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Abstra
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tionusing the data set we have been working with.
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Introdu
tionToday the use of data mining is be
oming more widespread, one of the reasons is that 
om-panies are fo
using more on their data and the use of this data. The analysis of this data 
anbe aided by data mining, however, a 
ru
ial part of data mining is having the right data, andthis data must be of su�
ient quality. Thus, as experien
e has often shown, the major partof data mining proje
ts is the gathering of data and 
leaning of data.Currently, many 
ompanies are beginning to 
reate what is known as data warehouses, whi
his basi
ally 
entralised storage of all data related to a 
ompany. The data in data warehousesis not simply stored as the pie
es of data, it was when it was spread out over the entire
ompany. Instead, it is integrated in the data warehouse, that is, data from multiple sour
esis 
leaned and de�ned using a 
ommon view of the entire 
ompany organisation. The e�e
tof this approa
h, is data of high quality and a des
ription of the available data, sin
e itis impossible to de�ne a 
ommon view of all data relating to the 
ompany without su
h ades
ription. Moreover, the storage of this data is done in su
h a way, that the performan
ewhen analysing it is improved 
ompared to ordinary storage methods. This improvement isa
hieved by 
al
ulating summary information.We want to investigate the 
onne
tion between data warehousing and data mining, sin
eit seems natural to use the data of better quality, whi
h is stored in the data warehouse.Furthermore, the data has extra stru
tural information 
on
erning the domain it represents,thus we would like to investigate how this added information 
an be used to improve datamining.A signi�
ant part of this investigation is getting an understanding of what a data warehouseis, and more importantly, how one models data in them. This is very important to understandthe stru
ture of data, sin
e it is more 
omplex than the traditionally view, 
ases 
onsisting ofattributes. Thus, we use a real-world data set relating to a small �business� and try modelingthis data in a data warehouse. We then want to pro
eed by testing how a standard datamining tool 
opes with the analysis of data warehouse stru
tured data. Based on this test wehope to �nd some limitations and possible solutions to them. Finally, we want to investigatehow a spe
i�
 data mining algorithm 
an take advantage of the data warehouse.The reader is assumed to be familiar with the data mining 
on
eps, that are des
ribed in[Jen01℄.
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SummaryThis report investigates the possibilities that lie in using data warehouses for data mining.The stru
ture of data warehouses is examined, and one of the 
urrent data mining tools istested on these, with the aim of dis
overing problems and areas whi
h 
an be improved. Basedon this we propose a view on how multi-dimensional data mining should be handled, and wepropose improvements to de
ision tree indu
tion algorithms. An appli
ation is 
reated to testthe proposed user interfa
e and one of the improvements to de
ision tree indu
tion.In 
hapter 1 basi
 database te
hnology is introdu
ed. This 
onsists of the relational datamodel, keys, joins, and aggregate fun
tions.In 
hapter 2 data warehousing is introdu
ed. First the purpose of data warehouses is des
ribed,then the stru
ture of data warehouses is examined. OLAP is introdu
ed and the variousstorage models are dis
ussed.In 
hapter 3 a relational database des
ribing a small business, with regard to sales of produ
tsand 
ustomer payments, is analysed and transformed into a small data warehouse to gainmore knowledge about how data warehouses are 
onstru
ted.In 
hapter 4 we examine related work and des
ribe the problems, we have dis
overed whentrying to use Clementine for data mining on the multi-dimensional data. We then pro
eedto des
ribe 
on
ept hierar
hies and propose a view on how data mining should be done inmulti-dimensional databases.In 
hapter 5 we �rst analyse the de
ision tree indu
tion algorithm, and based on this analysiswe �nd the general points at whi
h it 
an be modi�ed. Using this knowledge we proposeseveral modi�
ations, whi
h we see as possible improvements that 
an be a
hieved by usingthe extra stru
ture of the dimensional model.In 
hapter 6 we des
ribe the appli
ation we have 
reated, and the experien
e we have hadduring testing of it. We also present test results with regard to the performan
e of one of theimprovements to the de
ision tree indu
tion algorithm.Finally, we 
on
lude on the proje
t and suggest future work in 
hapter 7.
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Chapter 1Fundamental Relational DatabaseTe
hnologyIn this 
hapter we introdu
e the 
on
epts from database te
hnology, whi
h are ne
essary tounderstand remaining 
hapters. If the reader is familiar with relational database 
on
epts,this 
hapter 
an easily be skipped. The 
hapter is based on [SKS02℄, where it 
overs Entity-Relationship modelling, relational algebra, and SQL in a pra
ti
al manner, that is, we will notintrodu
e these separately, instead the topi
s within ea
h of these areas have been 
ombined.We �rst introdu
ed the most basi
 de�nitions 
on
erning databases and their usage, thenwe introdu
e keys, as a means of identifying a row of data. Next we 
onsider how data isorganised in the database and how this a�e
ts query performan
e. Finally, we introdu
e joins,as a way of 
ombining several entities inside the database, and a spe
ial type of fun
tions,
alled aggregate fun
tions, whi
h are used to summarise data.1.1 Basi
 De�nitionsA database is a 
olle
tion of interrelated data. A database management system (DBMS) issoftware that manages one or more databases. There exists di�erent kinds of approa
hes toorganising and managing a database, however, we will only deal with the relational database,in whi
h data is organised as a 
olle
tion of tables.A table 
onsists of attributes and rows, also 
alled variables and tuples. In Table 1.1 an example
an be seen, where ID, name, 
ountry, postal 
ode, 
ity and employed are the attributes, withthe rows of data listed below.ID name initials 
ountry postal 
ode 
ity employed tax3 John Dove JD England LE3 1TZ Lei
ester True 33.37 Ali
e Jensen AJ Denmark 9000 Aalborg False NULL19 Jan Hansen JH Denmark 9000 Aalborg True 61.1Table 1.1: Example of a table.



6 DMattribute data typeID integername 
har(30)initials 
har(5)
ountry 
har(30)postal 
ode 
har(10)
ity 
har(30)employed booleantax �oatTable 1.2: S
hema for table in Table 1.1.In a relational database, ea
h table has a s
hema asso
iated with it, whi
h des
ribes propertiesof the table. The most important property, is the data type of ea
h attribute, other propertieswhi
h, will be des
ribed later, are various kinds of keys and indi
es, restri
tions on the valuesan attribute 
an attain, restri
tions on 
ombinations of attribute values, and so forth. SeeTable 1.2 for an example of a s
hema.The available data types depends on whi
h DBMS is used, however, a 
ommon subset of datatypes is de�ned by the SQL standard. The most important of these types are:
har(n) or 
hara
ter(n): Fixed-length 
hara
ter string of length n.var
har(n) or 
hara
ter varying(n): A variable-length 
hara
ter string of maximal length
n.int or integer A �nite subset of the integers, the minimal and maximal numbers that 
an berepresented depends on DBMS. However, a 32-bit representation is guaranteed, whi
hgives the range −231 − 1 to 231.�oat(n): A �oating-point number with a pre
ision of at least n digits. Additionally, mostDMBSs support �oat (stored in 32 bits) and double (stored in 64 bits) �oating-pointnumbers, with the same pre
ision as the same data types in the C programming language,although, these 
an have di�erent names. In Ora
le they are 
alled �oat (32 bit) anddouble (64 bit), while in Mi
rosoft SQL Server they are 
alled real (32 bit) and �oat (64bit).date: A 
alendar date 
ontaining year, month, and day of the month.time: The time of day, with at least hour, minute, and se
ond. Sometimes �ner granularityis available, as well as time zone information.datetime: A 
ombination of date and time.Sometimes, it is advantageous to in
lude attributes in a table, whi
h are 
al
ulated usingother attributes within the same row, these are 
alled derived attributes. For instan
e, in theprevious example, tax was stored as a per
entage, if we instead wanted it as a number, we
ould de�ne a new attribute taxnum as

taxnum
def
=

tax

100
.



1.2 Keys 7Some DBMSs support derived attributes dire
tly, that is, one 
an spe
ify a formula for anattribute, then this attribute is 
al
ulated when a row has been fet
hed. Other DBMSs doesnot support derived attributes dire
tly, however, these support the use of automati
 fun
tions,whi
h are run every time a row is inserted or modi�ed. Thus a derived attribute 
an be storedas a normal attribute, and letting the DBMS handle the 
al
ulation of it.Furthermore, a spe
ial value 
alled NULL is de�ned, whi
h 
orresponds to an unknown value.When dealing with data 
ontaining NULLs one must be very 
areful with the queries thatare used, sin
e these unknown values easily 
ause unwanted e�e
ts. For instan
e, given twoboolean attributes a and b, 
onsider the expression a ∨ (b ∧ NULL). If a is true then theexpression evaluates to true, sin
e the result of b ∧ NULL does not in�uen
e the result. Ifboth a and b are false, then it evaluates to false, sin
e the NULL value does not in�uen
ethe result. However, if a is false and b is true, then the result depends on the NULL value,whi
h is unknown, so the result is NULL. sin
e the NULL in the expression is an unknownvalue that 
an be either true or false. Likewise a 
omparison NULL = NULL, evaluates toNULL, sin
e both NULLs represent some unknown value, and these unknown values are notne
essarily equal.1.2 KeysIn this se
tion we introdu
e superkeys and 
andidate keys with the aim of de�ning primaryand foreign keys.In general keys are used to des
ribe a 
ombination of attributes within a table, whi
h uniquelyidenti�es a row. These keys will later be 
ru
ial when dealing with indi
es.Let A1, A2, . . . , An be the attributes of a table. Then a subset of these attributes, B1, B2, . . . , Bmis 
alled a superkey if they uniquely determine a row in the table, that is, no two rows 
anexist in the table with the exa
t same values for B1, B2, . . . , Bm. In Table 1.1 the attributesID, name, 
ountry form a superkey (sin
e it is assumed that no two rows have the same IDvalue. However, it does not seem sensible to use this key when the attribute ID alone identi�esa row uniquely. Thus, a 
andidate key is de�ned as a minimal superkey. In the same example,the attribute ID is a 
andidate key, furthermore, the attribute initials might be a 
andidatekey if they are assigned uniquely to ea
h person and a person only o

urs on
e in the table.A primary key is de�ned as a 
andidate key, whi
h is 
hosen by the database designer asthe primary means of identifying a row. Only one primary key 
an be assigned to a table,however, any number of 
andidate keys 
an be assigned (to ensure that data 
onforms to theuniqueness restri
tion given by a 
andidate key).In a database relationships between tables are spe
i�ed by using the primary key of a tableas attributes in another table. If we 
onsider the table in Table 1.1 again, then it would bepossible to split this single table into two tables, one 
ontaining data related to a person (Table1.3), and the other 
ontaining data related to postal 
odes and 
ity names (Table 1.4). Theprimary key for the person table is still the attribute ID, while the primary key 
hosen for the
ity table 
onsists of the attributes 
ountry and postal 
ode. By using the primary key of the
ity names table in the person table, a relationship is formed, su
h that when one wants the
ity name related to a person, it 
an looked up in the 
ity names table.In a table, a foreign key is a set of attributes, whi
h form a primary key in another table. For



8 DMID name initials 
ountry postal 
ode employed tax3 John Dove JD England LE3 1TZ True 33.37 Ali
e Jensen AJ Denmark 9000 False NULL19 Jan Hansen JH Denmark 9000 True 61.1Table 1.3: Person table.
ountry postal 
ode 
ityEngland LE3 1TZ Lei
esterDenmark 9000 AalborgTable 1.4: City table.instan
e, in Table 1.3 the attributes 
ountry and postal 
ode is a foreign key, sin
e they are theprimary key of the 
ity names table. Foreign keys are used in foreign key 
onstraints, whi
hpose restri
tions on the values the attributes of a foreign key 
an attain in a row. Basi
allythey are used to ensure that a referen
e is present in the table being referen
ed. For example,a foreign key 
onstraint would normally be atta
hed to Table 1.3, whi
h ensures that the
ountry and postal 
ode values used in the table exist in the 
ity names table. Thus it wouldnot be possible to add a row with 
ountry = Denmark and postal 
ode = 9220 to the table,without adding the appropriate data to the 
ity names table. Likewise it would not be possibleto delete data from the 
ity names table, if the 
ountry and postal 
ode values are present inthe person table. This is also known as referential integrity .1.3 Data Organisation and Query Performan
eIn this se
tion we brie�y 
over how the table data is organised with the aim of des
ribing
ertain types of query performan
e indi
ators. The dis
ussion is very simpli�ed, sin
e we onlywish to be able to roughly 
lassify query performan
e.Generally the data in a table is stored in a number of blo
ks on a non-volatile medium. Ablo
k usually 
ontain a subset of the rows stored in a table, within the blo
k the rows 
aneither be ordered a

ording to some key or they may be stored unordered.If the data in Table 1.3 is stored unordered in two blo
ks, and we wish to �nd the person withID 5, then we are for
ed to s
an the blo
ks until we �nd the row with ID = 5. This type ofa

ess to data is 
alled a full s
an, and it has the worst performan
e, provided the query issear
hing for a subset of rows. On the other hand, if the rows within ea
h blo
k were ordereda

ording to the ID, then it would only be ne
essary to s
an the blo
ks until the queried IDwas found, and fet
h all the rows with this ID. However, some additional data is needed tooptimise the query even further, sin
e it is not known whi
h blo
k the 
orre
t rows are in. Thisis a

omplished with an index, 
ontaining a sear
h key to blo
k and row position mapping. Aprimary index (also 
alled a 
lustered index ) is an index whose sear
h key de�nes the orderingof rows within blo
ks. Suppose a primary index was 
reated for the previous example, withthe attribute ID as sear
h key. If we want the rows with ID being 5, then we simply �nd the



1.4 Joins 9p.ID p.name p.init p.
ountry p.
ode p.emp p.tax 
.
ountry 
.
ode 
.
ity3 John Dove JD England LE3 1TZ True 33.3 England LE3 1TZ Lei
ester3 John Dove JD England LE3 1TZ True 33.3 Denmark 9000 Aalborg7 Ali
e Jensen AJ Denmark 9000 False NULL England LE3 1TZ Lei
ester7 Ali
e Jensen AJ Denmark 9000 False NULL Denmark 9000 Aalborg19 Jan Hansen JH Denmark 9000 True 61.1 England LE3 1TZ Lei
ester19 Jan Hansen JH Denmark 9000 True 61.1 Denmark 9000 AalborgTable 1.5: Example of a 
artesian produ
t of person table (p) and 
ity table (
).value 5 in the index, and fet
h the 
orre
t rows in the 
orre
t blo
k. However, if we want to�nd all rows with postal 
ode 9000, this index will not help, and we must use a full s
an. Thusse
ondary indi
es 
an be 
reated, whi
h are the same as primary indi
es, with the ex
eptionthat the rows in the blo
ks are not ordered a

ording to the index.It should be noted that the primary index does not have to use the primary key as sear
h key,and a table 
an have se
ondary indi
es de�ned, without having a primary index. The use ofa primary index is mainly to improve full s
ans so the data is organised in the order most
ommonly used during a full s
an.1.4 JoinsUntil now, we have only examined a single table at a time, however, when dealing with datain databases it is virtually always ne
essary to query more than one table to get the wantedresult. If we 
onsider the tables in Tables 1.3 and 1.4, and we wish to retrieve the personinformation as well as the 
ity name, we either have to retrieve the person information �rst,and then do a lookup in the 
ity table for ea
h person to �nd the 
ity name, or we have to letthe DBMS 
ombine the two tables and return the result. Clearly, the �rst solution is tediousand ine�
ient, whi
h is why joins have been introdu
ed to 
ombine information from multipletables.The 
artesian produ
t of two tables, t1 and t2, is de�ned as having all attributes from t1 and
t2, and it 
ontains every 
ombination of rows from t1 and t2. Thus, the 
artesian produ
t ofthe person and 
ity tables is the table shown in Table 1.5. Usually there exists a relationshipbetween the tables, whi
h are being 
ombined, if this is the 
ase then we restri
t the resultingrows to the rows that adhere to this relationship. For instan
e, when 
ombining the personand 
ity tables, we want the 
ountry and postal 
ode in the person table to be equal to thesame attributes in the 
ity table. This is also known as a natural join, that is, attributes withthe same name in ea
h table are required to have the same value in ea
h row.A more general type of join is the inner join whi
h spe
i�es exa
tly how the restri
tion isto be made using some predi
ate, this is often used if the attributes have di�erent names inthe tables being joined. Additionally, di�erent types of outer joins exist, whi
h deal within
luding data that does not exist in both tables being joined. If for example the (Denmark,9000, Aalborg) row did not exist in the 
ity table, an inner join would not return rows referringto (Denmark,9000). This is a very simpli�ed explanation, however, the types of joins are not
ru
ial for understanding the work presented in this report.



10 DM1.5 Aggregate Fun
tionsThe term aggregate fun
tion means some fun
tion used in a database for summarisation. Ingeneral, these fun
tions work on a 
olle
tion of values and return a single value. Sometimesthey are simply referred to as aggregates. Examples of these, are 
ount, max, min, and sum,whi
h returns the number of rows, the minimal value, the maximal value and the sum ofvalues for a 
olle
tion of values, respe
tively. In pra
ti
e, one spe
i�es the table (whi
h 
an bea result of a query), and whi
h attribute to use, then the values of this attribute is passed tothe aggregate fun
tion for ea
h row in the table. For instan
e, 
al
ulating sum(ID) in Table1.1, would return the value 29, whereas 
ount(ID) would return the value 3.At times one does not wish to 
al
ulate the aggregate fun
tion on an entire table, but insteadwish to partition the table and 
al
ulate the aggregate fun
tion on ea
h partition. Returningto the Table 1.1, if we are interested in getting the number of persons registered for ea
h
ountry present in the table, then we would partition the table by 
ountry and apply the
ount aggregate fun
tion on the partitions. This partitioning is 
ommonly referred to asgroup by , due to its syntax in the SQL language1.The remaining part of this se
tion is based on [AAD+96℄. Aggregate fun
tions 
an be dividedinto three 
ategories, depending on how the 
al
ulation of the fun
tion on a multiset 
an bedistributed a
ross disjoint subsets of this multiset. Let the multiset v = x1, x2, . . . , xn be thevalues we wish to 
al
ulate the aggregate fun
tion, F on. Then divide v into the disjointsubsets v1 = x1, x2, . . . , xn1
, v2 = xn1+1, xn1+2, . . . , xn2

, . . ., vm = xnm−1+1, xnm−1+2, . . . , xn.Then F is said to be distributive if there exists a fun
tion G, su
h that
F (v) = G({F (v1), F (v2), . . . , F (vm)}). In other words, if the input values to the aggregate fun
tion 
an be partitioned into disjointsubsets, whi
h 
an be aggregated seperately, and these then 
an be 
ombined to the aggregatevalue of the whole multiset, then the aggregate fun
tion is distributive.Examples of distributive fun
tions are min, max, and sum, the fun
tion G used to 
ombinethese aggregate fun
tions is the aggregate fun
tion itself. For instan
e, the sum fun
tion is�rst applied to the subsets, and then the sum fun
tion is used again on the value sum of ea
hsubset. The 
ount aggregate fun
tion is also distributive, however, its 
ombining fun
tion, G,is the sum fun
tion.An aggregate fun
tion that 
an be obtained by using an algebrai
 fun
tion with a �nite amountof parameters, ea
h of whi
h are obtained using a distributive aggregate fun
tion, is 
alled analgebrai
 aggregate fun
tion. An example of this type of aggregate fun
tions is the averagefun
tion, whi
h 
an be obtained by sum

count
.An aggregate fun
tion whi
h is neither distributive, nor algebrai
 is 
alled a holisti
 aggregatefun
tion. The median fun
tion is an example of a holisti
 aggregate fun
tion.

1sele
t 
ountry, 
ount(*) from persons group by 
ountry



Chapter 2Data WarehousingIn this 
hapter we introdu
e the 
on
ept of data warehousing, with the fo
us on dimensionalmodelling. The 
hapter is mainly based on [Inm02℄ and [Kim96℄, with the use of some sum-marised information from [HK01℄.2.1 The Data WarehouseIn traditional databases the fo
us has been on pro
essing transa
tions, that is, it is more
on
erned with running a business. However, more 
ompanies are beginning to see the valueof being able to analyse their business. For this purpose the traditional databases are oftenunsuitable, sin
e they usually do not tra
k 
hanges over time. For instan
e, when an order hasbeen pro
essed, it may be removed from the database, or when a 
ustomer 
hanges addressthe old address is overwritten, so it is impossible to do proper analysis over time.To improve the analysis of a business, a new kind of database has been 
reated, the datawarehouse. The 
hanges are not in how the DBMS pro
ess data, but rather in the way datais entered and organised in the database.The term data warehouse was 
oined by Bill Inmon in 1990, and he de�ned it as �A warehouseis a subje
t-oriented, integrated, time-variant and non-volatile 
olle
tion of data in support ofmanagement's de
ision making pro
ess� [Ree℄.This de�nition has not 
hanged sin
e, and a data warehouse is still de�ned as above in [Inm02℄,where the four terms are explained as follows:subje
t-oriented refers to data being organised around the major subje
ts within the 
om-pany, instead of their appli
ation areas. For instan
e an insuran
e 
ompany might haveits traditional database organised by the types of insuran
es it deals with. Whereas itssubje
t areas would be 
ustomer, poli
y, and 
laim.integrated refers to data being integrated from multiple sour
es. It is the most importantaspe
t of the data warehouse, and also the most time 
onsuming. This is due to datanot simply being transferred into the data warehouse when it is re
eived from multiplesour
es, instead it is integrated, whi
h means that di�erent parts of an organisation hasto agree on all terms used in the data being integrated. Additionally, data may reside in



12 DMmany di�erent formats, and di�erent values may refer to the same thing. For instan
e,the gender of a person may be des
ribed as �m/f�, �male/female�, or �0/1�. Thus, alarge part of the 
reation of a data warehouse, is de�ning attributes and �nding ways tointegrate attributes 
oming from di�erent sour
es.time-variant refers to all units of data being tagged with a time stamp, or using some otherapproa
h to indi
ate in whi
h time frame a unit is a
tive. For instan
e, the address of a
ustomer has a time frame in whi
h it is valid, thereby a 
hange of address is only validfrom the time it is registered, and older data is not a�e
ted by the 
hange.non-volatile refers to the way data is loaded and a

essed in the data warehouse. In atraditional database, individual rows are often 
hanged. However, in the data warehouse,a large amount of data is loaded, and then it is not modi�ed again, it is only a

essedfor analysis.In [Kim96℄ Ralph Kimball states the following goals for a data warehouse:1. The data warehouse provides a

ess to 
orporate or organizational data.2. The data in a data warehouse is 
onsistent.3. The data in a data warehouse 
an be separated and 
ombined by means of every possiblemeasure in the business.4. The data warehouse is not just data, but also a set of tools to query, analyze, and presentinformation.5. The data warehouse is the pla
e where we publish used data.6. The quality of the data in the data warehouse is a driver of business reengineering.The term data warehousing is de�ned as the pro
ess of building a data warehouse. One ofthe main design de
isions when building a data warehouse is determining the granularityof data. That is, the highest level of detail whi
h 
an be queried in the warehouse. Forexample, if a 
ompany registers all their sales transa
tions, these may be represented usingsu
h high granularity that ea
h transa
tion is represented in the data warehouse, or theymay be summarised to ea
h hour of the day and stored at this granularity level in the datawarehouse. Whi
h level is 
hosen depends on the amount of data and the type of analysisthat is to be done on the data.One of the most important parts of the data warehouse is the metadata repository (usuallyreferred to simply as metadata), whi
h stores data about all the attributes, their interpreta-tion, and their relationship. The reason for its importan
e is due to the importan
e of dataintegration. By storing detailed information about how an attribute is interpreted, it is easierto get a 
ommon view of the data within a 
ompany.It should be noted that, depending on the size of the data warehouse, the analysis itself maynot be performed using the data warehouse. Instead it 
an be performed in data marts, whi
hare smaller databases that extra
t part of a data warehouse. However, we are not going todistinguish between these two types of databases, so in the remainder of the report we willsimply refer to the data mart as a data warehouse.



2.2 Dimensional Modelling 132.2 Dimensional ModellingA dimensional model is represented as an n-dimensional data 
ube, with a set of dimensionsand a 
entral subje
t, whi
h depends on these dimensions.If we 
onsider a sales database, whi
h registers every sale in a store, then the sales 
ould berepresented in a 
ube. In this 
ase, sales would be the 
entral subje
t, and date, produ
t,or other attributes, whi
h the sale depend on would be grouped into dimensions. Relatedattributes should be part of the same dimension.2.2.1 Fa
ts and MeasuresA fa
t is usually a representation of some event in the domain of the business. To ea
h fa
t anumber of measures are atta
hed, these des
ribe some measurable values 
on
erning the fa
t.For instan
e, if we are modelling the sales of a 
ompany, ea
h sale 
ould be represented as afa
t, and the measures, would be the pri
e of the produ
t, the quantity sold, and so forth.A measure is 
ategorised a

ording to its additivity. An additive measure 
an be addedover all dimensions, a semi-additive measure 
an be added over some dimensions, and non-additive measure 
annot be added over any dimensions. Additionally, an aggregation fun
tionis atta
hed to ea
h measure, so the measures are aggregated 
orre
tly a
ross dimensions. Forinstan
e, the pri
e or quantity of produ
ts would be added together with the sum fun
tion,whereas a measure storing the average pri
e, would use the average fun
tion.There do exist other types of fa
ts, whi
h deal with so-
alled �snapshots�, that is, they donot model an event, instead they register the 
urrent state of the business in some way[PJ01℄.For example, when the 
urrent inventory of a shop is registered, this would be representedas a snapshot fa
t. However, these kinds of fa
ts are rare in 
omparison to event fa
ts, anddi�
ult to model, so we restri
t the type of fa
ts we 
onsider to event fa
ts.2.2.2 DimensionsA dimension 
onsists of entities, whi
h parti
ipate in ea
h fa
t, but whose attributes do not
hange with ea
h fa
t. Returning to the sales example, a 
ustomer is part of every sale, butthe attributes des
ribing the 
ustomer do not 
hange with every sale, thus the attributes ofthe 
ustomer are modelled as a dimension, instead of as measures atta
hed to the fa
t.
All

Year

Month

DayFigure 2.1: Con
ept hierar
hy for simple date dimension.



14 DMWithin ea
h dimension the attributes are ordered in a hierar
hy, whi
h is 
alled a 
on
epthierar
hy1. This hierar
hy is 
reated su
h that it represents generalisation and spe
ialisationof attributes. It always has a unique top node labelled All whi
h 
orresponds to all entities inthe dimension, and a unique bottom node, whi
h 
orrespond to the highest degree of detail thedimension registers. For instan
e, a date dimension 
onsisting of the attributes Year, Month,and Day, would be represented as shown in Figure 2.1. In this representation All 
orrespondsto all data in the dimension, and Day to the level of granularity. Year is the data grouped bythe value of year, Month is the data grouped by the value of year and the value of Year. Thatis, we speak about Januar 2002, and so on, so all the data whi
h 
orrespond to a month in2002 
an be generalised to the year 2002.Sometimes, there exists attributes, whi
h 
annot be generalised or spe
ialised to other at-tributes, in this 
ase, they are simply pla
ed between the All level and the level of granularity.For instan
e the attribute Weekday 
ould be added to the previous 
on
ept hierar
hy, withoutit being part of months or years, as we only want the attribute to represent a weekday overall months and year. That is, we want to be able to analyse all Mondays, and not just theMondays within a given year. In this 
ase, the attribute would be added as shown in Figure2.2.
All

Year

Month

Day

Weekday

Figure 2.2: Con
ept hierar
hy for more 
omplex date dimension.
2.2.3 The Data CubeAfter introdu
ing the previous 
on
epts, we 
an now show an example of a data 
ube, 
on-sisting of fa
ts and dimensions.Consider the sales example, with a fa
t 
orresponding to every sale, whi
h 
ontains a singlemeasure number_sold. Additionally, a 
ustomer, produ
t, and time dimension exist. This
ould be represented as shown in Figure 2.3. In this example, the numbers in ea
h boxindi
ate the number of sold produ
ts grouped by 
ustomer, produ
t and year. Noti
e thatthe year-axis is denoted with �date�, sin
e it 
orresponds to a single attribute from the datedimension, one 
ould have 
hosen to partition the data by months or some other date-relatedattribute.1Te
hni
ally, it should be 
alled a 
on
ept latti
e, however, most literature use the word hierar
hy, so wewill also 
all it a hierar
hy.
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Figure 2.3: Example of a 
ube.2.3 OLAPThe 
ubes previously des
ribed, support a spe
ial kind of analysis, referred to as On-LineAnalyti
al Pro
essing (OLAP)2. This kind of analysis uses spe
ial operations on the data
ubes, whi
h makes it easier to analyse summarised data. First the user is able to sele
t anumber of dimensions whi
h is to be displayed in 
ube or tabular form. Then the followingoperations exist and 
an be used on the dimensions:Roll-up: Generalise the 
urrent level of a dimension, that is, 
limb up the 
on
ept hierar
hy,for instan
e from Month to Year. When the All level is rea
hed, it 
orresponds toremoving the dimension from the 
ube, sin
e it does not �lter the data anymore.Drill-down: Spe
ialise the 
urrent level of a dimension, that is, go down the 
on
ept hierar-
hy, for instan
e from Month to Day.Sli
e and Di
e: The sli
e operation performs sele
tion on a single dimension, for instan
elimiting data by �Year = 2002�, or �Month = January or Month = August�. The di
eoperation is a generalisation of the sli
e operation, whi
h performs the sele
tion on twoor more dimensions.Pivot: A visual operation, whi
h rotates the axes of data, to get a di�erent point of view.Some OLAP systems have additional fun
tionality to 
ombine two 
ubes, whi
h is 
alleddrill-a
ross.These operations are either available in a visual OLAP query tool, or available in a spe
ialisedquery language.2OLAP is often 
ompared to OLTP, whi
h means On-Line Transa
tional Pro
essing, whi
h is the traditionalway of using databases.



16 DM2.4 Storage Models for CubesThe introdu
ed multi-dimensional model 
an either be implemented using spe
ial data stru
-tures, or it 
an be modelled in a relational database. We �rst introdu
e the relational modelsand then dis
uss the di�erent types of ar
hite
tures.The most 
ommon way to model a multi-dimensional model in a relational database is usinga star-s
hema. This s
hema 
onsists of a table for ea
h dimension (the dimension tables), anda table for the fa
ts (the fa
t table). Then ea
h primary key from the dimension tables areadded as foreign keys to the fa
t table, and no other relationships are added. An example ofa star s
hema is shown in Figure 2.4.
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Figure 2.4: Star s
hema.The approa
h used in the star s
hema results in redundant data in more 
omplex dimensions,so these dimensions 
an be normalised. That is, some of the dimensions are split into smallertables ea
h with their own primary key and some attributes, and the dimension table thenreferen
es these tables. This is known as a snow�ake s
hema, an example is shown in Figure2.5.Both [Kim96℄ and [IRBS99℄ strongly dis
ourage the use of snow�ake s
hemas. The reasoningis that the dimension tables are extremely small 
ompared to the fa
t table, and browsing
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hema.of dimensional data is one of the most 
ommon a
tivities. So the spa
e savings due to nor-malisation of the dimension tables are insigni�
ant 
ompared to the performan
e penaltiesof performing several extra joins to get the dimensional data. Thus we restri
t our futurerelational representations of multi-dimensional data to star s
hemas only.The servers or DBMSs, whi
h store the dimensional data 
an be 
ategorised into three 
ate-gories:Multi-dimensional OLAP (MOLAP): All data is stored in spe
ial data stru
tures, spe-
ially suited for dimensional data. These utilise spe
ial stru
tures for the aggregates,whi
h improves performan
e, however, they do not s
ale well with extremely largeamounts of data, 
ompared to mature relational DBMSs.Relational OLAP (ROLAP): All data is stored in a relational database using a star s
hema,snow�ake s
hema or some other model. These s
ale very well, due to the maturity ofthe 
urrent DMBSs. However, they are not as e�
ient in using aggregates, and 
an haveproblems with 
hosing the right join order for dimension tables and fa
t tables. Theseproblems are being addressed by the major DBMS manufa
turers and most DBMSstoday 
an be optimised for star s
hemas.Hybrid OLAP (HOLAP): A 
ombination of relational and multi-dimensional databases,where the large amounts of fa
t data is stored in the relational database, while theaggregates are stored in a multi-dimensional database.



18 DM2.5 Pre-
omputed AggregatesThe main reason behind qui
k pro
essing of OLAP queries, is the use of pre-
omputed aggre-gates, that is, aggregate values for 
ertain levels of dimensions and 
ombinations of dimensionsare 
omputed when data is loaded into the data warehouse, instead of at the time the queryis requested.It should be noted, that it is usually impossible to 
ompute all 
ombinations of dimensionsand dimension levels. With the assumption that only one attribute is in
luded from ea
hdimension in the aggregates, the amount of di�erent dimension/attribute 
ombinations in an
n-dimensional 
ube would be:

n∏

i=1

Liwhere Li is the number of levels within dimension i, in
luding the All-level (sin
e this 
orre-sponds to leaving out the dimension).Instead the aggregates that improves performan
e most are 
omputed. This improvement isbased both on statisti
s 
olle
ted about whi
h type of queries the users are requesting, andbased on the redu
tion in rows that must be fet
hed to 
al
ulate an aggregate. Consider anexample, where the fa
t table 
onsists of 3 years of data, with a granularity of one minute.If we have a date dimension, 
onsisting of the attributes Year, Month, Day, DayHour, andDayMinute, whi
h are linearly ordered in a 
on
ept hierar
hy. Then, assuming a fa
t isre
orded every minute during these 3 years, we have the following amount of distin
t valuesfor ea
h attribute:Attribute Distin
t valuesYear 3Month 36Day 1095DayHour 26280DayMin 1576800If we want to 
al
ulate an aggregate value, without any pre-
omputed aggregates, then itis ne
essary to 
al
ulate it based on the 1.6 million rows every time. Assuming that theaggregate fun
tion is distributive. Then, if for instan
e, an aggregate had been 
al
ulated forDayHour, this aggregate 
ould also be used to 
al
ulate both Year, Month, and Day, redu
ingthe amount of rows needed for the 
al
ulation from 1.6 million to just 26.280.So, generally, the aggregates are pre-
omputed for the attributes in the lowest levels of the
on
ept hierar
hies. Then, depending on the distin
t values present at the other levels, andthe number of users using the dimension, aggregates at higher levels 
an also be pre-
omputed.2.6 Loading Data into the Data WarehouseA large part of maintaining the data warehouse is 
on
erned with loading data into the datawarehouse. When the data warehouse is initially 
reated data is loaded into it, however, afterthis initial load, additional data is loaded at regular intervals.There are a number of steps, whi
h are performed during ea
h loading of data, these are
ommonly referred to as ETL, whi
h is an a
ronym for Extra
t, Transform, and Load. Extra
t



2.6 Loading Data into the Data Warehouse 19is the pro
ess of gathering data from a single sour
e or multiple sour
es, both databases, �les,and other types of external sour
es. Transform is the transformation, 
leaning, and integrationof data to the stru
ture spe
i�ed by the data warehouse. This 
an be as simple as mappingbetween two sets of values, to 
omplex 
al
ulations involving many sour
es. Load is thepro
ess of storing the transformed data into the data warehouse, 
al
ulating aggregates andany other maintenan
e that must be done to the data warehouse.
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Chapter 3TREO DataIn this 
hapter we introdu
e a database, whi
h is being used by a 
lub at the university toregister sales and payment status for members.First we des
ribe the overall purpose of the 
lub, then we examine the quality of data, and
lean the data based on the quality observations. Next we analyse whi
h data 
ubes 
an be
reated using the available data, based on this analysis, the design for two 
ubes is 
reated.Finally we perform the needed data transformations to make the data suitable for the 
ubes,the most 
omplex part, of this pro
ess, is the derivation of histori
al data, sin
e the databasedoes not in
lude this expli
itly.The original database was re
eived in a Mi
rosoft A

ess database. This data has beenimported into a Mi
rosoft SQL Server database, and all database related operations havebeen performed with SQL Server and Analysis Servi
es, whi
h is the data 
ube/OLAP softwarein
luded with SQL Server. The only ex
eption is the 
reation of boxplots, whi
h has beendone using R 1.6.2. This is a statisti
al program, whi
h is des
ribed, and freely available fordownload, at http://www.r-proje
t.org.3.1 Des
ription of the Analysis DomainAt Aalborg University a 
lub exists, 
alled the F-
lub. This 
lub is for employees and studentsa�liated with the 
omputer s
ien
e department and the math department. The 
lub 
onsistsof many smaller 
lubs with a spe
i�
 purpose. One of these is the TREO, whi
h is responsiblefor selling food, drinks, and various other produ
ts to members of the F-
lub at low pri
es.This is done by having a 
ommon refrigerator with the produ
ts, whi
h the TREO orders atvarious distributors. The members of the F-
lub 
an then pur
hase the produ
ts they want,however, they are responsible for paying the produ
ts themselves.In the early days this was done by using a �stregsystem�, whi
h was large paper sheets, wheremembers would have a pla
e for their username. When they fet
hed something from therefrigerator, they would set a mark at their username, thereby a

umulating marks. Thenwhen a member had a

umulated a 
ertain amount of marks he or she would pay to theTREO for the pur
hases.At some point in time it was de
ided to 
reate an ele
troni
 system for handling the pur
hases.



22 DMIt would work the same way as mentioned above, but instead of using paper and pen, themember would register ele
troni
ally whi
h produ
t he or she pur
hased when fet
hing aprodu
t from the refrigerator. Additionally the payments paid by the members would beregistered in the system, so it was possible to see exa
tly how mu
h money a member owed.Thus it would be possible to enfor
e limits on how large a debt a member was allowed to have.The system started online in the fall of 1996, and from this point on a transition to the newsystem was gradually undertaken. The system has two thresholds for the total debt of themember. A warning threshold, whi
h means a member has to pay some of his or her debtwithin 14 days, or the member will be blo
ked, that is, unable to register new pur
hases.And a blo
ked threshold, whi
h blo
ks the member instantly when that threshold is rea
hed.These warning and blo
ked thresholds were 150,00 dkr and 250,00 dkr, respe
tively, in thebeginning. Later they have been 
hanged to 0,00 dkr and -50,00 dkr, respe
tively. A spe
ialfeature of the system, is the so-
alled �multi-buy�, whi
h makes it possible to easily pur
haselarger quantities of the same produ
t (however, due to software bugs in the TREO softwareor the web browser running the system, this feature is not that 
ommonly used).Later, a spe
ial arrangement with the 
omputer s
ien
e department has been made, that is,the department pays the 
o�ee its employees drink. This has been implemented as a spe
ialprodu
t with 
ost 0,00 dkr. The amount of free 
o�ee pur
hased is then handed over to thedepartment, whi
h pays the TREO for the 
o�ee. However, these department payments arenot registered in the database.When a member wants to pay his or her debt, or make sure there is enough money on thea

ount, the member has to pay money to the TREO. This is presently done on fridaysbetween 12:00 and 12:30, however, it is also possible to pay via bank or giro. Sometimes,the ni
e people in the TREO will even a

ept money outside this time frame. Whether thepayment has always been done on fridays or not, we are not 
ompletely sure about, however,it should be possible to infer this from the data. Some irregularities are probably present,sin
e payments are also re
eived during the registration of new members at the beginning ofa study year, whi
h does not ne
essarily o

ur on a friday.From the above des
ription of the domain of analysis, a number of observations are important.
• The 
lub is not trying to make a pro�t
• The pur
hase is done based on trust, the pur
hasing member is responsible for payingby himself.
• There exists thresholds for when a member is warned about being lo
ked out from thesystem until payment is re
eived, and another threshold that immediately blo
ks themember.
• Some blo
ked members might take advantage on the trust fa
tor, and a

umulate pur-
hases until they have paid and are allowed to use the system again, then pur
hasingtheir a

umulated pur
hases



3.2 Overview of Tables and Identifi
ation of Primary Keys 23Column Data Typeemployee_type integerdes
ription var
har(20)free_
o�ee booleanTotal rows: 3Table 3.1: S
hema for Employee_type table.employee_type des
ription free_
o�ee0 Studerende 01 Institut 16 12 Matematik 0Table 3.2: Data in Employee_type table.3.2 Overview of Tables and Identi�
ation of Primary KeysThe �rst important task is to get an overview of what data is available, and dis
over how thedi�erent parts of the data is related. This is a

omplished by examining the layout (s
hemas)of the tables in the database, thereby des
ribing the attributes and by studying the a
tualdata to gain insights about the attributes and tables.During this examination we will also look for attribute 
ombinations, whi
h 
an be usedas primary keys for the tables in the database, sin
e it is la
king these, 
ausing signi�
antperforman
e degradation.3.2.1 Employee_type TableThe Employee_type table, shown in Tables 3.1 and 3.2 
ontains the 
ategories of employeetypes who are using the system.The main purpose of registering employee type is to be able to de
ide whi
h members are ableto re
eive free 
o�ee. Currently there are three types: Students, employees at the 
omputers
ien
e department (registered as �Institut 16� in the data), and employees at the math de-partment. Among these only the employees at the 
omputer s
ien
e department re
eives free
o�ee.The natural primary key for this table is the attribute employee_type.3.2.2 Members TableThe Member table, shown in Table 3.3 is used to register information about the members ofthe TREO.user_id identi�es a single person as a member of the TREO, thus giving a

ess to buyingprodu
ts if the member is marked as a
tive (whi
h is 
ontrolled by the a
tive attribute). The



24 DMColumn Data Typeuser_id integera
tive booleanaargang integerdebt doubleboard_debt doubleadvan
e doublelast_warned integer�rst_warning integerundos integertotal_undos integeremployee integerTotal rows: 1745Table 3.3: S
hema for Members table.values for user_id are in the set {1 . . . 1774}, with a total of 1745 values, whi
h are all unique.a
tive is either 0 for false or 1 for true.aargang is the year the member started studying or working at the university. If an employeehas studied at the university before be
oming an employee, this attribute will be set to thetime at whi
h the member started studying. The values for this attribute are in the set
{0, 1, 1975 . . . 2002}, the values from 1975 and up represent a year, however, more analysismust be done for the members having aargang 0 or 1.board_debt, debt, and advan
e are numbers pertaining to the payments done by the members.board_debt is debt registered in the old non-ele
troni
 system, this value is being redu
ed �rstwhen members pay their debt. debt is the debt from pur
hases using the ele
troni
 system,whenever a produ
t is pur
hased this value is in
reased by the pri
e of the produ
t. advan
eis the amount of money due for the member. When a payment is paid by a member thefollowing pro
edure is performed1) Redu
e board_debt until it is 0 or the entire payment is used2) Redu
e debt until it is 0 or the entire payment is used3) Add the remaining payment to advan
e.Usually we are only interested in the total amount of money the member owes or has due.Thus we de�ne this as a member's balan
e, whi
h is de�ned as follows,

balance
def
= advance − board_debt − debt .last_warned and �rst_warning are used for sending warnings to members that owe money,whi
h ex
eeds a threshold set by the TREO. In the present data �rst_warning is an integerrepresenting a date, the so-
alled epo
h, whi
h is the number of se
onds sin
e the 1st ofJanuary, 1970 at 0:00:00[Gro℄. Examination of the data shows that 268 members have a non-zero �rst_warning, the earliest is 1997-02-06 and the latest 2003-01-20. last_warned does notseem to be used, sin
e it is 0 for all members.



3.2 Overview of Tables and Identifi
ation of Primary Keys 25Column Data Typeuser_id integersubs
riber_sin
e datetimeTotal rows: 29Table 3.4: S
hema for Co�ee table.Column Data Typedate integerTotal rows: 1Table 3.5: S
hema for Paid_ansat_ka�e.undos and total_undos are related to the possibility of 
an
elling a sale. undos is the numberof 
an
ellations done sin
e the last payment, total_undos is the number of 
an
ellations donefor the entire time the member has been registered in the TREO. The reason for this designis that a member is only allowed to 
an
el 5 pur
hases sin
e the last payment. However,examination of the data reveals that 293 members have a value larger than 0 for at leastone of these attributes, of these members, only 2 members have di�erent values for undosand total_undos. This does not seem 
onsistent with the assumed design of these attributes,so these two attributes will be 
ombined to one. This is a

omplished by retaining undosand removing total_undos from the database. In the two 
ases where the attributes di�er,undos is assigned the maximal value of undos and total_undos. The attained values of thenew attribute are between 0 and 5. It is not registered when the undos were done, however,
ross-
he
king with the sales table shows that 13 of the members with undos > 0 have notpur
hased anything using the ele
troni
 system.employee is an attribute des
ribing the employment status of the member, it is an integerwhi
h referen
es the Employee_type table.user_id is 
hosen as the primary key for this table, sin
e it identi�es ea
h member uniquely.3.2.3 Co�ee Tableuser_id is a unique identi�er for the member registered in the system (identi�ed in theMem-bers table), and as su
h the only 
andidate for a primary key.subs
riber_sin
e is the date from whi
h the member is registered as re
eiving free 
o�ee.The data type of subs
riber_sin
e is datetime, however, only the date part is used, whi
h isevident from all time values being 0:00:00. The values for the dates are between 1999-11-02and 2002-09-06.3.2.4 Paid_ansat_ka�e TableThe Paid_ansat_ka�e table, shown in Table 3.5, 
ontains the date of the last payment offree 
o�ee by the 
omputer s
ien
e department. The money transa
tions for free 
o�ee are



26 DMColumn Data Typeuser_id integerdate integeramount doubleTotal rows: 5046Table 3.6: S
hema for Payments table.Column Data Typeprodu
t_id integername var
har(20)pri
e doublea
tive booleanTotal rows: 47Table 3.7: S
hema for Produ
ts table.not part of the system, sin
e free 
o�ee is registered as a produ
t with 
ost 0,00, and thepayments done by the department are not registered. Thus this table is removed from thedatabase, sin
e it does not 
ontribute with any useful information. However, note that it isonly the money transa
tions, and not the a
tual pur
hasing transa
tions, that are missing, soit is still possible to investigate, for instan
e, how mu
h 
o�ee is pur
hased by members.3.2.5 Payments TableThe Payments table, shown in Table 3.6, 
ontains all payments, done by members, whi
hhave been registered by the system.user_id is an integer from the Members table. date is a date in epo
h format, and amountis the amount of kroner paid to the TREO.user_id and date are 
hosen as primary key, sin
e these are unique for all payments.3.2.6 Produ
ts TableThis table, shown in Table 3.7, des
ribes all the produ
ts o�ered by the system (now and inthe past).produ
t_id is a unique identi�er for the produ
t and an obvious primary key. All integers inthe interval [1, 47] are used. name is the name of the produ
t whi
h is shown to the memberswhen buying produ
ts. pri
e is the 
urrent pri
e of the produ
t and a
tive is a �ag to determinewhether the produ
t is 
urrently being sold or not.Examination of the produ
ts reveals a produ
t named �Fake� whi
h is an entry that is notbeing used and never has been, so it is removed from the Produ
t table.



3.2 Overview of Tables and Identifi
ation of Primary Keys 27Column Data Typeprodu
t_id integerpri
e doubledate_start integerTotal rows: 226Table 3.8: S
hema for Pri
es table.produ
t_id date_start pri
e11 1996-11-14 11:39:29 7,0011 1998-09-23 15:00:11 8,0011 2001-05-09 11:31:44 9,0011 2002-11-15 13:20:35 10,5011 2002-11-15 13:23:39 10,5011 2002-11-15 13:24:10 10,5011 2002-11-15 14:01:20 10,50Table 3.9: Example of redundant pri
e 
hanges in the Pri
es table.3.2.7 Pri
es TableThe Pri
es table, shown in Table 3.8, 
ontains histori
al data for the pri
es of produ
ts soldby the TREO. produ
t_id is an integer from the Produ
ts table, pri
e is the pri
e of theprodu
t. date_start is the date from whi
h the pri
e is a
tive, this date is stored in epo
hformat. Investigation of the values shows that the table 
ontains redundant information, dueto it 
ontaining new pri
es that are the same as the old pri
es. In the example in Table 3.9the last four 
hanges to a pri
e of 10,50 
an be removed. In general it is possible to orderthe pri
e 
hanges by date for ea
h produ
t and then only keep the �rst pri
e 
hange if severalequal pri
e 
hanges are dete
ted.produ
t_id and date_start are 
hosen as primary key, sin
e they are unique for all rows.Column Data Typeuser_id integerprodu
t_id integerdate integerpri
e doublepaid_for booleanTotal rows: 170467Table 3.10: S
hema for Sales table.



28 DM3.2.8 Sales TableThe Sales table, shown in Table 3.10, des
ribes a single sale of a produ
t. user_id is areferen
e to the member pur
hasing the produ
t, produ
t_id is a referen
e to the produ
tbeing pur
hased at the date of the date attribute, whi
h is also stored as an epo
h value. pri
eis the pri
e of the produ
t, and paid_for is a spe
ial �ag used by the system, whi
h will beremoved sin
e it is only used for internal �bookkeeping� purposes1.When a member of the system performs a multi-buy of n produ
ts, then n equal rows areinserted into the Sales table. This poses a problem, sin
e there does not exist any attribute
ombination, whi
h is unique for all rows, thereby a primary key 
annot be 
reated, whi
hredu
es performan
e (espe
ially sin
e it is the largest table). This problem 
an be solved in twoways, either by adding a unique transa
tion identi�er attribute or by merging transa
tions thatare inserted by multi-buy. The problem with the �rst solution is that arti�
ial transa
tions are
reated sin
e produ
ts pur
hased during a multi-buy ought to be a single transa
tion. Thus,we 
hoose the latter solution, whi
h we will return to later in se
tion 3.6.1.3.3 Identifying RelationshipsIn the original database there does not exist any expli
it relationships between the tables, thatis, it does not 
ontain foreign key 
onstraints. However, impli
itly a number of relationshipsare present in the form of attributes having similar names a
ross tables as des
ribed previously.In Figure 3.1 the tables are shown with the relationships whi
h have been identi�ed duringthe examination of the tables.Next, the data is veri�ed to 
onform to the presented relationships. For ea
h of the rela-tionships shown in Figure 3.1 it is ensured that a valid foreign key exists in the referen
edtable. For instan
e, the Payments table referen
es the Members table, this means thatevery user_id in the Payments table must exist in the Members table.These 
he
ks only present two 
ases with an invalid referen
e. Both are in the Sales table,where a member is registered with user_id 0, this member does not exist. To solve thisproblem both these 
ases are removed sin
e the number of 
ases is insigni�
ant 
ompared tothe amount of data.3.4 Data Cleansing: Outlier Dete
tion and Corre
tionWe now turn to a deeper investigation of the more 
ompli
ated tables and attributes of thedata, with the obje
tive of �nding in
orre
t and extreme values that may be in
orre
t.The tables Co�ee, Employee_type, and Produ
ts 
ontain so few rows that their values
an be inspe
ted manually, and no apparent invalid or extreme values are found.The remaining data 
he
ks are done using queries, the pre
ise queries being used 
an be foundin Appendix B.2.1A
tually, it makes it possible to delete old transa
tions, this feature has, lu
kily, not been used.
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Figure 3.1: Database layout for the enhan
ed TREO database, with relationships added andirrelevant attributes removed.3.4.1 Members TableFirst the user_id is 
he
ked to be positive, unique and non-null, these 
onstraints are ful�lled.Next a
tive is 
he
ked to be either 0 (false) or 1 (true) whi
h is the 
ase for all members. Thenaargang is inspe
ted by grouping the members by aargang and 
he
king the number of membersat ea
h aargang. The result is shown in Table 3.11. The �rst problem is the in
onsisten
y inthe spe
i�
ation of the year, the value 1 is probably a mistyped 2001, however, 0 
an be bothan unknown value and a mistyped 2000. Inspe
tion of the other years also reveal that thenumber of members in 2000 is very low 
ompared to the surrounding years. To determine themembers, with aargang equal to 0, whi
h should be 
hanged to aargang 2000, we use the salesdata. We �rst determine at whi
h date the �rst pur
hase was done by someone with aargang1999, then we 
hange the members with aargang 0 that have not pur
hased produ
ts beforethis date, and have done some kind of pur
hase. This pro
edure results in 18 members being
hanged.The same pro
edure is done for members with aargang 1, all four of these members are 
hangedto aargang 2001.Finally board_debt, debt, and advan
e are inspe
ted using boxplots. These represent thebalan
e status for ea
h member. The boxplots are shown in Figure 3.2. The most extremevalues are 5000dkr, however this is advan
e and debt for the same member, so it 
an
els out.



30 DMaargang members0 521 41975 91976 81977 131978 91979 161980 81981 201982 221983 361984 731985 861986 531987 461988 591989 661990 671991 901992 751993 631994 931995 771996 771997 951998 801999 1292000 582001 1002002 161Table 3.11: Aargang
aargang members (before) members (after)0 52 341 4 02000 58 762001 100 104Table 3.12: Aargang: Members before and after adjustment
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Figure 3.2: Boxplots for advan
e, board_debt, and debt in the Members tableLikewise a value of 2000dkr is found for board_debt and advan
e of another member, whi
halso 
an
els out. Thus no obvious invalid values are found.The remaining attributes for this table have been veri�ed previously.3.4.2 Payments Tableuser_ids are already 
he
ked to be in the member table and the dates are within their properrange. However, as des
ribed in se
tion 3.1, we are not 
ompletely sure about when thepayments have been done in the past. For many years it has been done on fridays, andto 
he
k whether it always has been friday, the number of payments by year and weekdayare shown in Table 3.13. This table shows that most payments have always been done onfridays. However, a signi�
ant number of payments are also done on other days, this might beexplained by holidays, or spe
ial payments due to new members joining the TREO at when anew semester begins.The inspe
tion of the paid amount is done with a boxplot, shown in Figure 3.3, this revealsone very extreme value (22805 dkr versus 5000 and 4000). Looking at the minimum amountof payments, there are many very small payments (even a payment of 0,00), however, this 
an



32 DMDay \ Year 1996 1997 1998 1999 2000 2001 2002 2003 TotalMonday 1 6 17 126 27 47 101 5 330Tuesday 0 41 26 50 32 17 101 0 267Wednesday 0 17 20 80 54 99 207 3 480Thursday 0 3 52 20 27 30 31 6 169Friday 80 578 444 348 541 632 1031 22 3676Saturday 0 0 1 72 2 13 9 0 97Sunday 0 0 1 18 4 2 1 1 27Total 81 645 561 714 687 840 1481 37 5046Table 3.13: Payments by year and weekday.user_id date amount553 1997-04-18 11:12:27 22805,00991 2002-08-08 10:54:20 5000,001 2000-10-06 11:01:53 4000,001 2000-10-06 11:00:27 4000,001 1999-11-19 12:04:35 3000,001 2001-09-07 11:47:12 2500,001 1997-11-14 13:11:00 2014,251 1997-11-14 13:09:44 2014,251347 2001-03-02 12:48:32 2000,00Table 3.14: Payments ≥ 2000dkrbe explained by people leaving the 
lub, who then pay their remaining debt.Due to the very large payments found in the boxplots, we analyse the biggest payments further.The payments with an amount greater than or equal to 2000dkr are shown in Table 3.14. It
an be seen that big payments are usually being done by the member with user_id 1, however,even for this member there is an odd pattern in the payments, with equal amounts being donewithin minutes. This seems quite suspi
ious, sin
e people usually only perform one paymenton the same day, so it is likely a double entry of the amount. To investigate this matter furtherwe �nd all the payments that are done by the same user on the same day. These are listed inTable 3.15. There is a total of 37 events, all of whi
h are two payments done on the same dayby the same member. It seems that there are two di�erent kinds of events, one where the sameamount is paid twi
e, and another where a small amount and a large amount is paid. The�rst 
ould be explained by the abovementioned double entry of the payment, the latter by amistyped amount, followed by a 
orre
tion amount2, however it seems odd that all amountsare postive in this 
ase.The problems, whi
h are outlined above are partially solved, by removing one of the payments,in all registered double payments. The events with small and large values paid on the sameday are not 
orre
ted, sin
e they are assumed to be 
orre
t.2inferred from the observation that people usually pay in some multiply of 100dkr
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date user_id amount1996-11-29 11:48:02 878 161,001996-11-29 11:48:22 878 8,01997-11-14 13:09:44 1 2014,251997-11-14 13:11:00 1 2014,251998-02-06 12:20:35 1125 200,001998-02-06 12:20:48 1125 200,001998-05-15 11:25:56 1 1500,001998-05-15 11:34:11 1 1,001998-09-04 11:16:53 1046 153,251998-09-04 11:18:51 1046 80,001998-10-21 09:08:02 1011 280,001998-10-21 09:09:31 1011 220,001998-10-23 10:47:23 1064 40,001998-10-23 10:47:51 1064 360,001998-10-26 11:08:20 1 1486,001998-10-26 11:09:20 1 1486,001999-01-27 13:24:55 1085 211,751999-01-27 13:25:10 1085 10,001999-03-12 11:34:24 1178 0,001999-03-12 11:34:47 1178 300,001999-04-29 10:44:13 615 250,001999-04-29 10:44:18 615 250,001999-06-29 12:23:21 1153 229,001999-06-29 12:23:27 1153 220,001999-10-04 13:32:12 1270 35,001999-10-04 13:32:35 1270 315,001999-10-04 13:40:00 1235 30,001999-10-04 13:40:20 1235 270,001999-10-05 10:26:31 1237 20,001999-10-05 10:46:58 1237 30,001999-10-29 10:28:47 1282 188,001999-10-29 13:33:19 1282 110,001999-11-12 11:56:39 1099 100,001999-11-12 11:57:38 1099 100,001999-11-12 11:59:17 1318 150,001999-11-12 11:59:37 1318 150,001999-11-19 11:58:39 1077 380,001999-11-19 12:01:54 1077 90,002000-02-25 13:09:31 1103 200,002000-02-25 13:09:32 1103 200,002000-06-21 13:03:24 677 200,002000-06-21 13:03:48 677 200,002000-10-06 11:00:27 1 4000,002000-10-06 11:01:53 1 4000,002000-10-27 11:27:29 1237 198,002000-10-27 13:14:03 1237 105,002001-03-09 08:10:25 1323 24,002001-03-09 12:10:10 1323 100,002001-05-02 12:58:52 1320 200,002001-05-02 13:02:07 1320 200,002001-07-13 14:04:46 1127 200,002001-07-13 14:04:50 1127 200,002001-09-07 11:39:44 1442 20,002001-09-07 11:39:54 1442 180,002001-11-23 12:20:01 1532 20,002001-11-23 12:20:18 1532 180,002001-12-21 11:52:56 1484 100,002001-12-21 11:53:07 1484 25,002001-12-21 11:56:45 930 175,002001-12-21 11:57:12 930 175,002002-02-06 11:19:55 1083 70,252002-02-06 11:20:13 1083 0,502002-04-12 11:20:21 1349 300,002002-04-12 11:22:10 1349 50,002002-05-03 11:13:33 1563 20,002002-05-03 11:13:40 1563 180,002002-06-07 10:47:52 1 150,002002-06-07 10:48:22 1 1350,002002-09-13 11:17:57 1438 100,002002-09-13 11:19:14 1438 100,002002-09-20 11:36:46 1744 50,002002-09-20 11:37:46 1744 50,002002-12-06 12:26:36 962 100,002002-12-06 12:28:45 962 100,00# di�erent members: 32# di�erent days: 34Table 3.15: Multiple payments on same day by same member.
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Figure 3.3: Boxplot of amount in the Payments table3.4.3 Pri
es Tableprodu
t_id and dates are valid. Investigation of the pri
es show no extreme values (when thetype of produ
t is taken into 
onsideration). However, one produ
t has a negative pri
e, whi
his adjusted to a positive pri
e within hours. The sales transa
tions show that no member haspur
hased the produ
t to a negative pri
e, so the pri
e adjustment has most likely been duringa test period or been a qui
kly 
orre
ted error, thus the negative pri
e is removed from thetable.3.4.4 Sales TableThe user_id and produ
t_id were previously 
he
ked and two transa
tions with invalid user_idwere removed. The dates are 
he
ked to be in their proper range, whi
h they are. Finally,the pri
e attribute is 
he
ked to be equal to the pri
e found in the Pri
es table. This is doneby looking up the pri
e at the latest date in the Pri
es table, that is before the date in the
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t pur
hased at 1999-12-24 17:23:29 the largest date whi
his before the pur
hasing date is found in the Pri
es table, and the pri
e 
hange at this dateis 
ompared to the one in the Sales table. This 
he
k did not dis
over any problems.3.5 Preliminary Design of Data CubesAfter the 
urrent investigation of data, there are two main subje
ts whi
h 
an be modelled ina data 
ube. The �rst is the amount of sales, whi
h most tables are related to. The se
ond ismembers and their balan
e, in
luding warnings given to them.Whether these two subje
ts should be modelled using one 
ube or two 
ubes is not obvious.The balan
e and warning history of members 
ould be seen as a dimension, with the sales databeing the fa
ts, or a smaller 
ube 
entered around the member balan
e 
ould be 
reated. Sin
ewe are not sure whi
h approa
h is the best, we begin by 
reating a 
ube for sales with memberas a dimension. Then, if it is needed, we 
an 
reate a separate 
ube using this dimension later,if this is needed.With the aim of des
ribing the sele
ted two subje
ts, most tables seem to be able to addinformation to the subje
ts. However, paid_ansat_ka�e does not 
ontribute with anyinformation.3.5.1 Identify Grain and DimensionsThe �rst important 
hoi
e that must be made is how �ne-grained the sales data is modelled.Either every transa
tion 
an be modelled, or it 
an be summarised to some level, for instan
e,sales during a minute or an hour. Sin
e the amount of data is small, we 
hoose to model salesat the transa
tion level to preserve all information in the data.During the examination of the sales table it was found that it referen
es the members andprodu
ts tables. Thus these tables are 
andidates for dimensions, whi
h also seems sensible.Furthermore, the date and time of the sale should be represented as a dimension. In generalthere are two ways to represent the date and time. Either as one dimension, or splitting it intoa date dimension and a time dimension. The di�eren
e between the two solutions is the levelof detail one wishes to be able to support, and the types of summarations that are deemeduseful. Using one dimension makes it possible to summarise data by for instan
e 4th of Aprilat 14:00. However, in the available data whi
h represents about 6 years of sales this wouldnot amount to many sales, furthermore, when analysing the data, it would be too detailed.Thus it is 
hosen to split the date and time data into separate date and time dimensions.The Payments and Pri
es tables do not seem likely as dimensions, however, the data storedin them may be used to add derived attributes to the already mentioned dimensions.3.5.2 Con
ept Hierar
hiesNext we determine the 
on
ept hierar
hies within the dimensions. In the illustrations for thesehierar
hies we do not show hierar
hies with only one attribute. So, within ea
h dimension theattributes are the ones shown in the 
on
ept hierar
hy illustration and any attribute shownin the related table in Figure 3.1 whi
h are not in
luded in the depi
ted hierar
hy.
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Figure 3.4: Con
ept hierar
hy for date dimension.Date DimensionThis dimension mainly 
onsists of a year split into 
ommon 
alender terms, as shown in Figure3.4. Furthermore, an attribute 
alled term has been added, whi
h des
ribes the 
urrent term(or spe
ial event) at the university. More pre
isely the months are assigned a value in the set{Exams, Fall, Spring, Summer break} by the following mapping.Semester MonthsExams January, JuneFall September, Oktober, November, De
emberSpring February, Mar
h, April, MaySummer break July, AugustAdditionally, the day of week, month, and year are added.Time DimensionThe time dimension 
onsists of hour and minutes. Furthermore, a more 
oarse-grained at-tribute has been added 
alled timeofday. This attribute maps the hours of the day into naturalintervals in the set {night, morning, noon, afternoon, evening} as shown below.timeofday hournight 1..5morning 6..10noon 11..13afternoon 14..17evening 18..23The entire hierar
hy is presented in Figure 3.5.
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All

TimeOfDay

HourFigure 3.5: Con
ept hierar
hy for time dimension.

Beer

Alco

Wine Snaps Free Not Free MilkChoco

Coffe Dairy Soda/Juice

Juice Soda Misc

Tea Breakfast Sweets

Food

Dairy Misc Misc

Misc

Misc

All

Drinks

Figure 3.6: Con
ept hierar
hy for produ
t dimension.Member DimensionAll attributes in the member dimension are single-attribute hierar
hies.Produ
t DimensionBy examining the available produ
ts in the system, we have tried 
reating a logi
al hierar
hy ofrelated produ
ts, whi
h is shown in Figure 3.6. Noti
e, that this hierar
hy must be 
onstru
tedusing additional attributes in the produ
t dimension. This 
an either be a

omplished byadding all the values shown in the �gure as boolean attributes, and setting these attributesa

ordingly for ea
h produ
t. However, a better solution exists, whi
h is 
reating an attributefor ea
h level of the hierar
hy, and then use the values in the hierar
hy is values for theseattributes. This approa
h only requires three new attributes, and they form a linear hierar
hy.The added attributes and values are:MainClass { Drinks, Food, Mis
 }Class { Al
o, Co�ee, Dairy, Soda/Jui
e, Breakfast, Sweets, Mis
,}SubClass { Beer, Wine, Snaps, Free, Not Free, Cho
o, Milk, Jui
e, Soda, Dairy, Mis
 }With these attributes the 
on
ept hierar
hy for the produ
t dimensions 
an be representedusing attributes as the one shown in Figure 3.7.
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Figure 3.7: Con
ept hierar
hy for produ
t dimension using attributes.3.5.3 Identify MeasuresThe measures available in the sales table is the pri
e of the sold produ
t. A new attribute
alled n_units is added, whi
h is one for every sale, sin
e only one produ
t is registered forevery sale. However, this attribute is useful when summarising data.3.6 Data TransformationWe now turn to the transformation of data, that is, taking the data present in the sour
edatabase from the TREO, and transforming this into stru
tures that are easier to in
orporateinto a 
ube.We have 
hosen to �rst 
reate a star s
hema representing the 
ubes, then later use the OLAPtools to 
reate 
ubes with aggregates. The reason for this 
hoi
e, is that it be
omes possibleto analyse 
ube-stru
tured data easily in the database using standard tools, instead of usingspe
ialised OLAP tools to a

ess the 
ubes. However, it also means that aggregates are notbeing used. If aggregates are to be used then the real data 
ubes must be used using thespe
ialised tools available.First, we perform the simpler transformation tasks, then we 
reate the tables to support thedate and time dimensions. Next, we 
al
ulate the balan
e of members at the time of theirpur
hase. Finally, we 
ompute the histori
al data for members and 
reate spe
ial attributesfor sales summaries with regard to the number of a
tive members.3.6.1 Simple Data TransformationThe system registering pur
hases has a spe
ial feature 
alled multi-buy, whi
h fa
ilitates buy-ing larger amounts of a single produ
t. The system does not register this event in any spe-
ial way, instead, it simply inserts the 
orre
t amount of transa
tions into the Sales table.However, when doing this the transa
tions get the same timestamp. Thus the layout ofsales data 
an be simpli�ed by 
ombining these arti�
al transa
tions into a single transa
-tion. This is a

omplished by using the n_units attribute to 
ount the number of units sold,
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riptionbalan
e double advance − board_debt − debt�rst_pur
hase int epo
h of �rst sales transa
tionlast_pur
hase int epo
h of last sales transa
tion�rst_payment int epo
h of �rst paymentlast_payment int epo
h of last paymentnever_used_system boolean 1 if �rst_pur
hase and last_pur
hase are both NULL0 otherwiseTable 3.16: Added attributes to the Members tableand adding the attributes unit_pri
e, and total_pri
e to the Sales table (or rather, a new
opy of the Sales table, 
alled Sales_
mp). Then the old sales data is inserted into thenew table, with transa
tions having the same user_id, produ
t_id, and date being merged.n_units is the number of produ
ts pur
hased, unit_pri
e is the pri
e for a single produ
t, and
total_price = n_units · unit_price .The Members table is updated to 
ontain a new attribute 
alled balan
e whi
h is given asthe money due for the member minus the total debt of the member. Furthermore, when doinganalysis of the members we assume this will be done in 
onne
tion with payments and sales.To ease this analysis we add a number of attributes to the member table with regard to salesand payments. The added information is the �rst and last date a payment was made, andlikewise for sales. Furthermore, a boolean attribute is added, to indi
ate whether any salesare registered at all for a member. The most important purpose of this attribute is to be ableto �lter out members who have not used the ele
troni
 system, sin
e in many 
ir
umstan
esthese members will not be able to 
ontribute to the analysis of the sales data. The mentionedadded attributes are shown in Table 3.16.Finally the Pri
es table is redu
ed by removing pri
e 
hanges, whi
h do not alter the pri
e,that is, if the previous pri
e for a produ
t is equal to the new pri
e in the table.3.6.2 Date and Time Support TablesMost of the analysis of the data relies on date and time values in some way. These arerepresented in data 
ubes as dimensions, and have to be improved 
onsiderably with derivedattributes, instead of the usage of the epo
h time format.In se
tion 3.5.1 we dis
ussed the possible ways of designing the date and time dimensionsand de
ided using two separate tables. Thus we 
reate two tables, one for the date andanother for the time dimensions. Additionally we 
reate a table to map between epo
h valuesand identi�ers of the date and time dimension. Apart from this we try to derive as manyattributes as possible for the date and time dimension tables.This transformation 
an be done in various ways, either by using the data and time fun
tionspresent in the database system, or by external programs. If the ne
essary fun
tions areavailable in the database system, we presume these will give the least amount of problems, sothis approa
h is 
hosen.First all dates in the existing tables are extra
ted and 
onverted into the SQL type datetime.
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h intts datetimedateid inttimeid intTable 3.17: Epo
h_mapping tableThese values are then stored in the Epo
h_mapping table, with epo
h values as primarykey and a datetime attribute. The s
hema for the this table is shown in Table 3.17.Next, the two dimension tables are 
reated, one for the date dimension, 
alled Datedim, andanother for the time dimension, 
alled Timedim. The Datedim table is populated with alldays between the �rst and last o

urring in the system. That is, even days where there doesnot o

ur any events are added. The reason for this approa
h, is that most days are present inthe system, and that some of the data pro
essing, des
ribed later, be
omes easier when all daysare present. The Timedim table is only populated with values from the Epo
h_mappingtable, sin
e the granularity of the time data would make a 
omplete table a lot larger thandesirable.The general pro
edure done for ea
h date value is as follows.1: Dis
ard time data2: Remove dupli
ates (at sele
ted data granularity)3: Order by date4: Insert into Datedim table5: Add referen
es from Datedim to Epo
h_mappingSin
e we are not going to add data to the 
ubes after they have been 
reated, we 
hose toorder the dates, to optimise the presumed most 
ommon form of full s
an of the table, byin
reasing date value.The same pro
edure is used for the time dimension, where the granularity is kept as it is(se
onds), though only minutes are represented expli
itly in the time table. The reason forthis approa
h is that it does not remove the possibility of retrieving the ordering of the salestransa
tions.The layout of the date and time dimension tables is shown in Tables 3.18 and 3.19. Thederived attributes were des
ribed during the dis
ussion of the date and time dimension inse
tion 3.5.1.3.6.3 Cal
ulate Balan
e Attribute for SalesAn important aspe
t related to the sales transa
tions that is not available in the database is thebalan
e of a member at the time of pur
hase, sin
e this is 
ru
ial in de
iding whether a member
an pur
hase a produ
t or not. However, it is possible to 
al
ulate the balan
e at the time ofpur
hase if one 
ombines the sales and payments data. That is, if we want to 
al
ulate thebalan
e of member m at time t, it 
an be done as follows. Let ta be the set of all times registeredin the system (whereby 0 /∈ ta), then tpt
def
= {x ∈ at | payment done by m at time x∧x < t},
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attribute type valuesdateid int {1, 2, . . .}year int {1996, 1997, . . . , 2003}semester var
har(50) { Spring, Fall, Summer break, Exam }quarter int {1, 2, 3, 4}month int {1, 2, . . . , 12}month_name var
har(10) { January, February, . . . , De
ember }week int {1, 2, . . . , 53}weekday int {1, 2, . . . , 7}weekday_name var
har(10) { Monday, Tuesday, . . . , Sunday }dayofmonth int {1, 2, . . . , 31}dayofyear int {1, 2, . . . , 366}studyyear int {1996, 1997, . . . , 2002}studysemester var
har(3) { E96, F96, E97, . . . , E02 }date datetimeTable 3.18: Datedim table

attribute type valuestimeid int {1, 2, . . .}timeofday var
har(20) { night, morning, noon, afternoon, evening }hour int {0, 1, . . . , 23}mins int {0, 1, . . . , 59}time datetimeTable 3.19: Timedim table



42 DMand tst
def
= {x ∈ at | pur
hase done by m at time x ∧ x < t}.

p0
def
= 0, s0

def
= 0

pi
def
= amount paid at time i by member m

si
def
= pri
e paid at time i by member m

balancemt =
n∑

i=0

pi −
o∑

i=0

siwhere n
def
= max{0} ∪ tp, o

def
= max{0} ∪ sttNoti
e that sin
e we use the sales data before time t the balan
e will be before the 
urrentpur
hase. To emphasize this we do not add an attribute 
alled balan
e, instead we 
all itbalan
e_before, and additionally we add an attribute 
alled balan
e_after, whi
h is de�nedas balance_before + total_price . These attributes ought to be 
al
ulated 
orre
tly, however,due to the way the system was introdu
ed, and the la
k of registration of data, there are anumber problems with the approa
h.1) Members who used the old non-ele
troni
 system had an initial balan
e, whi
h is notregistered.2) When a member undoes a pur
hase, it is only registered that that an undo-a
tion has beenperformed. Neither the date of the undo-a
tion, nor the produ
t or pri
e is registered.Thus arti�
ially in
reasing the debt of members, who have used the undo feature.3) Erroneous payment entries, whi
h have been manually 
orre
ted, are not registered 
om-pletely, thereby making our 
al
ulation wrong for these members.1) 
an be amended by using the balan
e information from the Members table. Basi
ally, a
orre
tion fa
tor is added to the 
al
ulated balan
e. This fa
tor is derived from the di�eren
ebetween a members balan
e 
al
ulated at his last pur
hase, and the balan
e in the Memberstable. However, this fa
tor will also be a�e
ted by 2) and 3), thus not ne
essarily 
al
ulated
orre
tly. This means, that if a member has only used the ele
troni
 system, but has used theundo feature or has had a misregistered payment, then the member will get a 
orre
tion fa
torfor 1) that he should not have. To solve this problem partly we only apply the 
orre
tion fa
torto members with aargang 1996 and previous years, sin
e these have been members during thetransition period. The remaining members are assumed to only have used the ele
troni
system, thus any di�eren
es must be due to 2) or 3). Both the un
orre
ted and 
orre
tedbalan
es are added to the Sales table, the un
orre
ted attributes are pre�xed with �un
� asshown in Table 3.20The 
orre
tion fa
tor is stored in a table 
alled Member_
orre
tion, whi
h is shown inTable 3.21. For every member registered with aargang 1996 or less, the 
orre
tion fa
tor is
al
ulated and added to Member_
orre
tion. This is 
al
ulated as

correction
def
= balance − (sum of payments − sum of pur
hases),where balan
e is from theMembers, and the two sums are from thePayments and Sales_
mptables, respe
tively. All the remaining members are added with a 
orre
tion value of 0.
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e_before doublebalan
e_after doubleun
_balan
e_before doubleun
_balan
e_after doubleTable 3.20: Cal
ulated and derived attributes for Sales tableattribute typeuser_id int
orre
tion doubleTable 3.21: S
hema for Member_
orre
tion table3.6.4 Histori
al Member DataBased on theMembers table we 
an �nd the balan
e of all members, and then derive whetherthey are warned or blo
ked from using the system, by 
omparing their balan
e to the thresholdsset by the TREO for these events. However, this is only possible for the day where the data inthe database was extra
ted from the pur
hasing system, sin
e there does not exist histori
aldata for any of the attributes in the Members table. With a small ex
eption with regardto �rst_warning sin
e it gives the date at whi
h the member was last warned due to a lowbalan
e. However, even this attribute only 
ontains information about the last time a warningwas issued, there is no information about earlier warnings. This is a major problem if onewants to analyse buying patterns, sin
e it is 
ru
ial to have the member balan
e, and memberstatus, that is, whether the member is warned, blo
ked, or neither warned nor blo
ked.It would be possible to use the balan
e des
ribed in the previous se
tion, however, the granu-larity is too �ne and it would be di�
ult to work with. Instead we have 
hosen to 
reate a table
ontaining histori
al information for ea
h member at ea
h day present in the database. Evenif we had 
hosen a higher granularity it would still not a

ount for the impre
ise 
al
ulationof balan
e as des
ribed in the previous se
tion. Choosing an even 
oarser granularity wouldnot be advisable, sin
e the way warnings and payments intera
t means that most membersprobably just have a warning between 1 and 7 days. If, for instan
e, a week had been 
hoseninstead, many warnings would not even be dete
ted.For ea
h member and day the balan
e is 
al
ulated. Based on this 
al
ulation and the date, anumber of related attributes are added, shown in Table 3.22. warned and blo
ked are booleanattributes, whi
h determine the status of the member. Additionally, the number of days themember has been in a 
ertain state is registered, as well as the number of days till a memberis blo
ked (if the member has gotten a warning that is).Before the balan
e for a member 
an be 
al
ulated, it must be de�ned what balan
e is for amember on a spe
i�
 day. The problem is that a member's balan
e may 
hange during theday, so a 
onsistent way of determining the balan
e must be found. Two main possibilitiesare either 
hoosing a time of day, where the balan
e 
urrent balan
e is 
hosen, or taking theaverage or mean of balan
e values for the given day. We do not think think that the 
hoi
e
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riptionuser_id intdateid intbalan
e double 
al
ulated balan
e at end of daya
tive boolean member has done pur
hases on this daywarned boolean member has been warneddays_warned int days member has been warneddays_till_blo
k int days until member is automati
ally blo
kedblo
ked boolean member has been blo
keddays_blo
ked int days member has been blo
kedTable 3.22: Member_day tablewill result in mu
h di�eren
e, so we 
hose the simplest, that is, a spe
i�
 time. To keep the
al
ulations simple we use the latest time possible on the day, whi
h means that all paymentsand sales for a given day is in
luded in the members balan
e.The a
tual pro
edure for 
al
ulating the balan
e is done for ea
h member, who has used theele
troni
 system, as follows:(Member_day.balanced refers to the balan
e in theMember_day table on day d)1: sd ← First date of pur
hase2: pd ← First date of payments3: first_date← min{sd, pd}4: Member_day.balanced ← 0 ∀d < first_date5: balance← 0.6: for all day ≥ first_date do7: amountsales ←
∑n

i=1 pri
e of pur
hasei on day8: amountpayments ←
∑o

i=1 amount of payment i on day9: balance← balance + amountpayments − amountsales10: Member_day.balanceday ← balance11: end forAfter the balan
e has been 
al
ulated for all members, who have used the ele
troni
 system atsome point in time, the attributes related to warning and blo
ked status are 
al
ulated3. Thisis performed by s
anning the days from the earliest to the latest in time order, 
omparing thebalan
e to the warning and blo
ked limits. At the same time, data is pro
essed with respe
tto number of days warned or blo
ked, and the number of days until being blo
ked.1: wts ← warning threshold2: bts ← blo
ked threshold3: warned← 0 {Is the member warned?}4: blocked← 0 {Is the member blo
ked?}5: dayswarned ← 0 {Number of 
onse
utive days the member has been warned}6: daysblocked ← 0 {Number of 
onse
utive days the member has been blo
ked}7: daystill_block ← 0 {Number of days until member is blo
ked}3A
tually it is 
ombined pro
edure to save time, however, it 
an be viewed as two separate to simplify thealgorithms



3.6 Data Transformation 458: for all day in Member_day do9: if md_balanceday < wts then10: if warned = 0 ∧ blocked = 0 then11: warned← 112: daystill_block ← 1413: dayswarned ← 014: end if15: if warned = 1 then16: dayswarned ← dayswarned + 117: daystill_block ← daystill_block − 118: end if19: if blocked = 1 then20: daysblocked ← daysblocked + 121: end if22: if blocked = 0 ∧ (dayswarned = 14 ∨Member_day.balanceday < bts) then23: warned← 024: blocked← 125: daysblocked ← 026: dayswarned ← 027: daystill_block ← 028: end if29: else {Member's balan
e is below warning threshold}30: warned← 031: blocked← 032: daysblocked ← 033: dayswarned ← 034: daystill_block ← 035: end if36: Update warned, blo
ked, days_warned, days_blo
ked, and days_till_blo
k inMember_daydaya

ording to appropriate variables.37: end forThe mentioned pro
edures are used twi
e, �rst for 
reating a table, Member_day_un
,whi
h uses un
orre
ted balan
es, and a se
ond time to 
reate theMember_day table, whi
huses the previously 
al
ulated 
orre
tions. This 
orre
tion is used at the �rst balan
e valuehaving a value di�erent from 0 (that is, in step 3 of the balan
e 
al
ulation algorithm, thebalan
e is set to the 
orre
tion value, not 0).3.6.5 Sales Data SummarationIn the same manner as we 
reated day summaries for members, we also want to 
reate thesefor sales. The purpose of this approa
h is to 
reate summaries, whi
h are easier to use foranalysis. For instan
e, when analysing the amount of sales during a 
ertain period, we do notbelieve pre
ise member information is required, that is, data about whi
h members did thepur
hasing. Instead we want to have data about the number of a
tive members, whi
h is theamount of distin
t members that have pur
hased items during the period.The summaries des
ribed above are 
reated by 
reating a table, whi
h 
ontains a row for the
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artesian produ
t of all days and produ
ts. That is, every row des
ribes the sales of a singleprodu
t on a given day. The information registered is the number of units sold, the total pri
eof the units, and many di�erent ways of 
ounting the distin
t number of a
tive members. Theproblem with a
tive members, is that the information 
annot easily be aggregated. If we havethe a
tive members for ea
h day, then it is not possible to determine the a
tive members duringa week only based on the 
ounts for ea
h day, sin
e we 
annot determine dupli
ate membersa
ross the days. Thus, we 
reate many di�erent types of aggregates for this information. Note,that this information is equal for all produ
ts on a given day.In addition to the sales summaries and a
tive members, we would also like to have informationabout the pri
e 
hanges. This is a
hieved by adding an attribute des
ribing whether a pri
e
hange has o

ured on a given day for a spe
i�
 produ
t, and an attribute with the amountthe pri
e has in
reased (whi
h will be negative if the pri
e is de
reased). Furthermore, it isregistered how many days the produ
ts has not had any pri
e 
hanges.A summary of the attributes 
an be seen in Table 3.23.attribute type des
riptionprodu
t_id intdateid intn_units int number of produ
t units soldtotal_pri
e double total pri
e for sold produ
t unitspri
e_
hange boolean was pri
e 
hanged for 
urrent produ
t on 
urrent day?pri
e_in
rease double amount pri
e was in
reased (negative for redu
tions)a
tive_members_day int a
tive members during daya
tive_members_week int a
tive members during 
alendar weeka
tive_members_month int a
tive members during 
alendar montha
tive_members_semester int a
tive members during season/semestera
tive_members_year int a
tive members during 
alendar yeara
tive_members_ssemester int a
tive members during study semestera
tive_members_syear int a
tive members during study yeara
tive_members_rweek int a
tive members for 
urrent day ± 3 daysa
tive_members_rmonth int a
tive members for 
urrent day ± 15 daysTable 3.23: Sales_day table
3.7 Data Mining Dire
tionsIn this se
tion we analyse whi
h patterns or knowledge the 
lub 
ould be interested in �nding,and we analyse how well the data supports the suggested data mining dire
tions.3.7.1 Possible Data Mining S
enariosCase a) Identify members that 
heat with payments.Due to the way the shop is run there are no measures to 
ontrol whether 
ustomers pay for
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tions 47their items or not. Thus, it is unlikely that it will be possible to dete
t 
ustomers that 
heatfrequently. However, there is another kind of 
heating, whi
h 
ould also be due to membersforgetting to pay. This o

urs when members are registered as owing money to the 
lub, andtherefore are not allowed to pur
hase items. This 
ombined with the fa
t that payments areonly done on fridays, means that some members will pur
hases items without paying untilthey have paid money to the 
lub again � or maybe not paying for the produ
ts in the period.It would be interesting to dete
t this behaviour if possible.Case b) Identify patterns leading to missing bottles.When buying soda water, members are expe
ted to return the bottles they have bought thedrink in. Currently, a lot of bottles are disappearing, whi
h results in the 
lub losing money. Itwould be advantageous to �nd patterns leading to this behaviour, thereby making it possibleto determine measures for avoiding these patterns.Case 
) Ability to predi
t the sales of (
ertain) produ
ts.Some of the produ
ts sold by the 
lub, have a very limited lifetime, so naturally these itemsshould not be ordered in ex
essive quantitities. Thus it would be ni
e to be able to predi
tthe future sales of the these produ
ts.Case d) Analyse e�e
ts of pri
e 
hanges.This option is relevant for many shops, however, it is not important for this 
lub, sin
e the
lub has very low pri
es, due to it not trying to make pro�t.3.7.2 Data Requirements and AvailabilityCase a) The data 
ontains detailed information pertaining to sales and payments, furthermorethe balan
e of ea
h member at the date of the snapshot is available. To perform the analysisdes
ribed in this 
ase, we assume 
lustering would be able to dete
t some patterns, whi
h 
anbe further analysed. In order to improve the 
lustering, a number of extra attributes mightbe needed.We believe the balan
e at the time of pur
hase is important. Furthermore, the days untilnext warning and days sin
e last warning are important, sin
e these give information aboutwhen the possibility for pur
hasing items will be blo
ked. However, this also means that inthe 
urrent database, the attributes we believe are most important, have been 
al
ulated sin
ethe original database did not 
ontaint enough histori
al.Case b) With the 
urrent data it will be imposible to analyse this 
ase. An importantattribute with respe
t to this 
ase is the number of disappearing bottles, and this number isnot being registered.Case 
) The available data is su�
ient for this 
ase, sin
e the fo
us already is on the sales ofprodu
ts. The initial analysis 
an be done by summarising the sales for a given produ
t overa period, looking for patterns in this summary. The sales will be in
reasing, sin
e the numberof a
tive members has been in
reasing sin
e the start of the 
lub, so it will be ne
essary totake this into a

ount. The �rst idea to solve this is by looking at the sale per a
tive member.Doing so, should make it possible to analyse how the sales are over the weeks of a term oryear.Other relevant information that 
an be 
onsidered is a
tive members that are in ex
essive
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ked from buying� states, whi
h 
an be due to them not paying their debt and simplybuying using the a

ount of other members.After 
onsidering summarised data, it might be possible to use 
lassi�
ation to analyse it evenfurther.Case d) This analysis should be based on the results in 
ase 
). There exists histori
al dataregarding the pri
e 
hanges. It would be possible to normalise using a
tive members and aweek pro�le developed in 
ase 
), and then analyse these sales with respe
t to pri
e 
hanges.



Chapter 4Multi-dimensional Data MiningIn this 
hapter we �rst des
ribe some of the related work we are aware of. Next we presentsome problems we have en
ountered when trying to use standard tools to data mine multi-dimensional data. Then we investigate 
on
ept hierar
hies more 
losely, sin
e these are themost important des
ription of stru
ture within the data warehouse with regard to data mining.Finally, we des
ribe our view on how data mining 
ould be done on multi-dimensional dataand how meta data 
an be used.4.1 Related WorkIn this se
tion we brie�y introdu
e the work, we are aware of, whi
h has been done with withinthe area of data mining multi-dimensional data.A short overview of data 
ubes and data mining, with the fo
us on rules, 
an be found in[Pal00℄.The main part of the work with regard to mining of multi-dimensional data has been doneby Professor Jiawei Han, and his 
olleagues and students at Simon Fraser University. Anintrodu
tion to the work 
an be found in �OLAP and Data Mining�[Han98℄. The main 
on-tributions are presented in the book �Data Mining: Con
epts and Te
hniques� [HK01℄, whi
hintrodu
es data mining and data warehousing, and deals with the integration of these areas.However, the dis
ussions dealing with this integration are very broad, and only go into detailwith regard to mining asso
iation rules. Some of the material in the book is based on sev-eral PhD and master theses, these 
ontain a more detailed dis
ussion of the topi
s. Con
epthierar
hies, automati
 generation of 
on
ept hierar
hies, and multi-level rules are thoroughlyanalysed in [Fu96℄. In [Lu97℄ di�erent types of 
on
ept hierar
hies are investigated and aspe
ial representation of 
on
ept hierar
hies is proposed to optimise the performan
e of theroll-up and drill-down OLAP operations. [MWG+97℄ brie�y 
onsiders de
ision tree indu
-tion in relation to 
on
ept hierar
hies. [Tar98℄ deals with spe
ial types of data 
ubes 
reatedfor the purpose of data mining. In [Pin01℄ multi-dimensional sequential pattern mining isinvestigated, whi
h is followed up in [PHP+01℄.Finally, a more detailed dis
ussion of the integration of multi-dimensional data and datamining 
an be found in [Che01℄.



50 DMAt Mi
rosoft Resear
h there has also been done resear
h on the issues of 
ombining multi-dimensional data and data mining, as well as relational data and data mining. The fo
us ofthis resear
h is more database-
entered. In [BCF99℄ 
lassi�
ation is 
onsidered in 
ombinationwith SQL databases. [NBCF01℄ deals with the integration of data mining and SQL databases,with the obje
tive of introdu
ing the interfa
e 
alled OLE-DB for Data Mining, whi
h isa 
ommon interfa
e programmers 
an use to utilise data mining in databases. Lastly, thee�
ien
y of querying parts of data mining models has been investigated in [CS02℄.4.2 Clementine Experien
eWe were 
urious about how the 
urrent data mining tools would handle multi-dimensionaldata. So we tried �nding an approa
h that would allow us to work with the data using a
ommon tool. Due to our good experien
e with Clementine in general, we 
hose this as thedata mining tool we would test.The �rst major problem, is that Clementine 
annot a

ess data 
ubes dire
tly, sin
e its dataimport 
apabilities are restri
ted to �le a

ess and relational database a

ess. Thus we use the
ubes, whi
h are stored in the relational database using a star s
hema. Hereby it is possibleto a

ess the 
ube data, by performing a join between all dimension tables and a fa
t table.It later be
ame apparent, that using database a

ess was quite slow 
ompared to using for-matted text �les, so we 
hose to export the data from the database to a text �le instead, usingthe abovementioned join.Even with these 
hanges, there were still some in
onvenient tasks whi
h had to be done everytime the attributes in the text �le were 
hanged. The main problem was that there did notexist a way to spe
ify the type of ea
h attribute. This is not a major problem if you only usethe tool o

asionally, however, if it is used frequently, then it would 
ertainly be ni
e if one
ould spe
ify options about every attribute dire
tly in the database on
e and for all.The �nal in
onvenien
e, we en
ountered, was the la
k of dimension and 
on
ept hierar
hyinformation, whi
h of 
ourse is to be expe
ted when the tool has not been designed for su
hstru
tural information. However, when there are many dependent attributes present in thedata being analysed, then it be
omes in
reasingly di�
ult to manage the attributes used intraining data mining models. When the input and output attributes are 
hosen, then onemust be aware of the depeden
ies among attributes. If two input attributes are dependent,then it depends on the 
lassi�
ation type, whether this 
auses problems or not, however, itwill slow down the algorithm. If an attribute, whi
h is 
losely related to the output attribute,is used as input attribute, this attribute may determine the output attribute 
ompletely, orat least improve the results arti�
ially.With these problems in mind, we now turn to analysing how multi-dimensional data mining
an be done, and how the user interfa
e 
an be improved.4.3 Con
ept Hierar
hiesThis se
tion is based on [HK01℄ and [Lu97℄.A 
on
ept hierar
hy spe
i�es a mapping of data, from a set of low-level 
on
epts to higher-



4.3 Con
ept Hierar
hies 51level 
on
epts. In Figure 4.1 a 
on
ept hierar
hy is shown for the days in years the 2000 and2001. At the lowest level, ea
h day is represented, above these, the month 
orresponding to agiven day is shown. These months are again mapped to the year the month o

urs in.
2001

All

... Feb 00

31/1−00...2/1−001/1−00

Dec 00Jan 00

2000

Figure 4.1: Instan
e-de�ned 
on
ept hierar
hy.The main purpose of 
on
ept hierar
hies is to support spe
ialisation and generalisation. Thatis, if the data is viewed at �day�-level, by generalisation it 
an be viewed at month, year, orall level. In the same manner spe
ialisation is supported by the 
on
ept hierar
hy.
All

Year

Month

DayFigure 4.2: S
hema-de�ned 
on
ept hierar
hy.The hierar
hy in Figure 4.1 is 
alled an instan
e-de�ned 
on
ept hierar
hy be
ause the hierar-
hy is based on the a
tual values in the data. Another approa
h is to de�ne the hierar
hy basedon attributes in a database s
hema, whi
h is known as a s
hema-de�ned 
on
ept hierar
hy.Figure 4.2 shows the equivalent s
hema-de�ned 
on
ept hierar
hy for Figure 4.1.The pre
ise de�nition of a 
on
ept hierar
hy is:De�nition 4.1 (Con
ept Hierar
hy)A 
on
ept hierar
hy is a partially ordered set (H,≻), where H is a �nite set of 
on
epts and
≻ is a partial order on H. �A 
on
ept hierar
hy is also 
alled a taxonomy, is-a hierar
hy, or a stru
tured attribute.



52 DMperson age1 382 53 194 445 80Table 4.1: Original age data.S
hema- and instan
e-based 
on
ept hierar
hies 
an be de�ned as follows.De�nition 4.2 (S
hema-based Con
ept Hierar
hy)Let A be the attributes of a dimension in a data 
ube. Then a s
hema-based 
on
ept hierar
hyis a partially ordered set (H,≻), where H is a �nite set of 
on
epts, H ⊆ A, and ≻ is a partialorder on H. �De�nition 4.3 (Instan
e-based Con
ept Hierar
hy)Let A be the attributes of a dimension in a data 
ube, let V al(a), a ∈ A be the values attribute
ai attains in a data set D. Then an instan
e-based 
on
ept hierar
hy is a partially orderedset (H,≻), where H is a �nite set of 
on
epts, H ⊆ ∪a∈AV al(a), and ≻ is a partial order on
H. �Instan
e-based 
on
ept hierar
hies are also 
alled set-grouping hierar
hies.Whether one should use a s
hema-based or instan
e-based 
on
ept hierar
hy, is usually notobvious, and in many situations both 
an be used. Consider a dis
rete attribute 
alled age,whi
h registers a persons age in whole years. If we want to generalise the age ranges, we 
anboth use s
hema- and instan
e-based 
on
ept hierar
hies.The original data is shown in Table 4.1. Now, we want to split the age into the ranges 0-10,11-20, . . .,91-, and young (0 - 20), adult (21 - 40), middle aged (41 - 60), and old (61 - ).If we want to use a s
hema-based 
on
ept hierar
hy, this 
an be done by adding two newattributes, one for the numeri
 ranges, and another for the more general textual ranges. Theresulting data 
an be seen in Table 4.2 and the asso
iated s
hema-based 
on
ept hierar
hy tothis table is shown in Figure 4.3. The same 
an be a

omplished with the original data andan instan
e-based hierar
hy, as the one shown in Figure 4.4.In general an instan
e-based 
on
ept hierar
hy 
an always be represented as a s
hema-based
on
ept hierar
hy. However, a s
hema-based 
on
ept hierar
hy 
an only be represented as aninstan
e-based 
on
ept hierar
hy if it is a total order. If it is not, the s
hema-hierar
hy 
anbe split into smaller hierar
hies whi
h have a total order, then these 
an be transformed toinstan
e-based 
on
ept hierar
hies.Two other types of 
on
ept hierar
hies are de�ned in [HK01℄ and [Lu97℄. The operational 
on-
ept hierar
hy is an instan
e-based 
on
ept hierar
hy, whi
h is generated by a set of operationson data. This 
ould for instan
e be some dis
retisation pro
edure used on 
ontinuos attributes,or for instan
e 
lustering 
ould be used. The other type, is the rule-based 
on
ept hierar
hy ,whi
h is a 
on
ept hierar
hy where the generalisation of a 
on
ept has a rule atta
hed, whi
h
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 age_textual1 38 31 - 40 adult2 5 0 - 10 young3 19 11 - 20 young4 44 41 - 50 middle aged5 80 71 - 80 oldTable 4.2: S
hema-based age data.
age_textual

age_numeric

age

All

Figure 4.3: S
hema-based 
on
ept hierar
hy for age, age_numeri
, and age_textual attributes.is evaluated using any data available in the database. If we 
onsider the age example again,a rule-based 
on
ept hierar
hy 
ould, for example, use data regarding the 
entury in whi
hthe person lived to determine the age des
ription. Neither the operational, nor the rule-based
on
ept hierar
hy will be used later in this report, sin
e they are variations of the s
hema-and instan
e- based 
on
ept hierar
hies.4.4 Data Mining in Data CubesNormally when some form of data mining is performed, data 
onsists of a number of 
ases,ea
h with a value for a number of attributes. However, when a data 
ube is used, the datahas a more 
ompli
ated stru
ture, thus it is ne
essary to analyse this stru
ture, and determinehow data mining 
an be performed using it. [mere intro...+ eksempel℄4.4.1 Data Cube Stru
tureAs previously des
ribed in 
hapter 2, a data 
ube 
onsists of a number of dimensions, anda number of measures related to the dimensions. Using a star s
hema approa
h, this resultsin a database table for ea
h dimension and a fa
t table, whi
h stores the measures and areferen
e to all the dimension tables. Additionally, ea
h dimension has a s
hema-de�ned
on
ept hierar
hy, whi
h supports the generalisation and spe
ialisation operations on the
ube. The entire stru
ture is shown in Figure 4.5.
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5 80443819

51 − 60

All

Figure 4.4: Instan
e-based 
on
ept hierar
hy for age attribute.We are going to make an assumption about the 
on
ept hierar
hies des
ribing the dimensions.The assumption is that the 
on
ept hierar
hies 
ontain a top node, labelled �All�, whi
h isthe most general des
ription of data (all data), and a bottom node, 
orresponding to thegranularity unit 
hosen for the dimension, whi
h is the most spe
i�
 des
ription of data (asingle 
ase, at the granularity unit). Furthermore, all paths in the 
on
ept hierar
hy are fromthe bottom node to the top node.1Based on the way dimensions are used during the data mining phase, one 
an split it into twodi�erent kinds, intra-dimensional and inter-dimensional data mining. Intra-dimensional datamining only uses one dimension and the measures, or only the dimension. Inter-dimensionaldata mining is data mining using more than one dimension. One possible use for intra-dimensional data mining 
ould be determining or improving the 
on
ept hierar
hies for 
om-plex dimensions. However, in the following we fo
us on inter-dimensional data mining.4.4.2 How Should Fa
ts be Weighted?An important step before being able to data mine a 
ube, is to �nd ways to extra
t informationabout the transa
tions whi
h have resulted in the 
ube at hand. The two main obje
tives thatwe see, are:1) Find a relation between the dimensions and the fa
ts, su
h that it 
an be determined whena transa
tion has taken pla
e or not.2) If possible, �nd a way to determine how many events in the domain being analysed haveresulted in a single fa
t row.Usually 1) 
an be a
hieved by storing the number of transa
tions in the original data. Thenthe sum aggregate operation 
an be used to �nd the number of transa
tions when generalisingdimensions. Thus, a transa
tion has taken pla
e when the value of the transa
tion-
ount-measure is greater than zero.If ea
h transa
tion in the original data 
orresponds to an event in the domain whi
h is beinganalysed, then the mentioned transa
tion-
ount-measure will also give the number of trans-1This assumption only holds when data is only stored at a single unit of granularity.
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Measures

Dim n

...

Dim 2

All

Dimension 1

Figure 4.5: Stru
ture of a data 
ube.a
tions. However, if the original data 
ompresses these events or handles them in other ways,it may be ne
essary to use other kinds of aggregation fun
tions.For instan
e, in our handling of the TREO data, the sales data is 
ompressed, su
h that whenmultiple items of the same kind have been pur
hased at the same time, it is only stored asa single transa
tion. As des
ribed in 3.6.1, the 
ompressed sales data 
ontains an attribute,whi
h stores the amount of items pur
hased, this 
orresponds to the events in the analysisdomain when analysing how mu
h has been sold. However, if it is the number of people usingthe system at a given time that is being analysed, then it would be another matter, sin
e oneperson buying multiple items should only 
ount as a single event. In the �rst 
ase, it would bepossible to use the items sold as an indi
ator of the number of events in the domain, and usingthe sum aggregate fun
tion would result in the 
orre
t number of transa
tions when analysingthe data 
ube. In the se
ond 
ase, the same attribute 
an be used, however, it should use the
ount aggregate fun
tion instead.Even in the simple 
ase where only a single dimension is being analysed, one must be 
arefulwith whi
h weight is atta
hed to ea
h row in the dimension. Consider a 
ustomer-dimension,whi
h 
ontains the address of the 
ustomer, in
luding the 
ity and postal 
ode. Then assumewe want to determine how likely it is that the mapping between 
ity and postal 
ode is
orre
t. Whi
h weight should be atta
hed to ea
h 
ustomer in the 
ustomer dimension? Itdepends entirely on how the mapping between 
ity and postal 
ode has been veri�ed. If itis veri�ed when the 
ustomer data is entered into the 
ustomer dimension, then ea
h row inthe dimension should have equal weight. However, if the 
ustomer data is used for billinginformation, residing in a fa
t table, then the mapping between 
ity and postal 
ode may be



56 DMveri�ed every time the 
ustomer o

urs in the fa
t table. Thus, the weight should be thenumber of o

uren
es in the fa
t table in this 
ase.As 
an be seen from the above paragraphs, there is no single answer to how the numberof events in the domain of analysis 
an be found, sin
e it depends on how these events areregistered. Thus it 
an only be said that this must be analysed before data mining 
an beperformed in a data 
ube, and it would be ni
e if the data mining tool supported this weightingof rows depending on various 
riteria.4.4.3 Attribute De�nition and Sele
tionAn important part of the data mining task is to sele
t the relevant attributes to perform thedata mining on. If an attribute is not sele
ted its information is lost. At the same time, theworst fa
tor in the 
omplexity of data mining algorithms is the number of attributes in thedata set.The main di�eren
e between data mining traditional 
ase-based data and data 
ubes, is thedi�eren
e in their underlying attribute stru
ture. Thus, to use the 
lassi
 algorithms, we �rsthave to map the attributes in the data 
ubes to 
ase-based attributes.
Year

All

Month

Week

Day

Weekday

Figure 4.6: S
hema-de�ned 
on
ept hierar
hy for date dimension.Before we 
ontinue with how it is possible to map dimension-attributes to 
ase-based at-tributes, we must look 
loser at the s
hema-de�ned 
on
ept hierar
hies. Consider the 
on
epthierar
hy in Figure 4.6, if the 
urrent level of generalisation is the Day level, and we want togeneralise this level, there are two possibilities, either Weekday or Week. However, when weuse the 
on
ept hierar
hies for analysis, it is preferable to have a unique way of spe
ialisingand generalising. We do this by splitting the hierar
hy based on the paths whi
h exist fromthe bottom verti
e to top verti
e. The result is shown in Figure 4.7.With this in mind, we see a number of ways to perform the mapping from dimension-based
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Weekday

Day

All

Year

Day

Week
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All

Year

Figure 4.7: Top-bottom-paths of date 
on
ept hierar
hy.to 
ase-based attributes:1) Map all attributes from the dimensions to a 
ase-based attribute.2) Map all top-bottom-paths in the 
on
ept hierar
hy to a 
ase-based attribute, and sele
t ageneralisation level in this path.3) Map all top-bottom-paths in the 
on
ept hierar
hy to a 
ase-based attribute, and run thedata mining algorithm at ea
h generalisation level in this path.The �rst approa
h su�ers from a number of problems. First of all, it results in a large numberof attributes, whi
h signi�
antly in
reases the 
omplexity of the data mining algorithms.Furthermore, there is a 
han
e of getting trivial results, whi
h 
ould be read from the a
tual
on
ept hierar
hies. For instan
e, 
onsider a date hierar
hy All > Year > Quarter > Month> Day, a rule of the form Month = January ⇒ Quarter = Q1 is not interesting.The se
ond approa
h solves the problems des
ribed above, sin
e dimension-attributes whi
hare related in the 
on
ept hierar
hy are not present in the data mining data at the sametime, however, the user has to spe
ify the generalisation level for a potentially large numberof top-bottom-paths. Furthermore, there might be some intera
tions between di�erent levelsin the top-bottom-path, whi
h 
annot be dete
ted when using this approa
h, depending onthe data mining algoritm being used.The third approa
h is a variation of the se
ond approa
h, instead of having the user spe
ifyea
h generalisation level, all of them are tried automati
ally. However, this easily be
omes anintra
table task.Approa
h 2) and 3) 
ould be 
ombined, su
h that the user spe
i�es the initial levels, andnearby levels are tried automati
ally.However, none of these approa
hes are perfe
t, thus it might be better to modify the exist-ing data mining algoritms. For instan
e, su
h that ea
h top-bottom-path 
orresponds to anattribute, and the algorithm then use generalisation and spe
ialisation operators on these.



58 DM4.4.4 Mining the DataAfter the attributes have been pro
essed as dis
ussed in the previous se
tion, these 
an berepresented as traditional 
ase-based data. Thus, it is possible to analyse them using the
urrent data mining tools, whi
h to do not support data mining on 
ube data. However, itmust be 
onsidered how the input to the data mining tools should be generated. If we have alist of attribute values, these 
ould 
orrespond to a large number of transa
tions. There aretwo ways of solving this problem:1) Dupli
ate the attribute values until they 
orrespond to the 
orre
t amount of transa
tions.2) Use a �weight� attribute, whi
h spe
i�es how many transa
tions the other attribute valuesrepresent.Clearly the se
ond approa
h is preferred, sin
e it 
an redu
e the amount of data 
onsiderably.However, both the data mining tool and the used algorithm must support the use of a weightattribute, whi
h is often not the 
ase.4.5 Using Meta DataAs we des
ribed in 
hapter 2, meta data is an important part of a data warehouse. We believethat the use of meta data should also be extended to data mining purposes, that is, usingmeta data to support the data mining tools.The main advantage, we anti
ipate, of this meta data, is to ease the des
ription of attributesduring data mining. Instead of having to spe
ify that a variable is 
ontinous or dis
rete, thisinformation 
an be store as meta data. Even more detailed groupings of attribute types 
anbe de�ned. Another possibility is to store data whi
h only 
hanges during the loading pro
essof the data warehouse, for instan
e the number of distin
t values an attribute attains. Thisis 
ommon information used to de
ide whether a variable is too spe
i�
 to be in
luded in adata mining task, and the global storage of it, would improve performan
e. Depending onthe a
tual systems being used, it 
ould also be possible to store 
on
ept hierar
hies, attributestorage type, and measure aggregation types as meta data. This information may also beavailable dire
tly from the DBMS, however, most ways to determine this information di�ersfrom DBMS to DBMS. Thus, a 
ommon storage of this information 
ould make the datamining tools more portable.



Chapter 5Cube-based De
ision TreesIn this 
hapter we �rst introdu
e the de
ision tree indu
tion algorithm, in a very general form.Then we 
onsider at whi
h points of the algorithm, it 
an be modi�ed in general. Finally, we
onsider ea
h of these modi�
ation points with respe
t to data 
ubes and determine the kindsof improvements whi
h 
an be obtained.5.1 The Generald De
ision Tree Indu
tion AlgorithmThe following algorithm is based on the basi
 algorithms shown in [HK01℄ and [Dun03℄, thenextended to make it as general as possible, without introdu
ing splits on more than oneattribute.Generate_tree fun
tion(D,A)Input: D (training data), A (
andidate-list of possible attributes)Output: De
ision Tree1: if all samples in D belong to same 
lass, C then2: return leaf node, labelled with 
lass C3: end if4: if A = ∅ then5: return leaf node, labelled with appropriate 
lass in D6: end if7: for all a ∈ A do8: determine best way to split of attribute a, resulting in splits sa1, sa2, . . . , san, ea
h saiwith a predi
ate pai9: 
al
ulate split-measure for a using best split10: end for11: Choose r, attribute with best split-measure12: Create node N , label it with r13: for all sri do14: add ar
 from N , label it with predi
ate pri15: D′ ← {d ∈ D|pai(d) true }16: A′ ⊆ A



60 DM17: if stop 
riterion rea
hed then18: add leaf node with appropriate 
lass in D19: else20: atta
h tree returned by Generate_tree(D′,A′)21: end if22: end forNoti
e that step 16 is usually A← A\{r}, however the attribute need not be removed, sin
eanother type of split 
ould be performed on the same attribute later.When the algorithm stops adding splits, either due to la
k of attributes to split on, or due toa stop 
riterion being rea
hed, an appropriate 
lass is 
hosen from the remaining data at the
urrent part of the tree. This is usually the most 
ommon 
lass in the part of the 
onsidereddata, but need not be. We are not going to 
onsider this de
ision a way of modifying thealgorithm, sin
e it only a�e
ts the 
lass 
hosen when the tree is not grown any deeper, whi
his not the part of the algorithm we want to deal with.Furthermore, we are not going to deal with the stop 
riterion being used, sin
e it is di�
ultto estimate the e�e
ts of it in a general setting, where the pruning phase is not in pla
e.The remaining possible ways of improving the de
ision tree indu
tion algorithm, that we seeas possible are:1) attribute-sele
tion2) 
onstraints on available split attributes3) split-measure4) 
onstraints on available split points/method of sele
ting split points5) split-point-measure6) pruning/post-pro
essing of treeAnother aspe
t that must be 
onsidered is how the algorithm is improved, we 
lassify theimprovements into three 
ategories:1) Complexity redu
tion2) Explainability improvement (more intuitive and simpler trees)3) Classi�
ation a

ura
y improvementWhere 1) improves on the runtime of the algorithm, 2) deals with how the user per
eives theresulting tree, and 3) deals with the obje
tive quality of the resulting tree.5.2 Multi-dimensional ImprovementsFirst, ea
h kind of improvement is 
onsidered isolated with regard to data 
ubes.In the dis
ussion that follows, a 
ommon example will be used. It 
onsists of two dimensions,a date dimension 
onsisting of the attributes Year, Quarter, Month, Week, Weekday, Date,
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ation dimension, 
onsisting of the attributes, Country, Region, City, Street, Address.For ea
h dimension a s
hema-based 
on
ept hierar
hy is 
reated, these are shown in Figure5.1.
City

Street

Address

Region

Country

All

Date

Weekday

WeekMonth

Quarter

Year

All

Figure 5.1: Con
ept hierar
hies for date and lo
ation dimension.
CHd and CHl are the 
on
ept hierar
hies for the date and lo
ation dimensions, respe
tively.Furthermore, the following total ordered s
hema-based 
on
ept hierar
hies are de�ned:
TCHd1: All > Year > Quarter > Month > Date.
TCHd2: All > Year > Quarter > Week > Date.
TCHd3: All > Year > Weekday > Date.
TCHl = CHl (sin
e it is already a total ordering).The values of the di�erent attributes is assumed to be the following:Year: 2001, 2002, 2003.Quarter: Q1, . . ., Q4.Month: Jan, . . ., De
.Week: 1, . . ., 52.Weekday: Mon, . . ., Sun.Date: 1/1-2001, . . ., 31/12-2003.Country: Denmark (DK), Germany (GE)Region: Northern Jutland (NJ), Central Jutland (CJ), Southern Jutland (SJ), the islands (I),Northern Germany (NG), Southern Germany (SG).City/Street/Address: Too many to list.Note that the abbreviations shown in parentheses are used in �gures to make them more
ompa
t.During the next se
tions it will sometimes be ne
essary to di�erentiate between the possiblepredi
ates used when de�ning the splits of an attribute. The types of predi
ates we 
onsiderare =, 6=, <, ≤, >, ≥, and ∈. Where ∈ refers to a bran
h that is followed when an attributeis in a set of elements. However, we would like to simplify these to only two kinds of splits,thus, we introdu
e equality- and membership-splits.



62 DMA bran
h whi
h is followed with predi
ate =, that is, when the attribute is equal to a spe-
i�
 value, is referred to as an equality-bran
h. An attribute where all bran
hes are of theequality-bran
h type is referred to as an equality-split attribute. A membership-bran
h, andmembership-split attribute are de�ned likewise for the ∈ predi
ate. Unless otherwise men-tioned all predi
ates, ex
ept =, are treated as the membership predi
ate. If for instan
e thepredi
ate is �< 7�, all values less than 7 
an be found and grouped into the set S, then it isenough to test for �∈ S�.5.2.1 Constraints on Split AttributesSuppose that all the attributes of ea
h 
on
ept hierar
hy are viewed as possible attributes toin
lude in the de
ision tree indu
tion algorithm. This results in attributes being in
luded thatare generalisations or spe
ialisations of other attributes (provided the 
on
ept hierar
hies are
omplex enough).Under 
ertain 
ir
umstan
es it is possible to redu
e the amount of attributes that are 
andi-dates for a split. If the 
omplexity of de
iding whi
h attributes 
an be skipped is less thanthe 
omplexity of in
luding the attributes, then it is possible to redu
e the overall 
omplexityof the algorithm.First we must analyse under whi
h 
ir
umstan
es an attribute 
an be ignored, then we needto analyse the 
omplexity of de
iding whether an attribute 
an be ignored or not.
Year

Street
Region

Month

2003

Jan
Feb

Mar − Dec

X

NJ, CJ, SJ
NG, I

SG

2001, 2002

Figure 5.2: Available split attributes, example.When de
iding the split attribute at X in the de
ision tree shown in Figure 5.2, some attributesare not ne
essary to 
onsider. These are Quarter and Year, sin
e the split on Month impliesthat all data at this point are in Q1 2001. Also, Country is irrelevant sin
e the regions NJ,CJ, and SJ reside in the same 
ountry.In general it 
an be seen that if an equality-split is performed on attribute A ∈ TCHi, then allattributes in TCHi, whi
h are more general than A 
an be dis
arded. If a membership-splitis performed on attribute B ∈ TCHj, then the situation is more 
ompli
ated. All attributes
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h are more general than B are 
andidates for being ex
luded. However, theonly attributes that 
an be ex
luded, are the ones that have same value for all data under
onsideration at the split-attribute.Clearly, the situation where a previous equality-split has been performed 
an be used tooptimise the de
ision tree indu
tion, sin
e the de
ision of whi
h attributes 
an be disregardedonly relies on the information on 
on
ept hierar
hies.However, when dealing with membership-splits it be
omes more 
ompli
ated, sin
e the val-ues of data has to be investigated. One possibility may be to store instan
e-based 
on
epthierar
hies, and use these for lookup of information. Part of the instan
e-based 
on
ept hier-ar
hy for the lo
ation dimension is shown in Figure 5.3. To de
ide whether an attribute 
anbe disregarded, �rst all values that are part of the membership-split must be found in the
on
ept hierar
hy, then their parents in the tree must be found in the tree. If they have a
ommon parent, then the attribute 
orresponding to investigated level in the tree, and all itsparents 
an be disregarded. If they do not have a 
ommon parent, then one 
an investigatethe parents of the parents, and so on.
SJ I

DK

CJNJ

All

SGNG

GE

Figure 5.3: Partial instan
e-based 
on
ept hierar
hy for lo
ation dimension.This would most likely redu
e the 
omplexity, sin
e these 
on
ept hierar
hies are only relatedto a single dimension, and dimensions 
ontain far less data to 
onsider than a dimension joinedwith the fa
t table.Another possibility may be to divide the attribute-sele
tion into a two-level pro
ess, wherean attribute from ea
h 
on
ept hierar
hy is tested �rst. Based on this test the best, or the nbest 
on
ept hierar
hies are found. Within these 
on
ept hierar
hies all attributes are tested.Thus, the 
omplexity is redu
ed if there is a signi�
ant amount of non-single-attribute 
on
epthierar
hies. However, how this approa
h would in�uen
e the quality of the found de
ision treesis not easily predi
ted.5.2.2 Split-measureThe split measure itself 
ould also be modi�ed to use information from the dimensions and
on
ept hierar
hies. We do not see any immediate use, however, it would be possible to rewardor punish attributes depending on whether they are from the same dimension or not. Likewise,an attribute 
ould be rewarded/punished depending on how general or spe
i�
 it is.At the moment we do not see a possible use for this, sin
e it is not 
lear whether it is



64 DMadvantageous to have many attributes from the same dimension or not, however, it 
ould beleft to the user as an expert option to tune the mining algorithm.With regard to rewarding an attribute for being general, this may avoid over�tting, but thisis only spe
ulation, and it depends on the split measure being note.5.2.3 Constraints on Available Split Points and Split Point MeasureIf all attributes from the dimensions and 
on
ept hierar
hies are used, then it does not seempossible to improve the 
hosen split points based on the extra information from the 
on
epthierar
hies.So suppose that ea
h total ordered 
on
ept hierar
hy is viewed as a possible attribute, named
TCHi as des
ribed above, and that to ea
h su
h attribute a property is atta
hed, whi
hdes
ribes the generalisation level that the attribute is at, denoted by L = level − name.For instan
e, the attribute TCHd1, 
ould have L = Month, meaning that the attribute is
onsidered at the Month-level.Then we propose the idea of using the attribute values at a 
ertain generalisation level aspossible split points. More pre
isely, 
onsider the attribute TCHd1. Based on the example,the possible ways of splitting this value, whi
h should be 
onsidered, are the following:Year-level: { 2001, 2002, 2003 }Quarter-level: { Q1, Q2, Q3, Q4 }Month-level: { Jan, Feb, . . ., De
 }Date-level: { 1/1-2001, 2/1-2001, . . ., 31/12-2003 }After ea
h set of split points have been evaluated, either the most general is 
hosen among theones with best split-point measure or if the split-point measure does not reward more generallevels 
ompared to more spe
i�
 levels, then the 
hoi
e made should be based both on thesplit-point measure and the level of generality. This is due to spe
i�
 split points being ableto 
lassify the training data more pre
isely, thus redu
ing explainability.See Figure 5.4 for an example of su
h a de
ision tree.

NG, SG

SJ, I

NJ, CJ
Q3,Q4Q2Q1

2002, 20032001

L=Region L=Quarter

L=Year

lTCH

d2TCH

d1TCH

Figure 5.4: De
ision tree with 
onstrained split points.The purpose of 
hoosing these split points, is to improve explainability. For instan
e havingthe split points Q1, Q2 
ompared to the ranges [Jan,Feb,Mar℄ and [Apr,May,Jun℄, seemslike a more 
ompa
t des
ription of the same 
on
ept. The improvement is even greater if
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ompared to a
tual dates as split points. Figure 5.5 shows an example of a de
isiontree with the same 
lassi�
ation abilities as the one in Figure 5.4, but with a less generalsplit-point/attribute sele
tion.
Month

Jul−Dec

Apr−Jun

Jan−Mar

Year

Region

NG, SG

SJ, I

NJ, CJ

2002, 20032001

Figure 5.5: De
ision tree without 
onstrained split points.Another possibility may be to not restri
t the level at the node level, but instead allow di�erentgeneralisation levels at ea
h bran
h.Finally it may be possible to use the aggregates stored in the 
ube when 
al
ulating thesesplit points, and thereby redu
ing the 
omplexity of the algorithm.5.2.4 Pruning/Post-pro
essing of TreeThe last possible modi�
ation is to generate a de
ision tree, and then modify the tree beforeor after the pruning stage, with the obje
tive of in
reasing its explainability.First we must establish when an attribute and its split points 
an be generalised in an existingde
ision tree without altering the 
lassi�
ation a

ura
y. This is easier to see using an example,Figure 5.6 shows an instan
e-based hierar
hy. Before an attribute at Month level, 
an begeneralised to Quarter level, the split points it has, may only be the ones that divide thequarters. That is, every split on the Month attribute must 
ontain a 
omplete quarter or anumber of 
omplete quarters. If this is ful�lled, then the split represent exa
tly the samedata, due to the relation between Month and Quarter. So, a split involving only January andFebruary, 
annot be generalised to Q1, sin
e this 
ould in
lude more data (data with Month= Mar
h). Likewise, a split involving July to September, 
annot be generalised to Q3, sin
ethis 
ould ex
lude data for the month June.Suppose that the attributes used in the de
ision tree indu
tion algorithm is all attributesavailable in the dimensions. This 
ould result in a tree of the form shown in Figure 5.7.Consider the leftmost Region attribute, whi
h has a split on { NJ, CJ, SJ, I } and { NG,SG }. If we use the instan
e-based 
on
ept hierar
hy for the lo
ation dimension, shown inFigure 5.3, it 
an be seen that the two groups of data 
an be generalised to the Countrylevel. That is, the region split attribute 
an be repla
ed by a Country split attribute, with thebran
hes, DK, and GE. Thus a simpler split involving less values is a
hieved, without alteringthe 
lassi�
ation a

ura
y.
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Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec

Q1 Q2 Q3 Q4

2003

Figure 5.6: Partial instan
e-based 
on
ept hierar
hy for TCHd1.

Region

2001 2002, 2003

Month Region

NJ, CJ SJ, I

Mon not MonNJ, CJ, SJ, I NG, SG

Jan − Mar
Apr, May

Jun − Dec

NG, SG

Weekday

Year

Figure 5.7: De
ision tree before/after pruning.
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enario will not o

ur that often if there are many possible values for anattribute, sin
e it requires the split attribute to split on very rare sets (the sets de�ned by theinstan
e-based 
on
ept hierar
hy).A more likely situation is presented in the Month attribute, where the months are almostsplit a

ording to the Quarter level. It would be possible to use Quarter as a split attribute,using Q1, Q2, Q3-Q4 as the split 
onditions, however, this would pla
e June in the wrongbran
h. If Month was 
hosen over Quarter due to better 
lassi�
ation a

ura
y, this willlead to a redu
tion in 
lassi�
ation a

ura
y. Whether the tree with improved explainabilityand redu
ed 
lassi�
ation a

ura
y is better than the original tree depends on how mu
h theexplainability is improved and how mu
h the a

ura
y is redu
ed. So, some measure is neededto 
ompare these fa
tors, then a de
ision based on this measure 
an be made.Another situation, illustrated by the rightmost Region attribute, is splits lining up to di�erentgeneralisation levels. This region attribute is split into { NJ, CJ }, { NG, SG }, and { SJ, I}. { NG, SG } 
an be generalised to GE, sin
e all regions for Country = GE are in
luded inthis split. However, { NJ, CJ }, 
annot be generalised to DK, sin
e this would in
lude moreregions than de�ned by { NJ, CJ }. The spe
i�
 problem here, is that part of the bran
hes
an be generalised to a higher level, while others 
annot. A possible solution would be to allowa split on more than one attribute, thus allowing bran
hes at di�erent generalisation levels.That is, a node 
alled �Region/Country�, with splits that spe
ify whi
h attribute they use forthe split. This solution 
ould also be used for the Month attribute, by generalising Jan-Marto Q1, without altering the rest of the splits.In Figure 5.8 the tree from Figure 5.7, 
an be seen after the dis
ussed simpli�
ation steps.
2002, 2003

SJ, I

Mon not Mon

Country

GEDK

Region, Country

NJ, CJ GE

(Region) (Region)

(Country)

Quarter

Q1
Q2

Q3, Q4

2001

Year

Weekday

Figure 5.8: De
ision tree after simpli�
ation.5.2.5 Intera
tive De
ision Tree Indu
tionA �nal idea we propose is to view ea
h total ordered 
on
ept hierar
hies as an attribute witha level atta
hed. Then begin the de
ision tree indu
tion by setting the level of ea
h attribute,either using some heuristi
 algorithm or by using attribute-oriented indu
tion. Then thede
ision tree is indu
ed and presented to the user. At this point, the user should have the
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hoi
e of 
hanging the level, asso
iated with ea
h attribute, to investigate the 
onsequen
es ofthis 
hange. Depending on how the levels and attributes are sele
ted, it may only be ne
essaryto indu
e the the subtree with root in the node whose level is 
hanged. This 
ould result ina signi�
ant redu
tion in 
omplexity depending on where the node is situated in the tree.Also, if the original indu
ed tree did not 
hose the optimal level of the attribute that is tobe 
hanged, then it may be ne
essary to move the node up in the tree, resulting in more
al
ulations.



Chapter 6Evaluation of Some Proposed IdeasIn this 
hapter we analyse the experiments we have 
ondu
ted based on the previous analysis.We have 
reated a prototype implementation of some of our ideas. The appli
ation hasbeen programmed in C# and 
onne
ts to Mi
rosoft SQL Server for database a

ess1. The
hoi
e of language is mainly due to its easy database a

ess and due the author's 
uriosityabout the abilities of this new language. The sour
e 
ode for the appli
ation is available at�http://www.
s.au
.dk/∼peterj/mdm/�2 .6.1 Multi-dimensional Data Mining User Interfa
eBased on the problems des
ribed in se
tion 4.2, and the dis
ussions in se
tion 4.4, we haveexperimented with 
reating a user interfa
e for multi-dimensional data mining.6.1.1 Attribute View and Sele
tionWe have tried the two views des
ribed previously, that is, either viewing all attributes asattributes, or viewing 
on
ept hierar
hies as attributes with a level. None of these two ap-proa
hes is 
onsistently signi�
antly better than the other. It mostly depends on the typeof 
on
ept hierar
hy and the number of attributes in the 
on
ept hierar
hy. If the 
on
epthierar
hy 
onsists of highly related attributes 
hoosing the level is easiest, and it does notseem to be too limiting to ex
lude the remaining attributes. This is also true if it is a small
on
ept hierar
hy, sin
e the number of attributes being ex
luded is also small. However, whendealing with large or less related attributes, then it is not enough to simply be able to sele
tone of them. Our 
on
lusion is that, both views of data should be supported, and sele
tableby the user.With regard to attribute sele
tion and desele
tion, we have found that 
hoosing or removingattributes from an entire dimension or 
on
ept hierar
hy 
an be useful, though it should stillbe possible to sele
t or desele
t single attributes. This is espe
ially true with regard to the1We are in the pro
ess of modifying the database a

ess, so it will be possible to use it with Mi
rosoftA

ess, whereby it will be easier for other people to test, and it will also be easier to supply other people withtest databases. However, this 
onversion has not been 
ompleted yet2An exe
utable version and test data will appear when the Mi
rosoft A

ess database a

ess is fun
tional



70 DMsele
tion of a target attribute, sin
e it be
omes possible to desele
t all attributes 
hosen asinput attributes from a dimension or 
on
ept hierar
hy when a target attribute is 
hosen insidethis dimension or 
on
ept hierar
hy. We have tried using a sele
tion hierar
hy 
onsisting ofdimension, 
on
ept hierar
hy, total ordered 
on
ept hierar
hy, and attribute. However, thisbe
omes too 
omplex, so instead we suggest that the user 
an 
hoose between using either
on
ept hierar
hies or total ordered 
on
ept hierar
hies.In summary:
• Both the �attribute as sele
tion unit view�, and the �
on
ept hierar
hy as attribute withlevel� view should be supported, and user-sele
table.
• Sele
ting or desele
ting attributes as input attributes should be possible at the dimen-sion, 
on
ept hierar
hy, and attribute level.
• When a target attribute is 
hosen, the user interfa
e should provide the option of auto-mati
ally removing all input attributes in the dimension or 
on
ept hierar
hy the targetattribute is part of.
• Using both 
on
ept hierar
hies and total order 
on
ept hierar
hies at the same time willmost likely make the user interfa
e too 
omplex.6.1.2 Data Mining ModeWith regard to the a
tual data mining (and in part to the available dimensions and measureattributes), we suggest that three di�erent types of data mining is supported. These are:
• Intra-dimensional.
• Fa
t-weighted intra-dimensional.
• Inter-dimension.The �rst type is the simplest and performs data mining within a single dimension. The se
onduses a dimension table joined to the fa
t table, thus weighting the dimension rows after theirnumber of o

urren
es in the fa
t table. This thereby in
ludes the measure attributes aspossible input attributes. It 
ould also be possible to use a measure attribute to determinethe weight ea
h fa
t should have. The third type is what we expe
t to be the most 
ommontype of data mining in multi-dimensional data, sin
e it uses more than a single dimension.When this type of mining is used, it should be possible to spe
ify some expression usingthe measure attributes, whi
h evaluates to true when a transa
tion o

urs in the fa
t table.This would most 
ommonly be a measure whi
h should be non-zero. Additionally a measure-attribute should be sele
table as weight, like the n_units measure, whi
h was des
ribed duringthe TREO data analysis.We have implemented the above data mining methods, and found them su�
ient for ourpurposes, however, they have only been used on a single data 
ube, so we may very well havemissed some other ne
essary fun
tionality.



6.2 De
ision Tree Indu
tion Modifi
ations 716.1.3 Meta DataAll information regarding attributes, 
on
ept hierar
hies, dimensions and the fa
t table havebeen stored as meta data. This has proved useful, in 
omparison to storing the informationstati
ally, sin
e it be
omes very easy to adjust, for instan
e, 
on
ept hierar
hies on-the-�y.Additionally, it is very 
onvenient not to be required to spe
ify the types of attributes, sin
ethis information is stored in the database.6.1.4 Simpli�
ationsWith the 
urrent prototype, a few simpli�
ations have been made. The �rst simpli�
ation isthat there 
an only exist one 
ube in a database, this is to simplify the design. One lessonlearned is that when one has to manage dimensions, 
on
ept hierar
hies, and attributes, itbe
omes a lot more 
omplex than the traditional rows and attributes.The se
ond simpli�
ation is that the 
ube fun
tionality of the database is not used. This isdue to portability and la
k of time.6.2 De
ision Tree Indu
tion Modi�
ationsIn this se
tion we des
ribe the prototype implementation of one of the de
ision tree improve-ments we proposed earlier. This implementation as been in
luded in the abovementionedappli
ation.6.2.1 Basi
 AlgorithmWe have implemented the C4.5 algorithm, whi
h only uses equality-splits, and we have 
hosento simplify it by only allowing dis
rete attributes.The algorithm has been implemented with a split-measure based on the following de�nitions,from [Mit97℄ and [Jen01℄:
Entropy(S) =

c∑

i=1

−pi log2 piwhere S is a 
olle
tion of rows, with c 
lasses, pi the proportion of rows in S belonging to
lass i, 0 log2 0 de�ned to be 0.
Gain(S,A) = Entropy(S)−

∑

v∈V alues(A)

|Sv|

|S|
Entropy(Sv)where V alues(A) is the set of possible values for attribute A, and Sv the subset of S where Ahas value v.

SplitInformation(S,A) = −
c∑

i=1

|Si|

|S|
log2

|Si|

|S|where Si is the subset obtained from S when partitioning S by the c-valued attribute A.



72 DMWith the a
tual split-measure being:
GainRation(S,A) =

Gain(S,A)

SplitInformation(S,A)Usually these 
al
ulations are done in main memory, by starting with the entire database andthen partitioning it as the de
ision tree is indu
ed. However, this approa
h 
annot be used withlarge databases, sin
e they 
annot �t into main memory. Thus we have tried implementingit without holding the data in main memory, instead we query the database. This approa
hhas the added bene�t of giving us a hint about the type of queries the database must answerduring standard de
ision tree indu
tion, so we 
an analyse whether a data 
ube would improvethese queries. We have not implemented any pruning strategies, sin
e we want to keep thefo
us on how the splits are performed during the tree indu
tion phase. If pruning is used, itis di�
ult to distinguish between e�e
ts of the split of attributes and the �nal pruning of thetree.6.2.2 TestsThere are two of the proposed algorithms we would like to test, one is the use of spe
i�
 splitintervals based on the available data in a 
on
ept hierar
hy. However, this approa
h is notinteresting in 
omparison to a traditional C4.5 algorithm using only equality-splits, sin
e theresult would be equal to simply using all the attributes from the input 
on
ept hierar
hiesand then indu
e a de
ision tree using these.Instead we fo
us on the algorithm, whi
h use representatives from 
on
ept hierar
hies totest the goodness of the 
on
ept hierar
hy, and then only test all the attributes in the best
on
ept hierar
hy plus all attributes in single-attribute 
on
ept hierar
hies. We are interestedin dis
overing how large a redu
tion in attribute goodness tests this approa
h gives, and howthe approa
h a�e
ts the predi
tion abilities of the de
ision tree.We have 
hosen to only use a subset of the data, whi
h is available in the 
ube to speed up the
al
ulations. The data has been divided into 3 subsets, a training set 
onsisting of 34K rows,and an evaluation set and a performan
e set, both 
onsisting of 17K rows. The evaluation setis to be used by the indu
tion algorithm during for instan
e pruning. While the performan
eset is never used by the indu
tion algorithm, it is only used for testing the performan
e of the�nal 
lassi�er on unseen data. We saw two 
hoi
es for dividing the data, one sele
ting rows atrandom, and another, where the rows are sele
ted based on the date, su
h that the trainingset has the oldest data, the evaluation set some newer data, and the performan
e set has thenewest data. The latter is more di�
ult for the 
lassi�er, so this approa
h is 
hosen sin
e weare interested in dete
ting even small 
hanges between the two algorithms.A �nal 
hoi
e regarding the tests, is the sele
tion of a representative from the 
on
ept hierar-
hies. We have 
hosen to use the most spe
i�
 attribute, whi
h is not a primary key.We have 
hosen a set of spe
i�
 
ases, where the input attributes has been 
hosen based on thesize of the 
on
ept hierar
hies, and not on whether it would give some interesting knowledgeabout the data.



6.2 De
ision Tree Indu
tion Modifi
ations 736.2.3 ResultsIn the following we present 5 
ases, whi
h have been used to examine how the base de
isiontree (
4.5) behaves, 
ompared to the modi�ed algorithm (mod), where a representative from
on
ept hierar
hies is used. Attr is the number of attributes whose split-measure has been
al
ulated, Train is the fra
tion of 
orre
tly 
lassi�ed training 
ases, and Performan
e is thefra
tion of 
orre
tly 
lassi�ed performan
e 
ases. We have 
hosen not to show the a
tualde
ision trees, most of the trees using 
4.5 are very 
omplex due to the la
k of pruning.Case 1: Input Attributes:(Memberdim) a
tive, aargang, semester, undos.(Timedim) timeofday, hour.Target: (Memberdim) free_
o�ee.Attr Train Performan
eC4.5 322 0,9211 0,9222Mod 114 0,9161 0,9188The performan
e di�eren
e is very small in this 
ase, while the modi�ed algorithm has donesigni�
antly less 
al
ulations. By inspe
tion of the trees it has been seen that the C4.5 tree isvery 
omplex due to it using the hour attribute, whi
h the modi�ed algorithm does not use.Case 2:Input Attributes:(Memberdim) a
tive, aargang, semester, undos.(Produ
tdim) name, a
tive, MainClass, Class, SubClass.Target: (Memberdim) free_
o�ee.Attr Train Performan
eC4.5 541 0,9779 0,9773Mod 437 0,9779 0,9773The trees in this 
ase are equal, however, the modi�ed algorithm used slightly less 
al
ulations.Case 3:Input Attributes:(Memberdim) a
tive, semester, free_
o�ee, undos.(Datedim) year, semester, quarter, month, week.Target: (Memberdim) aargang.Attr Train Performan
eC4.5 677 0,9087 0,8635Mod 69 0,8931 0,8688Mod2 76 0,8931 0,8688In this 
ase the di�eren
e between the trees is very large, this is due to C4.5 in
luding themonth attribute fairly 
lose to the leaves of the tree in several bran
hes. We have tried tomodify the representative used in the modi�ed algorithm to see whether it would 
hoosemore attributes. The new algorithm (mod2) does a test on the top and bottom nodes of thehierar
hy (ex
luding the All node, and any primary key). However, this does not 
hange theresulting tree.



74 DM6.2.4 Con
lusionIt is di�
ult to make any sound 
on
lusion on these limited tests, but they do show that there
an be a redu
tion in the number of 
al
ulations done. However, the resulting de
ision treesare also di�erent. In this limited test the di�eren
es have not had any impa
t on the pre
isionof the 
lassi�er. More tests are 
learly needed, and with the use of a pruning phase it wouldbe possible to judge the �Performan
e� values better.



Chapter 7Con
lusion and Future WorkIn this 
hapter we 
on
lude on the work we have done, then we 
onsider some of the futurework whi
h is possible.
7.1 Con
lusionIn this thesis we have introdu
ed data warehousing and the dimensional model. We have de-s
ribed the general features of these, that is, their 
ommon use, design and possibilities. Thenwe have analysed the available data in a traditional relational database, whi
h des
ribes salestransa
tions and 
ustomer payment transa
tions. It was found that there was not registeredenough data to make a proper analysis, mainly due to the database was not designed to storehistori
al information about the 
ustomers. Nonetheless, we used this data and analysis ofdata to 
onstru
t a small data warehouse using the dimensional model.Then we tried analysing the data warehouse using a traditional data mining appli
ation,with the main obje
tive of dis
overing how a traditional tool would handle data warehousestru
tured data. Several problems were found, and we have suggested solutions to these.Next, we have analysed how de
ision tree indu
tion 
an be improved when the dimensionalmodel is used. We have proposed several possible improvements.Finally, we have performed an evaluation of our proposed solution to the general data miningtask, and some of the spe
i�
 improvements to the de
ision tree indu
tion algorithm. Theevaluation of the way data mining 
an be done in general when the data is multi-dimensional,has been performed by 
reating an appli
ation with the proposed fun
tionality. However, we
an only do
ument our personal experien
e with this appli
ation, sin
e no formal tests havebeen done on its interfa
e. The evaluation of the improvements to de
ision trees has been donewith respe
t to lowering the amount of attributes that must be tested for split-abilities. Itwas found that our suggested method of testing representatives of ea
h total ordered 
on
epthierar
hy, resulted in a lower amount of tests without redu
ing the quality of the de
isiontrees signi�
antly. However, these results were only obtained on our test data, whi
h did not
ontain many 
on
ept hierar
hies, so the results are not 
on
lusive.



76 DM7.2 Future WorkAn experien
e from this proje
t, whi
h did not surprise us, was how time 
onsuming thepreparation of data is. It has often been stated in the literature, that the data 
leaning phaseis the phase whi
h takes most time. One way to solve this problem, would be to 
reate a datawarehouse repository, that is, a 
olle
tion of data warehouse databases, whi
h 
an be used forresear
h purposes, like the UCI Ma
hine Learning Repository1. Due to the di�erent natureof data warehouse data, in 
omparison to the traditional 
ase-based datasets, a number ofproblems exist with 
reating su
h a repository:
• The data warehouse 
annot be stored as a single text �le. Furthermore, the storagemethod should not be DBMS spe
i�
, sin
e this would 
ompli
ate the use of the datawarehouses, or may even make it impossible for some users to use the data. A solutionmay be to store the data warehouse as a star s
hema, and store ea
h dimension, and thefa
t table, as separate text �les.
• The business domain of a data warehouse is usually 
omplex, so it is di�
ult to under-stand what the data represents. This 
an be solved by making sure the business domain,stru
ture of data warehouse, and attributes of the entire data warehouse are des
ribedproperly.
• The size of data is usually large, whi
h 
an 
ause problems both for the people o�eringthe data, and the people trying to a

ess the data. We do not see any way to avoid thisif the resear
h is to be done on a realisti
 data warehouse.In the design of our data warehouse, we en
ountered problems with dynami
 dimensions, likethe balan
e of a 
ustomer, and various attributes related to this balan
e. How this is normallymodelled and how that in�uen
es on the data mining task would be another subje
t that 
anbe examined.More generally, it would be ni
e to have statisti
s on the data warehouses that are in usetoday. For instan
e, the typi
al size of dimensions, and information about the size of 
on
epthierar
hies. With this information it would be easier to analyse the performan
e of algorithms,
ompared to a vague guess on how large these normally are.Another area, whi
h it would be interesting to investigate, is how the user interfa
e to thedata mining tools 
an be modi�ed to a

ommodate multi-dimensional data sour
es. We havedone some preliminary 
onsiderations on this, however, the evaluation thereof is not obje
tive,sin
e we naturally made the user interfa
e like we would prefer. Thus it would be interestingto examine what experien
ed data miners would like from their user interfa
e in this regard.A related issue, is the use of meta data for the data mining appli
ations. It would be veryadvantageous to have a standard for de�ning this meta data, whi
h 
ould be used by any datamining tool.We have proposed a number of improvements with regard to de
ision tree indu
tion, however,we have only evaluated one of them, and even this evaluation should be performed on amore 
ompli
ated database. Likewise, the remaining improvements should be evaluated. Wehave only 
onsidered de
ision trees, but there are many other algorithms, whi
h 
ould be1http://www.i
s.u
i.edu/∼mlearn/MLRepository.html



7.2 Future Work 77improved to utilise multi-dimensional data. For instan
e, the Naive Bayes 
lassi�er shouldbe investigated, espe
ially due to its assumption of independen
e between attributes, whi
hde�nitely does not hold for attributes belonging to the same 
on
ept hierar
hy.
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Appendix AMi
rosoft SQL ServerThis appendix des
ribes some of the non-standard SQL fun
tions and operations we have usedin our handling of data.A.1 Fun
tionsThis se
tion is based on the help �les whi
h are in
luded in the Mi
rosoft SQL Server pa
kage.These are also available at http://msdn.mi
rosoft.
om (sear
h for �Transa
t-SQL Referen
e�).A.1.1 CAST(data type given in date_type) CAST(expression AS data_type)
expression Any valid expression.
date_type The data type whi
h the expression should be 
onverted to.Example:> sele
t 
ast('2003-02-03' as datetime)2003-02-03 00:00:00.000A.1.2 CONVERT(data type given in date_type) CONVERT(date_type[(length)], expression[,style℄)
date_type The data type whi
h the expression should be 
onverted to.
length Optional parameter indi
ating the length of the data type (if appli
able).
expression Any valid expression.
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style Optional parameter spe
ifying the style of the date format when expression is of typedatetime or smalldatetime. Likewise the style of the string when 
onverting data of type�oat, real, money, or smallmoney1.There are a number of styles whi
h 
an be used for the date format, however, we will onlydes
ribe the ones used in our data analysis s
ripts. They are listed below:Style Format108 hh:nn:ss112 yyyymmddWhere y indi
ates year, m the month, d the day, h the hour, n the minute, and s the se
ond.The number of o

uren
es of these letters spe
ify the number of 
hara
ters used in the dateformat.For instan
e, 
onverting the date 2003-02-03 17:23 to a string using style 108 will result in17:23:00, whereas using style 112 will result in 20030203.Example:> sele
t 
onvert(nvar
har,'2003-02-03 17:23',112)2003-02-03 17:23> sele
t 
onvert(nvar
har,
ast('2003-02-03 17:23' as datetime),112)20030203The �rst example shows how not to 
onvert a date when you spe
ify it as a 
hara
ter string.Sin
e the expression is already a string, it is simply returned as it is, sin
e the target data typeis a string. In the se
ond example the date in 
hara
ter format is �rst 
onverted to datetimedata type, and then CONVERT is used to 
onvert it to string using the spe
i�ed style.A.1.3 DATEADDdatetime|smalldatetime DATEADD(datepart,number,date)
datepart The part of the date that a value is added to. The value of this parameter must be inthe set { Year, quarter, Month, dayofyear, Day, Week, Hour, minute, se
ond, millise
ond} or one of the abbreviated forms of the values in the set2.
number The value added to date using datepart, if it is not an integer, the value is roundeddown.
date The date that value is added to. The parameter must be of type datetime or smalldate-time, or a string in date format.The return date type of the fun
tion depends on the date type of the date parameter. It returnsin smalldatetime if date has type smalldatetime, otherwise the return type is datetime.Example:1these will not be des
ribed2Not des
ribed here sin
e we will use the 
omplete word to in
rease readability



A.1 Fun
tions 83> sele
t dateadd(se
ond,900000011,'1970-01-01')1998-07-09 16:00:11.000Whi
h in
idently 
orresponds the epo
h date value 900000011 
onverted to a readable datevalue.A.1.4 DATEDIFFinteger DATEDIFF(datepart,startdate,enddate)
datepart The part of the date whi
h the result value is returned in. The possible values aredes
ribed in se
tion A.1.3. Note that this does not mean that the di�eren
e is only donefor the datepart, it is done for the 
omplete date and then returned using datepart. Forinstan
e, the di�eren
e between 1999-02-03 and 2003-02-03, when Month is sele
ted asdatepart, is not 0, it is 48.
datestart The beginning date for the 
omparison, this must either be of type datetime orsmalldatetime, or a string in date format.
dateend The ending date for the 
omparison, spe
i�ed as datestart.The di�eren
e is 
al
ulated by subtra
ting startdate from enddate, and the result is returnedas a signed integer, whi
h means that if enddate < startdate, then a negative value is returned.Example:> sele
t datediff(Month,'2003-02-03','1999-02-03')-48A.1.5 DATEPARTinteger DATEPART(datepart,date)
datepart The part of the date that is to be returned, spe
i�ed as des
ribed in se
tion A.1.3.
date The date to extra
t the part of date from.Example:> sele
t datepart(quarter,'2003-02-03')1A.1.6 DATENAMEnvar
har DATENAME(datepart,date)
datepart The part of the date that is to be returned, spe
i�ed as des
ribed in se
tion A.1.3.
date The date to extra
t the part of date from.



84 DMThis fun
tion is equivalent to DATEPART, ex
ept the value is returned in 
hara
ter format.If datepart is Month, then a value in the set { January, February, . . . , De
ember } will bereturned. If datepart is weekday, then a value in the set { Monday, Tuesday, . . . , Sunday} will be returned. Otherwise the value returned 
orresponds to the value returned fromDATEPART, with the ex
eption of the date type.Example:> sele
t datepart(Month,'2003-02-03')FebruaryA.1.7 SET DATEFIRSTSET DATEFIRST numberThis is te
hni
ally not a fun
tion, however... This fun
tion is used to de�ne whi
h weekday isthe �rst in a week, it is de�ned from the following table:Value First weekday1 Monday2 Tuesday... ...7 SundayThe value of DATEFIRST a�e
ts the values returned by DATEPART and DATENAME withrespe
t to weekday.



Appendix BData Prepro
essing, SQL statements
B.1 Table De�nitionsIn this appendix all the SQL 
ommands we have used on the original database are do
umented.B.1.1 Original TablesCREATE TABLE [dbo℄.[
offee℄ ([user_id℄ [int℄ NOT NULL ,[subs
riber_sin
e℄ [smalldatetime℄ NULL ,[date℄ [int℄ NULL)CREATE TABLE [dbo℄.[employee_type℄ ([employee_type_id℄ [int℄ NOT NULL ,[des
ription℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,[free_
offee℄ [int℄ NULL)CREATE TABLE [dbo℄.[members℄ ([user_id℄ [int℄ NOT NULL ,[a
tive℄ [int℄ NOT NULL ,[aargang℄ [int℄ NOT NULL ,[debt℄ [float℄ NOT NULL ,[board_debt℄ [float℄ NOT NULL ,[last_warned℄ [int℄ NOT NULL ,[first_warning℄ [int℄ NOT NULL ,[advan
e℄ [float℄ NOT NULL ,[undos℄ [int℄ NOT NULL ,[total_undos℄ [int℄ NOT NULL ,[employee℄ [int℄ NOT NULL ,[balan
e℄ AS ([advan
e℄ - [debt℄ - [board_debt℄) ,[first_payment℄ [int℄ NULL ,



86 DM[last_payment℄ [int℄ NULL ,[first_pur
hase℄ [int℄ NULL ,[last_pur
hase℄ [int℄ NULL ,[never_used_system℄ [tinyint℄ NULL)CREATE TABLE [dbo℄.[paid_ansat_kaffe℄ ([date℄ [int℄ NULL)CREATE TABLE [dbo℄.[payments℄ ([user_id℄ [int℄ NOT NULL ,[date℄ [int℄ NOT NULL ,[amount℄ [float℄ NOT NULL)CREATE TABLE [dbo℄.[pri
es℄ ([produ
t_id℄ [int℄ NOT NULL ,[pri
e℄ [float℄ NOT NULL ,[date_start℄ [int℄ NOT NULL)CREATE TABLE [dbo℄.[produ
ts℄ ([produ
t_id℄ [int℄ NOT NULL ,[name℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,[pri
e℄ [float℄ NULL ,[a
tive℄ [int℄ NULL)CREATE TABLE [dbo℄.[sales℄ ([user_id℄ [int℄ NOT NULL ,[produ
t_id℄ [int℄ NULL ,[date℄ [int℄ NULL ,[pri
e℄ [float℄ NULL ,[paid_for℄ [int℄ NULL ,[money℄ [float℄ NULL)B.1.2 Dimensional and Helper TablesCREATE TABLE [dbo℄.[datedim℄ ([dateid℄ [int℄ NOT NULL ,[year℄ [int℄ NOT NULL ,[semester℄ [nvar
har℄ (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[quarter℄ [int℄ NOT NULL ,[month℄ [int℄ NOT NULL ,



B.1 Table Definitions 87[month_name℄ [nvar
har℄ (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[week℄ [int℄ NOT NULL ,[weekday℄ [int℄ NOT NULL ,[weekday_name℄ [nvar
har℄ (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[dayofmonth℄ [int℄ NOT NULL ,[dayofyear℄ [int℄ NOT NULL ,[date℄ [smalldatetime℄ NOT NULL ,[studyyear℄ [int℄ NOT NULL ,[studysemester℄ [nvar
har℄ (3) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL)CREATE TABLE [dbo℄.[epo
h_mapping℄ ([epo
h℄ [int℄ NOT NULL ,[ts℄ [datetime℄ NOT NULL ,[dateid℄ [int℄ NULL ,[timeid℄ [int℄ NULL)CREATE TABLE [dbo℄.[member_
orre
tion℄ ([user_id℄ [int℄ NOT NULL ,[
orre
tion℄ [float℄ NOT NULL)CREATE TABLE [dbo℄.[member_day℄ ([user_id℄ [int℄ NOT NULL ,[dateid℄ [int℄ NOT NULL ,[balan
e℄ [float℄ NOT NULL ,[a
tive℄ [tinyint℄ NULL ,[warned℄ [tinyint℄ NOT NULL ,[days_warned℄ [smallint℄ NOT NULL ,[blo
ked℄ [tinyint℄ NOT NULL ,[days_blo
ked℄ [smallint℄ NOT NULL ,[days_till_blo
k℄ [smallint℄ NOT NULL)CREATE TABLE [dbo℄.[member_day_un
℄ ([user_id℄ [int℄ NOT NULL ,[dateid℄ [int℄ NOT NULL ,[balan
e℄ [float℄ NOT NULL ,[a
tive℄ [tinyint℄ NULL ,[warned℄ [tinyint℄ NOT NULL ,[days_warned℄ [smallint℄ NOT NULL ,[blo
ked℄ [tinyint℄ NOT NULL ,[days_blo
ked℄ [smallint℄ NOT NULL ,[days_till_blo
k℄ [smallint℄ NOT NULL)



88 DMCREATE TABLE [dbo℄.[memberdim℄ ([memberid℄ [int℄ NOT NULL ,[a
tive℄ [int℄ NOT NULL ,[aargang℄ [int℄ NOT NULL ,[semester℄ [int℄ NOT NULL ,[employee_type℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[free_
offee℄ [nvar
har℄ (1) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[advan
e℄ [float℄ NOT NULL ,[debt℄ [float℄ NOT NULL ,[board_debt℄ [float℄ NOT NULL ,[balan
e℄ AS ([advan
e℄ - [debt℄ - [board_debt℄) ,[undos℄ [int℄ NOT NULL ,[never_used_system℄ [tinyint℄ NOT NULL)CREATE TABLE [dbo℄.[produ
tdim℄ ([produ
tid℄ [int℄ NOT NULL ,[original_id℄ [int℄ NOT NULL ,[name℄ [nvar
har℄ (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[pri
e℄ [float℄ NOT NULL ,[a
tive℄ [int℄ NOT NULL ,[MainClass℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[Class℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[SubClass℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL)CREATE TABLE [dbo℄.[sales_
mp℄ ([user_id℄ [int℄ NOT NULL ,[produ
t_id℄ [int℄ NOT NULL ,[date℄ [int℄ NOT NULL ,[n_units℄ [int℄ NULL ,[total_pri
e℄ [float℄ NULL ,[unit_pri
e℄ [float℄ NULL ,[balan
e℄ [float℄ NULL ,[balan
e_after℄ AS ([balan
e℄ - [total_pri
e℄) ,[dateid℄ [int℄ NULL ,[timeid℄ [int℄ NULL ,[balan
e_un
orre
ted℄ [float℄ NULL ,[balan
e_after_un
orre
ted℄ AS ([balan
e_un
orre
ted℄ - [total_pri
e℄))CREATE TABLE [dbo℄.[sales_day℄ ([dateid℄ [int℄ NOT NULL ,[produ
t_id℄ [int℄ NOT NULL ,[n_units℄ [int℄ NOT NULL ,[total_pri
e℄ [int℄ NOT NULL ,[a
tive_members_day℄ [int℄ NULL ,



B.2 Mis
. Che
ks and Fixes 89[a
tive_members_week℄ [int℄ NULL ,[a
tive_members_month℄ [int℄ NULL ,[a
tive_members_semester℄ [int℄ NULL ,[a
tive_members_year℄ [int℄ NULL ,[a
tive_members_rweek℄ [int℄ NULL ,[a
tive_members_rmonth℄ [int℄ NULL ,[a
tive_members_syear℄ [int℄ NULL ,[a
tive_members_ssemester℄ [int℄ NULL)CREATE TABLE [dbo℄.[timedim℄ ([timeid℄ [int℄ IDENTITY (1, 1) NOT NULL ,[timeofday℄ [nvar
har℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,[mins℄ [int℄ NULL ,[hour℄ [int℄ NULL ,[time℄ [datetime℄ NOT NULL)B.2 Mis
. Che
ks and Fixes-- 
he
k undossele
t 
ount(1) from members where total\_undos > 0 or undos > 0;sele
t 
ount(1) from members where total\_undos != undos;-- 
hanges to Membersde
lare �min_date integerset �min_date = (sele
t min(date) from sales where user_id in(sele
t user_id from members where aargang=1999))sele
t distin
t user_id from saleswhere user_id in (sele
t user_id from members where aargang=0)and date < �min_datede
lare �min_date integerset �min_date = (sele
t min(date) from sales where user_id in(sele
t user_id from members where aargang=1999))update members set aargang=2000 where aargang=0 and members.never_used_system=0and user_id not in (sele
t distin
t user_id from saleswhere date < �min_dateand user_id in (sele
t user_id from members where aargang=0))update members set aargang=2001 where aargang=1update members set first_payment=agg.min,last_payment=agg.maxfrom (sele
t user_id,max(date) as max, min(date) as min from payments pgroup by user_id) agg where agg.user_id=members.user_id



90 DMupdate members set first_pur
hase=agg.min,last_pur
hase=agg.maxfrom (sele
t user_id,max(date) as max, min(date) as min from sales_
mp sgroup by user_id) agg where agg.user_id=members.user_idsele
t aargang,state,
ount(1) as 
ount from (sele
t m.user_id, m.balan
e - p.sum + s.sum as diff,m.aargang,
ase when (m.balan
e - p.sum + s.sum > -20and m.balan
e - p.sum + s.sum < 20) then 'ok' else 'err'end as statefrom (sele
t user_id,sum(amount) as sum from payments group by user_id) p,(sele
t user_id,sum(total_pri
e) as sum from sales_
mpgroup by user_id) s, members mwhere p.user_id=m.user_id and s.user_id=m.user_id) totalgroup by aargang,stateorder by aargangupdate members set never_used_system=1update members set never_used_system=0where user_id in (sele
t user_id from sales)B.3 Data TransformationB.3.1 General Fun
tionsdrop fun
tion fn_repla
e_if_nullgo
reate fun
tion fn_repla
e_if_null(�value float,�repla
e_value float = 0)returns float asbeginif �value is null return �repla
e_valuereturn �valueendgodrop fun
tion fn_mingo
reate fun
tion fn_min(�val1 int, �val2 int) returns int asbeginif (�val1 > �val2) return �val2return �val1endgodrop fun
tion fn_maxgo
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reate fun
tion fn_max(�val1 int, �val2 int) returns int asbeginif (�val1 < �val2) return �val2return �val1endgoB.3.2 Epo
h and Date Handling Fun
tionsdrop fun
tion fn_epo
h_to_datetimego
reate fun
tion fn_epo
h_to_datetime(�epo
h int) returns datetime asbeginreturn (dateadd(se
ond,�epo
h,'1970-01-01'))endgodrop fun
tion fn_datetime_to_epo
hgo
reate fun
tion fn_datetime_to_epo
h(�dt datetime) returns int asbeginreturn (datediff(se
ond,'1970-01-01',�dt))endgodrop fun
tion fn_datetime_to_semestergo
reate fun
tion fn_datetime_to_semester(�dt datetime) returns nvar
har(12) asbeginde
lare �month intset �month = datepart(month,�dt)return 
asewhen �month between 2 and 5 then 'spring'when �month between 9 and 12 then 'fall'when �month = 1 or �month = 6 then 'exam'when �month = 7 or �month = 8 then 'summer break'else 'Undefined'endendgodrop fun
tion fn_datetime_to_timeofdaygo
reate fun
tion fn_datetime_to_timeofday(�dt datetime) returns nvar
har(12) asbegin



92 DMde
lare �hour intset �hour = datepart(hour,�dt)return 
asewhen �hour between 0 and 5 then 'night'when �hour between 6 and 10 then 'morning'when �hour between 11 and 13 then 'noon'when �hour between 14 and 17 then 'afternoon'when �hour between 18 and 23 then 'evening'else 'Undefined'endendgodrop fun
tion date_to_studyyeargo
reate fun
tion date_to_studyyear(�dt datetime) returns int asbeginreturn 
asewhen datepart(month,�dt) between 9 and 12 then datepart(year,�dt)else datepart(year,�dt) - 1endendgodrop fun
tion date_to_studysemestergo
reate fun
tion date_to_studysemester(�dt datetime) returns n
har(3) asbeginde
lare �res_sem n
har(1),�res_year n
har(2),�month int,�year intif �dt is null return nullset �year=datepart(year,�dt)set �month=datepart(month,�dt)set �res_sem='F'if �month between 9 and 12 or �month=1 set �res_sem='E'if (�month=1) set �year = �year - 1set �res_year=substring(
ast(�year as n
har(4)),3,2)return �res_sem + �res_yearendgo



B.3 Data Transformation 93drop pro
edure p_fill_datesgo
reate pro
edure p_fill_dates(�from datetime, �to datetime) asbeginset no
ount onde
lare �date datetime,�id intset �date = (
onvert(nvar
har,�from,112))set �id = 1while �date <= �tobegininsert into datedim(dateid,date,year,quarter,month,month_name,week,weekday,weekday_name,dayofyear,dayofmonth,semester,studyyear,studysemester)values (�id,�date,datepart(year,�date),datepart(quarter,�date),datepart(month,�date),datename(month,�date),datepart(week,�date),datepart(weekday,�date),datename(weekday,�date),datepart(dayofyear,�date),substring(
onvert(nvar
har,�date,3),1,2),dbo.fn_datetime_to_semester(�date),dbo.date_to_studyyear(�date),dbo.date_to_studysemester(�date))set �date = dateadd(day,1,�date)set �id = (�id + 1)endendgoB.3.3 Member Fun
tionsDROP PROC sp_forea
h_member_doGODROP PROC p_forea
h_member_doGOCREATE PROC p_forea
h_member_do(�all_users int = 1,�pro
 nvar
har(100),�params nvar
har(100) = '') asBEGINDECLARE �
md nvar
har(255)DECLARE �user_id integerIF �all_users = 0BEGINDECLARE uids CURSOR LOCAL STATIC FORSELECT DISTINCT user_id FROM membersWHERE never_used_system = 0ORDER BY user_idENDELSE



94 DMBEGINDECLARE uids CURSOR LOCAL STATIC FORSELECT DISTINCT user_id FROM membersORDER BY user_idENDOPEN uidsFETCH NEXT FROM uids INTO �user_idWHILE ��FETCH_STATUS = 0BEGINSET �
md = �pro
 + ' ' + CAST(�user_id as nvar
har(10))IF (�params IS NOT NULL AND �params != '') SET �
md = �
md + ' ,' + �paramsEXEC (�
md)FETCH NEXT FROM uids INTO �user_idENDCLOSE uidsDEALLOCATE uidsEND-- balan
e = debt + board_debt - advan
eDROP FUNCTION a

_paymentsGOCREATE FUNCTION a

_payments (�uid integer,�at integer) RETURNS float ASBEGINDECLARE �res floatSET �res = (sele
t sum(amount) from payments where user_id = �uidand date < �at)if �res is null return 0return �resENDGODROP FUNCTION a

_salesGOCREATE FUNCTION a

_sales (�uid integer,�at integer) RETURNS float ASBEGINDECLARE �res double floatSET �res = (sele
t sum(total_pri
e) from sales_
mpwhere user_id = �uid and date < �at)IF �res is null return (0)return (�res)ENDGO
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urr_moneyGOCREATE FUNCTION 
urr_money (�uid integer,�at integer) RETURNS float ASBEGINreturn (sele
t dbo.a

_payments(�uid,�at) - dbo.a

_sales(�uid,�at))ENDGOB.3.4 Transformationdrop pro
edure p_
reate_epo
h_mappinggo
reate pro
edure p_
reate_epo
h_mapping asbeginde
lare �min_date datetime,�max_date datetimetrun
ate table epo
h_mappinginsert into epo
h_mapping(epo
h,ts)sele
t distin
t date,dbo.fn_epo
h_to_datetime(date)from (sele
t date from 
offeeunionsele
t date from paid_ansat_kaffeunionsele
t last_warned from members where last_warned > 0unionsele
t first_warning from members where first_warning > 0unionsele
t date from paymentsunionsele
t date_start from pri
esunionsele
t date from sales) total order by dateset �min_date = (sele
t min(ts) from epo
h_mapping)set �max_date = (sele
t max(ts) from epo
h_mapping)trun
ate table datedimexe
 dbo.p_fill_dates �min_date,�max_datetrun
ate table timediminsert into timedim(time)sele
t distin
t 
onvert(nvar
har,dateadd(se
ond,epo
h,'1970-01-01'),108)as tim from epo
h_mapping order by timupdate epo
h_mapping set dateid=dd.dateidfrom datedim dd



96 DMwhere 
onvert(nvar
har,epo
h_mapping.ts,112) = 
onvert(nvar
har,dd.date,112)update epo
h_mapping set timeid=td.timeidfrom timedim tdwhere 
onvert(nvar
har,epo
h_mapping.ts,108) = 
onvert(nvar
har,td.time,108)-- fill in derived time dimension attributesset datefirst 1 -- monday is represented by 1, and so forthupdate timedim set hour=datepart(hour,time),mins=datepart(minute,time),timeofday=dbo.fn_datetime_to_timeofday(time)endgoexe
 dbo.p_
reate_epo
h_mappinginsert into sales_
mp(user_id,produ
t_id,date,n_units,unit_pri
e,total_pri
e)sele
t user_id,produ
t_id,date,
ount(pri
e),sum(pri
e), avg(pri
e)from sales group by date,user_id,produ
t_id order by dateupdate sales_
mp set dateid=e.dateid,timeid=e.timeidfrom epo
h_mapping e where sales_
mp.date=e.epo
hupdate sales_
mp set balan
e=dbo.
urr_money(user_id,date)B.3.5 Histori
al Member Datadrop pro
 p_update_mdgo
reate pro
 p_update_md(�user_id int,�use_
orre
tion int = 0) asbeginde
lare �first_date int,�first_dateid int,�table nvar
har(15),�query nvar
har(255)set �first_date = (sele
t dbo.fn_min(first_payment,first_pur
hase)from members where user_id=�user_id)set �first_dateid = (sele
t dateid from epo
h_mappingwhere epo
h=�first_date)if �use_
orre
tion = 0 set �table = 'member_day_un
'else set �table = 'member_day'set �query = 'insert into ' + �table+ '(user_id,dateid,balan
e,a
tive,warned,blo
ked,days_warned,'+ 'days_blo
ked,days_till_blo
k) sele
t '+ 
ast(�user_id as nvar
har)



B.3 Data Transformation 97+ ',dateid,0,0,0,0,0,0,0 from datedim where dateid < '+ 
ast(�first_dateid as nvar
har)exe
(�query)de
lare �balan
e float,�day_payments float,�day_pur
hases float,�day_dateid int,�day_a
tive int,-- warn/blo
k limit variables�wlim int,�blim int,�
hange_dateid int,�in_warn int,�in_blo
k int,�days_warned int,�days_blo
ked int,�days_till_blo
k intset �wlim = -150set �blim = -250set �
hange_dateid = 1776de
lare days 
ursor lo
al stati
 forsele
t dateid from datedim where dateid >= �first_dateid order by dateidif �use_
orre
tion = 0 set �balan
e = 0else set �balan
e = (sele
t 
orre
tion from member_
orre
tionwhere user_id=�user_id)set �in_warn = 0set �in_blo
k = 0set �days_warned = 0set �days_blo
ked = 0set �days_till_blo
k = 0open daysfet
h next from days into �day_dateidwhile ��FETCH_STATUS = 0begin-- 
al
ulate balan
eset �day_payments = (sele
t sum(amount)from payments p, epo
h_mapping emwhere p.user_id=�user_id and em.epo
h=p.dateand em.dateid=�day_dateid)set �day_pur
hases = (sele
t sum(total_pri
e) from sales_
mpwhere user_id=�user_id and dateid=�day_dateid)set �day_a
tive = (sele
t 1 where exists (sele
t 1 from sales_
mpwhere user_id=�user_id and dateid=�day_dateid))



98 DMif �day_a
tive is null set �day_a
tive = 0else set �day_a
tive = 1if �day_payments is null set �day_payments = 0if �day_pur
hases is null set �day_pur
hases = 0set �balan
e = �balan
e + �day_payments - �day_pur
hases-- general b/wif �day_dateid >= �
hange_dateidbeginset �wlim = 0set �blim = -50end-- 
al
ulate b/wif �balan
e < �wlimbeginif �in_warn = 0 and �in_blo
k = 0beginset �in_warn = 1set �days_till_blo
k = 14set �days_warned = 0endif �in_warn = 1beginset �days_warned = �days_warned + 1set �days_till_blo
k = �days_till_blo
k - 1endif �in_blo
k = 1beginset �days_blo
ked = �days_blo
ked + 1endif �in_blo
k = 0 and (�days_warned = 14 or (�balan
e < �blim))beginset �in_warn = 0set �in_blo
k = 1set �days_blo
ked = 0set �days_till_blo
k = 0set �days_warned = 0endendelsebeginset �in_warn = 0



B.3 Data Transformation 99set �in_blo
k = 0set �days_blo
ked = 0set �days_warned = 0set �days_till_blo
k = 0end-- generating a single dynami
 query would look simpler, but for-- performan
e reasons we dupli
ate the inserts for ea
h tableif �use_
orre
tion = 0begininsert into member_day_un
(user_id,dateid,balan
e,a
tive,warned,blo
ked,days_warned,days_blo
ked,days_till_blo
k)values(�user_id,�day_dateid,�balan
e,�day_a
tive,�in_warn,�in_blo
k,�days_warned,�days_blo
ked,�days_till_blo
k)endelsebegininsert into member_day(user_id,dateid,balan
e,a
tive,warned,blo
ked,days_warned,days_blo
ked,days_till_blo
k)values(�user_id,�day_dateid,�balan
e,�day_a
tive,�in_warn,�in_blo
k,�days_warned,�days_blo
ked,�days_till_blo
k)endfet
h next from days into �day_dateidend
lose daysdeallo
ate daysendgodrop pro
 p_update_
orre
tiongo
reate pro
 p_update_
orre
tion asbeginde
lare �last_aargang intset �last_aargang = 1996trun
ate table member_
orre
tioninsert into member_
orre
tion(user_id,
orre
tion)sele
t user_id,0 from members



100 DM/* We do not pro
ess non-pur
hasing 
ustomers, so skip this partupdate member_
orre
tion set 
orre
tion=m.balan
e - p.sumfrom members m,(sele
t user_id,sum(amount) as sum from payments group by user_id) pwhere m.user_id=member_
orre
tion.user_idand p.user_id=member_
orre
tion.user_idand m.aargang <= �last_aargangand not exists (sele
t 1 from sales_
mpwhere user_id=member_
orre
tion.user_id)*/update member_
orre
tion set 
orre
tion=m.balan
e + s.sumfrom members m,(sele
t user_id,sum(total_pri
e) as sum from sales_
mpgroup by user_id) swhere m.user_id=member_
orre
tion.user_idand s.user_id=member_
orre
tion.user_idand m.aargang <= �last_aargangand not exists (sele
t 1 from paymentswhere user_id=member_
orre
tion.user_id)update member_
orre
tionset 
orre
tion=m.balan
e - (dbo.fn_repla
e_if_null(p.sum,0)- dbo.fn_repla
e_if_null(s.sum,0))from (sele
t user_id,sum(amount) as sum from payments group by user_id) p,(sele
t user_id,sum(total_pri
e) as sum from sales_
mpgroup by user_id) s,members mwhere p.user_id=member_
orre
tion.user_idand s.user_id=member_
orre
tion.user_idand m.user_id=member_
orre
tion.user_idand m.never_used_system=0 and m.aargang <= �last_aargangenddrop pro
edure p_
omplete_md_updatego
reate pro
edure p_
omplete_md_update asbeginset no
ount ontrun
ate table member_day_un
trun
ate table member_dayexe
 p_forea
h_member_do 0,'p_update_md','0'exe
 p_update_
orre
tionexe
 p_forea
h_member_do 0,'p_update_md','1'endgo
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 p_
omplete_md_updategoupdate sales_
mp set balan
e_un
orre
ted=balan
eupdate sales_
mp set balan
e=balan
e_un
orre
ted + m
.
orre
tionfrom member_
orre
tion m
where m
.user_id=sales_
mp.user_idB.3.6 Histori
al Sales Datainsert into sales_day(dateid,produ
t_id,n_units,total_pri
e)sele
t dateid,produ
t_id,sum(n_units),sum(total_pri
e)from sales_
mpgroup by dateid,produ
t_idorder by dateid-- 
al
ulate a
tive members...update sales_day set a
tive_members_day=agg.
nt from(sele
t 
ount(distin
t user_id) as 
nt,dateid from sales_
mpgroup by dateid) aggwhere sales_day.dateid=agg.dateidupdate sales_day set a
tive_members_week=agg.
ntfrom datedim dd,(sele
t 
ount(distin
t user_id) as 
nt,dd.year,dd.month,dd.weekfrom sales_
mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year,dd.month,dd.week) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.year and dd.month=agg.monthand dd.week=agg.weekupdate sales_day set a
tive_members_month=agg.
ntfrom datedim dd,(sele
t 
ount(distin
t user_id) as 
nt,dd.year,dd.monthfrom sales_
mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year,dd.month) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.year and dd.month=agg.monthupdate sales_day set a
tive_members_year=agg.
ntfrom datedim dd,(sele
t 
ount(distin
t user_id) as 
nt,dd.yearfrom sales_
mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.yearupdate sales_day set a
tive_members_semester=agg.
ntfrom datedim dd,



102 DM(sele
t 
ount(distin
t user_id) as 
nt,dd.year,dd.semesterfrom sales_
mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year,dd.semester) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.yearand dd.semester=agg.semesterupdate sales_day set a
tive_members_ssemester=agg.
ntfrom datedim dd,(sele
t 
ount(distin
t user_id) as 
nt,dd.studysemesterfrom sales_
mp s, datedim dd where s.dateid=dd.dateidgroup by dd.studysemester) aggwhere dd.dateid=sales_day.dateid and dd.studysemester=agg.studysemesterupdate sales_day set a
tive_members_syear=agg.
ntfrom datedim dd,(sele
t 
ount(distin
t user_id) as 
nt,dd.studyyearfrom sales_
mp s, datedim dd where s.dateid=dd.dateidgroup by dd.studyyear) aggwhere dd.dateid=sales_day.dateid and dd.studyyear=agg.studyyearupdate sales_day set a
tive_members_rweek=agg.
ntfrom (sele
t dd2.dateid,
ount(distin
t user_id) as 
ntfrom sales_
mp s, datedim dd, datedim dd2where s.dateid=dd.dateid anddd.date between dateadd(day,-3,dd2.date) and dateadd(day,3,dd2.date)group by dd2.dateid) aggwhere sales_day.dateid=agg.dateidupdate sales_day set a
tive_members_rmonth=agg.
ntfrom (sele
t dd2.dateid,
ount(distin
t user_id) as 
ntfrom sales_
mp s, datedim dd, datedim dd2where s.dateid=dd.dateid anddd.date between dateadd(day,-15,dd2.date) and dateadd(day,15,dd2.date)group by dd2.dateid) aggwhere sales_day.dateid=agg.dateid


