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ABSTRACT

Quantum Information Theory is about studying
information encoded in quantum systems and explor-
ing their unique properties. The topic of our report
is Quantum Data Compression, a central problem
to storage and transmission of data. Our report
presents an overview of Classical Coding Theory
and the main concepts of Quantum Coding Theory.
Moreover, we introduce a particular guantum noise-
less and lossless data compression scheme. Finally,
we present three methods to improve this scheme.
Our first method,Brute Force (BF) presents only
significant advantages for small amounts of data,
but has otherwise a very high complexity time. This
is further improved with our schemenproved BF
where the complexity time is decreased by taking
profit of the advantages of quantum algorithms.
Another alternative is ouAdapted Algorithmbased
on a different way of ordering probabilities and
which offers the best complexity time, but contrary
to the previous two methods does not guaranty that
an optimal solution will be found.




Preface

This report is submitted as the Master thesis in Software Systems Engineering
in the Department of Computer Science at Aalborg University, Denmark, August
2003. Its aim is to study quantum data compression schemes.

Joana |.L. Mig&ns
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Quantum data compression 1 Introduction

1 Introduction

Quantum Information Science is about studying information encoded in quan-
tum systems and exploring their unique properties. The consequences that the
processing of information is always performed by physical means is all but triv-
ial. When quantum effects become important, for example at the level of atoms
and photons, the existing classical theory of computation become fundamentally
inadequate. Entirely new modes of computation become possible. Quantum In-
formation is a new paradigm based on the laws of Quantum Mechanics. Itis a
new science expanding very fast and represents a revolution in our way of un-
derstanding and using information, resulting in important transformations in the
Information Society we live in.

Quantum Information Theory, the quantum version of Classical Information
Theory, has been developed due to the rising interest in both the theory of Quan-
tum Computation and the realization of quantum computers. It brings together
ideas from Classical Information Theory, Physics, Computer Science, Mathemat-
ics and Communication Theory.

The typical questions driving Quantum Information Theory Science are: what
is it that separates the quantum and the classical world from the Information The-
ory point of view? What resources, unavailable in a classical world, are being
utilized in a Quantum Computation? The existing answers to these questions are
not always completely clear. It is our hope that the fog may lift in the years to
come, and we will obtain a clear appreciation of the possibilities and limitations
of Quantum Information Science.

Quantum Information Science started abbuyears ago and has a very promis-
ing future: it was already shown that in theory quantum computers are more pow-
erful than classical ones in various specialized problems. A remarkable step of
Quantum Information Theory is Shor’s probabilistic polynomial-time algorithm
for factoring [1]. Nowadays we believe there is no efficient classical algorithm for
solving the factorization problem. This is of great importance in classical cryptog-
raphy [2]: the reliability of the famous public-key cryptosystem RSA is based on
that assumption. With Shor’s algorithm one could easily break classical security
systems. This could have huge implications on the economy, for the military and
on any security system. On the other hand, using Quantum Cryptography pro-
tocols, in particularly quantum key distribution, is theoretically allowed to offer
completely secure systems and, in fact, quantum cryptographic systems have been
recently implemented]3].

Another case where a quantum algorithm is faster over classical ones is the
search for a particular element in a long unsorted list. Suppose we want to find
an item of such a list oV elements. A classical algorithm for this problem must
examine all entries if the item we are searching for is not in the list, and has
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Quantum data compression 1 Introduction

therefore a worst-case complexity that is linearNin However, thanks to the
possibility of using superpositions of quantum states, quantum systems can be
simultaneously in more than one state and these allow parallelism. Grover’s al-
gorithm was developed to perform a quantum search exploiting this property. Its
worst-case complexity is a linear function V.

Perhaps the most intriguing product of Quantum Information Theory is the
concept of quantum information itself, realizing that we can treat quantum states
as if they were information. A particularly interesting and relevant topic of Quan-
tum Information Theory is Quantum Data Compression, which is the topic of our
report. The problem of compressing is central to storage and transmission of data.
In addition to its evident utility for practical communication issues, the concept
of information compression provides a bridge between the Theory of Information
and Physics - it determines what are the minimal physical requirements to store
and transmit information. Classical compression schemes have many applications
in different fields of science. For example, the similarities between the theory
of optimal investment in the stock market and Information Theory are striking.
Cryptographic protocols is another important application, representing an impor-
tant part of Communication Theory.

The essencial point of this report is to address the aim of Classical and Quan-
tum Coding Theory. We introduce the main classical compression schémes [4]
and the basic concepts of Quantum Information with a view to research Quantum
Data Compression schemes. Schumadher [5] played a fundamental role in Quan-
tum Data Compression when he introduced a theorem stating how much com-
pression one could possibly achieve. Moreover a few quantum data compression
agorithm have been proposed, a variable-length dode [6], the quantum Lempel-Ziv
code [7] and another universal quantum information compression [8]. We extend
in three different ways one of this quantum compression schemes, the variable-
length quantum code.

This report is organized as follows. In sectjon) 2.1, we present the essentials
of classical compression information, introduce notation and the main theorems
of Classical Noiseless Coding (for channel where no errors occur). Moreover, in
section[Z2, four of the most commonly used classical compression schemes are
described. Huffman’s Codgdescribed in section 2.2.1, achieves optimal com-
pression but it has a high complexity time. In section 2.2&npel-Ziv Code
is presented. This code requires no knowledge of the probabilities of the source
symbols to compress, it is called a universal compression schémthmetic
Code(in section[Z.2Z]4) does not compress as much as the Huffman’s code, but
it is quite reasonable and the reusability of some parts of the code for different
sources makes the complexity time become low. Fin&lymerative Codén
sectionZ2.2]2, is used for sources in which the data sequence are equally likely.

In section[B an introduction to Quantum Information is presented from the

5



Quantum data compression 1 Introduction

computer science point of view. Firstly, in sectipn] 3.1, we introduce the basic
concepts of Quantum Mechanics and Quantum Information. Then, sgclion 3.2 has
a description of one of the most important features for the speedup of Quantum
Computation over Classical Computation, quantum parallelism, as well as one of
its applications, Grover’s algorithm. Another important and puzzling concept of
Quantum Information ientanglementntroduced

in section[3.3. It has no analog concept in the classical world and plays an
important role in Quantum Information Theory. One of its aplications, dense
coding, is presented in sectipn 3]3.1.

Finally, sectiorf}4 presents Quantum Data Compression. We introduce, in sec-
tion @1, an overview of the main properties of quantum information itself and
discuss the objectives and achievements of the quantum encoding schemes de-
veloped so far(8},1 7,19, 10, 11,112,113]. Moreover in secfion #.2.1 we describe a
variable-length quantum encoding schemie [6] which we improve in three differ-
ent ways. In sectioff 4.2.2 we present Breite Forcealgorithm, it finds always
the optimal solution, but it has exponential complexity time. Therefore, in section
A.2.3,Improved BFalgorithm describes an improvement of Brute Force complex-
ity time by using the Grover’s algorithm and its extension. Finally, in section
.24, a completely different approach is done to compress the quantum data. It
reaches a quadratic complexity time, but it is not proven to find always the optimal
solution.
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2 Classical Coding Theory

Information Theory studies the way information is processed, meaning by this,
roughly, the study of data compression and data transmission. In this section we
introduce the basic terms of Coding Theory, its aim is to compress data as much as
possible to use the less physical resources one can hope to use. The main concepts
of classical coding are presented in secfioh 2.1. Moreover, in séctjon 2.2, we intro-
duce three of the most commonly used classical compression schemes: Huffman'’s
Code[Z.Z]1, Lempel-Ziv Code Z.2.2, Arithmetic cgde 2.2.3 and Enumerative code
74,

2.1 Classical Noiseless Coding

Firstly in this section we present some basic terminology of Information Theory,
mainly the most important definitions and theorems. Then we present four of the
most commonly used classical noiseless codes: Huffman code, Enumerative code,
Arithmetic code and Lempel-Ziv code.

We may compress data in two different ways, lossless and lossy compres-
sion. These are terms that describe whether or not, in a compression, all original
data can be recovered when the file is uncompressed. With lossless compres-
sion, every single bit of data that was originally in the file remains after the file
is uncompressed. All of the information is completely restored. This is gener-
ally the technique of choice for text or spreadsheet files, where losing words or
financial data could pose a problem. The Graphics Interchange File (GIF) is an
image format used on the Web that provides lossless compression. On the other
hand, lossy compression reduces a file by permanently eliminating certain infor-
mation, especially redundant information. When the file is uncompressed, only
a part of the original information is still there (although the user may not notice
it). Lossy compression is generally used for video and sound, where a certain
amount of information loss will not be detected by most users. The JPEG image
file, commonly used for photographs and other complex still images on the Web,
is an image that has lossy compression. Using JPEG compression, the creator
can decide how much loss to introduce and make a trade-off between file size and
image quality. In this report we only study lossless compression.

We study classical coding algorithms for noiseless channels. In such a chan-
nel, where no errors occur, the only worry is about how efficiently the coding is
done, in a sense that will be precise in a moment. Conversely, noisy channel are
the ones where occurs error. Before any definition we try to introduce some intu-
ition about all this. One of our goals is to measure information. But, what does
measure information mean? Imagine we flip a coin. How much information do we
have to guess the result? What is the amount of uncertainty in this experiment?
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What about if we drop a dice instead? It is intuitive that the uncertainty of the
second experiment increases. Now consider a closed boxwithite balls and
black ball. If we take one ball from the box, which one gives us more information?
To pick a white or the black ball? A little thought on this question leads us to the
conclusion. If we pick the black ball then we know which is the color of any ball
inside the box. This would not have happened if we had picked a white ball.

So, there must be a way to quantify information. Assume that we have an
experiment witht equally probable results. The uncertainty of this experiment is
determined by the value &f- (let us call this measure of uncertairfif( k). As we
will see in a moment to be the entropy): so, fo& 1 the result is completely de-
termined,H (1) = 0. Itis clear that the uncertainty growthslagrowths. Suppose
now we have two independent experiments widndk outcomes, respectively,
equally likely. If we compound the two experiments, the result would Hdve
likely probable results, intuitively, and the uncertainty would be the sum of the
uncertainty in both experiment&](kl) = H (k) + H(l). All this conditions lead
us to defineH (k) = log,(k), for someb constant. In a similar way we define
quantity of informatiorto be the sum ot log,(z), wherexz stands for the out-
comes. The intrusion of logarithms might have been a surprise when pointed out,
today it actually seems quite natural. Nevertheless, the explicit use of logarithms
helped Claude Shannon, an American mathematician and electrical engineer, to
make a big connection in the 1940s when he showed how the theory of heat -
thermodynamics- was applicable to information transmission. In a famous and
much cited article entitled "A mathematical theory of communication,” he pre-
sented a unifying theory of the transmission and processing of information [14].

The concept okentropyis the measure of uncertainty of a random variable.
This concept agrees with the intuitive notion of what a measure of information
should be.

Definition 1 Let X be a discrete random variable with ran§e= {x1, ..., z, }. If
P(X = ;) = p(z;), then theentropyof X is defined by:

H(X)= Zp(a:i)log ]ﬁ (1)

More detail and properties of entropy can be found, for examplé] in [4].

Now you may be asking yourself, but how do we relate entropy and data com-
pression? Later in this section we establish the limit of data compression as the
entropy value of the sourcddata compressiotis also called source coding in a
sense that our goal is to encode the information contained in a source. It can be
achieved by assigning short description to the most frequent outcomes of the data
source and necessarily longer descriptions to the less frequent outcomes. Let us
present a formal description of the term source.
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Definition 2 Asourceis an ordered paisS=(S,P), where S£z, ..., z,, } is a finite
set, known as gource alphabetand P is a probability distribution (denoted by
p(z;))onsS.

Furthermore, we assume that the different uses of the sourced®gendent
andidentically distributed(i.i.d., formal definition in appendiX]A). In the real
world information source usually don’'t behave this way. For example consider
an English text, the sequence of letter don’t occur independently. Many times
the letter "t” is followed by letter "h”. Therefore, there exits a strong correlation
between this two letters. However, most of the applications consider, even sources
like an English text, i.i.d. sources, working pretty well in practice.

Definition 3 If successive symbols are i.i.d., the information source iem-
memory sourcgor memoryless sourge

Let A = {a4,...,a,} be a finite set, calledlphabet A word w over A is
any finite sequence of elements.4f We define théength of a word, denoted as
len, as the number of alphabet symbols in the word. We wditdor the set of all
words overA.

Definition 4 Let A = {ay,...,a,} be a finite set, called theode alphabet An
r-ary code is a nonempty subsgtof the set4*.

Usually the elements of the code are denominatede words The most
used code alphabet § = {0,1}, a binary code. From a sourcewe intent
to construct codewords to assign to the source symbols, the procedure is called
encoding schemelefined below:

Definition 5 Consider the sourcé=(S,P). Anencoding schemédor the source
S is an ordered pain(C, f), whereC' is a code andf : S — C'is an injective
function.

This way we assign a code word to each source symbol.

It is clear that the average codeword length of an encoding scheme is not af-
fected by the nature of the source symbols themselves. Therefore, we may think
directly on the probabilities assigned to the codewords, thus obtaining an encod-
ing schemeC=(c;....,G,) for the probability distributiorP=(p,, ...,p,). We define
thecodewords length averages:

L(C) = Zpilen(ci). (2)

wherelen(x)denotes the length of
Below we have an example with these concepits.
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Example 1 Consider a source:
S ={N, S, E, W} with probabilitiesP = (0, 5; 0, 05; 0,05; 0,4).

The code alphabet i), 1}. Consider an encoding scher@e= {0, 10,110, 1110}
and f defined asf(N) = 0, f(S) = 10, f(£) = 110 and f(IW) = 1110. There-
fore the length average is:

L(C)=0,5x140,05x340,05x4+0,4%x2=1,65 (3)

The problem we deal with in data compression is to reduce as much as we can
the length average of the codewords. We prove later in this section, that for a
sufficiently long sequence of data, there is an approach between the compression
limit and the entropy as close as we want. The example abovH b= 1, 461,
therefore we could probably compress the data more, depending on the amount
of data we want to compress. Our goal now is to determineninémumaverage
codeword length among all the “good” encoding schemes (in a sense we will make
precise soon), as well as the method for constructing such encoding scheme. In
general we may define two classes of encoding schemes. If all the codewords
in a code C have the same length, we say that Cfizeal length code If C
contains codewords of different lengths, we say that Cvar&able length code

Mostly the variable length encoding schemes are more efficient. However, those
schemes have a potential problem. Imagine we have a sSutcéa, b, c} and a
variable encoding scheme with = {0,01,001} and f(a) = 0, f(b) = 01 and

f(e) = 001. This encoding scheme is nohiquely decipherables a sense that

the code word)01 could be decoded aab or asc. The difficulty here can be
traced to the fact that a word of code alphabet symbols may represent more than
one word of codewords. This leads to the following definition.

Definition 6 A code Cisuniquely decipherabléf whenever;, ..., ¢, andd;, ..., d;
are codewords in C and
C1...Ck :dl...dj, (4)

thenk = jandc; =d; foralli =1, ..., k.

Clearly this property is extremely desirable. There are methods to show that a
particular code is uniquely decipherable. One of the difficulties with uniquely
decipherable codes is that, even though a code may have this property, it may be
necessary to wait until the entire message has been received before we can begin
to decode. This leads us to the following definition:

Definition 7 A code is said to benstantaneousf each codeword in any word of
codewords can be decoded (reading from left to right) as soon as it is received.

10
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Obviously an instantaneous word is also uniquely decipherable, but a uniquely
decipherable code does not need to be instantaneous, as the following example
shows.

Example 2 Considering the same source sample of the previous example we state
C = {0,01,011,0111}, such thatf(N) = 0, f(S) = 01, f(E) = 011 and

f(O) = 0111. Itis not difficult to check that this is an uniquely decipherable
code. Suppose we send the codewdrid. When we receive thiewe don’t know
whether it is suppose to decode like N or if it is the first part of other codeword.
The same happens while we receive the first and the folloilsno, the message
only can be decoded when completely received.

The following method is sufficient to check if a code is instantaneous. It also
gives a good idea to construct instantaneous words.

Definition 8 A code has therefix propertyif no codeword is a prefix of any other
codeword, that is, if whenever= z,z,...z,, is a codeword, them;z»...x;, IS not
a codeword forl < k£ < n.

The theorem below states the importance of the prefix propérty, [4].
Theorem 1 A code C is instantaneous if and only if it has the prefix property.

We desire to construct instantaneous codes of minimum expected length to de-
scribe a given source. It is clear that we can not assign short codewords to all
source symbols and still be prefix free. In 1949 L. G. Kraft published a remark-
able theorem stating a criterion to determine if there is an instantaneous code with
given codeword lengths.

Theorem 2 (Kraft's Theorem) There exists am-ary instantaneous code C with
codewords of lengtlh, [5, ..., [,,, if and only if the following inequality (Kraft's

inequality) holds
1
Z frli S 1 (5)
=1

The proof can be found for example in [4]. Kraft's theorem states that if the
lengthsiy, ls, ..., 1, satisfy the Kraft's inequality, then there must be an instanta-
neous code with these code lengths. It does not states that any code whose lengths
satisfy Kraft's inequality must be instantaneous. So far we know that any instanta-
neous code is uniquely decipherable, but the opposite is not true. Therefore Kraft's
inequality is also sufficient for the existence of a uniquely decipherable code, but

in 1954 McMillan stated that Kraft's inequality also is a necessary condition for
the existence of uniquely decipherable codes.

11
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Theorem 3 (McMillan's Theorem) The codeword lengths of any uniquely de-
codable codely, I, ..., [,,,, must satisfy the Kraft inequality

|
> <t (6)
=1 r

Conversely, given a set of codeword length that satisfy this inequality, it is possible
to construct a uniquely decodable code with these codeword lengths.

The proof of McMillan’s theorem may be found in [4]. Kraft's and McMillan’s
theorems are two basic and relevant theorems with important practical conse-
guences. The lemmas below (statedin [4]) provide two of the these consequences.

Lemma 1 If exists an uniquely decodable code with codeword lengths ..., [,,,
then there must exist an instantaneous code with the same code word lengths.

Lemma 2 The minimum average codewords length among all uniquely decipher-
able codes for a given source, S, is equal to the minimum average codewords
length among all instantaneous encoding scheme for S.

Hence, in seeking to minimize the average codeword length over all uniquely
decodable encoding schemes, we may restrict ourselves to instantaneous codes.
Since our goal is to reduce as much as we can the length average of the codewords
we must search for a balance of decoding capacity and practical coding efficiency.
In other words, we seek instantaneous codes with the minimum of length average,
calledoptimal codes

Definition 9 Anoptimal r-ary codeor a sourceS = (S, P); with S = {s1, ..., S }
andP = {pi, ..., pm }, iSa@n r-ary instantaneous encoding schethe: {wy, ..., w,, }
with minimum average length(C) = > | p;/w;| among all possible instanta-
neous codes for source:

The concepts we introduced so far are sufficient to discuss the main results in
noiseless coding. So far we know entrogf(S), of a sourceS is the amount
of information contained in the source. Further, since an instantaneous encoding
scheme forS captures the information in the source, it is not unreasonable to
expect that the average codeword length of such a code must be at least as large as
the entropyH (S). In fact, this is what the Noiseless Coding theorem says, proved
by Claude Shannon in 1948114]. The generalized version of this theorem, that
will be discussed in a moment, also says that by clever encoding, we can make the
average codeword length as close to the entropy as desired.

12
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Theorem 4 (The Noiseless Coding Theoréror any probability distributionP
of a sourceS, we have,

H,(S) < L(C) < H,(5) +1 (7)

where C is an optimal code with probability distributidhand H., is the entropy
of anr-ary code, H,.(X) = Y1 | p(x;) log, -

p(x;)

In the preceding theorem, there is an overhead that is at most one unit. How-
ever we may want to be more ambitious with our compression and try to compress
as much as we can. We can reduce the overhead per symbol by spreading it out
over many symbols. For this we consider a system in which we send a sequence
of n symbols from the source. This idea is called extensions of a source.

Definition 10 Let S = (5, P) be a source. The-th extensionof S is 5" =
(S™, P™), whereS™ is the set of all words of length over S, and P" is the
probability distribution defined for = ...z, by

P"(x) = P(x1)...P(z,). (8)

The symbols are assumed to be drawn fron.iath (see appendik]A) according
to p(z).
We can consider thesesymbols to be a supersymbol from the alphatfet
Now we are able to introduced a generalization of Shannon Theorem. We can
verify that H(S?) = 2H(S). Applying Shannon Theorem to the sour§&we
know there is an optimal codé&’ such that,

2H(S) = H(S?*) < L(C?) < H(S*)+1=2H(S) +1, (9)

each symbol of5? contains2 symbols of the original source, S. So, the average
. 2 . . .
symbol (of S) lengths will bé'S-). The previous estimation leads to

L(C?)

H(S) < 5

< H(S)+ %, (10)

Shannon Theorem can be generalized thus:

Theorem 5 ConsiderS™ an extension of a sourcg. In terms of probability dis-
tributions,
H,.(P") = nH,(P) (11)

Shannon Theorem and the previous theorem provide the following theorem,

13



Quantum Data compression 2.2 Classical Encoding Schemes

Theorem 6 Consider am-th extensionof a sourceS = (S, P), S = (S™, P").
Then Licn )
m(8) < M <)+ L (12

where C is an optimal code with probability distribution P afd its n-extension.

This theorems are stated in [4]. The last theorem says that to encode a sufficient
long extension ofS, then we may make the minimum average codeword length
per source symbol af as close to the entroply,.(P) as desired. We now give an
example of source extension.

Example 3 Let S = (a,b) and P = (1, 2). Intuitively we expect that the encod-
ing scheme (C,f):
fla)=0,f(b) =1 (13)

couldn’t be more compressed, in a sense that the minimal length of a word is
one and both the code words have length one. So the average codeword length is
1 x 143 x1 = 1. Constructing the extensidi? we get a probability distribution,
P2

f(aa) = 010, f(ab) = 011, f(ba) = 00 and f(bb) = 1 (14)

with average codeword length x 3+ 2 x 3+ 2 x 2+ 2 x 1 = 21, Per source
symbol we have an average codeword length equ%ﬂ.ttdvhich is less thath and
verify,
1 3 4 1 3 27 1
H(S")=-logd+ -log===+-0.12=0.59 < — <0.59 + —. 15

(57) = glogd+qlog g =547 S g 08045 (19)
Now we have define the desired properties of a compression scheme we introduce
in the next section four of the most important encoding schemes: the Huffman'’s
code, the Lempel-Ziv code, the Arithmetic code and the enumerative code.

2.2 Classical Encoding Schemes

The idea of encoding a source is to obtain optimal codes and, in some applications,
it is important to consider the time we take to encode and decode. There are
many compression algorithms, different from each other in tiny details. The most
commonly used are the Huffman’s codel[15], Lempel-Ziv cade [16], Arithmetic
code [17[ 18] and Enumerative codel[19]. We introduce these codes, discuss their
compression limits and their applications.

14
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2.2.1 Huffman’s Code

The best known noiseless encoding method isth&#man Encodingpublished

in 1952 [15]. Thisis an optimal encoding scheme, statement proven along the sec-
tion. Huffman’s encoding scheme gives an algorithm for minimizing the length
average Min L(C)). Without loss of generality and considering our goal, we
present Huffman’s algorithm for binary codewords. It operates in the follow-
ing way. LetS=(S,P) be a source, such that= (s, ..., s,,) with probabilities

P = (p1,...,pm). Huffman’s algorithm operates recursively as follows. Let us
start with an informal description of Huffman’s code. The description may get
easier to understand if you follow at the same time example 4. At first we reorder,
if necessary, the symbols 8fin such way that the respective probabilities end up
in a non-increasing order.

Pn<...<p2<pi (16)

Now we obtain a reduced source, which we @jJlappending the two less
probable symbols,, ands,, ; in a single symbok¥’ = s,,_1 V s,, and attributing
to it the probabilityp’ = p,,_1 + pm. In case there is more than one symbol
with the minimal probability, just pick two of them randomly. Following this idea
we have constructed a sourBéwith m — 1 elementssy, ..., s,,,_2, " with the
respective probabilitiegy, ..., p,_2, p'.

Given a binary cod&” for S’ we can construct a binary code for S as
follows:

Fori=1,.m—2:c¢;=C"(s;) =>C(s;) = ¢;
d=0"(s)=>C(spm1) = 0andC(s,,) = 1 (17)

The preceding explained how to construct a binary codr a sourceS
with m symbols from a binary cod€’ for a reduced sourc&’ with m — 1 sym-
bols. We could follow the some idea to constra€tfrom a binary code”” of
a sourceS” with m — 2 symbols. Applying this several times we obtain the se-
quences, S’, S”, ..., S™ 2, each the reduced form from the previous one, with
respectivelyn, m — 1,m — 2, ..., 2, elements:

S—9 =8 - .. —8m? (18)

S™=2 has two symbolsss V...V s,,,_; ands; with probabilitiesp, + ... 4+ p,,,_; and
p1, respectively; we encode it with the symboland1, and thus” (™2 = {0, 1}.
Following the process just described we const@iét—3) for the source wits
symbolsS(™—3), Applying the same process — 2 times we obtain a sequence of
codes
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cm=2 S —C.

A formal way to describe Huffman’s algorithm is:

Algorithm 1 Consider the following algorithrit{ for producing binary encoding
schemeg’ for probability distributionP.

1. If P=(py,...,p.), Wheren < 2 thenletC' = (0) if n = 1 andC = (0,1) if

n=2.
2. If P = (p1,...,pn), Wheren > 2, then

(a) Reorder P if necessary sothat> p, > ... > p,.

(b) LetQ = (p1, .-, Pu—2,9), Whereq = p, 1 + py.

(c) Perform the algorithn{ on Q, obtaining an encoding scheme:
D = (1, 0p2,d)

(d) Let
C = (c1,..yCn_2,d0,dl)

We present an example of Huffman code.

Example 4 Suppose we hawg = ({a,b, c,d},{0.54,0.31,0.09,0.06}) At first

we write down the probability columns. For example, in the second probability

column we summed the smallest two probabilities of the first probability column,

the same construction scheme is used to obtain the other probability columns.
Then we complete the table appending the codewords from the right to the left.

Prob. | Code| Prob. | Code| Prob. | Code
0.54 0 0.54 0 0.54 0
0.31| 10 | 0.31| 10 | 0.46 1
0.09| 110 | 0.15| 11
0.06 | 111

This way we obtai’ = {0, 10,110, 111}.

Performance

The code constructed by Huffman’s algorithm is optimal (prootin [4]), which
implies that it is an instantaneous code with minimum average length code. Even
SO we care about its complexity. Complexity Theory is concerned with the in-
herent cost required to solve information processing problems. Unfortunately,
Huffman’s code, cannot be used in many application, thanks to the construction
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time it requires. Storage space is also an important issue and Huffman’s algorithm
takes a considerable amount of construction space. This makes it only possible to
use it in applications which require a small source alphabet.

To cover the gap left by Huffman’s codes for large value®Nafource sym-
bols we now present other data compression codes, namely the Lempel-Ziv Code,
Arithmetic Code and Enumerative Code.

2.2.2 Lempel-Ziv Code

Huffman’s algorithm may take a long construction time because it requires knowl-
edge of the probabilities of the source symbols. When there is no knowledge of
the source characteristics, and if statistical tests are either impossible or unreli-
able, the problem of data compression becomes considerably more complicated.
In order to overcome these difficulties one must resort to universal coding schemes
whereby the coding process is interlaced with a learning process for the varying
source characteristics. Such coding schemes inevitably require a large working
memory space and generally employ performance criteria that are appropriate for
a wide variety of sources.

Here we describe a universal coding scheme which can be applied to any dis-
crete source. Lempel-Ziv Codes are exampledictionary codes A dictionary
code first partitions a data sequence into variable-length blocks (this procedure is
calledparsing. Then, each phrase in the parsing is represented by means of a
pointer to that phrase in a dictionary of phrases constructed from previously pro-
cessed data. The phrase dictionary changes dynamically as the data sequence is
processed from left to right. A binary codeword is then assigned to the data se-
guence by encoding the sequence of dictionary pointers in some simple way. The
most popular dictionary codes are the Lempel-Ziv codes. There are many ver-
sions of the Lempel-Ziv codes. The one we discuss here is called 1278 [16]. Two
widely-used compression algorithms on Unix systems are Compress and Gzip;
Compress is based on LZ78 and Gzip is based on another popular Lempel-Ziv
code, not discussed here, called LZ77 [20].

In the rest of this section, we discuss the parsing technique, the pointer for-
mation technique, and the pointer encoding technique employed in Lempel-Ziv
coding.

Lempel-Ziv Parsing. Let (21, 9,...,x,) be the data sequence to be com-
pressed. Partitioning of this sequence into variable-length blocKsergel-Ziv
parsingtakes place as follows. The first variable-length blocks arising from the
Lempel-Ziv parsing of 1, xs, ..., z,,) iS the single sample;. The second block in
the parsing is the shortest nonempty prefixof ..., x,,) which is not equal ta; .
Suppose this second block(is;, ..., z;). Then the third block in Lempel-Ziv pars-
ing will be the shortest nonempty prefix 6f;1, x4, ..., ,,) Which is not equal
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to eitherz; or (z,, ..., z;). In general, suppose the Lempel-Ziv parsing procedure
has produced the firgt variable-length block$s,, B», ..., B in the parsing, and
+*) is that part left of(zy, ..., z,) after By, Bs, ..., Bx have been removed. Then
the next blockB, ; in the parsing is the shortest nonempty prefix@f which is

not equal to any of the preceding blocks, B, ..., Bk . (If there is no such prefix

of 2*, thenB,,, = 2®) and the Lempel-Ziv parsing procedure terminates.)

By construction, the sequence of variable-length blogksB., ..., B; pro-
duced by the Lempel-Ziv parsing ¢, 2o, ..., z,,) are distinct, except that the
last blockB; could be equal to one of the preceding ones. The following example
illustrates Lempel-Ziv parsing.

Example 5 The Lempel-Ziv parsing of the data sequence

(1,1,0,1,1,0,0,0,1,1,0,1) (19)
is
B, (1)
B, | (1,0)
Bs | (1,1)
B, | (0)
Bs | (0,0)
Bs | (1,1,0)
B-| (1)

Pointer Formation. We suppose that the alphabet from which the data se-
quence(zy, za, ..., r,) is formed isA = {0,1,...,k — 1}, wherek is a positive
integer. After obtaining the Lempel-Ziv parsifg}, Bs, ..., B, of (z1, xs, ..., z,,),
the next step is to represent each block in the parsing as a pair of integers. The
first block in the parsing, B consists of single symbol. It is represented as the
pair (0, B;). More generally, any block Bof length one is represented as the pair
(0, B;). If the block B; is of length greater than one, then it is represented as the
pair (z, s), wheresis the last symbol oB; andB; is the unique previous block in
the parsing which coincides with the block obtained by remosgifrgpm the end
of Bj.

Example 6 The sequence of pairs corresponding to the parsing of the previous
example is
(0,1),(1,0), (1,1),(0,0), (4,0), (3,0), (0, 1) (20)

For example(4,0) corresponds to the blodgk, 0) in the parsing. Since the
last symbol of(0, 0) is 0, the second component of the p&ir0) is 0. The4 in
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the first entry refers to the fact th&t, = (0) is the preceding block in the parsing
which is equal to what we get by deleting the last symbdlof).

For our next step, we replace each pair) by the integetki + s. Thus, the
sequence of pair§ (R0) becomes the sequence of integers

L =2x0+1=1
L=2x1+40=2
I,=2x1+1=3
I,=2x0+0=0
I;=2%x440=8
Ig=2%x3+0=6
=2x0+1=1 1)

Encoding the pointers. Let I, I5, ..., I; denote the integer pointers corre-
sponding to the block#3, B,, ..., B; in the Lempel-Ziv parsing of the data se-
quence(zry, s, ..., x,). To finish our description of the Lempel-Ziv encoder, we
discuss how the integer pointefg I, ..., I; are converted into a stream of bits.
Each integer; is expanded to base two and these binary expansions are "padded”
with zeroes on the left so that the overall length of the string to be assigned to
I; is [log,(kj)]. The reason why these many bits is necessary is seen by exam-
ining the largest that; can possibly be. Leti, s) be the pair associated with.

Then the biggest thatcan be ig-1 and the biggest thascan be isk-1. Thus
the biggest that; can be isk(j — 1) + k — 1 = kj — 1, and the number of
bits in the binary expansion @fj — 1 is [log,(kj)]. Let W; be the string of bits
of length [log,(kj)] assigned td; as described above. Then, the Lempel-Ziv
encoder output is obtained by concatenating together the stiingd’, ..., W,.

To illustrate, suppose the data sequefice xs, ..., ,,) is binary (i.e., k=2),
and has seven blocks,, Bs, ..., B; in its Lempel-Ziv parsing. These blocks are
assigned, respectively, string of code Bits, W5, ..., W7 of lengths[log,(2)] =
1, ﬂog2(4ﬂ =2, “0g2(6)—‘ =3, HOgQ(S)—I =3, HOgQ(loﬂ =4, ﬂog2(12)—‘ =4,
[log,(14)] = 4. Therefore, any binary data sequence with seven blocks in its
Lempel-Ziv parsing would result in an encoder output of lenigth2 + 3 + 3 +
4+ 4+4 = 21 code bits. In particular, for the data sequerice (19), the seven string
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Wi, ..., W7 are (Z21):

=(1
(

)

0)

W = (0 1,1)

W, = (0,0,0)

= (1,0,0,0)

=(0,1,1,0)
W (0,0,0,1) (22)

Concatenating, we see that the codeword assigned to data sedquénce (19) is

(1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1) (23)

Decoding can be performed simply by reversing the encoding process. We
omit a detailed description of the Lempel-Ziv decoder, but it is easy to see what
the decoder would do. For example, it would be able to break up the codeword
(23) into the separate codewords for the phrases, because, from tikeo$ites
data alphabet, it is known how many code bits are allocated to the encoding of
each Lempel-Ziv phrase. From the separate codewords, the decoder recovers the
integer representing each phrase; dividing each of these integdrsobgbtain
the quotient and remainder, the pairs representing the phrases are obtained. Fi-
nally, these pairs yields the phrases, which are concatenated together to obtain the
original data sequence.

Performance
Let S be a source with a source alphabet of sizéMe denote by: the size
of the data sequence to compress. It is knawn [16] that there is a positive constant
C;. (depending ork but not onn) such that
H(S) < S H(S) + e
n log,n
Thus, the Lempel-Ziv code is not quite as good as the Huffman’s code. But,
there is an important difference, the Huffman’s code require knowledge of the
source. The preceding performance bounds is valid regardless of the source. Thus,
one can use the same Lempel-Ziv code for all sources - such a code is called a
universal codg1g].

(24)

2.2.3 Arithmetic Codes

We consider an arithmetic coding[17] 18] of a single source. Consider the sample
X generated by the source, modeled as a random variable taking its values in
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the finite alphabet A and probabilitya) = Pr[X = «] (for eacha € A). The
arithmetic code works on the following way for eagh

1. Consider(a) the interval assigned to letter At first the interval [0,1] is
divided into subintervals af(a) (a € A), wherel(a) is taken to be of length

pla).

2. To each interval (a) calculate the midpoint,,.

3. The codewordB(a) assigned ta by the arithmetic encoder is of length
L(a) =1+ [—logp(a)] and is obtained as the firs{a) digits to the right

of the decimal point in the infinite binary expansion of the real number
Letting L = L(a),

Tq = b1babs...bpbp ...

ra= ()4 () (8) 4ok )+ (3) + .
2Ly, = (2L*1b1 +2572by + . 4+ 204 + bL) + fraction
|2La, | = 217y + 2572y + ... + 201 + by,

B(a) = bibybs...by is thus thel(a)-digits binary expansion of the positive
integer| 2@z, |.

The steps above describe the arithmetic encoding scheme. Now we discuss
the way the arithmetic decoder works. The distance betwgamd the point

ORONOIRIC NN

1 1 1 1 a
(o7 + (ge3) + (o) + o = 7 < 20 (26)
by choice ofL(a). Sincel(a) is of lengthp(a) and the point of equation (25) is
at most half this length from the centre point of the interia), the point of
equation [Z5) must lie in this interval, too. The decoder computes the point of
equation [(Z5) from the received codewdd(h), and then decodd3(a) into a by
finding the uniqué(a) containing the point of equatiofn {25).

is less than

Example 7 Let{a,b,c,d be the alphabet with probabilities:

p(@)=3, p(b)=1, P(c)=5, P(d)=5.
Step 1. and 2.
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midpoint x

oo oo >
S5 o lous 1=

———— —
= 00 | ~I [CoN [

oo~ [ = O

Step 3. Lefj|, denote the k-bit expansion of integer j. Then:

L(a) =1+ [~logy(})] =2
[2L@g,] =1
B(a) = [1], = 01

B(c) = [13], = 1101
L(d) = 1 + [—logy(5)] = 4
|2ty | =15
B(d) = [15], = 1111

The arithmetic encoder table is therefore

letter | codeword
a 01
b 101
C 1101
d 1111

Note that if we remove the rightmost bit from each codeword, we obtain an-
other prefix codeword sdb, 10,110, 1111}. This will happen any time the inter-
val in Stepl are chosen to never increase in length as one goes from left to right in
the unitinterval. In this case, one can use the shorter codeword$), 110, 1111}
as the codewords generated by the arithmetic encoder, thereby saving one code bit
per source letter. (If the intervals sometimes increase in length in going from left
to right, then one may not be able to remove the rightmost bit from the codewords.)

Performance
It can be showni[17] that the resulting compression rate satisfies
H(sy < O < (51 +2)

n n

: (27)
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wherenis the length of the source. For large n, we therefore Iﬁ%ﬂ ~ H,.

This is the best one can possibly hope to do. If the source is memoryless and
is large one obtains the very good arithmetic code compression rate performance
just described but, at the same time, the arithmetic code of low complexity. As dis-
cussed for the Huffman code will also achieve a very good compression rate per-
formance but this Huffman code will be very complex. For this reason, arithmetic

codes are preferred over Huffman codes in many data compression applications.

2.2.4 Enumerative Codes

Enumerative coding, in its present state of development, is due to Thomas Cover
[5]. Enumerative coding is used for a source in which the data sequence are
equally likely; the best lossless code for such a source is one which assigns code-
words of equal length. Here is Cover’s approach to enumerative code designs:

1. Let N be the number of sequencesSn(S, = {s1s2...sn]8; € 5,1 <
i < mn}). Construct the rooted treE with N leaves, such that the edges
emanating from each internal vertex have distinct labels f&m@ind such
that theN sequences i, are found by writing down the labels along tRe
root-to leaf paths of.

2. Locate all paths i which visit only unary vertices in between and which
are not subpaths of other such paths. Collapse each of these paths to single
edges, labelling each such single edge that result with the sequence of labels
along the collapsed path. This yields a tfee with N leaves (the same
as the leaves of). Label each leaf o * with the sequence obtained by
concatenating together the labels on the root-to-leaf path to that leaf; these
leaf labels are just the sequenceSn

3. Assign an integer weight to each vertexf T* as follows. Ifv has no
siblings or is further to the left than its siblings, assigresweight of zero.
If vhas sibling or is further to the left, assigna weight equal to the number
of leaves ofT * that are equal to or subordinate to the siblings tiat are
to the left ofv.

4. To encoder™ € S, follow the root-to-leaf path inm* terminating in the
leaf of T* labelled byxz". Let | be the sum of the weights of the vertices
along this root-to-leaf path. The integkis called the index of”, and
satisfies

0<I<N-—1. (28)
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Encoder™ into the binary codeword of lenglitog, N'| obtained by finding
the binary expansion dfand them padding that expansion (if necessary) to
[log, N'| bits by appending a prefix of zeroes.

Example 8 For example, suppose the source satisfies

S, = {aaa, aba, abb, abc, bba, bac, caa, cba, cbb, cca}. (29)
Then step 1-3 yield the tree‘Tn Figure[1

1]

Pl Iy

D : //%\\
FA A
n o1 2 I 1

Figure 1. Example of classical enumerative code.

in which every vertex is labelled with its weight from step 3. (The 10 leaves of
this tree, from left to right, correspond to the 10 sequencgglin 29, from left to right.)
The | values along the 10 path are just the cumulative sums of the weights, which
are seen to give 1=0,1,2,3,4,5,6,7,8,9. The codeword lengfttogg 10| = 4 and
the respective codewords are

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001. (30)

Sometimes, the tree“Thas such a regular structure that one can obtain an
explicit formula relating a data sequence and its index | , thereby dispensing with
the need for the tree Taltogether.
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3 Quantum Information Overview

Quantum Information is a new paradigm based on the laws of Quantum Mechan-
ics, it is a completely different way of understanding and codifying information.
Rolf Landauer pointed out the importance of the physical systems when dealing
with information. According to Deutsch [21], "Landauer was telling everyone
that computation is physics and that you can’t understand the limits of computa-
tion without saying what the physical implementation [i.e. type of hardware] is.
He was a lone voice in the wilderness. No one really understood what he was talk-
ing about-and certainly natvhy.” Information is physical and any processing of
information is always performed by physical means - an innocent statement, but
its consequences are anything but trivial. When quantum effects become impor-
tant, for example at the level of atoms and photons, the existing, classical theory
of computation become fundamentally inadequate. Entirely new modes of com-
putation and information processing become possible. In the last few years there
has been an explosion of theoretical and experimental research in Quantum Com-
putation.

In this section we present the basics of Quantum Computation needed to learn
Quantum Information processing. A reader familiar with basic Linear Algebra
will presumably have no difficulties in following this section, but for a reader feel-
ing lost we recommend appendik B and an introductory book on Linear Algebra,
such as[[?2].

Quantum Computation 23] is based on the laws of Quantum Mechanics [24],
but we present the fundamental notions of quantum information processing from
the point of view of a computer scientist, like a mathematical framework. Our
main interest is to introduce Quantum Computation and Quantum Information
processing. For this reason we are primarily interested in representing a finite set
by using a quantum mechanical system. For the sake of simplicity we assume that
all the quantum systems handled in this sectiorfiare-dimensional

In section 3]1 we introduce the basic notions and notation of Quantum Infor-
mation, for a better understanding of the following section about Quantum In-
formation Theory. Then, in sectign 32.1, we introduce an important feature of
Quantum Computation, quantum parallelism, whose power is based suafibe
position principle Moreover, in sectiofn 3.2.2 we describe Grover’s algorithm, a
search algorithm for a particular element of a long unsorted list. It is an exam-
ple of an algorithm which achieves a speedup over any classical algorithm, as we
shall see. It will be used in our extension of the quantum Huffman algorithm. Fi-
nally, we introduce entanglement (in sectjon 3.3), a powerful feature of Quantum
Information, as well as one of its applications: dense coding.
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3.1 Quantum Information

The purpose of this section is to introduce the basic concepts of Quantum Infor-
mation. AppendiX B introduces some mathematical notions for a better under-
standing of this section.

Quantum mechanical systems behave in a much different way than classical
ones. But, what is it that separates the quantum and the classical world from a
computer science point of view? Can Quantum Mechanics improve in any way
information processing and manipulation?

In sectio 2 we have introduced Classical Information Theory where the fun-
damental unit is théit. The quantum counterpart of the bit is called quantum bit
or qubit They have very different properties. Like a bit can be either in the state 0
or 1, a qubit also has two possible states (that correspond to the classical states O
and 1) that are usually denotéd and|0). This ”|)” is called theDirac notation
(appendi'B) and we use it in future sections, as it is the standard notation for
states in Quantum Mechanics. We present here Quantum Mechanics_as in [23],
based on four postulates. To study these postulates from a more physical point
of view a good reference i$[24]. In sectigh 3 we consider only systems whose
state is perfectly knowrpure state We show how to study their time evolution
and how to predict the result of various observations performed on them. How-
ever, in practice, the state of the system is not perfectly determmieed state
When one has incomplete information about a system, one typically appeals to the
concept of probability. It is usually presented in the following way: the state of
this system may be either the state) with probability p; or the statdi,) with
probability p,, etc ... Such that:

D1 +p2+...zzpk:1 (31)
k

The first postulate defines where the quantum world takes place.

Postulate 1 Associated to any physical system is a complex vector space with

inner product (that is, a Hilbert space) known as the state space of the system.
The system is completely described by its state vector, which is a unit vector in the
system’s state space.

The simplest quantum mechanical system is the qubit, which is the one we
consider in the report.

Definition 11 A qubit is a quantum state

[¥) =al0) +G1), (32)
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wherea, 5 € C and|a|® + |8]> = 1 (normalization condition). The qubit is a
state of a quantum two level system. It has two distinguishable basis vectors that
form an orthonormal basis for this vector space.

The special state®)) and|1) are known asomputational basis stateand
they are two possible distinguishable states.

For the notions of normalization condition, orthonormal basis, vector space
and Hilbert space see in appendix B. Postufate 1 includes one of the most im-
portant features of Quantum Information. Notice that from postdilate 1 we know
that a qubit can be in a stafe) either than/1) or |0) and it is possible to form
linear combination of states, callsdperposition according to theuperposition
principle, a fundamental property of Quantum Mechanics. In equafign |(32)
is in a superposition of stateé8) and|1). Thus, the state of a qubit is a vector
(see appendiK]B) in a two-dimensional complex vector space. But whatathal
£ in equation [[32) mean? A peculiar difference between Classical and Quantum
Computation is the information we get after one obsermesasuresthe system.
Quantum Mechanics tell us that if one measures a quantum bit in the [State (32)
then one gets either the result 0, with probabil'rlzyz, or the result 1, with prob-
ability |3°. An interesting point is that and 3 behave in a different way of
classical probabilities. We call the coefficients of the basis statesitudes. So,
consider the state

0) —11)
Vol
it is a superposition of the stat@) and|1) with amplitudes% for the statd0),

and amplitude-  for the statg1).

An important feature of quantum amplitudes is that they can be negative or
more generally complex. Furthermore, when two quantum states overlap, the rule
is that one adds the amplitudes rather than the probabilities. These facts have
profound consequences. To understand why, it is helpful to recall that, in the
macroscopic world, whenever one calculates the probability of something hap-
pening in different independent ways, one always add probabilities. Imagine one
bet in two different card players at the same time, the probability of winning is the
sum of the probabilities for each player. In the quantum world, thanks to the "am-
plitude quantum rule”, one should think twice before betting in two independent
events, because it turns out that this rule enables probabilities to subtract from one
another rather than always adding up. Quantum rules are not applicable to the
macroscopic world, therefore the card players bet would not be a problem. This is
an example to understand the concept behind the complex amplitudes. This prop-
erty is calledquantum interferencand is one of the fundamental properties that
differentiates quantum and classical world. In secfioh 3.2 we introduce an exam-

(33)
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ple where quantum interference is used to speedup an algorithm when compared
with the classical counterpart.

Unfortunately, an equally fundamental property of Quantum Mechanics is the
measurement rujdat describes and severely restricts the way one can observe a
quantum state. For example, if we have a superposition of Jtdtesd|1) we
only can get the answe®) or [1). The measurement, or observation, of a state
yields information in a classical form which induces an irrevocable destruction
of some remaining information, making further measurements less informative or
even completely useless. Therefore we must perform a computation that somehow
takes advantage from the superposition principle considering measurement loss.
Quantum interference helps overcome the measurement restriction imposed by
Quantum Mechanics as we shall see in sedtign 3.2.

Postulate 2 Quantum measurements are described by a colledtidp } of mea-
surement operators. These are operators acting on the state space of the system
being measured. The indexrefers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system)isnmediately before the
measurement then the probability that resulbccur is given by

p(m) = (¢ [ My, M| ) (34)
and the state of the system after the measurement is
My )
. 35
CVERTAED (%)

The measurement operators satisfy the completeness equation (see appendix
B).
> MM, =1, (36)

where | is the identity operator.
The completeness equation expresses the fact that the probabilities sum to one:

L=> "p(m) = (¢ |M;, M| ). (37)

m

Let us consider an example. When we measure a qubit= a |0) + b|1)
in the computational basis there are two possible outcomes defined by the two
measurement operators/, = |0) (0] and M; = |1) (1|. We may verify that
I = MiMy + MiM, = M, + M,, so the completeness equation is satisfied.
Then, when we measure the staté the probability of obtaining the outcome 0
is

p(0) = (v | Mg M| v0) = (4| My |[vp) = |af”. (38)
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And the state after the measurement is
= Tl 0) - (39)

A similar conclusions would be applicable to the measurement of the outcome 1,
with probability p(1) = |b|*> and the state after the measurement béﬁfﬁé@ =

% |1) . The measurement rule is of great importance to quantum states. In the
classical world, different states of an object are usually distinguishable, at least in
principle. For example imagine we drop a dice, we can easily identify in which
number the dice has landed up, at least in the ideal limit. On the other hand, in
guantum systems it is not always possible to distinguish between arbitrary states,
only if they are perpendicular. This statement can by proved by contradicfion [23].
Consider we have two non orthogonal stdteg and|y»). So, by contradiction

we assume that these states are distinguishable by some measurement. If state
[1U1) (|v2)) is prepared then the probability of measuringuch thatf(j) = 1

(f(5) = 2) must be one. Defining; = 3, ., _; M M;, these observations may

be written as

(Un] By [th1) = 15 (W] Ea 1) =1 (40)

From), E; = I follows that) . (41| E; [11) = 1, and sinc€y| E4 [1) = 1 we
must have(y, | B 1) = 0, and thusy/ Es [¢;) = 0. Considerys) = a |i)y) +
B e), wherel|y) is orthonormal to|¢;), |a* + |3]*> = 1, and|3| < 1 since

v1) and|i),) are not orthogonal. They'F; [v2) = Bv/Fs |¢), which implies a
contradition with equatiori (40), as

(Vo] Bn [¢2) = |BI* (0| Bz ) < |B° < 1, (41)

where the second last inequality follows from the observation that
(el Balo) < (ol Eile) = (ple) = 1. (42)

So, by contradiction we have concluded that if we have two non orthogonal states
it is not possible to distinguish between them.

The difference between the fully unobservable state of a qubit and the ob-
servations we can make is at the heart of Quantum Computation and Quantum
Information. The gap between this direct correspondence in Quantum Mechanics
makes it difficult to have any intuition about the behavior of quantum systems.
However, there is an indirect correspondence: qubit states can be manipulated
and transformed in ways which lead to measurement outcomes which depend dis-
tinctly on the different properties of the state.
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Transformations on qubits are representedibyary matrices (see appendix
B). Any quantum evolution on a qubit is described by a unitary matrix, U:

U:{ZZ}, (43)
then,
a | | ax+bB
o5 )=l ] “y

which transforms any qubit state|0) + 5 |1) into the statdaa + b3) |0) + (ca +
dg) (1) .

Postulate 3 The evolution of a closed quantum system is described by a unitary
transformation. That is, the state) of the system at timg is related to the state

W> of the system at timg by a unitary operatot/ which depends only on the
timest; andt,,

w/> =Uy). (45)

A closed system is a system which does not interact with any other system.
These postulates assures that the evolution of any closed quantum system may
be defined by a unitary operator. However there are some unitary operators that
are mostly used and natural to consider. We introduce some of them. As we
will see in later sections, a very useful evolution matrix is Haslamard matrix
(transformation):

1 1 1
n-—1 4 (46)
which transforms the computational ba§i8) , |1)} into thedual basis{|+) , |—)},
where
1 1
)= |and-)=| V3 (47)
V2 V2
as follows:

H10) =[+), H[+) =0),
H[l)=|=),H[=)=]1). (48)

Applying H we can change between the standard and dual basis. It holds-HH
(wherel is the identity matrix), that is H is unitary.
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Another very useful transformation is th©T transformation, represented by
the matrix:

0 1
x=11 5] (49)

we would expect this gate to transform the state = «(0) + §[1) in |¢) =
(310) + «|1). As we easily check X is unitary\ * X = 1.
ThePauli-Y matrix is also very used:

0 —1
=107 (50)
it transformg/¢) = «|0) + £ ]1) into |¢) =i (5]0) — a|1))

The so-calledPauli-Z matrix keeps the coefficients @#f) unchanged and flips
the sign of that of1):

1 0
Z:lo _1], (51)

However, already finitely many of them are sufficient to perform all gquantum com-
putations with an arbitrary precision. A gate is sardversal for Quantum Com-
putationif any unitary operation may be aproximated to arbitrary accuracy by a
quantum circuit involving only those gates. For example, Hadamard, phasel
NOT gates are enough to build any unitary operation approximated with arbitrary
accuracy (see proof in section 4.5 bfl[23]), where
1 0 , . .
z = { 0 oF } , phase = { (1) (Z) } and NOT, defined in equatloﬂ49). The
e4
following theorem generalize the representation of all matrices of degree 2.

Theorem 7 For each unitary matrix U of degree 2 there exist real numhers
and@ such that (page 175 of [23]):

B . exp i 0 cosf isinf exp i3 0
U—expm( 0  expia ) ( sinf cos0 > ( 0 exp—if )’

In principle, there is a continuous range of rotations )y phase shifts (with
respect t@) and scale matrices (with respectip

So far we know how to describe a quantum system and its evolution. If we
have a quantum system made up of two or more distinct quantum systems then it
is called composite quantum systems. Our approach is over composite systems of
gubits.

Postulate 4 The state space of a physical system is the tensor product (see ap-
pendix[B) of the state space of the component physical system. Moreover, if we
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have systems numberédhroughn, and system numberégrepared in the state
4", then the joint state of the total systentis) ® [1s) ® ... ® [1)y,).

Itis common to use the notatidne) instead ofy) ® |¢). "®” represents the
tensor product, see appendix B.

Suppose we have a system of two qubits. In the classical world there would
be four possible states: 00, 01, 10, 11. The quantum counterpart instead of having
only four possible states has foosomputational basisectors: |00), |01), [10)
and|11). This system is a four-dimensional Hilbert spdfe= H, ® Hp. The
general statgr)) of two qubits is a superposition of the statés) ,,, [01) , 5,

10} 45 @nd|11) 4 -

V) = ago |00>AB + Qo1 ‘01>AB + aqo |1O>AB + o ‘11>AB (52)
with the constraint that

’Oéoo|2 + |a01]2 + ‘al()’? + |Ck11‘2 =1. (53)

The measurement of a state of equation (52) resulig4n 00,01, 10 or 11) and
occurs with probabilityla,|*, with the state of the qubit after the measurement
being|z). For a two qubit system we could measure just a subset of the qubits. If
we measure just the first qubit, the result willbeith probability\omo\2 + | o1 |2,
leaving the post-measurement state

(54)

‘w/> _ [o700) |OO>AB + Qp1 |01>AB
\/ |ol” + Jaron|”

v/ |lowo|” + |aon | is there-normalizationfactor, so it still satisfies the normaliza-
tion condition.

Itis usual to represent states of the computational basis in one of the following
forms:

10) = [00) = 1) = 101) =

2) = [10) = [3) = [11) = (55)

S O = O
_ o O O

f o O O
O = OO
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The generalization af-qubit register of the case afqubit register is straight-
forward.

To deal withn-qubit register we work within &"- dimensional Hilbert space
with the following set of basis, callecbmputational basis

B=A{]i)0<i<2"}. (56)
The general state of the n-qubit register is

2n—1 2" —1

) = agliywith > oyl = 1. (57)
=0 =0

A very important set of basis states is given by Bedl states This states are
responsible for many properties of Quantum Computation and Quantum Informa-
tion, mentioned in section 3.3.

‘q)+> - \/— ‘OO>AB + |11>AB)
@ >—\f 100) 4 — I11) 4pp)
‘(I)+> - \/— |01>AB + |10>AB>

’(I)7> - ﬁ(’ODAB —[10) 4p)- (58)
Among unitary transformations on two qubits states the following transforma-
tion has a special role

XOR: |,y) — |z, x DY), (59)

whered is the exclusive or operation.

In the XOR transformation the first input qubit is called the control qubit and
the second input qubit is called the target qubit.

XOR is represented by the matrix:

1000
0100

XOR=1 10 o 1 (60)
0010

Observe that XORD0) = |00), XOR |01) = |01), XOR|10) = |11) and XOR
|11) = |10) XOR is called the CONTROL-NOT (CNOT), since the second qubit
(target qubi) is flipped if and only if the first¢ontrol qubi) is 1.
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Indeed, inputg0) and|1) on the control qubit come out on the target qubit
output, but a superpositioﬁ: |0) + |1)) on the control qubit is transferred into
the Bell statg®)™ (]00) + |11)). |®)* is anentangledstate, these states are
important features ofouantum Computation, we shall introduce entanglement in
section-313.

Now we introduce a surprising result of Quantum Information Theory: it is
the "No-cloning Theorem” due to W. K. Wootters and W. H. Zureki [25]. This
result states that it is impossible to clone an arbitrary unknown quantum state.

Theorem 8 (No-cloning theorem)An unknown quantum state cannot be cloned.
(Namely, there is no unitary transformation U, such that for any one-qubit state
1), U(|¢,0)) = |4, ) .) The no-cloning theorem holds for any Hilbert space.

Proof 1 Assume that such a U exists and for two different orthogonal states
and [3), U(la,0))=|e, ), U(|8,0))=|8,5) . Let |v) = —5(|le) + [5)). Then
) = Hllaya) +18.8) # [y =

Y, a) + 18, 8) + |a, B) + 18, ).

The no-cloning theorem implies that there is no general unitary transforma-
tions for perfect copying of quantum information without destroying the original
copy of information. This makes a big difference between classical and quantum
information, since we are enable to copy information. We mention some conse-
qguences in sectidn 4.

3.2 Parallelism and Grover’s Algorithm

Quantum computation is a new paradigm that brings new challenges to computa-
tion. The question is: Are we are able to do better in computing using Quantum
Mechanics? This new paradigm can not take us any further as a computational
power, by other words, all that we can compute with quantum computers we can
also compute with classical computers and vice versa. The thing that make us
feel interested is whether we can do some computations significantly faster with a
guantum computer. The most suitable feature of Quantum Computation that could
make it possible is the quantum superposition. This makes it possible to break up
a unique task into several subtasks, each of which could be performed in "par-
allel”. This property unique of quantum systems is exemplified in the "Deutsch
problem” (section 3.211) and in the Grover’s algorithm (secfion 3.2.2).

3.2.1 Quantum Parallelism

The first quantum method to demonstrate the potential of quantum methods over
classical ones was proposed by Deutsch [26] in his 1985 paper on quantum par-

34



Quantum Data compression 3.2 Parallelism and Grover’s Algorithm

allelism. It concerned the calculation of a mathematical funcficr). Suppose,
Deutsch asked, you wanted to know whether this funcfidook the same value

for two different values for two different input values,= 0 andx = 1. Now,
since this was only a simple example, not only was the input restricted to the two
values) and1, so also was the output. The function thus operates on a single qubit
(although it requires a second qubit to perform the calculation). Deutsch invited
us to imagine a function predicting tomorrow’s stock exchange movements. Now,
suppose it took4 hours to work outf for each value ofr and you needed to
know for your investment strategy whether the two values of the functjtin:}

and f(1) - gave the same answer, without necessarily needing to know what the
answers were. The scenario could be that you will buy some stock in a company,
but only if two economic indicatorg(0) and f(1) agree with each other.

On a classical computer you would need to do two calculations (one each for
0 and1) and compare the answers to find out. Unhappily, these two computations
would take48 hours to complete - hardly useful for tomorrow’s investment deci-
sion. Deutsch showed how you could cut the computation tinzd toours using
guantum parallelism.

The idea is as follows. Imagine we have a quantum oracle (black box) that
computesf(z). The functionf will take as its inputr a number placed in one
qubit. In a quantum computer it is now possible to "rotate” the state of the input
into a superposition di and1 using a Hadamard gate. Consider the transforma-
tion U that takes two qubits to two:

Up |z ly) — |2) [y © f(2))- (61)

It flips the second qubit if () acting on the first qubit i, and does not do
anything if f acting on the first qubit i8. So, this transformation applied twice
will tell us if f is balanced or constant. But this does not solve our time problem!
Can we get the answer by running the quantum box only once? This is known as
the "Deutsch’s problern

Since this is a quantum computer, we may take as an input the%t@ﬂe) —

11)). Then:

1
7 (1f(x)) =1 © f(2)))

= |z) <—1>f<w>%<|o> — ). (62)

Ur :12) =(10) - 1) = |2)

At this stage fis isolated as andependent phase. If the first qubitj@(m) +1))
we get
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1 1
Ur:—=(0) +11))—=(0) = |1)) —
7+ 75100 +11) 7 (10) = 1)
1 1
—[(=D)O10) + (=)D |1)]—=(|0) — |1)). 63
\/5[() 0) +(—1) |>]\/§(!>\>) (63)
Now we can perform a measurement that projects the first qubit onto the basis
1
+)=—(]0) £ [1)). 64
£) = —5(0) % 1) (64)

We obtain|+) if the function is balanced, arjé-) if the function is constant.

This is the solution of Deutsch’s problem. It is also a separation between what
a classical computer and a quantum computer could achieve. The quantum com-
puter only has to run the black box once, while the classical computer must run
it twice. This happens because the quantum computer extracts "global” informa-
tion about the function by acting on a superposition®fand|1), this is called
"quantum parallelism” [26], combined with a property of Quantum Machanics
calledinterference. Notice that in a classical computer if we have two alterna-
tives, f(0) and f(1), they forever exclude one another. In a quantum computer
it is possible for the two alternatives toterferewith one another to yield some
global property of the functiorf, by using the Hadamard gate to recombine the
different alternatives, as was done in equation (63). What is more, the program
would not need to be limited to just two inputs. We can apply the same idea to a
function acting on av register. According to:

U : [2) |0) = |) | f(2)) | (65)
choosing the input register to be in the state
2N 1
—(l0) + 1)) Z ), (66)

N

and by computingf(z) only once, we can generate a state

= CINC 67
=0

This state encodes the global propertieg of

If this sounds too good to be true, it is in a sense. Even if we produce expo-
nentially many outputs for the price of one, Quantum Mechanics severely restricts
the way in which you can look at the result. The measurement rules of Quantum
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Mechanics state that the measurement of the output yields information in a classi-
cal form which induces an irrevocable destruction of some remaining information.
It is the quantum parallelism that Shor invokes in his factoring algorithm [1]. So
although quantum computing offers seemingly unlimited amounts of massive par-
allelism without the need of extra hardware, there is also a price to be paid: It is
impossible to read all the information contained on the final state. In s¢ciioh 3.2.2
we present an algorithm that uses quantum parallelism to exploit the speed of a
search.

3.2.2 Grover’s Algorithm

Grover's search algorithm27] is an excellent example of quantum parallelism. It
enable us to get a complexity speedup when compared with the classical search
algorithms. We will use it later to decrease the complexity time of a particular
guantum encoding scheme. This algorithm is important because of the existence
of many computer science problems based on search problems. For example,
imagine we are given a search space of sizevith no prior knowledge about
the structure of the information in it. Without loss of generality, suppose that the
elements are numbers frointo NV — 1. Classically we would test each element
at a time, until we find the one we were looking for. This takes an average of
% attempts, andV in the worst case, therefore the complexitydsN ). In this
section we prove that using Quantum Mechanics we only reguikéN ) steps.

For simplicity, assume thatVv = 2", for some integen. Grover’s algo-
rithm has two registers, the first one withqubits and the second one with one
gubit. We start by creating a superposition of Zilcomputational basis states
{]0),...,]2™ — 1)} of the first register. To do that we proceed as follows. We
initialize the first register in the state, ..., 0) and apply the operator Hadamard
He™:

|y = H®™0, ..., 0)
= (H 10))"

_ (|o> +[1)) "
V2
1 -1
= ). 68
UN - |2) (68)
where|«)) is a superposition of all basis states with equal amplitudes giveﬁ@by
The second register begins with and, after applying a Hadamard gate, it will

be in statg—) = 21,

=

I
o
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We definef : {0,..., N—1} — {0, 1}, f(z) = 1if z isa solution to the search
problem, otherwisg () = 0. This function is used in the classical algorithm. In
the quantum algorithm, let us assume that it is possible to build a linear unitary
operator also dependent ¢nU; , such that:

Ur ([i) 7)) = [0 17 @ £ (i) - (69)

We callU; oracleor a black box. In the above equatidt), stands for a state
of the first register, sois in {0, ..., 2" — 1}, and|;) stands for a state of the second
register, sg is in {0, 1}, and the sum is modufa The action of the oracle is:

09 1) - 000 = D 1)
i) 1£(0) — 1) 1L @ £(0))
V2
= (=1 fiy|-). (70)

In the last equality, we have used the fact that

: 0,7 =1g
wherei, stands for the searched element. We say that the oracle marks the solu-
tions to the search problems by shifting the phase of the solution.
Let us call¢);) the resulting state of the first register Now look at what happens
when we applyU; to the superposition state coming from the first step) |—).
The state of the second register does not change.

1) [=) = Us(19) =)
Up(l7) =)

=

S‘ —_
[\

Il

o

7
-1

=2

(=17 Jiy|-) . (72)

S’
)
Il

o

.

|41) is a superposition of all basis elements, but the amplitude of the searched
element is negative while the amplitude of all others are positive. The searched
element has been marked with a minus sign. This result is obtained using a fea-
ture calledquantum parallelism At the quantum level, we have a superposition

of all database elements. The position of the searched element is known: it is
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the value ofi of the term with negative amplitude in equatign](72). This quan-
tum information is not fully available at the classical level. To obtain information
out of a quantum state we make measurements, and, at this point, it does not
help if we measure the state of the first register, because it is much more likely
that we obtain a non-desired element, instead of the searched one. Before we
can perform a measure, the next step should be to increase the amplitude of the
searched element while decreasing the amplitude of the others. This is quite a gen-
eral approach: quantum algorithms work by increasing the amplitude of the states
which carry the desired result. After that, a measurement will hit the solution
with high probability. Imagine we have a superposition like the one in equation
(72). Figure[R depicts the superposition idea, with all coefficients, lets call them
¢ (0<i<2"—1), equalto\/27

Figure 2: Initial state.

The operatolUU; flips the sign of the amplitudes of all elements that are the
one searched fofi{), by other words the elements such that i,. Imagine that
element is the search one. Then, become&\/%. This is depicted in figurﬁ 3.

Figure 3: Amplitudes after oracle query.

Now we shall work out the details by introducing the circuit for Grover’s al-
gorithm and analyzing it step by step.

The circuit for one Grover iteratio@ is given in figurg 4. Each interaction of
the Grover’s algorithm increases the coeficient of the searched element, this way
we are increasing the probability of getting this element after a measurement. In
figure[4 The statels)) and|v ) are given by equation§ ([73) arjd](72), respectively,
and the operato? |¢)) ()| — I is called inversion (explained in a moment). We
will also show how each Grover operator application raises the amplitude of the
searched elemeniy;) can be rewritten as:

[¥1) = [¥) — \/— |i0) , (73)
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Figure 4. Outline of each interaction of the Grover’s algorithm.
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Figure 5: Amplitudes after one iteration of Grover’s algorithm.

whereliy) is the searched elemeniy) is an element of the computational basis.
Note that

, 1
<1Wo> - \/Q_n
Let us calculatey) of figure[$. Using equation$ ([73) arfd(74), we obtain

(74)

[Ya) = (2[¢) (W] = 1) |vn)
it YW SR (75)
on—2 NoTRe

This is the state of the first register after one applicatio®.0f he second register

is in the statg—). Notice in equation[(75) the action of the inversion operator. It
duplicates the coeficient of searched element. After one application of Grover’s
algorithm we get the amplitudes depicted in fig{re 6. Applying the operator G
more times increases the probability of obtaining the searched element as close to
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Figure 6: Outline of each interaction of the Grover’s algorithm.

one as we desire. The operator G is appliga/N) times, as depicted in figure
B. This way, when measuring the final state, we obtain with a high probability the
searched state.

Grover’s algorithm may be improved in linear time, those methods are de-
scribed in [28].

The following theorem sets the complexity of the Grover’s algorithm (page 90
of [29]).

Theorem 9 By using a quantum circuit makin@(1/2") queries to a blackbox
function f, one can decide with nonvanishing correctness probability if there is
an element: € H®" such thatf (z) = 1.

The theorem above is only applicable when we search a single element. Grover’s
algorithm has been generalized1[30]. In the case we are searching more than

one element we appl® (« /%) interactions of the Grover’s algorithm, fai/

solutions out of N possibilities. If we do not know the number of solutions, M,

in the classical case ne&l N) steps, which in the quantum case we achieve a
speed up t@(y/(M + 1)(N — M + 1)) steps. In case of counting the number of
solutions with errok/M it takesO(v/N). Thanks to the usefulness of searching in
many problems, Grover’s algorithm has been applied with some other purposes.
Two examples are the quantum counting algorithm [31] and minimum finding
algorithm [32]. The latter example is an algorithm to find the minimum of an
unsorted list’[0, -, N — 1], each holding a value from an ordered set. We use this
results in sectiof 4.2.3 to do a search in our quantum encoding scheme.

3.3 Entanglement

One of the most specific and important concepts for Quantum Computation and
Quantum Information Theory is quantum entanglement which is also one of the
most puzzling concepts of Quantum Physics.

Entanglement plays a central role in Quantum Information Theory that extends
Classical Information Theory. Three important possible applications of entangle-
ment are: teleportation (see[23]), dense coding (described in s¢ciion 3.3.1) and
quantum key distribution (well explained in123]).
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Let’s start with an example. A 2-qubit register can be in the state

) +111)). (76)

If we observe the first bit of thls state using the standard observable M
{|0) (0], [1) (1]}, then we get the value O with probabilifyand the valud also
with probability% (hence the outcome is completely random). After such an ob-
servation the state)) collapses into the state0) in the first case and into the state
|11) on the second case. If, afterwards, we measure the second qubit its value is
determined uniquely, with probability 1. We see that if a quantum register is in
the above statg)) , then the two qubits are not independent. In addition, in such
a case particular qubits of the quantum register no longer have an identity! Each
of them is actually in a mixed state with probabili%yin the statel0) and with
probability 1 in the state1). Notice that this correlations only exit in the quantum
theory, they have no analog in the classical theory.

How specific and important is this example? We naturally expect that there
should be cases where the qubits are completely independent and therefore they
can be separately acted on.

This is actually the case if a stdtg) of a 2-qubit register is the tensor product
!¢1|> ;29 |12) of two 1-qubit statesy,) = a|0) , + oy |1) , and|ye) = 5y |0) 5 +
Bl g, i€,

) = [¢1) ® [the) = (Z@z ) ® (Zﬁj |j>3> : (77)

If now we observe the first qubit of the state), we get,

0 with prObabiIity’Oéoﬁo‘Q -+ |Oé()61’2 = |Oéo’2 ,
1 with probability|c; 5o|* + |a1 3] = |ou]”. (78)

Moreover, after the observation of the first qubit the stateis reduced to
|1,) ; after the observation of the second qubitie) .

If a quantum pure state of a Hilbert space H cannot be obtained as a tensor
product of two quantum states from Hilbert spaces of dimensions smaller than
that of H, then the state is calletitangled This is the case of the above example
of |®*), where the two qubits are not independent.

Entanglement arises in a natural way as a result of interactions between quan-
tum systems. In addition, some quantum operations create entangled states out
of separable states. For example, if the XOR operation is applied to the state
\%(!0> +[1)) ® |0) , the entangled stat@™) = \%(]00> + |11)) (one of the Bell
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states) is created. Entangled states do not exist in classical systems. The Bell
states are often called EPR pairs-"EPR” stands here for "Einstein, Podolsky and

Rosen” and that fact that the qubits are not independent creates a so-called "EPR”
channel. This is called a channel because, since we can have two particles physi-
cally far apart and represented by a state (with preserved attributes), by applying

some specific transformation on one patrticle the global state changes.

The source of various paradoxes related to entangled states is the fact that a
pair of particles in an entangled state can be physically separated. However, each
measurement on one particle of such an entangled pair immediately determines
the state of another one, no matter how far apart they are. A measurement of
an entangled patrticle exhibits therefore the so-called "non-local property”, some-
thing that cannot happen from the point of view of classical physics without an
instantaneous communication among the particles. In section 3.3.1 we described
an entanglement application, the dense coding protocol.

According to [33], entanglement between a pair of quantum systems in a max-
imally entangled state is the purest form of inherently quantum information: it
is capable of interconnecting two particles far apart, it cannot be copied, eaves-
dropped without disturbance, nor can it be used by itself to send classical mes-
sages. At the same time it can assist, in some sense (mention on §eciion 3.3.1), in
improving both classical and quantum communication.

3.3.1 Dense Coding

The aim of dense coding is to transmit more than one bit of information in each
qubit transmitted. Like in many ideas in Quantum Computation and quantum
information, it is more easily understood using the metaphor of a game involving
two parties, Alice and Bob. Imagine Alice and Bob share two particles oBelie
state|¢p™) .5 = %(|00> + |11)). They could have met a long time ago to generate
it or it could have been a third person shipping one particle to Bob and another to
Alice.

If Alice wants to send two classical bit8((, 01, 10 or 11) of information to
Bob she performs on her particle one of the Pauli rotations (described in section
B) as shown in the second column of the table below. By doing|#his, ; is
transformed into one of the mutually orthogoriggll states At this stage she
sends her qubit to Bob, who receives it, and then performs an orthogonal collec-
tive measurement on the pair that projects it onto the maximally entangled basis.
From the outcome Bob can, unambiguously, distinguish between the four possi-
ble rotations Alice could have done. Suppose Alice and Bob have shared also a
protocol with a relation one-to-one, by this we refer to having each pair of bit
corresponding to one and only one rotation. Bob, by now, would be able to know
which bits Alice wanted to send.
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Alice’s Paul’'s  Alice transforms¢™) , 5
bits  rotations to the Bell state:
00 I [16%)ap = 5(00) + [11))
01 X | [Wh)ap = 55(10) +101))
10 Y |16 )5 = 5(I01) — [10))
11 Z 107 an = 5(I00) = [11))

Dense coding has a very nice advantage, if the message is confidential, Alice
does not need to worry that an eavesdropper can intercept the transmitted qubit and
decipher her message. The qubit transmitted by Alice contains no information by
its own. All the information is on the correlations between qubit A and B. They
used entanglement as a resource.

We could argue that Alice and Bob still need to use the channel twice to send
two bits of information. The initial qubits must be transmitted, as well as the qubit
Alice wants to send. But, anyway, tBell pair could have been exchanged a long
time ago. So in an emergency dense coding would be very useful if there is a need
to be faster. Quantum dense coding was recently put into practice in a channel of
100 km [3].
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4 Quantum Data Compression

The purpose of this section is to study quantum data compression. A compressing,
studies the tangible resources necessary to represent a certain information.

In section[4]1 we introduce some properties of Quantum Information The-
ory, we mention the quantum encoding schemes developed so far and we present
in detail a particular quantum encoding schgme #.2.1. The following three sec-
tions,[4.2.2[4.2]3 and 4.2.4, are three different proposals to improve that encoding
scheme.

4.1 Quantum Information Theory and Data Compression

In this section we introduce the main properties of Quantum Information Theory
and a framework to a particular quantum encoding scheme.

We may think about Quantum Information Theory as a parallel of the Classi-
cal Information Theory, but it is more peculiar, the aim is also to understand the
difference between the quantum and the classical world, from a computer science
point of view. What resources, unavailable in a classical world, are being utilized
in a Quantum Computation? How could they improve in any way information
processing and manipulation? The answer to this questions are in the heart of
Quantum Information Theory research and they will clarify the potential of this
topic and bring a new way of understanding and using information, with a great
change to result in important transformations in the Information Society we live
in. Experimental demonstrations of Quantum Information Theory are of great im-
portance in topics like, security systems, communication systems, etc, and may
have in a close future a revolutionary impact in the society.

Quantum Information Theory in fundamentally richer than Classical Informa-
tion Theory, one of the central differences is the nature of the information itself.

In [B4] R. Jozsa has introduced an overview of the main properties of quan-
tum information. The classical compression scheme can not be used to compress
guantum data because of quantum systems behavior. The no-cloning theorem
(see section 3.1) is one property of quantum systems that point a difference be-
tween classical and quantum information. This theorem states the impossibility of
copying unknown quantum information, providing a gap on accessible quantum
information when compared to the classical case, which can obviously be copied.
But now you may be asking yourself, if we said that the classical information is
a special case of a quantum information. How is it possible that we can actually
copy classical information? The detail here is that the no-cloning theorem do not
prohibit all quantum states to be copied, it only forbid non-orthogonal quantum
states. Classical information can be thought as merely orthogonal quantum states.
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Another example of the difference between quantum and classical information
is the way we distinguish different items of information. One of the quantum
systems properties with a great importancdigtinguishing quantum statéesthe
measurement rujentroduced in section 3.1. In the classical world, distinct states
of an object are usually distinguishable, at least in principle. For example imagine
we drop a dice, we can easily identify in which number the dice has landed up,
at least in the ideal limit. On the other hand in quantum systems it is not always
possible to distinguish between arbitrary states. We explain it in section 3.1.

Quantum information is really different from classical one. At first, from the
possibility of superposition of quantum states it seem that we had an infinite way
of representing information with only one qubits. But the impossibility of access-
ing all the quantum information makes some restrictions on that. We only can read
classical information and it would be interesting to quantify the accessable infor-
mation. Unfortunately there is no general methods, but there are some bounds.
The most important one is thdolevo boundsee page 531 of[23]), it plays an
important role in many applications of Quantum Information Theory. The Holevo
bound is an upper bound for the accessible information. A direct consequence
of the Holevo bound is that one bit cannot be sent or represented with less than
one qubit and it also manifests itself in the observation that the quantum channel
capacity is no bigger than the classical channel capacity.

To encode quantum data we can not just go ahead and use the same techniques
used to compress classical information. We must adapt or create quantum encod-
ing schemes capable of deal with quantum information properties.

One approach to construct quantum compression schemes is to begin with
the classical encoding schemes and investigate how this algorithms must be re-
interpreted or modified to fit with quantum data. For example, quantum codes
must allow superpositions of different codewords.

In sectionB we have introduced Quantum Mechanics using Dirac’s notation.
Alternatively we can use a tool calleténsity operatar This tool is mathemati-
cally equivalent to the Dirac’s notation, but it provides a more convenient language
to describe some scenarios in Quantum Mechanics. It turns out that all the postu-
lates of Quatum Mechanics can be reformulated in terms of the density operator
language. We use the density operator language from now on for its simplicity to
describe a quantum data source. Our quantum source would be described as an
ensemble of pure stateMore precisely, suppose a quantum system is in one of
a number of stateg);), wherei is the index of the different states, with respec-
tive probabilitiesp(:). We denote the ensemble By= {p;, |¢;)}. The density
operator of the system is defined by

p= sz- |:) (] (79)
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The first result in Classical Coding Theory was tlseless coding theorem
it shows the importance of the Shannon entropy for Classical Information Theory
as a measure of the tangible resources necessary to represent the information pro-
duced by message source. In quantum systems, the expression for entropy was
proposed by von Neumann[35] in 1955. The von Neumann entsgpyis

S(p) = =Trplog, p, (80)

for an ensemble of states, of a quantum system, described by a density operator
p. In the quantum case the probabilities are replaced by the density operator. If
we denote the eigenvalues pfas )\, then the von Neumann entropy can be re-
expressed by,

S(p) =— Z Az logy Ay (81)

The classical and quantum entropies are formaly similar, but actualy they are
quite different. Consider we have a soutkethat produces a messagewith
probability p(z). If we have a device that codes each messafyjem a quantum
signal source, then the ensemble of this quantum source is represented by the
density operator

p= Zp(xim (82)

wherer; are the projectionr,, = |z;) (x;|. Notice that the statgs;) (1 < i < n)
are not necessarily orthogonal. Formally, an i.i.d. quantum source is described by
a Hilbert spacéd{, and a density matrix on that Hilbert space. The two entropies
are equal only when the states) are orthogonal, otherwis&(p) < H(X) [36].
In the decoding process if we do not have orthogonal states, then we are not able to
distinguish between them, so we can not recover the entire information perfectly.
The idea of quantum compressing scheme is to take states in the Hilbert space
H®" of the source to states infa"* — dimensional state space, whe is the
compression rate of the source. The approach between the input and output state
is denoted fidelity. It is defined, mathematically, By= (z;nput| Poutput |Tinput) -

As in the classical case, the quantum entropy represents the mean number of
qubits necessary to encode the states in the ensemble in an ideal encoding [5].

Theorem 10 (Quantum noiseless coding theoremiet M be a quantum signal
source with a signal ensemble described by the density operaiod letd, e > 0.

1. Suppose that(p) + § qubits are available pet\/ signal. Then for suf-
ficiently large NV, groups of N signals from the signal sourcé/ can be
transposed via the available qubits with fidelfy> 1 — e.
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2. Suppose that(p) — 0 qubits are available ped/ signal. Then for suffi-
ciently largeN, if groups of N signals from the signal sourc¥ are trans-
posed via the available qubits, then the fidelity e.

Notice that the statg in theorenT 10 can be interpreted as a part of a larger sys-
tem which is in a pure state. In this cgsevould be a mixed state which could

be due to the entanglement between the Hilbert sga@nd the remainder of

the system. Schumacker’s theorém 10 proves that the von Neumann entropy is
the lower bound limit of a lossless compression. He also gives an idea of how
to do the compression, but it does not ensures optimal compression. The fact
that Schumacher’s data compression scheme only can achive a lossless data com-
pression scheme is the asymptotic limit and that it is very inefficient for a small
number of qubits. However it has inspired a number of other encoding schemes
[B,7,9,[10/ 1112, 71.3]. We explain one encoding scheme in more detail in section
a7z,

Quantum analogues have been proposed to the classical encoding schemes
that we have presented in section] 2.2. The quantum analogue of the classical
Arithmetic coding (see sectidn 2.2.3) was proposed by I. Chuang and S. Modha
[T1]. They studied the problem of compressing a block of symbols emitted by
a quantum source. R. Cleve and DiVincenzad [13] have proposed a block coding
algorithm, which is, in fact, a generalization of the classical enumerative coding
(see section Z.2.4). Recently, S. Braunstdimal. [9] have proposed a quantum
analogue of the classical Huffman’'s code (see segtion]2.2.1). However, it was
done in an way that unecessary information have been carried. Some studies have
been done considering universal quantum compression. The quantum encoding
schemes we have mentioned so far are not applicable to the case where we do
not know the average density operator, which the construction of the protocols is
dependent on. Is there a protocol which faithfully compress quantum informa-
tion even if we do not know the density matrix of the source? R. Jozsa and the
Horodecki [8] constructed a quantum universal fixed-length code for the case that
all we know about the source is that its von Neumann entropy does not exceed
some given valué&. Their protocol is efficient in the i.i.d. case when the entropy
rate of the source is less than the rate of the code. Otherwise, this protocol demol-
ish the state the state unrecoverably. The optimality of their code among quantum
fixed-length codes is proven in a sense of compression rate. M. Hayashi and K.
Matsumoto have proposed[12] a quantum universal variable-length source coding
applicable for any probability distribution of quantum states. Moreover R. Jozsa
and S. Presnell proposed another quantum universal data compression scheme
based on the classical Lempel-Ziv code presented in s€ction 2.2.2.

B. Schumacher and M. Westmoreland have sketched a framework to discuss
those code<[37]. However, the encoding scheme we introduce in this report does

48



Quantum Data compression 4.1 Quantum Information Theory and Data
Compression

not follow that framework.

From now on we describe the framework of the encoding scheme proposed by
K. Bostrom and T. Felbinger][6]. During its description we nake consideration on
the physical realization of such a scheme. Qéte a quantum source. We interpret
all its valid objects as normalized vectors of a Hilbert spac&€he encoding task
is basically a mapping (see definition in a book of Linear Algekrg, [?7]) to
another Hilbert spaca1. The mapping must be linear and isometric, in order to
preserve linearity and norm, respectively. Now we consider the structukd.of
Like in the classical countepart it hagigantum alphabetwhich are orthogonal
vectors spanning the Hilbert spagé. For exampldl), |0). We denote the size
of M ask. A quantum word, or anessaggds a sequence of the alphabet symbols
(quantum letters). So the messages are composed by the tensor product of the
quantum letters. The space of all the message ofrsiza) ... |x,,) is

H"=QRQH=H&..®H. (83)
i=1

These kind of spaces, which all the words have a fixed number of qubits are called
block spacesin the classical case the fixed length codes were less efficient than
the variable length codes. In quantum codes the same happends. Therefore we
define a space that enables quantum messages of different lenigierminate-

length spacegto be in superposition.

H=PH =H"OoHOH" ... (84)
n=0
whered is explained in appendix|B. This space looks perfectly acceptable from
the theoretical point of view, but how could we actually implement such a space?
We get into this consideration later in this section. This way a message may
contain a superposition of messages of distinct length, for examplé,ahd|0)
€H,
1
V2
A message with components of distinct length is calletlaterminate-length
messageSo, block spaces are particular cases of indeterminate-length spaces.
The message spad@¢® contains every quantum messages that can be com-
posed using quantum alphabet words frbfyand the laws of Quantum Mechan-

ics. However, since we have a system we only can realize a finite dimensional
subspace of the general message space. We defindthmmded message space

(J10) + [110101)) € H®. (85)

HE — @H@m, (86)
n=0
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containing all superpositions of messages of maximal lengthivVe may think

about a spac® = D®¢ which is the physical realization ¢{%". The physical
spaceR represents the space of all pysical states of the register, while the message
spaceH®" represents the space of valid codewords that can held by the register
and it is isomorphic to a subspa#€™ of the physical spac®. Let dim (H)= r,

thens must satisfy the following.

dim(H®") < dim(D®*)
- n kTt —1 s
— 2 M= sk
n=0
—r4+1<s. (87)

This way, to implement a message spafe¢ in a spaceR = D +1),
To implement this in a protocol we use a k-ary representation of the natural
number. In the next section we explain how to it.

4.2 Quantum Encoding Schemes

The problem of compressing is central to storage and transmission of data. In this

correspondence, we introduce in sectjon 4.2.1 a quantum compressing scheme
and in section§ 4.4.Z, 4.2.3 and 4].2.4 we investigate more efficient extensions of

that scheme.

4.2.1 Lossless Quantum Data Compression Scheme

Let us introduce a lossless quantum encoding scheme developed bydsinoB
and Timo Felbingerii6].

An encoding is a mapping from a source space to a code space. So, its speci-
fication is just a linear mapping, which transforms the basis element of the source
alphabet|w;) € v, into the basis elements of the code spacg,c M. Notice
that the vectorsw;) are orthogonal between each other, as well aguheasis
vectors.

i) — [v) . (88)

Since the mapping from one space to another is isometric the coding is lossless,
which is the type of compression we study in this report.
The compression operator can be defined as

C =3 lefw)) (w]. (89)

wev
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Since the encoder is lossless the inverse of €, & the decoder, which we
denote by

D =Y |w) (e(w)]. (90)
veEM
Recently some proposals have been made to which code space we should use.

In the encoding scheme that we will describe moreover the code space is called
Neutral-prefix spacand it is defined as follows. Considg.(i) thek-ary repre-
sentation of a natural numbeérConsiderZ;(0) = ¢. Define an orthonormal basis
message:

B, = {1Z(0)) . .., | Zu (k" — 1))} (91)

with variable-length of maximal lengint
The length of theZ,.(:)) is given by

|Z,(i)] = [ogy,(i + 1)1, (92)

[x] denotes the largest integer larger or equal.to

Notice that, for example if we choose= 3 andk = 2, there are messages
of length less thas that do not belong to the space spaned by the ligsif\n
example is the messa@gB)). Let us denote the space spaneddyN,. So we
have the relation

N, C HE". (93)

The reason why it turns out to be not so clear to define a code space is because
of its physical realization. For example the stite) + |1101) stills a discussion
whether it could possibly be implemented or not. Therefore we define other space,
which we will use to implement the spadé.. The problem we have in hands
is the physical implementations of states with a superposition of messages with
different length. Therefore we define a sp#geof the same size &3, but with all
the elements with equal size. This space instead of4hg)) has arr-extention
of those numbers by adding as much leading zeros as necessary to achieve the
lengthr, e.g. Z; (i) :== 0---0Z,(¢). More precisely,

B = {|Z{(0)) .. | 25 (K — 1)) }. (94)

Notice that the basis df; are orthonormal.

Now it is about time to Alice and Bob appear. Imagine that Alice wants to send
some encoded quantum data to Bob. We consider that they both have a quantum
computer and they have a quantum and a classical channel connecting them. So,
Alice prepares each message), 1 < i < n, from a source se{, each with a
probability p(x;). The source is represented by the ensemibte- {p, x}. She
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encodes each of this words into variable length codewdtds € N, of maximal
lengthr. If we denote the dimension of the source spacé iyenr must be at
least as large as the number of qubits necessary to reprgsemt > [log, d].

To define the encoder operator see equatior (89), Alice check if the messages
of y are linerly dependet. If so she creates a neviesety and removes the most
probable message frol, which she appends to a list Then she again takes
the most probable message fraand checks whether it is linear dependent with
the words of£. If not she adds the element 1y otherwise she follows taking
elements of= until there is no elements left. This procedure leads to a linear
independent list£, of elements fromy. The probability of the messages ih
are in a decreasing order. Now Alice perform&i@am-Schmid{see appendix]B)
orthonormalization of the elements of the liGtstarting with the first element of
the list, which is the one with higher probability.

jwy) = [71),

[wi) == N; [[ - i w;) <wj\] i), (95)

with 2 < i < d (consideringl the number of elements ifi), N; are normalization
constants and is the identity matrix. Consider

B = {’w1> » T ’wd>}7 (96)

then the elements d# form an orthonormal basis for the source getNow we
encode the elements gfinto the code spacBp,

le(wi)) == |Z;(i = 1)), (97)
with 1 < ¢ < d, with increasing significant lenght

Le(w;) = [logy(i)]. (98)
The length of each message is given by

max 2
L7 (x) = max {Le(w)|| (wilz) [* > 0}, (99)
for all the messages of the set Each codeword is in spadg;. At this point

Alice has quantum data, which are the encoded messages. The respective length of
each message is represended in classical data and encoded by a classical encoding
scheme. Now Alice is ready to send the data to Bob. She sends the classical data
to Bob through a classical channel. The quantum data is sent in the following

way. Alice reads the length of the message that she wants to send and removes the
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leading zeros from that message. Then the codeword would be in space spanned
by B,. The quantum message is how ready to be sent to Bob.

Bob decodes the data in a similar way. The classical data has the information
about the length of the quantum codewords. So Bob picks each quantum codeword
and appends the leading zeros needed to fulfilrtlequired zeros to map the
codewords to the spadez. He applies the decoddp, equation [[90), to every
codeword and gets the original messages.

The following algorithms describe three different ways to choose the axes
of B, equation [[96). The first, calleBrute Forcealgorithm, just goes around
all the possible set of axes and choose the best one. The secondhpreed
BF algorithm, uses Grover’s algorithm idea to speed up Brute Force algorithm.
Finally, the Adapted Algorithmgives another idea how to order probabilities in
the lossless quantum data compression scheme just described.

This compression protocol has a codewords length avefaggper bounded
by [6]

I. <log,(dimv) + logsk. (100)

wherev is the source space.

4.2.2 Extension - Brute Force

In this section we describe a lossless quantum encoding scheme. Our aim is to
compress more our data by changing a bit the previous algorithm.
We begin with an example where the above algorithm could be improved.

Example 9 A sourceS = (S, P) has a probability distribution

p={{ 1 L1111 “}andS:{(1,0,0),(0,1,0),(0,0,1),%(0,1,1),

%(0, 1, 2),.%(0,.2, 1), ﬁ(p, 1,3), ﬁ(o, 3,1)}. The source has only real vec-
tors to be easier to illustrate it on a figure.

Figure [T showsS, the quantum states we want to encode, that are decribed
by vectors with a color different of black. The codewords are represented with
"(codeword,probability)” on one side.

The graphic on the left has the codewords we get with the scheme described in
the previous section. With the previous scheme the smaller codeword correspond
to the most probable word to encode, represented in blue on that graphic.

The codewords length average of the quantum scheme of the previous section
is:

32

1 1 1 11
E(C):6X0+?X1+§X5X2+1—68X2:ﬁ (101)
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Figure 7: Two diferent codeword assignments.

In this example the axes chose to the coding are not the ones that minimizes
the length average. The graphic on the right side of the figure our example of axes
that give a smaller length average:

1 1 1 1 11 25
LIO)==%x24=-X14+=-x04+=x4Xx14+—x1=— 102
(O)=Gx 27 xlhgxOtgxdxltqgxl=g (102

The value obtained is almost half of the previous one! The length average was
decreased by just changing the correspondence between the codewords and the
axes.

In the encoding scheme described in the previous sectiorGitim-Schmidte-
composition, equatio (P5), begins by choosing the most probable word to en-
code. Set this one as an axes to the encoding scheme and encode it with the
smallest codeword. But not always this procedure is the way to get the smaller
length average.

Now we describe a different way to choose the axes to get the smallest length
average. We call the following algorithrute Force algorithmbecause it is
based on going through all possible set of axes and choose the one with the lowest
L. Its description provides a good understanding of what we could improve in the
lossless quantum encoding scheme of the previous section algorithm. Moreover
we describe how to improve the Brute Force algorithm, in a sense to avoid going
through all possible sets and this way save some time.

So, how do we construct this Brute Force algorithm? In algorithm 2 we have
its description. Consider we want to encode a soutce {|a;), ..., |a,)}, where
the vectorsja;) (1 < i < n) belong to a Hilbert space of dimentiah (first
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item of algorithm[R). To all possible subsegts{|a;,) ... |a;,)} (items 2 and 4)
of A (p is selected to have all the elements different of each other) we apply the
folowing. We check if the elements gf are linearly independents (item 5). If
not this set could not be a base of our data. If so we applyGian-Schmidt
normalization to normalize the elementsg@f{items 6 and 7). To be possible to
encode as we have done in the lossless compression scheme algorithm, we assign
\c(a);) :==1Z(j)), being|a) the word to encode and< j < d (item 8). This way
we have encoded the axes. Sipcas the same dimension gf, all the source
alphabet can be expressed in the normalized axes. Our next move is to encode
the source alphabet. The length of the codeword&is = [log,(j)]. Now we
calculate theC of A. Thep is a base of4, each element ol can be represented
as a linear combination of the elementsfor its respective codewords. We go
through all elements ofl (item 9) and sets the length of each element equal to the
length of the longest word belonging ¢oof its linear combination (item 10). Its
respective codeword length is used to calculate the average codewordsliength
We save the smallef and its respective bases in item 11.

We go through all the elements @f and apply the encoder C, equatign| (89),
to each element ofl. In item we output the smallegt and its respective base,
codewords and the elements.dfencoded.

Algorithm 2 Brute Force:

1. To encode:A = {|ay),...,|a,)}, Where|a;) belong to a Hilbert space of

dimension d.
2. p={lai,) . |aiy) | aiys oy ai, € AN a;;, #ay, ANV 5(1<4,5 <d)}
3. L=c0;
4. Foreveryla;,) ... la;,) €
5. If B={la;),...,|a;,)} are linearly independent:
6. |b1) = laq,)
7. |b;) == Nj[1 =341 |ai,) (ai, | |ai, )], j=2,....d; N; are normalization
constants;
8. assign to everyd B: |c(b;)) == |Zk (7)), I=1,....m;
and I(b))= [log,(j)] (length of the codeword)
9. For everyjv) € A, s=d;
10. while (v|bs) = 0, s=s-1, I=I+(by));
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11. If <L, L=l and B; = B;
12. output LB, C andC'|a;).

Performance

The Brute Force algorithm, as the name mention, goes around all possible set
of axes and chose the best one (the one with low@gstEven having by grand
that it gets be best solution it can not always be applied, thanks to the time it
takes to explore all the possible sets of axes. To count the number of step it takes
we must consider that for this algorithm it is different to have the hase=
{11),12),13)} or g2 = {|1),]3),]2)}, since the Gram-Schmidt normalization
gives different results in each case. Thus, we must examine every set of d-elements
(dimension of the Hilbert space), so in this setp the time it takes is upper-bounded
by a linear function om?. Then to check linear independence, to normalize and
assing codewords take time upper boundedkby d (where k is a constant).
To calculate the length of the source encoded we take time upper bounded by
n x d. Finally we need more time to calculate output the encoded source. The
complexity of the algorithm only considers the factor with bigger power. In our
case the final complexity is upper bounded by a linear function‘dfi, wherek
is a constant. The performance of the algorithm depends mostly on the dimention
of the Hilbert space of the source, since the complexity time depends in power on
the dimention.

4.2.3 Extension - Improved BF

The Brute Force algorithm is not applicable in many cases thanks to its complexity
time. Thelmproved BFis based on the Brute Force algorithm, speeding up its
search time using the Grover’s algorithm and its extensions. Grover’s algorithm
search for a particular element of a long unsorted list. As described in section
BZ2 it is based on a functiohthat:

0,z # xg
f(z) = { Lo (103)
wherezx, is the searched element.

In the Improved BFalgorithm we are not just searching for a single element,
but for a basisj3. So, to adapt to the search quantum algorithm we consider each
possible basis as an element. The problem to use this function in our case is to
define which element or elements we are searching for. In Brute Force algorithm
we seached for the basis with lowet Or, in other words, the basis wiih as
closest to the entropy value as possible. But it is not always true that the I6west
is equal to the entropy, so we must find a way of selecting the elements with lowest
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L to use it as the range of functigh To this purpose we use the upper bound of

L, stated in equatiorf (IP0). This way, functignnstead of considering = x,

just search all the basis with lower than the upper bound, which we denote by
Lsuperior- INthis case we are not seaching a single element. S¢ctioh 3.2.2 describes
how the Grover’s algorithm works in a case of searching a single element. At the
end of that section is stated the speedup we get seaching M elements out of N.
The functionf, in our case, becames:

]-7 E(:E) S »Csuperior

f(m) - { Oa ‘Csuperior S E(l‘) (104)

In the end of section 3.2.2 we mentioned the complexity time speed up of
some extentions of Grover’s algorithm [30]. The complexity time of the quantum
algorithms of the extensions of Grover’s algorithm are in the following table.

Problem Quantum Complexity Classical Complexity
Searching M elements O( %) O(%)
Minimum Finding O (x/N) O(N)

Now we apply these quantum search algorithms and the ofadcguation
(T03), to find the basis with lowest codeword length average. The algorithm that
comes up to our minds as a solution for this problem is the "Minimum Finding”.
Algorithm 3, Improved BF 1 only applies the "Minimum Finding” algorithm to

find the basis with lowest. It has complexity time of (éﬁ) :

Now we introduce Algorithni]4lmproved BF 2it decreases the complexity
time of the search, but the probability of finding the minimum also decreases.
So, depending on our goals we may balance between time and optimal results.
The idea is as follows. At first we search the elements With) < L. erior
(tem 1 of the algorithms). This search only can be applied if we have some
previous information about the number of basis Witfw) < Lyperior- Then
we search between those elements which has smaller codeword length average
by applying the "Minimum Finding” algorithm. Algorithmi 4 has a complexity
time of O(v/M + \/g). Notice that between the two items we cannot make

measurements. Otherwise we would loose the superposition of the states found
with that property.
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Algorithm 3 Improve BF 1

1. Apply the "Minimum Finding” algorithm to find the basis with minimum
L(x).

Algorithm 4 Improve BF 2
1. SearchingV/ elements;

2. Finding the minimum between this elements.

Performance To study the complexity time of an algorithm that is composed
of a sequence of more than one algorithm, we must consider the cemplexity time
of all those algorithm. The one that is defined by a funcion with biggest power is
the complexity time of our main algorithm. To study the complexity of algorithm
A we consider the complexity of the algorithms we used in items 1 and 2. The
algorithms have complexity time equal to the subalgorithm with bigger complex-
ity time. From the table above we conclude that algorifhm 4 has complexity time

equal toO(v'M + /&), As we have seen, the complexity time of aIgorith 3

is O <\/W> Therefore algorithm(4 has a smaller complexity time. So, we can
choose more speedup or optimality of the result.

4.2.4 Extension - Adapted Algorithm

As we described, the lossless compression scheme of the previous section, sim-
ilarly to the classical Huffman’s algorithm, order probabilities in a decreasing
order to start the construction of the algorithm. Thd@apted Algorithmintro-

duces a slightly difference, it order probabilities depending odetssities What

do we mean bylensitiesand why does such idea could improve our axes search?
At first we should remember again that we are dealing with vectors in a Hilbert
space, instead of just real numbers as in the classical case. Therefore, choosing
one vector to be an axes influences all the vectors that have a projection on him.
So, to choose the first axes vector we pick the one that sum up more probabilities
projected on him, because vectors are encoded by a linear combination of its basis.
So, how do we do that? To make it explicit let us return to exarfiple 9 and apply
the Adapted Algorithn{in example 10). At the beginning we make a table with
each probability as the label of each column celland then we do the same to the
line labels. We fill in only the cells below and including table diagonal, since the
rest would repeat information. Then, to everyandp, (: < j andl < 4,5 < 8),

if (i]5) # 0 fill in the cell with the numbet, otherwise fill in with numbe (fol-

lowing table). This is the same as saying that if the vectors are orthogonal, there is
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no projection on this basis, we set the cell equal to zero, otherwise, there is a pro-
jection on this basis, so we set it equal to one. After filling in this quadratic table
we add one more line with the sum of the probabilities projected in each vector.
In our example, the line and column with a different type of letter is respective to
the vector with probability;. The sequenc@, 0,1,1,1, 1,1, 1) means the vector

13) has a projection in every vectors of the source expepindp,. Therefore in

the last line we havé%, that is the sum of all the probabilities exceptandp,.

See examplg10.

Example 10 S=(S,P)

Ps | P1|Ps | Ps | Pr | Ps

e
N

P1
P2
Ps |
P4
Ps
Ps
P7
Ps
> prob

¢ < it < 2L < 2. Therefore we choodé) to be one axes and the one with lowest
codeword length.

1
1
1
1
1
1
1
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Moreover we choose the one with bigger sum of probabilities to be the ba-
sis axes with lowest codeword length. In example 10 it is vefetor Now the
algorithm follows in a similar way but with a difference concerning the table con-
struction. Since we have chosen one axes, this one will no longer be concerned in
the table. Now we must consider that the other axes we will choose need to be or-
thogonal to the one already chosen. So, we must project each of the vectors from
the source to the space orthogonal to the axes already chose. It is a similar idea to
the Gram-schimdiprocedure (described in appendix B). So, to get another axes
vector we construct another table concerning each vector from the source and the
ones orthogonal to the axes. Before introducing the table continuing the previous
example we would like to state two remarks. Firstly it is important to note that
in our exampleP |2), P|3), P|5), P|6), P|7) and P |8), are the same. This
happens becauge|q) is a projection of|i) over the plan orthogonal to the axes
already found. In our example the projection of all the vectors enumerated before
over the plan orthogonal td) are the same.
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PL) [ P2)=P [3)=..=P|3)

—_
~

e-H Ol o|lo|o|o|o| -
RF Ol R R ROl

So, since; < 57, the new axes just found B]2) = —=(0,1, —1). The last axes
only can beP |1) , in our case is equal td) = (1,0, 0).

In the previous example we got the axg:= (0, 1,1); P[2) = -5(0,1, —1);
and|1) = (1,0,0). With respectively decreasing codeword length. Therefore
[(c(]4))) = 0,1(c(P]2))) = 1 andi(c(|1))) = 2. So, the average codeword aver-

age of the source is:

1 1 1 11 1 2
L(C):6x2—|—?><1+§x4x1+ﬁx1+§x022—i (105)

Performance

The time theAdapted Algorithntakes is upper bounded by a linear function
on n?, beingn the number of elements to encode? is the complexity of the
first table we make. The other tables have lower complexity. Therefore, since
the complexity time of our protocol is the sum of the complexity time we take to
calculte the numbers that are in the tables, the complexity time that counts is only
the one of the first table?. Notice that the complexity of the sum of functions
with different power is always upper bounded by the complexity time of the one
with bigger power.
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5 Outlook and Conclusion

Our report introduced the main concepts of classical and quantum data compres-
sion for noiseless and lossless channels and presented some improvements to a
particular guantum encoding scheme.

Firstly, in section2, we introduced the main concepts of Classical Coding
Theory, as well as the four of the most currently used classical encoding schemes:
Huffman’s Code, the Lempel-Ziv Code, the Arithmetic Code and the Enumera-
tive Code. In sectiof] 3, we presented a brief overview of the essentials of quan-
tum information. In sectiof 3.1 we explained the main properties of quantum
information and its differences when comparing to classical information. Quan-
tum compression algorithms are mainly based on well known classical encoding
schemes adapted to the properties of quantum information, which may actually
imply fundamental modifications in the scheme. For example, we are not able
to clone unkown quantum states because of the unitary evolution of quantum sys-
tems. Related to this and to the measurement rule is the fundamental impossibility
of distinguishing two unkown quantum states. Another quantum rule, the possi-
bility of having coherent superposition of states, can also be used to decrease the
complexity time of some algorithms. It provides "quantum parallelism” (see sec-
tion 3.21), used in Grover’s (see section 3.2.2) and Shor’s algorithms. Finally,
when we are dealing with composite quantum systems, the tensor product struc-
ture of the Hilbert space is instrumental in the definition of entangled patrticles, a
powerful and exclusive property of quantum systems (see sdction 3.3) which of-
fers correlations that are impossible to simulate classicaly. The Classical Coding
Theory and the properties of quantum information are then used in s€ction 4 to
study Quantum Data Compression. In secfion 4.1 we introduce some concepts of
Quantum Information Theory. Moreover, we describe three improvements of the
lossless quantum data compression scheme of K. @osand T. Felbinger[6]

(see section 4.2). In this scheme the Hilbert space of the source message we want
to encode is spanned by a set of vectors. Those vectors are encoded into code-
words. So, each source message is encoded in a linear combination of the code-
words. The length average is calculated on the size of the longest basis codeword
of each encoded source word. Our aim is to achieve a codeword length average as
lower as possible. In[6] they choose the most probable source word to be encoded
with the smaller codeword. However, in this specific scheme, this procedure does
not lead us to the smaller codeword length average we could achieve. This hap-
pens because the source messages can be spanned in more than one codeword. In
the first extensiorBrute Force(see sectiofi 4.4.2), we point out an example where
the algorithm could be improved and we construct an extension to achieve the
optimal codeword length average to this scheme. Basically it goes around all pos-
sible solutions. It implies a drawback in complexity time, which is a exponential
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function of N (the number of source messages). Therefore in section 4.2.3 we de-
scribe a quantum algorithm to find the optimal solutitnproved BF- which uses
Grover’s algorithm and its extensions to do the search and this way it decreases

the complexity time. This way we achieve a complexity timegt/ A/ + \/g).

At last we describe tha&dapted Algorithm In this algorithm we just search the
optimal solution in a different way. Instead of choosing the most probable source
word to be encoded with the smaller codeword, likelin [6], we choose the source
word which has the biggest probability of having another source word spanned on
itself to be encoded with the smallest codeword. Raapted Algorithms the

one with the lowest complexity time. However we did not manage to proof its
optimality in this specific scheme. Therefore, sinceBnate Forcealgorithm and

the Improved BFalgorithms find the optimal solution to this scheme we would
recommend this ones. Th@proved BFhas the advantage of having a polinomial
complexity time.

5.1 Future Work

The Adapted Algorithnmalgorithm could be improved by finding an upper bound
related to the von Neumann entropy for the compression that can be achieved.

Future work may also extend the study of compression of entangled states,
since this states are very useful to some Quantum Information applications, like
guantum criptography.

The idea of a classical channel to send the codewords length information could
have been studied from the point of view of its effectiveness. One mistake most
probably would damage all the quantum codewords encoded. In this sequence
it would be interesting to study a reliable extension of this scheme to a noisy
channel.
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A Independent Identical Distributed Variables
We introduce some statistids [38] to describe the type of variable we are using.

Definition 12 Two random variables X and Y are said to be independent if for
any two subsetd and B of R,

P(X € AandY € B) =

P(X €AY € B) =

PH{X e A} n{Y € B})
=P(X e A) xPY €B). (106)

More generally, X, ..., X,, are said to be (mutually) independent if for any
subsets4, ..., A, of R, the eventd X; € A}, {Xs € Aq}, ... {X, € A,} are
mutually independent: i.e.

P(X; €A, Xo€ Ay, .., X, €A,) =
PH{X; e Aibn{Xs€e A} n...n{X, € A,})
= P(X; € A) x P(Xy € Ay) x ... x P(X,, € A,). (107)

In particular, if Xy, ..., X,, are independent discrete random variables with
probability mass functiorfy, ..., f,,, respectively, then

P(Xl = kla 7Xn = l{'n) = fl(kl) X ... X fn(kn) (108)

Definition 13 If X, ..., X,, each have the same distribution function, then they
are said to be identically distributed. If their common distribution functiof’is
and they are independent as well, we say that..., X,, are independent and
identically distributed (i.i.d.) with distributior'.

B Hilbert Spaces

Quantum Mechanics is based on a set of postulates (presented in §ection 3) as its
own rules, for its understanding is entirely necessary a good assimilation of Linear
Algebra. For this reason we introduce here the basic and fundamental concepts of
Linear algebra. If you feel lost while reading this appendix we recommend [22].
Linear Algebra is presented in Quantum Mechanics with the Dirac notation, that’s
why it may look a bit fearsome, but it is just algebra! Therefore we will introduce
Dirac’s notation.
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The basic elements of Linear Algebra aextor spacesWe study the vector
space irC", the space of al-tuples of complex numberg;, ..., z,). We denote
the elements of a vector spacevastorsand we present them in a column matrix
representation:

21

(109)

Zn

The Dirac notation for a vector in a vector spacg/is. The addition operation in

C is defined as: ) /
21 21 21 + 21

+ = , (110)

’

/
Zn Zy, Zn + 2,

wherez; + z; are the common addition of complex numbers. Moreovernink
tiplication by a scalaroperation is defined as:

1 741
z| . | = . , (1112)

Zn 22,

wherez is a complex number.

A vector space also containgzearo vectoydenoted by. It satisfiedv) + 0 =
|v), where|v) is any other vector. Avector subspacef a vector spacé’ is a
subsetl of V such thatV is also a vector space.

Now we introduce some definitions for the complex matrices. Ldie a

matrix such that:
a b
oo (). 112

a* c* a b 10
<b* d*)(cd):<01)’ (113)

i.e.,UtU = I. a* stands for the complex conjugate of complex numbend
Ut = (U*)". The notatiori/” indicates the transpose &t U” andU* are

then

T < cg CCi ) andl* — ( ‘2* Z* ) , respectively (114)
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A spanningset for a vector space is a set of vectarg) , ..., |w, ) such that any
vector in the vector space can be written as a linear combinptips: > . a; |w;)
of vectors in that set. An example of a spanning setdféare the vectors:

w= g |t = 7], (115)

because any vector i@ can be written as a linear combination|of,) and|w,).
A vector space have several spanning sets.

We say that a set of vectors is linearly dependent if there exists a set of complex
numberay, ..., a,, for at least one; different from zero, such that:

ap |wy) + ... + a, Jw,) = 0. (116)

If a set of vectors is ndinearly dependentthen it islinearly independentWe
call a set of vectors that can span a vector spaghebasisof V. The number of
elements in the basis is denoted asdimeensiorof the vector space.

Now we shall introduce th&near operators A linear operator between two
vector spacedl’ andV is defined to be any function:

A <Z a; \wi>> = ZaiA(\wZ)). (117)

The viewpoint of linear operators and matrix are known to be equivalent.
Therefore we may use both notation on the report.

With these conventions, the inner product on a Hilbert space can be given by
a matrix representation.

wq

(w)y=[v; . . . v ] . (118)

The vector(v| has a nice interpretation as a row vector whose components are
complex conjugates of the corresponding components of the column vector rep-
resentation ofv).

Consider now a vecto) in a vector spacé’, and a vectofw) in a vec-
tor spacell/. A very useful linear operator frofr to W is the so calleduter
product. It is represented by:

(o) (o)) ([v)) = ud (ol ) o) (119)
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We can take linear combination of outer product operatofs(v|, by defini-
tion > ia; |w;) (v;| is a linear operator which, when acting ¢m> produces
> ia; |w;) (vi|v") as output,

An important result of the outer product is tbempleteness relatiorfor or-
thonormal vectors. Lefi) be any orthonormal basis for the vector sp&Geso
an arbitrary vectottv) can be written asv) > iv; i) fro some set of complex
numbersy;. Note that(i|v) = v; and therefore

(Do iliy l) o) = D2 ili) Gilo) = S iwsliy = o). (220)

From the last equation it follows that

> iy (i) = 1. (121)

This is thecompleteness relatiorHilbert space A Hilbert space is a mathemati-

cal framework suitable for describing the concepts, principles, processes and laws
of Quantum Mechanics. We can say that to each isolated quantum system corre-
sponds a Hilbert space.

A finite-dimensional Hilbert spac# is a complete (defined later in this sec-
tion) vector space over complex numbers which is equipped with an inner-product
(defined in a moment}f x H — C,(x,y) — (z|y). All n-dimensional Hilbert
spaces are isomorphic (defined in a moment), and we can, therefore, denote any
such space byf,,.

Definition 14 An inner-product spaceH is a complex vector space, equipped
with an inner-produck .|. >: Hx H — C satisfying the following axioms for alll
vectorso, 1, ¢; andg, € H, and any g, ¢, € C.

<Pl >=<1hlg >,
0 < <9y > and < |y >=0ifand only if¢) =0,

< Plerdy + oy >=c1 < Y|P > Fea < Y|dg >,

where* stands for the conjugate.
The inner-product mostly used in finite quantum systems is:

(x|y) = 251 + .. + T Y. (122)

wherex = (x1,...,2,), ¥y = (Y1, ..., yn) € H.
The inner product induces\veector norm

]| = /Tala). (123)

Unit norm vectors of an inner-product space are also cépjede) statesof
H. Pure states of quantum systems are said to be vectors of a Hilbert space.
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Definition 15 An inner-product space H is callesbmplete if for any sequence
{¢:};2,, with ¢; € H and there is a vectop € H with the property that
lim;_. [|¢ — ¢:]| = 0. A complete inner-product space is also calledigbert

space Two Hilbert spaces are said to hsomorphic notation H; = H,, if

the underlying vector spaces are isomorphic and their isomorphism preserves the
inner-product.

You can find this definition ind22].
The concepts of an orthogonal basis and of an orthogonal decomposition of a
Hilbert space are fundamental for the Hilbert space theory.

Definition 16 Two vectorsp and v of a Hilbert space are calleadrthogonal,

notation¢ L v, if (¢[v)) = 0. A setS C H is orthogonal if any two distinct
elements of5 are orthogonal. S i®rthonormal if it is orthogonal and all its
elements have norm 1.

If £ = {ey,...,e,} is an orthonormal basis of H, then we can represent each
vector of H by x = z1e1 + ... + €, USINg this fixed basis axes, the vectaran
be represented as= (z1, ..., z,).

Definition 17 A subspacés of an inner-product space H is a subsetfdtclosed
under addition and scalar multiplication.

An important property of Hilbert spaces is their decomposability into mutually
orthogonal subspaces. It holds1[23]:

Theorem 11 For each closed subspace W of a Hilbert space H there exists a
unique subspace ¥guch that(¢|y)) = 0, whenevery € W andy € W+ and
eachy’ € H can be uniquely expressed in the fotf= ¢; + ¢,, with ¢, € W

and ¢, € W+. In such a case we writé/ = W @ W+ and we say thatV and

W+ form an orthogonal decomposition of H.

The symbokp is the Tensor product, defined in a moment.
We can make a generalization of an orthogonal decomposition

of H into mutually orthogonal subspaces W,W,,, such that eacly € H has
a unique representation @s= ¢; + ¢ + ... + ¢, With ¢, € W; 1 < i < n.

A very used method to construct orthonormal basis is cgiem-Schmidt
procedure. Suppose we have an orthogonal basigusgt..|w,) belonging to
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a vector spacé’. To construct an orthonormal basis $ef),...|vs) for V we
proceed as follows. Define,) = H}Iwu—iiﬂ Forl < k < d — 1 define
=S kv A
|/Uk;+1> = |wk+1> 21:0 <U’6|wk+1> |U1> (125)
[[wrr1) = im0 K (vi|weg1) |vi)|]

Tensor product
The so-calledensor product, or Kronecker productof H; andH,, is written
as

H=H, ® H,. (126)

The tensor product for vectotis= (z1, ..., z,,) andy = (y1, ..., yn) IS

TRY = (T1Y1, ooy T1Yns L2Y1s ooy L2Yns ooy TmY1, - TimYn) (127)
and for matrices

ay ... Qi b1 ... by
A= B =
pl - Gy boi ... bun
anB ... a1,B
A® B = : : (128)
am B ... a,,B
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