
Department of Computer SieneAalborg University
Multi-Dimensional Classi�ationData Mining using Data Cubes

Master ThesisbyPeter Jensen

Aalborg Universitet · Fredrik Bajers Vej 7E · 9220 Aalborg Øst · Tlf. 96 35 80 80 · Telefax 98 15 98 89

Department of Computer SieneAalborg University
Title:Multi-Dimensional Classi�ationData Mining using Data CubesProjet:DAT6, Spring 2003Projet Group:E1−119bGroup MembersPeter JensenSupervisor:Finn Verner JensenNumber of Copies: 5Number of Pages: 112Number of Appendies: 2

Abstrat:This thesis deals with the use of data mining ondata warehouse strutured data, also known asmulti-dimensional data.The theory regarding data warehouses is in-vestigated with the purpose of understandingthe struture of data in these. Then a dataset, dealing with the sales of produts, and thepayments of the ustomers, is analysed. Thereare to goals for this analysis, one is to reate amulti-dimensional design, the other, and moreimportant, is to get experiene in reating suhdesigns, to understand the struture of thedesigns better.Then it is tried to analyse the multi-dimensionaldata using a traditional data mining tool,Clementine. The aim of this analysis is todisover weaknesses in traditional data miningtools when dealing with multi-dimensionaldata. We then propose a way to analyse multi-dimensional data in general, and we proposehanges to deision tree indution algorithmssuh that they utilise the multi-dimensionalstruture better.Finally, we evaluate the proposed way to anal-yse multi-dimensional data using a prototype ofa graphial interfae, and we analyse some ofthe proposed hanged to deision tree indutionusing the data set we have been working with.
Aalborg Universitet · Fredrik Bajers Vej 7E · 9220 Aalborg Øst · Tlf. 96 35 80 80 · Telefax 98 15 98 89

PrefaeThis master thesis is the doumentation of the work done by Peter Jensen during the DAT6semester, spring 2003. The projet is written under the researh unit Deision Support Systemsat the Department of Computer Siene at Aalborg University.The work is partly ontinued from my previous work, whih is presented in [Jen01℄.This thesis investigates the possibilities and problems in merging data mining and data ware-housing.Throughout the report, referenes to soure material are shown in brakets and refer to thebibliography on page 79. Attributes are typeset with itali font, and relational tables aretypeset with bold font.The author would like to thank Professor Finn Verner Jensen for his great supervision andinspiration during the projet.Aalborg, 15th of August, 2003.

Peter Jensen

vi DM

Contents
Introdution 1Summary 31 Fundamental Relational Database Tehnology 51.1 Basi De�nitions . 51.2 Keys . 71.3 Data Organisation and Query Performane . 81.4 Joins . 91.5 Aggregate Funtions . 102 Data Warehousing 112.1 The Data Warehouse . 112.2 Dimensional Modelling . 132.2.1 Fats and Measures . 132.2.2 Dimensions . 132.2.3 The Data Cube . 142.3 OLAP . 152.4 Storage Models for Cubes . 162.5 Pre-omputed Aggregates . 182.6 Loading Data into the Data Warehouse . 183 TREO Data 213.1 Desription of the Analysis Domain . 213.2 Overview of Tables and Identi�ation of Primary Keys 233.2.1 Employee_type Table . 233.2.2 Members Table . 233.2.3 Co�ee Table . 253.2.4 Paid_ansat_ka�e Table . 25

viii DM3.2.5 Payments Table . 263.2.6 Produts Table . 263.2.7 Pries Table . 273.2.8 Sales Table . 283.3 Identifying Relationships . 283.4 Data Cleansing: Outlier Detetion and Corretion 283.4.1 Members Table . 293.4.2 Payments Table . 313.4.3 Pries Table . 343.4.4 Sales Table . 343.5 Preliminary Design of Data Cubes . 353.5.1 Identify Grain and Dimensions . 353.5.2 Conept Hierarhies . 353.5.3 Identify Measures . 383.6 Data Transformation . 383.6.1 Simple Data Transformation . 383.6.2 Date and Time Support Tables . 393.6.3 Calulate Balane Attribute for Sales . 403.6.4 Historial Member Data . 433.6.5 Sales Data Summaration . 453.7 Data Mining Diretions . 463.7.1 Possible Data Mining Senarios . 463.7.2 Data Requirements and Availability . 474 Multi-dimensional Data Mining 494.1 Related Work . 494.2 Clementine Experiene . 504.3 Conept Hierarhies . 504.4 Data Mining in Data Cubes . 534.4.1 Data Cube Struture . 534.4.2 How Should Fats be Weighted? . 544.4.3 Attribute De�nition and Seletion . 564.4.4 Mining the Data . 584.5 Using Meta Data . 585 Cube-based Deision Trees 595.1 The Generald Deision Tree Indution Algorithm 59

Contents ix5.2 Multi-dimensional Improvements . 605.2.1 Constraints on Split Attributes . 625.2.2 Split-measure . 635.2.3 Constraints on Available Split Points and Split Point Measure 645.2.4 Pruning/Post-proessing of Tree . 655.2.5 Interative Deision Tree Indution . 676 Evaluation of Some Proposed Ideas 696.1 Multi-dimensional Data Mining User Interfae 696.1.1 Attribute View and Seletion . 696.1.2 Data Mining Mode . 706.1.3 Meta Data . 716.1.4 Simpli�ations . 716.2 Deision Tree Indution Modi�ations . 716.2.1 Basi Algorithm . 716.2.2 Tests . 726.2.3 Results . 736.2.4 Conlusion . 747 Conlusion and Future Work 757.1 Conlusion . 757.2 Future Work . 76Bibliography 79A Mirosoft SQL Server 81A.1 Funtions . 81A.1.1 CAST . 81A.1.2 CONVERT . 81A.1.3 DATEADD . 82A.1.4 DATEDIFF . 83A.1.5 DATEPART . 83A.1.6 DATENAME . 83A.1.7 SET DATEFIRST . 84B Data Preproessing, SQL statements 85B.1 Table De�nitions . 85B.1.1 Original Tables . 85

x DMB.1.2 Dimensional and Helper Tables . 86B.2 Mis. Cheks and Fixes . 89B.3 Data Transformation . 90B.3.1 General Funtions . 90B.3.2 Epoh and Date Handling Funtions . 91B.3.3 Member Funtions . 93B.3.4 Transformation . 95B.3.5 Historial Member Data . 96B.3.6 Historial Sales Data . 101

IntrodutionToday the use of data mining is beoming more widespread, one of the reasons is that om-panies are fousing more on their data and the use of this data. The analysis of this data anbe aided by data mining, however, a ruial part of data mining is having the right data, andthis data must be of su�ient quality. Thus, as experiene has often shown, the major partof data mining projets is the gathering of data and leaning of data.Currently, many ompanies are beginning to reate what is known as data warehouses, whihis basially entralised storage of all data related to a ompany. The data in data warehousesis not simply stored as the piees of data, it was when it was spread out over the entireompany. Instead, it is integrated in the data warehouse, that is, data from multiple souresis leaned and de�ned using a ommon view of the entire ompany organisation. The e�etof this approah, is data of high quality and a desription of the available data, sine itis impossible to de�ne a ommon view of all data relating to the ompany without suh adesription. Moreover, the storage of this data is done in suh a way, that the performanewhen analysing it is improved ompared to ordinary storage methods. This improvement isahieved by alulating summary information.We want to investigate the onnetion between data warehousing and data mining, sineit seems natural to use the data of better quality, whih is stored in the data warehouse.Furthermore, the data has extra strutural information onerning the domain it represents,thus we would like to investigate how this added information an be used to improve datamining.A signi�ant part of this investigation is getting an understanding of what a data warehouseis, and more importantly, how one models data in them. This is very important to understandthe struture of data, sine it is more omplex than the traditionally view, ases onsisting ofattributes. Thus, we use a real-world data set relating to a small �business� and try modelingthis data in a data warehouse. We then want to proeed by testing how a standard datamining tool opes with the analysis of data warehouse strutured data. Based on this test wehope to �nd some limitations and possible solutions to them. Finally, we want to investigatehow a spei� data mining algorithm an take advantage of the data warehouse.The reader is assumed to be familiar with the data mining oneps, that are desribed in[Jen01℄.

2 DM

SummaryThis report investigates the possibilities that lie in using data warehouses for data mining.The struture of data warehouses is examined, and one of the urrent data mining tools istested on these, with the aim of disovering problems and areas whih an be improved. Basedon this we propose a view on how multi-dimensional data mining should be handled, and wepropose improvements to deision tree indution algorithms. An appliation is reated to testthe proposed user interfae and one of the improvements to deision tree indution.In hapter 1 basi database tehnology is introdued. This onsists of the relational datamodel, keys, joins, and aggregate funtions.In hapter 2 data warehousing is introdued. First the purpose of data warehouses is desribed,then the struture of data warehouses is examined. OLAP is introdued and the variousstorage models are disussed.In hapter 3 a relational database desribing a small business, with regard to sales of produtsand ustomer payments, is analysed and transformed into a small data warehouse to gainmore knowledge about how data warehouses are onstruted.In hapter 4 we examine related work and desribe the problems, we have disovered whentrying to use Clementine for data mining on the multi-dimensional data. We then proeedto desribe onept hierarhies and propose a view on how data mining should be done inmulti-dimensional databases.In hapter 5 we �rst analyse the deision tree indution algorithm, and based on this analysiswe �nd the general points at whih it an be modi�ed. Using this knowledge we proposeseveral modi�ations, whih we see as possible improvements that an be ahieved by usingthe extra struture of the dimensional model.In hapter 6 we desribe the appliation we have reated, and the experiene we have hadduring testing of it. We also present test results with regard to the performane of one of theimprovements to the deision tree indution algorithm.Finally, we onlude on the projet and suggest future work in hapter 7.

4 DM

Chapter 1Fundamental Relational DatabaseTehnologyIn this hapter we introdue the onepts from database tehnology, whih are neessary tounderstand remaining hapters. If the reader is familiar with relational database onepts,this hapter an easily be skipped. The hapter is based on [SKS02℄, where it overs Entity-Relationship modelling, relational algebra, and SQL in a pratial manner, that is, we will notintrodue these separately, instead the topis within eah of these areas have been ombined.We �rst introdued the most basi de�nitions onerning databases and their usage, thenwe introdue keys, as a means of identifying a row of data. Next we onsider how data isorganised in the database and how this a�ets query performane. Finally, we introdue joins,as a way of ombining several entities inside the database, and a speial type of funtions,alled aggregate funtions, whih are used to summarise data.1.1 Basi De�nitionsA database is a olletion of interrelated data. A database management system (DBMS) issoftware that manages one or more databases. There exists di�erent kinds of approahes toorganising and managing a database, however, we will only deal with the relational database,in whih data is organised as a olletion of tables.A table onsists of attributes and rows, also alled variables and tuples. In Table 1.1 an examplean be seen, where ID, name, ountry, postal ode, ity and employed are the attributes, withthe rows of data listed below.ID name initials ountry postal ode ity employed tax3 John Dove JD England LE3 1TZ Leiester True 33.37 Alie Jensen AJ Denmark 9000 Aalborg False NULL19 Jan Hansen JH Denmark 9000 Aalborg True 61.1Table 1.1: Example of a table.

6 DMattribute data typeID integername har(30)initials har(5)ountry har(30)postal ode har(10)ity har(30)employed booleantax �oatTable 1.2: Shema for table in Table 1.1.In a relational database, eah table has a shema assoiated with it, whih desribes propertiesof the table. The most important property, is the data type of eah attribute, other propertieswhih, will be desribed later, are various kinds of keys and indies, restritions on the valuesan attribute an attain, restritions on ombinations of attribute values, and so forth. SeeTable 1.2 for an example of a shema.The available data types depends on whih DBMS is used, however, a ommon subset of datatypes is de�ned by the SQL standard. The most important of these types are:har(n) or harater(n): Fixed-length harater string of length n.varhar(n) or harater varying(n): A variable-length harater string of maximal length
n.int or integer A �nite subset of the integers, the minimal and maximal numbers that an berepresented depends on DBMS. However, a 32-bit representation is guaranteed, whihgives the range −231 − 1 to 231.�oat(n): A �oating-point number with a preision of at least n digits. Additionally, mostDMBSs support �oat (stored in 32 bits) and double (stored in 64 bits) �oating-pointnumbers, with the same preision as the same data types in the C programming language,although, these an have di�erent names. In Orale they are alled �oat (32 bit) anddouble (64 bit), while in Mirosoft SQL Server they are alled real (32 bit) and �oat (64bit).date: A alendar date ontaining year, month, and day of the month.time: The time of day, with at least hour, minute, and seond. Sometimes �ner granularityis available, as well as time zone information.datetime: A ombination of date and time.Sometimes, it is advantageous to inlude attributes in a table, whih are alulated usingother attributes within the same row, these are alled derived attributes. For instane, in theprevious example, tax was stored as a perentage, if we instead wanted it as a number, weould de�ne a new attribute taxnum as

taxnum
def
=

tax

100
.

1.2 Keys 7Some DBMSs support derived attributes diretly, that is, one an speify a formula for anattribute, then this attribute is alulated when a row has been fethed. Other DBMSs doesnot support derived attributes diretly, however, these support the use of automati funtions,whih are run every time a row is inserted or modi�ed. Thus a derived attribute an be storedas a normal attribute, and letting the DBMS handle the alulation of it.Furthermore, a speial value alled NULL is de�ned, whih orresponds to an unknown value.When dealing with data ontaining NULLs one must be very areful with the queries thatare used, sine these unknown values easily ause unwanted e�ets. For instane, given twoboolean attributes a and b, onsider the expression a ∨ (b ∧ NULL). If a is true then theexpression evaluates to true, sine the result of b ∧ NULL does not in�uene the result. Ifboth a and b are false, then it evaluates to false, sine the NULL value does not in�uenethe result. However, if a is false and b is true, then the result depends on the NULL value,whih is unknown, so the result is NULL. sine the NULL in the expression is an unknownvalue that an be either true or false. Likewise a omparison NULL = NULL, evaluates toNULL, sine both NULLs represent some unknown value, and these unknown values are notneessarily equal.1.2 KeysIn this setion we introdue superkeys and andidate keys with the aim of de�ning primaryand foreign keys.In general keys are used to desribe a ombination of attributes within a table, whih uniquelyidenti�es a row. These keys will later be ruial when dealing with indies.Let A1, A2, . . . , An be the attributes of a table. Then a subset of these attributes, B1, B2, . . . , Bmis alled a superkey if they uniquely determine a row in the table, that is, no two rows anexist in the table with the exat same values for B1, B2, . . . , Bm. In Table 1.1 the attributesID, name, ountry form a superkey (sine it is assumed that no two rows have the same IDvalue. However, it does not seem sensible to use this key when the attribute ID alone identi�esa row uniquely. Thus, a andidate key is de�ned as a minimal superkey. In the same example,the attribute ID is a andidate key, furthermore, the attribute initials might be a andidatekey if they are assigned uniquely to eah person and a person only ours one in the table.A primary key is de�ned as a andidate key, whih is hosen by the database designer asthe primary means of identifying a row. Only one primary key an be assigned to a table,however, any number of andidate keys an be assigned (to ensure that data onforms to theuniqueness restrition given by a andidate key).In a database relationships between tables are spei�ed by using the primary key of a tableas attributes in another table. If we onsider the table in Table 1.1 again, then it would bepossible to split this single table into two tables, one ontaining data related to a person (Table1.3), and the other ontaining data related to postal odes and ity names (Table 1.4). Theprimary key for the person table is still the attribute ID, while the primary key hosen for theity table onsists of the attributes ountry and postal ode. By using the primary key of theity names table in the person table, a relationship is formed, suh that when one wants theity name related to a person, it an looked up in the ity names table.In a table, a foreign key is a set of attributes, whih form a primary key in another table. For

8 DMID name initials ountry postal ode employed tax3 John Dove JD England LE3 1TZ True 33.37 Alie Jensen AJ Denmark 9000 False NULL19 Jan Hansen JH Denmark 9000 True 61.1Table 1.3: Person table.ountry postal ode ityEngland LE3 1TZ LeiesterDenmark 9000 AalborgTable 1.4: City table.instane, in Table 1.3 the attributes ountry and postal ode is a foreign key, sine they are theprimary key of the ity names table. Foreign keys are used in foreign key onstraints, whihpose restritions on the values the attributes of a foreign key an attain in a row. Basiallythey are used to ensure that a referene is present in the table being referened. For example,a foreign key onstraint would normally be attahed to Table 1.3, whih ensures that theountry and postal ode values used in the table exist in the ity names table. Thus it wouldnot be possible to add a row with ountry = Denmark and postal ode = 9220 to the table,without adding the appropriate data to the ity names table. Likewise it would not be possibleto delete data from the ity names table, if the ountry and postal ode values are present inthe person table. This is also known as referential integrity .1.3 Data Organisation and Query PerformaneIn this setion we brie�y over how the table data is organised with the aim of desribingertain types of query performane indiators. The disussion is very simpli�ed, sine we onlywish to be able to roughly lassify query performane.Generally the data in a table is stored in a number of bloks on a non-volatile medium. Ablok usually ontain a subset of the rows stored in a table, within the blok the rows aneither be ordered aording to some key or they may be stored unordered.If the data in Table 1.3 is stored unordered in two bloks, and we wish to �nd the person withID 5, then we are fored to san the bloks until we �nd the row with ID = 5. This type ofaess to data is alled a full san, and it has the worst performane, provided the query issearhing for a subset of rows. On the other hand, if the rows within eah blok were orderedaording to the ID, then it would only be neessary to san the bloks until the queried IDwas found, and feth all the rows with this ID. However, some additional data is needed tooptimise the query even further, sine it is not known whih blok the orret rows are in. Thisis aomplished with an index, ontaining a searh key to blok and row position mapping. Aprimary index (also alled a lustered index) is an index whose searh key de�nes the orderingof rows within bloks. Suppose a primary index was reated for the previous example, withthe attribute ID as searh key. If we want the rows with ID being 5, then we simply �nd the

1.4 Joins 9p.ID p.name p.init p.ountry p.ode p.emp p.tax .ountry .ode .ity3 John Dove JD England LE3 1TZ True 33.3 England LE3 1TZ Leiester3 John Dove JD England LE3 1TZ True 33.3 Denmark 9000 Aalborg7 Alie Jensen AJ Denmark 9000 False NULL England LE3 1TZ Leiester7 Alie Jensen AJ Denmark 9000 False NULL Denmark 9000 Aalborg19 Jan Hansen JH Denmark 9000 True 61.1 England LE3 1TZ Leiester19 Jan Hansen JH Denmark 9000 True 61.1 Denmark 9000 AalborgTable 1.5: Example of a artesian produt of person table (p) and ity table ().value 5 in the index, and feth the orret rows in the orret blok. However, if we want to�nd all rows with postal ode 9000, this index will not help, and we must use a full san. Thusseondary indies an be reated, whih are the same as primary indies, with the exeptionthat the rows in the bloks are not ordered aording to the index.It should be noted that the primary index does not have to use the primary key as searh key,and a table an have seondary indies de�ned, without having a primary index. The use ofa primary index is mainly to improve full sans so the data is organised in the order mostommonly used during a full san.1.4 JoinsUntil now, we have only examined a single table at a time, however, when dealing with datain databases it is virtually always neessary to query more than one table to get the wantedresult. If we onsider the tables in Tables 1.3 and 1.4, and we wish to retrieve the personinformation as well as the ity name, we either have to retrieve the person information �rst,and then do a lookup in the ity table for eah person to �nd the ity name, or we have to letthe DBMS ombine the two tables and return the result. Clearly, the �rst solution is tediousand ine�ient, whih is why joins have been introdued to ombine information from multipletables.The artesian produt of two tables, t1 and t2, is de�ned as having all attributes from t1 and
t2, and it ontains every ombination of rows from t1 and t2. Thus, the artesian produt ofthe person and ity tables is the table shown in Table 1.5. Usually there exists a relationshipbetween the tables, whih are being ombined, if this is the ase then we restrit the resultingrows to the rows that adhere to this relationship. For instane, when ombining the personand ity tables, we want the ountry and postal ode in the person table to be equal to thesame attributes in the ity table. This is also known as a natural join, that is, attributes withthe same name in eah table are required to have the same value in eah row.A more general type of join is the inner join whih spei�es exatly how the restrition isto be made using some prediate, this is often used if the attributes have di�erent names inthe tables being joined. Additionally, di�erent types of outer joins exist, whih deal withinluding data that does not exist in both tables being joined. If for example the (Denmark,9000, Aalborg) row did not exist in the ity table, an inner join would not return rows referringto (Denmark,9000). This is a very simpli�ed explanation, however, the types of joins are notruial for understanding the work presented in this report.

10 DM1.5 Aggregate FuntionsThe term aggregate funtion means some funtion used in a database for summarisation. Ingeneral, these funtions work on a olletion of values and return a single value. Sometimesthey are simply referred to as aggregates. Examples of these, are ount, max, min, and sum,whih returns the number of rows, the minimal value, the maximal value and the sum ofvalues for a olletion of values, respetively. In pratie, one spei�es the table (whih an bea result of a query), and whih attribute to use, then the values of this attribute is passed tothe aggregate funtion for eah row in the table. For instane, alulating sum(ID) in Table1.1, would return the value 29, whereas ount(ID) would return the value 3.At times one does not wish to alulate the aggregate funtion on an entire table, but insteadwish to partition the table and alulate the aggregate funtion on eah partition. Returningto the Table 1.1, if we are interested in getting the number of persons registered for eahountry present in the table, then we would partition the table by ountry and apply theount aggregate funtion on the partitions. This partitioning is ommonly referred to asgroup by , due to its syntax in the SQL language1.The remaining part of this setion is based on [AAD+96℄. Aggregate funtions an be dividedinto three ategories, depending on how the alulation of the funtion on a multiset an bedistributed aross disjoint subsets of this multiset. Let the multiset v = x1, x2, . . . , xn be thevalues we wish to alulate the aggregate funtion, F on. Then divide v into the disjointsubsets v1 = x1, x2, . . . , xn1
, v2 = xn1+1, xn1+2, . . . , xn2

, . . ., vm = xnm−1+1, xnm−1+2, . . . , xn.Then F is said to be distributive if there exists a funtion G, suh that
F (v) = G({F (v1), F (v2), . . . , F (vm)}). In other words, if the input values to the aggregate funtion an be partitioned into disjointsubsets, whih an be aggregated seperately, and these then an be ombined to the aggregatevalue of the whole multiset, then the aggregate funtion is distributive.Examples of distributive funtions are min, max, and sum, the funtion G used to ombinethese aggregate funtions is the aggregate funtion itself. For instane, the sum funtion is�rst applied to the subsets, and then the sum funtion is used again on the value sum of eahsubset. The ount aggregate funtion is also distributive, however, its ombining funtion, G,is the sum funtion.An aggregate funtion that an be obtained by using an algebrai funtion with a �nite amountof parameters, eah of whih are obtained using a distributive aggregate funtion, is alled analgebrai aggregate funtion. An example of this type of aggregate funtions is the averagefuntion, whih an be obtained by sum

count
.An aggregate funtion whih is neither distributive, nor algebrai is alled a holisti aggregatefuntion. The median funtion is an example of a holisti aggregate funtion.

1selet ountry, ount(*) from persons group by ountry

Chapter 2Data WarehousingIn this hapter we introdue the onept of data warehousing, with the fous on dimensionalmodelling. The hapter is mainly based on [Inm02℄ and [Kim96℄, with the use of some sum-marised information from [HK01℄.2.1 The Data WarehouseIn traditional databases the fous has been on proessing transations, that is, it is moreonerned with running a business. However, more ompanies are beginning to see the valueof being able to analyse their business. For this purpose the traditional databases are oftenunsuitable, sine they usually do not trak hanges over time. For instane, when an order hasbeen proessed, it may be removed from the database, or when a ustomer hanges addressthe old address is overwritten, so it is impossible to do proper analysis over time.To improve the analysis of a business, a new kind of database has been reated, the datawarehouse. The hanges are not in how the DBMS proess data, but rather in the way datais entered and organised in the database.The term data warehouse was oined by Bill Inmon in 1990, and he de�ned it as �A warehouseis a subjet-oriented, integrated, time-variant and non-volatile olletion of data in support ofmanagement's deision making proess� [Ree℄.This de�nition has not hanged sine, and a data warehouse is still de�ned as above in [Inm02℄,where the four terms are explained as follows:subjet-oriented refers to data being organised around the major subjets within the om-pany, instead of their appliation areas. For instane an insurane ompany might haveits traditional database organised by the types of insuranes it deals with. Whereas itssubjet areas would be ustomer, poliy, and laim.integrated refers to data being integrated from multiple soures. It is the most importantaspet of the data warehouse, and also the most time onsuming. This is due to datanot simply being transferred into the data warehouse when it is reeived from multiplesoures, instead it is integrated, whih means that di�erent parts of an organisation hasto agree on all terms used in the data being integrated. Additionally, data may reside in

12 DMmany di�erent formats, and di�erent values may refer to the same thing. For instane,the gender of a person may be desribed as �m/f�, �male/female�, or �0/1�. Thus, alarge part of the reation of a data warehouse, is de�ning attributes and �nding ways tointegrate attributes oming from di�erent soures.time-variant refers to all units of data being tagged with a time stamp, or using some otherapproah to indiate in whih time frame a unit is ative. For instane, the address of austomer has a time frame in whih it is valid, thereby a hange of address is only validfrom the time it is registered, and older data is not a�eted by the hange.non-volatile refers to the way data is loaded and aessed in the data warehouse. In atraditional database, individual rows are often hanged. However, in the data warehouse,a large amount of data is loaded, and then it is not modi�ed again, it is only aessedfor analysis.In [Kim96℄ Ralph Kimball states the following goals for a data warehouse:1. The data warehouse provides aess to orporate or organizational data.2. The data in a data warehouse is onsistent.3. The data in a data warehouse an be separated and ombined by means of every possiblemeasure in the business.4. The data warehouse is not just data, but also a set of tools to query, analyze, and presentinformation.5. The data warehouse is the plae where we publish used data.6. The quality of the data in the data warehouse is a driver of business reengineering.The term data warehousing is de�ned as the proess of building a data warehouse. One ofthe main design deisions when building a data warehouse is determining the granularityof data. That is, the highest level of detail whih an be queried in the warehouse. Forexample, if a ompany registers all their sales transations, these may be represented usingsuh high granularity that eah transation is represented in the data warehouse, or theymay be summarised to eah hour of the day and stored at this granularity level in the datawarehouse. Whih level is hosen depends on the amount of data and the type of analysisthat is to be done on the data.One of the most important parts of the data warehouse is the metadata repository (usuallyreferred to simply as metadata), whih stores data about all the attributes, their interpreta-tion, and their relationship. The reason for its importane is due to the importane of dataintegration. By storing detailed information about how an attribute is interpreted, it is easierto get a ommon view of the data within a ompany.It should be noted that, depending on the size of the data warehouse, the analysis itself maynot be performed using the data warehouse. Instead it an be performed in data marts, whihare smaller databases that extrat part of a data warehouse. However, we are not going todistinguish between these two types of databases, so in the remainder of the report we willsimply refer to the data mart as a data warehouse.

2.2 Dimensional Modelling 132.2 Dimensional ModellingA dimensional model is represented as an n-dimensional data ube, with a set of dimensionsand a entral subjet, whih depends on these dimensions.If we onsider a sales database, whih registers every sale in a store, then the sales ould berepresented in a ube. In this ase, sales would be the entral subjet, and date, produt,or other attributes, whih the sale depend on would be grouped into dimensions. Relatedattributes should be part of the same dimension.2.2.1 Fats and MeasuresA fat is usually a representation of some event in the domain of the business. To eah fat anumber of measures are attahed, these desribe some measurable values onerning the fat.For instane, if we are modelling the sales of a ompany, eah sale ould be represented as afat, and the measures, would be the prie of the produt, the quantity sold, and so forth.A measure is ategorised aording to its additivity. An additive measure an be addedover all dimensions, a semi-additive measure an be added over some dimensions, and non-additive measure annot be added over any dimensions. Additionally, an aggregation funtionis attahed to eah measure, so the measures are aggregated orretly aross dimensions. Forinstane, the prie or quantity of produts would be added together with the sum funtion,whereas a measure storing the average prie, would use the average funtion.There do exist other types of fats, whih deal with so-alled �snapshots�, that is, they donot model an event, instead they register the urrent state of the business in some way[PJ01℄.For example, when the urrent inventory of a shop is registered, this would be representedas a snapshot fat. However, these kinds of fats are rare in omparison to event fats, anddi�ult to model, so we restrit the type of fats we onsider to event fats.2.2.2 DimensionsA dimension onsists of entities, whih partiipate in eah fat, but whose attributes do nothange with eah fat. Returning to the sales example, a ustomer is part of every sale, butthe attributes desribing the ustomer do not hange with every sale, thus the attributes ofthe ustomer are modelled as a dimension, instead of as measures attahed to the fat.
All

Year

Month

DayFigure 2.1: Conept hierarhy for simple date dimension.

14 DMWithin eah dimension the attributes are ordered in a hierarhy, whih is alled a onepthierarhy1. This hierarhy is reated suh that it represents generalisation and speialisationof attributes. It always has a unique top node labelled All whih orresponds to all entities inthe dimension, and a unique bottom node, whih orrespond to the highest degree of detail thedimension registers. For instane, a date dimension onsisting of the attributes Year, Month,and Day, would be represented as shown in Figure 2.1. In this representation All orrespondsto all data in the dimension, and Day to the level of granularity. Year is the data grouped bythe value of year, Month is the data grouped by the value of year and the value of Year. Thatis, we speak about Januar 2002, and so on, so all the data whih orrespond to a month in2002 an be generalised to the year 2002.Sometimes, there exists attributes, whih annot be generalised or speialised to other at-tributes, in this ase, they are simply plaed between the All level and the level of granularity.For instane the attribute Weekday ould be added to the previous onept hierarhy, withoutit being part of months or years, as we only want the attribute to represent a weekday overall months and year. That is, we want to be able to analyse all Mondays, and not just theMondays within a given year. In this ase, the attribute would be added as shown in Figure2.2.
All

Year

Month

Day

Weekday

Figure 2.2: Conept hierarhy for more omplex date dimension.
2.2.3 The Data CubeAfter introduing the previous onepts, we an now show an example of a data ube, on-sisting of fats and dimensions.Consider the sales example, with a fat orresponding to every sale, whih ontains a singlemeasure number_sold. Additionally, a ustomer, produt, and time dimension exist. Thisould be represented as shown in Figure 2.3. In this example, the numbers in eah boxindiate the number of sold produts grouped by ustomer, produt and year. Notie thatthe year-axis is denoted with �date�, sine it orresponds to a single attribute from the datedimension, one ould have hosen to partition the data by months or some other date-relatedattribute.1Tehnially, it should be alled a onept lattie, however, most literature use the word hierarhy, so wewill also all it a hierarhy.

2.3 OLAP 15

CoffeeDiapersBeer

4

20 0 8 5

15

0

10

10

0

4

30 0

10

50

0

40

0

15

2

10

1

15

Product

Soda

2002

2001Date

Anders

Katinka

Mette

Jan

C
us

to
m

er

Figure 2.3: Example of a ube.2.3 OLAPThe ubes previously desribed, support a speial kind of analysis, referred to as On-LineAnalytial Proessing (OLAP)2. This kind of analysis uses speial operations on the dataubes, whih makes it easier to analyse summarised data. First the user is able to selet anumber of dimensions whih is to be displayed in ube or tabular form. Then the followingoperations exist and an be used on the dimensions:Roll-up: Generalise the urrent level of a dimension, that is, limb up the onept hierarhy,for instane from Month to Year. When the All level is reahed, it orresponds toremoving the dimension from the ube, sine it does not �lter the data anymore.Drill-down: Speialise the urrent level of a dimension, that is, go down the onept hierar-hy, for instane from Month to Day.Slie and Die: The slie operation performs seletion on a single dimension, for instanelimiting data by �Year = 2002�, or �Month = January or Month = August�. The dieoperation is a generalisation of the slie operation, whih performs the seletion on twoor more dimensions.Pivot: A visual operation, whih rotates the axes of data, to get a di�erent point of view.Some OLAP systems have additional funtionality to ombine two ubes, whih is alleddrill-aross.These operations are either available in a visual OLAP query tool, or available in a speialisedquery language.2OLAP is often ompared to OLTP, whih means On-Line Transational Proessing, whih is the traditionalway of using databases.

16 DM2.4 Storage Models for CubesThe introdued multi-dimensional model an either be implemented using speial data stru-tures, or it an be modelled in a relational database. We �rst introdue the relational modelsand then disuss the di�erent types of arhitetures.The most ommon way to model a multi-dimensional model in a relational database is usinga star-shema. This shema onsists of a table for eah dimension (the dimension tables), anda table for the fats (the fat table). Then eah primary key from the dimension tables areadded as foreign keys to the fat table, and no other relationships are added. An example ofa star shema is shown in Figure 2.4.

measure 2

.

.

Dimension 2

pk2 primary key
attribute 1
attribute 2
.
.
.

pk3 primary key
attribute 1
attribute 2
.
.
.

Dimension 3

fk1

measure 1

Dimension 1

pk1 primary key
attribute 1
attribute 2
.
.
.

.

Facts

fk2
fk3

Figure 2.4: Star shema.The approah used in the star shema results in redundant data in more omplex dimensions,so these dimensions an be normalised. That is, some of the dimensions are split into smallertables eah with their own primary key and some attributes, and the dimension table thenreferenes these tables. This is known as a snow�ake shema, an example is shown in Figure2.5.Both [Kim96℄ and [IRBS99℄ strongly disourage the use of snow�ake shemas. The reasoningis that the dimension tables are extremely small ompared to the fat table, and browsing

2.4 Storage Models for Cubes 17
.
.

attribute 2
attribute 1

fk2
fk3

fk21
pk21 primary key

.

.

.

attribute 1
attribute 2

Dimension 1

pk1 primary key

.

.

.

attribute 2
attribute 1
fk11

pk11 primary key
attribute 1
attribute 2
.
.
.

Dimension 3

.

Facts

fk1

measure 1
measure 2

.

.

Dimension 2

pk2 primary key

.

pk3 primary key
attribute 1
attribute 2
.
.
. Figure 2.5: Snow�ake shema.of dimensional data is one of the most ommon ativities. So the spae savings due to nor-malisation of the dimension tables are insigni�ant ompared to the performane penaltiesof performing several extra joins to get the dimensional data. Thus we restrit our futurerelational representations of multi-dimensional data to star shemas only.The servers or DBMSs, whih store the dimensional data an be ategorised into three ate-gories:Multi-dimensional OLAP (MOLAP): All data is stored in speial data strutures, spe-ially suited for dimensional data. These utilise speial strutures for the aggregates,whih improves performane, however, they do not sale well with extremely largeamounts of data, ompared to mature relational DBMSs.Relational OLAP (ROLAP): All data is stored in a relational database using a star shema,snow�ake shema or some other model. These sale very well, due to the maturity ofthe urrent DMBSs. However, they are not as e�ient in using aggregates, and an haveproblems with hosing the right join order for dimension tables and fat tables. Theseproblems are being addressed by the major DBMS manufaturers and most DBMSstoday an be optimised for star shemas.Hybrid OLAP (HOLAP): A ombination of relational and multi-dimensional databases,where the large amounts of fat data is stored in the relational database, while theaggregates are stored in a multi-dimensional database.

18 DM2.5 Pre-omputed AggregatesThe main reason behind quik proessing of OLAP queries, is the use of pre-omputed aggre-gates, that is, aggregate values for ertain levels of dimensions and ombinations of dimensionsare omputed when data is loaded into the data warehouse, instead of at the time the queryis requested.It should be noted, that it is usually impossible to ompute all ombinations of dimensionsand dimension levels. With the assumption that only one attribute is inluded from eahdimension in the aggregates, the amount of di�erent dimension/attribute ombinations in an
n-dimensional ube would be:

n∏

i=1

Liwhere Li is the number of levels within dimension i, inluding the All-level (sine this orre-sponds to leaving out the dimension).Instead the aggregates that improves performane most are omputed. This improvement isbased both on statistis olleted about whih type of queries the users are requesting, andbased on the redution in rows that must be fethed to alulate an aggregate. Consider anexample, where the fat table onsists of 3 years of data, with a granularity of one minute.If we have a date dimension, onsisting of the attributes Year, Month, Day, DayHour, andDayMinute, whih are linearly ordered in a onept hierarhy. Then, assuming a fat isreorded every minute during these 3 years, we have the following amount of distint valuesfor eah attribute:Attribute Distint valuesYear 3Month 36Day 1095DayHour 26280DayMin 1576800If we want to alulate an aggregate value, without any pre-omputed aggregates, then itis neessary to alulate it based on the 1.6 million rows every time. Assuming that theaggregate funtion is distributive. Then, if for instane, an aggregate had been alulated forDayHour, this aggregate ould also be used to alulate both Year, Month, and Day, reduingthe amount of rows needed for the alulation from 1.6 million to just 26.280.So, generally, the aggregates are pre-omputed for the attributes in the lowest levels of theonept hierarhies. Then, depending on the distint values present at the other levels, andthe number of users using the dimension, aggregates at higher levels an also be pre-omputed.2.6 Loading Data into the Data WarehouseA large part of maintaining the data warehouse is onerned with loading data into the datawarehouse. When the data warehouse is initially reated data is loaded into it, however, afterthis initial load, additional data is loaded at regular intervals.There are a number of steps, whih are performed during eah loading of data, these areommonly referred to as ETL, whih is an aronym for Extrat, Transform, and Load. Extrat

2.6 Loading Data into the Data Warehouse 19is the proess of gathering data from a single soure or multiple soures, both databases, �les,and other types of external soures. Transform is the transformation, leaning, and integrationof data to the struture spei�ed by the data warehouse. This an be as simple as mappingbetween two sets of values, to omplex alulations involving many soures. Load is theproess of storing the transformed data into the data warehouse, alulating aggregates andany other maintenane that must be done to the data warehouse.

20 DM

Chapter 3TREO DataIn this hapter we introdue a database, whih is being used by a lub at the university toregister sales and payment status for members.First we desribe the overall purpose of the lub, then we examine the quality of data, andlean the data based on the quality observations. Next we analyse whih data ubes an bereated using the available data, based on this analysis, the design for two ubes is reated.Finally we perform the needed data transformations to make the data suitable for the ubes,the most omplex part, of this proess, is the derivation of historial data, sine the databasedoes not inlude this expliitly.The original database was reeived in a Mirosoft Aess database. This data has beenimported into a Mirosoft SQL Server database, and all database related operations havebeen performed with SQL Server and Analysis Servies, whih is the data ube/OLAP softwareinluded with SQL Server. The only exeption is the reation of boxplots, whih has beendone using R 1.6.2. This is a statistial program, whih is desribed, and freely available fordownload, at http://www.r-projet.org.3.1 Desription of the Analysis DomainAt Aalborg University a lub exists, alled the F-lub. This lub is for employees and studentsa�liated with the omputer siene department and the math department. The lub onsistsof many smaller lubs with a spei� purpose. One of these is the TREO, whih is responsiblefor selling food, drinks, and various other produts to members of the F-lub at low pries.This is done by having a ommon refrigerator with the produts, whih the TREO orders atvarious distributors. The members of the F-lub an then purhase the produts they want,however, they are responsible for paying the produts themselves.In the early days this was done by using a �stregsystem�, whih was large paper sheets, wheremembers would have a plae for their username. When they fethed something from therefrigerator, they would set a mark at their username, thereby aumulating marks. Thenwhen a member had aumulated a ertain amount of marks he or she would pay to theTREO for the purhases.At some point in time it was deided to reate an eletroni system for handling the purhases.

22 DMIt would work the same way as mentioned above, but instead of using paper and pen, themember would register eletronially whih produt he or she purhased when fething aprodut from the refrigerator. Additionally the payments paid by the members would beregistered in the system, so it was possible to see exatly how muh money a member owed.Thus it would be possible to enfore limits on how large a debt a member was allowed to have.The system started online in the fall of 1996, and from this point on a transition to the newsystem was gradually undertaken. The system has two thresholds for the total debt of themember. A warning threshold, whih means a member has to pay some of his or her debtwithin 14 days, or the member will be bloked, that is, unable to register new purhases.And a bloked threshold, whih bloks the member instantly when that threshold is reahed.These warning and bloked thresholds were 150,00 dkr and 250,00 dkr, respetively, in thebeginning. Later they have been hanged to 0,00 dkr and -50,00 dkr, respetively. A speialfeature of the system, is the so-alled �multi-buy�, whih makes it possible to easily purhaselarger quantities of the same produt (however, due to software bugs in the TREO softwareor the web browser running the system, this feature is not that ommonly used).Later, a speial arrangement with the omputer siene department has been made, that is,the department pays the o�ee its employees drink. This has been implemented as a speialprodut with ost 0,00 dkr. The amount of free o�ee purhased is then handed over to thedepartment, whih pays the TREO for the o�ee. However, these department payments arenot registered in the database.When a member wants to pay his or her debt, or make sure there is enough money on theaount, the member has to pay money to the TREO. This is presently done on fridaysbetween 12:00 and 12:30, however, it is also possible to pay via bank or giro. Sometimes,the nie people in the TREO will even aept money outside this time frame. Whether thepayment has always been done on fridays or not, we are not ompletely sure about, however,it should be possible to infer this from the data. Some irregularities are probably present,sine payments are also reeived during the registration of new members at the beginning ofa study year, whih does not neessarily our on a friday.From the above desription of the domain of analysis, a number of observations are important.
• The lub is not trying to make a pro�t
• The purhase is done based on trust, the purhasing member is responsible for payingby himself.
• There exists thresholds for when a member is warned about being loked out from thesystem until payment is reeived, and another threshold that immediately bloks themember.
• Some bloked members might take advantage on the trust fator, and aumulate pur-hases until they have paid and are allowed to use the system again, then purhasingtheir aumulated purhases

3.2 Overview of Tables and Identifiation of Primary Keys 23Column Data Typeemployee_type integerdesription varhar(20)free_o�ee booleanTotal rows: 3Table 3.1: Shema for Employee_type table.employee_type desription free_o�ee0 Studerende 01 Institut 16 12 Matematik 0Table 3.2: Data in Employee_type table.3.2 Overview of Tables and Identi�ation of Primary KeysThe �rst important task is to get an overview of what data is available, and disover how thedi�erent parts of the data is related. This is aomplished by examining the layout (shemas)of the tables in the database, thereby desribing the attributes and by studying the atualdata to gain insights about the attributes and tables.During this examination we will also look for attribute ombinations, whih an be usedas primary keys for the tables in the database, sine it is laking these, ausing signi�antperformane degradation.3.2.1 Employee_type TableThe Employee_type table, shown in Tables 3.1 and 3.2 ontains the ategories of employeetypes who are using the system.The main purpose of registering employee type is to be able to deide whih members are ableto reeive free o�ee. Currently there are three types: Students, employees at the omputersiene department (registered as �Institut 16� in the data), and employees at the math de-partment. Among these only the employees at the omputer siene department reeives freeo�ee.The natural primary key for this table is the attribute employee_type.3.2.2 Members TableThe Member table, shown in Table 3.3 is used to register information about the members ofthe TREO.user_id identi�es a single person as a member of the TREO, thus giving aess to buyingproduts if the member is marked as ative (whih is ontrolled by the ative attribute). The

24 DMColumn Data Typeuser_id integerative booleanaargang integerdebt doubleboard_debt doubleadvane doublelast_warned integer�rst_warning integerundos integertotal_undos integeremployee integerTotal rows: 1745Table 3.3: Shema for Members table.values for user_id are in the set {1 . . . 1774}, with a total of 1745 values, whih are all unique.ative is either 0 for false or 1 for true.aargang is the year the member started studying or working at the university. If an employeehas studied at the university before beoming an employee, this attribute will be set to thetime at whih the member started studying. The values for this attribute are in the set
{0, 1, 1975 . . . 2002}, the values from 1975 and up represent a year, however, more analysismust be done for the members having aargang 0 or 1.board_debt, debt, and advane are numbers pertaining to the payments done by the members.board_debt is debt registered in the old non-eletroni system, this value is being redued �rstwhen members pay their debt. debt is the debt from purhases using the eletroni system,whenever a produt is purhased this value is inreased by the prie of the produt. advaneis the amount of money due for the member. When a payment is paid by a member thefollowing proedure is performed1) Redue board_debt until it is 0 or the entire payment is used2) Redue debt until it is 0 or the entire payment is used3) Add the remaining payment to advane.Usually we are only interested in the total amount of money the member owes or has due.Thus we de�ne this as a member's balane, whih is de�ned as follows,

balance
def
= advance − board_debt − debt .last_warned and �rst_warning are used for sending warnings to members that owe money,whih exeeds a threshold set by the TREO. In the present data �rst_warning is an integerrepresenting a date, the so-alled epoh, whih is the number of seonds sine the 1st ofJanuary, 1970 at 0:00:00[Gro℄. Examination of the data shows that 268 members have a non-zero �rst_warning, the earliest is 1997-02-06 and the latest 2003-01-20. last_warned does notseem to be used, sine it is 0 for all members.

3.2 Overview of Tables and Identifiation of Primary Keys 25Column Data Typeuser_id integersubsriber_sine datetimeTotal rows: 29Table 3.4: Shema for Co�ee table.Column Data Typedate integerTotal rows: 1Table 3.5: Shema for Paid_ansat_ka�e.undos and total_undos are related to the possibility of anelling a sale. undos is the numberof anellations done sine the last payment, total_undos is the number of anellations donefor the entire time the member has been registered in the TREO. The reason for this designis that a member is only allowed to anel 5 purhases sine the last payment. However,examination of the data reveals that 293 members have a value larger than 0 for at leastone of these attributes, of these members, only 2 members have di�erent values for undosand total_undos. This does not seem onsistent with the assumed design of these attributes,so these two attributes will be ombined to one. This is aomplished by retaining undosand removing total_undos from the database. In the two ases where the attributes di�er,undos is assigned the maximal value of undos and total_undos. The attained values of thenew attribute are between 0 and 5. It is not registered when the undos were done, however,ross-heking with the sales table shows that 13 of the members with undos > 0 have notpurhased anything using the eletroni system.employee is an attribute desribing the employment status of the member, it is an integerwhih referenes the Employee_type table.user_id is hosen as the primary key for this table, sine it identi�es eah member uniquely.3.2.3 Co�ee Tableuser_id is a unique identi�er for the member registered in the system (identi�ed in theMem-bers table), and as suh the only andidate for a primary key.subsriber_sine is the date from whih the member is registered as reeiving free o�ee.The data type of subsriber_sine is datetime, however, only the date part is used, whih isevident from all time values being 0:00:00. The values for the dates are between 1999-11-02and 2002-09-06.3.2.4 Paid_ansat_ka�e TableThe Paid_ansat_ka�e table, shown in Table 3.5, ontains the date of the last payment offree o�ee by the omputer siene department. The money transations for free o�ee are

26 DMColumn Data Typeuser_id integerdate integeramount doubleTotal rows: 5046Table 3.6: Shema for Payments table.Column Data Typeprodut_id integername varhar(20)prie doubleative booleanTotal rows: 47Table 3.7: Shema for Produts table.not part of the system, sine free o�ee is registered as a produt with ost 0,00, and thepayments done by the department are not registered. Thus this table is removed from thedatabase, sine it does not ontribute with any useful information. However, note that it isonly the money transations, and not the atual purhasing transations, that are missing, soit is still possible to investigate, for instane, how muh o�ee is purhased by members.3.2.5 Payments TableThe Payments table, shown in Table 3.6, ontains all payments, done by members, whihhave been registered by the system.user_id is an integer from the Members table. date is a date in epoh format, and amountis the amount of kroner paid to the TREO.user_id and date are hosen as primary key, sine these are unique for all payments.3.2.6 Produts TableThis table, shown in Table 3.7, desribes all the produts o�ered by the system (now and inthe past).produt_id is a unique identi�er for the produt and an obvious primary key. All integers inthe interval [1, 47] are used. name is the name of the produt whih is shown to the memberswhen buying produts. prie is the urrent prie of the produt and ative is a �ag to determinewhether the produt is urrently being sold or not.Examination of the produts reveals a produt named �Fake� whih is an entry that is notbeing used and never has been, so it is removed from the Produt table.

3.2 Overview of Tables and Identifiation of Primary Keys 27Column Data Typeprodut_id integerprie doubledate_start integerTotal rows: 226Table 3.8: Shema for Pries table.produt_id date_start prie11 1996-11-14 11:39:29 7,0011 1998-09-23 15:00:11 8,0011 2001-05-09 11:31:44 9,0011 2002-11-15 13:20:35 10,5011 2002-11-15 13:23:39 10,5011 2002-11-15 13:24:10 10,5011 2002-11-15 14:01:20 10,50Table 3.9: Example of redundant prie hanges in the Pries table.3.2.7 Pries TableThe Pries table, shown in Table 3.8, ontains historial data for the pries of produts soldby the TREO. produt_id is an integer from the Produts table, prie is the prie of theprodut. date_start is the date from whih the prie is ative, this date is stored in epohformat. Investigation of the values shows that the table ontains redundant information, dueto it ontaining new pries that are the same as the old pries. In the example in Table 3.9the last four hanges to a prie of 10,50 an be removed. In general it is possible to orderthe prie hanges by date for eah produt and then only keep the �rst prie hange if severalequal prie hanges are deteted.produt_id and date_start are hosen as primary key, sine they are unique for all rows.Column Data Typeuser_id integerprodut_id integerdate integerprie doublepaid_for booleanTotal rows: 170467Table 3.10: Shema for Sales table.

28 DM3.2.8 Sales TableThe Sales table, shown in Table 3.10, desribes a single sale of a produt. user_id is areferene to the member purhasing the produt, produt_id is a referene to the produtbeing purhased at the date of the date attribute, whih is also stored as an epoh value. prieis the prie of the produt, and paid_for is a speial �ag used by the system, whih will beremoved sine it is only used for internal �bookkeeping� purposes1.When a member of the system performs a multi-buy of n produts, then n equal rows areinserted into the Sales table. This poses a problem, sine there does not exist any attributeombination, whih is unique for all rows, thereby a primary key annot be reated, whihredues performane (espeially sine it is the largest table). This problem an be solved in twoways, either by adding a unique transation identi�er attribute or by merging transations thatare inserted by multi-buy. The problem with the �rst solution is that arti�ial transations arereated sine produts purhased during a multi-buy ought to be a single transation. Thus,we hoose the latter solution, whih we will return to later in setion 3.6.1.3.3 Identifying RelationshipsIn the original database there does not exist any expliit relationships between the tables, thatis, it does not ontain foreign key onstraints. However, impliitly a number of relationshipsare present in the form of attributes having similar names aross tables as desribed previously.In Figure 3.1 the tables are shown with the relationships whih have been identi�ed duringthe examination of the tables.Next, the data is veri�ed to onform to the presented relationships. For eah of the rela-tionships shown in Figure 3.1 it is ensured that a valid foreign key exists in the referenedtable. For instane, the Payments table referenes the Members table, this means thatevery user_id in the Payments table must exist in the Members table.These heks only present two ases with an invalid referene. Both are in the Sales table,where a member is registered with user_id 0, this member does not exist. To solve thisproblem both these ases are removed sine the number of ases is insigni�ant ompared tothe amount of data.3.4 Data Cleansing: Outlier Detetion and CorretionWe now turn to a deeper investigation of the more ompliated tables and attributes of thedata, with the objetive of �nding inorret and extreme values that may be inorret.The tables Co�ee, Employee_type, and Produts ontain so few rows that their valuesan be inspeted manually, and no apparent invalid or extreme values are found.The remaining data heks are done using queries, the preise queries being used an be foundin Appendix B.2.1Atually, it makes it possible to delete old transations, this feature has, lukily, not been used.

3.4 Data Cleansing: Outlier Detetion and Corretion 29

�����

��� ���	
�� ������

��� �	�����
�� ������

���� ������

�	��� ������

������

��� !"#$%& '()*+*,

��-��	�-�	
��.�� �/���0�

�1���2��
�2��

"34567""$874"$%& '()*+*,

����	�����. 9/�:;/�<�=>

�	��
������ ������

1�1-�	�

 !"#$%& '()*+*,

����?� ������

��	@�.@ ������

��-� ������

-��	�
��-� ������

����
A�	.�� ������

��	��
A�	.�.@ ������

��?�.�� ������

�.��� ������

��� �1���2�� ������

����
�.���
B����

���� ������

��21�.��

��� ���	
�� ������

���� ������

�1��.� ������

�	����

��� �	�����
�� ������

�	��� ������

����
���	� ������

�	������

4#6& C8$%& '()*+*,

.�1� 9/�:;/�<�=>

�	��� ������

����?� ������

Figure 3.1: Database layout for the enhaned TREO database, with relationships added andirrelevant attributes removed.3.4.1 Members TableFirst the user_id is heked to be positive, unique and non-null, these onstraints are ful�lled.Next ative is heked to be either 0 (false) or 1 (true) whih is the ase for all members. Thenaargang is inspeted by grouping the members by aargang and heking the number of membersat eah aargang. The result is shown in Table 3.11. The �rst problem is the inonsisteny inthe spei�ation of the year, the value 1 is probably a mistyped 2001, however, 0 an be bothan unknown value and a mistyped 2000. Inspetion of the other years also reveal that thenumber of members in 2000 is very low ompared to the surrounding years. To determine themembers, with aargang equal to 0, whih should be hanged to aargang 2000, we use the salesdata. We �rst determine at whih date the �rst purhase was done by someone with aargang1999, then we hange the members with aargang 0 that have not purhased produts beforethis date, and have done some kind of purhase. This proedure results in 18 members beinghanged.The same proedure is done for members with aargang 1, all four of these members are hangedto aargang 2001.Finally board_debt, debt, and advane are inspeted using boxplots. These represent thebalane status for eah member. The boxplots are shown in Figure 3.2. The most extremevalues are 5000dkr, however this is advane and debt for the same member, so it anels out.

30 DMaargang members0 521 41975 91976 81977 131978 91979 161980 81981 201982 221983 361984 731985 861986 531987 461988 591989 661990 671991 901992 751993 631994 931995 771996 771997 951998 801999 1292000 582001 1002002 161Table 3.11: Aargang
aargang members (before) members (after)0 52 341 4 02000 58 762001 100 104Table 3.12: Aargang: Members before and after adjustment

3.4 Data Cleansing: Outlier Detetion and Corretion 31

advance board_debt debt

0
10

00
20

00
30

00
40

00
50

00

Figure 3.2: Boxplots for advane, board_debt, and debt in the Members tableLikewise a value of 2000dkr is found for board_debt and advane of another member, whihalso anels out. Thus no obvious invalid values are found.The remaining attributes for this table have been veri�ed previously.3.4.2 Payments Tableuser_ids are already heked to be in the member table and the dates are within their properrange. However, as desribed in setion 3.1, we are not ompletely sure about when thepayments have been done in the past. For many years it has been done on fridays, andto hek whether it always has been friday, the number of payments by year and weekdayare shown in Table 3.13. This table shows that most payments have always been done onfridays. However, a signi�ant number of payments are also done on other days, this might beexplained by holidays, or speial payments due to new members joining the TREO at when anew semester begins.The inspetion of the paid amount is done with a boxplot, shown in Figure 3.3, this revealsone very extreme value (22805 dkr versus 5000 and 4000). Looking at the minimum amountof payments, there are many very small payments (even a payment of 0,00), however, this an

32 DMDay \ Year 1996 1997 1998 1999 2000 2001 2002 2003 TotalMonday 1 6 17 126 27 47 101 5 330Tuesday 0 41 26 50 32 17 101 0 267Wednesday 0 17 20 80 54 99 207 3 480Thursday 0 3 52 20 27 30 31 6 169Friday 80 578 444 348 541 632 1031 22 3676Saturday 0 0 1 72 2 13 9 0 97Sunday 0 0 1 18 4 2 1 1 27Total 81 645 561 714 687 840 1481 37 5046Table 3.13: Payments by year and weekday.user_id date amount553 1997-04-18 11:12:27 22805,00991 2002-08-08 10:54:20 5000,001 2000-10-06 11:01:53 4000,001 2000-10-06 11:00:27 4000,001 1999-11-19 12:04:35 3000,001 2001-09-07 11:47:12 2500,001 1997-11-14 13:11:00 2014,251 1997-11-14 13:09:44 2014,251347 2001-03-02 12:48:32 2000,00Table 3.14: Payments ≥ 2000dkrbe explained by people leaving the lub, who then pay their remaining debt.Due to the very large payments found in the boxplots, we analyse the biggest payments further.The payments with an amount greater than or equal to 2000dkr are shown in Table 3.14. Itan be seen that big payments are usually being done by the member with user_id 1, however,even for this member there is an odd pattern in the payments, with equal amounts being donewithin minutes. This seems quite suspiious, sine people usually only perform one paymenton the same day, so it is likely a double entry of the amount. To investigate this matter furtherwe �nd all the payments that are done by the same user on the same day. These are listed inTable 3.15. There is a total of 37 events, all of whih are two payments done on the same dayby the same member. It seems that there are two di�erent kinds of events, one where the sameamount is paid twie, and another where a small amount and a large amount is paid. The�rst ould be explained by the abovementioned double entry of the payment, the latter by amistyped amount, followed by a orretion amount2, however it seems odd that all amountsare postive in this ase.The problems, whih are outlined above are partially solved, by removing one of the payments,in all registered double payments. The events with small and large values paid on the sameday are not orreted, sine they are assumed to be orret.2inferred from the observation that people usually pay in some multiply of 100dkr

3.4 Data Cleansing: Outlier Detetion and Corretion 33
date user_id amount1996-11-29 11:48:02 878 161,001996-11-29 11:48:22 878 8,01997-11-14 13:09:44 1 2014,251997-11-14 13:11:00 1 2014,251998-02-06 12:20:35 1125 200,001998-02-06 12:20:48 1125 200,001998-05-15 11:25:56 1 1500,001998-05-15 11:34:11 1 1,001998-09-04 11:16:53 1046 153,251998-09-04 11:18:51 1046 80,001998-10-21 09:08:02 1011 280,001998-10-21 09:09:31 1011 220,001998-10-23 10:47:23 1064 40,001998-10-23 10:47:51 1064 360,001998-10-26 11:08:20 1 1486,001998-10-26 11:09:20 1 1486,001999-01-27 13:24:55 1085 211,751999-01-27 13:25:10 1085 10,001999-03-12 11:34:24 1178 0,001999-03-12 11:34:47 1178 300,001999-04-29 10:44:13 615 250,001999-04-29 10:44:18 615 250,001999-06-29 12:23:21 1153 229,001999-06-29 12:23:27 1153 220,001999-10-04 13:32:12 1270 35,001999-10-04 13:32:35 1270 315,001999-10-04 13:40:00 1235 30,001999-10-04 13:40:20 1235 270,001999-10-05 10:26:31 1237 20,001999-10-05 10:46:58 1237 30,001999-10-29 10:28:47 1282 188,001999-10-29 13:33:19 1282 110,001999-11-12 11:56:39 1099 100,001999-11-12 11:57:38 1099 100,001999-11-12 11:59:17 1318 150,001999-11-12 11:59:37 1318 150,001999-11-19 11:58:39 1077 380,001999-11-19 12:01:54 1077 90,002000-02-25 13:09:31 1103 200,002000-02-25 13:09:32 1103 200,002000-06-21 13:03:24 677 200,002000-06-21 13:03:48 677 200,002000-10-06 11:00:27 1 4000,002000-10-06 11:01:53 1 4000,002000-10-27 11:27:29 1237 198,002000-10-27 13:14:03 1237 105,002001-03-09 08:10:25 1323 24,002001-03-09 12:10:10 1323 100,002001-05-02 12:58:52 1320 200,002001-05-02 13:02:07 1320 200,002001-07-13 14:04:46 1127 200,002001-07-13 14:04:50 1127 200,002001-09-07 11:39:44 1442 20,002001-09-07 11:39:54 1442 180,002001-11-23 12:20:01 1532 20,002001-11-23 12:20:18 1532 180,002001-12-21 11:52:56 1484 100,002001-12-21 11:53:07 1484 25,002001-12-21 11:56:45 930 175,002001-12-21 11:57:12 930 175,002002-02-06 11:19:55 1083 70,252002-02-06 11:20:13 1083 0,502002-04-12 11:20:21 1349 300,002002-04-12 11:22:10 1349 50,002002-05-03 11:13:33 1563 20,002002-05-03 11:13:40 1563 180,002002-06-07 10:47:52 1 150,002002-06-07 10:48:22 1 1350,002002-09-13 11:17:57 1438 100,002002-09-13 11:19:14 1438 100,002002-09-20 11:36:46 1744 50,002002-09-20 11:37:46 1744 50,002002-12-06 12:26:36 962 100,002002-12-06 12:28:45 962 100,00# di�erent members: 32# di�erent days: 34Table 3.15: Multiple payments on same day by same member.

34 DM
0

50
00

10
00

0
15

00
0

20
00

0

Figure 3.3: Boxplot of amount in the Payments table3.4.3 Pries Tableprodut_id and dates are valid. Investigation of the pries show no extreme values (when thetype of produt is taken into onsideration). However, one produt has a negative prie, whihis adjusted to a positive prie within hours. The sales transations show that no member haspurhased the produt to a negative prie, so the prie adjustment has most likely been duringa test period or been a quikly orreted error, thus the negative prie is removed from thetable.3.4.4 Sales TableThe user_id and produt_id were previously heked and two transations with invalid user_idwere removed. The dates are heked to be in their proper range, whih they are. Finally,the prie attribute is heked to be equal to the prie found in the Pries table. This is doneby looking up the prie at the latest date in the Pries table, that is before the date in the

3.5 Preliminary Design of Data Cubes 35Sales table. For example, a produt purhased at 1999-12-24 17:23:29 the largest date whihis before the purhasing date is found in the Pries table, and the prie hange at this dateis ompared to the one in the Sales table. This hek did not disover any problems.3.5 Preliminary Design of Data CubesAfter the urrent investigation of data, there are two main subjets whih an be modelled ina data ube. The �rst is the amount of sales, whih most tables are related to. The seond ismembers and their balane, inluding warnings given to them.Whether these two subjets should be modelled using one ube or two ubes is not obvious.The balane and warning history of members ould be seen as a dimension, with the sales databeing the fats, or a smaller ube entered around the member balane ould be reated. Sinewe are not sure whih approah is the best, we begin by reating a ube for sales with memberas a dimension. Then, if it is needed, we an reate a separate ube using this dimension later,if this is needed.With the aim of desribing the seleted two subjets, most tables seem to be able to addinformation to the subjets. However, paid_ansat_ka�e does not ontribute with anyinformation.3.5.1 Identify Grain and DimensionsThe �rst important hoie that must be made is how �ne-grained the sales data is modelled.Either every transation an be modelled, or it an be summarised to some level, for instane,sales during a minute or an hour. Sine the amount of data is small, we hoose to model salesat the transation level to preserve all information in the data.During the examination of the sales table it was found that it referenes the members andproduts tables. Thus these tables are andidates for dimensions, whih also seems sensible.Furthermore, the date and time of the sale should be represented as a dimension. In generalthere are two ways to represent the date and time. Either as one dimension, or splitting it intoa date dimension and a time dimension. The di�erene between the two solutions is the levelof detail one wishes to be able to support, and the types of summarations that are deemeduseful. Using one dimension makes it possible to summarise data by for instane 4th of Aprilat 14:00. However, in the available data whih represents about 6 years of sales this wouldnot amount to many sales, furthermore, when analysing the data, it would be too detailed.Thus it is hosen to split the date and time data into separate date and time dimensions.The Payments and Pries tables do not seem likely as dimensions, however, the data storedin them may be used to add derived attributes to the already mentioned dimensions.3.5.2 Conept HierarhiesNext we determine the onept hierarhies within the dimensions. In the illustrations for thesehierarhies we do not show hierarhies with only one attribute. So, within eah dimension theattributes are the ones shown in the onept hierarhy illustration and any attribute shownin the related table in Figure 3.1 whih are not inluded in the depited hierarhy.

36 DM
DayOfWeek

Week

Month

Quarter

Semester

Day

DayOfMonth

Year

All

Figure 3.4: Conept hierarhy for date dimension.Date DimensionThis dimension mainly onsists of a year split into ommon alender terms, as shown in Figure3.4. Furthermore, an attribute alled term has been added, whih desribes the urrent term(or speial event) at the university. More preisely the months are assigned a value in the set{Exams, Fall, Spring, Summer break} by the following mapping.Semester MonthsExams January, JuneFall September, Oktober, November, DeemberSpring February, Marh, April, MaySummer break July, AugustAdditionally, the day of week, month, and year are added.Time DimensionThe time dimension onsists of hour and minutes. Furthermore, a more oarse-grained at-tribute has been added alled timeofday. This attribute maps the hours of the day into naturalintervals in the set {night, morning, noon, afternoon, evening} as shown below.timeofday hournight 1..5morning 6..10noon 11..13afternoon 14..17evening 18..23The entire hierarhy is presented in Figure 3.5.

3.5 Preliminary Design of Data Cubes 37
All

TimeOfDay

HourFigure 3.5: Conept hierarhy for time dimension.

Beer

Alco

Wine Snaps Free Not Free MilkChoco

Coffe Dairy Soda/Juice

Juice Soda Misc

Tea Breakfast Sweets

Food

Dairy Misc Misc

Misc

Misc

All

Drinks

Figure 3.6: Conept hierarhy for produt dimension.Member DimensionAll attributes in the member dimension are single-attribute hierarhies.Produt DimensionBy examining the available produts in the system, we have tried reating a logial hierarhy ofrelated produts, whih is shown in Figure 3.6. Notie, that this hierarhy must be onstrutedusing additional attributes in the produt dimension. This an either be aomplished byadding all the values shown in the �gure as boolean attributes, and setting these attributesaordingly for eah produt. However, a better solution exists, whih is reating an attributefor eah level of the hierarhy, and then use the values in the hierarhy is values for theseattributes. This approah only requires three new attributes, and they form a linear hierarhy.The added attributes and values are:MainClass { Drinks, Food, Mis }Class { Alo, Co�ee, Dairy, Soda/Juie, Breakfast, Sweets, Mis,}SubClass { Beer, Wine, Snaps, Free, Not Free, Choo, Milk, Juie, Soda, Dairy, Mis }With these attributes the onept hierarhy for the produt dimensions an be representedusing attributes as the one shown in Figure 3.7.

38 DM
All

SubClass

Class

MainClass

Figure 3.7: Conept hierarhy for produt dimension using attributes.3.5.3 Identify MeasuresThe measures available in the sales table is the prie of the sold produt. A new attributealled n_units is added, whih is one for every sale, sine only one produt is registered forevery sale. However, this attribute is useful when summarising data.3.6 Data TransformationWe now turn to the transformation of data, that is, taking the data present in the souredatabase from the TREO, and transforming this into strutures that are easier to inorporateinto a ube.We have hosen to �rst reate a star shema representing the ubes, then later use the OLAPtools to reate ubes with aggregates. The reason for this hoie, is that it beomes possibleto analyse ube-strutured data easily in the database using standard tools, instead of usingspeialised OLAP tools to aess the ubes. However, it also means that aggregates are notbeing used. If aggregates are to be used then the real data ubes must be used using thespeialised tools available.First, we perform the simpler transformation tasks, then we reate the tables to support thedate and time dimensions. Next, we alulate the balane of members at the time of theirpurhase. Finally, we ompute the historial data for members and reate speial attributesfor sales summaries with regard to the number of ative members.3.6.1 Simple Data TransformationThe system registering purhases has a speial feature alled multi-buy, whih failitates buy-ing larger amounts of a single produt. The system does not register this event in any spe-ial way, instead, it simply inserts the orret amount of transations into the Sales table.However, when doing this the transations get the same timestamp. Thus the layout ofsales data an be simpli�ed by ombining these arti�al transations into a single transa-tion. This is aomplished by using the n_units attribute to ount the number of units sold,

3.6 Data Transformation 39attribute type desriptionbalane double advance − board_debt − debt�rst_purhase int epoh of �rst sales transationlast_purhase int epoh of last sales transation�rst_payment int epoh of �rst paymentlast_payment int epoh of last paymentnever_used_system boolean 1 if �rst_purhase and last_purhase are both NULL0 otherwiseTable 3.16: Added attributes to the Members tableand adding the attributes unit_prie, and total_prie to the Sales table (or rather, a newopy of the Sales table, alled Sales_mp). Then the old sales data is inserted into thenew table, with transations having the same user_id, produt_id, and date being merged.n_units is the number of produts purhased, unit_prie is the prie for a single produt, and
total_price = n_units · unit_price .The Members table is updated to ontain a new attribute alled balane whih is given asthe money due for the member minus the total debt of the member. Furthermore, when doinganalysis of the members we assume this will be done in onnetion with payments and sales.To ease this analysis we add a number of attributes to the member table with regard to salesand payments. The added information is the �rst and last date a payment was made, andlikewise for sales. Furthermore, a boolean attribute is added, to indiate whether any salesare registered at all for a member. The most important purpose of this attribute is to be ableto �lter out members who have not used the eletroni system, sine in many irumstanesthese members will not be able to ontribute to the analysis of the sales data. The mentionedadded attributes are shown in Table 3.16.Finally the Pries table is redued by removing prie hanges, whih do not alter the prie,that is, if the previous prie for a produt is equal to the new prie in the table.3.6.2 Date and Time Support TablesMost of the analysis of the data relies on date and time values in some way. These arerepresented in data ubes as dimensions, and have to be improved onsiderably with derivedattributes, instead of the usage of the epoh time format.In setion 3.5.1 we disussed the possible ways of designing the date and time dimensionsand deided using two separate tables. Thus we reate two tables, one for the date andanother for the time dimensions. Additionally we reate a table to map between epoh valuesand identi�ers of the date and time dimension. Apart from this we try to derive as manyattributes as possible for the date and time dimension tables.This transformation an be done in various ways, either by using the data and time funtionspresent in the database system, or by external programs. If the neessary funtions areavailable in the database system, we presume these will give the least amount of problems, sothis approah is hosen.First all dates in the existing tables are extrated and onverted into the SQL type datetime.

40 DMattribute typeepoh intts datetimedateid inttimeid intTable 3.17: Epoh_mapping tableThese values are then stored in the Epoh_mapping table, with epoh values as primarykey and a datetime attribute. The shema for the this table is shown in Table 3.17.Next, the two dimension tables are reated, one for the date dimension, alled Datedim, andanother for the time dimension, alled Timedim. The Datedim table is populated with alldays between the �rst and last ourring in the system. That is, even days where there doesnot our any events are added. The reason for this approah, is that most days are present inthe system, and that some of the data proessing, desribed later, beomes easier when all daysare present. The Timedim table is only populated with values from the Epoh_mappingtable, sine the granularity of the time data would make a omplete table a lot larger thandesirable.The general proedure done for eah date value is as follows.1: Disard time data2: Remove dupliates (at seleted data granularity)3: Order by date4: Insert into Datedim table5: Add referenes from Datedim to Epoh_mappingSine we are not going to add data to the ubes after they have been reated, we hose toorder the dates, to optimise the presumed most ommon form of full san of the table, byinreasing date value.The same proedure is used for the time dimension, where the granularity is kept as it is(seonds), though only minutes are represented expliitly in the time table. The reason forthis approah is that it does not remove the possibility of retrieving the ordering of the salestransations.The layout of the date and time dimension tables is shown in Tables 3.18 and 3.19. Thederived attributes were desribed during the disussion of the date and time dimension insetion 3.5.1.3.6.3 Calulate Balane Attribute for SalesAn important aspet related to the sales transations that is not available in the database is thebalane of a member at the time of purhase, sine this is ruial in deiding whether a memberan purhase a produt or not. However, it is possible to alulate the balane at the time ofpurhase if one ombines the sales and payments data. That is, if we want to alulate thebalane of member m at time t, it an be done as follows. Let ta be the set of all times registeredin the system (whereby 0 /∈ ta), then tpt
def
= {x ∈ at | payment done by m at time x∧x < t},

3.6 Data Transformation 41
attribute type valuesdateid int {1, 2, . . .}year int {1996, 1997, . . . , 2003}semester varhar(50) { Spring, Fall, Summer break, Exam }quarter int {1, 2, 3, 4}month int {1, 2, . . . , 12}month_name varhar(10) { January, February, . . . , Deember }week int {1, 2, . . . , 53}weekday int {1, 2, . . . , 7}weekday_name varhar(10) { Monday, Tuesday, . . . , Sunday }dayofmonth int {1, 2, . . . , 31}dayofyear int {1, 2, . . . , 366}studyyear int {1996, 1997, . . . , 2002}studysemester varhar(3) { E96, F96, E97, . . . , E02 }date datetimeTable 3.18: Datedim table

attribute type valuestimeid int {1, 2, . . .}timeofday varhar(20) { night, morning, noon, afternoon, evening }hour int {0, 1, . . . , 23}mins int {0, 1, . . . , 59}time datetimeTable 3.19: Timedim table

42 DMand tst
def
= {x ∈ at | purhase done by m at time x ∧ x < t}.

p0
def
= 0, s0

def
= 0

pi
def
= amount paid at time i by member m

si
def
= prie paid at time i by member m

balancemt =
n∑

i=0

pi −
o∑

i=0

siwhere n
def
= max{0} ∪ tp, o

def
= max{0} ∪ sttNotie that sine we use the sales data before time t the balane will be before the urrentpurhase. To emphasize this we do not add an attribute alled balane, instead we all itbalane_before, and additionally we add an attribute alled balane_after, whih is de�nedas balance_before + total_price . These attributes ought to be alulated orretly, however,due to the way the system was introdued, and the lak of registration of data, there are anumber problems with the approah.1) Members who used the old non-eletroni system had an initial balane, whih is notregistered.2) When a member undoes a purhase, it is only registered that that an undo-ation has beenperformed. Neither the date of the undo-ation, nor the produt or prie is registered.Thus arti�ially inreasing the debt of members, who have used the undo feature.3) Erroneous payment entries, whih have been manually orreted, are not registered om-pletely, thereby making our alulation wrong for these members.1) an be amended by using the balane information from the Members table. Basially, aorretion fator is added to the alulated balane. This fator is derived from the di�erenebetween a members balane alulated at his last purhase, and the balane in the Memberstable. However, this fator will also be a�eted by 2) and 3), thus not neessarily alulatedorretly. This means, that if a member has only used the eletroni system, but has used theundo feature or has had a misregistered payment, then the member will get a orretion fatorfor 1) that he should not have. To solve this problem partly we only apply the orretion fatorto members with aargang 1996 and previous years, sine these have been members during thetransition period. The remaining members are assumed to only have used the eletronisystem, thus any di�erenes must be due to 2) or 3). Both the unorreted and orretedbalanes are added to the Sales table, the unorreted attributes are pre�xed with �un� asshown in Table 3.20The orretion fator is stored in a table alled Member_orretion, whih is shown inTable 3.21. For every member registered with aargang 1996 or less, the orretion fator isalulated and added to Member_orretion. This is alulated as

correction
def
= balance − (sum of payments − sum of purhases),where balane is from theMembers, and the two sums are from thePayments and Sales_mptables, respetively. All the remaining members are added with a orretion value of 0.

3.6 Data Transformation 43attribute typebalane_before doublebalane_after doubleun_balane_before doubleun_balane_after doubleTable 3.20: Calulated and derived attributes for Sales tableattribute typeuser_id intorretion doubleTable 3.21: Shema for Member_orretion table3.6.4 Historial Member DataBased on theMembers table we an �nd the balane of all members, and then derive whetherthey are warned or bloked from using the system, by omparing their balane to the thresholdsset by the TREO for these events. However, this is only possible for the day where the data inthe database was extrated from the purhasing system, sine there does not exist historialdata for any of the attributes in the Members table. With a small exeption with regardto �rst_warning sine it gives the date at whih the member was last warned due to a lowbalane. However, even this attribute only ontains information about the last time a warningwas issued, there is no information about earlier warnings. This is a major problem if onewants to analyse buying patterns, sine it is ruial to have the member balane, and memberstatus, that is, whether the member is warned, bloked, or neither warned nor bloked.It would be possible to use the balane desribed in the previous setion, however, the granu-larity is too �ne and it would be di�ult to work with. Instead we have hosen to reate a tableontaining historial information for eah member at eah day present in the database. Evenif we had hosen a higher granularity it would still not aount for the impreise alulationof balane as desribed in the previous setion. Choosing an even oarser granularity wouldnot be advisable, sine the way warnings and payments interat means that most membersprobably just have a warning between 1 and 7 days. If, for instane, a week had been hoseninstead, many warnings would not even be deteted.For eah member and day the balane is alulated. Based on this alulation and the date, anumber of related attributes are added, shown in Table 3.22. warned and bloked are booleanattributes, whih determine the status of the member. Additionally, the number of days themember has been in a ertain state is registered, as well as the number of days till a memberis bloked (if the member has gotten a warning that is).Before the balane for a member an be alulated, it must be de�ned what balane is for amember on a spei� day. The problem is that a member's balane may hange during theday, so a onsistent way of determining the balane must be found. Two main possibilitiesare either hoosing a time of day, where the balane urrent balane is hosen, or taking theaverage or mean of balane values for the given day. We do not think think that the hoie

44 DMattribute type desriptionuser_id intdateid intbalane double alulated balane at end of dayative boolean member has done purhases on this daywarned boolean member has been warneddays_warned int days member has been warneddays_till_blok int days until member is automatially blokedbloked boolean member has been blokeddays_bloked int days member has been blokedTable 3.22: Member_day tablewill result in muh di�erene, so we hose the simplest, that is, a spei� time. To keep thealulations simple we use the latest time possible on the day, whih means that all paymentsand sales for a given day is inluded in the members balane.The atual proedure for alulating the balane is done for eah member, who has used theeletroni system, as follows:(Member_day.balanced refers to the balane in theMember_day table on day d)1: sd ← First date of purhase2: pd ← First date of payments3: first_date← min{sd, pd}4: Member_day.balanced ← 0 ∀d < first_date5: balance← 0.6: for all day ≥ first_date do7: amountsales ←
∑n

i=1 prie of purhasei on day8: amountpayments ←
∑o

i=1 amount of payment i on day9: balance← balance + amountpayments − amountsales10: Member_day.balanceday ← balance11: end forAfter the balane has been alulated for all members, who have used the eletroni system atsome point in time, the attributes related to warning and bloked status are alulated3. Thisis performed by sanning the days from the earliest to the latest in time order, omparing thebalane to the warning and bloked limits. At the same time, data is proessed with respetto number of days warned or bloked, and the number of days until being bloked.1: wts ← warning threshold2: bts ← bloked threshold3: warned← 0 {Is the member warned?}4: blocked← 0 {Is the member bloked?}5: dayswarned ← 0 {Number of onseutive days the member has been warned}6: daysblocked ← 0 {Number of onseutive days the member has been bloked}7: daystill_block ← 0 {Number of days until member is bloked}3Atually it is ombined proedure to save time, however, it an be viewed as two separate to simplify thealgorithms

3.6 Data Transformation 458: for all day in Member_day do9: if md_balanceday < wts then10: if warned = 0 ∧ blocked = 0 then11: warned← 112: daystill_block ← 1413: dayswarned ← 014: end if15: if warned = 1 then16: dayswarned ← dayswarned + 117: daystill_block ← daystill_block − 118: end if19: if blocked = 1 then20: daysblocked ← daysblocked + 121: end if22: if blocked = 0 ∧ (dayswarned = 14 ∨Member_day.balanceday < bts) then23: warned← 024: blocked← 125: daysblocked ← 026: dayswarned ← 027: daystill_block ← 028: end if29: else {Member's balane is below warning threshold}30: warned← 031: blocked← 032: daysblocked ← 033: dayswarned ← 034: daystill_block ← 035: end if36: Update warned, bloked, days_warned, days_bloked, and days_till_blok inMember_daydayaording to appropriate variables.37: end forThe mentioned proedures are used twie, �rst for reating a table, Member_day_un,whih uses unorreted balanes, and a seond time to reate theMember_day table, whihuses the previously alulated orretions. This orretion is used at the �rst balane valuehaving a value di�erent from 0 (that is, in step 3 of the balane alulation algorithm, thebalane is set to the orretion value, not 0).3.6.5 Sales Data SummarationIn the same manner as we reated day summaries for members, we also want to reate thesefor sales. The purpose of this approah is to reate summaries, whih are easier to use foranalysis. For instane, when analysing the amount of sales during a ertain period, we do notbelieve preise member information is required, that is, data about whih members did thepurhasing. Instead we want to have data about the number of ative members, whih is theamount of distint members that have purhased items during the period.The summaries desribed above are reated by reating a table, whih ontains a row for the

46 DMartesian produt of all days and produts. That is, every row desribes the sales of a singleprodut on a given day. The information registered is the number of units sold, the total prieof the units, and many di�erent ways of ounting the distint number of ative members. Theproblem with ative members, is that the information annot easily be aggregated. If we havethe ative members for eah day, then it is not possible to determine the ative members duringa week only based on the ounts for eah day, sine we annot determine dupliate membersaross the days. Thus, we reate many di�erent types of aggregates for this information. Note,that this information is equal for all produts on a given day.In addition to the sales summaries and ative members, we would also like to have informationabout the prie hanges. This is ahieved by adding an attribute desribing whether a priehange has oured on a given day for a spei� produt, and an attribute with the amountthe prie has inreased (whih will be negative if the prie is dereased). Furthermore, it isregistered how many days the produts has not had any prie hanges.A summary of the attributes an be seen in Table 3.23.attribute type desriptionprodut_id intdateid intn_units int number of produt units soldtotal_prie double total prie for sold produt unitsprie_hange boolean was prie hanged for urrent produt on urrent day?prie_inrease double amount prie was inreased (negative for redutions)ative_members_day int ative members during dayative_members_week int ative members during alendar weekative_members_month int ative members during alendar monthative_members_semester int ative members during season/semesterative_members_year int ative members during alendar yearative_members_ssemester int ative members during study semesterative_members_syear int ative members during study yearative_members_rweek int ative members for urrent day ± 3 daysative_members_rmonth int ative members for urrent day ± 15 daysTable 3.23: Sales_day table
3.7 Data Mining DiretionsIn this setion we analyse whih patterns or knowledge the lub ould be interested in �nding,and we analyse how well the data supports the suggested data mining diretions.3.7.1 Possible Data Mining SenariosCase a) Identify members that heat with payments.Due to the way the shop is run there are no measures to ontrol whether ustomers pay for

3.7 Data Mining Diretions 47their items or not. Thus, it is unlikely that it will be possible to detet ustomers that heatfrequently. However, there is another kind of heating, whih ould also be due to membersforgetting to pay. This ours when members are registered as owing money to the lub, andtherefore are not allowed to purhase items. This ombined with the fat that payments areonly done on fridays, means that some members will purhases items without paying untilthey have paid money to the lub again � or maybe not paying for the produts in the period.It would be interesting to detet this behaviour if possible.Case b) Identify patterns leading to missing bottles.When buying soda water, members are expeted to return the bottles they have bought thedrink in. Currently, a lot of bottles are disappearing, whih results in the lub losing money. Itwould be advantageous to �nd patterns leading to this behaviour, thereby making it possibleto determine measures for avoiding these patterns.Case) Ability to predit the sales of (ertain) produts.Some of the produts sold by the lub, have a very limited lifetime, so naturally these itemsshould not be ordered in exessive quantitities. Thus it would be nie to be able to preditthe future sales of the these produts.Case d) Analyse e�ets of prie hanges.This option is relevant for many shops, however, it is not important for this lub, sine thelub has very low pries, due to it not trying to make pro�t.3.7.2 Data Requirements and AvailabilityCase a) The data ontains detailed information pertaining to sales and payments, furthermorethe balane of eah member at the date of the snapshot is available. To perform the analysisdesribed in this ase, we assume lustering would be able to detet some patterns, whih anbe further analysed. In order to improve the lustering, a number of extra attributes mightbe needed.We believe the balane at the time of purhase is important. Furthermore, the days untilnext warning and days sine last warning are important, sine these give information aboutwhen the possibility for purhasing items will be bloked. However, this also means that inthe urrent database, the attributes we believe are most important, have been alulated sinethe original database did not ontaint enough historial.Case b) With the urrent data it will be imposible to analyse this ase. An importantattribute with respet to this ase is the number of disappearing bottles, and this number isnot being registered.Case) The available data is su�ient for this ase, sine the fous already is on the sales ofproduts. The initial analysis an be done by summarising the sales for a given produt overa period, looking for patterns in this summary. The sales will be inreasing, sine the numberof ative members has been inreasing sine the start of the lub, so it will be neessary totake this into aount. The �rst idea to solve this is by looking at the sale per ative member.Doing so, should make it possible to analyse how the sales are over the weeks of a term oryear.Other relevant information that an be onsidered is ative members that are in exessive

48 DM�bloked from buying� states, whih an be due to them not paying their debt and simplybuying using the aount of other members.After onsidering summarised data, it might be possible to use lassi�ation to analyse it evenfurther.Case d) This analysis should be based on the results in ase). There exists historial dataregarding the prie hanges. It would be possible to normalise using ative members and aweek pro�le developed in ase), and then analyse these sales with respet to prie hanges.

Chapter 4Multi-dimensional Data MiningIn this hapter we �rst desribe some of the related work we are aware of. Next we presentsome problems we have enountered when trying to use standard tools to data mine multi-dimensional data. Then we investigate onept hierarhies more losely, sine these are themost important desription of struture within the data warehouse with regard to data mining.Finally, we desribe our view on how data mining ould be done on multi-dimensional dataand how meta data an be used.4.1 Related WorkIn this setion we brie�y introdue the work, we are aware of, whih has been done with withinthe area of data mining multi-dimensional data.A short overview of data ubes and data mining, with the fous on rules, an be found in[Pal00℄.The main part of the work with regard to mining of multi-dimensional data has been doneby Professor Jiawei Han, and his olleagues and students at Simon Fraser University. Anintrodution to the work an be found in �OLAP and Data Mining�[Han98℄. The main on-tributions are presented in the book �Data Mining: Conepts and Tehniques� [HK01℄, whihintrodues data mining and data warehousing, and deals with the integration of these areas.However, the disussions dealing with this integration are very broad, and only go into detailwith regard to mining assoiation rules. Some of the material in the book is based on sev-eral PhD and master theses, these ontain a more detailed disussion of the topis. Conepthierarhies, automati generation of onept hierarhies, and multi-level rules are thoroughlyanalysed in [Fu96℄. In [Lu97℄ di�erent types of onept hierarhies are investigated and aspeial representation of onept hierarhies is proposed to optimise the performane of theroll-up and drill-down OLAP operations. [MWG+97℄ brie�y onsiders deision tree indu-tion in relation to onept hierarhies. [Tar98℄ deals with speial types of data ubes reatedfor the purpose of data mining. In [Pin01℄ multi-dimensional sequential pattern mining isinvestigated, whih is followed up in [PHP+01℄.Finally, a more detailed disussion of the integration of multi-dimensional data and datamining an be found in [Che01℄.

50 DMAt Mirosoft Researh there has also been done researh on the issues of ombining multi-dimensional data and data mining, as well as relational data and data mining. The fous ofthis researh is more database-entered. In [BCF99℄ lassi�ation is onsidered in ombinationwith SQL databases. [NBCF01℄ deals with the integration of data mining and SQL databases,with the objetive of introduing the interfae alled OLE-DB for Data Mining, whih isa ommon interfae programmers an use to utilise data mining in databases. Lastly, thee�ieny of querying parts of data mining models has been investigated in [CS02℄.4.2 Clementine ExperieneWe were urious about how the urrent data mining tools would handle multi-dimensionaldata. So we tried �nding an approah that would allow us to work with the data using aommon tool. Due to our good experiene with Clementine in general, we hose this as thedata mining tool we would test.The �rst major problem, is that Clementine annot aess data ubes diretly, sine its dataimport apabilities are restrited to �le aess and relational database aess. Thus we use theubes, whih are stored in the relational database using a star shema. Hereby it is possibleto aess the ube data, by performing a join between all dimension tables and a fat table.It later beame apparent, that using database aess was quite slow ompared to using for-matted text �les, so we hose to export the data from the database to a text �le instead, usingthe abovementioned join.Even with these hanges, there were still some inonvenient tasks whih had to be done everytime the attributes in the text �le were hanged. The main problem was that there did notexist a way to speify the type of eah attribute. This is not a major problem if you only usethe tool oasionally, however, if it is used frequently, then it would ertainly be nie if oneould speify options about every attribute diretly in the database one and for all.The �nal inonveniene, we enountered, was the lak of dimension and onept hierarhyinformation, whih of ourse is to be expeted when the tool has not been designed for suhstrutural information. However, when there are many dependent attributes present in thedata being analysed, then it beomes inreasingly di�ult to manage the attributes used intraining data mining models. When the input and output attributes are hosen, then onemust be aware of the depedenies among attributes. If two input attributes are dependent,then it depends on the lassi�ation type, whether this auses problems or not, however, itwill slow down the algorithm. If an attribute, whih is losely related to the output attribute,is used as input attribute, this attribute may determine the output attribute ompletely, orat least improve the results arti�ially.With these problems in mind, we now turn to analysing how multi-dimensional data miningan be done, and how the user interfae an be improved.4.3 Conept HierarhiesThis setion is based on [HK01℄ and [Lu97℄.A onept hierarhy spei�es a mapping of data, from a set of low-level onepts to higher-

4.3 Conept Hierarhies 51level onepts. In Figure 4.1 a onept hierarhy is shown for the days in years the 2000 and2001. At the lowest level, eah day is represented, above these, the month orresponding to agiven day is shown. These months are again mapped to the year the month ours in.
2001

All

... Feb 00

31/1−00...2/1−001/1−00

Dec 00Jan 00

2000

Figure 4.1: Instane-de�ned onept hierarhy.The main purpose of onept hierarhies is to support speialisation and generalisation. Thatis, if the data is viewed at �day�-level, by generalisation it an be viewed at month, year, orall level. In the same manner speialisation is supported by the onept hierarhy.
All

Year

Month

DayFigure 4.2: Shema-de�ned onept hierarhy.The hierarhy in Figure 4.1 is alled an instane-de�ned onept hierarhy beause the hierar-hy is based on the atual values in the data. Another approah is to de�ne the hierarhy basedon attributes in a database shema, whih is known as a shema-de�ned onept hierarhy.Figure 4.2 shows the equivalent shema-de�ned onept hierarhy for Figure 4.1.The preise de�nition of a onept hierarhy is:De�nition 4.1 (Conept Hierarhy)A onept hierarhy is a partially ordered set (H,≻), where H is a �nite set of onepts and
≻ is a partial order on H. �A onept hierarhy is also alled a taxonomy, is-a hierarhy, or a strutured attribute.

52 DMperson age1 382 53 194 445 80Table 4.1: Original age data.Shema- and instane-based onept hierarhies an be de�ned as follows.De�nition 4.2 (Shema-based Conept Hierarhy)Let A be the attributes of a dimension in a data ube. Then a shema-based onept hierarhyis a partially ordered set (H,≻), where H is a �nite set of onepts, H ⊆ A, and ≻ is a partialorder on H. �De�nition 4.3 (Instane-based Conept Hierarhy)Let A be the attributes of a dimension in a data ube, let V al(a), a ∈ A be the values attribute
ai attains in a data set D. Then an instane-based onept hierarhy is a partially orderedset (H,≻), where H is a �nite set of onepts, H ⊆ ∪a∈AV al(a), and ≻ is a partial order on
H. �Instane-based onept hierarhies are also alled set-grouping hierarhies.Whether one should use a shema-based or instane-based onept hierarhy, is usually notobvious, and in many situations both an be used. Consider a disrete attribute alled age,whih registers a persons age in whole years. If we want to generalise the age ranges, we anboth use shema- and instane-based onept hierarhies.The original data is shown in Table 4.1. Now, we want to split the age into the ranges 0-10,11-20, . . .,91-, and young (0 - 20), adult (21 - 40), middle aged (41 - 60), and old (61 -).If we want to use a shema-based onept hierarhy, this an be done by adding two newattributes, one for the numeri ranges, and another for the more general textual ranges. Theresulting data an be seen in Table 4.2 and the assoiated shema-based onept hierarhy tothis table is shown in Figure 4.3. The same an be aomplished with the original data andan instane-based hierarhy, as the one shown in Figure 4.4.In general an instane-based onept hierarhy an always be represented as a shema-basedonept hierarhy. However, a shema-based onept hierarhy an only be represented as aninstane-based onept hierarhy if it is a total order. If it is not, the shema-hierarhy anbe split into smaller hierarhies whih have a total order, then these an be transformed toinstane-based onept hierarhies.Two other types of onept hierarhies are de�ned in [HK01℄ and [Lu97℄. The operational on-ept hierarhy is an instane-based onept hierarhy, whih is generated by a set of operationson data. This ould for instane be some disretisation proedure used on ontinuos attributes,or for instane lustering ould be used. The other type, is the rule-based onept hierarhy ,whih is a onept hierarhy where the generalisation of a onept has a rule attahed, whih

4.4 Data Mining in Data Cubes 53person age age_numeri age_textual1 38 31 - 40 adult2 5 0 - 10 young3 19 11 - 20 young4 44 41 - 50 middle aged5 80 71 - 80 oldTable 4.2: Shema-based age data.
age_textual

age_numeric

age

All

Figure 4.3: Shema-based onept hierarhy for age, age_numeri, and age_textual attributes.is evaluated using any data available in the database. If we onsider the age example again,a rule-based onept hierarhy ould, for example, use data regarding the entury in whihthe person lived to determine the age desription. Neither the operational, nor the rule-basedonept hierarhy will be used later in this report, sine they are variations of the shema-and instane- based onept hierarhies.4.4 Data Mining in Data CubesNormally when some form of data mining is performed, data onsists of a number of ases,eah with a value for a number of attributes. However, when a data ube is used, the datahas a more ompliated struture, thus it is neessary to analyse this struture, and determinehow data mining an be performed using it. [mere intro...+ eksempel℄4.4.1 Data Cube StrutureAs previously desribed in hapter 2, a data ube onsists of a number of dimensions, anda number of measures related to the dimensions. Using a star shema approah, this resultsin a database table for eah dimension and a fat table, whih stores the measures and areferene to all the dimension tables. Additionally, eah dimension has a shema-de�nedonept hierarhy, whih supports the generalisation and speialisation operations on theube. The entire struture is shown in Figure 4.5.

54 DM
0 − 10 11 − 20 21 − 30 31 − 40 41 − 50 61 − 70 71 − 80 81 − 90 91 −

young adult middle aged old

5 80443819

51 − 60

All

Figure 4.4: Instane-based onept hierarhy for age attribute.We are going to make an assumption about the onept hierarhies desribing the dimensions.The assumption is that the onept hierarhies ontain a top node, labelled �All�, whih isthe most general desription of data (all data), and a bottom node, orresponding to thegranularity unit hosen for the dimension, whih is the most spei� desription of data (asingle ase, at the granularity unit). Furthermore, all paths in the onept hierarhy are fromthe bottom node to the top node.1Based on the way dimensions are used during the data mining phase, one an split it into twodi�erent kinds, intra-dimensional and inter-dimensional data mining. Intra-dimensional datamining only uses one dimension and the measures, or only the dimension. Inter-dimensionaldata mining is data mining using more than one dimension. One possible use for intra-dimensional data mining ould be determining or improving the onept hierarhies for om-plex dimensions. However, in the following we fous on inter-dimensional data mining.4.4.2 How Should Fats be Weighted?An important step before being able to data mine a ube, is to �nd ways to extrat informationabout the transations whih have resulted in the ube at hand. The two main objetives thatwe see, are:1) Find a relation between the dimensions and the fats, suh that it an be determined whena transation has taken plae or not.2) If possible, �nd a way to determine how many events in the domain being analysed haveresulted in a single fat row.Usually 1) an be ahieved by storing the number of transations in the original data. Thenthe sum aggregate operation an be used to �nd the number of transations when generalisingdimensions. Thus, a transation has taken plae when the value of the transation-ount-measure is greater than zero.If eah transation in the original data orresponds to an event in the domain whih is beinganalysed, then the mentioned transation-ount-measure will also give the number of trans-1This assumption only holds when data is only stored at a single unit of granularity.

4.4 Data Mining in Data Cubes 55

Measures

Dim n

...

Dim 2

All

Dimension 1

Figure 4.5: Struture of a data ube.ations. However, if the original data ompresses these events or handles them in other ways,it may be neessary to use other kinds of aggregation funtions.For instane, in our handling of the TREO data, the sales data is ompressed, suh that whenmultiple items of the same kind have been purhased at the same time, it is only stored asa single transation. As desribed in 3.6.1, the ompressed sales data ontains an attribute,whih stores the amount of items purhased, this orresponds to the events in the analysisdomain when analysing how muh has been sold. However, if it is the number of people usingthe system at a given time that is being analysed, then it would be another matter, sine oneperson buying multiple items should only ount as a single event. In the �rst ase, it would bepossible to use the items sold as an indiator of the number of events in the domain, and usingthe sum aggregate funtion would result in the orret number of transations when analysingthe data ube. In the seond ase, the same attribute an be used, however, it should use theount aggregate funtion instead.Even in the simple ase where only a single dimension is being analysed, one must be arefulwith whih weight is attahed to eah row in the dimension. Consider a ustomer-dimension,whih ontains the address of the ustomer, inluding the ity and postal ode. Then assumewe want to determine how likely it is that the mapping between ity and postal ode isorret. Whih weight should be attahed to eah ustomer in the ustomer dimension? Itdepends entirely on how the mapping between ity and postal ode has been veri�ed. If itis veri�ed when the ustomer data is entered into the ustomer dimension, then eah row inthe dimension should have equal weight. However, if the ustomer data is used for billinginformation, residing in a fat table, then the mapping between ity and postal ode may be

56 DMveri�ed every time the ustomer ours in the fat table. Thus, the weight should be thenumber of ourenes in the fat table in this ase.As an be seen from the above paragraphs, there is no single answer to how the numberof events in the domain of analysis an be found, sine it depends on how these events areregistered. Thus it an only be said that this must be analysed before data mining an beperformed in a data ube, and it would be nie if the data mining tool supported this weightingof rows depending on various riteria.4.4.3 Attribute De�nition and SeletionAn important part of the data mining task is to selet the relevant attributes to perform thedata mining on. If an attribute is not seleted its information is lost. At the same time, theworst fator in the omplexity of data mining algorithms is the number of attributes in thedata set.The main di�erene between data mining traditional ase-based data and data ubes, is thedi�erene in their underlying attribute struture. Thus, to use the lassi algorithms, we �rsthave to map the attributes in the data ubes to ase-based attributes.
Year

All

Month

Week

Day

Weekday

Figure 4.6: Shema-de�ned onept hierarhy for date dimension.Before we ontinue with how it is possible to map dimension-attributes to ase-based at-tributes, we must look loser at the shema-de�ned onept hierarhies. Consider the onepthierarhy in Figure 4.6, if the urrent level of generalisation is the Day level, and we want togeneralise this level, there are two possibilities, either Weekday or Week. However, when weuse the onept hierarhies for analysis, it is preferable to have a unique way of speialisingand generalising. We do this by splitting the hierarhy based on the paths whih exist fromthe bottom vertie to top vertie. The result is shown in Figure 4.7.With this in mind, we see a number of ways to perform the mapping from dimension-based

4.4 Data Mining in Data Cubes 57
Weekday

Day

All

Year

Day

Week

Month

All

Year

Figure 4.7: Top-bottom-paths of date onept hierarhy.to ase-based attributes:1) Map all attributes from the dimensions to a ase-based attribute.2) Map all top-bottom-paths in the onept hierarhy to a ase-based attribute, and selet ageneralisation level in this path.3) Map all top-bottom-paths in the onept hierarhy to a ase-based attribute, and run thedata mining algorithm at eah generalisation level in this path.The �rst approah su�ers from a number of problems. First of all, it results in a large numberof attributes, whih signi�antly inreases the omplexity of the data mining algorithms.Furthermore, there is a hane of getting trivial results, whih ould be read from the atualonept hierarhies. For instane, onsider a date hierarhy All > Year > Quarter > Month> Day, a rule of the form Month = January ⇒ Quarter = Q1 is not interesting.The seond approah solves the problems desribed above, sine dimension-attributes whihare related in the onept hierarhy are not present in the data mining data at the sametime, however, the user has to speify the generalisation level for a potentially large numberof top-bottom-paths. Furthermore, there might be some interations between di�erent levelsin the top-bottom-path, whih annot be deteted when using this approah, depending onthe data mining algoritm being used.The third approah is a variation of the seond approah, instead of having the user speifyeah generalisation level, all of them are tried automatially. However, this easily beomes anintratable task.Approah 2) and 3) ould be ombined, suh that the user spei�es the initial levels, andnearby levels are tried automatially.However, none of these approahes are perfet, thus it might be better to modify the exist-ing data mining algoritms. For instane, suh that eah top-bottom-path orresponds to anattribute, and the algorithm then use generalisation and speialisation operators on these.

58 DM4.4.4 Mining the DataAfter the attributes have been proessed as disussed in the previous setion, these an berepresented as traditional ase-based data. Thus, it is possible to analyse them using theurrent data mining tools, whih to do not support data mining on ube data. However, itmust be onsidered how the input to the data mining tools should be generated. If we have alist of attribute values, these ould orrespond to a large number of transations. There aretwo ways of solving this problem:1) Dupliate the attribute values until they orrespond to the orret amount of transations.2) Use a �weight� attribute, whih spei�es how many transations the other attribute valuesrepresent.Clearly the seond approah is preferred, sine it an redue the amount of data onsiderably.However, both the data mining tool and the used algorithm must support the use of a weightattribute, whih is often not the ase.4.5 Using Meta DataAs we desribed in hapter 2, meta data is an important part of a data warehouse. We believethat the use of meta data should also be extended to data mining purposes, that is, usingmeta data to support the data mining tools.The main advantage, we antiipate, of this meta data, is to ease the desription of attributesduring data mining. Instead of having to speify that a variable is ontinous or disrete, thisinformation an be store as meta data. Even more detailed groupings of attribute types anbe de�ned. Another possibility is to store data whih only hanges during the loading proessof the data warehouse, for instane the number of distint values an attribute attains. Thisis ommon information used to deide whether a variable is too spei� to be inluded in adata mining task, and the global storage of it, would improve performane. Depending onthe atual systems being used, it ould also be possible to store onept hierarhies, attributestorage type, and measure aggregation types as meta data. This information may also beavailable diretly from the DBMS, however, most ways to determine this information di�ersfrom DBMS to DBMS. Thus, a ommon storage of this information ould make the datamining tools more portable.

Chapter 5Cube-based Deision TreesIn this hapter we �rst introdue the deision tree indution algorithm, in a very general form.Then we onsider at whih points of the algorithm, it an be modi�ed in general. Finally, weonsider eah of these modi�ation points with respet to data ubes and determine the kindsof improvements whih an be obtained.5.1 The Generald Deision Tree Indution AlgorithmThe following algorithm is based on the basi algorithms shown in [HK01℄ and [Dun03℄, thenextended to make it as general as possible, without introduing splits on more than oneattribute.Generate_tree funtion(D,A)Input: D (training data), A (andidate-list of possible attributes)Output: Deision Tree1: if all samples in D belong to same lass, C then2: return leaf node, labelled with lass C3: end if4: if A = ∅ then5: return leaf node, labelled with appropriate lass in D6: end if7: for all a ∈ A do8: determine best way to split of attribute a, resulting in splits sa1, sa2, . . . , san, eah saiwith a prediate pai9: alulate split-measure for a using best split10: end for11: Choose r, attribute with best split-measure12: Create node N , label it with r13: for all sri do14: add ar from N , label it with prediate pri15: D′ ← {d ∈ D|pai(d) true }16: A′ ⊆ A

60 DM17: if stop riterion reahed then18: add leaf node with appropriate lass in D19: else20: attah tree returned by Generate_tree(D′,A′)21: end if22: end forNotie that step 16 is usually A← A\{r}, however the attribute need not be removed, sineanother type of split ould be performed on the same attribute later.When the algorithm stops adding splits, either due to lak of attributes to split on, or due toa stop riterion being reahed, an appropriate lass is hosen from the remaining data at theurrent part of the tree. This is usually the most ommon lass in the part of the onsidereddata, but need not be. We are not going to onsider this deision a way of modifying thealgorithm, sine it only a�ets the lass hosen when the tree is not grown any deeper, whihis not the part of the algorithm we want to deal with.Furthermore, we are not going to deal with the stop riterion being used, sine it is di�ultto estimate the e�ets of it in a general setting, where the pruning phase is not in plae.The remaining possible ways of improving the deision tree indution algorithm, that we seeas possible are:1) attribute-seletion2) onstraints on available split attributes3) split-measure4) onstraints on available split points/method of seleting split points5) split-point-measure6) pruning/post-proessing of treeAnother aspet that must be onsidered is how the algorithm is improved, we lassify theimprovements into three ategories:1) Complexity redution2) Explainability improvement (more intuitive and simpler trees)3) Classi�ation auray improvementWhere 1) improves on the runtime of the algorithm, 2) deals with how the user pereives theresulting tree, and 3) deals with the objetive quality of the resulting tree.5.2 Multi-dimensional ImprovementsFirst, eah kind of improvement is onsidered isolated with regard to data ubes.In the disussion that follows, a ommon example will be used. It onsists of two dimensions,a date dimension onsisting of the attributes Year, Quarter, Month, Week, Weekday, Date,

5.2 Multi-dimensional Improvements 61and a loation dimension, onsisting of the attributes, Country, Region, City, Street, Address.For eah dimension a shema-based onept hierarhy is reated, these are shown in Figure5.1.
City

Street

Address

Region

Country

All

Date

Weekday

WeekMonth

Quarter

Year

All

Figure 5.1: Conept hierarhies for date and loation dimension.
CHd and CHl are the onept hierarhies for the date and loation dimensions, respetively.Furthermore, the following total ordered shema-based onept hierarhies are de�ned:
TCHd1: All > Year > Quarter > Month > Date.
TCHd2: All > Year > Quarter > Week > Date.
TCHd3: All > Year > Weekday > Date.
TCHl = CHl (sine it is already a total ordering).The values of the di�erent attributes is assumed to be the following:Year: 2001, 2002, 2003.Quarter: Q1, . . ., Q4.Month: Jan, . . ., De.Week: 1, . . ., 52.Weekday: Mon, . . ., Sun.Date: 1/1-2001, . . ., 31/12-2003.Country: Denmark (DK), Germany (GE)Region: Northern Jutland (NJ), Central Jutland (CJ), Southern Jutland (SJ), the islands (I),Northern Germany (NG), Southern Germany (SG).City/Street/Address: Too many to list.Note that the abbreviations shown in parentheses are used in �gures to make them moreompat.During the next setions it will sometimes be neessary to di�erentiate between the possibleprediates used when de�ning the splits of an attribute. The types of prediates we onsiderare =, 6=, <, ≤, >, ≥, and ∈. Where ∈ refers to a branh that is followed when an attributeis in a set of elements. However, we would like to simplify these to only two kinds of splits,thus, we introdue equality- and membership-splits.

62 DMA branh whih is followed with prediate =, that is, when the attribute is equal to a spe-i� value, is referred to as an equality-branh. An attribute where all branhes are of theequality-branh type is referred to as an equality-split attribute. A membership-branh, andmembership-split attribute are de�ned likewise for the ∈ prediate. Unless otherwise men-tioned all prediates, exept =, are treated as the membership prediate. If for instane theprediate is �< 7�, all values less than 7 an be found and grouped into the set S, then it isenough to test for �∈ S�.5.2.1 Constraints on Split AttributesSuppose that all the attributes of eah onept hierarhy are viewed as possible attributes toinlude in the deision tree indution algorithm. This results in attributes being inluded thatare generalisations or speialisations of other attributes (provided the onept hierarhies areomplex enough).Under ertain irumstanes it is possible to redue the amount of attributes that are andi-dates for a split. If the omplexity of deiding whih attributes an be skipped is less thanthe omplexity of inluding the attributes, then it is possible to redue the overall omplexityof the algorithm.First we must analyse under whih irumstanes an attribute an be ignored, then we needto analyse the omplexity of deiding whether an attribute an be ignored or not.
Year

Street
Region

Month

2003

Jan
Feb

Mar − Dec

X

NJ, CJ, SJ
NG, I

SG

2001, 2002

Figure 5.2: Available split attributes, example.When deiding the split attribute at X in the deision tree shown in Figure 5.2, some attributesare not neessary to onsider. These are Quarter and Year, sine the split on Month impliesthat all data at this point are in Q1 2001. Also, Country is irrelevant sine the regions NJ,CJ, and SJ reside in the same ountry.In general it an be seen that if an equality-split is performed on attribute A ∈ TCHi, then allattributes in TCHi, whih are more general than A an be disarded. If a membership-splitis performed on attribute B ∈ TCHj, then the situation is more ompliated. All attributes

5.2 Multi-dimensional Improvements 63in TCHj, whih are more general than B are andidates for being exluded. However, theonly attributes that an be exluded, are the ones that have same value for all data underonsideration at the split-attribute.Clearly, the situation where a previous equality-split has been performed an be used tooptimise the deision tree indution, sine the deision of whih attributes an be disregardedonly relies on the information on onept hierarhies.However, when dealing with membership-splits it beomes more ompliated, sine the val-ues of data has to be investigated. One possibility may be to store instane-based onepthierarhies, and use these for lookup of information. Part of the instane-based onept hier-arhy for the loation dimension is shown in Figure 5.3. To deide whether an attribute anbe disregarded, �rst all values that are part of the membership-split must be found in theonept hierarhy, then their parents in the tree must be found in the tree. If they have aommon parent, then the attribute orresponding to investigated level in the tree, and all itsparents an be disregarded. If they do not have a ommon parent, then one an investigatethe parents of the parents, and so on.
SJ I

DK

CJNJ

All

SGNG

GE

Figure 5.3: Partial instane-based onept hierarhy for loation dimension.This would most likely redue the omplexity, sine these onept hierarhies are only relatedto a single dimension, and dimensions ontain far less data to onsider than a dimension joinedwith the fat table.Another possibility may be to divide the attribute-seletion into a two-level proess, wherean attribute from eah onept hierarhy is tested �rst. Based on this test the best, or the nbest onept hierarhies are found. Within these onept hierarhies all attributes are tested.Thus, the omplexity is redued if there is a signi�ant amount of non-single-attribute onepthierarhies. However, how this approah would in�uene the quality of the found deision treesis not easily predited.5.2.2 Split-measureThe split measure itself ould also be modi�ed to use information from the dimensions andonept hierarhies. We do not see any immediate use, however, it would be possible to rewardor punish attributes depending on whether they are from the same dimension or not. Likewise,an attribute ould be rewarded/punished depending on how general or spei� it is.At the moment we do not see a possible use for this, sine it is not lear whether it is

64 DMadvantageous to have many attributes from the same dimension or not, however, it ould beleft to the user as an expert option to tune the mining algorithm.With regard to rewarding an attribute for being general, this may avoid over�tting, but thisis only speulation, and it depends on the split measure being note.5.2.3 Constraints on Available Split Points and Split Point MeasureIf all attributes from the dimensions and onept hierarhies are used, then it does not seempossible to improve the hosen split points based on the extra information from the onepthierarhies.So suppose that eah total ordered onept hierarhy is viewed as a possible attribute, named
TCHi as desribed above, and that to eah suh attribute a property is attahed, whihdesribes the generalisation level that the attribute is at, denoted by L = level − name.For instane, the attribute TCHd1, ould have L = Month, meaning that the attribute isonsidered at the Month-level.Then we propose the idea of using the attribute values at a ertain generalisation level aspossible split points. More preisely, onsider the attribute TCHd1. Based on the example,the possible ways of splitting this value, whih should be onsidered, are the following:Year-level: { 2001, 2002, 2003 }Quarter-level: { Q1, Q2, Q3, Q4 }Month-level: { Jan, Feb, . . ., De }Date-level: { 1/1-2001, 2/1-2001, . . ., 31/12-2003 }After eah set of split points have been evaluated, either the most general is hosen among theones with best split-point measure or if the split-point measure does not reward more generallevels ompared to more spei� levels, then the hoie made should be based both on thesplit-point measure and the level of generality. This is due to spei� split points being ableto lassify the training data more preisely, thus reduing explainability.See Figure 5.4 for an example of suh a deision tree.

NG, SG

SJ, I

NJ, CJ
Q3,Q4Q2Q1

2002, 20032001

L=Region L=Quarter

L=Year

lTCH

d2TCH

d1TCH

Figure 5.4: Deision tree with onstrained split points.The purpose of hoosing these split points, is to improve explainability. For instane havingthe split points Q1, Q2 ompared to the ranges [Jan,Feb,Mar℄ and [Apr,May,Jun℄, seemslike a more ompat desription of the same onept. The improvement is even greater if

5.2 Multi-dimensional Improvements 65it is ompared to atual dates as split points. Figure 5.5 shows an example of a deisiontree with the same lassi�ation abilities as the one in Figure 5.4, but with a less generalsplit-point/attribute seletion.
Month

Jul−Dec

Apr−Jun

Jan−Mar

Year

Region

NG, SG

SJ, I

NJ, CJ

2002, 20032001

Figure 5.5: Deision tree without onstrained split points.Another possibility may be to not restrit the level at the node level, but instead allow di�erentgeneralisation levels at eah branh.Finally it may be possible to use the aggregates stored in the ube when alulating thesesplit points, and thereby reduing the omplexity of the algorithm.5.2.4 Pruning/Post-proessing of TreeThe last possible modi�ation is to generate a deision tree, and then modify the tree beforeor after the pruning stage, with the objetive of inreasing its explainability.First we must establish when an attribute and its split points an be generalised in an existingdeision tree without altering the lassi�ation auray. This is easier to see using an example,Figure 5.6 shows an instane-based hierarhy. Before an attribute at Month level, an begeneralised to Quarter level, the split points it has, may only be the ones that divide thequarters. That is, every split on the Month attribute must ontain a omplete quarter or anumber of omplete quarters. If this is ful�lled, then the split represent exatly the samedata, due to the relation between Month and Quarter. So, a split involving only January andFebruary, annot be generalised to Q1, sine this ould inlude more data (data with Month= Marh). Likewise, a split involving July to September, annot be generalised to Q3, sinethis ould exlude data for the month June.Suppose that the attributes used in the deision tree indution algorithm is all attributesavailable in the dimensions. This ould result in a tree of the form shown in Figure 5.7.Consider the leftmost Region attribute, whih has a split on { NJ, CJ, SJ, I } and { NG,SG }. If we use the instane-based onept hierarhy for the loation dimension, shown inFigure 5.3, it an be seen that the two groups of data an be generalised to the Countrylevel. That is, the region split attribute an be replaed by a Country split attribute, with thebranhes, DK, and GE. Thus a simpler split involving less values is ahieved, without alteringthe lassi�ation auray.

66 DM

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Q1 Q2 Q3 Q4

2003

Figure 5.6: Partial instane-based onept hierarhy for TCHd1.

Region

2001 2002, 2003

Month Region

NJ, CJ SJ, I

Mon not MonNJ, CJ, SJ, I NG, SG

Jan − Mar
Apr, May

Jun − Dec

NG, SG

Weekday

Year

Figure 5.7: Deision tree before/after pruning.

5.2 Multi-dimensional Improvements 67However, the above senario will not our that often if there are many possible values for anattribute, sine it requires the split attribute to split on very rare sets (the sets de�ned by theinstane-based onept hierarhy).A more likely situation is presented in the Month attribute, where the months are almostsplit aording to the Quarter level. It would be possible to use Quarter as a split attribute,using Q1, Q2, Q3-Q4 as the split onditions, however, this would plae June in the wrongbranh. If Month was hosen over Quarter due to better lassi�ation auray, this willlead to a redution in lassi�ation auray. Whether the tree with improved explainabilityand redued lassi�ation auray is better than the original tree depends on how muh theexplainability is improved and how muh the auray is redued. So, some measure is neededto ompare these fators, then a deision based on this measure an be made.Another situation, illustrated by the rightmost Region attribute, is splits lining up to di�erentgeneralisation levels. This region attribute is split into { NJ, CJ }, { NG, SG }, and { SJ, I}. { NG, SG } an be generalised to GE, sine all regions for Country = GE are inluded inthis split. However, { NJ, CJ }, annot be generalised to DK, sine this would inlude moreregions than de�ned by { NJ, CJ }. The spei� problem here, is that part of the branhesan be generalised to a higher level, while others annot. A possible solution would be to allowa split on more than one attribute, thus allowing branhes at di�erent generalisation levels.That is, a node alled �Region/Country�, with splits that speify whih attribute they use forthe split. This solution ould also be used for the Month attribute, by generalising Jan-Marto Q1, without altering the rest of the splits.In Figure 5.8 the tree from Figure 5.7, an be seen after the disussed simpli�ation steps.
2002, 2003

SJ, I

Mon not Mon

Country

GEDK

Region, Country

NJ, CJ GE

(Region) (Region)

(Country)

Quarter

Q1
Q2

Q3, Q4

2001

Year

Weekday

Figure 5.8: Deision tree after simpli�ation.5.2.5 Interative Deision Tree IndutionA �nal idea we propose is to view eah total ordered onept hierarhies as an attribute witha level attahed. Then begin the deision tree indution by setting the level of eah attribute,either using some heuristi algorithm or by using attribute-oriented indution. Then thedeision tree is indued and presented to the user. At this point, the user should have the

68 DMhoie of hanging the level, assoiated with eah attribute, to investigate the onsequenes ofthis hange. Depending on how the levels and attributes are seleted, it may only be neessaryto indue the the subtree with root in the node whose level is hanged. This ould result ina signi�ant redution in omplexity depending on where the node is situated in the tree.Also, if the original indued tree did not hose the optimal level of the attribute that is tobe hanged, then it may be neessary to move the node up in the tree, resulting in morealulations.

Chapter 6Evaluation of Some Proposed IdeasIn this hapter we analyse the experiments we have onduted based on the previous analysis.We have reated a prototype implementation of some of our ideas. The appliation hasbeen programmed in C# and onnets to Mirosoft SQL Server for database aess1. Thehoie of language is mainly due to its easy database aess and due the author's uriosityabout the abilities of this new language. The soure ode for the appliation is available at�http://www.s.au.dk/∼peterj/mdm/�2 .6.1 Multi-dimensional Data Mining User InterfaeBased on the problems desribed in setion 4.2, and the disussions in setion 4.4, we haveexperimented with reating a user interfae for multi-dimensional data mining.6.1.1 Attribute View and SeletionWe have tried the two views desribed previously, that is, either viewing all attributes asattributes, or viewing onept hierarhies as attributes with a level. None of these two ap-proahes is onsistently signi�antly better than the other. It mostly depends on the typeof onept hierarhy and the number of attributes in the onept hierarhy. If the onepthierarhy onsists of highly related attributes hoosing the level is easiest, and it does notseem to be too limiting to exlude the remaining attributes. This is also true if it is a smallonept hierarhy, sine the number of attributes being exluded is also small. However, whendealing with large or less related attributes, then it is not enough to simply be able to seletone of them. Our onlusion is that, both views of data should be supported, and seletableby the user.With regard to attribute seletion and deseletion, we have found that hoosing or removingattributes from an entire dimension or onept hierarhy an be useful, though it should stillbe possible to selet or deselet single attributes. This is espeially true with regard to the1We are in the proess of modifying the database aess, so it will be possible to use it with MirosoftAess, whereby it will be easier for other people to test, and it will also be easier to supply other people withtest databases. However, this onversion has not been ompleted yet2An exeutable version and test data will appear when the Mirosoft Aess database aess is funtional

70 DMseletion of a target attribute, sine it beomes possible to deselet all attributes hosen asinput attributes from a dimension or onept hierarhy when a target attribute is hosen insidethis dimension or onept hierarhy. We have tried using a seletion hierarhy onsisting ofdimension, onept hierarhy, total ordered onept hierarhy, and attribute. However, thisbeomes too omplex, so instead we suggest that the user an hoose between using eitheronept hierarhies or total ordered onept hierarhies.In summary:
• Both the �attribute as seletion unit view�, and the �onept hierarhy as attribute withlevel� view should be supported, and user-seletable.
• Seleting or deseleting attributes as input attributes should be possible at the dimen-sion, onept hierarhy, and attribute level.
• When a target attribute is hosen, the user interfae should provide the option of auto-matially removing all input attributes in the dimension or onept hierarhy the targetattribute is part of.
• Using both onept hierarhies and total order onept hierarhies at the same time willmost likely make the user interfae too omplex.6.1.2 Data Mining ModeWith regard to the atual data mining (and in part to the available dimensions and measureattributes), we suggest that three di�erent types of data mining is supported. These are:
• Intra-dimensional.
• Fat-weighted intra-dimensional.
• Inter-dimension.The �rst type is the simplest and performs data mining within a single dimension. The seonduses a dimension table joined to the fat table, thus weighting the dimension rows after theirnumber of ourrenes in the fat table. This thereby inludes the measure attributes aspossible input attributes. It ould also be possible to use a measure attribute to determinethe weight eah fat should have. The third type is what we expet to be the most ommontype of data mining in multi-dimensional data, sine it uses more than a single dimension.When this type of mining is used, it should be possible to speify some expression usingthe measure attributes, whih evaluates to true when a transation ours in the fat table.This would most ommonly be a measure whih should be non-zero. Additionally a measure-attribute should be seletable as weight, like the n_units measure, whih was desribed duringthe TREO data analysis.We have implemented the above data mining methods, and found them su�ient for ourpurposes, however, they have only been used on a single data ube, so we may very well havemissed some other neessary funtionality.

6.2 Deision Tree Indution Modifiations 716.1.3 Meta DataAll information regarding attributes, onept hierarhies, dimensions and the fat table havebeen stored as meta data. This has proved useful, in omparison to storing the informationstatially, sine it beomes very easy to adjust, for instane, onept hierarhies on-the-�y.Additionally, it is very onvenient not to be required to speify the types of attributes, sinethis information is stored in the database.6.1.4 Simpli�ationsWith the urrent prototype, a few simpli�ations have been made. The �rst simpli�ation isthat there an only exist one ube in a database, this is to simplify the design. One lessonlearned is that when one has to manage dimensions, onept hierarhies, and attributes, itbeomes a lot more omplex than the traditional rows and attributes.The seond simpli�ation is that the ube funtionality of the database is not used. This isdue to portability and lak of time.6.2 Deision Tree Indution Modi�ationsIn this setion we desribe the prototype implementation of one of the deision tree improve-ments we proposed earlier. This implementation as been inluded in the abovementionedappliation.6.2.1 Basi AlgorithmWe have implemented the C4.5 algorithm, whih only uses equality-splits, and we have hosento simplify it by only allowing disrete attributes.The algorithm has been implemented with a split-measure based on the following de�nitions,from [Mit97℄ and [Jen01℄:
Entropy(S) =

c∑

i=1

−pi log2 piwhere S is a olletion of rows, with c lasses, pi the proportion of rows in S belonging tolass i, 0 log2 0 de�ned to be 0.
Gain(S,A) = Entropy(S)−

∑

v∈V alues(A)

|Sv|

|S|
Entropy(Sv)where V alues(A) is the set of possible values for attribute A, and Sv the subset of S where Ahas value v.

SplitInformation(S,A) = −
c∑

i=1

|Si|

|S|
log2

|Si|

|S|where Si is the subset obtained from S when partitioning S by the c-valued attribute A.

72 DMWith the atual split-measure being:
GainRation(S,A) =

Gain(S,A)

SplitInformation(S,A)Usually these alulations are done in main memory, by starting with the entire database andthen partitioning it as the deision tree is indued. However, this approah annot be used withlarge databases, sine they annot �t into main memory. Thus we have tried implementingit without holding the data in main memory, instead we query the database. This approahhas the added bene�t of giving us a hint about the type of queries the database must answerduring standard deision tree indution, so we an analyse whether a data ube would improvethese queries. We have not implemented any pruning strategies, sine we want to keep thefous on how the splits are performed during the tree indution phase. If pruning is used, itis di�ult to distinguish between e�ets of the split of attributes and the �nal pruning of thetree.6.2.2 TestsThere are two of the proposed algorithms we would like to test, one is the use of spei� splitintervals based on the available data in a onept hierarhy. However, this approah is notinteresting in omparison to a traditional C4.5 algorithm using only equality-splits, sine theresult would be equal to simply using all the attributes from the input onept hierarhiesand then indue a deision tree using these.Instead we fous on the algorithm, whih use representatives from onept hierarhies totest the goodness of the onept hierarhy, and then only test all the attributes in the bestonept hierarhy plus all attributes in single-attribute onept hierarhies. We are interestedin disovering how large a redution in attribute goodness tests this approah gives, and howthe approah a�ets the predition abilities of the deision tree.We have hosen to only use a subset of the data, whih is available in the ube to speed up thealulations. The data has been divided into 3 subsets, a training set onsisting of 34K rows,and an evaluation set and a performane set, both onsisting of 17K rows. The evaluation setis to be used by the indution algorithm during for instane pruning. While the performaneset is never used by the indution algorithm, it is only used for testing the performane of the�nal lassi�er on unseen data. We saw two hoies for dividing the data, one seleting rows atrandom, and another, where the rows are seleted based on the date, suh that the trainingset has the oldest data, the evaluation set some newer data, and the performane set has thenewest data. The latter is more di�ult for the lassi�er, so this approah is hosen sine weare interested in deteting even small hanges between the two algorithms.A �nal hoie regarding the tests, is the seletion of a representative from the onept hierar-hies. We have hosen to use the most spei� attribute, whih is not a primary key.We have hosen a set of spei� ases, where the input attributes has been hosen based on thesize of the onept hierarhies, and not on whether it would give some interesting knowledgeabout the data.

6.2 Deision Tree Indution Modifiations 736.2.3 ResultsIn the following we present 5 ases, whih have been used to examine how the base deisiontree (4.5) behaves, ompared to the modi�ed algorithm (mod), where a representative fromonept hierarhies is used. Attr is the number of attributes whose split-measure has beenalulated, Train is the fration of orretly lassi�ed training ases, and Performane is thefration of orretly lassi�ed performane ases. We have hosen not to show the atualdeision trees, most of the trees using 4.5 are very omplex due to the lak of pruning.Case 1: Input Attributes:(Memberdim) ative, aargang, semester, undos.(Timedim) timeofday, hour.Target: (Memberdim) free_o�ee.Attr Train PerformaneC4.5 322 0,9211 0,9222Mod 114 0,9161 0,9188The performane di�erene is very small in this ase, while the modi�ed algorithm has donesigni�antly less alulations. By inspetion of the trees it has been seen that the C4.5 tree isvery omplex due to it using the hour attribute, whih the modi�ed algorithm does not use.Case 2:Input Attributes:(Memberdim) ative, aargang, semester, undos.(Produtdim) name, ative, MainClass, Class, SubClass.Target: (Memberdim) free_o�ee.Attr Train PerformaneC4.5 541 0,9779 0,9773Mod 437 0,9779 0,9773The trees in this ase are equal, however, the modi�ed algorithm used slightly less alulations.Case 3:Input Attributes:(Memberdim) ative, semester, free_o�ee, undos.(Datedim) year, semester, quarter, month, week.Target: (Memberdim) aargang.Attr Train PerformaneC4.5 677 0,9087 0,8635Mod 69 0,8931 0,8688Mod2 76 0,8931 0,8688In this ase the di�erene between the trees is very large, this is due to C4.5 inluding themonth attribute fairly lose to the leaves of the tree in several branhes. We have tried tomodify the representative used in the modi�ed algorithm to see whether it would hoosemore attributes. The new algorithm (mod2) does a test on the top and bottom nodes of thehierarhy (exluding the All node, and any primary key). However, this does not hange theresulting tree.

74 DM6.2.4 ConlusionIt is di�ult to make any sound onlusion on these limited tests, but they do show that therean be a redution in the number of alulations done. However, the resulting deision treesare also di�erent. In this limited test the di�erenes have not had any impat on the preisionof the lassi�er. More tests are learly needed, and with the use of a pruning phase it wouldbe possible to judge the �Performane� values better.

Chapter 7Conlusion and Future WorkIn this hapter we onlude on the work we have done, then we onsider some of the futurework whih is possible.
7.1 ConlusionIn this thesis we have introdued data warehousing and the dimensional model. We have de-sribed the general features of these, that is, their ommon use, design and possibilities. Thenwe have analysed the available data in a traditional relational database, whih desribes salestransations and ustomer payment transations. It was found that there was not registeredenough data to make a proper analysis, mainly due to the database was not designed to storehistorial information about the ustomers. Nonetheless, we used this data and analysis ofdata to onstrut a small data warehouse using the dimensional model.Then we tried analysing the data warehouse using a traditional data mining appliation,with the main objetive of disovering how a traditional tool would handle data warehousestrutured data. Several problems were found, and we have suggested solutions to these.Next, we have analysed how deision tree indution an be improved when the dimensionalmodel is used. We have proposed several possible improvements.Finally, we have performed an evaluation of our proposed solution to the general data miningtask, and some of the spei� improvements to the deision tree indution algorithm. Theevaluation of the way data mining an be done in general when the data is multi-dimensional,has been performed by reating an appliation with the proposed funtionality. However, wean only doument our personal experiene with this appliation, sine no formal tests havebeen done on its interfae. The evaluation of the improvements to deision trees has been donewith respet to lowering the amount of attributes that must be tested for split-abilities. Itwas found that our suggested method of testing representatives of eah total ordered onepthierarhy, resulted in a lower amount of tests without reduing the quality of the deisiontrees signi�antly. However, these results were only obtained on our test data, whih did notontain many onept hierarhies, so the results are not onlusive.

76 DM7.2 Future WorkAn experiene from this projet, whih did not surprise us, was how time onsuming thepreparation of data is. It has often been stated in the literature, that the data leaning phaseis the phase whih takes most time. One way to solve this problem, would be to reate a datawarehouse repository, that is, a olletion of data warehouse databases, whih an be used forresearh purposes, like the UCI Mahine Learning Repository1. Due to the di�erent natureof data warehouse data, in omparison to the traditional ase-based datasets, a number ofproblems exist with reating suh a repository:
• The data warehouse annot be stored as a single text �le. Furthermore, the storagemethod should not be DBMS spei�, sine this would ompliate the use of the datawarehouses, or may even make it impossible for some users to use the data. A solutionmay be to store the data warehouse as a star shema, and store eah dimension, and thefat table, as separate text �les.
• The business domain of a data warehouse is usually omplex, so it is di�ult to under-stand what the data represents. This an be solved by making sure the business domain,struture of data warehouse, and attributes of the entire data warehouse are desribedproperly.
• The size of data is usually large, whih an ause problems both for the people o�eringthe data, and the people trying to aess the data. We do not see any way to avoid thisif the researh is to be done on a realisti data warehouse.In the design of our data warehouse, we enountered problems with dynami dimensions, likethe balane of a ustomer, and various attributes related to this balane. How this is normallymodelled and how that in�uenes on the data mining task would be another subjet that anbe examined.More generally, it would be nie to have statistis on the data warehouses that are in usetoday. For instane, the typial size of dimensions, and information about the size of onepthierarhies. With this information it would be easier to analyse the performane of algorithms,ompared to a vague guess on how large these normally are.Another area, whih it would be interesting to investigate, is how the user interfae to thedata mining tools an be modi�ed to aommodate multi-dimensional data soures. We havedone some preliminary onsiderations on this, however, the evaluation thereof is not objetive,sine we naturally made the user interfae like we would prefer. Thus it would be interestingto examine what experiened data miners would like from their user interfae in this regard.A related issue, is the use of meta data for the data mining appliations. It would be veryadvantageous to have a standard for de�ning this meta data, whih ould be used by any datamining tool.We have proposed a number of improvements with regard to deision tree indution, however,we have only evaluated one of them, and even this evaluation should be performed on amore ompliated database. Likewise, the remaining improvements should be evaluated. Wehave only onsidered deision trees, but there are many other algorithms, whih ould be1http://www.is.ui.edu/∼mlearn/MLRepository.html

7.2 Future Work 77improved to utilise multi-dimensional data. For instane, the Naive Bayes lassi�er shouldbe investigated, espeially due to its assumption of independene between attributes, whihde�nitely does not hold for attributes belonging to the same onept hierarhy.

Bibliography[AAD+96℄ S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-ishnan, and S. Sarawagi. On the omputation of multidimensional aggregates. InPro. 1996 Int. Conf. Very Large Data Bases, pages 506�521, September 1996.[BCF99℄ J. Bernhard, S. Chaudhuri, and U.. Fayyad. Salable Classi�ation over SQLDatabases. In Pro. of 15th International Conferene on Data Engineering, 1999.Sydney, Australia.[Che01℄ Zhengxin Chen. Data Mining and Unertain Reasoning: An Integrated Approah.John Wiley & Sons, In., 2001.[CS02℄ S. Chaudhuri and S. Sarawagi. E�eient Evaluation of Queries with Mining Pred-iates. In Pro. of 18th International Conferene on Data Engineering, 2002. SanJose, USA.[Dun03℄ Margaret H. Dunham. Data Mining Introdutory and Advaned Topis. PearsonEduation, In., 2003. ISBN 0-13-088892-3.[Fu96℄ Yongjian Fu. Disovery of Multi-Level Rules from Large Databases. PhD thesis,Simon Fraser University, 1996.[Gro℄ The Open Group. The Open Group Base Spei�ation Issue 6, IEEE Std 1003.1,2003 Edition.http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_hap03.html.[Han98℄ Jiawei Han. Towards on-line analytial mining in large databases. ACM SIGMODReord, 27(1):97�107, Marh 1998. ISBN 0163-5808.[HK01℄ Jiawei Han and Miheline Kamber. Data Mining: Conepts and Tehniques.Morgan Kaufmann Publishers, 2001. ISBN 1-55860-489-8.[Inm02℄ W. H. Inmon. Building the Data Warehouse. Wiley Computer Publishing, 3rdedition, 2002. ISBN 0-471-08130-2.[IRBS99℄ W. H. Inmon, Ken Rudin, Christopher K. Buss, and Ryan Sousa. Data WarehousePerformane. Wiley Computer Publishing, 1999. ISBN 0-471-29808-5.[Jen01℄ Peter Jensen. Knowledge Disovery and Tests of Available Tools. Tehnial report,Aalborg University, 2001.

80 DM[Kim96℄ Ralph Kimball. The Data Warehouse Toolkit. John Wiley & Sons, In, 1996.ISBN 0-471-15337-0.[Lu97℄ Yijun Lu. Conept Hierarhy in Data Mining: Spei�ation, Generation andImplementation. Master's thesis, Simon Fraser University, Deember 1997.[Mit97℄ Tom M. Mithell. Mahine Learning. WCB/MGraw-Hill, 1997. ISBN 0-07-042807-7.[MWG+97℄ Kamber. M, L. Winstone, W. Gong, S. Cheng, and J. Han. Generalization anddeision tree indution: E�ient lassi�ation in data mining. In Pro. of 1997Int. Workshop Researh Issues on Data Engineering (RIDE'97), pages 111�120,April 1997.[NBCF01℄ A. Netz, J. Bernhardt, S. Chaudhuri, and U. Fayyad. Integrating Data Miningwith SQL Databases: OLD DB for Data Mining. In Pro. of 17th InternationalConferene on Data Engineering, 2001. Heidelberg, Germany.[Pal00℄ Themistoklis Palpanas. Knowledge disovery in data warehouses. ACM SIGMODReord, 29(3), September 2000.[PHP+01℄ Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar Dayal.Multi-dimensional sequential pattern mining. In Proeedings of the tenth interna-tional onferene on Information and Knowledge Management,Atlanta, Georgia,USA, 2001. ISBN 1-58113-436-3.[Pin01℄ Helen Pinto. Multi-dimensional Sequential Pattern Mining. Master's thesis, Si-mon Fraser University, April 2001.[PJ01℄ Torben B. Pedersen and Christian S. Jensen. Multidimensional database tehnol-ogy. IEEE Computer, 34:40�46, 2001. ISSN 0018-9162.[Ree℄ Mihael Reed. A De�nition of Data Warehousing.http://www.intranetjournal.om/features/datawarehousing.html.[SKS02℄ Abraham Silbershatz, Henry F. Korth, and S. Sudarshan. Database SystemConepts. MGraw-Hill Higher Eduation, 4th edition, 2002. ISBN 0-07-112268-0.[Tar98℄ Yin Jenny Tarn. Dataube: Its Implementation and Appliation in OLAP Mining.Master's thesis, Simon Fraser University, September 1998.

Appendix AMirosoft SQL ServerThis appendix desribes some of the non-standard SQL funtions and operations we have usedin our handling of data.A.1 FuntionsThis setion is based on the help �les whih are inluded in the Mirosoft SQL Server pakage.These are also available at http://msdn.mirosoft.om (searh for �Transat-SQL Referene�).A.1.1 CAST(data type given in date_type) CAST(expression AS data_type)
expression Any valid expression.
date_type The data type whih the expression should be onverted to.Example:> selet ast('2003-02-03' as datetime)2003-02-03 00:00:00.000A.1.2 CONVERT(data type given in date_type) CONVERT(date_type[(length)], expression[,style℄)
date_type The data type whih the expression should be onverted to.
length Optional parameter indiating the length of the data type (if appliable).
expression Any valid expression.

82 DM
style Optional parameter speifying the style of the date format when expression is of typedatetime or smalldatetime. Likewise the style of the string when onverting data of type�oat, real, money, or smallmoney1.There are a number of styles whih an be used for the date format, however, we will onlydesribe the ones used in our data analysis sripts. They are listed below:Style Format108 hh:nn:ss112 yyyymmddWhere y indiates year, m the month, d the day, h the hour, n the minute, and s the seond.The number of ourenes of these letters speify the number of haraters used in the dateformat.For instane, onverting the date 2003-02-03 17:23 to a string using style 108 will result in17:23:00, whereas using style 112 will result in 20030203.Example:> selet onvert(nvarhar,'2003-02-03 17:23',112)2003-02-03 17:23> selet onvert(nvarhar,ast('2003-02-03 17:23' as datetime),112)20030203The �rst example shows how not to onvert a date when you speify it as a harater string.Sine the expression is already a string, it is simply returned as it is, sine the target data typeis a string. In the seond example the date in harater format is �rst onverted to datetimedata type, and then CONVERT is used to onvert it to string using the spei�ed style.A.1.3 DATEADDdatetime|smalldatetime DATEADD(datepart,number,date)
datepart The part of the date that a value is added to. The value of this parameter must be inthe set { Year, quarter, Month, dayofyear, Day, Week, Hour, minute, seond, milliseond} or one of the abbreviated forms of the values in the set2.
number The value added to date using datepart, if it is not an integer, the value is roundeddown.
date The date that value is added to. The parameter must be of type datetime or smalldate-time, or a string in date format.The return date type of the funtion depends on the date type of the date parameter. It returnsin smalldatetime if date has type smalldatetime, otherwise the return type is datetime.Example:1these will not be desribed2Not desribed here sine we will use the omplete word to inrease readability

A.1 Funtions 83> selet dateadd(seond,900000011,'1970-01-01')1998-07-09 16:00:11.000Whih inidently orresponds the epoh date value 900000011 onverted to a readable datevalue.A.1.4 DATEDIFFinteger DATEDIFF(datepart,startdate,enddate)
datepart The part of the date whih the result value is returned in. The possible values aredesribed in setion A.1.3. Note that this does not mean that the di�erene is only donefor the datepart, it is done for the omplete date and then returned using datepart. Forinstane, the di�erene between 1999-02-03 and 2003-02-03, when Month is seleted asdatepart, is not 0, it is 48.
datestart The beginning date for the omparison, this must either be of type datetime orsmalldatetime, or a string in date format.
dateend The ending date for the omparison, spei�ed as datestart.The di�erene is alulated by subtrating startdate from enddate, and the result is returnedas a signed integer, whih means that if enddate < startdate, then a negative value is returned.Example:> selet datediff(Month,'2003-02-03','1999-02-03')-48A.1.5 DATEPARTinteger DATEPART(datepart,date)
datepart The part of the date that is to be returned, spei�ed as desribed in setion A.1.3.
date The date to extrat the part of date from.Example:> selet datepart(quarter,'2003-02-03')1A.1.6 DATENAMEnvarhar DATENAME(datepart,date)
datepart The part of the date that is to be returned, spei�ed as desribed in setion A.1.3.
date The date to extrat the part of date from.

84 DMThis funtion is equivalent to DATEPART, exept the value is returned in harater format.If datepart is Month, then a value in the set { January, February, . . . , Deember } will bereturned. If datepart is weekday, then a value in the set { Monday, Tuesday, . . . , Sunday} will be returned. Otherwise the value returned orresponds to the value returned fromDATEPART, with the exeption of the date type.Example:> selet datepart(Month,'2003-02-03')FebruaryA.1.7 SET DATEFIRSTSET DATEFIRST numberThis is tehnially not a funtion, however... This funtion is used to de�ne whih weekday isthe �rst in a week, it is de�ned from the following table:Value First weekday1 Monday2 Tuesday... ...7 SundayThe value of DATEFIRST a�ets the values returned by DATEPART and DATENAME withrespet to weekday.

Appendix BData Preproessing, SQL statements
B.1 Table De�nitionsIn this appendix all the SQL ommands we have used on the original database are doumented.B.1.1 Original TablesCREATE TABLE [dbo℄.[offee℄ ([user_id℄ [int℄ NOT NULL ,[subsriber_sine℄ [smalldatetime℄ NULL ,[date℄ [int℄ NULL)CREATE TABLE [dbo℄.[employee_type℄ ([employee_type_id℄ [int℄ NOT NULL ,[desription℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,[free_offee℄ [int℄ NULL)CREATE TABLE [dbo℄.[members℄ ([user_id℄ [int℄ NOT NULL ,[ative℄ [int℄ NOT NULL ,[aargang℄ [int℄ NOT NULL ,[debt℄ [float℄ NOT NULL ,[board_debt℄ [float℄ NOT NULL ,[last_warned℄ [int℄ NOT NULL ,[first_warning℄ [int℄ NOT NULL ,[advane℄ [float℄ NOT NULL ,[undos℄ [int℄ NOT NULL ,[total_undos℄ [int℄ NOT NULL ,[employee℄ [int℄ NOT NULL ,[balane℄ AS ([advane℄ - [debt℄ - [board_debt℄) ,[first_payment℄ [int℄ NULL ,

86 DM[last_payment℄ [int℄ NULL ,[first_purhase℄ [int℄ NULL ,[last_purhase℄ [int℄ NULL ,[never_used_system℄ [tinyint℄ NULL)CREATE TABLE [dbo℄.[paid_ansat_kaffe℄ ([date℄ [int℄ NULL)CREATE TABLE [dbo℄.[payments℄ ([user_id℄ [int℄ NOT NULL ,[date℄ [int℄ NOT NULL ,[amount℄ [float℄ NOT NULL)CREATE TABLE [dbo℄.[pries℄ ([produt_id℄ [int℄ NOT NULL ,[prie℄ [float℄ NOT NULL ,[date_start℄ [int℄ NOT NULL)CREATE TABLE [dbo℄.[produts℄ ([produt_id℄ [int℄ NOT NULL ,[name℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,[prie℄ [float℄ NULL ,[ative℄ [int℄ NULL)CREATE TABLE [dbo℄.[sales℄ ([user_id℄ [int℄ NOT NULL ,[produt_id℄ [int℄ NULL ,[date℄ [int℄ NULL ,[prie℄ [float℄ NULL ,[paid_for℄ [int℄ NULL ,[money℄ [float℄ NULL)B.1.2 Dimensional and Helper TablesCREATE TABLE [dbo℄.[datedim℄ ([dateid℄ [int℄ NOT NULL ,[year℄ [int℄ NOT NULL ,[semester℄ [nvarhar℄ (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[quarter℄ [int℄ NOT NULL ,[month℄ [int℄ NOT NULL ,

B.1 Table Definitions 87[month_name℄ [nvarhar℄ (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[week℄ [int℄ NOT NULL ,[weekday℄ [int℄ NOT NULL ,[weekday_name℄ [nvarhar℄ (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[dayofmonth℄ [int℄ NOT NULL ,[dayofyear℄ [int℄ NOT NULL ,[date℄ [smalldatetime℄ NOT NULL ,[studyyear℄ [int℄ NOT NULL ,[studysemester℄ [nvarhar℄ (3) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL)CREATE TABLE [dbo℄.[epoh_mapping℄ ([epoh℄ [int℄ NOT NULL ,[ts℄ [datetime℄ NOT NULL ,[dateid℄ [int℄ NULL ,[timeid℄ [int℄ NULL)CREATE TABLE [dbo℄.[member_orretion℄ ([user_id℄ [int℄ NOT NULL ,[orretion℄ [float℄ NOT NULL)CREATE TABLE [dbo℄.[member_day℄ ([user_id℄ [int℄ NOT NULL ,[dateid℄ [int℄ NOT NULL ,[balane℄ [float℄ NOT NULL ,[ative℄ [tinyint℄ NULL ,[warned℄ [tinyint℄ NOT NULL ,[days_warned℄ [smallint℄ NOT NULL ,[bloked℄ [tinyint℄ NOT NULL ,[days_bloked℄ [smallint℄ NOT NULL ,[days_till_blok℄ [smallint℄ NOT NULL)CREATE TABLE [dbo℄.[member_day_un℄ ([user_id℄ [int℄ NOT NULL ,[dateid℄ [int℄ NOT NULL ,[balane℄ [float℄ NOT NULL ,[ative℄ [tinyint℄ NULL ,[warned℄ [tinyint℄ NOT NULL ,[days_warned℄ [smallint℄ NOT NULL ,[bloked℄ [tinyint℄ NOT NULL ,[days_bloked℄ [smallint℄ NOT NULL ,[days_till_blok℄ [smallint℄ NOT NULL)

88 DMCREATE TABLE [dbo℄.[memberdim℄ ([memberid℄ [int℄ NOT NULL ,[ative℄ [int℄ NOT NULL ,[aargang℄ [int℄ NOT NULL ,[semester℄ [int℄ NOT NULL ,[employee_type℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[free_offee℄ [nvarhar℄ (1) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[advane℄ [float℄ NOT NULL ,[debt℄ [float℄ NOT NULL ,[board_debt℄ [float℄ NOT NULL ,[balane℄ AS ([advane℄ - [debt℄ - [board_debt℄) ,[undos℄ [int℄ NOT NULL ,[never_used_system℄ [tinyint℄ NOT NULL)CREATE TABLE [dbo℄.[produtdim℄ ([produtid℄ [int℄ NOT NULL ,[original_id℄ [int℄ NOT NULL ,[name℄ [nvarhar℄ (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[prie℄ [float℄ NOT NULL ,[ative℄ [int℄ NOT NULL ,[MainClass℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[Class℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,[SubClass℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL)CREATE TABLE [dbo℄.[sales_mp℄ ([user_id℄ [int℄ NOT NULL ,[produt_id℄ [int℄ NOT NULL ,[date℄ [int℄ NOT NULL ,[n_units℄ [int℄ NULL ,[total_prie℄ [float℄ NULL ,[unit_prie℄ [float℄ NULL ,[balane℄ [float℄ NULL ,[balane_after℄ AS ([balane℄ - [total_prie℄) ,[dateid℄ [int℄ NULL ,[timeid℄ [int℄ NULL ,[balane_unorreted℄ [float℄ NULL ,[balane_after_unorreted℄ AS ([balane_unorreted℄ - [total_prie℄))CREATE TABLE [dbo℄.[sales_day℄ ([dateid℄ [int℄ NOT NULL ,[produt_id℄ [int℄ NOT NULL ,[n_units℄ [int℄ NOT NULL ,[total_prie℄ [int℄ NOT NULL ,[ative_members_day℄ [int℄ NULL ,

B.2 Mis. Cheks and Fixes 89[ative_members_week℄ [int℄ NULL ,[ative_members_month℄ [int℄ NULL ,[ative_members_semester℄ [int℄ NULL ,[ative_members_year℄ [int℄ NULL ,[ative_members_rweek℄ [int℄ NULL ,[ative_members_rmonth℄ [int℄ NULL ,[ative_members_syear℄ [int℄ NULL ,[ative_members_ssemester℄ [int℄ NULL)CREATE TABLE [dbo℄.[timedim℄ ([timeid℄ [int℄ IDENTITY (1, 1) NOT NULL ,[timeofday℄ [nvarhar℄ (20) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,[mins℄ [int℄ NULL ,[hour℄ [int℄ NULL ,[time℄ [datetime℄ NOT NULL)B.2 Mis. Cheks and Fixes-- hek undosselet ount(1) from members where total_undos > 0 or undos > 0;selet ount(1) from members where total_undos != undos;-- hanges to Membersdelare �min_date integerset �min_date = (selet min(date) from sales where user_id in(selet user_id from members where aargang=1999))selet distint user_id from saleswhere user_id in (selet user_id from members where aargang=0)and date < �min_datedelare �min_date integerset �min_date = (selet min(date) from sales where user_id in(selet user_id from members where aargang=1999))update members set aargang=2000 where aargang=0 and members.never_used_system=0and user_id not in (selet distint user_id from saleswhere date < �min_dateand user_id in (selet user_id from members where aargang=0))update members set aargang=2001 where aargang=1update members set first_payment=agg.min,last_payment=agg.maxfrom (selet user_id,max(date) as max, min(date) as min from payments pgroup by user_id) agg where agg.user_id=members.user_id

90 DMupdate members set first_purhase=agg.min,last_purhase=agg.maxfrom (selet user_id,max(date) as max, min(date) as min from sales_mp sgroup by user_id) agg where agg.user_id=members.user_idselet aargang,state,ount(1) as ount from (selet m.user_id, m.balane - p.sum + s.sum as diff,m.aargang,ase when (m.balane - p.sum + s.sum > -20and m.balane - p.sum + s.sum < 20) then 'ok' else 'err'end as statefrom (selet user_id,sum(amount) as sum from payments group by user_id) p,(selet user_id,sum(total_prie) as sum from sales_mpgroup by user_id) s, members mwhere p.user_id=m.user_id and s.user_id=m.user_id) totalgroup by aargang,stateorder by aargangupdate members set never_used_system=1update members set never_used_system=0where user_id in (selet user_id from sales)B.3 Data TransformationB.3.1 General Funtionsdrop funtion fn_replae_if_nullgoreate funtion fn_replae_if_null(�value float,�replae_value float = 0)returns float asbeginif �value is null return �replae_valuereturn �valueendgodrop funtion fn_mingoreate funtion fn_min(�val1 int, �val2 int) returns int asbeginif (�val1 > �val2) return �val2return �val1endgodrop funtion fn_maxgo

B.3 Data Transformation 91reate funtion fn_max(�val1 int, �val2 int) returns int asbeginif (�val1 < �val2) return �val2return �val1endgoB.3.2 Epoh and Date Handling Funtionsdrop funtion fn_epoh_to_datetimegoreate funtion fn_epoh_to_datetime(�epoh int) returns datetime asbeginreturn (dateadd(seond,�epoh,'1970-01-01'))endgodrop funtion fn_datetime_to_epohgoreate funtion fn_datetime_to_epoh(�dt datetime) returns int asbeginreturn (datediff(seond,'1970-01-01',�dt))endgodrop funtion fn_datetime_to_semestergoreate funtion fn_datetime_to_semester(�dt datetime) returns nvarhar(12) asbegindelare �month intset �month = datepart(month,�dt)return asewhen �month between 2 and 5 then 'spring'when �month between 9 and 12 then 'fall'when �month = 1 or �month = 6 then 'exam'when �month = 7 or �month = 8 then 'summer break'else 'Undefined'endendgodrop funtion fn_datetime_to_timeofdaygoreate funtion fn_datetime_to_timeofday(�dt datetime) returns nvarhar(12) asbegin

92 DMdelare �hour intset �hour = datepart(hour,�dt)return asewhen �hour between 0 and 5 then 'night'when �hour between 6 and 10 then 'morning'when �hour between 11 and 13 then 'noon'when �hour between 14 and 17 then 'afternoon'when �hour between 18 and 23 then 'evening'else 'Undefined'endendgodrop funtion date_to_studyyeargoreate funtion date_to_studyyear(�dt datetime) returns int asbeginreturn asewhen datepart(month,�dt) between 9 and 12 then datepart(year,�dt)else datepart(year,�dt) - 1endendgodrop funtion date_to_studysemestergoreate funtion date_to_studysemester(�dt datetime) returns nhar(3) asbegindelare �res_sem nhar(1),�res_year nhar(2),�month int,�year intif �dt is null return nullset �year=datepart(year,�dt)set �month=datepart(month,�dt)set �res_sem='F'if �month between 9 and 12 or �month=1 set �res_sem='E'if (�month=1) set �year = �year - 1set �res_year=substring(ast(�year as nhar(4)),3,2)return �res_sem + �res_yearendgo

B.3 Data Transformation 93drop proedure p_fill_datesgoreate proedure p_fill_dates(�from datetime, �to datetime) asbeginset noount ondelare �date datetime,�id intset �date = (onvert(nvarhar,�from,112))set �id = 1while �date <= �tobegininsert into datedim(dateid,date,year,quarter,month,month_name,week,weekday,weekday_name,dayofyear,dayofmonth,semester,studyyear,studysemester)values (�id,�date,datepart(year,�date),datepart(quarter,�date),datepart(month,�date),datename(month,�date),datepart(week,�date),datepart(weekday,�date),datename(weekday,�date),datepart(dayofyear,�date),substring(onvert(nvarhar,�date,3),1,2),dbo.fn_datetime_to_semester(�date),dbo.date_to_studyyear(�date),dbo.date_to_studysemester(�date))set �date = dateadd(day,1,�date)set �id = (�id + 1)endendgoB.3.3 Member FuntionsDROP PROC sp_foreah_member_doGODROP PROC p_foreah_member_doGOCREATE PROC p_foreah_member_do(�all_users int = 1,�pro nvarhar(100),�params nvarhar(100) = '') asBEGINDECLARE �md nvarhar(255)DECLARE �user_id integerIF �all_users = 0BEGINDECLARE uids CURSOR LOCAL STATIC FORSELECT DISTINCT user_id FROM membersWHERE never_used_system = 0ORDER BY user_idENDELSE

94 DMBEGINDECLARE uids CURSOR LOCAL STATIC FORSELECT DISTINCT user_id FROM membersORDER BY user_idENDOPEN uidsFETCH NEXT FROM uids INTO �user_idWHILE ��FETCH_STATUS = 0BEGINSET �md = �pro + ' ' + CAST(�user_id as nvarhar(10))IF (�params IS NOT NULL AND �params != '') SET �md = �md + ' ,' + �paramsEXEC (�md)FETCH NEXT FROM uids INTO �user_idENDCLOSE uidsDEALLOCATE uidsEND-- balane = debt + board_debt - advaneDROP FUNCTION a_paymentsGOCREATE FUNCTION a_payments (�uid integer,�at integer) RETURNS float ASBEGINDECLARE �res floatSET �res = (selet sum(amount) from payments where user_id = �uidand date < �at)if �res is null return 0return �resENDGODROP FUNCTION a_salesGOCREATE FUNCTION a_sales (�uid integer,�at integer) RETURNS float ASBEGINDECLARE �res double floatSET �res = (selet sum(total_prie) from sales_mpwhere user_id = �uid and date < �at)IF �res is null return (0)return (�res)ENDGO

B.3 Data Transformation 95DROP FUNCTION urr_moneyGOCREATE FUNCTION urr_money (�uid integer,�at integer) RETURNS float ASBEGINreturn (selet dbo.a_payments(�uid,�at) - dbo.a_sales(�uid,�at))ENDGOB.3.4 Transformationdrop proedure p_reate_epoh_mappinggoreate proedure p_reate_epoh_mapping asbegindelare �min_date datetime,�max_date datetimetrunate table epoh_mappinginsert into epoh_mapping(epoh,ts)selet distint date,dbo.fn_epoh_to_datetime(date)from (selet date from offeeunionselet date from paid_ansat_kaffeunionselet last_warned from members where last_warned > 0unionselet first_warning from members where first_warning > 0unionselet date from paymentsunionselet date_start from priesunionselet date from sales) total order by dateset �min_date = (selet min(ts) from epoh_mapping)set �max_date = (selet max(ts) from epoh_mapping)trunate table datedimexe dbo.p_fill_dates �min_date,�max_datetrunate table timediminsert into timedim(time)selet distint onvert(nvarhar,dateadd(seond,epoh,'1970-01-01'),108)as tim from epoh_mapping order by timupdate epoh_mapping set dateid=dd.dateidfrom datedim dd

96 DMwhere onvert(nvarhar,epoh_mapping.ts,112) = onvert(nvarhar,dd.date,112)update epoh_mapping set timeid=td.timeidfrom timedim tdwhere onvert(nvarhar,epoh_mapping.ts,108) = onvert(nvarhar,td.time,108)-- fill in derived time dimension attributesset datefirst 1 -- monday is represented by 1, and so forthupdate timedim set hour=datepart(hour,time),mins=datepart(minute,time),timeofday=dbo.fn_datetime_to_timeofday(time)endgoexe dbo.p_reate_epoh_mappinginsert into sales_mp(user_id,produt_id,date,n_units,unit_prie,total_prie)selet user_id,produt_id,date,ount(prie),sum(prie), avg(prie)from sales group by date,user_id,produt_id order by dateupdate sales_mp set dateid=e.dateid,timeid=e.timeidfrom epoh_mapping e where sales_mp.date=e.epohupdate sales_mp set balane=dbo.urr_money(user_id,date)B.3.5 Historial Member Datadrop pro p_update_mdgoreate pro p_update_md(�user_id int,�use_orretion int = 0) asbegindelare �first_date int,�first_dateid int,�table nvarhar(15),�query nvarhar(255)set �first_date = (selet dbo.fn_min(first_payment,first_purhase)from members where user_id=�user_id)set �first_dateid = (selet dateid from epoh_mappingwhere epoh=�first_date)if �use_orretion = 0 set �table = 'member_day_un'else set �table = 'member_day'set �query = 'insert into ' + �table+ '(user_id,dateid,balane,ative,warned,bloked,days_warned,'+ 'days_bloked,days_till_blok) selet '+ ast(�user_id as nvarhar)

B.3 Data Transformation 97+ ',dateid,0,0,0,0,0,0,0 from datedim where dateid < '+ ast(�first_dateid as nvarhar)exe(�query)delare �balane float,�day_payments float,�day_purhases float,�day_dateid int,�day_ative int,-- warn/blok limit variables�wlim int,�blim int,�hange_dateid int,�in_warn int,�in_blok int,�days_warned int,�days_bloked int,�days_till_blok intset �wlim = -150set �blim = -250set �hange_dateid = 1776delare days ursor loal stati forselet dateid from datedim where dateid >= �first_dateid order by dateidif �use_orretion = 0 set �balane = 0else set �balane = (selet orretion from member_orretionwhere user_id=�user_id)set �in_warn = 0set �in_blok = 0set �days_warned = 0set �days_bloked = 0set �days_till_blok = 0open daysfeth next from days into �day_dateidwhile ��FETCH_STATUS = 0begin-- alulate balaneset �day_payments = (selet sum(amount)from payments p, epoh_mapping emwhere p.user_id=�user_id and em.epoh=p.dateand em.dateid=�day_dateid)set �day_purhases = (selet sum(total_prie) from sales_mpwhere user_id=�user_id and dateid=�day_dateid)set �day_ative = (selet 1 where exists (selet 1 from sales_mpwhere user_id=�user_id and dateid=�day_dateid))

98 DMif �day_ative is null set �day_ative = 0else set �day_ative = 1if �day_payments is null set �day_payments = 0if �day_purhases is null set �day_purhases = 0set �balane = �balane + �day_payments - �day_purhases-- general b/wif �day_dateid >= �hange_dateidbeginset �wlim = 0set �blim = -50end-- alulate b/wif �balane < �wlimbeginif �in_warn = 0 and �in_blok = 0beginset �in_warn = 1set �days_till_blok = 14set �days_warned = 0endif �in_warn = 1beginset �days_warned = �days_warned + 1set �days_till_blok = �days_till_blok - 1endif �in_blok = 1beginset �days_bloked = �days_bloked + 1endif �in_blok = 0 and (�days_warned = 14 or (�balane < �blim))beginset �in_warn = 0set �in_blok = 1set �days_bloked = 0set �days_till_blok = 0set �days_warned = 0endendelsebeginset �in_warn = 0

B.3 Data Transformation 99set �in_blok = 0set �days_bloked = 0set �days_warned = 0set �days_till_blok = 0end-- generating a single dynami query would look simpler, but for-- performane reasons we dupliate the inserts for eah tableif �use_orretion = 0begininsert into member_day_un(user_id,dateid,balane,ative,warned,bloked,days_warned,days_bloked,days_till_blok)values(�user_id,�day_dateid,�balane,�day_ative,�in_warn,�in_blok,�days_warned,�days_bloked,�days_till_blok)endelsebegininsert into member_day(user_id,dateid,balane,ative,warned,bloked,days_warned,days_bloked,days_till_blok)values(�user_id,�day_dateid,�balane,�day_ative,�in_warn,�in_blok,�days_warned,�days_bloked,�days_till_blok)endfeth next from days into �day_dateidendlose daysdealloate daysendgodrop pro p_update_orretiongoreate pro p_update_orretion asbegindelare �last_aargang intset �last_aargang = 1996trunate table member_orretioninsert into member_orretion(user_id,orretion)selet user_id,0 from members

100 DM/* We do not proess non-purhasing ustomers, so skip this partupdate member_orretion set orretion=m.balane - p.sumfrom members m,(selet user_id,sum(amount) as sum from payments group by user_id) pwhere m.user_id=member_orretion.user_idand p.user_id=member_orretion.user_idand m.aargang <= �last_aargangand not exists (selet 1 from sales_mpwhere user_id=member_orretion.user_id)*/update member_orretion set orretion=m.balane + s.sumfrom members m,(selet user_id,sum(total_prie) as sum from sales_mpgroup by user_id) swhere m.user_id=member_orretion.user_idand s.user_id=member_orretion.user_idand m.aargang <= �last_aargangand not exists (selet 1 from paymentswhere user_id=member_orretion.user_id)update member_orretionset orretion=m.balane - (dbo.fn_replae_if_null(p.sum,0)- dbo.fn_replae_if_null(s.sum,0))from (selet user_id,sum(amount) as sum from payments group by user_id) p,(selet user_id,sum(total_prie) as sum from sales_mpgroup by user_id) s,members mwhere p.user_id=member_orretion.user_idand s.user_id=member_orretion.user_idand m.user_id=member_orretion.user_idand m.never_used_system=0 and m.aargang <= �last_aargangenddrop proedure p_omplete_md_updategoreate proedure p_omplete_md_update asbeginset noount ontrunate table member_day_untrunate table member_dayexe p_foreah_member_do 0,'p_update_md','0'exe p_update_orretionexe p_foreah_member_do 0,'p_update_md','1'endgo

B.3 Data Transformation 101exe p_omplete_md_updategoupdate sales_mp set balane_unorreted=balaneupdate sales_mp set balane=balane_unorreted + m.orretionfrom member_orretion mwhere m.user_id=sales_mp.user_idB.3.6 Historial Sales Datainsert into sales_day(dateid,produt_id,n_units,total_prie)selet dateid,produt_id,sum(n_units),sum(total_prie)from sales_mpgroup by dateid,produt_idorder by dateid-- alulate ative members...update sales_day set ative_members_day=agg.nt from(selet ount(distint user_id) as nt,dateid from sales_mpgroup by dateid) aggwhere sales_day.dateid=agg.dateidupdate sales_day set ative_members_week=agg.ntfrom datedim dd,(selet ount(distint user_id) as nt,dd.year,dd.month,dd.weekfrom sales_mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year,dd.month,dd.week) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.year and dd.month=agg.monthand dd.week=agg.weekupdate sales_day set ative_members_month=agg.ntfrom datedim dd,(selet ount(distint user_id) as nt,dd.year,dd.monthfrom sales_mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year,dd.month) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.year and dd.month=agg.monthupdate sales_day set ative_members_year=agg.ntfrom datedim dd,(selet ount(distint user_id) as nt,dd.yearfrom sales_mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.yearupdate sales_day set ative_members_semester=agg.ntfrom datedim dd,

102 DM(selet ount(distint user_id) as nt,dd.year,dd.semesterfrom sales_mp s, datedim dd where s.dateid=dd.dateidgroup by dd.year,dd.semester) aggwhere dd.dateid=sales_day.dateid and dd.year=agg.yearand dd.semester=agg.semesterupdate sales_day set ative_members_ssemester=agg.ntfrom datedim dd,(selet ount(distint user_id) as nt,dd.studysemesterfrom sales_mp s, datedim dd where s.dateid=dd.dateidgroup by dd.studysemester) aggwhere dd.dateid=sales_day.dateid and dd.studysemester=agg.studysemesterupdate sales_day set ative_members_syear=agg.ntfrom datedim dd,(selet ount(distint user_id) as nt,dd.studyyearfrom sales_mp s, datedim dd where s.dateid=dd.dateidgroup by dd.studyyear) aggwhere dd.dateid=sales_day.dateid and dd.studyyear=agg.studyyearupdate sales_day set ative_members_rweek=agg.ntfrom (selet dd2.dateid,ount(distint user_id) as ntfrom sales_mp s, datedim dd, datedim dd2where s.dateid=dd.dateid anddd.date between dateadd(day,-3,dd2.date) and dateadd(day,3,dd2.date)group by dd2.dateid) aggwhere sales_day.dateid=agg.dateidupdate sales_day set ative_members_rmonth=agg.ntfrom (selet dd2.dateid,ount(distint user_id) as ntfrom sales_mp s, datedim dd, datedim dd2where s.dateid=dd.dateid anddd.date between dateadd(day,-15,dd2.date) and dateadd(day,15,dd2.date)group by dd2.dateid) aggwhere sales_day.dateid=agg.dateid

