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Synopsis:

This report presents Live Sequence Charts
(LSCs) as a diagrammatic requirements spec-
ification language for the formal verification
tool UPPAAL, supplementing the already used
tree logic language of TCTL.

UPPAAL models are formally described
to identify a subset of LSC constructs relevant
for UPPAAL model verification. The LSC
subset is also formally specified and used in a
prototype verification engine PEEL.

Experiments are conducted in order to
evaluate LSCs as a requirement specification
language for UPPAAL and demonstrate the
PEEL prototype.

The experiments show that LSCs are an
intuitive way for specifying interobject com-
munication usable for UPPAAL requirements
specification. Furthermore, PEEL demon-
strates the support of the selected LSC subset.
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The goal of software development is to develop software. Buthow can we know
that the software behaves correct? This can be established by validating and veri-
fying the software.

The first part of this Master’s thesis was in collaboration with FUTARQUE, which
is a company that develops software and hardware for set-topboxes. The goal was
to integrate the CASE (computer-aided software engineering) tool Rhapsody into
the existing software development department atFUTARQUE. Rhapsody allows
for a model-driven development process, which means that the models themselves
(UML models) provide means for analysing problem domains and designing the
software. Rhapsody provides means for compiling, testing,validating, executing,
and debugging the designed models [RAJGJ03].

An advantage of Rhapsody is the use of UML diagrams, e.g., sequence diagrams
(SDs), which is a version of message sequence charts (MSCs).The SD in Fig-
ure 1.1 shows a scenario from a set-top box modelled in Rhapsody. The vertical
lines are instances of the system, and the messages between the instance lines de-
scribe a message trace through the system. SDs can be used forboth analysis and
testing in Rhapsody.

Rhapsody’sTestConductor, which uses SDs as its specification method, was found
to perform well for system validation. The SDs provide a goodvisual formalism
for specifying scenario requirements, but the system testing is a validation testing
only. Validation is the process of running simulations of the system being built,
which gives the benefits of exercising the actual system, butat the cost of test
coverage, i.e., it is very difficult, if not impossible, to simulate every possible trace
through a system. Verification is the process of building a model of the system and
performing formal checking of the model, i.e., model-checking. The technique
enables testing of all possible traces through a system, butthe downside to this
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The scenario shows a channel change in the set-top box. Firstthe channel data
information is looked up in theChannelDB, then the information is passed to
theDVB layer. TheDVB layer first stops theDemux, sets channel information
in theStreamProvider, starts the de-multiplexing and starts parsing DVB
packets in the service information database,SIDB.

Figure 1.1: Sequence diagram from Rhapsody modelling a scenario from a set-top
box.

approach is that it is only a model of the system that is being tested and not the
actual system.

Tools for verification of systems are used in the industry today, an example is
Statemate MAGNUM from I-LOGIX [i-l04]. Statemate provides an environment
for specifying, analysing, designing, documenting, and verifying complex reactive
systems [HLN+88]. Spin is another verification system, used for the formalver-
ification of distributed software systems [spi04]. visualSTATE [vis04] from IAR
systems is a tool used for generating state machines, which can be documented,
simulated, verified, and finally, code-generated through visualSTATE. UPPAAL,
which is used in this project, is developed between Uppsala and Aalborg Universi-
ties [upp04]. UPPAAL is an integrated tool environment for modelling, validation,
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and verification of real-time systems in the form of networksof timed automata.
Another verification tool for real-time systems is the KRONOS tool [DOTY95].

Most of the above tools support the developer during all phases of the software de-
velopment, but the testing phase must be emphasised as this is the final step before
releasing the product. When testing a product, a good requirements specification is
important as this is the exit criteria for the final product. It therefore seems natural
to use the requirements specification to automate the validation and verification of
the product. Requirements specification can be done in many ways and different
representations exist, e.g., use cases, state machines, MSCs, and in particular LSCs
(live sequence charts) seem to be a powerful way to express property specifications
with respect to validation and verification. The goal of the requirement specifi-
cation is to develop a clear and unambiguous understanding of the software to be
developed and the requirements specification is the basis for the software testing.

One of the problems with the domain of formal specification isthat the methods
developed demand that practitioners need to be experts within the property speci-
fication language used in order to gain full potential of the tools. It has long been
known that computer programming languages are meant for humans to understand
and not machines, thus the popularity of high level programming languages, but
in formal specification, logic languages are still being used instead of newer dia-
grammatic requirements specification languages, which canbe used as a high level
specification language compared to logic languages. [vL00,BS03].

1.1 Diagrammatic requirements specification

A high-level modelling language, which may be used for expressing property spec-
ifications, is the Unified Modelling Language (UML) [HT03]. UML is a langu-
age for specifying object-oriented software, and it is widely used in the industry.
Among other things, UML contains a diagrammatic requirements specification for-
malism, the MSC.

Unfortunately, MSCs have several deficits. They only show possible and safe be-
haviour, i.e., they only specify that nothing bad will ever happen, and they can-
not express liveness properties that something may happen nor enforce progress
through a chart. In addition, the MSC constructs of conditions do not have a for-
mal semantics, i.e., they are merely comments in the chart, whereas conditions are
first-class citizens in LSCs and affect the run of a model. A formal semantics is
also lacking for the timer durations, and so they are ignoredin MSCs as well. Fi-
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nally, it is not possible to specify simultaneity in MSCs, i.e., that more than one
event may happen at the same time [Klo03, BDW+02, DH01].

LSCs are a graphical notation for specifying temporal relationships between sig-
nals and events, and they are an extension of MSCs that provide stronger expres-
sive power in order to make up for the deficits described above, especially con-
cerning liveness, i.e., representation of provisional versus mandatory behaviour in
systems [DH01]. Work is being done in relating specifications in LSCs to UML’s
diagrams [KW02], [DW03], and [dBBGdR03], which indicates that CASE-tools
will soon adopt variants of this specification language. Statemate MAGNUM from
I-LOGIX has already been extended with support for LSCs [BDW00], andwork
is in progress for extending Rhapsody as well [BJK+01]. See Figure 1.2 for an
example of an LSC.

This example shows a simple LSC which specifies that at least one scenario
must exist with the specified messages.

Figure 1.2: An existential LSC.

LSCs enable the developer to construct requirements specifications in a visual fash-
ion and does not require background knowledge in formal validation and verifica-
tion.

1.2 Project goals

The purpose of this project is to introduce LSCs as a diagrammatic specification
language in the formal verification tool UPPAAL. In order to allow LSCs to be
used in combination with UPPAAL, the semantics of both feature sets are described
informally and additionally the semantics of UPPAAL is formally described in order
to determine what properties from UPPAAL models are suitable for specification in
LSCs. Based on the feature selection, a formal semantics of the LSC subset is
described.



1.2 Project goals 5

UPPAAL has been chosen because it is a verification tool for timed automata and the
behaviour of these automata may be specified by LSCs, which are suitable for in-
terobject communication in the form of messages. Another reason is that UPPAAL

uses Timed Computation Tree Logic (TCTL) to specify properties for verification,
and TCTL cannot specify message sequences, which is one of LSCs strong fea-
tures. Furthermore, as UPPAAL is developed in-house, i.e., at Aalborg University,
it is an obvious candidate because it is easier to acquire detailed knowledge about
the tool.

If the analysis determines that some elements in the languages are not possible
to translate such elements are disregarded in the final result. This means that the
formal understanding of the subset of LSCs adopted in this report is defined in
relation to UPPAAL models, and the LSC elements not in this subset must be pro-
hibited from being used or just ignored when traversing an LSC. Correspondingly,
elements in the UPPAAL language, which cannot be captured by LSCs, limit what
kind of properties LSCs can be used to specify.

The requirements specification is verified by extracting properties from LSCs and
these properties are used to test UPPAAL models. More specifically, the computa-
tion tree from UPPAAL is traversed and the LSC properties are used to query this
tree. Since LSCs focus on interobject communication, messages and message se-
quences are the most important properties to test in the UPPAAL models. This is
one of the problems with the specification language used in UPPAAL, TCTL, as it
has no means of referring to messages. Thus, LSCs have the potential to be a good
supplement compared to TCTL with respect to semantic expressibility as well as
general user-friendliness.

A prototype engine, PEEL, is implemented to perform the testing of UPPAAL mod-
els with LSC specifications. This prototype is based on a graphical LSC editor,
and the properties from this editor are extracted and testedagainst the UPPAAL

models, see Figure 1.3. PEEL is applied to a number of experimental cases in order
to evaluate PEEL and the diagrammatic approach for specifying properties. The
evaluation includes a discussion of advantages and disadvantages of visual speci-
fication as opposed to logic languages like TCTL. Furthermore, the application of
LSCs as a specification language in combination with the verification tool UPPAAL

are evaluated.
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Result

LSCEditor Uppaal

Peel

This is an overview of the PEEL prototype. PEEL uses an LSC to verify that a
UPPAAL model is correct.

Figure 1.3: Overview of PEEL.

1.3 Related work

Several studies regarding usage of LSCs as a specification language have been per-
formed. In [KKR02], LSCs are used as a specification languagewhich introduces
a visual environment for designing and validating softwaresystems early in the
development process. The authors propose LSCs as a visual means of specifying
properties of a system design, so the environment can be usedby practitioners un-
knowing of formal methods. LSCs are translated to AR-automata, which are run
in parallel to the design being validated. The automata simulate the design and
therefore some features of LSCs, e.g., liveness requirements are not used. The
environment helped the authors find several design flaws in a train system they
had built. Also, they found that the effort in specifying therequirements had been
reduced, which combined with the visual counter-examples shortened their valida-
tion cycles significantly. We use LSCs as a visual means of specifying properties
as well, but [KKR02] does unlike the work presented in this report not adopt LSCs
liveness features. This is because they simulate the LSCs using finite automata for
validating the design, whereas we verify behaviour of models and thus need to test
for infinite traces. The authors conclude that less effort isrequired when specifying
properties in LSCs. We agree, it is more intuitive to use thanTCTL.

A case study used an extension of LSCs to specify parts of an air traffic control
system which modelled all scenarios of the system [BHK03]. In fact they found
that LSCs are so straightforward that they believe non-technical stake holders can
understand and help capture LSCs. We agree with [BHK03] on their remark of
how easy it is to construct LSCs, and this is one of the motivations for our project
- to ease specification of verification properties.
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[BDW+02] presents a methodology for developing train system applications based
on Statemate, which is extended to include verification and testing facilities in the
form of a model-checker and an automatic generation of test vectors. Also, LSCs
as a specification language is included in the extension. Thedifference from our
work is that instead of constructing a verification engine from bottom, we use a
small verification engine on top of the existing UPPAAL engine. This requires us
to explore the symbolic state space of the UPPAAL model through the computation
tree when testing the message sequence. UPPAAL’s TCTL is still used for non-
message related property checking.

In [BG01] the authors apply LSCs on hardware protocols. Theyfound that LSCs
have a significant potential for use when formally specifying hardware standard
protocols if ignoring a weakness with the timing model. Instead of having a full
timing model, MSCs and LSCs rely on partial order imposed by the order in which
events occur along a life line in which messages are passed between processes.
They determined that LSCs are not strong enough to formally specify protocol
standards, but as LSCs were developed for system level and software design the
authors were not surprised of this. The authors want to extend LSCs with a full
timing model, thus eliminating the weakness. This weaknessis corrected in Klose’s
dissertation [Klo03], but Because it has been chosen not to use Klose’s extension
in this report, the LSCs adopted in our LSC subset do not have afull timing model
either. The total order of messages is sufficient for specifying the order of the
messages and thus message traces.

1.4 Overview

First, an introduction of UPPAAL is presented in Chapter 2. It includes a formal
semantics of UPPAAL models and the subset of TCTL used.

Next, LSCs are described informally in Chapter 3 and a relevant subset is described
formally to be used in the PEEL engine.

Chapter 4 describes the property extraction engine. Chapter 5 provides experiments
of how LSC diagrams can be used to verify UPPAAL automata with the PEEL

engine, and finally an evaluation and conclusion of the project is given in Chapter 6
together with directions of future work.
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UPPAAL is a tool for modelling, validating, and verifying real-time systems. It
models systems as a collection of non-deterministic processes with finite control
structures and real-valued clocks, i.e., network of timed automata. The processes
synchronise through channels and may exchange values through shared, finite data
structures.

This chapter gives an informal as well as a formal description of UPPAAL and
the requirements specification language, TCTL, used. An example of a UPPAAL

model is presented, and use of UPPAAL as a model checking tool is introduced.

2.1 Informal description

This section introduces the system description language ofUPPAAL. The pre-
sentation is based mainly on [DMY03] and the documentation accompanying the
UPPAAL application. The static and the dynamic elements of a UPPAAL model
are described. The static elements are the language constructs, and the dynamic
elements are the behaviours of the constructs, i.e., what a configuration is and how
a model can progress from one configuration to another.
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2.1.1 Model constructs

A UPPAAL model is a network of timed automata. The automata have constructs
for holding data, and the automata can synchronise over globally declared chan-
nels, either throughbinary synchronisationin the form of a hand-shake or through
broadcast synchronisation.

Each automaton is represented by a finite, directed graph, where edges are labelled
with guards, synchronisation labels, and updates in the form of variable assign-
ments. The nodes in the graph are referred to aslocations, and the edges astran-
sitions. The initial location is marked with a double circle. Figure 2.1 shows an
example UPPAAL model.

S1

c!

S1

S2

i == id
c?

c?

i := (i + 1) % N

The model shows an example of a UPPAAL network with broadcast. The left is
a sender and the right is a receiver model template.

Figure 2.1: The sender and receiver templates of a Broadcastexample.

Data constructs

Data in the model are stored in clocks and variables. Clocks contain non-negative
real values, i.e., values in the setR≥0. Variables can be of type boolean or finite
subrange of integer, and be ordered in multi dimensional arrays. Constant values
can also be declared.

Integers must be declared with a finite bound, e.g.,[−5, 5] in order to restrict the
number of configurations, the maximum bound is[−32768, 32767], which is used
if no bound is explicitly defined. Boolean variables take thevaluestrue or false,
and they are type consistent with integers as in C++, i.e.,0 evaluate tofalseand
all other integer values evaluates totrue. Likewise, falseevaluates to0 and true
evaluates to1.
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Both clocks and variables can be declared locally or globally. Normal scope rules
apply, meaning that locally declared names override globally declared names.

Channels

As already mentioned, automata synchronise over channels,but no information
is sent over the channels, instead, information may be exchanged through global
variables.

A channel can be declaredurgent, which means that if transitions labelled with this
channel are enabled, then no time delay must occur before theenabled transitions
are carried out. The type of the channel used for synchronisation decides whether
the synchronisation is binary, or if marked withbroadcast, one-to-many. A channel
can be marked as both urgent and broadcast. A binary synchronisation channel is
a blocking synchronisation, whereas a broadcast synchronisation is non-blocking,
a sending transition does not wait for a recipient, but can always be enabled.

Locations

Locations are the nodes of the directed graph defining an automaton. There are
two special types of locations:urgentlocations andcommittedlocations. An urgent
location is a location in which time may not progress, until the location is left again.
A committed location is an urgent location with an additional constraint; transitions
from committed locations have precedence over all other enabled transitions, thus
committed locations can be used to model atomicity. The special location types are
marked with aU andC for urgent and committed locations, respectively.

It is possible to attach a boolean expression over clocks andvariables to a location,
aninvariant that needs to be fulfilled while the location is active. It is not permitted
to set lower bounds on clock values in invariants and theor andnot operators are
restricted to expressions over integers. Expressions in invariants must be side effect
free. Appendix A contains a syntax for invariant expressions.

Transitions

Transitions, being the edges of the directed graph, describe the possible steps from
a given location. The steps may be restricted byguards, which are expressions that
must evaluate totrue before a transition is enabled, andsynchronisation labels,
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which are labels indicating synchronisation between automata. A transition may
furthermore containupdates, which are variable and clock assignments.

A guard is a set of side effect free boolean expressions over variables, clocks, and
integers, but unlike location invariants they are not restricted from setting lower
bounds on clocks. A guard on an urgent channel or on a broadcast receiving chan-
nel may not contain any clocks. Appendix A contains a syntax for guards.

Synchronisation labels are channels marked with a direction. The synchronisation
scheme in UPPAAL is similar to the synchronisation scheme used in the CCS calcu-
lus [LPY97]. Outgoing transitions withe! labels are enabled when there is another
outgoing transition with the corresponding labele? at another active location, and
neither guards nor location invariants restrict the progress. Because broadcast is
non-blocking, a receiver is not necessary in order to enablea transition. The tran-
sition marked withe! is evaluated first and the set of receivers last. The evaluation
order is the order in which the automata instances are declared in the model.e is
a side effect free expression evaluating to a channel, see a BNF with the syntax in
Appendix A.

2.1.2 Model behaviour

The behaviour of a model can be seen as a sequence of computation steps from an
initial configuration. For an automaton a configuration is a location and a value of
clocks and variables. Theinitial configurationof the automaton is the configuration
with the active location being the start location and all variables and clocks having
the initial values. The combined configurations of all the automata and the values
of variables and clocks constitute the configuration of a network of automata.

Transitions may change the active location and the variablevalues as well as reset
clocks. If there is no synchronisation label, a transition is referred to as aninternal
transition step, and when there is a synchronisation label it is either abinary syn-
chronisation stepor abroadcast synchronisation step. When the automaton is in a
location time can progress, but some constructs restrict time from progressing:

• Urgent locations,

• Committed locations,

• Urgent channels, and

• Location invariants on clocks.
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Thus, a computation step on a model is either an internal transition step or a syn-
chronisation step. The behaviour of a model can now be more precisely defined.
It is a set of sequences of configurations, where each sequence starts from the ini-
tial configuration, and for every two consecutive configurations,σ[k] andσ[k + 1],
there must exist a computation step that convertsσ[k] to σ[k + 1]. A sequence of
configurations is referred to as atrace.

For a more in-depth description of all language constructs,the syntax, etc. please
consult the help file from the, as of this writing, latest UPPAAL version 3.4.5.

2.2 Formal description

Now that the informal description of the constructs of an UPPAAL model has been
given, the formal description is presented. This section isbased on the semantical
descriptions presented in the documentation accompanyingthe UPPAAL applica-
tion, [BLL+95], and [DMY03].

A UPPAAL model is a network of timed automata. A timed automaton is defined
as a tuple:

Φ = 〈V,L,A,Θ,T ,Π〉

consisting of:

• V = D ∪ C is the finite set of variables.V is partitioned intoD =

{d1, ..., dn} the set of data variables, andC = {c1, ..., cn} the set of clocks.
Data variables are integers or booleans, and they may be defined to be con-
stants, and the clocks are always of type non-negative real,R≥0. Variables
may be ordered in arrays.

• L = {l0, ..., ln} is the finite set of locations. Locations can carry the attribute
urgentor committed. Urgent and committed locations are subsets ofL, thus
the two sets are denoted byLu andLc, respectively.

A configuration isσ = (l, v) ∈ Σ, whereΣ is a set of configurations, loca-
tion l ∈ L, and a type consistent valuationv of the variables inV.

A variable assignment is a mapping from clock variablesC to the non-
negative reals and data variablesD to integers or booleans. For a variable
assignmentv and a delayd, v ⊕ d denotes the variable assignment such that
(v ⊕ d)(x) = v(x) + d for any clock variablex and(v ⊕ d)(i) = v(i) for
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any integer or boolean variablei. In other words,⊕ changes only the value
of clock variables, i.e., time progression only effects clock variables.

• A = {α1, ..., αn} is the finite set of synchronisation channels on which a
network of automata can synchronise. From the setA the setS of synchro-
nisation labels is formed. Synchronisation is either binary or one-to-many,
i.e., one automaton sending and one or more receiving. Sending on channel
α is denoted byα! and receiving byα?. Also, as not all transition steps are
synchronising steps,ǫ denotes an internal transition step without any syn-
chronisation. The set of synchronisation labels possible is thus defined as:
S = {α?, α!, ǫ} for α ∈ A.

An urgent channel is a special instance of a synchronisationchannel on
which automata must synchronise as soon as possible, thus the set of urgent
channels isAu ⊆ A. A channel can also be marked as a broadcast chan-
nel, which means that the synchronisation is one-to-many and non-blocking,
thusAb ⊆ A whereAb is the set of broadcast channels. A channelc can be
marked as both urgent and broadcast, thusc ∈ Au ∩Ab

• The initial conditionΘ specifies a start locationl0 ∈ L and an initial value
of all variables,V0.

• T is the finite set of transitions. Each transitionτ ∈ T is a single relation:

T ⊆ Σ × S × Σ

that relates one configuration and a synchronisation label to another config-
uration.

• Π is the finite set of location invariants, i.e., invariant conditions that must
evaluate totrue on a location, for that location to be active. The invariants
are used to specify local restrictions on the progress of an automaton. An
invariant is a boolean expression over variables,V, but it is not permitted to
set lower bounds on clock values in invariants.

The location invariants are described by a total functioninv that based on a
configuration evaluates whether the conditional expression is true or not:

inv : L × V → {true, false}
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Two additional total functions are introduced,g andu. The functiong evaluates
the guard condition for a transition based on the values of the variables:

g : V → {true, false}

and the functionu evaluates the set of updates carried on a transition:

u : V → V ′

Three different computation steps are possible: internal transition steps, binary
synchronisation steps, and broadcast synchronisation steps. The internal transition
step is possible in both a single automaton and a network of automata, whereas
the binary and broadcast synchronisation steps are only possible in a network of
automata.

An internal transition step froml to l′ can be taken, just when it is enabled, i.e.,g(v)

evaluates totrue on v andinv(l′, v′) on v′, where the resulting value assignment
v′ is the result of the update evaluationu(v) andl′ is the resulting active location.
The internal transition step is defined as:

(l, v)
ǫ

−→ (l′, v′) iff g(v) ∧ inv(l′, v′)
wherev′ = u(v)

2.2.1 Network

Synchronisation steps can only be performed on the network level, thus before
proceeding with the specification of synchronisation steps, the network level needs
to be specified.

A configuration of a network of automata,Φ = 〈Φ1, . . . ,Φm〉 is:

σ = (l, v)

wherel = 〈l1, ..., lm〉 contains the active locations for all automata andv is a type
consistent valuation of the set of variablesV1 ∪ ... ∪ Vm.
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It follows that the initial configuration ofΦ is (l0, v0), wherel0 is the initial control
vector, i.e., the initial locations of all the automata, andv0 is the initial valuation of
V.

The invariant function must also hold when used on a network of automata. The
function evaluates totrue when the invariants hold for all individual automata:

inv : L × V →

{
true iff ∀ l ∈ l : inv(l,v)
false otherwise

A network lifts transitions of the individual automata, thus the possible transitions
for the individual automaton is used as the basis for the formal description.

The basic binary synchronisation step performed on a network is defined as:

(l, v)
α

−→ (l
′
, v′) iff g(v) ∧ inv(l

′
, v′)

wherev′ = u(v) ∧ α ∈ A \ Ab

The basic broadcast synchronisation step is defined as:

(l, v)
β

−→ (l
′
, v′) iff g(v) ∧ inv(l

′
, v′)

wherev′ = u(v) ∧ β ∈ Ab

Next follows the specification of the synchronisation stepson the network level,
i.e., the changes of all effected automata.

In the internal transition step, i.e., a single automaton takes a transition without any
synchronisation, only the automaton in question changes location, and the global
set of variable values changes. The internal transition step is defined as:

〈...,li,...〉
ǫ

−→〈...,l′i,...〉

(〈...,li,...,lk,...〉,v)
ǫ

−→(〈...,l′i,...,lk,...〉,v′)
iff gi(v) ∧ inv(l′i, v

′) ∧ inv(lk, v′)

wherev′ = ui(v)

for an internal step in a automatonΦi.

When a binary synchronisation step occurs two automata change location and there
is an update of the global variables as well. The sender updates the variables first
and the receiver updates last:
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〈...,li,...〉
α!
−→〈...,l′i,...〉 〈...,lk,...〉

α?
−→〈...,l′

k
,...〉

(〈...,li,...,lk,...〉,v)
α

−→(〈...,l′i,...,l
′

k
,...〉,v′)

iff gi(v) ∧ gk(v) ∧ inv(l′i, v
′) ∧ inv(l′k, v

′)

wherev′ = uk(ui(v)) ∧ α ∈ A \ Ab

for a sending automatonΦi and a receiving automatonΦk.

The broadcast synchronisation step has one sender and possible many receivers
that all change locations and the global variable values also change. The sender
updates first, and the receivers update in the same order as they have been defined
in the model:

〈...,li,...〉
β!
−→〈...,l′i,...〉 〈...,lk,...〉

β?
−→〈...,l′

k
,...〉···〈...,ln,...〉

β?
−→〈...,l′n,...〉

(〈...,li,...,lk,...,ln〉,v)
β

−→(〈...,l′i,...,l
′

k
,...,l′n〉,v

′)

iff gi(v) ∧ gk(v) ∧ . . . ∧ gn(v)
∧ inv(l′i, v

′) ∧ inv(l′k, v′) ∧ . . . ∧ inv(l′n, v′)
where v′ = un(. . . (uk(ui(v))))

∧ β ∈ Ab

for a sending automatonΦi and receiving automataΦk . . . Φn.

It is also possible to have an empty set of receivers of a broadcast synchronisation,
as the broadcast synchronisation is a non-blocking synchronisation call:

〈...,li,...〉
β!
−→〈...,l′i,...〉

(〈...,li,...,lk,...〉,v)
β

−→(〈...,l′i,...,lk,...〉,v′)
iff g(v) ∧ inv(l′i, v

′) ∧ inv(lk, v′)

wherev′ = u(v) ∧ β ∈ Ab

for a sending automatonΦi. Here, only the sender changes location and the global
variable set also change.

2.2.2 Maximal delay

A side conditionMD is given on all transitions, which returns the maximal delay
allowed. If a process modelled by an automatonΦ is in a locationl with a number
of outgoing transitions with guards, the process may have towait for these guards
to becometrue in order to leavel. It is not desirable that the process waits in this
location forever, thus some discrete transition must be taken within a certain time
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bound. This bound should be the maximal time before all the guards are completely
closed, i.e., they will never becometrueagain. If the active location is an urgent or
a committed channel, no time delay is allowed.

The maximal delay for an automaton is formalised as:

MD(l, v) =






0 iff ∃ l ∈ Lu ∪ Lc

max{d|(l, v)
S

−→ (l′, v′)} otherwise
iff g(v ⊕ d)
∧ inv(l, v ⊕ d) ∧ inv(l′, v′ ⊕ d)
wherev′ = us(v)

Also, MD = 0 when a configuration(l, v) has all outgoing transitions from the
active locationl completely closed.

Network

Next, the notion of maximal delay is extended to networks of automata. This
insures that synchronisation on urgent channels happens immediately.

The maximal delay for a network of automata is formalised as:

MD(l, v) =






0 iff ∃ α ∈ Au, li, lj ∈ l :

(li, v)
α!
−→ (l′i, v

′) & (lj , v)
α?
−→ (l′j , v

′)

wherev′ = uj(ui(v))

∨ ∃ β ∈ Au ∩ Ab, li ∈ l :

(li, v)
β!
−→ (l′i, v

′)
wherev′ = ui(v)

min{MD(l, v)|l ∈ l} otherwise

If a synchronisation channelα or β is an urgent channel, and the locations with
the urgent channel is in the currently active set, then the maximal delay is0, i.e.,
no delay is permitted. If on the other hand, there is no urgentchannels pending on
the active locations, then the shortest of all maximal delays of the processes of the
network is the maximal delay, because this is the maximal allowed delay before
some action must be taken.
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2.3 Requirements specification language (TCTL)

UPPAAL’s model-checker is able to verify certain properties such as reachabil-
ity, i.e., whether certain configurations of the model are reachable from the initial
configuration. This is done by constructing a timed computation tree and applying
graph algorithms in order to examine the tree. The formulae that the model-checker
is to prove or disprove are defined in a requirement specification language, which
is a subset of branching time computational tree logic (TCTL) [DMY03, Dav03],
where the time part comes from the possibility of constraints on clocks.

A TCTL formula consists of two parts; a local property and a temporal property.
The local property describes a property that is to hold for a single configuration,
whereas the temporal property specifies to what extend, in traces and configura-
tions, the local properties are to hold, i.e., for all or a single trace, and for all or a
single configuration within the given traces.

2.3.1 Local properties

A local property is specified by boolean expressions over location names, clocks,
and data variables of the UPPAAL model in question.

Besides the standard relational operators,<, <=, ==, ! =, >=, and> as well as
the boolean operatorsand, or, not, andimply, the expressions may contain the spe-
cial keyworddeadlock, which evaluates totrue only in the case of a deadlock, i.e.,
no transitions from the active location are enabled. Specific locations are referred
to asΦ.l, whereΦ is a timed automaton in the UPPAAL model andl is a location
in Φ. A local property has the form specified in the following BNF:

p ::= deadlock
| Φ.l for Φ ∈ Φ ∧ l ∈ LΦ

| c ⊲⊳ x for c ∈ C, ⊲⊳ ∈ {<,<=,==,!=,>=,>}, x ∈ Z

| c1 − c2 ⊲⊳ x for c1, c2 ∈ C, ⊲⊳ ∈ {<,<=,==,!=,>=,>}, x ∈ Z

| d1 ⊲⊳ d2 for d1, d2 ∈ D ∪ Z, ⊲⊳ ∈ {<,<=,==,!=,>=,>}
| (p) for a local propertyp
| notp for a local propertyp
| p1 andp2 for local propertiesp1 andp2

| p1 or p2 for local propertiesp1 andp2

| p1 imply p2 for local propertiesp1 andp2
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A local property evaluates to eithertrue or falsebased on the configurations of the
model. As the intuitive idea of the semantics of the above constructs should be
clear, the semantical evaluation of the constructs are formally described.

Formal description

Given a configurationσ = (l, v), a local propertyp holds inσ denotedσ |= p,
based upon the following rules:

σ |= deadlock iff no delay or action transitions are enabled inσ

σ |= Φ.l iff l = li ∈ l̄ for Φ = Φi ∈ Φ̄
σ |= c ⊲⊳ x iff v(c) ⊲⊳ x, ⊲⊳ ∈ {<,<=,==,!=,>=,>}
σ |= c1 − c2 ⊲⊳ x iff v(c1) − v(c1) ⊲⊳ x, ⊲⊳ ∈ {<,<=,==,!=,>=,>}
σ |= d1 ⊲⊳ d2 iff v(d1) ⊲⊳ v(d2), ⊲⊳ ∈ {<,<=,==,!=,>=,>}
σ |= (p) iff σ |= p
σ |= notp iff ¬(σ |= p)
σ |= p1 or p2 iff σ |= p1 ∨ σ |= p2

σ |= p1 andp2 iff σ |= p1 ∧ σ |= p2

σ |= p1 imply p2 iff ¬(σ |= p1) ∨ σ |= p2

wherec ∈ C, , x ∈ Z, andd ∈ D ∪ Z.

2.3.2 Temporal properties

Temporal properties specify when a local property is to holdduring a computation,
in other words, they specify some or all configurations in thecomputational tree
that is to satisfy some local propertyp. The two quantifiers∀ and∃ refer to both
paths and configurations of the computation tree. The path aspect of a requirement
formula is specified by A and E, and the configuration aspect isspecified by [] and
<>, for ∀ and∃, respectively. By combining the path and configuration aspects
it is possible to specify the following four types of formulae, wherep is a local
property; A[], A<>, E[], and E<>. The specification languagealso provides a
fifth type, aleads toproperty. It is written as-->, and it is semantically equal to
A[] (p1 imply A <> p2).

The five temporal property types evaluate to eithertrueor falsebased on the evalu-
ation of the local property for each of the configurations specified by the temporal
property. This means that if some TCTL formula is to hold for some UPPAAL

modelΦ, the local propertyp is to hold for the set of configurations specified by
the temporal properties. Intuitively, the semantics are:
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A[] p for all pathsp holds for all configurations, i.e.,p invariantly holds.
A<> p for all pathsp holds for some configuration, i.e.,p is inevitable.
E[] p for some pathp holds for all configurations, i.e.,p may always hold.
E<>p for some pathp holds for some configuration, i.e.,p is reachable.
p1 --> p2 p1 eventually leads top2.

Formal description

Let Ψ(Φ) be the set of finite timed traces of the modelΦ, a trace inΨ(Φ) is σ[1,K]

of length K. Letting thek’th configuration in a trace be denoted byσ[k], the
following rules define the semantics of the temporal properties:

Φ |= A[] p iff ∀ σ[1,K] ∈ Ψ(Φ) : ∀ k ≤ K : σ[k] |= p

Φ |= A<> p iff ∀ σ[1,K] ∈ Ψ(Φ) : ∃ k ≤ K : σ[k] |= p

Φ |= E[] p iff ¬(Φ |= A<> not p)
Φ |= E<> p iff ¬(Φ |= A[] not p)
Φ |= p1 --> p2 iff ∀ σ[1,K] ∈ Ψ(Φ) : ∀ k ≤ K :

σ[k] |= p1 ⇒ ∃ k′ ≥ k : σ[k′] |= p2

2.4 Example

This section contains an example of a UPPAAL model and TCTL property formu-
lae. The example is a coffee and tea vending machine, see Figure 2.2.

a0a2

c<=5

a1

c<=3

coffee? c:=0 tea? c:=0

coin!

b0 b1

c<=5

b2coin? c:=0 coin?

coffee!

tea!c==5

Thecoffee_unit sends coins to thecontrol_unit and servers a cup
of tea or coffee, when informed to. A cup of tea is server within three time
units, c <= 3 and a cup of coffee within five time units,c <= 5. The
control_unit dispenses either a cup of tea or coffee, depending on the
amount of coins inserted. One coin dispenses a cup of tea if a second coin is not
inserted within five time units, see invariantc <= 5. Locationb2 is urgent,
meaning that when a second coin is received no delay is permitted before the
coffee message is sent.

Figure 2.2: UPPAAL model of a coffee vending machine.



22 UPPAAL

Computation graph

When UPPAAL formally verifies a network of automata, it takes advantage of var-
ious internal data representations. The data representation are not described here,
see [BBD+02] for information about the internal data representations and their
usage.

In order to be able to check for the existence of a message trace a computation
graph is sufficient. The UPPAAL verification engine,verifyta, has support for out-
putting a UPPAAL model as a finite state machine, FSM - note that this is an inter-
nal unpublished version of verifyta. Clocks are not represented in the FSM format
but data variables effect the state space. Figure 2.3 shows the FSM output as a
computation graph for the coffee vending machine example.

Ψ(Φ) = a0, b0 a0, b1 a0, b2

a1, b0

a2, b0

coin coin

tea

coffee

The graph shows the UPPAAL location sets as computation configurations.
There are no variables in the UPPAAL model used in this example. If there
were variables, the possible variable values would be a partof the configura-
tions, e.g., a variable with a range of three in every UPPAAL model location
could triple the number of configurations.

Figure 2.3: FSM computation graph for the vending machine example.

UPPAAL TCTL queries

Next follows some example TCTL queries that can be checked via UPPAAL for the
vending machine example.

• A[] not deadlock: This expression checks the model for deadlocks. If
there is a possibility for a deadlock in the model, this queryreturnsfalse.
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• control_unit.b1 −− > ( coffee_unit.a1 or coffee_unit.a2

): The leads to operator tests for the possibility that a localproperty is
eventually followed by some other property. This example tests that if the
control_unit is in locationb1, i.e., one coin has been deposited, then the
model will eventually be in locationa1 or a2, which means that either a cup
of tea or coffee is dispensed.
The leads to operator must be used with caution, as it is easy to create afalse
trueexpression, i.e., an expression that is satisfied, but not because a property
is eventually followed, but because the first property is never fulfilled. Con-
sidercontrol_unit.b1 and coffee_unit.a2 −− > (coffee_unit.a1

or coffee_unit.a2) is always satisfied, because locationb1 anda2 do
never coincide.

2.5 Summary

UPPAAL is a tool for modelling, simulating, and verifying non-deterministic timed
finite state automata. The supported data types are integers, booleans, and clocks.
Synchronisation between processes are performed through channels, either in the
form of a blocking binary one-to-one synchronisation, or a non-blocking broadcast
one-to-many synchronisation. Communication, i.e., exchange of information must
be performed through shared variables.

The verification of UPPAAL models is performed through the querying of a subset
of TCTL expressions. TCTL expressions consist of two properties, a local property
and a temporal property. The local property is a boolean expression over automata
locations and conditions, whereas the temporal property expresses the range of the
local property, i.e., to what extend in traces and configurations the local property
must be satisfied.

The modelling language of UPPAAL, and the requirement specification language,
TCTL, are specified informally as well as formally in order tobe able to compare
functionality with LSCs. The comparison is used to identifyproperties of LSCs
that can be used to verify UPPAAL models.

Next chapter gives an introduction to LSCs, a limitation of LSC features, and de-
scription of how they are used to specify properties for UPPAAL model verification.
The semantics of the selected LSC subset is formally described.
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As with MSCs, LSCs allow the user to specify scenarios by describing the inter-
object communication. MSCs are often used in the early development stages for
capturing use cases through scenarios, but as development progresses and the de-
signers gain more knowledge about the problem domain as wellas confidence in
their ideas, scenarios characterising the use cases are discovered and defined. This
leads to a desire for more expressive ways of modelling the use cases. LSCs are an
extension of MSCs introducing among other things liveness,i.e., specification of
mandatory versus possible behaviour.
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This chapter presents an informal description of LSC features. The first part of the
informal description is based on the original LSC description by Werner Damm and
David Harel [DH01]. Extensions introduced by Klose in [Klo03] are considered.
The graphical LSC notation used is that from the LSCEditor.

The informal description is partitioned into LSC constructs and LSC behaviour,
the former being the constructive elements that LSCs are built from, and the latter
being how these constructs are used to specify a model behaviour.

A subset of the LSC elements is selected based on what features are relevant for
UPPAAL verification, and what elements that can be modelled by otherelements.
The selected LSC subset is used to reason about the application of LSCs as a re-
quirements specification language for UPPAAL model verification. The limitation
and application of LSC features are described when they are introduced.

Finally, this chapter presents a formal semantics of the selected LSC subset.

3.1 LSC constructs

An LSC is a chart with instances, i.e., objects, along the horizontal axis and time
down the vertical axis, see Figure 3.1. Interobject behaviour is specified as ei-
ther messages or method calls between the instances. An LSC consists of several
constructs used to define the interobject behaviour of a system.

3.1.1 Precharts and activation conditions

To define when a chart is to become active, i.e., when the system should start
behaving according to the chart, each chart is coupled with an initial condition.
This condition can be in the form of anactivation condition(as in MSCs) reflecting
some configuration of the system, but it can also be defined as achart of its own,
called aprechartas in Figure 3.1. In the case of a prechart it is required that the
system exhibits the entire behaviour defined in the prechartbefore the chart itself
becomes active. Both an activation condition and a prechartcan be specified for a
given chart.
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An LSC with two instances. The top chart is a prechart and the bottom chart is
a main chart.

Figure 3.1: LSC with prechart and main chart.

Limitation

An activation condition can be modelled by having a prechartwith only a condition,
see below for description of conditions. Thus, the activation condition construct is
disregarded.

Application

Precharts are tested by traversing the UPPAAL computation graph. When a prechart
is satisfied, the main chart is tested from the configuration reached by evaluating
the prechart. Figure 3.2 displays the connection of the prechart and main chart of
Figure 3.1, the condition must hold in the snapshot from the first message until the
dashed line, and from the dashed line until the next message it is another snapshot,
i.e., snapshots do not overlap from one chart to another.

Snapshots are used to divide a chart into segments, see Figure 3.3 on page 31.
The temperatures of the segments at a given time are collected in the snapshots,
and the temperature of the snapshot is hot if any segment in the snapshot is hot,
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otherwise it is cold. Snapshots correspond to a sequence of configurations in the
FSM computation graph and they are more precisely defined in Section 3.3.

A prechart supports the same constructs as a main LSC, which means that the
following descriptions of LSC constructs must be applied.

The prechart and main chart of Figure 3.1 has been merged to illustrate that
any conditions must hold until the dashed line, from where a new snapshot is in
effect. This means that there are four snapshots in this LSC.

Figure 3.2: The overlap of prechart and main chart.

3.1.2 Universal and existential charts

An LSC has a chart mode that can be eitheruniversalor existential. An existential
chart requires the existence of a trace satisfying the chart, while a universal chart
requires that all traces conform to it. Generally, universal charts are more restric-
tive, and it should be possible to extract more restrictive properties from them. This
is also the case, as existential charts yield a temporal property of a trace exists, E,
and universal charts yield a temporal property offor all traces, A, see Table 3.1 on
page 45. When drawing a universal chart, the box around the chart is a solid line,
whereas a dashed line is used for existential charts.

Application

The chart modes, i.e., existential and universal, are handled such that a message
trace in an existential chart only needs to exist, whereas a message trace in a uni-
versal chart must exist in all traces. This means that if a single trace in a computa-
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tion graph does not conform to the specification in a universal chart, the chart does
not hold.

3.1.3 Temperature

In the original LSC description in [DH01], atemperatureis associated with loca-
tions, conditions, and messages. The temperature can be either hot or cold. Lo-
cationsin an LSC are those points on an instance axis where, e.g., messages and
conditions are attached. Making a location hot means that ithas to be left, thus
enforcing progress down the instance axis. Conversely, a cold location never needs
to be left, and thus the next location may never be reached.

In the LSC subset adopted in this project, temperatures are not associated to lo-
cations, instead coregions and segments have a temperature. The meaning of the
temperature notation for the various LSC elements are summarised in Table 3.1 on
page 45.

The limitations and applications regarding the temperatures for the LSC construct
are given for each construct as they are introduced.

3.1.4 Instances

Instancesare the elementary building blocks of LSCs. Their graphicalrepresenta-
tion has been adopted directly from MSCs, thus instance lines consist of an instance
head with the instance name, the instance end as a black box, and an instance axis
which is a vertical line connecting the head and the end. As inMSCs the hori-
zontal dimension represents the structural dimension, while the vertical dimension
corresponds to the time dimension. Instances are model objects and an instance
of a modelled system is a data-space induced by variable declarations and events.
Variables used in LSCs may be globally or locally declared inthe modelled sys-
tem. Events may be conditions, sending and reception of messages, or creation and
destruction of instances.

Hot instance segments, a segment is a line segment between two events, along an
instance line means that progress along the instance line ismandatory. Utilising
this feature progress is forced down the instance, but as soon as the instance line
reaches a cold segment, progress is no longer enforced. A cold segment means that
the next event never needs to be reached.
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Messages not originating from one of the objects modelled asan instance line in
an LSC are said to come from theenvironment, which can be either non-modelled
objects or an external stimuli. An instance line for ’some other stimuli’ in the
model is thus introduced. It is labelledenvironmentand like normal instance lines
it may communicate with the instances of the chart.

Limitations

The processes in UPPAAL models are created at model construction time and exist
throughout a model’s life-time, this means that explicit object construction and
object destruction is not possible in a UPPAAL model, thus it will not be considered.

To limit the scope of the features to be implemented, the environment instance is
disregarded. This means that if there is communication between an instance and
an object not represented in the chart, the communication isignored as only the
interobject behaviour of the instances in the chart are of interest.

Application

When looking at a message trace, the temperatures of the segments do not matter.
Even though there are some cold instance line segments the message trace must
still exist, albeit it might never be completed in an actual model execution.

If the temperature of any snapshot is hot, progression is enforced for all instance
lines in the given snapshot. In a universal chart this property can be tested with
the leads tooperator in TCTL, because if a snapshot is hot, then computation from
the first snapshot must eventually progress to the second snapshot, i.e., the second
snapshot must eventually be reached from the first.

Figure 3.3 illustrates temperatures of instance lines through a simple universal LSC
with communication between two instances, and both hot and cold segments. First,
the message sequence is tested, i.e., as described in Section 3.1.5 below. Second,
the temperature of the segments can be used to generate properties for the chart.

In snapshot1 both inst1 andinst2 are hot, somsg1 has to be reached, and
therebysnapshot2 also has to be reached. Insnapshot2 only inst2 is hot, but
it forces all other instances, i.e.,inst1, to progress. Insnapshot3 both instance
line segments are cold, meaning that progression is not guaranteed. The possibility
of progression must still exist, i.e., the messagemsg3 must still be possible to be
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The snapshots collect the temperatures of the segments in the snapshot. If a
segment in the snapshot is hot, so is the snapshot, otherwiseit is cold.

Figure 3.3: An LSC with hot and cold instance lines.

sent frominst2 to inst1, and this is checked via the message trace check.

3.1.5 Messages

A message in an LSC is basically the same as a message in an MSC.Two kinds of
messages are considered:

• Synchronous:The sender blocks until the receiver is ready to receive the
message. Sending and reception of the message happens simultaneously.
A horizontal arrow is used to denote a synchronous message. Adelay from
trying to send a message to the acceptance of the request should be expressed
on the vertical axis as progress of time on the sender’s side.

• Asynchronous:Time may pass between sending and reception of the mes-
sage. After the message has been sent, progress may continuealong the
instance line before the message is received. An asynchronous message is
graphically expressed with a slanted arrow.

Figure 3.4 shows the graphical notation of messages.
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Whether a message is synchronous or not is specified through its angle with the
horizon.msg1 is synchronous, as it is parallel with the horizon, andmsg2 is
asynchronous as the message is slanted.

Figure 3.4: Synchronous and asynchronous messages in an LSC.

Interobject method calls are represented by two synchronous messages; the method
call and the return message, and the two messages are paired by widening the
instance lines carrying the method body. A hot message is a message that, when
sent, must be received, and a cold message means that after the message is sent, it
is not required to be received.

Limitations

There are two categories of messages in UPPAAL models; binary and broadcast,
both categories are synchronous, i.e., sending and reception is instantaneous, thus
asynchronous messages in LSCs are discarded.

The binary messages in a UPPAAL model are handshakes, which means that there
are always a sender and a receiver. Broadcast messages on theother hand do not
need to have a receiver. This means that binary messages in the supported LSC
features must be hot, i.e., if a message is sent it must be received. It also means that
it is possible to have cold messages, but then the message must be a broadcast and it
must be specified in a simultaneous region, whereas a single hot broadcast message
needs not be specified in a simultaneous region. See description of simultaneous
regions in Section 3.2.3.

Automata in UPPAAL cannot send messages to themselves, thus such messages
are not included. If they were, it would be to describe internal action steps, but if
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these steps were to be included in a specification it would endup being a complete
description of an automata trace too detailed for a requirement specification.

In LSCs it is possible to have two messages at the same level that are not sent from
the same simultaneous region. An example of this can be seen in Figure 3.5, where
msg1 andmsg2 are exchanged simultaneously.

Specifying simultaneity by two messages at the same time like this is disal-
lowed. Any simultaneity must be specified through simultaneous regions.

Figure 3.5: Two messages exchanged at the same time.

UPPAAL supports sending of binary messages simultaneously using urgent loca-
tions, but because the computation graph does not contain clocks this cannot be
tested. Thus, messages at the same vertical level is not supported, unless they are
in a simultaneous region.

Application

When testing UPPAAL models using TCTL it is not possible to test whether a
sequence of messages occurs in a trace, because there are no constructs in TCTL
referring to messages. The main focus of TCTL is automata locations and variable
values in locations, in other words configurations in UPPAAL models.

To test message sequences the messages are extracted from the LSC and the com-
putation graph is traversed to prove whether the sequence exists.

If a broadcast message only has one receiver in the chart it may be specified by a
hot message, but if the message has several receivers each receiver must be spec-
ified using a simultaneous region sending the same messages to all receivers, Hot
messages are used when the receiver must receive it, and coldmessages are inter-
preted as a broadcast that may be received. A broadcast message is always sent to
all objects, but if a message is not specified in the LSC from a simultaneous region
to an instance, then the broadcast message may not be received by that instance.



34 Live Sequence Charts

3.1.6 Conditions

Conditions may terminate a chart successfully or unsuccessfully depending of their
temperature. A hot condition must be satisfied or the run is terminated unsuccess-
fully. A cold condition does not have to be satisfied, if it does not hold it simply
means that the rest of the chart is disregarded, which is considered a successful
termination of the chart.

Graphically, a hot condition is depicted as a solid hexagon,and a cold condition is
a hexagon with a dashed line, as seen in Figure 3.6. A condition can span more
than one instance meaning that the condition is specified to hold for all spanned
instances. Such ashared conditionmay be used to synchronise instances because
the condition will not be evaluated before all instances have reached the condition,
and no instance will progress beyond the condition before ithas been evaluated.
The rules for hot and cold conditions apply to a shared condition in the same way
as they do for normal conditions.

Hot conditions are given as solid hexagons and cold conditions are given as
dashed hexagons. Conditions may be shared over several instance lines.

Figure 3.6: The types of conditions in LSCs.

A useful feature of conditions is the ability to construct forbidden scenarios. A
prechart with the forbidden scenario may be combined with a universal chart con-
taining just a single hot condition always evaluating tofalse[Bjø04].

Limitations

It is possible in LSCs to attach a condition to a simultaneousregion and it is possi-
ble to have an isolated condition. Klose recommends always attaching a condition
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to a simultaneous region because that gives a definite evaluation point for the con-
dition [Klo03][pp. 118-123]. We choose to not differentiate between a condition
attached to a simultaneous region and an isolated condition. A condition is to hold
for a snapshot and should be evaluated for all possible UPPAAL configurations in
that snapshot. As an isolated condition is intuitively closer to our definition of
conditions, only isolated conditions are allowed.

Application

As with activation conditions, conditions appearing within a chart are boolean ex-
pressions over UPPAAL variables and automata locations.

Conditions are expressed as local TCTL properties and the UPPAAL verification
engine is used for querying these properties. Each condition on an instance line in
a universal chart is checked with a TCTL formula with the following form for each
configuration in the snapshot:

A[] configuration imply condition

If the chart is existential, the formula is:

E<> configuration and condition

Shared conditions are conditions that span more than one instance line. A shared
condition is a snapshot is the same as a single condition on all instances, thus a
shared condition in an LSC is translated into single conditions.

If a hot condition evaluates tofalsethe chart is terminated unsuccessfully, i.e., the
chart does not hold. If a cold condition evaluates tofalsethe LSC verification en-
gine must ignore the rest of the chart, but otherwise report that the chart is satisfied.

3.1.7 Subcharts

A chart may include another chart, which is specified over a set of instances that
may or may not be present in the parent chart. Subcharts may include itself, allow-
ing infinite iteration and thus an infinite number of elementsto be verified. Sub-
charts introduce chart scope, which means that cold conditions not satisfied only
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exit the subchart and not the parent chart. Combining subcharts and cold conditions
yields classical if-then constructs and loop structures such as while-do and repeat-
until. If-then constructs are simply subcharts beginning with cold conditions, and
the loop structures are based on subchart iterations.

Limitation

As the LSC editor used in this project does not support subcharts in this form,
they are not used. The LSCEditor supports an if-then-else construct, and as sub-
charts can be seen as a special instance of the if-then-else,excluding subcharts as
a construct poses no problem. The if-then-else construct isdescribed below.

3.1.8 Coregions

A coregion is used to indicate that partial ordering is imposed on the events con-
tained in the region as opposed to the total ordering presentoutside of a coregion.
A coregion is graphically represented as a vertical dotted line next to the instance
axis as in Figure 3.7.

The coregion, which is given by a dashed vertical line, induces partial order on
inst1, but because the messages are synchronous, the order is still preserved.

Figure 3.7: An LSC with a coregion.

Coregions in [DH01] also act as simultaneous regions, but [Klo03] uses an explicit
construct for simultaneous regions, and thus limits coregions. Because the LSCEd-
itor uses the representation of an explicit simultaneous region this representation is
adopted.
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Limitations

Coregions introduce partial order on a section of an instance line. As only syn-
chronous messages are supported in the LSC subset, a coregion with partial order
would be overridden if the other instance lines involved in the message passing in
the coregion are not declared as coregions, like inScenario1 of Figure 3.8. If a
message is sent, it will be received at the same time. Therefore, a coregion decla-
ration on an instance line will count as a global coregion forall instance lines. This
means thatScenario1 of Figure 3.8 will be interpreted asScenario2.

The interpretation of coregions is that coregions induces no order on messages
for all instance lines. A specification like the one inScenario1 is thus
interpreted as the specification ofScenario2.

Figure 3.8: How coregions are interpreted.

Note, that coregions may not overlap, because it would be uncertain how the se-
mantics is with a message in two coregions. This possibilityis disregarded.

Furthermore, if-then-else constructs inside coregions are not supported. It is not
clear how an if-then-else would be interpreted inside a coregion and including this
construct would add much to the complexity of the verification without contribut-
ing much to the expressive power of an LSC. Only hot messages are supported in a
coregion to keep coregions as simple as possible, thus conditions and simultaneous
regions are not supported either.
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Application

When testing message traces within coregions it is requiredthat multiple traces
must be tested, because there is no ordering between the messages in a coregion,
thus all possible orderings must be tested. The configurations resulting from a
satisfied sequence are used in the remainder of the chart, andif there is more than
one satisfied sequence, then all of these configurations mustbe tested.

A coregion is given a temperature and the temperature has thesame semantics as
snapshots. Thus, if a coregion is cold, progression is not enforced anywhere in the
coregion.

A coregion in the LSCEditor has an explicit temperature. If acoregion is cold, then
there is no guarantee that the coregion is ever left, i.e., progression is not enforced
anywhere in the coregion.

3.2 Extensions to the basic LSC constructs

Next follows some extensions from [Klo03] to the basic LSCs.These extensions
are LSC constructs, which solve some of the shortcomings in the core feature set
presented in [DH01].

3.2.1 If-then-else

An if-then-else construct is added. The construct consistsof a condition and two
LSCs. If the condition evaluates totrue the first subchart is activated, and if the
condition evaluates tofalse, the second subchart is activated. In either case, the
subchart not chosen is skipped. An example of an if-then-else construct can be
seen in Figure 3.9.

Application

When a chart contains an if-then-else construct, the condition of the construct will
determine the full path that must be searched for in the computation graph. The
subchart of the construct will simply be appended to the parent trace. The only
way to test the condition without limiting the condition construct is to use the
verification engine of UPPAAL using TCTL as with a condition element.
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The if-then-else construct states that if the condition evaluates totrue the ’then’
LSC must hold, otherwise it is the ’else’ LSC that must hold.

Figure 3.9: LSC modelling an if-then-else construct.

When using if-then-else constructs it is recommend that cycles are avoided, un-
less well positioned conditions are included, or else an infinite sequence may be
specified.

3.2.2 LSC activation mode

An LSC can be in one of three modes,initial , invariant, anditerative. The initial
mode allows one test with the LSC, namely initially when the system starts. The
invariant and iterative modes allow more test with the same LSC, the difference
between them is that the invariant mode allows more simultaneous incarnations,
i.e., a new incarnation can be activated while another is still in progress. This is
not possible for the iterative chart, where a new incarnation may not be activated if
an existing incarnation is already running.

Limitations

When doing model checking an ignored activation of a chart might be the one
falsifying a property, thus iteration is disregarded [Klo03][pp. 77-79].

Initial mode is also disregarded because this can be modelled by adding the condi-
tion that every instance must be in their initial location tothe activation condition.
This means that the activation mode for LSCs is always invariant.



40 Live Sequence Charts

3.2.3 Simultaneous regions

A simultaneous region allows grouping of several elements that should be observed
at the same time. This enables, e.g., association of conditions and messages to
groups of events. It also allows message broadcast by sending several messages
at the same point in time. If a number of cold asynchronous messages are sent
in a simultaneous region, either all of the messages arrive simultaneously or none
arrive at all.

Graphically, a simultaneous region is denoted with a filled circle surrounding the
location on the instance axis, as can be seen in Figure 3.10.

Two simultaneous regions. One with two messages and one witha message and
a condition.

Figure 3.10: LSC two simultaneous regions.

Limitations

As mentioned in Section 3.1.6 conditions are not allowed to be part of a simul-
taneous region. In fact, the only construct allowed in a simultaneous region is
synchronous messages.

Application

Simultaneous regions are used for modelling broadcast communication. Broadcast
communication in UPPAAL is non-blocking, thus sending of a message does not
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ensure that anyone receives the message. This means that cold messages must
be supported in simultaneous regions. Hot messages are alsosupported, which
means that if a message is sent it must be received. This is notdirectly a UPPAAL

feature, but a feature that can be modelled in an LSC and also verified, because the
engine can take into account that a given message must be sentand received. As
simultaneous regions model broadcasting all messages sentfrom the region must
have the same label.

3.2.4 Time

It is desirable to be able to specify time constraints in an LSC chart. Timers and
timing intervals are introduced to provide this. The boundaries of the intervals can
be given by two types of parenthesis, one for including the bound, ’[’ and ’]’, and
one for excluding the bound, ’(’ and ’)’.

A timer set is represented by an hour glass symbol labelled with a name and a du-
ration. The hour glass is connected to the instance with a straight line. A timeout is
also represented by an hour glass symbol, but contrary to a timer set it is connected
to the instance with an arrow. A timer reset is represented with a large X, which
is connected to the instance line with a straight line. Theremay be only one time-
out or one timer reset associated with a timer set, and they may not span several
instances. A timer set and its corresponding timeout or timer reset are connected
with a vertical line or by labelling them with the same name.

A timing interval needs to be associated with two locations,whereas a timeout is
an event itself, which can be used to delimit constructs suchas conditions, mes-
sages, and even other timer sets. Figure 3.11 shows an example of an LSC with
timing constraints. Apart from the timer reset (T1) and the timeout (T2) there is an
example of a timing interval; the interval betweenmsg1 andmsg3 oninst3.

Limitations

Clocks in UPPAAL are modelled as a part of the set of data variables. When mod-
elling an LSC there is access to the data variables of the UPPAAL model, and as the
data components can be used in conditions, constraints on clocks can be modelled
through conditions on clock variables. This means that the explicit clock mod-
elling features, timer sets, timeouts, and timer resets, are not necessary, and we
thus choose to limit the LSCs by not including them.
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Inst3 must sendmsg3 at least 1 time unit, but less than 6 time units after
msg1 has been received. This is given by the[2,5] time interval, between
msg1 andmsg3 on theinst3 instance line.

Figure 3.11: LSC illustrating Klose’s timer constructs.

3.2.5 Local invariants

[Klo03] also introduces condition constructs that are to hold over a period of time
called local invariants. Like conditions they have a temperature, which is inter-
preted as for conditions, i.e., using solid and dashed linesfor hot and cold, respec-
tively.

Local invariants are represented by a condition spanning a section of an instance
line through connected start and end boundaries. The boundaries can either include
or exclude the reference points denoted by i and e, respectively. A local invariant
with including boundaries is depicted in Figure 3.12.

If local invariants start at an instance head, the referencepoint specifying the start
of the local invariant must be exclusive, as it would otherwise act as an activa-
tion condition for the chart. This also means that adding thelocal invariant to the
activation condition yields the same as inclusion.

Limitations

A local invariant in our LSCs would be the same as a set of conditions, one for
each snapshot covered by the local invariant. Because snapshots set the range of a
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Both boundaries of the local invariant are included in the invariant, given by the
’i’. Exclusion of a boundary is given by ’e’.

Figure 3.12: LSC with a local invariant.

condition, local invariants would have to be restricted to span a snapshot, thus have
the same meaning as a condition. Local invariants are thus disregarded, because
they can be modelled by conditions.

3.3 LSC behaviour

The understanding of the LSC subset adopted in this project except snapshots
should be clear. Snapshots is now defined in full and a summaryof the manda-
tory and provisional behaviour and notions of the constructs are summarised in
Table 3.1 on page 45.

Snapshots are collections of instance lines separated onlyby messages, if-then-
else, coregion, and simultaneous region constructs. The beginning and end of a
chart are also snapshots. An empty chart thus only contain one snapshot, and
likewise for charts containing only conditions.

In addition, the snapshot ending a prechart is the same snapshot that starts the
main chart, recall Figure 3.2, and the snapshots starting and ending a subchart are
the same as the ones ending at and starting from the subchart.
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When considering a model, a snapshot consists of all possible FSM configurations
at that point in the LSC. The snapshot for an LSC after a given synchronisation
consists of the FSM configuration the synchronisation ends in as well as all config-
urations reachable by internal transition steps and synchronising steps that synchro-
nise a process not represented in the chart with any other process, see Figure 3.13,
and these steps are referred to asintermediate transition steps. The FSM computa-
tion graph is thus to be traversed in order to find the span of the snapshot for each
trace in the model. If a condition is to be satisfied in a snapshot, the sequence of
configurations in the snapshot must all satisfy the condition.

The messages separate snapshots, and as conditions are partof snapshots, all
configurations insnapshot2must satisfy the conditioncondition.

Figure 3.13: An LSC divided into snapshots.
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Element Semantics Mandatory Provisional
Chart Mode Universal: All

runs of the sys-
tem must satisfy
the chart.

Existential: At
least one run of
the system satis-
fies the chart.

Segment Temperature Hot: Progression
is enforced down
the instance.

Cold: Progres-
sion is not en-
forced.

Message Temperature Hot: If message
is sent it will be
received.

Cold: If message
is sent it may be
received.

Condition Temperature Hot: If condi-
tion does not hold
chart is not satis-
fied.

Cold: If condi-
tion does not hold
chart is satisfied.

Coregion Temperature Hot: A coregion
is always left.

Cold: There is no
guarantee that the
coregion is left.

The notation and liveness properties for the selected subset of LSC constructs.

Table 3.1: Liveness properties of the selected LSC constructs.
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3.4 Formal description

The previous sections presented an informal description ofthe LSC language and a
comparison with UPPAAL models in order to establish the selected feature set used
to verify UPPAAL models. The feature set is described formally based on [Klo03]
and [DH01]. This section specifies when an LSC holds for a UPPAAL model, by
first describing the abstract syntax of an LSC and second setting up semantical
rules for interpreting a chart and its elements.

An LSC specification for a system is a tuple:

Υ = 〈pch, mode, chart〉

• pch is an optional prechart that specifies a triggering behaviour leading to
the point of activation of the LSC. It is an LSC in itself that needs to be tra-
versed successfully beforechart is traversed. A special case is an activation
condition, which can be modelled as a hot condition in the prechart.

• mode ∈ {existential, universal} is the mode of the chart.

• Thechart is a finite sequence of elements connecting instance lines. An in-
stanceinst is a member of the finite setI, and each instance line corresponds
to an instance of an automatonΦ. Elements are: Messagesm of the finite set
M, simultaneous regionssimof the finite setSIM, if-then-else constructs
if of the finite setIF , and coregionsco of the finite setCO. Simultaneous
regions, if-then-else constructs, and coregions are sequences of elements.

The elements are separated by snapshotss of the finite setS. Snapshots may
contain a number of conditions, at most one for each instanceline. Only
the UPPAAL configurations corresponding to the snapshot need to satisfy
the conditions in the snapshot. Evaluation of conditioncx on instx is han-
dled by the functioncx, which gives a truth value for the condition, given
a configuration of the network of automata. If a snapshot doesnot contain
a condition, then it is said to contain the hot conditiontrue. In the syntax
the conditions and snapshots are given separately. In addition, if-then-else
constructs contain conditions, and as these constructs arenot carried by any
specific instance line, a functionc to evaluate the conditionc over all in-
stance lines is introduced. It returns the truth value of such a condition given
a configuration and it evaluates totrue just when the condition holds for all
of the instance lines.

A chart has the form specified in the following BNF:
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chart ::= snapshot hot-condition cold-condition element chart′

| snapshot hot-condition cold-condition

snapshot::= hot-snapshot| cold-snapshot

hot-snapshot::= ———

cold-snapshot::= -----

hot-condition::= ci hot-condition′ | ci where conditionci ∈ C
andinsti ∈ I is the
corresponding instance line

cold-condition::= ci cold-condition′ | ci where conditionci ∈ C
andinsti ∈ I is the
corresponding instance line

element::= hot-msg| sim | if-then-else
| hot-coregion| cold-coregion

sim ::= sim-element sim′

| sim-element

sim-element::= hot-msg| cold-msg

hot-msg::= instA
m
−→ instB whereinstA, instB ∈ I

∧ instA 6= instB ∧ m ∈ M

cold-msg::= instA
m

99K instB whereinstA, instB ∈ I
∧ instA 6= instB ∧ m ∈ M

if-then-else::= condition chart′ chart′′

condition ::= c wherec ∈ C

hot-coregion::= hot-msg hot-coregion′

| hot-msg

cold-coregion::= hot-msg cold-coregion′

| hot-msg
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3.4.1 Semantics

In the following, It is defined inductively, when an LSC chartis satisfied or mod-
elled by a finite subtraceσ[k, k′′], denoted,σ[k, k′′] |= chart.

If a prechartpch has been specified the subtraceσ[k, k′′] must first satisfypch

before satisfying the LSC bodychart as illustrated in Figure 3.14. The LSC holds
for a UPPAAL model depending on themode of the chart:

• If mode = existentialthere exists a traceσ[1,K] such that:

∃ k, k′, k′′ : σ[k, k′] |= pch ∧ σ[k′, k′′] |= chart

This essentially means, that at least a single trace of the system needs to
satisfy the prechart as well as the chart.

• If mode = universalthen for all tracesσ[1,K], it is the case that:

∀ k, k′, k′′ : σ[k, k′] |= pch ⇒ σ[k′, k′′] |= chart

This means that all traces of the system satisfying the prechart must also
satisfy the chart.

k k’ k’’chartpch

A subtraceσ[k, k′′] must first satisfypch and then immediately satisfychart.

Figure 3.14: The order of the charts to be satisfied by a trace.
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Chart

The following rule specifies when a subtrace models a chart. It extracts a snapshot,
the conditions in the snapshot, and an element from the chartand ensures that they
as well as the rest of the chart hold for the subtrace in question.

First, if the snapshot and its conditions hold, second, the element is satisfied by
the last configuration satisfying the snapshot, and third, the rest of the chart holds
for the last configuration satisfying the element, then the chart is modelled by the
subtrace. The subtrace also models the chart, if the snapshot and its hot conditions
hold, but its cold conditions do not:

σ[k, k′′] |= snapshot hot-condition cold-condition element chart′

iff ∃ i, k′ : k ≤ i < k′ ≤ k′′

∧ σ[k, i] |= snapshot
∧ σ[k, i] |= hot-condition
∧ σ[k, i] |= cold-condition
∧ σ[i, k′) |= element
∧ σ[k′, k′′] |= chart′

∨
k ≤ i < k′ ≤ k′′

∧ σ[k, i] |= snapshot
∧ σ[k, i] |= hot-condition
∧ σ[k, i] 6|= cold-condition

Snapshots

In UPPAAL models configuration changes are caused by transitions, internal tran-
sition steps or synchronisation steps, and as synchronisation steps would need to
be specified in the chart in the form of messages in order for the successive con-
figurations to be traversed, these steps are excluded from snapshots. It is thus a
requirement that the subtrace to satisfy a snapshot only consists of internal transi-
tion steps or synchronisation steps where no instance line represent the sender or
that none of the receivers are represented. Remember, thesetransition steps are
referred to asintermediate transitions.

Snapshots are handled by the following rules. The first two rules handle the se-
mantics of the temperature of the snapshots as well as makingsure the subtrace is
a sequence of intermediate transitions.
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σ[k, k′] |= ———

iff ∀ i : k ≤ i ≤ k′ ⇒ MD(σ[i]) < ∞

where the transitionσ[j]
S

−→ σ[j + 1]
is an intermediate transition fork ≤ j < k′

A subtrace satisfies a hot snapshot when the maximum delay of each configuration
is finite. The maximum delay functionMD defined in Section 2.2.2 is used for re-
stricting the delay. Also, the subtrace may only consist of intermediate transitions:

As cold snapshots do not disallow the subtrace to take unbounded time, the progress
restriction does not apply. Again, the subtrace may only consist of intermediate
transitions:

σ[k, k′] |= -----

where the transitionσ[i]
S

−→ σ[i + 1]
is an intermediate transition fork ≤ i < k′

Condition

In order for a subtrace to satisfy a set of conditions in a snapshot the conditions
must hold for all configurations in the subtrace, i.e., the conditions are invariant
over the subtrace.

The hot conditions of a snapshot are satisfied when

σ[k, k′] |= ci hot-condition′

iff σ[k, k′] |= hot-condition′

∧ ∀ j : k ≤ j ≤ k′ ⇒ σ[j] |= ci

and the following rule evaluates the cold conditions of the snapshot:

σ[k, k′] |= ci cold-condition′

iff σ[k, k′] |= cold-condition′

∧ ∀ j : k ≤ j ≤ k′ ⇒ σ[j] |= ci

A configuration satisfies a condition if the condition holds for the instance line
carrying the condition:
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σ[k] |= ci

iff ci(σ[k]) = true

Likewise, if a condition is carried by an if-then-else it is satisfied by a configuration
if the condition evaluates totrue:

σ[k] |= c

iff c(σ[k]) = true

Messages

If the element is a hot message then the subtrace satisfies thehot message if the
message corresponds to either a binary or a broadcast synchronisation over a chan-
nel between UPPAAL automata. At least two automata involved in the synchroni-
sation must change active locations because the hot messageis always received,
and the automata must correspond to the ones specified in the LSC chart:

σ[k, k′] |= instA
m
−→ instB

iff σ[k]
m
−→ σ[k′]

where σ[k] = (〈. . . , li, . . . , lj , . . .〉, v)
∧ σ[k′] = (〈. . . , l′i, . . . , l

′
j , . . .〉, v

′)

∧ Φi = instA ∧ Φj = instB

If the element is a cold message then the subtrace satisfies the cold message if
the message corresponds to a broadcast synchronisation over a channel between
UPPAAL automata. Furthermore, the automata involved in the synchronisation
change active locations if the synchronisation is received. If it is not received by
any automata, only the sender changes active location:
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σ[k, k′] |= instA
m

99K instB

iff σ[k]
m
−→ σ[k′]

where σ[k] = (〈. . . , li, . . . , lj , . . .〉, v)
∧

σ[k′] = (〈. . . , l′i, . . . , l
′
j , . . .〉, v

′)

∨ σ[k′] = (〈. . . , l′i, . . . , lj , . . .〉, v
′)

∧
Φi = instA ∧ Φj = instB

Simultaneous regions

In order for a subtrace to satisfy a simultaneous region, it must satisfy all the ele-
ments in the simultaneous region:

σ[k, k′] |= sim-element sim′

iff σ[k, k′] |= sim-element
∧ σ[k, k′] |= sim′

If-then-else

If the element is an if-then-else, then if the condition holds, the ’then’ chart must
be satisfied by the configuration, or else the ’else’ chart must be satisfied. The
subtrace satisfies the if-then-else if the subchart decidedby the condition holds for
the subtrace:

σ[k, k′] |= condition chart′ chart′′

iff σ[k] |= condition
∧ σ[k, k′] |= chart′

∨
σ[k] 6|= condition
∧ σ[k, k′] |= chart′′

Coregion

In order for a subtrace to satisfy a coregion, it must satisfyall the elements in
the region in any order. This is done by extracting arbitraryelements from the
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coregion, which the subtrace must satisfy until the last element is extracted. In
order to do this in a precise, yet simple, manner the elementsin a coregion are
collected in the setSM from which each element that is satisfied can be extracted.
Below, σ[k′, k′′] |= SM\ {e} denotes thatσ[k′, k′′] satisfies the remaining set of
messages. The empty set is always satisfied.

The rule for hot coregions can now be defined. A hot coregion must adhere to the
liveness requirements of hot snapshots, thus

σ[k, k′′] |= hot-coregion

iff ∃ i, k′ ∃ e ∈ SM :
∧ k ≤ i < k′ ≤ k′′

∧ MD(σ[i]) < ∞
∧ σ[i, k′] |= e
∧ σ[k′, k′′] |= SM\ {e}

and the transitionσ[j]
S

−→ σ[j + 1]
is an intermediate transition fork ≤ j < k′ − 1

If instead the coregion is cold, progress is not enforced. Using the setSMagain:

σ[k, k′′] |= cold-coregion

iff ∃ i, k′ ∃ e ∈ SM :
∧ k ≤ i < k′ ≤ k′′

∧ σ[i, k′] |= e
∧ σ[k′, k′′] |= SM\ {e}

and the transitionσ[j]
S

−→ σ[j + 1]
is an intermediate transition fork ≤ j < k′ − 1

3.5 Summary

LSCs are an extension of standard MSCs. The main extensions are a formal seman-
tical basis, treatment of conditions as first-class citizens, and liveness properties.
Liveness is added on both chart level and element level. On the chart level it is the
difference between universal vs. existential charts, and on the element level it is
the difference between hot and cold elements.

An informal description of LSCs are presented, including the limitations in the
application of LSCs as a requirements specification language for UPPAAL. [DH99]
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and [DH01] are used as a basis for the LSC specification and extensions presented
by [Klo03] are considered as well. A subset of the LSC specification is identified
and used for the diagrammatic requirements specifications for UPPAAL models.
The subset consists of:

• Charts:Both existential and universal charts are supported, as well as precharts
as the handling of these are not very different than a main chart. Activation
conditions are disregarded, as they can be modelled with a condition in a
prechart.

• Messages:Asynchronous messages are not supported as UPPAAL only sup-
ports synchronous communication. Binary synchronisationin UPPAAL must
have both a sender and a receiver to exist, thus only hot messages are sup-
ported. In simultaneous regions both hot and cold messages are supported,
as a broadcast message in UPPAAL may not have any receivers.

• Conditions: Both hot and cold conditions are supported including shared
conditions, which are translated to single conditions on each of the instance
lines to share the condition.

• Coregions:Coregions are supported, but in a slightly modified form. Core-
gions are made global across the structural dimension, meaning that no order
is imposed on the ordering of messages within a coregion. Only messages
are supported within them, No snapshots are within them, only messages.
In addition, coregions have a temperature, specifying whether progression is
enforced within the region.

• Simultaneous regions:Simultaneous regions are supported and their appli-
cation is to model broadcast synchronisation in UPPAAL models. Both hot
and cold messages are supported in a simultaneous regions, hot means that
the message must be received and cold that it may or may not.

• If-then-else:One of the extensions of Klose is an if-then-else construct.An
if-then-else consists of a condition and two subcharts. Theevaluation of the
condition decides which of the charts is to be traversed.

A formal specification of the semantics for the LSC subset used in the PEEL ver-
ification engine is presented. The specification is induced from the syntax, which
makes it suitable for the implementation of PEEL

Next chapter gives an introduction to the tools used for specifying LSC diagrams,
extracting and traversing UPPAAL models, and an introduction to PEEL and its
implementation is presented.
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This chapter presents the tools used for specifying LSC diagrams, the LSCEdi-
tor, extraction of the computation graph from UPPAAL models, the FSM format,
and the PEEL verification engine, consisting of the PEEL LSC Parser, PEEL FSM
Parser, and PEEL Verifier.

Figure 4.1 presents the data-flow graph for the PEEL verification engine and the
two additional tools used. The individual elements of this process are presented in
this chapter.
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An LSC diagram is made using the LSC editor and is saved to a file. This
file is then parsed by the PEEL LSC Parser which extracts LSC elements and
structures them into a sequence, complete with subchart hierarchy. The UP-
PAAL verification engine takes the UPPAAL model to be verified, and outputs
an FSM computation graph. Note, in order to get this output, an internal version
of UPPAAL supporting this feature must be used. The FSM computation graph
is parsed by the PEEL FSM Parser into a PEEL FSM computation graph. The
PEEL LSC sequence and the PEEL FSM computation graph are the inputs to the
PEEL Verifier, which checks the sequence against the computationgraph. The
PEEL Verifier outputs whether the model satisfies the LSC specification or not.

Figure 4.1: Data-flow diagram for PEEL.

4.1 LSCEditor

The editor used for the LSC diagrams, the LSCEditor, see Screenshot 4.2, is most
kindly supplied by the Carl von Ossietzky Universität Oldenburg, Germany.

The LSCEditor is consistent with the features described in Klose’s dissertation [Klo03].
Not all features are described here, only those included in the PEEL LSC subset.

As for the LSCEditor itself, it is quite intuitive to use. When creating a new dia-
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Screenshot of the LSCEditor displaying a scenario from the Distributed Control
experiment, see Chapter 5 for the experiment.

Figure 4.2: Screenshot displaying the LSCEditor.

gram, you must specify various settings before the chart is created, e.g., if the chart
is universal or existential, and if the chart should have a prechart or not. When
the chart is created, a number of instance lines may be added to the chart. When
adding an instance it must be specified whether the beginningof the instance line
should be hot or cold. An instance contains locations along the line (more can be
added if needed). All the events in the chart must be associated to one or more
locations.

When drawing a message between two instances, you specify the temperature of
the message and the temperature of the instance line of the sending and receiving
instance, after sending and reception, respectively.

When placing a condition on an instance line, the temperature of the condition as
well as the temperature of the instance line below the condition must be specified.
A boolean expression can be entered in the condition. There is a certain syntax
when specifying conditions due to the dependency of the UPPAAL engine, and
thereby TCTL:
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• When referring to a specific location in an automaton, the automaton and
location are separated by a dot, e.g., “train.stopped”. Likewise, if a variable
associated to an automaton should be tested, they are also separated by a
dot, e.g., “train.x”. The automaton name in the condition must of course
correspond to a UPPAAL automaton.

See also the TCTL syntax in Section 2.3 for a more thorough description of the
TCTL syntax used in conditions.

A coregion is placed on the vertical axis along the instance line attached to two
locations. The coregion specifies that all messages along the instances in the hori-
zontal direction have no order.

A simultaneous region is created by marking a location on an instance line as a
simultaneous region, and then placing one or more messages in this location.

Another element which can be placed in the chart, is an if-then-else. This construct
consists of a condition which, based on the boolean expression, decides which of
the two subcharts should be used. This if-then-else construct is also placed in
a location, and spans across all instances so that they will evaluate the subchart
condition simultaneously.

Examples of the above constructs can be seen in Section 5.2.

4.1.1 LSC output format

The LSCEditor has two LSC representation modes, standard mode, and map table
mode. The standard mode does not allow labels to clash, e.g.,two messages cannot
carry the same message label. Also, the LSC is saved in one file, theLSC-file. The
map table mode does not limit the usage of labels. The map table mode generates,
in addition to the LSC file, a map file, themap-file, with all element ids, which
means that labels are still unique, but can carry the same text.

PEEL uses the map table mode, because this enables the specification of more than
one message with the same label. The labels refer to channel names, which means
that a message between two instances with labelcoin is a synchronisation via the
coin channel in the UPPAAL model.

Next follows examples of an LSC diagram, its map-file, and itsLSC-file, see Fig-
ures 4.3, 4.4, and 4.5. The LSC is for the coffee vending machine example intro-
duced in Chapter 2.
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The left is the prechart, and the right is the main chart.

Figure 4.3: LSC for the coffee vending machine example.

RHAPSODY
lscid_9 = , ER, lscid_3, lscid_2, VERBATIM coffee;
lscid_15 = , ER, lscid_2, lscid_3, VERBATIM coin;
lscid_13 = , ER, lscid_3, lscid_2, VERBATIM coffee;
lscid_10 = , ER, lscid_2, lscid_3, VERBATIM coin;
lscid_14 = , ER, lscid_2, lscid_3, VERBATIM coin;
lscid_7 = , ER, lscid_5, lscid_6, VERBATIM coin;
lscid_8 = , ER, lscid_5, lscid_6, VERBATIM coin;
lscid_2 = , INST, , , VERBATIM control_unit;
lscid_3 = , INST, , , VERBATIM coffee_unit;
lscid_5 = , INST, , , VERBATIM control_unit;
lscid_6 = , INST, , , VERBATIM coffee_unit;
lscid_1 = , COND, , , VERBATIM ;
lscid_4 = , COND, , , VERBATIM ;

Figure 4.4: Map file for the vending machine example.

4.1.2 Property extraction

The LSC-fileand themap-fileis parsed into an intermediate format, documented
in Appendix B, Figure B.1, from which the sequence of LSC elements is gener-
ated, see Figure B.2. The parsing into the intermediate format only includes those
elements that are in the PEEL LSC subset, i.e., the supported LSC features.
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lscdocument created_By_LSCEdit;
universal lsc coffee3_test
activation condition : condexpr lscid_1 endexpr
activation mode invariant prechart coffee3pre;
instance hot lscid_2 ’anzloc=26’;

hot concurrent;
out hot lscid_9,129 to lscid_3 ’2’;
in hot lscid_15,0 from lscid_3 ’4’;
out hot lscid_13,0 to lscid_3 ’6’;
in hot lscid_10,1 from lscid_3 ’8’;

endconcurrent ’1;2;3;4;5;6;7;8;9;’;
hot in hot lscid_14,1 from lscid_3 ’11’;

hot endinstance; end
instance hot lscid_3 ’anzloc=26’;

hot in hot lscid_9,129 from lscid_2 ’2’;
hot out hot lscid_15,0 to lscid_2 ’4’;
hot in hot lscid_13,0 from lscid_2 ’6’;
hot out hot lscid_10,1 to lscid_2 ’8’;
hot out hot lscid_14,1 to lscid_2 ’11’;

hot endinstance; end
endlsc;
universal prechart lsc coffee3pre
activation condition : condexpr lscid_4 endexpr
activation mode initial;
instance hot lscid_5 ’anzloc=22’;

hot in hot lscid_7,17 from lscid_6 ’2’;
hot in hot lscid_8,1366909696 from lscid_6 ’4’;

hot endinstance; end
instance hot lscid_6 ’anzloc=22’;

hot out hot lscid_7,17 to lscid_5 ’2’;
hot out hot lscid_8,1366909696 to lscid_5 ’4’;

hot endinstance; end
endlsc;

Figure 4.5: LSC file for the vending machine example.
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4.2 UPPAAL computation graph

The computation graph of UPPAAL is described as a symbolic state transition sys-
tem. The people behind UPPAAL have provided a means of retrieving a represen-
tation of the state machine in the form of a file dump, the format used by FSM
Visualizer [fsm].

In order to have PEEL use this format, a parser is required. First, the input format of
FSM Visualizer is presented, followed by a textual and graphical representation of
the graph, which is used in the implementation of the parser.Finally, the algorithm
for traversing the graph in order to verify message sequences is given.

4.2.1 Graph representation

The input format used by the FSM Visualizer describes a graph, and it consists of
three parts, state variable declarations, configurations,and transitions between the
configurations. The parts are separated in the file by a singleline containing the
string "---", see Figure 4.6.

A variable declaration includes the name, the cardinality of the value domain, the
type, and a list of the possible values of the variable. A configuration consists of a
list of variable value indexes, one for each variable. Each transition includes two
configuration IDs, one for the configuration being exited andone for the configura-
tion being entered. Also, the synchronisation labels are included, giving the label
of the sending automaton first followed by any receivers’ labels. If the transition is
internal, it is labelled with ’tau’ and the automaton in question is given.

The above graph description in Figure 4.6 is parsed by the FSMparser and used
by the PEEL verification engine to check if the LSC requirements are fulfilled. The
graphical representation is displayed as a graph in Figure 4.7.
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control_unit(3) State ‘‘b0’’ ‘‘b0’’ ‘‘b0’’
coffee_unit(3) State ‘‘a0’’ ‘‘a2’’ ‘‘a1’’
traceId(0)
---
1 1 0
0 0 1
0 1 18
1 0 6
2 0 10
0 2 14
---
1 2 ‘‘fake’’
2 2 ‘‘control_unit.tau’’
6 2 ‘‘control_unit.tau’’
3 2 ‘‘control_unit.tau’’
2 4 ‘‘coffee_unit.coin! control_unit.coin?’’
4 5 ‘‘coffee_unit.coin! control_unit.coin?’’
4 6 ‘‘control_unit.tea! coffee_unit.coin?’’
6 6 ‘‘control_unit.tau’’
5 3 ‘‘control_unit.coffee! coffee_unit.coffee?’’
3 3 ‘‘control_unit.tau’’

The textual FSM graph description for the coffee vending machine, see Fig-
ure 2.2 in Chapter 2.4 for an illustration.

Figure 4.6: FSM graph for the vending machine example

a0, b0 a0, b1 a0, b2

a1, b0

a2, b0

coin coin

tea

coffee

The graph shows the UPPAAL location sets as computation configurations.
There are no variables in the UPPAAL model used in this example. If there
were variables, the possible variable values would be a partof the configura-
tions, e.g., a variable with a range of three in every UPPAAL model location
could triple the number of configurations.

Figure 4.7: FSM computation graph for the vending machine example.
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4.3 Verification algorithm

This section presents the algorithm that has been constructed for verifying an LSC
chart. The algorithm is presented in a pseudocode format. The overall algorithm
consists of seven functions; one that starts off the verification, a manager function
that controls the flow of the algorithm, and five specialised algorithms that handle
one LSC element type each. The specification for the algorithm is the semantics
defined for LSCs in Section 3.4, and each ’holds’ algorithm corresponds directly
to a semantic rule found in that section.

Algorithm 1,startVerify, iterates over all configurations in the FSM graph call-
ing traceRunner for each configuration. In other words, it starts the verification
with each configuration as the start-configuration. In case of a universal chart, all
traceRunner calls must returntrue in order for the chart to be satisfied, this is
handled instartVerify. If a universal chart is not satisfied, the error is not re-
turned to this function, but is handled in the function whereit is discovered. In the
case of an existential chart that is not satisfied, this is also handled in this function
through theallTrue variable. But if an existential chart is satisfied, i.e., a trace
in the FSM graph is found that matches the LSC sequence,traceRunnerwill not
return to this function.

1: allTrue := true {only used for existential LSCs}
2: for each configurations c in FSM Graphdo
3: if ! traceRunner(c, 0)then
4: allTrue := false
5: end if
6: end for
7: if allTrue == truethen
8: exit(success)
9: else

10: exit(error)
11: end if

Algorithm 1: void startVerify()

Algorithm 2,traceRunner, is designed as a depth-first graph traversal algorithm.
traceRunner controls the verification algorithm through a switch-case structure
that identifies the current element that needs to be satisfied, and runs the appropriate
holds-function for that element. It also ensures that no trace needs to be traversed
more than one time in the same tau-subtree thereby eliminating the possibility of
running in an endless loop. An example of this can be seen in Figure 4.8. This is
achieved through a colouring scheme, where a global counteris used to ’colour’
configurations with the ’colour’ of the current trace. An LSCsequence is always
ended by anEndOfSequenceelement. IftraceRunner reaches the EndOfSe-
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quence element for the main chart and the chart is existential, the algorithm has
found the trace that it was searching for and it exits with a success message. If the
chart is universal, it simply returnstrue, as it is necessary that all traces reach the
EndOfSequence element. This is controlled in Algorithm 1. If an EndOfSequence
element is reached and the current chart is a subchart, the algorithm returnstrue.
This will then propagate up to the if-then-else element where the subchart was
started, and the trace will continue after that element. Thealgorithm is designed
to usetraceRunner to dive deeper into the recursion tree. This means that for
each call oftraceRunner the depth of the graph traversal is increased, except for
a EndOfSequence element.

Conf1

Conf2

Conf3

a

tautau

Confx

Conf3

tau

When traversing this computation tree, there is no need to gointo the sub-tree
in the dotted box, asConf3 has already been visited and its subtree traversed.

Figure 4.8: FSM computation graph traversion.
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1: if configuration has been visited in this tracethen
2: return true
3: else
4: mark this configuration as visited
5: end if
6: switch (type of sequence element)
7: caseEndOfSequence:
8: if chart is a subchartthen
9: return true

10: else ifchart is a prechartthen
11: return traceRunner(c, 0)
12: else
13: if chart is existentialthen
14: exit(success)
15: else
16: return true
17: endif
18: endif
19: caseSnapshot:
20: return holds_snapshot(configuration, sequenceIndex)
21: caseMessage:
22: allMessagesHold := true
23: for all outedges in configuration that are not ’tau’ edgesdo
24: if not holds_message(outedge, sequenceIndex)then
25: allMessagesHold := false
26: if chart is universalthen
27: exit(error)
28: end if
29: end if
30: end for
31: return allMessagesHold
32: caseCoregion:
33: if ! holds_coregion(configuration, sequenceIndex, messageList)
34: if chart is universal
35: exit(error)
36: end if
37: return true
38: caseIfThenElse:
39: return holds_ifthenelse(configuration, sequenceIndex)
40: caseSimregion:
41: allMessagesHold := true
42: for all outedges in configuration that are not ’tau’ edgesdo
43: if ! holds_simregion(outedge, sequenceIndex)then
44: allMessagesHold := false
45: if chart is universalthen
46: exit(error)
47: end if
48: end if
49: end for
50: return allMessagesHold
51: end switch

Algorithm 2: bool traceRunner(configuration, sequenceIndex)
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Algorithm 3, holds_snapshot, ensures that a snapshot is satisfied. It tests all
the conditions in the snapshot, and if they are satisfied, thesnapshot is satisfied.
It takes into account the temperature of the condition, and whether the chart is a
prechart or a main chart. If all conditions evaluate totrue, the trace just continues,
but if one condition fails, there are different outcomes. Ifthe chart is a prechart and
the condition is hot, the trace returnstrue, if the condition is cold, the rest of the
prechart is disregarded and the algorithm jumps to the main chart. If the chart is
the main chart and the condition is hot, the algorithm exits with an error, and if the
condition is cold, the rest of the chart is disregarded. Thismeans that if the trace is
in a subchart and a cold condition evaluates tofalse, the subchart is exited, and the
parent chart continues.

Algorithm 4,holds_message, on page 68 checks that an edge in the FSM graph
is satisfied by the LSC chart. The edge is tested for its label,its source instance’s
label, and its target instance’s label. If the edge is satisfied, the algorithm continues
by callingtraceRunner on the target configuration of the edge and incrementing
the sequenceIndex, i.e., the next element in the LSC chart isto be tested. If the
edge is not satisfied, its target and source instance lines are checked to see if they
are defined in the chart at all. If one of them are not, the edge is treated as a ’tau’
edge, and the trace is continued from the edge’s target configuration.

Algorithm 5holds_coregion on page 69 tests a list of messages to see if a trace
through the FSM graph is possible that corresponds to a permutation of the list.
This is done by matching the messages in the list one by one to edges in the FSM
graph, and removing them from the list as they are found. If anedge is found
which target or source instance line is not defined in the chart, the edge is treated
as a ’tau’ edge in the same way as in Algorithm 4. If a trace is found, the algorithm
callstraceRunner and it continues with the sequence.

Algorithm 6, holds_simregion on page 70, checks that an edge in the FSM
graph is satisfied by the simultaneous region defined in the sequence. It checks
that each of the edge’s receivers correspond to the ones defined in the LSC chart.
If a receiver instance line in the edge is not defined in the LSCchart, that receiver
is disregarded. If all receivers are either defined or disregarded the simultaneous
region is satisfied and the algorithm continues by callingtraceRunner on the
target configuration of the edge.

Algorithm 7, holds_ifthenelse on page 70, handles an if-then-else construct.
An if-then-else construct cannot fail in it self, but the rest of the sequence, be
it the then-part or the else-part, can fail and that will be sent back by this algo-
rithm. The algorithm saves the old sequence, and startstraceRunner with the
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1: allTrue := true
2: if all conditions in snapshot evaluate to truethen
3: for all outedges in configurationdo
4: if outedge is a ’tau’ transitionthen
5: if ! traceRunner(outedge.targetConfiguration, sequenceIndex) then
6: allTrue := false
7: end if
8: else
9: if traceRunner(configuration, sequenceIndex+1) returns falsethen

10: allTrue := false
11: end if
12: end if
13: end for
14: return allTrue
15: else
16: if temperature of condition is Hotthen
17: if chart is mainchartthen
18: if chart is universalthen
19: exit(error)
20: else
21: return false
22: end if
23: else
24: return true
25: end if
26: else
27: if chart is prechartthen
28: if trace is in a subchartthen
29: return true
30: else
31: return traceRunner(configuration, 0) {traceRunner is started on the mainchart se-

quence}
32: end if
33: else
34: return true
35: end if
36: end if
37: end if

Algorithm 3: bool holds_snapshot(configuration, sequenceIndex)

new sequence, as decided by the condition. When the new sequence is returned
holds_ifthenelse activates the former sequence, and continues the trace by
callingtraceRunner on the next sequence element.
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1: if edge is a broadcast messagethen
2: if only one receiver of edge is defined in chartthen
3: continue with the edge
4: else
5: if chart is prechartthen
6: return true
7: else
8: return false
9: end if

10: end if
11: end if
12: if edge match the message in sequence[sequenceIndex]then
13: return traceRunner(edge.targetConfiguration, sequenceIndex+1)
14: else
15: if both target instance and source instance of edge is defined inchartthen
16: return chart is prechart
17: else
18: return traceRunner(edge.targetConfiguration, sequenceIndex)
19: end if
20: end if

Algorithm 4: bool holds_message(edge, sequenceIndex)
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1: oneTrue := false
2: if no messages in coregionthen
3: return traceRunner(configuration, sequenceIndex+1)
4: end if
5: if configuration has been visited in coregion-tracethen
6: return false
7: else
8: mark this configuration as visited
9: end if

10: for all outedges in configurationdo
11: if outedge is a ’tau’ edgethen
12: if holds_coregion(outedge.targetConfiguration, sequenceIndex, messagesInCoregion)

then
13: oneTrue := true
14: end if
15: else
16: if edge is found in messagesInCoregionthen
17: if holds_coregion(outedge.targetConfiguration, seqIndex,messagesInCoregion - out-

edge)then
18: oneTrue := true
19: end if
20: else
21: if target instance or source instance of edge is not defined in chart then
22: if holds_coregion(outedge.targetConfiguration, sequenceIndex, messagesInCore-

gion) then
23: oneTrue := true
24: end if
25: else
26: if chart is prechartthen
27: return true
28: else
29: if chart is universalthen
30: exit(error)
31: end if
32: end if
33: end if
34: end if
35: end if
36: end for
37: return oneTrue

Algorithm 5: bool holds_coregion(configuration, sequenceIndex, messagesIn-
Coregion)
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1: if source instance of edge is not defined in chartthen
2: return traceRunner(edge.targetConfiguration, sequenceIndex)
3: end if
4: for each receiver in edge.receiversdo
5: if receiver is not defined in LSC chartthen
6: remove message from edge.receivers
7: end if
8: end for
9: for each message in simregiondo

10: if message is found in edge.receiversthen
11: remove message from edge.receivers
12: else
13: if temperature of message is Hotthen
14: if chart is prechartthen
15: return true
16: else
17: return false
18: end if
19: end if
20: end if
21: end for
22: if no messages left in edge.receiversthen
23: return traceRunner(edge.targetConfiguration, sequenceIndex+1)
24: else
25: return false
26: end if

Algorithm 6: bool holds_simregion(edge, sequenceIndex)

1: if condition evaluates to truethen
2: set active sequence to then-sequence and save old sequence
3: else
4: set active sequence to else-sequence and save old sequence
5: end if
6: if traceRunner(configuration, 0)then
7: activate old sequence
8: return traceRunner(configuration, sequenceIndex+1)
9: else

10: activate old sequence
11: return false
12: end if

Algorithm 7: bool holds_ifthenelse(configuration, sequenceIndex)



4.4 The running time of the algorithms 71

4.4 The running time of the algorithms

In order to find the asymptotic upper bound of the worst case running time for
the verification algorithm as a whole, each holds algorithm must be considered.
First, the upper bounds of the five holds algorithms are approximated, Second, the
worst case running time of the entire verification algoritm,i.e.,traceRunner and
startverify, is approximated using the results from the five holds algorithms.

The running times of the algorithms depend on the LSC specification and the UP-
PAAL model to be verified, especially the size of the model is a decisive factor.

The following factors have an influence on the running time:

a The number of automata in the model.
c The number of configurations in the FSM computation graph.
m The number of messages in any coregion in the chart.
e The number of elements in the sequence.

Snapshot

holds_snapshot, Algorithm 3, tests all conditions in all configurations reachable
by intermediate transitions in the FSM graph. In the worst case all transitions are
intermediate transitions, and thusholds_snapshot must be runc times, i.e., on
all configurations in the FSM graph. For each configuration all conditions must be
evaluated, so the worst case running time ofholds_snapshot is:

T3(c, a) = c ∗ a

= O(ca)

As holds_snapshot depends on botha and c, it runs in quadratic time in the
worst case.

Message

holds_message, Algorithm 4, checks each receiver instance of the edge to see
if more than one receiver for the edge is defined in the chart, as this would mean
the edge is a broadcast. In the worst case all automata instances of the model must
be checked, except the source automaton. Ignoring thatholds_message runs in
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constant time, the worst case running time is:

T4(a) = (a − 1)

= O(a)

Soholds_message runs in linear time.

Coregion

holds_coregion, Algorithm 5, takes as input a list of messages. In the worst
case it must check each possible permutation of this list to see if that permutation
is satisfied in every trace of the FSM graph. For a list ofm messages, we get that:

number of possible permutations= m!

Each permutation of the list corresponds to a sequence of messages of lengthm. In
the worst case, each message in the list, is found in the end ofeach possible trace.
So for a graph ofc configurations:

maximal number of traces for each message= (c − 1)!

If the cost of checking one message in a coregion is a constantb, the worst case
running time for holds coregion is:

T5(c,m) = m! ∗ m ∗ (c − 1)! ∗ b

= O(m! ∗ (c − 1)!)

holds_coregion runs in factorial time.

Simultaneous region

holds_simregion is very similar toholds_message described above. It also
checks each receiver of the edge to see if it is defined in the chart. The maximum
number of messages in a simultaneous region is the number of automata in the
model,a, minus one for the source automaton. So the worst case running time for
holds_simregion is:

T6(a) = (a − 1)

= O(a)

Soholds_simregion runs in linear time likeholds_message.
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If-then-else

An if-then-else construct consists of a single condition check, thusholds_ifthenelse
runs in constant time.

T7() = k

= O(1)

Verification algorithm

To find the worst case running time for the entire algorithm, we must consider the
case where all elements in the sequence are the most expensive element type. In
the results above theholds_coregion, with its factorial time running time, is by
far the most expensive.

Let the sequence consist of only snapshot and coregion elements. The number of
coregions ise. The number of snapshot elements is thene + 1 and for each snap-
shot,holds_snapshot must be run on all configurationsc, in all traces(c − 1)!,
for each start configurationc.

The cost of all the snapshots are:

Tsnap(c, a, e) = c ∗ (c − 1)! ∗ c ∗ (e + 1) ∗ T3

= O(c2 ∗ c! ∗ e ∗ a)

The cost of all coregion element is:

Tco(c, e,m) = c ∗ (c − 1)! ∗ e ∗ T5

= O(c! ∗ e ∗ m! ∗ (c − 1)!)

So the worst case running time of the algorithm is:

Tw(c, a, e,m) = Tsnap+ Tco

= (c2 ∗ c! ∗ e ∗ a) + (c! ∗ e ∗ m! ∗ (c − 1)!)

= O(c! ∗ m! ∗ (c − 1)!)

The factorial running time is inherent in graph traversal algorithms, where this
rather expensive running time is unavoidable when doing verification.
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4.5 Optimisation

During the experiments carried out, see Chapter 5, it was discovered that espe-
cially the way conditions are tested presented a performance bottle-neck regarding
execution time. This section contains a description of the condition testing, the
problems, realised solutions, and possible further measures.

4.5.1 Conditions

The condition checking bottle-neck became apparent when starting the experi-
ments with the Distributed control UPPAAL model, see Chapter 5 Section 5.3 for a
presentation of the model. The UPPAAL model FSM graph contains14.876 nodes,
and 29.601 edges, which is a lot more than the other experiment models. The
scenario tested is presented in the LSC diagram illustratedin Figure 5.17.

The LSC contains two conditions, the first one on thePlant instance line, which
must be evaluated in all snapshots, because it is the only element on the instance
line. The second condition is on theControl instance and it must be evaluated in
the last two snapshots. The scenario is a universal chart meaning that all traces
must be tested, and all traces must be valid for the chart to bevalid.

The initial approach for testing conditions was to test themwhen they appeared,
but when conducting the first tests on this scenario it was clear that this approach
was extremely time consuming. Especially two factors had impact on the execution
time, the number of conditions to be tested, and the way the conditions were tested
using verifyta.

4.5.2 Testing reuse

The initial approach for evaluating conditions were to evaluate them when needed.
This meant that a condition in a specific configuration might be evaluated more
than once. This approach on the Distributed control experiment resulted in a total
of 102.742.867 condition evaluations. By having each condition remember that it
has been evaluated in a given configuration, unnecessary repetitive evaluations are
avoided. This extension of PEEL resulted in a reduction of the amount of conditions
to be evaluated. In the Distributed control experiment the amount of conditions to
be evaluated dropped to21.442.
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4.5.3 Hard drive I/O

The second factor was the execution time of the verifyta call, where at least three
hard drive I/O operations were involved in every condition evaluation, one for writ-
ing the query file, one for executing verifyta and saving the output to disc, and
finally one for reading and checking the verifyta result. Theimpact of the hard
drive I/O operations means that the effective CPU usage of verifyta is typically
only about3% − 5% 1.

It is possible to circumvent the disk I/O operations, as the UPPAAL tool also con-
tains a socket server, which enable the usage of an ethernet instead of disk I/O.
Both the hard drive I/O and the network access method has an overhead, but it is
possible to disregard it by testing all possibilities for a condition in one verifyta
execution. This can be done by collecting TCTL formulae for all possibilities into
one query file and executing verifyta with this query file, which would insure100%
CPU usage. This approach was tested with the Distributed control experiment and
the results is that one condition,x < 8 && x > −6, tested in14.875 configura-
tions, verified with verifyta takes approximately76 minutes2.

4.5.4 Further improvements

Further options for improving the evaluation of conditionsexist. One that is easily
implemented is using a global testing in TCTL, by using A[] itis possible to test
whether a condition is satisfied in all possible configurations, and E<> for testing
whether a condition is satisfied somewhere in the model. If a condition is always
satisfied it is not necessary to do any further testing, because it is alwaystrue, con-
versely, if E<> is not satisfied, then any specific testing evaluates tofalse. These
expressions can be used succesfully in the Distributed control experiment, because
the two conditions are always satisfied, which means a reduction to two conditions
to be checked, but generally it is not possible to say anything about their applica-

1Different hardware was not tested regarding the hard drive I/O performance, so the actual impact
of hard drive characteristics is not reasoned about.

2The test was executed on a system with dual Pentium 4 Hyperthreading 2.8 GHz CPUs. The
timecommand on *NIX systems was used to measure the run time, which is the actual CPU usage
time.

Two other systems were also tested and the results are:48 minutes on a system with an Athlon
XP 2000+1.6 GHz running Linux and57 minutes on a system with a Pentium 42.4 GHz running
Linux.

The amount of RAM consumed was about60 − 80 MB, thus the amount of RAM available was
not an important aspect. The access time and bandwidth of RAMmight be an issue effecting the run
time, but these aspects are unknown.
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bility, because it is specific to a UPPAAL model and the condition expression.

Another improvement is to check whether the conditional expression contains any
clocks, because if it does not, it is possible to check the expression directly in
the FSM configuration, as it contains the exact values af all variables. This is not
implemented in PEEL, because type checking variables in a TCTL local property
is beyond the scope of this project.

4.6 Test

When developing a verification tool it is of course very important that the tool
itself is correct, otherwise the results cannot be trusted.There are different goals
of the tests performed on a piece of software. Some may check if a communication
protocol is implemented correctly and others may examine how well a piece of
software scales. Different goals mean different methods and thus different types of
tests [Dou99, EDE01]. Different tests include:

• Component testing:During component testing, which is sometimes referred
to as unit testing, each new component is validated as an isolated system.
Before being integrated with the rest of the system it is important that a new
component behaves according to its specifications.

• Integration testing: When a new component has been made, and it has
passed its component test, an integration test is performedto check if the
new component behaves correctly in the context of the complete system.

• System validation:As perhaps the most fundamental testing phase, system
validation is also the hardest to cover. Validation testingis performed on the
complete system to determine if it conforms to the system requirements

• Regression testing:Regression testing originates from the principles of ex-
treme programming [Ken99], where it is used as a part of validation testing.
All the previous test scenarios that were created during component and in-
tegration testing can be run and should still be valid even ifthe system has
changed.

• Stress testing:Stress testing a system can be very important, e.g., for systems
that are required to run for long periods of time.

PEEL is only a prototype implementation to show that it is possible to use LSCs as
requirements for verification of UPPAAL models, which means that it is not fully
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-----PRE CHART----
|=| < true > Hot on control_unit |=| < true > Hot on coffee_unit |=|
coffee_unit --[coin]--> control_unit
|=| < true > Hot on control_unit |=| < true > Hot on coffee_unit |=|
coffee_unit --[coin]--> control_unit
|=| < true > Hot on control_unit |=| < true > Hot on coffee_unit |=|

-----MAIN CHART----
|=| < true > Hot on control_unit |=| < true > Hot on coffee_unit |=|

| control_unit --[coffee]--> coffee_unit
| coffee_unit --[coin]--> control_unit
| control_unit --[coffee]--> coffee_unit
| coffee_unit --[coin]--> control_unit

|=| < true > Hot on control_unit |=| < true > Hot on coffee_unit |=|
coffee_unit --[coin]--> control_unit
|=| < true > Hot on control_unit |=| < true > Hot on coffee_unit |=|

-----END SEQUENCE----

ASCII output of the sequence structure parsed by the PEEL LSC parser

Figure 4.9: PEEL sequence output

tested for actual verification usage. Some testing has been conducted to ensure that
the results from the experiments performed are correct. Thetesting performed are
mainly component testing and system validation, and the tests have been collected
in a regression testing possibility.

4.6.1 Regression testing

There are two levels for the regression testing used with PEEL, the first is an ASCII
output of the LSC and FSM data structures created by the PEEL LSC Parser, PEEL

LSC Sequence builder, and PEEL FSM Parser respectively. See class diagrams
in Figure B.1, B.2, and B.3 in Appendix B, and see ASCII outputin Figure 4.9
and 4.10.

The second test level is a test suite of actual PEEL model verifications.

When performing an execution of PEEL it is possible to enable different debug out-
put, see Figure 4.11. The options-l, -s, and-f enables an ASCII output of the
parsed LSC structure, sequence of LSC elements, and the FSM computation graph.
This is not an automated test in the sense that atrue/falseresults is presented, but it
is possible to inspect the structures and manually validatethat they represent what
is expected.
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[coffee3_test : Universal]
-PreChart = coffee3pre

[control_unit : lscid_2]
|
*-2: 0x807a870: [coffee]
|
*-4: 0x807a870: [coin]
|
*-6: 0x807a870: [coffee]
|
*-8: 0x807a870: [coin]
|
*-11: 0x807a870: [coin]

[coffee_unit : lscid_3]
|
*-2: 0x807a8b8: [coffee]
|
*-4: 0x807a8b8: [coin]
|
*-6: 0x807a8b8: [coffee]
|
*-8: 0x807a8b8: [coin]
|
*-11: 0x807a8b8: [coin]

[coffee3pre : Universal]
-PreChart = None

[control_unit : lscid_5]
|
*-2: 0x807a8e8: [coin]
|
*-4: 0x807a8e8: [coin]

[coffee_unit : lscid_6]
|
*-2: 0x807a930: [coin]
|
*-4: 0x807a930: [coin]

ASCII output of the LSC structure parsed by the PEEL LSC parser

Figure 4.10: PEEL LSC structure output
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Peel verification engine version 1.0b, June 2004
Usage: peel uppaal_model lsc_chart lsc_map [options]
Options:

-c Condition check mode: Default 1
1: Conditions are checked one-by-one when needed
2: Conditions are checked in batches

i.e., all configurations are checked at once
-f Output FSM parser structure.
-h Display this message.
-l Output LSC parser structure.
-s Output LSC element sequence.
-v Display Peel verification steps.
-q Runs Peel in quiet mode - only result is shown.
-e Turns off displaying of verifier errors.
-u Path to Uppaal verifyta.
-S Enable verifyta socket server - not yet supported

Default: ../../uppaal-3.4.5/bin-Linux/verifyta
-U Path to Uppaal verifyta with FSM output.

Default: ../verifyta/verifyta

Figure 4.11: PEEL help output

It is possible to perform a regression testing on a test suiteof UPPAAL models and
LSCs. The actual regression test is created by collecting a range of individual tests
in a makefile, which provide an entry to start all the tests in one batch.

The individual tests included, are the experiments described in Chapter 5, and a
collection of smaller LSCs for various UPPAAL models. The collection covers all
the different LSC elements and also a set of LSCs that must notbe satisfied are
included.

4.7 Summary

A prototype implementation of an LSC verification engine forUPPAAL models was
presented in this chapter. The LSCEditor used for making LSCs, and the UPPAAL

verifyta FSM output was also described. The FSM computationgraph traversing
algorithm was presented in pseudo code and the running time of the algorithm was
calculated to beO(c!+ c! ∗m! ∗ (c− 1)!). Finally, some optimisation options were
presented, some are included in the current PEEL implementation others proposed
as possible future optimisations.

The next chapter contains experiments which show that LSCs can be used to cap-
ture requirements specifications for UPPAAL models, and the experiments also
demonstrate the usage of the various elements included in the selected LSC subset.
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The purpose of this chapter is to show some practical examples of UPPAAL require-
ments specification by the use of LSC charts. Also, this chapter demonstrates that
the various elements in the selected LSC subset work in PEEL. The demonstration
is done through two small example models and one large model.The UPPAAL

models are presented with different properties which are verified through a number
of LSC specifications using the LSC subset of PEEL.

The example LSCs are applied to three UPPAAL models, Broadcast, which can be
downloaded from the homepage [upp04], Train-gate, which isincluded with the
UPPAAL application, and the Distributed control example, which has been con-
structed for testing the PEEL application.

5.1 Broadcast

The Broadcast experiment shows how to perform non-blockingone-to-many syn-
chronisation. The sender broadcasts in every step and is never blocked.

The automata

The sender and the three identical receivers and their template are shown in Fig-
ure 5.1. When the sender broadcasts, all receivers capable of synchronising, i.e.,
if the guard allows them to take the transition, will synchronise. The receivers are
instantiated with id’s of 0, 1, and 1, respectively, and N is the number of receivers,
i.e., three.
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S1

c!

S1

S2

i == id
c?

c?

i := (i + 1) % N

The sender is the left automaton and the receiver is the right. N is the number
of receivers, three, and the id’s of the receivers are 0, 1, and 1.

Figure 5.1: The sender and receiver templates.

The LSCs

The Broadcast experiment, which is illustrating the use of simultaneous regions,
does not contain any clocks. This means that cold instance lines should be used, as
models without clocks have no way of disallowing infinite delays to happen without
using urgent locations and channels and these are not used inthe model. But as the
temperature of an instance line is ignored by PEEL (as specified in Chapter 4) the
temperature is not relevant for these experiments.

In Figure 5.2 the receivers may receive the cold broadcast message if the guard
from the automaton in Figure 5.1 allows them to. In other words, the receivers will
synchronise ifi == id, where the id’s of the receivers are 0, 1, and 1, respectively.

The LSC in Figure 5.3 specifies a forbidden scenario where R1 and R2 are not
allowed to receive the messagec at the same time, because theirid’s are different.
If the prechart is satisfied, the main chart will terminate unsuccessfully as the hot
condition evaluates tofalse.

This chart shows a simultaneous region where the sender broadcasts cold mes-
sages to the receivers. The receivers may receive the broadcast if their guard
allows them.

Figure 5.2: LSC for the broadcast experiment.
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This is an example of a forbidden scenario where the prechartspecifies that the
broadcast from the sender may never be received by both R1 andR2. If so, the
main chart will always abort from a hot condition

Figure 5.3: LSC prechart and body for the broadcast experiment.

PEEL has been used to verify that the LSC charts for the Broadcast experiment
specify the correct behaviour with respect to the corresponding UPPAAL automata.
Statistical data such as the time taken to verify the specifications, the number of
edges, configurations, and traces are shown in Table 5.1 on page 94. As can be seen
in the table, this experiment is quickly verified due to the low number of configu-
rations and edges. This experiment shows the use of messagesand simultaneous
regions.
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5.2 Train-gate

The Train-gate experiment involves four trains, a gate and its queue. The gate is a
critical region, which must only be crossed by one train at a time.

The automata

Figure 5.4 shows the automaton template modelling the behaviour of the trains,
and Figure 5.5 contains the automaton template modelling the gate which all four
trains must cross. The gate uses another automaton for lining up approaching trains
in a queue, a queue automaton. The template of the queue automaton can be seen
in Figure 5.6 on page 86.

Safe

Stop

Cross
 x<=5

Appr

 x<=20

Start

 x<= 15

x>=10

x:=0

x<=10,
e==id

stop?

x:=0

x>=3

leave!

e:=id,
x:=0

appr!

e:=id,
x:=0

x>=7

x:=0

e==id

go?

x:=0

A train will be approaching for maximum 20 time units and if ithas not received
a stop signal within 10 time units it will cross the gate, which will take between
three and five time units. Also, a train may not wait in the queue for more than
15 time units.

Figure 5.4: The train template.

The general behaviour of the model is as follows: When a trainapproaches the gate,
it is allowed to cross the gate if the queue is empty. Any othertrain approaching
the gate, while a train is using the gate, will be commanded tostop and wait for
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Occ

Free

Send

notempty?

empty?

appr?

leave?

stop!

go!

hd! appr?

add!

add!

rem?

As can be seen, the use of committed locations only allows thegate to wait for
trains approaching or leaving the gate, and the communication with the queue
ensures that the queue is emptied when trains leave the gate.

Figure 5.5: The gate template.

the gate to be clear, i.e., when the first train has left the gate. Additional trains
approaching the gate will be placed in the queue, which is emptied in FIFO order
once the gate is clear.

The LSCs

In order to illustrate how LSCs can be used to specify complete scenarios the com-
munication scenario for one of the trains and the gate is given in Figure 5.7 on
page 87. It is a universal chart using an if-then-else construct to stop and restart the
train. The subchart in Figure 5.8 on page 87 states that if thetrain ever notifies its
approach, it will be stopped if the gate is unavailable, i.e., the length of the queue
is larger than0. The ’else’ subchart stops the train and eventually restarts it again
allowing it to pass through and leave it. As for the ’then’ subchart it is the case that
every time the train approaches the gate, and it is available, the train should be able
to pass through without being stopped. If another train tries to cross the gate with
Train1, the message trace of the model will deviate from the sequence specified
in the chart, and as the chart is universal, the chart will nothold for the model.
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Start

Shiftdown

i < len list[i]:=list[i+1],
i++

len==i
list[i] := 0len>=1

rem!

len--,
i := 0

len==0
empty!

add?
list[len]:=e,
len++

hd?

e:=list[0]

len>0

notempty!

The order of the trains to use the gate is handled by using an array as a FIFO
construct. Also, the shared variable e is used to communicate the id of the train
to exit the queue and cross the gate.

Figure 5.6: The queue template.

Notice that in the ’else’ subchart in Figure 5.8 the queue is emptying as the other
trains are crossing the gate, while Train1 is stopped, but itis not necessary to
specify this in the subchart, as messages between the gate and other processes in
the system are ignored.

Logically, the first train approaching the gate will not be stopped as no other train
is being led through. This is expressed in the existential LSC in Figure 5.9 on
page 88 forTrain1. It illustrates how the existential mode of LSCs can be used
for specifying a scenario that has to be possible.

Another experiment is illustrated in Figure 5.10. It simplystates that when Train1
and Train2 are approaching, the queue is not empty. Here, it is not necessary to
include more trains, as any messages exchanged between the gate and other trains
do not affect the fact that at least two trains are approaching. Nor is the order of
the approaching trains important, which is illustrated by the use of a coregion.

Again, PEEL has been used to verify this model, see Table 5.1 on page 94 for
details. This experiment has shown the use of messages, conditions, coregions,
if-then-else constructs, and precharts which are all handled correctly by PEEL.
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When Train1 approaches the gate, it will eventually pass through the gate. If
there is a queue before the gate, the train has to wait until itgets permission to
pass through, see the subcharts in Figure 5.8.

Figure 5.7: LSC prechart and body for Train-gate.

If the queue is empty the ’then’ subchart (sub1) on the left specifies that Train1
may pass through the gate without any delay. If the queue is not empty the ’else’
subchart (sub2) on the right specifies that the train is to stop at the gate and wait
for other trains to pass through, before it will be allowed topass through itself.

Figure 5.8: The subcharts for the Train-gate LSC
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This existential LSC specifies that there exists a scenario such that when Train1
approaches the gate it will leave it without being stopped bya queue.

Figure 5.9: An existential LSC for the Train-gate experiment.

The chart specifies that when Train1 and Train2 are closing inon the gate, there
is a queue. As the order of the two trains is insignificant their approach notifi-
cations are contained within a coregion.

Figure 5.10: LSC prechart and body for the queue in Train-gate.
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5.3 Distributed control

The distributed control is an experiment where a plant needsto be within a certain
boundary. The plant controller ensures that this is so by having a sensor measure
the state of the plant and two actuators to correct the plant.All communication
between controller, sensor, and actuators goes through a bus.

The automata

Several global variables are declared, the constantsLAT,MAX, andMAXuwith values
of 2, 8, and 3, respectively.MAX and -MAX are the upper and lower boundaries of
the plant statex and the plant output variabley, andMAXu and -MAXu are the
boundaries of the input variableu and the result of the controller’s computations
uhat.

In addition, the urgent channelsread,read1,read_complete,read_complete1,
andwrite as well as the broadcast channelwrite1 are used in the model.

Compute

cc<= CC

Idle

c <= TC

cc >= CC

uhat := ( prevy - 2*localy < -MAXu ? -MAXu :
          (prevy - 2*localy > MAXu ? MAXu :prevy -2*localy ))

read_complete1?

prevy := localy,
localy := y,
cc := 0c == TC c := 0

read!

write!

The controller controls the update cycle.TC andCC are constants of10 and
1, respectively, andc andcc are local clocks. The cycle is initiated every TC
time units, and when the read has been completed the old valueis stored for use
in a later computation that takesCC time units. The computation result is the
new value for the plant’s input variable,uhat, and the value is required to be
within MAXu and -MAXu.

Figure 5.11: The template of the controller.
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The controller in Figure 5.11 initiates and controls the read and write cycles by
sending messages to the bus.

When a message is sent to the bus in Figure 5.12, the message isdelayed before it
forwards the message to the receivers.

c <= DELAY+LAT c <= DELAY+LAT c <= DELAY+LAT

write?

c := 0

read?

c := 0

read_complete?

c := 0

c >= DELAY c >= DELAY c >= DELAY

read_complete1!write1!read1!

The bus delays messages by at leastDELAY time units and at most
DELAY+LAT time units for a write message and even more for other mes-
sages.DELAY is a local constant with the value1 andLAT is also a local
constant with value2.

Figure 5.12: The bus template.

When the bus forwards the message to the sensor in Figure 5.13, the sensor will
update its output variable and notify the bus, and the bus will now notify the con-
troller.

The two actuatorsActuator andActuatorm1 are depicted in Figure 5.14. Both
actuators wait for a write after which it updates the plant’sinput variable.Actuator
updates it with the input value calculated by the controller, andActuatorm1 de-
creases the input value by one if the value stays above a defined lower boundary of
the input variable.

Figure 5.15 shows the automaton template of the plant. The plant updates its plant
statex regularly and this variable must stay within certain boundaries.
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c <= DELAY
localy := x,
c:= 0

read1?

y := localy
c >= DELAY

read_complete!

When the sensor is requested to read, it will waitDELAY time units (DELAY
is again a local constant), i.e.,0 time units, after which the output variable is
updated and a read_complete is signalled.

Figure 5.13: The template of the sensor.

localu := uhat

write1?

u := localu

write1?

u := (u == -MAXu ? u : u-1)

TheActuator is to the left andActuatorm1 is to the right. Both wait
for a write request, but whereActuator updates the input variable by the
value calculated by the controller,Actuatorm1 decreases the value of the
input variable by 1 if it stays above -MAXu.

Figure 5.14: The templates of the actuators.

The LSCs

The behaviour of the model is controlled by the controller, which initiates read-
write cycles. The cycle can be specified as one chart with a prechart, see Fig-
ure 5.16 and Figure 5.17. The bus forwards allread, read_complete, and
write messages. Two conditions state that the cycle must be completed within
TC time units and that the plant statex must be within -8 and 8 as specified in
the condition (the values ofMAX and -MAX). The simultaneous region specifies that
when the bus forwards the write message through thewrite1 broadcast message,
only the actuators may receive it.
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c <= DELAYc := 0

c >= DELAY

dx := (x == MAX || x == -MAX ? -dx : dx), 
x := (x+dx+u < -MAX ? -MAX :
        (x+dx+u > MAX ? MAX : x+dx+u))

The plant updates its state afterDELAY time units, i.e.,10 time units, and it
first updatesdx to be either1 or -1 depending on the direction of the sawtooth
movement ofx between its boundaries -MAX andMAX. x is then set to bedx
added the value of the input variable. However,x is updated only if the new
value is within its boundaries.

Figure 5.15: The template of the plant.
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A read sent from the controller to the bus initiates the cyclefor the Distributed
control experiment.

Figure 5.16: LSC prechart for the read-write scenario.

All communication goes through the bus. The cycle must be completed within
a certain period of time, TC time units, and the plant state must always be
within a certain boundary as specified by the condition containing the expres-
sion "x <= 8 && x >= -8".

Figure 5.17: LSC chart specifying the read-write cycle of the Distributed control
experiment.

PEEL has also been used to verify this model. As can be seen in Table5.1 this chart
takes significantly longer to verify than the other charts. This is because of the large
number of configurations and edges that must be tested in the computation graph.
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This chart shows the use of messages, conditions, and simultaneous regions which
PEEL handles correctly.

Another chart has also been used to test the Distributed control model, it is the
same as the one Figure 5.17, except thatx is not verified to be between -8 and 8 in
the condition, but instead between -3 and 3 (the values of -MAXu andMAXu), which
are the boundaries of the input variableu.

LSC Configurations Edges Variables Succ. Traces Time
Broadcast 1 5 5 5 8 0, 1 secs
Broadcast 2 5 5 5 0 0, 1 secs
Train-gate 1 1.846 2.247 14 3508 6.4 secs
Train-gate 2 1.846 2.247 14 1 0.1 secs
Train-gate 3 1.846 2.247 14 19160 5.0 secs
Distributed C. 1 14.876 29.601 15 85.462.160 3 min 30 secs
Distributed C. 2 14.876 29.601 15 0 4.0 secs

Broadcast 1 is the result from Figure 5.2 and Broadcast 2 is for Figure 5.3. The
3 Train-gate rows contain data for the charts from Figures 5.7, 5.9, and 5.10
respectively. Distributed C. 1 contains data for the chart in Figure 5.17, and
Distributed C. 2 contains data for the same chart with the changed condition.
The number of successful traces necessary to verify the LSC is specified for
each LSC together with the time taken for PEEL to verify the charts.

Table 5.1: Statistical data for the models presented in thischapter.

5.4 Summary

This chapter has shown experiments with three UPPAAL models which have been
specified by LSCs. PEEL has been used to verify that the UPPAAL models behave
according to the scenarios specified by the respective LSCs.One motivation for
this chapter is to show with a practical example, that LSCs ingeneral are useful
for constructing requirements specifications. Another reason is to show that all
elements from the LSC subset work in PEEL and that they can be used for verifying
UPPAAL models.

Next chapter contains a summary of the work presented in thisproject, an evalua-
tion of the results, future work directions, and a final conclusion.
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This chapter contains a summary of the work presented and an evaluation of the
results obtained in this project. Next the subject of LSCs isput into perspective in
a section presenting possible future work directions. Finally, a conclusion on the
subject of using LSCs as a diagrammatic method for specifying requirements for
UPPAAL models and in general is presented.

6.1 Project summary

This section gives a summary of the work presented about UPPAAL in Chapter 2,
LSCs in Chapter 3, and PEEL in Chapters 4 and 5.

UPPAAL

A brief introduction to UPPAAL is presented, the dynamic behaviour of UPPAAL

models is seen as a sequence of configurations, where a configuration consists of
automata locations and variable values. Two types of configuration steps exist,
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internal transition stepandsynchronisation step, the former being a configuration
change where no synchronisation is performed.A sequence of configurations is a
trace.

The formal semantics for UPPAAL models is defined as a transition system for an
automaton and for a network of automata.

The requirements specification language for UPPAAL models isbranching timed
computation tree logic, TCTL. TCTL expressions consist of alocal and atemporal
property part. The local part is an expression over automatalocations and variable
values, and the temporal part describes the temporal extentof the computation tree
where the local property must be satisfied.

Live sequence charts

Live Sequence Charts (LSCs) are an extension of Message Sequence Charts (MSCs).
The main extensions are a formal semantical basis, conditions as first-class citizens,
and liveness properties. MSCs are used for initially capturing use cases in the form
of informal and abstract use cases, but as the development procedure advances, the
charts are refined into precise specifications, and on this basis the need for more
expressive charts is created.

The LSC constructs proposed in the initial work by Werner Damm and David
Harel [DH99, DH01] are used as the basis, and extensions to this basis are taken
from Jochen Klose’s dissertation [Klo03].

An LSC subset suitable for UPPAAL requirements specification is identified and
the application of the subset is described. The elements in the identified subset are:

• Charts: Precharts, existential charts, and universal charts are supported.

• Messages:Simultaneous regions support both hot and cold synchronous
messages, whereas only hot synchronous messages may be usedoutside si-
multaneous regions.

• Conditions: Both hot and cold conditions are supported including shared
conditions.

• Coregions:Coregions are supported, but in a slightly modified form. Core-
gions are made global across the structural dimension and they have a tem-
perature specifying whether progression is enforced within the region. They
do not contain snapshots, only hot, synchronous messages.
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• Simultaneous regions:Simultaneous regions are supported, but can only be
used in combination with hot and cold synchronous messages.

• If-then-else: If-then-else constructs containing a condition and two sub-
charts. The evaluation of the condition decides which of thecharts is to
be traversed.

The semantics of the LSC subset, as specification for UPPAAL models, is formally
specified and the specification is used for the PEEL implementation.

PEEL

PEEL, a prototype verification engine for verifying UPPAAL models with LSCs
has been implemented. PEEL implements most of the selected LSC feature set,
and provides a proof of concept that it is possible to verify UPPAAL models with
LSCs, especially with regard to message traces.

PEEL consists of three components:

• PEEL LSC Parser: The PEEL LSC Parser takes as input an LSC, and extracts
the features which are relevant compared to the selected LSCfeature set.
The extracted LSC elements are then ordered as a sequence of elements to
be verified.

• PEEL FSM Parser: The PEEL FSM Parser takes as input a UPPAAL model
and first produces an intermediate FSM output with the UPPAAL verifyta
tool, and secondly the FSM output is parsed into an FSM computation graph
ready for traversion by the verification algorithm.

• PEEL Verifier: The PEEL Verifier uses the sequence of LSC elements and
verifies the sequence using the FSM computation graph. The running time
of the graph traversion algorithm depends on the characteristics of the FSM
computation graph and the LSC chart, especially the number of configura-
tions and the number of elements in the chart and in the coregions.

The PEEL implementation is tested using a set of experimental cases,which shows
that LSCs can be used for specifying proper requirements forvarious UPPAAL

models. The experiments also show that the different features in the selected LSC
subset can be verified with PEEL.
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6.2 Evaluation

This section contains an evaluation of the results obtainedin this project. The
evaluation is based mainly on the experiences obtained through the experiments
with PEEL in Chapter 5. The project goals described in Section 1.2 are the basis
for this evaluation. The goals are:

• Introduction of LSCs as a supplement to TCTL in UPPAAL.

• Introduction of LSCs as a diagrammatic requirement specification language
for UPPAAL.

• PEEL as a prototype verification engine.

Discussions relating to LSCs refer to the selected subset ofLSC features unless
otherwise stated. The selected features are described in Chapter 3.

6.2.1 LSCs and TCTL

UPPAAL verification is currently done by specifying properties using TCTL formu-
lae. The introduction of LSCs provide a visual diagrammaticmethod for specifying
properties. The following discusses the differences between the two approaches in
different areas; focus, intuitiveness, and prerequisites.

LSCs and TCTL are languages of different paradigms. LSC diagrams is a vi-
sual specification language inspired by elements from the UML terminology while
TCTL is based on tree logic, and their foci are fundamentallydifferent.

The focus of TCTL lies in the computation tree and its branches and nodes, i.e.,
configurations. There are two aspects of a TCTL formula, the temporal property
and the local property, they denote the branches of the tree and the configurations
of the branch, respectively. An edge in the computation treehas no notation in
TCTL, and thus cannot be referred to, which means that messages in the model
cannot be specified either. This fact is one of the main motivations for choosing
LSCs as a supplemental requirement specification language for UPPAAL.

LSCs focus on scenarios, which consist of automata instances, interobject commu-
nication between them, conditions, and liveness requirements to be fulfilled at the
appropriate snapshots. The messages that each instance maysend or receive are
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specified in a chronological order along the instance line. Also, by using universal
and existential charts it is possible to specify whether thescenarios are provisional
or mandatory. In addition, precharts in LSCs can be used for specifying scenar-
ios that may never happen, meaning that the practitioner mayspecify required,
allowed, and forbidden scenarios.

As LSCs is a visual, object-oriented means of specification,just like UML, and as
UML is widely used in the industry, this way of specifying properties to verify will
be intuitive to most practitioners, and if, or when, UML adopts LSCs, LSCs may
well be used in most CASE tools and practitioners will be comfortable specifying
requirements with LSCs, just like they are used to using sequence diagrams today.
LSCs are thus a high level way of specifying interobject communication.

TCTL on the other hand is not that intuitive for practitioners not experienced in log-
ics. There are several pitfalls in general logics and there are also pitfalls regarding
the logics used for TCTL. An example is the imply operator:

p imply q

if the p property is always false, then nothing is ever tested about the q property,
but the expression is always true nonetheless.

A practitioner of LSCs needs only to posses knowledge about the overall require-
ments of the software in order to be able to specify the requirements in an LSC.
If using TCTL, it is necessary to posses more detailed knowledge, e.g., about au-
tomata locations and possible configurations. For instance, if a property must hold
for a subrange of configurations, then it is necessary to haveexplicit knowledge
about the configurations and use this in constructing the correct logical expres-
sions. In an LSC, the configurations are hidden, e.g., when using a condition, the
condition is implicitly tested in the configurations determined by other charts ele-
ments.

By using LSCs it is not required to have extensive knowledge of validation and
verification. Instead, the practitioner needs to know what scenarios are interesting
and relevant to test. In small systems it may be easy to pinpoint the scenarios that
in effect verify the model, but in large complex systems it isnot trivial at all.

When specifying the scenarios including the conditions andthe liveness require-
ments that are to be satisfied in different snapshots, the automata templates need
not to be known. How each automaton is modelled including theknowledge of
locations is irrelevant for the scenarios to be specified. Only the names of the
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messages to be exchanged and the names of the objects exchanging them need to
be known for specifying message traces and for specifying conditions the variable
names must be known. Configurations and locations are thus hidden by the LSCs.

6.2.2 LSCs as requirements specification for UPPAAL models

The work with PEEL during the development and testing of the engine itself, and
during the specification and testing of the experiments, hasprovided us with an
introduction to the usage of LSCs as a requirements specification language for
UPPAAL models. It is apparent that LSCs supplements TCTL with the possibility
to verify that a given message or trace exists, either in a single trace or in all traces,
in a UPPAAL network of automata. TCTL does not have any means for testing
that a given message or message trace exists and this featureis the main benefit
from the usage of LSCs. The LSCs diagrammatic requirements specification is not
meant as a replacement for TCTL, but as a supplement.

LSCs do not only provide the possibility to test for a simple message trace between
instances, but provide powerful constructs in the form of precharts, subcharts, core-
gions, and simultaneous regions that enable the construction of complex scenarios
to be tested.

LSCs are more expressive than standard UML MSCs, which also means that they
are more complicated to construct and understand, because of the larger set of chart
constructs. The two chart representations are very similarand practitioners familiar
with MSCs should have an advantage if switching to LSCs. A visualisation of a
scenario provides a good means for generating an overview ofa component, or
the inter workings of several components, and this is also the case when doing
requirements specification for UPPAAL models.

6.2.3 The PEEL verification engine

The development of PEEL, a prototype LSC verification engine for UPPAAL mod-
els, is successful. Most of the elements in the selected LSC subset have been
implemented and their usage is demonstrated through the conducted experiments.
The PEEL prototype and the conducted experiments show that it is possible to use
LSCs as a requirements specification language for UPPAAL models.
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Apart from supplementing TCTL with tests for message trace,the specification
of message traces in LSCs for a UPPAAL model is intuitive and straightforward,
among other things because LSCs are similar to UML MSCs, which are well
known to many practitioners.

The asymptotic upper bound for the running time has been found to be

O(c! ∗ m! ∗ (c − 1)!)

where
c is the number of configurations in the FSM computation graph,
e is the number of elements in prechart, chart, and subcharts,and
m is the maximum number of messages in any coregion.

Verification algorithms for finite automata normally have totraverse the entire com-
putation graph, which gives an upper bound ofO(c!). The reason the running time
of PEEL is because the sequences of internal transition steps and synchronisation
steps influencing processes not present in the chart needs tobe traversed for each
element in the chart.

Optimisation can be performed regarding constant factors of the running time, e.g.,
improve the performance on condition testing.

6.3 Future work

This section presents some possible future directions, introduction of symbolic
instances in LSC specification, and an integration of LSCs inUPPAAL.

6.3.1 Integration of LSCs inUPPAAL

Currently, it is only possible to specify properties in TCTLin UPPAAL. It would
be very useful if it was possible to specify LSCs within UPPAAL itself. The PEEL

engine could then be used by UPPAAL’s verification so that the result of the LSC
specification could be viewed in UPPAAL.

This could consist of the following extensions:

• Inclusion of the LSCEditor in UPPAAL’s GUI. The LSCEditor could simply
be an extra tab next to the “verifier” tab. See Figure 6.1.
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• Integrate the PEEL engine on top of UPPAAL’s verification engine.

• Show the trace from a satisfied or unsatisfied scenario in the “simulation
trace” from the “simulator” tab in UPPAAL.

Screenshot of UPPAAL, where the LSCEditor could have its own tab right next
to the “verifier” tab.

Figure 6.1: Screenshot of UPPAAL.

This could mean, that when a practitioner is creating LSC specifications in the
LSCEditor, he may choose the names of the LSC instances directly from a list of
automata names. When writing expressions in conditions, hecould choose from
a list of UPPAAL locations and variables. This would be an advantage, because
when the LSCEditor and UPPAAL are separated, the practitioner must be careful to
name LSC instances, locations and variables exactly as theyare called in UPPAAL.
Thus, this extension enables the practitioner to specify requirements specifications
to UPPAAL models in LSCs without having deep insight into the UPPAAL model.

Obviously, it could be argued that it requires insight into the UPPAAL model to
specify proper requirements, but still, the goal is to lift the practitioner to a higher
level of abstraction, and the easy naming of constructs suchas instances, locations,
and variables certainly helps to lift the level of abstraction.
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6.3.2 Symbolic instances

The experiments performed during this project, especiallythe Train-gate experi-
ments, revealed that in some cases an easier way of LSC specification exists.

The Train-gate model contains four trains, a gate, and a queue, cf. Section 5.2.
Specifying LSCs with one of the trains like in Figure 5.8, it is actually required to
include one LSC for each train, as the instance in the LSC mustbe a specific object.
The number of LSCs required for specifying that when any two trains approach the
gate the queue must not be empty, requires12 LSCs.

A solution could be to introduce symbolic instances in addition to the current spe-
cific instances, such that instances instead of referring toobjects may refer to the
type of object, or in UPPAAL terms, to a template. This would mean that it would
be possible to specify the above scenario using only one LSC,and it would cover
all train instances, including any instances to be introduced in the future, whereas
the current way would require new LSCs for any new train instance in the model.

Also, having two instances of the same template in a chart would refer to any two
unique instances. Then it would also be easy to specify any combination of objects
of the same type, just as needed in the LSC mentioned above.

6.4 Conclusion

This project has presented LSCs as a new approach for specifying requirements
specification for UPPAAL models. LSCs are not meant to replace the existing spec-
ification with TCTL formulae, but is meant as a supplement. The main extension
that the LSC approach provides is that of message trace verification.

Our opinion is that LSCs are a good approach for specifying message traces for
UPPAAL models. PEEL implements the formal specification of the selected subset
of LSC features, and thereby provides a proof of concept thatit is possible to use
LSCs for requirements specification for UPPAAL. In general our opinion is that
LSCs are a good way to specify scenarios.





A UPPAAL
Expressions

This appendix contains a syntax of invariants, guards, and updates allowed in UP-
PAAL. The syntax is presented in the following BNF. The information in this
appendix is taken from the documentation accompanying the UPPAAL implemen-
tation.

The syntax of expressions is defined by the grammar for Expression:

Expression ::= ID
| NAT
| Expression ’[’ Expression ’]’
| ’(’ Expression ’)’
| Expression ’++’ | ’++’ Expression
| Expression ’−−’ | ’−−’ Expression
| Expression Assign Expression
| Unary Expression
| Expression Binary Expression
| Expression ’?’ Expression ’:’ Expression
| Expression ’.’ ID
| ’deadlock’ | ’true’ | ’false’

Assign ::= ’:=’ | ’+ =’ | ’− =’ | ’∗ =’ | ’/ =’ | ’% =’
| ’ | =’ | ’& =’ | ’̂ =’ | ’<<=’ | ’>>=’

Unary ::= ’-’ | ’!’ | ’not’

Binary ::= ’<’ | ’<=’ | ’==’ | ’! =’ | ’>=’ | ’>’
| ’+’ | ’−’ | ’∗’ | ’/’ | ’%’ | ’&’
| ’ |’ | ’ ’̂ | ’<<’ | ’>>’ | ’&&’ | ’ ||’
| ’<?’ | ’>?’ | ’or’ | ’and’ | ’imply’



106 UPPAAL Expressions

The use of the deadlock keyword is restricted to the requirement specification lan-
guage, TCTL.

Associativity and precedence

UPPAAL operators have the following associativity and precedence, listed from the
highest to lowest. Operators borrowed from C keep the same precedence relation-
ship with each other, see Table A.1.

Associativity Precedence
left () []
right ! ++ −− − (unary)
left ∗ / %
left − +
left >> <<
left >? <?
left = >= <= > <
left == !=
left &
left ̂
left |
left &&
left ||
right ?:
right := += −= ∗= /= %= &= |= =

>>= <<= ̂=
right not
left and
left or imply

Table A.1: Associativity and precedence for operators in UPPAAL expression.

Expressions involving clocks

Expressions involving clocks are restricted by the type checker. There are three
categories for expression including clocks:

• Invariants: An invariant is a conjunction of upper bounds on clocks and
differences between clocks, where the bound is given by a side effect free
integer expression.
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• Guards: A guard is a conjunction of bounds (both upper and lower) on
clocks and differences between clocks, where the bound is given by a side
effect free integer expression.

• Constraints:A constraint is a boolean combination (involving negation,con-
junction, disjunction and implication) of bounds on clocksand differences
between clocks, where the bound is given by a side effect freeinteger ex-
pression.

In addition, any of the three expressions can contain expressions (including dis-
junctions) over integers, as long as invariants and guards are still conjunctions at
the top-level. The full constraint language is only allowedin the requirement spec-
ification language.



B PEEL
Diagrams

Condition

mExpression : string

mTemperature : Temperature

Message

mLabel : string

mpMsgSource : Location*

mpMsgTarget : Location*

Location

mTemperature : Temperature

mPosition : int

mpLocationElement : LocationElement*

mpParentInst : InstanceLine*

mCoRegion : int

InstanceLine

mLabel : string

mlLocations : list<Location>

LSC

mLabel : string

mLSCMode : LSCMode

mlInstanceLines : list<InstanceLine>

mlCoRegions : list<CoRegion>

mpPreChart : LSC*

SimultaneousRegion

mlMessages : list<BroadcastMessage>

BroadcastMessage

mTemperature : Temperature

IfThenElse

mpCondition : Condition*

mpThenLSC : LSC*

mpElseLSC : LSC*

«enum»

Temperature

Hot

Cold

«enum»

LSCMode

Universal

Existensial

CoRegion

mlLocations : list<Location*>

LocationElement

mElementType : LocElementType

«enum»

LocElementType

Condition

IfThenElse

Message

SimulRegion

Class diagram of the data structure for holding the extraction of the LSC di-
agram. This data structure is an intermediate format used for generating the
sequence of LSC elements to be verified.

Figure B.1: Class diagram of the PEEL LSC Parser output.



SeqElement

mType : SeqType

Sequence

mvElements : vector<SeqElement>

mlInstanceLabels : list<string>

SeqCoRegion

mCoRegionId : int

mvMessages : vector<SeqMessage>

SeqCondition

mpCondition : Condition*

SeqMessage

mLabel : string

mInstanceSourceLabel : string

mInstanceTargetLabel : string

SeqSimRegion

mvSimMessages : vector<SeqBroadcastMessage>

SeqBroadcastMessage

mTemp : Temperature

SeqIfThenElse

mIf : Sequence*

mElse : Sequence*

mpCondition : SeqCondition*

«enum»

SeqType

SeqConditionType

SeqIfThenElseType

SeqCoRegionType

SeqSimRegionType

SeqMessageType

SeqSnapshotType

«enum»

Temperature

Cold

Hot

SeqSnapshot

mvConditions : vector<SeqCondition>

Class diagram of the data structure for holding the sequenceof LSC elements
to be verified. This data structure is the one being used together with the FSM
computation graph to verify an LSC against a UPPAAL model.

Figure B.2: Class diagram for the sequence of LSC elements.



Configuration
� mConfId : long
� mTravInit : int
� mTravNumber : long
+ mlOutEdges : list
+ mvVarValues : vector
+ mvpInEdges : vector
+ <<( : ostream &,  : const Configuration &) : ostream &
+ Configuration(confId : long)
+ getConfId() : long
+ getTravNumber() : long
+ isTravInit() : int
+ setTravNumber(pTN : long) : void

Edge
# mReceivers : list
# mSourceLabel : string
# mSync : int
+ <<( : ostream &,  : const Edge &) : ostream &
+ Edge()
+ Edge(pLabel : string, pTarget : Configuration *, pSource : Configuration *, pSync : int)
+ getLabel() : string
+ getReceivers() : list *
+ getSource() : Configuration *
+ getTarget() : Configuration *
+ isSync() : int

FsmParser
� configs : vector
� fake : int
� mConfCounter : long
� mElemType : FsmElementType
� mFakeConf : int
� vars : vector
+ <<( : ostream &,  : const FsmParser &) : ostream &
+ FsmParser()
+ getConfigs() : vector *
+ getNumberOfConfigurations() : long
+ getVariables() : vector *
# handleConfiguration(pString : char *, pDel : char *) : void
# handleTransition(pString : char *, pDel : char *) : void
# handleVariable(pString : char *, pDel : char *) : void
+ openFile(filename : string) : void
+ parseLine(pString : char *, pDel : char *) : void

SyncEdge
+ <<( : ostream &,  : const SyncEdge &) : ostream &
+ SyncEdge( : list < string > pLabelReceivers, pLabelSource : string, pSource : Configuration *, pTarget : Configuration *, pSync : int)
+ getSource() : string

Variables
� mLabel : string
� mType : string
+ range : vector
+ <<( : ostream &,  : const Variables &) : ostream &
+ Variables()
+ Variables(pLabel : string, pType : string)
+ getLabel() : string
+ getType() : string

Class diagram of the data structure for holding the FSM computation graf. This
data structure is traversed in order to verify that the LSC sequence is present,
and that all properties hold.

Figure B.3: Class diagram of the PEEL FSM Parser output.
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