
Department of Computer Science
Aalborg University
Fredrik Bajersvej 7E
DK–9220 Aalborg Øst
Denmark

Umbrella
We can’t prevent the rain . . .

– But we don’t get wet!

Master’s Thesis

Aalborg University

June 2004

Group members: Søren Nøhr Christensen snc@cs.aau.dk
Kristian Sørensen ks@cs.aau.dk
Michel Thrysøe mthrysoe@cs.aau.dk

Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:

Umbrella
We can’t prevent the rain . . .
– But we don’t get wet!

PROJECT PERIOD:

DAT6,
February –
June 2004

PROJECT GROUP:

umbrella@cs.aau.dk
umbrella.sourceforge.net

GROUP MEMBERS:

Søren Nøhr Christensen
Kristian Sørensen
Michel Thrysøe

SUPERVISOR:

Emmanuel Fleury

NUMBER OF COPIES: 12

REPORT PAGES: 76

APPENDIX PAGES: 35

TOTAL PAGES: 127

SYNOPSIS:

This master’s thesis describes the Umbrella

security mechanism for Linux on handhelds.
Umbrella implements a combination of process
based mandatory access control and authenti-
cation of files.

Umbrella is implemented on top of the Linux
Security Modules framework in Linux kernel
2.6. A HP iPAQ PDA has been used for im-
plementation and testing purposes.

The mandatory access control scheme is en-
forced at process level, by a set of restrictions
for each process, where every process has at
least the restrictions of its parent. When a
process spawns a new child process, it is pos-
sible for the programmer to specify a more re-
strictive context for this child. Thus, it is pos-
sible for the programmer to enforce the prin-
ciple of least privilege for possibly dangerous
child processes.

Vendors provides signed executables by means
of public key cryptography. The signature
consists of a set of restrictions to be set on
time of execution and a hash value of the exe-
cutable. The latter enables Umbrella to check
if the file has been altered.

The process based MAC part of Umbrella have
been successfully implemented, and file system
relevant implementation is pending work. Fur-
thermore, Umbrella have been benchmarked
for performance and methods for verifying
LSM have been investigated.

Authors

Kristian Sørensen

Michel Thrysøe

Søren Nøhr Christensen

5

Contents

Contents 7

1 Introduction 11

1.1 Linux on Handhelds . 11

1.2 What is Umbrella? . 11

1.3 Threats to Handhelds . 13

1.4 Report Overview . 14

2 Analysis of Existing Security Projects 17

2.1 Mandatory Access Control Principles 17

2.2 The Medusa DS9 Security Project 18

2.3 LOMAC - MAC You Can Live With 20

2.4 Security-Enhanced Linux . 22

2.5 Linux Intrusion Detection System 24

2.6 Related Projects . 24

2.7 Discussion on Existing Projects 26

2.8 The Idea of Umbrella . 26

3 Design 29

3.1 Top Level Design . 29

3.2 Process Based MAC . 31

3.3 Signed Files . 38

3.4 Extra Features . 43

3.5 Conclusion . 45

4 Implementation 47

4.1 Process Based MAC . 47

4.2 Signed Files . 55

4.3 Optimizations . 58

4.4 Conclusion . 58

7

Page 8 of 127 CONTENTS

5 Umbrella in Practice 61

5.1 Benchmarking Umbrella . 61

5.2 Programming for Umbrella . 62

5.3 Circumventing Umbrella . 64

5.4 Attacking a System . 66

5.5 Conclusion . 70

6 Verification 71

6.1 Verification of Umbrella . 71

6.2 Static Analysis of LSM Hooks . 72

6.3 Runtime Verification of LSM Hooks 75

6.4 Capability Root Exploit . 79

6.5 Conclusion . 81

7 Conclusion 83

A Tools and Howtos 89

A.1 Installing Linux on the iPAQ . 89

A.2 Building a Cross Compiler for the iPAQ 92

A.3 Using the 2.6 Kernel on the iPAQ 92

A.4 User-mode Linux . 94

B Linux for Handhelds 97

C Linux Security Modules 99

C.1 The Becoming of LSM . 99

C.2 The LSM Framework . 100

C.3 The LSM Capabilities Module . 104

C.4 Example Security Module . 105

C.5 Discussion . 105

D LSM Hooks in Linux 2.6.3 107

D.1 Program Execution Operations 107

D.2 File System Operations . 108

D.3 Inode Operations . 109

D.4 File Operations . 112

D.5 Process Operations . 114

D.6 Netlink Messaging . 115

D.7 Unix Domain Networking . 116

CONTENTS

CONTENTS Page 9 of 127

D.8 Socket Operations . 116

D.9 System V IPC Operations . 118

D.10 Capabilities and Different System Calls 120

D.11 Registering and Unregistering Modules 122

E Roadmap of Umbrella 123

Bibliography 125

CONTENTS

1Introduction

This report describes the a security mechanism for Linux on handhelds, imple-
menting a combination of process based mandatory access control and authen-
tication of files. This mechanism is named Umbrella. The idea for Umbrella
emerged when investigating ways to enforce security on handheld devices. The
Umbrella project is developed as our master’s thesis at Department of Computer
Science, Aalborg University, Denmark.

1.1 Linux on Handhelds

As the Umbrella project started it was aimed at developing a security mechanism
for the Symbian OS1, since this is the leading operating system for handhelds
[18]. It was not possible to gain access to the Symbian source code, which is why
Linux was chosen instead. After working with the Umbrella project for a period
of nine months, the Linux approach is becoming increasingly more interesting
as Motorola, Samsung, Panasonic and others have released smart phones based
on Linux [6, 3]. Linux for embedded systems is in rapid development along with
support for the ARM architecture which is used in many handheld devices. An
example is HP, who is currently supporting this development.

There are several reasons for using Linux on handhelds, including reduced time
to market [4, 33], openness and the fact that it is free. Umbrella provides the
feature of protecting the handheld, including its devices and files against various
attacks.

1.2 What is Umbrella?

Handheld devices are in rapid and constant development and they perform an
increasing amount of tasks in everyday life. The increasing popularity and
wide spread use introduces more and more threats to handhelds, which raises a
demand for security measures within the operating system. Umbrella for hand-
helds implements a combination of process based mandatory access control and
authentication of files for Linux based on the Linux Security Modules frame-
work (LSM). The mandatory access control (MAC) scheme is enforced by sets
of restrictions on individual processes.

1http://www.symbian.com

11

Page 12 of 127 1.2. WHAT IS UMBRELLA?

Use
ResourceData

Signature

Signed File

Linux

System
Resource

Authentication

Import

Restrictions
Check

Active Process

Execute
File File

Filesystem

Umbrella security server

Figure 1.1: The Umbrella idea.

1.2.1 Security Improvements Provided by Umbrella

A main area for improvement is the access control measures of the operating
system. The standard discretionary access control (DAC) mechanism can be
supplemented by introducing the concept of mandatory access control. By en-
forcing MAC on processes as opposed to subject and objects, two advantages
emerge. First, it is possible to view the access control structure as a tree, where
children have at least all the restrictions of its parent. Secondly, this avoids
the need for manual setting of restrictions for all programs in the system. The
security mechanism deals with the problem of malicious software, using e.g. the
principle of least privilege. This limits the harm of process hijacking.

Another area for improvement is the integrity of executables. This must be
improved by introducing vendor-signing of executable files. A hash value is used
to ensure that the file has not been tampered with. The set of restrictions that
the program must run with, is included to ease the introduction of restrictions
on the system. This is important because the system should be transparent to
the user; user interaction regarding restrictions and other security questions is
very unwanted on a handheld.

The basics of the above ideas for improvement is illustrated in Figure 1.1. When
a file is imported to the system, the security server is asked for authentication.
If the authentication is positive, the file is added to file system and given the set
of restrictions which was included within the signature. If the authentication is
negative, a predefined set of restrictions is given. When an active process tries
to access a system resource, the security server checks if the process is restricted
from this. If so, the process is denied access to the resource.

Implementing Umbrella in the operating system of a handheld device makes it
possible to control and restrict access to resources on the device. By adapting
existing programs, it is possible to restrict processes to least privilege, thereby
limiting damage done by e.g. malicious email attachments as well as preventing
viruses from spreading.

CHAPTER 1. INTRODUCTION

1.3. THREATS TO HANDHELDS Page 13 of 127

1.3 Threats to Handhelds

The two main security threats against handheld devices are imposed through
the exploit of errors in existing software and through software with malicious
content, such as a virus attached to an email. Both threats are elaborated
below, along with a introduction to how Umbrella seeks to counter threats of
these types.

1.3.1 Errors in Existing Software

Errors in software can be exploited to gain unauthorized access to a system or
crash processes. Different classes of attacks exists and two are briefly described
below, namely buffer overflow attacks and format string attacks.

Buffer Overflow Attacks

Buffer overflows are one of the most common exploits today; the international
Computer Emergency Response Team2 have sent out more than a hundred
security warnings concerning buffer overflows within the last year. A short
introduction is given here, but further details can be found in [36] and [41].

A buffer overflow occurs when a process tries to store more data in a buffer,
than it is intended to hold and no bounds checking is done. Since buffers are
created to contain a finite amount of data, the extra information can overflow
into adjacent buffers, thereby corrupting or overwriting valid data held in them.

In buffer overflow attacks, the extra data may contain code designed to trigger
specific actions, in effect sending new instructions to the attacked computer.
This could be used to crash or hijack a process. A hijacked process can be used
to gain further access to the system, as it has the rights of the user that started
the original process. From this it is obvious to see that hijacking of a process
owned by root, is very dangerous to the system. Crashing a process via a buffer
overflow is also a potential attack which can be used to bring down the system,
i.e. a denial of service attack. Providing a solution for this type of attacks is
difficult, since they can occur in any process at any time, and new exploits are
discovered continuously.

Format String Attacks

Format string attacks is another way of tampering with the contents of the
stack, done by exploiting unchecked format string input [35].

Format string bugs come from the same dark corner as many other security
holes; the laziness of programmer’s. The concept is best explained using an
example. A programmers task is to print out a string or copy it to some buffer.
What he means to write is something like:

1 printf ("%s" , str);

2http://www.cert.org

CHAPTER 1. INTRODUCTION

Page 14 of 127 1.4. REPORT OVERVIEW

Instead he decides that he can save time, effort and 6 bytes of source code by
writing

1 printf (str);

Why bother with the extra printf argument and the time it takes to parse
through that format? The first argument to printf is a string to be printed
anyway! Because the programmer has unknowingly opened a security hole that
allows an attacker to control the execution of the program.

What did the programmer do that was so wrong? He passed in a string that
he wanted printed verbatim. Instead, the string is interpreted by the printf

function as a format string. It is scanned for special format characters such
as %d. As formats are encountered, a variable number of argument values are
retrieved from the stack. From this it is obvious that an attacker can peek
into the memory of the program by printing out these values stored on the
stack. What may not be as obvious is that this simple mistake can give away
enough control to allow an arbitrary value to be written into the memory of
the running program. This involves the use of other format characters and a
detailed explanation can be found in [35].

The approach taken by Umbrella ensures that it is not important how an attack
is performed, since Umbrella does not attempt to prevent the process hijacking
itself, but instead seeks to limit the potential damage done by a hijacked process.
The reason for this decision is that the number and variety of new attacks makes
it virtually impossible to counter all of them.

1.3.2 Malicious Software

Another threat to handhelds that is becoming increasingly relevant, is that
of malicious software, such as viruses, worms, etc. [17, 1, 20, 19]. With the
increasing use of email on handhelds and the fact that handheld devices include
several communication features, this opens for various attacks through these.
Another way of getting malicious code executed on a system, is to hide it in
software with a legitimate purpose.

The attacks that can be imposed through execution of malicious code range
over a variety of attacks, such as a virus that sends it self to all contacts in the
address book or a Trojan horse that installs a back door on the system.

The threat of malicious code executed through email can be countered by lim-
iting the rights of an attachment, executed from the email client. The threat
from malicious code concealed in legitimate programs can be countered by in-
troducing an authentication of executable files. Files from untrusted sources
should be executed in a very restricted environment.

1.4 Report Overview

Chapter 2 contains a description of a selection of existing security projects,
which have been investigated as inspiration for Umbrella.

CHAPTER 1. INTRODUCTION

1.4. REPORT OVERVIEW Page 15 of 127

Chapter 3 contains the design document for Umbrella, including design of the
process based MAC along with the design of the vendor-signed files.

Chapter 4 presents implementation details along with issues regarding possible
optimizations of Umbrella.

Chapter 5 includes preliminary benchmarks of Umbrella and the Umbrella API
including an example. Finally suggestions of how to circumvent the security
provided by Umbrella is presented along with two real life examples.

Chapter 6 documents verification of Umbrella, which consists of verifying the
Linux Security Modules framework. An exploit in LSM has been investigated
and discussed.

Chapter 7 concludes the project.

Appendices A and B contains information regarding practical issues involved
in installing and using Linux on the iPAQ, as well as a description of Linux
distributions for handhelds.

Appendix C explains the Linux Security Modules framework which is the base
of Umbrella.

Appendix D lists all LSM security hooks.

Appendix E presents the roadmap for the Umbrella implementation.

CHAPTER 1. INTRODUCTION

2Analysis of Existing

Security Projects

This chapter covers a selection of security projects involving some sort of MAC
mechanism for Linux. Several projects have been investigated to gain an overview
of the field and seek inspiration and ideas for the design of Umbrella.

2.1 Mandatory Access Control Principles

In general terms, mandatory security policy represents any security policy that
is defined strictly by system security policy administrator along with any policy
attributes associated. MAC policy specifies how certain subjects and objects
can access operating system objects and services. There are two fundamental
implications of the MAC approach [7].

• Users cannot manipulate access control attributes of the objects they own
at their own discretion.

• Privileges associated with a process are determined by appropriate MAC
mechanisms, based on relevant mandatory security policy settings, on a
per task basis.

The general access control model, that many MAC implementations are based
on, describes the system’s state using three entities (S, O, M), where S is a
set of subjects, O is a set of objects and M is an access matrix which has
one row for each subject and one column for each object. The cell M [S2, O1]
contains the set, a, of access rights that subject S2 has for object O1. These
access rights are taken from a finite set A, that could be e.g {read, write}. This
means that subject S2 can perform a write operation on object O1 if and only
if write ∈ M [S2, O1]. Figure 2.1 depicts this example and the general approach
to mandatory access control.

A presentation of several security project follows.

17

Page 18 of 127 2.2. THE MEDUSA DS9 SECURITY PROJECT

S

...

1

sn

s
o1 o2 on

s2

a a a

a

aaa

a a

O

Kernel

M

...

sn

2s

s1

ono2

o1

Figure 2.1: The general MAC approach.

2.2 The Medusa DS9 Security Project

Medusa is a security project currently implemented for Linux, but implemen-
tations for other platforms are planned. Its approach to security is a Virtual
Space model [48], which separates the objects and subjects of the system into
a finite number of domains called Virtual Spaces (VS). The access matrix is
divided into properties for subjects and properties for objects. Subjects and
objects must share Virtual Space in order for operations to be permitted.

Second part of the Medusa security framework, is the Security Decision Center
(SDC). The SDC is responsible for updating the Virtual Space sets, as well as
allowing or denying access to objects.

In the following the example shown in Figure 2.2, goes through authorization
of operations to demonstrate how this is done.

When subject P wishes to do a write operation on object F , P ’s “write-VS’s”,
Pw, are checked against the Virtual Space that F belongs to, by the SDC, i.e.
Pw and F have to share one or more Virtual Space’s. Figure 2.2 shows how
Pw and F share V S3, and thereby making it possible for P to write to F .

The byte arrays depicted in Figure 2.2 shows how the implementation of the
Virtual Space’s is done. In the example there are three Virtual Space’s, V S1,
V S2, V S3. The object F belongs to V S1 and V S3, which can be seen by
the high bits in the first and third place in the array. Every subject has a
number of byte arrays corresponding to the number of access rights in A. In
the example the subject P contains two byte arrays, one for each access right in

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

2.2. THE MEDUSA DS9 SECURITY PROJECT Page 19 of 127

VS1

VS2

F

F3

F4

F1

F2

VS3

P’s write
0 0 1

P’s read
VS

1 0 1

PwPr

01 1

The byte array bounded to F:

The Byte arrays bounded
to P:

VS

F’s VS

Figure 2.2: Example of Virtual Spaces.

A = read, write. In the Figure Pw belongs to V S3, meaning that P is allowed
to do a write operation on all objects ∈ V S3.

The SDC is implemented as a user space security daemon called Constable.
Constable is the current implementation of an authorization server. The user
space implementation allows kernel changes to be simpler and smaller and thus
easier to port to new versions of the Linux kernel and to be more flexible, so
improvements to the authorization server should not require changes in the
kernel.

The Virtual Spaces are implemented as a small patch to the kernel, which adds
the arrays of bits in each subject and object, that indicate to which Virtual
Spaces these belong. Each subject has such an array, for each possible action it
can perform (read and write in the above example). Each object also has a bit
array of which operations require Medusa’s confirmation. The implementation
as bit arrays, makes it possible to perform fast calculations when authorizing
an operation. To check whether P has write access to F , is an and-operation
on the numbers 001 and 101, seen on Figure 2.2.

2.2.1 Summary

The first impression of Medusa Project shows several advantages, mainly flex-
ibility. This is achieved by means of the Virtual Space model, which allows
the use of advanced security policies. Furthermore the implementation of the

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

Page 20 of 127 2.3. LOMAC - MAC YOU CAN LIVE WITH

Kernel−dependent

Kernel−independent

1500 lines of C code

1000 lines of C code MediatePLMMonitor

Wrappers and utility functions

Figure 2.3: Loadable kernel module architecture.

Security Decision Center as a user space daemon, makes it possible to update
policies, without changing the kernel. However, the Medusa project is not ma-
ture enough to be considered for use in production. The amount of available
documentation is very limited, and available versions of Medusa exists only to
deprecated versions of the Linux kernel. Further information on the Medusa
Project can be found at: http://medusa.fornax.sk.

2.3 LOMAC - MAC You Can Live With

The LOMAC system was described in [27] by Timothy Fraser and the following
is a description of LOMAC based on this article.

LOMAC was developed to make it possible to apply mandatory access control
mechanisms to standard Linux kernels already in use. One of the key features
of LOMAC is the fact that it uses an approach, which emphasizes compatibility
and transparency to the user. This is achieved by using a simple but useful
MAC integrity protection to Linux which:

• Is applicable to standard kernels.

• Is compatible with existing applications.

• Requires no site-specific configuration.

• Is largely invisible to the user.

Using these design criteria LOMAC was developed to solve some of the problems
which have been found with other MAC implementations which include; incom-
patibility with existing kernel and application software, increased administrative
overhead and disruption of traditional usage patterns.

2.3.1 Getting control

LOMAC is an implementation of a Low Water Mark MAC protocol [26] in a
loadable kernel module, as seen in Figure 2.3. This implementation can be
deployed to standard off the shelf Linux distributions. This is accomplished by
interposing LOMAC between the kernel and the processes, at the kernels system
call interface. This is done at initialization time, where the kernel’s system call
vector is traversed and the addresses of the security-relevant system calls are
replaced with addresses of the corresponding wrapper functions in LOMAC.

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

2.3. LOMAC - MAC YOU CAN LIVE WITH Page 21 of 127

High Level

system binaries, libs, /etc

Low Level

user files, downloads

network servers, clients

init, kernel daemons

Figure 2.4: The two levels in LOMAC.

A description of the LOMAC wrapper functions can be found in [27], where
examples of such functions are given.

2.3.2 Security Levels

LOMAC divides the system into two integrity levels; high and low, both seen
in Figure 2.4. The high level contains the critical system components such as
the init process, kernel daemons, system binaries etc. The low level contains
client and server processes that read from the network, local user processes and
their files. Once the integrity level is assigned to a file it is never changed, but
high-level processes can be demoted on run-time, if they read low-integrity data.
It is however not possible to increase the integrity level of a process once it has
been demoted.

LOMAC uses this division of integrity levels to provide protection in two ways.
First, it prevents low-level processes from modifying or signaling high-level files
and processes. Secondly, LOMAC prevents migration of low-level data to the
high-integrity level by demoting any process reading low-level data.

The assignment of integrity levels is achieved using a small set of rules to deter-
mine the integrity level of the different parts of the file system. These rules are
specified at compile-time, since the goal of the current implementation is to use
a single generic configuration, that provide some protection on all systems. This
is done with a simple form of implicit attribute mapping where the path names
are stored in an a list of records, which contain the path name, a child-of flag
and the security level. This list is ordered by the length of the paths. When the
integrity level for an object has to be decided, the list is traversed in a linearly
fashion until a match is found. It is proposed in [27] that the use of a hash table,
will give quicker lookups. The child-of flag is used to set the integrity-level of all
sub-directories in a path, hence if a directory is low-integrity all sub-directories
in the directory is also given a low-integrity label.

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

Page 22 of 127 2.4. SECURITY-ENHANCED LINUX

2.3.3 Exceptions and known problems

To maintain compatibility with some important parts of the operating system,
it is necessary to allow some processes to modify local /etc configuration
files. An example of such a process is the pump client side DHCP agent which
modifies local configuration files like /etc/resolv.conf, on behalf of a remote
DHCP server.

Known problems and issues with LOMAC include problems with running high-
level processes which are using temporary files. This is due to the nature of the
/tmp directory has to be a low-integrity level directory. The result of this is that
all high level processes using temporary files will be demoted to a low-integrity
process.

LOMAC does not prevent malicious low-level processes from harming the in-
tegrity of other low-level parts of the system. This includes the possibility of
modifying, deleting files or sending kill signals to other low-level processes.

The use of “trusted” programs provide an inherent security risk, since there is a
possibility of bugs in all programs. An example of this is the OpenSSH server,
which is a trusted process, in which vulnerabilities have been found a number
of times.

2.3.4 Summary

LOMAC provides a generic protection to standard Linux systems, by providing
a default configuration. Security policies are specified at compile time, which
prevents dynamic changes of security configuration. The use of only two in-
tegrity levels does not provide sufficient flexibility to device a detailed policy
of access rights for individual processes. Further information on the LOMAC
project can be found at: http://opensource.nailabs.com/lomac.

2.4 Security-Enhanced Linux

Security-Enhanced Linux (SELinux) [40] is based on the Flask security archi-
tecture [42], which provides a clean separation between the policy enforcement
code and the policy decision-making code.

The Flask architecture provides two policy-independent data types for security
labels, security context and security identifier (SID). SIDs are mapped to a
security context by a Security Server.

Figure 2.5 depicts the components included in SELinux. As the Flask archi-
tecture devices, the policy decision-making and policy enforcement components
are separated. Below, these components are briefly elaborated.

2.4.1 Policy decision-making

The security server includes all the policy decision-making code. The security
server is completely independent from the rest of the system, and can thus be
substituted by another implementation.

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

2.4. SECURITY-ENHANCED LINUX Page 23 of 127

Access
Vector
Cache

Process Management File system Network
Security enforcement:

Security decision−making:
Security Server

policy?

policy!

policy!

policy?

Figure 2.5: Component overview of Security-Enhanced Linux.

To maximize performance, an access vector cache (AVC) is implemented. The
AVC caches decisions made by the security server. Furthermore the AVC also
includes a number of security classes, that is used for easy classification of sub-
jects and objects. A security class is an access vector, that is shared among a
number of files. When the AVC is consulted it returns a reference to the entry
in the cache that contains the policy in issue. Details on configuring SELinux
are found in [39].

2.4.2 Policy enforcement

The policy enforcement is implemented on top of the Linux Security Modules
(LSM) framework. This framework provides a set of hook functions in the Linux
kernel, which supports modularity for implementing a security system. More
information on LSM, can be found in Appendix C.

The policy enforcement code opaquely handles security contexts and SIDs, which
can only be interpreted by the security server. The policy enforcement code also
binds SIDs to active processes and objects, consulting the security server when
a SID needs to be computed for a new subject or object.

The policy enforcement code obtains policy decisions from the security server,
through the AVC. These decisions are used to assign security labels to processes
and objects, and to control operations based on these security labels. This is
done by passing a pair of SIDs and a security class.

The policy enforcement code in the file system, maintains a persistent map-
ping in each file system, that maps inodes to persistent SIDs and maps these
persistent SIDs to security contexts.

2.4.3 Summary

The main advantage of SELinux is the clear separation of policy decision-making
and policy enforcement. This especially makes the policy decision-making adap-
tive to changing domains. Furthermore, the policy enforcement is implemented
on top of the general kernel security framework LSM. Parts of the design and im-

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

Page 24 of 127 2.5. LINUX INTRUSION DETECTION SYSTEM

plementation of SELinux can be used in designing a security measure optimized
for Linux on handheld devices.

2.5 Linux Intrusion Detection System

Linux Intrusion Detection System (LIDS) is a kernel patch and administration
tool for strengthening Linux kernel security. LIDS implements a reference mon-
itor and MAC in the kernel. Furthermore it implements a port scan detector, a
file protection system and a mechanism for protection of processes.

LIDS protects the kernel from tampering by inserting a security check into
system calls. The file protection is based on the fact that access to files is also
handled through system calls. Process protection is implemented in the same
manner. LIDS store access restrictions in an access control list, one for files and
one for restrictions on processes. Restrictions are based on object and subjects.
The access control lists are integrated into the virtual file system, making the
access control lists independent on the underlaying file system.

To further protect the kernel, LIDS provides a feature that makes it possible
to seal the kernel. Once the kernel is sealed, it is no longer possible to load
or unload loadable kernel modules. This feature is implemented to ensure the
integrity of the LIDS kernel [29].

2.5.1 Summary

LIDS provides features for restricting access and protecting the system. These
features are based on an static ACLs. The idea of sealing the kernel is interest-
ing to protect the kernel from malicious loadable kernel modules from intruders.
However, the LIDS implementation seems weak in that the kernel can be un-
sealed by a user space program. More information regarding the LIDS project
can be found at the project web site http://www.lids.org.

2.6 Related Projects

Other related projects that deal with security issues include the following.

• Janus – http://www.cs.berkeley.edu/∼daw/janus

– Janus is a security tool for sandboxing untrusted applications within
a restricted execution environment.

– Latest version is for Linux 2.2.x kernels running on the x86 architec-
ture.

• GrSecurity – http://www.grsecurity.net

– GrSecurity implements role-based access control, and has further
made efforts for “change root” hardening, race prevention of tempo-
rary files, extensive auditing, additional randomness in the TCP/IP
stack and allows users to view personal processes only.

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

2.6. RELATED PROJECTS Page 25 of 127

– Latest versions are for Linux 2.4.x and 2.6.x kernels.

• RSBAC – http://www.rsbac.de

– The RSBAC framework is based on the Generalized Framework for
Access Control by Abrams and LaPadula [21]. All security relevant
system calls are extended by security enforcement code. This code
calls the central decision component, which in turn calls all active
decision modules and generates a combined decision. This decision
is then enforced by the system call extensions.

Decisions are based on the type of access, the access target and on
the values of attributes attached to the subject calling and to the
target to be accessed. All attributes are stored in fully protected
directories, one on each mounted device. Thus changes to attributes
require special system calls provided.

All types of network accesses can be controlled individually for all
users and programs, which gives full control over network behavior
and makes unintended network accesses easier to prevent and detect.

– Latest development versions are for Linux 2.4.x and 2.6.x kernels.

• VXE – http://www.intes.odessa.ua/vxe

– Virtual eXecuting Environment, VXE, mainly offers daemon protec-
tion and restrictions on shells, where ACLs specify lists of files which
are available to different users.

– Latest version is for Linux 2.4.16 kernel.

• Openwall Project – http://www.openwall.com

– Memory protection patch. Dismissed by Linus Torvalds.

• The PAX Project – http://pageexec.virtualave.net

– Stack protection patch, that prevents introduction and execution of
arbitrary code.

• LinSEC – http://www.linsec.org

– The main aim of LinSec is to introduce mandatory access control into
Linux. LinSec consists of four parts. Capabilities, file system access
domains, IP labeling lists and socket access control.

As for Capabilities, LinSec heavily extends the Linux native capabil-
ity model to allow fine grained delegation of individual capabilities
to both users and programs on the system.

The file system access domain sub-system allows restriction of acces-
sible file system parts for both individual users and programs. Now
you can restrict user activities to only its home directory, mailbox,
etc.

IP labeling lists enable restriction on allowed network connections
on per program basis. The policy may be configured so that no one
except e.g. the mail transfer agent can connect to remote port 25.

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

Page 26 of 127 2.7. DISCUSSION ON EXISTING PROJECTS

The socket access control model enables fine grained socket access
control by associating, with each socket, a set of capabilities required
for a local process to connect to the socket.

– Latest version is for Linux 2.4.18 kernel.

2.7 Discussion on Existing Projects

The investigated projects all contain different features of more or less interest.
The following discussion will evaluate these features.

The lack of support for newer Linux kernels and the limited amount of docu-
mentation is a drawback of the Medusa Project. The flexibility of the Virtual
Space model is interesting, it does however, require configuration from a sys-
tem administrator, which is not desirable on a handheld device. Furthermore
Medusa is designed to operate in a multiuser environment, where all subjects
and objects are assigned individual security contexts, which does not fit nor-
mal usage for a handheld device. In Medusa the Security Decision Center is
implemented as a user space daemon, to ease the implementation. It is unclear
how the Medusa developers intents to protect the user space security daemon
from other user space applications, but it is clear that the SDC would be better
protected in the kernel.

LOMAC was designed as a transparent MAC implementation for use in existing
systems. For use in handheld devices the design of the LOMAC system is simply
to inflexible due to the two level model and the compile time configuration of
policies. Although the two security levels would in theory allow a separation of
important system processes and configurations from the rest of the system. This
does however create a range of rather problematic issues. Although, the com-
pile time configuration eliminates user interaction, which is useful on handheld
devices, it creates a completely static list of rules.

SELinux offers clear separation of policy decision-making and policy enforcement
code, as devised by the Flask model. This is a very interesting due to the high
flexibility it provides. The LSM framework is also very interesting, since it
provides an interface on which a security system can be based. By basing a
security module on LSM, the module will require much less maintaining across
different versions of the Linux kernel. However like Medusa, SELinux is designed
for a different purpose, and include e.g. mechanisms to prevent migration of
information, making the framework rather complex. Furthermore SELinux is
based on assigning properties to objects and subjects, thereby requiring a policy
to be made for all new objects and subjects in the system. This type of policy
management requires active participation of a security administrator, which is
not desirable on a handheld device intended for normal users.

2.8 The Idea of Umbrella

The MAC implementations investigated, use object lists to describe the privi-
leges assigned to the objects in the system. However this results in a static list
of objects and privileges, where any changes would require the intervention of a

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

2.8. THE IDEA OF UMBRELLA Page 27 of 127

security administrator and possibly a reboot. On a handheld device this is not
convenient and should be replaced by a scheme, where privileges are assigned
dynamically, with minimal user interaction.

Umbrella will operate by means restrictions as opposed to access control lists.
These restrictions will be effective on processes only. This way, the security
system does not need to consider a policy for programs that are not executed.

The process based restrictions will be inherited from the parent process to its
children. Children will always be as restricted as their parent. The parent pro-
cess has furthermore the ability to specify additional restrictions for its children.
This naturally has to involve the programmer. Umbrella will therefore specify
a very simple API for setting restrictions for next sub-process, i.e. next child.

By introducing heavy restrictions on untrusted programs, the Umbrella MAC
scheme can be used to build a virtual sandbox for these programs. In this
sandbox, access to network, file system or process signaling, could be restricted.

To make it possible to assign restrictions to programs when executed, the pro-
cess based MAC will be combined with the possibility for developers to specify
execute restrictions for their programs. Thus, when a program is executed, the
process will get the restrictions specified by the developer and the restrictions
it inherits from its parent.

The concept of trusted vendors will be introduced by means of public key cryp-
tography. The public key of a vendor must be present within Umbrella. When
the vendor distributes his program, he will have to include a signature that
includes execute restrictions, and a hash of the executable file. Umbrella can
verify, that the binary and the execute restrictions have not been tampered with
during transfer to the system.

Umbrella will be implemented by the concept of the Flask model and based on
LSM.

CHAPTER 2. ANALYSIS OF EXISTING SECURITY PROJECTS

3Design

Umbrella is a security system that implements process based mandatory access
control. Umbrella implements MAC using restrictions on processes to control
and restrict access to resources. Vendor-signed files are used to introduce re-
strictions to the system and to authenticate the origin of files.

This chapter explains how Umbrella is designed, beginning with a view of the
different components and how they are connected. After this the different com-
ponents are described in further detail. This chapter can be read separately to
give a description of Umbrella. Full details on the implementation can be found
in Chapter 4.

3.1 Top Level Design

Before going into the details of the design of Umbrella, an overview of is given.
Figure 3.1 on the following page explains the different components of Umbrella
and how they are connected.

3.1.1 Resources on a Handheld

Umbrella can enforce restrictions on processes, but what would it be interesting
to restrict processes from doing?

New handhelds like the iPAQ 5550 are packed with devices for communication
like bluetooth, infrared and wireless network. It is important to be able to
control and restrict access to these devices. Handheld devices are more and
more integrated into everyday life and users can store personal information and
confidential data on their handheld. It is vital to have the possibility to protect
these data.

3.1.2 Placement of Umbrella

As seen in Figure 3.2 the kernel runs on top of and protects the hardware. Con-
ceptually LSM is placed on top of the kernel and can thus be used a foundation
to build security modules for Linux. Umbrella is placed on top of LSM. All of
this is kernel space, and therefore protected by hardware. Umbrella can from
its position mediate calls from user space to hardware resources.

29

Page 30 of 127 3.1. TOP LEVEL DESIGN

Sign

Data
Filesystems Net Process management

Trusted Keyserver

KEY

Kernel

Umbrella

Security EnforcementSecurity Decision Keyring

Key
Management

The Ultimate

Pacman

Megasoft

Vendor

Figure 3.1: Top level design of Umbrella. In the upper left corner, a vendor
is depicted. This vendor have made his public key available on a trusted key server.
A user downloads the product “The Ultimate Pacman” to his handheld. Since the
vendor’s public key is available from the key server, it can be inserted into the systems
key ring, using the key management part of Umbrella. From there it can be used to
authenticate the origin of “The Ultimate Pacman”. The signature contains a number
of restrictions that “The Ultimate Pacman” must be executed with. When the exe-
cutable is transfered to the file system, the signature is verified and the restrictions are
stored along with the executable. Processes are monitored by the security enforcement
component to make sure restrictions are enforced. The security decision component is
asked for security decisions, given a process and its associated set of restrictions.

CHAPTER 3. DESIGN

3.2. PROCESS BASED MAC Page 31 of 127

User space

Umbrella

LSM

Kernel

Hardware

} Kernel space

Figure 3.2: The placement of Umbrella.

The security enforcement part of Umbrella is to be implemented using the LSM
framework. The use of LSM in the implementation is detailed in Chapter 4 and
the framework itself is explained in Appendix C. Read this Appendix to gain
knowledge of LSM, which is needed in the report.

3.2 Process Based MAC

The major drawback of all the existing MAC implementations is mainly mainte-
nance of the access matrix, as described in Chapter 2. Even though this matrix
may be modeled by means of e.g. type-enforcement, the basic problem exists;
we still need to account for every object and subject in the whole system.

Whenever new subjects or objects are added to the system, these must be added
to the access matrix. If 1000 objects exist in the system and a new subject is
added, decision will have to be made for all objects if this new subject will have
access or not.

Measures like type-enforcement does indeed make the access matrix a bit more
flexible, but new objects and subjects, will still have to be assigned or added to
the right domain or type.

Umbrella takes a new approach to solve this problem by introducing process
based mandatory access control. Furthermore, to eliminate the access matrix,
the access control measure is enforced by restrictions only. Thus, every running
process have access to the whole system, except a given set of restrictions.
Discretionary access control still apply, i.e. Umbrella co-exists with DAC.

To justify, if process based restrictions is enough to protect a system, consider
which elements of any given computer system, at a given point in time, that
possibly can do harm or access confidential material. The only item that can
do harm is the process currently executing on the CPU. Everything else is not
important, at this specific point in time. If the executing process is restricted
appropriately, it can be guaranteed, that if it malfunctions, then the possible
harm done will not affect the resources from which the process is restricted.

CHAPTER 3. DESIGN

Page 32 of 127 3.2. PROCESS BASED MAC

3.2.1 The Linux Process Tree

The idea of processes based mandatory access control is strongly supported by
the way processes are structured in Linux. Processes in Linux are ordered in
a tree structure. On Figure 3.3, an example from a running Linux system is
depicted.

Every process, except init, have a parent. Security is enforced by ensuring
that every process will be at least as restricted as its parent. This is to be
done by inheriting restrictions from parents to children. Parent processes have
the possibility of specifying additional restrictions for its children, which allows
enforcement of the principle of least privilege.

3.2.2 Restrictions

Restrictions are very simple. Besides a few special restrictions, all restrictions
are defined as a path in the file system (devices are files on a Linux system).
If a restriction to a given path is set, the path and everything below is unac-
cessible for the process. The special restrictions are listed in the lower part of
Table 3.1 on page 36.

By introducing restrictions, we need to consider how these will be modeled.
Three approaches were considered.

The Different Approaches

A static model, where a fixed number of restrictions are defined, will be very
easy to implement, very small, and easy to optimize for minimizing overhead.
However, this approach would make the system highly inflexible. The restric-
tions that developers would be able to set, would be those in the static list
defined in Umbrella.

To maximize performance, the static model could be implemented as a bit-
vector, associated with each process and file found on the system. Each bit
in the vector will represent a specific restriction, thus, if a bit is set, then the
corresponding restriction applies to the process. The use of a bit-vector can
minimize the CPU instructions used for e.g. inheritance of restrictions, since
copying may be done with only one cycle (for a 32 bit vector).

The first approach was to use a bit-vector only, making it very long, so that new
restrictions could be added. To find the appropriate index in the vector, a global
hash table should map restrictions to indexes in the bit-vector. This did not
work, as the size of the bit-vector in any case would be critical. Furthermore,
removing restrictions from the system, would require updating every file and
process in the system, which is unacceptable.

A dynamic model will include the ability for adding an unlimited number of
restrictions, storing the restrictions in e.g. structures, mapped in a hash table.
This would inevitably be slow, since several memory allocations are needed for
each restriction. Also inheritance of restrictions from parent to children would
be slow due to this.

The dynamic model, would model each restriction as a structure, and store all

CHAPTER 3. DESIGN

3.2. PROCESS BASED MAC Page 33 of 127

init

bash

startx

xinit

Xfluxbox

aterm atermaterm aterm run

bash bash bash bash mozilla.sh

ssh man

sh

sh

less

pstree MozillaFirebird

MozillaFirebird

MozillaFirebird MozillaFirebird.

klogd syslogdcrond inetd sshd

aterm

bash

ssh

. . . .

sshd

sshd

bash

vi

Figure 3.3: Example of the Linux process structure. When a Linux system
boots and the kernel is loaded, the first process created is the init process, which
is executed from /sbin/init. The root node is thus the init process. This process
spawns a number of daemons. The Secure Shell daemon (sshd) has spawned a child
process to handle an incoming request. User interaction starts with a Bourne Again
shell from which the graphic interface (X) is launched. The running window manager is
the fluxbox process, from which the user has spawned a number of terminal programs
(aterm) running a shell (bash). In the right branch of the children of fluxbox, a
Mozilla Firebird browser is started, which also has a number of children.

CHAPTER 3. DESIGN

Page 34 of 127 3.2. PROCESS BASED MAC

these in a local hash table for each process. This solution would provide a very
high degree of flexibility, but unfortunately it would also be very slow, as the
entire hash table would be copied, when inheriting restrictions from parents to
children on creation of new processes.

3.2.3 The Umbrella Approach

The solution chosen for Umbrella is a combination of the static and the dynamic
model. A bit-vector will be used to store a small amount of static restrictions,
that will be specified according to the specific platform.

For the HP iPAQ, restrictions for devices such as network, bluetooth, infrared,
wireless network, etc. will be added, together with a small list of vital paths
from the file system. Index zero in the bit-vector, will be reserved to indicate if
the process has assigned a number of dynamic restrictions.

We denote the static restrictions, i.e. the bit-vector, level 1 restrictions and the
dynamic restrictions, i.e. the structures in the hash tables, level 2 restrictions.

When the process tries to access a resource, the level 1 restrictions are checked.
If this denies access to the resource, access is denied immediately. If not, the
level 2 restrictions are checked accordingly.

This combination of level 1 and level 2 restrictions gives Umbrella the desired
performance and flexibility.

Inheritance

When a process forks a new child process, the restrictions will be inherited from
the parent to the child. We utilize the Linux process tree to ensure that a process
is always as restricted or more restricted than its parent. To ensure this, it is
thus not possible for a process to change its own restrictions.

When a process forks a child, it has the possibility of setting additional restric-
tions for this child. When the child process is forked it inherits all restrictions
from its parent, and any additional restrictions specified by the parent. If the
new process is an executed binary, then execute restrictions are added. Execute
restrictions and signed files are elaborated in Section 3.3. This procedure is
depicted in Figure 3.4. A consequence of this is that children is always at least
as restricted as their parent.

Restrictions 3.1 Given that p1 and p2 are nodes in the process tree P and p1

has the restriction set r1 and p2 has the restriction set r2, where r1 and r2 are
sub-sets of R which is the set of all possible restrictions.

If p1 is a descendant of p2 then r1 is a superset of r2.

The inheritance of restrictions happens before the process is created, and thus
the new process is not scheduled before all restrictions are set.

CHAPTER 3. DESIGN

3.2. PROCESS BASED MAC Page 35 of 127

Level 1:
Level 2:
Child Level 1:
Child Level 2:

Executable: /bin/sh

01001000

10001011
a, b, c

x, y

Parent process

Level 1:
Level 2:
Child Level 1:
Child Level 2:

11111011
a, b, c, d, x, y, z

Executable: /bin/ls

File system

/bin/ls
Exec Level 1: 01110000
Exec Level 2: c, d, y, z

Child process

Figure 3.4: The procedure of creating a new child process and setting its restrictions.

Data Structures

As stated above, Umbrella uses a two level design for the restrictions. The data
structure for holding the level 1 restrictions is a bit-vector, which contains a
fixed set of restrictions for the entire system. The restrictions are mapped to
a specific index by a small hash table. The level 2 restrictions are fixed for a
running process, but new processes must have the ability to have an arbitrary
number of restrictions. These restrictions are stored in structures, which are
mapped in a hash table. At top level, these structures are connected as depicted
in Figure 3.5.

The bit-vector contains a global fixed set of basic and frequently used restric-
tions. If a process should be restricted from other resources than those located
in the bit-vector, these are placed in the hash table. The bit-vector contains a
bit that indicates if further restrictions should be looked up in the level 2 hash
table. Given the limited size of the level 1 hash table, it could possibly fit into
the CPU cache, increasing speed of lookups.

The level 1 restrictions are listed and commented in Table 3.1. This list is made
specific to the devices and file system on the HP iPAQ running Familiar Linux
and should be customized for use on other systems.

The purpose of the level 2 hash table is to provide a flexible data structure
for further file system restrictions that applies only to specific processes. The
restrictions in level 2 are only evaluated if the secondlevel bit in the bit-vector is
set, as defined in Table 3.1. The hash table is individual for all processes, which
makes it slower to perform a lookup in this, compared to the bit-vector. The
restrictions in level 2 are only paths from the file system, i.e. this could include,
personal files such as an address book, specific configuration files, programs,
home banking keys etc.

CHAPTER 3. DESIGN

Page 36 of 127 3.2. PROCESS BASED MAC

Index Restriction Comment

0 secondlevel Flag for lookup level 2 restrictions
1 /bin Directory for system-wide binaries
2 /boot Kernel and boot loader configurations
3 /dev All devices (except network)
4 /etc System-wide configurations
5 /home Users’ home directories
6 /lib Libraries
7 /mnt Mount point for external file systems
8 /proc Run-time kernel information and config-

uration
9 /root Home directory of administrator account
10 /sbin Programs primarily for administrator
11 /tmp Temporary files
12 /usr System-wide applications, libraries,

header files etc.
13 /var Cache, locks, logs, web, databases etc.
14 /etc/X11 Configuration of X – graphical interface
15 /etc/bluetooth Bluetooth configuration
16 /etc/fstab Configuration of device mount points
17 /etc/init.d Boot-time init-scripts
18 /etc/modules Configuration of kernel modules
19 /etc/modules.conf Configuration of kernel modules
20 /etc/passwd User of the system
21 /etc/services Xinet daemon configuration
22 /etc/shadow Users’ encrypted passwords
23 /etc/umbrella Umbrella configurations and vendor keys
24 nofiles Access to all file systems
25 noip All networking through IP sockets
26 noirda Infrared devices
27 nobluetooth Bluetooth devices
28 nofork Ability to fork new processes

Table 3.1: Level 1 restrictions in Umbrella for the HP iPAQ 5550.

CHAPTER 3. DESIGN

3.2. PROCESS BASED MAC Page 37 of 127

...

set of basic restrictions.

1 0 1 1 0 1 1 0

Bit−vector containing a

Hash table containing
file system restrictions.

Level 1

Level 2

Figure 3.5: Umbrella uses two levels of restrictions.

Applying Restrictions

When a process tries to access any given resource, Umbrella mediates this and
examines if a restriction is set for that specific path. If so, access is denied. Also
access to network devices and other resources are mediated to examine if the
process is restricted from these.

3.2.4 Involving the Developers

Developers of software must be involved to make secure programs. For Umbrella
it is vital that when a process forks a new child, a suitable set of restrictions is
specified. This is the only effort required by the developers. Below two examples
of restrictions for new processes are given.

If a thread is only rendering a picture, this process should have level 1 restrictions
{24, 25, 26, 27, 28} from Table 3.1. If the process is hijacked, the hijacker
have no access to the file system, nor the network or even the ability to fork a
new process. This in effect sandboxes the process, making it impossible to do
harm, besides crashing the process.

Another example is execution of attachments from email clients. When the
attachment is executed from within the email client, a good restriction for the
developer to set is access to the address book. In this way, if the attachment is
a virus, it is unable to forward itself to everyone in the address book. Possibly
a restriction from network access for the attachment would also be desirable, to
completely prevent abuse of the network.

When a developer has made a program for an Umbrella protected system, the
developer can specify execute restrictions, which is a set of restrictions the pro-
gram is assigned, when executed. These restrictions are stored along with the
file, in a signature that also contains means of authentication.

CHAPTER 3. DESIGN

Page 38 of 127 3.3. SIGNED FILES

3.3 Signed Files

Umbrella relies on a scheme where files entering the system must be authenti-
cated. This serves a dual purpose; the authentication of files provides protection
from executables that may be harmful to the system and the signatures provide
a way of importing restrictions to the system. The following sections elaborate
on the design of the signatures attached to files, how these are utilized to pre-
vent possibly malicious executables from compromising the system, and how
they are combined with the use of trusted key servers.

In the following, a signature denote a hash value and a set of execute restrictions
that is encrypted with a private key. A signed file denote a file and its associated
signature, as shown in Figure 3.6 on page 40. The security information asso-
ciated with an executable on an Umbrella file system is the associated execute
restrictions. This information is stored in the executables security field.

3.3.1 File Signatures

One of the central elements in Umbrella is the signatures which are used to
ensure the integrity of files entering the system and provide the set of restric-
tions that each file is to be executed with. The requirements of the signatures
identified for Umbrella are:

• Signatures must include restrictions for use on time of execution.

• Umbrella must be able to sign all types of files, including executable scripts
and binary executables.

• The use of signatures must be transparent to the user.

Possible Signature Models

In the process of investigating possible models for signed files, three possible
solutions is discussed. A solution where the signature is kept in a separate file,
another possibility is to modify the executable file format to include the signa-
ture and finally the option of simply appending the contents of the signature to
the end of the file. Each of these possibilities are discussed below.

The first possible solution to the signed file problem, was to transfer the signa-
ture to the handheld device in a separate file. The implementation of such a
solution would not require any changes to existing file formats, which clearly is
an advantage. However, several problems exists with transferring the signature
to the handheld separately. To be able to assign restrictions to an executable
as soon as it enters the file system, the signature would have to be transferred
to the system before the associated file. This could be implemented using a sig-
nature cache where the signature is copied to before the executable enters the
system. The cache would then be checked when a new file enters the file system
and if an associated signature was found, the signature would be copied to the
files security field. If an associated signature was not found, the file would be
assigned a default set of restrictions1. Alternatively the transfer of the signa-

1This default set of restrictions is specified by the vendor of the handheld device.

CHAPTER 3. DESIGN

3.3. SIGNED FILES Page 39 of 127

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

data

}Vendor
Kprivrestrictions

execute

hash

vendor id

}

Signature

Figure 3.6: A signed file.

tures could wait until the file is executed for the first time. The major drawback
of this solution is the maintenance of the signature cache as well as the lacking
transparency, due to the two file solution.

The problems found with the two files solution, suggested that solution where
the signature is included in the file is preferable. For executable files a possibil-
ity was to modify the ELF file format like done in the DigSig project [9] and
the work described in [45]. This solution would definitely offer a simple way
of transferring signatures for executables to the handheld device. This solution
does not however offer any way of using signatures with scripts and other ex-
ecutable formats. As a result of this any support of other file types than ELF
would result in modifying additional file types, which is undesirable.

The chosen solution is to append the signature to the end of the executable. Like
the two file solution, no changes are needed to existing file formats. This fact
also makes it possible create signatures for scripts and other non executable files.
Appending the signature to files, does require that the signature is encapsulated
in a tag, that makes it easy to separate from the original file. This is the solution
selected for Umbrella, since it is believed to be a good solution for handhelds.
The approach is transparent easy to implement and flexible. This is elaborated
below along with details on how the information in signatures is transferred to
the security field in the file system.

Signatures in Umbrella

The layout of a signed file can be seen in Figure 3.6. The signature consist of
a hash of the original file and a set of execute restrictions, both are encrypted
with a private key. A vendor id will ease the lookup of the corresponding public
key.

The hash value is used for ensuring that the file has not been tampered with.
When the signature is created the hash and the execute restrictions are signed
with the vendors private key to prevent tampering with the contents, as well as
for authentication purposes. The vendor id is used to identify which public key
to use for decryption of the file signature. The public key itself can be used as
the vendor id, since it is unique.

In a system protected by Umbrella, two types of files can enter the file system,

CHAPTER 3. DESIGN

Page 40 of 127 3.3. SIGNED FILES

decrypt
signature

check hash

field

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

signed file
(after first execution)

{

securityrestric−
tions

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

sign.

(before first execution)
signed file

find
public key

failure!

succes!

succes!

default action

failure!

succes!

failure!

Figure 3.7: Procedure for first execution of a signed file.

namely signed and unsigned. Both are stored on the file system and no further
action is taken until the file is executed. When a file is executed, the signature is
decrypted using the corresponding public key and the hash of the data is checked,
to ensure that the file has not been tampered with. The execute restrictions are
stored in the file’s security field. If the file has no signature, if the decrypting
of the signature or the hash check fails or if no public key for decrypting the
signature exists, the default action is performed. This default action is a set of
restrictions specified by the vendor of the handheld device, and could be e.g.
used to create a low level sandbox. Figure 3.7 shows the procedure before the
first execution of a file.

The features described above gives Umbrella a secure and convenient method for
importing new files to an existing system. The origin of the files is checked and
the restrictions associated with the file is imported to the system transparent
to the user. Below details will be given regarding handling of keys.

3.3.2 Public Keys in Umbrella

Since Umbrella relies on validation of file signatures for incoming files, a way of
verifying the origin of signed files is needed. To achieve this Umbrella uses public

CHAPTER 3. DESIGN

3.3. SIGNED FILES Page 41 of 127

Key

Key
manager

Fail
NO!

Add key

YES!

Send key

Request key

Id

Add key

Kernel space

User space

key manager ?

Install key

server
Key

Is it the

Figure 3.8: Procedure for adding a key to Umbrella.

key cryptography, where all signed files are signed with the vendors private key,
as elaborated earlier. This ensures that only the correct public key can decrypt
the signature, thereby verifying the origin of the file.

Distributing and Storing Keys

The distribution of public keys is one of the central security issues in Umbrella,
which requires a scheme where the distribution is handled in a secure manner.
Umbrella uses a trusted key server as basis to distribute public keys, because a
trusted server ensures the authenticity of the public keys installed on the device.

Figure 3.8 illustrates the process of adding public keys to Umbrella. The key
can enter the system in two ways. The user can request to have a key added
directly or through a key server. The key is passed to the key management
along with a request to install it. When the key management receives a request
for installing a key, it uses a system call to insert the key into the key ring. To
ensure that the key master is the only process, that can successfully make add
and remove keys, a check of the current process is performed. In this way the
keys can be protected, even though they are placed on storage accessible from
user space.

The key ring contains public keys used for decrypting files from vendors. Per-
sistent storage is needed to store the key ring, this storage must be protected
to prevent tampering with keys and injection of unwanted keys. Management
of the key ring is handled through system calls that are only accessible to a key
management program. The kernel is then responsible for updating the key ring
on the persistent storage.

The kernel writes the key ring to the directory /etc/umbrella/keyring. To

CHAPTER 3. DESIGN

Page 42 of 127 3.4. EXTRA FEATURES

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Restrictions

Host Platform

Handheld Device

File

from file

Copy file

Append Signature

Signed File

Create hash

Add vendor id

Create Signature
with a private key

Figure 3.9: Creating a Signed File.

protect the public keys from unauthorized access, all processes will be restricted
from this directory. A nice feature of inheriting restrictions from parent pro-
cesses to children, now shows its strength: It is enough to restrict the init

process from accessing the key ring directory, and this will automatically be
inherited by all other processes.

Umbrella relies on a scheme using time stamps for the public keys, to maintain
the contents of the key ring. This serves a dual purpose; it prevents keys from
being cracked using a brute force type attack, and secondly it prevents outdated
keys on the system. This scheme is standard in public key cryptography [38, 22].

3.3.3 Creating Signed Files

Development of programs for handheld devices are not done on the device itself,
but rather on a host platform and then cross-compiled for the intended target
platform. Umbrella uses this fact, to create the signed files on the host platform
using a set of user space tools and then transferring the complete signed file
to the device. The process of creating a signed file is illustrated in Figure 3.9.
When the executable have been created, a set of restrictions are created for it.
A hash is then created of the original file. The hash and the signature are then
merged into a signature and encrypted with the vendors private key. When the
signature is created it is appended to the executable.

3.4 Extra Features

This section describes design features that has been discussed during the devel-
opment of Umbrella.

CHAPTER 3. DESIGN

3.4. EXTRA FEATURES Page 43 of 127

Signal Value Action Comment

SIGHUP 1 Term Hangup detected on controlling terminal or
death of controlling process

SIGINT 2 Term Interrupt from keyboard
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core Illegal Instruction
SIGABRT 6 Core Abort signal from abort
SIGFPE 8 Core Floating point exception
SIGKILL 9 Term Kill signal
SIGSEGV 11 Core Invalid memory reference
SIGPIPE 13 Term Broken pipe: write to pipe with no readers
SIGALRM 14 Term Timer signal from alarm
SIGTERM 15 Term Termination signal
SIGUSR1 30,10,16 Term User-defined signal 1
SIGUSR2 31,12,17 Term User-defined signal 2
SIGCHLD 20,17,18 Ign Child stopped or terminated
SIGCONT 19,18,25 Continue if stopped
SIGSTOP 17,19,23 Stop Stop process
SIGTSTP 18,20,24 Stop Stop typed at tty
SIGTTIN 21,21,26 Stop tty input for background process
SIGTTOU 22,22,27 Stop tty output for background process

Table 3.2: Signals in the Linux kernel.

3.4.1 Controlling Signals

In Linux it is possible for processes to signal each other. One of the signals is
used to kill a process. This means that an exploit in a process can be used to
send kill signal to other processes owned by the same user, performing a denial
of service attack. By mediating signals and restricting the use of these, Umbrella
could effectively prevent attacks of this kind.

Linux supports the standard signals listed in Table 3.2, which are described in
the original POSIX.1e standard [30]. Several of the signal numbers are archi-
tecture dependent, as indicated in the Value column. Three values are given,
the first one is usually valid for Alpha and SPARC, the middle one for i386,
PPC and SH, and the last one for MIPS. If only a single value is present, this
is generic for all architectures. The entries in the Action column specify the
default action for the signal, as follows:

• Term: Default action is to terminate the process.

• Ign: Default action is to ignore the signal.

• Core: Default action is to terminate the process and dump core.

• Stop: Default action is to stop the process.

In default kernels, the signals SIGKILL and SIGSTOP cannot be caught, blocked,
or ignored, however the LSM framework extends the kernels capabilities to me-
diate signaling between processes. The hook task_kill can be used to control

CHAPTER 3. DESIGN

Page 44 of 127 3.5. CONCLUSION

signals sent to processes. This would allow Umbrella to mediate signaling, the-
reby gaining the ability to restrict processes from sending kill signals to other
processes. Preventing this type of signaling could help protect the system from
malicious processes attempting to kill important system processes. This could
be achieved by creating a level 1 restriction called e.g. nokill.

This simple, yet very powerful feature is of high priority on the list of pending
implementation issues.

3.4.2 Integrity of Files

Although Umbrella uses restrictions, to prevent processes from accessing specific
files and directories, no mechanism exist for preventing modification of files
outside the restricted areas. This creates a potential security risk, since it would
allow a malicious process to modify executables located in unrestricted areas if
DAC allows it. This would introduce the possibility of having non-trusted code
executed with few restrictions.

If a trusted process is successfully attacked and used to launch a virus similar to
the file viruses [10] from the DOS era, then although the virus is launched with
the restrictions of the trusted process and DAC still applies, a situation emerges
were any local unprotected files found on the system could be infected. The
infected executables, with various sets of restrictions, could then potentially be
used to further spread the virus on the system.

To prevent the situation described above, a scheme where changes to files con-
taining restrictions are detected has been discussed. By extending Umbrella to
monitor any changes to files with extended attributes attached via the LSM
framework, it is possible to detect any attempts to modify existing files.

If an attempt to modify a file is detected, a check is performed to determine if
a security field exists. If so, the file is marked as being dirty. The dirty field
is checked before execution to determine if the file can be trusted. If the file is
dirty, the restrictions in the security field are disregarded and the default set of
restrictions are applied.

Another advantage of implementing this mechanism at kernel level is, that the
dirty field can be protected because all access to it is mediated by Umbrella.
This would protect the field from any attempts to unset it from user space.
Any attempt to replace a file is also impossible, because it involves deleting the
original file. When the file is deleted, so is the security field attached to it, and
unless the replacement file contains a valid file signature it is only assigned the
default set of restrictions.

3.5 Conclusion

This chapter presented the design of Umbrella, which is a process based manda-
tory access control mechanism for Linux. The idea behind Umbrella is to create
a mechanism which is not based on the traditional subject/object model. The
result is a design that uses the Linux process tree as a base to control the assign-
ment of restrictions to processes, where restrictions are inherited from parents

CHAPTER 3. DESIGN

3.5. CONCLUSION Page 45 of 127

to children. The restrictions for a given process is the union of restrictions from
the parent and the restrictions specified for the child. To ease the configura-
tion of Umbrella the concept of signed files is introduced to allow importing
restrictions for programs without user interaction. Furthermore two extensions
to Umbrella has been discussed, namely the ability to control signaling between
processes and preventing modification of executables containing restrictions.

It is our belief that the combination of process based mandatory access control
together with authentication of files presented in the design of Umbrella is a
step in the right direction for creating a flexible security scheme for handheld
devices.

CHAPTER 3. DESIGN

4Implementation

This chapter contain details of the Umbrella implementation. The implementa-
tion of Umbrella is based upon Linux Security Modules, which is explained in
detail in Appendix C. To fully understand the contents of this chapter, knowl-
edge of LSM is needed.

All paths and filenames given in this chapter are relative to the root of the Linux
2.6 kernel source tree, except paths denoting restrictions.

Like the design chapter, the implementation starts with the process based
mandatory access control, and then moves on to the signed files. Lastly op-
timizations to the current implementation are presented.

4.1 Process Based MAC

The process control block [43] in Linux is defined in the task_struct in in-

clude/linux/sched.c. LSM provides a void security field in this structure,
which is used to hold the Umbrella security information for the process.

The security field for a process is specified by the security_struct in secu-

rity/umbrella/include/umb_types.h. The level 1 and level 2 restrictions for
the process are specified in level1 and level2. Level 1 restrictions for the next
child process are given in the bit-vector child_level1 and the list of level 2
restrictions are available in the child_level2 array. The maximum number of
level 2 child restrictions are defined in MAX_L2 as 256. This was found to be
a reasonable upper bound on the number of restrictions, given the amount of
resources found on a handheld.

1 s t ru c t security_struct {
2 bitvector level1 ;
3 hashtable level2 ;
4 bitvector child_level1;
5 char * child_level2[MAX_L2];
6 };

47

Page 48 of 127 4.1. PROCESS BASED MAC

4.1.1 Level 1 Restrictions

The level 1 restrictions are implemented as a bit-vector. This implementation
is adopted from a bit-vector library implemented by Steffen Beyer1. Special
functions for Umbrella purposes are added, such as logical or and and functions,
which are used when restrictions are inherited from parents to children.

Level 1 restrictions may only be two directories deep, as Table 3.1 on page 36
shows. This limitation is introduced minimize the time of a lookup. A few
optimizations are still pending for the bit-vector implementation, which Section
4.3 presents.

4.1.2 Level 2 Restrictions

The level 2 restrictions are implemented in hash tables. These tables map the
restrictions, which are stored in restriction structures, defined in securi-

ty/umbrella/include/umb_hash.h.

1 s t ru c t restriction {
2 unsigned long hash;
3 char *path;
4 s t ru c t restriction * next;
5 };

The hash function used for the hash table, does not implement perfect hashing,
and can therefore not guarantee that no collisions on the hash value will occur.
Therefore the restriction structure includes pointers to the next structure,
that have identical modulated hash value. Due to the possibility of collisions,
the restriction itself, i.e. the path, is also stored in the structure. Thus, when
the appropriate restriction is found, a string compare is necessary. Details
on the hash table implementation are given below.

Hash Functions: Jhash and KShash

In the Linux kernel the hash function jhash is available from include/lin-

ux/jhash.h. This function can hash everything, producing an unsigned long.
The function was to be used for implementing hashing of paths, but unfortu-
nately it produced different output for pointers to identical strings. Whether
jhash can be tweaked to only hash the intended strings, is still unresolved. To
achieve the primary goal of getting the Umbrella unfolded, before optimizations,
a small kernel string hash function kshash was implemented as follows.

1 f o r (i = 0; i < string_length; i++) {
2 i f (i % 2)
3 hashval = hashval * (i n t)string [i];
4 e l s e

5 hashval = hashval + (i n t)string [i];
6 }

1http://freshmeat.net/projects/bitvector

CHAPTER 4. IMPLEMENTATION

4.1. PROCESS BASED MAC Page 49 of 127

0

1

2

3

4

hash = 123

hash = 1456
path = /etc/myconf

path = /bin/myprog

233 hash = 1233
path = /home/user/personal path = /home/user/addresses

389

path = /home/user/secret
hash 1587 hash 1587

Figure 4.1: Hash table example.

This hash function produces an unsigned long, on which the modulus operation
can be applied to find the appropriate index in the hash table.

Hash Table Implementation

The procedure for looking up a restriction in a hash table, first locates all
structures which have identical hash value. These must be subject to a string
compare with the path looked up. If a match is found, a negative decision is
returned.

The restrictions are mapped into the hash table by calculating modulus 389 of
the hash value of the path. The number for modulus is chosen to 389 because
it is a prime, it is slightly less than a power of 2 and it is as far as possible from
the nearest two powers of 2 [32]. Having a hash table, at around double size of
the number of allowed restrictions, reduce the clustering in the hash table.

The restrictions in the hash table are copied from a parent to its children, when
the child is created. This makes it very easy to clean up, when a child dies.

A great optimization to this would be to implement the copying using the copy
on write principle [44]. In the case where a parent and its child have the exact
same set of restrictions, the child could have a pointer to the parents restrictions
instead of its own copy. When the child have further restrictions than the parent
it will get a copy of the restrictions. This optimization will eliminate a lot of
memory allocation and string copying.

With a perfect hashing algorithm, all the code for handling collisions could be
omitted, however this is not possible since it would require that all keys are
known in advance [12, 23].

An example of an Umbrella hash table containing collisions is depicted in Figure
4.1.

CHAPTER 4. IMPLEMENTATION

Page 50 of 127 4.1. PROCESS BASED MAC

4.1.3 Security Server

The security server is implemented in security/umbrella/umb_ss.c. It basi-
cally has only one function for making decisions, namely the ss_get_decision,
which takes a path_array as its only argument. The full path is divided by each
slash, for example the path /etc/passwd is represented in the array {"/etc",

"/passwd"}. The path array is implemented as such, to minimize string ma-
nipulations. Since the path is to be used in portions of one directory at a time,
a regular string would be a bad solution. The first code listing shows the level
1 part of ss_get_decision.

1 /* LEVEL 1 - global restrictions */
2

3 i f (path_array [0] != NULL) check1 = get_index (* path_array);
4

5 i f ((path_array [0] != NULL) && (path_array [1] != NULL)) {
6 second_dir = (char *) kmalloc (s i z e o f (char)*(strlen (*

path_array) + strlen (*(path_array +1))),GFP_ATOMIC);
7 strcpy (second_dir , path_array [0]);
8 strcat (second_dir , *(path_array + 1));
9 check2 = get_index (second_dir);

10 kfree(second_dir);
11 }
12

13 i f (check1 != -1) bit1 = bv_testbit (security ->level1 , check1);
14

15 i f (check2 != -1) bit2 = bv_testbit (security ->level1 , check2);
16

17 i f (bit1 || bit2) decision = 1;
18

19 i f (bit1 == -1 || bit2 == -1) printk (KERN_INFO "Umbrella : umb_ss .c:
20 get_decision: bitvector overflow in checkbit !\n");
21

22
23

24 return decision ;

The path is first looked up in the level 1 restrictions. This lookup is done by
comparing paths from level 1 restrictions (see Table 3.1 on page 36) with the
first two elements in the path array. This is done by the get_index function in
line 3 and in line 9. A position in the bit-vector is returned from the get_index
function, which performs a simple string comparison, that easily can be opti-
mized, as discussed in Section 4.3. The call in line 3 performs a lookup on the
first element in the path array, and the call in line 9 performs a lookup on the
concatenation of the two first elements. The function bv_testbit simply checks
whether a given bit is set, and returns 1 if so and 0 if not. If the bit for the
specific path is set, then the decision returned is negative. Otherwise, if level 2
restrictions are present, the path is looked up in the hash table.

1 /* LEVEL 2 - process specific restrictions */
2

3 i f ((! decision) && (bv_testbit (security ->level1 , SECONDLEVEL))){
4 path_length = 0;
5 i = 0;
6 whi le(path_array [i] != NULL) {
7 path_length += strlen (path_array [i]);
8 i++;
9 }

CHAPTER 4. IMPLEMENTATION

4.1. PROCESS BASED MAC Page 51 of 127

10 array_length = i;
11

12 temp = (char *) kmalloc (s i z e o f (char)*path_length , GFP_ATOMIC);
13 f o r (i = 0; i < path_length ; i++)
14 temp[i] = ’\0’;
15

16 i = 0;
17 whi le ((array_length -- > 0) && ! decision) {
18 strcat (temp , path_array [i]);
19 decision = hash_exists (security ->level2 , temp);
20 i++;
21 }
22 kfree(temp);
23 }
24

25 whi le (* path_array != NULL) kfree (* path_array ++);
26

27 return decision ;

Level 2 restrictions are also looked up in steps of directories. The test in line 3
checks if a decision was made when looking up level 1 restrictions, and whether
level 2 restrictions exists. In lines 17-21 the elements of the path array are
looked up, and when a decision is taken, temporary variables are freed and
the decision is returned. The lookup is elaborated in the example below. The
example contain many steps, but the individual steps are performed fast. All
the level 2 lookups are hash table lookups which are performed in constant time.
Furthermore the function returns as soon a decision is made.

Example

The security server’s get_decision function is called with the path
/usr/share/myapp/bin/hello_world.

The level 1 restrictions are checked as follows:

1. Lookup index for /usr in level 1 restrictions.

2. If bit is set, then return negative decision.

3. Lookup index for /usr/share in level 1 restrictions.

4. If bit is set, then return negative decision.

If no negative decision is made, the level 2 restrictions will be checked as follows:

1. Lookup /usr in level 2 hash table, and return a negative decision if it
exists.

2. Lookup /usr/share in level 2 hash table, and return a negative decision
if it exists.

3. Lookup /usr/share/myapp in level 2 hash table, and return a negative
decision if it exists.

4. Lookup /usr/share/myapp/bin in level 2 hash table, and return a nega-
tive decision if it exists.

CHAPTER 4. IMPLEMENTATION

Page 52 of 127 4.1. PROCESS BASED MAC

5. Lookup /usr/share/myapp/hello_world in level 2 hash table, and return
a negative decision if it exists.

6. Return a positive decision.

4.1.4 LSM Hook Implementations

The LSM hooks used Umbrella are divided into three different classes of hooks:
File hooks, network hooks and process hooks. In this section these different
classes of hooks are described.

A full list of LSM hooks together with descriptions can be found in include/lin-

ux/security.h and in Appendix D. In Appendix C describes how the hooks
are placed in the kernel.

File Hooks

The hooks implemented for protecting the file system are inode_create, in-
ode_permission, inode_link, inode_unlink, inode_rename, inode_setattr
and inode_mkdir.

All the LSM hooks intercepting calls to the file system are implemented in one
simple and generic file_hook_wrapper, which is listed below. The call to the
security server is performed in line 15.

The difference between the hook implementations for controlling the access to
the file system, is mainly checking for NULL and digging out the right den-

try. The dentry structure is short for directory entry and it is defined in
include/linux/dcache.h.

1 s t a t i c inline i n t file_hook_wrapper(s t ru c t dentry * dentry) {
2 i n t ss_decision = 0;
3 i n t i = 0;
4 char *path[MAX_PATH_DEPTH];
5

6 f o r (i = 0; i < MAX_PATH_DEPTH; i++)
7 path[i] = NULL;
8

9 i f (extract_path(dentry , path) == - EOVERFLOW) {
10 printk (KERN_INFO "Umbrella file_hook_wrapper: ");
11 printk (KERN_INFO "Overflow from extract_path!\n");
12 return 1;
13 }
14

15 ss_decision = ss_get_decision(path);
16

17 i f (ss_decision)
18 ss_decision = - EPERM;
19

20 return ss_decision ;
21 }

CHAPTER 4. IMPLEMENTATION

4.1. PROCESS BASED MAC Page 53 of 127

Network Hooks

Only one hook for controlling network is necessary, namely the one for creating
sockets. The important part of this hook implementation is locating the fam-
ily of network socket being created. Since the network is part of the special
level 1 restrictions, only one check for the appropriate field in the bit-vector
is necessary. As devised by the Flask model, this check should be performed
by the security decision-making code, i.e. the security server. The function
bv_testbit simply checks whether a given bit is set, and returns 1 if so and 0
if not. The implementation of the socket_create is shown below.

1 s t a t i c i n t umb_socket_create(i n t family , i n t type , i n t protocol)
{

2 i n t ss_decision = 0;
3 s t r uc t security_struct * security = current ->security ;
4

5 i f (family == 2) {
6 ss_decision = bv_testbit (security ->level1 , NOIP);
7 }
8 e l s e i f (family == 31) {
9 ss_decision = bv_testbit (security ->level1 , NOBLUETOOTH);

10 }
11 e l s e i f (family == 23) {
12 ss_decision = bv_testbit (security ->level1 , NOIRDA);
13 }
14

15 i f (ss_decision == 1 || ss_decision == -1)
16 ss_decision = - EPERM;
17

18 return ss_decision ;
19 }

Process Hooks

Controlling the creation of new processes is performed by task_create. This
hook implements the special level 1 restriction nofork, and like the hook for
controlling network, it simply checks this bit in the bit-vector.

1 s t a t i c i n t umb_task_create(unsigned long clone_flags) {
2 i n t ss_decision = 0;
3 s t r uc t security_struct * security = current ->security ;
4

5 /* current security is null when the system is booting */
6 /* this line is inserted to prevent a kernel crash */
7 i f (current ->security == NULL)
8 return 0;
9

10 ss_decision = bv_testbit (security ->level1 , NOFORK);
11

12 i f (ss_decision == 1 || ss_decision == -1)
13 ss_decision = - EPERM;
14

15 return ss_decision ;
16 }

CHAPTER 4. IMPLEMENTATION

Page 54 of 127 4.1. PROCESS BASED MAC

4.1.5 Umbrella System Calls

To set restrictions, information must be propagated from user space to kernel
space, and this is done via the sys_umb_set_child_restrictions system call
shown below. This system call must be called prior to forking one or more new
child processes, to specify restrictions the new processes should have, besides
those inherited from the parent process.

The two level design of restrictions is visible in the parameter list, where an
array of integers (l1) is used to pass the level 1 restrictions to kernel space. An
array of char pointers (l2) are used for the level 2 restrictions. The check in line
15 ensures that the handling of level 2 is skipped if none exists. The memory
handling in lines 12-13 are present to make sure restrictions from a previous
system call are removed before entering new ones. This is done to prevent that
processes gets unwanted restrictions that were meant for another child only.

The function bv_bit_on, called in line 8, simply sets a bit, taking a bit-vector
and an index as arguments.

1 asmlinkage long sys_umb_set_child_restrictions (i n t l1[], char **
l2) {

2 s t ru c t security_struct * security = current ->security ;
3 char ** l2_tmp = security -> child_level2;
4 i n t i = 0;
5 char *tmp = NULL;
6

7 whi le (l1[i] != -10) {
8 bv_bit_on (security ->level1 , l1[i]);
9 i++;

10 }
11 /* free old child_level2 before allocating memory for new ones

*/
12 whi le (* l2_tmp != NULL) {
13 kfree(l2_tmp ++) ;
14 }
15 i f (* l2 != NULL) {
16 bv_bit_on (security ->level1 , SECONDLEVEL);
17 i = 0;
18 whi le ((l2[i] != NULL) && (i < MAX_L2)) {
19 tmp = (char *) kmalloc (s i z e o f (char)*(strlen (l2[i] + 1)

) , GFP_ATOMIC);
20 strcpy (tmp , l2[i]);
21 security ->child_level2[i] = tmp;
22 i++;
23 }
24 }
25 return 0;
26 }

The umb_unset_child_restrictions makes it possible to spawn a child with
no further restrictions than those inherited. Line 5 resets the level 1 restrictions
and line 8-9 free the allocated strings of the level 2 restrictions.

1 asmlinkage long sys_umb_unset_child_restrictions () {
2 s t ru c t security_struct * security = current ->security ;
3 char ** l2_tmp = security -> child_level2;
4

5 /* reset child level 1 restrictions */
6 bv_empty (security -> child_level1);

CHAPTER 4. IMPLEMENTATION

4.2. SIGNED FILES Page 55 of 127

7

8 /* reset child level 2 restrictions */
9 whi le (* l2_tmp != NULL)

10 kfree(l2_tmp ++) ;
11

12 return 0;
13 }

System calls must be implemented separately for each hardware architecture,
but the code above is the same for all architectures. For Umbrella the system
calls have been implemented for User-mode Linux, i386 and ARM. The first two
architectures have mainly been used for development purposes.

4.1.6 Conclusion on Process Based MAC

Mandatory access control in form of process based restrictions have been imple-
mented. A few optimizations still exists; this is elaborated in Section 4.3.

4.2 Signed Files

The implementation of the signed files part of Umbrella is not yet completed,
however a description of the planned implementation follows. The purpose of
this is to locate potential implementation problems and shortly describe the
discussed solution. Three major issues must be resolved in this implementation:
Storage of security information, security enforcement and finally issues regarding
cryptography.

4.2.1 Security Information Storage

For storing the security information associated with files, a persistent and secure
storage is needed. It must be persistent, to maintain security information during
a possible reboot. The storage must be secure, to prevent that the restrictions
of files are tampered with.

LSM provides a non-persistent security field for all inodes in the virtual file
system. This field can be used to cache individual file’s security information,
like e.g. the execute restrictions.

To implement persistent storage for the restrictions for individual files, the ex-
tended attributes (EA) of the file system will be utilized. Unfortunately, EA
are not implemented in the Journaling Flash File System, version 2 (JFFS2),
which is used on handheld devices running Linux. JFFS2 is a log-structured
file system designed for use on flash devices in embedded systems. Rather than
using a kind of translation layer on flash devices to emulate a normal hard drive,
as is the case with older flash solutions, it places the file system directly on the
flash chips [46].

The main reasons for focusing on the JFFS2 file system is that it is the file
system that comes with the Familiar distribution for iPAQs. The file system is
developed by Axis Communications AB in 1999, released under GPL and now
maintained by Red Hat. It is included in the Linux kernel tree, which ensures

CHAPTER 4. IMPLEMENTATION

Page 56 of 127 4.2. SIGNED FILES

compatibility with newer kernel versions. Despite its relative young age, JFFS2
is mature and the number of reported bugs is stabilized at an acceptable low
level [46].

Below is a brief presentation of the basics of EA together with an overview of
EA in Ext32 as well as a discussion of how to implement EA for JFFS2.

Extended Attributes

Extended attributes are name and value pairs associated permanently with file
system objects, similar to the environment variables of a process. The EA
system calls used as the interface for copying the attribute names and values
between the user space and kernel space. The information in this section is
mainly based on the work done by Andreas Grünbacher in [28], which also is
the base of the current implementation of extended attributes in several Linux
file systems.

At file system level, the straight-forward approach to implement EA is to create
an additional hidden directory for each file system object that has EA and to
create one file for each extended attribute that has the attribute’s name and
contains the attribute’s value. On most file systems allocating an additional
directory plus one or more files requires several disk blocks, which is why such
a simple implementation would consume a lot of space. Furthermore it would
not perform very well because of the time needed to access all these disk blocks.
Therefore, most file systems, like Ext3, uses a different mechanism for storing
EA.

Extended Attributes in Ext3

Each inode has a field that is called i_file_acl for historic reasons, and it is
now used for the implementation of EA. If this field is not zero, it contains the
number of the file system block on which the EA associated with this inode are
stored. This block contains both the names and values of all EA associated with
the inode. All EA of an inode must fit on the same EA block.

For improved efficiency, multiple inodes with identical sets of EA may point to
the same EA block. The current implementation requires all EA of an inode
to fit on a single disk block, which is 1, 2, or 4 KB. This also determines the
maximum size of individual attributes.

If the sets of EA tend to be unique among inodes, no sharing is possible and the
time spent checking for potential sharing is wasted. If each inode has a unique
set of EA, each of these sets will be stored on a separate disk block, which can
lead to a lot of slack space. The extreme case is applications that need to store
unique EA for each inode.

Implementing EA on JFFS2 for Umbrella

Umbrella will have different EA for every file in the file system, the implemen-
tation of EA in JFFS2, for Umbrella, will be simple, since there is a one to one

2Ext3: The standard file system for Linux systems.

CHAPTER 4. IMPLEMENTATION

4.2. SIGNED FILES Page 57 of 127

relationship between files and extended attributes. To minimize the disk space
wasted, the EA will not be written to the file system, until a file has been exe-
cuted and thus, only executable files will have extended attributes, as discussed
in the design.

Regarding implementation of EA in JFFS2, the JFFS2 developers mailing list3

has been contacted. There seems to be interest in supporting EA in JFFS2, and
developers on the list have been available with opinions and advise regarding
the implementation. Activity on the list shows continuing development, which
should ensure compatibility and stability in the future. It is important to point
out that Umbrella will not be dependent on a JFFS2 file system, but dependent
on a file system that supports EA.

4.2.2 From Files to Processes

Umbrella must mediate execution of files, in order to transfer execute restrictions
from the executable to the process. The LSM hook bprm_set_security is called
whenever a file is executed and can therefore be used for this purpose. The
specific details regarding the transfer of restrictions from the file to the process
are unresolved at the time of writing, but considered as a practical problem
only.

4.2.3 Cryptography

As explained in Section 3.3 Umbrella uses public key cryptography to authen-
ticate executables. No public key algorithms are implemented in the Linux 2.6
kernel. To be able to verify the signature of the signed files, a small part of the
GNU Privacy Guard is needed to be ported to the Linux kernel. The needed
functions are specific parts of the RSA or ElGamal algorithm. The trouble of
porting them, will arise mainly by the non-existence of library functions within
the kernel.

Umbrella uses a SHA1 hash to secure the data in signed files. The SHA1 al-
gorithm is implemented in the Linux 2.6 kernel, and is of such ready for use.
However, this is the bare algorithm and thus a wrapper for Umbrella’s purposes
is needed. The SHA1 algorithm is defined in include/linux/crypto.h.

4.2.4 Conclusion on Signed Files

The largest remaining implementation task is that of implementing the extended
attributes for the JFFS2 file system. Regarding the transfer of restrictions from
files to processes, there are some unresolved practical problems. The Linux
kernel provides an implementation of SHA1. A public key algorithm must be
implemented in the Linux kernel; GNU Privacy Guard may be used as inspira-
tion for this.

3http://developer.axis.com/software/jffs

CHAPTER 4. IMPLEMENTATION

Page 58 of 127 4.3. OPTIMIZATIONS

4.3 Optimizations

A number points for major and minor optimizations have been located. The
initial goal of the project was to achieve functionality before optimizing the
code. Umbrella is fully functional without the optimizations, described in this
section, however they are believed to increase performance noticeably.

4.3.1 Bit-vector Inheritance

The functions for logical and and or, i.e. bv_and and bv_or, are implemented
iterative. However, it is possible to use just one CPU instruction to perform this
operation due to the fact that the bit-vector size is a machine word. The bit-
vector implementation at present have three bits reserved for internal purposes.
Umbrella does not use these three fields, and therefore they could as well be
utilized.

4.3.2 Inheriting Restrictions

Inheriting restrictions from a parent to its children simply copies the entire level
1 and 2 restrictions. Often there is no need to copy the restrictions, when e.g. a
process forks 20 new processes without setting any additional child restrictions.
By implementing the inheritance by means of the copy on write principle [44],
many memory allocations can be avoided.

4.3.3 Security Server

The security server use a simple string comparison in order to find the index of
a given level 1 restriction. Because the static domain of the level 1 restrictions is
known, a hash table will be more efficient. Thus this should be implemented as
a replacement for the get_index function. Due to the static level 1 restrictions,
it is possible to generate a perfect hash function for this [23]. The GNU gperf
project could be used to generate such a function [11].

4.4 Conclusion

This chapter presented the implementation work that has been done, as well as
a description of the pending implementation.

The process based MAC part of Umbrella has been successfully implemented
and tested for performance and stability. This implementation makes it possible
to easily make a restricted shell from which “unsafe” programs can be executed.
Chapter 5 elaborates this.

Implementation of the signed files part of Umbrella is at time of writing not
completed. The major issues of this implementation have been located and
discussed.

CHAPTER 4. IMPLEMENTATION

4.4. CONCLUSION Page 59 of 127

4.4.1 Umbrella as Open Source Project

Umbrella has been developed as an open source project hosted on Source-
Forge.net. The Umbrella development is divided into small steps, in the style
of eXtreme Programming4, where the key areas are found and organized, such
that important parts are implemented first. The roadmap for the Umbrella
implementation can be found in Appendix E.

The Umbrella web site5 has had more than 14.000 visits since the public launch
Mars 2nd 2004. Access to stable releases are available from the Umbrella project
site6. Since the first version was released Mars 2nd, more than 200 downloads
have been performed.

4http://www.extremeprogramming.org
5http://umbrella.sourceforge.net
6http://sourceforge.net/projects/umbrella

CHAPTER 4. IMPLEMENTATION

5Umbrella in Practice

This chapter presents three practical issues regarding Umbrella: Benchmarking,
application programming interface and ideas to circumvent Umbrella security.
The benchmarking is preliminary since Umbrella is not yet fully implemented.
The next section covers examples of how to program for Umbrella and finally,
a number of ideas on how to circumvent the security system are discussed.

5.1 Benchmarking Umbrella

One requirement of Umbrella is that it does not introduce an unacceptable
slowdown on the system. The following presents some benchmark tests that will
investigate the performance of a system running Umbrella. The benchmarking
is run on an iPAQ 5550 with the following specifications:

• 400MHz Intel XScale processor

• 128MB SD-RAM, 48MB Flash ROM

• Linux-2.6.3-hh2

5.1.1 Process Handling

The benchmarks has the purpose of determining the overhead introduced by
Umbrella when forking processes, killing processes and accessing the file system.
This benchmark is performed on a system running Umbrella and one that does
not. This will also determine the overhead introduced by level 2 restrictions.

Some slowdown must be expected because several operations occur when pro-
cesses are created. A security check is performed to see whether the current
process may fork a new process, but the main slowdown is expected to come
from the copying of the parents restrictions to the new child. This slowdown is
expected to be even more significant when level 2 restrictions are present.

The large number of processes generated in this benchmark, is created by ex-
ecuting a script that touches (updates time stamps) all files in the file system.
For each file in the file system a new process to update the time stamp is created.
By traversing all files, the impact of file system caching is minimized.

61

Page 62 of 127 5.2. PROGRAMMING FOR UMBRELLA

Test setup Time in seconds Overhead

Clean kernel 185.7 N/A
No Level 2 199.9 7.7%
10 Level 2 203.9 9.8%
25 Level 2 209.0 12.5%
50 Level 2 209.1 12.6%
100 Level 2 211.6 14.0%
200 Level 2 221.5 19.2%

Table 5.1: Average overhead of Umbrellas process handling.

In Table 5.1 the average overhead of Umbrella is displayed. The overhead of Um-
brella itself with only level 1 restrictions, is 7.7%. This overhead is acceptable,
and in our experience not noticeable in normal usage situations.

The results of this test gives us an estimate of the overhead introduced to process
handling by Umbrella. The numbers 19.2% for 200 level 2 restrictions and
9.8% for 10 level 2 restrictions, may seem like a large overhead. However,
this overhead is for the absolute worst case scenario, where many processes are
created and with much disk I/O. The overhead is, however, not noticeable in
normal use, because the time to e.g. create a process is minimal compared to
I/O wait. Furthermore, 200 level 2 restrictions are in our view a very large
number, and such numbers will seldom be used. When testing the iPAQ with
Umbrella, it was not possible to notice any slowdown in normal use from 10 to
200 restrictions.

5.1.2 Remarks

Umbrella is not yet fully implemented, which makes the above results esti-
mates of benchmarks on the final system. Both functionality and optimizations
are pending implementations. However, the results are useful for estimating
performance of the final system. Furthermore, the results indicate that the
optimizations suggested in Section 4.3 will increase performance.

The results of the process handling benchmark shows some overhead for Um-
brella (7.7%), as well as the overhead for level 2 restrictions (9.8% – 19.2%).
This overhead is rather large, but optimizations will be implemented to improve
this. However, it is our experience that this overhead is not noticeable when
working with the iPAQ in everyday use.

5.2 Programming for Umbrella

During the development of Umbrella, care was taken to provide the programmer
with a simple interface. When a programmer specifies that a program should
fork a new process, the purpose of this process must be carefully considered.
This must be done, to specify a correct set of restrictions for this process. This
is the most difficult task when using Umbrella. Below is a few examples to
elaborate on this.

CHAPTER 5. UMBRELLA IN PRACTICE

5.2. PROGRAMMING FOR UMBRELLA Page 63 of 127

If a process is intended only to render a picture, it does not need access to the
network, the file system or the ability for fork new processes.

If a process is intended to communicate with external services over network, a
reasonable restriction may be the configuration files of the system together with
the personal data of the user.

Setting restrictions involves setting level 1 and 2 restrictions, as described in
Chapters 3 and 4. The level 1 restrictions available in the system vary between
different systems; the list defined for the HP iPAQ 5550 is given in Table 3.1 on
page 36. Level 2 restrictions are individual to different processes, and are defined
as paths in the file system, e.g. the path /home/umbrella/email/addressbook

is an example of such a restriction.

The restrictions for the next child are passed to the kernel by invoking the
umb_set_child_restrictions system call, which takes an integer array of level
1 restrictions and an array of char pointers of level 2 restrictions.

The next child forked after invoking the system call, gets the specified restric-
tions as well as those inherited from the parent and those assigned from the file
system.

If at some point the program has the need to fork a new child without additional
restrictions, the system call umb_unset_child_restrictions can be invoked.

5.2.1 Restricted Shell Example

The following code snippet illustrates use of the above mentioned system calls
and their effects when applied.

Line 2 specifies the level 1 restrictions. 4 is /etc and 25 is no IP networking.
The tailing -10 is the terminator symbol. A complete list of level 1 restrictions
can be found in Table 3.1 on page 36.

Line 3 specifies the level 2 restrictions. In this case there are two, one which
restricts from the email address book of the umbrella user and another which
restricts from the directory /foo. In level 2, a NULL pointer is used as termi-
nator.

Line 5 loads the restrictions to the kernel, and line 6 executes a child process;
a shell, with the specified restrictions together with those inherited from the
parent.

Line 8-9 removes the additional child restrictions and executes a shell with the
restrictions inherited from the parent only.

1 main () {
2 i n t level1 [] = {4 , 25 , -10};
3 char * level2 [] = {"/home/umbrella /email/addressbook " , "/foo" ,

NULL};
4

5 umb_set_child_restrictions (level1 , level2);
6 system ("/bin/sh");
7

8 umb_unset_child_restrictions ();
9 system ("/bin/sh");

10 }

When the C program listed above is executed, a shells is spawned with the

CHAPTER 5. UMBRELLA IN PRACTICE

Page 64 of 127 5.3. CIRCUMVENTING UMBRELLA

restrictions specified in the source code. This example demonstrates the sim-
plicity of adapting existing programs to Umbrella. The only effort required by
developers is to consider and set restrictions before forking children. Below is
the screen output from the first shell running on the iPAQ.

After the iPAQ is booted, we log in as root to have unrestricted access to the
whole system. On line 8 the program ./umbrella_restricted_sh is executed,
which is a compiled version of the program listed above. The program creates
a restricted shell with the restrictions specified in the source code.

Line 11 attempts to enter the /etc from which the shell is restricted by a level
1 restriction. Access to the directory is mediated by Umbrella and is denied,
producing the output found in Line 12.

In line 15 an attempt is made to create the directory /foo, that the shell is re-
stricted from by a level 2 restriction. Again the decision is mediated by Umbrella
and permission is denied, producing the output in line 16.

1 ~ # whoami
2 root
3 ~ # ls /etc /
4 X11 inittab ppp
5 bluetooth ipaq -sleep.conf profile
6 dbus -1 ipkg protocols
7 ...
8 ~ # ./ umbrella_restricted_sh
9 ~ # whoami

10 root
11 ~ # cd /etc /
12 cd : 1: can ’t cd to /etc /
13 ~ # ls /etc /
14 ls : /etc /: Operation not permitted
15 ~ # mkdir /foo
16 mkdir : Cannot create directory ‘/foo ’: Operation not permitted

This restricted shell example also shows that Umbrella can be applied to a
system without changing the program, by simply executing it from a restricted
shell. This use of Umbrella is not as flexible as patching programs, but easier
to implement. It is very easy to write a restricted shell from which access to
configuration files and other system files are restricted.

5.3 Circumventing Umbrella

In this section a number of scenarios to circumvent the Umbrella security sys-
tem are presented. The presented scenarios are attacks dedicated to disable or
circumvent Umbrella security. Since Umbrella is not yet fully implemented some
of the attacks described below cannot yet be tested in practice.

5.3.1 Inserting a Public Key

If, somehow an attacker gets his own public key inserted into the key ring
of Umbrella, he would be able to specify no execute restrictions for his own
programs. It is however, not possible to omit the restrictions inherited from the
parent, therefore it is not possible to create a process without any restrictions.
This avoids possible serious damage from an attack.

CHAPTER 5. UMBRELLA IN PRACTICE

5.3. CIRCUMVENTING UMBRELLA Page 65 of 127

One option for an attacker to get his public key into Umbrella, is by imper-
sonating a vendor which the user trusts. It is obvious that this kind of attack
would circumvent the security provided by Umbrella. Another way of inserting
an unauthorized public key into the key ring is by using direct access to storage
devices, which is discussed below.

5.3.2 Insert New Non-Umbrella Kernel

Umbrella is implemented as a kernel patch, and if the running kernel is replaced
by one which does not have Umbrella applied, the access control provided by
Umbrella will be defeated.

There are two ways for booting another kernel image on a system. An attacker
can overwrite the existing kernel image, usually placed in /boot, and reboot the
system. The boot loader will then load the newly copied kernel image. This
attack can be avoided by restricting every process from the /boot directory. On
a handheld device, it seems like a fair assumption that users do not substitute
the kernel.

If an attacker obtains write access somewhere in the system, a new kernel image
could be copied there. Using e.g. a serial line for connecting to the system, it
would be possible for the attacker to make the boot loader boot the malicious
kernel image. This attack requires physical access to the handheld device, and
Umbrella cannot prevent this.

5.3.3 Library Tampering

Injection of malicious code into shared libraries is one way to circumvent the
security imposed by Umbrella. Shared libraries are not executed, and the code
in them is therefore not directly restricted. Library code is executed with the
restrictions that apply to the process from which it is called. If all processes
are restricted to least privilege, malicious library code would pose little threat.
However, processes that have few or no restrictions are vulnerable to this type
of attack. This type of attack can be made more difficult by setting correct
DAC permissions on libraries, as well as restricting processes from libraries they
do not use.

5.3.4 Direct Device Tampering

If an attacker is able to access persistent storage directly, he can tamper with
the Umbrella key ring as well as the security fields of files. Furthermore, it
would be possible to read user’s confidential data, personal files, etc.

Umbrella can prevent this by restricting children of the login application from
accessing the storage devices directly. It is a fair assumption that no users of a
handheld need further raw access to storage devices when mounted. This means
that Umbrella can protect itself as well as restricted files on a running system.

If a handheld is stolen and the storage device in it is mounted on a non-Umbrella
system, Umbrella provides no protection. To protect confidential data in a
scenario like this, an encryption scheme for the file system is needed.

CHAPTER 5. UMBRELLA IN PRACTICE

Page 66 of 127 5.4. ATTACKING A SYSTEM

5.3.5 Accessing Memory of Parent

By invoking a fork system call in a regular C program, the new process created
is assigned a copy of the address space of the parent. Thus, if the parent has
buffered files, to which the child should not have access, the programmer must
explicitly handle this. This may be done by using the clone system call, which
acts like fork, but offers a set of clone flags [14], which can e.g. specify no
memory will be copied from parent to child. This is a scenario that Umbrella
does not prevent.

5.4 Attacking a System

This section describes attacks on a system, which Umbrella can or cannot pre-
vent. Some of the examples will be known vulnerabilities and others more
conceptual. Common to most attacks is, that even though some parts of an
attack will succeed, the design of Umbrella still protects the system, if suitable
sets of restrictions are specified.

5.4.1 Process Hijacking

Hijacking a process is one way to gain access to a vulnerable system. It usually
has the purpose of getting arbitrary commands executed on the system, which
will run with the privileges of the attacked process. This means that spawning
a shell from a vulnerable root process, yields a shell with root privileges and
thereby access to the entire system. The damage done by this type of attacks
can be limited or completely eliminated using Umbrella.

In a perfect world all processes would be restricted to least privilege, however the
nature of a Linux system requires that certain processes like interactive shells,
network daemons, etc., only have few restrictions, which makes these processes
more vulnerable to attacks.

Hijacking a process owned by a regular user will provide access to resources, as
specified by DAC. Hijacking a user owned process is a way of getting access to
a user’s confidential data. Umbrella can prevent this if processes are restricted
from not required confidential data, otherwise it cannot.

5.4.2 Suid Bit Attack

Figure 5.1 on the next page shows a number of example processes executed on
a handheld device. The right column shows the inheritance of the restrictions
associated with each process.

A way of obtaining root access could be to utilize e.g. a format string attack on
an application that has the suid bit1 set.

In Figure 5.1 the suid bit application is restricted from the /etc, /boot, /dev/root
and /etc/umbrella/keyring.

1Suid bit: Allows execution of the program with privileges of the owner. User root owns
all system applications.

CHAPTER 5. UMBRELLA IN PRACTICE

5.4. ATTACKING A SYSTEM Page 67 of 127

init /etc/umbrella/keyring

login /dev/root
/etc/umbrella/keyring

Process Restrictions

shell /boot
/dev/root
/etc/umbrella/keyring

suid bit app /etc

/etc/umbrella/keyring

/boot
/dev/root

Figure 5.1: Example of processes where the last may be exploited to gain root access.

An attacker obtaining root access through an exploit in this program will not
be able to tamper with the system configuration and e.g. add, remove or mod-
ify user accounts. The application is also restricted from the kernel and can
therefore not replace this. The restricted areas of the file system are completely
inaccessible because raw access, through /dev/root, to the flash device is re-
stricted. The Umbrella key ring is also restricted from direct tampering.

This example shows the power of the Umbrella restriction inheritance. In or-
der to obtain powerful root access, the attacker must have a way of attacking
processes on a very high level in the process tree. Attacking e.g. init and the
login application are highly unlikely, and thus the handheld is kept from harm.

5.4.3 Ghost View Vulnerability

In October 2002 a buffer overflow attack in Ghost View was announced [2]. This
security vulnerability occurs in the source code where an unsafe sscanf() call
is used to interpret PostScript and PDF files. By exploiting the vulnerability it
is possible to execute arbitrary commands to the system, during the rendering
of a PostScript or PDF document.

In order to perform exploitation, an attacker would have to trick a user into
viewing a malformed PDF or PostScript file from the command line. Another
way to do this, is through an email program that associate Ghost View with
email attachments.

By restricting Ghost View to least privilege, the harm of an attack could be
brought to a minimum. Ghost View should be able to do operations such
as printing the document, whereas sending email, accessing devices directly,
accessing the address book or private files should be restricted. Exploitation

CHAPTER 5. UMBRELLA IN PRACTICE

Page 68 of 127 5.4. ATTACKING A SYSTEM

of this vulnerability can be brought to a minimum using Umbrella. However,
Umbrella cannot prevent misuse of the resources that Ghost View has access
to, meaning that an attacker could print copies of a carefully crafted document
using the attacked user’s account.

To further improve security using Umbrella, a patch for Ghost View could be
implemented, where the code that renders the document, including the call to
sscanf() is done in a separate process. This process could be further restricted
since its only task is to render the document.

5.4.4 Physical Access

If an attacker has access to hardware, he can access the resources on the device
through the regular user interface. This may be more or less difficult depending
on the strength of the passwords on the system.

If the user has chosen weak passwords, obtaining root access may be possible.
Root access implies almost full control of the system, and thus tampering with
the public keys is possible. However, this can only be done through the provided
user space program, as described in Section 3.3.2 on page 41.

If the user of the device has strong passwords, obtaining root access will not
be possible, and thus the ability to execute the key management user space
program will not be possible either.

5.4.5 Kernel Vulnerabilities

The Linux kernel itself is also prone to vulnerabilities. A class of these vulnera-
bilities can be exploited to make the kernel spawn a child. As Umbrella enforces
restrictions on these, the possible damage can be limited.

An example of such a vulnerability was found in the ptrace system call reported
in March 2003 [16]. This vulnerability may permit a local user to fork a process
with root privileges. The ptrace system call provides means by which a parent
process may observe and control the execution of a child process. The parent
process can examine and change the core image and registers of the child. It is
primarily used to implement breakpoint debugging and system call tracing [15].

The following code snippet, is an exploit of the ptrace vulnerability. The ex-
ploit tricks the kernel into spawning a new child. This child is then tampered
with, using the ptrace call, to make it execute a shell. In line 5 the exploit
forks a new child. This child will execute the code below 11, since fork returns
zero in the child’s thread of execution. The parent will execute the code below
line 41. In line 18 ptrace is used to attach to the kernel child and in line 25
the malicious code is injected. After this the two malicious processes are killed
in line 36. In line 45, the system call socket is the trick that makes the kernel
spawn a child shell with root privileges.

1 main(i n t argc , char *argv []) {
2 s t ru c t user_regs_struct regs;
3 parent =getpid ();
4

CHAPTER 5. UMBRELLA IN PRACTICE

5.4. ATTACKING A SYSTEM Page 69 of 127

5 swi tch (pid=fork ()) {
6

7 case -1:
8 perror ("Can ’t fork (): ");
9 break;

10

11 case 0:
12

13 child=getpid ();
14 k_child =child +1;
15

16
17

18 whi le ((error=ptrace (PTRACE_ATTACH ,k_child ,0,0) ==-1) && (
errno ==ESRCH)) {

19 fprintf (stderr , ".");
20 }
21

22
23

24 f o r (i=0; i<= SIZE; i+=4) {
25 i f (ptrace (PTRACE_POKETEXT ,k_child ,regs.eip+i,*(i n t *)(

shellcode +i))) {}
26 }
27

28
29

30 i f (ptrace (PTRACE_DETACH ,k_child ,0,0) ==-1) {
31 perror (" -> Unable to detach from modprobe thread : ");
32 }
33

34
35

36 i f (kill(parent ,9) ==-1) {
37 perror (" -> We survived ??!!?? ");
38 }
39

40

41 de f au l t :
42

43
44

45 socket (AF_SECURITY ,SOCK_STREAM ,1);
46 break;
47 }
48 exit (0);
49 }

If this attack was performed on a system protected by Umbrella, the restrictions
of the attacking process would be inherited by the resulting root shell. Thus,
if the attack is performed through an email attachment, little damage may be
done. If restrictions are set correctly, the possible damage done using this root
shell will be limited. The restrictions inherited by the kernel child will be those
of the current2 process at the time it is spawned, in this case this process is the
first of the two attacking processes. The complete source code to this exploit
can be found in [13].

2The process current, is the last process scheduled before entering kernel mode.

CHAPTER 5. UMBRELLA IN PRACTICE

Page 70 of 127 5.5. CONCLUSION

5.5 Conclusion

Umbrella has been preliminary benchmarked and it is established that Umbrella
imposes a rather large overhead during benchmarks. This overhead is, however,
not noticeable when using the handheld. Examples of programming against
Umbrella is given and these examples demonstrate the tiny effort required by
the developers to make a secure system.

The final section contains a number of ideas of how to circumvent the security
imposed by Umbrella. Since Umbrella is not yet fully implemented these ideas
is mainly conceptual, when Umbrella is fully implemented these ideas will be
tested in practice. A number of example vulnerabilities of a Linux system is
also presented, to demonstrate how Umbrella would handle attempts to exploit
these.

CHAPTER 5. UMBRELLA IN PRACTICE

6Verification

Verification of software is of great importance, and in order to rely on a security
mechanism this must be verified. If the design, or an underlaying framework is
flawed, the implementation of the mechanism cannot be trusted, and thus the
intended security is gone.

In this chapter, some of the work done in order to verify the security of the LSM
framework is presented. The two presented articles have different approaches to
achieve this, namely by using flow analysis and runtime analysis. The methods
are not guaranteed to find all bugs in the LSM framework, but a combination
yields a strong indication that the framework can be trusted. However, only
code that has been verified can be trusted, of which an example is given in the
end of this chapter. This example reveals a bug in the LSM code that is not
a part of the LSM hook framework. The bug is located in the module loading
code for the LSM-based Capability security module.

Finally a conclusion of the security provided by Umbrella is presented.

6.1 Verification of Umbrella

Verifying the security provided by Umbrella will rely on proving that processes
that are restricted from a number of resources, in fact does not have access to
these.

In order to perform this verification, recall that Umbrella is based solely on
the Linux Security Modules framework to mediate access to system resources.
Thus, verifying Umbrella’s ability to mediate access to system resources consists
of verifying the LSM hook framework.

Some work has been done on the area of verifying LSM, i.e. verifying that the
placement of the LSM hooks provides the necessary mediations for controlling
access to resources. It is beyond the scope of this project to extend this work.
However, the results are of great interest, since Umbrella rely on LSM. Two
approaches are described in the following, namely on doing static verification
and runtime verification of the placement of LSM hooks.

71

Page 72 of 127 6.2. STATIC ANALYSIS OF LSM HOOKS

6.2 Static Analysis of LSM Hooks

This section is based on the work done by Jaeger et al. in Using CQUAL for
Static Analysis of Authorization Hook Placement [49]. This article presents an
approach for verification of the placement of LSM hooks, based on static analysis
using CQUAL. The static analysis uses flow analysis to determine if the only
path of execution goes through the checkpoints before accessing a protected
data structure, i.e. all execution paths that want to access the resource are
going through the checkpoint.

CQUAL is a framework for adding type qualifiers to a language. Type qualifiers
encode a simple but highly useful form of sub-typing. This framework extends
standard type rules to model the flow of qualifiers through a program [25].

6.2.1 CQUAL

CQUAL is a type-based static analysis tool, designed to assist programmers in
locating bugs in C programs by performing flow insensitive analysis [8]. CQUAL
supports user-defined type qualifiers which are used the same way as standard
C type qualifiers, such as const.

The code snippet below shows an example of the user-defined type qualifier
unchecked, used to denote a controlled object, which has not been authorized.
The declaration states that the file pointer (flip) has not been checked.

1 s t ru c t file * $$unchecked flip;

Typically, programmers specify a type qualifiers lattice which defines the sub-
type relationships between qualifiers and annotate the program with the appro-
priate type qualifiers. A lattice is a partially ordered set in which all non-empty
finite sub-sets have a least upper bound and a greatest lower bound. Below is an
example of such a lattice with two elements, checked and unchecked and the
sub-type relation < as the partial order. This means that checked is a sub-type
of unchecked.

1 partial order {
2 $$checked < $$unchecked
3 }

CQUAL has a few built-in inference rules that extend the sub-type relation to
qualified types. For example, one of the rules states that if Q1 < Q2 (Q1 is a
sub-type of Q2) then type Q1 T is a sub-type of Q2 T for any given type T.
From this it can be inferred that a Q1 type can be used wherever a Q2 type
is expected, but using a Q2 type instead of a Q1 type would generate a type
violation.

6.2.2 Method

The paper presents a novel approach to verification of LSM authorization hook
placement using CQUAL. The following concepts are important to understand
the presentation of this work.

CHAPTER 6. VERIFICATION

6.2. STATIC ANALYSIS OF LSM HOOKS Page 73 of 127

Security Check

Controlled Operation

Controlled ObjectControlled Object

Controlled Objects

Figure 6.1: The complete mediation problem.

• A controlled object is an object to which access should be controlled.

• A controlled operation consists of a controlled object and the operation
executed on the object.

• Controlled data types are user space abstractions of controlled object. The
following are controlled data types: Files, inodes, superblocks, tasks, mod-
ules, network devices, sockets, skbuffs, IPC messages, IPC message queues,
semaphores and shared memory.

• Complete mediation means that an LSM authorization occurs before any
controlled operation is executed.

• Complete authorization means that each controlled operation is completely
mediated by hooks that enforce its required authorizations.

6.2.3 Complete Mediation

Complete mediation, means verifying that each controlled operation in the Linux
kernel is mediated by some LSM authorization hook. A LSM authorization hook
consists of a hook function identifier (i.e. the policy-level operation for which
authorization is checked, such as security_ops->file_ops->permission) and
a set of arguments to the LSM module’s hook function. At least one of the ar-
guments refers to a controlled object for which access is permitted by successful
authorization.

The first problem was to identify the controlled objects in the Linux kernel.
Operations on objects of controlled data types and user level globals compose
the set of controlled operations. This allows the complete mediation verification
problem to be defined as: Verify that an LSM authorization hook is executed on
an object of a controlled data type before it is used in any controlled operation.
Figure 6.1 depicts the problem.

To solve the complete mediation problem it is necessary to solve a few important
sub-problems. First it must be possible to associate the authorized object with

CHAPTER 6. VERIFICATION

Page 74 of 127 6.2. STATIC ANALYSIS OF LSM HOOKS

those used in controlled operations. This is easily achieved in runtime analysis
by looking at the identifiers of the actual object. However, in static analysis
only the variables and the operations performed upon them are known. Simply
following the variable’s path is insufficient, since the variable may be reassigned
to a new object after the check.

Secondly, all the possible paths to the controlled operations must be identified.
Although the kernel can take arbitrary paths, in practice, typical C function
call semantics are used. As a result, it can be assumed that each controlled
operation belongs to a function and can only be accessed by executing that
function.

This gives a situation where all inter-procedural paths are defined by a call
graph. It is, however, also necessary to identify which intra-procedural paths
require analysis. The only intra-procedural paths that require analysis are those,
in which authorization is performed or where variables are assigned, since they
are the only operations capable of changing the authorization status of an object.

The article suggests that the complete mediation problem can be solved by the
following sequence of steps for each object variable.

1. Determine the function in which the variable is initialized.

2. Identify its controlled operations and their functions.

3. Determine the function in which this variable is authorized.

4. Verify that all controlled operations in an authorizing function are per-
formed after the security check.

5. Verify that there is no re-assignment of the variable after the security
check.

6. Determine the inter-procedural paths between the initializing function and
the controlling functions.

7. Verify that all inter-procedural paths from an initializing function to a
controlling function contain a security check.

6.2.4 Complete Authorization

Given a solution to the complete mediation problem and a set of required au-
thorizations, the complete authorization is straightforward, but finding the re-
quirements is difficult. Controlled operations require mediation for a set of
authorization requirements. The verification problem is to ensure that the re-
quirements have been satisfied for all paths to the controlled operation, meaning
that there is no way to access a controlled object without authorization. Some
situations require multiple security checks, but the basic idea is the same.

Collection of the authorization requirements for the controlled operations is a
complex task. However, this was solved with the runtime analysis tools de-
scribed in Section 6.3, to avoid creating a new analysis method.

CHAPTER 6. VERIFICATION

6.3. RUNTIME VERIFICATION OF LSM HOOKS Page 75 of 127

6.2.5 Using CQUAL

CQUAL is used to perform the central task of statically verifying that all inter-
procedural paths from any initializing function to any controlling function, con-
taining an authorization of the controlled object (step 6 and 7). This is achieved
using the lattice configuration. All controlled objects are initialized with an
unchecked qualifier. The parameters to controlling functions used in control-
ling operations are specified to require checked qualified objects. Authorizations
change the qualified type from unchecked to checked. Using these qualifiers,
CQUAL’s type inference and analysis reports a type violation if there is any path
from an initializing function to a controlling function that does not contain an
authorization. Details can be found in [49].

6.2.6 Results

The interesting result in this paper is the conclusion on the hook placements.
The paper finds some issues regarding the placement of the authorization hooks,
including a vulnerability that could be exploited. The issues fall into three
categories.

1. Inconsistent checking and usage of controlled object variables: File lock-
ing in the fcntl system call can cause an exploitable race condition. A
file pointer is retrieved via a file descriptor and checked. However the
unchecked file descriptor is passed on to two sub-functions, which again
retrieves the file pointer from the file descriptor, causing the race condi-
tion.

2. Controlled object modified without security checks: The function file-

map_nopage is called when a page fault occurs within a memory mapped
region. The file object given to this function is unchecked.

3. Kernel-initiated operations bypassing security checks: Kernel functions
are not subject to the same security checks as e.g. system calls, which
can be exploited. Examples of vulnerable functions are do_coredump and
prune_icache.

Further details on these errors are given in [49]. A patch has been submitted
and the fix have been included in kernel versions succeeding 2.4.9.

6.3 Runtime Verification of LSM Hooks

This section is based on the work done by Jaeger et al. in Runtime Verification
of Authorization Hook Placement for the Linux Security Modules Framework
[24]. The article describes a way of verifying the placement of the LSM hooks
in the Linux kernel using a runtime analysis.

The runtime analysis involves instructing the Linux kernel to collect security
runtime events, such as system calls, LSM authorizations and controlled opera-
tions. The collected data must be analyzed to identify potential errors.

CHAPTER 6. VERIFICATION

Page 76 of 127 6.3. RUNTIME VERIFICATION OF LSM HOOKS

GCC have been extended to perform analysis of its abstract syntax tree to add
the necessary instrumentation to the Linux kernel. For collecting the runtime
events generated by the instrumentation, a kernel module has been implemented.
In order to extract the interesting events, a filtering language is developed, which
is used to locate any inconsistencies in authorizations for cases which are similar.

The tools developed generate two different representations that were used to lo-
cate the inconsistencies found, namely authorization graphs and sensitivity class
lists. The authorization graphs display the consistency between the execution
of a controlled operation and its authorizations. The sensitive class lists show
the attributes of controlled operations to which the authorization consistency is
sensitive.

The following concepts are important to understand the presentation of this
work.

• Security-sensitive operations are the operations that impact the security
of the system.

• Controlled operations are sub-sets of security-sensitive operations, i.e. a
controlled object and the operation executed on the object.

• Authorization hooks are the authorization checks in the system (e.g., the
LSM-patched Linux kernel).

• Policy operations are conceptual operations authorized by the authoriza-
tion hooks.

6.3.1 Relationships to Verify

The relationships to be verified are described below. The basic idea is to identify
the controlled operations and their authorization requirements, and then verify
that the authorization hooks mediate these controlled operations properly.

• Identify controlled operations: Find the set of operations that define a
mediation interface through which all security sensitive operations are
accessed.

• Determine authorization requirements: For each controlled operation, iden-
tify the authorization requirements, i.e. the policy, that must be autho-
rized by the LSM hooks.

• Verify complete authorization: For each controlled operation, verify that
the correct authorization requirements are authorized by LSM hooks.

• Verify hook placement clarity: Controlled operations implementing a pol-
icy operation should be easily identifiable from their authorization hooks.
Otherwise, even trivial changes to the source may render a hook inopera-
ble.

CHAPTER 6. VERIFICATION

6.3. RUNTIME VERIFICATION OF LSM HOOKS Page 77 of 127

Factor Authorization are same for

System call All controlled operations in system call.
System call inputs All controlled operations in same system call

with same inputs.
Data type All controlled operations on objects of the

same data type
Object All controlled operations on the same object.
Member All controlled operations on same data type,

accessing same member with same operation.
Function All same member controlled operations in

same function.
Intra-function Same controlled operation instance.
Path Same execution path to same controlled oper-

ation instance.

Table 6.1: Authorization sensitivity factors.

6.3.2 Solution for Verifying the Relationships

The assumption for the runtime analysis is that the majority of the LSM au-
thorization hooks are correctly placed. By this, the cases which are inconsistent
with the norm are likely to be indicative of an error. An example of this could
be a controlled operation which has different runs on the same system call.

The attributes of the controlled operations can be totally-ordered with respect
to their impact on authorization requirements. For example, all controlled op-
erations in a system call have the same authorizations. The value of the other
attributes of a controlled object do not affect the authorizations; i.e. the system
call is at the top of the order.

This knowledge is used to identify cases that are anomalous, i.e. where autho-
rizations are sensitive to attributes to which they should not be. Furthermore,
it is used to partition controlled operations into their maximal-sized classes by
common authorizations. Further unexpected sensitivities in these classes are
used to identify errors.

6.3.3 Authorization Sensitivity Attributes

Table 6.1 lists the attributes of controlled operations to which authorization
requirements may be sensitive. This group of attributes is referred to as autho-
rization sensitivity attributes. Each controlled operation has information about
the conditions under which is was executed, the object it was executed upon
and the operation performed.

These attributes are totally-ordered, such that if the authorizations of controlled
operations differ when the value of one factor is changed, then authorizations
also differ when a higher factor is changed. An example of this is if two controlled
operations on a given object have different authorizations, then the data type
will also have different authorizations for the two controlled objects.

CHAPTER 6. VERIFICATION

Page 78 of 127 6.3. RUNTIME VERIFICATION OF LSM HOOKS

Linux Kernel

Controlled Op. Filter

Logging Module

Control−Flow Filter

Context Filter

Authorization Filter

Instrumented Calls

Instrumented Calls

LSM Hooks

Breakpoints

/proc

Log

Figure 6.2: Architecture of tools for runtime verification of LSM.

6.3.4 Authorization Sensitivity Impact

The classifications of controlled operations by their authorization sensitivity
divides the controlled operations into two categories, namely known anomalies
and sensitivity classes whose authorization requirements need verification. For
the latter, the controlled operations are partitioned into maximal-sized classes
with the same authorizations. These classes enable verification of authorization
requirements and identification of anomalous classifications.

6.3.5 Necessary Data Collection

By logging the items listed below, the necessary values for the sensitivity at-
tributes are collected.

• System call entry, exit and arguments.

• Function entry and exits.

• Controlled operations.

• Authorizations.

Figure 6.2 represents an overview of the tools implemented by the authors. The
different information for logging are generated in three ways. First, authoriza-
tion information is generated by the LSM hooks. Second, controlled operation
details are generated by compiling the kernel with a modified version of GCC
that identifies controlled operations and instruments the kernel with calls to a
handler function before all such operations. Third, control-flow information is
also generated by instrumenting the kernel at compile-time.

CHAPTER 6. VERIFICATION

6.4. CAPABILITY ROOT EXPLOIT Page 79 of 127

6.3.6 Results

The logs are analyzed by an optimistic approach, where rules to identify sensi-
tivities at the highest level attribute, namely system calls. If all the controlled
operations in the system call execution have the same authorizations, i.e. are
system call sensitive, then only the correctness of the authorizations needs ver-
ification. If the correctness verification fails, the system call inputs must be
further examined for sensitivity. Analysis of system call input sensitivity were
performed ad hoc, because a large number of possible inputs exist; however,
only a few have an effect on the authorizations.

The logs from the LSM-patched Linux 2.4.16 kernel have been analyzed and the
following anomalies were revealed.

1. Member sensitive – multiple system calls: Missing authorization hook in
the function setgroups16, where the task’s group set can be reset.

2. Member sensitive – single system call: The owner of a file can be set to
root, when a file removes a lease from a file via fcntl(fd, F_SETOWN,

pid_owner) without authorization.

3. Member sensitive – single system call: Access to the flag set upon IO
completion can be set without authorization via fcntl(fs, F_SETSIG,

sig).

4. System call sensitive – missing authorization: Authorizations for the read
operation are not performed during a page fault on a memory mapped file.
Thus when a process has a memory mapped file, it can continue to read
this, regardless of changes in security attributes.

Bugs number 1-3 is fixed by adding authorizations and number 4 is solved by
disallowing memory mapping of files that requires read authorization.

6.4 Capability Root Exploit

December 8th 2003, a root exploit of the Capability LSM module were reported
to several Linux security mailing lists [34]. The exploit elevated privileges of all
processes in the system, when the Capability module was loaded.

POSIX.1e Capability [30] is a very important component of Linux kernel, as
Linux security relies on DAC mainly. In new kernel version, the LSM framework
is introduced and some Linux security projects are ported to LSM and accepted
into the Linux kernel source. Among these where the POSIX.1e Capability
module. If the Capability module is compiled as a separate loadable kernel
module, all processes will elevate privileges from normal users to root, when it
is inserted, and are thus capable of doing anything.

When the privileged operations are controlled by the Capability modules, it
mediates these operations based on the credentials of a given process. The cre-
dentials consists of three fields in the task_struct, namely cap_permitted,
cap_inheritable and cap_effective. Before a user process can perform priv-
ileged operations (such as set host name, override DAC, perform raw IO etc.),

CHAPTER 6. VERIFICATION

Page 80 of 127 6.4. CAPABILITY ROOT EXPLOIT

login

shell

init

vi

uid: user

creds: all

creds: user

creds: all

creds: user

uid: root

uid: user

uid: root

lim
it creds

Processes:

(a) Before

login

shell

init

vi

uid: user

creds: all

creds: all

creds: all

creds: all

uid: root

uid: user

uid: root

Processes:

(b) After

Figure 6.3: Credentials of processes in a system before and after loading the Capa-
bility module.

the system checks the cap_effective field, implemented in the cap_capable

hooks functions of security/commoncap.c.

1 i f (cap_raised (tsk ->cap_effective , cap)))
2 return 0;
3 e l s e
4 return -EPERM ;

The computation of credentials is so important that it should be computed by
the system according to user id properties of a process. This computation is
also performed by the Capability module. In general, only root processes can
have all POSIX.1e capability privileges.

When the Capability module is not compiled into the kernel and no other LSM
security modules are loaded, the kernel uses default security function operations
(security/dummy.c) to mediate privileged operations. The check logic of the
dummy operations is very simple: If a process wants to perform a privileged op-
eration, its euid property must be zero (root), or when the privileged operation
involves the file system its fsuid property must be zero.

However, the dummy operations do nothing about the credentials of processes.
The credentials of any process is a clone of its parent process. As results, the
credentials of all processes, even normal user processes, are the same as those of
the init process, which is a privileged process. Thus, all processes are assigned
total capability privileges in its credentials when the system is initiated.

Unfortunately, after the Capability LSM module is loaded, it does not recompute
the credentials of processes that existed before inserting the Capability module.

CHAPTER 6. VERIFICATION

6.5. CONCLUSION Page 81 of 127

Before inserting, only root processes can correctly perform privileged operations,
controlled by dummy operations, based on user id’s. After inserting, the control
of privileged operations is switched from dummy operations to the Capability
module based on credentials. As a result, all existing processes have privileges
the same as init. A normal user, which may be a malicious user, can perform
any operations through these processes.

The Capability bug is depicted in Figure 6.3. Before (a) loading the Capability
module, all processes have the right credentials. After the loading (b), every
process have all credentials, which implies the regular user have root privileges
in the shell and vi.

6.4.1 Revealing The Exploit

A serious bug as the one described above was not revealed by the hook verifica-
tion analysis. The bug originates from a missing operation in the implementa-
tion in the module loading code, which has not been verified. This is a reminder
that only verified code can be trusted.

6.5 Conclusion

The work performed to verify the placement of the LSM hooks have revealed
some errors in an early state of the development of the LSM framework, which
have since been corrected.

The example of the root exploit in the Capability LSM module, is a reminder
that even though LSM is believed to be implemented correctly, the possibility
of errors in the specific security modules persists. If LSM is believed to have the
hooks in the right places and sufficient hooks, security modules based on LSM
only have to consider making the code for the module itself secure.

Thus, this ends the verification chapter. Due to the facts presented in [49, 24]
the trust in the correctness of the LSM framework is high. Any low level attacks
on Umbrella must be done as attacks on either the Umbrella code or through
parts of the Umbrella design. Since the implementation of Umbrella is not
completed and given the limited time available, no effort has yet been done to
verify the correctness of the Umbrella code.

CHAPTER 6. VERIFICATION

7Conclusion

Umbrella was developed during our master’s thesis at Aalborg University. Dur-
ing this period we developed a completely new scheme for mandatory access
control, namely process based mandatory access control. The Umbrella scheme
is developed and implemented for the Linux 2.6 kernel to enforce a combination
of process based mandatory access control and authentication of files.

In the following sections conclusions on the design, implementation and the
process of the project are given. Furthermore optimizations and further devel-
opment of the project are described together with the future of the project.

Umbrella and Traditional MAC

Umbrella takes a different approach to mandatory access control, than tradi-
tional MAC implementations. Umbrella focuses on processes rather than the
widely used subject/object model. This enables Umbrella to avoid the main-
tenance of the access matrix, used in other systems, disregarding if MAC was
modeled by type-enforcement, multi level security or other schemes.

The access matrix is the weak point for current MAC implementations, because
adding a new object or subject, would require that a policy for all other objects
and subjects is specified. This is a very demanding task even though some
other MAC schemes support some degree of automatization of this. Umbrella
completely eliminates maintenance of a access matrix by introducing trusted
vendors, which are able to set restrictions for their programs, both on time of
execution and individually for possible children, thereby limiting access to e.g.
personal data or critical system resources. This utilizes developers knowledge
of their own programs.

Design

The design of Umbrella is aimed at limiting the possible harm of malicious
software on handheld devices. This is achieved by designing a MAC scheme
based on processes. Process based MAC is designed to utilize the process tree
structure found in Unix-like systems, to ensure that all children are at least as
restricted as their parent. This is achieved by inheritance of restrictions from
parents to children, thereby creating child processes with a union of the parents

83

Page 84 of 127

restrictions and any additional restrictions set for the child.

Restrictions in Umbrella are divided into two layers, namely the static level 1
restrictions and the dynamic level 2 restrictions. Level 1 restrictions represent
a static list of restrictions specific to the hardware platform. These restrictions
are represented in a bit-vector, which is mapped by a hash table, to increase
the speed of both inheritance of restrictions and lookups in the vector. Level
2 restrictions are individual to each process and contains only restrictions on
the file system. Because of the dynamic nature of level 2 restrictions, they are
stored in a hash table for each process, which allows up to 256 restrictions to
be set.

The combination of level 1 and level 2 restrictions allow Umbrella to perform well
because the level 1 hash table is small enough to fit into the cache of the CPU
and still Umbrella is highly flexible due to the individual level 2 restrictions.

One of the philosophies of Umbrella is that, to make a secure system, the devel-
opers must be involved. Umbrella encourages programmers to restrict processes
from accessing specific parts of the file system, network and critical system re-
sources. We believe that this moving of responsibilities, from a security admin-
istrator to the developers, is necessary to obtain secure computer systems. The
developers can specify suitable restrictions for a process, much more accurate
than a security administrator who has never seen the source code.

Umbrella is designed to be transparent to the user. This is obtained by im-
porting restriction through vendor-signed files. The file signatures are created
using public key cryptography, where the public keys are stored on the device
in a protected key ring. When a signed file enters the system, the signature is
verified and the program is assigned the restrictions specified.

Two extra features for Umbrella has been evaluated. One for controlling the
ability for processes to send signals and one for preventing injection of code into
existing executables.

Implementation

Umbrella has been developed as an open source project hosted on Source-
Forge.net. The Umbrella web site have had more than 14.000 visits since the
public launch on March 2nd 2004 and since the first version was released more
than 200 downloads have been performed.

The Umbrella development process is divided into small steps, in the style of
eXtreme Programming with short release cycles and implementing functionality
before considering optimizations. The main goal of the spring semester, was to
have an implementation, which could show the principle of Umbrella; this has
been achieved.

The completed parts of the implementation covers restrictions on processes,
which are implemented together with the intended functionality, i.e. inheri-
tance and the ability to set child restrictions. The base for this is the Linux
Security Modules framework, which provides hooks for controlling access to data
structures in the kernel. The data structures for holding restrictions, i.e. bit-
vector, hash function and hash table, are implemented specifically for suiting

CHAPTER 7. CONCLUSION

Page 85 of 127

the needs of Umbrella; high flexibility and good performance.

For the pending major implementation parts, the integration into the file system,
i.e. signed files, is of high priority. This requires a persistent and protected
storage in the file system, access to public key cryptography within the kernel,
and a number of user space tools for signing files.

Protected and persistent storage will be achieved by implementing extended at-
tributes to the JFFS2 file system, which is the file system used for flash memory
on Linux. The community developing JFFS2 is interested in having extended
attributes added to the file system, thus there is a good chance that such an
implementation will make it into the kernel source tree. However, implementing
extensions to a file system is difficult, and the Umbrella team has no experience
in this field yet. The task is thus estimated to require a considerable amount of
time.

Public key cryptography within the kernel will consist of porting selected parts
of the GNU Privacy Guard to the kernel, and merge it into the Umbrella source
tree.

For minor pending implementation parts, the controlling of process signaling is
of highest priority, due to the impact of the ability to signal processes. This is
a practical issue, which is believed to be easily resolved.

Besides the implementation, we spent time investigating work in the field of
verification of the Linux Security Modules framework. Since Umbrella is com-
pletely based on LSM the security provided, relies on this. The work of two
articles is presented and their results were a small number of errors in the LSM
framework, which have been corrected. Verifying the Umbrella source code is a
pending task.

Performance of Umbrella

Umbrella is not fully implemented and thus it is not possible to perform a com-
prehensive benchmark of the entire system. However the current implementation
does allow a benchmark of process based MAC.

The performance measures indicate an overhead around 8% for level 1 restric-
tions only. Adding level 2 restrictions raise the overhead to between 10% and
19%. However the 19% only occur when assigning a huge and unrealistic high
number of level 2 restrictions. The current implementation of level 1 and 2
restrictions lacks some optimization, which is believed to increase performance
considerably.

Although the overhead of 10% seems rather large, it is not noticeable when
using the iPAQ in everyday use.

Future of Umbrella

The next steps of the development of Umbrella are to finish up the implemen-
tation and to prepare Umbrella for use in “real-world”products. At the time of

CHAPTER 7. CONCLUSION

Page 86 of 127

writing, several companies have been contacted to find interest for a coopera-
tion during the next two semesters. A number of companies have replied with
interest, and initial contacts have been established.

Cooperation with a company is an essential part of the next two semesters
at Industrial Computer Science at Aalborg University. The goals for the first
semester is to complete the implementation, write and submit an article on
Umbrella to a relevant conference. Our current supervisor, Emmanuel Fleury,
has agreed to continue to supervise and work with us for this period.

Umbrella in Other Operating Systems

The design of Umbrella is aimed at handhelds and it is tested on a HP iPAQ
running Linux. However, the design is applicable to any given operating system
if it meets the following requirements.

• It must be possible to determine the restrictions of any process creating a
child in order to perform the inheritance of restrictions.

• The file system should support extended attributes or similar properties
for storing security information on the file system.

• It must be possible to mediate calls to the kernel.

• It must be possible to store information on active processes.

It would be interesting to port Umbrella to other operating systems for hand-
helds, like Symbian and Microsoft PocketPC. It has not, however, been possible
to find detailed information regarding the above mentioned requirements on
these operating systems.

Implementing Umbrella in other operating systems would be eased, if the pro-
cesses are organized in a tree-like structure. Unix-like operating systems, such
as the various versions of BSD fulfills this requirement. The porting of Umbrella
will be a matter of implementing a LSM-like framework for mediating various
calls in the kernel along with adding security fields in the kernel data structures.
After this the Umbrella code is easily portable.

Getting Umbrella in Linux to run on other hardware architectures, simply re-
quires the implementation of the system calls for that platform. The rest of
Umbrella is architecture independent, and even independent of the sub-version
of the Linux 2.6 kernel. The current Umbrella implementation is currently
ported to i386, User-Mode Linux and ARM for the iPAQ.

Final Remarks

The project has spanned the last nine months and during that period many
thoughts and ideas have been discussed, tried, and discarded. The project
teams effort, together with great supervision and commitment from Emmanuel
Fleury have resulted in a completely new scheme for mandatory access control
for handheld devices.

CHAPTER 7. CONCLUSION

Page 87 of 127

The current implementation of Umbrella consists of the functionality concerning
process based MAC. The implementation of signed files will be attended in the
autumn semester, where an article on Umbrella will also be written. Cooper-
ating with a company for adapting Umbrella to real products is also of great
interest and the initial contact has already been established.

We believe that the idea for process based restrictions and inheritance of these
is a step in the right direction for implementing a flexible scheme for mandatory
access control on handheld devices. The idea of signing files enhances the trust-
worthiness of software from different vendors, and improves the general level
of data integrity. Furthermore, we believe that the combination of these two
strong schemes enables Umbrella to provide a secure and flexible environment
for the next generation of Linux powered handheld devices.

CHAPTER 7. CONCLUSION

ATools and Howtos

A.1 Installing Linux on the iPAQ

In this section, we will give a short introduction on how to get started using
Linux on the HP iPAQ 5550. The introduction will include what devices, pe-
ripherals and distributions are required for successfully installing Linux of the
iPAQ.

Installing Linux is a three step process, which is listed below:

1. Use ActiveSync or network to copy the file bootldr and BootBlaster3900-

2.6.exe to the iPAQ.

2. Use BootBlaster3900-2.6.exe to install bootldr.

3. Install Linux distribution via serial port (in this example the Familiar
distribution is used).

A.1.1 Ad. 1: Copying Files

The first step is copying the BootBlaster3900-2.6.exe program and the file
bootldr to the iPAQ using ActiveSync. This can be done by following the
steps listed below:

1. Download the following files.

• http://familiar.handhelds.org/releases/v0.7/

install/files/BootBlaster3900-2.6.exe

• http://handhelds.org/download/bootldr/

pxa/bootldr-pxa-2.21.10.bin.gz

2. If ActiveSync is not already installed on the host PC, install it from the
CD-ROM that followed the iPAQ.

3. Copy BootBlaster3900-2.6.exe to the default folder on the iPAQ by
clicking Explore in ActiveSync and dragging their icons there. Ignore any
”may need to convert” messages.

4. Do the same thing for bootldr-pxa-2.21.10.bin.gz.

89

Page 90 of 127 A.1. INSTALLING LINUX ON THE IPAQ

A.1.2 Ad. 2: Installing the Boot Loader

Next step is to replace the default boot loader, before doing this the following
should be done.

1. Start BootBlaster by

• Select “Start → Programs” on the iPAQ touchscreen.

• Tap on File Explorer.

• Tap on the Bootblaster file.

2. Backup existing OS by:

• Execute “Flash → Save Bootldr .gz Format” in BootBlaster to save
the boot loader in file \My Documents\saved_bootldr.gz on the
iPAQ.

• Execute “Flash → Save Wince .gz Format” in BootBlaster to save
the PocketPC image in files \My Documents\wince_image.gz and
\My Documents\assets_image.gz on the iPAQ. This takes about
five minutes and the iPAQ may seem frozen during this period.

• The first two steps produce the following files which should be copied
to the PC for safe keeping.

– asset_image.gz

– saved_bootldr.gz

– wince_image.gz

• Before continuing, be sure that the iPAQ is plugged into external
power, and that the battery is charged, to protect against the small
chance of power failure during the very limited period the iPAQ is
reprogramming the boot loader flash. Do not touch the power button
or reset button on your iPAQ until you have performed the “Verify”
step below. To install the boot loader follow the steps below:

– Execute “Flash → Program”.

– Select bootldr-pxa-2.21.10.bin.gz.

– Wait patiently. It takes about 15 seconds to program the boot
loader. Do not interrupt this process, or the iPAQ may be left
in an unusable state.

• Execute “Flash → Verify”.

– If it says that the boot loader is not valid, then do not reset or
turn off the iPAQ. Instead try programming the flash again.

– If that does not work, program your flash with your saved boot
loader.

A.1.3 Ad. 3: Installing Linux

You will need to use a terminal program such as Minicom, Kermit, or Hyperter-
minal. If you use Minicom or Kermit, you will need to use an external ymodem
program such as sb, which is available in the Linux lrzsz package. To install
Linux follow the steps below:

APPENDIX A. TOOLS AND HOWTOS

A.1. INSTALLING LINUX ON THE IPAQ Page 91 of 127

1. Download the latest Familiar distribution from www.handhelds.org. At
time of writing this is the file bootgpe2-0.7.2+unstable3-h3900.jffs2.

2. Configure the terminal emulator using these settings: 115200 8N1 serial
configuration, no flow control, no hardware handshaking.

3. Test that the terminal emulator is properly interacting with the boot
loader, by issuing the command help , which should write a list of possible
commands.

4. At the boot> prompt, issue the command load root.

5. Proceed to upload the JFFS2 file with ymodem, using the terminal emu-
lator. This could take awhile so be patient.

6. At the boot> prompt, issue the command boot.

7. Linux should now start booting.

A.1.4 Restoring PocketPC 2003

When the BootBlaster3900-2.6.exe backups PocketPC, it seems to backup 32
+ 16MB of ROM, and hence creates an image file of 49,807,360 bytes (uncom-
pressed size). Restoring this file (for restoring PocketPC) to the iPAQ with boot
loader version 2.20.1 seems impossible, due to its size and the fact that the root
partition only can hold 32MB. Trying to restore PocketPC 2003 the normal way
produces the following error message from the iPAQ

1 boot > load root
2 partition root is a jffs2 partition :
3 expecting .jffs2 or wince_image .gz.
4 After receiving file , will automatically uncompress .gz images
5 loading flash region root
6 using ymodem
7 ready f o r YMODEM transfer ...
8 C4E130C3C8926E4097FDAD7E74AE1B19D
9 00 F79874 bytes loaded to A0000400

10 Looks like a gzipped image , let ’s verify it...
11 Looks like a gzipped image , let ’s verify it...
12 Verifying gzipped image
13 (etc etc)
14 verifyGZipImage: calculated CRC = 0 x8DFC748A
15 verifyGZipImage: read CRC = 0 x8DFC748A
16 img_size is too large f o r region : 01 F80000
17 img_size is too large f o r region : 01 F80000
18 img_size is too large f o r region : 01 F80000
19 boot >

It seems that the PocketPC image contains 2 rom images. One located in the
first 32MB and a backup image located in the remaining 16MB of the PocketPC
image. The second rom image is removed by using the command:

1 $ dd bs=1k count =32256 i f =wince_image of=wince_image .new
2 32256+0 records in
3 32256+0 records out

This produces a new image file with 33,030,144 bytes. This file is then gzipped
and transferred to the iPAQ via Minicom and the load root command, in the

APPENDIX A. TOOLS AND HOWTOS

Page 92 of 127 A.2. BUILDING A CROSS COMPILER FOR THE IPAQ

above example. The boot loader is able to erase and write the new flash and
automatic verification is also successful. After the transfer is completed the
iPAQ is booted with the boot wince command. When PocketPC have been
restored it is optional to reinstall the original boot loader, but this can be done
by reseting the iPAQ while holding down the cursor to activate the boot loader
again. Using Minicom again to send the command load bootldr.

A final word of warning . . . Reinstalling the boot loader is dangerous and could
potentially turn the iPAQ into a very expensive paperweight!

A.2 Building a Cross Compiler for the iPAQ

There are two options for getting a working cross compiler and standard C
library (together called a tool chain) for the iPAQ. Several binary versions are
available from the familiar website1. The second option is to compile your own,
which we describe how to do here. To cross compile the Intel XScale processor,
we cross compile for the ARM architecture.

A cross compiler is dependent upon the kernel header files, so if using another
version of the kernel there might be problems – but in most cases everything
should work smoothly. The pre-compiled cross compiler have the version num-
bers of the GCC compiler version used. The latest releases in GCC-3 is a good
choice.

Next follows an overview of how to build a cross compiler for the iPAQ.

1. Get the kernel source.

2. Get the binutils, gcc and glibc source.

3. Build binutils.

4. Build compiler.

5. Cross compile glibc.

6. Rebuild compiler with new glibc.

If there is no need to cross compile applications, one can skip step 5 and 6. It
requires some work to get glib to compile and when that is finally done, new
problems arise getting GCC to accept the new glibc.

A small shell script is available for building the tool-chain, it can be found at:
http://handhelds.org/download/toolchain/gcc-build-cross-3.3.

A.3 Using the 2.6 Kernel on the iPAQ

In the following we describe our work with configuring the 2.6 kernel for running
on the iPAQ.

1http://handhelds.org/download/toolchain.

APPENDIX A. TOOLS AND HOWTOS

A.3. USING THE 2.6 KERNEL ON THE IPAQ Page 93 of 127

Using the cross-compiler described in Appendix A.2 and the kernel source from
http://www.familiar.org we build a 2.6 kernel for the iPAQ. Next we present
a step-by-step “howto” on configuring the kernel.

The below paths, filenames and commands are all relative to the root of Linux
kernel source tree.

A.3.1 Configuring the Kernel

First step is to copy the default iPAQ configuration file:

1 cp arch/arm/configs / ipaqpxa_defconfig . config

We have edited the .config manually because we have experienced that menu-
config somehow removed some options that were set in the default configuration
file. In the following we present the options that we have changed in the default
configuration.

In order to output debug information, while the kernel is loading, to the serial
port, the following options must be set in the “Character Device” section:

1 CONFIG_VT =y
2 CONFIG_VT_CONSOLE=y
3 CONFIG_HW_CONSOLE=y

And in the “Serial Drivers” section:

1 CONFIG_SERIAL_PXA=y
2 CONFIG_SERIAL_PXA_CONSOLE =y
3 CONFIG_SERIAL_CORE=y
4 CONFIG_SERIAL_CORE_CONSOLE =y
5 CONFIG_UNIX98_PTYS=y
6 CONFIG_UNIX98_PTY_COUNT =32

We must enable JFFS2 file system support, to make it is possible to mount the
file system on the iPAQ.

1 CONFIG_JFFS2_FS=y
2 CONFIG_JFFS2_FS_DEBUG =2
3 CONFIG_JFFS2_FS_NAND =y

A working a complete configuration file can be found at the Umbrella projects
SourceForge website at http://sourceforge.net/projects/umbrella.

We were not able to compile the kernel with sleeve support enabled, therefore
we set CONFIG_IPAQ_SLEEVE=n in the “XScale-based iPAQ” section.

To enable the support for LSM and Umbrella the CONFIG_SECURITY=y and the
CONFIG_SECURITY_UMBRELLA=y options must be set.

Compiling the kernel

When configuration is complete the kernel is compiled with the cross-compiler
described in Appendix A.2 using the command “make zImage”. Remember to

APPENDIX A. TOOLS AND HOWTOS

Page 94 of 127 A.4. USER-MODE LINUX

include the cross-compiler in your path. If using the CVS tree is necessary to
merge the Umbrella source code with the kernel. This is done using the Ruby
script merge_kernel.rb located at umbrella-devel/scripts directory. The
script copies the source files to the correct places in the source tree.

After compilation the kernel image is located in arch/arm/boot/zImage and
can be copied using to the iPAQ using a terminal program like Minicom.

A.3.2 Booting the new kernel

On the iPAQ the new kernel image should be copied to /boot/zImage2.6 and
the new kernel is booted with the command:

1 boot jffs2 / boot/zImage2 .6 console =ttyS0 ,115200

The console parameter sends kernel messages to Minicom through the serial
port ttyS0, with a speed of 115200bps. Make sure that Minicom is configured
accordingly.

A.4 User-mode Linux

User-mode Linux (UML) is a safe way of running Linux. With UML you are
able to run buggy software, experiment with new Linux kernels or distributions,
and poke around in the internals of Linux, all without risking the main Linux
setup.

User-mode Linux gives you a virtual machine that may have more hardware
and software virtual resources than the actual, physical computer. Disk storage
for the virtual machine is entirely contained inside a single file on the physical
machine. It is possible e.g. to assign a virtual machine only a limited hardware
access. With properly limited access, nothing you do on the virtual machine
can change or damage the host computer, or its software.

The purpose of setting up User-mode Linux for this project, was to have an
easy way of testing our changes to the kernel code without risking changes in
the host-computers. Further more it saves boot-time for each new attempt to
boot the kernel. Testing this way is much easier than uploading a new kernel
image to the iPAQ or simply boot the local host all the time.

The User-mode Linux download site, can be found at:
http://user-mode-linux.sf.net/dl-sf.html

APPENDIX A. TOOLS AND HOWTOS

A.4. USER-MODE LINUX Page 95 of 127

Following a small guide for setting up UML for kernel 2.6-test9.

1. Download the kernel source from kernel.org, or directly
ftp://sunsite.dk/pub/os/linux/kernel.org/kernel/v2.6/

linux-2.6.0-test9.tar.gz

2. Download the appropriate User-mode Linux patch from the UML down-
load site, or directly
http://unc.dl.sourceforge.net/sourceforge/user-mode-linux/uml-

patch-2.6.0-test9-1.bz2

3. Extract the kernel source and enter the directory.

4. Patch the kernel source:
bzcat ../uml-patch-2.6.0-test9-1.bz2 | patch -p1

5. Install the User-mode Linux utilities. If these are not installed some parts
of the kernel, e.g. network, will not work or even compile. The utilities
can be downloaded from the UML download site, or directly
http://heanet.dl.sourceforge.net/sourceforge/user-mode-linux/

uml_utilities_20030903.tar.bz2

6. To adapt the User-mode Linux to compile with Linux Security Modules,
the file include/asm-um/common.lds.S must have added the line
SECURITY_INIT before the __exitcall_begin, currently line 81.

7. Configure the kernel for the um architecture:
make menuconfig ARCH=um

8. Build the kernel uncompressed:
make linux ARCH=um

9. Download a file system for the virtual machine from UML download site,
or directly
http://prdownloads.sourceforge.net/user-mode-linux/

Debian-3.0r0.ext2.bz2

10. Uncompress the file system and rename it to root_fs.

11. Make a directory for the virtual machine, e.g. called uml.

12. Copy the compiled kernel linux-2.6.0-test9/linux and root_fs to
the uml directory.

13. Give the linux binary execute permissions.

14. Execute the kernel, ./linux, and your virtual machine boots.

For more information on running UML, see the User-mode Linux how-to:
http://user-mode-linux.sourceforge.net/UserModeLinux-HOWTO.html

APPENDIX A. TOOLS AND HOWTOS

BLinux for Handhelds

There exist several projects for stripping the Linux kernel for use on handhelds.
Among these projects the following were considered for the purpose of running
on the HP iPAQ.

• Familiar Linux – http://familiar.handhelds.org

The Familiar project aims for creating the next generation of PDA op-
erating system. Currently, most of the development time is being put to
wards producing a stable, and full featured Linux distribution for the HP
iPAQ series of handheld computers, as well as applications to run on top
of the distribution.

• Intimate Linux – http://intimate.handhelds.org

The Intimate project is a fully blown Debian based Linux distribution for
the HP iPAQ. Taking the work being done by the Familiar project and
combining it with fully blown Debian package management, and access to
the thousands of existing Debian packages for the ARM architecture. The
distribution will thus not fit within the limited amount of RAM the iPAQ
has built-in. The minimum requirements are around 140MB of storage
for the base image. The storage solution is based upon micro hard drives,
that you can connect to the iPAQ.

• Etlinux – http://www.etlinux.org

Etlinux is a complete Linux-based system designed to run on very small
x86-based industrial computers. It has been designed to be small, mod-
ular, flexible and complete. It has reduced the usage memory and disk
requirements to 4MB in total.

• OpenZaurus – http://www.openzaurus.org

The OpenZaurus project was created as an alternative ROM (kernel and
root file system) image for the Sharp Zaurus Personal Mobile Tool. Open-
Zaurus is a Debian based embedded distribution built from source, from
the ground up. Given its Debian roots, it is quite similar to other embed-
ded Debian-based distributions, such as the Familiar project.

97

CLinux Security

Modules

A prerequisite for implementation of Umbrella is the ability to mediate calls
to kernel space. This ability is implemented in the Linux Security Modules
framework as hook functions. In this chapter the LSM framework is investi-
gated regarding implementation of resource access control. There are several
advantages to this approach. The LSM framework is a part of the Linux kernel
from version 2.6, which ensures modules dependent upon LSM will also work
in future versions of the Linux kernel. Furthermore LSM offers stackable mod-
ules, which makes it possible to run several security modules at the same time.
Detailed information on LSM can be found in [5, 47].

C.1 The Becoming of LSM

In March 2001, the National Security Agency (NSA) gave a presentation about
Security-Enhanced Linux (SELinux) at the 2.5 Linux Kernel Summit. SELinux
is an implementation of flexible and fine-grained non-discretionary access con-
trols in the Linux kernel, originally implemented as its own particular kernel
patch.

In response to the NSA presentation, Linus Torvalds made a set of remarks that
described a security framework he would be willing to consider for inclusion in
the Linux kernel. He described a general framework that would provide a set
of security hooks to control operations on kernel objects and a set of opaque
security fields in kernel data structures for maintaining security attributes. This
framework could then be used by loadable kernel modules to implement any
desired model of security. Linus also suggested the possibility of migrating the
Linux capabilities code into such a module.

The Linux Security Modules project was started by WireX1 to develop such
a framework. LSM is a joint development effort by several security projects,
including Immunix, SELinux and Janus and several individuals, including Greg
Kroah-Hartman and James Morris, to develop a Linux kernel patch that imple-
ments this framework. The patch is currently tracking the 2.4 series and is an

1http://www.wirex.com

99

Page 100 of 127 C.2. THE LSM FRAMEWORK

User Level Process

Open system call

Look up inode

Error check

DAC checks

LSM hook

Access inode

Kernel space

User space

Grant or deny.

Examine context.Ok with you?

Yes or No Does request pass policy ?

Figure C.1: LSM hook architecture.

integrated part of the 2.6 test series. This chapter provides an overview of the
framework and the example capabilities security module provided by the LSM
kernel patch. This is followed by an example of how to use the LSM framework
to implement an actual security module.

C.2 The LSM Framework

LSM is a general framework aimed at supporting security modules in the kernel.
In particular, the LSM framework is primarily focused on supporting access
control modules, although future development is likely to address other security
needs such as auditing [47]. By itself, the framework does not provide any
additional security; it merely provides the infrastructure to support security
modules. The LSM kernel patch also moves most of the capabilities logic into
an optional security module, with the system using the traditional superuser
logic as default. This capabilities module is discussed further in the section C.3.

The basic abstraction of the LSM interface is to mediate access to internal
kernel objects. LSM seeks to allow modules to answer the question “May a
given subject perform a kernel operation on an internal kernel object?”.

The mediation of access to kernel objects is achieved by placing hooks in the
kernel code, just before the kernel would have accessed an internal kernel object,

APPENDIX C. LINUX SECURITY MODULES

C.2. THE LSM FRAMEWORK Page 101 of 127

Structure Object

task struct Task (Process)
linux binprm Program
super block File-system

inode Pipe, File or Socket
file Open File

sk buff Network Buffer (packet)
net device Network Device

kern ipc perm Semaphore, Shared Memory
Segment or Message Queue

msg msg Individual Message

Table C.1: Kernel data structures modified by LSM.

as shown in figure C.1. A hook makes a call to a function that the LSM module
must provide. As seen in C.1 the hook is placed immediately after the DAC
checks, so the LSM module can override decisions made by the DAC. Table C.1
shows the kernel data structures modified by the LSM kernel patch and the
corresponding abstract object.

The LSM kernel patch adds security fields to kernel data structures and inserts
calls to hook functions at critical points in the kernel code to manage the secu-
rity fields and to perform access control. It also adds functions for registering
and unregistering security modules, and adds a general security system call to
support new system calls for security-aware applications.

C.2.1 Security Fields

The LSM security fields are void pointers. For process and program execution
security fields were added to the structures task_struct and linux_binprm.
The listing below shows such a security field in task_struct.

1 s t ru c t task_struct {
2 /* -1 unrunnable , 0 runnable , >0 stopped */
3 v o l a t i l e long state ;
4 s t r uc t thread_info * thread_info ;
5 ...
6 // Security field added by LSM
7 void * security ;
8 ...
9 siginfo_t * last_siginfo; /* For ptrace use. */

10 };

For file system security information, a security field was added to the structure
super_block. For pipe, file, and socket security information, security fields
were added to the structures inode and file. For packet and network device
security information, security fields were added to the structures sk_buff and
net_device. For System V IPC security information, security fields were added
to the structures kern_ipc_perm and msg_msg. Additionally, the definitions
for the structures msg_msg, msg_queue, and shmid_kernel were moved to the
header files include/linux/msg.h and include/linux/shm.h to allow the
security modules to use these definitions.

APPENDIX C. LINUX SECURITY MODULES

Page 102 of 127 C.2. THE LSM FRAMEWORK

The setting of these security fields and the management of the associated secu-
rity data is handled by the security modules. LSM merely provides the fields
and a set of calls to security hooks, that can be implemented by the module.
For most kinds of objects, an alloc_security and a free_security hook are
defined, to permit the security module allocate and free security data when the
corresponding kernel data structures is allocated and freed. An other set of se-
curity hooks are provided to permit the security module to update the security
data as necessary, e.g. a post_lookup hook used to set security data for an
inode after a successful lookup operation. Furthermore LSM does not provide
any locking mechanism for the security fields, and it becomes the responsibility
of the security module.

C.2.2 Hooks

Each LSM hook is a function pointer in a global table, security_ops. This table
is a security_operations structure defined in include/linux/security.h.

Detailed documentation for each hook is included in this header file, but can also
be found at: http://lsm.immunix.org/docs/2.5/lsm_interface.html.

At present, the security_operations structure consists of a collection of sub-
structures that group related hooks based on the kernel objects seen in ta-
ble C.1, as well as some top-level hook function pointers for system opera-
tions. Hook calls can also be found in the kernel code by looking for the string
security_ops->. An example of such a hook function is inode_mkdir, which
is defined in the structure security_operations as:

1 i n t (* inode_mkdir)(s t ru c t inode *dir , s t r uc t dentry *dentry , i n t
mode)

Below is the kernel function vfs_mkdir with one security hook call to mediate
access and one security hook call to manage the security field. The security
hooks are marked by a small comment.

1 i n t vfs_mkdir (s t ru c t inode *dir , s t ru c t dentry * dentry , i n t mode
) {

2 i n t error = may_create (dir , dentry , NULL);
3

4 i f (error) return error;
5

6 i f (! dir ->i_op || !dir ->i_op ->mkdir)
7 return -EPERM;
8

9 mode &= (S_IRWXUGO |S_ISVTX);
10 error = security_inode_mkdir(dir , dentry , mode); /* hook */
11 i f (error) return error;
12

13 DQUOT_INIT (dir);
14 error = dir ->i_op ->mkdir(dir , dentry , mode);
15 i f (! error) {
16 inode_dir_notify(dir , DN_CREATE);
17 security_inode_post_mkdir (dir ,dentry , mode); /* hook */
18 }
19 return error;
20 }

APPENDIX C. LINUX SECURITY MODULES

C.2. THE LSM FRAMEWORK Page 103 of 127

This hook function is used to implement the security module example found in
Section C.4.

Although the LSM hooks are organized into sub-structures based on kernel ob-
ject, all of the hooks can be viewed as falling into two major categories: hooks
that are used to manage the security fields and hooks that are used to per-
form access control. Examples of the first category of hooks include the al-

loc_security and free_security hooks defined for each kernel data structure
that has a security field. These hooks are used to allocate and free security struc-
tures for kernel objects. The first category of hooks also includes hooks that set
information in the security field after allocation, such as the post_lookup hook
in the structure inode_security_ops. This hook is used to set security infor-
mation for inodes after successful lookup operations. An example of the second
category of hooks is the permission hook in the structure inode_security_ops,
that checks permissions when accessing an inode.

C.2.3 Per-process Security Hooks

Linus Torvalds mentioned per-process security hooks in his original remarks
as a possible alternative to global security hooks. However, if LSM were to
start from the perspective of per-process hooks, then the base framework would
have to deal with how to handle operations, like kill, that involve multiple
processes, since each process might have its own hook for controlling the opera-
tion. This would require a general mechanism for composing hooks in the base
framework. Additionally, LSM would still need global hooks for operations that
have no process context like e.g. network input operations. Consequently, LSM
provides global security hooks, but a security module is free to implement per-
process hooks by storing a security_ops table in each process’ security field
and then invoking these per-process hooks from the global hooks. The problem
of composition is thus deferred to the module.

C.2.4 Global Security Operations Table

The global security_ops table is initialized to a set of hook functions pro-
vided by a dummy security module that provides traditional superuser logic.
A register_security function (in security/security.c) is provided to al-
low a security module to set security_ops to refer to its own hook functions,
and an unregister_security function is provided to revert security_ops to
the dummy module hooks. This mechanism is used to set the primary security
module, which is responsible for making the final decision for each hook.

C.2.5 Security Module Stacking

LSM also provides a simple mechanism for stacking additional security modules
with the primary security module. It defines register_security and unreg-

ister_security hooks in the security_operations structure and provides
mod_reg_security and mod_unreg_security functions that invoke these hooks
after performing some sanity checking. A security module can call these func-
tions in order to stack with other modules. However, the actual details of how

APPENDIX C. LINUX SECURITY MODULES

Page 104 of 127 C.3. THE LSM CAPABILITIES MODULE

this stacking is handled are deferred to the module, which can implement these
hooks in any way it wishes; including always returning an error if it does not
wish to support stacking. In this manner, LSM again defers the problem of
composition to the module.

C.2.6 Expanding the framework

LSM adds a general security system call that simply invokes the sys_security

hook. This system call and hook permits security modules to implement new
system calls for security-aware applications. The interface is similar to socket
call, but also has an id to help identify the security module whose call is being
invoked.

The next section describe how to implement a security module using the LSM
hooks. This is done to explore the possibilities for using the basic LSM func-
tionality.

C.3 The LSM Capabilities Module

The Linux kernel currently provides support for at sub-set of POSIX.1e capa-
bilities [47]. One of the requirements for the LSM project was to move this
functionality to an optional security module. POSIX.1e capabilities provides a
mechanism for partitioning traditional superuser privileges and assigning them
to particular processes.

By nature, privilege granting is a permissive form of access control, since it
grants an access that would normally be denied. As a consequence, the LSM
framework must provide a permissive interface with at least the same granularity
of the Linux capabilities implementation. LSM retains the existing capable

interface used within the kernel for performing capability checks. However the
capable function have been reduced to a simple wrapper for a LSM hook,
thereby allowing any desired logic to be implemented in a security module.
This allows LSM to leverage the numerous existing kernel calls to capable and
to avoid intrusive changes to the kernel. LSM also defines hooks to allow the
logic for other forms of capability checking and capability computations to be
encapsulated within the security module.

A process capability set, a bit-vector, is stored in the task_struct structure.
Because LSM adds an opaque security field to this structure and hooks to man-
age the field, it would be possible to move the existing bit-vector into the field.
Such a change would be logical in the LSM framework, but have been not been
implemented to ease stacking with other modules. One of the difficulties of
stacking security modules in the LSM framework is the need to share the opaque
security fields. Many security modules would want to stack with the capabilities
module, since its logic have been integrated into the kernel for some time and
it is relied upon by some applications such as named and sendmail. Leaving
the capability bit-vector in the task_struct structure eases this composition,
at the cost of wasted space for modules does not use it.

The Linux kernel support for capabilities also include two system calls: capset

APPENDIX C. LINUX SECURITY MODULES

C.4. EXAMPLE SECURITY MODULE Page 105 of 127

and capget. To ensure compatibility with existing applications, these system
calls are retained by LSM, but the core capabilities logic for these functions has
been replaced by calls to LSM hooks.

C.4 Example Security Module

To demonstrate the Linux Security Modules, a small security module was im-
plemented. The module reacts every time a directory is created, and prints a
message to the kernel log. Another example module can be found in [31]

The module is structured like a regular Linux kernel module. Information about
this may be found in [37]. In the following, some code snippets from the module
are presented and commented.

This is the implementation of the LSM hook function inode_mkdir. To follow
the normal guidelines for modules, the function is prefixed with the module
name. Returning 0 means that creation of the directory is allowed. In a more
advanced example, some checks on the parameters or other parts of the system
could be performed.

1 s t a t i c i n t dirmonitor_inode_mkdir (s t ru c t inode *dir , s t ru c t

dentry * dentry , i n t mode) {
2 printk (KERN_INFO "Directory created \n");
3 return 0;
4 }

Next, we need to state the use of the capability function for the inode_mkdir

hook.

1 s t a t i c s t ru c t security_operations dirmonitor_security_ops = {
2 .inode_mkdir = dirmonitor_inode_mkdir ,
3 };

The init and exit functions register the dirmonitor module with the secu-
rity framework by calling the register_security and unregister_security

functions with the above struct as parameter.

C.5 Discussion

The Linux Security Modules framework provide general interface for implement-
ing security modules for Linux, where it is possible to use several LSM security
modules at the same time. LSM is an integrated part of the Linux kernel 2.6,
which ensures that modules dependent on LSM will run on future kernels. The
main part of the LSM hooks is placed in the kernel where access to resources are
handled. These facts these are the main reason for choosing LSM as framework
for implementing Umbrella.

APPENDIX C. LINUX SECURITY MODULES

DLSM Hooks

in Linux 2.6.3

This appendix provides information on all the security hooks in Linux 2.6.3.
This information can be found in the kernel source tree in include/linux/se-

curity.h. The @-names refers to parameter names of the hook functions.

D.1 Program Execution Operations

bprm alloc security Allocate and attach a security structure to the @bprm
→ security field. The security field is initialized to NULL when the bprm
structure is allocated. @bprm contains the linux binprm structure to be
modified. Return 0 if operation was successful.

bprm free security @bprm contains the linux binprm structure to be modi-
fied. Deallocate and clear the @bprm → security field.

bprm compute creds Compute and set the security attributes of a process
being transformed by an execve operation based on the old attributes
(current → security) and the information saved in @bprm → security
by the set security hook. Since this hook function (and its caller) are
void, this hook can not return an error. However, it can leave the security
attributes of the process unchanged if an access failure occurs at this point.
It can also perform other state changes on the process (e.g. closing open
file descriptors to which access is no longer granted if the attributes were
changed). @bprm contains the linux binprm structure.

bprm set security Save security information in the bprm → security field,
typically based on information about the bprm → file, for later use by the
compute creds hook. This hook may also optionally check permissions
(e.g. for transitions between security domains). This hook may be called
multiple times during a single execve, e.g. for interpreters. The hook can
tell whether it has already been called by checking to see if @bprm →
security is non-NULL. If so, then the hook may decide either to retain the
security information saved earlier or to replace it. @bprm contains the
linux binprm structure. Return 0 if the hook is successful and permission
is granted.

107

Page 108 of 127 D.2. FILE SYSTEM OPERATIONS

bprm check security This hook mediates the point when a search for a bi-
nary handler will begin. It allows a check the @bprm → security value
which is set in the preceding set security call. The primary difference
from set security is that the argv list and envp list are reliably available
in @bprm. This hook may be called multiple times during a single ex-
ecve; and in each pass set security is called first. @bprm contains the
linux binprm structure. Return 0 if the hook is successful and permission
is granted.

bprm secureexec Return a boolean value (0 or 1) indicating whether a ”secure
exec” is required. The flag is passed in the auxiliary table on the initial
stack to the ELF interpreter to indicate whether libc should enable secure
mode. @bprm contains the linux binprm structure.

D.2 File System Operations

sb alloc security Allocate and attach a security structure to the sb → s security
field. The s security field is initialized to NULL when the structure is al-
located. @sb contains the super block structure to be modified. Return 0
if operation was successful.

sb free security Deallocate and clear the sb → s security field. @sb contains
the super block structure to be modified.

sb statfs Check permission before obtaining file system statistics for the @sb
file system. @sb contains the super block structure for the file system.
Return 0 if permission is granted.

sb mount Check permission before an object specified by @dev name is moun-
ted on the mount point named by @nd. For an ordinary mount, @dev name
identifies a device if the file system type requires a device. For a remount
(@flags & MS REMOUNT), @dev name is irrelevant. For a loopback-
/bind mount (@flags & MS BIND), @dev name identifies the pathname
of the object being mounted. @dev name contains the name for object
being mounted. @nd contains the nameidata structure for mount point
object. @type contains the file system type. @flags contains the mount
flags. @data contains the file system-specific data. Return 0 if permission
is granted.

sb copy data Allow mount option data to be copied prior to parsing by the
file system, so that the security module can extract security-specific mount
options cleanly (a file system may modify the data e.g. with strsep()).
This also allows the original mount data to be stripped of security- specific
options to avoid having to make file systems aware of them. @fstype the
type of file system being mounted. @orig the original mount data copied
from user space. @copy copied data which will be passed to the security
module. Returns 0 if the copy was successful.

sb check sb Check permission before the device with superblock @mnt → sb is
mounted on the mount point named by @nd. @mnt contains the vfsmount

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.3. INODE OPERATIONS Page 109 of 127

for device being mounted. @nd contains the nameidata object for the
mount point. Return 0 if permission is granted.

sb umount Check permission before the @mnt file system is unmounted. @mnt
contains the mounted file system. @flags contains the unmount flags, e.g.
MNT FORCE. Return 0 if permission is granted.

sb umount close Close any files in the @mnt mounted file system that are
held open by the security module. This hook is called during an umount
operation prior to checking whether the file system is still busy. @mnt
contains the mounted file system.

sb umount busy Handle a failed umount of the @mnt mounted file system,
e.g. re-opening any files that were closed by umount close. This hook is
called during an umount operation if the umount fails after a call to the
umount close hook. @mnt contains the mounted file system.

sb post remount Update the security module’s state when a file system is
remounted. This hook is only called if the remount was successful. @mnt
contains the mounted file system. @flags contains the new file system
flags. @data contains the file system-specific data.

sb post mountroot Update the security module’s state when the root file
system is mounted. This hook is only called if the mount was successful.

sb post addmount Update the security module’s state when a file system is
mounted. This hook is called any time a mount is successfully grafetd
to the tree. @mnt contains the mounted file system. @mountpoint nd
contains the nameidata structure for the mount point.

sb pivotroot Check permission before pivoting the root file system. @old nd
contains the nameidata structure for the new location of the current root
(put old). @new nd contains the nameidata structure for the new root
(new root). Return 0 if permission is granted.

sb post pivotroot Update module state after a successful pivot. @old nd
contains the nameidata structure for the old root. @new nd contains the
nameidata structure for the new root.

D.3 Inode Operations

inode alloc security Allocate and attach a security structure to @inode →
i security. The i security field is initialized to NULL when the inode
structure is allocated. @inode contains the inode structure. Return 0
if operation was successful.

inode free security @inode contains the inode structure. Deallocate the in-
ode security structure and set @inode → i security to NULL.

inode create Check permission to create a regular file. @dir contains inode
structure of the parent of the new file. @dentry contains the dentry struc-
ture for the file to be created. @mode contains the file mode of the file to
be created. Return 0 if permission is granted.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 110 of 127 D.3. INODE OPERATIONS

inode post create Set the security attributes on a newly created regular file.
This hook is called after a file has been successfully created. @dir contains
the inode structure of the parent directory of the new file. @dentry con-
tains the the dentry structure for the newly created file. @mode contains
the file mode.

inode link Check permission before creating a new hard link to a file. @old dentry
contains the dentry structure for an existing link to the file. @dir contains
the inode structure of the parent directory of the new link. @new dentry
contains the dentry structure for the new link. Return 0 if permission is
granted.

inode post link Set security attributes for a new hard link to a file. @old dentry
contains the dentry structure for the existing link. @dir contains the inode
structure of the parent directory of the new file. @new dentry contains
the dentry structure for the new file link.

inode unlink Check the permission to remove a hard link to a file. @dir con-
tains the inode structure of parent directory of the file. @dentry contains
the dentry structure for file to be unlinked. Return 0 if permission is
granted.

inode symlink Check the permission to create a symbolic link to a file. @dir
contains the inode structure of parent directory of the symbolic link.
@dentry contains the dentry structure of the symbolic link. @old name
contains the pathname of file. Return 0 if permission is granted.

inode post symlink @dir contains the inode structure of the parent directory
of the new link. @dentry contains the dentry structure of new symbolic
link. @old name contains the pathname of file. Set security attributes
for a newly created symbolic link. Note that @dentry → d inode may be
NULL, since the file system might not instantiate the dentry (e.g. NFS).

inode mkdir Check permissions to create a new directory in the existing direc-
tory associated with inode strcture @dir. @dir containst the inode struc-
ture of parent of the directory to be created. @dentry contains the dentry
structure of new directory. @mode contains the mode of new directory.
Return 0 if permission is granted.

inode post mkdir Set security attributes on a newly created directory. @dir
contains the inode structure of parent of the directory to be created. @den-
try contains the dentry structure of new directory. @mode contains the
mode of new directory.

inode rmdir Check the permission to remove a directory. @dir contains the
inode structure of parent of the directory to be removed. @dentry contains
the dentry structure of directory to be removed. Return 0 if permission is
granted.

inode mknod Check permissions when creating a special file (or a socket or a
fifo file created via the mknod system call). Note that if mknod operation
is being done for a regular file, then the create hook will be called and
not this hook. @dir contains the inode structure of parent of the new file.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.3. INODE OPERATIONS Page 111 of 127

@dentry contains the dentry structure of the new file. @mode contains
the mode of the new file. @dev contains the the device number. Return 0
if permission is granted.

inode post mknod Set security attributes on a newly created special file (or
socket or fifo file created via the mknod system call). @dir contains the
inode structure of parent of the new node. @dentry contains the dentry
structure of the new node. @mode contains the mode of the new node.
@dev contains the the device number.

inode rename Check for permission to rename a file or directory. @old dir
contains the inode structure for parent of the old link. @old dentry con-
tains the dentry structure of the old link. @new dir contains the inode
structure for parent of the new link. @new dentry contains the dentry
structure of the new link. Return 0 if permission is granted.

inode post rename Set security attributes on a renamed file or directory.
@old dir contains the inode structure for parent of the old link. @old dentry
contains the dentry structure of the old link. @new dir contains the inode
structure for parent of the new link. @new dentry contains the dentry
structure of the new link.

inode readlink Check the permission to read the symbolic link. @dentry con-
tains the dentry structure for the file link. Return 0 if permission is
granted.

inode follow link Check permission to follow a symbolic link when looking
up a pathname. @dentry contains the dentry structure for the link. @nd
contains the nameidata structure for the parent directory. Return 0 if
permission is granted.

inode permission Check permission before accessing an inode. This hook is
called by the existing Linux permission function, so a security module can
use it to provide additional checking for existing Linux permission checks.
Notice that this hook is called when a file is opened (as well as many
other operations), whereas the file security ops permission hook is called
when the actual read/write operations are performed. @inode contains
the inode structure to check. @mask contains the permission mask. @nd
contains the nameidata (may be NULL). Return 0 if permission is granted.

inode setattr Check permission before setting file attributes. Note that the
kernel call to notify change is performed from several locations, whenever
file attributes change (such as when a file is truncated, chown/chmod
operations, transferring disk quotas, etc). @dentry contains the dentry
structure for the file. @attr is the iattr structure containing the new file
attributes. Return 0 if permission is granted.

inode getattr Check permission before obtaining file attributes. @mnt is the
vfsmount where the dentry was looked up @dentry contains the dentry
structure for the file. Return 0 if permission is granted.

inode delete @inode contains the inode structure for deleted inode. This hook
is called when a deleted inode is released (i.e. an inode with no hard links

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 112 of 127 D.4. FILE OPERATIONS

has its use count drop to zero). A security module can use this hook to
release any persistent label associated with the inode.

inode setxattr Check permission before setting the extended attributes @value
identified by @name for @dentry. Return 0 if permission is granted.

inode post setxattr Update inode security field after successful setxattr op-
eration. @value identified by @name for @dentry.

inode getxattr Check permission before obtaining the extended attributes
identified by @name for @dentry. Return 0 if permission is granted.

inode listxattr Check permission before obtaining the list of extended at-
tribute names for @dentry. Return 0 if permission is granted.

inode removexattr Check permission before removing the extended attribute
identified by @name for @dentry. Return 0 if permission is granted.

inode getsecurity Copy the extended attribute representation of the security
label associated with @name for @dentry into @buffer. @buffer may be
NULL to request the size of the buffer required. @size indicates the size
of @buffer in bytes. Note that @name is the remainder of the attribute
name after the security. prefix has been removed. Return number of bytes
used/required on success.

inode setsecurity Set the security label associated with @name for @dentry
from the extended attribute value @value. @size indicates the size of the
@value in bytes. @flags may be XATTR CREATE, XATTR REPLACE,
or 0. Note that @name is the remainder of the attribute name after the
security. prefix has been removed. Return 0 on success.

inode listsecurity Copy the extended attribute names for the security labels
associated with @dentry into @buffer. @buffer may be NULL to request
the size of the buffer required. Returns number of bytes used/required on
success.

D.4 File Operations

file permission Check file permissions before accessing an open file. This hook
is called by various operations that read or write files. A security module
can use this hook to perform additional checking on these operations,
e.g. to revalidate permissions on use to support privilege bracketing or
policy changes. Notice that this hook is used when the actual read/write
operations are performed, whereas the inode security ops hook is called
when a file is opened (as well as many other operations). Caveat: Although
this hook can be used to revalidate permissions for various system call
operations that read or write files, it does not address the revalidation of
permissions for memory-mapped files. Security modules must handle this
separately if they need such revalidation. @file contains the file structure
being accessed. @mask contains the requested permissions. Return 0 if
permission is granted.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.4. FILE OPERATIONS Page 113 of 127

file alloc security Allocate and attach a security structure to the file → f security
field. The security field is initialized to NULL when the structure is first
created. @file contains the file structure to secure. Return 0 if the hook
is successful and permission is granted.

file free security Deallocate and free any security structures stored in file →
f security. @file contains the file structure being modified.

file ioctl @file contains the file structure. @cmd contains the operation to
perform. @arg contains the operational arguments. Check permission for
an ioctl operation on @file. Note that @arg can sometimes represents
a user space pointer; in other cases, it may be a simple integer value.
When @arg represents a user space pointer, it should never be used by the
security module. Return 0 if permission is granted.

file mmap Check permissions for a mmap operation. The @file may be NULL,
e.g. if mapping anonymous memory. @file contains the file structure for
file to map (may be NULL). @prot contains the requested permissions.
@flags contains the operational flags. Return 0 if permission is granted.

file mprotect Check permissions before changing memory access permissions.
@vma contains the memory region to modify. @prot contains the re-
quested permissions. Return 0 if permission is granted.

file lock Check permission before performing file locking operations. Note:
this hook mediates both flock and fcntl style locks. @file contains the file
structure. @cmd contains the posix-translated lock operation to perform
(e.g. F RDLCK, F WRLCK). Return 0 if permission is granted.

file fcntl Check permission before allowing the file operation specified by @cmd
from being performed on the file @file. Note that @arg can sometimes
represents a user space pointer; in other cases, it may be a simple integer
value. When @arg represents a user space pointer, it should never be used
by the security module. @file contains the file structure. @cmd contains
the operation to be performed. @arg contains the operational arguments.
Return 0 if permission is granted.

file set fowner Save owner security information (typically from current → se-
curity) in file → f security for later use by the send sigiotask hook. @file
contains the file structure to update. Return 0 on success.

file send sigiotask Check permission for the file owner @fown to send SIGIO
to the process @tsk. Note that this hook is always called from interrupt.
Note that the fown struct, @fown, is never outside the context of a struct
file, so the file structure (and associated security information) can always
be obtained: (struct file *)((long)fown - offsetof(struct file,f owner)); @tsk
contains the structure of task receiving signal. @fown contains the file
owner information. @fd contains the file descriptor. @reason contains the
operational flags. Return 0 if permission is granted.

file receive This hook allows security modules to control the ability of a process
to receive an open file descriptor via socket IPC. @file contains the file
structure being received. Return 0 if permission is granted.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 114 of 127 D.5. PROCESS OPERATIONS

D.5 Process Operations

task create Check permission before creating a child process. See the clone(2)
manual page for definitions of the @clone flags. @clone flags contains the
flags indicating what should be shared. Return 0 if permission is granted.

task alloc security @p contains the task struct for child process. Allocate
and attach a security structure to the p → security field. The security
field is initialized to NULL when the task structure is allocated. Return
0 if operation was successful.

task free security @p contains the task struct for process. Deallocate and
clear the p → security field.

task setuid Check permission before setting one or more of the user identity
attributes of the current process. The @flags parameter indicates which
of the set*uid system calls invoked this hook and how to interpret the
@id0, @id1, and @id2 parameters. See the LSM SETID definitions at
the beginning of this file for the @flags values and their meanings. @id0
contains a uid. @id1 contains a uid. @id2 contains a uid. @flags contains
one of the LSM SETID * values. Return 0 if permission is granted.

task post setuid Update the module’s state after setting one or more of the
user identity attributes of the current process. The @flags parameter in-
dicates which of the set*uid system calls invoked this hook. If @flags
is LSM SETID FS, then @old ruid is the old fs uid and the other pa-
rameters are not used. @old ruid contains the old real uid (or fs uid if
LSM SETID FS). @old euid contains the old effective uid (or -1 if LSM
SETID FS). @old suid contains the old saved uid (or -1 if LSM SETID FS).
@flags contains one of the LSM SETID * values. Return 0 on success.

task setgid Check permission before setting one or more of the group identity
attributes of the current process. The @flags parameter indicates which
of the set*gid system calls invoked this hook and how to interpret the
@id0, @id1, and @id2 parameters. See the LSM SETID definitions at
the beginning of this file for the @flags values and their meanings. @id0
contains a gid. @id1 contains a gid. @id2 contains a gid. @flags contains
one of the LSM SETID * values. Return 0 if permission is granted.

task setpgid Check permission before setting the process group identifier of
the process @p to @pgid. @p contains the task struct for process being
modified. @pgid contains the new pgid. Return 0 if permission is granted.

task getpgid Check permission before getting the process group identifier of
the process @p. @p contains the task struct for the process. Return 0 if
permission is granted.

task getsid Check permission before getting the session identifier of the process
@p. @p contains the task struct for the process. Return 0 if permission
is granted.

task setgroups Check permission before setting the supplementary group set
of the current process to @grouplist. @gidsetsize contains the number of

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.6. NETLINK MESSAGING Page 115 of 127

elements in @grouplist. @grouplist contains the array of gids. Return 0 if
permission is granted.

task setnice Check permission before setting the nice value of @p to @nice.
@p contains the task struct of process. @nice contains the new nice value.
Return 0 if permission is granted.

task setrlimit Check permission before setting the resource limits of the cur-
rent process for @resource to @new rlim. The old resource limit values
can be examined by dereferencing (current → rlim + resource). @resource
contains the resource whose limit is being set. @new rlim contains the new
limits for @resource. Return 0 if permission is granted.

task setscheduler Check permission before setting scheduling policy and/or
parameters of process @p based on @policy and @lp. @p contains the
task struct for process. @policy contains the scheduling policy. @lp con-
tains the scheduling parameters. Return 0 if permission is granted.

task getscheduler Check permission before obtaining scheduling information
for process @p. @p contains the task struct for process. Return 0 if
permission is granted.

task kill Check permission before sending signal @sig to @p. @info can be
NULL, the constant 1, or a pointer to a siginfo structure. If @info is 1
or SI FROMKERNEL(info) is true, then the signal should be viewed as
coming from the kernel and should typically be permitted. SIGIO signals
are handled separately by the send sigiotask hook in file security ops. @p
contains the task struct for process. @info contains the signal information.
@sig contains the signal value. Return 0 if permission is granted.

task wait Check permission before allowing a process to reap a child process
@p and collect its status information. @p contains the task struct for
process. Return 0 if permission is granted.

task prctl Check permission before performing a process control operation on
the current process. @option contains the operation. @arg2 contains
a argument. @arg3 contains a argument. @arg4 contains a argument.
@arg5 contains a argument. Return 0 if permission is granted.

task reparent to init Set the security attributes in @p → security for a ker-
nel thread that is being reparented to the init task. @p contains the
task struct for the kernel thread.

task to inode Set the security attributes for an inode based on an associated
task’s security attributes, e.g. for /proc/pid inodes. @p contains the
task struct for the task. @inode contains the inode structure for the inode.

D.6 Netlink Messaging

netlink send Save security information for a netlink message so that permis-
sion checking can be performed when the message is processed. The secu-
rity information can be saved using the eff cap field of the netlink skb parms

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 116 of 127 D.7. UNIX DOMAIN NETWORKING

structure. @skb contains the sk buff structure for the netlink message.
Return 0 if the information was successfully saved.

netlink recv Check permission before processing the received netlink message
in @skb. @skb contains the sk buff structure for the netlink message.
Return 0 if permission is granted.

D.7 Unix Domain Networking

unix stream connect Check permissions before establishing a Unix domain
stream connection between @sock and @other. @sock contains the socket
structure. @other contains the peer socket structure. Return 0 if permis-
sion is granted.

unix may send Check permissions before connecting or sending datagrams
from @sock to @other. @sock contains the socket structure. @sock con-
tains the peer socket structure. Return 0 if permission is granted. The
@unix stream connect and @unix may send hooks were necessary because
Linux provides an alternative to the conventional file name space for Unix
domain sockets. Whereas binding and connecting to sockets in the file
name space is mediated by the typical file permissions (and caught by
the mknod and permission hooks in inode security ops), binding and con-
necting to sockets in the abstract name space is completely unmediated.
Sufficient control of Unix domain sockets in the abstract name space isn’t
possible using only the socket layer hooks, since we need to know the ac-
tual target socket, which is not looked up until we are inside the af unix
code.

D.8 Socket Operations

socket create Check permissions prior to creating a new socket. @family con-
tains the requested protocol family. @type contains the requested com-
munications type. @protocol contains the requested protocol. Return 0 if
permission is granted.

socket post create This hook allows a module to update or allocate a per-
socket security structure. Note that the security field was not added di-
rectly to the socket structure, but rather, the socket security information is
stored in the associated inode. Typically, the inode alloc security hook will
allocate and and attach security information to sock → inode → i security.
This hook may be used to update the sock → inode → i security field with
additional information that wasn’t available when the inode was allocated.
@sock contains the newly created socket structure. @family contains the
requested protocol family. @type contains the requested communications
type. @protocol contains the requested protocol.

socket bind Check permission before socket protocol layer bind operation is
performed and the socket @sock is bound to the address specified in the

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.8. SOCKET OPERATIONS Page 117 of 127

@address parameter. @sock contains the socket structure. @address con-
tains the address to bind to. @addrlen contains the length of address.
Return 0 if permission is granted.

socket connect Check permission before socket protocol layer connect oper-
ation attempts to connect socket @sock to a remote address, @address.
@sock contains the socket structure. @address contains the address of
remote endpoint. @addrlen contains the length of address. Return 0 if
permission is granted.

socket listen Check permission before socket protocol layer listen operation.
@sock contains the socket structure. @backlog contains the maximum
length for the pending connection queue. Return 0 if permission is granted.

socket accept Check permission before accepting a new connection. Note that
the new socket, @newsock, has been created and some information copied
to it, but the accept operation has not actually been performed. @sock
contains the listening socket structure. @newsock contains the newly cre-
ated server socket for connection. Return 0 if permission is granted.

socket post accept This hook allows a security module to copy security infor-
mation into the newly created socket’s inode. @sock contains the listening
socket structure. @newsock contains the newly created server socket for
connection.

socket sendmsg Check permission before transmitting a message to another
socket. @sock contains the socket structure. @msg contains the message to
be transmitted. @size contains the size of message. Return 0 if permission
is granted.

socket recvmsg Check permission before receiving a message from a socket.
@sock contains the socket structure. @msg contains the message struc-
ture. @size contains the size of message structure. @flags contains the
operational flags. Return 0 if permission is granted.

socket getsockname Check permission before the local address (name) of the
socket object @sock is retrieved. @sock contains the socket structure.
Return 0 if permission is granted.

socket getpeername Check permission before the remote address (name) of
a socket object @sock is retrieved. @sock contains the socket structure.
Return 0 if permission is granted.

socket getsockopt Check permissions before retrieving the options associated
with socket @sock. @sock contains the socket structure. @level contains
the protocol level to retrieve option from. @optname contains the name
of option to retrieve. Return 0 if permission is granted.

socket setsockopt Check permissions before setting the options associated
with socket @sock. @sock contains the socket structure. @level contains
the protocol level to set options for. @optname contains the name of the
option to set. Return 0 if permission is granted.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 118 of 127 D.9. SYSTEM V IPC OPERATIONS

socket shutdown Checks permission before all or part of a connection on the
socket @sock is shut down. @sock contains the socket structure. @how
contains the flag indicating how future sends and receives are handled.
Return 0 if permission is granted.

socket sock rcv skb Check permissions on incoming network packets. This
hook is distinct from Netfilter’s IP input hooks since it is the first time that
the incoming sk buff @skb has been associated with a particular socket,
@sk. @sk contains the sock (not socket) associated with the incoming
sk buff. @skb contains the incoming network data.

socket getpeersec This hook allows the security module to provide peer socket
security state to user space via getsockopt SO GETPEERSEC. @sock is
the local socket. @optval user space memory where the security state is to
be copied. @optlen user space int where the module should copy the ac-
tual length of the security state. @len as input is the maximum length to
copy to user space provided by the caller. Return 0 if all is well, otherwise,
typical getsockopt return values.

sk alloc security Allocate and attach a security structure to the sk→ sk security
field, which is used to copy security attributes between local stream sock-
ets.

sk free security Deallocate security structure.

D.9 System V IPC Operations

ipc permission Check permissions for access to IPC @ipcp contains the kernel
IPC permission structure @flag contains the desired (requested) permis-
sion set Return 0 if permission is granted.

D.9.1 Individual Messages Held In System V IPC Mes-

sage Queues

msg msg alloc security Allocate and attach a security structure to the msg
→ security field. The security field is initialized to NULL when the struc-
ture is first created. @msg contains the message structure to be modified.
Return 0 if operation was successful and permission is granted.

msg msg free security Deallocate the security structure for this message.
@msg contains the message structure to be modified.

D.9.2 System V IPC Message Queues

msg queue alloc security Allocate and attach a security structure to the msq
→ q perm.security field. The security field is initialized to NULL when
the structure is first created. @msq contains the message queue structure
to be modified. Return 0 if operation was successful and permission is
granted.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.9. SYSTEM V IPC OPERATIONS Page 119 of 127

msg queue free security Deallocate security structure for this message queue.
@msq contains the message queue structure to be modified.

msg queue associate Check permission when a message queue is requested
through the msgget system call. This hook is only called when returning
the message queue identifier for an existing message queue, not when a
new message queue is created. @msq contains the message queue to act
upon. @msqflg contains the operation control flags. Return 0 if permission
is granted.

msg queue msgctl Check permission when a message control operation spec-
ified by @cmd is to be performed on the message queue @msq. The @msq
may be NULL, e.g. for IPC INFO or MSG INFO. @msq contains the
message queue to act upon. May be NULL. @cmd contains the operation
to be performed. Return 0 if permission is granted.

msg queue msgsnd Check permission before a message, @msg, is enqueued
on the message queue, @msq. @msq contains the message queue to send
message to. @msg contains the message to be enqueued. @msqflg contains
operational flags. Return 0 if permission is granted.

msg queue msgrcv Check permission before a message, @msg, is removed
from the message queue, @msq. The @target task structure contains a
pointer to the process that will be receiving the message (not equal to
the current process when inline receives are being performed). @msq con-
tains the message queue to retrieve message from. @msg contains the
message destination. @target contains the task structure for recipient
process. @type contains the type of message requested. @mode contains
the operational flags. Return 0 if permission is granted.

D.9.3 System V Shared Memory Segments

shm alloc security Allocate and attach a security structure to the shp →
shm perm.security field. The security field is initialized to NULL when
the structure is first created. @shp contains the shared memory structure
to be modified. Return 0 if operation was successful and permission is
granted.

shm free security Deallocate the security struct for this memory segment.
@shp contains the shared memory structure to be modified.

shm associate Check permission when a shared memory region is requested
through the shmget system call. This hook is only called when returning
the shared memory region identifier for an existing region, not when a
new shared memory region is created. @shp contains the shared memory
structure to be modified. @shmflg contains the operation control flags.
Return 0 if permission is granted.

shm shmctl Check permission when a shared memory control operation spec-
ified by @cmd is to be performed on the shared memory region @shp. The
@shp may be NULL, e.g. for IPC INFO or SHM INFO. @shp contains

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 120 of 127 D.10. CAPABILITIES AND DIFFERENT SYSTEM CALLS

shared memory structure to be modified. @cmd contains the operation to
be performed. Return 0 if permission is granted.

shm shmat Check permissions prior to allowing the shmat system call to at-
tach the shared memory segment @shp to the data segment of the calling
process. The attaching address is specified by @shmaddr. @shp contains
the shared memory structure to be modified. @shmaddr contains the ad-
dress to attach memory region to. @shmflg contains the operational flags.
Return 0 if permission is granted.

D.9.4 System V Semaphores

sem alloc security Allocate and attach a security structure to the sma →
sem perm.security field. The security field is initialized to NULL when
the structure is first created. @sma contains the semaphore structure
Return 0 if operation was successful and permission is granted.

sem free security Deallocate security struct for this semaphore @sma con-
tains the semaphore structure.

sem associate Check permission when a semaphore is requested through the
semget system call. This hook is only called when returning the semaphore
identifier for an existing semaphore, not when a new one must be created.
@sma contains the semaphore structure. @semflg contains the operation
control flags. Return 0 if permission is granted.

sem semctl Check permission when a semaphore operation specified by @cmd
is to be performed on the semaphore @sma. The @sma may be NULL,
e.g. for IPC INFO or SEM INFO. @sma contains the semaphore struc-
ture. May be NULL. @cmd contains the operation to be performed. Re-
turn 0 if permission is granted. @sem semop Check permissions before
performing operations on members of the semaphore set @sma. If the
@alter flag is nonzero, the semaphore set may be modified. @sma con-
tains the semaphore structure. @sops contains the operations to perform.
@nsops contains the number of operations to perform. @alter contains the
flag indicating whether changes are to be made. Return 0 if permission is
granted.

D.10 Capabilities and Different System Calls

ptrace Check permission before allowing the @parent process to trace the
@child process. Security modules may also want to perform a process
tracing check during an execve in the set security or compute creds hooks
of binprm security ops if the process is being traced and its security at-
tributes would be changed by the execve. @parent contains the task struct
structure for parent process. @child contains the task struct structure for
child process. Return 0 if permission is granted.

capget Get the @effective, @inheritable, and @permitted capability sets for
the @target process. The hook may also perform permission checking to

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

D.10. CAPABILITIES AND DIFFERENT SYSTEM CALLS Page 121 of 127

determine if the current process is allowed to see the capability sets of
the @target process. @target contains the task struct structure for target
process. @effective contains the effective capability set. @inheritable con-
tains the inheritable capability set. @permitted contains the permitted
capability set. Return 0 if the capability sets were successfully obtained.

capset check Check permission before setting the @effective, @inheritable,
and @permitted capability sets for the @target process. Caveat: @tar-
get is also set to current if a set of processes is specified (i.e. all processes
other than current and init or a particular process group). Hence, the
capset set hook may need to revalidate permission to the actual target
process. @target contains the task struct structure for target process.
@effective contains the effective capability set. @inheritable contains the
inheritable capability set. @permitted contains the permitted capability
set. Return 0 if permission is granted.

capset set Set the @effective, @inheritable, and @permitted capability sets for
the @target process. Since capset check cannot always check permission
to the real @target process, this hook may also perform permission check-
ing to determine if the current process is allowed to set the capability
sets of the @target process. However, this hook has no way of returning
an error due to the structure of the sys capset code. @target contains
the task struct structure for target process. @effective contains the effec-
tive capability set. @inheritable contains the inheritable capability set.
@permitted contains the permitted capability set.

acct Check permission before enabling or disabling process accounting. If ac-
counting is being enabled, then @file refers to the open file used to store
accounting records. If accounting is being disabled, then @file is NULL.
@file contains the file structure for the accounting file (may be NULL).
Return 0 if permission is granted.

sysctl Check permission before accessing the @table sysctl variable in the man-
ner specified by @op. @table contains the ctl table structure for the sysctl
variable. @op contains the operation (001 = search, 002 = write, 004 =
read). Return 0 if permission is granted.

capable Check whether the @tsk process has the @cap capability. @tsk con-
tains the task struct for the process. @cap contains the capability <in-
clude/linux/capability.h>. Return 0 if the capability is granted for @tsk.

syslog Check permission before accessing the kernel message ring or changing
logging to the console. See the syslog(2) manual page for an explanation
of the @type values. @type contains the type of action. Return 0 if
permission is granted.

vm enough memory Check permissions for allocating a new virtual mapping.
@pages contains the number of pages. Return 0 if permission is granted.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

Page 122 of 127 D.11. REGISTERING AND UNREGISTERING MODULES

D.11 Registering and Unregistering Modules

register security Allow module stacking. @name contains the name of the
security module being stacked. @ops contains a pointer to the struct
security operations of the module to stack.

unregister security Remove a stacked module. @name contains the name
of the security module being unstacked. @ops contains a pointer to the
struct security operations of the module to unstack.

APPENDIX D. LSM HOOKS IN LINUX 2.6.3

ERoadmap

of Umbrella

The development of Umbrella is done in small steps in style of eXtreme Pro-
gramming, with many sub-releases. In this section you will find the overall
roadmap for the project.

1. (RELEASED 2004-03-01) The primary goal of the first release is to
begin implementing the kernel module and getting a feeling for coding
into the Linux kernel and LSM. Besides that, the ability to make simple
umbrella system calls from user space is to be addressed.

• Ability to set child restrictions for restricting the next child from
accessing the directory /tmp.

• Simple restriction-vector on processes.

• Micro user space library for coding for Umbrella (setting child re-
strictions).

2. (RELEASED 2004-03-08) In this release the goal is to make it possible
to restrict processes from more than one resource.

• Implement a bit-vector to hold restrictions and bind it to the security
field of processes.

• Rewrite Security Server to make it able to handle multiple restric-
tions, by looking up in a list.

• Rewrite umbrella_scr system call to set multiple restrictions from
user-space.

• Add the possibility to restrict network usage.

3. (RELEASED 2004-03-31) The third release will mainly concentrate on
code cleanup, implementing a dynamic data structure for the bit-vector
and writing more documentation.

• Code cleanup will prefix the umbrella files by umb_ and function
names will be truncated to something understandable and of writable
lengths. Furthermore, comments the code will be better structured
with the comments in the .h files and only internal comments in the
.c files.

123

Page 124 of 127

• The documentation will mainly include some examples of coding, i386
vs. iPAQ implementation, how restrictions work and how to apply
User-mode Linux for testing.

• Ported Umbrella to the iPAQ 5550

4. Implement restrictions for process signaling.

5. Implement extended attributes in the JFFS2 file system. This major task
is believed to take a considerable amount of time.

6. Begin the integration of execute restrictions from signed files.

• Data structures to hold the appropriate security fields will be imple-
mented, and placed at the security field of the file system.

• For test purposes a system-call will be implemented in order to set
this security field from user space.

7. Start the integration of public key encryption into the kernel.

• The ability for the kernel to catch incoming files and, if existing,
decrypt its security fields and assign these to the actual files in the
file system.

• By this simple step we are able to transfer a signed file to the file
system. This automatically get the right restrictions set, and when
executed, these restrictions will apply for the process.

8. Release user space tools.

• The Umbrella tool box will provide a set of programs for automati-
cally generating a correct signed file from any given executable file.
The signed files are described in detail here.

APPENDIX E. ROADMAP OF UMBRELLA

Bibliography

[1] Handhelds Will Get Hammered.
http://www.pcworld.com/news/article/0,aid,17526,00.asp, July 2000.

[2] CERT Advisory: gv contains buffer overflow in sscanf() function.
http://www.kb.cert.org/vuls/id/600777, October 2002.

[3] Device Profile: Samsung SCH-i519 smartphone.
http://linuxdevices.com/articles/AT4481058519.html, December 2003.

[4] Linux to power most Motorola phones.
http://news.com.com/2100-1001-984424.html, February 2003.

[5] LSM Documentation. http://lsm.immunix.org/docs/, November 2003.

[6] Motorola’s first Linux Smartphone, the A760.
http://www.mobileburn.com/news.jsp?Id=234, February 2003.

[7] OS Security Background: Mandatory Access Control.
http://www.linsec.org/doc/final/node20.html, December 2003.

[8] Definition of Insensitive Flow analysis.
http://www.cl.cam.ac.uk/ jds31/useful/dfgloss.html, May 2004.

[9] DSI - Distributed Security Infrastructure. http://disec.sourceforge.net/,
May 2004.

[10] File Viruses. http://www.viruslist.com/eng/viruslistbooks.html?id=25,
May 2004.

[11] Gnu gperf. http://www.gnu.org/software/gperf, May 2004.

[12] Hash Functions and Block Ciphers.
http://burtleburtle.net/bob/hash/index.html, May 2004.

[13] Linux Kernel Privileged Process Hijacking Vulnerability.
http://www.securityfocus.com/bid/7112/info, May 2004.

[14] Man page for clone(2).
http://www.die.net/doc/linux/man/man2/clone.2.html, May 2004.

[15] Man page for ptrace(2).
http://www.die.net/doc/linux/man/man2/ptrace.2.html, May 2004.

[16] Ptrace contains vulnerability allowing for local root compromise.
http://www.kb.cert.org/vuls/id/628849, May 2004.

125

Page 126 of 127 BIBLIOGRAPHY

[17] Report: Threats Coming from all Sides.
http://itmanagement.earthweb.com/secu/article.php/3326731, 2004.

[18] Symbian leads smartphone market.
http://www.symbian.com/press-office/2004/pr040322b.html, March 2004.

[19] W32.Beagle.A@mm.
http://securityresponse.symantec.com/avcenter/venc/data/w32.beagle.a@mm.html,
May 2004.

[20] W32.Netsky.C@mm.
http://securityresponse.symantec.com/avcenter/venc/data/w32.netsky.c@mm.html?Open,
May 2004.

[21] Marshall D. Abrams, Leonard J. LaPadula, and Ingrid M. Olson.
Building Generalized Access Control on UNIX. pages 65–70. MITRE,
USENIX, August 1990.

[22] Mike Ashley. The GNU Privacy Handbook.
http://www.gnupg.org/gph/en/manual.html, May 2004.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, second edition, 2001.

[24] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Runtime Verification
of Authorization Hook Placement for the Linux Security Modules
Framework. November 2002.

[25] Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. A theory of
type qualifiers. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 192–203, 1999.

[26] Timothy Fraser. LOMAC: Low Water-Mark Integrity Protection for
COTS Environments. pages 230–245, May 2000.

[27] Timothy Fraser. LOMAC: MAC You Can Live With. Boston,
Massachusetts, USA, 2001. USENIX.

[28] Andreas Grünbacher. POSIX Access Control Lists on Linux. Usenix
Annual Technical Conference, June 2003.

[29] Brian Hatch. An Overview of LIDS.
http://www.securityfocus.com/infocus/1496, November 2003.

[30] Lowell Johnson, Berry Needham, Charles Severence, Lynne Ambuel, and
Casey Schaufler. Ieee standard 1003.1e. 1999.

[31] Greg Kroah-Hartman. Using the Kernel Security Module Interface. Linux
Journal, November 2002.

[32] Aaron Krowne. Good hash table primes.
http://planetmath.org/encyclopedia/GoodHashTablePrimes.html, May
2004.

[33] Rick Lehrbaum. Sneak preview: A Linux powered wireless phone.
http://linuxdevices.com/articles/AT5512478189.html, June 2003.

BIBLIOGRAPHY

BIBLIOGRAPHY Page 127 of 127

[34] Bin Liang. Linux kernel: Problem: A 2.6.0-test11 capability lsm module
serious bug. http://seclists.org/lists/linux-kernel/2003/Dec/1680.html,
May 2004.

[35] Tim Newshan. Format String Attacks. Technical report, Guardent, Inc.,
September 2000.

[36] Aleph One. Smashing The Stack For Fun And Profit.
http://www.cs.ucsb.edu/ jzhou/security/overflow.html, May 2004.

[37] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers. O’Reilly,
2 edition, 2001.

[38] Bruce Schneier. Applied Cryptography. John Wiely & Sons, Inc, 1994.

[39] Stephen Smalley. Configuring the SELinux Policy. Technical report, NSA,
February 2002.

[40] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing
SELinux as a Linux Security Module. Technical report, NAI Labs, May
2002.

[41] Eugene H. Spafford. The internet worm program: An analysis. Technical
Report Purdue Technical Report CSD-TR-823, West Lafayette, IN
47907-2004, 1988.

[42] Ray Spencer, Peter Loscocco, Stephen Smalley, Mike Hilbler, David
Andersen, and Jay Lepreau. The Flask Security Architecture: System
Support for Diverse Security Policies. Technical report, Secure Computing
Corporation and NSA and University of Utah, 1998.

[43] William Stallings. Operating Systems - Internals and Design Principles.
Prentice Hall, fourth edition, 2000.

[44] TheFreeDictionary.com. Copy-on-write.
http://encyclopedia.thefreedictionary.com/Copy-on-write, May 2004.

[45] Leendert van Doorn, Gerco Ballintijn, and William A. Arbaugh. Signed
Executable for Linux. June 2001.

[46] David Woodhouse. JFFS : The Journalling Flash File System. Technical
report, Red Hat, Inc., 2001.

[47] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux Security Modules: General Security Support for
the Linux Kernel. USENIX Security Symposium, 2002.

[48] Marek Zelem and Milan Pikula. ZP Security Framework. Technical
report, Faculty of Electrical Engineering and Information Technology
Slovak University of Technology in Bratislava.

[49] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQUAL for
Static Analysis of Authorization Hook Placement. June 2002.

BIBLIOGRAPHY

