
Aalborg University e
Department of Computer Science

Database and Programming Technologies

Title:
Online Aalborg Guide - Develop-
ment of a Location-Based Service

Project period:
1. February 2003 - 7. July 2003

Project group:
DAT6 - E3-215A

Group members:
Kristian V. B. Andersen
Michael Cheng
Rasmus Klitgaard-Nielsen

Supervisor:
Chistian S. Jensen

Total number of pages: 102

Number of reports printed: 7

Abstract:

This report documents the development of a push-
based LBS framework. In a prior semester a LBS
framework that supports pull-based LBSs was devel-
oped. This framework has been extended to support
the development of push-based LBSs.
Using the framework a prototype LBS, Online Aal-
borg Guide, is developed. In order to access the ser-
vice an application, GPSOne, has been developed
for Nokia 7650.
A design criterion is to minimize the client’s number
of position updates to the server. This is achieved by
letting the client download data based on the loca-
tion and preferences of the user. This way the client
can operate on data relevant to the user.
Another design issue that needs to be handled is
the limited CPU power and storage capacity on the
client. Since only a part of the data is stored at the
client, this frees space, which can be used for other
purposes, such as storing map images. The client
application caches map images, so maps does not
have to be fetched from the Internet every time. This
reduces the network usage and increases the perfor-
mance of the client application.
A model for storing time-related information is de-
veloped and used to deliver advertisements based on
time and location.

Kristian V. B. Andersen Michael Cheng

Rasmus Klitgaard-Nielsen

Preface

This report documents group d601a’s work on the Dat6 semester in the period from the
1st of February 2003 to the 7th of July 2003 at the Unit for Database and Programming
Technologies at the Department of Computer Science at Aalborg University.

Knowledge of databases and Object Oriented Analysis and Design are recommended
for understanding the report.

Bibliographic references are displayed in brackets, e.g [Por03]. These are referred to
in the bibliography at the end of the report.

We would like to thank the following participants for contributing to the project:

Nykredit and Aalborg Tourist Bureau for providing data for the project. The assis-
tant programmer Jevgenij Gagach for answering questions and help. Our supervisor
Christian S. Jensen for guidance.

i

Contents

1 Introduction 1
1.1 LBS Technology . 1

1.1.1 Location-Determining Technologies1
1.1.2 Communication Technology 2
1.1.3 Mobile Devices . 2

1.2 LBS Categorization . 3
1.3 Push and Pull Services . 4
1.4 Push-Based Service Development 5
1.5 Related Work . 6

2 Online Aalborg Guide 9
2.1 Design Issues . 9
2.2 Features . 11
2.3 The Prototype . 14
2.4 LBS Issues . 15

2.4.1 Continuous Update . 15
2.4.2 Storage Issue . 16
2.4.3 Temporal Information Delivery 16

3 Architecture and Solutions 17
3.1 Design Choices . 17
3.2 Architecture Design . 19
3.3 Solutions to Update and Storage reduction 22

3.3.1 Index generation . 23
3.3.2 PoI Index Update Algorithm 26
3.3.3 Raster Map Caching . 28

3.4 Overview . 29

4 Data Layer 33
4.1 Data Model . 33
4.2 Temporal Event Management . 40

5 Server Application Layer 45

iii

5.1 Class Diagram . 45
5.2 Sequence Diagrams . 47

5.2.1 PoIIndex . 48
5.2.2 AdServlet . 49
5.2.3 FurtherInfo . 50
5.2.4 AddUserPoI . 51

6 Service Layer 53
6.1 PoIIndex . 53
6.2 AdServlet . 56
6.3 FurtherInfo . 57
6.4 AddUserPoI . 58

7 Client Application Layer 61
7.1 Class Diagram . 61
7.2 The Core Class . 62
7.3 The Update Class . 64
7.4 FileHandler Class . 65
7.5 DBHandler Class . 66
7.6 Display Class . 67

7.6.1 Design . 67
7.6.2 Map Implementation . 70

7.7 Sequence Diagrams . 73

8 Scenario 77
8.1 Scenario: Setting Up . 77
8.2 Scenario: Starting Service . 78
8.3 Scenario: Changing Profiles . 81
8.4 Scenario: Advertisements . 81

9 Evaluation 83

10 Conclusion 87

11 Future Work 89

A Advertisement Query 97

B Further Info Queries 99

C Client Method Summary 101

iv

Chapter 1

Introduction

Pervasive computing is expected to be the next generation computing environment
where information and communication technology is presenteverywhere at all times.
Information and communication technology will be integrated into every day life and
everyday products such as dishwashers, cars, electric circuits of houses, wrist watches
etc. Pervasive computing is expected to be the third IT wave,the first wave being the
computer (mainframes and PC’s) and the second wave being theInternet, mobility and
wireless communication. Pervasive computing is expected adevelopment time frame
of 5-10 years before affecting peoples lives [Min03].

One type of application within pervasive computing is Location-Based Services (LBS).
LBSs are a powerful way to deliver highly personalized services. LBSs are mobile In-
ternet services that utilize Location-Determining Technologies (LDTs) such as GPS
technology to obtain the user’s position. The position of the user is fundamental and
crucial for delivering these highly personalized services. The user’s position is ob-
tained from a mobile device with a built in LDT that the user carries around. The
position is transferred wirelessly to a service provider and the user receives location-
based information on the mobile device. A mobile device could be a Personal Digital
Assistant (PDA), a laptop or a mobile phone.

1.1 LBS Technology

Advancements in wireless communication, mobile devices and LDTs in recent years
enable the opportunity to develop LBSs. Next, the core technologies available today
for developing LBSs, are presented.

1.1.1 Location-Determining Technologies

LDTs are essential for enabling LBSs for users. One type of LDT is cell based po-
sitioning. Cell based positioning is a technology used in GSM networks, where the

1

2 Chapter 1. Introduction

position of a mobile phone is found using the known location of the base station that
the phone is connected to. This technology determines the location of a person within
several hundred meters. A more precise LDT is the Global Positioning System (GPS),
which uses a collection of 26 satellites to pinpoint a position. GPS provides an ac-
curacy of 5-10 meters [GPS03]. These are the most common LDTsused to develop
LBSs. More sophisticated LDTs, such as Server Assisted GPS,provides better accu-
racy than GPS technology [DR02].

1.1.2 Communication Technology

LBSs require communication technologies to handle the communication between the
user’s mobile device and the service provider. Today the most common used commu-
nication standard for mobile devices is GSM (Global System for Mobile communica-
tion). GSM is a Second Generation (2G) mobile telecommunication technology and
provides data transmission rates of 9.6 Kbps. This transmission rate is adequate for
transferring text such as SMS (Short Message Service) or small images.

However, almost all new mobile devices support GPRS (General Packet Radio Ser-
vice). GPRS has a theoretical transmission rate up to 171 Kbps, while practical trans-
mission rates lie between 40-50 Kbps [Wik03a]. Unlike GSM, GPRS users can stay
online permanently, since fees are taxed based on the amountof data sent or received
and not by transmission time. GPRS is often referred to as 2.5G mobile telecommu-
nication. GPRS enables the possibility of incorporating images, animations and small
video clips into mobile services.

The Third Generation (3G) mobile network is already being deployed. 3G is equiv-
alent with UMTS (Universal Mobile Telecommunications System). UMTS promises
theoretically transmission rates of up to 2 Mbit/s [Wik03b]. Actual rates are estimated
to be lower. Services such as multimedia presentations, video clips and video confer-
ences become possible in 3G mobile networks.

1.1.3 Mobile Devices

The mobile devices must support mobile communication technologies and LDTs in
order to take advantage of LBSs. A large variety of such mobile devices are available
on the market. The devices can be grouped into the following three categories:mobile
phones, PDAsandsmartphones. These devices support mobile communication tech-
nology and LDT either embedded or via expansion modules.

• Mobile Phones Many new mobile phones on the market support GPRS and
Bluetooth. With Bluetooth it is possible to connect wirelessly to a Bluetooth

1.2. LBS Categorization 3

GPS receiver. However, mobile phones have limited computing power, and the
multimedia facilities are often limited to displaying low-resolution images.

• PDAs The PDA devices have more computing power than mobile phones. This
enriches the devices with multimedia possibilities such asdigital imaging, an-
imations and video clips. However, most PDAs do not have mobile communi-
cation technologies embedded. Extension cards usually provide the support for
these technologies. PDAs often have larger displays than mobile phones, which
make them suitable for multimedia purposes. However, PDAs are not practical
for use as mobile phones, since the size of the display results in relatively large
devices compared to mobile phones.

• Smartphones A smartphone is a fusion of a mobile phone and a PDA. A smart-
phone has many of the multimedia facilities of the PDA, and atthe same time it
has embedded mobile communication technologies such as GPRS and wireless
technologies such as Bluetooth. A smartphone has more computing power than
a mobile phone and similar to that of a PDA. The size varies from pocket size to
PDA size.

1.2 LBS Categorization

Depending on what kind of service a company wishes to provide, certain accuracy re-
quirements need to be met. The Location Interoperability Forum (LIF) has categorized
LBSs into 3 categories: Basic Service level, Enhanced Service level and Extended Ser-
vice level [Nok03c]. Table 1.1 shows the different service levels and their associated
positioning technologies. For instance, LBSs at the Basic Services level imply the us-

Categories Terminal Support Network Support
Basic Service level Legacy Terminals Based on cell

or improved accuracy
(accuracy kilometers)

Enhanced Service level Location of Improved accuracy
all new terminals (accuracy tens of meters)

Extended Service level Location of High Accuracy
new terminals (accuracy meters)

Table 1.1: The categorization of LBSs defined by LIF

age of cell based technologies. The accuracy is fairly poor (kilometers of accuracy)
but already established terminals are available to supportthis level of services. Ser-
vices of the Enhanced Service level are services that require higher accuracy (tens of

4 Chapter 1. Introduction

meters accuracy). However, in order to provide such accuracy, more advanced po-
sitioning technologies are required and new terminals mustbe developed to support
such services. Figure 1.1 is an illustration of the evolution of LBS by LIF’s categoriza-
tion. This evolution scheme is introduced by Nokia. As shownin the figure pull-based
services are categorized at the Basic level while push-based services and monitoring
services are at the Extended level. According to Nokia’s estimation the market matu-
rity for LBSs at the Extended level will be reached from 2003.

Figure 1.1: Illustration of Nokia’s estimation of the development of LBSs [Nok03c]

Devices with high accuracy LDT have not yet reached maturityin the market. In order
to develop LBSs at the Extended level various mobile deviceshave to be combined
with LDT technologies such as GPS modules. At the moment manyhandhelds and
mobile devices have interfaces to extend the device with e.g. GPS receivers.

1.3 Push and Pull Services

Thepushandpull concepts are used and defined in various disciplines. The concepts
are especially used in the area of economics, production andmarketing. In general
push and pull are often used to interpret the relationship between the consumer, the
actor that consumes or demands the information, and the provider, the actor that pro-
vides the information. A definition of pull is:Users pull information to them wherever
and whenever needed[Jan01]. A definition of push isLocation service utilizes users

1.4. Push-Based Service Development 5

location to make user a customer or service recipient[Jan01].

In this project the push and pull concepts are interpreted differently from the prior
definition. The variation lies in the definition of push. Pushis defined asInformation
delivered to the consumer where the consumer has no control of when information
is delivered. In push-based LBSs the user can subscribe to a certain service. The
service could be information delivery to the user that happens if certain criteria are
satisfied. When the criteria are satisfied, the information is sent to the user at a time not
controlled by the user. This kind of service involves pull elements (the user subscribes
to the service) and push elements (the information is delivered to the user). However,
according to the definition of push in the project, this service is denoted as a push-
based service, since the user has no control of when the criteria are satisfied, and when
the information is delivered. The division of LBS into pull and push services reduces
the complexity of understanding the interaction and natureof LBSs.

1.4 Push-Based Service Development

In [ACKN03] a framework for LBSs is developed. The LBS framework, illustrated in
Figure 1.2, is based on a component-oriented structure thatensures modularity and the
possibility of modular expansion. Additionally, the components in the structure are
ordered in layers. These layers ensure transparency in the system, which means, that a
developer does not need to know all the logics and processes in the entire framework.
The developer only needs to know the interfaces of a particular layer. For instance a
server developer does not need to know about GPS technology at the client side, but
only the interfaces in the client layer. The LBS framework isan approach to devel-
oping a framework that is capable of creating and adapting various LBSs within one
framework using a layered and component oriented structure.

The LBS framework has been implemented and utilized to develop pull-based LBSs.
The features of the pull-based LBSs consist of retrieving step-by-step directions, with
or without a map, to a certain Point of Interest (PoI) and retrieving the nearest PoIs
to the user. However, no LBS components in the LBS framework support push-based
services. From this point of view, the main purpose of the project is to continue the
work on the LBS framework by extending the LBS framework to support push-based
services. Due to the modularity of the LBS framework no majormodifications are
required to implement push-based features. A set of push components needs to be
developed. The push-based components that are developed inthis project support the
prototypic example of a location-based Online Aalborg Guide. The Online Aalborg
Guide is an online city guide where users can get informationabout restaurants, events
and popular sites in Aalborg. The Online Aalborg Guide is theentire system, consist-
ing of a server and a client application, GPSOne. The client application runs on the
client, which is a mobile device with an Internet connection. The information in the

6 Chapter 1. Introduction

Client Application Layer

Service Layer

Server Application Layer

Positioning Layer

Data Layer

Content DataGeographical Information

COMPONENT BASED INFRASTRUCTURE

Figure 1.2: Illustration of the developed LBS framework of [ACKN03].

system is based on the users’ location and preferences. The user is “pushed” informa-
tion and advertisements about the nearest PoI, which matches the users preferences. In
addition the user is able to “pull” and browse through further information about PoIs.
Furthermore, a map is continuously displayed, indicating where the user and the PoI is
located. The content and specification and design issues of the Online Aalborg Guide
is described in Chapter 2. Next, related work to the push-based LBS framework and
the Online Aalborg Guide is described.

1.5 Related Work

Some companies have developed push-based services for mobile use, but the number
of push-based services is not as large as the number of pull-based services.

A push-based LBS developed by Met Office [Met03] is a weather forecast service.
The user enters a city name or zip code, a time and a date, and sends the information
using a SMS or a WAP page. A weather forecast for the region is then delivered at the
time specified by the user.

A range of products with pull-based LBSs are on the market. Some of the most popular
products are digital city guides for handhelds. The digitalcity guidesVindigo[Vin02]

1.5. Related Work 7

andCitysync[Lon03] provide updated reviews, PoIs, step by step directions and simple
color maps to PalmOS and PocketPC based handheld devices. The user needs to input
the current location in order to use the LBS. If a GPS device isattached to the handheld
device the location is received from the GPS. The reviews andPoIs in the applications
can be updated via an Internet connection.

A more advanced digital city guide isTrekker[Vis03]. Trekker is an application for
PocketPC devices, adapted to blind people. It offers features that enable blind persons
to determine their position, create routes and receive information on navigating to a
destination. Besides that, blind people are able to find PoIs. Compared toVindigoand
Citysync, Trekkerhas an advanced speech/voice interface for enabling blind people to
use the application.Vindigo, CitysyncandTrekkerare handheld city guides that pro-
vide location-based features to consumers. However, all these systems are limited to
pull-based services and due to the limited storage capacity, the digital city guides only
cover a limited number of cities. In addition, an update of the system when entering
a new city requires large amounts of data to be transferred, since all information is
stored on the handheld device.

Contrary to pull-based LBSs, the number of push-based LBSs is limited in the market.
The push-based LBSs that exist in the market today are fleet management and warning
services. The companyIntelliWhereoffers a range of fleet management solutions for
the business-to-business industry. One of the their solutions isIntelliWhere TrackForce
[Int03]. With this solution fleet oriented companies are able to track and communicate
with their units in the field. The TrackForce system allows the users to have alerts that
are triggered by certain conditions, i.e. traffic jams. The alerts can be given to the
people working in the field, thus enabling them to avoid delays.

The mobile phone manufacturer Nokia has recently introduced a comprehensive middle-
ware frameworkmpositionfor developing LBSs. The middle-ware framework pro-
vides comprehensive APIs for managing information in the cellular network and gate-
way layer. Figure 1.1 illustratesmposition’s End-to-End architecture. The framework
is very similar to the framework proposed in [ACKN03]. The main difference between
the two frameworks is the variety of LDTs. While the LBS framework only supports
GPS technology,mpositionsupports four different cell based LDTs and A-GPS tech-
nology.

The rest of the report is organized as follows: Chapter 2 describes the features of the
Online Aalborg Guide and related design issues. The chosen architecture and design
approaches are described in Chapter 3. The chapters after that describe the layers of
the developed push-based LBS framework. Chapter 4 describes the Data Layer and
contains a description of the data model. The Server Application Layer containing
specification of components and services at the server, is described in Chapter 5. The
interface between the Service Layer and the Client Layer is described in Chapter 6.

8 Chapter 1. Introduction

Figure 1.3: Illustration of Nokia’s mposition architecture

Chapter 7 describes how a client application is implementedat the Client Application
Layer. A use-case scenario for the GPSOne application is introduced in Chapter 8. An
evaluation of the push-based LBS framework and GPSOne application is presented is
Chapter 9. Conclusion of the report is given in Chapter 10. Chapter 11 discusses future
work for the system.

Chapter 2

Online Aalborg Guide

As mentioned in the introduction the push-based LBS framework is used to implement
a Online Aalborg Guide LBS. Section 2.1, describes design issues and principles for
developing location-based city guides. Section 2.2 describes how a complete and com-
prehensive LBS tourist guide is imagined. A specification offeatures and sub services
of the prototype “Online Aalborg Guide” is described in Section 2.3

2.1 Design Issues

The Online Aalborg Guide concept proposed is based on [Mar03]. Creating applica-
tions for mobile devices imply different design principlesthan traditional applications
for stationary desktop computers. A LBS is inherently intended to be used in mobile
situations and must take advantage of this fact, that the application for the mobile de-
vice must be able to adapt to different and dynamic contexts.In the following the
results from [Mar03] are compared to the Online Aalborg Guide features.

The main target group for the Online Aalborg Guide is tourists visiting Aalborg. A
way to develop an application targeting this group is to perform studies of such groups
in order to understand their needs and requirements for sucha system. Research from
the GUIDE project [Mar03] is based on semi-structured interviews with members of
the Tourist Information Center of Lancaster and observations of tourist visiting the
tourist office over a period of several days. This research shows that tourists were very
interested in having access to cultural, historical and architectural information when
visiting Lancaster. Online Aalborg Guide users can retrieve information about all PoIs
and events stored in a database maintained by the Danish Tourist Board.

Furthermore, the tourists expressed interest for dynamic and flexible information and
support for interactive services. The tourists were, for example, pleased with the pos-
sibility of receiving dynamic information, such as the “specials” of a cafe. The Online
Aalborg Guide handles dynamic time-related location-based information in form of

9

10 Chapter 2. Online Aalborg Guide

advertisements, which can change over time, from nearby PoIs.

Also visitors to Lancaster were more inclined to trust a system provided by a reliable
source such as the local tourist information board. The dataused for the Online Aal-
borg Guide is obtained from the Danish Tourist Board.

The Lancaster visitors would also like the possibility of booking services through their
guide. However, some visitors wanted to speak to someone to be sure that reservations
had been confirmed. Such services would require integrationof booking systems,
payment and security systems. Such services are not included in the Online Aalborg
Guide. Users of Online Aalborg Guide can request address information and booking
phone number and use this information to contact the PoI for reservations.

According to [Mar03], mobile users do not want to waste time interacting with mobile
devices, however they do not mind navigating through options that go deeper into areas
that they want to know more about. Other studies show that themost suitable systems
for mobile users incorporate user interfaces, that requireminimal attention. This al-
lows for the user to perform activities in mobile situationswithout much attention on
the device interaction.

The Online Aalborg Guide uses a mix of push and pull technologies in order to com-
ply with this behavior. The nearest PoI is continuously updated and displayed on the
screen. This way the user does not have to interact with the device in order to see
which PoI is nearest. However, if the user wants further information about the PoI, the
user must make a request and the information is displayed in awindow where the user
can browse through it.

The report [Mar03] emphasizes the importance of understanding how users behave
differently in different situations and under different circumstances. For this purpose
the report proposes a user profile. In order to use the Online Aalborg Guide each user
must create a profile in which the user has the option of addingand removing cate-
gories of PoIs. The Online Aalborg Guide then utilizes this profile information and
delivers PoI-information within the specified categories.

Another wish that many travelers expressed according to [Mar03] was the possibility
to plan a trip before the trip. This could be in the form of deciding what to see, get-
ting information and locations of PoIs, find out how to get to the PoIs, book services
and plan a tour. Other issues not directly expressed in studies of tourists’ behavior are
tasks, which could be performed after a trip. A feature to support registration of travel
memories is proposed in [Mar03]. Furthermore, features forsending electronic post-
cards and the ability to rate and comment PoIs are proposed. Online Aalborg Guide
users have the option of planning ahead to the extent that it is possible to access a Web
interface and edit the users profile. The user has the possibility to add the categories

2.2. Features 11

of PoI that the user is interested in, before a trip.

Based on the mentioned design principles and issues the nextsection describes the
features of the Online Aalborg Guide.

2.2 Features

These are the features that form the basis of the Online Aalborg Guide:

• Nearest PoI Information: Is the main feature of the Online Aalborg Guide, where
information is displayed to the user, according to the user’s position and time.

• Further Information: Users can retrieve additional information about the nearest
PoI such as address, phone number and description.

• Favorites: Allows the user to save PoIs for later use.

• User PoIs: Gives the user an opportunity to add user-generated content to the
service, in the form of new PoIs.

• Reviews: Allows the user to add content to already existingPoIs, by writing
reviews of individual PoIs.

• Pictures: Is an extension to Reviews and User PoIs, where the user can submit
photos of PoIs.

• Push Advertisement: Allows data providers to send out advertisements based on
the users’ interests and positions.

• Route planner: Allows the user to find the shortest route to acertain PoI.

• Buddy Finder: Extends the push service to retrieve information about other
users.

• Profile Handling: Allows the user to edit profiles before andduring a trip.

• Record Note of PoI: Allows the user to record a travel note ofa PoI visited.

• Map Service: A map of the surroundings, is at all times displayed for the user,
with an indication of the user’s position and nearest PoI position.

In the following the features are described in more detail.

12 Chapter 2. Online Aalborg Guide

Nearest PoI Information

If a PoI matches the criteria specified in the profile, the nearest PoI is displayed for the
user. The system allows for the user to set the distance within which PoIs should be
located, in order to be displayed. The information is continuously updated (pushed) so
that the user doesn’t have to interact with the device in order to receive the nearest PoI.
The information displayed is the name of the PoI and the distance from the user to the
PoI.

Further Information

The user can retrieve further information about the nearestPoI. The message retrieved
contains information about the name of the PoI, address, phone number and a descrip-
tion of the PoI. The user can navigate through the information and find the needed
information.

Favorites

When the user gets information pushed during the day, the number of nearby PoIs may
be large on some occasions, making it impossible for a user todeal with all of them.
If the service has an option to save PoIs for later use, the user can use the Favorites
feature in the same way as a bookmark function in a Web browser. The user can save
interesting PoIs for later use, if the user is busy with othertasks or just doesn’t need
the information provided at the present time.

User PoIs

This feature allows a user to submit new PoIs to the service. The user needs to enter
the name and a description of the PoI, and is then able to submit the data to the service.
This makes the content of the system more flexible and meaningful for the user, since
the user partakes in adding content to the service. Some samples of user content could
be:

Sønder Tranders Church This is a nice little church, which is located on a hill.

My Spot Nice open spot with beautiful oak trees.

The PoIs that a user enters will not necessarily be meant for the public. Some PoIs
are only important to the user, for instance the user’s home or the place where the user
works.

Reviews and Pictures

Another type of user content are reviews. The reviews, whichare submitted by users,
give other users a better way of telling if a PoI is to their liking. The chances are that

2.2. Features 13

if other users for instance find that a hotel is sub standard, then the hotel is in fact of a
low standard, despite what the tourist brochure shows. Letting users submit photos of
PoIs, so that in addition to reviews, other users can actually see the PoI before going
there, may enhance the reviews.

Push Advertisement

Some PoIs could have special offers that the data provider wants to advertise. Espe-
cially commercial PoIs, such as shops or restaurants, will find a certain value in paying
the service provider to allow them to advertise through the service. This push service
allows the advertisements to be location and time based, so that offers is made avail-
able only at certain time intervals, and at certain places.

Route Planner

This feature provides the user the ability to get route guiding to a certain PoI. The route
guiding could be materialized in textual form or in pictures. For instance, a map that
shows how the user reaches a destination. This feature is pull-based since it is the user
who requests the information.

Buddy Finder

The Buddy Finder feature allows users to find other users using the service. When a
user is within a specific range of another user, the user is notified. As a part of the On-
line Aalborg Guide, the Buddy Finder allows traveling companions to find each other
in foreign places. For instance, the Buddy Finder allows parents to let their children
wander around more freely, as the service allows both to find each other.

The Buddy Finder service can be expanded to cover many different applications, where
people need to find other people.

Profile Handling

The profile handler is a key feature. It gives the user the possibly to personalize the
application to the user’s wishes.

The profile is intended to consist of the following options and features:

• Create new user.

• Create and delete profiles. Each user can have several profiles, for instance a
work profile, shopping profile or a sightseeing profile.

14 Chapter 2. Online Aalborg Guide

• Set the maximum number of advertisement that the user wishes to be pushed at
a time, so that the user is not overburdened with advertisements.

• The user is able to add and remove categories of PoIs from a profile. For in-
stance, this way a user can personalize the application to only show information
about beaches and restaurants.

• The user can, for each category of PoI, specify the range within a PoI of this
category should be located within, in order for advertisements to be pushed. For
instance, this allows users to specify that advertisementsfrom restaurants are
allowed within 500 m while advertisements from amusement park are allowed
within 10 km.

The profile handling is a solution, which allows the user to edit profiles before a trip
and also during a trip.

Record Note of PoI

Many tourists would like to write notes of places they have visited. With this feature
a user can create a note, which is attached to a certain PoI andwrite a description of
this place. Pictures taken near the PoI with a digital camera, possibly built in, can also
be attached. After the trip is completed the tourist can extract these notes and pictures
from the device and create a collection of travel memories. The user has the option of
sending the travel notes to friends and family.

Map Service

This feature provides a map of the surrounding streets and gives the user assistance in
finding a way to a PoI. The location of the user is indicated in the center of the map and
the map scrolls as the user moves. The location of the nearestPoI, if one is present, is
also indicated on the map, along with an arrow indicating in which direction the PoI
is in relation to the user. This is particularly useful if thePoI is located outside of the
visible map. This way the user can follow the direction of thearrow and know that the
PoI is getting closer.

2.3 The Prototype

To implement all the mentioned features is beyond the scope of this project and hence
a prototype Online Aalborg Guide system and a prototype application “GPSOne” for
Symbian OS operated phones has been developed. The prototype system includes the
following features:

• Nearest PoI Information

2.4. LBS Issues 15

• Further Information

• Push Advertisement

• Web Based Profile Handling

• Map Service

Some of the introduced features are very similar to featuresprovided by traditional
digital city guides. What makes the Online Aalborg Guide different in relation to other
city guides is the push-based features that are especially emphasized in theNearest
PoI Information , Buddy Finder andPush Advertisementfeatures. Hence in order
to utilize the push-based LBS framework, the prototype “GPSOne” application is able
to display nearest PoI based on a user profile and receive time-related location-based
advertisements from PoIs.

The application also provides users with aFurther Information feature. The feature
retrieves further information about the nearest PoI. This is an important feature for the
users, since this information has great value for tourists and other users. For instance,
this information could be phone number booking and the address of the PoI. The profile
concept,Profile Handling, has also been developed since this is a key concept in order
to provide a highly personalized service. The profile handling is a Web-based solution
which enables the user to edit profiles before a trip and at thesame time edit profiles
on the mobile device since most new mobile devices has a builtin Web browser. The
Map Servicehas been implemented to provide users with assistance in finding a way
to a PoI and in order to provide users awareness of their surroundings.

2.4 LBS Issues

In order to develop the Online Aalborg Guide some technical and practical issues need
to be addressed. Some issues are fundamental for developingpush-based services and
some are specific for the Online Online Aalborg Guide. In the following sections,
some of the issues and side effects of developing push-basedservices and the Online
Aalborg Guide are introduced. Other issues may be relevant for the project. However,
the issues described here are the main focus issues in this project.

2.4.1 Continuous Update

As mentioned earlier, it is fundamental to know the user’s position in order to deliver
LBSs to the user. By knowing the user’s location it is possible to find the nearest PoIs
within a predefined range. This is achieved by comparing the user’s position with the
position of the PoIs in the database.

16 Chapter 2. Online Aalborg Guide

Depending on the size of the database and the design approach, the database is placed
either at a central server or at the client terminal. Assume that the database resides at
a central server. This means the central server is responsible for performing the logic
of the LBSs. Hence, the central server has to be informed about the user’s location
continuously in order to provide accurate information to the user. To inform the server,
the client has to perform continuous updates to a central server. This task can cause
performance decrease for the whole system if the number of users is significant. This
can also result in an overload of the transmission bandwidth.

2.4.2 Storage Issue

Before a practical LBS implementation is possible, some technical requirements have
to be met. Some of the crucial requirements concern processing capabilities and stor-
age capacity of the mobile devices. This rises some issues. For instance, how is it
possible to optimize the usage of the limited storage capacity and what data should be
stored?

LBSs need geo-referenced data such as PoIs and graphical maps. The PoI data may be
the most dynamic content since information such as address,phone number and other
PoI information changes relatively often. Maps, on the hand, change very seldom.
This means that PoI data stored on the client needs to be validated more often than
map data. In general graphical map data takes up more space than PoI data. Hence,
there is a limit to the number of maps that can be stored on the mobile device. A
solution to handle the storage issue is needed.

2.4.3 Temporal Information Delivery

When delivering location-based information to the user in the Aalborg Guide, it is
preferable to provide the user with the opportunity to receive information according to
time and location. For instance, if the user’s nearest PoI isa cafe that is closed at the
user’s time of arrival, the user may prefer to get information about the next nearest PoI
instead. This type of service is denoted astime-related location-based servicein this
report. From the information provider’s point of view it is apreferable option to be able
to send information at different times. For instance, a cafemay have different offers
during a day. From 11 AM to 3 PM the cafe may have a lunch offer, and from 6 PM to
10 PM the cafe may have a musical event. The feature of sendingdifferent informa-
tion at different times can be used in the information provider’s marketing strategy. In
order to provide such a feature in the Online Aalborg Guide a time scheduling system
needs to be developed for the purpose.

In order to extend the LBS framework with push features to support the Online Aal-
borg Guide, the mentioned issues have to be managed. In the next section the design
approaches and solutions to develop the Online Aalborg Guide is introduced.

Chapter 3

Architecture and Solutions

This chapter describes the design approaches and the designsolutions to achieve the
goal of developing push-based LBSs. In the following, various design approaches are
introduced.

3.1 Design Choices

Devices with high accuracy LDTs are crucial for developing push-based LBSs. How-
ever, technical constraints such as CPU power and storage capacity at the client ter-
minals have great impact in the consideration of architecture design. In the following,
design approaches to developing push-based LBSs are described. Figure 3.1 illustrates
the various approaches.

Using theClient Approachthe whole solution resides at the client platform. LBSs
often contain geo-referenced data and a set of function, which operates on the data.
This design approach demands large storage capacity and powerful CPUs at the client
terminal. At the moment, the only candidate client terminals that fulfill the require-
ments are laptop PCs and embedded car navigation systems. Ifthe solution has to be
implemented in handheld devices and smartphones, only a limited set of data can be
stored due to the limited storage capacity in such devices. This rises several problems
in relation to update policies and data validity. Another crucial disadvantage in the
Client approachis the lack of fleet management capabilities, where mobile units are
administered from a central place. Since each client has allthe required data and func-
tions installed, there is no need for a central unit to administer the clients, and hence
larger distributed monitoring and warning applications are not possible.

In contrast to theClient Approach, theServer Approachseparates the database and the
LBS functions from the client platform. The database and theLBS functions reside
at a central server. This forms a client/server architecture where the task of the client
device is to request the needed service and data from the server and display it to the

17

18 Chapter 3. Architecture and Solutions

Combined Approach

Road database

GIS
Route finding

Internet connection

Limited PoI database

PoI database

Monitoring application
Limited GIS

Internet connection

Client Approach

Server Approach

Warning services
Monitoring services
Route finding
GIS
PoI database
Road database

Warning services
Monitoring services
Route finding
GIS
PoI database
Road database

Figure 3.1: Illustration of the three design approaches. The mobile phone at the left
side represents the client and the server is represented at by the larger black box.

user. The LBS framework mentioned in Section 1.4 is an implementation of this de-
sign approach.

The approach of storing the database in a central server avoids the data validity prob-
lem, since updating the data from a central server, it is assured that the clients will
always obtain the newest data available. This ensures data validity and data consis-
tency. Comparing the two approaches, theServer Approachcan support more features
than theClient Approach.

One of the advantages of theServer Approachis the possibility to provide monitoring
and warning services. When the client uses the LBS, the client position is reported to
the central server. This enables the possibility of developing more advanced monitor-
ing and prediction services such as traffic warnings, location-sensitive advertisement
and fleet management. In addition, it is possible to create client independent services,
which means that different client terminals can access the same service. However, in
order to provide these services, the server must know the location of the client. This
requires the client to continuously update the server with its position. This can result
in an overload of the server if a significant amount of users are logged onto the system.
Continuous updates from the clients may also result in congestion of network traffic

3.2. Architecture Design 19

to the server, hence delaying the overall traffic to the server for the user. In addition,
the users have to pay for the network traffic, making the LBS less interesting for the
user. An alternative solution to solve the bandwidth and server overload problems is
to provide more memory and CPU power to the server and improvethe existing band-
width. However, the performance will still be worse than in aClient Approachdue to
the network transmission delay.

As seen in Table 3.1 theClient Approachlacks the capability to handle Client In-
dependency and Data Validity. TheServer Approachcovers these features though the
solution suffers from large numbers of updates and bandwidth overload, for large num-
bers of users of the system. The two concepts have different developing perspectives;
centralized vs. decentralized design.

Client Server Combination
Client Independence X

Data Validity X (X)
Update minimization X (X)
Monitoring options X X

Table 3.1: Comparison of the advantages of the three design solutions. An X indicates
an advantage, a (X) indicates a partial advantage.

To claim the benefits from the two different perspectives, the Combined Approachis
introduced. The architectural structure of this approach is based on the client/server
design from theServer Approach. In order to minimize the continuous updates, a small
subset of the database is replicated at the client side. Thisapproach reduces the CPU
power usage at the server side, since parts of the computations are carried out on the
client device. As long as the data at the client device is not invalid, the client does not
need to issue an update. This reduces the bandwidth usage. When less updates are
performed, the validity of data suffers, since some data will become out of date. The
Combined Approachhas all the features of the former approaches. However, a tradeoff
has to be taken into consideration since less updates imply that the server positions the
client less accurate, which in turn means less precision in services. In this project, the
Combined Approachhas been chosen as the design principle for the Online Aalborg
Guide. The next section describes the architectural designof theCombined Approach.

3.2 Architecture Design

Figure 3.2 illustrates the overall design of theCombined Approach. The LBS Applica-
tion Servers use the LBS framework architecture. This provides the LBS Application
Server with pull-based service features such as shortest route calculations and step
by step direction descriptions. The LBS Application Serverhas a geo-referenced PoI

20 Chapter 3. Architecture and Solutions

LBS Application Servers

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

Bluetooth

Raster Map Servers

Emtac GPS
Smart Phone

Satellites

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

HTTP

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

HTTP

Figure 3.2: Overview of the design architecture

database and a road network database that supports the main roads in Denmark. The
LBS Application Server does not support push-based LBSs. Hence additional compo-
nents for enabling push-based features are developed. The raster maps to display the
roads are supported by using an external raster map servers.In this case, the Kort &
Matrikelstyrelsen (KMS) raster map server is used for the purpose.

As the client part in the architecture, a Symbian smartphoneis selected as the tar-
get device for developing GPSOne. One of the reasons for selecting the Symbian
smartphone instead of other available devices is the stability and the comprehensive
communication support of the Symbian OS. Furthermore, the Symbian OS provides
a wide range of multimedia and multitasking options. Among Symbian smartphones,
the Nokia 7650 is selected. The Nokia 7650 uses the Symbian OSand is built upon
Nokia’s Series60 platform [Nok03b]. This platform has beenlicensed to various ven-
dors whose combined market share is more than 55 percent [Por03]. This means that
all Series60 phones can use the GPSOne application.

The Nokia 7650 does not support GPS technology. GPS support is crucial for develop-
ing push-based LBSs. In order to provide GPS support for the Nokia 7650, an Emtac
Bluetooth GPS receiver is used. Since the Nokia 7650 and any Symbian smartphones

3.2. Architecture Design 21

with Symbian OS version 6.1 has Bluetooth support, the phonecan connect to the GPS
receiver and extract positions from the Emtac GPS receiver.

GPSOne is developed upon theSymbian LBS framework[Gag03]. TheSymbian LBS
frameworkis a research project developed at Aalborg University and provides fun-
damental communication APIs for developing LBSs for Symbian smartphones. The
Symbian LBS frameworkhas been extended with aLBS Engineto create a client frame-
work for developing the Online Aalborg Guide.

As seen in Figure 3.2, the Emtac GPS receiver provides coordinates to the Nokia 7650
continuously via a Bluetooth connection between the two devices. When the Nokia
phone receives the coordinates, GPSOne starts providing the LBSs to the user. Dur-
ing execution of GPSOne, a service request is needed to theLBS Application Server.
The Nokia phone connects to the server via the HTTP protocol.TheLBS Application
Serverprocesses the client’s request. When the server has accomplished the task for
the client, the result is send XML format or a customized textformat. If GPSOne
needs to download raster maps, a connection to a raster map server is established and
the map is retrieved in JPEG format.

Symbian LBS Framework

Database

Database

SQL

JDBC

HTTP
HTTP

SQL &

PL/SQL

LBS Application Server

Data layer

Service layer

Client and positioning layer

Server Application layer

Push based LBS Engine

Communication APIGPS API

Oracle 9i DBMS

Servlet Based Server Application

Web Server

Raster Map Server

KMS

Figure 3.3: A layered illustration of the design

22 Chapter 3. Architecture and Solutions

While Figure 3.2 provides an overall design of theCombined Approach, Figure 3.3
illustrates the technical components of the LBS Application Server and the Symbian
LBS Framework. Furthermore, the figure illustrates the abstract layers of the com-
ponents. The LBS Application Server consists of a Web server, a set of server ap-
plications, and a DBMS. The Web Server is in charge of handling requests to Java
Servlets from client applications. The Web Server is categorized in the Service layer.
The server applications, categorized in the Server Application layer, are the set of LBS
functions that execute the user’s request. The LBS functions are implemented in Java
2 Enterprise Edition. This enables the usage of Java Servlets to support LBSs. At
the Data layer, Oracle9i DBMS is used to store the data. The features that Oracle9i
provides in comparison to other available DBMSs are the spatial indexes and spatial
functions. These features are fundamental for the LBS Application Server and for de-
ploying LBSs. As mentioned, geographical raster maps are downloaded from external
servers. Depending of which kinds of services the LBS Application Server provides,
the raster maps are either directly downloaded to the clientor processed by the LBS
Application Server, before send to the client.

At the Client and Positioning layer theSymbian LBS frameworksupports fundamental
communication. This involves a TCP/IP connection to the LBSApplication Server and
Bluetooth communication for GPS coordinates extraction. The communication sup-
port API is divided into a communication API and a GPS API, which the push-based
LBS Engine can access. The push-based LBS Engine contains the essential functions
to support the GPSOne application. This involves update routines, database manage-
ment, image management, range and PoI monitoring. The Symbian OS provides a
lightweight database that supports basic SQL. This is used for storing and managing
the PoIs received from the server. The LBS Engine is the extension developed for the
Symbian LBS framework.

In order to develop GPSOne some issues need to be addressed. The issues areCon-
tinuous UpdateandStorage. The design approaches that deal with these issues, are
described in the next sections. The design approaches for handling theTemporal in-
formation deliveryis described in Section 4.2.

3.3 Solutions to Update and Storage reduction

The Combined Approachstores a subset of PoIs from the LBS Application Server
database in the client’s database. This minimizes the continuous updates to the server
from the client, since the client can use the local PoI subsetto find the nearest PoI.
The subset of PoIs is generated based on the user’s profile, which has been defined
during LBS subscription. The profile contains information about the user’s desired
PoIs, configuration and service settings. The subset of PoIsstored in a PoI index and
sent to the client. In the following the approaches for generating the subset of data are

3.3. Solutions to Update and Storage reduction 23

PoI index threshold

Long distance

User

Furthest PoI

The PoI Index Approach

Figure 3.4: The figure illustrates the PoIs included in the PoI index. The problem
arises when a PoI in the index is too far away from the user. This PoI may not be
relevant in relation to the user’s location.

presented.

3.3.1 Index generation

Storing a subset of PoIs at the client terminal reduces the number of updates to the
server. However, if the user defines all the categories in thedatabase or a very large
category of PoIs, the size of the PoI index may exceed the client terminal’s storage
capacity. To prevent this case, a limitation of the PoI indexmust be set. The limitation
setting depends on the client’s storage capacity and the CPUpower at the client termi-
nal.

Assume thatN is defined as the maximum storage PoI capacity in the index. When
the client requests a PoI index, the location of the user and the user name is sent to the
LBS Application Server. With these information it is possible for the LBS Application
Server to generate an index withN nearest PoIs according to the user’s position and
profile. When the user receives the PoI index, an update algorithm at the client terminal
monitors the user’s location in relation to the PoIs in the PoI index. The update algo-
rithm continuously finds the nearest PoI until a certain threshold has been exceeded.
This threshold denoted asPoI index threshold, has been defined as the distance be-
tween the user’s location and the location of the furthest PoI in the PoI index. When
the PoI index threshold has been violated the present PoI index is no longer valid in
relation to the user’s current location. Hence, a request for a new PoI index is issued.
This approach is denoted as thePoI index approachand is illustrated in Figure 3.4.

24 Chapter 3. Architecture and Solutions

Not included in PoI index

PoI index threshold

Range threshold

User

The Range Threshold Approach

Figure 3.5: Illustration of the range threshold approach. The PoI outside the range
threshold is not included in the PoI index.

The PoI index approachis suitable in very PoI concentrated areas but insufficient in
sparse areas. The reason is the PoI index threshold definition. The PoI index threshold
in PoI index approachdepends on the furthest PoI in the PoI index which means that
the PoI index threshold varies from time to time. The problemin sparse areas arises
when the furthest PoI in the PoI index is too far away from the user’s location. The re-
sult will be a very long PoI index threshold and less updates to the server, which means
less accurate PoI index. The following scenario clarifies the sparse area problem: A
user in London would like to find churches in the city.N is defined to be 100 in the
LBS Application Server. However, the are only 50 churches inLondon so additional
churches in England have to be included in order to fill the PoIindex. The result is the
100 nearest churches in England, and the PoI index thresholddistance is larger than
500 miles since the furthest church in the PoI index lies in Manchester. The church in
Manchester may not be in the user’s interest due to the long distance. Another problem
with thePoI index approachis, that it is not guaranteed that the nearest PoI in the PoI
index is the actual nearest PoI in relation to the user’s location. The nearest PoI in the
PoI index could be many miles away, even though the actual nearest PoI is close by.
This is illustrated in Figure 3.6.

3.3. Solutions to Update and Storage reduction 25

PoI index threshold

Closest PoI

Not included in PoI index
User

N PoI problem

Figure 3.6: Illustration of the PoI index threshold approach. The nearest PoI is not
included in the PoI index.

TheRange threshold approachavoids generating PoI index with PoIs too far way, by
defining a fixed threshold denoted as therange threshold. The range threshold assures
that only the PoIs within in the range threshold are added to the PoI index. If there are
more thanN nearest PoIs within the range threshold, onlyN PoIs are added. If there
is less thanN PoIs within the range threshold the available PoIs will be added. This
range threshold prevents the problem from the prior approach illustrated in Figure 3.5.
However, theRange threshold approachused to generate the PoI index is inaccurate
in finding the nearest PoI, if the user approaches the range threshold. The problem is
illustrated in Figure 3.7. As seen in the figure the PoIs outside the range threshold are
not included in the PoI index. If the user approaches the range threshold, the nearest
PoI located nearby is not necessarily the nearest PoI. Thereis the possibility of a PoI
being nearer than the selected one from the PoI index. The problem with the candidate
nearest PoI is that the candidate nearest PoI may has not beenincluded in the PoI index
due to the range threshold.

To prevent this situation, anupdate thresholdhas been defined in theUpdate thresh-
old approach, illustrated in Figure 3.8. In comparison with the earlier approaches
where the PoI index/range threshold determines when a server request is issued, the
update threshold is now in charge of the task. When the user passes the update thresh-
old, an update is issued to the server. Since the PoIs on both side of the update threshold
are known it is always possible to find the nearest PoI. By setting the update threshold
to be the half of the range threshold it is guaranteed that it is possible to find the nearest
PoI. A larger update threshold distance implies a greater risk of not finding the nearest

26 Chapter 3. Architecture and Solutions

Range threshold

Closest PoI

Not included in PoI index
User

N PoI problem

Figure 3.7: This illustrates the problem of finding the nearest PoI. Another PoI candi-
date may be nearer but not in the client’s database.

PoI, and a smaller update threshold reduces the risk but implies more frequent server
updates.

The PoI index generation procedure in the project utilizes the Update threshold ap-
proach. The range threshold limits the distance of the PoIs and the update threshold
prevents the nearest PoI inaccuracy problem. The update threshold is defined to be one
third of the range threshold or PoI index threshold, depending on which threshold that
sets the upper boundary of the PoI index range.

3.3.2 PoI Index Update Algorithm

When the client receives the PoI index from the server, the PoIs in the index are stored
in the client’s database. The client is then ready to start the monitoring process. The
monitoring process finds the nearest PoI based on the user’s current location, check
whether the nearest PoI is within the user’s defined threshold. The user can define
a threshold, which is a range that determines within which range the user wishes to
receive information about PoIs. For instance if the user would only like to receive
information of a nearby PoI if the PoI is within 500 m.

If the monitoring process is handled by the LBS Application Server, finding the nearest
PoI can be solved by arranging the geo-referenced data in spatial indexes. Arranging
geo-referenced data in spatial indexes provides fast access to the data. However, since
Symbian OS only provides a thin DBMS, advanced features suchas spatial indexes

3.3. Solutions to Update and Storage reduction 27

The Update Threshold Approach

Update threshold

Range threshold

PoI index threshold

Not included in PoI index

User

Figure 3.8: The update threshold approach has three thresholds. The PoI index, range
and update threshold. The update threshold decides whetherthe client should issue an
update. The Update threshold range is included in the PoI index.

and finding the nearest PoI functions are not available. In order to find the nearest
PoI an Update Algorithm has been developed. The task of the algorithm is to find the
nearest PoI and monitor whether the PoI is within the user’s defined threshold. In the
following the algorithm is described.

The Update Algorithm

In order to find the nearest PoI the algorithm has to traverse the PoI index and calculate
the distance to each of the PoIs. In order to traverse the PoIsfrom the PoI index, the
PoIs have to be loaded into an array in the main memory. The PoIs are initialized as
objects in the array. The algorithm is decomposed into the following task:

• Calculate the distance to each PoI in the array.

• Compare the calculated distance with the shortest distance so far.

• Store the shortest distance.

• When the end of the array is reached the object with the shortest distance is
found.

28 Chapter 3. Architecture and Solutions

• Check whether the object is within the user’s defined threshold.

• If the object is within the user’s defined threshold report it to the user.

The algorithm works as follows: For each PoI, object the algorithm traverses the PoI
array, the Euclidean distance between the user’s current location and the PoI object is
calculated. If the distance is the shortest distance so far,the object’s index and distance
are stored. This is repeated until the algorithm reaches theend of the array. After the
algorithm has traversed the PoI array, the shortest distance and the index to the cor-
responding object is found. The shortest distance is then compared with the user’s
defined threshold. If the shortest distance is within the user’s defined threshold, the
object with the shortest distance is retrieved.

The algorithm is a linear time algorithm, which means that the CPU time consump-
tion of the algorithm is proportional with the length of the PoI array. Comparing the
CPU power and the storage capacity of present smartphones, this performance is ade-
quate for the monitoring process. The implementation of this algorithm is an essential
component of the push based LBS Engine. The implementation of the algorithm is
described in section 7.3.

3.3.3 Raster Map Caching

Raster map data changes very seldom, which means that the raster the map data is the
most static data in the LBS application. However, the rastermap data demands the
most storage capacity, due to the size of the raster maps. Storing all the raster maps
at the client terminal would not be possible, due to the limited storage capacity at the
client. Storing a subset of raster map covering a whole city or region would limit the
LBS application. Hence, a method that is able to store all theraster maps, while mini-
mizing the storage capacity, is needed.

In the project, aRaster Map Caching Approachhas been implemented. Instead of
storing all the raster maps at the client, only the needed raster maps are stored. This
approach minimizes the storage usage and does not limit the LBS application to be
used in certain areas. In order to store the needed raster maps, the maps are ordered in
an uniform grid, as illustrated in Figure 3.9.
Depending the user’s location, only the raster maps around the user are downloaded
from the raster map servers. However, this would preferablyrequire a high speed In-
ternet access from the client. At the moment, GPRS connection is available for mobile
phones and is adequate for downloading raster maps. After a period of time, the LBS
application will download a large number of raster maps and the memory will fill up.
In order to avoid this situation, the storage is purged for unused raster maps. The com-
mon caching strategy is to purge theLeast Recently Usedraster maps [Sta97]. This can
be achieved by setting a counter on each raster map downloaded. Each time a raster

3.4. Overview 29

Km

Km

Download image

Raster map grid

User

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Figure 3.9: Illustration of the grid division. Only the raster maps nearby the user id
downloaded to the client.

map is loaded into the memory the counter will be incremented. When the purge cy-
cles begin, the raster map with the smallest counter will be deleted from the storage
until a certain storage criterion is met. The implementation of the Raster Map Caching
Approach is described in Section 7.6. After proposing the various solutions for imple-
menting theCombined Conceptand for developing a push based LBS the interaction
between the client and the server will be presented.

Client User’s location

PoI Index

Server
LBS Application

User ID

Figure 3.10: When the user starts the client LBS application, theUser IDand the user’s
current location is sent to the server. The server generatesand provides a PoI index for
the user.

3.4 Overview

Figure 3.10 illustrates the interaction when the user startthe LBS application. In order
to use the LBS, the user needs to subscribe to the LBS. This is done using a Web page
supported by the LBS Application Server. The subscribing process involves configur-
ing the LBS and setting up a profile. The profile settings concern information about
the user’s desired PoIs, number of advertisements to receive, etc. After the subscrip-
tion process the user is provided with aUsernamethat is essential for accessing the

30 Chapter 3. Architecture and Solutions

LBS. A user can define several profile settings depending on the user’s usage of the
LBS. When a user starts the client LBS application, the user has to enter the provided
Usernameto access the LBS. When the user has entered theUsername, the client LBS
application requests a PoI index from the LBS Application server containing the user’s
desired PoIs. In order to generate a PoI index, the LBS Application server needs to
receive information about the user’s current location andUsername, which is sent by
the client LBS application. With this information and aProfile ID, which the user has
defined as the current profile on the Web page. The PoI index is generated and sent to
the client LBS application. The client LBS application starts the LBS.

Application

LBS Application
Server

Raster Map

Request: Raster Map

Request: PoI Info, Ads

PoI Info
Ads Info

Raster Map Server

Client LBS

Figure 3.11: An illustration of the interaction between theRaster Map Server and the
LBS Application Server.

The PoI index Update Algorithm, mentioned in Section 3.3.2,informs the user about
nearby PoIs within a certain threshold defined by the user. Ifthe user needs to acquire
more information about the Nearest PoI such as address and description details, the
client LBS application can send aPoI Info request to the server. The server retrieves
the required information and if the user is nearby PoIs within a definedadvertise-
ment distancea location-based advertisement is pushed to the user. Theadvertisement
distancedefines the range the user would like to receive advertisements within. The
advertisement mechanism is performed by the Client LBS application that request ad-
vertisements from the LBS Application server in certain intervals. The LBS Appli-
cation server will retrieve the location-based advertisements if there are any available
from the PoIs within the advertisement distance. The geographical raster maps are
downloaded to the Client LBS Application by sending a request to the Raster Map
Server. The Raster Map downloading policy is handled using the Raster Map Caching
approach mentioned in Section 3.3.3. The interaction concerning PoI info, advertise-

3.4. Overview 31

ment info and raster map requests is illustrated in Figure 3.11.

In the next chapters, the technical details of design proposed are presented. Figure
1.2 in Section 1.4 illustrates the LBS Application Framework. The LBS Application
Framework has been extended with additional components in order to enable push
based LBSs. In the following Chapters the respective layersof the extended LBS
Framework are described. Next the Data layer is described.

Chapter 4

Data Layer

This chapter describes the Data Layer of the LBS framework, which consists of con-
tent PoI data obtained from Nykredit and Aalborg Tourist Bureau. The PoIs from
Nykredit includes PoIs such as supermarkets, kinder gardens and sport centers. The
data from Aalborg Tourist Bureau are tourist PoIs such as hotels, monuments, mu-
seums, amusement parks, etc. Section 4.1 describes how the complete data model is
designed and Section 4.2 goes into further detail with the temporal event handling used
for PoI advertising.

4.1 Data Model

The model must contain the PoI data, which can originate fromdifferent data sources
including the users. One approach is to create one PoI table,which holds all the at-
tributes needed to describe the different kind of PoIs. Thisway the queries become
very simple, since all PoI attributes are in the same table. For instance when a user
asks for further information about a particular PoI it is notnecessary to check which
kind of PoI it is since they can all be extracted from the same table. However, for
many different types of PoIs with different attributes, this would mean that the table
would hold many attributes, which are relevant only for a small subset of PoIs. A more
flexible approach is one where it is possible to relate tablesof PoIs, which can origi-
nate from different data sources, to a main table containingonly the attributes which
are common for all PoIs such as id, name and coordinates. Thisway if other PoI data
sources are added to the data model, the table only has to be related to the main PoI
table using the PoI ID as foreign key.

In addition to PoI data the model must include data of users and their profiles. In the
Online Aalborg Guide it should be possible for users to have more than one profile.
This way the user can, for instance, create a profile for when the user is shopping,
going to and from work or visiting tourist attractions.

33

34 Chapter 4. Data Layer

In order to handle the time-related location-based advertisements, the data model must
store these somehow. To handle this, aPOIEVENTStable is created. This table is
related to the main PoI table. This means that any advertisement is related to a PoI
with a geographical position. The reason for this is, that the position is needed in order
to provide advertisements that are within a specified range from the users. This is at
the same time a limitation. For example, Web sites are not located at geographical
positions, making it difficult to advertise for Web sites. Another problem could oc-
cur if a PoI is an event, which takes place in a city or a region.Then the PoI event
would need to be related to a geographical area. Setting the geographical position to
a place in Denmark and then setting the advertisement distance so large that it covers
the whole of Denmark could solve the limitation of advertisements for Web pages. For
an event, which takes place in a geographical area, the eventcan often be split into
smaller events, which take place at a geographical position. For instance a carnival,
which takes place at more than one location could be split into “The Parade”, which
starts at the town square, “The Bands Play” at the central park and “Crowning of the
King of the Carnival” at the center stage in the central park.Another solution would
be to create a table similar toPOIEVENTS, which is not related to the main PoI table
and hence does not have a reference to a geographical position.

The POIEVENTStable is able to model more than just advertisements. Other time-
related information can be stored in the table. In the data from the Aalborg Tourist
Bureau, some of the tourist PoIs has opening hours. These arealso stored in the
POIEVENTStable. If other time-related information is added at a latertime the
POIEVENTStable is able to handle this.

Figure 4.1 describes the complete data model. The schema contains the main table
POI. This table contains the basic information that is needed todescribe a PoI. All
PoIs have a name and a position (X,Y) as minimum.UTM andDD attributes repre-
sents the geographical position of the PoIs in UTM32 [USG01]measured in meters
and in WGS84 [WGS03] measured in decimal degrees. In addition, a PoI can belong
to a category (POIAREA) and a sub category (POITYPE). This is modeled as a many-
to-none relationship betweenPOI and POIAREAand betweenPOI and POITYPE,
since an area or type of PoI can be related to one or more PoIs and because some
PoIs might not have any categorization, (POIAREA) or sub category (POITYPE). A
POIAREAcategory could be “Attractions” or “Events” while aPOITYPEsub category
could be “Museums” or “Amusement parks” for category “Attractions” and “Sport” or
“Music” for category “Events.”

Table 4.1 shows three PoIs. Only theUTM attribute is shown to represent the posi-
tion of the PoIs. This attribute is represented as an SDO.GEOMETRY type for use in
Oracle Spatial to perform spatial operations, such as finding nearest PoIs. As shown
in the table, the PoI “Tivoliland” belongs to the area with ID2. Table 4.2 shows that
this is an attraction. “Tivoliland” has the type with ID 11. Table 4.3 shows that it is

4.1. Data Model 35

O
POI_ID_FK

TYPE_NR_FK

ROAD

NYK_ID

TLF

FAX

EMAIL

POI_ID

ZIPCODE

CITY

CURRENT_PROFILE

TYPE_ID

PRODUCT_TYPEPOI_ID_FK POI_ID_FK

DESCRIPTION

TYPE_NR

POI_ID

START_MONTHOFYEAR

AD_DIST

O

TYPE_ID_FK

EMAIL

BOOKINGURL

ENG_NAME

ROAD

POI_ID

DAN_DESCRIPTION

TOURIST_ID

GER_DESCRIPTION

OWNER_ORG

PLACE

ENG_DESCRIPTION

COMMUNITY

GER_NAME

DAN_NAME

HOUSE_NUMBER

ZIPCODE

CITY

INFOURL

WWW

ROAD_NR

AD_DIST

PROFILE_ID

AREA_ID

TYPE_ID

CONTACTINFO

TYPE_ID_FK

AREA_ID_FK

PROFILE_ID_FK

USER_ID_FK

USER_ID

UTM

NAME

PROFILE_ID

NUMBER_OF_ADS

USER_ID

USER_ID_FK USER_ID_FK

POI_ID

USER_ID

ENABLED

AREA_ID_FK

NAME

POI_ID

AREA_ID

TYPE_ID

X

Y

UTM

DDWEEKDAYS

START_DAYOFMONTH

END_DAYOFMONTH

END_MONTHOFYEAR

START_PERIOD

END_PERIOD

ACTIVE

AREA_ID

PRODUCT_AREA

END_MIN

DESCRIPTION

TYPE_NR

POI_ID

NAME

UTM

REVIEW

USER_ID

GRADE

EVENT_ID

END_HOURS

START_HOURS

START_MIN

NYKREDITINFO

PROFILEAREA

POI

TYPE

POIEVENTS

POITYPE

USERS

USER_POI

PROFILE

POIAREA

POI_CONFIG

TOURISTINFO

Primary key:

Foreign key:

Figure 4.1: Data model

an amusement park. “Karneval i Aalborg” belongs to area 3, which is an event and
has the type ID 10, which is a folk festival. “Netto” belongs to area 101, which is
Nykredit and has type ID 116203, which is Supermarkets. All data from Nykredit is
located in tableNYKREDITINFO, and all these PoIs belong to the same PoI area with
AreaID 101. The sub categories of the Nykredit PoIs are different and are located in
thePOITYPEtable, for instance 116203 which is “Supermarkets.”

The POI table can be related to several sub PoI categories. This approach ensures a
flexible design for the framework, since it is easy to relate additional sub PoI cate-

36 Chapter 4. Data Layer

POI
POI_ID NAME UTM AREAID TYPEID
100059 Tivoliland SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(556502, 6322690,

NULL), NULL, NULL)

2 11

100046 Karneval i Aalborg SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(555323, 6322449,

NULL), NULL, NULL)

3 10

1566 Netto SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(555600, 6323382,

NULL), NULL, NULL)

101 116203

Table 4.1: Sample ofPOI table.

POIAREA
AREA_ID PRODUCT_AREA

2 Attractions
3 Events

101 Nykredit

Table 4.2: Sample fromPOIAREAtable.

POITYPE
TYPE_ID PRODUCT_TYPE

11 Amusement parks
10 Folk festivals

116203 Supermarkets

Table 4.3: Sample fromPOITYPEtable.

4.1. Data Model 37

gories to the mainPOI table. For use in the Online Aalborg Guide, two independent
PoI data sources, Nykredit data and Aalborg Tourist Bureau data, has been related
to the mainPOI table, as theTOURISTINFOand NYKREDITINFOtables. If fur-
ther PoI data sources were to be integrated into the framework, they would be re-
lated in the same way. In addition it is possible to relate several categories to the sub
categories. For instance a restaurant table or table of parks could be related to the
TOURISTINFOtable. These tables would then hold attributes, which are particular
for the category e.g.DogsAllowed for parks. ThePOI table is related to the sub PoI
categoriesTOURISTINFOandNYKREDITINFOby a one to zero-or-one relationship
since each PoI is always related to one TouristInfo PoI or oneNykreditInfo PoI. This
means that a PoI does not have to be related to a sub category but each PoI of a sub
category is related to a PoI in the mainPOI table.

Examples of PoIs fromTOURISTINFOandNYKREDITINFOtables are shown in Ta-
bles 4.4 and 4.5, respectively. Table 4.4 shows some of the attributes that the table
TOURISTINFOholds. TheTOURIST_ID attribute is an external key that relates to
the data from Aalborg Tourist Bureau. ThePOI_ID attribute is an internal key, which
relates to thePOI table. All PoIs from Aalborg Tourist Board have had 100000 added
to their values, in order to avoid conflicts with other data sources e.g. Nykredit data.
The TOURISTINFOtable holds, amongst others, descriptions and names of PoIsin
both Danish, German and English. For theTOURISTINFOPoIs the Danish name
DAN_NAME has been used as theNAME attribute in thePOI table. TheNYKRED-
ITINFO table does not have an attribute to describe the name of the PoI, since the data
only has a Danish name and these values are placed in theNAME attribute of thePOI
table.

TOURISTINFO
TOURIST_ID ENG_NAME ENG_DESC ROAD HOUSE_NUM ZIPCODE CITY POI_ID

59 Tivoliland Tivoliland is one of the largest

amusement parks in Denmark

and ...

Karolinelundsvej 40 9000 Aalborg100059

46 Carnival in
Aalborg

Sunday/Monday for children

and Friday and Saturday for

adults. During the carni-

val Aalborg receives about

100.000 people.

Vesterbro 2 9000 Aalborg100046

Table 4.4: Extraction fromTOURISTINFOtable.

Users are modeled in theUSERStable, which has an user ID (USER_ID), name of user
(NAME), UTM position (UTM) andCURRENT_PROFILEattribute. TheUSERSta-
ble is related to thePROFILE table through a one-to-many relationship since a user
can have more than one profile. The profile which is currently in use is stored in the

38 Chapter 4. Data Layer

NYKREDITINFO
NYK_ID ROAD ROAD_NR CITY ZIPCODE TLF POI_ID

1566 Vesterbro 99 Aalborg 9000 98167655 1566

Table 4.5: Extraction fromNYKREDITINFOtable.

CURRENT_PROFILEattribute.

Table 4.6 shows an example of how a user is represented in theUSERStable. The user
“Alex” is currently using the profile with ID 2 and has last updated the position (UTM)
and at location (555003,6322500).

USERS
USER_ID NAME UTM CURRENT_PROFILE

1 Alex SDO_GEOMETRY(2001, 82343, SDO_POINT_TYPE(555003,

6322500, NULL), NULL, NULL)

2

Table 4.6: Example of a user represented in theUSERStable.

ThePROFILEtable has primary keyPROFILE_IDwhich means that each profile has
it’s own unique key. TheNUMBER_OF_ADSattribute is used by the user of the pro-
file to state how many advertisements the user wishes to receive at one time. In Table
4.7 the user with ID 1 from before is related to profiles with Id’s 2 and 3.

PROFILE
PROFILE_ID USER_ID NUMBER_OF_ADS

2 1 1
3 1 5

Table 4.7: Example of two profiles related to a user in thePROFILEtable.

ThePROFILEtable is related to thePROFILEAREAtable. ThePROFILEAREAtable
contains IDs of categories of PoIs ,AREA_ID, and sub categories of PoIs,TYPE_ID.
Furthermore, the table contains attributeAD_DIST. AD_DIST is used when “push-
ing” advertisements to users. The user can specify for each category and sub category
PoI, a range for each category and sub category PoI, within which a PoI must be lo-
cated, in order for the user to receive an advertisement fromthis kind of PoI.

Table 4.8 shows that the user in this way could, for instance,specify “Attractions”
(AREA_ID = 2) and “Amusement Parks” (TYPE_ID = 11) and set the Advertisement
distance to 5000 meters (AD_DIST = 5000). The user has then subscribed to amuse-
ment parks in the profile with ID 2 and amusement parks will appear in the application,

4.1. Data Model 39

if the user is near an amusement park. In addition the user will only receive advertise-
ments from amusement parks if they are within 5 km. In the profile with ID 3 the user
has chosen “Nykredit” as the area (AREA_ID = 101) and “Supermarkets” as the type
(TYPE_ID = 116203) and the user has chosen to only receive ads from supermarkets,
if they are within 500 m.

PROFILEAREA
PROFILE_ID AREA_ID TYPE_ID AD_DIST

2 2 11 5000
3 101 116203 500

Table 4.8: Example of a user represented in theUSERStable.

ThePROFILEtable is related toPROFILEAREAthrough a one-to-many relationship
since a user profile can subscribe to several categories and sub categories of PoIs. Fi-
nally thePROFILEAREAtable is related to bothPOIAREAandPOITYPEtables by a
many-to-one relationship since more than one profile can have a subscription to one
PoI area or PoI type and since one PoI area or one PoI type can besubscribed to in
more than one profile.

The tablePOI_CONFIGis intended for use in theFavoritesfeature, where a user can
save a PoI as a favorite for easy access later. Furthermore, the table is intended for use
if the user wants to ban a PoI and never see it again in the application. This could be
useful if the user goes past the same PoI again and again. Thisfeature has not been
implemented in the GPSOne prototype application, however,the table is ready for it
to be implemented. There is a one-to-many relation between theUSERStable and the
POI_CONFIGtable, since a user can have more than one banned or favorite PoI.

Table 4.9 shows how the user (USER_ID = 1) has marked the PoIs with Id’s 16 and
17 as favorites (ENABLED = 1) and has banned the PoI with ID 20 (ENABLED = 0).

POI_CONFIG
POI_ID ENABLED USER_ID

16 1 1
17 1 1
20 0 1

Table 4.9: Example of thePOI_CONFIGtable.

The tableUSER_POIis used for storing user PoIs. TheUser_PoIfeature has been de-
veloped on the server, but is not available in the GPSOne prototype application. A user
PoI consists of the basic attributes: ID (POI_ID), position (UTM) and name (NAME).
In addition, optional attributes are review/note and grade. These can be used to share

40 Chapter 4. Data Layer

information among users and other users can benefit from other users’ experiences.
Finally theUSER_POItable consists of a user ID, which identifies which user has
submitted the PoI to the system. There is a one to many relation betweenUSERSand
USER_POItables, since a user can be related to more than one user PoI.

Table 4.10 shows an example where the user (USER_ID= 1) has added three user PoIs
“Home”, “Work” and “Cheap Hostel”.

USER_POI
POI_ID UTM NAME REVIEW GRADE USER_ID

1000001 SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(555213,

6322555, NULL), NULL, NULL)

Home NULL NULL 1

1000002 SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(556003,

6323000, NULL), NULL, NULL)

Work NULL NULL 1

1000003 SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(560567,

6322500, NULL), NULL, NULL)

Cheap Hostel Nice unnamed hos-
tel with clean beds.

4 1

Table 4.10: Example of theUSER_POItable.

4.2 Temporal Event Management

Figure 4.2 shows the part of the complete data model that is used for handling tempo-
ral data such as opening hours, events, advertisements, etc. The Aalborg City Guide
contains actual data of opening hours from hundreds of PoIs in Aalborg and a smaller
number of generated advertisements to use for the GPSOne prototype.

As Figure 4.2 shows thePOI table is related to thePOIEVENTStable by a one-to-many
relation, since a PoI can have more than one event over a period of time and one event
must be related to one PoI. In table 4.12 examples of data fromthePOIEVENTStable
are given. ThePOIEVENTStable contains in addition to an event ID (EVENT_ID)
a PoI ID (POI_ID) which holds the ID of the PoI which is related to the given event.
The table also hold an attribute used to specify whether the PoI event is activated or
deactivated (ACTIVE). TheTYPE_NRattribute is used to distinguish different types
of events. A tableTYPEholds descriptions and ID numbers of the different types
of events e.g. opening hours and advertisements. TheAD_DIST attribute in table
POIEVENTScan be used by commercial PoIs, such as cafe’s, supermarkets, amuse-
ment parks etc. to specify the range they wish their advertisements to reach. For in-
stance, an amusement park may want to “push” advertisementsto potential customers
up to 10 km away, while a small cafe might only want to advertise within a range of

4.2. Temporal Event Management 41

DESCRIPTION

TYPE_NR POI_ID_FK

START_MONTHOFYEAR

POI_ID

EVENT_ID

END_HOURS

START_HOURS

START_MIN

END_MIN

WEEKDAYS

START_DAYOFMONTH

END_DAYOFMONTH

END_MONTHOFYEAR

START_PERIOD

END_PERIOD

ACTIVE

AD_DIST

DESCRIPTION

TYPE_NR

AREA_ID

COORDINATE

TYPE_ID

POI_ID

NAME
TYPE_NR_FK

POITYPE POIEVENTS

Primary key:

Foreign key:

Figure 4.2: Temporal event management model

500 meters. Finally, theDESCRIPTIONattribute holds a description of the event.
This is particular interesting for ads, since this is the attribute that holds the text which
is “pushed” to the users.

POIEVENTStable holds temporal attributes (ST_HOURS, E_HOURS, ST_MIN, E_MIN,
WEEKDAYS,ST_DAY, E_DAY, ST_MONTH, E_MONTH, ST_PERIOD, E_PERIOD)
which are explained in the following examples.

Table 4.12 on page 42 shows examples of the values in thePOIEVENTStable and
Table 4.11 displays theTYPEtable.

TYPE
TYPE_NR DESCRIPTION

1 Opening Hours
2 Advertisement

Table 4.11: TableTYPE.

POI_ID = 100059 which is “Tivoliland” is related to the events with Id’s 1, 2 and 3
which are all descriptions of the opening hours during the summer of 2003. Since they
are not advertisements theAD_DIST attribute is set to NULL. Each event has a num-
ber of time-related attributes. The period attributes,ST_PERIODandE_PERIOD,
determine which dates the event should run between. theWEEKDAYS attribute de-
termines which weekdays the event is valid for, with “1” being Monday and “7” being
Sunday. TheST_DAY, E_DAY, ST_MONTH andE_MONTH describe a sub period
in which the event runs. This method of modeling events allows for events that, for

4
2

C
ha

pt
er

4.
D

at
a

La
ye

r

POIEVENTS
POI_ID EVENT_ID ST_HOURSE_HOURS ST_MIN E_MIN WEEKDAYS ST_DAY E_DAY ST_MONTH E_MONTH ST_PERIOD E_PERIOD ACTIVE AD_DIST DESCRIPTION TYPE_NR
100059 1 12 20 0 59 1234567 1 31 1 12 01.05.2003 30.06.2003 Y NULL Opening hours 1
100059 2 10 21 0 59 1234567 1 31 1 12 01.07.2003 31.07.2003 Y NULL Opening hours 1
100059 3 12 19 0 59 1234567 1 31 1 12 01.08.2003 31.08.2003 Y NULL Opening hours 1
100046 4 11 23 0 59 1234567 22 22 5 5 01.01.2003 01.01.2004 Y 50000 Come and join

the carnival pa-
rade

2

1566 5 10 11 0 59 5 1 31 7 8 01.01.2003 01.01.2008 Y 1000 Free taste sam-
ples of our new
products

2

Table 4.12: Example from thePOIEVENTStable.

4.2. Temporal Event Management 43

example, run in the first week of the month from May to June. Theevents for “Tivo-
liland” in Table 4.12 are interpreted as:

• EVENT_ID = 1. Applies from 12.00-20.59 each day from the from 1st of May
2003 until 30th of June 2003. Type is ’Opening Hours’.

• EVENT_ID = 2. Applies from 10.00-21.59 each day from the from 1st of July
2003 until 31st of July 2003. Type is ’Opening Hours’.

• EVENT_ID = 3. Applies from 12.00-19.59 each day from the from 1st of Au-
gust 2003 until 31st of August 2003. Type is ’Opening Hours’.

The PoI with ID 100046 (“Karneval i Aalborg”) is related to the event withEVENT_ID
= 4. This event Applies from 11-24 on the 22nd of May 2003. The type is ’Adver-
tisement’ (TYPE_NR= 2) and the advertisement is only displayed for users which are
within 50000 m and only if the PoI category is subscribed in the user’s current profile.

The last event (EVENT_ID = 5) is in this example related to “Netto” (POI_ID = 1566).
The event Applies from 10-12 every Friday all June and July month from 1. of January
2003 until 1. of January 2008. The type is ’Advertisement’ (TYPE_NR = 2) and the
advertisement is only displayed for users if they are within1000 m and at the same
time has subscribed to “Supermarkets”.

Figure 4.3 shows how the advertisement distances work.
In Situation 1, the user will receive an advertisement from the PoI “Tivoliland” since
the PoI “Tivoliland” is within the user’s advertisement distance and the user is within
the PoI’s advertisements distance. Since both these conditions are true the user is
pushed an advertisement. However, this situation must be present at the time when the
GPSOne application checks the server for advertisements, which occur at certain time
intervals. This means that the user is not overburdened withadvertisement. But it also
means that the situation as presented in Situation 1 can occur without the user being
pushed an advertisement. This is the case if the conditions become true and then false
in the time between two advertisements checks by the client application.

In Situation 2, the PoI advertisement distance is large enough to reach the user’s posi-
tion. However, the user has chosen a small advertisement distance for this type of PoI,
so no advertisement is sent to the user.

In the last situation, Situation 3, the PoI “Netto” is withinthe user’s advertisement
distance. However, the PoI’s advertisement distance is notlarge enough to include the
user’s position. Hence in this situation no advertisement is sent to the user.

The data model and related issues have been dealt with, and inthe server application
can be established. The next Chapter gives the architectureof the required services.

44 Chapter 4. Data Layer

PoI Ad_Dist

User Ad_Dist

Netto

PoI Ad_Dist

User

User Ad_Dist

PoI Ad_Dist

User Ad_Dist

Tivoliland

User

Situation 1 Situation 2

Situation 3

User

Carnival in Aalborg

Figure 4.3: Examples of PoI and user advertisement ranges. In Situation 1 an adver-
tisement is send to the user. In Situation 2 and 3 no advertisement is send.

Chapter 5

Server Application Layer

This chapter describes the design of the application level of the push-based LBS frame-
work. The application level consists of components and services. The components can
be used as building blocks, whereas services have a defined interface to client appli-
cations or web interfaces. The components are implemented as Java classes and the
services are implemented as Java servlets. The framework isan extension of the LBS
framework from [ACKN03], but only classes and methods used to implement the On-
line Aalborg Guide are included in this chapter. Section 5.1describes the class diagram
of the Server Application Layer. The next section, Section 5.2, describes the flow of
the services.

5.1 Class Diagram

The class diagram makes use of an inheritance structure provided by an abstract su-
perclassLBSServlet. This makes it easy to add additional services to the application
layer by creating specializations of theLBSServletclass and hence inheriting the com-
ponents related toLBSServlet.

Figure 5.1 shows the class diagram based on the UML notation.Due to the amount of
methods contained in the classes, only the most important methods for understanding
the application structure are included in the class diagram. The four classes at the bot-
tom of the class diagramPoIIndex, AdServlet, FurtherInfoandAdServletare concrete
Java Servlet classes and make up the service layer since these have strictly defined in-
terfaces to the client applications on the client layer. Theservice interface is described
in Chapter 6. The four classes inherit from the abstract superclassLBSServletwhich is
a specialization of the standard Java2EE classHttpServlet. TheLBSServletclass has
relations to the three basic components of the LBS frameworkQuery, Databaseand
GIS. The four service classes inherit these relationships since the classes are special-
izations ofLBSServlet. This inheritance structure makes it easy to add new services to

45

46 Chapter 5. Server Application Layer

updateUserPos()

GIS

getIndex()

getFurtherInfo()

getAds()

printXML()

methods:

HttpServlet

doPost()

doGet()

methods:

LBSServlet

convertToUTM(lon,lat)

PoIIndex

addUserPoI()

openDB()
methods:

closeDB()

doSQL(sql)

exeSQL(sql)

Database

AdServlet

converFurtherInfoToSQL()

convertToSQL()

convertAdToSQL()

methods:

filterURL()

Query

AddUserPoI FurtherInfo

Figure 5.1: Class diagram of the server application layer.

the framework by adding a new sub class to theLBSServletclass and hence inherits
the relations to the components needed to create services.

The component classes which are Java classes consist ofQuery, DatabaseandGIS
classes.

The Queryclass has methods to parse the input parameters received from the client
application and use these parameters to form an SQL statement used to query the
database. ThefilterURL() method extracts the values received from an HTTP re-
quest URL and stores the values in corresponding variables.From these variables it is
possible to form SQL statements depending on which service is requested. Thecon-
vertFurtherInfoToSQL() method forms an SQL statement based on the ID of
a PoI and is called if theFurtherInfoservice is requested. TheconvertToSQL()
method is used when thePoIIndexservice is called and forms an SQL statement, based
on a user name or user ID and user coordinates. TheconvertAdToSQL() method is
called when theAdServletservice is requested. Based on the user ID, coordinates and

5.2. Sequence Diagrams 47

system time, an SQL statement to be used for requesting advertisement is formed. The
AddUserPoI() method is used when theAddUserPoIservice is requested. This
method opens a connection to the database, and adds the user PoI based on coordi-
nates and user name or user ID, before closing the database connection. Finally, the
convertToUTM(lat,lon) method can be used if requests are received in WGS84
decimal degrees format. If this is the case, the values are converted to UTM 32 mea-
sured in meters since this eases distance calculations. TheGPSOne application always
forms requests using the UTM 32 format. However, in the future other applications
may use the WGS84 format.

The purpose of theDatabaseclass is to handle queries performed on the database.
The class has a method for establishing a connection to the database,openDB() ,
and a method for closing connections to the database,closeDB() . Additionally
the class contains two methods for performing queries on thedatabase. Theex-
eSQL(sql) method is used when executing insertions, updates or deletions in the
database, whereas thedoSQL(sql) method is used when querying the database.
ThedoSQL(sql) returns a JavaResultSet object which is correspondent to a table,
whereas theexeSQL(sql) method does not have any return object.

The GIS class is responsible for performing the queries received from Queryobject
and returning the appropriate output to the client application. ThegetFurther-
Info() method is used when theFurtherInfoservice is requested. ThegetAds()
method is used in a similar way when theAdServletservice is requested. Similarly,
getIndex() method is used when thePoIIndexservice is requested. In this case
the printXML() method is used. This method returns the output of the PoI index
as either customized format used for the GPSOne applicationor as XML which can
be used by future client applications. The customized format is specified in Chapter 6
which deals with the Service Layer of the framework. The lastmethod included here
is theupdateUserPos() method which is called when thePoIIndexor AdServlet
services are requested. When these services are requested the client application pro-
vides the position of the user. This is used by theupdateUserPoi() method to
connect to the database and update the server’s knowledge ofthe user’s position.

5.2 Sequence Diagrams

After having introduced the class design of the server application layer, a more specific
model of the flow is given in the form of sequence diagrams. Sequence diagrams is a
UML notation which gives a visualization of the actual structure and flow of a given
task or function of the system [MMMNS98]. In the following the sequence diagrams
of the servicesPoiIndex, AdServlet, FurtherInfoandAdServletare presented.

48 Chapter 5. Server Application Layer

5.2.1 PoIIndex

In Figure 5.2 the sequence diagram of thePoIIndexservice is shown.

closeDB()
printXML()

updateUserPos(

GISQuery

)

user, x, y

user, x, y

)

XML/Custom output

index result

index query

getIndex()

convertToSQL()

index query

filterUrl()

openDB()

doSQL(

Database

Request

User

PoI Index

Figure 5.2: Sequence diagram for PoIIndex service.

The purpose of the servlet is to enable client applications to retrieve a PoI index, as
mentioned in Section 3.3. The client makes a HTTP request forthe service containing
parameters containing the ID of the user, and the current coordinates of the client.
These parameters are filtered from the URL and placed in corresponding variables by
the filterURL() method. Based on these variables the SQL query for the index
is formed by theconvertToSQL() method. Next, thegetIndex() method of
the relatedGISclass is invoked. This method opens a database connection bycalling
theopenDB() method from theDatabaseclass. The method then retrieves the SQL
statement formed by theQueryobject, performs the query and receives aResultSet
object. Before closing the database connection the method updates the user position
stored in the database by updating theUTM attribute of theUSERStable. Finally the
result of the query is returned to the client in the format requested. This is done by the
printXML() method of theGISclass.

5.2. Sequence Diagrams 49

5.2.2 AdServlet

Figure 5.3 shows the sequence diagram of theAdServletservice. The purpose of this
servlet is to deliver time-related location-based advertisements to client applications.

ad output

updateUserPos(

ad output

Query GIS

)

user, x, y

user, x, y)

ad query

filterUrl()

closeDB()

getAds()

convertAdToSQL()

ad query

openDB()

doSQL(

ad result

Database

Request

User

AdServlet

Figure 5.3: Sequence diagram for AdServlet service.

The flow of this service is almost identical to the flow of thePoIIndexservice. The
parameters for this service are also a user ID and client coordinates. The parameters
are extracted from the URL and stored in variables by thefilterUrl() method.
The SQL query used to retrieve the correct advertisements isformed by theconver-
tAdToSQL() method. ThegetAds() method of theGISclass is then called. This
method opens a database connection, queries the database and receives aResultSet
object. Then the advertisement output is formed, based on a specified output format,
before the method updates the user position and closes the database connection. This
service does not print the output in other formats than the GPSOne application expects.
This format is specified in Chapter 6.

50 Chapter 5. Server Application Layer

5.2.3 FurtherInfo

getFurtherInfo()

furtherinfo result

furtherinfo output
furtherinfo output

furtherinfo query

)

Query GIS

poi_id

openDB()

furtherinfo query

convertFurtherInfoToSQL()

filterUrl()

doSQL(

closeDB()

Database

Request

User

FurtherInfo

Figure 5.4: Sequence diagram for FurtherInfo service.

The flow of theFurtherInfo servlet is shown in Figure 5.4. The purpose of this ser-
vice is to let client applications retrieve information about a particular PoI. The flow
of this servlet follows the flow of thePoIIndexandAdServletservlets. The parameter
for the service is a PoI ID. This ID is parsed from the URL and stored in a variable
by the filterUrl() method of theQueryobject. The SQL query, to be used for
querying information about the PoI, is formed in theconvertFurtherInfoTo-
SQL() method. Then thegetFurtherInfo() method of theGISclass is called.
This opens a database connection, performs the query, outputs the result as specified
by the further info format and closes the database connection. The main difference
between the flow ofFurtherInfoandAdServletis that the position of the client is not a
parameter and hence the client position in the database is not updated.

5.2. Sequence Diagrams 51

5.2.4 AddUserPoI

addUserPoI()

)userid, poi name, x, yexeSQL(

openDB()

closeDB()

Query

userid, poi name, x, y

filterUrl()Request

Database

User

AddUserPoI

Figure 5.5: Sequence diagram for AddUserPoI service.

Figure 5.5 shows the sequence diagram of theAddUserPoIservice. The purpose of
this service is to let users add their own PoIs to the Online Aalborg Guide. The pa-
rameters for this service are a user ID, a name of the new PoI and the coordinates for
the new PoI. Similar to the other services, these parametersare parsed from the URL
and placed in corresponding variables by thefilterUrl() method. After this, the
addUserPoI() method of theQueryclass is called. This method opens a database
connection, forms the SQL statement, based on the variables, and executes the SQL
statement using theexeSQL() method of theDatabaseclass. The statement adds a
new tuple to theUSER_POItable. Finally, the method closes the database connection.
The AddUserPoIservice is fairly simple since the service basically forms an SQL

52 Chapter 5. Server Application Layer

statement and executes this. Due to this and since no output is required the service
does not need to initialize aGIS object as the other services do.

The services presented in this chapter have defined interfaces which are a part of the
Service Layer. The Service Layer of the framework is described in the next chapter.

Chapter 6

Service Layer

This Chapter describes the interface definitions between the Service Layer and the
Client Layer. In addition, examples of how the results are generated are shown. The
interface definitions are used by the GPSOne application to access the services on the
Service Layer. The interface between the services in the Service Layer and client ap-
plications of the Client Layer are based on HTTP requests. The next sections describe
these requests based on example executions.

6.1 PoIIndex

The parameters for this service are:

• userid - The ID of the user.

• username - The user name of the user.

• x - The easting in meters.

• y - The northing in meters.

• xdd - The longitude in decimal degrees.

• ydd - The latitude in decimal degrees.

• format - The output format.

The request must contain three parameters:userid or username and (x , y) or
(xdd , ydd). The format parameter is optional. If theformat parameter is left
out or if format=0 then the request output is formatted as defined for the GPSOne
application.format=1 requests the output as XML.

Example:
Http://euman-ext1.novi.dk/PoiIndex?

53

54 Chapter 6. Service Layer

username=alex&x=556500&y=6322700

This URL states that user “alex” requests a PoI index and the current location is
(556500,6322700). This example extends the example in Section 4.1, where the user
has subscribed to “Amusement parks”, “Folk festivals” and “Supermarkets” in the
user’s current profile. The range threshold is defined to be 100 km and the PoI in-
dex threshold is defined to be 300 PoIs. Based on the inputs andthe current profile the
following query is formed:

SELECT C.DIST, C.POI_ID, C.NAME, C.X, C.Y
FROM

(SELECT MDSYS.SDO_GEOM.SDO_DISTANCE(MDSYS.SDO_GEOMETRY(2001, 82343,
MDSYS.SDO_POINT_TYPE(556500.0, 6322700.0, NULL),
NULL, NULL), POI.UTM, 0.001) DIST,
POI.POI_ID, POI.NAME, POI.X, POI.Y

FROM
POI, PROFILE, USERS, PROFILEAREA

WHERE
(PROFILE.USER_ID=0 OR USERS.NAME=’alex’)
AND USERS.USER_ID = PROFILE.USER_ID
AND PROFILE.PROFILE_ID = USERS.CURRENT_PROFILE
AND PROFILEAREA.PROFILE_ID= PROFILE.PROFILE_ID
AND POI.AREA_ID = PROFILEAREA.AREA_ID
AND POI.TYPE_ID = PROFILEAREA.TYPE_ID
AND SDO_WITHIN_DISTANCE(POI.UTM, MDSYS.SDO_GEOMETRY(2001, 82343,
MDSYS.SDO_POINT_TYPE(556500.0, 6322700.0, NULL),
NULL, NULL), ’DISTANCE = 100000’)=’TRUE’

ORDER BY DIST ASC) C
WHERE ROWNUM <=300
ORDER BY DIST ASC;

This query returns 221 PoIs. The first six results are shown inTable 6.1

DIST POI_ID NAME X Y
10.198039 100059 Tivoliland 556502 6322690

473.820641 1545 Netto 556035 6322791
571.171603 6741 Superbrugsen Færø Plads 556969 6322374
1001.20577 100058 Las Vegas - Lasergame * Funhouse555767 6323382
1058.08979 100267 Game World 555835 6323523
1073.77838 100075 4. juli aftenfest - Galla middag 555430 6322610

Table 6.1: Result of a PoI index query.

The PoI index is returned to the client application as semi-colon separated values and is
presented asPOI_ID;NAME;X;Y . In addition to the PoI index theUpdate Thresh-
old is calculated and presented at the end of the PoI index as¤DIST . The output of
the example execution for the first six results is:

6.1. PoIIndex 55

100059;Tivoliland;556502;6322690
1545;Netto;556035;6322791
6741;Superbrugsen Færø Plads;556969;6322374
100058;Las Vegas - Lasergame * Funhouse;555767;6323382
100267;Game World;555835;6323523
100075;4. juli aftenfest - Galla middag;555430;6322610
¤33329

If the service is requested to deliver the output in XML usingthe format parameter
the URL would looks like this:

Http://euman-ext1.novi.dk/PoiIndex ?
username=alex&x=556500&y=6322700&format=1

The output would then be the following:

<?xml version = ’1.0’ encoding = ’iso-8859-1’?>
<PoiIndex>

<poi>
<name>Tivoliland</name>
<id>100059</id>
<x>556502</x>
<y>6322690</y>

</poi>
<poi>

<name>Netto</name>
<id>1545</id>
<x>556035</x>
<y>6322791</y>

</poi>
<poi>

<name>Superbrugsen Færø Plads</name>
<id>6741</id>
<x>556969</x>
<y>6322374</y>

</poi>
<poi>

<name>Las Vegas - Lasergame * Funhouse</name>
<id>100058</id>
<x>555767</x>
<y>6323382</y>

</poi>
<poi>

56 Chapter 6. Service Layer

<name>Game World</name>
<id>100267</id>
<x>555835</x>
<y>6323523</y>

</poi>
<poi>

<name>4. juli aftenfest - Galla middag</name>
<id>100075</id>
<x>555430</x>
<y>6322610</y>

</poi>
<maxpoidist>33329</maxpoidist>

</PoiIndex>

6.2 AdServlet

The parameters for the AdServlet service are:

• userid - The ID of the user.

• username - The user name of the user.

• x - The easting in meters.

• y - The northing in meters.

• xdd - The longitude in decimal degrees.

• ydd - The latitude in decimal degrees.

The request must contain three parameters:userid or username and (x , y) or
(xdd , ydd).

Example:
Http://euman-ext1.novi.dk/AdServlet?
username=alex&x=556500&y=6322700

The URL states that the user with user name “alex” requests the AdServlet service and
has coordinates (556500,6322700).
Based on the input and the current profile a query is formed as shown in Appendix A.
Depending on the system time, the parameter and the current profile in use the query
returns a number of advertisements. Examples of results areshown in Table 6.2
The output from the advertisement query is returned to the client applications and pre-
sented asNAME: DESCRIPTION.

6.3. FurtherInfo 57

DIST POI_ID NAME DESCRIPTION CURRENT_PROFILE AREA_ID TYPE_ID EVENT_ID
10.198039 100059 Tivoliland Senior citizens entry for free 4 2 11 1027
473.820641 1545 Netto Free taste samples of our new prod-

ucts
4 101 116203 1028

1203.46583 100046 Karneval i Aalborg Come and join the carnival parade 4 3 10 1029

Table 6.2: Result of an advertisement query.

The output from the results in Table 6.2 is:

Tivoliland: Senior citizens entry for free
Netto: Free taste samples of our new products
Karneval i Aalborg: Come and join the carnival parade

The client application can then use this information to display for the users in an ap-
propriate way. The number of advertisements displayed is specified by the user in the
profile setting.

6.3 FurtherInfo

The parameter for this service is:

• poiid - The ID of the PoI.

This request only needs to contain this one parameter.

Example:
Http://euman-ext1.novi.dk/ FurtherInfo?poiid=100059

This example URL requests further information about the PoIwith the ID 100059.
Depending on whether the PoI originates from the Nykredit data sources or Aal-
borg Tourist Bureau, the query is performed on theNYKREDIT_INFOtable or the
TOURIST_INFOtable. The queries are trivial select statements over two tables. Ex-
amples are shown in Appendix B. Since the PoIs have differentattributes depending
on which kind of data source they originate from, the output also depends on this. The
output is formed in the following way for PoIs from theNYKREDIT_INFOtable:

name¤NAME
address¤ROAD ROAD_NR
city¤ZIPCODE CITY
tlf¤TLF

For PoI from theTOURIST_INFOtable the output is formed as:

name¤NAME
address¤ROAD HOUSENUMBER

58 Chapter 6. Service Layer

city¤POSTALCODE CITY
DESC¤ENG_DESCRIPTION

The URL example requests further information about “Tivoliland” (PoI ID = 100059)
which is stored in theTOURIST_INFOtable and hence the output is:

name¤Tivoliland
address¤Karolinelundsvej 40
city¤9000 Aalborg
DESC¤Tivoliland is one of the largest amusement parks in
Denmark and since the start in 1946 the purpose has been
to give the guest value for money. Tivoliland is a world
of it’s own with plenty of star attractions. Most of them
made especially for Tivol

The specified output format is utilized by the GPSOne application in order to parse the
values and display the information in an window for the user.The last line containing
a description is always trimmed to 254 characters, since 255is the maximum number
of characters a single file line of the Symbian 6.1 OS can handle.

6.4 AddUserPoI

The parameters for the AddUserPoi service are:

• userid - The ID of the user.

• username - The user name of the user.

• x - The easting in meters.

• y - The northing in meters.

• xdd - The longitude in decimal degrees.

• ydd - The latitude in decimal degrees.

• poiname - The name of the added user PoI.

The request must contain four parameters:userid or username and (x , y) or (xdd
, ydd) and finallypoiname .

Example:
Http://euman-ext1.novi.dk/AddUserPoi?username=alex&
x=556500&y=6322700&poiname=parking_lot_near_tivoli

6.4. AddUserPoI 59

This URL example states that a user wishes to add a user PoI. Inorder to insert the
values into the database, an available user PoI ID must first be found. This is done by
sorting the user PoI ID’s in theUSER_POItable and selecting the last. If the request
contains a user name the corresponding user ID must be found since theUSER_POI
table stores user ID’s. This is done by a simple lookup in theUSERStable. For this
example the highest user PoI ID is 1000004 (POI_ID = 1000004) and the user ID of
“alex” is 1 (USER_ID = 1). The SQL statement to insert a user PoI intoUSER_POI
table is then:

INSERT INTO USER_POI VALUES(
1000004+1, MDSYS.SDO_GEOMETRY(2001, 82343, MDSYS.SDO_POINT_TYPE(556500,
6322700, NULL), NULL, NULL), ’parking_lot_near_tivoli’, NULL, NULL, 1);

Table 6.3 shows theUSER_POItable after insertion of the new PoI.

USER_POI
POI_ID UTM NAME REVIEW GRADE USER_ID
1000004 SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(555213,

6322555, NULL), NULL, NULL)

Home NULL NULL 1

1000005 SDO_GEOMETRY(2001, 82343,

SDO_POINT_TYPE(556500,

6322700, NULL), NULL, NULL)

parking_lot_near_
tivoli

NULL NULL 1

Table 6.3: TheUSER_POItable after insertion of the user PoI with ID 1000005.

Chapter 7

Client Application Layer

This chapter describes the design and implementation of theclient application. The
general architectural design is presented in Section 7.1, and the implementation of
each part of the application is described in detail. Section7.2 describes theCoreclass,
Section 7.3 describes theUpdateclass and the implementation of the update algorithm.
In Section 7.4 theFileHandlerclass is described and in Section 7.5 the class handling
the local PoI cache is described. Section 7.6 describes the implementation of the map
display in the GPSOne application, and 7.7 details how the classes operate together.

7.1 Class Diagram

doSql()
doCloseDatabase()
doOpenDatabase()

checkUpdate()
updateData()

PoI

extractPoIs()

FileHandler

displayPoIInfo()
displayAd()

Core

DBHandler

NotifyFinished()

doMakeDatabase()
extractData()

Start()
Run()

LoadGpsReceiver()
UnloadGpsReceiver()

Update
checkPoI()

HW I/O Library

DataConsumer

GpsConsumer

Display

Figure 7.1: The Class Diagram of the client application

61

62 Chapter 7. Client Application Layer

The Class Diagram for the client application is illustratedin Figure 7.1. As illustrated
in the figure, the client has eight classes. The main class in the Class Diagram is the
Coreclass. TheCoreclass is responsible for handling GUI events and delegatingtasks
to the other classes.

TheUpdateclass is responsible for keeping track of PoIs and for requesting updates
when needed. ThePoI class contains information on PoIs. TheFileHandlerclass han-
dles file operations, such as opening retrieved data and images files. TheDBHandler
class handles the small-scale database on the client. TheDisplayclass is responsible
for updating the user interface, including map and PoI display.

The DataConsumerandGpsConsumerclasses provide interfaces to the GPS and to
the Internet. These classes are a part of an external set of libraries, HW I/O library,
that implement the protocols NMEA and HTTP respectively. These protocols are not
described in further details. TheCore, Update, Display DBHandlerandFileHandler
classes are described in further detail in the following sections.

7.2 The Core Class

TheCoreclass acts as a central task unit. When a new set of GPS coordinates is ready
from theGpsConsumer, theCore class invokes theUpdateclass. TheUpdateclass
then checks to see if an update is needed. If an update is needed, theUpdateclass calls
the getPoIIndex() method of theCore class. ThegetPoIIndex() method
calls theGet() method of aDataRetrieverobject from theDataConsumerclass. The
Get() method is called with an URL to the service. TheDataRetrieverthen retrieves
the appropriate file and calls theNotifyFinished() method in theCore class.
TheNotifyFinished() method uses a state variable to determine which type of
data theDataRetrieveris retrieving. This variable can have one of five values:

Value Meaning
EGetNone TheDataretrieveris idle, and is ready for new requests.
EGetPoIIndex TheDataretrieveris asked to get the Index of PoIs.
EGetPoIInfo TheDataretrieveris retrieving information about the currently

nearest PoI.
EGetImage TheDataretrieveris retrieving an image.
EGetAd An advertisement text is requested through theDataretriever.

Depending on the state, an appropriate data handling is called. For the PoI index the
FileHandlermethodextractPoIs() is called, followed by a call to theDBHandler
methodextractData() . For further information about a PoI, denotedPoI Info, the
FileHandlermethoddisplayPoIInfo() is called. If an Image is being loaded, the

7.2. The Core Class 63

Displayclass methodgetImageDone() is called to notify that the image is ready.
For Ads, thedisplayAd() method of theFileHandler is called. The flowchart in
Figure 7.2 shows the flow of theCoreclass. The “Update Needed” choice is handled in
thecheckUpdate() method in theUpdateclass. The “DataRetriever Idle” choice
is checked whenever any kind of data download is requested. If the DataRetriever is
idle, the request is fulfilled, but if not, the request fails,and the request will need to
wait for the next GPS update, which is performed every second. This potentially leads
to starvation, especially when images are requested. Sinceimages are cached locally,
the problem is only present when the user enters a not previously visited area.

New GPS
coordinate

Update
Needed?

DataRetriver
Idle?

Wait for
New GPS Coord.

No

Yes

No

Call Get from
DataRetriever

Yes

Set State

Getting
What?

extractPoIs

displayPoIInfo

displayAd

getImageDone

EGEtPoIIndex

EGetPoIInfo EGetImage

EGetAd

Figure 7.2: The Flowchart of the Core class.

64 Chapter 7. Client Application Layer

7.3 The Update Class

TheUpdateclass implements the algorithm in Section 3.3.2. The algorithm forms the
basis for determining whether an update is necessary or not.The methodcheckUpdate()
of theUpdateclass is called by theCoreclass with the current GPS position as param-
eter whenever the GPS produces a valid position.

The position is checked against the last update position andthe update threshold, to see
whether an update is needed. If there is a need to update, the methodgetPoIIndex()
of theCoreclass is called, and retrieves a PoI index from the LBS Application server.
If an update is not required, the PoIs currently stored in memory, namely the ones
which are within the update threshold, are checked to find which is the nearest PoI.
The code for thecheckUpdate() method is presented below:

Function checkUpdate(){

if (boundThreshold()){
updateData();

}
else{

checkPoI();
}

};

TheboundThreshold() method is the update threshold mentioned in Section 3.3.
If the user’s movement is within the (0.3� Threshold Dist) distance the method re-
turns false and thecheckPoI() algorithm begins. Otherwise, the PoI array in the
main memory is no longer valid, and an update request to the LBS Application server
is initialized by theupdateData() method.

ThecheckPoI() method is responsible for finding the nearest PoI within the user’s
defined threshold. The code for the algorithm is described below:

1 Function checkPoI(){
2 if (!isUpdating){

3 for (i=0; i < ArrayOfPoI.EndOfIndex; i++){

4 ArrayOfPoI[i].PoIDist =
5 calcDist(currentLocationX,CurrentLocationY,
6 PoILocationX, PoILocationY) ;

7 if (ArrayOfPoI[i].PoIDist < UserThreshold){

8 if (ArrayOfPoI[i].PoIDist < NearestPoI.PoIDist){
9 NearestPoI = ArrayOfPoI[i];

10 isUpdating = true;
}

7.4. FileHandler Class 65

}
11 else {
12 isUpdating = false;

}
}

}

The arrayArrayOfPoI is the PoI index. Each element in the array contains a PoI object.
ThePoIDist, an attribute in the PoI object, is used by the algorithm, andcontains the
distance between the user’s position and the PoI’s position. The distance is calculated
by thecalcDist() method.NearestPoIis an attribute that contains the nearest PoI
object.

The algorithm works as follows: For each PoI in the PoI index the distance between
the user’s position and the PoI is calculated by thecalcDist() method (lines 1-6).
The calculated distance is compared with the user’s predefined Threshold (line 7). If
the distance is less than the user’s predefined threshold, the PoI is a candidate to be the
nearest PoI in relation to the user’s current position.

The candidate PoI’s distance is compared with the nearest PoI object, so far. If the
candidate PoI is nearer than the nearest PoI object so far, the candidate PoI object is
saved as the nearest PoI (lines 7-10). When the algorithm reaches the end of the array,
the nearest PoI is found. This is a linear time algorithm, which means that the larger
the number of PoIs in the array, the longer it takes to complete the algorithm. Hence,
the size of the array is balanced according to the size of the main memory and the
number of PoIs in the index, in order to have the lowest possible response time. Low
response time is crucial in order to provide precise data to the user. This depends on
the GPS receiver’s update frequency and the user’s speed.

If a PoI is found within the user’s threshold, the information about the PoI is pushed
to the user. This algorithm runs every second, if valid coordinates are received from
the GPS receiver. TheisUpdatingattribute is used to ensure that the algorithm has
finished execution before it is executed again with new coordinates as input.

7.4 FileHandler Class

TheFileHandler is responsible for file related operations. Any time a text file is to be
displayed or in other ways manipulated, it is done in theFileHandlerclass. Although
theFileHandlerclass handles files, the image files needed for the map, are nothandled
in this class. The reason for this is, that the image decodingis an integral part of the
Displayclass.

66 Chapter 7. Client Application Layer

TheFileHandler class handles three types of files; PoI index files, PoI Info files and
advertisement files. Each of these three file types have a unique form as described in
Chapter 6, and each needs to be handled differently.

The PoI index stored in the PoI index files needs to be extracted and inserted into the
PoI database on the client. For each PoI it is necessary to construct an SQL statement
which can be executed by theDBHandlermethoddoSql() . Furthermore, the server
calculates a new update threshold, which is also extracted and updated in theUpdate
class.

PoI info files contain further information about a PoI. In themethoddisplayPoIInfo() ,
theFilehandlerextracts the formal data, i.e. name, telephone number and address of
the PoI, from the file and presents it in list form. If a description of the PoI is available,
the list contains an extra entry, “Show Further Info”, whichallows the user to view a
description of the PoI.

The advertisement files contain the text of the advertisements, so theFileHandleronly
needs to display the text, this is done in thedisplayAd() method.

7.5 DBHandler Class

TheDBHandlerclass is used to handle the PoI database on the client. The database
stores PoIs from the PoI index in permanent storage. The reason for storing the PoIs in
the database, is to minimize the need for updating the PoI index from the LBS Appli-
cation Server. Especially if a user has turned off the application it would be preferable
to store the PoI index, so the user does not have to update the PoI index every time the
application is started. When storing the PoI index, a PoI index update is only necessary
if the update threshold is exceeded.

The DBHandlerclass acts as a kind of wrapper class for the DBMS of the Symbian
OS. ThedoSql() method is used for executing SQL statements created by theFile-
Handler. The DBMS available on the Symbian platform supports a subset of the SQL
standard. For the purpose of the client application, only the SELECT, DELETEand
CREATE TABLEstatements are needed.

The PoI database consists of a single tablePoI which has four attributes:

id The PoI ID from the server database.

name The name of the PoI, for displaying to the user.

x The UTM longitude of the PoI.

y The UTM latitude of the PoI.

7.6. Display Class 67

TheDBHandlercreates the table using the SQL statement:

CREATE TABLE PoI
(id INTEGER, name CHAR(127),x INTEGER, y INTEGER)

The small scale DBMS is sufficient to provide long term storage of a PoI Index. Each
time theUpdateclass needs to find the nearest PoI, the PoI are retrieved fromthe
database. This is done by theextractData() method, which extracts data from
the database and uses the data to create an array of PoI objects.

7.6 Display Class

This section describes theDisplayclass of the Aalborg Guide. The main functionality
of theDisplayclass lies in the map display. The main purpose of the map is togive the
user a visual representation of the surroundings. With text-based descriptions, the user
may be mislead by the description. With a map, the users can see their positions in
relation to the PoIs, helping them find a PoI. The following describes the map display
design and implementation.

7.6.1 Design

In this project, the maps are acquired online from KMS. The maps from KMS are
raster maps. The KMS ’Kortforsyningen’ can output a map of a selected area of Den-
mark as a JPEG or PNG formatted image. The request are HTTP request and is based
on the OpenGIS Web Map Server Interface Implementation Specification [Ope03b].
This service is used to retrieve the maps needed in the application.

One way of getting a map to present on the client terminal, is to retrieve the entire
area covered by the Aalborg Guide. This is infeasible, as an image with a sufficient
level of detail would take up more storage space than available on the client. The so-
lution to this is to partition the entire image into smaller parts that will fit on the client
terminal. This allows the client to only store relevant parts of a map, that is, the parts
the user visits.

This method for using several small images to create one large is called tiling, and is
widely used for computer graphics, most notably in video games [McI96]. The princi-
ple behind this is illustrated in Figure 7.3. The entire map is divided into tiles of equal
size. Each of these tiles are then assigned a global set of coordinates which specifies
the position of each tile. When drawing the map to the screen,only the tiles that over-
lap with the visible area are drawn. The method can be used to minimize the number
of images stored in main memory. If the number of images in memory can cover the

68 Chapter 7. Client Application Layer

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Visible Area

Tile

Figure 7.3: An image drawn from several individual tiles.

screen, a smooth scrolling effect can be achieved. This is especially important when
showing a map, since the user will need to continuously follow the road on the map. If
the map is not moving smoothly, the users could loose track oftheir position.

Smooth animation of tile based graphics is achieved by the method shown in Figure
7.4. When the map moves, the visible tiles are drawn. Each tile is represented by a
bitmap that can be drawn on the screen. In video games, when the tiles move off the
visible screen, they are removed and new tiles are loaded andadded on the opposite
side of the screen. This does not make sense when dealing withgeographical maps,
however, the principle of tiling images is used. The tile bitmaps are retrieved from
KMS, but are cached in local storage.

Some limitations arise when designing applications for mobile terminals. These lim-
itations have an influence on the design of the application. The terminal used, Nokia
7650, has a maximum 4MB of storage, meaning that a limited amount of map data
can be stored. The maximum data rate of the GPRS phone used is 40.2kbps [Nok03a],
which is slow for updating maps from the Internet. These limitations affect the map
display of the application in these ways:

• The number of map pieces (tiles) that are available at any given time is limited
by the memory.

• The size of individual tiles affects the download time of the tiles.

• Overhead from files (i.e. image file headers and storage fragmentation) may

7.6. Display Class 69

6

5

4

3

2

1

Figure 7.4: Tiled animation. When tiles move outside the visible area, they are not
drawn.

waste precious space.

The map display is designed to make a compromise between these limitations. The
design has the following features:

• Each tile is 256�256 pixels

• Only four tiles in memory

• Size of the map in the tile is 2000�2000 meters

The size of 256�256 pixels is chosen, as it is slightly bigger than the screen, meaning
that when a user moves around, it is only necessary to load a few images. This means
that fewer requests to the KMS map server will free up bandwidth for other online
purposes, i.e. downloading advertisements and PoI index. Atest of sizes of JPEG im-
ages shows that smaller images tend to use a large amount of data for the file structure.
The test involved a square single-color image, saved as JPEGwith the worst quality
setting. As seen in Figure 7.5 and Table 7.1, images of size 16�16 pixels and below
are equal in byte size. A possible explanation lies in the JPEG compression, which is
further explained in [JPE03]. This means that small images have too little actual im-
age information compared to their size, although images with actual detail may have a
better ratio.
The image size of set to 256x256. This gives a file overhead of 670 bytes, which is
acceptable.

The size of the map in each tile is 2000x2000 meters. This gives a clear, uncluttered
map, which is informative without being confusing. This leads to an implementation
of the map display as described in the following.

70 Chapter 7. Client Application Layer

Figure 7.5: Graph of JPEG image size vs. byte size. Images aresquare.

width height 4 8 16 32 64 128 200 256 300 400 512
bytes 286 286 286 292 310 382 539 670 827 1223 1822

Table 7.1: JPEG image size vs. byte size

7.6.2 Map Implementation

Each tile is 2000m�2000m, with 256 pixels in each direction, giving a resolution of
7.8125 m/pixel. The map display uses four tiles, which are displayed as shown in Fig-
ure 7.6. At all times, the tile which the user is located in, isdesignated as the center
tile. Depending on which square of the center tile, the user is located in, the surround-
ing tiles are designatedVertical, HorizontalandDiagonal. If the user is located in the
lower left square of the center tile, the surrounding tiles to the user’s left, down and
lower left are loaded (picture 1 and 2 of Figure 7.6). If the user is located in the upper
right square of the center tile, the surrounding tiles to theright, up and upper left are
loaded (picture 3 of Figure 7.6). The UTM coordinates of thistile is used to place the
tiles in relation to the center point on the screen.

To calculate the screen coordinates (Xpixel, Ypixel) to draw the image on, the current
GPS coordinates of the user is used. Since each tile is 2000m in each direction, the
tiles can be seen as being squares in a grid, beginning at (0,0), in order to calculate
the corner coordinates of the tile which the user is currently on, the UTM coordinates
are rounded down to the nearest 2000m. This gives the corner coordinates for the bot-

7.6. Display Class 71

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Horiz.

Center

Center

Vert.Diag.

CenterHoriz.

Picture 3Picture 2Picture 1

Horiz.
Vert.

Vert. Diag.

Diag.

Figure 7.6: The implementation with the four tiles. The white area is the viewable
screen area.

tom left corner of the tile1. To calculate the pixel offset from the center point of the
screen, the difference between the user coordinates (Xuser; Yuser) and the tile coordi-
nates (Xtile; Ytile) is divided by the map resolutionResmap (7.8125m/pixel). This is
then subtracted from the center pixel point (Cpx; Cpy), given in these formulas:Xpixel = Cpx � Xuser �XtileResmap (7.1)Ypixel = Cpy �HeightImage � Yuser � YtileResmap (7.2)

TheHeightImage is the height of the image, and is subtracted since the UTM coordi-
nates start in the bottom left and the terminals display starts in the top left corner of
the screen.

As an example, the position of Fredrik Bajers Vej 7E (FVB 7E) is approximately
(560013,6319413). By first rounding down to the nearest 2000m this becomes (560000,6318000).
This is the corner of the tile that FBV 7E is on. The map piece for this is shown in
Figure 7.7. To determine on which pixel position the map should be drawn, the num-
bers are inserted into Equations 7.1 and 7.2. The screen sizeis 176�208 pixels, so the
center point is (88,104). This gives the following calculation:Xpixel = 88� 560013� 5600007:8125 = 86 pixels: (7.3)Ypixel = 104� 256� 6319413� 63180007:8125 = 28 pixels: (7.4)

The map is then drawn at the position (86,28) on the screen.

1Only in the Eastern part of the Northern hemisphere.

72 Chapter 7. Client Application Layer

Figure 7.7: The map piece for the position of Fredrik Bajers Vej 7E (shown by the
arrow).

The three other tiles are designated asVertical, Horizontal andDiagonal. Depend-
ing on which quarter of the center tile the user is on, the three secondary tiles are filled
with the appropriate map pieces, as shown in Figure 7.6. Since the tiles are 2000m
in each direction, this value is added to or subtracted from the center tile UTM co-
ordinates to give the UTM coordinates of the horizontal, vertical and diagonal tiles.
Table 7.2 shows the rule for determining the coordinates forthe secondary tiles. In the

Quarter Horizontal Vertical Diagonal
Upper Left (-2000,0) (0,2000) (-2000,2000)
Upper Right (2000,0) (0,2000) (2000,2000)
Lower Left (-2000,0) (0,-2000) (-2000,-2000)
Lower Right (2000,0) (0,-2000) (2000,-2000)

Table 7.2: The (x,y) values to add to the Center Tile corner coordinates.

example above, the user’s position is in the upper left corner of the map. This gives
the corner coordinates for the other three secondary map images as shown in Table 7.3

The map pieces retrieved from KMS are stored in local storage. This enables the client
to cache the images. The client does this by trying to first open the image from local
storage, if this is not successful, the image is requested from KMS for later use.

7.7. Sequence Diagrams 73

Image UTM X UTM Y
Horizontal 558000 6318000
Vertical 560000 6320000
Diagonal 558000 6320000

Table 7.3: The positions of the three secondary maps.

To make this caching possible, each of the four tiles has associated corner coordinates
in UTM. This corner coordinates are used to keep track of which image is loaded into
each tile. Each image file in local storage is named as follows:

map_XXXXXX_YYYYYYY.jpg

Where theXXXXXXis thex coordinate andYYYYYYYis they coordinate. The four
images in the example have the filenames:

map_558000_6318000.jpg
map_558000_6320000.jpg
map_560000_6318000.jpg
map_560000_6320000.jpg

If any of the four tiles are to be updated, e.g. the user has moved off the center tile, the
coordinates is updated and a new image is loaded into the tile.

The tile approach allows for a fluid display of maps, as opposed to showing a new map
when the user moves off the screen.

7.7 Sequence Diagrams

The sequence diagram for updating PoIs is seen in Figure 7.8.TheCoreclass is thread
based, with theGpsConsumeras the controller. When a user starts the system, the
GpsConsumerstarts receiving GPS data. As soon as a usable coordinates become
available, theGpsConsumercalls theRun() method of theCore class. TheCore
class then calls theUpdateclass which checks whether an update is necessary.

Figure 7.8 shows the sequence if an update is needed. When this is the case, theUp-
dateclass calls theGet() method in theDataConsumerto get a new updated PoI
index. When finished, theDataConsumercalls theNotifyFinished() method
in the Core class, which then calls theextractPoIs() method in theFileHan-
dler. This method iterates through the received file, inserting each PoI into the local
PoI database. This is done by theDBHandler class with theOpenDatabase() ,

74 Chapter 7. Client Application Layer

...

ExtractPois()

doSql()

NotifyFinished()

Get()

"Start Service"

Run()

doSql()

CloseDB()

checkUpdate()

OpenDB()

DBHandlerFileHandler DataCons.GpsCons.

User

UpdateCore

Figure 7.8: The Sequence Diagram of the client, when an update is needed.

doSql() andCloseDatabase() methods.

After this, the client is put in a waiting position until theGpsConsumerpresents an-
other set of coordinates to theCore via theRun() method. The sequence diagram
in Figure 7.9 shows what happens when an update is not required. The difference be-
tween updating and not updating is that the Update class, instead of receiving a file
from the Internet, uses the methodcheckPoI() to iterate through the local list of
PoIs to find the nearest PoI, which is then presented to the user.

For advertisements and PoI info, the sequence diagram is presented in Figure 7.10.
TheDataConsumeris called to get the information, and when received, theCoreclass
uses theFileHandler to display the information in dialog boxes.

7.7. Sequence Diagrams 75

Update

User

GpsCons.

checkPoI()checkUpdate()

Run()

"Start Service"

updated
nearest PoI

Visual Feedback

Core

Figure 7.9: The Sequence Diagram of the client, when no update is needed.

displayPoiInfo()

NotifyFinished()

Get()

displayAd()
or

Visual Feedback

DataCons.

User Request

Core FileHandler

User

Figure 7.10: The Sequence Diagram for advertisements and PoI info.

Chapter 8

Scenario

This chapter exemplifies the use of GPSOne, through use cases. The use cases are
examples of how a user would interact with the system. Each example will consist of
a task the user wants to perform. With every choice the user takes, the reactions from
the client and server are described.

The user is a person called Alex1. Alex is traveling to Aalborg for the first time, and
owns a Series 60 mobile phone. Alex has installed GPSOne on the phone and has
bought or rented a Bluetooth GPS.

8.1 Scenario: Setting Up

Alex needs to inform the system of Alex’ preferences. This requires Alex to log onto
the Web site that accompanies the software and create a new user account. Figure 8.1
shows this.
After Alex is created as a new user, with the username “alex”,Alex logs into the sys-
tem and must now make a profile. This is displayed in Figure 8.2.

The user can now add and remove categories of PoIs to the profile. The web page for
this is displayed in Figure 8.3.

Alex chooses these categories for the profile:

• Amusement parks

• Folk Festivals

• Supermarkets

• Buildings
1Short for Alexandra or Alexander

77

78 Chapter 8. Scenario

Figure 8.1: The logon Web page of the Online Aalborg guide.

Figure 8.2: The user creates a profile.

By adding PoI categories to the system, theProfileAreatable is updated with the cate-
gories. This allows the system to use the categories in orderto find information relevant
for the user.

8.2 Scenario: Starting Service

After Alex has set up a profile, GPSOne is now ready to be used. On the phone Alex
starts up the application and is prompted to “select start onthe menu”. This brings up
a box where Alex can type in the username associated with the profile. Alex types in

8.2. Scenario: Starting Service 79

Figure 8.3: The setup of GPSOne profile.

“alex” and presses OK. This starts up the GPS receiver and theapplication begins to
check for nearest PoIs. This is displayed in Figure 8.4

Since it is the first time Alex uses the system, the data and maps are downloaded from
the Internet. After a short while, the area around Alex showsup on the screen and a
text box with info on the nearest PoI is shown (Figure 8.5). Alex goes for a walk. This
makes the client application look for new nearest PoIs.

Suddenly, as Alex is walking around in the center of Aalborg,“Jens Bang’s House”
is displayed on the screen. Alex has chosen “Buildings” in the profile, so Alex wants
more information. By choosing “More info” from the menu, Alex gets information on
the PoI. In the case of “Jens Bang’s House”, the information is:

Name: Jens Bang’s House

Address: Østerågade 9

80 Chapter 8. Scenario

Figure 8.4: The system asks for user name.

Figure 8.5: GPSOne running.

Postnr: 9000

City: Aalborg

More Info... Choose to view

Figure 8.6 shows the information as it is presented in the system. The information was
retrieved from the server by calling theFurtherInfoservlet on the server. The servlet
takes a PoI ID number as parameter and returns the information from the database.
The information is shown as a menu where the user can scroll through the information
at will. The “More Info... ” menu item allows the user to see a description of the
PoI, as shown in Figure 8.7. The description is sent along with the information. Figure
8.6 shows the information as it is presented in the system.

8.3. Scenario: Changing Profiles 81

Figure 8.6: The information is shown in list form.

Figure 8.7: The further information is shown.

8.3 Scenario: Changing Profiles

Alex is meeting a relative in Aalborg, and wants to talk over dinner. Alex needs to find
a restaurant that is nearby. Alex switches the profile from the one being used to a new
profile featuring restaurants. When the profile is changed, the nearest restaurant pops
up on the mobile phone, and an indicator of the direction is shown .

8.4 Scenario: Advertisements

The restaurant “Perlen” has just placed an advertisement inthe system, which is valid
from 12-14 the current day, and has chosen to advertise within a distance of 500 meters.
Alex wanders around in Aalborg and comes within 500 meters ofthe restaurant at 12

82 Chapter 8. Scenario

o’clock. Alex receives the ad “Special lunch deal. 50 kr,-. Today ONLY!” on the
phone (see Figure 8.8). Alex decides to try out the restaurant.

Figure 8.8: Advertisement in GPSOne.

Chapter 9

Evaluation

The GPSOne application is a push-based LBS prototype based on theCombined Ap-
proach. In order to minimize the continuous updates to the LBS Application Server,
theUpdate Threshold Approachand theUpdate Algorithm, mentioned in Section 3.3,
are implemented. This means that the number of updates from the client application
to the server is reduced considerately. The update performance depends on the user’s
preferences, the number of PoIs that are nearby the user, andthe maximum number of
PoIs allowed in the Index. Compared to sending an update of the user’s position each
second, the implemented approaches reduces the number of updates considerately,
since a user most likely will be able to travel within a range of several kilometers, be-
fore an update is necessary.

TheUpdate Algorithmensures that GPSOne monitors the nearest PoI available within
the user’s desired distance. However, theUpdate Algorithmis not able to monitor more
than one PoI. In order to monitor more than one PoI the algorithm has to sort the PoI
index, after the distance between the user and the PoIs has been calculated. Generic
sorting algorithms described in [CLRS01] can be used to sortthe PoI index. Since the
sorting algorithm has to be applied each time the GPS coordinates are extracted, the
sorting routine may decrease the performance. This dependson the size of the PoI
index.

The implementation of theRaster Map Caching Approachreduces the number of re-
quests to the KMS raster map server. The downloaded raster maps are stored in the
mobile phone and reused if possible. This leads to a significant reduction of network
traffic in GPSOne. However, the LRU caching algorithm of theRaster Map Caching
Approachhas not been implemented in GPSOne. This can result in filled storage, if
GPSOne is used over a long period of time. When GPSOne is used for the first time,
a number of raster maps have to be downloaded before it is possible to draw a map
on the screen. When the first maps have been downloaded, theRaster Map Caching
Approachallows the maps to be displayed faster to the user.

83

84 Chapter 9. Evaluation

The download time of the maps might affect the performance. The average download
time for a raster map, from KMS using a GPRS connection on a Nokia 7650, is about
5 seconds. GPSOne downloads at most four raster maps at a time, hence at least
20 seconds are required when maps are downloaded. Assume theuser’s position is
mapped to one of the downloaded raster map illustrated in theleft picture of Figure
9.1. In order to issue a map request, the user has to move halfway up the image size.
Since the image size corresponds to 2000 meters, the user needs to move at least 1000
meters. If the user moves more than 1000 meters within 20 seconds, the drawing of the
maps will not be able to keep up with the movement of the user. This means that the
user has to move with a speed of more than 180 km/h for this to occur. However, the
user might move around the center of the four downloaded raster maps as illustrated in
the right picture of Figure 9.1. This situation triggers maprequests frequently enough
to clutter the map drawing, since 16 maps must be downloaded.The network stability
also affects the map drawing performance.

Update Situation Worst Case Situation

Figure 9.1: The right picture illustrates the worst-case situation, which will trigger 16
map requests. The left picture illustrates, that the user needs to move at least half of
the image size, in order to issue a map request.

The GPSOne application depends on the network access to the LBS Application Server
and the KMS raster map server. However, if the user stays permanently in an area for
a longer period of time, the PoI index will still be valid and the updates to the LBS Ap-
plication is reduced. Without the information of the user’sinterests in the user profile,
it is not possible to reduce the updates as much as achieved.

The profiles are subscribed to at a Web site located at the LBS Application Server. If
the user could create and modify the profiles using the GPSOneapplication, it would
be more flexible and convenient for the user.

85

In order to use GPSOne, the Bluetooth GPS receiver has to establish satellite con-
nection. In best case, the satellite connection can be achieved within a few seconds,
and in the worst case, it can take several minutes. The satellite connection depends
on the surroundings and the weather [DB03]. Once the satellite connection is estab-
lished, the Bluetooth GPS receiver can recalculate the location, even if the connection
is temporarily broken. However, a Bluetooth GPS receiver isfairly expensive, since
the Emtac GPS is the only Bluetooth GPS on the market at current time. Other Blue-
tooth GPS receivers will soon enter the market [NAV03], and will most likely make
Bluetooth GPS receivers cheaper.

Extension of the LBS framework has enabled the framework to support both push and
pull-based services. The use of Java servlets enables the possibility to support many
users concurrently. Furthermore, the component-based design provides easy compo-
nent extension.

A few organizations have defined standards regarding mobileservices. The W3C has
defined a Point Of Interest eXchange Language Specification (POIX) [W3C03]. The
POIX specification defines how to specify PoIs using the XML format. The PoI data
format described in Section 4.1 does not follow the POIX convention. The reason
is, that the POIX specification defines geo-referenced objects, such as lines and arcs,
which are not relevant in this project. Furthermore, the POIX has a comprehensive PoI
location definition. In the POIX specification, a PoI can havemore than one position
related. A PoI can have a position for the entrance denoted asthe Terminal Point, a
position for the actual mapping in a road databaseIntroductory Point, and a series of
points to specify the route between the two points. This PoI specification is too com-
prehensive to use in this project, since the data available on this project only includes
one geographical point for each PoI. However, the PoI index has the options to be sent
to the client in XML format. Modifications can adapt the PoI data to the POIX speci-
fication.

Another consortium, PARLAY Group, defines specifications and API definitions for
developing mobile services [PAR03]. The LBS framework doesnot follow the PAR-
LAY convention. The LBS framework’s component based architecture and the use of
Java technology enables the framework the option to adapt such specification if neces-
sary in the future. In relation to geographic standards, a Geography Markup Language
(GML) has been defined by the openGIS consortium [Ope03a]. GML is also based on
XML specifications, and can be used to define geographic objects, surfaces, lines and
points. The GML specification is an alternative to POIX. These specifications can be
used in order to adapt the PoI data, used in the project, and thereby making it possible
integrate with other LBS systems. The next chapter concludes the project.

Chapter 10

Conclusion

Pervasive computing has received great attention in recentyears. A type of pervasive
computing is highly personalized services such as LBSs. Theresearch within the field
of LBSs is important, and could bring future users closer to apervasive computing
environment.

The main purpose of the project is to extend the already developed LBS framework
to support push-based features, and use this to develop a prototypic LBS system, the
Online Aalborg Guide. As a part of the Online Aalborg Guide, aclient application
GPSOne, for Symbian OS mobile phones has been developed. Thepush-based LBS
framework, which is an extension of the LBS framework, has been implemented and
organized in various layers and components, such that modularity and transparency are
provided for developers.

One of the design criteria of the Online Aalborg Guide is to minimize the number
of position updates from the client, and thus reducing the computational load of the
server, and minimize the network transmission between the client and the server. This
will also reduce the cost for users to access the service. In order to meet this design
criterion, the architecture is based on a combined approach. The combined approach
distributes the logic between the client and the server, andpart of the data is stored at
the client. The Online Aalborg Guide is implemented such that the client application
monitors the nearest PoI and displays this. The nearest PoI is found in a PoI index
stored at the client. The PoI index is formed based on the user’s position and interests.
This means, that the PoI index only needs to be updated when the user changes inter-
ests or moves outside a PoI index range where the nearest PoI cannot be found.

Storage is another design issue that the Online Aalborg Guide must handle. Most client
terminals have limited storage capacity, including mobilephones. This must be taken
into consideration when designing a LBS such as the Online Aalborg Guide. Hence
the PoI index only contains the most basic information abouta PoI. If the user wishes
further information about a PoI, this information is retrieved from the server. The PoI

87

88 Chapter 10. Conclusion

index for the Nokia 7650 includes only a limited number of PoIs, based on the user’s
position and interests. This means that the storage space inthe client terminal can be
used for other purposes, such as storing images of maps. The client application caches
images of maps used, so maps don’t have to be fetched from the Internet every time.
This reduces the network usage and increases the performance of the client application.

The Online Aalborg Guide includes push-based advertisements from PoIs, that are
nearby the user. The advertisements are based on the user’s position, interests and
the system time. This means that commercial PoIs, such as restaurants or amusement
parks, can specify a time interval in which their advertisement is sent to users. How-
ever, in order to target the advertisements, in the interestof both the PoI and the user,
the user must, for instance, have restaurants or amusementsparks as interests. Fur-
thermore, the PoI must be within the user’s specified advertisement range, and the
user must be within the PoI’s specified advertisement range.This means that the On-
line Aalborg Guide and the push-based LBS framework is able to deliver information
based on time and location.

The realization of the Online Aalborg Guide demonstrates the applicability of the push-
based LBS framework, and highlights some of the issues involved when construction
LBSs.

Chapter 11

Future Work

This chapter discusses future work on the Online Aalborg Guide, the GPSOne appli-
cation, and the LBS Framework. Initially, the services thatare left out of this project
could be implemented. These are; theBuddy Finder, Favorites, User PoIs, Reviews,
PicturesandRoute-Planner.

The Favorites can be implemented mainly at the server, as a service that adds the PoI
to the users favorites. Another solution would be to maintain the favorites on the client
terminal, this would lower the load on the server, but the user would not be able to
easily transfer favorites between different devices.

Reviews and Pictures could supplement the user PoIs, as wellas the already present
PoIs. The users would be able to submit pictures and reviews of PoIs, thus adding
content to the system. Reviews, Pictures and User PoIs demand a server that can store
potentially large amounts of data. Depending on whether theuser wants to publish the
user PoIs, reviews, favorites and pictures, the service canbe distributed between the
client and server.

The Buddy Finder requires implementation of user tracking on the server, such that
the server can maintain a model of all users positions and movements. To maintain
a model that is detailed enough to let users find each other with reasonable accuracy,
a large number of updates are needed. The current update method only updates the
user’s position in the server, when a PoI index or further information about a PoI is
requested. To maintain the advantages of a low update rate, the server will need to be
able to predict the users’ positions. This requires that prediction algorithms are added
to the server, and that they can affect the update policy of the client.

As an additional technical feature, the client could be extended to support other LDTs
than GPS, for example by using cell-based positioning, or byallowing the user to en-
ter an address. The application currently uses a dynamic library, or DLL, to provide
GPS access. Cell-based positioning should be implemented in the same manner. This

89

90 Chapter 11. Future Work

would enable the user to choose the relevant LDT at will. The cell-based LDT only
provides precision that is good enough for services such as weather forecasts, but not
precise enough for guiding a user between two addresses. Address-based positioning
would require the user to enter a nearby address, which wouldthen be translated into
a set of coordinates. This would require the server to have a set of road data with ad-
dresses mapped onto. The address-based LDT does not supportpush services, as the
user takes an active role in the LDT.

Even though the two mentioned LDTs are not suitable for precise push-based services,
they can be used when a GPS receiver is not available. Since they rely solely on the
mobile phone, cell-based positioning uses the radio in the phone, which is available
at all times. Using other LDTs than GPS also allows users withmobile devices that
cannot be connected with a GPS to use the services, only at a degraded level.

Another technical improvement would be to implement the services using data ex-
change standards. The current implementation only uses theWMS standard to retrieve
JPEG images from KMS, and textual data is transferred in a proprietary format. The
services running on the server need only small adjustments to use XML for data trans-
fers, whereas the client application will need to support XML. This requires an XML
parser to be implemented for the client platform.

If an XML parser is present, it is possible to implement SVG (Scalable Vector Graph-
ics), which is based on XML. The SVG format can be used to transfer and display
maps and geographic information in a vector based image format. The advantage of
using SVG instead of JPEG images is, that the vector format takes up less space than
raster images. Additionally, vector-based graphics can bescaled without loosing de-
tail. This will allow for smooth zoom functionality in the application. Furthermore, the
image cache could be replaced by a vector database, where maps are stored as shapes.

To realize maps in this way will require a vector-based representation of the maps.
Likewise, if only geographic features are transferred in SVG, it would be possible to
overlay the SVG graphic onto the existing raster maps, a functionality that could be
used for showing routes on the map. These kinds of vector graphics would then need
to be generated by the server, which in [ACKN03] is nearly implemented.

At the client side, additional services can be implemented.These services may even
become distributed, such that clients may exchange data between each other. Such a
distributed service could appeal to tourist groups. Tourists could exchange pictures and
information about sights, favorites and reviews. This would give an extra dimension
to sightseeing.

Another application is to implement warning applications,such as those described in
Section 1.5. Senior citizens could either be equipped with similar phones, or custom

91

devices. The warning applications would be similar to the buddy finder, where con-
cerned parents or relatives could locate their children or elders on their own devices,
or from a computer.

Bibliography

[ACKN03] Kristian V.B. Andersen, Michael Cheng, and Rasmus
Klitgaard-Nielsen. Framework for building location basedservices.
Technical report, Aalborg Universitet, 2003.

[Blu03] The Official Bluetooth Wireless Info Site. http://www.bluetooth.com,
2003.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2 edition, 2001.

[Dan03] Danish Tourist Board. Visit denmark - the official guide to denmark.
http://www.visitdenmark.com, 2003.

[DB03] Alastair Davies and Jenni Barclay. Silva gps and electronic compass.
http://www.gly.bris.ac.uk/WWW/TerraNova/silvagps/gps.html, 2003.

[DR02] Goran M. Djuknic and Robert E. Richton. Geo-locationand assisted
gps.
http://www.lucent.com/livelink/090094038000e51f_White_paper.pdf,
2002.

[Fly02] Peter Flynn. Xml faq. http://www.ucc.ie/xml/faq.xml, 2002.

[Gag03] Jevgenij Gagach. Copilot documentation.
http://www.cs.auc.dk/�jevgenij/copilot/docs, 2003.

[Gil02] Chuck Gilbert. How is the accuracy of a gps receiver described.
http://www.romdas.com/technical/gps/gps-acc.htm, 2002.

[GPS03] GPSWorld. Gps development timeline.
http://www.gpsworld.com/gpsworld/static/staticHtml.jsp?id=7956,
2003.

[Int03] IntelliWhere. Intelliwhere trackforce: for tracking the location of field
crews and mobile assets.
http://www.intelliwhere.com/PRO/TRA/PRO041.asp, 2003.

93

94 Bibliography

[Jan01] Elina Janssen. Gis online - location based services.
http://www.geog.uno.edu/�ejanssen/GIS Online.ppt, 2001.

[JPE03] JPEGFAQ. Jpeg image compression faq.
http://www.faqs.org/faqs/jpeg-faq/part1/preamble.html, 2003.

[KMS03] Kort og Matrikelstyrelsen. http://www.kms.dk, 2003.

[Lon03] Lonely Planet Publications. Lonely planet citysync.
http://www.citysync.com, 2003.

[Mar03] Margareth Evangelista Marmori. Location-based services on the
mobile internet.
http://www.kommunikationsforum.dk/log/Locationbased.pdf, 2003.

[McI96] Jason McIntosh. Jason’s article on tile graphics.
http://www-cs-students.stanford.edu/�amitp/Articles/Tiletech.html,
1996.

[Met03] Metoffice. Metoffice weather forecast. http://www.metoffice.com,
2003.

[Min03] Ministeriet for Videnskab Teknologi og Udvikling.Teknologisk
fremsyn om pervasive computing (computere i alt).
http://www.teknologiskfremsyn.dk/html/ikt_about.html, 2003.

[MMMNS98] Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen, and Jan
Stage.Objekt Orienteret Analyse og Design. Marko, 2 edition, 1998.

[NAV03] NAVMAN. NAVMAN. http://www.navman.com, 2003.

[NME03] NMEA. The National Marine Electronics Association.
http://www.nmea.org, 2003.

[Nok03a] Nokia. Nokia - 7650 phone features.
http://www.nokia.com/nokia/0,8764,815,00.html, 2003.

[Nok03b] Nokia. Nokia - nokia on the web. http://www.nokia.com, 2003.

[Nok03c] Nokia. Nokia mposition solution description v1.0.
http://www.forum.nokia.com/main/1„040,00.html?fsrParam=1-
3&fileID=2648,
2003.

[Nyk02] Nykredit. Nykredit. http://www.nykredit.dk, 2002.

[Ope03a] Open GIS Consortium Inc. Opengis geography markuplanguage
(gml) implementation specification.
http://www.opengis.org/techno/documents/02-023r4.pdf, 2003.

[Ope03b] Open GIS Consortium Inc. Opengis web map server interface
implementation specification revision 1.0.0.
http://www.opengis.org/techno/specs/00-028.pdf, 2003.

[Ora02] Oracle. Oracle spatial user’s guide and reference release 9.2.
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/
appdev.920/a96630/toc.htm, 2002.

[Ora03] Oracle. Oracle corporation. http://www.oracle.com, 2003.

[PAR03] The PARLAY Group. http://www.parlay.org, 2003.

[Por03] Timo Poropudas. Nokia 7650 puts symbian into drivers seat.
http://www.nordicwirelesswatch.com/wireless/story.html?story_id=2347,
2003.

[SKS96] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.Database
System Concepts. McGraw-Hill, 3 edition, 1996.

[Sta97] William Stallings.Operating Systems - Internals and Design
Principles. Prentice-Hall, 3 edition, 1997.

[Sun02] Sun Microsystems. Java 2 enterprise edition features.
http://java.sun.com/j2ee/, 2002.

[USG01] USGS. The universal transverse mercator (utm) grid.
http://mac.usgs.gov/mac/isb/pubs/factsheets/fs07701.html, 2001.

[Vin02] Vindigo. Vindigo. http://www.vindigo.com, 2002.

[Vis03] VisuAide. A gps system for the blind and visually impaired.
http://www.visuaide.com/gpssol.html, 2003.

[W3C03] W3C. Point of interest exchange language specification.
http://www.w3.org/TR/poix/, 2003.

[WGS03] WGS84. Wgs 84 - world geodetic system 1984.
http://www.wgs84.com, 2003.

[Wik03a] Wikipedia. Global system for mobile communcations.
http://www.wikipedia.org/wiki/GSM, 2003.

[Wik03b] Wikipedia. Universal Mobile Telephone System.
http://www.wikipedia.org/wiki/UMTS, 2003.

95

Appendix A

Advertisement Query

This advertisement query is performed on monday the 16-05-2003 at 22.25. The user is “alex”
and the user’s position is (556500,6322700).

select c.dist, c.poi id, c.name, c.description,c.current profile, c.area id, c.type id, c.event id
from
(select

mdsys.sdo geom.sdo distance(mdsys.SDO GEOMETRY(2001, 82343,
mdsys.SDO POINT TYPE(556500.0,6322700.0, NULL), NULL , NULL), poi.utm,0.001) dist,
poi.utm, poi.poi id, poi.name, description, users.current profile,profilearea.areaid,
profilearea.type id, event id

from
poi, profile, users, profilearea,poievents

where (profile.user id=0 or users.name=’alex’) 10

and users.user id=profile.user id
and profile.profile id=users.current profile
and profilearea.profile id=profile.profile id
and poi.area id=profilearea.areaid
and poi.type id=profilearea.type id

and poi.poi id=poievents.poi id ĺ
and poievents.type nr=2
and active=1
and starthours<= 22
and endhours>= 22 20

and startmin <=25
and endmin >=25
and weekdays like’%1%’
and startdayofmonth<= 16
and enddayofmonth>= 16
and startmonth of year <= 5
and endmonth of year >=5
and startperiod <= to date(’16-5-2003’ ,’dd-mm-yyyy’)
and endperiod >=to date(’16-5-2003’ ,’dd-mm-yyyy’)

order by dist asc) c, profilearea, poievents 30

where c.current profile=profilearea.profile id
and c.area id=profilearea.areaid

97

and c.type id=profilearea.type id
and c.dist <= profilearea.ad dist
and poievents.event id = c.event id
and c.dist <= poievents.ad dist

order by dist asc;

98

Appendix B

Further Info Queries

Further Info query for the Nykredit PoI “Netto” with PoI ID 1545.

select name, gadenavn, gadenr, postnr, bynavn, tlf
from poi, nykreditinfo
where nykreditinfo.poi id=poi.poi id
and poi.poi id=1545; �� Nykredit PoI: Netto

Further Info query for the Tourist Info PoI “Tivoliland” with PoI ID 100059.

select name, road, housenumber, postalcode,city, textUK
from poi, touristinfo
where touristinfo.poi id=poi.poi id
and poi.poi id=100059; �� Tourist PoI: Tivoliland

99

Appendix C

Client Method Summary

This Apendix gives an overview of the methods available in each of the Client Classes.
The following methods are available in theCoreclass:

LoadGpsReceiver() Loads the GPS component library.

UnloadGpsReceiver()Unloads the GPS component library.

Start() Initializes the GPS component.

Run(aGpsHealth) Called by the GPS component when a position is available. The
value ofaGpsHealth determines if the GPS point is valid or not.

NotifyFinished(aError) Called by theDataretriever when it has finished. The vari-
ableaError contains the status of the initial request, which is either success or
failure.

The Start() method is called from the GUI when the user selectsStart Service
from the menu. TheLoad andUnloadGpsReceiver methods are called when
constructing or destroying anCoreobject.
TheUpdateclass has the following methods:

checkPoI() Finds the nearest PoI of those loaded into memory. Only PoIs which are
within the user-defined threshold are considered candidates.

checkUpdate() Checks if the update threshold has been exceeded. If it has,updateData()
is called to get a new set of PoIs from the server, otherwisecheckPoi() is
called. Is called by theRun() method in theCoreclass.

updateData() Requests a new set of PoIs by callinggetPoiIndex() in theCore
class.

TheFileHandlerclass has the following methods:

101

extractPoIs() Opens the file that was downloaded bygetPoIIndex and inserts the
PoIs into the database.

displayPoIInfo() Opens and displays the info that was downloaded after the user re-
quests to see more information on a PoI.

displayAd() Opens and displays an advertisement file that was downloaded.

TheDBHandlerclass has these methods:

doOpenDatabase()Opens a connection via the DBMS to the database file.

doCloseDatabase()Commits any changes done to the database and closes the DBMS
connection.

doSql() Executes a given SQL command on the currently open database.

doMakeDatabase()Creates a fresh database file store.

extractData() Extracts data from the database and puts it into a PoI array intheUp-
dateclass.

102

