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1.1 Diagrammatic requirements specification . . . . . . . . .. 3
1.2 Projectgoals . ... ... ... ... 4
1.3 Relatedwork . . . . . ... ... .. .. 6
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The goal of software development is to develop software. li&w can we know
that the software behaves correct? This can be establishedlidating and veri-
fying the software.

The first part of this Master’s thesis was in collaborationhwiuTARQUE, which
is a company that develops software and hardware for sdidrps. The goal was
to integrate the CASE (computer-aided software enginggtiool Rhapsody into
the existing software development department@tARQUE. Rhapsody allows
for a model-driven development process, which means tleatntbdels themselves
(UML models) provide means for analysing problem domaing @esigning the
software. Rhapsody provides means for compiling, testmagidating, executing,
and debugging the designed models [RAJGJO3].

An advantage of Rhapsody is the use of UML diagrams, e.gueseg diagrams
(SDs), which is a version of message sequence charts (MSB®.SD in Fig-
ure 1.1 shows a scenario from a set-top box modelled in Ridgpsthe vertical
lines are instances of the system, and the messages betweemstance lines de-
scribe a message trace through the system. SDs can be udetH@nalysis and
testing in Rhapsody.

Rhapsody’sTestConductgrwhich uses SDs as its specification method, was found
to perform well for system validation. The SDs provide a gewilal formalism

for specifying scenario requirements, but the systemrigss a validation testing
only. Validation is the process of running simulations of gystem being built,
which gives the benefits of exercising the actual system,abubhe cost of test
coverage, i.e., it is very difficult, if not impossible, tovuilate every possible trace
through a system. Verification is the process of building @ehof the system and
performing formal checking of the model, i.e., model-chiagk The technique
enables testing of all possible traces through a systemthieutiownside to this
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The scenario shows a channel change in the set-top box.tiérshannel data
information is looked up in th€hannel DB, then the information is passed to
the DVB layer. TheDVB layer first stops th®enux, sets channel information
intheSt r eanPr ovi der , starts the de-multiplexing and starts parsing DVB
packets in the service information databaskDB.

Figure 1.1: Sequence diagram from Rhapsody modelling aasicefnrom a set-top
box.

approach is that it is only a model of the system that is beasget! and not the
actual system.

Tools for verification of systems are used in the industryatpdan example is
Statemate MAGNUM from I0GIX [i-l04]. Statemate provides an environment
for specifying, analysing, designing, documenting, anifyieag complex reactive
systems [HLN88]. Spin is another verification system, used for the foroeat
ification of distributed software systems [spiO4]. ViSURASE [visO4] from IAR
systems is a tool used for generating state machines, whichbe documented,
simulated, verified, and finally, code-generated througlualiSTATE. WPAAL,
which is used in this project, is developed between Uppsalatalborg Universi-
ties [upp04]. WPPAAL is an integrated tool environment for modelling, validatio
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and verification of real-time systems in the form of netwookgimed automata.
Another verification tool for real-time systems is the KROSI@ol [DOTY95].

Most of the above tools support the developer during all pbad the software de-
velopment, but the testing phase must be emphasised as thesfinal step before
releasing the product. When testing a product, a good reugints specification is
important as this is the exit criteria for the final produdtthlerefore seems natural
to use the requirements specification to automate the wmiidand verification of
the product. Requirements specification can be done in mayg and different
representations exist, e.g., use cases, state machin&s,M&d in particular LSCs
(live sequence charts) seem to be a powerful way to exprepey specifications
with respect to validation and verification. The goal of tleguirement specifi-
cation is to develop a clear and unambiguous understanditite software to be
developed and the requirements specification is the basikdsoftware testing.

One of the problems with the domain of formal specificatiothat the methods
developed demand that practitioners need to be experténwvita property speci-
fication language used in order to gain full potential of thel$. It has long been
known that computer programming languages are meant foeharo understand
and not machines, thus the popularity of high level programgnianguages, but
in formal specification, logic languages are still beingdusestead of newer dia-
grammatic requirements specification languages, whictbearsed as a high level
specification language compared to logic languages. [VBED3].

1.1 Diagrammatic requirements specification

A high-level modelling language, which may be used for eggirgy property spec-
ifications, is the Unified Modelling Language (UML) [HTO3]. ML is a langu-
age for specifying object-oriented software, and it is Wwidesed in the industry.
Among other things, UML contains a diagrammatic requiretsspecification for-
malism, the MSC.

Unfortunately, MSCs have several deficits. They only shossfide and safe be-
haviour, i.e., they only specify that nothing bad will evexppen, and they can-
not express liveness properties that something may happeanforce progress
through a chart. In addition, the MSC constructs of condg&ido not have a for-
mal semantics, i.e., they are merely comments in the chagreas conditions are
first-class citizens in LSCs and affect the run of a model. Anfal semantics is
also lacking for the timer durations, and so they are ignaneddSCs as well. Fi-
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nally, it is not possible to specify simultaneity in MSC<.j.that more than one
event may happen at the same time [Klo03, BDWZ, DHO1].

LSCs are a graphical notation for specifying temporal refeghips between sig-
nals and events, and they are an extension of MSCs that pretidnger expres-
sive power in order to make up for the deficits described apesgpecially con-
cerning liveness, i.e., representation of provisionausmandatory behaviour in
systems [DHO1]. Work is being done in relating specificagionLSCs to UML’s
diagrams [KWO02], [DWO03], and [dBBGdRO03], which indicatdst CASE-tools
will soon adopt variants of this specification language testeate MAGNUM from
I-LOGIX has already been extended with support for LSCs [BDWOO], woik
is in progress for extending Rhapsody as well [BIK]. See Figure 1.2 for an
example of an LSC.

must exist with the specified messages.

Figure 1.2: An existential LSC.

LSCs enable the developer to construct requirements Spewins in a visual fash-
ion and does not require background knowledge in formabtasitbn and verifica-
tion.

1.2 Project goals

The purpose of this project is to introduce LSCs as a diagratenspecification
language in the formal verification toolRPAAL. In order to allow LSCs to be
used in combination with BPAAL, the semantics of both feature sets are described
informally and additionally the semantics oPBAAL is formally described in order

to determine what properties fromPBAAL models are suitable for specification in
LSCs. Based on the feature selection, a formal semantickeoE $C subset is
described.
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UpPPAAL has been chosen because it is a verification tool for timezhaaia and the
behaviour of these automata may be specified by LSCs, whichuatable for in-
terobject communication in the form of messages. Anothesor is that BPAAL
uses Timed Computation Tree Logic (TCTL) to specify projesrfor verification,
and TCTL cannot specify message sequences, which is one@$ kong fea-
tures. Furthermore, asRPAAL is developed in-house, i.e., at Aalborg University,
it is an obvious candidate because it is easier to acquigle@tknowledge about
the tool.

If the analysis determines that some elements in the lamguage not possible

to translate such elements are disregarded in the finaltreBhis means that the
formal understanding of the subset of LSCs adopted in tipsrtes defined in
relation to LPPAAL models, and the LSC elements not in this subset must be pro-
hibited from being used or just ignored when traversing a€ LSorrespondingly,
elements in the BPAAL language, which cannot be captured by LSCs, limit what
kind of properties LSCs can be used to specify.

The requirements specification is verified by extractingoprties from LSCs and
these properties are used to testRdAL models. More specifically, the computa-
tion tree from WPAAL is traversed and the LSC properties are used to query this
tree. Since LSCs focus on interobject communication, ngessand message se-
quences are the most important properties to test in theadL models. This is
one of the problems with the specification language usedApaAdL, TCTL, as it

has no means of referring to messages. Thus, LSCs have #&ipbto be a good
supplement compared to TCTL with respect to semantic egjlidis/ as well as
general user-friendliness.

A prototype engine, EEL, is implemented to perform the testing oPBAAL mod-

els with LSC specifications. This prototype is based on algcap LSC editor,
and the properties from this editor are extracted and teagmihst the BPAAL
models, see Figure 1.3eBL is applied to a number of experimental cases in order
to evaluate BEL and the diagrammatic approach for specifying propertiese T
evaluation includes a discussion of advantages and distayes of visual speci-
fication as opposed to logic languages like TCTL. Furtheentire application of
LSCs as a specification language in combination with thdigation tool UPPAAL

are evaluated.
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‘ Uppaal ‘

Result

LSCEditor

This is an overview of the EEL prototype. RBEL uses an LSC to verify that a
UpPPAAL model is correct.

Figure 1.3: Overview of PEL.

1.3 Related work

Several studies regarding usage of LSCs as a specificatigndge have been per-
formed. In [KKRO02], LSCs are used as a specification langwdgeh introduces
a visual environment for designing and validating softwsystems early in the
development process. The authors propose LSCs as a visaabkmé specifying
properties of a system design, so the environment can belhysgictitioners un-
knowing of formal methods. LSCs are translated to AR-autamahich are run
in parallel to the design being validated. The automata lsitatthe design and
therefore some features of LSCs, e.g., liveness requirtsraae not used. The
environment helped the authors find several design flaws mia system they
had built. Also, they found that the effort in specifying tieguirements had been
reduced, which combined with the visual counter-examphestened their valida-
tion cycles significantly. We use LSCs as a visual means dfifsjigg properties
as well, but [KKR02] does unlike the work presented in thigoré not adopt LSCs
liveness features. This is because they simulate the LS@g fisite automata for
validating the design, whereas we verify behaviour of meaeld thus need to test
for infinite traces. The authors conclude that less effareégiired when specifying
properties in LSCs. We agree, it is more intuitive to use th&TL.

A case study used an extension of LSCs to specify parts oframa#ic control
system which modelled all scenarios of the system [BHKOB]fakt they found
that LSCs are so straightforward that they believe nonfteeth stake holders can
understand and help capture LSCs. We agree with [BHKO3] eir temark of
how easy it is to construct LSCs, and this is one of the matimatfor our project
- to ease specification of verification properties.
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[BDW102] presents a methodology for developing train systemiegupdns based

on Statemate, which is extended to include verification astrtg facilities in the

form of a model-checker and an automatic generation of esovs. Also, LSCs

as a specification language is included in the extension. diffeence from our

work is that instead of constructing a verification enginarirbottom, we use a
small verification engine on top of the existingPRPAAL engine. This requires us
to explore the symbolic state space of therdAL model through the computation
tree when testing the message sequencepAdL’s TCTL is still used for non-

message related property checking.

In [BGO1] the authors apply LSCs on hardware protocols. Tioeyd that LSCs
have a significant potential for use when formally specifytmardware standard
protocols if ignoring a weakness with the timing model. &zt of having a full
timing model, MSCs and LSCs rely on partial order imposedhgydrder in which
events occur along a life line in which messages are passecde processes.
They determined that LSCs are not strong enough to formalci§y protocol
standards, but as LSCs were developed for system level dtvidase design the
authors were not surprised of this. The authors want to exte3Cs with a full
timing model, thus eliminating the weakness. This weakisessirected in Klose’s
dissertation [KIo03], but Because it has been chosen nasedliose’s extension
in this report, the LSCs adopted in our LSC subset do not hdwk &ming model
either. The total order of messages is sufficient for spéewifithe order of the
messages and thus message traces.

1.4 Overview

First, an introduction of BPAAL is presented in Chapter 2. It includes a formal
semantics of BPAAL models and the subset of TCTL used.

Next, LSCs are described informally in Chapter 3 and a reiesabset is described
formally to be used in the EEL engine.

Chapter 4 describes the property extraction engine. Chapie@vides experiments
of how LSC diagrams can be used to verifypRhAL automata with the BEL
engine, and finally an evaluation and conclusion of the ptagegiven in Chapter 6
together with directions of future work.
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UPPAAL is a tool for modelling, validating, and verifying real-tevsystems. It
models systems as a collection of non-deterministic psesesvith finite control
structures and real-valued clocks, i.e., network of timetbaata. The processes
synchronise through channels and may exchange valuegthehared, finite data
structures.

This chapter gives an informal as well as a formal descniptd UpPAAL and
the requirements specification language, TCTL, used. Amei@a of a LPPAAL
model is presented, and use oPkAAL as a model checking tool is introduced.

2.1 Informal description

This section introduces the system description languaggr#AAL. The pre-
sentation is based mainly on [DMYO03] and the documentatmompanying the
UPPAAL application. The static and the dynamic elements ofreePAAL model
are described. The static elements are the language coisstand the dynamic
elements are the behaviours of the constructs, i.e., whanfégerration is and how
a model can progress from one configuration to another.
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2.1.1 Model constructs

A UppPAAL model is a network of timed automata. The automata have reast
for holding data, and the automata can synchronise overaffjodeclared chan-
nels, either throughbinary synchronisatiorn the form of a hand-shake or through
broadcast synchronisation

Each automaton is represented by a finite, directed grapérenddges are labelled
with guards, synchronisation labels, and updates in the fofr variable assign-
ments. The nodes in the graph are referred ttweations and the edges asan-
sitions Theinitial location is marked with a double circle. Figure 2.1 shows an
example WpAAL model.

S1

c!

Y c?
@ i=@1(+1)%N

The model shows an example of @khAL network with broadcast. The left is
a sender and the right is a receiver model template.

Figure 2.1: The sender and receiver templates of a Broadgastple.

Data constructs

Data in the model are stored in clocks and variables. Clook$ain non-negative
real values, i.e., values in the det,. Variables can be of type boolean or finite
subrange of integer, and be ordered in multi dimensionalyarr Constant values
can also be declared.

Integers must be declared with a finite bound, €95, 5] in order to restrict the
number of configurations, the maximum bound-i$2768, 32767], which is used
if no bound is explicitly defined. Boolean variables take vagiestrue or false
and they are type consistent with integers as in C++, (.evaluate tdfalseand
all other integer values evaluatesttoe. Likewise,falseevaluates td@ andtrue
evaluates td.
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Both clocks and variables can be declared locally or glgb&bormal scope rules
apply, meaning that locally declared names override glplukdclared names.

Channels

As already mentioned, automata synchronise over chanbeispo information
is sent over the channels, instead, information may be eggththrough global
variables.

A channel can be declarenigent which means that if transitions labelled with this
channel are enabled, then no time delay must occur beforentgled transitions
are carried out. The type of the channel used for synchrtoisaecides whether
the synchronisation is binary, or if marked whitbadcast one-to-many. A channel
can be marked as both urgent and broadcast. A binary syrisatimm channel is
a blocking synchronisation, whereas a broadcast synaaton is non-blocking,
a sending transition does not wait for a recipient, but carags be enabled.

Locations

Locations are the nodes of the directed graph defining amaaitm. There are
two special types of locationsirgentlocations andommittedocations. An urgent
location is a location in which time may not progress, ui@ bocation is left again.
A committed location is an urgent location with an additioc@nstraint; transitions
from committed locations have precedence over all othebledaransitions, thus
committed locations can be used to model atomicity. Theiaplecation types are
marked with a/ andC for urgent and committed locations, respectively.

It is possible to attach a boolean expression over clockvanables to a location,
aninvariantthat needs to be fulfilled while the location is active. It permitted
to set lower bounds on clock values in invariants andahandnot operators are
restricted to expressions over integers. Expressionyvariemts must be side effect
free. Appendix A contains a syntax for invariant expression

Transitions

Transitions, being the edges of the directed graph, desthibpossible steps from
a given location. The steps may be restrictedybgrds which are expressions that
must evaluate tarue before a transition is enabled, asgnchronisation labels
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which are labels indicating synchronisation between aatamA transition may
furthermore contairupdateswhich are variable and clock assignments.

A guard is a set of side effect free boolean expressions aahles, clocks, and
integers, but unlike location invariants they are not retgd from setting lower
bounds on clocks. A guard on an urgent channel or on a broadaasving chan-
nel may not contain any clocks. Appendix A contains a syntexgtiards.

Synchronisation labels are channels marked with a dineciidne synchronisation
scheme in BPAAL is similar to the synchronisation scheme used in the CCSi€alc
lus [LPY97]. Outgoing transitions with! labels are enabled when there is another
outgoing transition with the corresponding lale@lat another active location, and
neither guards nor location invariants restrict the pregreBecause broadcast is
non-blocking, a receiver is not necessary in order to enaltansition. The tran-
sition marked withe! is evaluated first and the set of receivers last. The evaluati
order is the order in which the automata instances are agtlarthe modele is

a side effect free expression evaluating to a channel, séd¢FaviBth the syntax in
Appendix A.

2.1.2 Model behaviour

The behaviour of a model can be seen as a sequence of coraplgigps from an

initial configuration. For an automaton a configuration iseaktion and a value of
clocks and variables. Thaitial configurationof the automaton is the configuration
with the active location being the start location and alialales and clocks having
the initial values. The combined configurations of all théoauata and the values
of variables and clocks constitute the configuration of avoet of automata.

Transitions may change the active location and the variadillges as well as reset
clocks. If there is no synchronisation label, a transit®neferred to as aimternal
transition stepand when there is a synchronisation label it is eithbmary syn-
chronisation ster abroadcast synchronisation ste@hen the automaton is in a
location time can progress, but some constructs restnet from progressing:

Urgent locations,

Committed locations,

Urgent channels, and

Location invariants on clocks.
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Thus, a computation step on a model is either an internasitian step or a syn-
chronisation step. The behaviour of a model can now be maeigely defined.
It is a set of sequences of configurations, where each segwtads from the ini-
tial configuration, and for every two consecutive configiord, o [k] ando [k + 1],
there must exist a computation step that convefts to o[k + 1]. A sequence of
configurations is referred to adrace

For a more in-depth description of all language construbes,syntax, etc. please
consult the help file from the, as of this writing, latestRAAL version 3.4.5.

2.2 Formal description

Now that the informal description of the constructs of apPdAL model has been
given, the formal description is presented. This sectidmased on the semantical
descriptions presented in the documentation accompartgm@PPAAL applica-
tion, [BLL*95], and [DMYO03].

A UpPPAAL model is a network of timed automata. A timed automaton ineefi
as atuple:

o= (V,L,A0,7T,1I)

consisting of:

eV =D U Cis the finite set of variables.V is partitioned intoD =
{dy,...,d,} the set of data variables, add= {cy, ..., ¢, } the set of clocks.
Data variables are integers or booleans, and they may besddfirbe con-
stants, and the clocks are always of type non-negative Real, Variables
may be ordered in arrays.

o L ={ly,...,1,} is the finite set of locations. Locations can carry the aitgb
urgentor committed Urgent and committed locations are subsetg ahus
the two sets are denoted iy, and L., respectively.

A configuration isc = (I,v) € X, whereX is a set of configurations, loca-
tion! € £, and a type consistent valuatiorof the variables ifv.

A variable assignment is a mapping from clock variab{ego the non-
negative reals and data variablBsto integers or booleans. For a variable
assignment and a delayl, v ® d denotes the variable assignment such that
(v ® d)(z) = v(z) + d for any clock variabler and (v @ d)(i) = v(z) for
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any integer or boolean variable In other words& changes only the value
of clock variables, i.e., time progression only effectsc&loariables.

A = {aq,...,a,, } is the finite set of synchronisation channels on which a
network of automata can synchronise. From the4géte setS of synchro-
nisation labels is formed. Synchronisation is either binar one-to-many,
i.e., one automaton sending and one or more receiving. 8gmai channel

« is denoted byy! and receiving byn?. Also, as not all transition steps are
synchronising steps; denotes an internal transition step without any syn-
chronisation. The set of synchronisation labels possibliaus defined as:

S ={a?al, e} fora e A.

An urgent channel is a special instance of a synchronisatfannel on
which automata must synchronise as soon as possible, thgetlof urgent
channels is4,, € A. A channel can also be marked as a broadcast chan-
nel, which means that the synchronisation is one-to-madynan-blocking,
thus A, C A whereA, is the set of broadcast channels. A channehn be
marked as both urgent and broadcast, thasA4, N A,

The initial condition© specifies a start locatioly € £ and an initial value
of all variables,));.

T is the finite set of transitions. Each transitiore 7 is a single relation:

TCYxSxX

that relates one configuration and a synchronisation labahother config-
uration.

IT is the finite set of location invariants, i.e., invariant ddgions that must
evaluate tdrue on a location, for that location to be active. The invariants
are used to specify local restrictions on the progress ofiaonaaton. An
invariant is a boolean expression over variabsbut it is not permitted to
set lower bounds on clock values in invariants.

The location invariants are described by a total functionthat based on a
configuration evaluates whether the conditional expresisiorue or not:

inv: £ xV — {true, false}
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Two additional total functions are introducegland«. The functiong evaluates
the guard condition for a transition based on the valuese¥ériables:

g :V — {true, false}

and the function: evaluates the set of updates carried on a transition:

u:yY—Yy

Three different computation steps are possible: intemaaisition steps, binary
synchronisation steps, and broadcast synchronisatis.stde internal transition
step is possible in both a single automaton and a network toh#ata, whereas
the binary and broadcast synchronisation steps are onkilpesn a network of
automata.

An internal transition step frorhto I’ can be taken, just when it is enabled, iggy)
evaluates tdrue on v andinv(l’,v’") on v/, where the resulting value assignment
v" is the result of the update evaluatiafw) and!’ is the resulting active location.
The internal transition step is defined as:

(I,v) == (I',0") iff g(v) Ainv(l',0)
wherev’ = u(v)

2.2.1 Network

Synchronisation steps can only be performed on the netwew#l,| thus before
proceeding with the specification of synchronisation stépsnetwork level needs
to be specified.

A configuration of a network of automat@, = (@1, ..., ®,,) is:

o= (l,v)

wherel = (I, ...,1,,) contains the active locations for all automata arid a type
consistent valuation of the set of variabksu ... U V,,.
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It follows that the initial configuration o® is (1o, vo), wherely is the initial control
vector, i.e., the initial locations of all the automata, apds the initial valuation of
V.

The invariant function must also hold when used on a netwbikutomata. The

function evaluates torue when the invariants hold for all individual automata:

true iff VI €1 :inv(l,v)

nv: £xV = { false otherwise

A network lifts transitions of the individual automata, ghilne possible transitions
for the individual automaton is used as the basis for the &escription.
The basic binary synchronisation step performed on a n&tigatefined as:

(1,0) -2 @) iff gv) Ainv(T, ")
wherev = u(v) ANa € A\ Ay

The basic broadcast synchronisation step is defined as:

(v) 2 @) iff glo) Ainv(T, )
wherev' = u(v) A 3 € A,

Next follows the specification of the synchronisation stepsthe network level,
i.e., the changes of all effected automata.

In the internal transition step, i.e., a single automatérda transition without any
synchronisation, only the automaton in question changesitan, and the global
set of variable values changes. The internal transition istdefined as:

(coisliyey— (0 0L,0)
(Consiseorligyee ) s0) == (ool ol )07

iff gi(v) Ainv(li, v") Ainv(ly, ")

wherev’ = u;(v)

for an internal step in a automatdn.

When a binary synchronisation step occurs two automatagehiacation and there
is an update of the global variables as well. The sender epdhe variables first
and the receiver updates last:
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al!

ol )25 () ol ) 25 ()
((ooiliyeenslioyee ) 0) == (ol ) 0

iff g;(v) A gi(v) Ainv(l;, ") Ainv(l),v")
wherev' = uy(u;(v)) ANa € A\ Ay

for a sending automatoh; and a receiving automatchy, .

The broadcast synchronisation step has one sender andlpossny receivers

that all change locations and the global variable values etenge. The sender
updates first, and the receivers update in the same ordeepafidive been defined
in the model:

B! B? B?

Cconine D (ol Y 2 Yol Y 2 ()
((onsliyeonslireeoskin ) 0) =2 (ool ) )
iff 9i(v) A gr(v) Ao A gn(v)
A inv(l, o) Ainv(l, v) AL A INV( )
where v = up (.. (up(u(v))))
AN B eA

for a sending automatoh; and receiving automatdy, . . . ¢,,.

It is also possible to have an empty set of receivers of a lsasidsynchronisation,
as the broadcast synchronisation is a non-blocking synitatton call:

el
eoliyee) (ol

Leoiseoslores ) ) (ool )

iff g(v) Ainv(l},v") Ainv(lg,v')

wherev’ = u(v) A € A,

for a sending automato®;. Here, only the sender changes location and the global
variable set also change.

2.2.2 Maximal delay

A side conditionMD is given on all transitions, which returns the maximal delay
allowed. If a process modelled by an automadors in a location/ with a number
of outgoing transitions with guards, the process may hawestio for these guards
to becomerue in order to leave. It is not desirable that the process waits in this
location forever, thus some discrete transition must bertakithin a certain time
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bound. This bound should be the maximal time before all tlredgiare completely
closed, i.e., they will never becontreie again. If the active location is an urgent or
a committed channel, no time delay is allowed.

The maximal delay for an automaton is formalised as:

0 iff 31eL,ULe
maz{d|(l,v) == (I',v)} otherwise
MD(l,v) = iff g(v @ d)
A inv(l,v ® d) Aino(l',0" @ d)
wherev’ = us(v)

Also, MD = 0 when a configuratiori/, v) has all outgoing transitions from the
active location completely closed.

Network

Next, the notion of maximal delay is extended to networks wibmata. This
insures that synchronisation on urgent channels happangdately.

The maximal delay for a network of automata is formalised as:

0 iffElOtEAu,li,leZZ
(li,0) 5 () & (I,0) 25 (1,0)
wherev’ = w;(u;(v))
MD(l,v) = V 3B eA,NA, L EL:
(liv U) i') (127 UI)
wherev’ = u;(v)
min{MD(l,v)|l €1} otherwise

If a synchronisation channel or 3 is an urgent channel, and the locations with
the urgent channel is in the currently active set, then theimrmal delay is0, i.e.,

no delay is permitted. If on the other hand, there is no urghahnels pending on
the active locations, then the shortest of all maximal delzfjthe processes of the
network is the maximal delay, because this is the maximairvat delay before
some action must be taken.
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2.3 Requirements specification language (TCTL)

UppPAAL's model-checker is able to verify certain properties sushreachabil-
ity, i.e., whether certain configurations of the model a@&ctable from the initial
configuration. This is done by constructing a timed compoiiatree and applying
graph algorithms in order to examine the tree. The formiiaethe model-checker
is to prove or disprove are defined in a requirement spedificddanguage, which
is a subset of branching time computational tree logic (TC[MYO03, Dav03],
where the time part comes from the possibility of consteaori clocks.

A TCTL formula consists of two parts; a local property and mp@ral property.
The local property describes a property that is to hold fomgle configuration,
whereas the temporal property specifies to what extendaoes and configura-
tions, the local properties are to hold, i.e., for all or agéntrace, and for all or a
single configuration within the given traces.

2.3.1 Local properties

A local property is specified by boolean expressions oveatlon names, clocks,
and data variables of theRPAAL model in question.

Besides the standard relational operaters<=, ==, ! =, >=, and> as well as
the boolean operatoend or, not, andimply, the expressions may contain the spe-
cial keyworddeadlock which evaluates ttrue only in the case of a deadlock, i.e.,
no transitions from the active location are enabled. Spelkdifiations are referred
to as®./, where® is a timed automaton in therPAAL model and is a location

in ®. A local property has the form specified in the following BNF:

p::= deadlock
| ®. fordcdAl e Ly
| cxzx forceC, e {<<===l=>=>} r € Z
| c1—coxax forep,c €C, xe{<<===l=>=>} v cZ
| dy >dy fordy,ds € DUZ, < € {<,<===l=>=>}
| (p) for a local propertyp
| notp for a local propertyp
| p1andp, for local propertieg; andps
| p1orps for local propertieg; andps
\

p1 imply po  for local propertieg; andps
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A local property evaluates to eith#ue or falsebased on the configurations of the
model. As the intuitive idea of the semantics of the abovestants should be
clear, the semantical evaluation of the constructs aredtyyndescribed.

Formal description

Given a configuratiorm = (,v), a local propertyp holds in& denoteds = p,
based upon the following rules:

o = deadlock iff no delay or action transitions are enabled in
5’:6[ iff l:liGZ_fOI'E:aiEE

ThEcxx iff  v(c) <z, xe {<<===l=>=>}
TEca—cxe iff o) —via) <z, xe {<<===1=>=>}

T Edy >xdsy iff  o(d1) =<ov(de), e {<,<===I=>=>}

o= (p) iff op

T = notp iff  —(c E=p)

T = p1orps iff TEpPpIVTEp

7 = p1andps iff TEpATEp

cEpLimplypy iff =(@Ep) VT Ep

wherec e C, ,x € Z,andd € D U Z.

2.3.2 Temporal properties

Temporal properties specify when a local property is to lthidng a computation,
in other words, they specify some or all configurations in ¢benputational tree
that is to satisfy some local property The two quantifiers/ and3 refer to both
paths and configurations of the computation tree. The pghca®f a requirement
formula is specified by A and E, and the configuration aspespésified by [] and
<>, for V and 3, respectively. By combining the path and configuration aetpe
it is possible to specify the following four types of formalawherep is a local
property; A[], A<>, E[], and E<>. The specification languagkso provides a
fifth type, aleads toproperty. It is written as - >, and it is semantically equal to
A[l (p1imply A <> pa).

The five temporal property types evaluate to eitinee or falsebased on the evalu-
ation of the local property for each of the configurationscsijped by the temporal
property. This means that if some TCTL formula is to hold fom& UpPAAL
model ®, the local property is to hold for the set of configurations specified by
the temporal properties. Intuitively, the semantics are:
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All p for all pathsp holds for all configurations, i.ep, invariantly holds.
A<>p for all pathsp holds for some configuration, i.en,is inevitable.

Ell p for some pattp holds for all configurations, i.ep, may always hold.
E<>p for some pathp holds for some configuration, i.en,is reachable.

p1-->ps  pp eventually leads tp,.

Formal description

Let U(®) be the set of finite timed traces of the modela trace in¥ (@) is (1, K|
of length K. Letting thek’th configuration in a trace be denoted Byk], the
following rules define the semantics of the temporal prapsrt

D E=Allp iff V&[l,K]eU(®) :VEk<K:GlklEp
dE=A<>p iff V&[l,K]eV(®):Ik<K:TklEp
®E=E[lp iff —(® = A<>notp)
® =E<>p iff —(® = A[] not p)
DE=p-->py iff VF[L,Kl€¥(P):VE<SK:

okl Ep1 =3k >k:5lk] Epe
2.4 Example

This section contains an example of @kAAL model and TCTL property formu-
lae. The example is a coffee and tea vending machine, seesRidg

coin!

b0 coin? c:=0 bl coin? b2
)

c==5 tea!

c<=5 c<=3 coffee!

Thecof f ee_uni t sends coinstotheont r ol _uni t and servers a cup

of tea or coffee, when informed to. A cup of tea is server witttiree time
units, ¢ <= 3 and a cup of coffee within five time unitg, <= 5. The
control _unit dispenses either a cup of tea or coffee, depending on the
amount of coins inserted. One coin dispenses a cup of te@dans coin is not
inserted within five time units, see invariant<= 5. Locationb2 is urgent,

meaning that when a second coin is received no delay is gedriefore the
coffee message is sent.

Figure 2.2: WpPAAL model of a coffee vending machine.
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Computation graph

When UppaAAL formally verifies a network of automata, it takes advantaipeao
ious internal data representations. The data represemtate not described here,
see [BBD"02] for information about the internal data representaiamd their
usage.

In order to be able to check for the existence of a message &ammputation
graph is sufficient. The PPAAL verification engineyerifyta, has support for out-
putting a LPPAAL model as a finite state machine, FSM - note that this is an-inter
nal unpublished version of verifyta. Clocks are not repnése in the FSM format
but data variables effect the state space. Figure 2.3 shmwvE$M output as a
computation graph for the coffee vending machine example.

The graph shows the RPAAL location sets as computation configurations.
There are no variables in theP8AAL model used in this example. If there
were variables, the possible variable values would be agdatie configura-
tions, e.g., a variable with a range of three in everyPdAL model location
could triple the number of configurations.

Figure 2.3: FSM computation graph for the vending machirsergxe.

UpPpPAAL TCTL queries

Next follows some example TCTL queries that can be checkatUvPAAL for the
vending machine example.

e Al] not deadl ock: This expression checks the model for deadlocks. If
there is a possibility for a deadlock in the model, this quetyrnsfalse
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e control _unit.bl —— > ( coffee_unit.al or coffee unit.a2
): The leads to operator tests for the possibility that a Iqualperty is
eventually followed by some other property. This exampsi¢hat if the
control _unit isinlocationbl, i.e., one coin has been deposited, then the
model will eventually be in locatioal or a2, which means that either a cup
of tea or coffee is dispensed.
The leads to operator must be used with caution, as it is easgéate dalse
trueexpression, i.e., an expression that is satisfied, but ruaiLse a property
is eventually followed, but because the first property iseméulfilled. Con-
sidercontrol _unit.bl and coffee_unit.a2 —— >(coffee_unit.al
or coffee_unit.a2) is always satisfied, because locatiohanda2 do
never coincide.

2.5 Summary

UPPAAL is a tool for modelling, simulating, and verifying non-detgnistic timed
finite state automata. The supported data types are intdgmrkeans, and clocks.
Synchronisation between processes are performed thrdugimels, either in the
form of a blocking binary one-to-one synchronisation, opa-blocking broadcast
one-to-many synchronisation. Communication, i.e., emgbaof information must
be performed through shared variables.

The verification of WPAAL models is performed through the querying of a subset
of TCTL expressions. TCTL expressions consist of two proggra local property
and a temporal property. The local property is a booleanesgion over automata
locations and conditions, whereas the temporal propeipyesses the range of the
local property, i.e., to what extend in traces and configomstthe local property
must be satisfied.

The modelling language of RPAAL, and the requirement specification language,
TCTL, are specified informally as well as formally in orderlde able to compare
functionality with LSCs. The comparison is used to idenfifpperties of LSCs
that can be used to verify RPAAL models.

Next chapter gives an introduction to LSCs, a limitation &Q features, and de-
scription of how they are used to specify properties ferrllAL model verification.
The semantics of the selected LSC subset is formally destrib
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As with MSCs, LSCs allow the user to specify scenarios by rildsg the inter-
object communication. MSCs are often used in the early dpweént stages for
capturing use cases through scenarios, but as developmgnegses and the de-
signers gain more knowledge about the problem domain asaseibnfidence in
their ideas, scenarios characterising the use cases amveisd and defined. This
leads to a desire for more expressive ways of modelling teecases. LSCs are an
extension of MSCs introducing among other things liveness, specification of
mandatory versus possible behaviour.
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This chapter presents an informal description of LSC fetull he first part of the
informal description is based on the original LSC desaniptoy Werner Damm and
David Harel [DHO1]. Extensions introduced by Klose in [KBjGre considered.
The graphical LSC notation used is that from the LSCEditor.

The informal description is partitioned into LSC constsieind LSC behaviour,
the former being the constructive elements that LSCs aiefooin, and the latter
being how these constructs are used to specify a model mehavi

A subset of the LSC elements is selected based on what feadteaelevant for
UPPAAL verification, and what elements that can be modelled by alenents.
The selected LSC subset is used to reason about the applicHtL SCs as a re-
quirements specification language fopRAAL model verification. The limitation
and application of LSC features are described when theynénadiuced.

Finally, this chapter presents a formal semantics of thecsetl LSC subset.

3.1 LSC constructs

An LSC is a chart with instances, i.e., objects, along thezbatal axis and time
down the vertical axis, see Figure 3.1. Interobject behavie specified as ei-
ther messages or method calls between the instances. An &ts of several
constructs used to define the interobject behaviour of &syst

3.1.1 Precharts and activation conditions

To define when a chart is to become active, i.e., when the mysteould start
behaving according to the chart, each chart is coupled witindial condition.
This condition can be in the form of activation condition(as in MSCs) reflecting
some configuration of the system, but it can also be definedchara of its own,
called aprechartas in Figure 3.1. In the case of a prechart it is required that t
system exhibits the entire behaviour defined in the predefdre the chart itself
becomes active. Both an activation condition and a predgarte specified for a
given chatrt.



3.1 LSC constructs 27

In=t Inztz2

In=t Inztz2

An LSC with two instances. The top chart is a prechart and tdi® chart is
a main chart.

Figure 3.1: LSC with prechart and main chart.

Limitation

An activation condition can be modelled by having a precWitt only a condition,
see below for description of conditions. Thus, the activattondition construct is

disregarded.

Application

Precharts are tested by traversing thePlalAL computation graph. When a prechart
is satisfied, the main chart is tested from the configurateached by evaluating
the prechart. Figure 3.2 displays the connection of thehae@nd main chart of
Figure 3.1, the condition must hold in the snapshot from tfs¢ finessage until the
dashed line, and from the dashed line until the next messaganother snapshot,
i.e., snapshots do not overlap from one chart to another.

Snapshots are used to divide a chart into segments, seeeRBgion page 31.
The temperatures of the segments at a given time are calléctéhe snapshots,
and the temperature of the snapshot is hot if any segmengisriapshot is hot,
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otherwise it is cold. Snapshots correspond to a sequencendifarations in the
FSM computation graph and they are more precisely defineedtic 3.3.

A prechart supports the same constructs as a main LSC, whednsnthat the
following descriptions of LSC constructs must be applied.

In=t Inztz2

The prechart and main chart of Figure 3.1 has been mergetusrdte that
any conditions must hold until the dashed line, from wherew snapshot is in
effect. This means that there are four snapshots in this LSC.

Figure 3.2: The overlap of prechart and main chart.

3.1.2 Universal and existential charts

An LSC has a chart mode that can be eitheiversalor existential An existential
chart requires the existence of a trace satisfying the chdnite a universal chart
requires that all traces conform to it. Generally, univecdearts are more restric-
tive, and it should be possible to extract more restrictraoprties from them. This
is also the case, as existential charts yield a temporakptppf a trace existsF,
and universal charts yield a temporal propertyafall traces A, see Table 3.1 on
page 45. When drawing a universal chart, the box around thg ha solid line,
whereas a dashed line is used for existential charts.

Application

The chart modes, i.e., existential and universal, are leghslich that a message
trace in an existential chart only needs to exist, whereagssage trace in a uni-
versal chart must exist in all traces. This means that if glsitrace in a computa-
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tion graph does not conform to the specification in a universart, the chart does
not hold.

3.1.3 Temperature

In the original LSC description in [DHO1], &mperaturds associated with loca-
tions, conditions, and messages. The temperature canhez ledt or cold. Lo-
cationsin an LSC are those points on an instance axis where, e.gsages and
conditions are attached. Making a location hot means thadstto be left, thus
enforcing progress down the instance axis. Converselyldd@cation never needs
to be left, and thus the next location may never be reached.

In the LSC subset adopted in this project, temperatures @rassociated to lo-
cations, instead coregions and segments have a temperatugeneaning of the
temperature notation for the various LSC elements are suisetsin Table 3.1 on
page 45.

The limitations and applications regarding the tempeeatdor the LSC construct
are given for each construct as they are introduced.

3.1.4 Instances

Instancesare the elementary building blocks of LSCs. Their graphiegresenta-
tion has been adopted directly from MSCs, thus instancs tinasist of an instance
head with the instance name, the instance end as a blackrmbananstance axis
which is a vertical line connecting the head and the end. A¥S$Cs the hori-
zontal dimension represents the structural dimensionlewthe vertical dimension
corresponds to the time dimension. Instances are modettsbgmd an instance
of a modelled system is a data-space induced by variablarmd¢icns and events.
Variables used in LSCs may be globally or locally declarethim modelled sys-
tem. Events may be conditions, sending and reception ofagessor creation and
destruction of instances.

Hot instance segments, a segment is a line segment betweevénts, along an
instance line means that progress along the instance limamslatory. Utilising
this feature progress is forced down the instance, but as asdhe instance line
reaches a cold segment, progress is no longer enforced.dfsegment means that
the next event never needs to be reached.
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Messages not originating from one of the objects modellednaimstance line in
an LSC are said to come from tleavironmentwhich can be either non-modelled
objects or an external stimuli. An instance line for 'someeststimuli’ in the
model is thus introduced. It is labelleshvironmentand like normal instance lines
it may communicate with the instances of the chatrt.

Limitations

The processes in RPAAL models are created at model construction time and exist
throughout a model’s life-time, this means that explicijeat construction and
object destruction is not possible in @kAAL model, thus it will not be considered.

To limit the scope of the features to be implemented, therenment instance is
disregarded. This means that if there is communication éetwan instance and
an object not represented in the chart, the communicatiagnisred as only the
interobject behaviour of the instances in the chart aretefast.

Application

When looking at a message trace, the temperatures of theeségoho not matter.
Even though there are some cold instance line segments thsages trace must
still exist, albeit it might never be completed in an actualdal execution.

If the temperature of any snapshot is hot, progression isread for all instance
lines in the given snapshot. In a universal chart this prypesin be tested with
theleads tooperator in TCTL, because if a snapshot is hot, then comipuat&om
the first snapshot must eventually progress to the seconlsog i.e., the second
snapshot must eventually be reached from the first.

Figure 3.3 illustrates temperatures of instance linesuidjinca simple universal LSC
with communication between two instances, and both hot altisegments. First,
the message sequence is tested, i.e., as described infS&dtié below. Second,
the temperature of the segments can be used to generatet@®per the chart.

In snapshot 1 bothi nst 1 andi nst 2 are hot, sarsgl has to be reached, and
therebysnapshot 2 also has to be reached. dnapshot 2 only i nst 2 is hot, but

it forces all other instances, i.é.nst 1, to progress. Isnapshot 3 both instance
line segments are cold, meaning that progression is noagtessd. The possibility
of progression must still exist, i.e., the messagg3 must still be possible to be
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=napshotl

The snapshots collect the temperatures of the segmentg isntpshot. If a
segment in the snapshot is hot, so is the snapshot, othahissmld.

Figure 3.3: An LSC with hot and cold instance lines.

sent fromi nst 2 toi nst 1, and this is checked via the message trace check.

3.1.5 Messages

A message in an LSC is basically the same as a message in anW8®inds of
messages are considered:

e Synchronous:The sender blocks until the receiver is ready to receive the
message. Sending and reception of the message happensasgoukly.
A horizontal arrow is used to denote a synchronous messagkelay from
trying to send a message to the acceptance of the requesd Sleoexpressed
on the vertical axis as progress of time on the sender’s side.

e Asynchronous:Time may pass between sending and reception of the mes-
sage. After the message has been sent, progress may coalimgethe
instance line before the message is received. An asynchisomessage is
graphically expressed with a slanted arrow.

Figure 3.4 shows the graphical notation of messages.
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Whether a message is synchronous or not is specified thrésighgle with the
horizon.msg1 is synchronous, as it is parallel with the horizon, arglg?2 is
asynchronous as the message is slanted.

Figure 3.4: Synchronous and asynchronous messages in an LSC

Interobject method calls are represented by two synch®nwessages; the method
call and the return message, and the two messages are pginedléning the
instance lines carrying the method body. A hot message isssage that, when
sent, must be received, and a cold message means that afteeisage is sent, it
is not required to be received.

Limitations

There are two categories of messages #PRAL models; binary and broadcast,
both categories are synchronous, i.e., sending and receigtinstantaneous, thus
asynchronous messages in LSCs are discarded.

The binary messages in aPBAAL model are handshakes, which means that there
are always a sender and a receiver. Broadcast messages athe¢héand do not
need to have a receiver. This means that binary messages sugiported LSC
features must be hot, i.e., if a message is sent it must bveelcdt also means that
itis possible to have cold messages, but then the messagéembroadcast and it
must be specified in a simultaneous region, whereas a singledadcast message
needs not be specified in a simultaneous region. See déscrigtsimultaneous
regions in Section 3.2.3.

Automata in WPPAAL cannot send messages to themselves, thus such messages
are not included. If they were, it would be to describe inémction steps, but if
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these steps were to be included in a specification it wouldupriaking a complete
description of an automata trace too detailed for a requergrapecification.

In LSCsiitis possible to have two messages at the same |atedith not sent from
the same simultaneous region. An example of this can be sdégure 3.5, where
megl andnsg2 are exchanged simultaneously.

in=tl

t2 l in=t3 inzt4

inz

Specifying simultaneity by two messages at the same tineethis is disal-
lowed. Any simultaneity must be specified through simultargeregions.

Figure 3.5: Two messages exchanged at the same time.

UpPPAAL supports sending of binary messages simultaneously usgenuloca-
tions, but because the computation graph does not contagkskhis cannot be
tested. Thus, messages at the same vertical level is nobdegpunless they are
in a simultaneous region.

Application

When testing BPAAL models using TCTL it is not possible to test whether a
sequence of messages occurs in a trace, because there amestrocts in TCTL
referring to messages. The main focus of TCTL is automatatimes and variable
values in locations, in other words configurations inRR4AL models.

To test message sequences the messages are extractedeio®Cttand the com-
putation graph is traversed to prove whether the sequensts ex

If a broadcast message only has one receiver in the chartyitv@apecified by a

hot message, but if the message has several receivers eagreranust be spec-
ified using a simultaneous region sending the same messagéisdceivers, Hot

messages are used when the receiver must receive it, ancheskhges are inter-
preted as a broadcast that may be received. A broadcastgedssaways sent to
all objects, but if a message is not specified in the LSC frommaltaneous region

to an instance, then the broadcast message may not be ckbgitleat instance.
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3.1.6 Conditions

Conditions may terminate a chart successfully or unsudagsslepending of their
temperature. A hot condition must be satisfied or the runrisiteated unsuccess-
fully. A cold condition does not have to be satisfied, if it da®t hold it simply
means that the rest of the chart is disregarded, which isidemrsl a successful
termination of the chart.

Graphically, a hot condition is depicted as a solid hexagou, a cold condition is

a hexagon with a dashed line, as seen in Figure 3.6. A conditim span more
than one instance meaning that the condition is specifiealtb flor all spanned
instances. Such shared conditiormay be used to synchronise instances because
the condition will not be evaluated before all instancessh@ached the condition,
and no instance will progress beyond the condition befoled been evaluated.
The rules for hot and cold conditions apply to a shared c@ardin the same way

as they do for normal conditions.

Inst1 Imst2

& Hotcondtion > < Cald condiion
M ___’, E—
< Shared , hat candiian >
Hot conditions are given as solid hexagons and cold comdit@re given as
dashed hexagons. Conditions may be shared over sevegaidesines.

Figure 3.6: The types of conditions in LSCs.

A useful feature of conditions is the ability to constructtfimden scenarios. A
prechart with the forbidden scenario may be combined withigeusal chart con-
taining just a single hot condition always evaluatingaise[Bjz04].

Limitations

It is possible in LSCs to attach a condition to a simultaneeggn and it is possi-
ble to have an isolated condition. Klose recommends alwégshang a condition
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to a simultaneous region because that gives a definite éwaiyzoint for the con-

dition [Klo03][pp. 118-123]. We choose to not differengabetween a condition
attached to a simultaneous region and an isolated condii@ondition is to hold

for a snapshot and should be evaluated for all possilHeAdL configurations in

that snapshot. As an isolated condition is intuitively elos our definition of

conditions, only isolated conditions are allowed.

Application

As with activation conditions, conditions appearing witlai chart are boolean ex-
pressions over BPAAL variables and automata locations.

Conditions are expressed as local TCTL properties and thealdL verification
engine is used for querying these properties. Each conditioan instance line in
a universal chart is checked with a TCTL formula with thedaling form for each
configuration in the snapshot:

A[] configuration imply condition

If the chart is existential, the formula is:

E<> configuration and condition

Shared conditions are conditions that span more than otenires line. A shared
condition is a snapshot is the same as a single conditionlanséhnces, thus a
shared condition in an LSC is translated into single coodi

If a hot condition evaluates talsethe chart is terminated unsuccessfully, i.e., the
chart does not hold. If a cold condition evaluatesaisethe LSC verification en-
gine must ignore the rest of the chart, but otherwise repaitthe chart is satisfied.

3.1.7 Subcharts

A chart may include another chart, which is specified overtaobastances that
may or may not be present in the parent chart. Subcharts rolydimitself, allow-
ing infinite iteration and thus an infinite number of elemeotbe verified. Sub-
charts introduce chart scope, which means that cold camdithot satisfied only
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exit the subchart and not the parent chart. Combining sutschad cold conditions

yields classical if-then constructs and loop structurehsas while-do and repeat-
until. If-then constructs are simply subcharts beginninthwold conditions, and

the loop structures are based on subchart iterations.

Limitation

As the LSC editor used in this project does not support sughia this form,
they are not used. The LSCEditor supports an if-then-elsstoact, and as sub-
charts can be seen as a special instance of the if-thenesisieding subcharts as
a construct poses no problem. The if-then-else construtggsribed below.

3.1.8 Coregions

A coregion is used to indicate that partial ordering is imggbsn the events con-
tained in the region as opposed to the total ordering premgstde of a coregion.
A coregion is graphically represented as a vertical dotiteel hext to the instance
axis as in Figure 3.7.

Inst1 Inst2 In=ta
| | |
|
I megl P |
I l
|| | |
| | |
| |1 mEq3 |
I | megd |

gl
| I |

The coregion, which is given by a dashed vertical line, irdupartial order on
i nst 1, but because the messages are synchronous, the orddmpisestirved.

Figure 3.7: An LSC with a coregion.

Coregions in [DHO01] also act as simultaneous regions, blat(&] uses an explicit
construct for simultaneous regions, and thus limits canegji Because the LSCEd-
itor uses the representation of an explicit simultaneog®rethis representation is
adopted.
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Limitations

Coregions introduce partial order on a section of an ingdime. As only syn-
chronous messages are supported in the LSC subset, a covathiopartial order
would be overridden if the other instance lines involvedhea message passing in
the coregion are not declared as coregions, likBdanari o1 of Figure 3.8. If a
message is sent, it will be received at the same time. Thesedocoregion decla-
ration on an instance line will count as a global coregiorafbinstance lines. This
means thascenari ol of Figure 3.8 will be interpreted é&enari 02.

it im=t2 in=t3
Scenariol |
I < meat
|
|
|
™
|
1
Scenario2
| | |
| | |
i* |
| | |
| | |
| | |
™ el |
| | |
1 ] ]

The interpretation of coregions is that coregions induaesnder on messages
for all instance lines. A specification like the one $tenari ol is thus
interpreted as the specification®€enari 02.

Figure 3.8: How coregions are interpreted.

Note, that coregions may not overlap, because it would bertaia how the se-
mantics is with a message in two coregions. This possibityisregarded.

Furthermore, if-then-else constructs inside coregiomsramt supported. It is not
clear how an if-then-else would be interpreted inside agioreand including this
construct would add much to the complexity of the verificatwithout contribut-
ing much to the expressive power of an LSC. Only hot messagesugported in a
coregion to keep coregions as simple as possible, thustammsland simultaneous
regions are not supported either.
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Application

When testing message traces within coregions it is requliat multiple traces
must be tested, because there is no ordering between thagesss a coregion,
thus all possible orderings must be tested. The configuratiesulting from a
satisfied sequence are used in the remainder of the charif, #uede is more than
one satisfied sequence, then all of these configurationsimeusisted.

A coregion is given a temperature and the temperature hasaiine semantics as
snapshots. Thus, if a coregion is cold, progression is noreed anywhere in the
coregion.

A coregion in the LSCEditor has an explicit temperature. dbeegion is cold, then
there is no guarantee that the coregion is ever left, i.egnession is not enforced
anywhere in the coregion.

3.2 Extensions to the basic LSC constructs

Next follows some extensions from [KIo03] to the basic LSThese extensions
are LSC constructs, which solve some of the shortcomingkercore feature set
presented in [DHO1].

3.2.1 If-then-else

An if-then-else construct is added. The construct consistscondition and two
LSCs. If the condition evaluates toue the first subchart is activated, and if the
condition evaluates tfalse the second subchart is activated. In either case, the
subchart not chosen is skipped. An example of an if-thea-etsstruct can be
seen in Figure 3.9.

Application

When a chart contains an if-then-else construct, the cionditf the construct will
determine the full path that must be searched for in the coatipn graph. The
subchart of the construct will simply be appended to the igatrace. The only
way to test the condition without limiting the condition @bruct is to use the
verification engine of BPAAL using TCTL as with a condition element.
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inst1 inst2
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The if-then-else construct states that if the conditioluatas tarue the 'then’
LSC must hold, otherwise it is the 'else’ LSC that must hold.

Figure 3.9: LSC modelling an if-then-else construct.

When using if-then-else constructs it is recommend thakesyare avoided, un-
less well positioned conditions are included, or else amitafisequence may be
specified.

3.2.2 LSC activation mode

An LSC can be in one of three modesitial, invariant, anditerative The initial
mode allows one test with the LSC, namely initially when thistem starts. The
invariant and iterative modes allow more test with the sarB€ ) the difference
between them is that the invariant mode allows more simetiaa incarnations,
i.e., a new incarnation can be activated while another lisistprogress. This is
not possible for the iterative chart, where a new incarmatiay not be activated if
an existing incarnation is already running.

Limitations

When doing model checking an ignored activation of a chaghinbe the one
falsifying a property, thus iteration is disregarded [KBpp. 77-79].

Initial mode is also disregarded because this can be madejyledding the condi-
tion that every instance must be in their initial locatiorttie activation condition.
This means that the activation mode for LSCs is always iavéri
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3.2.3 Simultaneous regions

A simultaneous region allows grouping of several elemdrasghould be observed
at the same time. This enables, e.g., association of conditand messages to
groups of events. It also allows message broadcast by sesdireral messages
at the same point in time. If a number of cold asynchronoussages are sent
in a simultaneous region, either all of the messages arimal&@neously or none

arrive at all.

Graphically, a simultaneous region is denoted with a filledle surrounding the
location on the instance axis, as can be seen in Figure 3.10.

it im=t2 in=t3
< g & meg2 »
e -
e D

Two simultaneous regions. One with two messages and onewitsssage and
a condition.

Figure 3.10: LSC two simultaneous regions.

Limitations

As mentioned in Section 3.1.6 conditions are not allowedegart of a simul-
taneous region. In fact, the only construct allowed in a fimmeous region is
synchronous messages.

Application

Simultaneous regions are used for modelling broadcast aarization. Broadcast
communication in BPAAL is non-blocking, thus sending of a message does not
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ensure that anyone receives the message. This means tHanhestages must
be supported in simultaneous regions. Hot messages arsghgported, which
means that if a message is sent it must be received. This dinectly a UPPAAL
feature, but a feature that can be modelled in an LSC and alsited, because the
engine can take into account that a given message must barstneceived. As
simultaneous regions model broadcasting all messagesreanthe region must
have the same label.

3.2.4 Time

It is desirable to be able to specify time constraints in alClchart. Timers and
timing intervals are introduced to provide this. The bourekof the intervals can
be given by two types of parenthesis, one for including thenolo [ and '], and
one for excluding the bound, ’(" and ’)'.

A timer set is represented by an hour glass symbol labell¢d ashame and a du-
ration. The hour glass is connected to the instance witregsirline. A timeout is
also represented by an hour glass symbol, but contrary inex 8et it is connected
to the instance with an arrow. A timer reset is representdtl wilarge X, which
is connected to the instance line with a straight line. Tineag be only one time-
out or one timer reset associated with a timer set, and thgynmoaspan several
instances. A timer set and its corresponding timeout orrtiraset are connected
with a vertical line or by labelling them with the same name.

A timing interval needs to be associated with two locatiomsereas a timeout is
an event itself, which can be used to delimit constructs sischonditions, mes-
sages, and even other timer sets. Figure 3.11 shows an exafah LSC with
timing constraints. Apart from the timer reset (T1) and ihesout (T2) there is an
example of a timing interval; the interval betweesgl andnsg3 oni nst 3.

Limitations

Clocks in UpPAAL are modelled as a part of the set of data variables. When mod-
elling an LSC there is access to the data variables of thealdL model, and as the
data components can be used in conditions, constraintsooksctan be modelled
through conditions on clock variables. This means that i@t clock mod-
elling features, timer sets, timeouts, and timer resets,nat necessary, and we
thus choose to limit the LSCs by not including them.
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I nst 3 must sendrsg3 at least 1 time unit, but less than 6 time units after

nsg1l has been received. This is given by {h2, 5] time interval, between
nsgl andnsg3 on thei nst 3 instance line.

Figure 3.11: LSC illustrating Klose’s timer constructs.

3.2.5 Local invariants

[Klo03] also introduces condition constructs that are tlwhaver a period of time
called local invariants. Like conditions they have a terapae, which is inter-
preted as for conditions, i.e., using solid and dashed fimelsot and cold, respec-
tively.

Local invariants are represented by a condition spanningctas of an instance
line through connected start and end boundaries. The baesdzn either include
or exclude the reference points denoted by i and e, respéctii local invariant

with including boundaries is depicted in Figure 3.12.

If local invariants start at an instance head, the refergodet specifying the start
of the local invariant must be exclusive, as it would otheevact as an activa-
tion condition for the chart. This also means that addingldcal invariant to the

activation condition yields the same as inclusion.

Limitations

A local invariant in our LSCs would be the same as a set of ¢immdi, one for
each snapshot covered by the local invariant. Because lsnispset the range of a
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Both boundaries of the local invariant are included in thairant, given by the
'I'. Exclusion of a boundary is given by ’e’.

Figure 3.12: LSC with a local invariant.

condition, local invariants would have to be restrictedgarsa snapshot, thus have
the same meaning as a condition. Local invariants are tharsgiirded, because
they can be modelled by conditions.

3.3 LSC behaviour

The understanding of the LSC subset adopted in this projemtpe snapshots
should be clear. Snapshots is now defined in full and a sumwfatlye manda-
tory and provisional behaviour and notions of the conssrre summarised in
Table 3.1 on page 45.

Snapshots are collections of instance lines separatedbynipessages, if-then-
else, coregion, and simultaneous region constructs. Tommieg and end of a
chart are also snapshots. An empty chart thus only contaensmapshot, and
likewise for charts containing only conditions.

In addition, the snapshot ending a prechart is the same Isoafist starts the
main chart, recall Figure 3.2, and the snapshots startidgeading a subchart are
the same as the ones ending at and starting from the subchart.
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When considering a model, a snapshot consists of all pessibM configurations
at that point in the LSC. The snapshot for an LSC after a giyerctzronisation
consists of the FSM configuration the synchronisation em@s iwell as all config-
urations reachable by internal transition steps and symi$ing steps that synchro-
nise a process not represented in the chart with any otheegspsee Figure 3.13,
and these steps are referred tarasrmediate transition stepdhe FSM computa-
tion graph is thus to be traversed in order to find the spanestiapshot for each
trace in the model. If a condition is to be satisfied in a snapshe sequence of
configurations in the snapshot must all satisfy the cormlitio

inst1 ‘ inst2 ‘ inst3
Snapshott {
i maal >
Snapshmzﬂé < Condition >
Snapshots {
Sreapshotd 4

The messages separate snapshots, and as conditions apé gapshots, all
configurations irsnapshot 2 must satisfy the conditioaondi t i on.

Figure 3.13: An LSC divided into snapshots.
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Element Semantics

Mandatory

Provisional

Chart Mode

Universal:  All
runs of the sys-
tem must satisfy
the chart.

Existential: At
least one run of
the system satis
fies the chart.

Segment Temperature

Hot: Progression
is enforced down
the instance.

Cold: Progres-
sion is not en-
forced.

Message Temperature

Hot: If message
is sent it will be
received.

Cold: If message
is sent it may be
received.

Condition Temperature

Hot: If condi-
tion does not hold
chart is not satis
fied.

D,

Cold: If condi-
tion does not hold
chart is satisfied.

Coregion Temperature

Hot: A coregion
is always left.

Cold: There is no
guarantee that th
coregion is left.

The notation and liveness properties for the selected swb&&C constructs.

Table 3.1: Liveness properties of the selected LSC cortstruc

D
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3.4 Formal description

The previous sections presented an informal descriptictheoE SC language and a
comparison with BPAAL models in order to establish the selected feature set used
to verify UPPAAL models. The feature set is described formally based on #lo0
and [DHO1]. This section specifies when an LSC holds forreAAL model, by

first describing the abstract syntax of an LSC and seconthgatp semantical
rules for interpreting a chart and its elements.

An LSC specification for a system is a tuple:

T = (pch, mode, chart)

e pch is an optional prechart that specifies a triggering behavieading to
the point of activation of the LSC. Itis an LSC in itself thagaus to be tra-
versed successfully befoohartis traversed. A special case is an activation
condition, which can be modelled as a hot condition in thelpaet.

e Mode € {existential universal; is the mode of the chart.

e Thechartis a finite sequence of elements connecting instance linesn-A
stancdnstis a member of the finite s&t, and each instance line corresponds
to an instance of an automatdn Elements are: Messagesof the finite set
M, simultaneous regionsim of the finite setSZM, if-then-else constructs
if of the finite setZ 7, and coregiongo of the finite setCO. Simultaneous
regions, if-then-else constructs, and coregions are seggeof elements.

The elements are separated by snapshotghe finite setS. Snapshots may
contain a number of conditions, at most one for each instéinee Only
the UpPAAL configurations corresponding to the snapshot need to yatisf
the conditions in the snapshot. Evaluation of conditigron inst, is han-
dled by the function:,,, which gives a truth value for the condition, given
a configuration of the network of automata. If a snapshot am¢sontain

a condition, then it is said to contain the hot conditiome. In the syntax
the conditions and snapshots are given separately. Ini@ualdit-then-else
constructs contain conditions, and as these constructsoai@rried by any
specific instance line, a functionto evaluate the condition over all in-
stance lines is introduced. It returns the truth value ohsaicondition given
a configuration and it evaluates tiwe just when the condition holds for all
of the instance lines.

A chart has the form specified in the following BNF:



3.4 Formal description

a7

chart::=

snapshot:=
hot-snapshot:=
cold-snapshot:=

hot-condition::=
cold-condition::=

element:=
sim::=

sim-element:=

hot-msg::=
cold-msg::=

if-then-else:=
condition::=

hot-coregion::=
|

cold-coregion::=

shapshot hot-condition cold-condition element chart
shapshot hot-condition cold-condition

hot-snapshot cold-snapshot

¢; hot-conditiort | ¢;

¢; cold-conditiord | ¢;

hot-msg| sim| if-then-else
hot-coregion| cold-coregion

sim-element sim
sim-element

hot-msg| cold-msg

insty — instg

. m .
insty --» instg

condition chart chart’

hot-msg hot-coregidn
hot-msg

hot-msg cold-coregidn
hot-msg

where conditior:; € C
andinst; € 7 is the
corresponding instance line

where conditior; € C

andinst; € 7 is the
corresponding instance line

whereinsty, instg € 7
Ainsty # instg Am € M

whereinsty, instg € 7
Ainsty # instg Am € M

wherec € C
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3.4.1 Semantics

In the following, It is defined inductively, when an LSC chaxrtsatisfied or mod-
elled by a finite subtracg|k, k"], denotedg |k, k"] = chart

If a prechartpch has been specified the subtragl, £”] must first satisfypch
before satisfying the LSC bodshart as illustrated in Figure 3.14. The LSC holds
for a UpPAAL model depending on theode of the chart:
¢ If mode = existentialthere exists a tracg[1, K] such that:
Ik, K K" 5k, K] = pch AT[K k"] = chart

This essentially means, that at least a single trace of thsyneeds to
satisfy the prechart as well as the chart.

e If mode = universalthen for all trace& |1, K], it is the case that:
V kK K" Tk, K] | pch = [k, k"] = chart

This means that all traces of the system satisfying the aréchust also
satisfy the chart.

k pch Kk’ chart Kk’
I |
A

|
| |
subtracer [k, k'] must first satisfypch and then immediately satisfhart

Figure 3.14: The order of the charts to be satisfied by a trace.
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Chart

The following rule specifies when a subtrace models a chizgktiacts a snapshot,
the conditions in the snapshot, and an element from the ahdrensures that they
as well as the rest of the chart hold for the subtrace in questi

First, if the snapshot and its conditions hold, second, tement is satisfied by
the last configuration satisfying the snapshot, and thive rest of the chart holds
for the last configuration satisfying the element, then thartcis modelled by the
subtrace. The subtrace also models the chart, if the snapstats hot conditions
hold, but its cold conditions do not:

@k, k"] = snapshot hot-condition cold-condition element chart

iff 34,k k<i<k <k

olk,1] = snapshot
olk,1] = hot-condition
ok, 1] = cold-condition
[i, k') = element

[

A
A
A
A
ATk, k"] = chart

al al 9

E<i<k <K'

A 7k, 1] = snapshot

A @[k, i] = hot-condition
A @k, 1] W~ cold-condition

Snapshots

In UPPAAL models configuration changes are caused by transitioresnadttran-
sition steps or synchronisation steps, and as synchranssteps would need to
be specified in the chart in the form of messages in order ®istitcessive con-
figurations to be traversed, these steps are excluded frapshots. It is thus a
requirement that the subtrace to satisfy a snapshot onlyistsrof internal transi-
tion steps or synchronisation steps where no instance épeesent the sender or
that none of the receivers are represented. Remember, tilagsiion steps are
referred to asntermediate transitions

Snapshots are handled by the following rules. The first twesrthandle the se-
mantics of the temperature of the snapshots as well as makiegthe subtrace is
a sequence of intermediate transitions.
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alk, K] e ——

iff Vi:k<i<k' = MD(a[i]) < oo

where the transitiod ;] 5, alj + 1]
is an intermediate transition far< j < &’

A subtrace satisfies a hot snapshot when the maximum delacbhf@nfiguration
is finite. The maximum delay functiokD defined in Section 2.2.2 is used for re-
stricting the delay. Also, the subtrace may only consishtdrimediate transitions:

As cold snapshots do not disallow the subtrace to take urdwzlitime, the progress
restriction does not apply. Again, the subtrace may onlystrof intermediate
transitions:

where the transitiod ] 5, oli + 1]
is an intermediate transition féar< ¢ < &’

Condition

In order for a subtrace to satisfy a set of conditions in a shapthe conditions
must hold for all configurations in the subtrace, i.e., thaditions are invariant
over the subtrace.

The hot conditions of a snapshot are satisfied when
7|k, k'] & ¢; hot-conditiori

iff @[k, k'] = hot-conditior}
ANVj: k<j<k =7jlFau

and the following rule evaluates the cold conditions of thapshot:
ok, k'] = ¢; cold-conditior}

iff [k, k'] = cold-conditiori
ANVj k<j<k =7jlFau

A configuration satisfies a condition if the condition holds the instance line
carrying the condition:
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alk] = o

iff ¢ (Tlk]) = true

Likewise, if a condition is carried by an if-then-else it atisfied by a configuration
if the condition evaluates tioue:

alk] = c

iff  c(c[k]) = true

Messages

If the element is a hot message then the subtrace satisfi¢éethmessage if the
message corresponds to either a binary or a broadcast syrigdion over a chan-
nel between BPAAL automata. At least two automata involved in the synchroni-
sation must change active locations because the hot mefssalyeays received,
and the automata must correspond to the ones specified irBiGechart:

Glk, k'] = insty — instg

[k] :(<...,li,...,l]’,...>,v)
o[k :(<...,l§,...,l§,...>,v’)
®;, =insty A ®; = instg

If the element is a cold message then the subtrace satisBesotdi message if
the message corresponds to a broadcast synchronisatiora @bannel between
UPPAAL automata. Furthermore, the automata involved in the symiseation

change active locations if the synchronisation is receivéd is not received by
any automata, only the sender changes active location:
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o[k, k'] = insty -~ instg

where Gkl = ((...,l,...,1l,...),v)
A

®; =insty A ®; = instp

Simultaneous regions

In order for a subtrace to satisfy a simultaneous region,ustnsatisfy all the ele-
ments in the simultaneous region:

olk, k'] E sim-element sim

iff o[k, k'] = sim-element
ATk, k'] = siml

If-then-else

If the element is an if-then-else, then if the condition Isolthe 'then’ chart must
be satisfied by the configuration, or else the ’else’ charttrbessatisfied. The
subtrace satisfies the if-then-else if the subchart dedigie¢tie condition holds for
the subtrace:

ok, k'] = condition chart chart”

iff &[k] = condition
N Tlk, k'] | chart
V
o|k] £ condition
N Tlk, k'] E chart’

Coregion

In order for a subtrace to satisfy a coregion, it must satafythe elements in
the region in any order. This is done by extracting arbitralgments from the
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coregion, which the subtrace must satisfy until the lastnelet is extracted. In
order to do this in a precise, yet simple, manner the elemanéscoregion are
collected in the seBMfrom which each element that is satisfied can be extracted.
Below, [k, k"] = SM\ {e} denotes thatr[k’, k"] satisfies the remaining set of
messages. The empty set is always satisfied.

The rule for hot coregions can now be defined. A hot coregiostradhere to the
liveness requirements of hot snapshots, thus

@k, k"] = hot-coregion

iff 3Ji,k' Jec SM:
Nk <i<Kk <k
AMD(a[i]) < oo
AT, K] Ee
NTK E"] = SM\ {e}
and the transitio ] 5, olj+1]
is an intermediate transition far< j < ¥’ — 1

If instead the coregion is cold, progress is not enforcedndJthe selSMagain:
ok, k"] = cold-coregion

iff 3¢,k Jeec SM:
Nk <i<k <k"
NTL, K] Ee
ATk K"] = SM\ {e}
and the transitiow ;] 5, ol + 1]
is an intermediate transition far< j < ¥’ — 1

3.5 Summary

LSCs are an extension of standard MSCs. The main extengieasfarmal seman-

tical basis, treatment of conditions as first-class citizeand liveness properties.
Liveness is added on both chart level and element level. ®cltart level it is the

difference between universal vs. existential charts, anthe element level it is

the difference between hot and cold elements.

An informal description of LSCs are presented, including timitations in the
application of LSCs as a requirements specification lang@agUrPPAAL. [DH99]
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and [DHO01] are used as a basis for the LSC specification amhgxins presented
by [Klo03] are considered as well. A subset of the LSC spetifin is identified
and used for the diagrammatic requirements specification&JPPAAL models.
The subset consists of:

e Charts: Both existential and universal charts are supported, dsas@recharts
as the handling of these are not very different than a mairnt.cAativation
conditions are disregarded, as they can be modelled witmditon in a
prechart.

e MessagesAsynchronous messages are not supportedreabiL only sup-
ports synchronous communication. Binary synchronisatiddPPAAL must
have both a sender and a receiver to exist, thus only hot gessae sup-
ported. In simultaneous regions both hot and cold messagesupported,
as a broadcast message iRRAAL may not have any receivers.

e Conditions: Both hot and cold conditions are supported including shared
conditions, which are translated to single conditions arhe# the instance
lines to share the condition.

e Coregions:Coregions are supported, but in a slightly modified form. &zor
gions are made global across the structural dimension, img&mat no order
is imposed on the ordering of messages within a coregiony @mssages
are supported within them, No snapshots are within themy prdssages.
In addition, coregions have a temperature, specifying drgbrogression is
enforced within the region.

e Simultaneous regionsSimultaneous regions are supported and their appli-
cation is to model broadcast synchronisation iPPAAL models. Both hot
and cold messages are supported in a simultaneous regmnselans that
the message must be received and cold that it may or may not.

o If-then-else:One of the extensions of Klose is an if-then-else constivat.
if-then-else consists of a condition and two subcharts. éMaduation of the
condition decides which of the charts is to be traversed.

A formal specification of the semantics for the LSC subsetlusehe REEL ver-
ification engine is presented. The specification is inducenh fthe syntax, which
makes it suitable for the implementation af®.

Next chapter gives an introduction to the tools used for ifgiag LSC diagrams,
extracting and traversing RPAAL models, and an introduction toeEBL and its
implementation is presented.
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This chapter presents the tools used for specifying LSCrdiag, the LSCEdi-
tor, extraction of the computation graph fronPEAAL models, the FSM format,
and the REL verification engine, consisting of theeBPL LSC Parser, PEL FSM
Parser, and EEL Verifier.

Figure 4.1 presents the data-flow graph for treeP verification engine and the
two additional tools used. The individual elements of thiscess are presented in
this chapter.
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Uppaal model
LSCEditor Uppaal
. Uppaal FSM
LSC diagram .
Computation Graph
v \ 4
Peel LSC Parser Peel FSM Parser
Peel LSC sequence Peel FSM Computation Graph
\ 4 \ 4
Condition
Peel Verifier " Peel Verifyta
Result

Peel Verifier Result

An LSC diagram is made using the LSC editor and is saved to a Tild@s
file is then parsed by thedL LSC Parser which extracts LSC elements and
structures them into a sequence, complete with subchadrbie). The W-
PAAL verification engine takes the RPAAL model to be verified, and outputs
an FSM computation graph. Note, in order to get this outpuingernal version

of UPPAAL supporting this feature must be used. The FSM computatiaphgr
is parsed by the PEL FSM Parser into a BeL FSM computation graph. The
PEEL LSC sequence and th&PL FSM computation graph are the inputs to the
PeEL Verifier, which checks the sequence against the computgtiaph. The
PeEL Verifier outputs whether the model satisfies the LSC spetificar not.

Figure 4.1: Data-flow diagram forgfL.

4.1 LSCEditor

The editor used for the LSC diagrams, the LSCEditor, seegBsteot 4.2, is most
kindly supplied by the Carl von Ossietzky Universitat Olderg, Germany.

The LSCEditor is consistent with the features describedas&s dissertation [Kl003].
Not all features are described here, only those includedérPeEEL LSC subset.

As for the LSCEditor itself, it is quite intuitive to use. Winereating a new dia-
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Screenshot of the LSCEditor displaying a scenario from tistributed Control
experiment, see Chapter 5 for the experiment.

Figure 4.2: Screenshot displaying the LSCEditor.

gram, you must specify various settings before the chareiated, e.qg., if the chart
is universal or existential, and if the chart should have ecpart or not. When
the chart is created, a number of instance lines may be addie tthart. When
adding an instance it must be specified whether the begirofitize instance line
should be hot or cold. An instance contains locations albedine (more can be
added if needed). All the events in the chart must be assotiat one or more
locations.

When drawing a message between two instances, you speeifgmiperature of
the message and the temperature of the instance line of tloéngeand receiving
instance, after sending and reception, respectively.

When placing a condition on an instance line, the tempegatfithe condition as
well as the temperature of the instance line below the cmmdihust be specified.
A boolean expression can be entered in the condition. Tiseaecertain syntax
when specifying conditions due to the dependency of tieeAdL engine, and
thereby TCTL:
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e When referring to a specific location in an automaton, thematon and
location are separated by a dot, e.g., “train.stopped”ewike, if a variable
associated to an automaton should be tested, they are glamsl by a
dot, e.g., “train.x". The automaton name in the conditionsinaf course
correspond to a BPAAL automaton.

See also the TCTL syntax in Section 2.3 for a more thorouglerge®n of the
TCTL syntax used in conditions.

A coregion is placed on the vertical axis along the instaivoe ttached to two
locations. The coregion specifies that all messages al@mstances in the hori-
zontal direction have no order.

A simultaneous region is created by marking a location onnatance line as a
simultaneous region, and then placing one or more messagjeis iocation.

Another element which can be placed in the chart, is an ifitlse. This construct
consists of a condition which, based on the boolean exjesdecides which of
the two subcharts should be used. This if-then-else castsisualso placed in
a location, and spans across all instances so that they wailli@te the subchart
condition simultaneously.

Examples of the above constructs can be seen in Section 5.2.

4.1.1 LSC output format

The LSCEditor has two LSC representation modes, standadgpamd map table
mode. The standard mode does not allow labels to clashtwagmessages cannot
carry the same message label. Also, the LSC is saved in onehéleSC-file The
map table mode does not limit the usage of labels. The map tabtle generates,
in addition to the LSC file, a map file, theap-file with all element ids, which
means that labels are still unique, but can carry the sante tex

PEEL uses the map table mode, because this enables the spemwifictthore than
one message with the same label. The labels refer to chaamedsy which means
that a message between two instances with labieh is a synchronisation via the
coi n channel in the BPAAL model.

Next follows examples of an LSC diagram, its map-file, and_BE-file, see Fig-
ures 4.3, 4.4, and 4.5. The LSC is for the coffee vending nmecekample intro-
duced in Chapter 2.
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The left is the prechart, and the right is the main chart.

Figure 4.3: LSC for the coffee vending machine example.

RHAPSODY

Iscid 9 =, ER Iscid_3, Iscid_ 2, VERBATIM cof f ee;
Iscid_15 =, ER Iscid_2, Iscid_3, VERBATIM coin;
Iscid_13 =, ER, Iscid_3, Iscid_2, VERBATI M coffee;
Iscid_10 =, ER, Iscid_2, Iscid_3, VERBATIM coin;
Iscid 14 =, ER Iscid_2, Iscid_3, VERBATIM coin;
Iscid 7 =, ER Iscid_5, Iscid_6, VERBATIM coin;
Iscid 8 =, ER Iscid_5, Iscid_6, VERBATIM coin;
Iscid_2 =, INST, , , VERBATIMcontrol _unit;

Iscid 3 = INST, , , VERBATIM coffee_unit;

Iscid 5 =, INST, , , VERBATIMcontrol _unit;

Iscid 6 =, INST, , , VERBATIMcoffee_unit;

Iscid 1 =, COND, , , VERBATIM;

Iscid_4 =, COND, , , VERBATIM;

Figure 4.4: Map file for the vending machine example.

4.1.2 Property extraction

The LSC-fileand themap-fileis parsed into an intermediate format, documented
in Appendix B, Figure B.1, from which the sequence of LSC alatn is gener-
ated, see Figure B.2. The parsing into the intermediatedbonly includes those
elements that are in theeBL LSC subset, i.e., the supported LSC features.
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| scdocunent created_By LSCEdit;
universal |sc coffee3 test
activation condition : condexpr |scid_1 endexpr
activation node invariant prechart coffee3pre;
instance hot Iscid_2 'anzloc=26";
hot concurrent;
out hot Iscid 9,129 to Iscid 3 '2";
in hot Iscid_ 15,0 fromlscid_3 '4';
out hot Iscid 13,0 to Iscid 3 '6";
in hot Iscid 10,1 fromlscid_3 '8 ;
endconcurrent '1;2;3;4;5;6;7;8;9;";
hot in hot Iscid 14,1 fromlscid_3 '11';
hot endi nstance; end
instance hot Iscid_3 ’'anzloc=26";
hot in hot Iscid 9,129 fromlscid 2 '2';
hot out hot Iscid 15,0 to Iscid 2 "4";
hot in hot Iscid_ 13,0 fromlscid_2 '6";
hot out hot Iscid 10,1 to Iscid 2 '8 ;
hot out hot Iscid_14,1 to Iscid_2 '11';
hot endi nstance; end
endl sc;
uni versal prechart |sc coffee3pre
activation condition : condexpr |scid_4 endexpr
activation node initial;
instance hot Iscid 5 'anzloc=22";
hot in hot Iscid_ 7,17 fromlscid_6 '2';
hot in hot |scid_8,1366909696 fromlscid 6 '4;
hot endi nstance; end
instance hot Iscid_6 'anzloc=22";
hot out hot Iscid_7,17 to Iscid 5 '2";
hot out hot |scid_8, 1366909696 to Iscid_5 '4";
hot endi nstance; end
endl sc;

Figure 4.5: LSC file for the vending machine example.
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4.2 UpPAAL computation graph

The computation graph of RPAAL is described as a symbolic state transition sys-
tem. The people behind RPAAL have provided a means of retrieving a represen-
tation of the state machine in the form of a file dump, the fdrosed by FSM
Visualizer [fsm].

In order to have PEEL use this format, a parser is requiredt,fhe input format of
FSM Visualizer is presented, followed by a textual and gregdirepresentation of
the graph, which is used in the implementation of the pafSeally, the algorithm

for traversing the graph in order to verify message sequeigcgiven.

4.2.1 Graph representation

The input format used by the FSM Visualizer describes a grapt it consists of
three parts, state variable declarations, configuratiand,transitions between the
configurations. The parts are separated in the file by a simgecontaining the
string - - - ", see Figure 4.6.

A variable declaration includes the name, the cardinalitthe value domain, the
type, and a list of the possible values of the variable. A guméition consists of a
list of variable value indexes, one for each variable. Eaghsition includes two
configuration IDs, one for the configuration being exited and for the configura-
tion being entered. Also, the synchronisation labels acki@ted, giving the label
of the sending automaton first followed by any receiverselablf the transition is
internal, it is labelled with 'tau’ and the automaton in ques is given.

The above graph description in Figure 4.6 is parsed by the p&ider and used
by the FEEL verification engine to check if the LSC requirements arelfatfi The
graphical representation is displayed as a graph in Figute 4
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control _unit(3) State ‘*b0’’ ““b0’’ ‘b0’
coffee_unit(3) State ‘a0’ ‘‘a2’’ ‘‘al’’
tracel d(0)

11

00

01 18

10

2 010

0214

12 fake’’

2 2 '‘control _unit.tau"’

6 2 ‘‘control _unit.tau'’

32 '‘‘control _unit.tau"’

2 4 '*coffee_unit.coin! control _unit.coin?’
4 5 *‘coffee_unit.coin! control _unit.coin?’
4 6 ‘‘control _unit.tea! coffee_unit.coin?’
6 6 ‘‘control _unit.tau"’

5 3 “‘control _unit.coffee! coffee_unit.coffee?’
3 3 ‘‘control _unit.tau"’

The textual FSM graph description for the coffee vending Imae, see Fig-
ure 2.2 in Chapter 2.4 for an illustration.

Figure 4.6: FSM graph for the vending machine example

The graph shows the RPAAL location sets as computation configurations.
There are no variables in theP8AAL model used in this example. If there
were variables, the possible variable values would be agdatie configura-
tions, e.g., a variable with a range of three in everyPdAL model location
could triple the number of configurations.

Figure 4.7: FSM computation graph for the vending machireele.
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4.3 \Verification algorithm

This section presents the algorithm that has been constrdiot verifying an LSC

chart. The algorithm is presented in a pseudocode formag. ovkrall algorithm

consists of seven functions; one that starts off the vetiinaa manager function
that controls the flow of the algorithm, and five specialisgm@athms that handle
one LSC element type each. The specification for the algariththe semantics
defined for LSCs in Section 3.4, and each 'holds’ algorithnresponds directly
to a semantic rule found in that section.

Algorithm 1,st ar t Veri fy, iterates over all configurations in the FSM graph call-
ing t raceRunner for each configuration. In other words, it starts the vertfaa
with each configuration as the start-configuration. In cdseuniversal chart, all
traceRunner calls must returrirue in order for the chart to be satisfied, this is
handled inst art Veri fy. If a universal chart is not satisfied, the error is not re-
turned to this function, but is handled in the function whieie discovered. In the
case of an existential chart that is not satisfied, this i3 ladgsxdled in this function
through theal | Tr ue variable. But if an existential chart is satisfied, i.e.,ac&

in the FSM graph is found that matches the LSC sequeneeeRunner will not
return to this function.

allTrue :=true {only used for existential LSCs}
for each configurations ¢ in FSM Graptio
if | traceRunner(c, Othen
allTrue :=false
end if
end for
if allTrue == truethen
exit(success)
else
exit(error)
end if

R

Algorithm 1: void startVerify()

Algorithm 2,t r aceRunner , is designed as a depth-first graph traversal algorithm.
t raceRunner controls the verification algorithm through a switch-casecure
that identifies the current element that needs to be satisfiebruns the appropriate
holds-function for that element. It also ensures that ncetr@eeds to be traversed
more than one time in the same tau-subtree thereby elimigndtie possibility of
running in an endless loop. An example of this can be seengar€i4.8. This is
achieved through a colouring scheme, where a global coisigsed to 'colour’
configurations with the 'colour’ of the current trace. An LS€quence is always
ended by arEndOfSequencelement. Ift raceRunner reaches the EndOfSe-
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guence element for the main chart and the chart is existettta algorithm has
found the trace that it was searching for and it exits with@ess message. If the
chart is universal, it simply returrisue, as it is necessary that all traces reach the
EndOfSequence element. This is controlled in Algorithmflan EndOfSequence
element is reached and the current chart is a subchart, goéthim returnstrue.

This will then propagate up to the if-then-else element whée subchart was
started, and the trace will continue after that element. dlgerithm is designed

to uset r aceRunner to dive deeper into the recursion tree. This means that for
each call ot r aceRunner the depth of the graph traversal is increased, except for

a EndOfSequence element.

(o)
SN (cos)

O
& 6%

When traversing this computation tree, there is no need totgathe sub-tree
in the dotted box, a€onf 3 has already been visited and its subtree traversed.

Figure 4.8: FSM computation graph traversion.



4.3 Verification algorithm

65

36:
37:
38:
39:
40:
41.
42.
43:
44.
45:
46:
47.
48:
49:;
50:
51:

if configuration has been visited in this traben
return true
else
mark this configuration as visited
end if
switch (type of sequence element)
caseEndOfSequence:
if chart is a subchathen
return true
else ifchart is a prechathen
return traceRunner(c, 0)
else
if chart is existentiathen
exit(success)
else
return true
endif
endif
caseSnapshot:
return holds_snapshot(configuration, sequencelndex)
caseMessage:
allMessagesHold := true
for all outedges in configuration that are not 'tau’ edges
if not holds_message(outedge, sequencelnthex)
allMessagesHold := false
if chart is universathen
exit(error)
end if
end if
end for
return allMessagesHold
caseCoregion:
if I holds_coregion(configuration, sequencelndex, messageL
if chart is universal
exit(error)
end if
return true
caselfThenElse:
return holds_ifthenelse(configuration, sequencelndex)
caseSimregion:
allMessagesHold := true
for all outedges in configuration that are not 'tau’ eddes
if I holds_simregion(outedge, sequencelndeen
allMessagesHold := false
if chart is universathen
exit(error)
end if
end if
end for
return allMessagesHold
end switch

Algorithm 2: bool traceRunner(configuration, sequencelndex)
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Algorithm 3, hol ds_snapshot , ensures that a snapshot is satisfied. It tests all
the conditions in the snapshot, and if they are satisfiedstiagshot is satisfied.
It takes into account the temperature of the condition, ahdtiaer the chart is a
prechart or a main chart. If all conditions evaluatédrtee, the trace just continues,
but if one condition fails, there are different outcomegh# chart is a prechart and
the condition is hot, the trace returtrsie, if the condition is cold, the rest of the
prechart is disregarded and the algorithm jumps to the maamtc If the chart is
the main chart and the condition is hot, the algorithm exithan error, and if the
condition is cold, the rest of the chart is disregarded. Tisns that if the trace is
in a subchart and a cold condition evaluatefateg the subchart is exited, and the
parent chart continues.

Algorithm 4, hol ds_nessage, on page 68 checks that an edge in the FSM graph
is satisfied by the LSC chart. The edge is tested for its latsefource instance’s
label, and its target instance’s label. If the edge is satisthe algorithm continues
by callingt r aceRunner on the target configuration of the edge and incrementing
the sequencelndex, i.e., the next element in the LSC chéotlie tested. If the
edge is not satisfied, its target and source instance lireshecked to see if they
are defined in the chart at all. If one of them are not, the edgeated as a 'tau’
edge, and the trace is continued from the edge’s target eoafign.

Algorithm 5hol ds_cor egi on on page 69 tests a list of messages to see if a trace
through the FSM graph is possible that corresponds to a gation of the list.
This is done by matching the messages in the list one by ondgesan the FSM
graph, and removing them from the list as they are found. Iedge is found
which target or source instance line is not defined in thetclize edge is treated

as a 'tau’ edge in the same way as in Algorithm 4. If a traceusiéh the algorithm
callst raceRunner and it continues with the sequence.

Algorithm 6, hol ds_si nr egi on on page 70, checks that an edge in the FSM
graph is satisfied by the simultaneous region defined in thaesee. It checks
that each of the edge’s receivers correspond to the onesdefirthe LSC chart.

If a receiver instance line in the edge is not defined in the tB&t, that receiver

is disregarded. If all receivers are either defined or desregd the simultaneous
region is satisfied and the algorithm continues by callimgceRunner on the
target configuration of the edge.

Algorithm 7, hol ds_i f t henel se on page 70, handles an if-then-else construct.
An if-then-else construct cannot fail in it self, but thetre$ the sequence, be
it the then-part or the else-part, can fail and that will batdeack by this algo-
rithm. The algorithm saves the old sequence, and staseRunner with the
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1: allTrue :=true
2. if all conditions in snapshot evaluate to tthen
3:  for all outedges in configuratiodio
4: if outedge is a 'tau’ transitiothen
5: if | traceRunner(outedge.targetConfiguration, sequeneg)rden
6: allTrue :=false
7 end if
8: else
9: if traceRunner(configuration, sequencelndex+1) retursetflaén
10: allTrue :=false
11: end if
12: end if
13:  end for
14:  return allTrue
15: else
16:  if temperature of condition is Holen
17: if chart is maincharthen
18: if chart is universathen
19: exit(error)
20: else
21: return false
22: end if
23: else
24 return true
25: end if
26: else
27: if chart is precharthen
28: if trace is in a subchathen
29: return true
30: else
31: return traceRunner(configuration, @rgceRunner is started on the mainchart se-
quence
32: end if
33: else
34: return true
35: end if
36: endif
37: endif

Algorithm 3: bool holds_snapshot(configuration, sequencelndex)

new sequence, as decided by the condition. When the newrsagjigereturned
hol ds_i ft henel se activates the former sequence, and continues the trace by
callingt r aceRunner on the next sequence element.
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[
e

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

if edge is a broadcast messdlyen

if only

one receiver of edge is defined in chidmen

continue with the edge

else

if chart is precharthen
return true

else

return false

end
end if
end if

if

if edge match the message in sequence[sequencelimegex]

return
else
if both

traceRunner(edge.targetConfiguration, sequencelngex+1

target instance and source instance of edge is defirgditthen

return chart is prechart

else

return traceRunner(edge.targetConfiguration, sequencelndex)

end if
end if

Algorithm 4: bool holds_message(edge, sequencelndex)
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1: oneTrue :=false
2: if no messages in coregitimen
3.  return traceRunner(configuration, sequencelndex+1)
4: end if
5: if configuration has been visited in coregion-trédoen
6: return false
7. else
8:  mark this configuration as visited
9: end if
10: for all outedges in configuratiotio
11:  if outedge is a 'tau’ edgdéhen
12: if holds_coregion(outedge.targetConfiguration, sequedesl messagesinCoregig
then
13: oneTrue :=true
14: end if
15 else
16: if edge is found in messagesinCoregthan
17: if holds_coregion(outedge.targetConfiguration, seglndesssagesinCoregion - oyt-
edge)then
18: oneTrue :=true
19: end if
20: else
21: if target instance or source instance of edge is not definedair thien
22: if holds_coregion(outedge.targetConfiguration, sequede&| messagesinCon
gion) then
23: oneTrue :=true
24: end if
25: else
26: if chart is precharthen
27: return true
28: else
29: if chart is universathen
30: exit(error)
3L end if
32: end if
33: end if
34: end if
35: endif
36: end for

37: return oneTrue

Algorithm 5: bool holds_coregion(configuration, sequencelndex, ngessa-
Coregion)
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1: if source instance of edge is not defined in ctizeh
2:  return traceRunner(edge.targetConfiguration, sequencelndex)
3: endif
4: for eachreceiver in edge.receivedd
5. if receiver is not defined in LSC chatten
6: remove message from edge.receivers
7:  endif
8: end for
9: for each message in simregiao
10: if message is found in edge.receivéren
11: remove message from edge.receivers
12:  else
13: if temperature of message is Hben
14: if chart is precharthen
15: return true
16: else
17: return false
18: end if
19: end if
20:  endif
21: end for
22: if no messages left in edge.receivdren
23:  return traceRunner(edge.targetConfiguration, sequencelngex+1
24: else
25:  return false
26: end if
Algorithm 6: bool holds_simregion(edge, sequencelndex)
1: if condition evaluates to truben
2.  setactive sequence to then-sequence and save old sequenc
3: else
4:  set active sequence to else-sequence and save old sequenc
5: end if
6: if traceRunner(configuration, @en
7. activate old sequence
8:  return traceRunner(configuration, sequencelndex+1)
9: else
10:  activate old sequence
11:  return false
12: end if

Algorithm 7: bool holds_ifthenelse(configuration, sequencelndex)




4.4 The running time of the algorithms 71

4.4 The running time of the algorithms

In order to find the asymptotic upper bound of the worst casming time for
the verification algorithm as a whole, each holds algorithestrbe considered.
First, the upper bounds of the five holds algorithms are apprated, Second, the
worst case running time of the entire verification algoritra,,t r aceRunner and
startverify,is approximated using the results from the five holds atgors.

The running times of the algorithms depend on the LSC spatidic and the -
PAAL model to be verified, especially the size of the model is asileifactor.

The following factors have an influence on the running time:

The number of automata in the model.

The number of configurations in the FSM computation graph.
The number of messages in any coregion in the chart.

The number of elements in the sequence.

CBSQQ

Snapshot

hol ds_snapshot , Algorithm 3, tests all conditions in all configurations ceable

by intermediate transitions in the FSM graph. In the worskecall transitions are
intermediate transitions, and thhsl ds_snapshot must be rure: times, i.e., on
all configurations in the FSM graph. For each configuratidic@hditions must be
evaluated, so the worst case running tim@éof ds_snapshot is:

Ts3(c,a) =cx*a
= O(ca)

As hol ds_snapshot depends on both andc, it runs in quadratic time in the
worst case.

Message

hol ds_nessage, Algorithm 4, checks each receiver instance of the edgedo se
if more than one receiver for the edge is defined in the charthis would mean
the edge is a broadcast. In the worst case all automata testarfi the model must
be checked, except the source automaton. Ignoringhilads_nessage runs in



72 PEEL - Property Extraction Engine for LSCs

constant time, the worst case running time is:

Ty(a) = (a— 1)
= O(a)

Sohol ds_nessage runs in linear time.

Coregion

hol ds_cor egi on, Algorithm 5, takes as input a list of messages. In the worst
case it must check each possible permutation of this listéoifsthat permutation
is satisfied in every trace of the FSM graph. For a listomessages, we get that:

number of possible permutatioasm!

Each permutation of the list corresponds to a sequence «fages of lengti.. In
the worst case, each message in the list, is found in the eedobf possible trace.
So for a graph of configurations:

maximal number of traces for each messagéc — 1)!

If the cost of checking one message in a coregion is a constdhé worst case
running time for holds coregion is:
Ts(c,m) =mlsmx* (c— 1) *b

=O(m!* (c— 1))

hol ds_cor egi on runs in factorial time.

Simultaneous region

hol ds_si nr egi on is very similar tohol ds_nessage described above. It also
checks each receiver of the edge to see if it is defined in tad.clihe maximum
number of messages in a simultaneous region is the numbarntaata in the
model,a, minus one for the source automaton. So the worst case mitinie for
hol ds_si nr egi on is:

Ts(a) = (a — 1)
= O(a)

Sohol ds_si nr egi on runs in linear time likenol ds_nessage.
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[f-then-else

An if-then-else construct consists of a single conditioeatt) thushol ds_i f t henel se
runs in constant time.

Verification algorithm

To find the worst case running time for the entire algorithne, must consider the
case where all elements in the sequence are the most expefsigent type. In
the results above theol ds_cor egi on, with its factorial time running time, is by
far the most expensive.

Let the sequence consist of only snapshot and coregion etem&he number of
coregions is. The number of snapshot elements is thep 1 and for each snap-
shot,hol ds_snapshot must be run on all configurations in all traces(c — 1)!,
for each start configuration

The cost of all the snapshots are:

Tsnadc,a,e) =cx(c— 1) xcx(e+1)*T;

=0(Pxclxexa)
The cost of all coregion element is:

Teolc,e,m) =cx (c— 1)« ex Ty
=0(cxexm!x(c—1)!)

So the worst case running time of the algorithm is:

Ty(c,a,e,m) = Tsnapt Tco
=(Pxcxexa)+ (cdxexm!*(c—1))
=O0(cdsxm!x(c—1))

The factorial running time is inherent in graph traversaoaithms, where this
rather expensive running time is unavoidable when doingigation.
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4.5 Optimisation

During the experiments carried out, see Chapter 5, it wasodeyed that espe-
cially the way conditions are tested presented a performanttle-neck regarding
execution time. This section contains a description of teddion testing, the
problems, realised solutions, and possible further measur

45.1 Conditions

The condition checking bottle-neck became apparent wherirgj the experi-
ments with the Distributed control RPAAL model, see Chapter 5 Section 5.3 for a
presentation of the model. ThePHAAL model FSM graph contairist.876 nodes,
and 29.601 edges, which is a lot more than the other experiment modele T
scenario tested is presented in the LSC diagram illustiat€tjure 5.17.

The LSC contains two conditions, the first one on BHant instance line, which
must be evaluated in all snapshots, because it is the oniyeslieon the instance
line. The second condition is on tl@&ontrol instance and it must be evaluated in
the last two snapshots. The scenario is a universal chamingeghat all traces
must be tested, and all traces must be valid for the chart t@ld:

The initial approach for testing conditions was to test thehen they appeared,
but when conducting the first tests on this scenario it waar dleat this approach
was extremely time consuming. Especially two factors hagukich on the execution
time, the number of conditions to be tested, and the way thditons were tested
using verifyta.

4.5.2 Testing reuse

The initial approach for evaluating conditions were to eaé them when needed.
This meant that a condition in a specific configuration mightelvaluated more
than once. This approach on the Distributed control expenimesulted in a total
of 102.742.867 condition evaluations. By having each condition remembat it
has been evaluated in a given configuration, unnecessaglitrep evaluations are
avoided. This extension of#EL resulted in a reduction of the amount of conditions
to be evaluated. In the Distributed control experiment ti@ant of conditions to
be evaluated dropped £1.442.
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45.3 Harddrive I/O

The second factor was the execution time of the verifyta edilere at least three
hard drive 1/0 operations were involved in every conditiealaation, one for writ-
ing the query file, one for executing verifyta and saving tlupat to disc, and
finally one for reading and checking the verifyta result. Timpact of the hard
drive 1/0 operations means that the effective CPU usage wufytee is typically
only about3% — 5% *.

It is possible to circumvent the disk 1/0O operations, as thPAAL tool also con-
tains a socket server, which enable the usage of an ethestead of disk 1/O.
Both the hard drive I/O and the network access method has emead, but it is
possible to disregard it by testing all possibilities for@ndition in one verifyta
execution. This can be done by collecting TCTL formulae tbpassibilities into
one query file and executing verifyta with this query file, ethivould insurel 00%
CPU usage. This approach was tested with the Distributettal@xperiment and
the results is that one conditiom, < 8 && x > —6, tested in14.875 configura-
tions, verified with verifyta takes approximately minutes?.

4.5.4 Further improvements

Further options for improving the evaluation of conditiagst. One that is easily
implemented is using a global testing in TCTL, by using Alisitpossible to test
whether a condition is satisfied in all possible configuraijoand E<> for testing
whether a condition is satisfied somewhere in the model. Gralition is always
satisfied it is not necessary to do any further testing, bee#us alwaygrue, con-
versely, if E<> is not satisfied, then any specific testingueatas tofalse These
expressions can be used succesfully in the Distributed@amtperiment, because
the two conditions are always satisfied, which means a regfutt two conditions
to be checked, but generally it is not possible to say angthivout their applica-

!Different hardware was not tested regarding the hard df@gkrformance, so the actual impact
of hard drive characteristics is not reasoned about.

2The test was executed on a system with dual Pentium 4 Hypedhrg 2.8 GHz CPUs. The
timecommand on *NIX systems was used to measure the run time hvigithe actual CPU usage
time.

Two other systems were also tested and the resultsda@reninutes on a system with an Athlon
XP 2000+1.6 GHz running Linux ands7 minutes on a system with a Pentiun24 GHz running
Linux.

The amount of RAM consumed was aboit— 80 MB, thus the amount of RAM available was
not an important aspect. The access time and bandwidth of RAgWt be an issue effecting the run
time, but these aspects are unknown.
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bility, because it is specific to arPAAL model and the condition expression.

Another improvement is to check whether the conditionalreggion contains any
clocks, because if it does not, it is possible to check theesgioon directly in
the FSM configuration, as it contains the exact values afalbbles. This is not
implemented in BEL, because type checking variables in a TCTL local property
is beyond the scope of this project.

4.6 Test

When developing a verification tool it is of course very impait that the tool

itself is correct, otherwise the results cannot be trusfiguere are different goals
of the tests performed on a piece of software. Some may chieaommunication

protocol is implemented correctly and others may examing hell a piece of

software scales. Different goals mean different methodstlams different types of
tests [Dou99, EDEO1]. Different tests include:

e Component testingduring component testing, which is sometimes referred
to as unit testing, each new component is validated as aatésbkystem.
Before being integrated with the rest of the system it is irtgod that a new
component behaves according to its specifications.

e Integration testing: When a new component has been made, and it has
passed its component test, an integration test is perfotmetieck if the
new component behaves correctly in the context of the campglestem.

e System validationAs perhaps the most fundamental testing phase, system
validation is also the hardest to cover. Validation testsgerformed on the
complete system to determine if it conforms to the systemirements

e Regression testingRegression testing originates from the principles of ex-
treme programming [Ken99], where it is used as a part of a#itheh testing.
All the previous test scenarios that were created duringpmmant and in-
tegration testing can be run and should still be valid evehefsystem has
changed.

e Stress testingStress testing a system can be very important, e.g., fogsysst
that are required to run for long periods of time.

PEEL is only a prototype implementation to show that it is posstioluse LSCs as
requirements for verification of RPAAL models, which means that it is not fully
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----- PRE CHART- - - -

|=|] < true > Hot on control _unit |=| < true > Hot on coffee_unit |=
cof fee_unit --[coin]--> control _unit

|=| < true > Hot on control _unit |=| < true > Hot on coffee_unit |=|
coffee_unit --[coin]--> control _unit

|=] < true > Hot on control _unit |=| < true > Hot on coffee_unit |=
----- MAI' N CHART- - - -

|=|] < true > Hot on control _unit |=| < true > Hot on coffee_unit |=

| control _unit --[coffee]--> coffee_unit
| coffee_unit --[coin]--> control _unit
| control _unit --[coffee]--> coffee_unit
| coffee_unit --[coin]--> control _unit

|=|] < true > Hot on control _unit |=| < true > Hot on coffee_unit |=
coffee_unit --[coin]--> control _unit

|=] < true > Hot on control _unit |=] < true > Hot on coffee_unit |=|
----- END SEQUENCE- - - -

ASCII output of the sequence structure parsed by thelR_.SC parser

Figure 4.9: REL sequence output

tested for actual verification usage. Some testing has @@tucted to ensure that
the results from the experiments performed are correct.té$iing performed are
mainly component testing and system validation, and tte tes/e been collected
in a regression testing possibility.

4.6.1 Regression testing

There are two levels for the regression testing used wihLPthe first is an ASCII
output of the LSC and FSM data structures created by #m RSC Parser, PEL
LSC Sequence builder, and=BL FSM Parser respectively. See class diagrams
in Figure B.1, B.2, and B.3 in Appendix B, and see ASCII outiopuFigure 4.9
and 4.10.

The second test level is a test suite of actustPmodel verifications.

When performing an execution oERL it is possible to enable different debug out-
put, see Figure 4.11. The option§, - s, and- f enables an ASCII output of the
parsed LSC structure, sequence of LSC elements, and the BRlglutation graph.
This is not an automated test in the sense thiatelfalseresults is presented, but it
is possible to inspect the structures and manually validetethey represent what
is expected.
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[cof fee3_test : Universal]
-PreChart = coffee3pre
control _unit : Iscid_2]

N

0x807a870: [coffee]

bl

0x807a870: [coin]

@

[
|
*
|
I
*e 0x807a870: [coffee]
I

*-8: 0x807a870: [coin]

I

-11: 0x807a870: [coin]
coffee_unit : Iscid_3]

2: 0x807a8b8: [coffee]

b

0x807a8b8: [coin]

@

- 0x807a8b8: [coffee]
-8: 0x807a8bh8: [coin]

[
[
*
|
*
|
*
I
*
I
*

-11: 0x807a8b8: [coin]

[cof fee3pre : Universal]
-PreChart = None
[control _unit : Iscid_5]
[
*-2: 0x807a8e8: [coin]

|
*-4: 0x807a8e8: [coin]

[coffee_unit : Iscid_6]

|
*-2: 0x807a930: [coin]

I
*-4: 0x807a930: [coin]

ASCII output of the LSC structure parsed by thee LSC parser

Figure 4.10: BEL LSC structure output
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Peel verification engine version 1.0b, June 2004
Usage: peel uppaal _nodel |sc_chart |sc_map [options]

Opti ons:
-C Condi tion check node: Default 1
1: Conditions are checked one-by-one when needed
2: Conditions are checked in batches
i.e., all configurations are checked at once
-f Qut put FSM parser structure.
-h Di splay this nessage.
-1 Qut put LSC parser structure.
-s Qut put LSC el ement sequence.
-V Di spl ay Peel verification steps.
-q Runs Peel in quiet node - only result is shown.
-e Turns of f displaying of verifier errors.
-u Path to Uppaal verifyta.
-S Enable verifyta socket server - not yet supported
Default: ../../uppaal-3.4.5/bin-Linux/verifyta
-U Path to Uppaal verifyta with FSM output.
Default: ../verifytal/verifyta

Figure 4.11: REL help output

It is possible to perform a regression testing on a test sdiitéPPAAL models and
LSCs. The actual regression test is created by collectirg@ge of individual tests
in a makefile, which provide an entry to start all the testsria batch.

The individual tests included, are the experiments desdrin Chapter 5, and a
collection of smaller LSCs for various RPAAL models. The collection covers all
the different LSC elements and also a set of LSCs that musheaitisfied are
included.

4.7 Summary

A prototype implementation of an LSC verification enginelftrPAAL models was
presented in this chapter. The LSCEditor used for making4,2@d the BPAAL
verifyta FSM output was also described. The FSM computagi@ph traversing
algorithm was presented in pseudo code and the running fithe @lgorithm was
calculated to b&(c! + ¢!« m!« (¢ — 1)!). Finally, some optimisation options were
presented, some are included in the currertPimplementation others proposed
as possible future optimisations.

The next chapter contains experiments which show that L&@%e used to cap-
ture requirements specifications forrBAAL models, and the experiments also
demonstrate the usage of the various elements includee selected LSC subset.
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The purpose of this chapter is to show some practical exangblgPPAAL require-
ments specification by the use of LSC charts. Also, this @raggmonstrates that
the various elements in the selected LSC subset worleELPThe demonstration
is done through two small example models and one large moted UpPAAL
models are presented with different properties which ariied through a number
of LSC specifications using the LSC subset aEP.

The example LSCs are applied to threeR4AL models, Broadcast, which can be
downloaded from the homepage [upp04], Train-gate, whidhdkided with the
UPPAAL application, and the Distributed control example, whicls baen con-
structed for testing thed#EL application.

5.1 Broadcast

The Broadcast experiment shows how to perform non-blockimgrto-many syn-
chronisation. The sender broadcasts in every step and & bicked.

The automata

The sender and the three identical receivers and their smpre shown in Fig-
ure 5.1. When the sender broadcasts, all receivers capabigchronising, i.e.,

if the guard allows them to take the transition, will synafise. The receivers are
instantiated with id’s of 0, 1, and 1, respectively, and Nis humber of receivers,
i.e., three.



82 Experiments

S1

c!

Y c?
@ i=@1(+1)%N

The sender is the left automaton and the receiver is the.righi$ the number
of receivers, three, and the id’s of the receivers are 0,d,lan

Figure 5.1: The sender and receiver templates.

The LSCs

The Broadcast experiment, which is illustrating the useimiutaneous regions,
does not contain any clocks. This means that cold instanes 8hould be used, as
models without clocks have no way of disallowing infinitealed to happen without
using urgent locations and channels and these are not utielimodel. But as the
temperature of an instance line is ignored IBEP (as specified in Chapter 4) the
temperature is not relevant for these experiments.

In Figure 5.2 the receivers may receive the cold broadcassage if the guard
from the automaton in Figure 5.1 allows them to. In other gotte receivers will
synchronise if == id, where the id’s of the receivers are 0, 1, and 1, respectively

The LSC in Figure 5.3 specifies a forbidden scenario where iRILR2 are not
allowed to receive the messagat the same time, because thair s are different.
If the prechart is satisfied, the main chart will terminatswucctessfully as the hot
condition evaluates ttalse

This chart shows a simultaneous region where the sendeddaets cold mes-
sages to the receivers. The receivers may receive the lasaidheir guard
allows them.

Figure 5.2: LSC for the broadcast experiment.
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Rl Sender 2

Rl Sender B2

=121
This is an example of a forbidden scenario where the precipaxifies that the

broadcast from the sender may never be received by both RR2ntf so, the
main chart will always abort from a hot condition

Figure 5.3: LSC prechart and body for the broadcast expeatime

PEEL has been used to verify that the LSC charts for the Broadocqusrienent
specify the correct behaviour with respect to the corredpanUPPAAL automata.
Statistical data such as the time taken to verify the spatidios, the number of
edges, configurations, and traces are shown in Table 5.1gm9za As can be seen
in the table, this experiment is quickly verified due to the& lmumber of configu-
rations and edges. This experiment shows the use of mesasadesmultaneous
regions.
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5.2 Train-gate

The Train-gate experiment involves four trains, a gate #dueue. The gate is a
critical region, which must only be crossed by one train atreet

The automata

Figure 5.4 shows the automaton template modelling the betnaof the trains,
and Figure 5.5 contains the automaton template modelliagy#tte which all four
trains must cross. The gate uses another automaton fog liprapproaching trains
in a queue, a queue automaton. The template of the queue @otocan be seen
in Figure 5.6 on page 86.

e:=id,
s= =3
Safe x:=0 x> Cross
@ leave! Q x<=5
appr!
e:=id, x:=0
X:=0

Appr Start
x<=20 x<=15
x<=10,
x:=0

e==id

e==id

Stop

A train will be approaching for maximum 20 time units and ifiés not received
a stop signal within 10 time units it will cross the gate, whigill take between
three and five time units. Also, a train may not wait in the quéar more than
15 time units.

Figure 5.4: The train template.

The general behaviour of the model is as follows: When a apjiroaches the gate,
it is allowed to cross the gate if the queue is empty. Any othen approaching
the gate, while a train is using the gate, will be commandestdp and wait for
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notempty?m/ rem?
@ © Free )
empty?
add!
R leave?
C J

stop!

As can be seen, the use of committed locations only allowgaie to wait for
trains approaching or leaving the gate, and the communitatith the queue
ensures that the queue is emptied when trains leave the gate.

Figure 5.5: The gate template.

the gate to be clear, i.e., when the first train has left the.gétdditional trains
approaching the gate will be placed in the queue, which istieshin FIFO order
once the gate is clear.

The LSCs

In order to illustrate how LSCs can be used to specify coregeenarios the com-
munication scenario for one of the trains and the gate isngimeFigure 5.7 on
page 87. Itis a universal chart using an if-then-else cansto stop and restart the
train. The subchart in Figure 5.8 on page 87 states that ifr¢tie ever notifies its
approach, it will be stopped if the gate is unavailable, tlee length of the queue
is larger tharD. The ’else’ subchart stops the train and eventually restaegain
allowing it to pass through and leave it. As for the ‘then’ st it is the case that
every time the train approaches the gate, and it is avaijlétetrain should be able
to pass through without being stopped. If another trairstigecross the gate with
Trai n1, the message trace of the model will deviate from the secuepecified
in the chart, and as the chart is universal, the chart willhoddl for the model.
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list[len]:=e,
add? len++

notempty!
len>0
e:=list[0]

empty! hd?
len==

rem!

len>=1 listfi]:=0

len--,

i:=0

Shiftdown
i<len list[i]:=list[i+1],

j++

The order of the trains to use the gate is handled by usingray as a FIFO
construct. Also, the shared variable e is used to communibatid of the train
to exit the queue and cross the gate.

Figure 5.6: The queue template.

Notice that in the ’else’ subchart in Figure 5.8 the queueniptying as the other
trains are crossing the gate, while Trainl is stopped, big itot necessary to
specify this in the subchart, as messages between the gatalesT processes in
the system are ignored.

Logically, the first train approaching the gate will not begied as no other train

is being led through. This is expressed in the existentiaC s Figure 5.9 on
page 88 forTr ai nl1. It illustrates how the existential mode of LSCs can be used
for specifying a scenario that has to be possible.

Another experiment is illustrated in Figure 5.10. It simphates that when Trainl
and Train2 are approaching, the queue is not empty. Herg,nibt necessary to
include more trains, as any messages exchanged betweeatéhengl other trains
do not affect the fact that at least two trains are approachivor is the order of
the approaching trains important, which is illustrated gy tise of a coregion.

Again, PEEL has been used to verify this model, see Table 5.1 on page 94 for
details. This experiment has shown the use of messagesitiooad coregions,
if-then-else constructs, and precharts which are all leghdbrrectly by REL.
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When Trainl approaches the gate, it will eventually passutyin the gate. If
there is a queue before the gate, the train has to wait uigidtg& permission to
pass through, see the subcharts in Figure 5.8.

Figure 5.7: LSC prechart and body for Train-gate.

Traim Gata Traim Gata
- - B
<+ =
+
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If the queue is empty the 'then’ subchart (subl) on the ledtdes that Trainl
may pass through the gate without any delay. If the queuetismpty the 'else’
subchart (sub2) on the right specifies that the train is tp atdhe gate and wait
for other trains to pass through, before it will be alloweg#ss through itself.

Figure 5.8: The subcharts for the Train-gate LSC
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approaches the gate it will leave it without being stoppea loyeue.

Figure 5.9: An existential LSC for the Train-gate experifen

Train €1 ) Train2
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| appr
| |

Train €1 ) Train2
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The chart specifies that when Trainl and Train2 are closimgithe gate, there
is a queue. As the order of the two trains is insignificantrtapproach notifi-
cations are contained within a coregion.

Figure 5.10: LSC prechart and body for the queue in Traiegat
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5.3 Distributed control

The distributed control is an experiment where a plant néetie within a certain
boundary. The plant controller ensures that this is so bynigaa& sensor measure
the state of the plant and two actuators to correct the plaitcommunication
between controller, sensor, and actuators goes through.a bu

The automata

Several global variables are declared, the constakisMAX, andVAXu with values

of 2, 8, and 3, respectivelywAX and MAX are the upper and lower boundaries of
the plant statex and the plant output variable, and MAXu and VAXu are the
boundaries of the input variable and the result of the controller's computations
uhat .

In addition, the urgent channelead, r eadl,r ead_conpl et e,r ead_conpl et el,
andwr i t e as well as the broadcast chanmel t el are used in the model.

read! read_completel?
prevy := localy,
localy =y,
c==TQ c:=0 cc:=0
Idl Compute
cc<=CC
write!
cc>=CC

uhat := ( prevy - 2*localy < -MAXu ? -MAXu :
(prevy - 2*localy > MAXu ? MAXu :prevy -2*localy ))

The controller controls the update cycl@C and CC are constants of0 and
1, respectively, an@ andcc are local clocks. The cycle is initiated every TC
time units, and when the read has been completed the old igadtered for use
in a later computation that tak€3C time units. The computation result is the
new value for the plant’s input variablahat , and the value is required to be
within MAXu and VAXuU.

Figure 5.11: The template of the controller.
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The controller in Figure 5.11 initiates and controls thedr@ad write cycles by
sending messages to the bus.

When a message is sent to the bus in Figure 5.12, the messdgjayed before it
forwards the message to the receivers.

read? write? read_complete?
c:=0 c:=0 c:=0

c <= DELAY+LAT ¢ <3 DELAY+LATT c <= DELAY+LAT

c >= DELAY c >z DELAY c >z DELAY

A
readl! writel! read_completel!

The bus delays messages by at [eBELAY time units and at most
DELAY+LAT time units for a write message and even more for other mes-
sages.DELAY is a local constant with the valuk and LAT is also a local
constant with value.

Figure 5.12: The bus template.

When the bus forwards the message to the sensor in Figure thel3ensor will
update its output variable and notify the bus, and the busmaW notify the con-
troller.

The two actuatoréct uat or andAct uat or ml are depicted in Figure 5.14. Both
actuators wait for a write after which it updates the plaimsut variable.Act uat or
updates it with the input value calculated by the controberdAct uat or nl de-
creases the input value by one if the value stays above a défiwer boundary of
the input variable.

Figure 5.15 shows the automaton template of the plant. Tdr& plpdates its plant
statex regularly and this variable must stay within certain boureta
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read1?

localy :=x,
c=0 = DELAY

read_complete!

When the sensor is requested to read, it will WL AY time units DELAY
is again a local constant), i.d,time units, after which the output variable is
updated and a read_complete is signalled.

Figure 5.13: The template of the sensor.

writel? writel?
? localu := uhf ? ?
u :=localu u:=(u==-MAXu?u:u-l)

The Act uat or is to the left andAct uat or il is to the right. Both wait
for a write request, but wherAct uat or updates the input variable by the
value calculated by the controllefct uat or nil decreases the value of the
input variable by 1 if it stays abovéViAXu.

Figure 5.14: The templates of the actuators.

The LSCs

The behaviour of the model is controlled by the controllehiah initiates read-
write cycles. The cycle can be specified as one chart with ehpre see Fig-
ure 5.16 and Figure 5.17. The bus forwards radad, r ead_conpl et e, and
wri t e messages. Two conditions state that the cycle must be ctedphgthin
TC time units and that the plant statemust be within -8 and 8 as specified in
the condition (the values ofaX and VAX). The simultaneous region specifies that
when the bus forwards the write message throughwthe el broadcast message,
only the actuators may receive it.
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c:=0 ¢ <= DELAY

¢ >= DELAY

dx := (x == MAX || x == -MAX ? -dx : dx),
X := (x+dx+u < -MAX ? -MAX :
(x+dx+u > MAX ? MAX : x+dx+u))

The plant updates its state affeELAY time units, i.e.,10 time units, and it
first updatesix to be eitherl or -1 depending on the direction of the sawtooth
movement ok between its boundaried/AX andMAX. X is then set to belx
added the value of the input variable. Howeweris updated only if the new
value is within its boundaries.

Figure 5.15: The template of the plant.
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A read sent from the controller to the bus initiates the cyotehe Distributed

Control

N

control experiment.

Figure 5.16: LSC prechart for the read-write scenario.
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All communication goes through the bus. The cycle must bepterad within
a certain period of time, TC time units, and the plant statestnaways be
within a certain boundary as specified by the condition daitg the expres-

sion "x <= 8 && x >=-8".

Figure 5.17: LSC chart specifying the read-write cycle @& Distributed control

experiment.

PEEL has also been used to verify this model. As can be seen in Babthis chart
takes significantly longer to verify than the other chartkisTis because of the large
number of configurations and edges that must be tested irothewation graph.
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This chart shows the use of messages, conditions, and aimeoltis regions which
PEEL handles correctly.

Another chart has also been used to test the Distributedatiambdel, it is the
same as the one Figure 5.17, except #histnot verified to be between -8 and 8 in
the condition, but instead between -3 and 3 (the valuesfu andMAXu), which
are the boundaries of the input varialle

LSC Configurations | Edges| Variables | Succ. Traces Time

Broadcast 1 5 5 5 8 0,1 secs
Broadcast 2 5 5 5 0 0,1 secs
Train-gate 1 1.846 | 2.247 14 3508 6.4 secs
Train-gate 2 1.846 | 2.247 14 1 0.1 secs
Train-gate 3 1.846 | 2.247 14 19160 5.0 secs
Distributed C. 1 14.876 | 29.601 15 85.462.160| 3 min 30 secs
Distributed C. 2 14.876 | 29.601 15 0 4.0 secs

Broadcast 1 is the result from Figure 5.2 and Broadcast 2 iBifjure 5.3. The
3 Train-gate rows contain data for the charts from Figur&s 5.9, and 5.10
respectively. Distributed C. 1 contains data for the charFigure 5.17, and
Distributed C. 2 contains data for the same chart with thengkd condition.
The number of successful traces necessary to verify the Ispecified for
each LSC together with the time taken faeR. to verify the charts.

Table 5.1: Statistical data for the models presented inctiegpter.

5.4

Summary

This chapter has shown experiments with threerblaL models which have been
specified by LSCs. EeL has been used to verify that theePhAL models behave
according to the scenarios specified by the respective L&0& motivation for
this chapter is to show with a practical example, that LSCgeneral are useful
for constructing requirements specifications. Anothesogais to show that all
elements from the LSC subset work ig&. and that they can be used for verifying

UPPAAL models.

Next chapter contains a summary of the work presented irptioject, an evalua-
tion of the results, future work directions, and a final coisabn.
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This chapter contains a summary of the work presented andaunation of the
results obtained in this project. Next the subject of LSQuuisinto perspective in
a section presenting possible future work directions. IKina conclusion on the
subject of using LSCs as a diagrammatic method for spegdfy@guirements for
UpPPAAL models and in general is presented.

6.1 Project summary

This section gives a summary of the work presented abaradL in Chapter 2,
LSCs in Chapter 3, andeL in Chapters 4 and 5.

UPPAAL

A brief introduction to LPPAAL is presented, the dynamic behaviour oPRAAL
models is seen as a sequence of configurations, where a aatifiguconsists of
automata locations and variable values. Two types of cordigun steps exist,
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internal transition ste@andsynchronisation steghe former being a configuration
change where no synchronisation is perform@dsequence of configurations is a
trace.

The formal semantics for RPAAL models is defined as a transition system for an
automaton and for a network of automata.

The requirements specification language farAdaL models isbranching timed
computation tree logicTCTL. TCTL expressions consist ole@cal and atemporal
property part. The local part is an expression over automoatgtions and variable
values, and the temporal part describes the temporal estémé computation tree
where the local property must be satisfied.

Live sequence charts

Live Sequence Charts (LSCs) are an extension of MessagesegiCharts (MSCs).
The main extensions are a formal semantical basis, conditie first-class citizens,

and liveness properties. MSCs are used for initially captuuse cases in the form

of informal and abstract use cases, but as the developmecegure advances, the
charts are refined into precise specifications, and on tss lthe need for more

expressive charts is created.

The LSC constructs proposed in the initial work by Werner Damand David
Harel [DH99, DHO1] are used as the basis, and extensionssddsis are taken
from Jochen Klose’s dissertation [KI003].

An LSC subset suitable for RPAAL requirements specification is identified and
the application of the subset is described. The elemenkiidentified subset are:

e Charts: Precharts, existential charts, and universal charts qrpcsted.

e Messages:Simultaneous regions support both hot and cold synchronous
messages, whereas only hot synchronous messages may bmitsdd si-
multaneous regions.

e Conditions: Both hot and cold conditions are supported including shared
conditions.

e Coregions:Coregions are supported, but in a slightly modified form. &zor
gions are made global across the structural dimension aydhaive a tem-
perature specifying whether progression is enforced withé region. They
do not contain snapshots, only hot, synchronous messages.
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e Simultaneous regionsSimultaneous regions are supported, but can only be
used in combination with hot and cold synchronous messages.

¢ If-then-else: If-then-else constructs containing a condition and two-sub
charts. The evaluation of the condition decides which ofcdharts is to
be traversed.

The semantics of the LSC subset, as specification fevAAL models, is formally
specified and the specification is used for tleE Pimplementation.

PEEL

PEEL, a prototype verification engine for verifying RPAAL models with LSCs
has been implemented. EBL implements most of the selected LSC feature set,
and provides a proof of concept that it is possible to verifyPlAL models with
LSCs, especially with regard to message traces.

PEEL consists of three components:

e PEEL LSC Parser: TheBeL LSC Parser takes as input an LSC, and extracts
the features which are relevant compared to the selectedfe&@re set.
The extracted LSC elements are then ordered as a sequenieeneings to
be verified.

e PEEL FSM Parser: The BeL FSM Parser takes as input aEhAL model
and first produces an intermediate FSM output with threPAAL verifyta
tool, and secondly the FSM output is parsed into an FSM coatipatgraph
ready for traversion by the verification algorithm.

e PEEL Verifier: The FEEL Verifier uses the sequence of LSC elements and
verifies the sequence using the FSM computation graph. Ti@mg time
of the graph traversion algorithm depends on the charatitsiof the FSM
computation graph and the LSC chart, especially the numbeordfigura-
tions and the number of elements in the chart and in the camsgi

The REEL implementation is tested using a set of experimental cagash shows
that LSCs can be used for specifying proper requirements/ddous WPPAAL
models. The experiments also show that the different featur the selected LSC
subset can be verified witheRL.
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6.2 Evaluation

This section contains an evaluation of the results obtainetthis project. The
evaluation is based mainly on the experiences obtainedighréhe experiments
with PEEL in Chapter 5. The project goals described in Section 1.2redasis
for this evaluation. The goals are:

e Introduction of LSCs as a supplement to TCTL irRAAL.

e Introduction of LSCs as a diagrammatic requirement spetifin language
for UPPAAL.

e PEEL as a prototype verification engine.

Discussions relating to LSCs refer to the selected subseSaf features unless
otherwise stated. The selected features are describedapt€is.

6.2.1 LSCsand TCTL

UPPAAL verification is currently done by specifying propertiesngsir CTL formu-
lae. The introduction of LSCs provide a visual diagrammatethod for specifying
properties. The following discusses the differences bettbe two approaches in
different areas; focus, intuitiveness, and prerequisites

LSCs and TCTL are languages of different paradigms. LSCrdrag is a vi-
sual specification language inspired by elements from thé. tBvminology while
TCTL is based on tree logic, and their foci are fundamentdifierent.

The focus of TCTL lies in the computation tree and its brascaed nodes, i.e.,
configurations. There are two aspects of a TCTL formula, #meporal property
and the local property, they denote the branches of the tréd¢tee configurations
of the branch, respectively. An edge in the computation k@ no notation in
TCTL, and thus cannot be referred to, which means that messagthe model
cannot be specified either. This fact is one of the main midira for choosing
LSCs as a supplemental requirement specification languaderPAAL.

LSCs focus on scenarios, which consist of automata inssanterobject commu-
nication between them, conditions, and liveness requintsn® be fulfilled at the
appropriate snapshots. The messages that each instancgernthgr receive are
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specified in a chronological order along the instance lingoAby using universal
and existential charts it is possible to specify whethersttenarios are provisional
or mandatory. In addition, precharts in LSCs can be usedgdecifying scenar-

ios that may never happen, meaning that the practitioner spagify required,

allowed, and forbidden scenarios.

As LSCs is a visual, object-oriented means of specificafiest,like UML, and as
UML is widely used in the industry, this way of specifying pesties to verify will
be intuitive to most practitioners, and if, or when, UML atl®pSCs, LSCs may
well be used in most CASE tools and practitioners will be cmtafble specifying
requirements with LSCs, just like they are used to using sece diagrams today.
LSCs are thus a high level way of specifying interobject camigation.

TCTL on the other hand is not that intuitive for practitioseot experienced in log-
ics. There are several pitfalls in general logics and thezeabso pitfalls regarding
the logics used for TCTL. An example is the imply operator:

pimply ¢

if the p property is always false, then nothing is ever tested aldoag property,
but the expression is always true nonetheless.

A practitioner of LSCs needs only to posses knowledge allmubverall require-

ments of the software in order to be able to specify the reguénts in an LSC.
If using TCTL, it is necessary to posses more detailed kndgde e.g., about au-
tomata locations and possible configurations. For instahagyroperty must hold
for a subrange of configurations, then it is necessary to kapécit knowledge

about the configurations and use this in constructing thescblogical expres-
sions. In an LSC, the configurations are hidden, e.g., whamgwscondition, the

condition is implicitly tested in the configurations detémed by other charts ele-
ments.

By using LSCs it is not required to have extensive knowledfeatidation and
verification. Instead, the practitioner needs to know wisaharios are interesting
and relevant to test. In small systems it may be easy to pimplog scenarios that
in effect verify the model, but in large complex systems iad trivial at all.

When specifying the scenarios including the conditions tedliveness require-
ments that are to be satisfied in different snapshots, th@ret templates need
not to be known. How each automaton is modelled includingkthevledge of

locations is irrelevant for the scenarios to be specified.ly@me names of the
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messages to be exchanged and the names of the objects @rghtinegn need to
be known for specifying message traces and for specifyimglitions the variable
names must be known. Configurations and locations are tdghiby the LSCs.

6.2.2 LSCs as requirements specification for BPAAL models

The work with FEEL during the development and testing of the engine itself, and
during the specification and testing of the experiments, dnagided us with an
introduction to the usage of LSCs as a requirements spddaiicéanguage for
UPPAAL models. It is apparent that LSCs supplements TCTL with tresibdity

to verify that a given message or trace exists, either in@leimace or in all traces,

in a UPPAAL network of automata. TCTL does not have any means for testing
that a given message or message trace exists and this feathee main benefit
from the usage of LSCs. The LSCs diagrammatic requiremgeitsification is not
meant as a replacement for TCTL, but as a supplement.

LSCs do not only provide the possibility to test for a simplessage trace between
instances, but provide powerful constructs in the form eftpiarts, subcharts, core-
gions, and simultaneous regions that enable the constructicomplex scenarios

to be tested.

LSCs are more expressive than standard UML MSCs, which atsmmthat they
are more complicated to construct and understand, becatiselarger set of chart
constructs. The two chart representations are very simildmpractitioners familiar
with MSCs should have an advantage if switching to LSCs. Aalisation of a
scenario provides a good means for generating an overviesvaamponent, or
the inter workings of several components, and this is algocdse when doing
requirements specification forRPAAL models.

6.2.3 The REEL verification engine

The development of BEL, a prototype LSC verification engine forABAAL mod-
els, is successful. Most of the elements in the selected L#Se$ have been
implemented and their usage is demonstrated through thetucted experiments.
The R=EL prototype and the conducted experiments show that it iSipges® use
LSCs as a requirements specification language fpAAL models.
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Apart from supplementing TCTL with tests for message trahe, specification
of message traces in LSCs for @kAAL model is intuitive and straightforward,
among other things because LSCs are similar to UML MSCs, lwhie well
known to many practitioners.

The asymptotic upper bound for the running time has beendiooie
O(ctsm!x* (c—1)!)

where
¢ is the number of configurations in the FSM computation graph,
e isthe number of elements in prechart, chart, and subclaartks,
m is the maximum number of messages in any coregion.

Verification algorithms for finite automata normally haveraverse the entire com-
putation graph, which gives an upper boundt!). The reason the running time
of PEEL is because the sequences of internal transition steps aetirsyisation
steps influencing processes not present in the chart nedmsttaversed for each
element in the chart.

Optimisation can be performed regarding constant factbifseorunning time, e.g.,
improve the performance on condition testing.

6.3 Future work

This section presents some possible future directionspdaottion of symbolic
instances in LSC specification, and an integration of LSG$RRAAL.

6.3.1 Integration of LSCs inUPPAAL

Currently, it is only possible to specify properties in TCFLUPPAAL. It would
be very useful if it was possible to specify LSCs withimRAAL itself. The FEEL
engine could then be used byrbaAL's verification so that the result of the LSC
specification could be viewed inRPAAL.

This could consist of the following extensions:

e Inclusion of the LSCEditor in BPAAL's GUI. The LSCEditor could simply
be an extra tab next to the “verifier” tab. See Figure 6.1.
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¢ Integrate the PEL engine on top of BPAAL's verification engine.

e Show the trace from a satisfied or unsatisfied scenario in $simulation
trace” from the “simulator” tab in BPAAL.

data’aruppenduerifudascoffess xta — UPPAAL = O X

._F.ile Templates Yiew Queries Options Help
EIETEEIENEN] - LTRIEN

System Editor rSimuIalur r Verifier |

Overview
= po| O/ Madel check

Insert

Remove

Comments

Query

Comment

Status

Established direct connection to local server.

Screenshot of BPAAL, where the LSCEditor could have its own tab right next
to the “verifier” tab.

Figure 6.1: Screenshot of RPAAL.

This could mean, that when a practitioner is creating LSCi§ipations in the
LSCEditor, he may choose the names of the LSC instanceglgifeam a list of
automata names. When writing expressions in conditionsodd choose from

a list of UpPAAL locations and variables. This would be an advantage, becaus
when the LSCEditor and RPAAL are separated, the practitioner must be careful to
name LSC instances, locations and variables exactly astiessalled in WPAAL.
Thus, this extension enables the practitioner to specdyirements specifications

to UPPAAL models in LSCs without having deep insight into the”r4AL model.

Obviously, it could be argued that it requires insight inte tUPPAAL model to
specify proper requirements, but still, the goal is to lifetpractitioner to a higher
level of abstraction, and the easy naming of constructs asahstances, locations,
and variables certainly helps to lift the level of abstrawti
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6.3.2 Symbolic instances

The experiments performed during this project, especitiéy Train-gate experi-
ments, revealed that in some cases an easier way of LSC sp#oifi exists.

The Train-gate model contains four trains, a gate, and aequefu Section 5.2.
Specifying LSCs with one of the trains like in Figure 5.8 sitaictually required to
include one LSC for each train, as the instance in the LSC bruatspecific object.
The number of LSCs required for specifying that when any t&ms approach the
gate the queue must not be empty, requir2£ SCs.

A solution could be to introduce symbolic instances in @ddito the current spe-
cific instances, such that instances instead of referrimgpjects may refer to the
type of object, or in WPAAL terms, to a template. This would mean that it would
be possible to specify the above scenario using only one BS€jt would cover
all train instances, including any instances to be intreduio the future, whereas
the current way would require new LSCs for any new train insgin the model.

Also, having two instances of the same template in a chartdvetfier to any two
unigue instances. Then it would also be easy to specify ampowtion of objects
of the same type, just as needed in the LSC mentioned above.

6.4 Conclusion

This project has presented LSCs as a new approach for sipgcifgquirements
specification for WPAAL models. LSCs are not meant to replace the existing spec-
ification with TCTL formulae, but is meant as a supplemente Titain extension
that the LSC approach provides is that of message traceocatitfin.

Our opinion is that LSCs are a good approach for specifyingsage traces for
UPPAAL models. REL implements the formal specification of the selected subset
of LSC features, and thereby provides a proof of conceptithsipossible to use
LSCs for requirements specification forPBAAL. In general our opinion is that
LSCs are a good way to specify scenarios.
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Expressions

This appendix contains a syntax of invariants, guards, quadtes allowed in &
PAAL. The syntax is presented in the following BNF. The informatin this
appendix is taken from the documentation accompanying trealdL implemen-

tation.

The syntax of expressions is defined by the grammar for Exjmes

Expression

Assign

Unary

Binary

ID
NAT
Expression[ Expression |’
'(" Expression )’
Expression4++' | '++" Expression
Expression-—" | '——" Expression
Expression Assign Expression
Unary Expression
Expression Binary Expression
Expression '?" Expression”Expression
Expression .’ ID
"deadlock’ | "true’ |’ false’

l::l’1_"_:!’1_21’1*:1’1/:1‘1%21
=== T >>F
1_1’1!’ "TLOt’

’<1 ‘1<:1‘1::1 ’1!:! ’1>:1‘1>1
%]
TP T &&S )

'<?|'>?" | 'or | 'and’ | 'imply’
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The use of the deadlock keyword is restricted to the requergrapecification lan-
guage, TCTL.

Associativity and precedence

UPPAAL operators have the following associativity and precedglisted from the
highest to lowest. Operators borrowed from C keep the sae®epence relation-
ship with each other, see Table A.1.

Associativity Precedence

eft 01

right I 4+4 —— — (unary)

left x| %

left -+

left >> <<

left >7<?

left =>=<=><

left ===

left &

left -

left |

left &&

left I

right 7

right = 4= —=x= = %= &= |= =
>>=<<="=

right not

left and

left or imply

Table A.1: Associativity and precedence for operators RPRAL expression.

Expressions involving clocks

Expressions involving clocks are restricted by the typeckbe There are three
categories for expression including clocks:

e Invariants: An invariant is a conjunction of upper bounds on clocks and
differences between clocks, where the bound is given by e eiigect free
integer expression.
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e Guards: A guard is a conjunction of bounds (both upper and lower) on
clocks and differences between clocks, where the boundrendiy a side
effect free integer expression.

e Constraints:A constraint is a boolean combination (involving negaticon-
junction, disjunction and implication) of bounds on clocksd differences
between clocks, where the bound is given by a side effectifiteger ex-
pression.

In addition, any of the three expressions can contain eses (including dis-
junctions) over integers, as long as invariants and guanelstdl conjunctions at
the top-level. The full constraint language is only allowecthe requirement spec-
ification language.
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LSC
mLabel : string
mLSCMode : LSCMode
miInstanceLines : list<InstanceLine>
miCoRegions : list<CoRegion>

mpPreChart : LSC*

|
InstanceLine
] CORéglon § mlLabel : string
mlLocations : list<Location*> mlLocations : list<Location>
A
\T?
|
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mTemperature : Temperature
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mpParentlnst : InstanceLine*
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Class diagram of the data structure for holding the extactf the LSC di-
agram. This data structure is an intermediate format useddoerating the
sequence of LSC elements to be verified.

Figure B.1: Class diagram of theePL LSC Parser output.
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computation graph to verify an LSC against akRAAL model.

Figure B.2: Class diagram for the sequence of LSC elements



FsmParser

~ configs : vector

- fake : int

- mConfCounter : long

- mElemType : FsmElementType

- mFakeConf : int

- vars : vector

+<<(: ostream &, : const FsmParser &) : ostream &

+ FsmParser()

+ getConfigs() : vector *

+ getNumberOfConfigurations() : long

+ getVariables() : vector

# handleConfiguration(pString : char *, pDel : char *) : void
# handleTransition(pString : char *, pDel : char ) : void
# handleVariable(pString *, pDel : char *) : void
+ openFile(filename : string) : void

+ parseLine(pString : char *, pDel : char *) : void

~mConfld : Tong

- mTravInit : int

- mTravNumber : long

+ mlOutEdges : list

+ mvVarValues : vector

+ : vector

‘ +<<(: ostream &, : const Configuration &) : ostream &

+ Configuration(confld : long)
+ getConfld() : long

+ getTravNumber() : long

+ isTravinit() : int

+ setTravNumber(pTN : long) : void

Variables Edge
~mLabel : string #mReceivers : Tist
- mType : string # mSourceLabel : string
+ range : vector # mSync : int
+ <<(: ostream &, : const Variables &) : ostream & +<<(: ostream &, : const Edge &) : ostream &
+ Variables() + Edge()
+ Variables(pLabel : string, pType : string) + Edge(pLabel : string, pTarget : Configuration *, pSource : Configuration *, pSync : int)
+ getLabel() : string + getLabel() : string
+ gelType() : string + getReceivers() : list *
+ getSource() : Configuration *
+ getTarget() : Configuration *
+isSync() : int

i

SyncEdge

+ <<( : ostream &, : const SyncEdge &) : ostream &
+ SyncEdge( : list < string > pLabelReceivers, pLabelSource : string, pSource : Configuration *, pTarget : Configuration *, pSync : int)
+ getSource() : string

Class diagram of the data structure for holding the FSM cdatfn graf. This
data structure is traversed in order to verify that the LSQus@ce is present,
and that all properties hold.

Figure B.3: Class diagram of theeBL FSM Parser output.
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