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ABSTRACT

Quantum Information Theory is about studying
information encoded in quantum systems and explor-
ing their unique properties. The topic of our report
is Quantum Data Compression, a central problem
to storage and transmission of data. Our report
presents an overview of Classical Coding Theory
and the main concepts of Quantum Coding Theory.
Moreover, we introduce a particular quantum noise-
less and lossless data compression scheme. Finally,
we present three methods to improve this scheme.
Our first method,Brute Force (BF), presents only
significant advantages for small amounts of data,
but has otherwise a very high complexity time. This
is further improved with our schemeImproved BF,
where the complexity time is decreased by taking
profit of the advantages of quantum algorithms.
Another alternative is ourAdapted Algorithm, based
on a different way of ordering probabilities and
which offers the best complexity time, but contrary
to the previous two methods does not guaranty that
an optimal solution will be found.
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Preface

This report is submitted as the Master thesis in Software Systems Engineering
in the Department of Computer Science at Aalborg University, Denmark, August
2003. Its aim is to study quantum data compression schemes.

Joana I.L. Migúens
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Quantum data compression 1 Introduction

1 Introduction

Quantum Information Science is about studying information encoded in quan-
tum systems and exploring their unique properties. The consequences that the
processing of information is always performed by physical means is all but triv-
ial. When quantum effects become important, for example at the level of atoms
and photons, the existing classical theory of computation become fundamentally
inadequate. Entirely new modes of computation become possible. Quantum In-
formation is a new paradigm based on the laws of Quantum Mechanics. It is a
new science expanding very fast and represents a revolution in our way of un-
derstanding and using information, resulting in important transformations in the
Information Society we live in.

Quantum Information Theory, the quantum version of Classical Information
Theory, has been developed due to the rising interest in both the theory of Quan-
tum Computation and the realization of quantum computers. It brings together
ideas from Classical Information Theory, Physics, Computer Science, Mathemat-
ics and Communication Theory.

The typical questions driving Quantum Information Theory Science are: what
is it that separates the quantum and the classical world from the Information The-
ory point of view? What resources, unavailable in a classical world, are being
utilized in a Quantum Computation? The existing answers to these questions are
not always completely clear. It is our hope that the fog may lift in the years to
come, and we will obtain a clear appreciation of the possibilities and limitations
of Quantum Information Science.

Quantum Information Science started about10 years ago and has a very promis-
ing future: it was already shown that in theory quantum computers are more pow-
erful than classical ones in various specialized problems. A remarkable step of
Quantum Information Theory is Shor’s probabilistic polynomial-time algorithm
for factoring [1]. Nowadays we believe there is no efficient classical algorithm for
solving the factorization problem. This is of great importance in classical cryptog-
raphy [2]: the reliability of the famous public-key cryptosystem RSA is based on
that assumption. With Shor’s algorithm one could easily break classical security
systems. This could have huge implications on the economy, for the military and
on any security system. On the other hand, using Quantum Cryptography pro-
tocols, in particularly quantum key distribution, is theoretically allowed to offer
completely secure systems and, in fact, quantum cryptographic systems have been
recently implemented [3].

Another case where a quantum algorithm is faster over classical ones is the
search for a particular element in a long unsorted list. Suppose we want to find
an item of such a list ofN elements. A classical algorithm for this problem must
examine all entries if the item we are searching for is not in the list, and has
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therefore a worst-case complexity that is linear inN . However, thanks to the
possibility of using superpositions of quantum states, quantum systems can be
simultaneously in more than one state and these allow parallelism. Grover’s al-
gorithm was developed to perform a quantum search exploiting this property. Its
worst-case complexity is a linear function of

√
N .

Perhaps the most intriguing product of Quantum Information Theory is the
concept of quantum information itself, realizing that we can treat quantum states
as if they were information. A particularly interesting and relevant topic of Quan-
tum Information Theory is Quantum Data Compression, which is the topic of our
report. The problem of compressing is central to storage and transmission of data.
In addition to its evident utility for practical communication issues, the concept
of information compression provides a bridge between the Theory of Information
and Physics - it determines what are the minimal physical requirements to store
and transmit information. Classical compression schemes have many applications
in different fields of science. For example, the similarities between the theory
of optimal investment in the stock market and Information Theory are striking.
Cryptographic protocols is another important application, representing an impor-
tant part of Communication Theory.

The essencial point of this report is to address the aim of Classical and Quan-
tum Coding Theory. We introduce the main classical compression schemes [4]
and the basic concepts of Quantum Information with a view to research Quantum
Data Compression schemes. Schumacher [5] played a fundamental role in Quan-
tum Data Compression when he introduced a theorem stating how much com-
pression one could possibly achieve. Moreover a few quantum data compression
agorithm have been proposed, a variable-length code [6], the quantum Lempel-Ziv
code [7] and another universal quantum information compression [8]. We extend
in three different ways one of this quantum compression schemes, the variable-
length quantum code.

This report is organized as follows. In section 2.1, we present the essentials
of classical compression information, introduce notation and the main theorems
of Classical Noiseless Coding (for channel where no errors occur). Moreover, in
section 2.2, four of the most commonly used classical compression schemes are
described.Huffman’s Code, described in section 2.2.1, achieves optimal com-
pression but it has a high complexity time. In section 2.2.2,Lempel-Ziv Code
is presented. This code requires no knowledge of the probabilities of the source
symbols to compress, it is called a universal compression scheme.Arithmetic
Code(in section 2.2.4) does not compress as much as the Huffman’s code, but
it is quite reasonable and the reusability of some parts of the code for different
sources makes the complexity time become low. Finally,Enumerative Codein
section 2.2.2, is used for sources in which the data sequence are equally likely.

In section 3 an introduction to Quantum Information is presented from the
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computer science point of view. Firstly, in section 3.1, we introduce the basic
concepts of Quantum Mechanics and Quantum Information. Then, section 3.2 has
a description of one of the most important features for the speedup of Quantum
Computation over Classical Computation, quantum parallelism, as well as one of
its applications, Grover’s algorithm. Another important and puzzling concept of
Quantum Information isentanglement, introduced

in section 3.3. It has no analog concept in the classical world and plays an
important role in Quantum Information Theory. One of its aplications, dense
coding, is presented in section 3.3.1.

Finally, section 4 presents Quantum Data Compression. We introduce, in sec-
tion 4.1, an overview of the main properties of quantum information itself and
discuss the objectives and achievements of the quantum encoding schemes de-
veloped so far [8, 7, 9, 10, 11, 12, 13]. Moreover in section 4.2.1 we describe a
variable-length quantum encoding scheme [6] which we improve in three differ-
ent ways. In section 4.2.2 we present theBrute Forcealgorithm, it finds always
the optimal solution, but it has exponential complexity time. Therefore, in section
4.2.3,Improved BFalgorithm describes an improvement of Brute Force complex-
ity time by using the Grover’s algorithm and its extension. Finally, in section
4.2.4, a completely different approach is done to compress the quantum data. It
reaches a quadratic complexity time, but it is not proven to find always the optimal
solution.
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2 Classical Coding Theory

Information Theory studies the way information is processed, meaning by this,
roughly, the study of data compression and data transmission. In this section we
introduce the basic terms of Coding Theory, its aim is to compress data as much as
possible to use the less physical resources one can hope to use. The main concepts
of classical coding are presented in section 2.1. Moreover, in section 2.2, we intro-
duce three of the most commonly used classical compression schemes: Huffman’s
Code 2.2.1, Lempel-Ziv Code 2.2.2, Arithmetic code 2.2.3 and Enumerative code
2.2.4.

2.1 Classical Noiseless Coding

Firstly in this section we present some basic terminology of Information Theory,
mainly the most important definitions and theorems. Then we present four of the
most commonly used classical noiseless codes: Huffman code, Enumerative code,
Arithmetic code and Lempel-Ziv code.

We may compress data in two different ways, lossless and lossy compres-
sion. These are terms that describe whether or not, in a compression, all original
data can be recovered when the file is uncompressed. With lossless compres-
sion, every single bit of data that was originally in the file remains after the file
is uncompressed. All of the information is completely restored. This is gener-
ally the technique of choice for text or spreadsheet files, where losing words or
financial data could pose a problem. The Graphics Interchange File (GIF) is an
image format used on the Web that provides lossless compression. On the other
hand, lossy compression reduces a file by permanently eliminating certain infor-
mation, especially redundant information. When the file is uncompressed, only
a part of the original information is still there (although the user may not notice
it). Lossy compression is generally used for video and sound, where a certain
amount of information loss will not be detected by most users. The JPEG image
file, commonly used for photographs and other complex still images on the Web,
is an image that has lossy compression. Using JPEG compression, the creator
can decide how much loss to introduce and make a trade-off between file size and
image quality. In this report we only study lossless compression.

We study classical coding algorithms for noiseless channels. In such a chan-
nel, where no errors occur, the only worry is about how efficiently the coding is
done, in a sense that will be precise in a moment. Conversely, noisy channel are
the ones where occurs error. Before any definition we try to introduce some intu-
ition about all this. One of our goals is to measure information. But, what does
measure information mean? Imagine we flip a coin. How much information do we
have to guess the result? What is the amount of uncertainty in this experiment?
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What about if we drop a dice instead? It is intuitive that the uncertainty of the
second experiment increases. Now consider a closed box with4 white balls and1
black ball. If we take one ball from the box, which one gives us more information?
To pick a white or the black ball? A little thought on this question leads us to the
conclusion. If we pick the black ball then we know which is the color of any ball
inside the box. This would not have happened if we had picked a white ball.

So, there must be a way to quantify information. Assume that we have an
experiment withk equally probable results. The uncertainty of this experiment is
determined by the value ofk - (let us call this measure of uncertaintyH(k). As we
will see in a moment to be the entropy): so, fork = 1 the result is completely de-
termined,H(1) = 0. It is clear that the uncertainty growths ask growths. Suppose
now we have two independent experiments withl andk outcomes, respectively,
equally likely. If we compound the two experiments, the result would havekl
likely probable results, intuitively, and the uncertainty would be the sum of the
uncertainty in both experiments,H(kl) = H(k) + H(l). All this conditions lead
us to defineH(k) = logb(k), for someb constant. In a similar way we define
quantity of informationto be the sum of1

x
logb(x), wherex stands for the out-

comes. The intrusion of logarithms might have been a surprise when pointed out,
today it actually seems quite natural. Nevertheless, the explicit use of logarithms
helped Claude Shannon, an American mathematician and electrical engineer, to
make a big connection in the 1940s when he showed how the theory of heat -
thermodynamics- was applicable to information transmission. In a famous and
much cited article entitled ”A mathematical theory of communication,” he pre-
sented a unifying theory of the transmission and processing of information [14].

The concept ofentropy is the measure of uncertainty of a random variable.
This concept agrees with the intuitive notion of what a measure of information
should be.

Definition 1 Let X be a discrete random variable with rangeS = {x1, ..., xn}. If
P (X = xi) = p(xi), then theentropyofX is defined by:

H(X) =
n∑
i=1

p(xi) log
1

p(xi)
. (1)

More detail and properties of entropy can be found, for example, in [4].
Now you may be asking yourself, but how do we relate entropy and data com-

pression? Later in this section we establish the limit of data compression as the
entropy value of the source.Data compressionis also called source coding in a
sense that our goal is to encode the information contained in a source. It can be
achieved by assigning short description to the most frequent outcomes of the data
source and necessarily longer descriptions to the less frequent outcomes. Let us
present a formal description of the term source.
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Definition 2 A sourceis an ordered pairS=(S,P), where S={x1, ..., xn} is a finite
set, known as asource alphabet, andP is a probability distribution (denoted by
p(xi)) onS.

Furthermore, we assume that the different uses of the source areindependent
and identically distributed(i.i.d., formal definition in appendix A). In the real
world information source usually don’t behave this way. For example consider
an English text, the sequence of letter don’t occur independently. Many times
the letter ”t” is followed by letter ”h”. Therefore, there exits a strong correlation
between this two letters. However, most of the applications consider, even sources
like an English text, i.i.d. sources, working pretty well in practice.

Definition 3 If successive symbols are i.i.d., the information source is azero-
memory source(or memoryless source).

Let A = {a1, ..., an} be a finite set, calledalphabet. A word w overA is
any finite sequence of elements ofA. We define thelength of a word, denoted as
len, as the number of alphabet symbols in the word. We writeA∗ for the set of all
words overA.

Definition 4 LetA = {a1, ..., ar} be a finite set, called thecode alphabet. An
r-ary code is a nonempty subsetC of the setA∗.

Usually the elements of the code are denominatedcode words. The most
used code alphabet isC = {0, 1}, a binary code. From a sourceS we intent
to construct codewords to assign to the source symbols, the procedure is called
encoding scheme, defined below:

Definition 5 Consider the sourceS=(S,P). Anencoding schemefor the source
S is an ordered pair(C, f), whereC is a code andf : S → C is an injective
function.

This way we assign a code word to each source symbol.
It is clear that the average codeword length of an encoding scheme is not af-

fected by the nature of the source symbols themselves. Therefore, we may think
directly on the probabilities assigned to the codewords, thus obtaining an encod-
ing schemeC=(c1,...,cn) for the probability distributionP=(p1, ...,pn). We define
thecodewords length averageas:

L(C) =
n∑
i=1

pilen(ci). (2)

wherelen(x)denotes the length ofx.
Below we have an example with these concepts.
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Example 1 Consider a source:

S = {N,S,E,W} with probabilitiesP = (0, 5; 0, 05; 0, 05; 0, 4).

The code alphabet is{0, 1}. Consider an encoding schemeC = {0, 10, 110, 1110}
andf defined asf(N) = 0, f(S) = 10, f(E) = 110 andf(W ) = 1110. There-
fore the length average is:

L(C) = 0, 5× 1 + 0, 05× 3 + 0, 05× 4 + 0, 4× 2 = 1, 65 (3)

The problem we deal with in data compression is to reduce as much as we can
the length average of the codewords. We prove later in this section, that for a
sufficiently long sequence of data, there is an approach between the compression
limit and the entropy as close as we want. The example above hasH(S) = 1, 461,
therefore we could probably compress the data more, depending on the amount
of data we want to compress. Our goal now is to determine theminimumaverage
codeword length among all the “good” encoding schemes (in a sense we will make
precise soon), as well as the method for constructing such encoding scheme. In
general we may define two classes of encoding schemes. If all the codewords
in a code C have the same length, we say that C is afixed length code. If C
contains codewords of different lengths, we say that C is avariable length code.
Mostly the variable length encoding schemes are more efficient. However, those
schemes have a potential problem. Imagine we have a sourceS = {a, b, c} and a
variable encoding scheme withC = {0, 01, 001} andf(a) = 0, f(b) = 01 and
f(c) = 001. This encoding scheme is notuniquely decipherable, is a sense that
the code word001 could be decoded asab or asc. The difficulty here can be
traced to the fact that a word of code alphabet symbols may represent more than
one word of codewords. This leads to the following definition.

Definition 6 A code C isuniquely decipherableif wheneverc1, ..., ck andd1, ..., dj
are codewords in C and

c1...ck = d1...dj, (4)

thenk = j andci = di for all i = 1, ..., k.

Clearly this property is extremely desirable. There are methods to show that a
particular code is uniquely decipherable. One of the difficulties with uniquely
decipherable codes is that, even though a code may have this property, it may be
necessary to wait until the entire message has been received before we can begin
to decode. This leads us to the following definition:

Definition 7 A code is said to beinstantaneousif each codeword in any word of
codewords can be decoded (reading from left to right) as soon as it is received.
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Obviously an instantaneous word is also uniquely decipherable, but a uniquely
decipherable code does not need to be instantaneous, as the following example
shows.

Example 2 Considering the same source sample of the previous example we state
C = {0, 01, 011, 0111}, such thatf(N) = 0, f(S) = 01, f(E) = 011 and
f(O) = 0111. It is not difficult to check that this is an uniquely decipherable
code. Suppose we send the codeword0111. When we receive the0 we don’t know
whether it is suppose to decode like N or if it is the first part of other codeword.
The same happens while we receive the first and the following1’s. So, the message
only can be decoded when completely received.

The following method is sufficient to check if a code is instantaneous. It also
gives a good idea to construct instantaneous words.

Definition 8 A code has theprefix propertyif no codeword is a prefix of any other
codeword, that is, if wheneverc = x1x2...xn is a codeword, thenx1x2...xk is not
a codeword for1 ≤ k < n.

The theorem below states the importance of the prefix property, [4].

Theorem 1 A code C is instantaneous if and only if it has the prefix property.

We desire to construct instantaneous codes of minimum expected length to de-
scribe a given source. It is clear that we can not assign short codewords to all
source symbols and still be prefix free. In 1949 L. G. Kraft published a remark-
able theorem stating a criterion to determine if there is an instantaneous code with
given codeword lengths.

Theorem 2 (Kraft’s Theorem) There exists anr-ary instantaneous code C with
codewords of lengthl1, l2, ..., lm if and only if the following inequality (Kraft’s
inequality) holds

m∑
i=1

1

rli
≤ 1 (5)

The proof can be found for example in [4]. Kraft’s theorem states that if the
lengthsl1, l2, ..., lm satisfy the Kraft’s inequality, then there must be an instanta-
neous code with these code lengths. It does not states that any code whose lengths
satisfy Kraft’s inequality must be instantaneous. So far we know that any instanta-
neous code is uniquely decipherable, but the opposite is not true. Therefore Kraft’s
inequality is also sufficient for the existence of a uniquely decipherable code, but
in 1954 McMillan stated that Kraft’s inequality also is a necessary condition for
the existence of uniquely decipherable codes.
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Theorem 3 (McMillan’s Theorem) The codeword lengths of any uniquely de-
codable code,l1, l2, ..., lm, must satisfy the Kraft inequality

m∑
i=1

1

rli
≤ 1. (6)

Conversely, given a set of codeword length that satisfy this inequality, it is possible
to construct a uniquely decodable code with these codeword lengths.

The proof of McMillan’s theorem may be found in [4]. Kraft’s and McMillan’s
theorems are two basic and relevant theorems with important practical conse-
quences. The lemmas below (stated in [4]) provide two of the these consequences.

Lemma 1 If exists an uniquely decodable code with codeword lengthsl1, l2, ..., lm,
then there must exist an instantaneous code with the same code word lengths.

Lemma 2 The minimum average codewords length among all uniquely decipher-
able codes for a given source, S, is equal to the minimum average codewords
length among all instantaneous encoding scheme for S.

Hence, in seeking to minimize the average codeword length over all uniquely
decodable encoding schemes, we may restrict ourselves to instantaneous codes.
Since our goal is to reduce as much as we can the length average of the codewords
we must search for a balance of decoding capacity and practical coding efficiency.
In other words, we seek instantaneous codes with the minimum of length average,
calledoptimal codes.

Definition 9 Anoptimal r-ary codefor a sourceS = (S, P ); with S = {s1, ..., sm}
andP = {p1, ..., pm}, is an r-ary instantaneous encoding schemeC = {w1, ..., wm}
with minimum average lengthL(C) =

∑m
i=1 pi|wi| among all possible instanta-

neous codes for sourceS.

The concepts we introduced so far are sufficient to discuss the main results in
noiseless coding. So far we know entropy,H(S), of a sourceS is the amount
of information contained in the source. Further, since an instantaneous encoding
scheme forS captures the information in the source, it is not unreasonable to
expect that the average codeword length of such a code must be at least as large as
the entropyH(S). In fact, this is what the Noiseless Coding theorem says, proved
by Claude Shannon in 1948 [14]. The generalized version of this theorem, that
will be discussed in a moment, also says that by clever encoding, we can make the
average codeword length as close to the entropy as desired.
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Theorem 4 (The Noiseless Coding Theorem) For any probability distributionP
of a sourceS, we have,

Hr(S) ≤ L(C) < Hr(S) + 1 (7)

where C is an optimal code with probability distributionP andHr is the entropy
of anr-ary code,Hr(X) =

∑n
i=1 p(xi) logr

1
p(xi)

.

In the preceding theorem, there is an overhead that is at most one unit. How-
ever we may want to be more ambitious with our compression and try to compress
as much as we can. We can reduce the overhead per symbol by spreading it out
over many symbols. For this we consider a system in which we send a sequence
of n symbols from the source. This idea is called extensions of a source.

Definition 10 Let S = (S, P ) be a source. Then-th extensionof S is Sn =
(Sn, P n), whereSn is the set of all words of lengthn over S, and P n is the
probability distribution defined forx = x1...xn by

P n(x) = P (x1)...P (xn). (8)

The symbols are assumed to be drawn from ani.i.d. (see appendix A) according
to p(x).

We can consider thesen symbols to be a supersymbol from the alphabetSn.
Now we are able to introduced a generalization of Shannon Theorem. We can
verify thatH(S2) = 2H(S). Applying Shannon Theorem to the sourceS2 we
know there is an optimal codeC2 such that,

2H(S) = H(S2) ≤ L(C2) ≤ H(S2) + 1 = 2H(S) + 1, (9)

each symbol ofS2 contains2 symbols of the original source, S. So, the average
symbol (of S) lengths will beL(C2)

2
. The previous estimation leads to

H(S) ≤ L(C2)

2
≤ H(S) +

1

2
, (10)

Shannon Theorem can be generalized thus:

Theorem 5 ConsiderSn an extension of a sourceS. In terms of probability dis-
tributions,

Hr(P
n) = nHr(P ) (11)

Shannon Theorem and the previous theorem provide the following theorem,
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Theorem 6 Consider ann-th extensionof a sourceS = (S, P ), Sn = (Sn, P n).
Then

Hr(S) ≤ L(Cn)

n
< Hr(S) +

1

n
, (12)

where C is an optimal code with probability distribution P andCn itsn-extension.

This theorems are stated in [4]. The last theorem says that to encode a sufficient
long extension ofS, then we may make the minimum average codeword length
per source symbol ofS as close to the entropyHr(P ) as desired. We now give an
example of source extension.

Example 3 LetS = (a, b) andP = (1
4
, 3

4
). Intuitively we expect that the encod-

ing scheme (C,f):
f(a) = 0, f(b) = 1 (13)

couldn’t be more compressed, in a sense that the minimal length of a word is
one and both the code words have length one. So the average codeword length is
1
4
×1+ 3

4
×1 = 1. Constructing the extensionS2 we get a probability distribution,

P 2:
f(aa) = 010, f(ab) = 011, f(ba) = 00 andf(bb) = 1 (14)

with average codeword length1
16
× 3 + 3

16
× 3 + 3

16
× 2 + 9

16
× 1 = 27

16
. Per source

symbol we have an average codeword length equal to27
32

. Which is less than1 and
verify,

H(Sn) =
1

4
log 4 +

3

4
log

4

3
=

1

2
+

3

4
0.12 = 0.59 ≤ 27

32
≤ 0.59 +

1

2
. (15)

Now we have define the desired properties of a compression scheme we introduce
in the next section four of the most important encoding schemes: the Huffman’s
code, the Lempel-Ziv code, the Arithmetic code and the enumerative code.

2.2 Classical Encoding Schemes

The idea of encoding a source is to obtain optimal codes and, in some applications,
it is important to consider the time we take to encode and decode. There are
many compression algorithms, different from each other in tiny details. The most
commonly used are the Huffman’s code [15], Lempel-Ziv code [16], Arithmetic
code [17, 18] and Enumerative code [19]. We introduce these codes, discuss their
compression limits and their applications.
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2.2.1 Huffman’s Code

The best known noiseless encoding method is theHuffman Encoding, published
in 1952 [15]. This is an optimal encoding scheme, statement proven along the sec-
tion. Huffman’s encoding scheme gives an algorithm for minimizing the length
average (Min L(C)). Without loss of generality and considering our goal, we
present Huffman’s algorithm for binary codewords. It operates in the follow-
ing way. LetS=(S,P) be a source, such thatS = (s1, ..., sm) with probabilities
P = (p1, ..., pm). Huffman’s algorithm operates recursively as follows. Let us
start with an informal description of Huffman’s code. The description may get
easier to understand if you follow at the same time example 4. At first we reorder,
if necessary, the symbols ofS in such way that the respective probabilities end up
in a non-increasing order.

pn ≤ ... ≤ p2 ≤ p1 (16)

Now we obtain a reduced source, which we callS
′
, appending the two less

probable symbolssm andsm−1 in a single symbols′ = sm−1 ∨ sm and attributing
to it the probabilityp′ = pm−1 + pm. In case there is more than one symbol
with the minimal probability, just pick two of them randomly. Following this idea
we have constructed a sourceS’ with m − 1 elements,s1, ..., sm−2, s

′ with the
respective probabilities,p1, ..., pm−2, p

′.
Given a binary codeC ′ for S ′ we can construct a binary codeC for S as

follows:

For i = 1, ...m− 2 : ci = C ′(si) =>C(si) = ci

c′ = C ′(s′) =>C(sm−1) = c′0 andC(sm) = c′1 (17)

The preceding explained how to construct a binary codeC for a sourceS
with m symbols from a binary codeC ′ for a reduced sourceS ′ with m − 1 sym-
bols. We could follow the some idea to constructC ′ from a binary codeC ′′ of
a sourceS ′′ with m − 2 symbols. Applying this several times we obtain the se-
quenceS, S ′, S ′′, ..., Sm−2, each the reduced form from the previous one, with
respectivelym,m− 1,m− 2, ..., 2, elements:

S → S ′ → S ′′ → ...→ Sm−2 (18)

Sm−2 has two symbols,s2∨ ...∨sm−1 ands1 with probabilitiesp2 + ...+pm−1 and
p1, respectively; we encode it with the symbols0 and1, and thusC(m−2) = {0, 1}.
Following the process just described we constructC(m−3) for the source with3
symbolsS(m−3). Applying the same processm− 2 times we obtain a sequence of
codes
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C(m−2) → ...→ C ′ → C.

A formal way to describe Huffman’s algorithm is:

Algorithm 1 Consider the following algorithmH for producing binary encoding
schemesC for probability distributionP .

1. If P=(p1,...,pn), wheren ≤ 2, then letC = (0) if n = 1 andC = (0, 1) if
n = 2.

2. If P = (p1, ..., pn), wheren > 2, then

(a) Reorder P if necessary so thatp1 ≥ p2 ≥ ... ≥ pn.

(b) LetQ = (p1, ..., pn−2, q), whereq = pn−1 + pn.

(c) Perform the algorithmH on Q, obtaining an encoding scheme:

D = (c1, ..., cn−2, d)

(d) Let

C = (c1, ..., cn−2, d0, d1)

We present an example of Huffman code.

Example 4 Suppose we haveS = ({a, b, c, d},{0.54, 0.31, 0.09, 0.06}) At first
we write down the probability columns. For example, in the second probability
column we summed the smallest two probabilities of the first probability column,
the same construction scheme is used to obtain the other probability columns.
Then we complete the table appending the codewords from the right to the left.

Prob. Code Prob. Code Prob. Code
0.54 0 0.54 0 0.54 0
0.31 10 0.31 10 0.46 1
0.09 110 0.15 11
0.06 111

This way we obtainC = {0, 10, 110, 111}.

Performance
The code constructed by Huffman’s algorithm is optimal (proof in [4]), which

implies that it is an instantaneous code with minimum average length code. Even
so we care about its complexity. Complexity Theory is concerned with the in-
herent cost required to solve information processing problems. Unfortunately,
Huffman’s code, cannot be used in many application, thanks to the construction
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time it requires. Storage space is also an important issue and Huffman’s algorithm
takes a considerable amount of construction space. This makes it only possible to
use it in applications which require a small source alphabet.

To cover the gap left by Huffman’s codes for large values ofN source sym-
bols we now present other data compression codes, namely the Lempel-Ziv Code,
Arithmetic Code and Enumerative Code.

2.2.2 Lempel-Ziv Code

Huffman’s algorithm may take a long construction time because it requires knowl-
edge of the probabilities of the source symbols. When there is no knowledge of
the source characteristics, and if statistical tests are either impossible or unreli-
able, the problem of data compression becomes considerably more complicated.
In order to overcome these difficulties one must resort to universal coding schemes
whereby the coding process is interlaced with a learning process for the varying
source characteristics. Such coding schemes inevitably require a large working
memory space and generally employ performance criteria that are appropriate for
a wide variety of sources.

Here we describe a universal coding scheme which can be applied to any dis-
crete source. Lempel-Ziv Codes are examples ofdictionary codes. A dictionary
code first partitions a data sequence into variable-length blocks (this procedure is
calledparsing). Then, each phrase in the parsing is represented by means of a
pointer to that phrase in a dictionary of phrases constructed from previously pro-
cessed data. The phrase dictionary changes dynamically as the data sequence is
processed from left to right. A binary codeword is then assigned to the data se-
quence by encoding the sequence of dictionary pointers in some simple way. The
most popular dictionary codes are the Lempel-Ziv codes. There are many ver-
sions of the Lempel-Ziv codes. The one we discuss here is called LZ78 [16]. Two
widely-used compression algorithms on Unix systems are Compress and Gzip;
Compress is based on LZ78 and Gzip is based on another popular Lempel-Ziv
code, not discussed here, called LZ77 [20].

In the rest of this section, we discuss the parsing technique, the pointer for-
mation technique, and the pointer encoding technique employed in Lempel-Ziv
coding.

Lempel-Ziv Parsing. Let (x1, x2, ..., xn) be the data sequence to be com-
pressed. Partitioning of this sequence into variable-length blocks viaLempel-Ziv
parsing takes place as follows. The first variable-length blocks arising from the
Lempel-Ziv parsing of(x1, x2, ..., xn) is the single samplex1. The second block in
the parsing is the shortest nonempty prefix of(x2, ..., xn) which is not equal tox1.
Suppose this second block is(x2, ..., xj). Then the third block in Lempel-Ziv pars-
ing will be the shortest nonempty prefix of(xj+1, xj+2, ..., xn) which is not equal
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to eitherx1 or (x2, ..., xj). In general, suppose the Lempel-Ziv parsing procedure
has produced the firstK variable-length blocksB1, B2, ..., BK in the parsing, and
x(k) is that part left of(x1, ..., xn) afterB1, B2, ..., BK have been removed. Then
the next blockBk+1 in the parsing is the shortest nonempty prefix ofx(k) which is
not equal to any of the preceding blocksB1, B2, ..., BK . (If there is no such prefix
of xk, thenBk+1 = x(k) and the Lempel-Ziv parsing procedure terminates.)

By construction, the sequence of variable-length blocksB1, B2, ..., Bt pro-
duced by the Lempel-Ziv parsing of(x1, x2, ..., xn) are distinct, except that the
last blockBt could be equal to one of the preceding ones. The following example
illustrates Lempel-Ziv parsing.

Example 5 The Lempel-Ziv parsing of the data sequence

(1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1) (19)

is

B1 (1)
B2 (1,0)
B3 (1,1)
B4 (0)
B5 (0,0)
B6 (1,1,0)
B7 (1)

Pointer Formation. We suppose that the alphabet from which the data se-
quence(x1, x2, ..., xn) is formed isA = {0, 1, ..., k − 1}, wherek is a positive
integer. After obtaining the Lempel-Ziv parsingB1, B2, ..., Bt of (x1, x2, ..., xn),
the next step is to represent each block in the parsing as a pair of integers. The
first block in the parsing, B1, consists of single symbol. It is represented as the
pair (0, B1). More generally, any block Bj of length one is represented as the pair
(0, Bj). If the block Bj is of length greater than one, then it is represented as the
pair (i, s), wheres is the last symbol onBj andBi is the unique previous block in
the parsing which coincides with the block obtained by removings from the end
of Bj.

Example 6 The sequence of pairs corresponding to the parsing of the previous
example is

(0, 1), (1, 0), (1, 1), (0, 0), (4, 0), (3, 0), (0, 1) (20)

For example,(4, 0) corresponds to the block(0, 0) in the parsing. Since the
last symbol of(0, 0) is 0, the second component of the pair(4, 0) is 0. The4 in
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the first entry refers to the fact thatB4 = (0) is the preceding block in the parsing
which is equal to what we get by deleting the last symbol of(0, 0).

For our next step, we replace each pair(i, s) by the integerki + s. Thus, the
sequence of pairs (20) becomes the sequence of integers

I1 = 2× 0 + 1 = 1

I2 = 2× 1 + 0 = 2

I3 = 2× 1 + 1 = 3

I4 = 2× 0 + 0 = 0

I5 = 2× 4 + 0 = 8

I6 = 2× 3 + 0 = 6

I7 = 2× 0 + 1 = 1 (21)

Encoding the pointers. Let I1, I2, ..., It denote the integer pointers corre-
sponding to the blocksB1, B2, ..., Bt in the Lempel-Ziv parsing of the data se-
quence(x1, x2, ..., xn). To finish our description of the Lempel-Ziv encoder, we
discuss how the integer pointersI1, I2, ..., It are converted into a stream of bits.
Each integerIj is expanded to base two and these binary expansions are ”padded”
with zeroes on the left so that the overall length of the string to be assigned to
Ij is dlog2(kj)e. The reason why these many bits is necessary is seen by exam-
ining the largest thatIj can possibly be. Let(i, s) be the pair associated withIj.
Then the biggest thati can be isj-1 and the biggest thans can be isk-1. Thus
the biggest thatIj can be isk(j − 1) + k − 1 = kj − 1, and the number of
bits in the binary expansion ofkj − 1 is dlog2(kj)e. LetWj be the string of bits
of length dlog2(kj)e assigned toIj as described above. Then, the Lempel-Ziv
encoder output is obtained by concatenating together the stringsW1,W2, ...,Wt.

To illustrate, suppose the data sequence(x1, x2, ..., xn) is binary (i.e., k=2),
and has seven blocksB1, B2, ..., B7 in its Lempel-Ziv parsing. These blocks are
assigned, respectively, string of code bitsW1,W2, ...,W7 of lengthsdlog2(2)e =
1, dlog2(4)e = 2, dlog2(6)e = 3, dlog2(8)e = 3, dlog2(10)e = 4, dlog2(12)e = 4,
dlog2(14)e = 4. Therefore, any binary data sequence with seven blocks in its
Lempel-Ziv parsing would result in an encoder output of length1 + 2 + 3 + 3 +
4 + 4 + 4 = 21 code bits. In particular, for the data sequence (19), the seven string
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W1, ...,W7 are (21):

W1 = (1)

W2 = (1, 0)

W3 = (0, 1, 1)

W4 = (0, 0, 0)

W5 = (1, 0, 0, 0)

W6 = (0, 1, 1, 0)

W7 = (0, 0, 0, 1) (22)

Concatenating, we see that the codeword assigned to data sequence (19) is

(1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1) (23)

Decoding can be performed simply by reversing the encoding process. We
omit a detailed description of the Lempel-Ziv decoder, but it is easy to see what
the decoder would do. For example, it would be able to break up the codeword
(23) into the separate codewords for the phrases, because, from the sizek of the
data alphabet, it is known how many code bits are allocated to the encoding of
each Lempel-Ziv phrase. From the separate codewords, the decoder recovers the
integer representing each phrase; dividing each of these integers byk to obtain
the quotient and remainder, the pairs representing the phrases are obtained. Fi-
nally, these pairs yields the phrases, which are concatenated together to obtain the
original data sequence.

Performance
Let S be a source with a source alphabet of sizek. We denote byn the size

of the data sequence to compress. It is known [16] that there is a positive constant
Ck (depending onk but not onn) such that

H(S) ≤ Cn

n
≤ H(S) +

Ck
log2 n

. (24)

Thus, the Lempel-Ziv code is not quite as good as the Huffman’s code. But,
there is an important difference, the Huffman’s code require knowledge of the
source. The preceding performance bounds is valid regardless of the source. Thus,
one can use the same Lempel-Ziv code for all sources - such a code is called a
universal code[16].

2.2.3 Arithmetic Codes

We consider an arithmetic coding [17, 18] of a single source. Consider the sample
X generated by the source, modeled as a random variable taking its values in
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the finite alphabet A and probabilityp(a) = Pr[X = a] (for eacha ∈ A). The
arithmetic code works on the following way for eacha:

1. ConsiderI(a) the interval assigned to lettera. At first the interval [0,1] is
divided into subintervals ofI(a) (a ∈ A), whereI(a) is taken to be of length
p(a).

2. To each intervalI(a) calculate the midpointxa.

3. The codewordB(a) assigned toa by the arithmetic encoder is of length
L(a) = 1 + d− log p(a)e and is obtained as the firstL(a) digits to the right
of the decimal point in the infinite binary expansion of the real numberxa.
LettingL = L(a),

xa = .b1b2b3...bLbL+1...

xa =
(
b1
2

)
+
(
b2
4

)
+
(
b3
8

)
+ ...+

(
bL
2L

)
+
(
bL+1

2L+1

)
+ ...

2Lxa =
(
2L−1b1 + 2L−2b2 + ...+ 2bL−1 + bL

)
+ fraction

b2Lxac = 2L−1b1 + 2L−2b2 + ...+ 2bL−1 + bL

B(a) = b1b2b3...bL is thus theL(a)-digits binary expansion of the positive
integerb2L(a)xac.

The steps above describe the arithmetic encoding scheme. Now we discuss
the way the arithmetic decoder works. The distance betweenxa and the point(

b1

2

)
+

(
b2

4

)
+

(
b3

8

)
+ ...+

(
bL
2L

)
(25)

is less than

(
1

2L+1
) + (

1

2L+2
) + (

1

2L+3
) + ... =

1

2L
≤ p(a)

2
(26)

by choice ofL(a). SinceI(a) is of lengthp(a) and the point of equation (25) is
at most half this length from the centre point of the intervalI(a), the point of
equation (25) must lie in this interval, too. The decoder computes the point of
equation (25) from the received codewordB(a), and then decodesB(a) into a by
finding the uniqueI(a) containing the point of equation (25).

Example 7 Let{a,b,c,d} be the alphabet with probabilities:

p(a)=1
2
, p(b)=1

4
, p(c)=1

8
, p(d)=1

8
.

Step 1. and 2.
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A I midpoint x
a [0, 1

2
] 1

4

b [1
2
, 3

4
] 5

8

c [3
4
, 7

8
] 13

16

d [7
8
, 1] 15

16

Step 3. Let[j]k denote the k-bit expansion of integer j. Then:

L(a) = 1 + d− log2(1
2
)e = 2

b2L(a)xac = 1
B(a) = [1]2 = 01

L(b) = 1 + d− log2(1
4
)e = 3

b2L(b)xbc = 5
B(b) = [5]3 = 101

L(c) = 1 + d− log2(1
8
)e = 4

b2L(c)xcc = 13
B(c) = [13]4 = 1101

L(d) = 1 + d− log2(1
8
)e = 4

b2L(d)xdc = 15
B(d) = [15]4 = 1111

The arithmetic encoder table is therefore

letter codeword
a 01
b 101
c 1101
d 1111

Note that if we remove the rightmost bit from each codeword, we obtain an-
other prefix codeword set{0, 10, 110, 1111}. This will happen any time the inter-
val in Step1 are chosen to never increase in length as one goes from left to right in
the unit interval. In this case, one can use the shorter codewords{0, 10, 110, 1111}
as the codewords generated by the arithmetic encoder, thereby saving one code bit
per source letter. (If the intervals sometimes increase in length in going from left
to right, then one may not be able to remove the rightmost bit from the codewords.)

Performance
It can be shown [17] that the resulting compression rate satisfies

H(S) ≤ Cn

n
≤ (H(Sn) + 2)

n
, (27)
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wheren is the length of the source. For large n, we therefore have(H(Sn)+2)
n

≈ Hn.
This is the best one can possibly hope to do. If the source is memoryless andn
is large one obtains the very good arithmetic code compression rate performance
just described but, at the same time, the arithmetic code of low complexity. As dis-
cussed for the Huffman code will also achieve a very good compression rate per-
formance but this Huffman code will be very complex. For this reason, arithmetic
codes are preferred over Huffman codes in many data compression applications.

2.2.4 Enumerative Codes

Enumerative coding, in its present state of development, is due to Thomas Cover
[5]. Enumerative coding is used for a source in which the data sequence are
equally likely; the best lossless code for such a source is one which assigns code-
words of equal length. Here is Cover’s approach to enumerative code designs:

1. Let N be the number of sequences inSn (Sn = {s1s2...sn|si ∈ S, 1 ≤
i ≤ n}). Construct the rooted treeT with N leaves, such that the edges
emanating from each internal vertex have distinct labels fromS, and such
that theN sequences inSn are found by writing down the labels along theN
root-to leaf paths ofT.

2. Locate all paths inT which visit only unary vertices in between and which
are not subpaths of other such paths. Collapse each of these paths to single
edges, labelling each such single edge that result with the sequence of labels
along the collapsed path. This yields a treeT× with N leaves (the same
as the leaves ofT). Label each leaf ofT× with the sequence obtained by
concatenating together the labels on the root-to-leaf path to that leaf; these
leaf labels are just the sequence inSn.

3. Assign an integer weight to each vertexv of T× as follows. If v has no
siblings or is further to the left than its siblings, assignsv a weight of zero.
If v has sibling or is further to the left, assignsv a weight equal to the number
of leaves ofT× that are equal to or subordinate to the siblings ofv that are
to the left ofv.

4. To encodexn ∈ Sn, follow the root-to-leaf path inT× terminating in the
leaf of T× labelled byxn. Let I be the sum of the weights of the vertices
along this root-to-leaf path. The integerI is called the index ofxn, and
satisfies

0 ≤ I ≤ N − 1. (28)
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Encodexn into the binary codeword of lenghtdlog2 Ne obtained by finding
the binary expansion ofI and them padding that expansion (if necessary) to
dlog2 Ne bits by appending a prefix of zeroes.

Example 8 For example, suppose the source satisfies

Sn = {aaa, aba, abb, abc, bba, bac, caa, cba, cbb, cca}. (29)

Then step 1-3 yield the tree T× in Figure 1

Figure 1: Example of classical enumerative code.

in which every vertex is labelled with its weight from step 3. (The 10 leaves of
this tree, from left to right, correspond to the 10 sequences in 29, from left to right.)
The I values along the 10 path are just the cumulative sums of the weights, which
are seen to give I=0,1,2,3,4,5,6,7,8,9. The codeword length isdlog2 10e = 4 and
the respective codewords are

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001. (30)

Sometimes, the tree T× has such a regular structure that one can obtain an
explicit formula relating a data sequence and its index I , thereby dispensing with
the need for the tree T× altogether.
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3 Quantum Information Overview

Quantum Information is a new paradigm based on the laws of Quantum Mechan-
ics, it is a completely different way of understanding and codifying information.
Rolf Landauer pointed out the importance of the physical systems when dealing
with information. According to Deutsch [21], ”Landauer was telling everyone
that computation is physics and that you can’t understand the limits of computa-
tion without saying what the physical implementation [i.e. type of hardware] is.
He was a lone voice in the wilderness. No one really understood what he was talk-
ing about-and certainly notwhy.” Information is physical and any processing of
information is always performed by physical means - an innocent statement, but
its consequences are anything but trivial. When quantum effects become impor-
tant, for example at the level of atoms and photons, the existing, classical theory
of computation become fundamentally inadequate. Entirely new modes of com-
putation and information processing become possible. In the last few years there
has been an explosion of theoretical and experimental research in Quantum Com-
putation.

In this section we present the basics of Quantum Computation needed to learn
Quantum Information processing. A reader familiar with basic Linear Algebra
will presumably have no difficulties in following this section, but for a reader feel-
ing lost we recommend appendix B and an introductory book on Linear Algebra,
such as [22].

Quantum Computation [23] is based on the laws of Quantum Mechanics [24],
but we present the fundamental notions of quantum information processing from
the point of view of a computer scientist, like a mathematical framework. Our
main interest is to introduce Quantum Computation and Quantum Information
processing. For this reason we are primarily interested in representing a finite set
by using a quantum mechanical system. For the sake of simplicity we assume that
all the quantum systems handled in this section arefinite-dimensional.

In section 3.1 we introduce the basic notions and notation of Quantum Infor-
mation, for a better understanding of the following section about Quantum In-
formation Theory. Then, in section 3.2.1, we introduce an important feature of
Quantum Computation, quantum parallelism, whose power is based on thesuper-
position principle. Moreover, in section 3.2.2 we describe Grover’s algorithm, a
search algorithm for a particular element of a long unsorted list. It is an exam-
ple of an algorithm which achieves a speedup over any classical algorithm, as we
shall see. It will be used in our extension of the quantum Huffman algorithm. Fi-
nally, we introduce entanglement (in section 3.3), a powerful feature of Quantum
Information, as well as one of its applications: dense coding.
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3.1 Quantum Information

The purpose of this section is to introduce the basic concepts of Quantum Infor-
mation. Appendix B introduces some mathematical notions for a better under-
standing of this section.

Quantum mechanical systems behave in a much different way than classical
ones. But, what is it that separates the quantum and the classical world from a
computer science point of view? Can Quantum Mechanics improve in any way
information processing and manipulation?

In section 2 we have introduced Classical Information Theory where the fun-
damental unit is thebit. The quantum counterpart of the bit is called quantum bit
or qubit. They have very different properties. Like a bit can be either in the state 0
or 1, a qubit also has two possible states (that correspond to the classical states 0
and 1) that are usually denoted|1〉 and|0〉. This ”|〉” is called theDirac notation
(appendix B) and we use it in future sections, as it is the standard notation for
states in Quantum Mechanics. We present here Quantum Mechanics as in [23],
based on four postulates. To study these postulates from a more physical point
of view a good reference is [24]. In section 3 we consider only systems whose
state is perfectly known,pure state. We show how to study their time evolution
and how to predict the result of various observations performed on them. How-
ever, in practice, the state of the system is not perfectly determined,mixed state.
When one has incomplete information about a system, one typically appeals to the
concept of probability. It is usually presented in the following way: the state of
this system may be either the state|ψ1〉 with probabilityp1 or the state|ψ2〉 with
probabilityp2, etc ... Such that:

p1 + p2 + ... =
∑
k

pk = 1 (31)

The first postulate defines where the quantum world takes place.

Postulate 1 Associated to any physical system is a complex vector space with
inner product (that is, a Hilbert space) known as the state space of the system.
The system is completely described by its state vector, which is a unit vector in the
system’s state space.

The simplest quantum mechanical system is the qubit, which is the one we
consider in the report.

Definition 11 A qubit is a quantum state

|ψ〉 = α |0〉+ β |1〉 , (32)
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whereα, β ∈ C and |α|2 + |β|2 = 1 (normalization condition). The qubit is a
state of a quantum two level system. It has two distinguishable basis vectors that
form an orthonormal basis for this vector space.

The special states|0〉 and |1〉 are known ascomputational basis states, and
they are two possible distinguishable states.

For the notions of normalization condition, orthonormal basis, vector space
and Hilbert space see in appendix B. Postulate 1 includes one of the most im-
portant features of Quantum Information. Notice that from postulate 1 we know
that a qubit can be in a state|ψ〉 either than|1〉 or |0〉 and it is possible to form
linear combination of states, calledsuperposition, according to thesuperposition
principle, a fundamental property of Quantum Mechanics. In equation (32)|ψ〉
is in a superposition of states|0〉 and |1〉. Thus, the state of a qubit is a vector
(see appendix B) in a two-dimensional complex vector space. But what doα and
β in equation (32) mean? A peculiar difference between Classical and Quantum
Computation is the information we get after one observes (measures) the system.
Quantum Mechanics tell us that if one measures a quantum bit in the state (32)
then one gets either the result 0, with probability|α|2, or the result 1, with prob-
ability |β|2. An interesting point is thatα andβ behave in a different way of
classical probabilities. We call the coefficients of the basis statesamplitudes. So,
consider the state

|0〉 − |1〉√
2

, (33)

it is a superposition of the state|0〉 and|1〉 with amplitudes 1√
2

for the state|0〉,
and amplitude− 1√

2
for the state|1〉.

An important feature of quantum amplitudes is that they can be negative or
more generally complex. Furthermore, when two quantum states overlap, the rule
is that one adds the amplitudes rather than the probabilities. These facts have
profound consequences. To understand why, it is helpful to recall that, in the
macroscopic world, whenever one calculates the probability of something hap-
pening in different independent ways, one always add probabilities. Imagine one
bet in two different card players at the same time, the probability of winning is the
sum of the probabilities for each player. In the quantum world, thanks to the ”am-
plitude quantum rule”, one should think twice before betting in two independent
events, because it turns out that this rule enables probabilities to subtract from one
another rather than always adding up. Quantum rules are not applicable to the
macroscopic world, therefore the card players bet would not be a problem. This is
an example to understand the concept behind the complex amplitudes. This prop-
erty is calledquantum interferenceand is one of the fundamental properties that
differentiates quantum and classical world. In section 3.2 we introduce an exam-
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ple where quantum interference is used to speedup an algorithm when compared
with the classical counterpart.

Unfortunately, an equally fundamental property of Quantum Mechanics is the
measurement rule, it describes and severely restricts the way one can observe a
quantum state. For example, if we have a superposition of states|0〉 and|1〉 we
only can get the answer|0〉 or |1〉. The measurement, or observation, of a state
yields information in a classical form which induces an irrevocable destruction
of some remaining information, making further measurements less informative or
even completely useless. Therefore we must perform a computation that somehow
takes advantage from the superposition principle considering measurement loss.
Quantum interference helps overcome the measurement restriction imposed by
Quantum Mechanics as we shall see in section 3.2.

Postulate 2 Quantum measurements are described by a collection{Mm} of mea-
surement operators. These are operators acting on the state space of the system
being measured. The indexm refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is|ψ〉 immediately before the
measurement then the probability that resultm occur is given by

p(m) = 〈ψ |M∗
mMm|ψ〉 , (34)

and the state of the system after the measurement is

Mm |ψ〉
〈ψ |M∗

mMm|ψ〉
. (35)

The measurement operators satisfy the completeness equation (see appendix
B), ∑

m

M∗
mMm = I, (36)

where I is the identity operator.
The completeness equation expresses the fact that the probabilities sum to one:

1 =
∑
m

p(m) =
∑
m

〈ψ |M∗
mMm|ψ〉 . (37)

Let us consider an example. When we measure a qubit|ψ〉 = a |0〉 + b |1〉
in the computational basis there are two possible outcomes defined by the two
measurement operators,M0 = |0〉 〈0| andM1 = |1〉 〈1|. We may verify that
I = M∗

0M0 + M∗
1M1 = M0 + M1, so the completeness equation is satisfied.

Then, when we measure the state|ψ〉 the probability of obtaining the outcome 0
is

p(0) = 〈ψ |M∗
0M0|ψ〉 = 〈ψ|M0 |ψ〉 = |a|2 . (38)
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And the state after the measurement is

M0 |ψ〉
|a|

=
a

|a|
|0〉 . (39)

A similar conclusions would be applicable to the measurement of the outcome 1,
with probability p(1) = |b|2 and the state after the measurement beingM1|ψ〉

|b| =
b
|b| |1〉 . The measurement rule is of great importance to quantum states. In the
classical world, different states of an object are usually distinguishable, at least in
principle. For example imagine we drop a dice, we can easily identify in which
number the dice has landed up, at least in the ideal limit. On the other hand, in
quantum systems it is not always possible to distinguish between arbitrary states,
only if they are perpendicular. This statement can by proved by contradiction [23].
Consider we have two non orthogonal states|ψ1〉 and|ψ2〉. So, by contradiction
we assume that these states are distinguishable by some measurement. If state
|ψ1〉 (|ψ2〉) is prepared then the probability of measuringj such thatf(j) = 1
(f(j) = 2) must be one. DefiningEi ≡

∑
j:f(j)=iM

∗
jMj, these observations may

be written as
〈ψ1|E1 |ψ1〉 = 1; 〈ψ2|E2 |ψ2〉 = 1 (40)

From
∑

iEi = I follows that
∑

i 〈ψ1|Ei |ψ1〉 = 1, and since〈ψ1|E1 |ψ1〉 = 1 we
must have〈ψ1|E2 |ψ1〉 = 0, and thus

√
E2 |ψ1〉 = 0. Consider|ψ2〉 = α |ψ1〉 +

β |ϕ〉, where|ϕ〉 is orthonormal to|ψ1〉, |α|2 + |β|2 = 1, and |β| < 1 since
|ψ1〉 and|ψ2〉 are not orthogonal. Then

√
E2 |ψ2〉 = β

√
E2 |ϕ〉, which implies a

contradition with equation (40), as

〈ψ2|E2 |ψ2〉 = |β|2 〈ϕ|E2 |ϕ〉 ≤ |β|2 < 1, (41)

where the second last inequality follows from the observation that

〈ϕ|E2 |ϕ〉 ≤
∑
i

〈ϕ|Ei |ϕ〉 = 〈ϕ|ϕ〉 = 1. (42)

So, by contradiction we have concluded that if we have two non orthogonal states
it is not possible to distinguish between them.

The difference between the fully unobservable state of a qubit and the ob-
servations we can make is at the heart of Quantum Computation and Quantum
Information. The gap between this direct correspondence in Quantum Mechanics
makes it difficult to have any intuition about the behavior of quantum systems.
However, there is an indirect correspondence: qubit states can be manipulated
and transformed in ways which lead to measurement outcomes which depend dis-
tinctly on the different properties of the state.
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Transformations on qubits are represented byunitary matrices (see appendix
B). Any quantum evolution on a qubit is described by a unitary matrix, U:

U =

[
a b
c d

]
, (43)

then,

U

[
α
β

]
=

[
aα + bβ
cα + dβ

]
, (44)

which transforms any qubit stateα |0〉+β |1〉 into the state(aα+ bβ) |0〉+ (cα+
dβ) |1〉 .

Postulate 3 The evolution of a closed quantum system is described by a unitary
transformation. That is, the state|ψ〉 of the system at timet1 is related to the state∣∣ψ′〉 of the system at timet2 by a unitary operatorU which depends only on the
timest1 andt2, ∣∣∣ψ′〉 = U |ψ〉 . (45)

A closed system is a system which does not interact with any other system.
These postulates assures that the evolution of any closed quantum system may
be defined by a unitary operator. However there are some unitary operators that
are mostly used and natural to consider. We introduce some of them. As we
will see in later sections, a very useful evolution matrix is theHadamard matrix
(transformation):

H =
1√
2

[
1 1
1 −1

]
, (46)

which transforms the computational basis{|0〉 , |1〉} into thedual basis{|+〉 , |−〉},
where

|+〉 =

[
1√
2

1√
2

]
and|−〉 =

[
1√
2

− 1√
2

]
(47)

as follows:

H |0〉 = |+〉 , H |+〉 = |0〉 ,
H |1〉 = |−〉 , H |−〉 = |1〉 . (48)

Applying H we can change between the standard and dual basis. It holds HH+ = I
(whereI is the identity matrix), that is H is unitary.
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Another very useful transformation is theNOT transformation, represented by
the matrix:

X =

[
0 1
1 0

]
; (49)

we would expect this gate to transform the state|φ〉 = α |0〉 + β |1〉 in |φ〉 =
β |0〉+ α |1〉. As we easily check X is unitary,X+X = I.

ThePauli-Y matrix is also very used:

Y =

[
0 −i
i 0

]
, (50)

it transforms|φ〉 = α |0〉+ β |1〉 into |φ〉 = i (β |0〉 − α |1〉)
The so-calledPauli-Z matrix keeps the coefficients of|0〉 unchanged and flips

the sign of that of|1〉:

Z =

[
1 0
0 −1

]
, (51)

However, already finitely many of them are sufficient to perform all quantum com-
putations with an arbitrary precision. A gate is saiduniversal for Quantum Com-
putation if any unitary operation may be aproximated to arbitrary accuracy by a
quantum circuit involving only those gates. For example, Hadamard, phase,π

8
and

NOT gates are enough to build any unitary operation approximated with arbitrary
accuracy (see proof in section 4.5 of [23]), where

π
8

=

[
1 0

0 e
iπ
4

]
, phase =

[
1 0
0 i

]
and NOT, defined in equation (49). The

following theorem generalize the representation of all matrices of degree 2.

Theorem 7 For each unitary matrix U of degree 2 there exist real numbersα, β
andθ such that (page 175 of [23]):

U = exp iα

(
exp iα 0

0 exp iα

)(
cos θ i sin θ
sin θ cos θ

)(
exp iβ 0

0 exp−iβ

)
.

In principle, there is a continuous range of rotations (byα), phase shifts (with
respect toθ) and scale matrices (with respect toβ).

So far we know how to describe a quantum system and its evolution. If we
have a quantum system made up of two or more distinct quantum systems then it
is called composite quantum systems. Our approach is over composite systems of
qubits.

Postulate 4 The state space of a physical system is the tensor product (see ap-
pendix B) of the state space of the component physical system. Moreover, if we
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have systems numbered1 throughn, and system numberedi prepared in the state∣∣ψ′〉, then the joint state of the total system is|ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉.

It is common to use the notation|ψφ〉 instead of|ψ〉⊗ |φ〉. ”⊗” represents the
tensor product, see appendix B.

Suppose we have a system of two qubits. In the classical world there would
be four possible states: 00, 01, 10, 11. The quantum counterpart instead of having
only four possible states has fourcomputational basisvectors: |00〉, |01〉, |10〉
and|11〉. This system is a four-dimensional Hilbert spaceH4 = HA ⊗ HB. The
general state|ψ〉 of two qubits is a superposition of the states|00〉AB, |01〉AB,
|10〉AB and|11〉AB:

|ψ〉 = α00 |00〉AB + α01 |01〉AB + α10 |10〉AB + α11 |11〉AB (52)

with the constraint that

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. (53)

The measurement of a state of equation (52) results inx(= 00, 01, 10 or 11) and
occurs with probability|αx|2, with the state of the qubit after the measurement
being|x〉. For a two qubit system we could measure just a subset of the qubits. If
we measure just the first qubit, the result will be0 with probability|α00|2 + |α01|2,
leaving the post-measurement state∣∣∣ψ′〉 =

α00 |00〉AB + α01 |01〉AB√
|α00|2 + |α01|2

. (54)

√
|α00|2 + |α01|2 is there-normalizationfactor, so it still satisfies the normaliza-

tion condition.
It is usual to represent states of the computational basis in one of the following

forms:

|0〉 = |00〉 =


1
0
0
0

 , |1〉 = |01〉 =


0
1
0
0

 ,

|2〉 = |10〉 =


0
0
1
0

 , |3〉 = |11〉 =


0
0
0
1

 (55)
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The generalization of2-qubit register of the case ofn-qubit register is straight-
forward.

To deal withn-qubit register we work within a2n- dimensional Hilbert space
with the following set of basis, calledcomputational basis:

B = {|i〉 |0 ≤ i < 2n} . (56)

The general state of the n-qubit register is

|ψ〉 =
2n−1∑
i=0

αi |i〉with
2n−1∑
i=0

|αi|2 = 1. (57)

A very important set of basis states is given by theBell states. This states are
responsible for many properties of Quantum Computation and Quantum Informa-
tion, mentioned in section 3.3.

∣∣Φ+
〉

=
1√
2

(|00〉AB + |11〉AB),∣∣Φ−〉 =
1√
2

(|00〉AB − |11〉AB),∣∣Φ+
〉

=
1√
2

(|01〉AB + |10〉AB),∣∣Φ−〉 =
1√
2

(|01〉AB − |10〉AB). (58)

Among unitary transformations on two qubits states the following transforma-
tion has a special role

XOR : |x, y〉 → |x, x⊕ y〉 , (59)

where⊕ is the exclusive or operation.
In the XOR transformation the first input qubit is called the control qubit and

the second input qubit is called the target qubit.
XOR is represented by the matrix:

XOR =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (60)

Observe that XOR|00〉 = |00〉, XOR |01〉 = |01〉, XOR |10〉 = |11〉 and XOR
|11〉 = |10〉 XOR is called the CONTROL-NOT (CNOT), since the second qubit
(target qubit) is flipped if and only if the first (control qubit) is 1.
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Indeed, inputs|0〉 and |1〉 on the control qubit come out on the target qubit
output, but a superposition1√

2
(|0〉 + |1〉) on the control qubit is transferred into

the Bell state|Φ〉+ = 1√
2
(|00〉+ |11〉). |Φ〉+ is anentangledstate, these states are

important features of Quantum Computation, we shall introduce entanglement in
section 3.3.

Now we introduce a surprising result of Quantum Information Theory: it is
the ”No-cloning Theorem” due to W. K. Wootters and W. H. Zurek [25]. This
result states that it is impossible to clone an arbitrary unknown quantum state.

Theorem 8 (No-cloning theorem)An unknown quantum state cannot be cloned.
(Namely, there is no unitary transformation U, such that for any one-qubit state
|ψ〉 , U(|ψ, 0〉) = |ψ, ψ〉 .) The no-cloning theorem holds for any Hilbert space.

Proof 1 Assume that such a U exists and for two different orthogonal states|α〉
and |β〉, U(|α, 0〉)= |α, α〉 , U(|β, 0〉)= |β, β〉 . Let |γ〉 = 1√

2
(|α〉 + |β〉). Then

by linearity and our assumptions, U|γ, 0〉 = 1√
2
(|α, α〉 + |β, β〉) 6= |γ, γ〉 =

1
2
(|α, α〉+ |β, β〉+ |α, β〉+ |β, α〉).

The no-cloning theorem implies that there is no general unitary transforma-
tions for perfect copying of quantum information without destroying the original
copy of information. This makes a big difference between classical and quantum
information, since we are enable to copy information. We mention some conse-
quences in section 4.

3.2 Parallelism and Grover’s Algorithm

Quantum computation is a new paradigm that brings new challenges to computa-
tion. The question is: Are we are able to do better in computing using Quantum
Mechanics? This new paradigm can not take us any further as a computational
power, by other words, all that we can compute with quantum computers we can
also compute with classical computers and vice versa. The thing that make us
feel interested is whether we can do some computations significantly faster with a
quantum computer. The most suitable feature of Quantum Computation that could
make it possible is the quantum superposition. This makes it possible to break up
a unique task into several subtasks, each of which could be performed in ”par-
allel”. This property unique of quantum systems is exemplified in the ”Deutsch
problem” (section 3.2.1) and in the Grover’s algorithm (section 3.2.2).

3.2.1 Quantum Parallelism

The first quantum method to demonstrate the potential of quantum methods over
classical ones was proposed by Deutsch [26] in his 1985 paper on quantum par-
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allelism. It concerned the calculation of a mathematical functionf(x). Suppose,
Deutsch asked, you wanted to know whether this functionf took the same value
for two different values for two different input values,x = 0 andx = 1. Now,
since this was only a simple example, not only was the input restricted to the two
values0 and1, so also was the output. The function thus operates on a single qubit
(although it requires a second qubit to perform the calculation). Deutsch invited
us to imagine a function predicting tomorrow’s stock exchange movements. Now,
suppose it took24 hours to work outf for each value ofx and you needed to
know for your investment strategy whether the two values of the function -f(x)
andf(1) - gave the same answer, without necessarily needing to know what the
answers were. The scenario could be that you will buy some stock in a company,
but only if two economic indicatorsf(0) andf(1) agree with each other.

On a classical computer you would need to do two calculations (one each for
0 and1) and compare the answers to find out. Unhappily, these two computations
would take48 hours to complete - hardly useful for tomorrow’s investment deci-
sion. Deutsch showed how you could cut the computation time to24 hours using
quantum parallelism.

The idea is as follows. Imagine we have a quantum oracle (black box) that
computesf(x). The functionf will take as its inputx a number placed in one
qubit. In a quantum computer it is now possible to ”rotate” the state of the input
into a superposition of0 and1 using a Hadamard gate. Consider the transforma-
tionUf that takes two qubits to two:

Uf : |x〉 |y〉 → |x〉 |y ⊕ f(x)〉 . (61)

It flips the second qubit iff(x) acting on the first qubit is1, and does not do
anything iff acting on the first qubit is0. So, this transformation applied twice
will tell us if f is balanced or constant. But this does not solve our time problem!
Can we get the answer by running the quantum box only once? This is known as
the ”Deutsch’s problem”.

Since this is a quantum computer, we may take as an input the state1√
2
(|0〉 −

|1〉). Then:

Uf : |x〉 1√
2

(|0〉 − |1〉)→ |x〉 1√
2

(|f(x)〉 − |1⊕ f(x)〉)

= |x〉 (−1)f(x) 1√
2

(|0〉 − |1〉). (62)

At this stage f is isolated as anx-dependent phase. If the first qubit is1√
2
(|0〉+|1〉)

we get
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Uf :
1√
2

(|0〉+ |1〉) 1√
2

(|0〉 − |1〉)→

1√
2

[(−1)f(0) |0〉+ (−1)f(1) |1〉] 1√
2

(|0〉 − |1〉). (63)

Now we can perform a measurement that projects the first qubit onto the basis

|±〉 =
1√
2

(|0〉 ± |1〉). (64)

We obtain|+〉 if the function is balanced, and|−〉 if the function is constant.
This is the solution of Deutsch’s problem. It is also a separation between what

a classical computer and a quantum computer could achieve. The quantum com-
puter only has to run the black box once, while the classical computer must run
it twice. This happens because the quantum computer extracts ”global” informa-
tion about the function by acting on a superposition of|0〉 and|1〉, this is called
”quantum parallelism” [26], combined with a property of Quantum Machanics
called interference. Notice that in a classical computer if we have two alterna-
tives, f(0) andf(1), they forever exclude one another. In a quantum computer
it is possible for the two alternatives tointerferewith one another to yield some
global property of the functionf , by using the Hadamard gate to recombine the
different alternatives, as was done in equation (63). What is more, the program
would not need to be limited to just two inputs. We can apply the same idea to a
function acting on aN register. According to:

Uf : |x〉 |0〉 → |x〉 |f(x)〉 , (65)

choosing the input register to be in the state

[
1√
2

(|0〉+ |1〉)]N =
1

2
N
2

2N−1∑
x=0

|x〉 , (66)

and by computingf(x) only once, we can generate a state

1

2
N
2

2N−1∑
x=0

|x〉 |f(x)〉 . (67)

This state encodes the global properties off .
If this sounds too good to be true, it is in a sense. Even if we produce expo-

nentially many outputs for the price of one, Quantum Mechanics severely restricts
the way in which you can look at the result. The measurement rules of Quantum
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Mechanics state that the measurement of the output yields information in a classi-
cal form which induces an irrevocable destruction of some remaining information.
It is the quantum parallelism that Shor invokes in his factoring algorithm [1]. So
although quantum computing offers seemingly unlimited amounts of massive par-
allelism without the need of extra hardware, there is also a price to be paid: It is
impossible to read all the information contained on the final state. In section 3.2.2
we present an algorithm that uses quantum parallelism to exploit the speed of a
search.

3.2.2 Grover’s Algorithm

Grover’s search algorithm [27] is an excellent example of quantum parallelism. It
enable us to get a complexity speedup when compared with the classical search
algorithms. We will use it later to decrease the complexity time of a particular
quantum encoding scheme. This algorithm is important because of the existence
of many computer science problems based on search problems. For example,
imagine we are given a search space of sizeN with no prior knowledge about
the structure of the information in it. Without loss of generality, suppose that the
elements are numbers from0 to N − 1. Classically we would test each element
at a time, until we find the one we were looking for. This takes an average of
N
2

attempts, andN in the worst case, therefore the complexity isO(N). In this
section we prove that using Quantum Mechanics we only requireO(

√
N) steps.

For simplicity, assume thatN = 2n, for some integern. Grover’s algo-
rithm has two registers, the first one withn qubits and the second one with one
qubit. We start by creating a superposition of all2n computational basis states
{|0〉 , ..., |2n − 1〉} of the first register. To do that we proceed as follows. We
initialize the first register in the state|0, ..., 0〉 and apply the operator Hadamard
H⊗n:

|ψ〉 = H⊗n |0, ..., 0〉
= (H |0〉)⊗n

=

(
|0〉+ |1〉√

2

)⊗n
=

1√
N

N−1∑
i=0

|i〉 . (68)

where|ψ〉 is a superposition of all basis states with equal amplitudes given by1√
N

.
The second register begins with|1〉 and, after applying a Hadamard gate, it will
be in state|−〉 = |0〉−|1〉√

2
.
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We define,f : {0, ..., N−1} → {0, 1}, f(x) = 1 if x is a solution to the search
problem, otherwisef(x) = 0. This function is used in the classical algorithm. In
the quantum algorithm, let us assume that it is possible to build a linear unitary
operator also dependent onf , Uf , such that:

Uf (|i〉 |j〉) = |i〉 |j ⊕ f(i)〉 . (69)

We callUf oracleor a black box. In the above equation,|i〉 stands for a state
of the first register, soi is in {0, ..., 2n−1}, and|j〉 stands for a state of the second
register, soj is in {0, 1}, and the sum is modulo2. The action of the oracle is:

Uf (|i〉 |−〉) =
Uf (|i〉 |0〉)− Uf (|i〉 |1〉)√

2

=
|i〉 |f(i)〉 − |i〉 |1⊕ f(i)〉√

2

= (−1)f(i) |i〉 |−〉 . (70)

In the last equality, we have used the fact that

1⊕ f(i) =

{
0, i = i0
1, i 6= i0

(71)

wherei0 stands for the searched element. We say that the oracle marks the solu-
tions to the search problems by shifting the phase of the solution.

Let us call|ψ1〉 the resulting state of the first register Now look at what happens
when we applyUf to the superposition state coming from the first step,|ψ1〉 |−〉.
The state of the second register does not change.

|ψ1〉 |−〉 = Uf (|ψ〉 |−〉)

=
1√
2

N−1∑
i=0

Uf (|i〉 |−〉)

=
1√
2

N−1∑
i=0

(−1)f(i) |i〉 |−〉 . (72)

|ψ1〉 is a superposition of all basis elements, but the amplitude of the searched
element is negative while the amplitude of all others are positive. The searched
element has been marked with a minus sign. This result is obtained using a fea-
ture calledquantum parallelism. At the quantum level, we have a superposition
of all database elements. The position of the searched element is known: it is
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the value ofi of the term with negative amplitude in equation (72). This quan-
tum information is not fully available at the classical level. To obtain information
out of a quantum state we make measurements, and, at this point, it does not
help if we measure the state of the first register, because it is much more likely
that we obtain a non-desired element, instead of the searched one. Before we
can perform a measure, the next step should be to increase the amplitude of the
searched element while decreasing the amplitude of the others. This is quite a gen-
eral approach: quantum algorithms work by increasing the amplitude of the states
which carry the desired result. After that, a measurement will hit the solution
with high probability. Imagine we have a superposition like the one in equation
(72). Figure 2 depicts the superposition idea, with all coefficients, lets call them
ci (0 ≤ i ≤ 2n − 1), equal to 1√

2n
.

Figure 2: Initial state.

The operatorUf flips the sign of the amplitudes of all elements that are the
one searched for (i0), by other words the elements such thati = i0. Imagine that
element3 is the search one. Then,c3 becomes− 1√

2n
. This is depicted in figure 3.

Figure 3: Amplitudes after oracle query.

Now we shall work out the details by introducing the circuit for Grover’s al-
gorithm and analyzing it step by step.

The circuit for one Grover iterationG is given in figure 4. Each interaction of
the Grover’s algorithm increases the coeficient of the searched element, this way
we are increasing the probability of getting this element after a measurement. In
figure 4 The states|ψ〉 and|ψ1〉 are given by equations (73) and (72), respectively,
and the operator2 |ψ〉 〈ψ| − I is called inversion (explained in a moment). We
will also show how each Grover operator application raises the amplitude of the
searched element.|ψ1〉 can be rewritten as:

|ψ1〉 = |ψ〉 − 2√
2n
|i0〉 , (73)
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Figure 4: Outline of each interaction of the Grover’s algorithm.

Figure 5: Amplitudes after one iteration of Grover’s algorithm.

where|i0〉 is the searched element.|i0〉 is an element of the computational basis.
Note that

〈ψ|i0〉 =
1√
2n
. (74)

Let us calculate|ψG〉 of figure 5. Using equations (73) and (74), we obtain

|ψG〉 = (2 |ψ〉 〈ψ| − I) |ψ1〉

=
2n−2 − 1

2n−2
|ψ〉+

2√
2n
|i0〉 . (75)

This is the state of the first register after one application ofG. The second register
is in the state|−〉. Notice in equation (75) the action of the inversion operator. It
duplicates the coeficient of searched element. After one application of Grover’s
algorithm we get the amplitudes depicted in figure 6. Applying the operator G
more times increases the probability of obtaining the searched element as close to
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Figure 6: Outline of each interaction of the Grover’s algorithm.

one as we desire. The operator G is appliedO(
√
N) times, as depicted in figure

6. This way, when measuring the final state, we obtain with a high probability the
searched state.

Grover’s algorithm may be improved in linear time, those methods are de-
scribed in [28].

The following theorem sets the complexity of the Grover’s algorithm (page 90
of [29]).

Theorem 9 By using a quantum circuit makingO(
√

2n) queries to a blackbox
functionf , one can decide with nonvanishing correctness probability if there is
an elementx ∈ H⊗n such thatf(x) = 1.

The theorem above is only applicable when we search a single element. Grover’s
algorithm has been generalized [30]. In the case we are searching more than

one element we applyO
(√

N
M

)
interactions of the Grover’s algorithm, forM

solutions out ofN possibilities. If we do not know the number of solutions, M,
in the classical case needO(N) steps, which in the quantum case we achieve a
speed up toO(

√
(M + 1)(N −M + 1)) steps. In case of counting the number of

solutions with error
√
M it takesO(

√
N). Thanks to the usefulness of searching in

many problems, Grover’s algorithm has been applied with some other purposes.
Two examples are the quantum counting algorithm [31] and minimum finding
algorithm [32]. The latter example is an algorithm to find the minimum of an
unsorted listT [0, ·, N − 1], each holding a value from an ordered set. We use this
results in section 4.2.3 to do a search in our quantum encoding scheme.

3.3 Entanglement

One of the most specific and important concepts for Quantum Computation and
Quantum Information Theory is quantum entanglement which is also one of the
most puzzling concepts of Quantum Physics.

Entanglement plays a central role in Quantum Information Theory that extends
Classical Information Theory. Three important possible applications of entangle-
ment are: teleportation (see [23]), dense coding (described in section 3.3.1) and
quantum key distribution (well explained in [23]).
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Let’s start with an example. A 2-qubit register can be in the state∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉). (76)

If we observe the first bit of this state using the standard observable M=
{|0〉 〈0|, |1〉 〈1|}, then we get the value 0 with probability1

2
and the value1 also

with probability 1
2

(hence the outcome is completely random). After such an ob-
servation the state|ψ〉 collapses into the state|00〉 in the first case and into the state
|11〉 on the second case. If, afterwards, we measure the second qubit its value is
determined uniquely, with probability 1. We see that if a quantum register is in
the above state|ψ〉 , then the two qubits are not independent. In addition, in such
a case particular qubits of the quantum register no longer have an identity! Each
of them is actually in a mixed state with probability1

2
in the state|0〉 and with

probability 1
2

in the state|1〉. Notice that this correlations only exit in the quantum
theory, they have no analog in the classical theory.

How specific and important is this example? We naturally expect that there
should be cases where the qubits are completely independent and therefore they
can be separately acted on.

This is actually the case if a state|ψ〉 of a 2-qubit register is the tensor product
|ψ1〉 ⊗ |ψ2〉 of two 1-qubit states|ψ1〉 = α0 |0〉A + α1 |1〉A and|ψ2〉 = β0 |0〉B +
β1 |1〉B, i.e.,

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =

(
1∑
i=0

αi |i〉A

)
⊗

(
1∑
j=0

βj |j〉B

)
. (77)

If now we observe the first qubit of the state|ψ〉, we get,

0 with probability|α0β0|2 + |α0β1|2 = |α0|2 ,
1 with probability|α1β0|2 + |α1β1|2 = |α1|2 . (78)

Moreover, after the observation of the first qubit the state|ψ〉 is reduced to
|ψ2〉 ; after the observation of the second qubit to|ψ1〉 .

If a quantum pure state of a Hilbert space H cannot be obtained as a tensor
product of two quantum states from Hilbert spaces of dimensions smaller than
that of H, then the state is calledentangled. This is the case of the above example
of |Φ+〉, where the two qubits are not independent.

Entanglement arises in a natural way as a result of interactions between quan-
tum systems. In addition, some quantum operations create entangled states out
of separable states. For example, if the XOR operation is applied to the state

1√
2
(|0〉+ |1〉)⊗ |0〉 , the entangled state|Φ+〉 = 1√

2
(|00〉+ |11〉) (one of the Bell
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states) is created. Entangled states do not exist in classical systems. The Bell
states are often called EPR pairs-”EPR” stands here for ”Einstein, Podolsky and
Rosen” and that fact that the qubits are not independent creates a so-called ”EPR”
channel. This is called a channel because, since we can have two particles physi-
cally far apart and represented by a state (with preserved attributes), by applying
some specific transformation on one particle the global state changes.

The source of various paradoxes related to entangled states is the fact that a
pair of particles in an entangled state can be physically separated. However, each
measurement on one particle of such an entangled pair immediately determines
the state of another one, no matter how far apart they are. A measurement of
an entangled particle exhibits therefore the so-called ”non-local property”, some-
thing that cannot happen from the point of view of classical physics without an
instantaneous communication among the particles. In section 3.3.1 we described
an entanglement application, the dense coding protocol.

According to [33], entanglement between a pair of quantum systems in a max-
imally entangled state is the purest form of inherently quantum information: it
is capable of interconnecting two particles far apart, it cannot be copied, eaves-
dropped without disturbance, nor can it be used by itself to send classical mes-
sages. At the same time it can assist, in some sense (mention on section 3.3.1), in
improving both classical and quantum communication.

3.3.1 Dense Coding

The aim of dense coding is to transmit more than one bit of information in each
qubit transmitted. Like in many ideas in Quantum Computation and quantum
information, it is more easily understood using the metaphor of a game involving
two parties, Alice and Bob. Imagine Alice and Bob share two particles on theBell
state|φ+〉AB = 1√

2
(|00〉+ |11〉). They could have met a long time ago to generate

it or it could have been a third person shipping one particle to Bob and another to
Alice.

If Alice wants to send two classical bits (00, 01, 10 or 11) of information to
Bob she performs on her particle one of the Pauli rotations (described in section
3) as shown in the second column of the table below. By doing this|φ+〉AB is
transformed into one of the mutually orthogonalBell states. At this stage she
sends her qubit to Bob, who receives it, and then performs an orthogonal collec-
tive measurement on the pair that projects it onto the maximally entangled basis.
From the outcome Bob can, unambiguously, distinguish between the four possi-
ble rotations Alice could have done. Suppose Alice and Bob have shared also a
protocol with a relation one-to-one, by this we refer to having each pair of bit
corresponding to one and only one rotation. Bob, by now, would be able to know
which bits Alice wanted to send.
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Alice’s Pauli’s Alice transforms|φ+〉AB
bits rotations to the Bell state:
00 I |φ+〉AB = 1√

2
(|00〉+ |11〉)

01 X |ψ+〉AB = 1√
2
(|10〉+ |01〉)

10 Y |φ−〉AB = 1√
2
(|01〉 − |10〉)

11 Z |ψ−〉AB = 1√
2
(|00〉 − |11〉)

Dense coding has a very nice advantage, if the message is confidential, Alice
does not need to worry that an eavesdropper can intercept the transmitted qubit and
decipher her message. The qubit transmitted by Alice contains no information by
its own. All the information is on the correlations between qubit A and B. They
used entanglement as a resource.

We could argue that Alice and Bob still need to use the channel twice to send
two bits of information. The initial qubits must be transmitted, as well as the qubit
Alice wants to send. But, anyway, theBell pair could have been exchanged a long
time ago. So in an emergency dense coding would be very useful if there is a need
to be faster. Quantum dense coding was recently put into practice in a channel of
100 km [3].
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4 Quantum Data Compression

The purpose of this section is to study quantum data compression. A compressing,
studies the tangible resources necessary to represent a certain information.

In section 4.1 we introduce some properties of Quantum Information The-
ory, we mention the quantum encoding schemes developed so far and we present
in detail a particular quantum encoding scheme 4.2.1. The following three sec-
tions, 4.2.2, 4.2.3 and 4.2.4, are three different proposals to improve that encoding
scheme.

4.1 Quantum Information Theory and Data Compression

In this section we introduce the main properties of Quantum Information Theory
and a framework to a particular quantum encoding scheme.

We may think about Quantum Information Theory as a parallel of the Classi-
cal Information Theory, but it is more peculiar, the aim is also to understand the
difference between the quantum and the classical world, from a computer science
point of view. What resources, unavailable in a classical world, are being utilized
in a Quantum Computation? How could they improve in any way information
processing and manipulation? The answer to this questions are in the heart of
Quantum Information Theory research and they will clarify the potential of this
topic and bring a new way of understanding and using information, with a great
change to result in important transformations in the Information Society we live
in. Experimental demonstrations of Quantum Information Theory are of great im-
portance in topics like, security systems, communication systems, etc, and may
have in a close future a revolutionary impact in the society.

Quantum Information Theory in fundamentally richer than Classical Informa-
tion Theory, one of the central differences is the nature of the information itself.

In [34] R. Jozsa has introduced an overview of the main properties of quan-
tum information. The classical compression scheme can not be used to compress
quantum data because of quantum systems behavior. The no-cloning theorem
(see section 3.1) is one property of quantum systems that point a difference be-
tween classical and quantum information. This theorem states the impossibility of
copying unknown quantum information, providing a gap on accessible quantum
information when compared to the classical case, which can obviously be copied.
But now you may be asking yourself, if we said that the classical information is
a special case of a quantum information. How is it possible that we can actually
copy classical information? The detail here is that the no-cloning theorem do not
prohibit all quantum states to be copied, it only forbid non-orthogonal quantum
states. Classical information can be thought as merely orthogonal quantum states.
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Another example of the difference between quantum and classical information
is the way we distinguish different items of information. One of the quantum
systems properties with a great importance todistinguishing quantum statesis the
measurement rule, introduced in section 3.1. In the classical world, distinct states
of an object are usually distinguishable, at least in principle. For example imagine
we drop a dice, we can easily identify in which number the dice has landed up,
at least in the ideal limit. On the other hand in quantum systems it is not always
possible to distinguish between arbitrary states. We explain it in section 3.1.

Quantum information is really different from classical one. At first, from the
possibility of superposition of quantum states it seem that we had an infinite way
of representing information with only one qubits. But the impossibility of access-
ing all the quantum information makes some restrictions on that. We only can read
classical information and it would be interesting to quantify the accessable infor-
mation. Unfortunately there is no general methods, but there are some bounds.
The most important one is theHolevo bound(see page 531 of [23]), it plays an
important role in many applications of Quantum Information Theory. The Holevo
bound is an upper bound for the accessible information. A direct consequence
of the Holevo bound is that one bit cannot be sent or represented with less than
one qubit and it also manifests itself in the observation that the quantum channel
capacity is no bigger than the classical channel capacity.

To encode quantum data we can not just go ahead and use the same techniques
used to compress classical information. We must adapt or create quantum encod-
ing schemes capable of deal with quantum information properties.

One approach to construct quantum compression schemes is to begin with
the classical encoding schemes and investigate how this algorithms must be re-
interpreted or modified to fit with quantum data. For example, quantum codes
must allow superpositions of different codewords.

In section 3 we have introduced Quantum Mechanics using Dirac’s notation.
Alternatively we can use a tool calleddensity operator. This tool is mathemati-
cally equivalent to the Dirac’s notation, but it provides a more convenient language
to describe some scenarios in Quantum Mechanics. It turns out that all the postu-
lates of Quatum Mechanics can be reformulated in terms of the density operator
language. We use the density operator language from now on for its simplicity to
describe a quantum data source. Our quantum source would be described as an
ensemble of pure states. More precisely, suppose a quantum system is in one of
a number of states|ψi〉, wherei is the index of the different states, with respec-
tive probabilitiesp(i). We denote the ensemble byΣ = {pi, |ψi〉}. The density
operator of the system is defined by

ρ ≡
∑
i

pi |ψi〉 〈ψi| . (79)
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The first result in Classical Coding Theory was thenoiseless coding theorem,
it shows the importance of the Shannon entropy for Classical Information Theory
as a measure of the tangible resources necessary to represent the information pro-
duced by message source. In quantum systems, the expression for entropy was
proposed by von Neumann [35] in 1955. The von Neumann entropyS(ρ) is

S(ρ) = −Trρ log2 ρ, (80)

for an ensemble of states, of a quantum system, described by a density operator
ρ. In the quantum case the probabilities are replaced by the density operator. If
we denote the eigenvalues ofρ asλx then the von Neumann entropy can be re-
expressed by,

S(ρ) = −
∑
x

λx log2 λx. (81)

The classical and quantum entropies are formaly similar, but actualy they are
quite different. Consider we have a sourceX that produces a messagex with
probabilityp(x). If we have a device that codes each messagex from a quantum
signal source, then the ensemble of this quantum source is represented by the
density operator

ρ =
∑
i

p(xi)πxi , (82)

whereπi are the projectionπxi = |xi〉 〈xi|. Notice that the states|xi〉 (1 ≤ i ≤ n)
are not necessarily orthogonal. Formally, an i.i.d. quantum source is described by
a Hilbert spaceH, and a density matrixρ on that Hilbert space. The two entropies
are equal only when the states|xi〉 are orthogonal, otherwiseS(ρ) < H(X) [36].
In the decoding process if we do not have orthogonal states, then we are not able to
distinguish between them, so we can not recover the entire information perfectly.
The idea of quantum compressing scheme is to take states in the Hilbert space
H⊗n of the source to states in aHnR − dimensional state space, whereR is the
compression rate of the source. The approach between the input and output state
is denoted fidelity. It is defined, mathematically, byF = 〈xinput| ρoutput |xinput〉.

As in the classical case, the quantum entropy represents the mean number of
qubits necessary to encode the states in the ensemble in an ideal encoding [5].

Theorem 10 (Quantum noiseless coding theorem)Let M be a quantum signal
source with a signal ensemble described by the density operatorρ and letδ, ε > 0.

1. Suppose thatS(ρ) + δ qubits are available perM signal. Then for suf-
ficiently largeN , groups ofN signals from the signal sourceM can be
transposed via the available qubits with fidelityF > 1− ε.
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2. Suppose thatS(ρ) − δ qubits are available perM signal. Then for suffi-
ciently largeN , if groups ofN signals from the signal sourceM are trans-
posed via the available qubits, then the fidelityF < ε.

Notice that the stateρ in theorem 10 can be interpreted as a part of a larger sys-
tem which is in a pure state. In this caseρ would be a mixed state which could
be due to the entanglement between the Hilbert spaceH and the remainder of
the system. Schumacker’s theorem 10 proves that the von Neumann entropy is
the lower bound limit of a lossless compression. He also gives an idea of how
to do the compression, but it does not ensures optimal compression. The fact
that Schumacher’s data compression scheme only can achive a lossless data com-
pression scheme is the asymptotic limit and that it is very inefficient for a small
number of qubits. However it has inspired a number of other encoding schemes
[8, 7, 9, 10, 11, 12, 13]. We explain one encoding scheme in more detail in section
4.2.1.

Quantum analogues have been proposed to the classical encoding schemes
that we have presented in section 2.2. The quantum analogue of the classical
Arithmetic coding (see section 2.2.3) was proposed by I. Chuang and S. Modha
[11]. They studied the problem of compressing a block of symbols emitted by
a quantum source. R. Cleve and DiVincenzo [13] have proposed a block coding
algorithm, which is, in fact, a generalization of the classical enumerative coding
(see section 2.2.4). Recently, S. Braunsteinet al. [9] have proposed a quantum
analogue of the classical Huffman’s code (see section 2.2.1). However, it was
done in an way that unecessary information have been carried. Some studies have
been done considering universal quantum compression. The quantum encoding
schemes we have mentioned so far are not applicable to the case where we do
not know the average density operator, which the construction of the protocols is
dependent on. Is there a protocol which faithfully compress quantum informa-
tion even if we do not know the density matrix of the source? R. Jozsa and the
Horodecki [8] constructed a quantum universal fixed-length code for the case that
all we know about the source is that its von Neumann entropy does not exceed
some given valueS. Their protocol is efficient in the i.i.d. case when the entropy
rate of the source is less than the rate of the code. Otherwise, this protocol demol-
ish the state the state unrecoverably. The optimality of their code among quantum
fixed-length codes is proven in a sense of compression rate. M. Hayashi and K.
Matsumoto have proposed [12] a quantum universal variable-length source coding
applicable for any probability distribution of quantum states. Moreover R. Jozsa
and S. Presnell proposed another quantum universal data compression scheme
based on the classical Lempel-Ziv code presented in section 2.2.2.

B. Schumacher and M. Westmoreland have sketched a framework to discuss
those codes [37]. However, the encoding scheme we introduce in this report does
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not follow that framework.
From now on we describe the framework of the encoding scheme proposed by

K. Böstrom and T. Felbinger [6]. During its description we nake consideration on
the physical realization of such a scheme. LetΩ be a quantum source. We interpret
all its valid objects as normalized vectors of a Hilbert spaceν. The encoding task
is basically a mapping (see definition in a book of Linear Algebra,e.g. [22]) to
another Hilbert spaceM. The mapping must be linear and isometric, in order to
preserve linearity and norm, respectively. Now we consider the structure ofM.
Like in the classical countepart it has aquantum alphabet, which are orthogonal
vectors spanning the Hilbert spaceM. For example|1〉 , |0〉. We denote the size
ofM ask. A quantum word, or amessage, is a sequence of the alphabet symbols
(quantum letters). So the messages are composed by the tensor product of the
quantum letters. The space of all the message of sizen, |x1〉 ... |xn〉 is

H⊗n =
n⊗
i=1

H = H⊗ ...⊗H. (83)

These kind of spaces, which all the words have a fixed number of qubits are called
block spaces. In the classical case the fixed length codes were less efficient than
the variable length codes. In quantum codes the same happends. Therefore we
define a space that enables quantum messages of different length,indeterminate-
length space, to be in superposition.

H⊕ =
∞⊕
n=0

H⊗ = H⊗0 ⊕H⊕H⊗2 ⊕ .... (84)

where⊕ is explained in appendix B. This space looks perfectly acceptable from
the theoretical point of view, but how could we actually implement such a space?
We get into this consideration later in this section. This way a message may
contain a superposition of messages of distinct length, for example, if|1〉 and|0〉
∈ H,

1√
2

(|10〉+ |110101〉) ∈ H⊕. (85)

A message with components of distinct length is called aindeterminate-length
message. So, block spaces are particular cases of indeterminate-length spaces.

The message spaceH⊕ contains every quantum messages that can be com-
posed using quantum alphabet words fromH and the laws of Quantum Mechan-
ics. However, since we have a system we only can realize a finite dimensional
subspace of the general message space. We define ther-bounded message space

H⊕r =
r⊕

n=0

H⊗n, (86)
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containing all superpositions of messages of maximal lengthr. We may think
about a spaceR = D⊗s which is the physical realization ofH⊕r. The physical
spaceR represents the space of all pysical states of the register, while the message
spaceH⊕r represents the space of valid codewords that can held by the register
and it is isomorphic to a subspaceH⊕rp of the physical spaceR. Let dim (H)= r,
thens must satisfy the following.

dim(H⊕r) ≤ dim(D⊗s)

→
r∑

n=0

kn =
kr+1 − 1

k − 1
≤ ks

→ r + 1 ≤ s. (87)

This way, to implement a message spaceH⊕r in a spaceR = D⊗(r+1).
To implement this in a protocol we use a k-ary representation of the natural

number. In the next section we explain how to it.

4.2 Quantum Encoding Schemes

The problem of compressing is central to storage and transmission of data. In this
correspondence, we introduce in section 4.2.1 a quantum compressing scheme
and in sections 4.2.2, 4.2.3 and 4.2.4 we investigate more efficient extensions of
that scheme.

4.2.1 Lossless Quantum Data Compression Scheme

Let us introduce a lossless quantum encoding scheme developed by Kim Böstrom
and Timo Felbinger [6].

An encoding is a mapping from a source space to a code space. So, its speci-
fication is just a linear mapping, which transforms the basis element of the source
alphabet,|wi〉 ∈ ν, into the basis elements of the code space,|vi〉 ∈ M. Notice
that the vectors|wi〉 are orthogonal between each other, as well as the|vi〉 basis
vectors.

|wi〉 7−→ |vi〉 . (88)

Since the mapping from one space to another is isometric the coding is lossless,
which is the type of compression we study in this report.

The compression operator can be defined as

C =
∑
w∈v

|c(w)〉 〈w| . (89)
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Since the encoder is lossless the inverse of C, C−1, is the decoder, which we
denote by

D =
∑
v∈M

|w〉 〈c(w)| . (90)

Recently some proposals have been made to which code space we should use.
In the encoding scheme that we will describe moreover the code space is called
Neutral-prefix spaceand it is defined as follows. ConsiderZk(i) thek-ary repre-
sentation of a natural numberi. ConsiderZk(0) = φ. Define an orthonormal basis
message:

Br := {|Zk(0)〉 , ..., |Zk(kr − 1)〉} (91)

with variable-length of maximal lenghtr.
The length of the|Zr(i)〉 is given by

|Zr(i)| = dlogk(i+ 1)e, (92)

dxe denotes the largest integer larger or equal tox.
Notice that, for example if we chooser = 3 andk = 2, there are messages

of length less than3 that do not belong to the space spaned by the basisBr. An
example is the message|10〉. Let us denote the space spaned byBr, Nr. So we
have the relation

Nr ⊂ H⊕r. (93)

The reason why it turns out to be not so clear to define a code space is because
of its physical realization. For example the state|01〉 + |1101〉 stills a discussion
whether it could possibly be implemented or not. Therefore we define other space,
which we will use to implement the spaceNr. The problem we have in hands
is the physical implementations of states with a superposition of messages with
different length. Therefore we define a spaceBR of the same size asBr but with all
the elements with equal size. This space instead of the|Zk(i)〉 has anr-extention
of those numbers by adding as much leading zeros as necessary to achieve the
lengthr, e.g.Zr

k(i) := 0 · · · 0Zk(i). More precisely,

BR := {|Zr
k(0)〉 , ..., |Zr

k(k
r − 1)〉}. (94)

Notice that the basis ofBR are orthonormal.
Now it is about time to Alice and Bob appear. Imagine that Alice wants to send

some encoded quantum data to Bob. We consider that they both have a quantum
computer and they have a quantum and a classical channel connecting them. So,
Alice prepares each message|xi〉, 1 ≤ i ≤ n, from a source setχ, each with a
probabilityp(xi). The source is represented by the ensembleΣ := {p, χ}. She
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encodes each of this words into variable length codewordsc(xi) ∈ Nr of maximal
lengthr. If we denote the dimension of the source space byd, thenr must be at
least as large as the number of qubits necessary to representd, sor ≥ dlogr de.
To define the encoder operatorC, see equation (89), Alice check if the messages
of χ are linerly dependet. If so she creates a new setΞ = χ and removes the most
probable message fromΞ, which she appends to a listL. Then she again takes
the most probable message fromΞ and checks whether it is linear dependent with
the words ofL. If not she adds the element toL, otherwise she follows taking
elements ofΞ until there is no elements left. This procedure leads to a linear
independent list,L, of elements fromχ. The probability of the messages inL
are in a decreasing order. Now Alice performs aGram-Schmidt(see appendix B)
orthonormalization of the elements of the listL, starting with the first element of
the list, which is the one with higher probability.

|w1〉 := |x1〉 ,

|wi〉 := Ni

[
I −

i−1∑
j=1

|wj〉 〈wj|

]
|xi〉 , (95)

with 2 ≤ i ≤ d (consideringd the number of elements inL),Ni are normalization
constants andI is the identity matrix. Consider

B = {|w1〉 , · · · , |wd〉}, (96)

then the elements ofB form an orthonormal basis for the source setχ. Now we
encode the elements ofχ into the code spaceBR,

|c(wi)〉 := |Zr
k(i− 1)〉 , (97)

with 1 ≤ i ≤ d, with increasing significant lenght

Lc(wi) = dlogk(i)e. (98)

The length of each message is given by

Lmaxc (x) = max
1≤i≤d

{Lc(wi)|| 〈wi|x〉 |2 > 0}, (99)

for all the messages of the setχ. Each codeword is in spaceBR. At this point
Alice has quantum data, which are the encoded messages. The respective length of
each message is represended in classical data and encoded by a classical encoding
scheme. Now Alice is ready to send the data to Bob. She sends the classical data
to Bob through a classical channel. The quantum data is sent in the following
way. Alice reads the length of the message that she wants to send and removes the
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leading zeros from that message. Then the codeword would be in space spanned
byBr. The quantum message is now ready to be sent to Bob.

Bob decodes the data in a similar way. The classical data has the information
about the length of the quantum codewords. So Bob picks each quantum codeword
and appends the leading zeros needed to fulfil ther required zeros to map the
codewords to the spaceBR. He applies the decoderD, equation (90), to every
codeword and gets the original messages.

The following algorithms describe three different ways to choose the axes
of B, equation (96). The first, calledBrute Forcealgorithm, just goes around
all the possible set of axes and choose the best one. The second one,Improved
BF algorithm, uses Grover’s algorithm idea to speed up Brute Force algorithm.
Finally, theAdapted Algorithm, gives another idea how to order probabilities in
the lossless quantum data compression scheme just described.

This compression protocol has a codewords length average,Ic, upper bounded
by [6]

Ic ≤ log2(dimν) + log2k. (100)

whereν is the source space.

4.2.2 Extension - Brute Force

In this section we describe a lossless quantum encoding scheme. Our aim is to
compress more our data by changing a bit the previous algorithm.

We begin with an example where the above algorithm could be improved.

Example 9 A sourceS = (S, P ) has a probability distribution

P={1
6
, 1

7
, 1

8
, 1

8
, 1

8
, 1

8
, 1

8
, 11

168
} and S= {(1, 0, 0), (0, 1, 0), (0, 0, 1), 1√

2
(0, 1, 1),

1√
3
(0, 1, 2), 1√

3
(0, 2, 1), 1√

4
(0, 1, 3), 1√

4
(0, 3, 1)}. The source has only real vec-

tors to be easier to illustrate it on a figure.
Figure 7 showsS, the quantum states we want to encode, that are decribed

by vectors with a color different of black. The codewords are represented with
”(codeword,probability)” on one side.

The graphic on the left has the codewords we get with the scheme described in
the previous section. With the previous scheme the smaller codeword correspond
to the most probable word to encode, represented in blue on that graphic.

The codewords length average of the quantum scheme of the previous section
is:

L(C) =
1

6
× 0 +

1

7
× 1 +

1

8
× 5× 2 +

11

168
× 2 =

32

21
(101)
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Figure 7: Two diferent codeword assignments.

In this example the axes chose to the coding are not the ones that minimizes
the length average. The graphic on the right side of the figure our example of axes
that give a smaller length average:

L(C) =
1

6
× 2 +

1

7
× 1 +

1

8
× 0 +

1

8
× 4× 1 +

11

168
× 1 =

25

24
(102)

The value obtained is almost half of the previous one! The length average was
decreased by just changing the correspondence between the codewords and the
axes.

In the encoding scheme described in the previous section, theGram-Schmidtde-
composition, equation (95), begins by choosing the most probable word to en-
code. Set this one as an axes to the encoding scheme and encode it with the
smallest codeword. But not always this procedure is the way to get the smaller
length average.

Now we describe a different way to choose the axes to get the smallest length
average. We call the following algorithmBrute Force algorithmbecause it is
based on going through all possible set of axes and choose the one with the lowest
L. Its description provides a good understanding of what we could improve in the
lossless quantum encoding scheme of the previous section algorithm. Moreover
we describe how to improve the Brute Force algorithm, in a sense to avoid going
through all possible sets and this way save some time.

So, how do we construct this Brute Force algorithm? In algorithm 2 we have
its description. Consider we want to encode a sourceA = {|a1〉 , ..., |an〉}, where
the vectors|ai〉 (1 ≤ i ≤ n) belong to a Hilbert space of dimentiond (first
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item of algorithm 2). To all possible subsets℘={|ai1〉 ... |aid〉} (items 2 and 4)
of A (℘ is selected to have all the elements different of each other) we apply the
folowing. We check if the elements of℘ are linearly independents (item 5). If
not this set could not be a base of our data. If so we apply theGram-Schmidt
normalization to normalize the elements of℘ (items 6 and 7). To be possible to
encode as we have done in the lossless compression scheme algorithm, we assign
|c(a)j〉 := |Z(j)〉, being|a〉 the word to encode and1 ≤ j ≤ d (item 8). This way
we have encoded the axes. Since℘ as the same dimension ofA, all the source
alphabet can be expressed in the normalized axes. Our next move is to encode
the source alphabet. The length of the codewords isl(bj) = dlogk(j)e. Now we
calculate theL of A. The℘ is a base ofA, each element ofA can be represented
as a linear combination of the elements of℘, or its respective codewords. We go
through all elements ofA (item 9) and sets the length of each element equal to the
length of the longest word belonging to℘ of its linear combination (item 10). Its
respective codeword length is used to calculate the average codewords lengthL.
We save the smallerL and its respective bases in item 11.

We go through all the elements ofA and apply the encoder C, equation (89),
to each element ofA. In item we output the smallestL and its respective base,
codewords and the elements ofA encoded.

Algorithm 2 Brute Force:

1. To encode:A = {|a1〉 , ..., |an〉}, where|ai〉 belong to a Hilbert space of
dimension d.

2. ℘={|ai1〉 , ..., |aid〉 | ai1 , ..., aid ∈ A ∧ aij 6= ail ∧ ∀i,j(1 ≤ i, j ≤ d)}

3. L=∞;

4. For every|ai1〉 ... |aid〉 ∈ ℘ :

5. If B = {|ai1〉 , ..., |aid〉} are linearly independent:

6. |b1〉 := |ai1〉 ,

7. |bj〉 := Nj[1−
∑k−1

k=1 |aik〉 〈aik |
∣∣aij〉], j=2,...,d; Nj are normalization

constants;

8. assign to every b∈ B: |c(bj)〉 := |Zr
K(j)〉 , j=1,...,n;

and l(bj)= dlogk(j)e (length of the codeword)

9. For every|v〉 ∈ A , s=d;

10. while (〈v|bs〉 = 0, s=s-1, l=l+l(bs));
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11. If l<L, L=l and Bf = B;

12. output L,B, C andC |ai〉.

Performance
The Brute Force algorithm, as the name mention, goes around all possible set

of axes and chose the best one (the one with lowestL). Even having by grand
that it gets be best solution it can not always be applied, thanks to the time it
takes to explore all the possible sets of axes. To count the number of step it takes
we must consider that for this algorithm it is different to have the base℘1 =
{|1〉 , |2〉 , |3〉} or ℘2 = {|1〉 , |3〉 , |2〉}, since the Gram-Schmidt normalization
gives different results in each case. Thus, we must examine every set of d-elements
(dimension of the Hilbert space), so in this setp the time it takes is upper-bounded
by a linear function onnd. Then to check linear independence, to normalize and
assing codewords take time upper bounded byk × d (where k is a constant).
To calculate the length of the source encoded we take time upper bounded by
n × d. Finally we need more timen to calculate output the encoded source. The
complexity of the algorithm only considers the factor with bigger power. In our
case the final complexity is upper bounded by a linear function onnd+k, wherek
is a constant. The performance of the algorithm depends mostly on the dimention
of the Hilbert space of the source, since the complexity time depends in power on
the dimention.

4.2.3 Extension - Improved BF

The Brute Force algorithm is not applicable in many cases thanks to its complexity
time. TheImproved BFis based on the Brute Force algorithm, speeding up its
search time using the Grover’s algorithm and its extensions. Grover’s algorithm
search for a particular element of a long unsorted list. As described in section
3.2.2 it is based on a functionf that:

f(x) =

{
0, x 6= x0

1, x = x0
(103)

wherex0 is the searched element.
In the Improved BFalgorithm we are not just searching for a single element,

but for a basis,B. So, to adapt to the search quantum algorithm we consider each
possible basis as an element. The problem to use this function in our case is to
define which element or elements we are searching for. In Brute Force algorithm
we seached for the basis with lowestL. Or, in other words, the basis withL as
closest to the entropy value as possible. But it is not always true that the lowestL
is equal to the entropy, so we must find a way of selecting the elements with lowest
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L to use it as the range of functionf . To this purpose we use the upper bound of
L, stated in equation (100). This way, functionf instead of consideringx = x0,
just search all the basis withL lower than the upper bound, which we denote by
Lsuperior. In this case we are not seaching a single element. Section 3.2.2 describes
how the Grover’s algorithm works in a case of searching a single element. At the
end of that section is stated the speedup we get seaching M elements out of N.
The functionf , in our case, becames:

f(x) =

{
1,L(x) ≤ Lsuperior
0,Lsuperior ≤ L(x)

(104)

In the end of section 3.2.2 we mentioned the complexity time speed up of
some extentions of Grover’s algorithm [30]. The complexity time of the quantum
algorithms of the extensions of Grover’s algorithm are in the following table.

Problem Quantum Complexity Classical Complexity

Searching M elements O
(√

N
M

)
O
(
N
M

)
Minimum Finding O

(√
N
)

O(N)

Now we apply these quantum search algorithms and the oraclef , equation
(104), to find the basis with lowest codeword length average. The algorithm that
comes up to our minds as a solution for this problem is the ”Minimum Finding”.
Algorithm 3, Improved BF 1, only applies the ”Minimum Finding” algorithm to

find the basis with lowestL. It has complexity time of O
(√

N
)

.

Now we introduce Algorithm 4,Improved BF 2, it decreases the complexity
time of the search, but the probability of finding the minimum also decreases.
So, depending on our goals we may balance between time and optimal results.
The idea is as follows. At first we search the elements withL(x) ≤ Lsuperior
(item 1 of the algorithms). This search only can be applied if we have some
previous information about the number of basis withL(x) ≤ Lsuperior. Then
we search between those elements which has smaller codeword length average
by applying the ”Minimum Finding” algorithm. Algorithm 4 has a complexity

time of O(
√
M +

√
N
M

). Notice that between the two items we cannot make
measurements. Otherwise we would loose the superposition of the states found
with that property.
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Algorithm 3 Improve BF 1

1. Apply the ”Minimum Finding” algorithm to find the basis with minimum
L(x).

Algorithm 4 Improve BF 2

1. SearchingM elements;

2. Finding the minimum between this elements.

PerformanceTo study the complexity time of an algorithm that is composed
of a sequence of more than one algorithm, we must consider the cemplexity time
of all those algorithm. The one that is defined by a funcion with biggest power is
the complexity time of our main algorithm. To study the complexity of algorithm
4 we consider the complexity of the algorithms we used in items 1 and 2. The
algorithms have complexity time equal to the subalgorithm with bigger complex-
ity time. From the table above we conclude that algorithm 4 has complexity time

equal toO(
√
M +

√
N
M

). As we have seen, the complexity time of algorithm 3

is O
(√

N
)

. Therefore algorithm 4 has a smaller complexity time. So, we can

choose more speedup or optimality of the result.

4.2.4 Extension - Adapted Algorithm

As we described, the lossless compression scheme of the previous section, sim-
ilarly to the classical Huffman’s algorithm, order probabilities in a decreasing
order to start the construction of the algorithm. TheAdapted Algorithm, intro-
duces a slightly difference, it order probabilities depending on itsdensities. What
do we mean bydensitiesand why does such idea could improve our axes search?
At first we should remember again that we are dealing with vectors in a Hilbert
space, instead of just real numbers as in the classical case. Therefore, choosing
one vector to be an axes influences all the vectors that have a projection on him.
So, to choose the first axes vector we pick the one that sum up more probabilities
projected on him, because vectors are encoded by a linear combination of its basis.
So, how do we do that? To make it explicit let us return to example 9 and apply
theAdapted Algorithm(in example 10). At the beginning we make a table with
each probability as the label of each column celland then we do the same to the
line labels. We fill in only the cells below and including table diagonal, since the
rest would repeat information. Then, to everypi andpj (i < j and1 < i, j < 8),
if 〈i|j〉 6= 0 fill in the cell with the number1, otherwise fill in with number0 (fol-
lowing table). This is the same as saying that if the vectors are orthogonal, there is
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no projection on this basis, we set the cell equal to zero, otherwise, there is a pro-
jection on this basis, so we set it equal to one. After filling in this quadratic table
we add one more line with the sum of the probabilities projected in each vector.
In our example, the line and column with a different type of letter is respective to
the vector with probabilityp3. The sequence(0, 0, 1, 1, 1, 1, 1, 1) means the vector
|3〉 has a projection in every vectors of the source exceptp1 andp2. Therefore in
the last line we have41

56
, that is the sum of all the probabilities exceptp1 andp2.

See example 10.

Example 10 S=(S,P)

p1 p2 p3 p4 p5 p6 p7 p8

p1 1
p2 0 1
p3 0 0 1
p4 0 1 1 1
p5 0 1 1 1 1
p6 0 1 1 1 1 1
p7 0 1 1 1 1 1 1
p8 0 0 1 1 1 1 1 1∑

prob 1
6

17
24

41
56

5
6

5
6

5
6

5
6

5
6

1
6
< 17

24
< 41

56
< 5

6
. Therefore we choose|4〉 to be one axes and the one with lowest

codeword length.

Moreover we choose the one with bigger sum of probabilities to be the ba-
sis axes with lowest codeword length. In example 10 it is vector|4〉. Now the
algorithm follows in a similar way but with a difference concerning the table con-
struction. Since we have chosen one axes, this one will no longer be concerned in
the table. Now we must consider that the other axes we will choose need to be or-
thogonal to the one already chosen. So, we must project each of the vectors from
the source to the space orthogonal to the axes already chose. It is a similar idea to
the Gram-schimdtprocedure (described in appendix B). So, to get another axes
vector we construct another table concerning each vector from the source and the
ones orthogonal to the axes. Before introducing the table continuing the previous
example we would like to state two remarks. Firstly it is important to note that
in our exampleP |2〉 , P |3〉 , P |5〉 , P |6〉 , P |7〉 andP |8〉, are the same. This
happens becauseP |i〉 is a projection of|i〉 over the plan orthogonal to the axes
already found. In our example the projection of all the vectors enumerated before
over the plan orthogonal to|4〉 are the same.
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P |1〉 P |2〉=P |3〉=...=P |8〉
p|1〉 1
p|2〉 0 1
p|3〉 0 0
p|5〉 0 1
p|6〉 0 1
p|7〉 0 1
p|8〉 0 0∑
prob 1

6
17
24

So, since1
6
< 17

24
, the new axes just found isP |2〉 = 1√

2
(0, 1,−1). The last axes

only can beP |1〉 , in our case is equal to|1〉 = (1, 0, 0).
In the previous example we got the axes:|4〉 = 1√

2
(0, 1, 1); P |2〉 = 1√

2
(0, 1,−1);

and |1〉 = (1, 0, 0). With respectively decreasing codeword length. Therefore
l(c(|4〉)) = 0, l(c(P |2〉)) = 1 andl(c(|1〉)) = 2. So, the average codeword aver-
age of the source is:

L(C) =
1

6
× 2 +

1

7
× 1 +

1

8
× 4× 1 +

11

168
× 1 +

1

8
× 0 =

25

24
(105)

Performance
The time theAdapted Algorithmtakes is upper bounded by a linear function

on n2, beingn the number of elements to encode.n2 is the complexity of the
first table we make. The other tables have lower complexity. Therefore, since
the complexity time of our protocol is the sum of the complexity time we take to
calculte the numbers that are in the tables, the complexity time that counts is only
the one of the first tablen2. Notice that the complexity of the sum of functions
with different power is always upper bounded by the complexity time of the one
with bigger power.

60



Quantum data compression 5 Outlook and Conclusion

5 Outlook and Conclusion

Our report introduced the main concepts of classical and quantum data compres-
sion for noiseless and lossless channels and presented some improvements to a
particular quantum encoding scheme.

Firstly, in section 2, we introduced the main concepts of Classical Coding
Theory, as well as the four of the most currently used classical encoding schemes:
Huffman’s Code, the Lempel-Ziv Code, the Arithmetic Code and the Enumera-
tive Code. In section 3, we presented a brief overview of the essentials of quan-
tum information. In section 3.1 we explained the main properties of quantum
information and its differences when comparing to classical information. Quan-
tum compression algorithms are mainly based on well known classical encoding
schemes adapted to the properties of quantum information, which may actually
imply fundamental modifications in the scheme. For example, we are not able
to clone unkown quantum states because of the unitary evolution of quantum sys-
tems. Related to this and to the measurement rule is the fundamental impossibility
of distinguishing two unkown quantum states. Another quantum rule, the possi-
bility of having coherent superposition of states, can also be used to decrease the
complexity time of some algorithms. It provides ”quantum parallelism” (see sec-
tion 3.2.1), used in Grover’s (see section 3.2.2) and Shor’s algorithms. Finally,
when we are dealing with composite quantum systems, the tensor product struc-
ture of the Hilbert space is instrumental in the definition of entangled particles, a
powerful and exclusive property of quantum systems (see section 3.3) which of-
fers correlations that are impossible to simulate classicaly. The Classical Coding
Theory and the properties of quantum information are then used in section 4 to
study Quantum Data Compression. In section 4.1 we introduce some concepts of
Quantum Information Theory. Moreover, we describe three improvements of the
lossless quantum data compression scheme of K. Boström and T. Felbinger [6]
(see section 4.2). In this scheme the Hilbert space of the source message we want
to encode is spanned by a set of vectors. Those vectors are encoded into code-
words. So, each source message is encoded in a linear combination of the code-
words. The length average is calculated on the size of the longest basis codeword
of each encoded source word. Our aim is to achieve a codeword length average as
lower as possible. In [6] they choose the most probable source word to be encoded
with the smaller codeword. However, in this specific scheme, this procedure does
not lead us to the smaller codeword length average we could achieve. This hap-
pens because the source messages can be spanned in more than one codeword. In
the first extension,Brute Force(see section 4.2.2), we point out an example where
the algorithm could be improved and we construct an extension to achieve the
optimal codeword length average to this scheme. Basically it goes around all pos-
sible solutions. It implies a drawback in complexity time, which is a exponential
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function ofN (the number of source messages). Therefore in section 4.2.3 we de-
scribe a quantum algorithm to find the optimal solution,Improved BF, which uses
Grover’s algorithm and its extensions to do the search and this way it decreases

the complexity time. This way we achieve a complexity time ofO(
√
M +

√
N
M

).
At last we describe theAdapted Algorithm. In this algorithm we just search the
optimal solution in a different way. Instead of choosing the most probable source
word to be encoded with the smaller codeword, like in [6], we choose the source
word which has the biggest probability of having another source word spanned on
itself to be encoded with the smallest codeword. TheAdapted Algorithmis the
one with the lowest complexity time. However we did not manage to proof its
optimality in this specific scheme. Therefore, since theBrute Forcealgorithm and
the Improved BFalgorithms find the optimal solution to this scheme we would
recommend this ones. TheImproved BFhas the advantage of having a polinomial
complexity time.

5.1 Future Work

TheAdapted Algorithmalgorithm could be improved by finding an upper bound
related to the von Neumann entropy for the compression that can be achieved.

Future work may also extend the study of compression of entangled states,
since this states are very useful to some Quantum Information applications, like
quantum criptography.

The idea of a classical channel to send the codewords length information could
have been studied from the point of view of its effectiveness. One mistake most
probably would damage all the quantum codewords encoded. In this sequence
it would be interesting to study a reliable extension of this scheme to a noisy
channel.

6 Acknowledgements

This report was carried out in Lisbon, in my home university, Instituto Superior
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A Independent Identical Distributed Variables

We introduce some statistics [38] to describe the type of variable we are using.

Definition 12 Two random variables X and Y are said to be independent if for
any two subsetsA andB ofR,

P (X ∈ AandY ∈ B) =

P (X ∈ A;Y ∈ B) =

P ({X ∈ A} ∩ {Y ∈ B})
= P (X ∈ A)× P (Y ∈ B). (106)

More generally,X1, ..., Xn are said to be (mutually) independent if for any
subsetsA1, ..., An of R, the events{X1 ∈ A1}, {X2 ∈ A2}, ..., {Xn ∈ An} are
mutually independent: i.e.

P (X1 ∈ A1, X2 ∈ A2, ..., Xn ∈ An) =

P ({X1 ∈ A1} ∩ {X2 ∈ A2} ∩ ... ∩ {Xn ∈ An})
= P (X1 ∈ A1)× P (X2 ∈ A2)× ...× P (Xn ∈ An). (107)

In particular, ifX1, ..., Xn are independent discrete random variables with
probability mass functionf1, ..., fn, respectively, then

P (X1 = k1, ..., Xn = kn) = f1(k1)× ...× fn(kn) (108)

Definition 13 If X1, ..., Xn each have the same distribution function, then they
are said to be identically distributed. If their common distribution function isF
and they are independent as well, we say thatX1, ..., Xn are independent and
identically distributed (i.i.d.) with distributionF .

B Hilbert Spaces

Quantum Mechanics is based on a set of postulates (presented in section 3) as its
own rules, for its understanding is entirely necessary a good assimilation of Linear
Algebra. For this reason we introduce here the basic and fundamental concepts of
Linear algebra. If you feel lost while reading this appendix we recommend [22].
Linear Algebra is presented in Quantum Mechanics with the Dirac notation, that’s
why it may look a bit fearsome, but it is just algebra! Therefore we will introduce
Dirac’s notation.
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The basic elements of Linear Algebra arevector spaces. We study the vector
space inCn, the space of alln-tuples of complex numbers,(z1, ..., zn). We denote
the elements of a vector space asvectorsand we present them in a column matrix
representation: 

z1

.

.

.
zn

 . (109)

The Dirac notation for a vector in a vector space is|ψ〉. The addition operation in
C is defined as: 

z1

.

.

.
zn

+


z
′
1

.

.

.
z
′
n

 ≡

z1 + z

′
1

.

.

.
zn + z

′
n

 , (110)

wherezi + z
′
i are the common addition of complex numbers. Moreover, themul-

tiplication by a scalaroperation is defined as:

z


z1

.

.

.
zn

 ≡

zz1

.

.

.
zzn

 , (111)

wherez is a complex number.
A vector space also contains azero vector, denoted by0. It satisfies|v〉+ 0 =

|v〉, where|v〉 is any other vector. Avector subspaceof a vector spaceV is a
subsetW of V such thatW is also a vector space.

Now we introduce some definitions for the complex matrices. LetU be a
matrix such that:

U =

(
a b
c d

)
, (112)

then (
a∗ c∗

b∗ d∗

)(
a b
c d

)
=

(
1 0
0 1

)
, (113)

i.e.,U+U = I. a∗ stands for the complex conjugate of complex numbera and
U+ = (U∗)T . The notationUT indicates the transpose ofU . UT andU∗ are

UT =

(
a c
b d

)
andU∗ =

(
a∗ b∗

c∗ d∗

)
, respectively. (114)
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A spanningset for a vector space is a set of vectors|w1〉 , ..., |wn〉 such that any
vector in the vector space can be written as a linear combination|w〉 =

∑
i ai |wi〉

of vectors in that set. An example of a spanning set forC2 are the vectors:

|w1〉 ≡
[

1
0

]
; |w2〉 ≡

[
0
1

]
, (115)

because any vector inC can be written as a linear combination of|w1〉 and|w2〉.
A vector space have several spanning sets.

We say that a set of vectors is linearly dependent if there exists a set of complex
numbera1, ..., an, for at least oneai different from zero, such that:

a1 |w1〉+ ...+ an |wn〉 = 0. (116)

If a set of vectors is notlinearly dependent, then it islinearly independent. We
call a set of vectors that can span a vector spaceV , thebasisof V . The number of
elements in the basis is denoted as thedimensionof the vector space.

Now we shall introduce thelinear operators. A linear operator between two
vector spacesW andV is defined to be any functionA:

A

(∑
i

ai |wi〉

)
=
∑
i

aiA (|wi〉) . (117)

The viewpoint of linear operators and matrix are known to be equivalent.
Therefore we may use both notation on the report.

With these conventions, the inner product on a Hilbert space can be given by
a matrix representation.

〈v|w〉 =
[
v∗1 . . . v∗n

]

w1

.

.

.
wn

 . (118)

The vector〈v| has a nice interpretation as a row vector whose components are
complex conjugates of the corresponding components of the column vector rep-
resentation of|v〉.

Consider now a vector|v〉 in a vector spaceV , and a vector|w〉 in a vec-
tor spaceW . A very useful linear operator fromV to W is the so calledouter
product. It is represented by:

(|w〉 〈v|)
(∣∣∣v′〉) ≡ |w〉〈v|v′〉 |w〉 . (119)
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We can take linear combination of outer product operators|w〉 〈v|, by defini-
tion

∑
iai |wi〉 〈vi| is a linear operator which, when acting on

∣∣v′〉, produces∑
iai |wi〉

〈
vi|v

′〉
as output.

An important result of the outer product is thecompleteness relationfor or-
thonormal vectors. Let|i〉 be any orthonormal basis for the vector spaceV , so
an arbitrary vector|v〉 can be written as|v〉

∑
ivi |i〉 fro some set of complex

numbersvi. Note that〈i|v〉 = vi and therefore(∑
i |i〉 〈i|

)
|v〉 =

∑
i |i〉 〈i|v〉 =

∑
ivi |i〉 = |v〉 . (120)

From the last equation it follows that∑
i |i〉 〈i| = I. (121)

This is thecompleteness relation. Hilbert space A Hilbert space is a mathemati-
cal framework suitable for describing the concepts, principles, processes and laws
of Quantum Mechanics. We can say that to each isolated quantum system corre-
sponds a Hilbert space.

A finite-dimensional Hilbert spaceH is a complete (defined later in this sec-
tion) vector space over complex numbers which is equipped with an inner-product
(defined in a moment)H × H → C, (x, y) → 〈x|y〉. All n-dimensional Hilbert
spaces are isomorphic (defined in a moment), and we can, therefore, denote any
such space byHn.

Definition 14 An inner-product spaceH is a complex vector space, equipped
with an inner-product< .|. >: H× H→ C satisfying the following axioms for all
vectorsφ, ψ, φ1 andφ2 ∈ H, and any c1, c2 ∈ C.

< φ|ψ >=< ψ|φ >∗,
0 ≤ < ψ|ψ > and < ψ|ψ >= 0 if and only ifψ = 0,
< ψ|c1φ1 + c2φ2 >= c1 < ψ|φ1 > +c2 < ψ|φ2 >,

where∗ stands for the conjugate.
The inner-product mostly used in finite quantum systems is:

〈x|y〉 = x∗1y1 + ...+ x∗nyn. (122)

wherex = (x1, ..., xn), y = (y1, ..., yn) ∈ H.
The inner product induces avector norm:

||x|| =
√
〈x|x〉. (123)

Unit norm vectors of an inner-product space are also called(pure) statesof
H. Pure states of quantum systems are said to be vectors of a Hilbert space.
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Definition 15 An inner-product space H is calledcomplete, if for any sequence
{φi}∞i=1 , with φi ∈ H and there is a vectorφ ∈ H with the property that
limi→∞ ‖φ− φi‖ = 0. A complete inner-product space is also called aHilbert
space. Two Hilbert spaces are said to beisomorphic, notationH1

∼= H2, if
the underlying vector spaces are isomorphic and their isomorphism preserves the
inner-product.

You can find this definition in [22].
The concepts of an orthogonal basis and of an orthogonal decomposition of a

Hilbert space are fundamental for the Hilbert space theory.

Definition 16 Two vectorsφ and ψ of a Hilbert space are calledorthogonal,
notationφ ⊥ ψ, if 〈φ|ψ〉 = 0. A setS ⊆ H is orthogonal if any two distinct
elements ofS are orthogonal. S isorthonormal if it is orthogonal and all its
elements have norm 1.

If E = {e1, ..., en} is an orthonormal basis of H, then we can represent each
vector ofH by x = x1e1 + ...+ xnen, using this fixed basis axes, the vectorx can
be represented asx = (x1, ..., xn).

Definition 17 A subspaceG of an inner-product space H is a subset ofH closed
under addition and scalar multiplication.

An important property of Hilbert spaces is their decomposability into mutually
orthogonal subspaces. It holds [23]:

Theorem 11 For each closed subspace W of a Hilbert space H there exists a
unique subspace W⊥such that〈φ|ψ〉 = 0, wheneverφ ∈ W andψ ∈ W⊥ and
eachψ′ ∈ H can be uniquely expressed in the formψ′ = φ1 + φ2, with φ1 ∈ W
andφ2 ∈ W⊥. In such a case we writeH = W ⊕W⊥ and we say thatW and
W⊥ form an orthogonal decomposition of H.

The symbol⊕ is the Tensor product, defined in a moment.
We can make a generalization of an orthogonal decomposition

H = W1 ⊕W2 ⊕ ...⊕Wn, (124)

of H into mutually orthogonal subspaces W1,...,Wn, such that eachψ ∈ H has
a unique representation asψ = φ1 + φ2 + ...+ φn, with φi ∈ Wi,1 ≤ i ≤ n.

A very used method to construct orthonormal basis is calledGram-Schmidt
procedure. Suppose we have an orthogonal basis set|w1〉,...,|wd〉 belonging to
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a vector spaceV . To construct an orthonormal basis set|v1〉,...,|vd〉 for V we
proceed as follows. Define|v1〉 = |w1〉

|||w1〉|| . For1 ≤ k ≤ d− 1 define

|vk+1〉 ≡
|wk+1〉 −

∑
i=0 k 〈vi|wk+1〉 |vi〉

|||wk+1〉 −
∑

i=0 k 〈vi|wk+1〉 |vi〉||
(125)

Tensor product
The so-calledTensor product , orKronecker product, of H1 andH2, is written

as

H = H1 ⊗H2. (126)

The tensor product for vectorsx = (x1, ..., xm) andy = (y1, ..., yn) is

x⊗ y = (x1y1, ..., x1yn, x2y1, ..., x2yn, ..., xmy1, ...xmyn) (127)

and for matrices

A =

 a11 ... a1n
...

...
an1 ... ann

B =

 b11 ... b1n
...

...
bn1 ... bnn


A⊗B =

 a11B ... a1nB
...

...
an1B ... annB

 (128)
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