calculus [Mil90]. In this
encoding, VJ·K, β-reduction is not valid, i.e. VJ(λx.M)(λy.N)K is not equivalent
to VJM{λy.N/x}K. Pierce and Sangiorgi observes in [PS93] that the reason for
this is that certain names can be wrongly used relative to the intention of the
encoding. By utilizing the extra refinement obtained by the separation of input
and output names, validity of β-reduction is obtained.

Gordon and Jeffrey have implemented a type checker for cryptographic protocols
[GJ] based on the type system for the spi-calculus presented in [GJ01a]. They are
currently not able to handle protocols based on hashing. Since hash-functions
can easily be represented in Appπ by simply defining a function h with no
equations, is should be possible to capture such protocols in Appπ. In order to
perform the analysis suitable type systems for Appπ will have to be developed.

90 Conclusion

7.2.2 Full abstraction with respect to equivalence

As mentioned in the previous section full abstraction with respect to opera-
tional correspondence has been established for the encoding of the spi-calculus
in Appπ. In the light of this we believe that this result can be extended to obtain
full abstraction with respect to weak barbed congruence.

7.2.3 Further development of the encoding of Appπ.

The encoding of Appπ in the π-calculus leaves a number of issues open to
further development. We have only established operational soundness. Whether
the encoding is also complete with respect to operational correspondence is
left as an open question to which the answer is far from trivial. In [BPV03]
Baldamus, Parrow, and Victor prove that their encoding of the spi-calculus in
the π-calculus preserves may-testing. Certainly the most difficult part in the
proof of this result is to relate operational steps of an encoded process with that
of the original spi-process. As is the case in [BPV03], we anticipate that also for
the present encoding, completeness is significantly harder to obtain. The reasons
for this are manifold. In general an encoded Appπ-processes will have several
reductions where there are only zero or one reduction in the original Appπ-
process. These reductions are mainly introduced by the encoding of terms, but
also the manner in which input and output are encoded causes reductions which
are not directly related to reductions in the source process.

The encoding of terms, in particular functions, is probably the most difficult part
to handle. The encoding of terms ensures that an encoded term does not become
available to other parts of the system before it has reduced to its irreducible
form. However, even for terms that are irreducible the encoding of the term is
not equivalent to the irreducible form encoding since the initial coding has a
barb cf. Lemma 6.7.9 on page 76, namely the principal function name of the
term. This issue could possibly be circumvented by imposing a stricter form of
control of the scope of the function names introduced by the encoding. That is,
given a term M with principal function name f , the scope of f in the encoded
process need only include the term constructors containing its co-name. Another
possibility could be to modify the notion of completeness so completeness is only
required for the irreducible form of terms. Clearly this can not be done in general
since one initially may not know the argument values of a given term. However,
since the rewrite system is terminating whenever a term is being used its normal
form can be found. Hence such an approach could also be feasible.

Finally we mention an issue related to the discussion in the previous section.
The encoding makes the substantial amount of theoretical and practical tools
developed for the π-calculus available to Appπ. However, before this can be
utilised to its fullest potential, the encoding, and in particular its theoretical
foundation needs to be further matured. In particular it would be useful to
know that the encoding preserves some equivalence. Assuming that this can be
obtained, either as discussed in the previous paragraph, or in some other way,
an interesting project could be to implement a compiler based on the encoding
which translates Appπ-processes written in some specification language into
for example Mobility Workbench readable input. This has been done with the

7.2. Future work 91

translation of spi-processes into π-processes.

Appendix A

Universal Algebra

In this chapter we present the fragment of the theory of universal algebra that is
relevant for our investigations of the Appπ-calculus. The presentation is based
on [ST99] and [Joh87] but with slight alterations.

A.1 Signatures

A signature (often called an operational type in the literature) is a structure
containing two elements: A set of function names and a function assigning arities
to the functions names. The function names have no structure and are not actual
functions. The role of the arity function is to assign an integral arity to each of
the function names. The signature is a syntactic structure which can be given
a semantics in the form of an algebra. We shall, however, not need this kind of
semantics.

The formal definition of a signature is as follows.

Definition A.1.1 (Signature)
A signature Σ is a pair (Ω, α), where Ω is a set of function names and α : Ω → N0

is an arity function.

Let Σ = (Ω, α) be a signature. The concrete operation names of Ω are written
in sans serif font, for example multiply. If f ∈ Ω and α(f) = 0 we say that
f is a constant. Overloading is not formally permitted, since a function name
has exactly one arity. This is not a restriction in our setting as we can consider
an overloaded function name as several distinct function names generated by
decorating the original function name with each of its arities.

A.2 Terms

Given a signature Σ = (Ω, α) we can construct terms from the function symbols
and some set of variables.

93

94 Universal Algebra

Definition A.2.1 (Terms and equations)
Let Σ = (Ω, α) be a signature and let X be an set of variables disjoint from
Ω. Then the set of terms over Σ with variables in X, denoted by TΣ(X), is the
least set satisfying

(i) if x ∈ X then x ∈ TΣ(X), and

(ii) if f ∈ Ω and t1, . . . , tα(f) ∈ TΣ(X) then f(t1, . . . , tα(f)) ∈ TΣ(X).

For some t ∈ TΣ(X) we let v(t) denote the set of variables occurring in t.
A Σ-equation with variables in X is an equation of the form t = t′ where
t, t′ ∈ TΣ(X).

It is necessary that the set of variables X be disjoint from Σ to avoid confusing
variables with function names. The set of variables can be empty, finite of infi-
nite. Note that if Σ has no constants and X = ∅ then TΣ(X) = ∅. A term which
contains no variables is called a ground term.

A.3 Provable equations

We define an axiomatic system in which equations of a signature are either
provable or not.

Definition A.3.1
Let Σ = (Ω, α) be a signature, X a set of variables and let Φ be a set of Σ-
equations with variables in X. A Σ-equation ϕ with variables in X is a provable
consequence of Φ, written Φ `Σ ϕ if ϕ can be proven from the following rules
and axioms.

(Axiom)
Φ `Σ η

η ∈ Φ

(Reflexivity)
Φ `Σ t = t

t ∈ TΣ(X)

(Symmetry)
Φ `Σ t = t′

Φ `Σ t′ = t

(Transitivity)
Φ `Σ t = t̂ Φ `Σ t̂ = t′

Φ `Σ t = t′

(Congruence)
Φ `Σ t = t′

Φ `Σ s{t/x} = s{t′/x}
x ∈ X and s ∈ TΣ(X)

(Instantiation)
Φ `Σ t = t′

Φ `Σ tσ = t′σ
σ : X → TΣ(X)

Given a signature and a set of equations over this signature we define an equa-
tional theory, or presentation as follows.

A.4. Examples 95

Definition A.3.2 (Presentation)
A presentation is a pair (Σ,Φ) where Σ is a signature and Φ is a set of Σ-
equations.

A.4 Examples

A.4.1 Pairs

Define a signature Σ = (Ω, α) where

Ω = {pair, first, second}
α(pair) = 2
α(first) = α(second) = 1.

With the the set of equations

Φ = {first(pair(x, y)) = x,

second(pair(x, y)) = y},

we can prove

Φ `Σ first(first(pair(pair(x, y), z))) = x

Φ `Σ pair(second(pair(x, y)), z) = pair(y, z),

and we expect that

Φ 6`Σ first(x) = second(x)

though proving that some equation is unprovable is usually not straightforward.
It may involve defining an algebra or an equivalent rewrite system.

A.4.2 Cryptography

Abstract cryptographic functionality can be described by the signature Σ =
(Ω, α) where

Ω = {enc, dec, aenc, adec, pkey, skey, hash}
α(enc) = α(dec) = α(aenc) = α(adec) = 2
α(pkey) = α(skey) = α(hash) = 1.

Now, with the set of equations

Φ = {dec(enc(x, y), y) = x,

adec(aenc(x, pkey(y)), skey(y)) = x,

adec(aenc(x, skey(y)), pkey(y)) = x}

we have an abstract description of the cryptographic primitives for both sym-
metric and asymmetric encryption and decryption as well as hashing. There are
no equations involving hash, which indicates that the hash of a message cannot
be equal to the hash of some other message and that the message cannot be
obtained from the hash. Similarly, pkey and skey have no equations associated
with them, so it is not possible to create the same key from two distinct seeds
and the seed cannot be extracted from the key.

Appendix B

Rewrite Systems

An operational approach to deciding whether two terms M and N are provable
from a set Φ of equations is given by the concept of rewrite systems. The idea is
basically to interpret each equation R = L ∈ Φ as a directed rule R −−−→ L and
from these rules define a relation −−−→ on the set of terms. If the rewrite system is
confluent, two termsM andN are equal if they can be reduced to the same term.
If in addition the rewrite system is terminating one can prove inequality. These
ideas are formalised in the next sections. We only include material necessary for
our purpose. More complete explanations can be found in [Mit96] and [KK01]
in which further references can also be found.

B.1 Basic definitions

Before we define rewrite systems and look at some of their properties we need
some tools to work with. The first definition formalizes the idea of a substitution.
The elements from universal algebra used in this appendix can be found in
Appendix A.

Definition B.1.1 (Substitution)
A substitution is a mapping from variables to terms, σ : X −−−→ TΣ(X) which is
the identity for all but a finite number of variables. The domain of σ is extended
to TΣ(X) by defining σ(f(M1, . . . ,Mn)) = f(σ(M1), . . . , σ(Mn)).

Given a term M we need to be able to refer to a specific subterm of M . This
is achieved by considering the parse tree for the term. Given a term M the
parse tree for M is a finite labelled tree with leaves labelled by variables and
constants and the internal nodes labelled with function names with arity greater
than zero. The outgoing edges of each nodes are numbered from left to right.

Definition B.1.2 (Position)
LetM be a term and T the parse tree forM . A position T is a finite sequence ω =
n1 . . . nk, where ni ∈ N. The position ω identifies the node found by traversing
the tree from the root node and for each node at level i following the edge

97

98 Rewrite Systems

numbered ni. The subterm of M whose parse tree is rooted at ω is denoted
M |ω.

If M is a term then we denote the set of positions of M by PM .

As usual if > is a binary relation, >∗ denotes the reflexive transitive closure of
>.

Definition B.1.3 (Termination, confluence and irreducible terms)
Let > be a binary relation on some set T .

• The relation > is terminating if there is no infinite sequence s such that
si > si+1 for all i ∈ N.

• An element t is said to be irreducible if for all t′, it holds that t 6> t′.

• The relation >∗ is confluent if whenever M >∗ K and M >∗ L, then there
exists N such that K >∗ N and L >∗ N .

• The relation > is locally confluent if whenever M > K and M > L, then
there exists N such that K >∗ N and L >∗ N .

B.2 Rewrite system

A rewrite system consists of a set of rewrite rules. Syntactically these rules are
formed from elements of the set TΣ(X).

Definition B.2.1 (Rewrite system)
A rewrite system R over Σ is an indexed family {Li −−−→ Ri}i∈I where for all
i ∈ I, Li, Ri ∈ TΣ(X) and each Li −−−→ Ri fulfills the following condition:

(i) Li /∈ X, and

(ii) v(Ri) ⊆ v(Li).

The elements of R are called rewrite rules.

In general condition (i) and (ii) are not strictly necessary. However, in this
chapter we wish to restrict out attention to terminating rewrite systems. The
purpose of item (i) and (ii) is illustrated after we define the reduction relation
induced by R.

The idea is that the rule L −−−→ R allows us to replace any substitution instance
of L with the R under the same substitution. Given a rewrite system a reduction
relation on terms is defined as follows.

Definition B.2.2 (Reduction relation)
Let R be a rewrite system, and let M,N ∈ TΣ(X). Then M can be rewritten
to N if

• there exists a rule (L −−−→ R) ∈ R and

B.2. Rewrite system 99

• a position ω, and

• a substitution σ satisfying M |ω = σ(L),

such that N = M{σ(R)/M |ω}. If M can be rewritten to N we write M −−−→R N .

We also need a definition of a bottom-up reduction relation. This is a sub-relation
of −−−→R .

Definition B.2.3 (Bottom-up reduction relation)
Let R be a rewrite system, and let M,N ∈ TΣ(X). Then M R N if

• there exists a rule (L −−−→ R) ∈ R and

• a position ω, and

• a substitution σ satisfying M |ω = σ(L), and

• ∀ω′ such that ωω′ ∈ PM we have Mωω′ −−−9R,

such that N = M{σ(R)/M |ω}.

Basically, the bottom-up reduction relation specifies that a term M cannot be
reduced unless all subterms of M have been reduced.

Definition B.2.4
Let (L −−−→ R) be a rule in some rewrite system R and M a term. Then we say
that L and M have the same syntactical form if M is a substitution instance of
L. I.e. if for all positions ω ∈ PL such that L|ω is not a variable we have that
the principal function symbols of L|ω and M |ω are identical.

Definition B.2.5 (Terminating and confluent rewrite system)
A rewrite system R is terminating if −−−→R is terminating. A rewrite system is
confluent if −−−→∗

R is confluent. A rewrite system is locally confluent if −−−→R is
locally confluent. A term M is irreducible if there is no M ′ such that M −−−→R

M ′.

Next we prove some properties of the bottom-up reduction relation.

Lemma B.2.6
Assume that −−−→R is terminating and confluent. Then R is terminating and
if M −−−→∗

R N , where N is irreducible, then also M ∗
R N.

Proof
The relation R is obviously terminating as it is a sub-relation of a terminating
relation. Now assume that M −−−→∗

R N and that M ∗
R M ′ 6 R and M ′ 6= N.

We have that M ′ −−−→∗
R N . Now take the sequence ω of longest length such that

there exists a rule (L −−−→ R) ∈ R and a substitution σ such that Mω = σ(L).
Then M ′ R M ′{σ(R)/M ′|ω}, a contradiction. This proves the lemma.

Corollary B.2.7
 R is confluent.

100 Rewrite Systems

We now briefly return to item (i) and (ii) in the definition of rewrite systems.
As mentioned in the introduction we are only interested in terminating rewrite
systems. Indeed, if the two conditions where not included we could not hope
for this property to hold. If for instance the rule x −−−→ f(x) where allowed, we
could rewrite x −−−→R−−−→ f(x) −−−→R f(f(x)) −−−→R−−−→R · · · . Furthermore, if we
allow the rule f(x) −−−→ g(y) we have no control over y. Specifically, we can let
σ(y) = f(x), hence f(x) −−−→R g(f(x)) −−−→R g(g(f(x))) −−−→R · · · . But note that
this is a necessary but not sufficient condition for termination.

The main result for confluent rewrite systems is that equality between terms
M and N holds exactly when they both reduce to the same term. Let R be a
rewrite system, and ΦR the corresponding set of undirected equations.

Theorem B.2.8
Let R be a confluent rewrite system. Then ΦR `Σ M = N if and only if there
exists a term L such that M −−−→∗

R L and N −−−→∗
R L.

Note that if one, as in our case, wishes to use the rewrite system for proving
equality in a given presentation, this can be done by simply forming the rewrite
rules from the set of equations by selecting a direction for each, keeping the
condition on the variables in mind. It is in general undecidable whether a rewrite
system is terminating and confluent, however, there exists a number of methods
for establishing these. We briefly mention some simple ways of ensuring this in
the next section.

B.3 Termination and Confluence

The basic idea is to impose on the set of terms a well-founded ordering > such
that for a sequence of reductions M1 −−−→R M2 −−−→R · · · , we have M1 > M2 >
. . . .

Definition B.3.1 (Well-founded relation)
Let > be a relation on a set A. The relation > is a well-founded ordering if it is
reflexive, transitive, and there exists no infinite decreasing sequence a1 > a2 >
· · · of elements of A.

Definition B.3.2 (Reduction ordering)
A reduction ordering > is a well-founded ordering closed under substitution and
contexts.

The main result for well founded reduction orderings is given below.

Theorem B.3.3
A reduction ordering R is terminating if there is a well-founded ordering such
that for all (Li −−−→ Ri) ∈ R, we have Li > Ri.

For confluence we have the following result.

Theorem B.3.4
Let R be a terminating rewrite system. Then R is confluent if an only if R is
locally confluent.

B.3. Termination and Confluence 101

Local confluence can also be characterised by using critical pairs. We need the
following two definitions for Theorem B.3.7.

Definition B.3.5 (Overlap)
Let R be a rewrite system and let (L −−−→ R) ∈ R. Furthermore, let σ be a
substitution and ω a position in L. Then if σ(L)|ω = σ(L′), where L|ω is not a
variable, we say that the triple 〈σ(L), σ(L′), ω〉 is an overlap.

Definition B.3.6 (Critical pair)
Let R be a rewrite system and let (L −−−→ R), (L′ −−−→ R′) ∈ R. Let ω be a
position in L and let σ be the minimal substitution such that 〈σ(L), σ(L′), ω〉 is
an overlap. Then the pair 〈σ(R), σ(L){σ(R′)/σ(L)|ω}〉 is called a critical pair.

Next we consider the problem of determining whether a rewrite system R is
locally confluent.

Consider a term M that can be reduced in two different ways, i.e. there are
two rules L −−−→ R, L′ −−−→ R′ ∈ R and a substitution σ such that M |ω = σ(L)
and M |ω′ = σ(L′). Note that we may assume that only a single substitution is
necessary as we can rename the variables of L and L′ such that they have no in
common. In the following we look at the possible relationships between ω and
ω′.

• If neither ω or ω′ is a subsequence of the other we obviously have local
confluence.

• The second case occurs when either ω′ is a subsequence of ω or if ω is a
subsequence of ω′. Assume that ω′ is a subsequence of ω. For simplicity we
will also assume that M = σ(L). This case can again be sub-divided into
two depending on whether the term at position ω′ in σ(L) only contains
symbols introduced by σ. If σ(L)|ω′ only contains symbols introduced by
σ then we have local confluence as the reduction σ(L) −−−→RS

σ(R) either
eliminates the subterm σ(L) or we get a subterm containing one or more
occurrences of σ(L′). Each of these can be reduced to σ(R′).

In the last subcase we again have that σ(L)|ω′ = σ(L′), but we also know
that the term at L|ω′ is not a variable. Obviously this cannot happen
unless the principal function of L′ is the principal function of L|ω′ . In this
case we must examine critical pairs as the following theorem specifies.

Theorem B.3.7
A rewrite system R is locally confluent if and only if for all critical pairs 〈M,M ′〉
there exists a term N such that M −−−→∗

R N and M ′ −−−→∗
R N .

This theorem is often called the Knuth-Bendix test [Mit96, Sec. 3.7]. It is a
part of an algorithm, the Knuth-Bendix completion procedure, first presented in
[KB70], which transforms a finite set of identities into a terminating confluent
rewrite system, if one exists. The procedure uses a well founded ordering >
which is used to test whether L > R for each rule. If so Theorem B.3.7 is
applied. However, if for a critical pair 〈M,M ′〉, there do not exist N such that
M −−−→∗

R N and M ′ −−−→∗
R N then either M −−−→M ′ or M ′ −−−→M is added to the

rewrite system which makes sense as there is a term which reduces to both M

102 Rewrite Systems

and M ′. After this we again follow the just described procedure. The algorithm
may terminate with success or failure or loop without terminating.

B.4 Left linear rewrite systems

In this section we define left linear rewrite systems and we show how a rewrite
system can be transformed into an equivalent left linear rewrite system.

Definition B.4.1 (Left linear rewrite system)
A rewrite system R is left linear if for all rules (L −−−→ R) ∈ R no variable occurs
twice in L.

Let R be a rewrite system and let (L −−−→ R) ∈ R. Furthermore, let ωi ∈ PL and
let < be the lexicographical ordering. Let z1, . . . , zk be distinct fresh variables.
Then define the substitution σl as σl(L|ωi

) = zi.

Now define the function δ(x) = min{i | L|ωi
= x}, then ωδ(x) is the first

occurrence of the variable x in L. Now define a substitution by σr(x) = zδ(x).

The rules are then transformed by the mapping

(L −−−→ R) 7→ (σl(L) −−−→ σr(R), ζ),

where ζ is a sequence of sequences of variables such that for each variable x ∈ L
we have a sequence ξx ∈ ζ, where ξx is the sequence of variables in the set
{zi | L|ωi = x}.
Suppose RA is a rewrite system where all r ∈ RA are obtained from the rules
in R by the transformation just described.

Definition B.4.2 (Alternate Reduction relation)
Let RA be an alternate rewrite system, and let M,N ∈ TΣ(X). Then M can be
rewritten to N if

• there exists a rule (L −−−→ R, ζ) ∈ RA and

• a position ω, and

• a substitution σ satisfying the following:

– M |ω = σ(L), and

– for all sequences zi1 , . . . , zin
∈ ζ it holds that σ(zik

) = σ(zil
) for all

1 ≤ k, l ≤ n.

such that N = M{σ(R)/M |ω}. If M can be rewritten to N we write M −−−→RA

N .

Appendix C

Abadi’s commitment
relation

We now define the commitment relation given in [Aba97]. It relies on the syn-
tactic forms abstractions and concretions. An abstraction is an expression of
the form (x1, . . . , xk).P where k ≥ 0 and x1, . . . , xk are bound variables in P .
A concretion is an expression of the form (νy1, . . . , yl)〈M1, . . . ,Mk〉P , where
l, k ≥ 0 and M1, . . . ,Mk are terms and y1, . . . , yl are bound in M1, . . . ,Mk and
P . An agent is an abstraction, concretion or process and we let A,B, . . . range
over agents.

Furthermore, we define

(νy)(x1, . . . , xk)P def= (x1, . . . , xk)(νy)P

Q | (x1, . . . , xk)P def= (x1, . . . , xk)(Q | P)

(νm)(ν~n)〈 ~M〉P def= (νm,~n)〈 ~M〉P

Q | (ν~n)〈 ~M〉P def= (ν~n)〈 ~M〉(Q | P),

and the dual composition A | Q is defined symmetrically. Now let

A = (x1, . . . , xk)P

B = (ν~n)〈 ~M〉Q

Then A@B and B@A are defined as

A@B = (ν~n)(P{ ~M/~x} | Q)

B@A = (ν~n)(Q | P{ ~M/~x}).

The reduction relation is given in Definition 2.2.1. The commitment relation is
then defined as follows.

Definition C.0.3
Let P be a closed process, A a closed agent and α an action. The commitment

103

104 Abadi’s commitment relation

relation
α−−−→ is the relation on spi-processes that satisfies the rules

(Comm Out)

m〈 ~M〉.P m−−−→ (ν)〈 ~M〉.P
(Comm In)

m(~x).P m−−−→ (~x).P

(Comm Inter 1)
P

m−−−→ A Q
m−−−→ B

P | Q τ−−−→ A@B

(Comm Inter 2)
P

m−−−→ B Q
m−−−→ A

P | Q τ−−−→ B@A

(Comm Par 1)
P

α−−−→ A

P | Q α−−−→ A | Q

(Comm Par 2)
Q

α−−−→ A

P | Q α−−−→ P | A

(Comm Res)
P

α−−−→ A n(α) ∪ v(α) /∈ {m,m}
(νm)P α−−−→ (νm)A

(Comm Red)
P > Q Q

α−−−→ A

P
α−−−→ A

Appendix D

Proofs

The following is a proof of Lemma 2.3.1.

Proof
Proofs of cases (i) and (ii) are by induction in the height of the derivation tree
of the transition.

We first prove (i) by examining each possible root of the derivation tree. We
start by noting that (Input) and (Communication) are not possible roots
and that proving rule (Output) is the induction basis.

Output: Assume that

(Output)

P = a〈 ~M〉.P ′ a〈 ~M〉−−−−→ P ′
,

then we obtain immediately

(Comm Out)

P = a〈 ~M〉.P ′ a−−−⇀ (ν)〈 ~M〉P ′
,

which satisfies the condition P ′ ν= P ′.

Restriction: Assume that

(Restriction)
Q

(ν~p)a〈 ~M〉−−−−−−−→ Q′

P = (νs)Q
(ν~p)a〈 ~M〉−−−−−−−→ (νs)Q′ = P ′

s /∈ n((ν~p)a〈 ~M〉).

From the induction hypothesis we get that there exist ~r and Q′′ such that
Q

a−−−⇀ (ν~r)〈 ~M〉Q′′ and Q′ ν= (ν~r \ ~p)Q′′. Then we can derive

(Comm Res)
Q

a−−−⇀ (ν~r)〈 ~M〉Q′′

P = (νs)Q a−−−⇀ (νs, ~r)〈 ~M〉Q′′
,

and since we have Q′ ν= (ν~r \ ~p)Q′′ then we also have P ′ = (νs)Q′ ν=
(νs)(ν~r \ ~p)Q′′ = (νs, ~r \ ~p)Q′′ since s /∈ ~p.

105

106 Proofs

Open: Assume that

(Open)
Q

(ν~r)a〈 ~M〉−−−−−−−→ P ′

P = (νs)Q
(νs,~r)a〈 ~M〉−−−−−−−−→ P ′

a 6= s and s ∈ fn(~M).

From the induction hypothesis we get that the premise implies that there
exists ~t and Q′′ such that Q a−−−⇀ (ν~t)〈 ~M〉Q′′ and P ′ ν= (ν~t \ ~r)Q′′. Then
we can derive

(Comm Res)
Q

a−−−⇀ (ν~t)〈 ~M〉Q′′

P = (νs)Q a−−−⇀ (νs,~t)〈 ~M〉Q′′
,

and since we have P ′ ν= (ν~t \ ~r)Q′′ = (νs~t \ s~r)Q′′ we are done.

Parallel: Assume that

(Parallel)
Q1

(ν~p)a〈 ~M〉−−−−−−−→ Q′
1

P = Q1 | Q2
(ν~p)a〈 ~M〉−−−−−−−→ Q′

1 | Q2 = P ′
,

then by the induction hypothesis there exists ~q and Q′′
1 such that Q1

a−−−⇀
(ν~q)〈 ~M〉Q′′

1 and Q′
1

ν= (~q \ ~p)Q′′
1 . We can then derive

(Comm Par)
Q1

a−−−⇀ (ν~q)〈 ~M〉Q′′
1

P = Q1 | Q2
a−−−⇀ (ν~q)〈 ~M〉(Q′′

1 | Q2)
,

and since Q′
1

ν= (~q \ ~p)Q′′
1 then also P ′ = Q′

1 | Q2
ν= (~q \ ~p)Q′′

1 | Q2
ν=

(~q \ ~p)(Q′′
1 | Q2).

Reduction: Assume that

(Reduction)
P > P ′′ (ν~p)a〈 ~M〉−−−−−−−→ P ′

P
(ν~p)a〈 ~M〉−−−−−−−→ P ′

,

then by the induction hypothesis there exists ~q and Q such that P ′′ a−−−⇀
(ν~q)〈 ~M〉Q and P ′ ν= (~q \ ~p)Q. We can then derive

(Comm Red)
P > P ′′ a−−−⇀ (ν~q)〈 ~M〉Q

P
a−−−⇀ (ν~q)〈 ~M〉Q

,

where P ′ ν= (~q \ ~p)Q as required.

Next up is the proof of (ii): The induction basis is the case when the transi-
tion was derived using (Input). Furthermore, we need not consider the rules
(Output), (Open), (Communication)

Input: Assume that

(Input)

P = a〈~x〉.Q a〈 ~M〉−−−−→ Q{ ~M/~x} = P ′
.

107

Then we have
(Comm In)

P = a〈~x〉.Q a−−−→ (~x)Q

where Q{ ~M/~x} = P ′ as required.

Restriction: Assume that

(Restriction)
Q

a〈 ~M〉−−−−→ Q′

P = (νs)Q
a〈 ~M〉−−−−→ (νs)Q′ = P ′

s /∈ n(a〈 ~M〉)

then by the induction hypothesis there exists Q′′ such that Q a−−−⇀ (~x)Q′′

and Q′ = Q′′{ ~M/~x}. Then

(Comm Res)
Q

a−−−⇀ (~x)Q′′

P = (νs)Q a−−−⇀ (~x)(νs)Q′′
,

where P ′ = (νs)Q′ = (νs)(Q′′{ ~M/~x}) = ((νs)Q′′){ ~M/~x}.

Parallel: Assume that

(Parallel)
Q1

α−−−→ Q′
1

P = Q1 | Q2
α−−−→ Q′

1 | Q2 = P ′

then from the induction hypothesis there exists Q′′
1 such that Q1

a−−−⇀(~x)Q′′
1

and Q′
1 = Q′′

1{ ~M/~x}. Then, since ~x /∈ n(Q2),

(Comm Par)
Q1

a−−−⇀(~x)Q′′
1

P = Q1 | Q2
α−−−⇀ (~x)(Q′′

1 | Q2)

and P ′ = Q′′
1{ ~M/~x} | Q2 = (Q′′

1 | Q2){ ~M/~x} which proves this case.

Reduction: Assume that

(Reduction)
P > P̃

a〈 ~M〉−−−−→ P ′

P
a〈 ~M〉−−−−→ P ′

then by the induction hypothesis there exists Q such that P̃ a−−−⇀(~x)Q and
P ′ = Q{ ~M/~x} so we can reconstruct the derivation tree

(Comm Red)
P > P̃

a−−−⇀ (~x)Q

P
a−−−⇀ (~x)Q

.

In (iii) there are only four possible roots in the derivation tree, namely (Reduc-
tion),(Restriction), (Parallel) and (Communication). A τ -transition al-
ways stems from an application of (Communication) and we use induction in
the depth at which this rule occurs in the derivation tree. The induction basis
is thus the case when (Communication) is the root of the derivation tree.

108 Proofs

Communication: Assume that

(Communication)
Q1

(ν~p)a〈 ~M〉−−−−−−−→ Q′
1 Q2

a〈 ~M〉−−−−→ Q′
2

P = Q1 | Q2
τ−−−→ (ν~p)(Q′

1 | Q′
2) = P ′

which allows us to use (i) and (ii) to deduce that there exists ~q and Q′′
1 such

that Q1
a−−−⇀ (ν~q)〈 ~M〉Q′′

1 and Q′
1

ν= (ν~q \ ~p)Q′′
1 and that there exists Q′′

2

such that Q2
a−−−⇀ (~x)Q′′

2 and Q′
2

ν= Q′′
2{ ~M/~x}. This allows us to construct

the derivation

(Comm Inter)
Q1

a−−−⇀ (ν~q)〈 ~M〉Q′′
1 Q2

a−−−⇀ (~x)Q′′
2

P = τ−−−⇀ (ν~q)〈 ~M〉Q′′
1@(~x)Q′′

2 = (ν~q)(Q′′
1 | Q′′

2{ ~M/~x})
,

and we get

P ′ = (ν~p)(Q′
1 | Q′

2)
ν= (ν~p)((ν~q \ ~p)Q′′

1 | Q′′
2{ ~M/~x})

ν= (ν~p)(ν~q \ ~p)(Q′′
1 | Q′′

2{ ~M/~x})
ν= (ν~q)(Q′′

1 | Q′′
2{ ~M/~x})

as required

Parallel: Assume that

(Parallel)
Q1

τ−−−→ Q′
1

P = Q1 | Q2
τ−−−→ Q′

1 | Q2 = P ′
,

then Q1
τ−−−⇀ Q′′

1
ν= Q′

1 and

(Comm Par)
Q1

τ−−−⇀ Q′′
1

P = Q1 | Q2
τ−−−⇀ Q′′

1 | Q2

,

and since Q′′
1

ν= Q′
1 then Q′′

1 | Q2
ν= Q′

1 | Q2 as required.

Reduction: Assume that

(Reduction)
P > P̃

τ−−−→ P ′

P
τ−−−→ P ′

then P̃ τ−−−⇀ P ′′ such that P ′′ ν= P ′ and

(Comm Red)
P > P̃

τ−−−→ P ′′

P
τ−−−→ P ′′

which is as required.

Restriction: Assume that

(Restriction)
Q

τ−−−→ Q′

P = (νq)Q τ−−−→ (νq)Q′ = P ′

109

then Q τ−−−⇀ Q′′ ν= Q′ and

(Comm Res)
Q

τ−−−→ Q′′

P = (νq)Q τ−−−→ (νq)Q′′

where P ′ = (νq)Q′ ν= (νq)Q′′.

The following is a proof of Lemma 2.3.2.

Proof
Proofs of cases (i) and (ii) are by induction in the height of the derivation tree
of the transition.

We first prove (i) by examining each possible root of the derivation tree. We
start by noting that (Input) and (Communication) are not possible roots
and that proving rule (Output) is the induction basis.

Output: Assume that

(Output)

P = a〈 ~M〉.P ′ a〈 ~M〉−−−−→ P ′
,

then we obtain immediately

(Comm Out)

P = a〈 ~M〉.P ′ a−−−⇀ (ν)〈 ~M〉P ′
,

which satisfies the condition P ′ ν= P ′.

Restriction: Assume that

(Restriction)
Q

(ν~p)a〈 ~M〉−−−−−−−→ Q′

P = (νs)Q
(ν~p)a〈 ~M〉−−−−−−−→ (νs)Q′ = P ′

s /∈ n((ν~p)a〈 ~M〉).

From the induction hypothesis we get that there exists ~r and Q′′ such that
Q

a−−−⇀ (ν~r)〈 ~M〉Q′′ and Q′ ν= (ν~r \ ~p)Q′′. Then we can derive

(Comm Res)
Q

a−−−⇀ (ν~r)〈 ~M〉Q′′

P = (νs)Q a−−−⇀ (νs, ~r)〈 ~M〉Q′′
,

and since we have Q′ ν= (ν~r \ ~p)Q′′ then we also have P ′ = (νs)Q′ ν=
(νs)(ν~r \ ~p)Q′′ = (νs, ~r \ ~p)Q′′ since s /∈ ~p.

Open: Assume that

(Open)
Q

(ν~r)a〈 ~M〉−−−−−−−→ P ′

P = (νs)Q
(νs,~r)a〈 ~M〉−−−−−−−−→ P ′

a 6= s and s ∈ fn(~M).

110 Proofs

From the induction hypothesis we get that the premise implies that there
exists ~t and Q′′ such that Q a−−−⇀ (ν~t)〈 ~M〉Q′′ and P ′ ν= (ν~t \ ~r)Q′′. Then
we can derive

(Comm Res)
Q

a−−−⇀ (ν~t)〈 ~M〉Q′′

P = (νs)Q a−−−⇀ (νs,~t)〈 ~M〉Q′′
,

and since we have P ′ ν= (ν~t \ ~r)Q′′ = (νs~t \ s~r)Q′′ we are done.

Parallel: Assume that

(Parallel)
Q1

(ν~p)a〈 ~M〉−−−−−−−→ Q′
1

P = Q1 | Q2
(ν~p)a〈 ~M〉−−−−−−−→ Q′

1 | Q2 = P ′
,

then by the induction hypothesis there exists ~q and Q′′
1 such that Q1

a−−−⇀
(ν~q)〈 ~M〉Q′′

1 and Q′
1

ν= (~q \ ~p)Q′′
1 . We can then derive

(Comm Par)
Q1

a−−−⇀ (ν~q)〈 ~M〉Q′′
1

P = Q1 | Q2
a−−−⇀ (ν~q)〈 ~M〉(Q′′

1 | Q2)
,

and since Q′
1

ν= (~q \ ~p)Q′′
1 then also P ′ = Q′

1 | Q2
ν= (~q \ ~p)Q′′

1 | Q2
ν=

(~q \ ~p)(Q′′
1 | Q2).

Reduction: Assume that

(Reduction)
P > P ′′ (ν~p)a〈 ~M〉−−−−−−−→ P ′

P
(ν~p)a〈 ~M〉−−−−−−−→ P ′

,

then by the induction hypothesis there exists ~q and Q such that P ′′ a−−−⇀
(ν~q)〈 ~M〉Q and P ′ ν= (~q \ ~p)Q. We can then derive

(Comm Red)
P > P ′′ a−−−⇀ (ν~q)〈 ~M〉Q

P
a−−−⇀ (ν~q)〈 ~M〉Q

,

where P ′ ν= (~q \ ~p)Q as required.

Next up is the proof of (ii): The induction basis is the case when the transi-
tion was derived using (Input). Furthermore, we need not consider the rules
(Output), (Open), (Communication)

Input: Assume that

(Input)

P = a〈~x〉.Q a〈 ~M〉−−−−→ Q{ ~M/~x} = P ′
.

Then we have
(Comm In)

P = a〈~x〉.Q a−−−→ (~x)Q

where Q{ ~M/~x} = P ′ as required.

111

Restriction: Assume that

(Restriction)
Q

a〈 ~M〉−−−−→ Q′

P = (νs)Q
a〈 ~M〉−−−−→ (νs)Q′ = P ′

s /∈ n(a〈 ~M〉)

then by the induction hypothesis there exists Q′′ such that Q a−−−⇀ (~x)Q′′

and Q′ = Q′′{ ~M/~x}. Then

(Comm Res)
Q

a−−−⇀ (~x)Q′′

P = (νs)Q a−−−⇀ (~x)(νs)Q′′
,

where P ′ = (νs)Q′ = (νs)(Q′′{ ~M/~x}) = ((νs)Q′′){ ~M/~x}.

Parallel: Assume that

(Parallel)
Q1

α−−−→ Q′
1

P = Q1 | Q2
α−−−→ Q′

1 | Q2 = P ′

then from the induction hypothesis there exists Q′′
1 such that Q1

a−−−⇀(~x)Q′′
1

and Q′
1 = Q′′

1{ ~M/~x}. Then, since ~x /∈ n(Q2),

(Comm Par)
Q1

a−−−⇀(~x)Q′′
1

P = Q1 | Q2
α−−−⇀ (~x)(Q′′

1 | Q2)

and P ′ = Q′′
1{ ~M/~x} | Q2 = (Q′′

1 | Q2){ ~M/~x} which proves this case.

Reduction: Assume that

(Reduction)
P > P̃

a〈 ~M〉−−−−→ P ′

P
a〈 ~M〉−−−−→ P ′

then by the induction hypothesis there exists Q such that P̃ a−−−⇀(~x)Q and
P ′ = Q{ ~M/~x} so we can reconstruct the derivation tree

(Comm Red)
P > P̃

a−−−⇀ (~x)Q

P
a−−−⇀ (~x)Q

.

In (iii) there are only four possible roots in the derivation tree, namely (Reduc-
tion),(Restriction), (Parallel) and (Communication). A τ -transition al-
ways stems from an application of (Communication) and we use induction in
the depth at which this rule occurs in the derivation tree. The induction basis
is thus the case when (Communication) is the root of the derivation tree.

Communication: Assume that

(Communication)
Q1

(ν~p)a〈 ~M〉−−−−−−−→ Q′
1 Q2

a〈 ~M〉−−−−→ Q′
2

P = Q1 | Q2
τ−−−→ (ν~p)(Q′

1 | Q′
2) = P ′

which allows us to use (i) and (ii) to deduce that there exists ~q and Q′′
1 such

that Q1
a−−−⇀ (ν~q)〈 ~M〉Q′′

1 and Q′
1

ν= (ν~q \ ~p)Q′′
1 and that there exists Q′′

2

112 Proofs

such that Q2
a−−−⇀ (~x)Q′′

2 and Q′
2

ν= Q′′
2{ ~M/~x}. This allows us to construct

the derivation

(Comm Inter)
Q1

a−−−⇀ (ν~q)〈 ~M〉Q′′
1 Q2

a−−−⇀ (~x)Q′′
2

P = τ−−−⇀ (ν~q)〈 ~M〉Q′′
1@(~x)Q′′

2 = (ν~q)(Q′′
1 | Q′′

2{ ~M/~x})
,

and we get

P ′ = (ν~p)(Q′
1 | Q′

2)
ν= (ν~p)((ν~q \ ~p)Q′′

1 | Q′′
2{ ~M/~x})

ν= (ν~p)(ν~q \ ~p)(Q′′
1 | Q′′

2{ ~M/~x})
ν= (ν~q)(Q′′

1 | Q′′
2{ ~M/~x})

as required

Parallel: Assume that

(Parallel)
Q1

τ−−−→ Q′
1

P = Q1 | Q2
τ−−−→ Q′

1 | Q2 = P ′
,

then Q1
τ−−−⇀ Q′′

1
ν= Q′

1 and

(Comm Par)
Q1

τ−−−⇀ Q′′
1

P = Q1 | Q2
τ−−−⇀ Q′′

1 | Q2

,

and since Q′′
1

ν= Q′
1 then Q′′

1 | Q2
ν= Q′

1 | Q2 as required.

Reduction: Assume that

(Reduction)
P > P̃

τ−−−→ P ′

P
τ−−−→ P ′

then P̃ τ−−−⇀ P ′′ such that P ′′ ν= P ′ and

(Comm Red)
P > P̃

τ−−−→ P ′′

P
τ−−−→ P ′′

which is as required.

Restriction: Assume that

(Restriction)
Q

τ−−−→ Q′

P = (νq)Q τ−−−→ (νq)Q′ = P ′

then Q τ−−−⇀ Q′′ ν= Q′ and

(Comm Res)
Q

τ−−−→ Q′′

P = (νq)Q τ−−−→ (νq)Q′′

where P ′ = (νq)Q′ ν= (νq)Q′′.

113

The following is a proof of Lemma 2.3.2.

Proof
The proof is by transition induction in the cases (i) and (ii). We start by proving
(i).

Comm Out: Assume that

(Comm Out)

P = a〈 ~M〉.P ′ a−−−⇀ (ν)〈 ~M〉P ′

and we have immediately

(Output)

P = a〈 ~M〉.P ′ a〈 ~M〉−−−−→ P ′
,

which of course satisfies the condition P ′ ν= P ′.

Comm Par: Assume that

(Comm Par)
Q1

a−−−⇀ (νp)〈 ~M〉Q′
1

P = Q1 | Q2
a−−−⇀ (νp)〈 ~M〉(Q′

1 | Q2)

then there exists Q′′
1 and ~q such that Q1

(νq)a〈 ~M〉−−−−−−−→ Q′′
1 and Q′′

1
ν= (ν~p\~q)Q′

1,
so

(Parallel)
Q1

(νq)a〈 ~M〉−−−−−−−→ Q′′
1

P = Q1 | Q2
(νq)a〈 ~M〉−−−−−−−→ Q′′

1 | Q2

where Q′′
1 | Q2

ν= (ν~p \ ~q)Q′
1 | Q2

ν= (ν~p \ ~q)(Q′
1 | Q2).

Comm Res: Assume that

(Comm Res)
Q

a−−−⇀ (ν~p)〈 ~M〉Q′

P = (νr)Q a−−−⇀ (νr~p)〈 ~M〉Q′
a /∈ {r, r}

then by the induction hypothesis there existsQ′′ and ~q such thatQ
(ν~q)a〈 ~M〉−−−−−−−→

Q′′ and Q′′ ν= (ν~p\~q)Q′. It is either the case that r ∈ n((ν~q)a〈 ~M〉) or not.
If r ∈ n((ν~q)a〈 ~M〉) then

(Open)
Q

(ν~q)a〈 ~M〉−−−−−−−→ Q′′

P = (νr)Q
(νr,~q)a〈 ~M〉−−−−−−−−→ Q′′

r 6= a and r ∈ fn(~M)

where Q′′ ν= (νr, ~p \ r~q)Q′. On the other hand, if r /∈ n((νq)a〈 ~M〉) then

(Restriction)
Q

(νq)a〈 ~M〉−−−−−−−→ Q′′

P = (νr)Q
(ν~q)a〈 ~M〉−−−−−−−→ (νr)Q′′

r /∈ n((ν~q)a〈 ~M〉)

where (νr)Q′′ ν= (νr)(ν~p \ q)Q′ ν= (νr~p \ q)Q′ because r /∈ ~q.

114 Proofs

Comm Red: Assume that

(Comm Red)
P > P̃

a−−−⇀ (ν~q)〈 ~M〉P ′

P
a−−−⇀ (ν~q)〈 ~M〉P ′

then by the induction hypothesis there exists P ′′ and ~q such that P̃
(ν~q)a〈 ~M〉−−−−−−−→

P ′′ and P ′′ ν= (ν~q \ ~p)P ′. So we have

(Reduction)
P > P̃

(ν~q)a〈 ~M〉−−−−−−−→ P ′′

P
(ν~q)a〈 ~M〉−−−−−−−→ P ′′

where P ′′ ν= (ν~q \ ~p)P ′.

Now we turn to the proof of (ii):

Comm In: Assume that

(Comm In)
P = a(~x).Q a−−−⇀ (~x)Q

then
(Input)

P = a(~x).Q
a〈 ~M〉−−−−→ Q{ ~M/~x}

for any ~M such that | ~M | = |~x|.

Comm Par: Assume that

(Comm Par)
Q1

a−−−⇀ (~x)Q′
1

P = Q1 | Q2
a−−−⇀ (~x)(Q′

1 | Q2)

then Q1
a〈 ~M〉−−−−→ Q′

1{ ~M/~x} and

(Parallel)
Q1

a〈 ~M〉−−−−→ Q′
1{ ~M/~x}

P = Q1 | Q2
a〈 ~M〉−−−−→ Q′

1{ ~M/~x} | Q2 = (Q′
1 | Q2){ ~M/~x}

for all ~M such that | ~M | = |~x|.

Comm Res: Assume that

(Comm Res)
Q

a−−−⇀ (~x)Q′

P = (νr)Q a−−−⇀ (~x)(νr)Q′

then Q
a(~M)−−−−→ Q′{ ~M/~x} and

(Restriction)
Q

a〈 ~M〉−−−−→ Q′{ ~M/~x}

P = (νr)Q
a〈 ~M〉−−−−→ (νr)Q′{ ~M/~x}

for all ~M such that | ~M | = |~x|.

115

Comm Red: Assume that

(Comm Red)
P > P̃

a−−−⇀ (~x)P ′

P
a−−−⇀ (~x)P ′

then P̃
a〈 ~M〉−−−−→ P ′{ ~M/~x} and

(Reduction)
P > P̃

a〈 ~M〉−−−−→ P ′{ ~M/~x}

P
a〈 ~M〉−−−−→ P ′{ ~M/~x}

for all ~M such that | ~M | = |~x|.

Proof of case (iii) is by induction in the depth of the application of (Comm
Inter) in the derivation tree.

Comm Inter: Assume that

(Comm Inter)
Q1

a−−−⇀ (ν~q)〈 ~M〉Q′
1 Q2

a−−−⇀ (~x)Q′
2

P = Q1 | Q2
τ−−−⇀ (ν~q)〈 ~M〉Q′

1@(~x)Q′
2 = (ν~q)(Q′

1 | Q2{ ~M/~x})

then from (i) we have that Q1
(ν~p)a〈 ~M〉−−−−−−−→ Q′′

1 where Q′′
1

ν= (ν~q \ ~p)Q′
1 and

from (ii) we have that Q2
a〈 ~M〉−−−−→ Q′

2{ ~M/~x}. So

(Communication)
Q1

(ν~p)a〈 ~M〉−−−−−−−→ Q′′
1 Q2

a〈 ~M〉−−−−→ Q′
2{ ~M/~x}

P = Q1 | Q2
τ−−−→ (ν~p)(Q′′

1 | Q′
2{ ~M/~x})

where

(ν~p)(Q′′
1 | Q′

2{ ~M/~x}) ν= (ν~p)((ν~q \ ~p)Q′
1 | Q′

2{ ~M/~x})
ν= (ν~q)(Q′

1 | Q′
2{ ~M/~x}).

Comm Par: Assume that

(Comm Par)
Q1

τ−−−⇀ Q′
1

P = Q1 | Q2
τ−−−⇀ Q′

1 | Q2 = P ′

then from the induction hypothesis Q1
τ−−−→ Q′′

1
ν= Q′

1 and thus

(Parallel)
Q1

τ−−−→ Q′′
1

P = Q1 | Q2
τ−−−→ Q′′

1 | Q2
ν= Q′

1 | Q2

.

Comm Res: Assume that

(Comm Res)
Q

τ−−−⇀ Q′

P = (νq)Q τ−−−⇀ (νq)Q′ = P ′

then by the induction hypothesis we have Q τ−−−→ Q′′ ν= Q′ and so

(Restriction)
Q

τ−−−→ Q′′

P = (νq)Q τ−−−→ (νq)Q′′ = (νq)Q′
.

116 Proofs

Comm Red: Assume that

(Comm Red)
P > P̃

τ−−−⇀ P ′

P
τ−−−⇀ P ′

then by the induction hypothesis P̃ τ−−−→ P ′′ ν= P ′ so

(Reduction)
P > P̃

τ−−−→ P ′′

P
τ−−−→ P ′′ ν= P ′

.

Bibliography

[Aba97] M. Abadi. Secrecy by typing in security protocols. January 1997.
Proc. 3rd Int’l. Symp. on Theoretical Aspects of Computer Software
(TACS ’97), Springer-Verlag, Berlin, Germany, 1997, pp. 611-638.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile Values, New Names, and
Secure Communication. ACM SIGPLAN Notices, 36(3):104–115,
March 2001.

[AF03] Mart́ın Abadi and Cedric Fournet. Hiding names: Private authenti-
cation in the applied pi calculus. March 02 2003.

[AG97] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Fourth ACM Conference on Computer
and Communications Security, pages 36–47. ACM Press, 1997.

[BDP02] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof tech-
niques for cryptographic processes. SIAM Journal on Computing,
31(3):947–986, 2002.

[BPV03] Michael Baldamus, Joachim Parrow, and Björn Victor. Spi Calculus
Translated to π-calculus Preserving May-Testing. Technical report,
Department of Information Technology, Uppsala University, Sweden,
December 2003.

[Gay00] Simon Gay. Some type systems for the pi calculus. May 18 2000.

[GJ] Andrew D. Gordon and Allan Jeffrey. Cryptyp - cryptographic pro-
tocol type checker. http://cryptyc.cs.depaul.edu/.

[GJ01a] Andrew D. Gordon and Alan Jeffrey. Authenticity by typing for se-
curity protocols. Technical Report MSR-TR-2001-49, Microsoft Re-
search (MSR), May 2001.

[GJ01b] Andrew D. Gordon and Alan Jeffrey. Typing correspondence asser-
tions for communication protocols. Technical Report MSR-TR-2001-
48, Microsoft Research (MSR), May 2001.

[GJ02] Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmet-
ric cryptographic protocols. Technical Report MSR-TR-2002-31, Mi-
crosoft Research (MSR), August 2002. a portion of this work appears
in the proceedings of the 15th IEEE Computer Security Foundations
Workshop (CSFW 15), Cape Breton, June 24–26, 2002.

117

118 BIBLIOGRAPHY

[Joh87] Peter T. Johnstone. Notes on logic and set theory. Cambridge Uni-
versity Press, 1987.

[KB70] D. E. Knuth and P. B. Bendix, editors. Simple word problems in
universal algebra, pages 263–297. Pergamon Press, 1970.

[KK01] Claude Kirchner and Hélène Kirchner. Rewriting solving proving.
Unpublished book, December 2001.

[Mil80] R. Milner. A calculus of communicating systems. Lecture Notes in
Computer Science, 92, 1980.

[Mil90] Robin Milner. Functions as processes. Lecture Notes in Computer
Science, (443):167–180, 1990.

[Mil93] Robin Milner. The Polyadic π-calculus: A Tutorial. In Friedrich L.
Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic
and Algebra of Specification, Proceedings of International NATO
Summer School (Marktoberdorf, Germany, 1991), volume 94 of Se-
ries F. NATO ASI, Springer, 1993. Available as Technical Report
ECS-LFCS-91-180, University of Edinburgh, October 1991.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

[Mit96] John C. Mitchell. Foundations for Programming Languages. MIT
Press, Cambridge, MA, 1996.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes, part I/II. Journal of Information and Computation,
100:1–77, September 1992.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proceed-
ings ICALP ’92, volume 623, pages 685–695, Vienna, 1992. Springer-
Verlag.

[MS98] Massimo Merro and Davide Sangiorgi. On asynchrony in name-
passing calculi. In Kim G. Larsen, Sven Skyum, and Glynn Winskel,
editors, 25th Colloquium on Automata, Languages and Programming
(ICALP) (Aalborg, Denmark), volume 1443 of LNCS, pages 856–867.
Springer, July 1998.

[Par01] Joachim Parrow. An introduction to the pi-calculus. In Jan Bergstra,
Alban Ponse, and Scott Smolka, editors, Handbook of Process Algebra,
pages 479–543. Elsevier Science, 2001.

[PS93] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping
for mobile processes. In Proceedings 8th IEEE Logics in Computer
Science, pages 376–385, Montreal, Canada, June 1993.

[PT97] Benjamin Pierce and David Turner. Pict: A Programming Language
Based on the PI-Calculus. Technical Report 476, Indiana University,
1997.

BIBLIOGRAPHY 119

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-
Order and Higher-Order Paradigms. PhD thesis, University of Edin-
burgh, 1992.

[ST99] Donald Sanella and Andrzej Tarlecki. Algebraic Preliminaries. In
Egidio Astensiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner,
editors, Algebraic Foundations of Systems Specification, IFIP State-
of-the-Art Reports, chapter 2, pages 13–30. Springer, 1999.

[SW01] Davide Sangiorgi and David Walker. The π-calculus - A Theory of
Mobile Processes. Cambridge University Press, 2001.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — A tool
for the π-calculus. In David Dill, editor, Computer Aided Verification
(Proc. of CAV’94), volume 818 of LNCS, pages 428–440. Springer,
1994.

